WorldWideScience

Sample records for vehicles design performance

  1. Solar electric vehicles : design challenges and performance

    Energy Technology Data Exchange (ETDEWEB)

    Cruickshank, C.A.; Harrison, S.J.; Simko, T.M. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical Engineering; Mason, A.J. [Queen' s Univ., Kingston, ON (Canada). Dept. of Electrical and Computer Engineering; Verdun, T.P.; Yeung, R. [Queen' s Univ., Kingston, ON (Canada). Dept. of Engineering Physics; Beckett, D.R. [Queen' s Univ., Kingston, ON (Canada). Faculty of Applied Science

    2003-08-01

    Queen's University participates regularly in solar vehicle races such as the American Solar Challenge and the World Solar Challenge. This paper presents the award winning design of Canada's first two person solar vehicle designed by a group of students who design, build and race solar powered vehicles. Their Gemini design makes maximum use of limited collected power by minimizing electrical losses through efficient power management and delivery systems. The vehicle is aerodynamically efficient and is extremely light weight due to the use of advanced composite materials. The mechanical system (suspensions, brakes, steering and wheels) are also effective and efficient. The photovoltaic array on Gemini consists of 3450 triple junction Gallium Arsenide solar cells packed into 11 square metres on the upper shell of the vehicle. The battery pack consists of 504 lithium ion polymer batteries, each with a nominal voltage of 3.7 V and a nominal capacity of 2.9 Ah. This vehicle placed first in the dual passenger class in the American Solar Challenge, and seventh overall in a field of 20 entries. 9 refs., 6 figs.

  2. Performance evaluation and design of flight vehicle control systems

    CERN Document Server

    Falangas, Eric T

    2015-01-01

    This book will help students, control engineers and flight dynamics analysts to model and conduct sophisticated and systemic analyses of early flight vehicle designs controlled with multiple types of effectors and to design and evaluate new vehicle concepts in terms of satisfying mission and performance goals. Performance Evaluation and Design of Flight Vehicle Control Systems begins by creating a dynamic model of a generic flight vehicle that includes a range of elements from airplanes and launch vehicles to re-entry vehicles and spacecraft. The models may include dynamic effects dealing with structural flexibility, as well as dynamic coupling between structures and actuators, propellant sloshing, and aeroelasticity, and they are typically used for control analysis and design. The book shows how to efficiently combine different types of effectors together, such as aero-surfaces, TVC, throttling engines and RCS, to operate as a system by developing a mixing logic atrix. Methods of trimming a vehicle controll...

  3. The Effect of Predicted Vehicle Displacement on Ground Crew Task Performance and Hardware Design

    Science.gov (United States)

    Atencio, Laura Ashley; Reynolds, David W.

    2011-01-01

    NASA continues to explore new launch vehicle concepts that will carry astronauts to low- Earth orbit to replace the soon-to-be retired Space Transportation System (STS) shuttle. A tall vertically stacked launch vehicle (> or =300 ft) is exposed to the natural environment while positioned on the launch pad. Varying directional winds and vortex shedding cause the vehicle to sway in an oscillating motion. Ground crews working high on the tower and inside the vehicle during launch preparations will be subjected to this motion while conducting critical closeout tasks such as mating fluid and electrical connectors and carrying heavy objects. NASA has not experienced performing these tasks in such environments since the Saturn V, which was serviced from a movable (but rigid) service structure; commercial launchers are likewise attended by a service structure that moves away from the vehicle for launch. There is concern that vehicle displacement may hinder ground crew operations, impact the ground system designs, and ultimately affect launch availability. The vehicle sway assessment objective is to replicate predicted frequencies and displacements of these tall vehicles, examine typical ground crew tasks, and provide insight into potential vehicle design considerations and ground crew performance guidelines. This paper outlines the methodology, configurations, and motion testing performed while conducting the vehicle displacement assessment that will be used as a Technical Memorandum for future vertically stacked vehicle designs.

  4. The design of a vehicle-mounted test system for the thermal performance of solar collector

    Science.gov (United States)

    Wen, S. R.; Wu, X. H.; Zhou, L.; Zheng, W.; Liu, L.; Yan, J. C.

    2016-08-01

    To increase the test efficiency of thermal performance of solar collector, a vehicle- mounted test system with high automation, simple operation, good mobility and stability is proposed in this paper. By refitting a medium bus, design of mechanical system and test loop, and using PC control technology, we implemented the vehicle-mounted system and realized effective integration between vehicle and test equipment. A number of tests have been done, and the results show that the vehicle-mounted test system has good parameters and performance and can be widely used to provide door-to-door testing services in the field of solar thermal application.

  5. The Design and Construction of a Battery Electric Vehicle Propulsion System - High Performance Electric Kart Application

    Science.gov (United States)

    Burridge, Mark; Alahakoon, Sanath

    2017-07-01

    This paper presents an electric propulsion system designed specifically to meet the performance specification for a competition racing kart application. The paper presents the procedure for the engineering design, construction and testing of the electric powertrain of the vehicle. High performance electric Go-Kart is not an established technology within Australia. It is expected that this work will provide design guidelines for a high performance electric propulsion system with the capability of forming the basis of a competitive electric kart racing formula for Australian conditions.

  6. Multidisciplinary Design Optimization of a Full Vehicle with High Performance Computing

    Science.gov (United States)

    Yang, R. J.; Gu, L.; Tho, C. H.; Sobieszczanski-Sobieski, Jaroslaw

    2001-01-01

    Multidisciplinary design optimization (MDO) of a full vehicle under the constraints of crashworthiness, NVH (Noise, Vibration and Harshness), durability, and other performance attributes is one of the imperative goals for automotive industry. However, it is often infeasible due to the lack of computational resources, robust simulation capabilities, and efficient optimization methodologies. This paper intends to move closer towards that goal by using parallel computers for the intensive computation and combining different approximations for dissimilar analyses in the MDO process. The MDO process presented in this paper is an extension of the previous work reported by Sobieski et al. In addition to the roof crush, two full vehicle crash modes are added: full frontal impact and 50% frontal offset crash. Instead of using an adaptive polynomial response surface method, this paper employs a DOE/RSM method for exploring the design space and constructing highly nonlinear crash functions. Two NMO strategies are used and results are compared. This paper demonstrates that with high performance computing, a conventionally intractable real world full vehicle multidisciplinary optimization problem considering all performance attributes with large number of design variables become feasible.

  7. Design of a 200kW electric powertrain for a high performance electric vehicle

    Directory of Open Access Journals (Sweden)

    Wilmar Martinez

    2016-09-01

    Full Text Available With the purpose of designing the electric powertrain of a high performance electric vehicle capable of running a quarter mile in 10 seconds, firstly it is necessary to calculate the required energy, torque, and power in order to size and select the suitable storage components and electric motors. Secondly, an assessment of the powertrain arrangement is needed to choose the best internal configuration of the vehicle and guarantee the highest efficiency possible. Finally, a design of the power conversion stages, specifically the DC-DC converter that interfaces the storage unit with the electric motors, is required as well. This paper shows the energy calculation procedure based on a longitudinal dynamic model of the vehicle and the selection method of the storage components and motors needed for this application, as well as the design of two 100kW interleaved boost converters with coupled inductors. In addition, a novel operation of the interleaved boost converter is proposed in order to increase the efficiency of the converter. As a result, the designed converter achieved a power density of 24,2kW/kg with an efficiency of 98 %, which was validated by experimental tests of a low power prototype.

  8. Design and Performance Evaluation of a Rotary Magnetorheological Damper for Unmanned Vehicle Suspension Systems

    Science.gov (United States)

    Lee, Jae-Hoon; Han, Changwan; Ahn, Dongsu; Lee, Jin Kyoo; Park, Sang-Hu; Park, Seonghun

    2013-01-01

    We designed and validated a rotary magnetorheological (MR) damper with a specified damping torque capacity, an unsaturated magnetic flux density (MFD), and a high magnetic field intensity (MFI) for unmanned vehicle suspension systems. In this study, for the rotary type MR damper to have these satisfactory performances, the roles of the sealing location and the cover case curvature of the MR damper were investigated by using the detailed 3D finite element model to reflect asymmetrical shapes and sealing components. The current study also optimized the damper cover case curvature based on the MFD, the MFI, and the weight of the MR damper components. The damping torques, which were computed using the characteristic equation of the MR fluid and the MFI of the MR damper, were 239.2, 436.95, and 576.78 N·m at currents of 0.5, 1, and 1.5 A, respectively, at a disk rotating speed of 10 RPM. These predicted damping torques satisfied the specified damping torque of 475 N·m at 1.5 A and showed errors of less than 5% when compared to experimental measurements from the MR damper manufactured by the proposed design. The current study could play an important role in improving the performance of rotary type MR dampers. PMID:23533366

  9. Design and performance evaluation of a rotary magnetorheological damper for unmanned vehicle suspension systems.

    Science.gov (United States)

    Lee, Jae-Hoon; Han, Changwan; Ahn, Dongsu; Lee, Jin Kyoo; Park, Sang-Hu; Park, Seonghun

    2013-01-01

    We designed and validated a rotary magnetorheological (MR) damper with a specified damping torque capacity, an unsaturated magnetic flux density (MFD), and a high magnetic field intensity (MFI) for unmanned vehicle suspension systems. In this study, for the rotary type MR damper to have these satisfactory performances, the roles of the sealing location and the cover case curvature of the MR damper were investigated by using the detailed 3D finite element model to reflect asymmetrical shapes and sealing components. The current study also optimized the damper cover case curvature based on the MFD, the MFI, and the weight of the MR damper components. The damping torques, which were computed using the characteristic equation of the MR fluid and the MFI of the MR damper, were 239.2, 436.95, and 576.78 N·m at currents of 0.5, 1, and 1.5 A, respectively, at a disk rotating speed of 10 RPM. These predicted damping torques satisfied the specified damping torque of 475 N·m at 1.5 A and showed errors of less than 5% when compared to experimental measurements from the MR damper manufactured by the proposed design. The current study could play an important role in improving the performance of rotary type MR dampers.

  10. Design and Performance Evaluation of a Rotary Magnetorheological Damper for Unmanned Vehicle Suspension Systems

    Directory of Open Access Journals (Sweden)

    Jae-Hoon Lee

    2013-01-01

    Full Text Available We designed and validated a rotary magnetorheological (MR damper with a specified damping torque capacity, an unsaturated magnetic flux density (MFD, and a high magnetic field intensity (MFI for unmanned vehicle suspension systems. In this study, for the rotary type MR damper to have these satisfactory performances, the roles of the sealing location and the cover case curvature of the MR damper were investigated by using the detailed 3D finite element model to reflect asymmetrical shapes and sealing components. The current study also optimized the damper cover case curvature based on the MFD, the MFI, and the weight of the MR damper components. The damping torques, which were computed using the characteristic equation of the MR fluid and the MFI of the MR damper, were 239.2, 436.95, and 576.78 N·m at currents of 0.5, 1, and 1.5 A, respectively, at a disk rotating speed of 10 RPM. These predicted damping torques satisfied the specified damping torque of 475 N·m at 1.5 A and showed errors of less than 5% when compared to experimental measurements from the MR damper manufactured by the proposed design. The current study could play an important role in improving the performance of rotary type MR dampers.

  11. Rotor hover performance and system design of an efficient coaxial rotary wing micro air vehicle

    Science.gov (United States)

    Bohorquez, Felipe

    2007-12-01

    Rotary-wing Micro air vehicles (MAVs) due to their unique hovering and low-speed flight capabilities are specially suited for missions that require operation in constrained spaces. Size restrictions force MAVs to operate in a low Reynolds number aerodynamic regime where viscous effects are dominant. This results in poor aerodynamic performance of conventional airfoils and rotor configurations. This dissertation explores the design issues that affect the hover performance of small-scale rotors and the implementation of a working coaxial MAV prototype. A computerized hover test stand was used for the systematic testing of single and coaxial small-scale rotors. Thin circular arcs were chosen for blade manufacturing because of their good aerodynamic characteristics at low Reynolds numbers, and simplified parameterization. Influence of airfoil geometry on single rotor hover performance was studied on untwisted rectangular blades. Non rectangular blades were used to study coupled airfoil and blade parameters. Tip tapered geometries were manufactured by removing material from baseline rectangular blades producing a coupling between blade planform, twist distribution, and spanwise airfoil shape. Performance gains were obtained by introducing large negative twist angles over short radial distances at the blade tips. A parametric study of the blade geometries resulted in maximum figures of merit of 0.65. Coaxial rotor performance at torque equilibrium was explored for different trims and operating conditions. It was found that the upper rotor was marginally affected by the lower one at spacings larger than 35% of the rotor radius, and that it produced about 60% of the total thrust. Experiments showed that power loading was maximized when higher collectives were used at the lower rotor, resulting in sizable differences in rotational speed between rotors. The CFD solver INS2d was used for a two-dimensional parametric aerodynamic study of circular arc airfoils. Lift, drag, and

  12. Steering Performance, Tactical Vehicles

    Science.gov (United States)

    2015-07-29

    front and rear. h. Steering gear type (rack & pinion, recirculating ball, etc.). TOP 02-2-600 29 July 2015 6 i. Steering linkage type...TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Test Operations Procedure ( TOP ) 02-2-600 Steering Performance, Tactical Vehicles...Colleran Road Aberdeen Proving Ground, MD 21005-5059 8. PERFORMING ORGANIZATION REPORT NUMBER TOP 02-2-600 9. SPONSORING/MONITORING AGENCY

  13. Evaluation of a performance-based standards approach to heavy vehicle design to reduce pavement wear

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2013-11-01

    Full Text Available are shown in FIGURE 3. TABLE 2 Road Wear Assessment Results for Baseline and PBS Vehicles in the Forestry Industry Assess- ment Date Client Operator Baseline/PBS vehicle Overall Length (m) Combination mass (kg) Payload (kg) PEF Average... Date Operator Commodity Baseline/ PBS vehicle Overall Length (m) Combination Mass (kg) Payload (kg) PEF Average LEF/ vehicle Average LEF/ton payload Feb-12 Unitrans (Richards Bay Minerals) Heavy Metal Concen- trate Baseline...

  14. Launch vehicle systems design analysis

    Science.gov (United States)

    Ryan, Robert; Verderaime, V.

    1993-01-01

    Current launch vehicle design emphasis is on low life-cycle cost. This paper applies total quality management (TQM) principles to a conventional systems design analysis process to provide low-cost, high-reliability designs. Suggested TQM techniques include Steward's systems information flow matrix method, quality leverage principle, quality through robustness and function deployment, Pareto's principle, Pugh's selection and enhancement criteria, and other design process procedures. TQM quality performance at least-cost can be realized through competent concurrent engineering teams and brilliance of their technical leadership.

  15. Parameter design and performance analysis of shift actuator for a two-speed automatic mechanical transmission for pure electric vehicles

    Directory of Open Access Journals (Sweden)

    Jianjun Hu

    2016-08-01

    Full Text Available Recent developments of pure electric vehicles have shown that pure electric vehicles equipped with two-speed or multi-speed gearbox possess higher energy efficiency by ensuring the drive motor operates at its peak performance range. This article presents the design, analysis, and control of a two-speed automatic mechanical transmission for pure electric vehicles. The shift actuator is based on a motor-controlled camshaft where a special geometric groove is machined, and the camshaft realizes the axial positions of the synchronizer sleeve for gear engaging, disengaging, and speed control of the drive motor. Based on the force analysis of shift process, the parameters of shift actuator and shift motor are designed. The drive motor’s torque control strategy before shifting, speed governing control strategy before engaging, shift actuator’s control strategy during gear engaging, and drive motor’s torque recovery strategy after shift process are proposed and implemented with a prototype. To validate the performance of the two-speed gearbox, a test bed was developed based on dSPACE that emulates various operation conditions. The experimental results indicate that the shift process with the proposed shift actuator and control strategy could be accomplished within 1 s under various operation conditions, with shift smoothness up to passenger car standard.

  16. Map-Based Power-Split Strategy Design with Predictive Performance Optimization for Parallel Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jixiang Fan

    2015-09-01

    Full Text Available In this paper, a map-based optimal energy management strategy is proposed to improve the consumption economy of a plug-in parallel hybrid electric vehicle. In the design of the maps, which provide both the torque split between engine and motor and the gear shift, not only the current vehicle speed and power demand, but also the optimality based on the predicted trajectory of vehicle dynamics are considered. To seek the optimality, the equivalent consumption, which trades off the fuel and electricity usages, is chosen as the cost function. Moreover, in order to decrease the model errors in the process of optimization conducted in the discrete time domain, the variational integrator is employed to calculate the evolution of the vehicle dynamics. To evaluate the proposed energy management strategy, the simulation results performed on a professional GT-Suit simulator are demonstrated and the comparison to a real-time optimization method is also given to show the advantage of the proposed off-line optimization approach.

  17. Pneumatic vehicle. Research and design

    Directory of Open Access Journals (Sweden)

    Lokodi Zsolt

    2011-12-01

    Full Text Available This experimental vehicle was designed for an international competition organized by Bosch Rexroth yearly in Hungary. The purpose of this competition is to design, build and race vehicles with a fuel source of compressed gas. The race consists of multiple events: longest run distance, the smartness track and the best acceleration event. These events test to the limit the capabilities of the designed vehicles.

  18. Heat loads in hypersonic vehicle design

    Energy Technology Data Exchange (ETDEWEB)

    Hirschel, E.H. [Daimler-Benz Aerospace AG, Muenchen (Germany)

    1999-12-01

    Heat loads are the major issue in high-speed vehicle design. Heat loads prediction capabilities need to be improved with regard to the materials and structure concept, and the aerodynamic and propulsion performance. Surface radiation cooling is the basic means to reduce heat loads on high-speed vehicles. Strong couplings can exist with the aerodynamic performance of vehicles, the structure and materials design, and flow-physics and thermochemical phenomena. Qualitative knowledge is available to interpret (computation) results and flight data, and to give the designer insight into related disciplinary and interdisciplinary vehicle design problems. Flow-physics and thermo-chemical models in prediction tools are inadequate. Heat loads and the related surface-temperature effects pose very important and challenging research and development problems. (orig.)

  19. Automated mixed traffic vehicle design AMTV 2

    Science.gov (United States)

    Johnston, A. R.; Marks, R. A.; Cassell, P. L.

    1982-01-01

    The design of an improved and enclosed Automated Mixed Traffic Transit (AMTT) vehicle is described. AMTT is an innovative concept for low-speed tram-type transit in which suitable vehicles are equipped with sensors and controls to permit them to operate in an automated mode on existing road or walkway surfaces. The vehicle chassis and body design are presented in terms of sketches and photographs. The functional design of the sensing and control system is presented, and modifications which could be made to the baseline design for improved performance, in particular to incorporate a 20-mph capability, are also discussed. The vehicle system is described at the block-diagram-level of detail. Specifications and parameter values are given where available.

  20. Vehicle systems design optimization study

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, J. L.

    1980-04-01

    The optimization of an electric vehicle layout requires a weight distribution in the range of 53/47 to 62/38 in order to assure dynamic handling characteristics comparable to current production internal combustion engine vehicles. It is possible to achieve this goal and also provide passenger and cargo space comparable to a selected current production sub-compact car either in a unique new design or by utilizing the production vehicle as a base. Necessary modification of the base vehicle can be accomplished without major modification of the structure or running gear. As long as batteries are as heavy and require as much space as they currently do, they must be divided into two packages - one at front under the hood and a second at the rear under the cargo area - in order to achieve the desired weight distribution. The weight distribution criteria requires the placement of batteries at the front of the vehicle even when the central tunnel is used for the location of some batteries. The optimum layout has a front motor and front wheel drive. This configuration provides the optimum vehicle dynamic handling characteristics and the maximum passsenger and cargo space for a given size vehicle.

  1. Railway vehicle performance optimisation using virtual homologation

    Science.gov (United States)

    Magalhães, H.; Madeira, J. F. A.; Ambrósio, J.; Pombo, J.

    2016-09-01

    Unlike regular automotive vehicles, which are designed to travel in different types of roads, railway vehicles travel mostly in the same route during their life cycle. To accept the operation of a railway vehicle in a particular network, a homologation process is required according to local standard regulations. In Europe, the standards EN 14363 and UIC 518, which are used for railway vehicle acceptance, require on-track tests and/or numerical simulations. An important advantage of using virtual homologation is the reduction of the high costs associated with on-track tests by studying the railway vehicle performance in different operation conditions. This work proposes a methodology for the improvement of railway vehicle design with the objective of its operation in selected railway tracks by using optimisation. The analyses required for the vehicle improvement are performed under control of the optimisation method global and local optimisation using direct search. To quantify the performance of the vehicle, a new objective function is proposed, which includes: a Dynamic Performance Index, defined as a weighted sum of the indices obtained from the virtual homologation process; the non-compensated acceleration, which is related to the operational velocity; and a penalty associated with cases where the vehicle presents an unacceptable dynamic behaviour according to the standards. Thus, the optimisation process intends not only to improve the quality of the vehicle in terms of running safety and ride quality, but also to increase the vehicle availability via the reduction of the time for a journey while ensuring its operational acceptance under the standards. The design variables include the suspension characteristics and the operational velocity of the vehicle, which are allowed to vary in an acceptable range of variation. The results of the optimisation lead to a global minimum of the objective function in which the suspensions characteristics of the vehicle are

  2. Performing Performance Design Anglonationally

    DEFF Research Database (Denmark)

    2016-01-01

    Video recording of pecha kucha style bricolage aural enactment of an international version of performance design......Video recording of pecha kucha style bricolage aural enactment of an international version of performance design...

  3. Performance Design

    DEFF Research Database (Denmark)

    Svabo, Connie

    2017-01-01

    Contribution to conference: Art and Presence The emerging field of Performance Design is unfolded as a bastard form of research/art/design/practice, with shapeshifting, monstruous, hybrid and transformational qualities. The potential for presencing, which emerges out of momentarily transgressing...

  4. Optimization methods applied to hybrid vehicle design

    Science.gov (United States)

    Donoghue, J. F.; Burghart, J. H.

    1983-01-01

    The use of optimization methods as an effective design tool in the design of hybrid vehicle propulsion systems is demonstrated. Optimization techniques were used to select values for three design parameters (battery weight, heat engine power rating and power split between the two on-board energy sources) such that various measures of vehicle performance (acquisition cost, life cycle cost and petroleum consumption) were optimized. The apporach produced designs which were often significant improvements over hybrid designs already reported on in the literature. The principal conclusions are as follows. First, it was found that the strategy used to split the required power between the two on-board energy sources can have a significant effect on life cycle cost and petroleum consumption. Second, the optimization program should be constructed so that performance measures and design variables can be easily changed. Third, the vehicle simulation program has a significant effect on the computer run time of the overall optimization program; run time can be significantly reduced by proper design of the types of trips the vehicle takes in a one year period. Fourth, care must be taken in designing the cost and constraint expressions which are used in the optimization so that they are relatively smooth functions of the design variables. Fifth, proper handling of constraints on battery weight and heat engine rating, variables which must be large enough to meet power demands, is particularly important for the success of an optimization study. Finally, the principal conclusion is that optimization methods provide a practical tool for carrying out the design of a hybrid vehicle propulsion system.

  5. Modeling Languages Refine Vehicle Design

    Science.gov (United States)

    2009-01-01

    Cincinnati, Ohio s TechnoSoft Inc. is a leading provider of object-oriented modeling and simulation technology used for commercial and defense applications. With funding from Small Business Innovation Research (SBIR) contracts issued by Langley Research Center, the company continued development on its adaptive modeling language, or AML, originally created for the U.S. Air Force. TechnoSoft then created what is now known as its Integrated Design and Engineering Analysis Environment, or IDEA, which can be used to design a variety of vehicles and machinery. IDEA's customers include clients in green industries, such as designers for power plant exhaust filtration systems and wind turbines.

  6. High Performance Monopropellants for Future Planetary Ascent Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. proposes to design, develop, and demonstrate, a novel high performance monopropellant for application in future planetary ascent vehicles. Our...

  7. Design and Performance Evaluation of an Electro-Hydraulic Camless Engine Valve Actuator for Future Vehicle Applications.

    Science.gov (United States)

    Nam, Kanghyun; Cho, Kwanghyun; Park, Sang-Shin; Choi, Seibum B

    2017-12-18

    This paper details the new design and dynamic simulation of an electro-hydraulic camless engine valve actuator (EH-CEVA) and experimental verification with lift position sensors. In general, camless engine technologies have been known for improving fuel efficiency, enhancing power output, and reducing emissions of internal combustion engines. Electro-hydraulic valve actuators are used to eliminate the camshaft of an existing internal combustion engines and used to control the valve timing and valve duration independently. This paper presents novel electro-hydraulic actuator design, dynamic simulations, and analysis based on design specifications required to satisfy the operation performances. An EH-CEVA has initially been designed and modeled by means of a powerful hydraulic simulation software, AMESim, which is useful for the dynamic simulations and analysis of hydraulic systems. Fundamental functions and performances of the EH-CEVA have been validated through comparisons with experimental results obtained in a prototype test bench.

  8. Dynamic vehicle model for handling performance using experimental data

    Directory of Open Access Journals (Sweden)

    SangDo Na

    2015-11-01

    Full Text Available An analytical vehicle model is essential for the development of vehicle design and performance. Various vehicle models have different complexities, assumptions and limitations depending on the type of vehicle analysis. An accurate full vehicle model is essential in representing the behaviour of the vehicle in order to estimate vehicle dynamic system performance such as ride comfort and handling. An experimental vehicle model is developed in this article, which employs experimental kinematic and compliance data measured between the wheel and chassis. From these data, a vehicle model, which includes dynamic effects due to vehicle geometry changes, has been developed. The experimental vehicle model was validated using an instrumented experimental vehicle and data such as a step change steering input. This article shows a process to develop and validate an experimental vehicle model to enhance the accuracy of handling performance, which comes from precise suspension model measured by experimental data of a vehicle. The experimental force data obtained from a suspension parameter measuring device are employed for a precise modelling of the steering and handling response. The steering system is modelled by a lumped model, with stiffness coefficients defined and identified by comparing steering stiffness obtained by the measured data. The outputs, specifically the yaw rate and lateral acceleration of the vehicle, are verified by experimental results.

  9. Battery-electric route bus: a platform for vehicle design

    OpenAIRE

    Fridman, Ilya

    2017-01-01

    This research developed a platform for designing battery-electric vehicle (BEV) route buses within an Australian context. The uncertainty of oil supply, increasing price of diesel fuel and development limitations of the internal combustion engine (ICE) encourage a transition away from current vehicle platforms. BEV systems address these concerns, while presenting potential to enhance vehicle performance and passenger accommodation on purpose-designed route buses. Conflicts between on-board en...

  10. Initiative to introduce a performance-based standards (PBS) approach for heavy vehicle design and operations in South Africa

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2008-05-01

    Full Text Available The introduction of PBS for heavy vehicles in South Africa was first identified in the National Overload Control Strategy as a potential concession of a proposed Self-regulation initiative. In August 2004 a PBS committee was established...

  11. Basic Utility Vehicle Design Competition

    Science.gov (United States)

    Reese, Susan

    2004-01-01

    What would you describe as a "car for humanity?" The Institute for Affordable Transportation (IAT) sees it as a simple vehicle that can be assembled almost anywhere by almost anyone to meet everyday needs and is a vehicle that can change lives for the working poor in Third World countries.

  12. FORECASTING OF PERFORMANCE EVALUATION OF NEW VEHICLES

    Directory of Open Access Journals (Sweden)

    O. S. Krasheninin

    2016-12-01

    Full Text Available Purpose. The research work focuses on forecasting of performance evaluation of the tractive and non-tractive vehicles that will satisfy and meet the needs and requirements of the railway industry, which is constantly evolving. Methodology. Analysis of the technical condition of the existing fleet of rolling stock (tractive and non-tractive of Ukrainian Railways shows a substantial reduction that occurs in connection with its moral and physical wear and tear, as well as insufficient and limited purchase of new units of the tractive and non-tractive rolling stock in the desired quantity. In this situation there is a necessity of search of the methods for determination of rolling stock technical characteristics. One of such urgent and effective measures is to conduct forecasting of the defining characteristics of the vehicles based on the processes of their reproduction in conditions of limited resources using a continuous exponential function. The function of the growth rate of the projected figure degree for the vehicle determines the logistic characteristic that with unlimited resources has the form of an exponent, and with low ones – that of a line. Findings. The data obtained according to the proposed method allowed determining the expected (future value, that is the ratio of load to volume of the body for non-tractive rolling stock (gondola cars and weight-to-power for tractive rolling stock, the degree of forecast reliability and the standard forecast error, which show high prediction accuracy for the completed procedure. As a result, this will allow estimating the required characteristics of vehicles in the forecast year with high accuracy. Originality. The concept of forecasting the characteristics of the vehicles for decision-making on the evaluation of their prospects was proposed. Practical value. The forecasting methodology will reliably determine the technical parameters of tractive and non-tractive rolling stock, which will meet

  13. Survivability design for a hybrid underwater vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Biao; Wu, Chao; Li, Xiang; Zhao, Qingkai; Ge, Tong [State Key Lab of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-03-10

    A novel hybrid underwater robotic vehicle (HROV) capable of working to the full ocean depth has been developed. The battery powered vehicle operates in two modes: operate as an untethered autonomous vehicle in autonomous underwater vehicle (AUV) mode and operate under remote control connected to the surface vessel by a lightweight, fiber optic tether in remotely operated vehicle (ROV) mode. Considering the hazardous underwater environment at the limiting depth and the hybrid operating modes, survivability has been placed on an equal level with the other design attributes of the HROV since the beginning of the project. This paper reports the survivability design elements for the HROV including basic vehicle design of integrated navigation and integrated communication, emergency recovery strategy, distributed architecture, redundant bus, dual battery package, emergency jettison system and self-repairing control system.

  14. Aircraft Conceptual Design Using Vehicle Sketch Pad

    Science.gov (United States)

    Fredericks, William J.; Antcliff, Kevin R.; Costa, Guillermo; Deshpande, Nachiket; Moore, Mark D.; Miguel, Edric A. San; Snyder, Alison N.

    2010-01-01

    Vehicle Sketch Pad (VSP) is a parametric geometry modeling tool that is intended for use in the conceptual design of aircraft. The intent of this software is to rapidly model aircraft configurations without expending the expertise and time that is typically required for modeling with traditional Computer Aided Design (CAD) packages. VSP accomplishes this by using parametrically defined components, such as a wing that is defined by span, area, sweep, taper ratio, thickness to cord, and so on. During this phase of frequent design builds, changes to the model can be rapidly visualized along with the internal volumetric layout. Using this geometry-based approach, parameters such as wetted areas and cord lengths can be easily extracted for rapid external performance analyses, such as a parasite drag buildup. At the completion of the conceptual design phase, VSP can export its geometry to higher fidelity tools. This geometry tool was developed by NASA and is freely available to U.S. companies and universities. It has become integral to conceptual design in the Aeronautics Systems Analysis Branch (ASAB) here at NASA Langley Research Center and is currently being used at over 100 universities, aerospace companies, and other government agencies. This paper focuses on the use of VSP in recent NASA conceptual design studies to facilitate geometry-centered design methodology. Such a process is shown to promote greater levels of creativity, more rapid assessment of critical design issues, and improved ability to quickly interact with higher order analyses. A number of VSP vehicle model examples are compared to CAD-based conceptual design, from a designer perspective; comparisons are also made of the time and expertise required to build the geometry representations as well.

  15. DESIGN OPTIMISATION OF AN UNMANNED UNDERWATER VEHICLE

    Directory of Open Access Journals (Sweden)

    FIRDAUS ABDULLAH

    2007-08-01

    Full Text Available The results of fluid flow simulation around an unmanned underwater vehicle (UUV are presented in this paper. The UUV represents a small submarine for underwater search and rescue operation, which suits the local river conditions. The flow simulation was performed with a commercially available computational fluid dynamics package, Star-CD. The effects of the UUV geometry on the velocity and pressure distributions on the UUV surface were discussed for Re=500,000 and 3,000,000. The discussion led to an improved design of the UUV with a smoother velocity profile around the UUV body.

  16. Design of Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Tadahiro Hyakudome

    2011-03-01

    Full Text Available There are concerns about the impact that global warming will have on our environment, and which will inevitably result in expanding deserts and rising water levels. While a lot of underwater vehicles are utilized, AUVs (Autonomous Underwater Vehicle were considered and chosen, as the most suitable tool for conduction survey concerning these global environmental problems. AUVs can comprehensive survey because the vehicle does not have to be connected to the support vessel by tether cable. When such underwater vehicles are made, it is necessary to consider about the following things. 1 Seawater and Water Pressure Environment, 2 Sink, 3 There are no Gas or Battery Charge Stations, 4 Global Positioning System cannot use, 5 Radio waves cannot use. In the paper, outline of above and how deal about it are explained.

  17. Conceptual Design and Numerical Simulations of Hypersonic Waverider Vehicle

    Science.gov (United States)

    Cao, D. Y.; Zhang, J. B.; Lee, C. H.

    A modularized airframe/propulsion integrated model is established by oblique shock wave theory, engineering method and method of characteristics(MOC). Based on this method, a new design methodology for hypersonic waverider vehicle which integrated scramjets with waverider airframe derived from cone-wedge flow field is presented. Integrated aero-propulsion performance of the waverider vehicle under on-design and off-design conditions is predicted using Euler equations discretized by Harten-Yee non-MUSCL TVD scheme and the combustor flow field is approximated by a quasi-ID cycle analysis, skin friction of vehicle is calculated by reference temperature method.

  18. [Design and application of portable rescue vehicle].

    Science.gov (United States)

    Guo, Ying; Qi, Huaying; Wang, Shen

    2017-12-01

    The disease of critically ill patients was with rapid changes, and at any time faced the risk of emergency. The current commonly used rescue vehicles were larger and bulky implementation, which were not conducive to the operation, therefore the design of a portable rescue vehicle was needed. This new type of rescue vehicle is multi-layer folding structure, with small footprint, large storage space, so a variety of first aid things can be classified and put, easy to be cleaned and disinfected. In the rescue process, the portable rescue vehicles can be placed in the required position; box of various emergency items can be found at a glance with easy access; the height of the infusion stand can adjust freely according to the user height; the rescue vehicle handle can be easy to pull and adjust accord with human body mechanics principle. The portable rescue vehicle facilitates the operation of medical staff, and is worthy of clinical application.

  19. Vehicle telematics; a learning studio for vehicle designers

    NARCIS (Netherlands)

    Peck, D.P.; Verlinden, J.C.

    2009-01-01

    Vehicle Telematics is a growth field and is transforming the transport sector. EADIS is a two year international initiative funded by Leonardo Da Vinci UK. It involves five European automotive and design-related educational institutions who have developed an internationally available online training

  20. Mechanical Hybrid KERS Based on Toroidal Traction Drives: An Example of Smart Tribological Design to Improve Terrestrial Vehicle Performance

    Directory of Open Access Journals (Sweden)

    Francesco Bottiglione

    2013-01-01

    Full Text Available We analyse in terms of efficiency and traction capabilities a recently patented traction drive, referred to as the double roller full-toroidal variator (DFTV. We compare its performance with the single roller full-toroidal variator (SFTV and the single roller half-toroidal variator (SHTV. Modeling of these variators involves challenging tribological issues; the traction and efficiency performances depend on tribological phenomena occurring at the interface between rollers and disks, where the lubricant undergoes very severe elastohydrodynamic lubrication regimes. Interestingly, the DFTV shows an improvement of the mechanical efficiency over a wide range of transmission ratios and in particular at the unit speed ratio as in such conditions in which the DFTV allows for zero-spin, thus strongly enhancing its traction capabilities. The very high mechanical efficiency and traction performances of the DFTV are exploited to investigate the performance of a flywheel-based Kinetic Energy Recovery System (KERS, where the efficiency of the variator plays an important role in determining the overall energy recovery performance. The energy boost capabilities and the round-trip efficiency are calculated for the three different variators considered in this study. The results suggest that the energy recovery potential of the mechanical KERS can be improved with a proper choice of the variator.

  1. Performance Efficient Launch Vehicle Recovery and Reuse

    Science.gov (United States)

    Reed, John G.; Ragab, Mohamed M.; Cheatwood, F. McNeil; Hughes, Stephen J.; Dinonno, J.; Bodkin, R.; Lowry, Allen; Brierly, Gregory T.; Kelly, John W.

    2016-01-01

    For decades, economic reuse of launch vehicles has been an elusive goal. Recent attempts at demonstrating elements of launch vehicle recovery for reuse have invigorated a debate over the merits of different approaches. The parameter most often used to assess the cost of access to space is dollars-per-kilogram to orbit. When comparing reusable vs. expendable launch vehicles, that ratio has been shown to be most sensitive to the performance lost as a result of enabling the reusability. This paper will briefly review the historical background and results of recent attempts to recover launch vehicle assets for reuse. The business case for reuse will be reviewed, with emphasis on the performance expended to recover those assets, and the practicality of the most ambitious reuse concept, namely propulsive return to the launch site. In 2015, United Launch Alliance (ULA) announced its Sensible, Modular, Autonomous Return Technology (SMART) reuse plan for recovery of the booster module for its new Vulcan launch vehicle. That plan employs a non-propulsive approach where atmospheric entry, descent and landing (EDL) technologies are utilized. Elements of such a system have a wide variety of applications, from recovery of launch vehicle elements in suborbital trajectories all the way to human space exploration. This paper will include an update on ULA's booster module recovery approach, which relies on Hypersonic Inflatable Aerodynamic Decelerator (HIAD) and Mid-Air Retrieval (MAR) technologies, including its concept of operations (ConOps). The HIAD design, as well as parafoil staging and MAR concepts, will be discussed. Recent HIAD development activities and near term plans including scalability, next generation materials for the inflatable structure and heat shield, and gas generator inflation systems will be provided. MAR topics will include the ConOps for recovery, helicopter selection and staging, and the state of the art of parachute recovery systems using large parafoils

  2. Improved LTVMPC design for steering control of autonomous vehicle

    Science.gov (United States)

    Velhal, Shridhar; Thomas, Susy

    2017-01-01

    An improved linear time varying model predictive control for steering control of autonomous vehicle running on slippery road is presented. Control strategy is designed such that the vehicle will follow the predefined trajectory with highest possible entry speed. In linear time varying model predictive control, nonlinear vehicle model is successively linearized at each sampling instant. This linear time varying model is used to design MPC which will predict the future horizon. By incorporating predicted input horizon in each successive linearization the effectiveness of controller has been improved. The tracking performance using steering with front wheel and braking at four wheels are presented to illustrate the effectiveness of the proposed method.

  3. Loads in the design of flight vehicles

    OpenAIRE

    Simion TĂTARU; Radu BÎSCĂ; Dorin LOZICI-BRÎNZEI

    2010-01-01

    The calculation of flight loads is a critical part of air vehicle design. On the other hand, the prediction of accurate loads is a sophisticated and complex process that requires skilled and experienced engineers. They must integrate results from wind tunnel tests, computer simulations, historical data and empirical formulations into a number of loads cases that provide a realistic assessment of the flight vehicle’s environment. Under these conditions, the vehicle must satisfy requirements im...

  4. Human Mars Ascent Vehicle Configuration and Performance Sensitivities

    Science.gov (United States)

    Polsgrove, Tara P.; Thomas, Herbert D.; Stephens, Walter; Collins, Tim; Rucker, Michelle; Gernhardt, Mike; Zwack, Matthew R.; Dees, Patrick D.

    2017-01-01

    The total ascent vehicle mass drives performance requirements for the Mars descent systems and the Earth to Mars transportation elements. Minimizing Mars Ascent Vehicle (MAV) mass is a priority and minimizing the crew cabin size and mass is one way to do that. Human missions to Mars may utilize several small cabins where crew members could live for days up to a couple of weeks. A common crew cabin design that can perform in each of these applications is desired and could reduce the overall mission cost. However, for the MAV, the crew cabin size and mass can have a large impact on vehicle design and performance. This paper explores the sensitivities to trajectory, propulsion, crew cabin size and the benefits and impacts of using a common crew cabin design for the MAV. Results of these trades will be presented along with mass and performance estimates for the selected design.

  5. Characterizing Epistemic Uncertainty for Launch Vehicle Designs

    Science.gov (United States)

    Novack, Steven D.; Rogers, Jim; Hark, Frank; Al Hassan, Mohammad

    2016-01-01

    NASA Probabilistic Risk Assessment (PRA) has the task of estimating the aleatory (randomness) and epistemic (lack of knowledge) uncertainty of launch vehicle loss of mission and crew risk and communicating the results. Launch vehicles are complex engineered systems designed with sophisticated subsystems that are built to work together to accomplish mission success. Some of these systems or subsystems are in the form of heritage equipment, while some have never been previously launched. For these cases, characterizing the epistemic uncertainty is of foremost importance, and it is anticipated that the epistemic uncertainty of a modified launch vehicle design versus a design of well understood heritage equipment would be greater. For reasons that will be discussed, standard uncertainty propagation methods using Monte Carlo simulation produce counter intuitive results and significantly underestimate epistemic uncertainty for launch vehicle models. Furthermore, standard PRA methods such as Uncertainty-Importance analyses used to identify components that are significant contributors to uncertainty are rendered obsolete since sensitivity to uncertainty changes are not reflected in propagation of uncertainty using Monte Carlo methods.This paper provides a basis of the uncertainty underestimation for complex systems and especially, due to nuances of launch vehicle logic, for launch vehicles. It then suggests several alternative methods for estimating uncertainty and provides examples of estimation results. Lastly, the paper shows how to implement an Uncertainty-Importance analysis using one alternative approach, describes the results, and suggests ways to reduce epistemic uncertainty by focusing on additional data or testing of selected components.

  6. Design and analysis of a gyroscopically controlled micro air vehicle

    Science.gov (United States)

    Thorne, Christopher Everett

    Much of the current research on micro air vehicle design relies on aerodynamic forces for attitude control. The aerodynamic environment in which micro air vehicles operate is characterized by a low Reynolds number and is not fully understood, resulting in decreased performance and efficiency when compared to large-scale vehicles. In this work, we propose a new rotary-wing micro air vehicle design that utilizes gyroscopic dynamics for attitude control. Unlike traditional micro air vehicles where attitude control moments are generated by aerodynamic control surfaces, the proposed vehicle will leverage the existing angular momentum of its rotating components to generate gyroscopic moments for controlling attitude. We explore this paradigm in an effort to reduce mechanical complexity that is inherent in blade pitch modulation mechanisms such as the swashplate, and to increase agility and possibly even efficiency when compared to state-of-the-art micro vertical-take-off-and-landing vehicles. The evolution of the mechanical design, including the evaluation of three prototypes that explore the use of gyroscopic attitude control, is presented along with a comprehensive dynamic and aerodynamic model of the third prototype. Two controllers that utilize gyroscopic moments are developed and tested in simulation. In addition, several experiments were performed using a VICON motion tracking system and off-board control. These results will also be presented.

  7. Electric vehicle machines and drives design, analysis and application

    CERN Document Server

    Chau, K

    2015-01-01

    A timely comprehensive reference consolidates the research and development of electric vehicle machines and drives for electric and hybrid propulsions • Focuses on electric vehicle machines and drives • Covers the major technologies in the area including fundamental concepts and applications • Emphasis the design criteria, performance analyses and application examples or potentials of various motor drives and machine systems • Accompanying website includes the simulation models and outcomes as supplementary material

  8. Conceptual Launch Vehicle and Spacecraft Design for Risk Assessment

    Science.gov (United States)

    Motiwala, Samira A.; Mathias, Donovan L.; Mattenberger, Christopher J.

    2014-01-01

    One of the most challenging aspects of developing human space launch and exploration systems is minimizing and mitigating the many potential risk factors to ensure the safest possible design while also meeting the required cost, weight, and performance criteria. In order to accomplish this, effective risk analyses and trade studies are needed to identify key risk drivers, dependencies, and sensitivities as the design evolves. The Engineering Risk Assessment (ERA) team at NASA Ames Research Center (ARC) develops advanced risk analysis approaches, models, and tools to provide such meaningful risk and reliability data throughout vehicle development. The goal of the project presented in this memorandum is to design a generic launch 7 vehicle and spacecraft architecture that can be used to develop and demonstrate these new risk analysis techniques without relying on other proprietary or sensitive vehicle designs. To accomplish this, initial spacecraft and launch vehicle (LV) designs were established using historical sizing relationships for a mission delivering four crewmembers and equipment to the International Space Station (ISS). Mass-estimating relationships (MERs) were used to size the crew capsule and launch vehicle, and a combination of optimization techniques and iterative design processes were employed to determine a possible two-stage-to-orbit (TSTO) launch trajectory into a 350-kilometer orbit. Primary subsystems were also designed for the crewed capsule architecture, based on a 24-hour on-orbit mission with a 7-day contingency. Safety analysis was also performed to identify major risks to crew survivability and assess the system's overall reliability. These procedures and analyses validate that the architecture's basic design and performance are reasonable to be used for risk trade studies. While the vehicle designs presented are not intended to represent a viable architecture, they will provide a valuable initial platform for developing and demonstrating

  9. Design study of toroidal traction CVT for electric vehicles

    Science.gov (United States)

    Raynard, A. E.; Kraus, J.; Bell, D. D.

    1980-01-01

    The development, evaluation, and optimization of a preliminary design concept for a continuously variable transmission (CVT) to couple the high-speed output shaft of an energy storage flywheel to the drive train of an electric vehicle is discussed. An existing computer simulation program was modified and used to compare the performance of five CVT design configurations. Based on this analysis, a dual-cavity full-toroidal drive with regenerative gearing is selected for the CVT design configuration. Three areas are identified that will require some technological development: the ratio control system, the traction fluid properities, and evaluation of the traction contact performance. Finally, the suitability of the selected CVT design concept for alternate electric and hybrid vehicle applications and alternate vehicle sizes and maximum output torques is determined. In all cases the toroidal traction drive design concept is applicable to the vehicle system. The regenerative gearing could be eliminated in the electric powered vehicle because of the reduced ratio range requirements. In other cases the CVT with regenerative gearing would meet the design requirements after appropriate adjustments in size and reduction gearing ratio.

  10. Design for Safety - The Ares Launch Vehicles Paradigm Change

    Science.gov (United States)

    Safie, Fayssal M.; Maggio, Gaspare

    2010-01-01

    The lessons learned from the S&MA early involvement in the Ares I launch vehicle design phases proved that performing an in-line function jointly with engineering is critical for S&MA to have an effective role in supporting the system, element, and component design. These lessons learned were used to effectively support the Ares V conceptual design phase and planning for post conceptual design phases. The Top level Conceptual LOM assessment for Ares V performed by the S&MA community jointly with the engineering Advanced Concept Office (ACO) was influential in the final selection of the Ares V system configuration. Post conceptual phase, extensive reliability effort should be planned to support future Heavy Lift Launch Vehicles (HLLV) design. In-depth reliability analysis involving the design, manufacturing, and system engineering communities is critical to understand design and process uncertainties and system integrated failures.

  11. Design of Low Drag Bluff Road Vehicles

    NARCIS (Netherlands)

    Van Raemdonck, G.M.R.

    2012-01-01

    Low drag bluff road vehicle design can be obtained effectively and efficiently with a three phase approach that uses numerical simulations, scaled wind tunnel experiments and full-scale road testing. By applying this generalised method, SideWings were developed for an improved trailer underbody flow

  12. Hybrid Underwater Vehicle: ARV Design and Development

    Directory of Open Access Journals (Sweden)

    Zhigang DENG

    2014-02-01

    Full Text Available The development of SMU-I, a new autonomous & remotely-operated vehicle (ARV is described. Since it has both the characteristics of autonomous underwater vehicle (AUV and remote operated underwater vehicle (ROV, it is able to achieve precision fix station operation and manual timely intervention. In the paper the initial design of basic components, such as vehicle, propulsion, batteries etc. and the control design of motion are introduced and analyzed. ROV’s conventional cable is replaced by a fiber optic cable, which makes it available for high-bandwidth real-time video, data telemetry and high-quality teleoperation. Furthermore, with the aid of the manual real-time remote operation and ranging sonar, it also resolves the AUV’s conflicting issue, which can absolutely adapt the actual complex sea environment and satisfy the unknown mission need. The whole battery system is designed as two-battery banks, whose voltages and temperatures are monitored through CAN (controller area network bus to avoid battery fire and explosion. A fuzzy-PID controller is designed for its motion control, including depth control and direction control. The controller synthesizes the advantage of fuzzy control and PID control, utilizes the fuzzy rules to on-line tune the parameters of PID controller, and achieves a better control effect. Experiment results demonstrate to show the effectiveness of the test-bed.

  13. Conceptual design of flapping-wing micro air vehicles.

    Science.gov (United States)

    Whitney, J P; Wood, R J

    2012-09-01

    Traditional micro air vehicles (MAVs) are miniature versions of full-scale aircraft from which their design principles closely follow. The first step in aircraft design is the development of a conceptual design, where basic specifications and vehicle size are established. Conceptual design methods do not rely on specific knowledge of the propulsion system, vehicle layout and subsystems; these details are addressed later in the design process. Non-traditional MAV designs based on birds or insects are less common and without well-established conceptual design methods. This paper presents a conceptual design process for hovering flapping-wing vehicles. An energy-based accounting of propulsion and aerodynamics is combined with a one degree-of-freedom dynamic flapping model. Important results include simple analytical expressions for flight endurance and range, predictions for maximum feasible wing size and body mass, and critical design space restrictions resulting from finite wing inertia. A new figure-of-merit for wing structural-inertial efficiency is proposed and used to quantify the performance of real and artificial insect wings. The impact of these results on future flapping-wing MAV designs is discussed in detail.

  14. Mars Ascent Vehicle Design for Human Exploration

    Science.gov (United States)

    Polsgrove, Tara; Thomas, Dan; Sutherlin, Steven; Stephens, Walter; Rucker, Michelle

    2015-01-01

    In NASA's evolvable Mars campaign, transportation architectures for human missions to Mars rely on a combination of solar electric propulsion and chemical propulsion systems. Minimizing the Mars ascent vehicle (MAV) mass is critical in reducing the overall lander mass and also eases the requirements placed on the transportation stages. This paper presents the results of a conceptual design study to obtain a minimal MAV configuration, including subsystem designs and mass summaries.

  15. HIFiRE-5 Flight Vehicle Design

    Science.gov (United States)

    Kimmel, Roger L.; Adamczak, David; Berger, Karen; Choudhari, Meelan

    2010-01-01

    The Hypersonic International Flight Research Experimentation (HIFiRE) program is a hypersonic flight test program executed by the Air Force Research Laboratories (AFRL) and Australian Defence Science and Technology Organization (DSTO). HIFiRE flight 5 is devoted to measuring transition on a three-dimensional body. This paper summarizes payload configuration, trajectory, vehicle stability limits and roughness tolerances. Results show that the proposed configuration is suitable for testing transition on a three-dimensional body. Transition is predicted to occur within the test window, and a design has been developed that will allow the vehicle to be manufactured within prescribed roughness tolerances

  16. Preventing passenger vehicle occupant injuries by vehicle design--a historical perspective from IIHS.

    Science.gov (United States)

    O'Neill, Brian

    2009-04-01

    and chest injury measures recorded on driver and front-seat test dummies. NHTSA later added side crash tests and rollover ratings to the U.S. NCAP. Consumer crash testing spread worldwide in the 1990s. In 1995, the Insurance Institute for Highway Safety (IIHS) began using frontal offset crash tests to rate and compare frontal crashworthiness and later added side and rear crash assessments. Shortly after, Europe launched EuroNCAP to assesses new car performance including front, side, and front-end pedestrian tests. The influence of these consumer-oriented crash test programs on vehicle designs has been major. From the beginning, U.S. NCAP results prompted manufacturers to improve seat belt performance. Frontal offset tests from IIHS and EuroNCAP resulted in greatly improved front-end crumple zones and occupant compartments. Side impact tests have similarly resulted in improved side structures and accelerated the introduction of side impact airbags, especially those designed to protect occupant's heads. Vehicle safety designs, initially driven by regulations and later by consumer demand because of crash testing, have proven to be very successful public health measures. Since they were first introduced in the late 1960s, vehicle safety designs have saved hundreds of thousands of lives and prevented countless injuries worldwide. The designs that improved vehicle crashworthiness have been particularly effective. Some newer crash avoidance designs also have the potential to be effective-e.g., electronic stability control is already saving many lives in single-vehicle crashes. However, determining the actual effectiveness of these new technologies is a slow process and needs real-world crash experience because there are no assessment equivalent of crash tests for crash avoidance designs.

  17. Loads in the design of flight vehicles

    Directory of Open Access Journals (Sweden)

    Simion TĂTARU

    2010-09-01

    Full Text Available The calculation of flight loads is a critical part of air vehicle design. On the other hand, the prediction of accurate loads is a sophisticated and complex process that requires skilled and experienced engineers. They must integrate results from wind tunnel tests, computer simulations, historical data and empirical formulations into a number of loads cases that provide a realistic assessment of the flight vehicle’s environment. Under these conditions, the vehicle must satisfy requirements imposed by regulatory agencies as part of the vehicle certification process.Loads and boundary conditions can be associated to either the finite element model or the underlying geometry. By associating loads and boundary conditions to the geometry the finite element model mesh and elements can be modified without redefining and applying the loads to the model. Loads and boundary conditions are associated to the model geometry by default.

  18. Vehicle safety performance improvements using a performance-based standards approach: four case studies

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2014-01-01

    Full Text Available As part of a performance-based standards (PBS) research programme for heavy vehicles in South Africa, a need was identified to design, manufacture and operate a number of PBS or Smart Truck demonstration vehicles. The purpose of the demonstration...

  19. Systems design analysis applied to launch vehicle configuration

    Science.gov (United States)

    Ryan, R.; Verderaime, V.

    1993-01-01

    As emphasis shifts from optimum-performance aerospace systems to least lift-cycle costs, systems designs must seek, adapt, and innovate cost improvement techniques in design through operations. The systems design process of concept, definition, and design was assessed for the types and flow of total quality management techniques that may be applicable in a launch vehicle systems design analysis. Techniques discussed are task ordering, quality leverage, concurrent engineering, Pareto's principle, robustness, quality function deployment, criteria, and others. These cost oriented techniques are as applicable to aerospace systems design analysis as to any large commercial system.

  20. Mechanical Design of a Manipulation System for Unmanned Aerial Vehicles

    NARCIS (Netherlands)

    Keemink, A.Q.L.; Fumagalli, M.; Stramigioli, S.; Carloni, R.

    In this paper, we present the mechanical design and modeling of a manipulation system for unmanned aerial vehicles, which have to physically interact with environments and perform ultrasonic non-destructive testing experiments and other versatile tasks at unreachable locations for humans. The

  1. Analysis and Design of Launch Vehicle Flight Control Systems

    Science.gov (United States)

    Wie, Bong; Du, Wei; Whorton, Mark

    2008-01-01

    This paper describes the fundamental principles of launch vehicle flight control analysis and design. In particular, the classical concept of "drift-minimum" and "load-minimum" control principles is re-examined and its performance and stability robustness with respect to modeling uncertainties and a gimbal angle constraint is discussed. It is shown that an additional feedback of angle-of-attack or lateral acceleration can significantly improve the overall performance and robustness, especially in the presence of unexpected large wind disturbance. Non-minimum-phase structural filtering of "unstably interacting" bending modes of large flexible launch vehicles is also shown to be effective and robust.

  2. Design Considerations for a Launch Vehicle Development Flight Instrumentation System

    Science.gov (United States)

    Johnson, Martin L.; Crawford, Kevin

    2011-01-01

    When embarking into the design of a new launch vehicle, engineering models of expected vehicle performance are always generated. While many models are well established and understood, some models contain design features that are only marginally known. Unfortunately, these analytical models produce uncertainties in design margins. The best way to answer these analytical issues is with vehicle level testing. The National Aeronautics and Space Administration respond to these uncertainties by using a vehicle level system called the Development Flight Instrumentation, or DFI. This DFI system can be simple to implement, with only a few measurements, or it may be a sophisticated system with hundreds of measurement and video, without a recording capability. From experience with DFI systems, DFI never goes away. The system is renamed and allowed to continue, in most cases. Proper system design can aid the transition to future data requirements. This paper will discuss design features that need to be considered when developing a DFI system for a launch vehicle. It will briefly review the data acquisition units, sensors, multiplexers and recorders, telemetry components and harnessing. It will present a reasonable set of requirements which should be implemented in the beginning of the program in order to start the design. It will discuss a simplistic DFI architecture that could be the basis for the next NASA launch vehicle. This will be followed by a discussion of the "experiences gained" from a past DFI system implementation, such as the very successful Ares I-X test flight. Application of these design considerations may not work for every situation, but they may direct a path toward success or at least make one pause and ask the right questions.

  3. Multipurpose Uninhabited Air Vehicle (UAV) design and verification

    Science.gov (United States)

    Barquero, Juan P.

    A multipurpose Uninhabited Air Vehicle was designed and built for the NASA University Research Center. It is capable of carrying a payload of up to 14 lbs with an estimated endurance of 3 hours. This thesis will describe the work that was completed on the aerodynamic and preliminary structural design of the air vehicle. It will be demonstrated how the size and configuration of the airframe were chosen based on the design requirements. The detailed design process will be described to achieve initial performance and mission requirements. Although the URC has successfully constructed airframes in the past, it is the intention of this thesis to also take a different approach on alternative construction methods in an effort to reduce cost and improve aircraft performance.

  4. Hypersonic drone vehicle design: A multidisciplinary experience

    Science.gov (United States)

    1988-01-01

    UCLA's Advanced Aeronautic Design group focussed their efforts on design problems of an unmanned hypersonic vehicle. It is felt that a scaled hypersonic drone is necesary to bridge the gap between present theory on hypersonics and the future reality of the National Aerospace Plane (NASP) for two reasons: (1) to fulfill a need for experimental data in the hypersonic regime, and (2) to provide a testbed for the scramjet engine which is to be the primary mode of propulsion for the NASP. The group concentrated on three areas of great concern to NASP design: propulsion, thermal management, and flight systems. Problem solving in these areas was directed toward design of the drone with the idea that the same design techniques could be applied to the NASP. A 70 deg swept double-delta wing configuration, developed in the 70's at the NASA Langley, was chosen as the aerodynamic and geometric model for the drone. This vehicle would be air launched from a B-1 at Mach 0.8 and 48,000 feet, rocket boosted by two internal engines to Mach 10 and 100,000 feet, and allowed to cruise under power of the scramjet engine until burnout. It would then return to base for an unpowered landing. Preliminary energy calculations based on flight requirements give the drone a gross launch weight of 134,000 pounds and an overall length of 85 feet.

  5. System Design of an Unmanned Aerial Vehicle (UAV) for Marine Environmental Sensing

    Science.gov (United States)

    2013-02-01

    Meteorological Laboratory) .. 15 Figure 1-2: Diagram detailing the operation of a Slocum Electric Glider . The vehicle may perform multiple ascents...body design. (ONR) 16 Figure 1-2: Diagram detailing the operation of a Slocum Electric Glider . The vehicle may perform multiple ascents and... gliders , autonomous underwater vehicles (AUVs), and autonomous surface vehicles (ASVs). These platforms can be equipped with a wide array of

  6. Vehicle following controller design for autonomous intelligent vehicles

    Science.gov (United States)

    Chien, C. C.; Lai, M. C.; Mayr, R.

    1994-01-01

    A new vehicle following controller is proposed for autonomous intelligent vehicles. The proposed vehicle following controller not only provides smooth transient maneuvers for unavoidable nonzero initial conditions but also guarantees the asymptotic platoon stability without the availability of feedforward information. Furthermore, the achieved asymptotic platoon stability is shown to be robust to sensor delays and an upper bound for the allowable sensor delays is also provided in this paper.

  7. Application of Adaptive Autopilot Designs for an Unmanned Aerial Vehicle

    Science.gov (United States)

    Shin, Yoonghyun; Calise, Anthony J.; Motter, Mark A.

    2005-01-01

    This paper summarizes the application of two adaptive approaches to autopilot design, and presents an evaluation and comparison of the two approaches in simulation for an unmanned aerial vehicle. One approach employs two-stage dynamic inversion and the other employs feedback dynamic inversions based on a command augmentation system. Both are augmented with neural network based adaptive elements. The approaches permit adaptation to both parametric uncertainty and unmodeled dynamics, and incorporate a method that permits adaptation during periods of control saturation. Simulation results for an FQM-117B radio controlled miniature aerial vehicle are presented to illustrate the performance of the neural network based adaptation.

  8. Off-road perception testbed vehicle design and evaluation

    Science.gov (United States)

    Spofford, John R.; Herron, Jennifer B.; Anhalt, David J.; Morgenthaler, Matthew K.; DeHerrera, Clinton

    2003-09-01

    Off-road robotics efforts such as DARPA"s PerceptOR program have motivated the development of testbed vehicles capable of sustained operation in a variety of terrain and environments. This paper describes the retrofitting of a minimally-modified ATV chassis into such a testbed which has been used by multiple programs for autonomous mobility development and sensor characterization. Modular mechanical interfaces for sensors and equipment enclosures enabled integration of multiple payload configurations. The electric power subsystem was capable of short-term operation on batteries with refueled generation for continuous operation. Processing subsystems were mounted in sealed, shock-dampened enclosures with heat exchangers for internal cooling to protect against external dust and moisture. The computational architecture was divided into a real-time vehicle control layer and an expandable high level processing and perception layer. The navigation subsystem integrated real time kinematic GPS with a three-axis IMU for accurate vehicle localization and sensor registration. The vehicle software system was based on the MarsScape architecture developed under DARPA"s MARS program. Vehicle mobility software capabilities included route planning, waypoint navigation, teleoperation, and obstacle detection and avoidance. The paper describes the vehicle design in detail and summarizes its performance during field testing.

  9. Multidisciplinary design optimization of mechatronic vehicles with active suspensions

    Science.gov (United States)

    He, Yuping; McPhee, John

    2005-05-01

    A multidisciplinary optimization method is applied to the design of mechatronic vehicles with active suspensions. The method is implemented in a GA-A'GEM-MATLAB simulation environment in such a way that the linear mechanical vehicle model is designed in a multibody dynamics software package, i.e. A'GEM, the controllers and estimators are constructed using linear quadratic Gaussian (LQG) method, and Kalman filter algorithm in Matlab, then the combined mechanical and control model is optimized simultaneously using a genetic algorithm (GA). The design variables include passive parameters and control parameters. In the numerical optimizations, both random and deterministic road inputs and both perfect measurement of full state variables and estimated limited state variables are considered. Optimization results show that the active suspension systems based on the multidisciplinary optimization method have better overall performance than those derived using conventional design methods with the LQG algorithm.

  10. Aeroshell Design Techniques for Aerocapture Entry Vehicles

    Science.gov (United States)

    Dyke, R. Eric; Hrinda, Glenn A.

    2004-01-01

    A major goal of NASA s In-Space Propulsion Program is to shorten trip times for scientific planetary missions. To meet this challenge arrival speeds will increase, requiring significant braking for orbit insertion, and thus increased deceleration propellant mass that may exceed launch lift capabilities. A technology called aerocapture has been developed to expand the mission potential of exploratory probes destined for planets with suitable atmospheres. Aerocapture inserts a probe into planetary orbit via a single pass through the atmosphere using the probe s aeroshell drag to reduce velocity. The benefit of an aerocapture maneuver is a large reduction in propellant mass that may result in smaller, less costly missions and reduced mission cruise times. The methodology used to design rigid aerocapture aeroshells will be presented with an emphasis on a new systems tool under development. Current methods for fast, efficient evaluations of structural systems for exploratory vehicles to planets and moons within our solar system have been under development within NASA having limited success. Many systems tools that have been attempted applied structural mass estimation techniques based on historical data and curve fitting techniques that are difficult and cumbersome to apply to new vehicle concepts and missions. The resulting vehicle aeroshell mass may be incorrectly estimated or have high margins included to account for uncertainty. This new tool will reduce the guesswork previously found in conceptual aeroshell mass estimations.

  11. Editors' perspectives: road vehicle suspension design, dynamics, and control

    OpenAIRE

    Cao, Dongpu; Song, Xubin; Ahmadian, Mehdi

    2011-01-01

    This paper provides an overview of the latest advances in road vehicle suspension design, dynamics, and control, together with the authors' perspectives, in the context of vehicle ride, handling, and stability. The general aspects of road vehicle suspension dynamics and design are discussed, followed by descriptions of road-roughness excitations with a particular emphasis on road potholes. Passive suspension system designs and their effects on road vehicle dynamics and stability are presented...

  12. Improving the performance of a hybrid electric vehicle by utilization regenerative braking energy of vehicle

    OpenAIRE

    Mohamed Mourad

    2011-01-01

    Environmentally friendly vehicles with range and performance capabilities surpassing those of conventional ones require a careful balance among competing goals for fuel efficiency, performance and emissions. It can be recuperated the energy of deceleration case of the vehicle to reuse it to recharge the storage energy of hybrid electric vehicle and increase the state of charge of batteries under the new conditions of vehicle operating in braking phase. Hybrid electric vehicle has energy stora...

  13. Energy management and design in solar powered vehicles using computer aided engineering

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Davila, T.R.; Torres, M.; Serrano, D. [Univ. of Puerto Rico, Mayagueez (Puerto Rico). Engineering Research Center

    1995-10-01

    Concerns with the environment have posed demands on high efficient and low contaminating vehicles. Solar powered vehicles are among the most promising alternatives. In order to develop the vehicle`s efficiency to its maximum, an energy management plant should be made. The objective of this work is the development of an interactive program which simulates the performance of solar powered vehicles under different mechanical, electrical and aerodynamic conditions. Global position, time, road and meteorological conditions such as temperature and ideal solar insolation have been taken in consideration for the simulation. From this data, the vehicle`s speed at which the net energy will be maximized subject to minimum total race time is determined. Different programs were developed in Quick Basic and Visual Basic to analyze hypothetical and real models. The user may vary parameters to graphically visualize their effects on the vehicle`s performance and improve design or efficiency.

  14. Launch vehicle design and GNC sizing with ASTOS

    Science.gov (United States)

    Cremaschi, Francesco; Winter, Sebastian; Rossi, Valerio; Wiegand, Andreas

    2017-06-01

    The European Space Agency (ESA) is currently involved in several activities related to launch vehicle designs (Future Launcher Preparatory Program, Ariane 6, VEGA evolutions, etc.). Within these activities, ESA has identified the importance of developing a simulation infrastructure capable of supporting the multi-disciplinary design and preliminary guidance navigation and control (GNC) design of different launch vehicle configurations. Astos Solutions has developed the multi-disciplinary optimization and launcher GNC simulation and sizing tool (LGSST) under ESA contract. The functionality is integrated in the Analysis, Simulation and Trajectory Optimization Software for space applications (ASTOS) and is intended to be used from the early design phases up to phase B1 activities. ASTOS shall enable the user to perform detailed vehicle design tasks and assessment of GNC systems, covering all aspects of rapid configuration and scenario management, sizing of stages, trajectory-dependent estimation of structural masses, rigid and flexible body dynamics, navigation, guidance and control, worst case analysis, launch safety analysis, performance analysis, and reporting.

  15. Novel Aerodynamic Design for Formula SAE Vehicles

    Science.gov (United States)

    Sentongo, Samuel; Carter, Austin; Cecil, Christopher; Feier, Ioan

    2017-11-01

    This paper identifies and evaluates the design characteristics of a novel airfoil that harnesses the Magnus Effect, applying a moving-surface boundary-layer control (MSBC) method to a Formula SAE Vehicle. The MSBC minimizes adverse pressure gradient and delays boundary layer separation through the use of a conveyor belt that interacts with the airfoil boundary layer. The MSBC allows dynamic control of the aerodynamic coefficients by variation of the belt speed, minimizing drag in high speed straights and maximizing downforce during vehicle cornering. A conveyer belt wing measuring approximately 0.9 x 0.9m in planform was designed and built to test the mechanical setup for such a MSBC wing. This study follows the relationship between inputted power and outputted surface velocity, with the goal being to maximize speed output vs. power input. The greatest hindrance to maximizing speed output is friction among belts, rollers, and stationary members. The maximum belt speed achieved during testing was 5.9 m/s with a power input of 48.8 W, which corresponds to 45.8 N of downforce based on 2D CFD results. Ongoing progress on this project is presented. United States Air Force Academy.

  16. Robust Design Optimization of an Aerospace Vehicle Prolusion System

    Directory of Open Access Journals (Sweden)

    Muhammad Aamir Raza

    2011-01-01

    Full Text Available This paper proposes a robust design optimization methodology under design uncertainties of an aerospace vehicle propulsion system. The approach consists of 3D geometric design coupled with complex internal ballistics, hybrid optimization, worst-case deviation, and efficient statistical approach. The uncertainties are propagated through worst-case deviation using first-order orthogonal design matrices. The robustness assessment is measured using the framework of mean-variance and percentile difference approach. A parametric sensitivity analysis is carried out to analyze the effects of design variables variation on performance parameters. A hybrid simulated annealing and pattern search approach is used as an optimizer. The results show the objective function of optimizing the mean performance and minimizing the variation of performance parameters in terms of thrust ratio and total impulse could be achieved while adhering to the system constraints.

  17. Slot Optimization Design of Induction Motor for Electric Vehicle

    Science.gov (United States)

    Shen, Yiming; Zhu, Changqing; Wang, Xiuhe

    2018-01-01

    Slot design of induction motor has a great influence on its performance. The RMxprt module based on magnetic circuit method can be used to analyze the influence of rotor slot type on motor characteristics and optimize slot parameters. In this paper, the authors take an induction motor of electric vehicle for a typical example. The first step of the design is to optimize the rotor slot by RMxprt, and then compare the main performance of the motor before and after the optimization through Ansoft Maxwell 2D. After that, the combination of optimum slot type and the optimum parameters are obtained. The results show that the power factor and the starting torque of the optimized motor have been improved significantly. Furthermore, the electric vehicle works at a better running status after the optimization.

  18. DESIGN AND CONTROL OF FULL VEHICLE SUSPENSION SYSTEM

    National Research Council Canada - National Science Library

    Ramë Likaj; Ahmet Shala

    2017-01-01

    This paper deals with the design and control of vehicle suspension system for a full vehicle model with the aim to improve the ride comfort and to guarantee permanent contact between road and wheel...

  19. Conceptual design of a manned orbital transfer vehicle

    Science.gov (United States)

    Davis, Richard; Duquette, Miles; Fredrick, Rebecca; Schumacher, Daniel; Somers, Schaeffer; Stafira, Stanley; Williams, James; Zelinka, Mark

    1988-01-01

    With the advent of the manned space station, man now requires a spacecraft based on the space station with the ability to deploy, recover, and repair satellites quickly and economically. Such a craft would prolong and enhance the life and performance of many satellites. A basic design was developed for an orbital tansfer vehicle (OTV). The basic design criteria are discussed. The design of the OTV and systems were researched in the following areas: avionics, crew systems, electrical power systems, environmental control/life support systems, navigation and orbital maneuvers, propulsion systems, reaction control systems (RCS), servicing systems, and structures. The basic concepts in each of the areas are summarized.

  20. Wooden Spaceships: Human-Centered Vehicle Design for Space

    Science.gov (United States)

    Twyford, Evan

    2009-01-01

    Presentation will focus on creative human centered design solutions in relation to manned space vehicle design and development in the NASA culture. We will talk about design process, iterative prototyping, mockup building and user testing and evaluation. We will take an inside look at how new space vehicle concepts are developed and designed for real life exploration scenarios.

  1. Novel biofuel formulations for enhanced vehicle performance

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Dennis [Michigan State Univ., East Lansing, MI (United States); Narayan, Ramani [Michigan State Univ., East Lansing, MI (United States); Berglund, Kris [Michigan State Univ., East Lansing, MI (United States); Lira, Carl [Michigan State Univ., East Lansing, MI (United States); Schock, Harold [Michigan State Univ., East Lansing, MI (United States); Jaberi, Farhad [Michigan State Univ., East Lansing, MI (United States); Lee, Tonghun [Michigan State Univ., East Lansing, MI (United States); Anderson, James [Michigan State Univ., East Lansing, MI (United States); Wallington, Timothy [Michigan State Univ., East Lansing, MI (United States); Kurtz, Eric [Michigan State Univ., East Lansing, MI (United States); Ruona, Will; Hass, Heinz

    2013-08-30

    This interdisciplinary research program at Michigan State University, in collaboration with Ford Motor Company, has explored the application of tailored or designed biofuels for enhanced vehicle performance and reduced emissions. The project has included a broad range of experimental research, from chemical and biological formation of advanced biofuel components to multicylinder engine testing of blended biofuels to determine engine performance parameters. In addition, the project included computation modeling of biofuel physical and combustion properties, and simulation of advanced combustion modes in model engines and in single cylinder engines. Formation of advanced biofuel components included the fermentation of five-carbon and six-carbon sugars to n-butanol and to butyric acid, two four-carbon building blocks. Chemical transformations include the esterification of the butyric acid produced to make butyrate esters, and the esterification of succinic acid with n-butanol to make dibutyl succinate (DBS) as attractive biofuel components. The conversion of standard biodiesel, made from canola or soy oil, from the methyl ester to the butyl ester (which has better fuel properties), and the ozonolysis of biodiesel and the raw oil to produce nonanoate fuel components were also examined in detail. Physical and combustion properties of these advanced biofuel components were determined during the project. Physical properties such as vapor pressure, heat of evaporation, density, and surface tension, and low temperature properties of cloud point and cold filter plugging point were examined for pure components and for blends of components with biodiesel and standard petroleum diesel. Combustion properties, particularly emission delay that is the key parameter in compression ignition engines, was measured in the MSU Rapid Compression Machine (RCM), an apparatus that was designed and constructed during the project simulating the compression stroke of an internal combustion

  2. Control Performance of Vehicle Abs Featuring ER Valve Pressure Modulator

    Science.gov (United States)

    Cho, M. S.; Choi, S. B.; Wereley, N. M.

    In this work, an electrically controllable anti-lock brake system (ABS) for passenger vehicle is developed by utilizing electrorheological (ER) fluid. A pressure modulator which consists of a cylindrical ER valve and the hydraulic booster is constructed in order to achieve sufficient brake pressure variation during ABS operation. The principal design parameters of the modulator are determined by considering ER properties as well as required braking pressure. After investigating pressure controllability of the modulator, a vehicle model which is integrated with the proposed pressure modulator is formulated to design yaw rate controller. A sliding mode controller is designed to obtain desired yaw rate, and the friction forces between roads and wheels are estimated via the estimator. Braking performances of the proposed ABS under various roads are evaluated through the hardware-in-the-loop-simulation (HILS) and the steering stability during braking operation is demonstrated by undertaking split-μ test.

  3. The Role of Guidance, Navigation, and Control in Hypersonic Vehicle Multidisciplinary Design and Optimization

    Science.gov (United States)

    Ouzts, Peter J.; Soloway, Donald I.; Moerder, Daniel D.; Wolpert, David H.; Benavides, Jose Victor

    2009-01-01

    Airbreathing hypersonic systems offer distinct performance advantages over rocket-based systems for space access vehicles. However, these performance advantages are dependent upon advances in current state-of-the-art technologies in many areas such as ram/scramjet propulsion integration, high temperature materials, aero-elastic structures, thermal protection systems, transition to hypersonics and hypersonic control elements within the framework of complex physics and new design methods. The complex interactions between elements of an airbreathing hypersonic vehicle represent a new paradigm in vehicle design to achieve the optimal performance necessary to meet space access mission objectives. In the past, guidance, navigation, and control (GNC) analysis often follows completion of the vehicle conceptual design process. Individual component groups design subsystems which are then integrated into a vehicle configuration. GNC is presented the task of developing control approaches to meet vehicle performance objectives given that configuration. This approach may be sufficient for vehicles where significant performance margins exist. However, for higher performance vehicles engaging the GNC discipline too late in the design cycle has been costly. For example, the X-29 experimental flight vehicle was built as a technology demonstrator. One of the many technologies to be demonstrated was the use of light-weight material composites for structural components. The use of light-weight materials increased the flexibility of the X- 29 beyond that of conventional metal alloy constructed aircraft. This effect was not considered when the vehicle control system was designed and built. The impact of this is that the control system did not have enough control authority to compensate for the effects of the first fundamental structural mode of the vehicle. As a result, the resulting pitch rate response of the vehicle was below specification and no post-design changes could recover the

  4. Lightweight Design of Vehicle Side Door

    OpenAIRE

    Ji, Jindong

    2015-01-01

    Due to increasing environmental concern about emission of Green House Gas and government regulations on vehicle safety, vehicle manufacturers, and their suppliers, must turn to new technologies. This is the main way to help them to achieve the goals of making vehicles lighter and safer. These two targets seem to be in deep contrast one with the other as increasing expectations from car consumers and the crashworthiness requirements. Nowadays a lot of innovative vehicle technologies are being ...

  5. A Primer on Autonomous Aerial Vehicle Design.

    Science.gov (United States)

    Coppejans, Hugo H G; Myburgh, Herman C

    2015-12-02

    There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV), such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM) solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers.

  6. A Primer on Autonomous Aerial Vehicle Design

    Directory of Open Access Journals (Sweden)

    Hugo H. G. Coppejans

    2015-12-01

    Full Text Available There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV, such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers.

  7. Orion Flight Performance Design Trades

    Science.gov (United States)

    Jackson, Mark C.; Straube, Timothy

    2010-01-01

    A significant portion of the Orion pre-PDR design effort has focused on balancing mass with performance. High level performance metrics include abort success rates, lunar surface coverage, landing accuracy and touchdown loads. These metrics may be converted to parameters that affect mass, such as ballast for stabilizing the abort vehicle, propellant to achieve increased lunar coverage or extended missions, or ballast to increase the lift-to-drag ratio to improve entry and landing performance. The Orion Flight Dynamics team was tasked to perform analyses to evaluate many of these trades. These analyses not only provide insight into the physics of each particular trade but, in aggregate, they illustrate the processes used by Orion to balance performance and mass margins, and thereby make design decisions. Lessons learned can be gleaned from a review of these studies which will be useful to other spacecraft system designers. These lessons fall into several categories, including: appropriate application of Monte Carlo analysis in design trades, managing margin in a highly mass-constrained environment, and the use of requirements to balance margin between subsystems and components. This paper provides a review of some of the trades and analyses conducted by the Flight Dynamics team, as well as systems engineering lessons learned.

  8. CONCEPTUAL DESIGNS FOR A NEW HIGHWAY VEHICLE EMISSIONS ESTIMATION METHODOLOGY

    Science.gov (United States)

    The report discusses six conceptual designs for a new highway vehicle emissions estimation methodology and summarizes the recommendations of each design for improving the emissions and activity factors in the emissions estimation process. he complete design reports are included a...

  9. Propulsion integration of hypersonic air-breathing vehicles utilizing a top-down design methodology

    Science.gov (United States)

    Kirkpatrick, Brad Kenneth

    In recent years, a focus of aerospace engineering design has been the development of advanced design methodologies and frameworks to account for increasingly complex and integrated vehicles. Techniques such as parametric modeling, global vehicle analyses, and interdisciplinary data sharing have been employed in an attempt to improve the design process. The purpose of this study is to introduce a new approach to integrated vehicle design known as the top-down design methodology. In the top-down design methodology, the main idea is to relate design changes on the vehicle system and sub-system level to a set of over-arching performance and customer requirements. Rather than focusing on the performance of an individual system, the system is analyzed in terms of the net effect it has on the overall vehicle and other vehicle systems. This detailed level of analysis can only be accomplished through the use of high fidelity computational tools such as Computational Fluid Dynamics (CFD) or Finite Element Analysis (FEA). The utility of the top-down design methodology is investigated through its application to the conceptual and preliminary design of a long-range hypersonic air-breathing vehicle for a hypothetical next generation hypersonic vehicle (NHRV) program. System-level design is demonstrated through the development of the nozzle section of the propulsion system. From this demonstration of the methodology, conclusions are made about the benefits, drawbacks, and cost of using the methodology.

  10. Design, Analysis and Qualification of Elevon for Reusable Launch Vehicle

    Science.gov (United States)

    Tiwari, S. B.; Suresh, R.; Krishnadasan, C. K.

    2017-12-01

    Reusable launch vehicle technology demonstrator is configured as a winged body vehicle, designed to fly in hypersonic, supersonic and subsonic regimes. The vehicle will be boosted to hypersonic speeds after which the winged body separates and descends using aerodynamic control. The aerodynamic control is achieved using the control surfaces mainly the rudder and the elevon. Elevons are deflected for pitch and roll control of the vehicle at various flight conditions. Elevons are subjected to aerodynamic, thermal and inertial loads during the flight. This paper gives details about the configuration, design, qualification and flight validation of elevon for Reusable Launch Vehicle.

  11. Design, Analysis and Qualification of Elevon for Reusable Launch Vehicle

    Science.gov (United States)

    Tiwari, S. B.; Suresh, R.; Krishnadasan, C. K.

    2017-11-01

    Reusable launch vehicle technology demonstrator is configured as a winged body vehicle, designed to fly in hypersonic, supersonic and subsonic regimes. The vehicle will be boosted to hypersonic speeds after which the winged body separates and descends using aerodynamic control. The aerodynamic control is achieved using the control surfaces mainly the rudder and the elevon. Elevons are deflected for pitch and roll control of the vehicle at various flight conditions. Elevons are subjected to aerodynamic, thermal and inertial loads during the flight. This paper gives details about the configuration, design, qualification and flight validation of elevon for Reusable Launch Vehicle.

  12. Model Design on Emergency Power Supply of Electric Vehicle

    OpenAIRE

    Yuanliang Zhao; Chengpeng Li; Mingyu Zhao; Shiming Xu; Hui Gao; Le Song

    2017-01-01

    According to the mobile storage characteristic of electric vehicles, an emergency power supply model about the electric vehicles is presented through analyzing its storage characteristic. The model can ensure important consumer loss minimization during power failure or emergency and can make electric vehicles cost minimization about running, scheduling, and vindicating. In view of the random dispersion feature in one area, an emergency power supply scheme using the electric vehicles is design...

  13. A Prescribed Flight Performance Assessment for Undersea Vehicle Autopilot Robustness

    Science.gov (United States)

    2016-06-16

    TECHNICAL REPORT/THESIS A PRESCRIBED FLIGHT PERFORMANCE ASSESSMENT FOR UNDERSEA VEHICLE AUTOPILOT ROBUSTNESS By Daniel J...Vehicle Autopilot Robustness By Daniel J. Bowman Dr. A. Scott Lewis Technical Report TR 16-002 Date: 16 June 2016...FLIGHT PERFORMANCE ASSESSMENT FOR UNDERSEA VEHICLE AUTOPILOT ROBUSTNESS A Thesis in Mechanical Engineering by Daniel J. Bowman

  14. Multidisciplinary Design Techniques Applied to Conceptual Aerospace Vehicle Design. Ph.D. Thesis Final Technical Report

    Science.gov (United States)

    Olds, John Robert; Walberg, Gerald D.

    1993-01-01

    Multidisciplinary design optimization (MDO) is an emerging discipline within aerospace engineering. Its goal is to bring structure and efficiency to the complex design process associated with advanced aerospace launch vehicles. Aerospace vehicles generally require input from a variety of traditional aerospace disciplines - aerodynamics, structures, performance, etc. As such, traditional optimization methods cannot always be applied. Several multidisciplinary techniques and methods were proposed as potentially applicable to this class of design problem. Among the candidate options are calculus-based (or gradient-based) optimization schemes and parametric schemes based on design of experiments theory. A brief overview of several applicable multidisciplinary design optimization methods is included. Methods from the calculus-based class and the parametric class are reviewed, but the research application reported focuses on methods from the parametric class. A vehicle of current interest was chosen as a test application for this research. The rocket-based combined-cycle (RBCC) single-stage-to-orbit (SSTO) launch vehicle combines elements of rocket and airbreathing propulsion in an attempt to produce an attractive option for launching medium sized payloads into low earth orbit. The RBCC SSTO presents a particularly difficult problem for traditional one-variable-at-a-time optimization methods because of the lack of an adequate experience base and the highly coupled nature of the design variables. MDO, however, with it's structured approach to design, is well suited to this problem. The result of the application of Taguchi methods, central composite designs, and response surface methods to the design optimization of the RBCC SSTO are presented. Attention is given to the aspect of Taguchi methods that attempts to locate a 'robust' design - that is, a design that is least sensitive to uncontrollable influences on the design. Near-optimum minimum dry weight solutions are

  15. Aeroassisted-vehicle design studies for a manned Mars mission

    Science.gov (United States)

    Menees, Gene P.

    1987-01-01

    An aerobrake design accounting for all of the important flow phenomenology which are characteristic of aerobraking vehicles is proposed as the mission baseline. Flight regimes and aerothermal environments for both Mars and earth entry are calculated using advanced methods to account for real-gas, thermochemical, relaxation effects. The results are correlated with thermal-protection and structural requirements and mission performance capability. The importance of nonequilibrium radiative heating for earth aerocapture is demonstrated. It is suggested that two aerobrakes of different sizes will produce optimal performance for the three phases of the mission (i.e., one aerobrake for Mars aerocapture and descent of the surface lander and another for earth return).

  16. Design and Analysis of an Interconnected Suspension for a Small Off-Road Vehicle

    Directory of Open Access Journals (Sweden)

    Minaker Bruce P.

    2017-03-01

    Full Text Available The paper describes the design and multibody dynamic analysis of a mechanically interconnected suspension, as applied to a small off-road vehicle. Interconnected suspensions use some sort of connection between the axles of a vehicle in order improve ride quality or vehicle handling. In principle, the connection may be hydraulic, pneumatic, or mechanical, but for installation in a typical passenger car, a mechanical connection would likely be impractical due to weight and complexity. In this paper, the vehicle in question is the University of Windsor SAE Baja off-road competition vehicle, and novel mechanical design is proposed. A multibody dynamic analysis is performed on the proposed design using the EoM open source multibody software developed by the University of Windsor Vehicle Dynamics and Control research group in order to assess any potential performance improvements.

  17. Preliminary design of a lunar construction utility vehicle

    Science.gov (United States)

    Bryant, C. A.; Alcorn, D.; Bentley, R.; Campbell, B.; Coulson, T.; Jacobs, J.; Stiles, P.

    1989-01-01

    Construction of a lunar base, prior to manned occupancy, is one of the most demanding technological challenges facing space system designers today. A flexible lunar construction machine is needed that can be operated remotely and that can perform a variety of construction tasks over a wide range of lunar conditions. A preliminary lunar construction utility vehicle (LCUV) design has been developed as part of a capstone design course at Old Dominion University and is described in this summary report. The design requirements are taken from a 1988 USRA Summer Design Report entitled The Lunar Split Mission: A Robotic Constructed Lunar Base Scenario, and from the proceedings of a workshop hosted by United Technologies Corporation entitled Report of the In Situ Resources Utilization Workshop. The first report describes a bootstrap base concept in which a minimum of essential surface elements are delivered and configured such that minimum EVA is required to bring the initial base on-line. The base is to be built in three phases, the first of which will be unmanned, while the second and third will be manned. The key to these concepts is the development of a semiautonomous, telerobotic lunar construction utility vehicle (LCUV). The tasks required of this robotic vehicle during the phase 1 build-up are as follows: (1) surface element transportation, handling, and assembly; (2) soil excavation and movement for site preparation; (3) radiation protection and materials processing; and (4) repair and maintenance of surface elements. In order to meet the stated requirements, the LCUV must be: (1) transformable to perform a wide variety of tasks; (2) self supporting; (3) designed to allow for telerobotic control as well as autonomous operation; (4) able to transport one fully configured space station common module (SSCM); (5) upgradable to allow for future growth; and (6) easy to maintain.

  18. NASA advanced aeronautics design solar powered remotely piloted vehicle

    Science.gov (United States)

    Elario, David S.; Guillmette, Neal H.; Lind, Gregory S.; Webster, Jonathan D.; Ferreira, Michael J.; Konstantakis, George C.; Marshall, David L.; Windt, Cari L.

    1991-01-01

    Environmental problems such as the depletion of the ozone layer and air pollution demand a change in traditional means of propulsion that is sensitive to the ecology. Solar powered propulsion is a favorable alternative that is both ecologically harmless as well as cost effective. Integration of solar energy into designs ranging from futuristic vehicles to heating is beneficial to society. The design and construction of a Multi-Purpose Remotely Piloted Vehicle (MPRPV) seeks to verify the feasibility of utilizing solar propulsion as a primary fuel source. This task has been a year long effort by a group of ten students, divided into five teams, each dealing with different aspects of the design. The aircraft was designed to take-off, climb to the design altitude, fly in a sustained figure-eight flight path, and cruise for approximately one hour. This mission requires flight at Reynolds numbers between 150,000 and 200,000 and demands special considerations in the aerodynamic design in order to achieve flight in this regime. Optimal performance requires a light weight configuration with both structural integrity and maximum power availability. The structure design and choice of solar cells for the propulsion was governed by the weight, efficiency, and cost considerations. The final design is a MPRPV weighting 35 N which cruises 7 m/s at the design altitude of 50 m. The configuration includes a wing composed of balsa and foam NACA 6409 airfoil sections and carbon fiber spars, a tail of similar construction, and a truss structure fuselage. The propulsion system consists of 98 10 percent efficient solar cells donated by Mobil Solar, a NiCad battery for energy storage, and a folding propeller regulated by a lightweight and efficient control system. The airfoils and propeller chosen for the design were research and tested during the design process.

  19. Mechatronical Aided Concept (MAC in Intelligent Transport Vehicles Design

    Directory of Open Access Journals (Sweden)

    Pavel Pavlasek

    2003-01-01

    Full Text Available This article deals with the principles of synergy effect of mechatronical aided concept (MAC to the design of intelligent transport vehicles products applying CA technologies and virtual reality design methods. Also includes presentation of intelligent railway vehicle development.

  20. Vehicle classes for pavement design and capacity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kubala, J.; Asce, M.; Lalani, N.; O' Connell, R.; Petersen, C.

    1986-11-01

    Transportation engineers working in Colorado were aware of a lack of published data at both the local and national level for vehicle classes on urban streets. Such vehicle class breakdowns are necessary for calculating equivalent daily loaded axle (EDLA) values for pavement design and conducting capacity analyses. A technical committee was formed to collect and analyze weekday vehicle class data on urban streets of various types. The major vehicle classes are passenger cars (70-75%), pickups (15-20%), single unit trucks (5-7%); tractor-trailers, buses, and recreational vehicles account for less than 1%. Using these data, a microcomputer spread sheet was set up to calculate EDLA values for pavement design for a range of design year volumes. This vehicle class data is also very useful in highway capacity calculations.

  1. Multidisciplinary Design Under Uncertainty for Entry Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The physical difficulty of designing entry vehicles originates from the large degree of coupling between the various disciplines involved in the design. Every...

  2. Design of Launch Vehicle Flight Control Systems Using Ascent Vehicle Stability Analysis Tool

    Science.gov (United States)

    Jang, Jiann-Woei; Alaniz, Abran; Hall, Robert; Bedossian, Nazareth; Hall, Charles; Jackson, Mark

    2011-01-01

    A launch vehicle represents a complicated flex-body structural environment for flight control system design. The Ascent-vehicle Stability Analysis Tool (ASAT) is developed to address the complicity in design and analysis of a launch vehicle. The design objective for the flight control system of a launch vehicle is to best follow guidance commands while robustly maintaining system stability. A constrained optimization approach takes the advantage of modern computational control techniques to simultaneously design multiple control systems in compliance with required design specs. "Tower Clearance" and "Load Relief" designs have been achieved for liftoff and max dynamic pressure flight regions, respectively, in the presence of large wind disturbances. The robustness of the flight control system designs has been verified in the frequency domain Monte Carlo analysis using ASAT.

  3. Design of a Tele-Control Electrical Vehicle System Using a Fuzzy Logic Control

    Directory of Open Access Journals (Sweden)

    M. Boukhnifer

    2012-11-01

    Full Text Available This paper presents a fuzzy logic design of a tele-control electrical vehicle system. We showed that the application of fuzzy logic control allows the stability of tele-vehicle system in spite of communication delays between the operator and the vehicle. A robust bilateral controller design using fuzzy logic frameworks was proposed. This approach allows a convenient means to trade off robustness and stability for a pre-specified time-delay margin. Both the performance and robustness of the proposed method were demonstrated by simulation results for a constant time delay between the operator and the electrical vehicle system.

  4. Analysis Method for Quantifying Vehicle Design Goals

    Science.gov (United States)

    Fimognari, Peter; Eskridge, Richard; Martin, Adam; Lee, Michael

    2007-01-01

    A document discusses a method for using Design Structure Matrices (DSM), coupled with high-level tools representing important life-cycle parameters, to comprehensively conceptualize a flight/ground space transportation system design by dealing with such variables as performance, up-front costs, downstream operations costs, and reliability. This approach also weighs operational approaches based on their effect on upstream design variables so that it is possible to readily, yet defensively, establish linkages between operations and these upstream variables. To avoid the large range of problems that have defeated previous methods of dealing with the complex problems of transportation design, and to cut down the inefficient use of resources, the method described in the document identifies those areas that are of sufficient promise and that provide a higher grade of analysis for those issues, as well as the linkages at issue between operations and other factors. Ultimately, the system is designed to save resources and time, and allows for the evolution of operable space transportation system technology, and design and conceptual system approach targets.

  5. Crew emergency return vehicle - Electrical power system design study

    Science.gov (United States)

    Darcy, E. C.; Barrera, T. P.

    1989-01-01

    A crew emergency return vehicle (CERV) is proposed to perform the lifeboat function for the manned Space Station Freedom. This escape module will be permanently docked to Freedom and, on demand, will be capable of safely returning the crew to earth. The unique requirements that the CERV imposes on its power source are presented, power source options are examined, and a baseline system is selected. It consists of an active Li-BCX DD-cell modular battery system and was chosen for the maturity of its man-rated design and its low development costs.

  6. Winged cargo return vehicle. Volume 1: Conceptual design

    Science.gov (United States)

    1990-01-01

    The Advanced Design Project (ADP) allows an opportunity for students to work in conjunction with NASA and other aerospace companies on NASA Advanced Design Projects. The following volumes represent the design report: Volume 1 Conceptual Design; Volume 2 Wind Tunnel Tests; Volume 3 Structural Analysis; and Volume 4 Water Tunnel Tests. The project chosen by the University of Minnesota in conjunction with NASA Marshall Space Flight Center for this year is a Cargo Return Vehicle (CRV) to support the Space Station Freedom. The vehicle is the third generation of vehicles to be built by NASA, the first two being the Apollo program, and the Space Shuttle program. The CRV is to work in conjunction with a personnel launch system (PLS) to further subdivide and specialize the vehicles that NASA will operate in the year 2000. The cargo return vehicle will carry payload to and from the Space Station Freedom (SSF).

  7. Commuter simulation of lithium-ion battery performance in hybrid electric vehicles.

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, P. A.; Henriksen, G. L.; Amine, K.

    2000-12-04

    In this study, a lithium-ion battery was designed for a hybrid electric vehicle, and the design was tested by a computer program that simulates driving of a vehicle on test cycles. The results showed that the performance goals that have been set for such batteries by the Partnership for a New Generation of Vehicles are appropriate. The study also indicated, however, that the heat generation rate in the battery is high, and that the compact lithium-ion battery would probably require cooling by a dielectric liquid for operation under conditions of vigorous vehicle driving.

  8. Design of a digital adaptive control system for reentry vehicles.

    Science.gov (United States)

    Picon-Jimenez, J. L.; Montgomery, R. C.; Grigsby, L. L.

    1972-01-01

    The flying qualities of atmospheric reentry vehicles experience considerable variations due to the wide changes in flight conditions characteristic of reentry trajectories. A digital adaptive control system has been designed to modify the vehicle's dynamic characteristics and to provide desired flying qualities for all flight conditions. This adaptive control system consists of a finite-memory identifier which determines the vehicle's unknown parameters, and a gain computer which calculates feedback gains to satisfy flying quality requirements.

  9. Design of hypersonic flight vehicles: some lessons from the past and future challenges

    Science.gov (United States)

    Hirschel, E. H.; Weiland, C.

    2011-09-01

    Design challenges of four basic hypersonic flight vehicle classes are discussed: non-winged (capsules) and winged re-entry vehicles, airbreathing cruise/acceleration and ascent/re-entry vehicles. Basically flight in the Earth atmosphere is considered, no systematic review is given, propulsion systems are not considered. Three topics are treated in detail: (1) The concept of the thermal state of the vehicle surface, which encompasses both thermal surface effects and thermal loads. Thermal surface effects are important especially for hypersonic airbreathing flight vehicles. (2) The aerodynamic performance ( L/ D) of non-winged and winged re-entry vehicles as important mission parameter. It is sketched, how the shapes of the vehicles evolved and how L/ D increases were accomplished. (3) Air-vehicle engineering issues of large airbreathing hypersonic vehicles. High design sensitivities and small payload fractions of such vehicles make necessary new development and test approaches, with numerical multidisciplinary simulation and optimization as well as experimental vehicles playing a deciding role.

  10. Fundamentals of the design of launch vehicles for spacecraft

    Science.gov (United States)

    Grabin, Boris V.; Davydov, Oleg I.; Zhikharev, Vladimir I.; Zolotov, A. A.; Ivanov, A. A.; Serdiuk, V. K.

    1991-07-01

    The main principles of the design of expendable launch vehicles for spacecraft based on liquid-propellant rockets are discussed. Methodological principles of the design of rocket compartments, on-board equipment, and powerplant elements are examined. Algorithms are presented for design calculations typically used in the design of launch vehicles, with allowance made for thermal loads and the use of cryogenic fuel components. The discussion also covers the effect of technological factors of the design configuration, design testing of various compartments, and methods of design automation.

  11. Comparison performance of split plug-in hybrid electric vehicle and hybrid electric vehicle using ADVISOR

    Directory of Open Access Journals (Sweden)

    Mohd Rashid Muhammad Ikram

    2017-01-01

    Full Text Available Electric vehicle suffers from relatively short range and long charging times and consequently has not become an acceptable solution to the automotive consumer. The addition of an internal combustion engine to extend the range of the electric vehicle is one method of exploiting the high efficiency and lack of emissions of the electric vehicle while retaining the range and convenient refuelling times of a conventional gasoline powered vehicle. The term that describes this type of vehicle is a hybrid electric vehicle. Many configurations of hybrid electric vehicles have been designed and implemented, namely the series, parallel and power-split configurations. This paper discusses the comparison between Split Plug-in Hybrid Electric Vehicle(SPHEV and Hybrid Electric Vehicle(HEV. Modelling methods such as physics-based Resistive Companion Form technique and Bond Graph method are presented with powertrain component and system modelling examples. The modelling and simulation capability of existing tools such as ADvanced VehIcle SimulatOR (ADVISOR is demonstrated through application examples. Since power electronics is indispensable in hybrid vehicles, the issue of numerical oscillations in dynamic simulations involving power electronics is briefly addressed.

  12. High speed curving performance of rail vehicles

    Science.gov (United States)

    2015-03-23

    On March 13, 2013, the Federal Railroad Administration (FRA) published a final rule titled Vehicle/Track Interaction Safety Standards; High-Speed and High Cant Deficiency Operations which amended the Track Safety Standards (49 CFR Part213) and ...

  13. Aerodynamic performance and particle image velocimetery of piezo actuated biomimetic manduca sexta engineered wings towards the design and application of a flapping wing flight vehicle

    Science.gov (United States)

    DeLuca, Anthony M.

    Considerable research and investigation has been conducted on the aerodynamic performance, and the predominate flow physics of the Manduca Sexta size of biomimetically designed and fabricated wings as part of the AFIT FWMAV design project. Despite a burgeoning interest and research into the diverse field of flapping wing flight and biomimicry, the aerodynamics of flapping wing flight remains a nebulous field of science with considerable variance into the theoretical abstractions surrounding aerodynamic mechanisms responsible for aerial performance. Traditional FWMAV flight models assume a form of a quasi-steady approximation of wing aerodynamics based on an infinite wing blade element model (BEM). An accurate estimation of the lift, drag, and side force coefficients is a critical component of autonomous stability and control models. This research focused on two separate experimental avenues into the aerodynamics of AFIT's engineered hawkmoth wings|forces and flow visualization. 1. Six degree of freedom force balance testing, and high speed video analysis was conducted on 30°, 45°, and 60° angle stop wings. A novel, non-intrusive optical tracking algorithm was developed utilizing a combination of a Gaussian Mixture Model (GMM) and ComputerVision (OpenCV) tools to track the wing in motion from multiple cameras. A complete mapping of the wing's kinematic angles as a function of driving amplitude was performed. The stroke angle, elevation angle, and angle of attack were tabulated for all three wings at driving amplitudes ranging from A=0.3 to A=0.6. The wing kinematics together with the force balance data was used to develop several aerodynamic force coefficient models. A combined translational and rotational aerodynamic model predicted lift forces within 10%, and vertical forces within 6%. The total power consumption was calculated for each of the three wings, and a Figure of Merit was calculated for each wing as a general expression of the overall efficiency of

  14. Research on Parameter Design of Multi - axis Hydrostatic Transmission Vehicle

    Directory of Open Access Journals (Sweden)

    Zhao Liang

    2017-01-01

    Full Text Available In order to obtain reasonable parameters in the design of driving system of multi-axis hydrostatic transmission vehicle, the working principle of single-side drive of hydrostatic transmission vehicle is introduced. The matching and control of engine and hydraulic pump are analyzed. According to the driving equation of vehicle, The driving force required for driving system is determined, and the parameters of hydraulic motor, hydraulic pump, system working pressure and braking system are designed and calculated, which provides the parameter design for driving system of multi-axis hydrostatic transmission Reliable theoretical basis.

  15. Hydrogen-fueled postal vehicle performance evaluation

    Science.gov (United States)

    Hall, R. A.

    1979-01-01

    Fuel consumption, range, and emissions data were obtained while operating a hydrogen-fueled postal delivery vehicle over a defined Postal Service Driving Cycle and the 1975 Urban Driving Cycle. The vehicle's fuel consumption was 0.366 pounds of hydrogen per mile over the postal driving cycle and 0.22 pounds of hydrogen per mile over the urban driving cycle. These data correspond to 6.2 and 10.6 mpg equivalent gasoline mileage for the two driving cycles, respectively. The vehicle's range was 24.2 miles while being operated on the postal driving cycle. Vehicle emissions were measured over the urban driving cycle. HC and CO emissions were quite low, as would be expected. The oxides of nitrogen were found to be 4.86 gm/mi, a value which is well above the current Federal and California standards. Vehicle limitations discussed include excessive engine flashbacks, inadequate acceleration capability the engine air/fuel ratio, the water injection systems, and the cab temperature. Other concerns are safety considerations, iron-titanium hydride observed in the fuel system, evidence of water in the engine rocker cover, and the vehicle maintenance required during the evaluation.

  16. Absorbable energy monitoring scheme: new design protocol to test vehicle structural crashworthiness.

    Science.gov (United States)

    Ofochebe, Sunday M; Enibe, Samuel O; Ozoegwu, Chigbogu G

    2016-05-01

    In vehicle crashworthiness design optimization detailed system evaluation capable of producing reliable results are basically achieved through high-order numerical computational (HNC) models such as the dynamic finite element model, mesh-free model etc. However the application of these models especially during optimization studies is basically challenged by their inherent high demand on computational resources, conditional stability of the solution process, and lack of knowledge of viable parameter range for detailed optimization studies. The absorbable energy monitoring scheme (AEMS) presented in this paper suggests a new design protocol that attempts to overcome such problems in evaluation of vehicle structure for crashworthiness. The implementation of the AEMS involves studying crash performance of vehicle components at various absorbable energy ratios based on a 2DOF lumped-mass-spring (LMS) vehicle impact model. This allows for prompt prediction of useful parameter values in a given design problem. The application of the classical one-dimensional LMS model in vehicle crash analysis is further improved in the present work by developing a critical load matching criterion which allows for quantitative interpretation of the results of the abstract model in a typical vehicle crash design. The adequacy of the proposed AEMS for preliminary vehicle crashworthiness design is demonstrated in this paper, however its extension to full-scale design-optimization problem involving full vehicle model that shows greater structural detail requires more theoretical development.

  17. Absorbable energy monitoring scheme: new design protocol to test vehicle structural crashworthiness

    Directory of Open Access Journals (Sweden)

    Sunday M. Ofochebe

    2016-05-01

    Full Text Available In vehicle crashworthiness design optimization detailed system evaluation capable of producing reliable results are basically achieved through high-order numerical computational (HNC models such as the dynamic finite element model, mesh-free model etc. However the application of these models especially during optimization studies is basically challenged by their inherent high demand on computational resources, conditional stability of the solution process, and lack of knowledge of viable parameter range for detailed optimization studies. The absorbable energy monitoring scheme (AEMS presented in this paper suggests a new design protocol that attempts to overcome such problems in evaluation of vehicle structure for crashworthiness. The implementation of the AEMS involves studying crash performance of vehicle components at various absorbable energy ratios based on a 2DOF lumped-mass-spring (LMS vehicle impact model. This allows for prompt prediction of useful parameter values in a given design problem. The application of the classical one-dimensional LMS model in vehicle crash analysis is further improved in the present work by developing a critical load matching criterion which allows for quantitative interpretation of the results of the abstract model in a typical vehicle crash design. The adequacy of the proposed AEMS for preliminary vehicle crashworthiness design is demonstrated in this paper, however its extension to full-scale design-optimization problem involving full vehicle model that shows greater structural detail requires more theoretical development.

  18. Model Design on Emergency Power Supply of Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Yuanliang Zhao

    2017-01-01

    Full Text Available According to the mobile storage characteristic of electric vehicles, an emergency power supply model about the electric vehicles is presented through analyzing its storage characteristic. The model can ensure important consumer loss minimization during power failure or emergency and can make electric vehicles cost minimization about running, scheduling, and vindicating. In view of the random dispersion feature in one area, an emergency power supply scheme using the electric vehicles is designed based on the K-means algorithm. The purpose is to improve the electric vehicles initiative gathering ability and reduce the electric vehicles gathering time. The study can reduce the number of other emergency power supply equipment and improve the urban electricity reliability.

  19. Modified Universal Design Survey: Enhancing Operability of Launch Vehicle Ground Crew Worksites

    Science.gov (United States)

    Blume, Jennifer L.

    2010-01-01

    Operability is a driving requirement for next generation space launch vehicles. Launch site ground operations include numerous operator tasks to prepare the vehicle for launch or to perform preflight maintenance. Ensuring that components requiring operator interaction at the launch site are designed for optimal human use is a high priority for operability. To promote operability, a Design Quality Evaluation Survey based on Universal Design framework was developed to support Human Factors Engineering (HFE) evaluation for NASA s launch vehicles. Universal Design per se is not a priority for launch vehicle processing however; applying principles of Universal Design will increase the probability of an error free and efficient design which promotes operability. The Design Quality Evaluation Survey incorporates and tailors the seven Universal Design Principles and adds new measures for Safety and Efficiency. Adapting an approach proven to measure Universal Design Performance in Product, each principle is associated with multiple performance measures which are rated with the degree to which the statement is true. The Design Quality Evaluation Survey was employed for several launch vehicle ground processing worksite analyses. The tool was found to be most useful for comparative judgments as opposed to an assessment of a single design option. It provided a useful piece of additional data when assessing possible operator interfaces or worksites for operability.

  20. Autonomous prediction of performance-based standards for heavy vehicles

    CSIR Research Space (South Africa)

    Berman, R

    2015-11-01

    Full Text Available performance-based standards approach which specifies on-road vehicle performance measures. One such standard is the low-speed swept path, which is a measure of road width required by a vehicle to complete a prescribed turning manoeuvre. This is typically...

  1. Ku Band Rotary Joint Design for SNG Vehicles

    Directory of Open Access Journals (Sweden)

    H. Torpi

    2015-12-01

    Full Text Available A wideband I-type rectangular waveguide rotary joint (RJ is designed, simulated and built. It has an excellent performance over the whole Ku Band (10.7-14.5 GHz where the return loss is less than -23 dB at its highest and the insertion loss is below 0.4 dB. The rotary joint is specifically designed for satellite news gathering (SNG vehicles providing elevation and azimuthal movement to the antenna and matching polarization when it is needed at the feed. It can also be used in other high power microwave applications,where rotation ability of the antenna is a must during the transmission such as radars.

  2. A review of design issues specific to hypersonic flight vehicles

    Science.gov (United States)

    Sziroczak, D.; Smith, H.

    2016-07-01

    This paper provides an overview of the current technical issues and challenges associated with the design of hypersonic vehicles. Two distinct classes of vehicles are reviewed; Hypersonic Transports and Space Launchers, their common features and differences are examined. After a brief historical overview, the paper takes a multi-disciplinary approach to these vehicles, discusses various design aspects, and technical challenges. Operational issues are explored, including mission profiles, current and predicted markets, in addition to environmental effects and human factors. Technological issues are also reviewed, focusing on the three major challenge areas associated with these vehicles: aerothermodynamics, propulsion, and structures. In addition, matters of reliability and maintainability are also presented. The paper also reviews the certification and flight testing of these vehicles from a global perspective. Finally the current stakeholders in the field of hypersonic flight are presented, summarizing the active programs and promising concepts.

  3. Design and Simulation Tools for Planetary Atmospheric Entry Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric entry is one of the most critical phases of flight during planetary exploration missions. During the design of an entry vehicle, experimental and...

  4. Advanced Control System Design for Hypersonic Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Guidance and control system design for hypersonic vehicles is more challenging than their subsonic and supersonic counterparts. Some of these challenges are (i)...

  5. Rotorcraft control system design for uncertain vehicle dynamics using quantitative feedback theory

    Science.gov (United States)

    Hess, R. A.

    1994-01-01

    Quantitative Feedback Theory describes a frequency-domain technique for the design of multi-input, multi-output control systems which must meet time or frequency domain performance criteria when specified uncertainty exists in the linear description of the vehicle dynamics. This theory is applied to the design of the longitudinal flight control system for a linear model of the BO-105C rotorcraft. Uncertainty in the vehicle model is due to the variation in the vehicle dynamics over a range of airspeeds from 0-100 kts. For purposes of exposition, the vehicle description contains no rotor or actuator dynamics. The design example indicates the manner in which significant uncertainty exists in the vehicle model. The advantage of using a sequential loop closure technique to reduce the cost of feedback is demonstrated by example.

  6. Detail design of empennage of an unmanned aerial vehicle

    Science.gov (United States)

    Sarker, Md. Samad; Panday, Shoyon; Rasel, Md; Salam, Md. Abdus; Faisal, Kh. Md.; Farabi, Tanzimul Hasan

    2017-12-01

    In order to maintain the operational continuity of air defense systems, unmanned autonomous or remotely controlled unmanned aerial vehicle (UAV) plays a great role as a target for the anti-aircraft weapons. The aerial vehicle must comply with the requirements of high speed, remotely controlled tracking and navigational aids, operational sustainability and sufficient loiter time. It can also be used for aerial reconnaissance, ground surveillance and other intelligence operations. This paper aims to develop a complete tail design of an unmanned aerial vehicle using Systems Engineering approach. The design fulfils the requirements of longitudinal and directional trim, stability and control provided by the horizontal and vertical tail. Tail control surfaces are designed to provide sufficient control of the aircraft in critical conditions. Design parameters obtained from wing design are utilized in the tail design process as required. Through chronological calculations and successive iterations, optimum values of 26 tail design parameters are determined.

  7. Shift Performance Test and Analysis of Multipurpose Vehicle

    Directory of Open Access Journals (Sweden)

    Can Yang

    2014-08-01

    Full Text Available This paper presented an analysis of the gear shifting performances of a multipurpose vehicle transmission in driving condition by Ricardo's Gear Shift Quality Assessment (GSQA system. The performances of the transmission included the travel and effort of the gear shift lever and synchronizing time. The mathematic models of the transmission including the gear shift mechanism and synchronizer were developed in MATLAB. The model of the gear shift mechanism was developed to analyze the travel map of the gear shift lever and the model of the synchronizer was developed to obtain the force-time curve of the synchronizer during the slipping time. The model of the synchronizer was used to investigate the relationship between the performances of the transmission and the variation of parameters during gear shifting. The mathematic models of the gear shift mechanism and the synchronizer provided a rapid design and verification method for the transmission with ring spring.

  8. Design and Control of a Hydrogen Fuel Cell Vehicle

    OpenAIRE

    Bell, Joseph

    2016-01-01

    Starting with the chassis of a 1969 Volkswagen Beetle, the goal of this project was to design and build a Proton Exchange Membrane Fuel Cell (PEMFC) hybrid vehicle that is powered by hydrogen. This thesis highlights the design process, modeling, and control of a Proton Exchange Membrane Fuel Cell hybrid drive train. Finally, the vehicle was built with many of the components assembled, fabricated, and functioning.

  9. 3 tons pure electric vehicles power system design based on Cruise

    Directory of Open Access Journals (Sweden)

    Xinyu Liu

    2017-01-01

    Full Text Available The pure electric minivan is different from electric car. Combined with a given vehicle, vehicle simulation model established in Cruise software, complete simulation by setting tasks for the selected models designed drivetrain. Simulation results show that: The design of the transmission ratio can best meet the performance requirements of the matching target power analysis and simulation of electric minivan provides a new way, with practical guidance.

  10. Dynamic interactions between hypersonic vehicle aerodynamics and propulsion system performance

    Science.gov (United States)

    Flandro, G. A.; Roach, R. L.; Buschek, H.

    1992-01-01

    Described here is the development of a flexible simulation model for scramjet hypersonic propulsion systems. The primary goal is determination of sensitivity of the thrust vector and other system parameters to angle of attack changes of the vehicle. Such information is crucial in design and analysis of control system performance for hypersonic vehicles. The code is also intended to be a key element in carrying out dynamic interaction studies involving the influence of vehicle vibrations on propulsion system/control system coupling and flight stability. Simple models are employed to represent the various processes comprising the propulsion system. A method of characteristics (MOC) approach is used to solve the forebody and external nozzle flow fields. This results in a very fast computational algorithm capable of carrying out the vast number of simulation computations needed in guidance, stability, and control studies. The three-dimensional fore- and aft body (nozzle) geometry is characterized by the centerline profiles as represented by a series of coordinate points and body cross-section curvature. The engine module geometry is represented by an adjustable vertical grid to accommodate variations of the field parameters throughout the inlet and combustor. The scramjet inlet is modeled as a two-dimensional supersonic flow containing adjustable sidewall wedges and multiple fuel injection struts. The inlet geometry including the sidewall wedge angles, the number of injection struts, their sweepback relative to the vehicle reference line, and strut cross-section are user selectable. Combustion is currently represented by a Rayleigh line calculation including corrections for variable gas properties; improved models are being developed for this important element of the propulsion flow field. The program generates (1) variation of thrust magnitude and direction with angle of attack, (2) pitching moment and line of action of the thrust vector, (3) pressure and temperature

  11. A hybrid vehicle evaluation code and its application to vehicle design. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.M.; Smith, J.R.

    1994-09-15

    This paper describes a hybrid vehicle simulation model which can be applied to many of the vehicles currently being considered for low pollution and high fuel economy. The code operates in batch mode with all the vehicle information stored in data files. The code calculates fuel economy for three driving schedules, time for 0--96 km/h at maximum acceleration, hill climbing performance, power train dimensions, and pollution generation rates. This paper also documents the application of the code to a hybrid vehicle that utilizes a hydrogen internal combustion engine. The simulation model is used for parametric studies of the vehicle. The results show the fuel economy of the vehicle as a function of vehicle mass, aerodynamic drag, engine efficiency, accessory load, and flywheel efficiency. The code also calculates the minimum flywheel energy and power to obtain a desired performance. The hydrogen hybrid vehicle analyzed in the paper has a predicted range of 480 km (300 miles), with a gasoline equivalent fuel efficiency of 34.2 km/liter (80.9 mpg).

  12. Lunar transfer vehicle design issues with electric propulsion systems

    Science.gov (United States)

    Palaszewski, Bryan

    1989-01-01

    This paper describes parametric design studies of electric propulsion lunar transfer vehicles. In designing a lunar transfer vehicle, selecting the 'best' operating points for the design parameters allows significant reductions in the mass in low earth orbit (LEO) for the mission. These parameters include the specific impulse, the power level, and the propulsion technology. Many of the decisions regarding the operating points are controlled by the propulsion and power system technologies that are available for the spacecraft. The relationship between these technologies is discussed and analyzed here. It is found that both ion and MPD propulsion offer significant LEO mass reductions over O2/H2 for lunar transfer vehicle missions. The recommended operating points for the lunar transfer vehicle are an I(sp) of 5000 lb(f)-s/lb(m) and a 1 MW power level. For large lunar missions, krypton may be the best choice for ion propulsion.

  13. Impact of mission requirements and constraints on conceptual launch vehicle design

    Energy Technology Data Exchange (ETDEWEB)

    Rahn, M. [MAN Technology AG, Aerospace Div., Karlsfeld (Germany); Schottle, U.M.; Messerschmid, E. [Stuttgart Univ. (Germany). Inst. Space Systems

    1999-09-01

    The objective of this paper is to analyse the impact of mission requirements and constraints on both the optimum vehicle design and the effects on flight path selection for two types of reusable two-stage-to-orbit launch vehicles. The first vehicle type considered provides horizontal take-off and landing capabilities and is intended to be propelled by an air-breathing propulsion system during stage 1 flight. The second vehicle type assumes a vertical launch and is accelerated by a rocket propulsion system during the booster stage ascent flight. The analysis employs a design tool for simultaneous system and mission optimization. It consists of a CAD-based preliminary vehicle design tool, aerodynamic and aero-thermodynamic calculation software, flight simulation programs, and a two-level decomposition optimization algorithm enabling simultaneous system an flight optimization. The results to be presented show that the cruise flight requirement for an European launched mission of the air-breathing vehicle results in a loss of 60 % payload mass as compared to a mere accelerated ascent for a near equatorial mission into the same target orbit assuming constant take off mass. The strong dependencies of mission requirements on both the optimal vehicle design and the ascent performance are determined for the rocket-powered vehicle type by varying the inclination and altitude of the target orbit. (authors)

  14. Trade-off results and preliminary designs of Near-Term Hybrid Vehicles

    Science.gov (United States)

    Sandberg, J. J.

    1980-01-01

    Phase I of the Near-Term Hybrid Vehicle Program involved the development of preliminary designs of electric/heat engine hybrid passenger vehicles. The preliminary designs were developed on the basis of mission analysis, performance specification, and design trade-off studies conducted independently by four contractors. THe resulting designs involve parallel hybrid (heat engine/electric) propulsion systems with significant variation in component selection, power train layout, and control strategy. Each of the four designs is projected by its developer as having the potential to substitute electrical energy for 40% to 70% of the petroleum fuel consumed annually by its conventional counterpart.

  15. A road safety performance indicator for vehicle fleet compatibility.

    NARCIS (Netherlands)

    Christoph, M. Vis, M.A. Rackliff, L. & Stipdonk, H.

    2013-01-01

    This paper discusses the development and the application of a safety performance indicator which measures the intrinsic safety of a country's vehicle fleet related to fleet composition. The indicator takes into account both the ‘relative severity’ of individual collisions between different vehicle

  16. Design and Testing for a New Thermosyphon Irradiation Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Felde, David K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carbajo, Juan J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McDuffee, Joel Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) requires most materials and all fuel experiments to be placed in a pressure containment vessel to ensure that internal contaminants such as fission products cannot be released into the primary coolant. It also requires that all experiments be capable of withstanding various accident conditions (e.g., loss of coolant) without generating vapor bubbles on the surface of the experiment in the primary coolant. These requirements are intended to artificially increase experiment temperatures by introducing a barrier between the experimental materials and the HFIR coolant, and by reducing heat loads to the HFIR primary coolant, thus ensuring that no boiling can occur. A proposed design for materials irradiation would remove these limitations by providing the required primary containment with an internal cooling flow. This would allow for experiments to be irradiated without concern for coolant contamination (e.g., from cladding failure of advanced fuel pins) or for specimen heat load. This report describes a new materials irradiation experiment design that uses a thermosyphon cooling system to allow experimental materials direct access to a liquid coolant. The new design also increases the range of conditions that can be tested in HFIR. This design will provide a unique capability to validate the performance of current and advanced fuels and materials. Because of limited supporting data for this kind of irradiation vehicle, a test program was initiated to obtain operating data that can be used to (1) qualify the vehicle for operation in HFIR and (2) validate computer models used to perform design- and safety-basis calculations. This report also describes the test facility and experimental data, and it provides a comparison of the experimental data to computer simulations. A total of 51 tests have been completed: four tests with pure steam, 12 tests with argon, and 35 tests with helium. A total

  17. Control of AWD System for Vehicle Performance and Safety

    Directory of Open Access Journals (Sweden)

    Jung Hojin

    2016-01-01

    Full Text Available AWD (All-Wheel Drive system transfers drive force to all wheels so that it can help vehicle escape low mu surface or climb hill more conveniently. Recently, AWD system for on road vehicle has become popular to improve vehicle driving performance. However, there has not been enough research of applying AWD system for vehicle stability especially for lateral movement. Compared with ESC (Electronic Stability Control, AWD system does not cause any inconveniences to the driver because it controls vehicle only by distributing front and rear drive torque, without using brake. By allowing slipping/locking of wet clutch inside the transfer case, AWD system can distribute different amount of torque between front and rear axle. This paper introduces modelling of AWD system and suggests the control of AWD system based on peak slip ratio and slip angle at which tyre saturates. Carsim based vehicle simulation results of AWD controller is presented.

  18. Risk Informed Design Using Integrated Vehicle Rapid Assessment Tools Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A successful proof of concept was performed in FY 2012 integrating the Envision tool for parametric estimates of vehicle mass and the Rapid Response Risk Assessment...

  19. Structural design and fabrication techniques of composite unmanned aerial vehicles

    Science.gov (United States)

    Hunt, Daniel Stephen

    Popularity of unmanned aerial vehicles has grown substantially in recent years both in the private sector, as well as for government functions. This growth can be attributed largely to the increased performance of the technology that controls these vehicles, as well as decreasing cost and size of this technology. What is sometimes forgotten though, is that the research and advancement of the airframes themselves are equally as important as what is done with them. With current computer-aided design programs, the limits of design optimization can be pushed further than ever before, resulting in lighter and faster airframes that can achieve longer endurances, higher altitudes, and more complex missions. However, realization of a paper design is still limited by the physical restrictions of the real world and the structural constraints associated with it. The purpose of this paper is to not only step through current design and manufacturing processes of composite UAVs at Oklahoma State University, but to also focus on composite spars, utilizing and relating both calculated and empirical data. Most of the experience gained for this thesis was from the Cessna Longitude project. The Longitude is a 1/8 scale, flying demonstrator Oklahoma State University constructed for Cessna. For the project, Cessna required dynamic flight data for their design process in order to make their 2017 release date. Oklahoma State University was privileged enough to assist Cessna with the mission of supporting the validation of design of their largest business jet to date. This paper will detail the steps of the fabrication process used in construction of the Longitude, as well as several other projects, beginning with structural design, machining, molding, skin layup, and ending with final assembly. Also, attention will be paid specifically towards spar design and testing in effort to ease the design phase. This document is intended to act not only as a further development of current

  20. A survey of aerobraking orbital transfer vehicle design concepts

    Science.gov (United States)

    Park, Chul

    1987-01-01

    The five existing design concepts of the aerobraking orbital transfer vehicle (namely, the raked sphere-cone designs, conical lifting-brake, raked elliptic-cone, lifting-body, and ballute) are reviewed and critiqued. Historical backgrounds, and the geometrical, aerothermal, and operational features of these designs are reviewed first. Then, the technological requirements for the vehicle (namely, navigation, aerodynamic stability and control, afterbody flow impingement, nonequilibrium radiation, convective heat-transfer rates, mission abort and multiple atmospheric passes, transportation and construction, and the payload-to-vehicle weight requirements) are delineated by summarizing the recent advancements made on these issues. Each of the five designs are critiqued and rated on these issues. The highest and the lowest ratings are given to the raked sphere-cone and the ballute design, respectively.

  1. Effects of Electric Vehicle Fast Charging on Battery Life and Vehicle Performance

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Shirk; Jeffrey Wishart

    2015-04-01

    As part of the U.S. Department of Energy’s Advanced Vehicle Testing Activity, four new 2012 Nissan Leaf battery electric vehicles were instrumented with data loggers and operated over a fixed on-road test cycle. Each vehicle was operated over the test route, and charged twice daily. Two vehicles were charged exclusively by AC level 2 EVSE, while two were exclusively DC fast charged with a 50 kW charger. The vehicles were performance tested on a closed test track when new, and after accumulation of 50,000 miles. The traction battery packs were removed and laboratory tested when the vehicles were new, and at 10,000-mile intervals. Battery tests include constant-current discharge capacity, electric vehicle pulse power characterization test, and low peak power tests. The on-road testing was carried out through 70,000 miles, at which point the final battery tests were performed. The data collected over 70,000 miles of driving, charging, and rest are analyzed, including the resulting thermal conditions and power and cycle demands placed upon the battery. Battery performance metrics including capacity, internal resistance, and power capability obtained from laboratory testing throughout the test program are analyzed. Results are compared within and between the two groups of vehicles. Specifically, the impacts on battery performance, as measured by laboratory testing, are explored as they relate to battery usage and variations in conditions encountered, with a primary focus on effects due to the differences between AC level 2 and DC fast charging. The contrast between battery performance degradation and the effect on vehicle performance is also explored.

  2. Intelligence Level Performance Standards Research for Autonomous Vehicles

    Science.gov (United States)

    Bostelman, Roger B.; Hong, Tsai H.; Messina, Elena

    2017-01-01

    United States and European safety standards have evolved to protect workers near Automatic Guided Vehicles (AGV’s). However, performance standards for AGV’s and mobile robots have only recently begun development. Lessons can be learned from research and standards efforts for mobile robots applied to emergency response and military applications. Research challenges, tests and evaluations, and programs to develop higher intelligence levels for vehicles can also used to guide industrial AGV developments towards more adaptable and intelligent systems. These other efforts also provide useful standards development criteria for AGV performance test methods. Current standards areas being considered for AGVs are for docking, navigation, obstacle avoidance, and the ground truth systems that measure performance. This paper provides a look to the future with standards developments in both the performance of vehicles and the dynamic perception systems that measure intelligent vehicle performance. PMID:28649189

  3. Intelligence Level Performance Standards Research for Autonomous Vehicles.

    Science.gov (United States)

    Bostelman, Roger B; Hong, Tsai H; Messina, Elena

    2015-01-01

    United States and European safety standards have evolved to protect workers near Automatic Guided Vehicles (AGV's). However, performance standards for AGV's and mobile robots have only recently begun development. Lessons can be learned from research and standards efforts for mobile robots applied to emergency response and military applications. Research challenges, tests and evaluations, and programs to develop higher intelligence levels for vehicles can also used to guide industrial AGV developments towards more adaptable and intelligent systems. These other efforts also provide useful standards development criteria for AGV performance test methods. Current standards areas being considered for AGVs are for docking, navigation, obstacle avoidance, and the ground truth systems that measure performance. This paper provides a look to the future with standards developments in both the performance of vehicles and the dynamic perception systems that measure intelligent vehicle performance.

  4. Vehicle drive module having improved terminal design

    Science.gov (United States)

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Phillips, Mark G.; Kehl, Dennis L.; Kaishian, Steven C.; Kannenberg, Daniel G.

    2006-04-25

    A terminal structure for vehicle drive power electronics circuits reduces the need for a DC bus and thereby the incidence of parasitic inductance. The structure is secured to a support that may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as by direct contact between the terminal assembly and AC and DC circuit components. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  5. MAIUS-1- Vehicle, Subsystems Design and Mission Operations

    Science.gov (United States)

    Stamminger, A.; Ettl, J.; Grosse, J.; Horschgen-Eggers, M.; Jung, W.; Kallenbach, A.; Raith, G.; Saedtler, W.; Seidel, S. T.; Turner, J.; Wittkamp, M.

    2015-09-01

    In November 2015, the DLR Mobile Rocket Base will launch the MAIUS-1 rocket vehicle at Esrange, Northern Sweden. The MAIUS-A experiment is a pathfinder atom optics experiment. The scientific objective of the mission is the first creation of a BoseEinstein Condensate in space and performing atom interferometry on a sounding rocket [3]. MAIUS-1 comprises a two-stage unguided solid propellant VSB-30 rocket motor system. The vehicle consists of a Brazilian 53 1 motor as 1 st stage, a 530 motor as 2nd stage, a conical motor adapter, a despin module, a payload adapter, the MAIUS-A experiment consisting of five experiment modules, an attitude control system module, a newly developed conical service system, and a two-staged recovery system including a nosecone. In contrast to usual payloads on VSB-30 rockets, the payload has a diameter of 500 mm due to constraints of the scientific experiment. Because of this change in design, a blunted nosecone is necessary to guarantee the required static stability during the ascent phase of the flight. This paper will give an overview on the subsystems which have been built at DLR MORABA, especially the newly developed service system. Further, it will contain a description of the MAIUS-1 vehicle, the mission and the unique requirements on operations and attitude control, which is additionally required to achieve a required attitude with respect to the nadir vector. Additionally to a usual microgravity environment, the MAIUS-l payload requires attitude control to achieve a required attitude with respect to the nadir vector.

  6. Comparative Ergonomic Evaluation of Spacesuit and Space Vehicle Design

    Science.gov (United States)

    England, Scott; Cowley, Matthew; Benson, Elizabeth; Harvill, Lauren; Blackledge, Christopher; Perez, Esau; Rajulu, Sudhakar

    2012-01-01

    With the advent of the latest human spaceflight objectives, a series of prototype architectures for a new launch and reentry spacesuit that would be suited to the new mission goals. Four prototype suits were evaluated to compare their performance and enable the selection of the preferred suit components and designs. A consolidated approach to testing was taken: concurrently collecting suit mobility data, seat-suit-vehicle interface clearances, and qualitative assessments of suit performance within the volume of a Multi-Purpose Crew Vehicle mockup. It was necessary to maintain high fidelity in a mockup and use advanced motion-capture technologies in order to achieve the objectives of the study. These seemingly mutually exclusive goals were accommodated with the construction of an optically transparent and fully adjustable frame mockup. The construction of the mockup was such that it could be dimensionally validated rapidly with the motioncapture system. This paper describes the method used to create a space vehicle mockup compatible with use of an optical motion-capture system, the consolidated approach for evaluating spacesuits in action, and a way to use the complex data set resulting from a limited number of test subjects to generate hardware requirements for an entire population. Kinematics, hardware clearance, anthropometry (suited and unsuited), and subjective feedback data were recorded on 15 unsuited and 5 suited subjects. Unsuited subjects were selected chiefly based on their anthropometry in an attempt to find subjects who fell within predefined criteria for medium male, large male, and small female subjects. The suited subjects were selected as a subset of the unsuited medium male subjects and were tested in both unpressurized and pressurized conditions. The prototype spacesuits were each fabricated in a single size to accommodate an approximately average-sized male, so select findings from the suit testing were systematically extrapolated to the extremes

  7. Near Term Hybrid Passenger Vehicle Development Program. Phase I, Final report. Appendix A: mission analysis and performance specification studies. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Traversi, M.; Barbarek, L.A.C.

    1979-04-20

    Studies are described which were performed for the Near Term Hybrid Vehicle program to determine passenger car usage patterns and to correlate these trip mission characteristics with vehicle design and performance specifications. (LCL)

  8. Analog circuit design designing high performance amplifiers

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    The third volume Designing High Performance Amplifiers applies the concepts from the first two volumes. It is an advanced treatment of amplifier design/analysis emphasizing both wideband and precision amplification.

  9. Maximizing Launch Vehicle and Payload Design Via Early Communications

    Science.gov (United States)

    Morris, Bruce

    2010-01-01

    The United States? current fleet of launch vehicles is largely derived from decades-old designs originally made for payloads that no longer exist. They were built primarily for national security or human exploration missions. Today that fleet can be divided roughly into small-, medium-, and large-payload classes based on mass and volume capability. But no vehicle in the U.S. fleet is designed to accommodate modern payloads. It is usually the payloads that must accommodate the capabilities of the launch vehicles. This is perhaps most true of science payloads. It was this paradigm that the organizers of two weekend workshops in 2008 at NASA's Ames Research Center sought to alter. The workshops brought together designers of NASA's Ares V cargo launch vehicle (CLV) with scientists and payload designers in the astronomy and planetary sciences communities. Ares V was still in a pre-concept development phase as part of NASA?s Constellation Program for exploration beyond low Earth orbit (LEO). The space science community was early in a Decadal Survey that would determine future priorities for research areas, observations, and notional missions to make those observations. The primary purpose of the meetings in April and August of 2008, including the novel format, was to bring vehicle designers together with space scientists to discuss the feasibility of using a heavy lift capability to launch large observatories and explore the Solar System. A key question put to the science community was whether this heavy lift capability enabled or enhanced breakthrough science. The meetings also raised the question of whether some trade-off between mass/volume and technical complexity existed that could reduce technical and programmatic risk. By engaging the scientific community early in the vehicle design process, vehicle engineers sought to better understand potential limitations and requirements that could be added to the Ares V from the mission planning community. From the vehicle

  10. Coupled Solid Rocket Motor Ballistics and Trajectory Modeling for Higher Fidelity Launch Vehicle Design

    Science.gov (United States)

    Ables, Brett

    2014-01-01

    Multi-stage launch vehicles with solid rocket motors (SRMs) face design optimization challenges, especially when the mission scope changes frequently. Significant performance benefits can be realized if the solid rocket motors are optimized to the changing requirements. While SRMs represent a fixed performance at launch, rapid design iterations enable flexibility at design time, yielding significant performance gains. The streamlining and integration of SRM design and analysis can be achieved with improved analysis tools. While powerful and versatile, the Solid Performance Program (SPP) is not conducive to rapid design iteration. Performing a design iteration with SPP and a trajectory solver is a labor intensive process. To enable a better workflow, SPP, the Program to Optimize Simulated Trajectories (POST), and the interfaces between them have been improved and automated, and a graphical user interface (GUI) has been developed. The GUI enables real-time visual feedback of grain and nozzle design inputs, enforces parameter dependencies, removes redundancies, and simplifies manipulation of SPP and POST's numerous options. Automating the analysis also simplifies batch analyses and trade studies. Finally, the GUI provides post-processing, visualization, and comparison of results. Wrapping legacy high-fidelity analysis codes with modern software provides the improved interface necessary to enable rapid coupled SRM ballistics and vehicle trajectory analysis. Low cost trade studies demonstrate the sensitivities of flight performance metrics to propulsion characteristics. Incorporating high fidelity analysis from SPP into vehicle design reduces performance margins and improves reliability. By flying an SRM designed with the same assumptions as the rest of the vehicle, accurate comparisons can be made between competing architectures. In summary, this flexible workflow is a critical component to designing a versatile launch vehicle model that can accommodate a volatile

  11. Solar Orbit Transfer Vehicle Conceptual Design

    National Research Council Canada - National Science Library

    1999-01-01

    ... technologies that include solar thermal propulsion and solar thermionic based power systems. Efforts over the last ten years have focused on feasibility, design, and fabrication issues of the various components...

  12. Design of Electric Vehicle Racing Car Chassis using Topology Optimization Method

    Directory of Open Access Journals (Sweden)

    bin Ab Razak Mohd Suffian

    2017-01-01

    Full Text Available The goal of this project is to improve the design of space frame chassis of electric vehicle which meet the rules and regulations of Formula Varsity (FV Malaysia. The chassis was designed using topology optimization method and analyzed for its structural performance using various loading analyses and RULA assessment.

  13. A Review Of Design And Control Of Automated Guided Vehicle Systems

    OpenAIRE

    Le-Anh, Tuan; Koster, René

    2004-01-01

    textabstractThis paper presents a review on design and control of automated guided vehicle systems. We address most key related issues including guide-path design, estimating the number of vehicles, vehicle scheduling, idle-vehicle positioning, battery management, vehicle routing, and conflict resolution. We discuss and classify important models and results from key publications in literature on automated guided vehicle systems, including often-neglected areas, such as idle-vehicle positionin...

  14. A high performance pneumatic braking system for heavy vehicles

    Science.gov (United States)

    Miller, Jonathan I.; Cebon, David

    2010-12-01

    Current research into reducing actuator delays in pneumatic brake systems is opening the door for advanced anti-lock braking algorithms to be used on heavy goods vehicles. However, these algorithms require the knowledge of variables that are impractical to measure directly. This paper introduces a sliding mode braking force observer to support a sliding mode controller for air-braked heavy vehicles. The performance of the observer is examined through simulations and field testing of an articulated heavy vehicle. The observer operated robustly during single-wheel vehicle simulations, and provided reasonable estimates of surface friction from test data. The effect of brake gain errors on the controller and observer are illustrated, and a recursive least squares estimator is derived for the brake gain. The estimator converged within 0.3 s in simulations and vehicle trials.

  15. FASTSim: A Model to Estimate Vehicle Efficiency, Cost and Performance

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, A.; Gonder, J.; Wang, L.; Wood, E.; Lopp, S.; Ramroth, L.

    2015-05-04

    The Future Automotive Systems Technology Simulator (FASTSim) is a high-level advanced vehicle powertrain systems analysis tool supported by the U.S. Department of Energy’s Vehicle Technologies Office. FASTSim provides a quick and simple approach to compare powertrains and estimate the impact of technology improvements on light- and heavy-duty vehicle efficiency, performance, cost, and battery batches of real-world drive cycles. FASTSim’s calculation framework and balance among detail, accuracy, and speed enable it to simulate thousands of driven miles in minutes. The key components and vehicle outputs have been validated by comparing the model outputs to test data for many different vehicles to provide confidence in the results. A graphical user interface makes FASTSim easy and efficient to use. FASTSim is freely available for download from the National Renewable Energy Laboratory’s website (see www.nrel.gov/fastsim).

  16. Design of a recovery system for a reentry vehicle

    Science.gov (United States)

    von Eckroth, Wulf; Garrard, William L.; Miller, Norman

    Engineers are often required to design decelerator systems which are deployed in cross-wind orientations. If the system is not designed to minimize 'line sail', damage to the parachutes could result. A Reentry Vehicle Analysis Code (RVAC) and an accompanying graphics animation software program (DISPLAY) are presented in this paper. These computer codes allow the user to quickly apply the Purvis line sail modeling technique to any vehicle and then observe the relative motion of the vehicle, nose cap, suspension lines, pilot and drogue bags and canopies on a computer screen. Data files are created which allow plots of velocities, spacial positions, and dynamic pressures versus time to be generated. The code is an important tool for the design engineer because it integrates two degrees of freedom (DOF) line sail equations with a three DOF model of the reentry body and jettisoned nose cap to provide an animated output.

  17. Design of a recovery system for a reentry vehicle

    Science.gov (United States)

    Von Eckroth, Wulf; Garrard, William L.; Miller, Norman

    1993-01-01

    Engineers are often required to design decelerator systems which are deployed in cross-wind orientations. If the system is not designed to minimize 'line sail', damage to the parachutes could result. A Reentry Vehicle Analysis Code (RVAC) and an accompanying graphics animation software program (DISPLAY) are presented in this paper. These computer codes allow the user to quickly apply the Purvis line sail modeling technique to any vehicle and then observe the relative motion of the vehicle, nose cap, suspension lines, pilot and drogue bags and canopies on a computer screen. Data files are created which allow plots of velocities, spacial positions, and dynamic pressures versus time to be generated. The code is an important tool for the design engineer because it integrates two degrees of freedom (DOF) line sail equations with a three DOF model of the reentry body and jettisoned nose cap to provide an animated output.

  18. A Review Of Design And Control Of Automated Guided Vehicle Systems

    NARCIS (Netherlands)

    T. Le-Anh (Tuan); M.B.M. de Koster (René)

    2004-01-01

    textabstractThis paper presents a review on design and control of automated guided vehicle systems. We address most key related issues including guide-path design, estimating the number of vehicles, vehicle scheduling, idle-vehicle positioning, battery management, vehicle routing, and conflict

  19. Modular design of the LED vehicle projector headlamp system.

    Science.gov (United States)

    Hsieh, Chi-Chang; Li, Yan-Huei; Hung, Chih-Ching

    2013-07-20

    A well designed headlamp for a vehicle lighting system is very important as it provides drivers with safe and comfortable driving conditions at night or in dark places. With the advances of the semiconductor technology, the LED has become the fourth generation lighting source in the auto industry. In this study, we will propose a LED vehicle projector headlamp system. This headlamp system contains several LED headlamp modules, and every module of it includes four components: focused LEDs, asymmetric metal-based plates, freeform surfaces, and condenser lenses. By optimizing the number of LED headlamp modules, the proposed LED vehicle projector headlamp system has only five LED headlamp modules. It not only provides the low-beam cutoff without a shield, but also meets the requirements of the ECE R112 regulation. Finally, a prototype of the LED vehicle projector headlamp system was assembled and fabricated to create the correct light pattern.

  20. Modular Approach to Launch Vehicle Design Based on a Common Core Element

    Science.gov (United States)

    Creech, Dennis M.; Threet, Grady E., Jr.; Philips, Alan D.; Waters, Eric D.; Baysinger, Mike

    2010-01-01

    With a heavy lift launch vehicle as the centerpiece of our nation's next exploration architecture's infrastructure, the Advanced Concepts Office at NASA's Marshall Space Flight Center initiated a study to examine the utilization of elements derived from a heavy lift launch vehicle for other potential launch vehicle applications. The premise of this study is to take a vehicle concept, which has been optimized for Lunar Exploration, and utilize the core stage with other existing or near existing stages and boosters to determine lift capabilities for alternative missions. This approach not only yields a vehicle matrix with a wide array of capabilities, but also produces an evolutionary pathway to a vehicle family based on a minimum development and production cost approach to a launch vehicle system architecture, instead of a purely performance driven approach. The upper stages and solid rocket booster selected for this study were chosen to reflect a cross-section of: modified existing assets in the form of a modified Delta IV upper stage and Castor-type boosters; potential near term launch vehicle component designs including an Ares I upper stage and 5-segment boosters; and longer lead vehicle components such as a Shuttle External Tank diameter upper stage. The results of this approach to a modular launch system are given in this paper.

  1. A road safety performance indicator for vehicle fleet compatibility.

    Science.gov (United States)

    Christoph, Michiel; Vis, Martijn Alexander; Rackliff, Lucy; Stipdonk, Henk

    2013-11-01

    This paper discusses the development and the application of a safety performance indicator which measures the intrinsic safety of a country's vehicle fleet related to fleet composition. The indicator takes into account both the 'relative severity' of individual collisions between different vehicle types, and the share of those vehicle types within a country's fleet. The relative severity is a measure for the personal damage that can be expected from a collision between two vehicles of any type, relative to that of a collision between passenger cars. It is shown how this number can be calculated using vehicle mass only. A sensitivity analysis is performed to study the dependence of the indicator on parameter values and basic assumptions made. The indicator is easy to apply and satisfies the requirements for appropriate safety performance indicators. It was developed in such a way that it specifically scores the intrinsic safety of a fleet due to its composition, without being influenced by other factors, like helmet wearing. For the sake of simplicity, and since the required data is available throughout Europe, the indicator was applied to the relative share of three of the main vehicle types: passenger cars, heavy goods vehicles and motorcycles. Using the vehicle fleet data from 13EU Member States and Norway, the indicator was used to rank the countries' safety performance. The UK was found to perform best in terms of its fleet composition (value is 1.07), while Greece has the worst performance with the highest indicator value (1.41). Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The ironies of vehicle feedback in car design.

    Science.gov (United States)

    Walker, Guy H; Stanton, Neville A; Young, Mark S

    2006-02-10

    Car drivers show an acute sensitivity towards vehicle feedback, with most normal drivers able to detect 'the difference in vehicle feel of a medium-size saloon car with and without a fairly heavy passenger in the rear seat' (Joy and Hartley 1953-54). The irony is that this level of sensitivity stands in contrast to the significant changes in vehicle 'feel' accompanying modern trends in automotive design, such as drive-by-wire and increased automation. The aim of this paper is to move the debate from the anecdotal to the scientific level. This is achieved by using the Brunel University driving simulator to replicate some of these trends and changes by presenting (or removing) different forms of non-visual vehicle feedback, and measuring resultant driver situational awareness (SA) using a probe-recall method. The findings confirm that vehicle feedback plays a key role in coupling the driver to the dynamics of their environment (Moray 2004), with the role of auditory feedback particularly prominent. As a contrast, drivers in the study also rated their self-perceived levels of SA and a concerning dissociation occurred between the two sets of results. Despite the large changes in vehicle feedback presented in the simulator, and the measured changes in SA, drivers appeared to have little self-awareness of these changes. Most worryingly, drivers demonstrated little awareness of diminished SA. The issues surrounding vehicle feedback are therefore similar to the classic problems and ironies studied in aviation and automation, and highlight the role that ergonomics can also play within the domain of contemporary vehicle design.

  3. Performative Urban Design

    DEFF Research Database (Denmark)

    Samson, Kristine

    2011-01-01

    visitors and participants to engage and interact with the city. Inspired by Lefebvre statement that "the most beautiful cities were those where festivals were not planned in advance” (Lefebvre 1987:36), I will discuss how urban designers can design engaging spaces, where the potentials of the city can...

  4. Design of a Solenoid Actuator for a Cylinder Valve in a Fuel Cell Vehicle

    Directory of Open Access Journals (Sweden)

    Hyo Ryeol Lee

    2016-10-01

    Full Text Available Green vehicles include electric vehicles, natural gas vehicles, fuel cell vehicles (FCV, and vehicles running on fuel such as a biodiesel or an ethanol blend. An FCV is equipped with a cylinder valve installed in an ultra-high pressure vessel to control the hydrogen flow. For this purpose, an optimum design of the solenoid actuator is necessary to ensure reliability when driving an FCV. In this study, an electromagnetic field analysis for ensuring reliable operation of the solenoid actuator was conducted by using Maxwell V15. The electromagnetic field analysis was performed by magneto static technique, according to the distance between magnetic poles, in order to predict the attraction force. Finally, the attraction force was validated through comparison between the Maxwell results and measurement results. From the results, the error of attraction force ranged from 2.33 to 3.85 N at testing conditions.

  5. An investigation of the effects of pneumatic actuator design on slip control for heavy vehicles

    Science.gov (United States)

    Miller, Jonathan I.; Cebon, David

    2013-01-01

    Progress in reducing actuator delays in pneumatic brake systems is opening the door for advanced anti-lock braking algorithms to be used on heavy goods vehicles. However, little has been published on slip controllers for air-braked heavy vehicles, or the effects of slow pneumatic actuation on their design and performance. This paper introduces a sliding mode slip controller for air-braked heavy vehicles. The effects of pneumatic actuator delays and flow rates on stopping performance and air (energy) consumption are presented through vehicle simulations. Finally, the simulations are validated with experiments using a hardware-in-the-loop rig. It is shown that for each wheel, pneumatic valves with delays smaller than 3 ms and orifice diameters around 8 mm provide the best performance.

  6. Structural design optimization of vehicle components using Cuckoo Search Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, Ali Riza [Bursa Technical Univ., Bursa (Turkey). Dept. of Mechanical Engineering; Durgun, Ismail

    2012-07-01

    In order to meet today's vehicle design requirements and to improve the cost and fuel efficiency, there is an increasing interest to design light-weight and cost-effective vehicle components. In this research, a new optimization algorithm, called the Cuckoo Search Algorithm (CS) algorithm, is introduced for solving structural design optimization problems. This research is the first application of the CS to the shape design optimization problems in the literature. The CS algorithm is applied to the structural design optimization of a vehicle component to illustrate how the present approach can be applied for solving structural design problems. Results show the ability of the CS to find better optimal structural design. [German] Um heutige Anforderungen an das Fahrzeugdesign zu beruecksichtigen und um die Kosten- und Kraftstoffeffektivitaet zu erhoehen, nimmt das Interesse am Design leichter und kosteneffektiver Fahrzeugkomponenten weiterhin zu. In der diesem Beitrag zugrunde liegenden Studie wurde ein neuer Optimierungsalgorithmus angewendet, der so genannte Cuckoo Suchalgorithmus (CS). Es handelt sich um die erste CS-Applikation fuer das Formdesign in der Literatur. Der CS-Algorithmus wird hierbei zur Strukturdesignoptimierung einer Fahrzeugkomponente angewendet, um zu zeigen, wie er bei der Loesung von Strukturdesignaufgaben angewendet werden kann. Die Ergebnisse zeigen, wie damit ein verbessertes Design erreicht werden kann.

  7. Study of the Correlation between the Performances of Lunar Vehicle Wheels Predicted by the Nepean Wheeled Vehicle Performance Model and Test Data

    Science.gov (United States)

    Wong, J. Y.; Asnani, V. M.

    2008-01-01

    This paper describes the results of a study of the correlation between the performances of wheels for lunar vehicles predicted using the Nepean wheeled vehicle performance model (NWVPM), developed under the auspices of Vehicle Systems Development Corporation, Ottawa, Canada, and the corresponding test data presented in Performance evaluation of wheels for lunar vehicles , Technical Report M-70-2, prepared for George C. Marshall Space Flight Center, National Aeronautics and Space Administration (NASA), USA, by the US Army Engineer Waterways Experiment Station (WES). The NWVPM was originally developed for design and performance evaluation of terrestrial off-road wheeled vehicles. The purpose of this study is to assess the potential of the NWVPM for evaluating wheel candidates for the new generation of extra-terrestrial vehicles. Two versions of a wire-mesh wheel and a hoop-spring wheel, which were considered as candidates for lunar roving vehicles for the NASA Apollo program in the late 1960s, together with a pneumatic wheel were examined in this study. The tractive performances of these wheels and of a 464 test vehicle with the pneumatic wheels on air-dry sand were predicted using the NWVPM and compared with the corresponding test data obtained under Earth s gravity and previously documented in the above-named report. While test data on wheel or vehicle performances obtained under Earth s gravity may not necessarily be representative of those on extra-terrestrial bodies, because of the differences in gravity and in environmental conditions, such as atmospheric pressure, it is still a valid approach to use test data obtained under Earth s gravity to evaluate the predictive capability of the NWVPM and its potential applications to predicting wheel or wheeled rover performances on extra-terrestrial bodies. Results of this study show that, using the ratio (P20/W) of the drawbar pull to normal load at 20 per cent slip as a performance indicator, there is a reasonable

  8. The battery designer's challenge — satisfying the ever-increasing demands of vehicle electrical systems

    Science.gov (United States)

    Pierson, John R.; Johnson, Richard T.

    The automotive battery designer of the 1990s and beyond will encounter an unprecedented array of complex challenges imposed by consumer desires, governmental mandates, and vehicle manufacturers' specifications. It is predicted that enhanced feature content in the areas of safety, convenience, performance, and guidance will result in a three- to six-fold increase in electrical power consumption in vehicles by the year 2000. In the absence of major break-throughs in vehicle electrical systems, these new loads will significantly modify the duty cycle to which the battery is subjected. The micro- and macro-environment in which the battery must survive will significantly impact the product's design and material specifications. Severe weight and size limits will be imposed on batteries in an attempt to meet mandated Corporate Average Fuel Economy (CAFE) requirements and additional pre-start electrical loads may be introduced to reduce objectionable emissions. Finally, quality and reliability levels of vehicles and their component parts must undergo continuous improvement. In order to respond to these diverse and sometimes contradictory demands, the battery designer must participate as an integral part of the vehicle electrical system development team. Design considerations for the future must include elevated and multiple voltages, multiple batteries per vehicle designed for specific functions, and further improvements in power and energy density, as well as cycle-life.

  9. Design And Development Of Three Wheeled Campus Vehicle

    Directory of Open Access Journals (Sweden)

    Sharad Patel

    2015-08-01

    Full Text Available In todays world infrastructure of College and Industries are becoming large so if one has to travel or visit from one place to another he has to walk long distance and sometimes it becomes very hasty and inconvenient. Sometimes after too many traveling in campus it causes strain and pain in body. So to travel these distances two-wheeled or three wheeled electric scooter like Segway PT Irrway were introduced. But these scooters are very costly such as they starts from amp8377 50000. Another problem with those vehicle is that they are difficult to handle when we drive first time. So in alternate to this product we developed whole newly designed product and this is Reliable Ecofriendly Compact vehicle for campus. Its utilities are college campus Airports Industries Recreational Parks Sanctuaries Museums Palaces Villas etc. So Our research is on design and development of three-wheel campus vehicle and also its multipurpose utility among the society.

  10. Assessing current vehicle performance and simulating the performance of hydrogen and hybrid cars

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Bent [Roskilde University, Institute for Nature, Systems and Models, Energy, Environment and Climate group, Universitetsvej 1, DK-4000 Roskilde (Denmark)

    2007-07-15

    A measure of the efficiency in transforming energy input into transport work is defined and applied to road vehicles as well as to sea, air and rail vehicles for passenger or freight transportation. The insight obtained with this measure is compared with the results of applying the conventional measure of kilometres per unit of energy for current fleets of vehicles. Then, simulation methods are used to assess the performance of fuel cell vehicles, electric vehicles and hybrids between the two. The latter are found to provide an optimum performance for a small, efficient passenger car. (author)

  11. A Large-Scale Design Integration Approach Developed in Conjunction with the Ares Launch Vehicle Program

    Science.gov (United States)

    Redmon, John W.; Shirley, Michael C.; Kinard, Paul S.

    2012-01-01

    This paper presents a method for performing large-scale design integration, taking a classical 2D drawing envelope and interface approach and applying it to modern three dimensional computer aided design (3D CAD) systems. Today, the paradigm often used when performing design integration with 3D models involves a digital mockup of an overall vehicle, in the form of a massive, fully detailed, CAD assembly; therefore, adding unnecessary burden and overhead to design and product data management processes. While fully detailed data may yield a broad depth of design detail, pertinent integration features are often obscured under the excessive amounts of information, making them difficult to discern. In contrast, the envelope and interface method results in a reduction in both the amount and complexity of information necessary for design integration while yielding significant savings in time and effort when applied to today's complex design integration projects. This approach, combining classical and modern methods, proved advantageous during the complex design integration activities of the Ares I vehicle. Downstream processes, benefiting from this approach by reducing development and design cycle time, include: Creation of analysis models for the Aerodynamic discipline; Vehicle to ground interface development; Documentation development for the vehicle assembly.

  12. Multi-disciplinary design optimization of subsonic fixed-wing unmanned aerial vehicles projected through 2025

    Science.gov (United States)

    Gundlach, John Frederick, IV

    Through this research, a robust aircraft design methodology is developed for analysis and optimization of the Air Vehicle (AV) segment of Unmanned Aerial Vehicle (UAV) systems. The analysis functionality of the AV design is integrated with a Genetic Algorithm (GA) to form an integrated Multi-disciplinary Design Optimization (MDO) methodology for optimal AV design synthesis. This research fills the gap in integrated subsonic fixed-wing UAV AV MDO methods. No known single methodology captures all of the phenomena of interest over the wide range of UAV families considered here. Key advancements include: (1) parametric Low Reynolds Number (LRN) airfoil aerodynamics formulation, (2) UAV systems mass properties definition, (3) wing structural weight methods, (4) self-optimizing flight performance model, (5) automated geometry algorithms, and (6) optimizer integration. Multiple methods are provided for many disciplines to enable flexibility in functionality, level of detail, computational expediency, and accuracy. The AV design methods are calibrated against the High-Altitude Long-Endurance (HALE) Global Hawk, Medium-Altitude Endurance (MAE) Predator, and Tactical Shadow 200 classes, which exhibit significant variations in mission performance requirements and scale from one another. All three UAV families show significant design gross weight reductions as technology improves. The overall technology synergy experienced 10--11 years after the initial technology year is 6.68% for Global Hawk, 7.09% for Predator, and 4.22% for the Shadow 200, which means that the technology trends interact favorably in all cases. The Global Hawk and Shadow 200 families exhibited niche behavior, where some vehicles attained higher aerodynamic performance while others attained lower structural mass fractions. The high aerodynamic performance Global Hawk vehicles had high aspect ratio wings with sweep, while the low structural mass fraction vehicles had straight, relatively low aspect ratios and

  13. Combat Vehicle Cooling/Heating Design Investigation.

    Science.gov (United States)

    1981-09-01

    Robert E., and Gaudio, Ralph, Jr.; "Application of the Ranque - Hilsch Vortex Tube to Aircrew Cooling Problems" Report AMRL-TR-67-124; Wright-Patterson... Tube 3-7 3.6 Expendable Heat Sink 3-9 3.7 Absorption Cooling 3-10 3.8 Evaporative Cooling 3-11 3.9 Summary 3-12 4.0 COMPARATIVE SYSTEM PERFORMANCE 4...3-6 3-5 Vortex Tube System Schematic 3-8 3-6 Expendable Heat Sink System Schematic 3-9 3-7 Absorption Cooling System Schematic 3-10 4-1 Air Cycle

  14. Design tradeoffs on engine-integrated hypersonic vehicles

    Science.gov (United States)

    O'Neill, Mary Kae L.; Lewis, Mark J.

    1992-01-01

    Two classes of airbreathing hypersonic vehicle concepts, one for primarily cruise missions and the other for accelerator type missions, are presented. Both are designed with waverider airframes and hydrogen-fueled scramjet engine modules. Cruise configurations are optimized for the product of I(sp) and L/D while matching lift to weight and thrust to drag at some equivalence ratio. Accelerator configurations are optimized for effective specific impulse while matching lift to weight at an equivalence ratio of one. The method and computer code developed to optimize the configurations are discussed. The features and design tradeoffs for each class of vehicles are described. Recently available weight estimates for all-body waveriders have had a significant impact on the integrated configurations. Mach 8 vehicles at 40 km altitude optimized with the cruise objective function have L/Ds of 2.55 to 2.92 and I(sp)s of 2850 to 2940 sec. A Mach 14 vehicle at 40-km altitude optimized with the accelerator objective function has an I(sp) sub eff of 189 sec, and a Mach 10 vehicle an I(sp) sub eff of 880 sec.

  15. Design, synthesis, manufacturing, and testing of a competitive FHSAE vehicle.

    Science.gov (United States)

    2012-06-01

    The goal of this multi-year project is to create a fully functional University of Idaho entry in the hybrid FSAE competition scheduled for : 2012. Vehicle integration has been completed as part of a variety of 2010-2011 senior design projects and 201...

  16. Mechatronic design of a robotic manipulator for unmanned aerial vehicles

    NARCIS (Netherlands)

    Fumagalli, Matteo; Stramigioli, Stefano; Carloni, Raffaella

    2016-01-01

    The paper focuses on the mechatronic design of a robotic manipulator that is meant to be mounted on an Unmanned Aerial Vehicle (UAV) and to be used in industrial applications, for both aerial inspection by contact and aerial manipulation. The combination of an UAV and the robotic manipulator

  17. NREL Evaluates Performance of Hydraulic Hybrid Refuse Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    This highlight describes NREL's evaluation of the in-service performance of 10 next-generation hydraulic hybrid refuse vehicles (HHVs), 8 previous-generation (model year 2013) HHVs, and 8 comparable conventional diesel vehicles operated by Miami-Dade County's Public Works and Waste Management Department in southern Florida. Launched in March 2015, the on-road portion of this 12-month evaluation focuses on collecting and analyzing vehicle performance data - fuel economy, maintenance costs, and drive cycles - from the HHVs and the conventional diesel vehicles. The fuel economy of heavy-duty vehicles, such as refuse trucks, is largely dependent on the load carried and the drive cycles on which they operate. In the right applications, HHVs offer a potential fuel-cost advantage over their conventional counterparts. This advantage is contingent, however, on driving behavior and drive cycles with high kinetic intensity that take advantage of regenerative braking. NREL's evaluation will assess the performance of this technology in commercial operation and help Miami-Dade County determine the ideal routes for maximizing the fuel-saving potential of its HHVs. Based on the field data, NREL will develop a validated vehicle model using the Future Automotive Systems Technology Simulator, also known as FASTSim, to study the impacts of route selection and other vehicle parameters. NREL is also analyzing fueling and maintenance data to support total-cost-of-ownership estimations and forecasts. The study aims to improve understanding of the overall usage and effectiveness of HHVs in refuse operation compared to similar conventional vehicles and to provide unbiased technical information to interested stakeholders.

  18. Responsive design high performance

    CERN Document Server

    Els, Dewald

    2015-01-01

    This book is ideal for developers who have experience in developing websites or possess minor knowledge of how responsive websites work. No experience of high-level website development or performance tweaking is required.

  19. Design and Development of the Engine Unit for a Twin-Rotor Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    G. Avanzini

    2005-01-01

    Full Text Available Advanced computer-aided technologies played a crucial role in the design of an unconventional Uninhabited Aerial Vehicle (UAV, developed at the Turin Technical University and the University of Rome “La Sapienza”. The engine unit of the vehicle is made of a complex system of three two stroke piston engines coupled with two counter-rotating three-bladed rotors, controlled by rotary PWM servos. The focus of the present paper lies on the enabling technologies exploited in the framework of activities aimed at designing a suitable and reliable engine system, capable of performing the complex tasks required for operating the proposed rotorcraft. The synergic use of advanced computational tools for estimating the aerodynamic performance of the vehicle, solid modeling for mechanical components design, and rapid prototyping techniques for control system logic synthesis and implementation will be presented. 

  20. Small Launch Vehicle Design Approaches: Clustered Cores Compared with Multi-Stage Inline Concepts

    Science.gov (United States)

    Waters, Eric D.; Beers, Benjamin; Esther, Elizabeth; Philips, Alan; Threet, Grady E., Jr.

    2013-01-01

    In an effort to better define small launch vehicle design options two approaches were investigated from the small launch vehicle trade space. The primary focus was to evaluate a clustered common core design against a purpose built inline vehicle. Both designs focused on liquid oxygen (LOX) and rocket propellant grade kerosene (RP-1) stages with the terminal stage later evaluated as a LOX/methane (CH4) stage. A series of performance optimization runs were done in order to minimize gross liftoff weight (GLOW) including alternative thrust levels, delivery altitude for payload, vehicle length to diameter ratio, alternative engine feed systems, re-evaluation of mass growth allowances, passive versus active guidance systems, and rail and tower launch methods. Additionally manufacturability, cost, and operations also play a large role in the benefits and detriments for each design. Presented here is the Advanced Concepts Office's Earth to Orbit Launch Team methodology and high level discussion of the performance trades and trends of both small launch vehicle solutions along with design philosophies that shaped both concepts. Without putting forth a decree stating one approach is better than the other; this discussion is meant to educate the community at large and let the reader determine which architecture is truly the most economical; since each path has such a unique set of limitations and potential payoffs.

  1. Application of subharmonics for active sound design of electric vehicles.

    Science.gov (United States)

    Gwak, Doo Young; Yoon, Kiseop; Seong, Yeolwan; Lee, Soogab

    2014-12-01

    The powertrain of electric vehicles generates an unfamiliar acoustical environment for customers. This paper seeks optimal interior sound for electric vehicles based on psychoacoustic knowledge and musical harmonic theory. The concept of inserting a virtual sound, which consists of the subharmonics of an existing high-frequency component, is suggested to improve sound quality. Subjective evaluation results indicate that the impression of interior sound can be enhanced in this manner. Increased appeal is achieved through two designed stimuli, which proves the effectiveness of the method proposed.

  2. Detailed Design of a Thruster Solution for a Small Mass-Market Remotely Operated Underwater Vehicle

    OpenAIRE

    Huynh, Johnny Quang Tuan

    2016-01-01

    This thesis addresses the design of a thruster-solution for a mass-market Remotely Operated Underwater Vehicle with respect to performance and cost while increasing reliability, efficiency and durability of the system. With a relatively new and unexplored market, delivery of high quality is very important to make an impact with consumers. Factors such as performance, build quality and portability are important to be able to stay competitive in the market. The objective is to design a...

  3. Engineering Design Handbook. Military Vehicle Power Plant Cooling

    Science.gov (United States)

    1975-06-01

    Peper No. 724M necessary power at the wheels/sprockets to since the heat generated is dissipated into the satisfy vehicle performance. The selection...M-R 0 Air Intake TemoeinoloieiF 116 Black Pteare .....PSI 25 atus llesltinlrnl MRf 25 Uwfhienewae Permeteesew Ciarviee P-3IN-B [ I UGINg OUTPUT SHIED

  4. Effects of ambient conditions on fuel cell vehicle performance

    Science.gov (United States)

    Haraldsson, K.; Alvfors, P.

    Ambient conditions have considerable impact on the performance of fuel cell hybrid vehicles. Here, the vehicle fuel consumption, the air compressor power demand, the water management system and the heat loads of a fuel cell hybrid sport utility vehicle (SUV) were studied. The simulation results show that the vehicle fuel consumption increases with 10% when the altitude increases from 0 m up to 3000 m to 4.1 L gasoline equivalents/100 km over the New European Drive Cycle (NEDC). The increase is 19% on the more power demanding highway US06 cycle. The air compressor is the major contributor to this fuel consumption increase. Its load-following strategy makes its power demand increase with increasing altitude. Almost 40% of the net power output of the fuel cell system is consumed by the air compressor at the altitude of 3000 m with this load-following strategy and is thus more apparent in the high-power US06 cycle. Changes in ambient air temperature and relative humidity effect on the fuel cell system performance in terms of the water management rather in vehicle fuel consumption. Ambient air temperature and relative humidity have some impact on the vehicle performance mostly seen in the heat and water management of the fuel cell system. While the heat loads of the fuel cell system components vary significantly with increasing ambient temperature, the relative humidity did not have a great impact on the water balance. Overall, dimensioning the compressor and other system components to meet the fuel cell system requirements at the minimum and maximum expected ambient temperatures, in this case 5 and 40 °C, and high altitude, while simultaneously choosing a correct control strategy are important parameters for efficient vehicle power train management.

  5. Aerodynamic design of electric and hybrid vehicles: A guidebook

    Science.gov (United States)

    Kurtz, D. W.

    1980-01-01

    A typical present-day subcompact electric hybrid vehicle (EHV), operating on an SAE J227a D driving cycle, consumes up to 35% of its road energy requirement overcoming aerodynamic resistance. The application of an integrated system design approach, where drag reduction is an important design parameter, can increase the cycle range by more than 15%. This guidebook highlights a logic strategy for including aerodynamic drag reduction in the design of electric and hybrid vehicles to the degree appropriate to the mission requirements. Backup information and procedures are included in order to implement the strategy. Elements of the procedure are based on extensive wind tunnel tests involving generic subscale models and full-scale prototype EHVs. The user need not have any previous aerodynamic background. By necessity, the procedure utilizes many generic approximations and assumptions resulting in various levels of uncertainty. Dealing with these uncertainties, however, is a key feature of the strategy.

  6. The design of two stage to orbit vehicles

    Science.gov (United States)

    Gregorek, G. M.; Ramsay, T. N.

    1991-09-01

    Two designs are presented for a two-stage-to-orbit vehicle to complement an existing heavy lift vehicle. The payload is 10,000 lbs and 27 ft long by 10 ft in diameter for design purposes and must be carried to a low earth orbit by an air-breathing carrier configuration that can take off horizontally within 15,000 ft. Two designs are presented: a delta wing/body carrier in which the fuselage contains the orbiter; and a cranked-delta wing/body carrier in which the orbiter is carried piggy back. The engines for both carriers are turbofanramjets powered with liquid hydrogen, and the orbiters employ either a Space Shuttle Main Engine or a half-scale version with additional scramjet engines. The orbiter based on a full-scale Space Shuttle Main Engine is found to have a significantly higher takeoff weight which results in a higher total takeoff weight.

  7. Design of an autonomous Lunar construction utility vehicle

    Science.gov (United States)

    Ash, Robert L.; Chew, Mason; Dixon, Iain (Editor)

    1990-01-01

    In order to prepare a site for a manned lunar base, an autonomously operated construction vehicle is necessary. A Lunar Construction Utility Vehicle (LCUV), which utilizes interchangeable construction implements, was designed conceptually. Some elements of the machine were studied in greater detail. Design of an elastic loop track system has advanced to the testing stage. A standard coupling device was designed to insure a proper connection between the different construction tools and the LCUV. Autonomous control of the track drive motors was simulated successfully through the use of a joystick and computer interface. A study of hydrogen-oxygen fuel cells has produced estimates of reactant and product size requirements and identified multi-layer insulation techniques. Research on a 100 kW heat rejection system has determined that it is necessary to house a radiator panel on a utility trailer. The impact of a 720 hr use cycle has produced a very large logistical support lien which requires further study.

  8. Solar Electric Propulsion Vehicle Design Study for Cargo Transfer to Earth-moon L1

    Science.gov (United States)

    Sarver-Verhey, Timothy R.; Kerslake, Thomas W.; Rawlin, Vincent K.; Falck, Robert D.; Dudzinski, Leonard J.; Oleson, Steven R.

    2002-01-01

    A design study for a cargo transfer vehicle using solar electric propulsion was performed for NASA's Revolutionary Aerospace Systems Concepts program. Targeted for 2016, the solar electric propulsion (SEP) transfer vehicle is required to deliver a propellant supply module with a mass of approximately 36 metric tons from Low Earth Orbit to the first Earth-Moon libration point (LL1) within 270 days. Following an examination of propulsion and power technology options, a SEP transfer vehicle design was selected that incorporated large-area (approx. 2700 sq m) thin film solar arrays and a clustered engine configuration of eight 50 kW gridded ion thrusters mounted on an articulated boom. Refinement of the SEP vehicle design was performed iteratively to properly estimate the required xenon propellant load for the out-bound orbit transfer. The SEP vehicle performance, including the xenon propellant estimation, was verified via the SNAP trajectory code. Further efforts are underway to extend this system model to other orbit transfer missions.

  9. MAIUS-1 - Vehicle, Subsystems Design and Mission Operations

    OpenAIRE

    Stamminger, Andreas; Ettl, Josef; Grosse, Jens; Hörschgen-Eggers, Marcus; Jung, Wolfgang; Kallenbach, Alexander; Raith, Georg; Saedtler, Wolfram; Seidel, Stephan; Turner, John; Wittkamp, Markus

    2015-01-01

    In November 2015, the DLR Mobile Rocket Base will launch the MAIUS-1 rocket vehicle at Esrange, Northern Sweden. The MAIUS-A experiment is a pathfinder atom optics experiment. The scientific objective of the mission is the first creation of a Bose-Einstein Condensate in space and performing atom interferometry on a sounding rocket. MAIUS-1 comprises a two-stage unguided solid propellant VSB-30 rocket motor system. The vehicle consists of a Brazilian S31 motor as 1st stage, a S30 motor as 2...

  10. Improving stability and curving passing performance for railway vehicles with a variable stiffness MRF rubber joint

    Science.gov (United States)

    Harris, B. J.; Sun, S. S.; Li, W. H.

    2017-03-01

    With the growing need for effective intercity transport, the need for more advanced rail vehicle technology has never been greater. The conflicting primary longitudinal suspension requirements of high speed stability and curving performance limit the development of rail vehicle technology. This paper presents a novel magnetorheological fluid based joint with variable stiffness characteristics for the purpose of overcoming this parameter conflict. Firstly, the joint design and working principle is developed. Following this, a prototype is tested by MTS to characterize its variable stiffness properties under a range of conditions. Lastly, the performance of the proposed MRF rubber joint with regard to improving train stability and curving performance is numerically evaluated.

  11. Improving Conceptual Design for Launch Vehicles. The Bimese Concept: A Study of Mission and Economic Options

    Science.gov (United States)

    Olds, John R.; Tooley, Jeffrey

    1999-01-01

    This report summarizes key activities conducted in the third and final year of the cooperative agreement NCC1-229 entitled "Improving Conceptual Design for Launch Vehicles." This project has been funded by the Vehicle Analysis Branch at NASA's Langley Research Center in Hampton, VA. Work has been performed by the Space Systems Design Lab (SSDL) at the Georgia Institute of Technology, Atlanta, GA. Accomplishments during the first and second years of this project have been previously reported in annual progress reports. This report will focus on the third and final year of the three year activity.

  12. Design and test of urea hydrolysis reactor for vehicle

    Directory of Open Access Journals (Sweden)

    Qi Zhanfeng

    2017-01-01

    Full Text Available Ammonia production technology of urea-SCR system for vehicle is mainly used in pyrolysis. The reaction is complex, and there are some side effects. So a kind of urea hydrolysis device for vehicle is designed. Based on the in-depth analysis of ammonia production technology’s mechanism of urea hydrolysis for vehicle, the modified extended UNIQUAC equation and PHS equation of state were used to solve the thermodynamic model, and the experimental verification was carried out on the JX493ZLQ3 diesel engine. The results show that the design of urea hydrolysis reactor is in agreement with the experimental results. In the environment of urea hydrolysis, the higher the hydrolysis temperature, the faster the urea hydrolysis and the faster the production of ammonia. Under the same conditions, the hydrolysis rate of urea was the same, the higher the initial quality, the more ammonia produced. The method is suitable for the ammonia production technology of urea hydrolysis for vehicle and can be used for the formation of urea hydrolysis SCR system.

  13. Traumatic brain injury and automotive design: making motor vehicles safer.

    Science.gov (United States)

    Nirula, Ram; Kaufman, Rob; Tencer, Allan

    2003-11-01

    Traumatic brain injury (TBI) remains a major public health problem in the United States. Identifying and modifying vehicle designs associated with TBI will have a significant impact on the frequency and severity of TBI in motor vehicle crashes (MVCs). Our objective, therefore, was to identify interior vehicle contact points associated with severe TBI (head Abbreviated Injury Scale score > 3) among drivers and determine the extent to which modifications of these contact points impact the likelihood of severe TBI. We analyzed drivers in MVCs from the 1993 to 2001 National Automotive Sampling System database. The odds of severe TBI with respect to various vehicle contact points were estimated using multivariate logistic regression. Using computer simulation software, the magnitude of driver head deceleration was modeled while manipulating vehicle design features. The potential impact of this design modification on the frequency and hospital charges of TBI cases was estimated. There were 18,313 drivers involved who were victims of TBI, equating to a national sample size of 3,275,472 cases. The most frequent contact point associated with severe TBI was the roof rail (odds ratio, 2.0; 95% confidence interval, 1.2-3.3). Increasing roof rail padding thickness to 5.0 cm reduced the peak acceleration from 700 g to 218 g, which would potentially reduce the attributable number of severe TBI cases per year from 2,730 to 210, thereby reducing annual acute care charges from $136.5 million to $10.5 million US dollars. Contact with the roof rail significantly increases the likelihood of TBI in MVCs. Minor increases in padding at these points may reduce the frequency of severe TBI, which would have a substantial effect on health care costs.

  14. Project Startup: Evaluating the Performance of Hydraulic Hybrid Refuse Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    The Fleet Test and Evaluation Team at the National Renewable Energy Laboratory (NREL) is evaluating the in-service performance of 10 next-generation hydraulic hybrid refuse vehicles (HHVs), 8 previous-generation HHVs, and 8 comparable conventional diesel vehicles operated by Miami-Dade County's Public Works and Waste Management Department in southern Florida. The HHVs under study - Autocar E3 refuse trucks equipped with Parker Hannifin's RunWise Advanced Series Hybrid Drive systems - can recover as much as 70 percent of the energy typically lost during braking and reuse it to power the vehicle. NREL's evaluation will assess the performance of this technology in commercial operation and help Miami-Dade County determine the ideal routes for maximizing the fuel-saving potential of its HHVs.

  15. Preliminary power train design for a state-of-the-art electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J.A.; Wooldridge, G.A.

    1978-09-01

    The objective of this study was to prepare a preliminary design of a power train for a state-of-the-art 4-passenger electric vehicle capable of operating at highway speeds using conventional lead--acid batteries and to predict the expected performance with emphasis on maximizing range and overall system efficiency on the SAE J227a Schedule D driving cycle.

  16. The design of two-stage-to-orbit vehicles

    Science.gov (United States)

    1991-01-01

    Two separate student design groups developed conceptual designs for a two-stage-to-orbit vehicle, with each design group consisting of a carrier team and an orbiter team. A two-stage-to-orbit system is considered in the event that single-stage-to-orbit is deemed not feasible in the foreseeable future; the two-stage system would also be used as a complement to an already existing heavy lift vehicle. The design specifications given are to lift a 10,000-lb payload 27 ft long by 10 ft diameter, to low Earth orbit (300 n.m.) using an air breathing carrier configuration that will take off horizontally within 15,000 ft. The staging Mach number and altitude were to be determined by the design groups. One group designed a delta wing/body carrier with the orbiter nested within the fuselage of the carrier, and the other group produced a blended cranked-delta wing/body carrier with the orbiter in the more conventional piggyback configuration. Each carrier used liquid hydrogen-fueled turbofanramjet engines, with data provided by General Electric Aircraft Engine Group. While one orbiter used a full-scale Space Shuttle Main Engine (SSME), the other orbiter employed a half-scale SSME coupled with scramjet engines, with data again provided by General Electric. The two groups conceptual designs, along with the technical trade-offs, difficulties, and details that surfaced during the design process are presented.

  17. How shall we design the future vehicle for Chinese market.

    Science.gov (United States)

    Chen, Fang; Wang, Minjuan; Zhu, Xi Chan; Li, Jiaqi

    2012-01-01

    Surface transportation system is developing very fast in China and the number of vehicles is increasing quickly as well. This development creates a lot of problems on traffic safety and the number of accident is also increasing. In this paper, we made deep analysis of different possible causes of safety problems through three aspects: the traffic environment and infrastructure, in-vehicle information system design and the characteristics of drivers. There are many factors in each aspects may contribute to the transportation safety problems. Problems with infrastructure design and traffic design contribute over 50% of the traffic accident. Another important factor is that people has very little traffic safety concept and very weak on understanding the important of right behavior on the road. This paper has pointed the urgent needs to study the human factors in road and transportation system and vehicle HMI design, as there are very few such studies available in literature based on Chinese situation. The paper also proposed the needs to develop proactive educational system that can promote driver's understanding of traffic safety and to take the right action during drive.

  18. Integrated Design and Engineering Analysis (IDEA) Environment - Propulsion Related Module Development and Vehicle Integration

    Science.gov (United States)

    Kamhawi, Hilmi N.

    2013-01-01

    This report documents the work performed during the period from May 2011 - October 2012 on the Integrated Design and Engineering Analysis (IDEA) environment. IDEA is a collaborative environment based on an object-oriented, multidisciplinary, distributed framework using the Adaptive Modeling Language (AML). This report will focus on describing the work done in the areas of: (1) Integrating propulsion data (turbines, rockets, and scramjets) in the system, and using the data to perform trajectory analysis; (2) Developing a parametric packaging strategy for a hypersonic air breathing vehicles allowing for tank resizing when multiple fuels and/or oxidizer are part of the configuration; and (3) Vehicle scaling and closure strategies.

  19. The influence of vehicle aerodynamic and control response characteristics on driver-vehicle performance

    Science.gov (United States)

    Alexandridis, A. A.; Repa, B. S.; Wierwille, W. W.

    1978-01-01

    The effects of changes in understeer, control sensitivity, and location of the lateral aerodynamic center of pressure (c.p.) of a typical passenger car on the driver's opinion and on the performance of the driver-vehicle system were studied in a moving-base driving simulator. Twelve subjects with no prior experience on the simulator and no special driving skills performed regulation tasks in the presence of both random and step wind gusts.

  20. Design of an autonomous lunar construction utility vehicle

    Science.gov (United States)

    1990-01-01

    In order to prepare a site for a lunar base, an autonomously operated construction vehicle is necessary. Discussed here is a Lunar Construction Utility Vehicle (LCUV), which uses interchangeable construction implements. Design of an elastic loop track system has advanced to the testing stage. A standard coupling device has been designed to insure a proper connection between the different construction tools and the LCUV. Autonomous control of the track drive motors was simulated successfully through the use of a joystick and a computer interface. A study of hydrogen-oxygen fuel cells produced estimates of reactant and product requirements and identified multilayer insulation needs. Research on the 100-kW heat rejection system determined that it is necessary to transport the radiator panel on a utility trailer. Extensive logistical support for the 720 hour use cycle requires further study.

  1. ATF Neutron Irradiation Program Irradiation Vehicle Design Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Geringer, J. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Cetiner, N. O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Smith, Kurt R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; McDuffee, J. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division

    2016-03-01

    The Japan Atomic Energy Agency (JAEA) under the Civil Nuclear Energy Working Group (CNWG) is engaged in a cooperative research effort with the U.S. Department of Energy (DOE) to explore issues related to nuclear energy, including research on accident-tolerant fuels and materials for use in light water reactors. This work develops a draft technical plan for a neutron irradiation program on the candidate accident-tolerant fuel cladding materials and elements using the High Flux Isotope Reactor (HFIR). The research program requires the design of a detailed experiment, development of test vehicles, irradiation of test specimens, possible post irradiation examination and characterization of irradiated materials and the shipment of irradiated materials to Japan. This report discusses the conceptual design, the development and irradiation of the test vehicles.

  2. An optimization design proposal of automated guided vehicles for mixed type transportation in hospital environments.

    Science.gov (United States)

    González, Domingo; Romero, Luis; Espinosa, María Del Mar; Domínguez, Manuel

    2017-01-01

    The aim of this paper is to present an optimization proposal in the automated guided vehicles design used in hospital logistics, as well as to analyze the impact of its implementation in a real environment. This proposal is based on the design of those elements that would allow the vehicles to deliver an extra cart by the towing method. So, the proposal intention is to improve the productivity and the performance of the current vehicles by using a transportation method of combined carts. The study has been developed following concurrent engineering premises from three different viewpoints. First, the sequence of operations has been described, and second, a proposal of design of the equipment has been undertaken. Finally, the impact of the proposal has been analyzed according to real data from the Hospital Universitario Rio Hortega in Valladolid (Spain). In this particular case, by the implementation of the analyzed proposal in the hospital a reduction of over 35% of the current time of use can be achieved. This result may allow adding new tasks to the vehicles, and according to this, both a new kind of vehicle and a specific module can be developed in order to get a better performance.

  3. Designing for sustainability - mobility systems based on electrical vehicles

    DEFF Research Database (Denmark)

    Søndergård, Bent; Hansen, Ole Erik

    2013-01-01

    in interaction with public authorities and transportation companies), configuring the electric car sharing system as an element in an alternative mobility service system, and designing the technical and organizational system The concluding discussion falls into two parts: an assessment of the design process......-design, concerned with design as meta-level processes of regime transformation and the constructive configuration of design spaces. The case study examines an attempt to integrate electric vehicles in the Danish mobility systems. It maps the framework conditions and contemporary (competing) strategies....../projects, but focuses on a specific car-sharing project (‘Cleardrive’), with the objective to examine the early and constitutive stages of the design-process. It is conducted as an intensive study tracing elements of interpretation, interaction and intervention, which have been part of the project formation process...

  4. Uncertainty analysis and design optimization of hybrid rocket motor powered vehicle for suborbital flight

    Directory of Open Access Journals (Sweden)

    Zhu Hao

    2015-06-01

    Full Text Available In this paper, we propose an uncertainty analysis and design optimization method and its applications on a hybrid rocket motor (HRM powered vehicle. The multidisciplinary design model of the rocket system is established and the design uncertainties are quantified. The sensitivity analysis of the uncertainties shows that the uncertainty generated from the error of fuel regression rate model has the most significant effect on the system performances. Then the differences between deterministic design optimization (DDO and uncertainty-based design optimization (UDO are discussed. Two newly formed uncertainty analysis methods, including the Kriging-based Monte Carlo simulation (KMCS and Kriging-based Taylor series approximation (KTSA, are carried out using a global approximation Kriging modeling method. Based on the system design model and the results of design uncertainty analysis, the design optimization of an HRM powered vehicle for suborbital flight is implemented using three design optimization methods: DDO, KMCS and KTSA. The comparisons indicate that the two UDO methods can enhance the design reliability and robustness. The researches and methods proposed in this paper can provide a better way for the general design of HRM powered vehicles.

  5. Older Drivers’ Attitudes about Instrument Cluster Designs in Vehicles

    OpenAIRE

    Owsley, Cynthia; McGwin, Gerald; Seder, Thomas

    2011-01-01

    Little is known about older drivers’ preferences and attitudes about instrumentation design in vehicles. Yet visual processing impairments are common among older adults and could impact their ability to interface with a vehicle’s dashboard. The purpose of this study is to obtain information from them about this topic, using focus groups and content analysis methodology. A trained facilitator led 8 focus groups of older adults. Discussion was stimulated by an outline relevant to dashboard inte...

  6. Stirling engine electric hybrid vehicle propulsion system conceptual design study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dochat, G; Artiles, A; Killough, J; Ray, A; Chen, H S

    1978-08-01

    Results of a six-month study to characterize a series Stirling engine electric hybrid vehicle propulsion system are presented. The Stirling engine was selected as the heat conversion element to exploit the high efficiency (> .36), low pollution, multi-fuel and quiet operation of this machine. A free-piston Stirling engine driving a linear alternator in a hermatically sealed enclosure was chosen to gain the reliability, long life, and maintenance free characteristics of a sealed unit. The study performs trade off evaluations, selection of engine, battery, motor and inverter size, optimization of components, and develops a conceptual design and characterization of the total propulsion system. The conclusion of the study is that a Stirling engine electric hybrid propulsion system can be used successfully to augment the battery storage of a passenger vehicle and will result in significant savings of petroleum energy over present passenger vehicles. The performance and range augmentation of the hybrid design results in significant improvements over an all electric vehicle. The hybrid will be capable of performing 99% of the passenger vehicle annual trip distribution requirements with extremely low fuel usage. (TFD)

  7. Development of a dedicated ethanol ultra-low emission vehicle (ULEV) system design

    Science.gov (United States)

    Bourn, G.; Callahan, T.; Dodge, L.; Mulik, J.; Naegeli, D.; Shouse, K.; Smith, L.; Whitney, K.

    1995-02-01

    The objective of this 3.5 year project is to develop a commercially competitive vehicle powered by ethanol (or ethanol blend) that can meet California's ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes a system design study completed after six months of effort on this project. The design study resulted in recommendations for ethanol-fuel blends that shall be tested for engine low-temperature cold-start performance and other criteria. The study also describes three changes to the engine and two other changes to the vehicle to improve low-temperature starting, efficiency, and emissions. The three engine changes are to increase the compression ratio, to replace the standard fuel injectors with fine spray injectors, and to replace the powertrain controller. The two other vehicle changes involve the fuel tank and the aftertreatment system. The fuel tank will likely need to be replaced to reduce evaporative emissions. In addition to changes in the main catalyst, supplemental aftertreatment systems will be analyzed to reduce emissions before the main catalyst reaches operating temperature.

  8. Near-term hybrid vehicle program, phase 1. Appendix A: Mission analysis and performance specification studies report

    Science.gov (United States)

    1979-01-01

    Results of a study leading to the preliminary design of a five passenger hybrid vehicle utilizing two energy sources (electricity and gasoline/diesel fuel) to minimize petroleum usage on a fleet basis are presented. The study methodology is described. Vehicle characterizations, the mission description, characterization, and impact on potential sales, and the rationale for the selection of the reference internal combustion engine vehicle are presented. Conclusions and recommendations of the mission analysis and performance specification report are included.

  9. Vibration Challenges in the Design of NASA's Ares Launch Vehicles

    Science.gov (United States)

    Ryan, Stephen G.

    2009-01-01

    This paper focuses on the vibration challenges inherent in the design of NASA s Ares launch vehicles. A brief overview of the launch system architecture is provided to establish the context for the discussion. Following this is a general discussion of the design considerations and analytical disciplines that are affected by vibration. The first challenge discussed is that of coupling between the vehicle flight control system and fundamental vibrational modes of the vehicle. The potential destabilizing influence of the vibrational dynamics is described along with discussion of the typical methods employed to overcome this issue. Next is a general discussion of the process for developing the design loads for the primary structure. This includes quasi-steady loads and dynamic loads induced by the structural dynamic response. The two principal parts of this response are the gust induced responses of the lower frequency modes and the buffet induced responses of the higher frequency modes. Structural dynamic model validation will also be addressed. Following this, discussions of three somewhat unique topics of Pogo Instability, Solid Booster Thrust Oscillation, and Liquid Rocket Engine Turbopump Rotordynamic Stability and Response are presented.

  10. Design and research on the electronic parking brake system of the medium and heavy duty vehicles

    Directory of Open Access Journals (Sweden)

    Hongliang WANG

    2015-04-01

    Full Text Available Focusing on auto control of parking brake system of the medium and heavy duty vehicles, the key problems are studied including the system design and control strategies. The structure and working principle of the parking brake system of the medium and heavy duty vehicles are analyzed. The functions of EPB are proposed. The important information of the vehicle are analyzed which could influence the EPB system. The overall plan of the pneumatic EPB system is designed, which adopts the two-position three-way electromagnetic valve with double coil as actuator. The system could keep the vehicle parking brake status or parking release status for a long time without power supply. The function modules of the system are planned, and the control strategies of automatic parking brake and parking release are made. The experiment is performed on a medium-sized commercial vehicle which is experimentally modified. The overall plan of the pneumatic EPB system and the automatic parking function are proved through real vehicle tests.

  11. Designing for Reliability and Safety: The Ares Launch Vehicles Paradigm Change

    Science.gov (United States)

    Safie, Fayssal; Maggio, Gaspare

    2010-09-01

    In the past, S&MA performed an assurance function with little or no in-line engineering role. Lessons learned from S&MA early involvement in the Ares I launch vehicle design phases proved that performing an in-line function jointly with engineering is critical for S&MA to have an effective role in supporting the system, element, and component design. This paper discusses the S&MA Ares I paradigm change and the early involvement of S&MA in the conceptual phase of the Ares V. Specifically, this paper discusses the top-down functional performance-based analysis that has been developed by S&MA and its support contractor, Information Systems Laboratories(ISL), to evaluate the safety and reliability of Ares V as part of the performance(vehicle sizing and trajectory) analysis process. The techniques employ parametric methods that utilize the products of the performance analysis process to rapidly provide relative comparisons of safety and reliability estimates across the various design options considered in conceptual phase. The paper also addresses safety and reliability analyses needed to support NASA launch vehicles design beyond the conceptual design.

  12. Monitoring results of PBS vehicles in South Africa in terms of productivity, safety and road wear performance

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2013-07-01

    Full Text Available As part of a Performance-Based Standards (PBS) research programme for heavy vehicles in South Africa, a need was identified to design, manufacture and operate a number of PBS or Smart Truck demonstration vehicles in order to gain practical...

  13. Inviscid/Boundary-Layer Aeroheating Approach for Integrated Vehicle Design

    Science.gov (United States)

    Lee, Esther; Wurster, Kathryn E.

    2017-01-01

    A typical entry vehicle design depends on the synthesis of many essential subsystems, including thermal protection system (TPS), structures, payload, avionics, and propulsion, among others. The ability to incorporate aerothermodynamic considerations and TPS design into the early design phase is crucial, as both are closely coupled to the vehicle's aerodynamics, shape and mass. In the preliminary design stage, reasonably accurate results with rapid turn-representative entry envelope was explored. Initial results suggest that for Mach numbers ranging from 9-20, a few inviscid solutions could reasonably sup- port surface heating predictions at Mach numbers variation of +/-2, altitudes variation of +/-10 to 20 kft, and angle-of-attack variation of +/- 5. Agreement with Navier-Stokes solutions was generally found to be within 10-15% for Mach number and altitude, and 20% for angle of attack. A smaller angle-of-attack increment than the 5 deg around times for parametric studies and quickly evolving configurations are necessary to steer design decisions. This investigation considers the use of an unstructured 3D inviscid code in conjunction with an integral boundary-layer method; the former providing the flow field solution and the latter the surface heating. Sensitivity studies for Mach number, angle of attack, and altitude, examine the feasibility of using this approach to populate a representative entry flight envelope based on a limited set of inviscid solutions. Each inviscid solution is used to generate surface heating over the nearby trajectory space. A subset of a considered in this study is recommended. Results of the angle-of-attack sensitivity studies show that smaller increments may be needed for better heating predictions. The approach is well suited for application to conceptual multidisciplinary design and analysis studies where transient aeroheating environments are critical for vehicle TPS and thermal design. Concurrent prediction of aeroheating

  14. Design of synchromesh mechanism to optimization manual transmission's electric vehicle

    Science.gov (United States)

    Zainuri, Fuad; Sumarsono, Danardono A.; Adhitya, Muhammad; Siregar, Rolan

    2017-03-01

    Significant research has been attempted on a vehicle that lead to the development of transmission that can reduce energy consumption and improve vehicle efficiency. Consumers also expect safety, convenience, and competitive prices. Automatic transmission (AT), continuously variable transmission (CVT), and dual clutch transmission (DCT) is the latest transmission developed for road vehicle. From literature reviews that have been done that this transmission is less effective on electric cars which use batteries as a power source compared to type manual transmission, this is due to the large power losses when making gear changes. Zeroshift system is the transmission can do shift gears with no time (zero time). It was developed for the automatic manual transmission, and this transmission has been used on racing vehicles to eliminate deceleration when gear shift. Zeroshift transmission still use the clutch to change gear in which electromechanical be used to replace the clutch pedal. Therefore, the transmission is too complex for the transmission of electric vehicles, but its mechanism is considered very suitable to increase the transmission efficiency. From this idea, a new innovation design transmission will be created to electric car. The combination synchromesh with zeroshift mechanism for the manual transmission is a transmission that is ideal for improving the transmission efficiency. Installation synchromesh on zeroshift mechanism is expected to replace the function of the clutch MT, and assisted with the motor torque setting when to change gear. Additionally to consider is the weight of the transmission, ease of manufacturing, ease of installation with an electric motor, as well as ease of use by drivers is a matter that must be done to obtain a new transmission system that is suitable for electric cars.

  15. Launch Vehicle Propulsion Design with Multiple Selection Criteria

    Science.gov (United States)

    Shelton, Joey D.; Frederick, Robert A.; Wilhite, Alan W.

    2005-01-01

    The approach and techniques described herein define an optimization and evaluation approach for a liquid hydrogen/liquid oxygen single-stage-to-orbit system. The method uses Monte Carlo simulations, genetic algorithm solvers, a propulsion thermo-chemical code, power series regression curves for historical data, and statistical models in order to optimize a vehicle system. The system, including parameters for engine chamber pressure, area ratio, and oxidizer/fuel ratio, was modeled and optimized to determine the best design for seven separate design weight and cost cases by varying design and technology parameters. Significant model results show that a 53% increase in Design, Development, Test and Evaluation cost results in a 67% reduction in Gross Liftoff Weight. Other key findings show the sensitivity of propulsion parameters, technology factors, and cost factors and how these parameters differ when cost and weight are optimized separately. Each of the three key propulsion parameters; chamber pressure, area ratio, and oxidizer/fuel ratio, are optimized in the seven design cases and results are plotted to show impacts to engine mass and overall vehicle mass.

  16. Design Considerations for Space Transfer Vehicles Using Solar Thermal Propulsion

    Science.gov (United States)

    Emrich, William J.

    1995-01-01

    The economical deployment of satellites to high energy earth orbits is crucial to the ultimate success of this nations commerical space ventures and is highly desirable for deep space planetary missions requiring earth escape trajectories. Upper stage space transfer vehicles needed to accomplish this task should ideally be simple, robust, and highly efficient. In this regard, solar thermal propulsion is particularly well suited to those missions where high thrust is not a requirement. The Marshall Space Flight Center is , therefore, currently engaged in defining a transfer vehicle employing solar thermal propulsion capable of transferring a 1000 lb. payload from low Earth orbit (LEO) to a geostationary Earth orbit (GEO) using a Lockheed launch vehicle (LLV3) with three Castors and a large shroud. The current design uses liquid hydrogen as the propellant and employs two inflatable 16 x 24 feet eliptical off-axis parabolic solar collectors to focus sunlight onto a tungsten/rhenium windowless black body type absorber. The concentration factor on this design is projected to be approximately 1800:1 for the primary collector and 2.42:1 for the secondary collector for an overall concentration factor of nearly 4400:1. The engine, which is about twice as efficient as the best currently available chemical engines, produces two pounds of thrust with a specific impulse (Isp) of 860 sec. Transfer times to GEO are projected to be on the order of one month. The launch and deployed configurations of the solar thermal upper stage (STUS) are depicted.

  17. Smart limbed vehicles for naval applications. Part I. Performance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Weisberg, A.; Wood, L.

    1976-09-30

    Research work in smart, unmanned limbed vehicles for naval warfare applications performed during the latter part of FY76 and FY76T by the Special Studies Group of the LLL Physics Department for the Office of Naval Research is reported. Smart water-traversing limbed remotely navigated vehicles are interesting because: they are the only viable small vehicle usable in high sea states; they are small and work on the ocean surface, they are much harder to detect than any other conventional craft; they have no human pilot, are capable of high-g evasion, and will continue to operate after direct hits that would have crippled a human crew; they have the prospect of providing surface platforms possessing unprecedented speed and maneuverability; unlike manned information-gathering craft, they impose almost no penalty for missions in excess of 10 hours (no need to rotate shifts of crewmen, no food/lavatory requirements, etc.) and, in their ''loitering mode'', waterbugs could perhaps perform their missions for days to weeks; they are cheap enough to use for one-way missions; they are mass-producible; they are inherently reliable--almost impossible to sink and, in the event of in-use failure, the vehicle will not be destroyed; they maximally exploit continuing technological asymmetries between the U.S. and its potential opponents; and they are economically highly cost-effective for a wide spectrum of Navy missions. (TFD)

  18. The Design of an Autonomous Underwater Vehicle for Water Quality Monitoring

    Science.gov (United States)

    Li, Yulong; Liu, Rong; Liu, Shujin

    2018-01-01

    This paper describes the development of a civilian-used autonomous underwater vehicle (AUV) for water quality monitoring at reservoirs and watercourses that can obtain realtime visual and locational information. The mechanical design was completed with CAD software Solidworks. Four thrusters—two horizontal and two vertical—on board enable the vehicle to surge, heave, yaw, and pitch. A specialized water sample collection compartment is designed to perform water collection at target locations. The vehicle has a central controller—STM32—and a sub-coordinate controller—Arduino MEGA 2560—that coordinates multiple sensors including an inertial sensor, ultrasonic sensors, etc. Global Navigation Satellite System (GNSS) and the inertial sensor enable the vehicle’s localization. Remote operators monitor and control the vehicle via a host computer system. Operators choose either semi-autonomous mode in which they set target locations or manual mode. The experimental results show that the vehicle is able to perform well in either mode.

  19. Simulation Assisted Risk Assessment Applied to Launch Vehicle Conceptual Design

    Science.gov (United States)

    Mathias, Donovan L.; Go, Susie; Gee, Ken; Lawrence, Scott

    2008-01-01

    A simulation-based risk assessment approach is presented and is applied to the analysis of abort during the ascent phase of a space exploration mission. The approach utilizes groupings of launch vehicle failures, referred to as failure bins, which are mapped to corresponding failure environments. Physical models are used to characterize the failure environments in terms of the risk due to blast overpressure, resulting debris field, and the thermal radiation due to a fireball. The resulting risk to the crew is dynamically modeled by combining the likelihood of each failure, the severity of the failure environments as a function of initiator and time of the failure, the robustness of the crew module, and the warning time available due to early detection. The approach is shown to support the launch vehicle design process by characterizing the risk drivers and identifying regions where failure detection would significantly reduce the risk to the crew.

  20. Design Optimization of a Hybrid Electric Vehicle Powertrain

    Science.gov (United States)

    Mangun, Firdause; Idres, Moumen; Abdullah, Kassim

    2017-03-01

    This paper presents an optimization work on hybrid electric vehicle (HEV) powertrain using Genetic Algorithm (GA) method. It focused on optimization of the parameters of powertrain components including supercapacitors to obtain maximum fuel economy. Vehicle modelling is based on Quasi-Static-Simulation (QSS) backward-facing approach. A combined city (FTP-75)-highway (HWFET) drive cycle is utilized for the design process. Seeking global optimum solution, GA was executed with different initial settings to obtain sets of optimal parameters. Starting from a benchmark HEV, optimization results in a smaller engine (2 l instead of 3 l) and a larger battery (15.66 kWh instead of 2.01 kWh). This leads to a reduction of 38.3% in fuel consumption and 30.5% in equivalent fuel consumption. Optimized parameters are also compared with actual values for HEV in the market.

  1. System Design and Implementation of Smart Dashboard for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Sheng Hu

    2015-01-01

    Full Text Available Recently, the development of automobile focuses on the chassis structure and motion control. However, due to the concept of smart and safe vehicle, the integrated dashboard becomes a necessary issue. The proposed system can not only represent the conventional dashboard in a digital form but also endow the system with an intelligent guidance. The statuses such as speed, battery SOC, braking, mileage, and the activation of TCS and ABS can be seen and monitored in all driving scenarios. For example, the current modern electric vehicles face the danger of self-ignition problem when the over load problem is consisted. Basically, these severe conditions can be eliminated by a guard of smart interface. Consequently, under a proper design, the presented system can assist the driver to maintain the energy efficiency, steering stability, and so on. Then the operation procedure can be simplified and hence driver can concentrate more on steering.

  2. Smith Newton Vehicle Performance Evaluation – Cumulative; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-04-29

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles.

  3. Efficient supersonic air vehicle design using the Service-Oriented Computing Environment (SORCER

    Directory of Open Access Journals (Sweden)

    Burton Scott A.

    2014-01-01

    Full Text Available The Air Force Research Lab’s Multidisciplinary Science and Technology Center is investigating conceptual design processes and computing frameworks that could significantly impact the design of the next generation efficient supersonic air vehicle (ESAV. The ESAV conceptual design process must accommodate appropriate fidelity multidisciplinary engineering analyses (MDAs to assess the impact of new air vehicle technologies. These analyses may be coupled and computationally expensive, posing a challenge due to the large number of air vehicle configurations analyzed during conceptual design. In light of these observations, a design process using the Service-Oriented Computing Environment (SORCER software is implemented to combine propulsion, structures, aerodynamics, aeroelasticity, and performance in an integrated MDA. The SORCER software provides the automation and tight integration to grid computing resources necessary to achieve the volume of appropriate fidelity analyses required. Two design studies are performed using a gradient-based optimization method to produce long and short range ESAV wing designs. The studies demonstrate the capability of the ESAV MDA, the optimization algorithm, and the computational scalability and reliability of the SORCER software.

  4. Advanced Usage of Vehicle Sketch Pad for CFD-Based Conceptual Design

    Science.gov (United States)

    Ordaz, Irian; Li, Wu

    2013-01-01

    Conceptual design is the most fluid phase of aircraft design. It is important to be able to perform large scale design space exploration of candidate concepts that can achieve the design intent to avoid more costly configuration changes in later stages of design. This also means that conceptual design is highly dependent on the disciplinary analysis tools to capture the underlying physics accurately. The required level of analysis fidelity can vary greatly depending on the application. Vehicle Sketch Pad (VSP) allows the designer to easily construct aircraft concepts and make changes as the design matures. More recent development efforts have enabled VSP to bridge the gap to high-fidelity analysis disciplines such as computational fluid dynamics and structural modeling for finite element analysis. This paper focuses on the current state-of-the-art geometry modeling for the automated process of analysis and design of low-boom supersonic concepts using VSP and several capability-enhancing design tools.

  5. Vehicle occupancy detection camera position optimization using design of experiments and standard image references

    Science.gov (United States)

    Paul, Peter; Hoover, Martin; Rabbani, Mojgan

    2013-03-01

    Camera positioning and orientation is important to applications in domains such as transportation since the objects to be imaged vary greatly in shape and size. In a typical transportation application that requires capturing still images, inductive loops buried in the ground or laser trigger sensors are used when a vehicle reaches the image capture zone to trigger the image capture system. The camera in such a system is in a fixed position pointed at the roadway and at a fixed orientation. Thus the problem is to determine the optimal location and orientation of the camera when capturing images from a wide variety of vehicles. Methods from Design for Six Sigma, including identifying important parameters and noise sources and performing systematically designed experiments (DOE) can be used to determine an effective set of parameter settings for the camera position and orientation under these conditions. In the transportation application of high occupancy vehicle lane enforcement, the number of passengers in the vehicle is to be counted. Past work has described front seat vehicle occupant counting using a camera mounted on an overhead gantry looking through the front windshield in order to capture images of vehicle occupants. However, viewing rear seat passengers is more problematic due to obstructions including the vehicle body frame structures and seats. One approach is to view the rear seats through the side window. In this situation the problem of optimally positioning and orienting the camera to adequately capture the rear seats through the side window can be addressed through a designed experiment. In any automated traffic enforcement system it is necessary for humans to be able to review any automatically captured digital imagery in order to verify detected infractions. Thus for defining an output to be optimized for the designed experiment, a human defined standard image reference (SIR) was used to quantify the quality of the line-of-sight to the rear seats of

  6. Design of Z-Pinch and Dense Plasma Focus Powered Vehicles

    Science.gov (United States)

    Polsgrove, Tara; Fincher, Sharon; Adams, Robert B.; Cassibry, Jason; Cortez, Ross; Turner, Matthew; Maples, C. Daphne; Miermik, Janie N.; Statham, Geoffrey N.; Fabisinski, Leo; hide

    2011-01-01

    Z-pinch and Dense Plasma Focus (DPF) are two promising techniques for bringing fusion power to the field of in-space propulsion. A design team comprising of engineers and scientists from UAHuntsville, NASA's George C. Marshall Space Flight Center and the University of Wisconsin developed concept vehicles for a crewed round trip mission to Mars and an interstellar precursor mission. Outlined in this paper are vehicle concepts, complete with conceptual analysis of the mission profile, operations, structural and thermal analysis and power/avionics design. Additionally engineering design of the thruster itself is included. The design efforts adds greatly to the fidelity of estimates for power density (alpha) and overall performance for these thruster concepts

  7. Real-time Vehicle Reidentification System for Freeway Performance Measurements

    OpenAIRE

    Jeng, Shin-Ting

    2007-01-01

    Computational resources in the traffic operation field as well as the bandwidth of field communication links, are often quite limited. Accordingly, for real-time implementation of Advanced Transportation Management and Information Systems (ATMIS) strategies, such as vehicle reidentification, there is strong interest in development of field-based techniques and models that can perform satisfactorily while minimizing computational and communication requirements in the field. The ILD (Inductive ...

  8. Rational Vehicle Design Ensures Targeted Cutaneous Steroid Delivery.

    Science.gov (United States)

    Kircik, Leon; Okumu, Franklin; Kandavilli, Sateesh; Sugarman, Jeffrey

    2017-02-01

    Objective: To design a topical vehicle that provided the optimal balance of betamethasone dipropionate penetration and retention in the skin, with minimal systemic absorption. Design: Six test formulations of betamethasone dipropionate 0.05% in vehicles contained the following penetration enhancers: elaidyl alcohol (Formulation-1), hexanol (Formulation-2), dodecanol (Formulation-3), octadecanol (Formulation-4), docosanol (Formulation-5), or oleyl alcohol (Formulation-6). Test agents were applied to human cadaver skin in static Franz-cell chambers containing receptor fluid. Measurements: Betamethasone absorption into the receptor fluid was measured over 24 hours. The distribution of betamethasone and its metabolites in the stratum corneum, epidermis, and dermis was analyzed using LC-MS/MS. The formulation with the optimal balance of penetration, permeation, retention, and minimal absorption was selected for a similar study comparing its penetration and absorption versus several commercially available betamethasone formulations. Results: Formulation-3 resulted in the highest retention of betamethasone in the skin as well as the highest steroid levels in the receptor fluid at 12 and 24 hours. Formulation-6 had the second highest retention of betamethasone in total skin, with relatively low absorption into the receptor fluid. All other variants had both lower steroid retention in the skin and lower absorption into the receptor fluid, with the exception of Formulation-2 which had higher absorption at 24 hours. Formulation-6/DFD-01 was selected for further development. Comparison of Formulation-6/DFD-01 with commercially available formulations of betamethasone dipropionate showed it had the highest steroid levels in the epidermis and dermis combined, with relatively low levels in the receptor fluid. Conclusion: Formulation-6/DFD-01 had the optimal balance of betamethasone retention in the skin, with low systemic absorption. This designed vehicle ensured retention of the

  9. Constrained Control Design for Dynamic Positioning of Marine Vehicles with Control Allocation

    Directory of Open Access Journals (Sweden)

    Tristan Perez

    2009-04-01

    Full Text Available In this paper, we address the control design problem of positioning of over-actuated marine vehicles with control allocation. The proposed design is based on a combined position and velocity loops in a multi-variable anti-windup implementation together with a control allocation mapping. The vehicle modelling is considered with appropriate simplifications related to low-speed manoeuvring hydrodynamics and vehicle symmetry. The control design is considered together with a control allocation mapping. We derive analytical tuning rules based on requirements of closed-loop stability and performance. The anti- windup implementation of the controller is obtained by mapping the actuator-force constraint set into a constraint set for the generalized forces. This approach ensures that actuation capacity is not violated by constraining the generalized control forces; thus, the control allocation is simplified since it can be formulated as an unconstrained problem. The mapping can also be modified on-line based on actuator availability to provide actuator-failure accommodation. We provide a proof of the closed-loop stability and illustrate the performance using simulation scenarios for an open-frame underwater vehicle.

  10. Injury thresholds after motor vehicle crash--important factors for patient triage and vehicle design.

    Science.gov (United States)

    Talmor, Daniel; Legedza, Anna T R; Nirula, Ram

    2010-03-01

    The Committee on Trauma recommends that older motor vehicle crash (MVC) victims or victims of crashes with significant vehicle intrusion of more than 12 in. be transferred to a trauma center since those older than 55 have an increased risk of death after injury. Yet, the precise injury thresholds as they relate to age, gender and velocity remain ill-defined. To maintain a low rate of under triage, reliable methods to identify patients at moderate injury risk are needed. We therefore characterized the likelihood of moderate to severe injury in MVC victims to determine the influence of age, gender and velocity. An analysis of drivers from the National Automotive Sampling System (1993-2001) was performed. Weighted logistic regression models were developed to predict the probability of head, leg, and torso injuries as a function of vehicle speed, age, and gender while controlling for confounders. A 10% probability of injury threshold was set and differences in velocity, gender and age were identified in terms of reaching this probability of injury threshold. The analysis yielded 56,459 drivers which is equivalent to a population of 28,877,696 drivers nationwide. Restraint use, steering away prior to impact, breaking maneuver, gender, delta velocity, driver height and age were independent predictors of injury. Women had a higher velocity injury threshold than men for the 10% probability of injury cut-off to the torso or head which disappeared with increasing age. Conversely, men had a higher velocity injury threshold than women for the 10% probability of injury cut-off to the extremity which persisted even in older victims. Our data indicate that age and gender must be considered in addition to crash velocity when making triage decisions. Furthermore, Federal Motor Vehicle Safety Standards may need to be modified to address the increased risk of injury among older adults at lower velocities given the increasing number of elderly drivers in the US. Copyright 2009

  11. Design of Propulsion System for a Fuel Cell Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Andreasen, Søren Juhl; Rasmussen, Peter Omand

    2007-01-01

    This paper presents a design method of propulsion systems for fuel cell vehicles complying with the 42V PowerNet standard. The method is based on field measurements during several weeks. Several cases of combining energy storage devices to a common bus voltage are investigated, and the total mass......, volume, cost and efficiency of the propulsion system are compared. It is concluded that the number of energy storage devices and their connecting to the common bus have a significant affect of the mass, volume, cost and efficiency of the propulsion system....

  12. Electric/Hybrid Vehicle Simulation

    Science.gov (United States)

    Slusser, R. A.; Chapman, C. P.; Brennand, J. P.

    1985-01-01

    ELVEC computer program provides vehicle designer with simulation tool for detailed studies of electric and hybrid vehicle performance and cost. ELVEC simulates performance of user-specified electric or hybrid vehicle under user specified driving schedule profile or operating schedule. ELVEC performs vehicle design and life cycle cost analysis.

  13. TEG On-Vehicle Performance and Model Validation and What It Means for Further TEG Development

    Science.gov (United States)

    Crane, Doug; LaGrandeur, John; Jovovic, Vladimir; Ranalli, Marco; Adldinger, Martin; Poliquin, Eric; Dean, Joe; Kossakovski, Dmitri; Mazar, Boris; Maranville, Clay

    2013-07-01

    A high-temperature thermoelectric generator (TEG) was recently integrated into two passenger vehicles: a BMW X6 and a Lincoln MKT. This effort was the culmination of a recently completed Department of Energy (DOE)-sponsored thermoelectric (TE) waste heat recovery program for vehicles (award #DE-FC26-04NT42279). During this 7-year program, several generations of thermoelectric generators were modeled, designed, built, and tested at the couple, engine, and full-device level, as well as being modeled and integrated at the vehicle level. In this paper, we summarize the history of the development efforts and results achieved during the project, which is a motivation for ongoing research in this field. Results are presented and discussed for bench, engine dynamometer, and on-vehicle tests conducted on the current-generation TEG. On the test bench, over 700 W of power was produced. Over 600 W was produced in on-vehicle tests. Both steady-state and transient models were validated against the measured performance of these TEGs. The success of this work has led to a follow-on DOE-sponsored TE waste heat recovery program for passenger vehicles focused on addressing key technical and business-related topics that are meant to enable TEGs to be considered as a viable automotive product in the future.

  14. 75 FR 34483 - In the Matter of Certain Automotive Vehicles and Designs Therefore; Notice of Investigation

    Science.gov (United States)

    2010-06-17

    ... COMMISSION In the Matter of Certain Automotive Vehicles and Designs Therefore; Notice of Investigation AGENCY... importation, and the sale within the United States after importation of certain automotive vehicles and... certain automotive vehicles and designs therefore that infringe U.S. Patent No. D513,395, and whether an...

  15. Near-term hybrid vehicle program, phase 1. Appendix C: Preliminary design data package

    Science.gov (United States)

    1979-01-01

    The design methodology, the design decision rationale, the vehicle preliminary design summary, and the advanced technology developments are presented. The detailed vehicle design, the vehicle ride and handling and front structural crashworthiness analysis, the microcomputer control of the propulsion system, the design study of the battery switching circuit, the field chopper, and the battery charger, and the recent program refinements and computer results are presented.

  16. Trends over time in the risk of driver death: what if vehicle designs had not improved?

    Science.gov (United States)

    Farmer, Charles M; Lund, Adrian K

    2006-12-01

    Passenger vehicle driver death rates per million vehicle registrations declined steadily during calendar years 1985-2004. The present study sought to separate the effect of vehicle design changes from this trend. Restricting the trend to a fixed set of model years removed the vehicle design effects, but there were still effects due to vehicle aging. Risk of driver death was found to increase each year vehicles aged, probably due to changes in vehicle use patterns. After separating out the vehicle design effects and making adjustments for the vehicle age effects, a different picture emerged of trends in death rates over time. Absent the vehicle design changes, the historical decline in driver fatality risk would have ended in 1993, with risk climbing ever since. This underlying trend has been obscured by changes in the vehicle fleet. The push for vehicle improvements has been worthwhile and can be credited with saving thousands of lives. However, the analysis shows that the gains in occupant protection from vehicle design improvements have been offset partially by an increasingly risky environment in recent years. Therefore, more attention needs to be paid to programs targeting improvement in roadway design and driver behavior.

  17. Older drivers' attitudes about instrument cluster designs in vehicles.

    Science.gov (United States)

    Owsley, Cynthia; McGwin, Gerald; Seder, Thomas

    2011-11-01

    Little is known about older drivers' preferences and attitudes about instrumentation design in vehicles. Yet visual processing impairments are common among older adults and could impact their ability to interface with a vehicle's dashboard. The purpose of this study is to obtain information from them about this topic, using focus groups and content analysis methodology. A trained facilitator led 8 focus groups of older adults. Discussion was stimulated by an outline relevant to dashboard interfaces, audiotaped, and transcribed. Using multi-step content analysis, a trained coder placed comments into thematic categories and coded comments as positive, negative, or neutral in meaning. Comments were coded into these categories: gauges, knobs/switches, interior lighting, color, lettering, symbols, location, entertainment, GPS, cost, uniformity, and getting information. Comments on gauges and knobs/switches represented half the comments. Women made more comments about getting information; men made more comments about uniformity. Positive and negative comments were made in each category; individual differences in preferences were broad. The results of this study will be used to guide the design of a population-based survey of older drivers about instrument cluster format, which will also examine how their responses are related to their visual processing capabilities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Multidisciplinary Modeling Software for Analysis, Design, and Optimization of HRRLS Vehicles

    Science.gov (United States)

    Spradley, Lawrence W.; Lohner, Rainald; Hunt, James L.

    2011-01-01

    The concept for Highly Reliable Reusable Launch Systems (HRRLS) under the NASA Hypersonics project is a two-stage-to-orbit, horizontal-take-off / horizontal-landing, (HTHL) architecture with an air-breathing first stage. The first stage vehicle is a slender body with an air-breathing propulsion system that is highly integrated with the airframe. The light weight slender body will deflect significantly during flight. This global deflection affects the flow over the vehicle and into the engine and thus the loads and moments on the vehicle. High-fidelity multi-disciplinary analyses that accounts for these fluid-structures-thermal interactions are required to accurately predict the vehicle loads and resultant response. These predictions of vehicle response to multi physics loads, calculated with fluid-structural-thermal interaction, are required in order to optimize the vehicle design over its full operating range. This contract with ResearchSouth addresses one of the primary objectives of the Vehicle Technology Integration (VTI) discipline: the development of high-fidelity multi-disciplinary analysis and optimization methods and tools for HRRLS vehicles. The primary goal of this effort is the development of an integrated software system that can be used for full-vehicle optimization. This goal was accomplished by: 1) integrating the master code, FEMAP, into the multidiscipline software network to direct the coupling to assure accurate fluid-structure-thermal interaction solutions; 2) loosely-coupling the Euler flow solver FEFLO to the available and proven aeroelasticity and large deformation (FEAP) code; 3) providing a coupled Euler-boundary layer capability for rapid viscous flow simulation; 4) developing and implementing improved Euler/RANS algorithms into the FEFLO CFD code to provide accurate shock capturing, skin friction, and heat-transfer predictions for HRRLS vehicles in hypersonic flow, 5) performing a Reynolds-averaged Navier-Stokes computation on an HRRLS

  19. Design and development of a continuously variable ratio transmission for automotive vehicles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-30

    Work accomplished between July 1974 and October 1978 in a program directed toward the design and development of a continuously variable ratio transmission (CVT) for an automotive vehicle is reported. The following major accomplishments were achieved: the laboratory and mathematical projections establishing the viability of the program and the predicted attainment of the primary goal of fuel economy were verified; the proposed Concept Demonstration prototype hydromechanical transmission (HMT) was completed from design to operation; the HMT was thoroughly tested in the laboratory and on the road and its in-vehicle performance was verified by independent testing laboratories; and design of a second generation Pre-Production HMT has proceeded to the point of confirming the practicality of the automotive HMT size and weight; most of the necessary information has been generated which could permit its production cost/competitiveness to be evaluated. (LCL)

  20. Model Development and Experimental Validation of the Fusible Heat Sink Design for Exploration Vehicles

    Science.gov (United States)

    Cognata, Thomas J.; Leimkuehler, Thomas; Sheth, Rubik; Le, Hung

    2013-01-01

    The Fusible Heat Sink is a novel vehicle heat rejection technology which combines a flow through radiator with a phase change material. The combined technologies create a multi-function device able to shield crew members against Solar Particle Events (SPE), reduce radiator extent by permitting sizing to the average vehicle heat load rather than to the peak vehicle heat load, and to substantially absorb heat load excursions from the average while constantly maintaining thermal control system setpoints. This multi-function technology provides great flexibility for mission planning, making it possible to operate a vehicle in hot or cold environments and under high or low heat load conditions for extended periods of time. This paper describes the modeling and experimental validation of the Fusible Heat Sink technology. The model developed was intended to meet the radiation and heat rejection requirements of a nominal MMSEV mission. Development parameters and results, including sizing and model performance will be discussed. From this flight-sized model, a scaled test-article design was modeled, designed, and fabricated for experimental validation of the technology at Johnson Space Center thermal vacuum chamber facilities. Testing showed performance comparable to the model at nominal loads and the capability to maintain heat loads substantially greater than nominal for extended periods of time.

  1. design analysis and performance evaluation

    African Journals Online (AJOL)

    The design analysis and performance evaluation of an active solar crop dryer was undertaken by drying marched cassava. The drying rate, system drying, collector and pick-up efficiencies were 1.6kg/day (14%/day), 9%, 46% and 29% respectively. Comparatively, the drying rate for sun drying was 0.9kg/day. The collector ...

  2. The Vehicle Integrated Performance Analysis Experience: Reconnecting With Technical Integration

    Science.gov (United States)

    McGhee, D. S.

    2006-01-01

    Very early in the Space Launch Initiative program, a small team of engineers at MSFC proposed a process for performing system-level assessments of a launch vehicle. Aimed primarily at providing insight and making NASA a smart buyer, the Vehicle Integrated Performance Analysis (VIPA) team was created. The difference between the VIPA effort and previous integration attempts is that VIPA a process using experienced people from various disciplines, which focuses them on a technically integrated assessment. The foundations of VIPA s process are described. The VIPA team also recognized the need to target early detailed analysis toward identifying significant systems issues. This process is driven by the T-model for technical integration. VIPA s approach to performing system-level technical integration is discussed in detail. The VIPA process significantly enhances the development and monitoring of realizable project requirements. VIPA s assessment validates the concept s stated performance, identifies significant issues either with the concept or the requirements, and then reintegrates these issues to determine impacts. This process is discussed along with a description of how it may be integrated into a program s insight and review process. The VIPA process has gained favor with both engineering and project organizations for being responsive and insightful

  3. Evaluation of Separation Mechanism Design for the Orion/Ares Launch Vehicle

    Science.gov (United States)

    Konno, Kevin E.; Catalano, Daniel A.; Krivanek, Thomas M.

    2008-01-01

    As a part of the preliminary design work being performed for the Orion vehicle, the Orion to Spacecraft Adaptor (SA) separation mechanism mechanism was analyzed and sized, with findings presented here. Sizing is based on worst case abort condition as a result of an anomaly driving the launch vehicle engine thrust vector control hard-over causing a severe vehicle pitch over. This worst case scenario occurs just before Upper Stage Main Engine Cut-Off (MECO) when the vehicle is the lightest and the damping effect due to propellant slosh has been reduced to a minimum. To address this scenario and others, two modeling approaches were invoked. The first approach was a detailed Simulink model to quickly assess the Service Module Engine nozzle to SA clearance for a given separation mechanism. The second approach involved the generation of an Automatic Dynamic Analysis of Mechanical Systems (ADAMS) model to assess secondary effects due to mass centers of gravity that were slightly off the vehicle centerline. It also captured any interference between the Solar Arrays and the Spacecraft Adapter. A comparison of modeling results and accuracy are discussed. Most notably, incorporating a larger SA flange diameter allowed for a natural separation of the Orion and its engine nozzle even at relatively large pitch rates minimizing the kickoff force. Advantages and disadvantages of the Simulink model vs. a full geometric ADAMS model are discussed as well.

  4. Design and Analysis of an Airborne, solid Propelled, Nanosatellite Launch Vehicle using Multidisciplinary Design Optimization

    NARCIS (Netherlands)

    Van Kesteren, M.W.; Zandbergen, B.T.C.; Naeije, M.C.; Van Kleef, A.J.P.

    2015-01-01

    The work focusses on the use of multidisciplinary optimization to design a cost optimized airborne nanosatellite launch vehicle capable of bringing a 10 kg payload into low earth orbit (LEO). Piggyback or shared launch options currently available for nanosatellites are relatively low cost (~45,000

  5. Innovative Structural and Joining Concepts for Lightweight Design of Heavy Vehicle Systems

    Energy Technology Data Exchange (ETDEWEB)

    Jacky C. Prucz; Samir N. Shoukry; Gergis W. William

    2005-08-31

    heavy vehicles. The research work planed for the first year of this project (June 1, 2003 through May 30, 2004) focused on a theoretical investigation of weight benefits and structural performance tradeoffs associated with the design, fabrication, and joining of MMC components for heavy-duty vehicles. This early research work conducted at West Virginia University yielded the development of integrated material-structural models that predicted marginal benefits and significant barriers to MMC applications in heavy trailers. The results also indicated that potential applications of MMC materials in heavy vehicles are limited to components identified as critical for either loadings or weight savings. Therefore, the scope of the project was expanded in the following year (June 1, 2004 through May 30, 2005) focused on expanding the lightweight material-structural design concepts for heavy vehicles from the component to the system level. Thus, the following objectives were set: (1) Devise and evaluate lightweight structural configurations for heavy vehicles. (2) Study the feasibility of using Metal Matrix Composites (MMC) for critical structural components and joints in heavy vehicles. (3) Develop analysis tools, methods, and validated test data for comparative assessments of innovative design and joining concepts. (4) Develop analytical models and software for durability predictions of typical heavy vehicle components made of particulate MMC or fiber-reinforced composites. This report summarizes the results of the research work conducted during the past two years in this projects.

  6. A New Aerodynamic Data Dispersion Method for Launch Vehicle Design

    Science.gov (United States)

    Pinier, Jeremy T.

    2011-01-01

    A novel method for implementing aerodynamic data dispersion analysis is herein introduced. A general mathematical approach combined with physical modeling tailored to the aerodynamic quantity of interest enables the generation of more realistically relevant dispersed data and, in turn, more reasonable flight simulation results. The method simultaneously allows for the aerodynamic quantities and their derivatives to be dispersed given a set of non-arbitrary constraints, which stresses the controls model in more ways than with the traditional bias up or down of the nominal data within the uncertainty bounds. The adoption and implementation of this new method within the NASA Ares I Crew Launch Vehicle Project has resulted in significant increases in predicted roll control authority, and lowered the induced risks for flight test operations. One direct impact on launch vehicles is a reduced size for auxiliary control systems, and the possibility of an increased payload. This technique has the potential of being applied to problems in multiple areas where nominal data together with uncertainties are used to produce simulations using Monte Carlo type random sampling methods. It is recommended that a tailored physics-based dispersion model be delivered with any aerodynamic product that includes nominal data and uncertainties, in order to make flight simulations more realistic and allow for leaner spacecraft designs.

  7. Resilient design of recharging station networks for electric transportation vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kris Villez; Akshya Gupta; Venkat Venkatasubramanian

    2011-08-01

    As societies shift to 'greener' means of transportation using electricity-driven vehicles one critical challenge we face is the creation of a robust and resilient infrastructure of recharging stations. A particular issue here is the optimal location of service stations. In this work, we consider the placement of battery replacing service station in a city network for which the normal traffic flow is known. For such known traffic flow, the service stations are placed such that the expected performance is maximized without changing the traffic flow. This is done for different scenarios in which roads, road junctions and service stations can fail with a given probability. To account for such failure probabilities, the previously developed facility interception model is extended. Results show that service station failures have a minimal impact on the performance following robust placement while road and road junction failures have larger impacts which are not mitigated easily by robust placement.

  8. Power Management Strategy of Hybrid Electric Vehicles Based on Quadratic Performance Index

    Directory of Open Access Journals (Sweden)

    Chaoying Xia

    2015-11-01

    Full Text Available An energy management strategy (EMS considering both optimality and real-time performance has become a challenge for the development of hybrid electric vehicles (HEVs in recent years. Previous EMSes based on the optimal control theory minimize the fuel consumption, but cannot be directly implemented in real-time because of the requirement for a prior knowledge of the entire driving cycle. This paper presents an innovative design concept and method to obtain a power management strategy for HEVs, which is independent of future driving conditions. A quadratic performance index is designed to ensure the vehicle drivability, maintain the battery energy sustainability and average and smooth the engine power and motor power to indirectly reduce fuel consumption. To further improve the fuel economy, two rules are adopted to avoid the inefficient engine operation by switching control modes between the electric and hybrid modes according to the required driving power. The derived power of the engine and motor are related to current vehicle velocity and battery residual energy, as well as their desired values. The simulation results over different driving cycles in Advanced Vehicle Simulator (ADVISOR show that the proposed strategy can significantly improve the fuel economy, which is very close to the optimal strategy based on Pontryagin’s minimum principle.

  9. Optimization of Steering System of Forklift Vehicle for Idle Performance

    Directory of Open Access Journals (Sweden)

    Yuan Shen

    2015-01-01

    Full Text Available This paper presents an optimal design process for the steering system of a forklift vehicle. An efficient procedure for minimizing the engine-induced idle vibration is developed in this study. Reciprocating unbalance and gas pressure torque as two major sources of engine excitation are studied. Using the field vibration tests and FEM analysis, the cause and characteristics of steering system’s idle vibration are recognized. So as to distribute the characteristic modes based on the optimization strategy, global sensitivity analysis of the main parameters is also carried out to achieve the optimal combination of the optimization factors. Based on all analysis above, some structure modifications for optimization are presented to control the idle vibration. The effectiveness and rationality of the improvements are also verified through experimental prototyping testing. This study also makes it possible to provide a design guideline using CAE (computer aided engineering analysis for some other objects.

  10. Design of a Flush Airdata System (FADS) for the Hypersonic Air Launched Option (HALO) Vehicle

    Science.gov (United States)

    Whitmore, Stephen A.; Moes, Timothy R.; Deets, Dwain A. (Technical Monitor)

    1994-01-01

    This paper presents a design study for a pressure based Flush airdata system (FADS) on the Hypersonic Air Launched Option (HALO) Vehicle. The analysis will demonstrate the feasibility of using a pressure based airdata system for the HALO and provide measurement uncertainty estimates along a candidate trajectory. The HALO is a conceived as a man-rated vehicle to be air launched from an SR-71 platform and is proposed as a testbed for an airbreathing hydrogen scramjet. A feasibility study has been performed and indicates that the proposed trajectory is possible with minimal modifications to the existing SR71 vehicle. The mission consists of launching the HALO off the top of an SR-71 at Mach 3 and 80,000 ft. A rocket motor is then used to accelerate the vehicle to the test condition. After the scramjet test is completed the vehicle will glide to a lakebed runway landing. This option provides reusability of the vehicle and scramjet engine. The HALO design will also allow for various scramjet engine and flowpath designs to be flight tested. For the HALO flights, measurements of freestream airdata are considered to be a mission critical to perform gain scheduling and trajectory optimization. One approach taken to obtaining airdata involves measurement of certain parameters such as external atmospheric winds, temperature, etc to estimate the airdata quantities. This study takes an alternate approach. Here the feasibility of obtaining airdata using a pressure-based flush airdata system (FADS) methods is assessed. The analysis, although it is performed using the HALO configuration and trajectory, is generally applicable to other hypersonic vehicles. The method to be presented offers the distinct advantage of inferring total pressure, Mach number, and flow incidence angles, without stagnating the freestream flow. This approach allows for airdata measurements to be made using blunt surfaces and significantly diminishes the heating load at the sensor. In the FADS concept a

  11. Electric Vehicle Performance at McMurdo Station (Antarctica) and Comparison with McMurdo Station Conventional Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Sears, T.; Lammert, M.; Colby, K.; Walter, R.

    2014-09-01

    This report examines the performance of two electric vehicles (EVs) at McMurdo, Antarctica (McMurdo). The study examined the performance of two e-ride Industries EVs initially delivered to McMurdo on February 16, 2011, and compared their performance and fuel use with that of conventional vehicles that have a duty cycle similar to that of the EVs used at McMurdo.

  12. Performance of an Automated-Mixed-Traffic-Vehicle /AMTV/ System. [urban people mover

    Science.gov (United States)

    Peng, T. K. C.; Chon, K.

    1978-01-01

    This study analyzes the operation and evaluates the expected performance of a proposed automatic guideway transit system which uses low-speed Automated Mixed Traffic Vehicles (AMTV's). Vehicle scheduling and headway control policies are evaluated with a transit system simulation model. The effect of mixed-traffic interference on the average vehicle speed is examined with a vehicle-pedestrian interface model. Control parameters regulating vehicle speed are evaluated for safe stopping and passenger comfort.

  13. Hybrid Wing Body Planform Design with Vehicle Sketch Pad

    Science.gov (United States)

    Wells, Douglas P.; Olson, Erik D.

    2011-01-01

    The objective of this paper was to provide an update on NASA s current tools for design and analysis of hybrid wing body (HWB) aircraft with an emphasis on Vehicle Sketch Pad (VSP). NASA started HWB analysis using the Flight Optimization System (FLOPS). That capability is enhanced using Phoenix Integration's ModelCenter(Registered TradeMark). Model Center enables multifidelity analysis tools to be linked as an integrated structure. Two major components are linked to FLOPS as an example; a planform discretization tool and VSP. The planform discretization tool ensures the planform is smooth and continuous. VSP is used to display the output geometry. This example shows that a smooth & continuous HWB planform can be displayed as a three-dimensional model and rapidly sized and analyzed.

  14. ASIPP remotely operated vehicle design (ROV) and feasibility study

    Science.gov (United States)

    Zhang, Tao; Zhang, Xuanchen; Wang, Lei; Pan, Hongtao; Zheng, Lei; Cheng, Yong; Wu, Jing

    2017-06-01

    The ROV is an important device for studying the underwater world. Thus, the ASIPP ROV is designed to meet this demand by ASIPP RH team. Through adding the wireless vision module, the performance of the robot is promoted in motion control, image collecting and so on. The rationality of the design and the effectiveness of the controller are validated by simulation and experimental study.

  15. Optimal Signal Design for Mixed Equilibrium Networks with Autonomous and Regular Vehicles

    Directory of Open Access Journals (Sweden)

    Nan Jiang

    2017-01-01

    Full Text Available A signal design problem is studied for efficiently managing autonomous vehicles (AVs and regular vehicles (RVs simultaneously in transportation networks. AVs and RVs move on separate lanes and two types of vehicles share the green times at the same intersections. The signal design problem is formulated as a bilevel program. The lower-level model describes a mixed equilibrium where autonomous vehicles follow the Cournot-Nash (CN principle and RVs follow the user equilibrium (UE principle. In the upper-level model, signal timings are optimized at signalized intersections to allocate appropriate green times to both autonomous and RVs to minimize system travel cost. The sensitivity analysis based method is used to solve the bilevel optimization model. Various signal control strategies are evaluated through numerical examples and some insightful findings are obtained. It was found that the number of phases at intersections should be reduced for the optimal control of the AVs and RVs in the mixed networks. More importantly, incorporating AVs into the transportation network would improve the system performance due to the value of AV technologies in reducing random delays at intersections. Meanwhile, travelers prefer to choose AVs when the networks turn to be congested.

  16. Optimal trajectory designs and systems engineering analyses of reusable launch vehicles

    Science.gov (United States)

    Tsai, Hung-I. Bruce

    Realizing a reusable launch vehicle (RLU) that is low cost with highly effective launch capability has become the "Holy Grail" within the aerospace community world-wide. Clear understanding of the vehicle's operational limitations and flight characteristics in all phases of the flight are preponderant components in developing such a launch system. This dissertation focuses on characterizing and designing the RLU optimal trajectories in order to aid in strategic decision making during mission planning in four areas: (1) nominal ascent phase, (2) abort scenarios and trajectories during ascent phase including abort-to-orbit (ATO), transoceanic-abort-landing (TAL) and return-to-launch-site (RTLS), (3) entry phase (including footprint), and (4) systems engineering aspects of such flight trajectory design. The vehicle chosen for this study is the Lockheed Martin X-33 lifting-body design that lifts off vertically with two linear aerospike rocket engines and lands horizontally. An in-depth investigation of the optimal endo-atmospheric ascent guidance parameters such as earliest abort time, engine throttle setting, number of flight phases, flight characteristics and structural design limitations will be performed and analyzed to establish a set of benchmarks for making better trade-off decisions. Parametric analysis of the entry guidance will also be investigated to allow the trajectory designer to pinpoint relevant parameters and to generate optimal constrained trajectories. Optimal ascent and entry trajectories will be generated using a direct transcription method to cast the optimal control problem as a nonlinear programming problem. The solution to the sparse nonlinear programming problem is then solved using sequential quadratic programming. Finally, guidance system hierarchy studies such as work breakdown structure, functional analysis, fault-tree analysis, and configuration management will be developed to ensure that the guidance system meets the definition of

  17. Analysing the effects of air flow on a formula prototype vehicle to optimize its performance

    Science.gov (United States)

    Rastogi, Nisha; Shetty, Siddhanth; Ashok, B.

    2017-11-01

    FSAE (Formula Society of Automotive Engineers) is an_engineering design competition which challenges students to design and build their own Formula Style race-car. The race-car is being judged on basis of various criteria namely, design, cost, business and performance. For the race-car to participate in the dynamic events and traverse through different sorts of challenging tracks in the least time possible, the tyres must generate appropriate amount of lateral and longitudinal force. The car must not topple even at high speeds and needs to manoeuvre quickly. To achieve the above-mentioned criterion, there is a need of implementing aerodynamics in the car. The optimum amount of downforce necessary to execute a smooth and rapid active behaviour of our car with maximum achievable performance is to be measured keeping vehicle dynamics into consideration. In this paper, vehicle dynamics and aerodynamics are related to an extent where all the above criterion can be achieved successfully, thereby bringing about a trade-off without any sort of compromises in either of them. The co-ordination between aerodynamics and vehicle dynamics has been depicted with a detailed methodology, accompanied by Computational Fluid Dynamics (CFD) simulations of the wings and the full body of the car using STAR CCM+. Further the results has been discussed properly in the later sections of this paper. With a systematic approach, thoroughly done with several iterations on MATLAB followed by CFD simulations and analysis, the desired performance was accomplished.

  18. Robust Design of Docking Hoop for Recovery of Autonomous Underwater Vehicle with Experimental Results

    Directory of Open Access Journals (Sweden)

    Wei Peng Lin

    2015-12-01

    Full Text Available Control systems prototyping is usually constrained by model complexity, embedded system configurations, and interface testing. The proposed control system prototyping of a remotely-operated vehicle (ROV with a docking hoop (DH to recover an autonomous underwater vehicle (AUV named AUVDH using a combination of software tools allows the prototyping process to be unified. This process provides systematic design from mechanical, hydrodynamics, dynamics modelling, control system design, and simulation to testing in water. As shown in a three-dimensional simulation of an AUVDH model using MATLAB™/Simulink™ during the launch and recovery process, the control simulation of a sliding mode controller is able to control the positions and velocities under the external wave, current, and tether forces. In the water test using the proposed Python-based GUI platform, it shows that the AUVDH is capable to perform station-keeping under the external disturbances.

  19. Aerothermal Protuberance Heating Design and Test Configurations for Ascent Vehicle Design

    Science.gov (United States)

    Martin, Charles E.; Neumann, Richard D.; Freeman, Delma

    2010-01-01

    A series of tests were conducted to evaluate protuberance heating for the purposes of vehicle design and modification. These tests represent a state of the art approach to both testing and instrumentation for defining aerothermal protuberance effects on the protuberance and surrounding areas. The testing was performed with a number of wind tunnel entries beginning with the proof of concept "pathfinder" test in the Test Section 1 (TS1) tunnel in the Langley Unitary Plan Wind Tunnel (UPWT). The TS1 section (see Figures 1a and 1b) is a lower Mach number tunnel and the Test Section 2 (TS2) has overlapping and higher Mach number capability as showin in Figure 1c. The pathfinder concept was proven and testing proceeded for a series of protuberance tests using an existing splitter aluminum protuberance mounting plate, Macor protuberances, thin film gages, total temperature and pressure gages, Kulite pressure transducers, Infra-Red camera imaging, LASER velocimetry evaluations and the UPWT data collection system. A boundary layer rake was used to identify the boundary layer profile at the protuberance locations for testing and helped protuberance design. This paper discusses the techniques and instrumentation used during the protuberance heating tests performed in the UPWT in TS1 and TS2. Runs of the protuberances were made Mach numbers of 1.5, 2.16, 2.65, and 3.51. The data set generated from this testing is for ascent protuberance effects and is termed Protuberance Heating Ascent Data (PHAD) and this testing may be termed PHAD-1 to distinguish it from future testing of this type.

  20. Design of Fast Response Smart Electric Vehicle Charging Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ching-Yen; Chynoweth, Joshua; Qiu, Charlie; Chu, Chi-Cheng; Gadh, Rajit

    2013-11-25

    The response time of the smart electrical vehicle (EV) charging infrastructure is the key index of the system performance. The traffic between the smart EV charging station and the control center dominates the response time of the smart charging stations. To accelerate the response of the smart EV charging station, there is a need for a technology that collects the information locally and relays it to the control center periodically. To reduce the traffic between the smart EV charger and the control center, a Power Information Collector (PIC), capable of collecting all the meters power information in the charging station, is proposed and implemented in this paper. The response time is further reduced by pushing the power information to the control center. Thus, a fast response smart EV charging infrastructure is achieved to handle the shortage of energy in the local grid.

  1. Performance evaluation of advanced battery technologies for electric vehicle applications

    Science.gov (United States)

    Deluca, W. H.; Tummillo, A. F.; Kulaga, J. E.; Webster, C. E.; Gillie, K. R.; Hogrefe, R. L.

    1990-01-01

    At the Argonne Analysis and Diagnostic Laboratory, advanced battery technology evaluations are performed under simulated electric vehicle operating conditions. During 1989 and the first quarter of 1990, single cell and multicell modules from seven developers were examined for the Department of Energy and Electric Power Research Institute. The results provide battery users, developers, and program managers with an interim measure of the progress being made in battery R&D programs, a comparison of battery technologies, and a source of basic data for modeling and continuing R&D. This paper summarizes the performance and life characterizations of two single cells and seven 3- to 960-cell modules that encompass six technologies (Na/S, Ni/Fe, Ni/Cd, Ni-metal hydride, lead-acid, and Zn/Br).

  2. Preface to the special section on human factors and automation in vehicles: designing highly automated vehicles with the driver in mind.

    Science.gov (United States)

    Merat, Natasha; Lee, John D

    2012-10-01

    This special section brings together diverse research regarding driver interaction with advanced automotive technology to guide design of increasingly automated vehicles. Rapidly evolving vehicle automation will likely change cars and trucks more in the next 5 years than the preceding 50, radically redefining what it means to drive. This special section includes 10 articles from European and North American researchers reporting simulator and naturalistic driving studies. Little research has considered the consequences of fully automated driving, with most focusing on lane-keeping and speed control systems individually. The studies reveal two underlying design philosophies: automate driving versus support driving. Results of several studies, consistent with previous research in other domains, suggest that the automate philosophy can delay driver responses to incidents in which the driver has to intervene and take control from the automation. Understanding how to orchestrate the transfer or sharing of control between the system and the driver, particularly in critical incidents, emerges as a central challenge. Designers should not assume that automation can substitute seamlessly for a human driver, nor can they assume that the driver can safely accommodate the limitations of automation. Designers, policy makers, and researchers must give careful consideration to what role the person should have in highly automated vehicles and how to support the driver if the driver is to be responsible for vehicle control. As in other domains, driving safety increasingly depends on the combined performance of the human and automation, and successful designs will depend on recognizing and supporting the new roles of the driver.

  3. Selection of the battery pack parameters for an electric vehicle based on performance requirements

    Science.gov (United States)

    Koniak, M.; Czerepicki, A.

    2017-06-01

    Each type of vehicle has specific power requirements. Some require a rapid charging, other make long distances between charges, but a common feature is the longest battery life time. Additionally, the battery is influenced by factors such as temperature, depth of discharge and the operation current. The article contain the parameters of chemical cells that should be taken into account during the design of the battery for a specific application. This is particularly important because the batteries are not properly matched and can wear prematurely and cause an additional costs. The method of selecting the correct cell type should take previously discussed features and operating characteristics of the vehicle into account. The authors present methods of obtaining such characteristics along with their assessment and examples. Also there has been described an example of the battery parameters selection based on design assumptions of the vehicle and the expected performance characteristics. Selecting proper battery operating parameters is important due to its impact on the economic result of investments in electric vehicles. For example, for some Li-Ion technologies, the earlier worn out of batteries in a fleet of cruise boats or buses having estimated lifetime of 10 years is not acceptable, because this will cause substantial financial losses for the owner of the rolling stock. The presented method of choosing the right cell technology in the selected application, can be the basis for making the decision on future battery technical parameters.

  4. Design of an Attachment Scheme of a Vehicle to a Typical Fighter Aircraft

    Science.gov (United States)

    Kumar, Hemant; Sarkar, Arindam; Jain, P. C.; Anjaneyulu, P. S. R.

    2018-01-01

    Design of an attachment scheme of a flight vehicle to a fighter aircraft is a critical task. Here, flight vehicle is a cylindrical body and it is attached to fighter aircraft with the help of a component called launch lug. Loads experienced by the flight vehicle in captive condition have been estimated by using aircraft parameters obtained during previous missions of similar kind of vehicles. This paper provides state of the art design consideration of the attachment scheme (launch lug and shell assembly) of the flight vehicle to the fighter aircraft. The structural integrity of the flight vehicle and its attachments scheme to the fighter aircraft has been verified at various aircraft manoeuvring conditions in its flight envelope through analysis. Design is verified using laboratory testing and in field trials. Finally this flight vehicle with the attachment scheme was used in flight trials.

  5. Practical implementation of the concept of converted electric vehicle with advanced traction and dynamic performance and environmental safety indicators

    Science.gov (United States)

    Sidorov, K. M.; Yutt, V. E.; Grishchenko, A. G.; Golubchik, T. V.

    2018-02-01

    The objective of the work presented in this paper is to describe the implementation of the technical solutions have been developed, with regard to structure, composition, and characteristics, for an experimental prototype of an electric vehicle which has been converted from a conventional vehicle. The methodology of the study results is based on the practical implementation of the developed concept of the conversion of conventional vehicles into electric vehicles. The main components of electric propulsion system of the experimental prototype of electric vehicle are developed and manufactured on the basis of computational researches, taking into account the criteria and principles of conversion within the framework of presented work. The article describes a schematic and a design of power conversion and commutation electrical equipment, traction battery, electromechanical transmission. These results can serve as guidance material in the design and implementation of electric propulsion system (EPS) components of electric vehicles, facilitate the development of optimal technical solutions in the development and manufacture of vehicles, including those aimed at autonomy of operation and the use of perspective driver assistance systems. As part of this work, was suggested a rational structure for an electric vehicle experimental prototype, including technical performance characteristics of the components of EPS.

  6. Adjustment of Design Limited Imperfections for Transportation Vehicles

    Science.gov (United States)

    Voges-Schwieger, Kathrin; Hübner, Sven; Behrens, Bernd-Arno

    2011-05-01

    The realization of light weight-construction without loss of passive safety in transportation vehicles is a big challenge for the next years. Considering the requirements on an automobile from consumer view a modern car should combine a high quality of comfort and standard with low operating expenses and a high safety standard. The use of lightweight design enables reductions in fuel consumption and CO2 emissions which are leading to a decrease of operating costs. The increase in passive safety is mainly characterized by an increase in strength and weight due to a concerted material selection, an enhancement of sheet metal thickness and additional compensating elements, e.g. patches. Especially for limited imperfections like cataphoretic drain holes or accesses for joining operations the strength adjustment without additional compensating elements and increasing weight possesses very much potential. The presented research investigate the possibility to reinforce local imperfections considering the material TRIP780 by combining different approaches on light-weight design. The reinforcements are realized by additional forming elements and enhance the moment of inertia. Different investigations were carried out to assess the placement and arrangement of the reinforcements in the deep drawing parts

  7. Performance and driveline analyses of engine capacity in range extender engine hybrid vehicle

    Science.gov (United States)

    Praptijanto, Achmad; Santoso, Widodo Budi; Nur, Arifin; Wahono, Bambang; Putrasari, Yanuandri

    2017-01-01

    In this study, range extender engine designed should be able to meet the power needs of a power generator of hybrid electrical vehicle that has a minimum of 18 kW. Using this baseline model, the following range extenders will be compared between conventional SI piston engine (Baseline, BsL), engine capacity 1998 cm3, and efficiency-oriented SI piston with engine capacity 999 cm3 and 499 cm3 with 86 mm bore and stroke square gasoline engine in the performance, emission prediction of range extender engine, standard of charge by using engine and vehicle simulation software tools. In AVL Boost simulation software, range extender engine simulated from 1000 to 6000 rpm engine loads. The highest peak engine power brake reached up to 38 kW at 4500 rpm. On the other hand the highest torque achieved in 100 Nm at 3500 rpm. After that using AVL cruise simulation software, the model of range extended electric vehicle in series configuration with main components such as internal combustion engine, generator, electric motor, battery and the arthemis model rural road cycle was used to simulate the vehicle model. The simulation results show that engine with engine capacity 999 cm3 reported the economical performances of the engine and the emission and the control of engine cycle parameters.

  8. Near-term hybrid vehicle program, phase 1. Appendix B: Design trade-off studies report. Volume 2: Supplement to design trade-off studies

    Science.gov (United States)

    1979-01-01

    Results of studies leading to the preliminary design of a hybrid passenger vehicle which is projected to have the maximum potential for reducing petroleum consumption in the near term are presented. Heat engine/electric hybrid vehicle tradeoffs, assessment of battery power source, and weight and cost analysis of key components are among the topics covered. Performance of auxiliary equipment, such as power steering, power brakes, air conditioning, lighting and electrical accessories, heating and ventilation is discussed along with the selection of preferred passenger compartment heating procedure for the hybrid vehicle. Waste heat from the engine, thermal energy storage, and an auxiliary burner are among the approaches considered.

  9. Design and testing of shape memory alloy actuation mechanism for flapping wing micro unmanned aerial vehicles

    Science.gov (United States)

    Kamaruzaman, N. F.; Abdullah, E. J.

    2017-12-01

    Shape memory alloy (SMA) actuator offers great solution for aerospace applications with low weight being its most attractive feature. A SMA actuation mechanism for the flapping micro unmanned aerial vehicle (MAV) is proposed in this study, where SMA material is the primary system that provides the flapping motion to the wings. Based on several established design criteria, a design prototype has been fabricated to validate the design. As a proof of concept, an experiment is performed using an electrical circuit to power the SMA actuator to evaluate the flapping angle. During testing, several problems have been observed and their solutions for future development are proposed. Based on the experiment, the average recorded flapping wing angle is 14.33° for upward deflection and 12.12° for downward deflection. This meets the required design criteria and objective set forth for this design. The results prove the feasibility of employing SMA actuators in flapping wing MAV.

  10. Submersible Unmanned Aerial Vehicle: Configuration Design and Analysis Based on Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Wang Qinyang

    2017-01-01

    Full Text Available Submersible aerial vehicle is capable of both flying in the air and submerging in the water. Advanced Research Project Agency (DARPA outlined a challenging set of requirements for a submersible aircraft and solicited innovative research proposals on submersible aircraft since 2008. In this paper, a conceptual configuration design scheme of submersible unmanned aerial vehicle is proposed. This submersible UAV lands on the surface of water, then adjusts its own density to entry water. On the contrary, it emerges from water by adjusting its own density and then takes off from the surface of water. Wing of the UAV is whirling wing. It is set along aircraft’s fuselage while submerging for lift reduction. We analysis aerodynamic and hydrodynamic performance of this UAV by CFD method, especially compare the hydrodynamic performance of the whirling wing configuration and normal configuration. It turns out that whirling wing is beneficial for submerging. This result proves that the configuration design scheme proposed in this paper is feasible and suitable for a submersible unmanned aerial vehicle.

  11. Configuration and Design of Checkout System for Reusable Launch Vehicle

    Science.gov (United States)

    Muraleedharan, A.; Mohanan Chettiar, V.; Shyamkumar, U.; Vivekanand, V.; Sandeep, C. R.; Kishorenath, V.

    2017-11-01

    The structure and concept of the reusable launch vehicle (RLV) is different from conventional satellite launch vehicles including its avionic systems architecture, which introduces new concept for power distribution and closed loop control response timings. This work describes about the systems involved in the testing of this new concept launch vehicle. The work also describes about the new avionic systems powering scheme introduced and new measurement system adopted.

  12. Conceptual Design of a Flight Validation Mission for a Hypervelocity Asteroid Intercept Vehicle

    Science.gov (United States)

    Barbee, Brent W.; Wie, Bong; Steiner, Mark; Getzandanner, Kenneth

    2013-01-01

    Near-Earth Objects (NEOs) are asteroids and comets whose orbits approach or cross Earth s orbit. NEOs have collided with our planet in the past, sometimes to devastating effect, and continue to do so today. Collisions with NEOs large enough to do significant damage to the ground are fortunately infrequent, but such events can occur at any time and we therefore need to develop and validate the techniques and technologies necessary to prevent the Earth impact of an incoming NEO. In this paper we provide background on the hazard posed to Earth by NEOs and present the results of a recent study performed by the NASA/Goddard Space Flight Center s Mission Design Lab (MDL) in collaboration with Iowa State University s Asteroid Deflection Research Center (ADRC) to design a flight validation mission for a Hypervelocity Asteroid Intercept Vehicle (HAIV) as part of a Phase 2 NASA Innovative Advanced Concepts (NIAC) research project. The HAIV is a two-body vehicle consisting of a leading kinetic impactor and trailing follower carrying a Nuclear Explosive Device (NED) payload. The HAIV detonates the NED inside the crater in the NEO s surface created by the lead kinetic impactor portion of the vehicle, effecting a powerful subsurface detonation to disrupt the NEO. For the flight validation mission, only a simple mass proxy for the NED is carried in the HAIV. Ongoing and future research topics are discussed following the presentation of the detailed flight validation mission design results produced in the MDL.

  13. Sustainable design for automotive products: dismantling and recycling of end-of-life vehicles.

    Science.gov (United States)

    Tian, Jin; Chen, Ming

    2014-02-01

    The growth in automotive production has increased the number of end-of-life vehicles (ELVs) annually. The traditional approach ELV processing involves dismantling, shredding, and landfill disposal. The "3R" (i.e., reduce, reuse, and recycle) principle has been increasingly employed in processing ELVs, particularly ELV parts, to promote sustainable development. The first step in processing ELVs is dismantling. However, certain parts of the vehicle are difficult to disassemble and use in practice. The extended producer responsibility policy requires carmakers to contribute in the processing of scrap cars either for their own developmental needs or for social responsibility. The design for dismantling approach can be an effective solution to the existing difficulties in dismantling ELVs. This approach can also provide guidelines in the design of automotive products. This paper illustrates the difficulty of handling polymers in dashboards. The physical properties of polymers prevent easy separation and recycling by using mechanical methods. Thus, dealers have to rely on chemical methods such as pyrolysis. Therefore, car designers should use a single material to benefit dealers. The use of materials for effective end-of-life processing without sacrificing the original performance requirements of the vehicle should be explored. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Performance Characteristics of a Modularized and Integrated PTC Heating System for an Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Yoon Hyuk Shin

    2015-12-01

    Full Text Available A modularized positive temperature coefficient heating system has controller-integrated heater modules. Such a heating system that uses a high-voltage power of 330 V was developed in the present study for use in electric vehicles. Four heater modules and one controller with an input power of 5.6 kW were integrated in the modularized system, which was designed for improved heating power density and light weight compared to the conventional heating system, in which the controller is separated. We experimentally investigated the performance characteristics, namely, the heating capacity, energy efficiency, and pressure drop, of a prototype of the developed heating system and found it to have satisfactory performance. The findings of this study will contribute to the development of heating systems for electric vehicles.

  15. Design of vehicle overload detection system based on geophone

    Science.gov (United States)

    Hu, Siquan; Kong, Min; She, Chundong

    2017-08-01

    A vehicle overload detection system is proposed based on geophone. Under normal circumstances, when overloaded vehicles and ordinary vehicles pass through the road, the amplitude of the ground vibration will be different, and the geophone sensor can detect tiny vibrations of the ground. The system includes information acquisition module, signal conditioning module and wireless transmission module. The collected vibration data is transmitted through the wireless transmission module to the background, and the SVM algorithm is used to classify the information and determine whether the vehicle is overloaded. Experiments show that the system can detect overload accurately.

  16. Fixed solar array designs for GPS space vehicles

    Science.gov (United States)

    Malachesky, P. A.; Simburger, E. J.; Zwibel, H. S.

    A risk reduction approach for the Global Positioning Satellite (GPS) replenishment satellite block which uses fixed rather than tracking solar arrays is described. This design study was carried out as a result of reliability and electromagnetic interference (EMI) concerns with solar array drive power and transfer systems (SADPT). Fixed solar array designs eliminate the need for a SADPT, but result in larger arrays than tracking arrays in order to maintain acceptable end-of-life (EOL) performance. The weight increase due to the larger array is partially compensated for by the elimination of the SADPT. If advanced solar arrays and/or lightweight array designs are used, fixed array designs can lead to weight savings over baseline silicon cell-based designs.

  17. Optimum Design of 1st Gear Ratio for 4WD Vehicles Based on Vehicle Dynamic Behaviour

    Directory of Open Access Journals (Sweden)

    M. H. Shojaeefard

    2013-01-01

    Full Text Available This paper presents an approach that allows optimizing gear ratio and vehicle dimension to achieve optimum gear transmission. Therefore, augmented Lagrangian multiplier method, defined as classical method, is utilized to find the optimum gear ratios and the corresponding number of gear teeth applied to all epicyclical gears. The new method is able to calculate and also to optimize the gear ratio based on dynamics of 4WD vehicles. Therefore, 4WD vehicles dynamic equations are employed assuming that the rear wheels or the front wheels are at the point of slip. In addition, a genetic algorithm is modified to preserve feasibility of the encountered solutions. The basic dimension of a sample commercial vehicle (2009 hummer H3 4dr AWD SUV and its gearbox are optimized, and then the effects of changing slip angle, wheel base, and engine torque on optimum vehicle dimension are analyzed.

  18. Nuclear Electric Vehicle Optimization Toolset (NEVOT): Integrated System Design Using Genetic Algorithms

    Science.gov (United States)

    Tinker, Michael L.; Steincamp, James W.; Stewart, Eric T.; Patton, Bruce W.; Pannell, William P.; Newby, Ronald L.; Coffman, Mark E.; Qualls, A. L.; Bancroft, S.; Molvik, Greg

    2003-01-01

    The Nuclear Electric Vehicle Optimization Toolset (NEVOT) optimizes the design of all major Nuclear Electric Propulsion (NEP) vehicle subsystems for a defined mission within constraints and optimization parameters chosen by a user. The tool uses a Genetic Algorithm (GA) search technique to combine subsystem designs and evaluate the fitness of the integrated design to fulfill a mission. The fitness of an individual is used within the GA to determine its probability of survival through successive generations in which the designs with low fitness are eliminated and replaced with combinations or mutations of designs with higher fitness. The program can find optimal solutions for different sets of fitness metrics without modification and can create and evaluate vehicle designs that might never be conceived of through traditional design techniques. It is anticipated that the flexible optimization methodology will expand present knowledge of the design trade-offs inherent in designing nuclear powered space vehicles and lead to improved NEP designs.

  19. Visualizations of Travel Time Performance Based on Vehicle Reidentification Data

    Energy Technology Data Exchange (ETDEWEB)

    Young, Stanley Ernest [National Renewable Energy Lab, 15013 Denver West Parkway, Golden, CO 80401; Sharifi, Elham [Center for Advanced Transportation Technology, University of Maryland, College Park, Technology Ventures Building, Suite 2200, 5000 College Avenue, College Park, MD 20742; Day, Christopher M. [Joint Transportation Research Program, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47906; Bullock, Darcy M. [Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47906

    2017-01-01

    This paper provides a visual reference of the breadth of arterial performance phenomena based on travel time measures obtained from reidentification technology that has proliferated in the past 5 years. These graphical performance measures are revealed through overlay charts and statistical distribution as revealed through cumulative frequency diagrams (CFDs). With overlays of vehicle travel times from multiple days, dominant traffic patterns over a 24-h period are reinforced and reveal the traffic behavior induced primarily by the operation of traffic control at signalized intersections. A cumulative distribution function in the statistical literature provides a method for comparing traffic patterns from various time frames or locations in a compact visual format that provides intuitive feedback on arterial performance. The CFD may be accumulated hourly, by peak periods, or by time periods specific to signal timing plans that are in effect. Combined, overlay charts and CFDs provide visual tools with which to assess the quality and consistency of traffic movement for various periods throughout the day efficiently, without sacrificing detail, which is a typical byproduct of numeric-based performance measures. These methods are particularly effective for comparing before-and-after median travel times, as well as changes in interquartile range, to assess travel time reliability.

  20. Assessment of Urban Aerial Taxi with Cryogenic Components Under Design Environment for Novel Vertical Lift Vehicles (DELIVER)

    Science.gov (United States)

    Snyder, Christopher

    2017-01-01

    Assessing the potential to bring 100 years of aeronautics knowledge to the entrepreneurs desktop to enable a design environment for emerging vertical lift vehicles is one goal for the NASA's Design Environment for Novel Vertical Lift Vehicles (DELIVER). As part of this effort, a system study was performed using a notional, urban aerial taxi system to better understand vehicle requirements along with the tools and methods capability to assess these vehicles and their subsystems using cryogenic cooled components. The baseline was a vertical take-off and landing (VTOL) aircraft, with all-electric propulsion system assuming 15 year technology performance levels and its capability limited to a pilot with one or two people and cargo. Hydrocarbon-fueled hybrid concepts were developed to improve mission capabilities. The hybrid systems resulted in significant improvements in maximum range and number of on demand mobility (ODM) missions that could be completed before refuel or recharge. An important consideration was thermal management, including the choice for air-cooled or cryogenic cooling using liquid natural gas (LNG) fuel. Cryogenic cooling for critical components can have important implications on component performance and size. Thermal loads were also estimated, subsequent effort will be required to verify feasibility for cooling airflow and packaging. LNG cryogenic cooling of selected components further improved vehicle range and reduced thermal loads, but the same concerns for airflow and packaging still need to be addressed. The use of the NASA Design and Analysis of Rotorcraft (NDARC) tool for vehicle sizing and mission analysis appears to be capable of supporting analyses for present and future types of vehicles, missions, propulsion, and energy sources. Further efforts are required to develop verified models for these new types of propulsion and energy sources in the size and use envisioned for these emerging vehicle and mission classes.

  1. Assessment of Urban Aerial Taxi with Cryogenic Components under Design Environment for Novel Vertical Lift Vehicles (DELIVER)

    Science.gov (United States)

    Snyder, Christopher A.

    2017-01-01

    Assessing the potential to bring 100 years of aeronautics knowledge to the entrepreneurs desktop to enable a design environment for emerging vertical lift vehicles is one goal for the NASAs Design Environment for Novel Vertical Lift Vehicles (DELIVER). As part of this effort, a system study was performed using a notional, urban aerial taxi system to better understand vehicle requirements along with the tools and methods capability to assess these vehicles and their subsystems using cryogenic cooled components. The baseline was a vertical take-off and landing (VTOL) aircraft, with all-electric propulsion system assuming 15 year technology performance levels and its capability limited to a pilot with one or two people and cargo. Hydrocarbon-fueled hybrid concepts were developed to improve mission capabilities. The hybrid systems resulted in significant improvements in maximum range and number of on demand mobility (ODM) missions that could be completed before refuel or recharge. An important consideration was thermal management, including the choice for air-cooled or cryogenic cooling using liquid natural gas (LNG) fuel. Cryogenic cooling for critical components can have important implications on component performance and size. Thermal loads were also estimated, subsequent effort will be required to verify feasibility for cooling airflow and packaging. LNG cryogenic cooling of selected components further improved vehicle range and reduced thermal loads, but the same concerns for airflow and packaging still need to be addressed. The use of the NASA Design and Analysis of Rotorcraft (NDARC) tool for vehicle sizing and mission analysis appears to be capable of supporting analyses for present and future types of vehicles, missions, propulsion, and energy sources. Further efforts are required to develop verified models for these new types of propulsion and energy sources in the size and use envisioned for these emerging vehicle and mission classes.

  2. Design and Implementation of Fuzzy Logic Controller for Online Computer Controlled Steering System for Navigation of a Teleoperated Agricultural Vehicle

    Directory of Open Access Journals (Sweden)

    Prema Kannan

    2013-01-01

    Full Text Available This paper describes design, modeling, simulation, control, and implementation of teleoperated agricultural vehicle using intelligent technique. This vehicle can be used for ploughing, sowing, and soil moisture sensing. Online computer controlled steering system for a vehicle utilizing two independent drive wheels can be used to avoid obstacles and to improve the ability to resist external side forces. To control the steer angles of the nondriven wheels, the mathematical relationships between the drive wheel speeds and the steer angles of the nondriven wheels are used. A fuzzy logic controller is designed to change the drive wheel speeds and to achieve the desired steer angles. Online control of the agricultural vehicle is achieved from a remote place by means of Web Publishing Tool in LabVIEW. IR sensors in the vehicle are used to detect and to avoid the obstacles around. The developed steering angle control algorithm and fuzzy logic controller have been implemented in an agricultural vehicle which depicts that the vehicle performs its operation efficiently and reduces the manpower and becomes advantageous.

  3. Development of an Expert Judgement Elicitation and Calibration Methodology for Risk Analysis in Conceptual Vehicle Design

    Science.gov (United States)

    Unal, Resit; Keating, Charles; Conway, Bruce; Chytka, Trina

    2004-01-01

    A comprehensive expert-judgment elicitation methodology to quantify input parameter uncertainty and analysis tool uncertainty in a conceptual launch vehicle design analysis has been developed. The ten-phase methodology seeks to obtain expert judgment opinion for quantifying uncertainties as a probability distribution so that multidisciplinary risk analysis studies can be performed. The calibration and aggregation techniques presented as part of the methodology are aimed at improving individual expert estimates, and provide an approach to aggregate multiple expert judgments into a single probability distribution. The purpose of this report is to document the methodology development and its validation through application to a reference aerospace vehicle. A detailed summary of the application exercise, including calibration and aggregation results is presented. A discussion of possible future steps in this research area is given.

  4. Modeling Vehicle Interior Noise Exposure Dose on Freeways Considering Weaving Segment Designs and Engine Operation.

    Science.gov (United States)

    Li, Qing; Qiao, Fengxiang; Yu, Lei; Shi, Junqing

    2017-07-05

    Vehicle interior noise functions at the dominant frequencies of 500 Hz below and around 800 Hz, which fall into the bands that may impair hearing. Recent studies demonstrated that freeway commuters are chronically exposed to vehicle interior noise, bearing the risk of hearing impairment. The interior noise evaluation process is mostly conducted in a lab environment. The test results and the developed noise models may underestimate or ignore the noise effects from dynamic traffic, road conditions and configuration. However, the interior noise is highly associated with vehicle maneuvering. The vehicle maneuvering on a freeway weaving segment is more complex for its nature of conflicting areas. This research is intended to explore the risk of the interior noise exposure on freeway weaving segments for freeway commuters, and improve the interior noise estimation by constructing a decision tree learning based noise exposure dose (NED) model, considering weaving segment designs and engine operation. On-road driving tests were conducted to twelve subjects on State Highway 288 in Houston, Texas. An On-board Diagnosis (OBD) II, a smartphone based roughness app, and a digital sound meter were used to collect vehicle maneuvering and engine information, International Roughness Index, and interior noise levels, respectively. Eleven variables were obtainable from the driving tests, including the length and type of a weaving segment, serving as predictors. The importance of the predictors was estimated by their Out-Of-Bag permuted predictor delta errors. The hazardous exposure level of the interior noise on weaving segments is quantified to Hazard Quotient, NED and daily noise exposure level, respectively. Results showed that the risk of hearing impairment on freeway is acceptable, the interior noise level is the most sensitive to the pavement roughness, and subject to freeway configuration and traffic conditions. The constructed NED model performs highly predictive power (R

  5. design, construction design, construction and performance

    African Journals Online (AJOL)

    eobe

    Productivity enhancement of solar stills has been one of the main goals of researchers. In this study, two designs of solar stills absorber plate were conceptualized and developed and their effects on the productivity process were investigated experimental investigated experimentally. A solar still using a submerged flat ...

  6. Design of driving control strategy of torque distribution for two - wheel independent drive electric vehicle

    Science.gov (United States)

    Zhang, Chuanwei; Zhang, Dongsheng; Wen, Jianping

    2018-02-01

    In order to coordinately control the torque distribution of existing two-wheel independent drive electric vehicle, and improve the energy efficiency and control stability of the whole vehicle, the control strategies based on fuzzy control were designed which adopt the direct yaw moment control as the main line. For realizing the torque coordination simulation of the two-wheel independent drive vehicle, the vehicle model, motor model and tire model were built, including the vehicle 7 - DOF dynamics model, motion equation, torque equation. Finally, in the Carsim - Simulink joint simulation platform, the feasibility of the drive control strategy was verified.

  7. Decomposition-Based Decision Making for Aerospace Vehicle Design

    Science.gov (United States)

    Borer, Nicholas K.; Mavris, DImitri N.

    2005-01-01

    Most practical engineering systems design problems have multiple and conflicting objectives. Furthermore, the satisfactory attainment level for each objective ( requirement ) is likely uncertain early in the design process. Systems with long design cycle times will exhibit more of this uncertainty throughout the design process. This is further complicated if the system is expected to perform for a relatively long period of time, as now it will need to grow as new requirements are identified and new technologies are introduced. These points identify a need for a systems design technique that enables decision making amongst multiple objectives in the presence of uncertainty. Traditional design techniques deal with a single objective or a small number of objectives that are often aggregates of the overarching goals sought through the generation of a new system. Other requirements, although uncertain, are viewed as static constraints to this single or multiple objective optimization problem. With either of these formulations, enabling tradeoffs between the requirements, objectives, or combinations thereof is a slow, serial process that becomes increasingly complex as more criteria are added. This research proposal outlines a technique that attempts to address these and other idiosyncrasies associated with modern aerospace systems design. The proposed formulation first recasts systems design into a multiple criteria decision making problem. The now multiple objectives are decomposed to discover the critical characteristics of the objective space. Tradeoffs between the objectives are considered amongst these critical characteristics by comparison to a probabilistic ideal tradeoff solution. The proposed formulation represents a radical departure from traditional methods. A pitfall of this technique is in the validation of the solution: in a multi-objective sense, how can a decision maker justify a choice between non-dominated alternatives? A series of examples help the

  8. Development of Pneumatic Aerodynamic Devices to Improve the Performance, Economics, and Safety of Heavy Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Englar

    2000-06-19

    Under contract to the DOE Office of Heavy Vehicle Technologies, the Georgia Tech Research Institute (GTRI) is developing and evaluating pneumatic (blown) aerodynamic devices to improve the performance, economics, stability and safety of operation of Heavy Vehicles. The objective of this program is to apply the pneumatic aerodynamic aircraft technology previously developed and flight-tested by GTRI personnel to the design of an efficient blown tractor-trailer configuration. Recent experimental results obtained by GTRI using blowing have shown drag reductions of 35% on a streamlined automobile wind-tunnel model. Also measured were lift or down-load increases of 100-150% and the ability to control aerodynamic moments about all 3 axes without any moving control surfaces. Similar drag reductions yielded by blowing on bluff afterbody trailers in current US trucking fleet operations are anticipated to reduce yearly fuel consumption by more than 1.2 billion gallons, while even further reduction is possible using pneumatic lift to reduce tire rolling resistance. Conversely, increased drag and down force generated instantaneously by blowing can greatly increase braking characteristics and control in wet/icy weather due to effective ''weight'' increases on the tires. Safety is also enhanced by controlling side loads and moments caused on these Heavy Vehicles by winds, gusts and other vehicles passing. This may also help to eliminate the jack-knifing problem if caused by extreme wind side loads on the trailer. Lastly, reduction of the turbulent wake behind the trailer can reduce splash and spray patterns and rough air being experienced by following vehicles. To be presented by GTRI in this paper will be results developed during the early portion of this effort, including a preliminary systems study, CFD prediction of the blown flowfields, and design of the baseline conventional tractor-trailer model and the pneumatic wind-tunnel model.

  9. 19 CFR 115.65 - Technical requirements for road vehicles by design type.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Technical requirements for road vehicles by design type. 115.65 Section 115.65 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND... INTERNATIONAL CUSTOMS CONVENTIONS Procedures for Approval of Road Vehicles by Design Type § 115.65 Technical...

  10. Computational Sensitivity Analysis for the Aerodynamic Design of Supersonic and Hypersonic Air Vehicles

    Science.gov (United States)

    2015-05-18

    surfaces. These features differentiate the GHV from previous coarse hypersonic vehicle models where the integration of the propulsion system and...A TRIDENT SCHOLAR PROJECT REPORT NO. 442 Computational Sensitivity Analysis for the Aerodynamic Design of Supersonic and Hypersonic Air...Scholar project report; no. 442 (2015) Computational Sensitivity Analysis for the Aerodynamic Design of Supersonic and Hypersonic Air Vehicles by

  11. Preliminary Assessment of Artificial Gravity Impacts to Deep-Space Vehicle Design

    Science.gov (United States)

    Joosten, B. Kent

    2007-01-01

    Even after more than thirty years of scientific investigation, serious concerns regarding human physiological effects of long-duration microgravity exposure remain. These include loss of bone mineral density, skeletal muscle atrophy, and orthostatic hypertension, among others. In particular, "Safe Passage: Astronaut Care for Exploration Missions," states "loss of bone density, which apparently occurs at a rate of 1% per month in microgravity, is relatively manageable on the short-duration missions of the space shuttle, but it becomes problematic on the ISS [International Space Station]. ...If this loss is not mitigated, interplanetary missions will be impossible." While extensive investigations into potential countermeasures are planned on the ISS, the delay in attaining full crew complement and onboard facilities, and the potential for extending crews tours of duty threaten the timely (vehicles, long a staple technique of science fiction, has received surprisingly limited engineering assessment. This is most likely due to a number of factors: the lack of definitive design requirements, especially acceptable artificial gravity levels and rotation rates, the perception of high vehicle mass and performance penalties, the incompatibility of resulting vehicle configurations with space propulsion options (i.e., aerocapture), the perception of complications associated with de-spun components such as antennae and photovoltaic arrays, and the expectation of effective crew micro-gravity countermeasures. These perception and concerns may have been overstated, or may be acceptable alternatives to countermeasures of limited efficacy. This study was undertaken as an initial step to try to understand the implications of and potential solutions to incorporating artificial gravity in the design of human deep-space exploration vehicles. Of prime interest will be the mass penalties incurred by incorporating AG, along with any mission performance degradation.

  12. DUKSUP: A Computer Program for High Thrust Launch Vehicle Trajectory Design and Optimization

    Science.gov (United States)

    Spurlock, O. Frank; Williams, Craig H.

    2015-01-01

    From the late 1960s through 1997, the leadership of NASAs Intermediate and Large class unmanned expendable launch vehicle projects resided at the NASA Lewis (now Glenn) Research Center (LeRC). One of LeRCs primary responsibilities --- trajectory design and performance analysis --- was accomplished by an internally-developed analytic three dimensional computer program called DUKSUP. Because of its Calculus of Variations-based optimization routine, this code was generally more capable of finding optimal solutions than its contemporaries. A derivation of optimal control using the Calculus of Variations is summarized including transversality, intermediate, and final conditions. The two point boundary value problem is explained. A brief summary of the codes operation is provided, including iteration via the Newton-Raphson scheme and integration of variational and motion equations via a 4th order Runge-Kutta scheme. Main subroutines are discussed. The history of the LeRC trajectory design efforts in the early 1960s is explained within the context of supporting the Centaur upper stage program. How the code was constructed based on the operation of the AtlasCentaur launch vehicle, the limits of the computers of that era, the limits of the computer programming languages, and the missions it supported are discussed. The vehicles DUKSUP supported (AtlasCentaur, TitanCentaur, and ShuttleCentaur) are briefly described. The types of missions, including Earth orbital and interplanetary, are described. The roles of flight constraints and their impact on launch operations are detailed (such as jettisoning hardware on heating, Range Safety, ground station tracking, and elliptical parking orbits). The computer main frames on which the code was hosted are described. The applications of the code are detailed, including independent check of contractor analysis, benchmarking, leading edge analysis, and vehicle performance improvement assessments. Several of DUKSUPs many major impacts on

  13. Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mingyu [MAHLE Behr Troy Inc.; WolfeIV, Edward [MAHLE Behr Troy Inc.; Craig, Timothy [MAHLE Behr Troy Inc.; LaClair, Tim J [ORNL; Gao, Zhiming [ORNL; Abdelaziz, Omar [ORNL

    2016-01-01

    Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by the traction battery. In very cold climatic conditions, the power required to heat the EV cabin can be of a similar magnitude to that required for propulsion of the vehicle. As a result, the driving range of an EV can be reduced very significantly during winter months, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The system uses the stored latent heat of an advanced phase change material (PCM) to provide cabin heating. The PCM is melted while the EV is connected to the electric grid for charging of the electric battery, and the stored energy is subsequently transferred to the cabin during driving. To minimize thermal losses when the EV is parked for extended periods, the PCM is encased in a high performance insulation system. The electrical PCM-Assisted Thermal Heating System (ePATHS) was designed to provide enough thermal energy to heat the EV s cabin for approximately 46 minutes, covering the entire daily commute of a typical driver in the U.S.

  14. Preliminary power train design for a state-of-the-art electric vehicle

    Science.gov (United States)

    Ross, J. A.; Wooldridge, G. A.

    1978-01-01

    The state-of-the-art (SOTA) of electric vehicles built since 1965 was reviewed to establish a base for the preliminary design of a power train for a SOTA electric vehicle. The performance of existing electric vehicles were evaluated to establish preliminary specifications for a power train design using state-of-the-art technology and commercially available components. Power train components were evaluated and selected using a computer simulation of the SAE J227a Schedule D driving cycle. Predicted range was determined for a number of motor and controller combinations in conjunction with the mechanical elements of power trains and a battery pack of sixteen lead-acid batteries - 471.7 kg at 0.093 MJ/Kg (1040 lbs. at 11.7 Whr/lb). On the basis of maximum range and overall system efficiency using the Schedule D cycle, an induction motor and 3 phase inverter/controller was selected as the optimum combination when used with a two-speed transaxle and steel belted radial tires. The predicted Schedule D range is 90.4 km (56.2 mi). Four near term improvements to the SOTA were identified, evaluated, and predicted to increase range approximately 7%.

  15. Security credentials management system (SCMS) design and analysis for the connected vehicle system : draft.

    Science.gov (United States)

    2013-12-27

    This report presents an analysis by Booz Allen Hamilton (Booz Allen) of the technical design for the Security Credentials Management System (SCMS) intended to support communications security for the connected vehicle system. The SCMS technical design...

  16. Control and design of multiple unmanned air vehicles for persistent surveillance

    Science.gov (United States)

    Nigam, Nikhil

    Control of multiple autonomous aircraft for search and exploration, is a topic of current research interest for applications such as weather monitoring, geographical surveys, search and rescue, tactical reconnaissance, and extra-terrestrial exploration, and the need to distribute sensing is driven by considerations of efficiency, reliability, cost and scalability. Hence, this problem has been extensively studied in the fields of controls and artificial intelligence. The task of persistent surveillance is different from a coverage/exploration problem, in that all areas need to be continuously searched, minimizing the time between visitations to each region in the target space. This distinction does not allow a straightforward application of most exploration techniques to the problem, although ideas from these methods can still be used. The use of aerial vehicles is motivated by their ability to cover larger spaces and their relative insensitivity to terrain. However, the dynamics of Unmanned Air Vehicles (UAVs) adds complexity to the control problem. Most of the work in the literature decouples the vehicle dynamics and control policies, but their interaction is particularly interesting for a surveillance mission. Stochastic environments and UAV failures further enrich the problem by requiring the control policies to be robust, and this aspect is particularly important for hardware implementations. For a persistent mission, it becomes imperative to consider the range/endurance constraints of the vehicles. The coupling of the control policy with the endurance constraints of the vehicles is an aspect that has not been sufficiently explored. Design of UAVs for desirable mission performance is also an issue of considerable significance. The use of a single monolithic optimization for such a problem has practical limitations, and decomposition-based design is a potential alternative. In this research high-level control policies are devised, that are scalable, reliable

  17. Design of Power Converters for Renewable Energy Sources and Electric Vehicles Charging

    Directory of Open Access Journals (Sweden)

    Martin Tvrdon

    2013-01-01

    Full Text Available This paper describes the design and construction of new series of power converters equipped with liquid cooling system. This power series is created for project ENET – Energy Units for Utilization of non Traditional Energy Sources. First power converter is determined for stationary battery system use, the second one is used as an inverter/rectifier for a small solar plant system and the last power inverter is used as a fast charger for electric vehicles. Energy balance is performed for the fast charger converter, which is solved using numerical simulations of the system.

  18. Preliminary power train design for a state-of-the-art electric vehicle. Volume 1 (of 2 volumes)

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J.A.; Wooldridge, G.A.

    1978-09-01

    The objectives of the study were to prepare a preliminary design of a power train for a state-of-the-art 4-passenger electric vehicle capable of operating at highway speeds using conventional lead-acid batteries and to predict the expected performance with emphasis on maximizing range and overall system efficiency on the SAE J227a Schedule D driving cycle.

  19. Design and Simulation Analysis for Integrated Vehicle Chassis-Network Control System Based on CAN Network

    Directory of Open Access Journals (Sweden)

    Wei Yu

    2016-01-01

    Full Text Available Due to the different functions of the system used in the vehicle chassis control, the hierarchical control strategy also leads to many kinds of the network topology structure. According to the hierarchical control principle, this research puts forward the integrated control strategy of the chassis based on supervision mechanism. The purpose is to consider how the integrated control architecture affects the control performance of the system after the intervention of CAN network. Based on the principle of hierarchical control and fuzzy control, a fuzzy controller is designed, which is used to monitor and coordinate the ESP, AFS, and ARS. And the IVC system is constructed with the upper supervisory controller and three subcontrol systems on the Simulink platform. The network topology structure of IVC is proposed, and the IVC communication matrix based on CAN network communication is designed. With the common sensors and the subcontrollers as the CAN network independent nodes, the network induced delay and packet loss rate on the system control performance are studied by simulation. The results show that the simulation method can be used for designing the communication network of the vehicle.

  20. A Robust Tracking Control System Design for Autonomous Underwater Vehicles Based on Sliding Mode Control

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung Yun [Agency for Defense Development (Korea, Republic of); Lee, Man Hyung [Pusan National University (Korea, Republic of)

    1998-02-01

    In this paper, a robust path tracking and diving control system of Autonomous Underwater Vehicle based on sliding mode control is presented. We have also d signed augmented equivalent control inputs by analyzing the sliding mode with the reaching mode. This can enhance the reaching rate, and improve chattering problems, that is, noise caused by the control plane actuator of the vehicle, which is one of the problems that occur when sliding mode control is used. Also to resolve the steady state error generated in the path tracker under current effect, a modified sliding plane is constructed. Also a redesigned sliding plane and control input using transformation matrix is proposed to do easy design of MIMO depth controller. For state variables that cannot be measured directly, reduced order sliding mode control is used to design an observer. The performance of designed path tracker and depth controller is investigated by computer simulation. The results show that the proposed control system has robust performance to parameter variation, modelling error and disturbance. (author). 12 refs., 14 figs., 1 tab.

  1. Electromagnetic Analysis and Design of Switched Reluctance Double-Rotor Machine for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Shouliang Han

    2014-10-01

    Full Text Available The double-rotor machine is a kind of multiple input and output electromechanical energy transducer with two electrical ports and two mechanical ports, which is an ideal transmission system for hybrid electric vehicles and has a series of advantages such as integration of power and energy, high efficiency and compaction. In this paper, a switched reluctance double-rotor machine (SRDRM is proposed for hybrid electric vehicles, while no conductor or PM in the middle rotor. This machine not only inherits the merits of switched reluctance machine, such as simple salient rotor structure, high reliability and wide speed range, but also can avoid the outer rotor’s cooling problem effectively. By using an equivalent magnetic circuit model, the function of middle rotor yoke is analyzed. Electromagnetic analyses of the SRDRM are performed with analytical calculations and 2-D finite element methods, including the effects of main parameters on performance. Finally, a 4.4 kW prototype machine is designed and manufactured, and the tests are performed, which validate the proposed design method.

  2. The effect of recent trends in vehicle design on U.S. societal fatality risk per vehicle mile traveled, and their projected future relationship with vehicle mass.

    Science.gov (United States)

    Wenzel, Tom

    2013-07-01

    The National Highway Traffic Safety Administration (NHTSA) recently updated its 2003 and 2010 logistic regression analyses of the effect of a reduction in light-duty vehicle mass on US fatality risk per vehicle mile traveled (VMT). The current NHTSA analysis is the most thorough investigation of this issue to date. LBNL's assessment of the analysis indicates that the estimated effect of mass reduction on risk is smaller than in the previous studies, and statistically non-significant for all but the lightest cars. The effects three recent trends in vehicle designs and technologies have on societal fatality risk per VMT are estimated, and whether these changes might affect the relationship between vehicle mass and fatality risk in the future. Side airbags are found to reduce fatality risk in cars, but not necessarily light trucks or CUVs/minivans, struck in the side by another light-duty vehicle; reducing the number of fatalities in cars struck in the side is predicted to reduce the estimated detrimental effect of footprint reduction, but increase the detrimental effect of mass reduction, in cars on societal fatality risk. Better alignment of light truck bumpers with those of other vehicles appears to result in a statistically significant reduction in risk imposed on car occupants; however, reducing this type of fatality will likely have little impact on the estimated effect of mass or footprint reduction on risk. Finally, shifting light truck drivers into safer, car-based vehicles, such as sedans, CUVs, and minivans, would result in larger reductions in societal fatalities than expected from even substantial reductions in the masses of light trucks. A strategy of shifting drivers from truck-based to car-based vehicles would reduce fuel use and greenhouse gas emissions, while improving societal safety. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Driving Performance After Self-Regulated Control Transitions in Highly Automated Vehicles.

    Science.gov (United States)

    Eriksson, Alexander; Stanton, Neville A

    2017-12-01

    This study aims to explore whether driver-paced, noncritical transitions of control may counteract some of the aftereffects observed in the contemporary literature, resulting in higher levels of vehicle control. Research into control transitions in highly automated driving has focused on urgent scenarios where drivers are given a relatively short time span to respond to a request to resume manual control, resulting in seemingly scrambled control when manual control is resumed. Twenty-six drivers drove two scenarios with an automated driving feature activated. Drivers were asked to read a newspaper or monitor the system and relinquish or resume control from the automation when prompted by vehicle systems. Driving performance in terms of lane positioning and steering behavior was assessed for 20 seconds post resuming control to capture the resulting level of control. It was found that lane positioning was virtually unaffected for the duration of the 20-second time span in both automated conditions compared to the manual baseline when drivers resumed manual control; however, significant increases in the standard deviation of steering input were found for both automated conditions compared to baseline. No significant differences were found between the two automated conditions. The results indicate that when drivers self-paced the transfer back to manual control they exhibit less of the detrimental effects observed in system-paced conditions. It was shown that self-paced transitions could reduce the risk of accidents near the edge of the operational design domain. Vehicle manufacturers must consider these benefits when designing contemporary systems.

  4. Design and test of a situation-augmented display for an unmanned aerial vehicle monitoring task.

    Science.gov (United States)

    Lu, Jen-Li; Horng, Ruey-Yun; Chao, Chin-Jung

    2013-08-01

    In this study, a situation-augmented display for unmanned aerial vehicle (UAV) monitoring was designed, and its effects on operator performance and mental workload were examined. The display design was augmented with the knowledge that there is an invariant flight trajectory (formed by the relationship between altitude and velocity) for every flight, from takeoff to landing. 56 participants were randomly assigned to the situation-augmented display or a conventional display condition to work on 4 (number of abnormalities) x 2 (noise level) UAV monitoring tasks three times. Results showed that the effects of situation-augmented display on flight completion time and time to detect abnormalities were robust under various workload conditions, but error rate and perceived mental workload were unaffected by the display type. Results suggest that the UAV monitoring task is extremely difficult, and that display devices providing high-level situation-awareness may improve operator monitoring performance.

  5. Fixed-Order Robust H∞ Estimator Design for Side-Slip Angle of Vehicle

    Directory of Open Access Journals (Sweden)

    Akın Delibaşı

    2014-01-01

    Full Text Available We present a novel linear observer with an extension dealing with polytopic uncertainties in a vehicle dynamic system to identify the side-slip angle. The performance optimization issue is addressed by the minimization of H∞ norm of the system considering the estimation error as an output and the steer angle as an input. Contrary to the standard robust optimal design approaches, we use a convex inner approximation technique to reduce the order of the observer and this enables us to derive suboptimal, fixed-order, and efficiently practicable estimators. Moreover, the numerical examples performed on two-track nonlinear model of the system are provided to illustrate the impacts of design parameters on the optimization results and the efficiency of the technique.

  6. Sliding Mode Observer and Control Design with Adaptive Parameter Estimation for a Supersonic Flight Vehicle

    Directory of Open Access Journals (Sweden)

    M. Bahrami

    2010-01-01

    Full Text Available Design and synthesis of a nonlinear generic supersonic flight vehicle longitudinal dynamics control for angle-of-attack, AOA, output tracking in the atmospheric flight is presented based on sliding mode control. A sliding mode observer is invoked to estimate AOA which is difficult to measure in practice. Large parameter uncertainties accommodation envisaged by designing adaptive mechanisms for both the control and observer and high chattering authority due to large deviations of aerodynamic coefficients arising from wind-tunnel measurements are inhibited. The employed method enables the sliding mode control design to exhibit the desired dynamic properties during the entire output-tracking process. Simulations results are presented to demonstrate the performance, robustness, and stability.

  7. Control System Design for a Ducted-Fan Unmanned Aerial Vehicle Using Linear Quadratic Tracker

    Directory of Open Access Journals (Sweden)

    Junho Jeong

    2015-01-01

    Full Text Available Tracking control system based on linear quadratic (LQ tracker is designed for a ducted-fan unmanned aerial vehicle (UAV under full flight envelope including hover, transition, and cruise modes. To design the LQ tracker, a system matrix is augmented with a tracking error term. Then the control input can be calculated to solve a single Riccati equation, but the steady-state errors might still remain in this control system. In order to reduce the steady-state errors, a linear quadratic tracker with integrator (LQTI is designed to add an integral term of tracking state in the state vector. Then the performance of the proposed controller is verified through waypoint navigation simulation under wind disturbance.

  8. Ares I Crew Launch Vehicle Project: Forward Plan to Preliminary Design Review

    Science.gov (United States)

    Dumbacher, Daniel L.; Reuter, James L.

    2007-01-01

    The Exploration Launch Projects Office, located at NASA's Marshall Space Flight Center, conducted the Ares I Crew Launch Vehicle System Requirements Review (SRR) at the end of 2006, a mere year after the project team was assembled. In Ares' first year, extensive trade studies and evaluations were conducted to refine the design initially recommended by the Exploration Systems Architecture Study, conceptual designs were analyzed for fitness, and the contractual framework was assembled to enable a development effort unparalleled in American space flight since the Space Shuttle. Now, the project turns its focus to the Preliminary Design Review (PDR), scheduled for 2008. Taking into consideration the findings of the SRR, the design of the Ares I is being tightened and refined to meet the operability, reliability, and affordability goals outlined by the Constellation Program. As directed in NASA Procedure and Regulation (NPR) 7123, NASA Systems Engineering Procedural Requirements, the Ares I SRR examined "the functional and performance requirements defined for the system and the preliminary program or project plan and ensures that the requirements and the selected concept will satisfy the mission." The SRR was conducted to ensure the system- and element-level design and interface requirements are defined prior to proceeding into the project's design phase. The Exploration Launch Projects Control Board convened on December 19,2006, and accepted the findings of the SRR and the go-forward plan proceeding to PDR. Based upon these findings, the Ares project believes that operability must drive the vehicle's design, and that a number of design challenges, including system mass and reliability, must be addressed as part of the progress to PDR.

  9. Design and Implementation of a Control System for Testing an Experimental Electrical Vehicle

    OpenAIRE

    Miranda Bermejo, Jorge

    2010-01-01

    The Research Institute of Vehicle Engines and Automotive Engineering (IVK) at the University of Stuttgart is developing an experimental electric vehicle. With that vehicle different research topics in the scope of e-mobility will be investigated. Some of these topics are range prediction and optimization issues, adapted control of inverter and electric motor, as well as, different battery charging techniques. The aim of this master thesis is to design and to implement the contr...

  10. Results of electric-vehicle propulsion system performance on three lead-acid battery systems

    Science.gov (United States)

    Ewashinka, J. G.

    1984-01-01

    Three types of state of the art 6 V lead acid batteries were tested. The cycle life of lead acid batteries as a function of the electric vehicle propulsion system design was determined. Cycle life, degradation rate and failure modes with different battery types (baseline versus state of the art tubular and thin plate batteries) were compared. The effects of testing strings of three versus six series connected batteries on overall performance were investigated. All three types do not seem to have an economically feasible battery system for the propulsion systems. The tubular plate batteries on the load leveled profile attained 235 cycles with no signs of degradation and minimal capacity loss.

  11. Mechanical design engineering. NASA/university advanced design program: Lunar Bulk Material Transport Vehicle

    Science.gov (United States)

    Daugherty, Paul; Griner, Stewart; Hendrix, Alan; Makarov, Chris; Martiny, Stephen; Meyhoefer, Douglas Ralph; Platt, Cody Claxton; Sivak, John; Wheeler, Elizabeth Fitch

    1988-01-01

    The design of a Lunar Bulk Material Transport Vehicle (LBMTV) is discussed. Goals set in the project include a payload of 50 cubic feet of lunar soil with a lunar of approximately 800 moon-pounds, a speed of 15 mph, and the ability to handle a grade of 20 percent. Thermal control, an articulated steering mechanism, a dump mechanism, a self-righting mechanism, viable power sources, and a probable control panel are analyzed. The thermal control system involves the use of small strip heaters to heat the housing of electronic equipment in the absence of sufficient solar radiation and multi-layer insulation during periods of intense solar radiation. The entire system uses only 10 W and weighs about 60 pounds, or 10 moon-pounds. The steering mechanism is an articulated steering joint at the center of the vehicle. It utilizes two actuators and yields a turning radius of 10.3 feet. The dump mechanism rotates the bulk material container through an angle of 100 degree using one actuator. The self-righting mechanism consists of two four bar linkages, each of which is powered by the same size actuator as the other linkages. The LBMTV is powered by rechargeable batteries. A running time of at least two hours is attained under a worst case analysis. The weight of the batteries is 100 pounds. A control panel consisting of feedback and control instruments is described. The panel includes all critical information necessary to control the vehicle remotely. The LBMTV is capable of handling many types of cargo. It is able to interface with many types of removable bulk material containers. These containers are made to interface with the three-legged walker, SKITTER. The overall vehicle is about 15 feet in length and has a weight of about 1000 pounds, or 170 lunar pounds.

  12. PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.

    2004-08-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance

  13. Personal Rotorcraft Design and Performance with Electric Hybridization

    Science.gov (United States)

    Snyder, Christopher A.

    2017-01-01

    Recent and projected improvements for more or all-electric aviation propulsion systems can enable greater personal mobility, while also reducing environmental impact (noise and emissions). However, all-electric energy storage capability is significantly less than present, hydrocarbon-fueled systems. A system study was performed exploring design and performance assuming hybrid propulsion ranging from traditional hydrocarbon-fueled cycles (gasoline Otto and diesel) to all-electric systems using electric motors generators, with batteries for energy storage and load leveling. Study vehicles were a conventional, single-main rotor (SMR) helicopter and an advanced vertical takeoff and landing (VTOL) aircraft. Vehicle capability was limited to two or three people (including pilot or crew); the design range for the VTOL aircraft was set to 150 miles (about one hour total flight). Search and rescue (SAR), loiter, and cruise-dominated missions were chosen to illustrate each vehicle and degree of hybrid propulsion strengths and weaknesses. The traditional, SMR helicopter is a hover-optimized design; electric hybridization was performed assuming a parallel hybrid approach by varying degree of hybridization. Many of the helicopter hybrid propulsion combinations have some mission capabilities that might be effective for short range or on-demand mobility missions. However, even for 30 year technology electrical components, all hybrid propulsion systems studied result in less available fuel, lower maximum range, and reduced hover and loiter duration than the baseline vehicle. Results for the VTOL aircraft were more encouraging. Series hybrid combinations reflective of near-term systems could improve range and loiter duration by 30. Advanced, higher performing series hybrid combinations could double or almost triple the VTOL aircrafts range and loiter duration. Additional details on the study assumptions and work performed are given, as well as suggestions for future study effort.

  14. Obstructive sleep apnoea, motor vehicle accidents, and work performance

    National Research Council Canada - National Science Library

    Sanna, Antonio

    2013-01-01

    The obstructive sleep apnoea (OSA) shows a very high prevalence in the middle-age work force population and, between all diseases and medical conditions, is the major risk factor for motor vehicle accidents (MVAs...

  15. Revolutionary Performance For Ultra Low Reynolds Number Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An important mission for NASA is the development of revolutionary flight concepts and technology. The development of Micro unmanned air vehicles (Micro-UAVs) and...

  16. Aerodynamic Performance Analysis of the Hypersonic Airbreathing Vehicle JAPHAR

    National Research Council Canada - National Science Library

    Dueveau, P

    1999-01-01

    ...) combining both subsonic and supersonic combustion regimes. The other objective is to define a methodology to establish the thrust-minus-drag balance of the DMR on an experimental vehicle to be flown between Mach number 4 and 8...

  17. Functional design of heat exchange for pneumatic vehicles

    Science.gov (United States)

    Xu, Z. G.; Yang, D. Y.; Shen, W. D.; Liu, T. T.

    2017-10-01

    With the increasingly serious environmental problems, especially the impact of fog and haze, the development of air powered vehicles has become an important research direction of new energy vehicles. Quadrature test was done with different materials, i.e. stainless steel and aluminum alloy, at different inlet pressures, using different expansion gases, i.e. air, CO2, for heat exchanging properties for pneumatic vehicles. The mathematics as well as simulation methods are used to analyze the different heat exchanging effects in the multistage cylinder. The research results showed that the stainless steel has better effects in heat exchanging than Aluminum Alloy; the intake pressure has little effect on CO2 than the air in heat exchanging effect. CO2 is better in heat exchanging than air.

  18. An approach to vehicle design: In-depth audit to understand the needs of older drivers.

    Science.gov (United States)

    Karali, Sukru; Mansfield, Neil J; Gyi, Diane E

    2017-01-01

    The population of older people continues to increase around the world, and this trend is expected to continue; the population of older drivers is increasing accordingly. January 2012 figures from the DVLA in the UK stated that there were more than 15 million drivers aged over 60; more than 1 million drivers were aged over 80. There is a need for specific research tools to understand and capture how all users interact with features in the vehicle cabin e.g. controls and tasks, including the specific needs of the increasingly older driving population. This paper describes an in-depth audit that was conducted to understand how design of the vehicle cabin impacts on comfort, posture, usability, health and wellbeing in older drivers. The sample involved 47 drivers (38% female, 62% male). The age distribution was: 50-64 (n = 12), 65-79 (n = 20), and those 80 and over (n = 15). The methodology included tools to capture user experience in the vehicle cabin and functional performance tests relevant to specific driving tasks. It is shown that drivers' physical capabilities reduce with age and that there are associated difficulties in setting up an optimal driving position such that some controls cannot be operated as intended, and many adapt their driving cabins. The cabin set-up process consistently began with setting up the seat and finished with operation of the seat belt. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Tracking error constrained robust adaptive neural prescribed performance control for flexible hypersonic flight vehicle

    Directory of Open Access Journals (Sweden)

    Zhonghua Wu

    2017-02-01

    Full Text Available A robust adaptive neural control scheme based on a back-stepping technique is developed for the longitudinal dynamics of a flexible hypersonic flight vehicle, which is able to ensure the state tracking error being confined in the prescribed bounds, in spite of the existing model uncertainties and actuator constraints. Minimal learning parameter technique–based neural networks are used to estimate the model uncertainties; thus, the amount of online updated parameters is largely lessened, and the prior information of the aerodynamic parameters is dispensable. With the utilization of an assistant compensation system, the problem of actuator constraint is overcome. By combining the prescribed performance function and sliding mode differentiator into the neural back-stepping control design procedure, a composite state tracking error constrained adaptive neural control approach is presented, and a new type of adaptive law is constructed. As compared with other adaptive neural control designs for hypersonic flight vehicle, the proposed composite control scheme exhibits not only low-computation property but also strong robustness. Finally, two comparative simulations are performed to demonstrate the robustness of this neural prescribed performance controller.

  20. A novel design of an air-cushion vehicle and its implementation

    Directory of Open Access Journals (Sweden)

    Molnár Zsolt

    2017-01-01

    Full Text Available Recent advancements of unmanned aerial vehicles (UAVs has led to an increase in public acceptance and availability of manufacturing technologies for these vehicles. This paper is concerned with the development of an air-cushion vehicle (ACV utilizing the aforementioned manufacturing technologies. Exploiting similarities between UAVs and ACVs, and compensating for their differences, a unique hovercraft is designed and fabricated. The goal of the project is designing an ACV which can be controlled as an UAV without the dangers of easily damaging it. An overview of the development procedure of the hardware, software and implementation of the design is presented within this text.

  1. Safety effectiveness of pavement design treatment at intersections: Left turning vehicles and pedestrians on crosswalks

    Directory of Open Access Journals (Sweden)

    Hasina Iasmin

    2016-07-01

    Full Text Available Pedestrians are the most vulnerable road users as they are more exposed than other road users. Pedestrian safety at road intersections still remains the most vital and yet unsolved issue. One of the critical points in pedestrian safety is the occurrence of accidents between left-turning vehicle and pedestrians on crosswalks at signalized intersections. A crosswalk is a place designated for pedestrians and cyclists to cross vehicular roads safely. Drivers are expected to give priority to pedestrians or cyclists during interactions between them on the crosswalk. If a driver exhibits non-yielding behavior, the interaction will turn into a collision. This study examined the safety effect of three crosswalks designed with different materials such as red-colored material or brick pavement based on a safety performance study. The safety performance study considered left-turning driver's gap acceptance behavior and the severity of traffic conflict events between left-turning vehicles and pedestrians. The results of the study indicates that using brick pavement on a crosswalk increases the safety level of the crosswalk. Drivers at such crosswalks are more acquiescent to the priority rule.

  2. Design of GPS-GPRS module for localization vehicles and cargo

    Directory of Open Access Journals (Sweden)

    Piotr NOWAKOWSKI

    2007-01-01

    Full Text Available In the paper are presented results of market researches of logisticenterprises in Upper Silesia region which determine the level of implementation of GPS systems in vehicles. The results of that research implied design of GPS-GPRS module to be applied in vehicles as an alternative solution for modules already present on the market.

  3. Design of Embedded System and Data Communication for an Agricultural Autonomous Vehicle

    DEFF Research Database (Denmark)

    Nielsen, Jens F. Dalsgaard; Nielsen, Kirsten Mølgaard; Bendtsen, Jan Dimon

    2005-01-01

    This paper describes an implemented design of an autonomous vehicle used in precision agriculture for weed and crop map construction with special focus on the onboard controlsystem, the embedded system and the datacommunication system. The vehicle is four wheel driven and four wheel steered (eight...

  4. Total systems design analysis of high performance structures

    Science.gov (United States)

    Verderaime, V.

    1993-01-01

    Designer-control parameters were identified at interdiscipline interfaces to optimize structural systems performance and downstream development and operations with reliability and least life-cycle cost. Interface tasks and iterations are tracked through a matrix of performance disciplines integration versus manufacturing, verification, and operations interactions for a total system design analysis. Performance integration tasks include shapes, sizes, environments, and materials. Integrity integrating tasks are reliability and recurring structural costs. Significant interface designer control parameters were noted as shapes, dimensions, probability range factors, and cost. Structural failure concept is presented, and first-order reliability and deterministic methods, benefits, and limitations are discussed. A deterministic reliability technique combining benefits of both is proposed for static structures which is also timely and economically verifiable. Though launch vehicle environments were primarily considered, the system design process is applicable to any surface system using its own unique filed environments.

  5. Total systems design analysis of high performance structures

    Science.gov (United States)

    Verderaime, V.

    1993-11-01

    Designer-control parameters were identified at interdiscipline interfaces to optimize structural systems performance and downstream development and operations with reliability and least life-cycle cost. Interface tasks and iterations are tracked through a matrix of performance disciplines integration versus manufacturing, verification, and operations interactions for a total system design analysis. Performance integration tasks include shapes, sizes, environments, and materials. Integrity integrating tasks are reliability and recurring structural costs. Significant interface designer control parameters were noted as shapes, dimensions, probability range factors, and cost. Structural failure concept is presented, and first-order reliability and deterministic methods, benefits, and limitations are discussed. A deterministic reliability technique combining benefits of both is proposed for static structures which is also timely and economically verifiable. Though launch vehicle environments were primarily considered, the system design process is applicable to any surface system using its own unique filed environments.

  6. Design Of An Aerodynamic Measurement System For Unmanned Aerial Vehicle Airfoils

    Directory of Open Access Journals (Sweden)

    L. Velázquez-Araque

    2012-10-01

    Full Text Available This paper presents the design and validation of a measurement system for aerodynamic characteristics of unmanned aerial vehicles. An aerodynamic balance was designed in order to measure the lift, drag forces and pitching moment for different airfoils. During the design process, several aspects were analyzed in order to produce an efficient design, for instance the range of changes of the angle of attack with and a small increment and the versatility of being adapted to different type of airfoils, since it is a wire balance it was aligned and calibrated as well. Wind tunnel tests of a two dimensional NACA four digits family airfoil and four different modifications of this airfoil were performed to validate the aerodynamic measurement system. The modification of this airfoil was made in order to create a blowing outlet with the shape of a step on the suction surface. Therefore, four different locations along the cord line for this blowing outlet were analyzed. This analysis involved the aerodynamic performance which meant obtaining lift, drag and pitching moment coefficients curves as a function of the angle of attack experimentally for the situation where the engine of the aerial vehicle is turned off, called the no blowing condition, by means of wind tunnel tests. The experiments were performed in a closed circuit wind tunnel with an open test section. Finally, results of the wind tunnel tests were compared with numerical results obtained by means of computational fluid dynamics as well as with other experimental references and found to be in good agreement.

  7. Environmental Controls and Life Support System Design for a Space Exploration Vehicle

    Science.gov (United States)

    Stambaugh, Imelda C.; Rodriguez, Branelle; Vonau, Walt, Jr.; Borrego, Melissa

    2012-01-01

    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Space Exploration Vehicle (SEV). The SEV will aid to expand the human exploration envelope for Geostationary Transfer Orbit (GEO), Near Earth Object (NEO), or planetary missions by using pressurized surface exploration vehicles. The SEV, formerly known as the Lunar Electric Rover (LER), will be an evolutionary design starting as a ground test prototype where technologies for various systems will be tested and evolve into a flight vehicle. This paper will discuss the current SEV ECLSS design, any work contributed toward the development of the ECLSS design, and the plan to advance the ECLSS design based on the SEV vehicle and system needs.

  8. System Architecture Design for Electric Vehicle (EV) Systems

    DEFF Research Database (Denmark)

    Xu, Zhao; Wu, Qiuwei; Nielsen, Arne Hejde

    2010-01-01

    The electric vehicle (EV) system should fulfill the energy needs of EVs to meet the EV users’ driving requirements and enable the system service from EVs to support the power system operation with high penetration of renewable energy resources (RES) by providing necessary infrastructures. In order...

  9. Parametric Design and Rapid Prototyping of Installation Box for Vehicle Terminal PCB

    Directory of Open Access Journals (Sweden)

    Wang Xingxing

    2016-01-01

    Full Text Available Installation box for vehicle terminal PCB (Printed Circuit Board was took as research object, which is encountered in the process of project developing. Vehicle terminal PCB in actual development process was set as an example, point cloud data were acquired by three coordinate measuring method; Imageware software was used to reconstruct the vehicle terminal PCB model, basic size parameters of vehicle terminal PCB can be got and then design parameters of installation box for vehicle terminal PCB can be determined. Design of the installation box for vehicle terminal PCB was completed based on Solidworks software, then 3D modeling and 2D drawing of installation box for vehicle terminal PCB was gained. Up Plus 2 rapid prototype machine was used to manufacture installation box for vehicle terminal PCB rapidly based on 3D printing technology, then prototype of installation box for vehicle terminal PCB was obtained. It is of certain engineering significant for single (small amount manufacturing of installation box for general PCB.

  10. Driving modes for designing the cornering response of fully electric vehicles with multiple motors

    Science.gov (United States)

    De Novellis, Leonardo; Sorniotti, Aldo; Gruber, Patrick

    2015-12-01

    Fully electric vehicles with multiple drivetrains allow a significant variation of the steady-state and transient cornering responses through the individual control of the electric motor drives. As a consequence, alternative driving modes can be created that provide the driver the option to select the preferred dynamic vehicle behavior. This article presents a torque-vectoring control structure based on the combination of feedforward and feedback contributions for the continuous control of vehicle yaw rate. The controller is specifically developed to be easily implementable on real-world vehicles. A novel model-based procedure for the definition of the control objectives is described in detail, together with the automated tuning process of the algorithm. The implemented control functions are demonstrated with experimental vehicle tests. The results show the possibilities of torque-vectoring control in designing the vehicle understeer characteristic.

  11. 76 FR 14070 - In the Matter of Certain Automotive Vehicles and Designs Therefore; Notice of Commission Issuance...

    Science.gov (United States)

    2011-03-15

    ... COMMISSION In the Matter of Certain Automotive Vehicles and Designs Therefore; Notice of Commission Issuance... automotive vehicles and designs therefor by reason of infringement of U.S. Patent No. D513,395 (``the '395... automotive vehicles and designs therefor that infringe the '395 patent; and (2) a limited exclusion order...

  12. Wind Tunnel and Hover Performance Test Results for Multicopter UAS Vehicles

    Science.gov (United States)

    Russell, Carl R.; Jung, Jaewoo; Willink, Gina; Glasner, Brett

    2016-01-01

    There is currently a lack of published data for the performance of multicopter unmanned aircraft system (UAS) vehicles, such as quadcopters and octocopters, often referred to collectively as drones. With the rapidly increasing popularity of multicopter UAS, there is interest in better characterizing the performance of this type of aircraft. By studying the performance of currently available vehicles, it will be possible to develop models for vehicles at this scale that can accurately predict performance and model trajectories. This paper describes a wind tunnel test that was recently performed in the U.S. Army's 7- by 10-ft Wind Tunnel at NASA Ames Research Center. During this wind tunnel entry, five multicopter UAS vehicles were tested to determine forces and moments as well as electrical power as a function of wind speed, rotor speed, and vehicle attitude. The test is described here in detail, and a selection of the key results from the test is presented.

  13. Study on BTT Coordinated Turn Autopilot Design for Reentry Gliding Vehicle

    Science.gov (United States)

    Qiang, Li; Yongtao, Shui; Yonghai, Wang; Gang, Wang; Xuguo, Qin

    2017-09-01

    Two-loop acceleration yaw-autopilot with a PI compensator and the engineering approximation of sideslip angle rate feedback for autopilot inner-loop are put forward accounted for BTT coordinated turn control of reentry gliding vehicle. The effect of turning acceleration to body-frame yaw channel is analyzed deeply, two-loop acceleration yaw-autopilot with a PI compensator is advanced to ensure system rapidity and stability based on minimum output by turning acceleration. The convergence essence of sideslip angle rate feedback is presented, furthermore, the engineering implementation composed by yaw angle rate and feedforward compensator is presented. Finally, the simulation results show that the autopilot design can make sideslip angle to be zero fast, improve the performance of coordinated turn. The design has certain robustness and application value.

  14. Aerodynamics and flight performance of flapping wing micro air vehicles

    Science.gov (United States)

    Silin, Dmytro

    Research efforts in this dissertation address aerodynamics and flight performance of flapping wing aircraft (ornithopters). Flapping wing aerodynamics was studied for various wing sizes, flapping frequencies, airspeeds, and angles of attack. Tested wings possessed both camber and dihedral. Experimental results were analyzed in the framework of momentum theory. Aerodynamic coefficients and Reynolds number are defined using a reference velocity as a vector sum of a freestream velocity and a strokeaveraged wingtip velocity. No abrupt stall was observed in flapping wings for the angle of attack up to vertical. If was found that in the presence of a freestream lift of a flapping wing in vertical position is higher than the propulsive thrust. Camber and dihedral increased both lift and thrust. Lift-curve slope, and maximum lift coefficient increased with Reynolds number. Performance model of an ornithopter was developed. Parametric studies of steady level flight of ornithopters with, and without a tail were performed. A model was proposed to account for wing-sizing effects during hover. Three micro ornithopter designs were presented. Ornithopter flight testing and data-logging was performed using a telemetry acquisition system, as well as motion capture technology. The ability of ornithopter for a sustained flight and a presence of passive aerodynamic stability were shown. Flight data were compared with performance simulations. Close agreement in terms of airspeed and flapping frequency was observed.

  15. Design and Implementation of Vehicle Navigation System in Urban Environments using Internet of Things (Iot)

    Science.gov (United States)

    Godavarthi, Bhavana; Nalajala, Paparao; Ganapuram, Vasavi

    2017-08-01

    Advanced vehicle monitoring and tracking system based on embedded Linux board and android application is designed and implemented for monitoring the school vehicle from any location A to location B at real time. The present system would make good use of new technology that based on embedded Linux namely Raspberry Pi and Smartphone android application. This system works on GPS/GPRS/GSM SIM900A. GPS finds the current location of the vehicle, GPRS sends the tracking information to the server and the GSM is used for sending alert message to vehicle’s owner mobile. This system is placed inside the vehicle whose position is to be determined on the web page and monitored at real time. There is a comparison between the current vehicle path already specified paths into the file system. Inside the raspberry pi’s file system taken from vehicle owners through android phone using android application. Means the selection of path from location A to B takes place from vehicle owner’s android application which gives more safety and secures traveling to the traveler. Hence the driver drives the vehicle only on the vehicle owner’s specified path. The driver drives the vehicle only on the vehicle owner’s specified path but if the driver drives in wrong path the message alert will be sent from this system to the vehicle owners mobile and also sent speakers alert to driver through audio jack. If the vehicles speed goes beyond the specified value of the speed, then warning message will be sent to owner mobile. This system also takes care of the traveler’s safety by using Gas leakage and Temperature sensors

  16. Comparison of Small Unmanned Aerial Vehicles Performance Using Image Processing

    Directory of Open Access Journals (Sweden)

    Esteban Cano

    2017-01-01

    Full Text Available Precision agriculture is a farm management technology that involves sensing and then responding to the observed variability in the field. Remote sensing is one of the tools of precision agriculture. The emergence of small unmanned aerial vehicles (sUAV have paved the way to accessible remote sensing tools for farmers. This paper describes the development of an image processing approach to compare two popular off-the-shelf sUAVs: 3DR Iris+ and DJI Phantom 2. Both units are equipped with a camera gimbal attached with a GoPro camera. The comparison of the two sUAV involves a hovering test and a rectilinear motion test. In the hovering test, the sUAV was allowed to hover over a known object and images were taken every quarter of a second for two minutes. For the image processing evaluation, the position of the object in the images was measured and this was used to assess the stability of the sUAV while hovering. In the rectilinear test, the sUAV was allowed to follow a straight path and images of a lined track were acquired. The lines on the images were then measured on how accurate the sUAV followed the path. The hovering test results show that the 3DR Iris+ had a maximum position deviation of 0.64 m (0.126 m root mean square RMS displacement while the DJI Phantom 2 had a maximum deviation of 0.79 m (0.150 m RMS displacement. In the rectilinear motion test, the maximum displacement for the 3DR Iris+ and the DJI phantom 2 were 0.85 m (0.134 m RMS displacement and 0.73 m (0.372 m RMS displacement. These results demonstrated that the two sUAVs performed well in both the hovering test and the rectilinear motion test and thus demonstrated that both sUAVs can be used for civilian applications such as agricultural monitoring. The results also showed that the developed image processing approach can be used to evaluate performance of a sUAV and has the potential to be used as another feedback control parameter for autonomous navigation.

  17. Energy-Based Design Methodology for Air Vehicle Systems: Aerodynamic Correlation Study

    National Research Council Canada - National Science Library

    Figliola, Richard S

    2005-01-01

    .... The developed approach was a joint effort with AFRL personnel in energy- based design. The work represents a new and different approach for detailed drag estimation and vehicle-level utilization of energy...

  18. The Combat System Design and Test Criteria for Iguana TM Armored Vehicles

    National Research Council Canada - National Science Library

    Alper, Irfan

    1999-01-01

    ... acoustic/IR signatures. The Iguana(trademark), a tracked vehicle concept based on a recently patented suspension and track design, could deploy to hot spots world-wide on peacekeeping and combat missions which require extra flexibility to adapt...

  19. PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.

    2004-10-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting

  20. Control Relevant Modeling and Design of Scramjet-Powered Hypersonic Vehicles

    Science.gov (United States)

    Dickeson, Jeffrey James

    This report provides an overview of scramjet-powered hypersonic vehicle modeling and control challenges. Such vehicles are characterized by unstable non-minimum phase dynamics with significant coupling and low thrust margins. Recent trends in hypersonic vehicle research are summarized. To illustrate control relevant design issues and tradeoffs, a generic nonlinear 3DOF longitudinal dynamics model capturing aero-elastic-propulsive interactions for wedge-shaped vehicle is used. Limitations of the model are discussed and numerous modifications have been made to address control relevant needs. Two different baseline configurations are examined over a two-stage to orbit ascent trajectory. The report highlights how vehicle level-flight static (trim) and dynamic properties change over the trajectory. Thermal choking constraints are imposed on control system design as a direct consequence of having a finite FER margin. The implication of this state-dependent nonlinear FER margin constraint, the right half plane (RHP) zero, and lightly damped flexible modes, on control system bandwidth (BW) and FPA tracking has been discussed. A control methodology has been proposed that addresses the above dynamics while providing some robustness to modeling uncertainty. Vehicle closure (the ability to fly a trajectory segment subject to constraints) is provided through a proposed vehicle design methodology. The design method attempts to use open loop metrics whenever possible to design the vehicle. The design method is applied to a vehicle/control law closed loop nonlinear simulation for validation. The 3DOF longitudinal modeling results are validated against a newly released NASA 6DOF code.

  1. Designing heavy vehicles to be safer and more productive using PBS

    CSIR Research Space (South Africa)

    Kienhöfer, FW

    2013-07-01

    Full Text Available and required road width are termed performance based standards (PBS). The PBS approach to heavy vehicle legislation provides a framework to allow vehicles that exceed current legal prescriptive mass and dimension limits access to the road network, under...

  2. CONTROL DESIGN FOR UNMANNED AERIAL VEHICLES WITH FOUR ROTORS

    Directory of Open Access Journals (Sweden)

    Denis Kotarski

    2016-03-01

    Full Text Available Altitude and attitude controlled quadcopter model is used for the behavior and control algorithm testing, before the implementation on the experimental setup. The main objective is the control system design which will achieve good task performance in the combination with the quadcopter dynamic model. Also, for the control model, it is important to be relatively easy to modify for the use of other control algorithms and to be easy to implement on the experimental setup. At the beginning of this article, the control system design process is described. Quadcopter dynamics equations are simplified by applying several assumptions and in that form are used for the controller synthesis. Quadcopter control system is split into inner and outer control loop because the quadcopter is underactuated system which means that the direct control of all of the degrees of freedom is not possible. In the second part, the PI-D control algorithm is described which is applied on the simplified quadcopter dynamic model. The inner loop controls roll, pitch and yaw angles together with the quadcopter altitude. Its outputs are four control variables. Outer loop controls quadcopter X and Y position. Its outputs are roll and pitch desired angles. Regulated quadcopter model behavior is shown for the three types of task. First, the achieving of position in space is simulated. Second, the reference trajectory tracking is shown. Last task shown is the reference trajectory tracking with added periodical disturbances. Simulations show bounded positions error of the regulated quadcopter system using PI-D controller for the different types of tasks performed under different conditions.

  3. Estimating Logistics Support of Reusable Launch Vehicles During Conceptual Design

    Science.gov (United States)

    Morris, W. D.; White, N. H.; Davies, W. T.; Ebeling, C. E.

    1997-01-01

    Methods exist to define the logistics support requirements for new aircraft concepts but are not directly applicable to new launch vehicle concepts. In order to define the support requirements and to discriminate among new technologies and processing choices for these systems, NASA Langley Research Center (LaRC) is developing new analysis methods. This paper describes several methods under development, gives their current status, and discusses the benefits and limitations associated with their use.

  4. A multi-criteria decision aid methodology to design electric vehicles public charging networks

    OpenAIRE

    João Raposo; Ana Rodrigues; Carlos Silva; Tomaz Dentinho

    2015-01-01

    This article presents a new multi-criteria decision aid methodology, dynamic-PROMETHEE, here used to design electric vehicle charging networks. In applying this methodology to a Portuguese city, results suggest that it is effective in designing electric vehicle charging networks, generating time and policy based scenarios, considering offer and demand and the city’s urban structure. Dynamic-PROMETHE adds to the already known PROMETHEE’s characteristics other useful features, such as decision ...

  5. An approach to solar electric orbital transfer vehicle system design and optimization

    Science.gov (United States)

    Seaworth, G. B.; Drubka, Robert E.

    1992-09-01

    This paper presents the design methodology of a solar powered electric orbital transfer vehicle (EOTV). The paper describes how various methods, namely object-oriented programming, expert system techniques, and nonlinear optimization, are applied to the design of an EOTV. Results are presented as a set of curves showing the specific cost ($/kg) of an electric upper stage as function of different mission and vehicle configurations.

  6. Ergonomic risk assessment with DesignCheck to evaluate assembly work in different phases of the vehicle development process.

    Science.gov (United States)

    Winter, Gabriele; Schaub, Karlheinz G; Großmann, Kay; Laun, Gerhard; Landau, Kurt; Bruder, Ralph

    2012-01-01

    Occupational hazards exist, if the design of the work situation is not in accordance with ergonomic design principles. At assembly lines ergonomics is applied to the design of work equipment and tasks and to work organisation. The ignoring of ergonomic principles in planning and design of assembly work leads to unfavourable working posture, action force and material handling. Disorders of the musculoskeletal system are of a common occurrence throughout Europe. Musculoskeletal disorders are a challenge against the background of disabled workers. The changes in a worker's capability have to be regarded in the conception of redesigned and new assembly lines. In this way ergonomics becomes progressively more important in planning and design of vehicles: The objective of ergonomic design in different stages of the vehicles development process is to achieve an optimal adaptation of the assembly work to workers. Hence the ergonomic screening tool "Design Check" (DC) was developed to identify ergonomic deficits in workplace layouts. The screening-tool is based on the current ergonomic state of the art in the design of physical work and relevant EU legal requirements. It was tested within a federal German research project at selected work stations at the assembly lines at Dr.-Ing. h.c. F. Porsche AG / Stuttgart. Meanwhile the application of the screening-tool DC is transferred in other parts of the Porsche AG, Stuttgart. It is also realized as an ergonomic standard method to perform assembly work in different phases of the vehicle development process.

  7. Control-Relevant Modeling, Analysis, and Design for Scramjet-Powered Hypersonic Vehicles

    Science.gov (United States)

    Rodriguez, Armando A.; Dickeson, Jeffrey J.; Sridharan, Srikanth; Benavides, Jose; Soloway, Don; Kelkar, Atul; Vogel, Jerald M.

    2009-01-01

    Within this paper, control-relevant vehicle design concepts are examined using a widely used 3 DOF (plus flexibility) nonlinear model for the longitudinal dynamics of a generic carrot-shaped scramjet powered hypersonic vehicle. Trade studies associated with vehicle/engine parameters are examined. The impact of parameters on control-relevant static properties (e.g. level-flight trimmable region, trim controls, AOA, thrust margin) and dynamic properties (e.g. instability and right half plane zero associated with flight path angle) are examined. Specific parameters considered include: inlet height, diffuser area ratio, lower forebody compression ramp inclination angle, engine location, center of gravity, and mass. Vehicle optimizations is also examined. Both static and dynamic considerations are addressed. The gap-metric optimized vehicle is obtained to illustrate how this control-centric concept can be used to "reduce" scheduling requirements for the final control system. A classic inner-outer loop control architecture and methodology is used to shed light on how specific vehicle/engine design parameter selections impact control system design. In short, the work represents an important first step toward revealing fundamental tradeoffs and systematically treating control-relevant vehicle design.

  8. Performance and development considerations for a new generation of land vehicle displays

    Science.gov (United States)

    Thomas, J.; Lorimer, S.; Shepherd, A.

    2011-06-01

    Combat Land vehicles are small relative to the systems that they carry, yet these systems are increasing rapidly in complexity to provide needed improvements to situational awareness, vehicle management and weapons systems. Processing loads have increased rapidly driven by vehicle health, weapons and selfprotection requirements and there are more display functions than ever. All must be accommodated in a limited space where electronics competes with weapons, ammunition and crew comfort. In this paper we will examine a unique system solution for vehicle computing and associated data display that provides system level advantages from a compact COTS base at a cost that is compatible with Army vehicles. We will examine the packaging, operational environment, processing, operator interface and display design options with a special focus on the trade-offs. Finally, we project current solutions into a future with expanded applications that exploits new display, materials and processing technologies into a new, more flexible vehicle display.

  9. Real-world environmental performance of hybrid vehicles

    NARCIS (Netherlands)

    Winkel, R.G.; Hendriksen, P.; Vermeulen, R.J.; Foster, D.L.

    2001-01-01

    With the further development and market introduction of hybrid vehicle technologies in recent years we are now at a stage where we can test whether the proclaimed advantages of hybrid propulsion in terms of fuel efficiency and emission reduction are actually realised. An important issue is that

  10. On the required complexity of vehicle dynamic models for use in simulation-based highway design.

    Science.gov (United States)

    Brown, Alexander; Brennan, Sean

    2014-06-01

    This paper presents the results of a comprehensive project whose goal is to identify roadway design practices that maximize the margin of safety between the friction supply and friction demand. This study is motivated by the concern for increased accident rates on curves with steep downgrades, geometries that contain features that interact in all three dimensions - planar curves, grade, and superelevation. This complexity makes the prediction of vehicle skidding quite difficult, particularly for simple simulation models that have historically been used for road geometry design guidance. To obtain estimates of friction margin, this study considers a range of vehicle models, including: a point-mass model used by the American Association of State Highway Transportation Officials (AASHTO) design policy, a steady-state "bicycle model" formulation that considers only per-axle forces, a transient formulation of the bicycle model commonly used in vehicle stability control systems, and finally, a full multi-body simulation (CarSim and TruckSim) regularly used in the automotive industry for high-fidelity vehicle behavior prediction. The presence of skidding--the friction demand exceeding supply--was calculated for each model considering a wide range of vehicles and road situations. The results indicate that the most complicated vehicle models are generally unnecessary for predicting skidding events. However, there are specific maneuvers, namely braking events within lane changes and curves, which consistently predict the worst-case friction margins across all models. This suggests that any vehicle model used for roadway safety analysis should include the effects of combined cornering and braking. The point-mass model typically used by highway design professionals may not be appropriate to predict vehicle behavior on high-speed curves during braking in low-friction situations. However, engineers can use the results of this study to help select the appropriate vehicle dynamic

  11. DESIGN AND DEVELOPMENT OF AUTO DEPTH CONTROL OF REMOTELY OPERATED VEHICLE USING THRUSTER SYSTEM

    Directory of Open Access Journals (Sweden)

    F.A. Ali

    2014-12-01

    Full Text Available Remotely Operated Vehicles are underwater robots designed specifically for surveillance, monitoring and collecting data for underwater activities. In the underwater vehicle industries, the thruster is an important part in controlling the direction, depth and speed of the ROV. However, there are some ROVs that cannot be maintained at the specified depth for a long time because of disturbance. This paper proposes an auto depth control using a thruster system. A prototype of a thruster with an auto depth control is developed and attached to the previously fabricated UTeM ROV. This paper presents the operation of auto depth control as well as thrusters for submerging and emerging purposes and maintaining the specified depth. The thruster system utilizes a microcontroller as its brain, a piezoresistive strain gauge pressure sensor and a DC brushless motor to run the propeller. Performance analysis of the auto depth control system is conducted to identify the sensitivity of the pressure sensor, and the accuracy and stability of the system. The results show that the thruster system performs well in maintaining a specified depth as well as stabilizing itself when a disturbanceoccurs even with a simple proportional controller used to control the thruster, where the thruster is an important component of the ROV.

  12. Linear quadratic regulator design for an unpowered, winged re-entry vehicle

    NARCIS (Netherlands)

    Mooij, E.

    1998-01-01

    This report describes the design of an attitude controller for an unpowered, winged re-entry vehicle. The decoupling of the symmetric and asymmetric motion makes it possible to design two separate controllers, one for the pitch mot ion and one for the lateral motion. The design of the controller, a

  13. Impact of the CSIR heavy vehicle simulator (HVS) on the performance of the SA road network

    CSIR Research Space (South Africa)

    Du Plessis, L

    2008-11-01

    Full Text Available The CSIR plays a leading role in the development, application and transfer of processes and technologies for the design, construction, maintainance and management of transport infrastructure in Southern Africa. The heavy vehicle simulator (HVS...

  14. Effects of vehicle-pedestrian interaction and speed limit on traffic performance of intersections

    Science.gov (United States)

    Li, Xiang; Sun, Jian-Qiao

    2016-10-01

    The intersection model consisting of vehicle model, pedestrian model, pedestrian-vehicle interaction model and intersection rules has been presented in this paper. The well-established vehicle and pedestrian movement models in the literature are combined and applied to the intersection system with additional rules. Extensive numerical simulations with different scenarios are carried out. The effects of road speed limit, vehicle arrival rate, pedestrian regularity rate and vehicle rational rate on the intersection performance are quantitatively investigated. Three measures of the traffic performance are studied including transportation efficiency, energy economy and traffic safety. We have found that the energy economy can be achieved with the high transportation efficiency, and that the traffic safety is in conflict with the efficiency. Furthermore, we have found that the pedestrian interference makes the intersection performance worse, resulting in lower transportation efficiency, more energy consumptions and higher safety risk.

  15. Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle

    Science.gov (United States)

    Adam, Patrick; Leachman, Jacob

    2014-01-01

    Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate.

  16. Software Design Document Vehicle Simulation CSCI (5). Volume 4, Appendices

    Science.gov (United States)

    1991-06-01

    vehicle-impact in veh-impact.c, (null) network serd-vehiclejimpact-dg in v’eh-impact-dg.c, (null) bigwhee-1 vih iit in veh-init.c, (null) het _calib-c.m...null) im.a-e t-nd location in libimage.c, (null) kii jenics -calc velocity in calc-v.c, (null) kwj:-ematj’:3u-pdatep im update.-p.c, (null) ci,,- prep ...msg-hdr in premsghdr.c, (null) cig-msg-prepend-overall-header in preoverall.c, (null) FILE: not- prep -buf.c FUNCTION: cig-not ok-to-prepare-buffer

  17. Theory and Design of Flight-Vehicle Engines

    Science.gov (United States)

    Zhdanov, V. T. (Editor); Kurziner, R. I. (Editor)

    1987-01-01

    Papers are presented on such topics as the testing of aircraft engines, errors in the experimental determination of the parameters of scramjet engines, the effect of the nonuniformity of supersonic flow with shocks on friction and heat transfer in the channel of a hypersonic ramjet engine, and the selection of the basic parameters of cooled GTE turbines. Consideration is also given to the choice of optimal total wedge angle for the acceleration of aerospace vehicles, the theory of an electromagnetic-resonator engine, the dynamic characteristics of the pumps and turbines of liquid propellant rocket engines in transition regimes, and a hierarchy of mathematical models for spacecraft control engines.

  18. Operational Modal Analysis and the Performance Assessment of Vehicle Suspension Systems

    Directory of Open Access Journals (Sweden)

    L. Soria

    2012-01-01

    Full Text Available Comfort, road holding and safety of passenger cars are mainly influenced by an appropriate design of suspension systems. Improvements of the dynamic behaviour can be achieved by implementing semi-active or active suspension systems. In these cases, the correct design of a well-performing suspension control strategy is of fundamental importance to obtain satisfying results. Operational Modal Analysis allows the experimental structural identification in those that are the real operating conditions: Moving from output-only data, leading to modal models linearised around the more interesting working points and, in the case of controlled systems, providing the needed information for the optimal design and verification of the controller performance. All these characters are needed for the experimental assessment of vehicle suspension systems. In the paper two suspension architectures are considered equipping the same car type. The former is a semi-active commercial system, the latter a novel prototypic active system. For the assessment of suspension performance, two different kinds of tests have been considered, proving ground tests on different road profiles and laboratory four poster rig tests. By OMA-processing the signals acquired in the different testing conditions and by comparing the results, it is shown how this tool can be effectively utilised to verify the operation and the performance of those systems, by only carrying out a simple, cost-effective road test.

  19. Innovative Structural and Joining Concepts for Lightweight Design of Heavy Vehicle Systems

    Energy Technology Data Exchange (ETDEWEB)

    Prucz, Jacky C; Shoukry, Samir N; William, Gergis W; Evans, Thomas H

    2006-09-30

    systems. The major findings generated by this research effort in its first two years have been summarized in the 2003 and 2004 Annual Progress Reports of DOE's Freedom Car and Vehicle Technologies Program. Consistent interactions with producers of heavy trailers, such as Great Dane and Wabash, as well as with their users, such as Old Dominion Freight Lines, have continued during this period to ensure that the research conducted at WVU will yield practical results that will benefit the industry in the near future. Furthermore, Dr. Gergis William and Mr. Thomas Evans participated in the 2005 Technology and Maintenance Council (TMC) annual meeting held in Tampa, Florida, in February 2005. This event offered the WVU researchers an effective opportunity to explore various technical needs and concerns of the industry, both from the performance and maintenance viewpoints, as well as to assess realistically potential benefits and barriers associated with practical implementation of lightweight materials and design technologies in heavy vehicle structures.

  20. Parametric analysis of vehicle design influence on the four phases of whiplash motion.

    Science.gov (United States)

    Sendur, Polat; Thibodeau, Robert; Burge, John; Tencer, Allan

    2005-09-01

    The objective is to establish a basis for motor vehicle test requirements that measure component contributions to Whiplash Associated Disorders (WAD). Selected vehicle design features are evaluated with regard to their relative contributions to WAD measures. The motion of the occupant cervical spine associated with WAD is divided into four phases: retraction, extension, rebound, and protraction. Injury measures from the literature (NIC, extension moment, N(km), and flexion moment) represent the injury potential during each of these phases. Four vehicle design factors that affect WAD motion (vehicle stiffness, seat stiffness, head restraint height and head restraint backset) were evaluated for their contributions to the injury measures. A detailed 50th percentile male model with a biofidelic neck was used in a 100-run Monte Carlo analysis of a rear impact, varying the design factors across the values documented in the literature. Total energy was held constant and Delta V was 10 kph. Vehicle stiffness has a strong influence on the retraction (70%), rebound (43%), and protraction (47%) phases. Headrest backset demonstrates a strong influence on the extension (49%) and rebound (39%) phases. For WAD protection rating, the vehicle should be viewed as a system whereby the complex interactions among the vehicle, seat, and occupant characteristics all contribute to the WAD potential.

  1. Performance of a Battery Electric Vehicle in the Cold Climate and Hilly Terrain of Vermont

    Science.gov (United States)

    2008-12-23

    The goal of this research project was to determine the performance of a battery electric vehicle (BEV) in the cold climate and hilly terrain of Vermont. For this study, a 2005 Toyota Echo was converted from an internal combustion engine (ICE) vehicle...

  2. Performative Computation-aided Design Optimization

    Directory of Open Access Journals (Sweden)

    Ming Tang

    2012-12-01

    Full Text Available This article discusses a collaborative research and teaching project between the University of Cincinnati, Perkins+Will’s Tech Lab, and the University of North Carolina Greensboro. The primary investigation focuses on the simulation, optimization, and generation of architectural designs using performance-based computational design approaches. The projects examine various design methods, including relationships between building form, performance and the use of proprietary software tools for parametric design.

  3. Performance Analysis of Hybrid Electric Vehicle over Different Driving Cycles

    Science.gov (United States)

    Panday, Aishwarya; Bansal, Hari Om

    2017-02-01

    Article aims to find the nature and response of a hybrid vehicle on various standard driving cycles. Road profile parameters play an important role in determining the fuel efficiency. Typical parameters of road profile can be reduced to a useful smaller set using principal component analysis and independent component analysis. Resultant data set obtained after size reduction may result in more appropriate and important parameter cluster. With reduced parameter set fuel economies over various driving cycles, are ranked using TOPSIS and VIKOR multi-criteria decision making methods. The ranking trend is then compared with the fuel economies achieved after driving the vehicle over respective roads. Control strategy responsible for power split is optimized using genetic algorithm. 1RC battery model and modified SOC estimation method are considered for the simulation and improved results compared with the default are obtained.

  4. Probabilistic Design Analysis (PDA) Approach to Determine the Probability of Cross-System Failures for a Space Launch Vehicle

    Science.gov (United States)

    Shih, Ann T.; Lo, Yunnhon; Ward, Natalie C.

    2010-01-01

    Quantifying the probability of significant launch vehicle failure scenarios for a given design, while still in the design process, is critical to mission success and to the safety of the astronauts. Probabilistic risk assessment (PRA) is chosen from many system safety and reliability tools to verify the loss of mission (LOM) and loss of crew (LOC) requirements set by the NASA Program Office. To support the integrated vehicle PRA, probabilistic design analysis (PDA) models are developed by using vehicle design and operation data to better quantify failure probabilities and to better understand the characteristics of a failure and its outcome. This PDA approach uses a physics-based model to describe the system behavior and response for a given failure scenario. Each driving parameter in the model is treated as a random variable with a distribution function. Monte Carlo simulation is used to perform probabilistic calculations to statistically obtain the failure probability. Sensitivity analyses are performed to show how input parameters affect the predicted failure probability, providing insight for potential design improvements to mitigate the risk. The paper discusses the application of the PDA approach in determining the probability of failure for two scenarios from the NASA Ares I project

  5. Design of a Lunar Quick-Attach Mechanism to Hummer Vehicle Mounting Interface

    Science.gov (United States)

    Grismore, David A.

    2010-01-01

    This report presents my work experiences while I was an intern with NASA (National Aeronautic and Space Administration) in the Spring of2010 at the Kennedy Space Center (KSC) launch facility in Cape Canaveral, Florida as a member of the NASA USRP (Undergraduate Student Research Program) program. I worked in the Surface Systems (NE-S) group during the internship. Within NE-S, two ASRC (Arctic Slope Regional Corporation) contract engineers, A.J. Nick and Jason Schuler, had developed a "Quick-Attach" mechanism for the Chariot Rover, the next generation lunar rover. My project was to design, analyze, and possibly fabricate a mounting interface between their "Quick-Attach" and a Hummer vehicle. This interface was needed because it would increase their capabilities to test the Quick Attach and its various attachments, as they do not have access to a Chariot Rover at KSC. I utilized both Pro Engineer, a 3D CAD software package, and a Coordinate Measuring Machine (CMM) known as a FAROarm to collect data and create my design. I relied on hand calculations and the Mechanica analysis tool within Pro Engineer to perform stress analysis on the design. After finishing the design, I began working on creating professional level CAD drawings and issuing them into the KSC design database known as DDMS before the end of the internship.

  6. Design and implementation of a biomimetic turtle hydrofoil for an autonomous underwater vehicle.

    Science.gov (United States)

    Font, Davinia; Tresanchez, Marcel; Siegentahler, Cedric; Pallejà, Tomàs; Teixidó, Mercè; Pradalier, Cedric; Palacin, Jordi

    2011-01-01

    This paper presents the design and implementation of a turtle hydrofoil for an Autonomous Underwater Vehicle (AUV). The final design of the AUV must have navigation performance like a turtle, which has also been the biomimetic inspiration for the design of the hydrofoil and propulsion system. The hydrofoil design is based on a National Advisory Committee for Aeronautics (NACA) 0014 hydrodynamic profile. During the design stage, four different propulsion systems were compared in terms of propulsion path, compactness, sealing and required power. The final implementation is based on a ball-and-socket mechanism because it is very compact and provides three degrees of freedom (DoF) to the hydrofoil with very few restrictions on the propulsion path. The propulsion obtained with the final implementation of the hydrofoil has been empirically evaluated in a water channel comparing different motion strategies. The results obtained have confirmed that the proposed turtle hydrofoil controlled with a mechanism with three DoF generates can be used in the future implementation of the planned AUV.

  7. Design and Implementation of a Biomimetic Turtle Hydrofoil for an Autonomous Underwater Vehicle

    Science.gov (United States)

    Font, Davinia; Tresanchez, Marcel; Siegentahler, Cedric; Pallejà, Tomàs; Teixidó, Mercè; Pradalier, Cedric; Palacin, Jordi

    2011-01-01

    This paper presents the design and implementation of a turtle hydrofoil for an Autonomous Underwater Vehicle (AUV). The final design of the AUV must have navigation performance like a turtle, which has also been the biomimetic inspiration for the design of the hydrofoil and propulsion system. The hydrofoil design is based on a National Advisory Committee for Aeronautics (NACA) 0014 hydrodynamic profile. During the design stage, four different propulsion systems were compared in terms of propulsion path, compactness, sealing and required power. The final implementation is based on a ball-and-socket mechanism because it is very compact and provides three degrees of freedom (DoF) to the hydrofoil with very few restrictions on the propulsion path. The propulsion obtained with the final implementation of the hydrofoil has been empirically evaluated in a water channel comparing different motion strategies. The results obtained have confirmed that the proposed turtle hydrofoil controlled with a mechanism with three DoF generates can be used in the future implementation of the planned AUV. PMID:22247660

  8. Mid-Lift-to-Drag Ratio Rigid Vehicle Control System Design and Simulation for Human Mars Entry

    Science.gov (United States)

    Johnson, Breanna J.; Cerimele, Christopher J.; Stachowiak, Susan J.; Sostaric, Ronald R.; Matz, Daniel A.; Lu, Ping

    2018-01-01

    The Mid-Lift-to-Drag Ratio Rigid Vehicle (MRV) is a proposed candidate in the NASA Evolvable Mars Campaign's (EMC) Pathfinder Entry, Descent, and Landing (EDL) architecture study. The purpose of the study is to design a mission and vehicle capable of transporting a 20mt payload to the surface of Mars. The MRV is unique in its rigid, asymmetrical lifting-body shape which enables a higher lift-to-drag ratio (L/D) than the typical robotic Mars entry capsule vehicles that carry much less mass. This paper presents the formulation and six-degree-of-freedom (6DOF) performance of the MRV's control system, which uses both aerosurfaces and a propulsive reaction control system (RCS) to affect longitudinal and lateral directional behavior.

  9. Variable-Fidelity Conceptual Design System for Advanced Unconventional Air Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ongoing work in unconventional air-vehicles, i.e. deformable mold-lines and bio-mimetics, is beginning to provide the insight necessary to exploit performance...

  10. Metrological and operational performance of measuring systems used in vehicle compressed natural gas filling stations

    Energy Technology Data Exchange (ETDEWEB)

    Velosa, Jhonn F.; Abril, Henry; Garcia, Luis E. [CDT de GAS (Venezuela). Gas Technological Development Center Corporation

    2008-07-01

    Corporation CDT GAS financially supported by the Colombian government through COLCIENCIAS, carried out a study aimed at designing, developing and implementing in Colombia a calibration and metrological verification 'specialized service' for gas meters installed at dispensers of filling stations using compressed natural gas. The results permitted the identification of improving opportunities (in measuring systems, equipment and devices used to deliver natural gas) which are focused on achieving the highest security and reliability of trading processes of CNG for vehicles. In the development of the first stage of the project, metrological type variables were initially considered, but given the importance of the measuring system and its interaction with the various elements involving gas supply to the filling station, the scope of the work done included aspects related to the operational performance, that is, those influencing the security of the users and the metrological performance of the measuring system. The development of the second stage counted on the collaboration of national companies from the sector of CNG for vehicles, which permitted the carrying out of multiple calibrations to the measuring systems installed in the CNG dispensers, thus achieving, in a concrete way, valid and reliable technological information of the implemented procedures. (author)

  11. Structural Design and Analysis of Un-pressurized Cargo Delivery Vehicle

    Science.gov (United States)

    Martinovic, Zoran N.

    2007-01-01

    As part of the Exploration Systems Architecture Study, NASA has defined a family of vehicles to support lunar exploration and International Space Station (ISS) re-supply missions after the Shuttle s retirement. The Un-pressurized Cargo Delivery Vehicle (UCDV) has been envisioned to be an expendable logistics delivery vehicle that would be used to deliver external cargo to the ISS. It would be launched on the Crew Launch Vehicle and would replace the Crew Exploration Vehicle. The estimated cargo would be the weight of external logistics to the ISS. Determining the minimum weight design of the UCDV during conceptual design is the major issue addressed in this paper. This task was accomplished using a procedure for rapid weight estimation that was based on Finite Element Analysis and sizing of the vehicle by the use of commercially available codes. Three design concepts were analyzed and their respective weights were compared. The analytical structural weight was increased by a factor to account for structural elements that were not modeled. Significant reduction in weight of a composite design over metallic was achieved for similar panel concepts.

  12. Systems Analysis and Structural Design of an Unpressurized Cargo Delivery Vehicle

    Science.gov (United States)

    Wu, K. Chauncey; Cruz, Jonathan N.; Antol, Jeffrey; Sasamoto, Washito A.

    2007-01-01

    The International Space Station will require a continuous supply of replacement parts for ongoing maintenance and repair after the planned retirement of the Space Shuttle in 2010. These parts are existing line-replaceable items collectively called Orbital Replacement Units, and include heavy and oversized items such as Control Moment Gyroscopes and stowed radiator arrays originally intended for delivery aboard the Space Shuttle. Current resupply spacecraft have limited to no capability to deliver these external logistics. In support of NASA's Exploration Systems Architecture Study, a team at Langley Research Center designed an Unpressurized Cargo Delivery Vehicle to deliver bulk cargo to the Space Station. The Unpressurized Cargo Delivery Vehicle was required to deliver at least 13,200 lbs of cargo mounted on at least 18 Flight Releasable Attachment Mechanisms. The Crew Launch Vehicle design recommended in the Exploration Systems Architecture Study would be used to launch one annual resupply flight to the International Space Station. The baseline vehicle design developed here has a cargo capacity of 16,000 lbs mounted on up to 20 Flight Releasable Attachment Mechanisms. Major vehicle components are a 5.5m-diameter cargo module containing two detachable cargo pallets with the payload, a Service Module to provide propulsion and power, and an aerodynamic nose cone. To reduce cost and risk, the Service Module is identical to the one used for the Crew Exploration Vehicle design.

  13. Water facilities in retrospect and prospect: An illuminating tool for vehicle design

    Science.gov (United States)

    Erickson, Gary E.; Peake, David J.; Delfrate, John; Skow, Andrew M.; Malcolm, Gerald N.

    1987-01-01

    Water facilities play a fundamental role in the design of air, ground, and marine vehicles by providing a qualitative, and sometimes quantitative, description of complex flow phenomena. Water tunnels, channels, and tow tanks used as flow-diagnostic tools have experienced a renaissance in recent years in response to the increased complexity of designs suitable for advanced technology vehicles. These vehicles are frequently characterized by large regions of steady and unsteady 3-D flow separation and ensuing vortical flows. The visualization and interpretation of the complicated fluid motions about isolated vehicle components and complete configurations in a time and cost effective manner in hydrodynamic test facilities is a key element in the development of flow control concepts, and, hence, improved vehicle designs. A historical perspective of the role of water facilities in the vehicle design process is presented. The application of water facilities to specific aerodynamic and hydrodynamic flow problems is discussed, and the strengths and limitations of these important experimental tools are emphasized.

  14. A New Handbook for the Development of Space Vehicle Terrestrial Environment Design Requirements.

    Science.gov (United States)

    Johnson, Dale L.; Vaughan, William W.

    2008-01-01

    A new NASA document entitled "Terrestrial Environment (Climatic) Criteria Handbook for Use in Aerospace Vehicle Development (NASA-HDBK-1001A) has been developed. The Handbook provides terrestrial environment information, data bases, models, recommendations, etc. for use in the design, development, trade studies, testing, and mission analyses for space (or launch) .vehicles. This document is organized into fourteen specific natural environment disciplines of which some are winds, atmospheric models, thermal radiation, precipitation-for-icing, cloud cover, atmospheric electricity, geologic hazards, toxic chemical release by propulsion systems, and sea state. Atmospheric phenomena play a significant role in the design and flight of aerospace vehicles and in the integrity of the associated aerospace systems and structures. Environmental design criteria guidelines in this document are based on measurements and observations of atmospheric and climatic phenomena relative to various aerospace development, operational, and vehicle launch locations. The natural environment criteria guidelines data presented in this Handbook were formulated based on discussions with and requests from engineers involved in aerospace vehicle development and operations. Therefore, they represent responses to actual engineering problems and are not just a general compilation of environmental data. The Handbook addresses the basis for the information presented, the interpretations of the terrestrial environment guideline given in the Handbook, and its application to the development of aerospace vehicle design requirements. Specific examples of the Handbook content and associated "lessons lenmed" are given in this paper.

  15. Design and analysis of new fault-tolerant permanent magnet motors for four-wheel-driving electric vehicles

    Science.gov (United States)

    Liu, Guohai; Gong, Wensheng; Chen, Qian; Jian, Linni; Shen, Yue; Zhao, Wenxiang

    2012-04-01

    In this paper, a novel in-wheel permanent-magnet (PM) motor for four-wheel-driving electrical vehicles is proposed. It adopts an outer-rotor topology, which can help generate a large drive torque, in order to achieve prominent dynamic performance of the vehicle. Moreover, by adopting single-layer concentrated-windings, fault-tolerant teeth, and the optimal combination of slot and pole numbers, the proposed motor inherently offers negligible electromagnetic coupling between different phase windings, hence, it possesses a fault-tolerant characteristic. Meanwhile, the phase back electromotive force waveforms can be designed to be sinusoidal by employing PMs with a trapezoidal shape, eccentric armature teeth, and unequal tooth widths. The electromagnetic performance is comprehensively investigated and the optimal design is conducted by using the finite-element method.

  16. South African performance based standards (PBS) vehicle to transport steel pipes

    CSIR Research Space (South Africa)

    Dessein, T

    2010-03-01

    Full Text Available The preliminary design of a South African PBS vehicle to transport large-bore welded steel pipes is an important milestone in developing local expertise to analyse PBS designs. The design approach has drawn extensively from the PBS measures...

  17. Statistical methods for launch vehicle guidance, navigation, and control (GN&C) system design and analysis

    Science.gov (United States)

    Rose, Michael Benjamin

    A novel trajectory and attitude control and navigation analysis tool for powered ascent is developed. The tool is capable of rapid trade-space analysis and is designed to ultimately reduce turnaround time for launch vehicle design, mission planning, and redesign work. It is streamlined to quickly determine trajectory and attitude control dispersions, propellant dispersions, orbit insertion dispersions, and navigation errors and their sensitivities to sensor errors, actuator execution uncertainties, and random disturbances. The tool is developed by applying both Monte Carlo and linear covariance analysis techniques to a closed-loop, launch vehicle guidance, navigation, and control (GN&C) system. The nonlinear dynamics and flight GN&C software models of a closed-loop, six-degree-of-freedom (6-DOF), Monte Carlo simulation are formulated and developed. The nominal reference trajectory (NRT) for the proposed lunar ascent trajectory is defined and generated. The Monte Carlo truth models and GN&C algorithms are linearized about the NRT, the linear covariance equations are formulated, and the linear covariance simulation is developed. The performance of the launch vehicle GN&C system is evaluated using both Monte Carlo and linear covariance techniques and their trajectory and attitude control dispersion, propellant dispersion, orbit insertion dispersion, and navigation error results are validated and compared. Statistical results from linear covariance analysis are generally within 10% of Monte Carlo results, and in most cases the differences are less than 5%. This is an excellent result given the many complex nonlinearities that are embedded in the ascent GN&C problem. Moreover, the real value of this tool lies in its speed, where the linear covariance simulation is 1036.62 times faster than the Monte Carlo simulation. Although the application and results presented are for a lunar, single-stage-to-orbit (SSTO), ascent vehicle, the tools, techniques, and mathematical

  18. Validating Human Performance Models of the Future Orion Crew Exploration Vehicle

    Science.gov (United States)

    Wong, Douglas T.; Walters, Brett; Fairey, Lisa

    2010-01-01

    NASA's Orion Crew Exploration Vehicle (CEV) will provide transportation for crew and cargo to and from destinations in support of the Constellation Architecture Design Reference Missions. Discrete Event Simulation (DES) is one of the design methods NASA employs for crew performance of the CEV. During the early development of the CEV, NASA and its prime Orion contractor Lockheed Martin (LM) strived to seek an effective low-cost method for developing and validating human performance DES models. This paper focuses on the method developed while creating a DES model for the CEV Rendezvous, Proximity Operations, and Docking (RPOD) task to the International Space Station. Our approach to validation was to attack the problem from several fronts. First, we began the development of the model early in the CEV design stage. Second, we adhered strictly to M&S development standards. Third, we involved the stakeholders, NASA astronauts, subject matter experts, and NASA's modeling and simulation development community throughout. Fourth, we applied standard and easy-to-conduct methods to ensure the model's accuracy. Lastly, we reviewed the data from an earlier human-in-the-loop RPOD simulation that had different objectives, which provided us an additional means to estimate the model's confidence level. The results revealed that a majority of the DES model was a reasonable representation of the current CEV design.

  19. Analysis, Design and Optimization of Non-Cylindrical Fuselage for Blended-Wing-Body (BWB) Vehicle

    Science.gov (United States)

    Mukhopadhyay, V.; Sobieszczanski-Sobieski, J.; Kosaka, I.; Quinn, G.; Charpentier, C.

    2002-01-01

    Initial results of an investigation towards finding an efficient non-cylindrical fuselage configuration for a conceptual blended-wing-body flight vehicle were presented. A simplified 2-D beam column analysis and optimization was performed first. Then a set of detailed finite element models of deep sandwich panel and ribbed shell construction concepts were analyzed and optimized. Generally these concepts with flat surfaces were found to be structurally inefficient to withstand internal pressure and resultant compressive loads simultaneously. Alternatively, a set of multi-bubble fuselage configuration concepts were developed for balancing internal cabin pressure load efficiently, through membrane stress in inner-stiffened shell and inter-cabin walls. An outer-ribbed shell was designed to prevent buckling due to external resultant compressive loads. Initial results from finite element analysis appear to be promising. These concepts should be developed further to exploit their inherent structurally efficiency.

  20. Design and Optimization of Permanent Magnet Brushless Machines for Electric Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Weiwei Gu

    2015-12-01

    Full Text Available In this paper, by considering and establishing the relationship between the maximum operating speed and d-axis inductance, a new design and optimization method is proposed. Thus, a more extended constant power speed range, as well as reduced losses and increased efficiency, especially in the high-speed region, can be obtained, which is essential for electric vehicles (EVs. In the first step, the initial permanent magnet (PM brushless machine is designed based on the consideration of the maximum speed and performance specifications in the entire operation region. Then, on the basis of increasing d-axis inductance, and meanwhile maintaining constant permanent magnet flux linkage, the PM brushless machine is optimized. The corresponding performance of the initial and optimal PM brushless machines are analyzed and compared by the finite-element method (FEM. Several tests are carried out in an EV simulation model based on the urban dynamometer driving schedule (UDDS for evaluation. Both theoretical analysis and simulation results verify the validity of the proposed design and optimization method.

  1. Design and mechanical analysis of a 3D-printed biodegradable biomimetic micro air vehicle wing

    Science.gov (United States)

    Salami, E.; Ganesan, P. B.; Ward, T. A.; Viyapuri, R.; Romli, F. I.

    2016-10-01

    The biomimetic micro air vehicles (BMAV) are unmanned, micro-scaled aircraft that are bio-inspired from flying organisms to achieve the lift and thrust by flapping their wings. There are still many technological challenges involved with designing the BMAV. One of these is designing the ultra-lightweight materials and structures for the wings that have enough mechanical strength to withstand continuous flapping at high frequencies. Insects achieve this by having chitin-based, wing frame structures that encompass a thin, film membrane. The main objectives of this study are to design a biodegradable BMAV wing (inspired from the dragonfly) and analyze its mechanical properties. The dragonfly-like wing frame structure was bio-mimicked and fabricated using a 3D printer. A chitosan nanocomposite film membrane was applied to the BMAV wing frames through casting method. Its mechanical performance was analyzed using universal testing machine (UTM). This analysis indicates that the tensile strength and Young's modulus of the wing with a membrane is nearly double that of the wing without a membrane, which allow higher wing beat frequencies and deflections that in turn enable a greater lifting performance.

  2. Damping-tunable energy-harvesting vehicle damper with multiple controlled generators: Design, modeling and experiments

    Science.gov (United States)

    Xie, Longhan; Li, Jiehong; Li, Xiaodong; Huang, Ledeng; Cai, Siqi

    2018-01-01

    Hydraulic dampers are used to decrease the vibration of a vehicle, where vibration energy is dissipated as heat. In addition to resulting in energy waste, the damping coefficient in hydraulic dampers cannot be changed during operation. In this paper, an energy-harvesting vehicle damper was proposed to replace traditional hydraulic dampers. The goal is not only to recover kinetic energy from suspension vibration but also to change the damping coefficient during operation according to road conditions. The energy-harvesting damper consists of multiple generators that are independently controlled by switches. One of these generators connects to a tunable resistor for fine tuning the damping coefficient, while the other generators are connected to a control and rectifying circuit, each of which both regenerates electricity and provides a constant damping coefficient. A mathematical model was built to investigate the performance of the energy-harvesting damper. By controlling the number of switched-on generators and adjusting the value of the external tunable resistor, the damping can be fine tuned according to the requirement. In addition to the capability of damping tuning, the multiple controlled generators can output a significant amount of electricity. A prototype was built to test the energy-harvesting damper design. Experiments on an MTS testing system were conducted, with results that validated the theoretical analysis. Experiments show that changing the number of switched-on generators can obviously tune the damping coefficient of the damper and simultaneously produce considerable electricity.

  3. Solar Electric Propulsion Technologies Being Designed for Orbit Transfer Vehicle Applications

    Science.gov (United States)

    Sarver-Verhey, Timothy R.; Hoffman, David J.; Kerslake, Thomas W.; Oleson, Steven R.; Falck, Robert D.

    2002-01-01

    There is increasing interest in employing Solar Electric Propulsion (SEP) for new missions requiring transfer from low Earth orbit to the Earth-Moon Lagrange point, L1. Mission architecture plans place the Gateway Habitat at L1 in the 2011 to 2016 timeframe. The Gateway Habitat is envisioned to be used for Lunar exploration, space telescopes, and planetary mission staging. In these scenarios, an SEP stage, or "tug," is used to transport payloads to L1--such as the habitat module, lunar excursion and return vehicles, and chemical propellant for return crew trips. SEP tugs are attractive because they are able to efficiently transport large (less than 10,000 kg) payloads while minimizing propellant requirements. To meet the needs of these missions, a preliminary conceptual design for a general-purpose SEP tug was developed that incorporates several of the advanced space power and in-space propulsion technologies (such as high-power gridded ion and Hall thrusters, high-performance thin-film photovoltaics, lithium-ion batteries, and advanced high-voltage power processing) being developed at the NASA Glenn Research Center. A spreadsheet-based vehicle system model was developed for component sizing and is currently being used for mission planning. This model incorporates a low-thrust orbit transfer algorithm to make preliminary determinations of transfer times and propellant requirements. Results from this combined tug mass estimation and orbit transfer model will be used in a higher fidelity trajectory model to refine the analysis.

  4. The Application of the NASA Advanced Concepts Office, Launch Vehicle Team Design Process and Tools for Modeling Small Responsive Launch Vehicles

    Science.gov (United States)

    Threet, Grady E.; Waters, Eric D.; Creech, Dennis M.

    2012-01-01

    The Advanced Concepts Office (ACO) Launch Vehicle Team at the NASA Marshall Space Flight Center (MSFC) is recognized throughout NASA for launch vehicle conceptual definition and pre-phase A concept design evaluation. The Launch Vehicle Team has been instrumental in defining the vehicle trade space for many of NASA s high level launch system studies from the Exploration Systems Architecture Study (ESAS) through the Augustine Report, Constellation, and now Space Launch System (SLS). The Launch Vehicle Team s approach to rapid turn-around and comparative analysis of multiple launch vehicle architectures has played a large role in narrowing the design options for future vehicle development. Recently the Launch Vehicle Team has been developing versions of their vetted tools used on large launch vehicles and repackaged the process and capability to apply to smaller more responsive launch vehicles. Along this development path the LV Team has evaluated trajectory tools and assumptions against sounding rocket trajectories and air launch systems, begun altering subsystem mass estimating relationships to handle smaller vehicle components, and as an additional development driver, have begun an in-house small launch vehicle study. With the recent interest in small responsive launch systems and the known capability and response time of the ACO LV Team, ACO s launch vehicle assessment capability can be utilized to rapidly evaluate the vast and opportune trade space that small launch vehicles currently encompass. This would provide a great benefit to the customer in order to reduce that large trade space to a select few alternatives that should best fit the customer s payload needs.

  5. Vibro-acoustic performance of newly designed tram track structures

    Science.gov (United States)

    Haladin, Ivo; Lakušić, Stjepan; Ahac, Maja

    2017-09-01

    Rail vehicles in interaction with a railway structure induce vibrations that are propagating to surrounding structures and cause noise disturbance in the surrounding areas. Since tram tracks in urban areas often share the running surface with road vehicles one of top priorities is to achieve low maintenance and long lasting structure. Research conducted in scope of this paper gives an overview of newly designed tram track structures designated for use on Zagreb tram network and their performance in terms of noise and vibration mitigation. Research has been conducted on a 150 m long test section consisted of three tram track types: standard tram track structure commonly used on tram lines in Zagreb, optimized tram structure for better noise and vibration mitigation and a slab track with double sleepers embedded in a concrete slab, which presents an entirely new approach of tram track construction in Zagreb. Track has been instrumented with acceleration sensors, strain gauges and revision shafts for inspection. Relative deformations give an insight into track structure dynamic load distribution through the exploitation period. Further the paper describes vibro-acoustic measurements conducted at the test site. To evaluate the track performance from the vibro-acoustical standpoint, detailed analysis of track decay rate has been analysed. Opposed to measurement technique using impact hammer for track decay rate measurements, newly developed measuring technique using vehicle pass by vibrations as a source of excitation has been proposed and analysed. Paper gives overview of the method, it’s benefits compared to standard method of track decay rate measurements and method evaluation based on noise measurements of the vehicle pass by.

  6. Design and development of electric vehicle charging station equipped with RFID

    Science.gov (United States)

    Panatarani, C.; Murtaddo, D.; Maulana, D. W.; Irawan, S.; Joni, I. M.

    2016-02-01

    This paper reports the development of electric charging station from distributed renewable for electric vehicle (EV). This designed refer to the input voltage standard of IEC 61851, plugs features of IEC 62196 and standard communication of ISO 15118. The developed electric charging station used microcontroller ATMEGA8535 and RFID as controller and identifier of the EV users, respectively. The charging station successfully developed as desired features for electric vehicle from renewable energy resources grid with solar panel, wind power and batteries storage.

  7. DESIGN OF A COMPACT DUAL-PURPOSE STARTING CLUTCH IN THE DRIVE OF A PROTOTYPE VEHICLE

    Directory of Open Access Journals (Sweden)

    Ján PETRÓCI

    2016-06-01

    Full Text Available Initially, the development of a dual-purpose clutch was based on racing experiences and application requirements, as well as the results from testing the new power unit in the existing prototype vehicle. In order to achieve the highest possible driving range of the prototype vehicle, it has been necessary to eliminate the maximum possible losses and drive in unnecessary components. The design aimed to achieve simple access, reliability and low weight.

  8. Vibration isolation analysis of new design OEM damper for malaysia vehicle suspension system featuring MR fluid

    Science.gov (United States)

    Unuh, M. H.; Muhamad, P.; Norfazrina, H. M. Y.; Ismail, M. A.; Tanasta, Z.

    2018-01-01

    The applications of semi-active damper employing magnetorheological (MR) fluids keep increasing in fulfilling the demand to control undesired vibration effect. The aim of this study is to introduce the new design of damper for Malaysian vehicle model as well to evaluate its effectiveness in promoting comfort. The vibration isolation performance of the OEM damper featuring MR fluid was analysed physically under real road profile excitation experimentally. An experiment using quarter car rig suspension and LMS SCADAS Mobile was conducted to demonstrate the influence of current in controlling the characteristics of MR fluid in alter the damping behaviour under 5 cm bump impact. Subsequently, the displacement values were measured with respect to time. The new design OEM damper featuring MR fluid was validated by comparing the data with original equipment manufacturer (OEM) passive damper results under the same approach of testing. Comparison of numerical data of the new design OEM damper shown that it can reduce the excitation amplitude up to 40% compared to those obtained by OEM passive damper. Finally, the new design OEM damper featuring MR fluid has effectively isolated the disturbance from the road profile and control the output force.

  9. Design and Construction of a Robotic Vehicle with Omni-directional Mecanum Wheels

    Directory of Open Access Journals (Sweden)

    Ján VACHÁLEK

    2014-06-01

    Full Text Available The paper deals with the design and construction of a universal robotic vehicle prototype, used for laboratory and educational purposes. The main goal is its use as a technology demonstrator for the needs of students, therefore it is equipped with several kinds of sensors and universal advanced control technologies and design solutions. Its basis is a control system and construction concept using mobile battery gear and omnidirectional Mecanum wheels. A manipulating arm and advanced tracking and spatial navigation systems are also components of the design. Since the problem of a customized design and construction of such a robotic vehicle is very complex and solved in various scientific fields, in this paper we will mainly focus on the detailed description of the control systems and subsystems of the vehicle.

  10. Tools for Designing Thermal Management of Batteries in Electric Drive Vehicles (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.; Keyser, M.; Kim, G. H.; Santhanagopalan, S.; Smith, K.

    2013-02-01

    Temperature has a significant impact on life, performance, and safety of lithium-ion battery technology, which is expected to be the energy storage of choice for electric drive vehicles (xEVs). High temperatures degrade Li-ion cells faster while low temperatures reduce power and energy capabilities that could have cost, reliability, range, or drivability implications. Thermal management of battery packs in xEVs is essential to keep the cells in the desired temperature range and also reduce cell-to-cell temperature variations, both of which impact life and performance. The value that the battery thermal management system provides in reducing battery life and improving performance outweighs its additional cost and complexity. Tools that are essential for thermal management of batteries are infrared thermal imaging, isothermal calorimetry, thermal conductivity meter and computer-aided thermal analysis design software. This presentation provides details of these tools that NREL has used and we believe are needed to design right-sized battery thermal management systems.

  11. Performance measures to characterize directional corridor travel time delay based on probe vehicle data : final report.

    Science.gov (United States)

    2015-10-01

    Anonymous probe vehicle data are currently being collected on roadways throughout the United States. These data are being incorporated into local and statewide mobility reports to measure the performance of freeways and arterial systems. Predefined s...

  12. A CLIPS-based tool for aircraft pilot-vehicle interface design

    Science.gov (United States)

    Fowler, Thomas D.; Rogers, Steven P.

    1991-01-01

    The Pilot-Vehicle Interface of modern aircraft is the cognitive, sensory, and psychomotor link between the pilot, the avionics modules, and all other systems on board the aircraft. To assist pilot-vehicle interface designers, a C Language Integrated Production System (CLIPS) based tool was developed that allows design information to be stored in a table that can be modified by rules representing design knowledge. Developed for the Apple Macintosh, the tool allows users without any CLIPS programming experience to form simple rules using a point and click interface.

  13. Experimental modeling of the effect of hurricane wind forces on driving behavior and vehicle performance.

    Science.gov (United States)

    Rodriguez, Jose M; Codjoe, Julius; Osman, Osama; Ishak, Sherif; Wolshon, Brian

    2015-01-01

    While traffic planning is important for developing a hurricane evacuation plan, vehicle performance on the roads during extreme weather conditions is critical to the success of the planning process. This novel study investigates the effect of gusty hurricane wind forces on the driving behavior and vehicle performance. The study explores how the parameters of a driving simulator could be modified to reproduce wind loadings experienced by three vehicle types (passenger car, ambulance, and bus) during gusty hurricane winds, through manipulation of appropriate software. Thirty participants were then tested on the modified driving simulator under five wind conditions (ranging from normal to hurricane category 4). The driving performance measures used were heading error and lateral displacement. The results showed that higher wind forces resulted in more varied and greater heading error and lateral displacement. The ambulance had the greatest heading errors and lateral displacements, which were attributed to its large lateral surface area and light weight. Two mathematical models were developed to estimate the heading error and lateral displacements for each of the vehicle types for a given change in lateral wind force. Through a questionnaire, participants felt the different characteristics while driving each vehicle type. The findings of this study demonstrate the valuable use of a driving simulator to model the behavior of different vehicle types and to develop mathematical models to estimate and quantify driving behavior and vehicle performance under hurricane wind conditions.

  14. Design of an onboard battery charger for an electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Heckford, Simon

    2001-07-01

    This report describes the design of an on-board battery charger for an electric car. There are already various battery charger units on the market. However, these are not specifically designed for this application, and consequently do not provide an ideal solution. Because these products are not specific to one application, and instead opt to cover a variety of briefs, they are not ideal. They also tend to be heavier and more expensive than if the charger was built specifically for one purpose. The main design considerations were that the charger should be compact and lightweight. It was also specified that the design should be able to operate using either the single-phase or three-phase AC supply. Before the design process for the battery charger could commence, it was necessary for the author to get an appreciation of power electronics, since he had no previous experience in the subject. The author focused his attention on areas of the subject most valuable to the project, including becoming familiar with the principle behind battery chargers. Once the required knowledge was obtained, the author could begin designing the charger. The majority of the design was actually undertaken using two software packages called MATLAB and Simulink, whilst also using the knowledge acquired. Regular discussions were had with the project team in order to ensure that the correct methodology was being used and a suitable design was duly developed. Possible further work was identified which could not be carried out within the time constraints of this project.

  15. Electrical Steering of Vehicles - Fault-tolerant Analysis and Design

    DEFF Research Database (Denmark)

    Blanke, Mogens; Thomsen, Jesper Sandberg

    2006-01-01

    The topic of this paper is systems that need be designed such that no single fault can cause failure at the overall level. A methodology is presented for analysis and design of fault-tolerant architectures, where diagnosis and autonomous reconfiguration can replace high cost triple redundancy...

  16. Development of integrated programs for Aerospace-vehicle Design (IPAD): Product program management systems

    Science.gov (United States)

    Isenberg, J. M.; Southall, J. W.

    1979-01-01

    The Integrated Programs for Aerospace Vehicle Design (IPAD) is a computing system to support company-wide design information processing. This document presents a brief description of the management system used to direct and control a product-oriented program. This document, together with the reference design process (CR 2981) and the manufacture interactions with the design process (CR 2982), comprises the reference information that forms the basis for specifying IPAD system requirements.

  17. Solar array design based on shadow analysis for increasing net energy collection in a competition vehicle

    Science.gov (United States)

    Osorio-Gómez, Gilberto; Mejía-Gutiérrez, Ricardo; Suárez-Castañeda, Nicolás; Gil-Herrera, Ana; Barrera-Velásquez, Jorge

    2015-01-01

    Photovoltaic (PV) applications such as in the architectural, automotive, and aerospace industries face design contradictions because they are expected to produce a lot of energy but are constrained by available area, surface shape, incident irradiance, shadows, and other aspects that have a negative influence on the energy produced by the solar panel. Solar competition vehicles are some of these challenging PV applications. The design of such solar arrays needs to consider efficiency evaluation in order to optimize space; it is difficult not to install solar modules in areas impacted by shadows. A design procedure for a solar array configuration based on shadow analysis for competition vehicles is presented. The principle is that shadows in moving objects can be simulated, since the vehicle, the earth and the sun are are moving in semipredictable patterns, thus net energy collection can be forecast. The case study presented is the solar array design of a vehicle that participated in the World Solar Challenge 2013. The obtained results illustrate how the employment of the procedure gives insights on important aspects to consider and also delivers qualitative and quantitative information for decision making. In addition, the experience in competition highlights some issues to be considered, modified, or improved in further vehicle designs.

  18. A Conceptual Aerospace Vehicle Structural System Modeling, Analysis and Design Process

    Science.gov (United States)

    Mukhopadhyay, Vivek

    2007-01-01

    A process for aerospace structural concept analysis and design is presented, with examples of a blended-wing-body fuselage, a multi-bubble fuselage concept, a notional crew exploration vehicle, and a high altitude long endurance aircraft. Aerospace vehicle structures must withstand all anticipated mission loads, yet must be designed to have optimal structural weight with the required safety margins. For a viable systems study of advanced concepts, these conflicting requirements must be imposed and analyzed early in the conceptual design cycle, preferably with a high degree of fidelity. In this design process, integrated multidisciplinary analysis tools are used in a collaborative engineering environment. First, parametric solid and surface models including the internal structural layout are developed for detailed finite element analyses. Multiple design scenarios are generated for analyzing several structural configurations and material alternatives. The structural stress, deflection, strain, and margins of safety distributions are visualized and the design is improved. Over several design cycles, the refined vehicle parts and assembly models are generated. The accumulated design data is used for the structural mass comparison and concept ranking. The present application focus on the blended-wing-body vehicle structure and advanced composite material are also discussed.

  19. Nuclear fuel elements design, fabrication and performance

    CERN Document Server

    Frost, Brian R T

    1982-01-01

    Nuclear Fuel Elements: Design, Fabrication and Performance is concerned with the design, fabrication, and performance of nuclear fuel elements, with emphasis on fast reactor fuel elements. Topics range from fuel types and the irradiation behavior of fuels to cladding and duct materials, fuel element design and modeling, fuel element performance testing and qualification, and the performance of water reactor fuels. Fast reactor fuel elements, research and test reactor fuel elements, and unconventional fuel elements are also covered. This volume consists of 12 chapters and begins with an overvie

  20. Discrete tyre model application for evaluation of vehicle limit handling performance

    Science.gov (United States)

    Siramdasu, Y.; Taheri, S.

    2016-11-01

    The goal of this study is twofold, first, to understand the transient and nonlinear effects of anti-lock braking systems (ABS), road undulations and driving dynamics on lateral performance of tyre and second, to develop objective handling manoeuvres and respective metrics to characterise these effects on vehicle behaviour. For studying the transient and nonlinear handling performance of the vehicle, the variations of relaxation length of tyre and tyre inertial properties play significant roles [Pacejka HB. Tire and vehicle dynamics. 3rd ed. Butterworth-Heinemann; 2012]. To accurately simulate these nonlinear effects during high-frequency vehicle dynamic manoeuvres, requires a high-frequency dynamic tyre model (? Hz). A 6 DOF dynamic tyre model integrated with enveloping model is developed and validated using fixed axle high-speed oblique cleat experimental data. Commercially available vehicle dynamics software CarSim® is used for vehicle simulation. The vehicle model was validated by comparing simulation results with experimental sinusoidal steering tests. The validated tyre model is then integrated with vehicle model and a commercial grade rule-based ABS model to perform various objective simulations. Two test scenarios of ABS braking in turn on a smooth road and accelerating in a turn on uneven and smooth roads are considered. Both test cases reiterated that while the tyre is operating in the nonlinear region of slip or slip angle, any road disturbance or high-frequency brake torque input variations can excite the inertial belt vibrations of the tyre. It is shown that these inertial vibrations can directly affect the developed performance metrics and potentially degrade the handling performance of the vehicle.

  1. The design of a human-powered vehicle

    Science.gov (United States)

    Wiederholt, J. V.; Pahle, J. W.

    1983-01-01

    Human power applied through a bicycle is perhaps the most efficient means of transport available today. Aerodynamic drag, however, limits the speed possible from the man/bicycle combination. An aerodynamically efficient body enclosing the system can reduce the drag and permit increased speeds. A study was conducted to determine an efficient body design for a high-speed bicycle. Wind tunnel and potential flow studies were conducted to evaluate the drag and lift characteristics of proposed shell designs. A proposed bicycle/shell design is presented.

  2. Wheel liner design for improved sound and structural performances

    Science.gov (United States)

    Oltean, Alexandru; Diaconescu, Claudiu; Tabacu, Ştefan

    2017-10-01

    Vehicle noise is composed mainly of wheel-road noise and noise from the power unit. At low speeds power unit noise dominates while at high speeds wheel-road noise dominates as wheel-road noise level increases approximately logarithmically with speed. The wheel liner is designed as a component of the vehicle that has a multiple role. It has to prevent the dirt or water from the road surface that are engaged by the wheel to access the engine/front bay. Same time it has the important role to reduce perceived noised in the passenger’s compartment that comes from the wheel-road interaction. Progress in plastic injection moulding technology allowed for new structures to be developed – nonwoven materials in combination with a PP based carrier structure which benefits from a cell structure caused by MuCell injection moulding. The results are light parts with increased sound absorption performances. An adapted combination of materials and production processes can provide the solution for stiff yet soundproofing structures valued for modern vehicles. Sound absorption characteristics of materials used for wheel liners applications were reported in this study. Different polypropylene and polyester fibre-based thermally bonded nonwovens varying in weight and thickness were investigated. Having as a background the performances of the nonwoven material the microcellular structure was part of the analysis. Acoustical absorptive behaviour was explained by analysing the results obtained using the impedance tube and correlating with the knowledge of materials structure.

  3. Field Operations Program, Toyota PRIUS Hybrid Electric Vehicle Performance Characterization Report

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, James Edward; Nguyen, N.; Phung, J.; Smith, J.; Wehrey, M.

    2001-12-01

    The U.S. Department of Energy’s Field Operations Program evaluates advanced technology vehicles in real-world applications and environments. Advanced technology vehicles include pure electric, hybrid electric, hydrogen, and other vehicles that use emerging technologies such as fuel cells. Information generated by the Program is targeted to fleet managers and others considering the deployment of advanced technology vehicles. As part of the above activities, the Field Operations Program has initiated the testing of the Toyota Prius hybrid electric vehicle (HEV), a technology increasingly being considered for use in fleet applications. This report describes the Pomona Loop testing of the Prius, providing not only initial operational and performance information, but also a better understanding of HEV testing issues. The Pomona Loop testing includes both Urban and Freeway drive cycles, each conducted at four operating scenarios that mix minimum and maximum payloads with different auxiliary (e.g., lights, air conditioning) load levels.

  4. Designing performativity for mixed reality installations

    Directory of Open Access Journals (Sweden)

    Andrew Morrison

    2010-07-01

    Full Text Available This article takes up the concept of performativity prevalent in the humanities and applies it to the design of installation arts in mixed reality mode. Based on the design, development and public access to two specific works, the concept is related to a form of research by design. We argue that the concept of performativity may be further usefully employed in investigations (design and research, artistic and public into digital arts where complex intersections between concepts, technologies, dramaturgy, media and participant actions are in flux and together constitute the emergence and experience of a work. Theories of performativity are related to these two works in an argument that further suggests there is room in research by design to also include ‘performative design’. The article is the result of a wide-ranging interdisciplinary collaboration and aims to convey some sense of that in its reporting style, content and analysis.

  5. Ergonomic evaluation of interior design of Shoka vehicle and proposing recommendations for improvement.

    Science.gov (United States)

    Mazloumi, Adel; Mohammadreze, Fallah

    2012-01-01

    One of the applications of ergonomics disciplinary is designing driver workstation compatible to users' characteristics. The aim of this study was evaluation of interior design of Shoka vehicle with respect to the accommodation for Iranian population and proposing suggestions for customizing design of this vehicle. This study was a descriptive-analytical study conducted among thirty men from Iranian drivers population in 5, 50, 95 percentiles of the stature variable. Objective variables related to the occupant packaging and vehicle visual aspects including anthropometric variables, frontal, lateral, and side view and so on were investigated first. Then, subjective variables related to the driver mental workload and body comfort discomfort were studied using BMDMW and comfort questionnaires during 2-hour driving trial sessions. Occupant packaging variables and hand-arm angle showed the least accommodation percent (%53). Seating angles showed low accommodation as well (%73). Among three percentile groups there were no significant differences between the mean values of mental workload during two hours driving task. And, the mean value related to the comfort discomfort was 3.9 during driving sessions. Considering the findings in this study, it can be conclude that seating angles need correction and optimization. Taking mental workload results into account, it can be concluded that the interior design of the studied car had no influence on drivers' mental workload. From the aspect of comfort discomfort, Shoka vehicle showed neutral state among drivers. Optimizing seating angles, decreasing vibration, correcting stiffness of seating pan are suggested for customization of the ergonomics aspect of this vehicle.

  6. Business School's Performance Management System Standards Design

    Science.gov (United States)

    Azis, Anton Mulyono; Simatupang, Togar M.; Wibisono, Dermawan; Basri, Mursyid Hasan

    2014-01-01

    This paper aims to compare various Performance Management Systems (PMS) for business school in order to find the strengths of each standard as inputs to design new model of PMS. There are many critical aspects and gaps notified for new model to improve performance and even recognized that self evaluation performance management is not well…

  7. Conceptual Design and Cost Estimate of a Subsonic NASA Testbed Vehicle (NTV) for Aeronautics Research

    Science.gov (United States)

    Nickol, Craig L.; Frederic, Peter

    2013-01-01

    A conceptual design and cost estimate for a subsonic flight research vehicle designed to support NASA's Environmentally Responsible Aviation (ERA) project goals is presented. To investigate the technical and economic feasibility of modifying an existing aircraft, a highly modified Boeing 717 was developed for maturation of technologies supporting the three ERA project goals of reduced fuel burn, noise, and emissions. This modified 717 utilizes midfuselage mounted modern high bypass ratio engines in conjunction with engine exhaust shielding structures to provide a low noise testbed. The testbed also integrates a natural laminar flow wing section and active flow control for the vertical tail. An eight year program plan was created to incrementally modify and test the vehicle, enabling the suite of technology benefits to be isolated and quantified. Based on the conceptual design and programmatic plan for this testbed vehicle, a full cost estimate of $526M was developed, representing then-year dollars at a 50% confidence level.

  8. Use of Model-Based Design Methods for Enhancing Resiliency Analysis of Unmanned Aerial Vehicles

    Science.gov (United States)

    Knox, Lenora A.

    The most common traditional non-functional requirement analysis is reliability. With systems becoming more complex, networked, and adaptive to environmental uncertainties, system resiliency has recently become the non-functional requirement analysis of choice. Analysis of system resiliency has challenges; which include, defining resilience for domain areas, identifying resilience metrics, determining resilience modeling strategies, and understanding how to best integrate the concepts of risk and reliability into resiliency. Formal methods that integrate all of these concepts do not currently exist in specific domain areas. Leveraging RAMSoS, a model-based reliability analysis methodology for Systems of Systems (SoS), we propose an extension that accounts for resiliency analysis through evaluation of mission performance, risk, and cost using multi-criteria decision-making (MCDM) modeling and design trade study variability modeling evaluation techniques. This proposed methodology, coined RAMSoS-RESIL, is applied to a case study in the multi-agent unmanned aerial vehicle (UAV) domain to investigate the potential benefits of a mission architecture where functionality to complete a mission is disseminated across multiple UAVs (distributed) opposed to being contained in a single UAV (monolithic). The case study based research demonstrates proof of concept for the proposed model-based technique and provides sufficient preliminary evidence to conclude which architectural design (distributed vs. monolithic) is most resilient based on insight into mission resilience performance, risk, and cost in addition to the traditional analysis of reliability.

  9. Design and Analysis of a Single—Camera Omnistereo Sensor for Quadrotor Micro Aerial Vehicles (MAVs

    Directory of Open Access Journals (Sweden)

    Carlos Jaramillo

    2016-02-01

    Full Text Available We describe the design and 3D sensing performance of an omnidirectional stereo (omnistereo vision system applied to Micro Aerial Vehicles (MAVs. The proposed omnistereo sensor employs a monocular camera that is co-axially aligned with a pair of hyperboloidal mirrors (a vertically-folded catadioptric configuration. We show that this arrangement provides a compact solution for omnidirectional 3D perception while mounted on top of propeller-based MAVs (not capable of large payloads. The theoretical single viewpoint (SVP constraint helps us derive analytical solutions for the sensor’s projective geometry and generate SVP-compliant panoramic images to compute 3D information from stereo correspondences (in a truly synchronous fashion. We perform an extensive analysis on various system characteristics such as its size, catadioptric spatial resolution, field-of-view. In addition, we pose a probabilistic model for the uncertainty estimation of 3D information from triangulation of back-projected rays. We validate the projection error of the design using both synthetic and real-life images against ground-truth data. Qualitatively, we show 3D point clouds (dense and sparse resulting out of a single image captured from a real-life experiment. We expect the reproducibility of our sensor as its model parameters can be optimized to satisfy other catadioptric-based omnistereo vision under different circumstances.

  10. Vehicle Sketch Pad: a Parametric Geometry Modeler for Conceptual Aircraft Design

    Science.gov (United States)

    Hahn, Andrew S.

    2010-01-01

    The conceptual aircraft designer is faced with a dilemma, how to strike the best balance between productivity and fidelity? Historically, handbook methods have required only the coarsest of geometric parameterizations in order to perform analysis. Increasingly, there has been a drive to upgrade analysis methods, but these require considerably more precise and detailed geometry. Attempts have been made to use computer-aided design packages to fill this void, but their cost and steep learning curve have made them unwieldy at best. Vehicle Sketch Pad (VSP) has been developed over several years to better fill this void. While no substitute for the full feature set of computer-aided design packages, VSP allows even novices to quickly become proficient in defining three-dimensional, watertight aircraft geometries that are adequate for producing multi-disciplinary meta-models for higher order analysis methods, wind tunnel and display models, as well as a starting point for animation models. This paper will give an overview of the development and future course of VSP.

  11. Design Environment for Novel Vertical Lift Vehicles: DELIVER

    Science.gov (United States)

    Theodore, Colin

    2016-01-01

    This is a 20 minute presentation discussing the DELIVER vision. DELIVER is part of the ARMD Transformative Aeronautics Concepts Program, particularly the Convergent Aeronautics Solutions Project. The presentation covers the DELIVER vision, transforming markets, conceptual design process, challenges addressed, technical content, and FY2016 key activities.

  12. Design of a technology centre: A Vehicle for Industrial Development ...

    African Journals Online (AJOL)

    This paper deals with the design of a Technology Centre to meet the needs of industries and enhance the industrial development activities in Ethiopia. The article addresses problems and constraints of industries in developing countries with regards to raw materials, skills, technology master plan, R&D, maintenance and ...

  13. Computer-assisted ergonomic analysis for vehicle interior design

    NARCIS (Netherlands)

    Punte, P.A.J.; Oudenhuijzen, A.J.K.

    2000-01-01

    TNO Human Factors is involved in the process of designing and testing a new concept for driver workplaces in passenger cars, i.e. with a horizontally fixed driver seat and adjustable pedals, steering wheel and instrument panel. This new concept is intended to achieve an interior space and

  14. Near Term Hybrid Passenger Vehicle Development Program. Phase I, Final report. Appendix C: preliminary design data package. Volume II. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Piccolo, R.

    1979-09-11

    This appendix to the final report on the Hybrid Passenger Vehicle Development Program contans data on Na-S batteries, Ni-Zn batteries; vehicle body design; tire characteristics; and results of computer simulations of vehicle yaw, pitch, and roll under various driving and aerodynamic conditions. (LCL)

  15. On Optimizing Steering Performance of Multi-axle Vehicle Based on Driving Force Control

    Directory of Open Access Journals (Sweden)

    Wu Zhicheng

    2017-01-01

    Full Text Available The steering performance of multi-axle vehicle with independent driving system is affected by the distribution of the wheel driving force. A nonlinear vehicle dynamics model including magic formula tire model for describing 11 DoF four-axle vehicle with dual-front-axle-steering (DFAS system was presented. The influence of different driving force distribution scheme on the steering performance of the vehicle was analyzed. A control strategy for improving the steady response and transient response of the vehicle steering is proposed. The results show: For the steady response, setting different drive force for internal and external wheels according to the actual steering characteristics of the vehicle can effectively improve its steering characteristics; For the transient response, adopting the zero sideslip angle control strategy and using the PID control algorithm to control the driving force of the outside wheel of tear-two-axle, under angle step input, the vehicle sideslip angle can quickly stabilize to 0 and yaw rate also significantly decreases.

  16. Vehicle Integrated Performance Analysis, the VIPA Experience: Reconnecting with Technical Integration

    Science.gov (United States)

    McGhee, David S.

    2005-01-01

    Today's NASA is facing significant challenges and changes. The Exploration initiative indicates a large increase in projects with limited increase in budget. The Columbia report has criticized NASA for its lack of insight and technical integration impacting its ability to provide safety. The Aldridge report is advocating NASA find new ways of doing business. Very early in the Space Launch Initiative (SLI) program a small team of engineers at MSFC were asked to propose a process for performing a system level assessment of a launch vehicle. The request was aimed primarily at providing insight and making NASA a "smart buyer." Out of this effort the VIPA team was created. The difference between the VIPA effort and many integration attempts is that VIPA focuses on using experienced people from various disciplines and a process which focuses them on a technically integrated assessment. Most previous attempts have focused on developing an all encompassing software tool. In addition, VIPA anchored its process formulation in the experience of its members and in early developmental Space Shuttle experience. The primary reference for this is NASA-TP-2001-210092, "Launch Vehicle Design Process: Characterization, Technical Integration, and Lessons Learned," and discussions with its authors. The foundations of VIPA's process are described. The VIPA team also recognized the need to drive detailed analysis earlier in the design process. Analyses and techniques typically done in later design phases, are brought forward using improved computing technology. The intent is to allow the identification of significant sensitivities, trades, and design issues much earlier in the program. This process is driven by the T-model for Technical Integration described in the aforementioned reference. VIPA's approach to performing system level technical integration is discussed in detail. Proposed definitions are offered to clarify this discussion and the general systems integration dialog. VIPA

  17. Design and Testing of a Prototype Lunar or Planetary Surface Landing Research Vehicle (LPSLRV)

    Science.gov (United States)

    Murphy, Gloria A.

    2010-01-01

    This handbook describes a two-semester senior design course sponsored by the NASA Office of Education, the Exploration Systems Mission Directorate (ESMD), and the NASA Space Grant Consortium. The course was developed and implemented by the Mechanical and Aerospace Engineering Department (MAE) at Utah State University. The course final outcome is a packaged senior design course that can be readily incorporated into the instructional curriculum at universities across the country. The course materials adhere to the standards of the Accreditation Board for Engineering and Technology (ABET), and is constructed to be relevant to key research areas identified by ESMD. The design project challenged students to apply systems engineering concepts to define research and training requirements for a terrestrial-based lunar landing simulator. This project developed a flying prototype for a Lunar or Planetary Surface Landing Research Vehicle (LPSRV). Per NASA specifications the concept accounts for reduced lunar gravity, and allows the terminal stage of lunar descent to be flown either by remote pilot or autonomously. This free-flying platform was designed to be sufficiently-flexible to allow both sensor evaluation and pilot training. This handbook outlines the course materials, describes the systems engineering processes developed to facilitate design fabrication, integration, and testing. This handbook presents sufficient details of the final design configuration to allow an independent group to reproduce the design. The design evolution and details regarding the verification testing used to characterize the system are presented in a separate project final design report. Details of the experimental apparatus used for system characterization may be found in Appendix F, G, and I of that report. A brief summary of the ground testing and systems verification is also included in Appendix A of this report. Details of the flight tests will be documented in a separate flight test

  18. Designing method in current control system of permanent magnet synchronous motor for railway vehicle traction; Tetsudo sharyo kudoyo eikyu jishaku doki dendoki no denryu seigyokei sekkeiho

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, K.; Matsuoka, K. [Railway Technical Research Institute, Tokyo (Japan); Nakazawa, Y. [Toshiba Corp., Tokyo (Japan)

    1998-07-01

    We have been studying the application of permanent magnet synchronous motor (PMSM) for railway vehicle traction in order to reduce the weight and size of direct drive traction motor. As a part of this study establishing a current control system of PMSM suitable for railway vehicle traction should be investigated. In this paper we discuss about designing method of current control system mentioned above and suggest a method which is available under the condition of railway vehicle traction, low switching frequency and long digital calculating period. Next we investigate how to decide current response time constant Td and reach a conclusion that it is about 10ms is appropriate under some assumed condition. Then we checked this current control system for railway vehicle traction through experiments and studies of influence of parameter changing. Consequently we can recognize the current control system has satisfactory performance for railway vehicle traction. 10 refs., 13 figs.

  19. Environmental assessment for the electric and hybrid vehicle demonstration project, performance standards and financial incentives

    Energy Technology Data Exchange (ETDEWEB)

    LaBelle, S. J.

    1978-10-01

    The assessment is concerned with the impacts of the demonstration of electric and hybrid vehicles acquired to fulfill certain requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act, PL 94-413 as amended. The financial incentives programs and vehicle performance standards associated with the demonstration are also covered. Not included is an assessment of the long term effects of EHV commercialization and of the research and development program being carried out simultaneously with the demonstration, also in response to PL 94-413. These federal actions will be included in a programmatic environmental assessment scheduled for completion in FY 79.

  20. Performance simulation and emission of propulsion systems for vehicles; Simulacao de desempenho e emissao de sistemas de propulsao para veiculos

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Silvio Carlos Anibal de; Bueno, Marcelo da Fonseca [Universidade Federal do Rio de Janeiro (DEM/UFRJ), RJ (Brazil). Dept. de Engenharia Mecanica

    2010-07-01

    This paper evaluates the performance of two same platform vehicles but using different propulsion systems and fuels. At the two simulated vehicles (Fiat Palio Weekend Electrical and Fiat Palio Weekend 1.4), it will be evaluated the fuel consumption, energy efficiency and the CO{sub 2} emission. For the performance analysis of both vehicles the PAMVEC (Parametric Analytical Model of Vehicle Energy Consumption) will be used, which presents the capacity of generate energy indexes (energy consumption, fuel consumption, power and vehicle yield) from the characteristics of traction cycle and properties of vehicle components (internal combustion engine, battery, breaking, transmission and energy sources)

  1. The driver workstation in commercial vehicles; Ergonomie und Design von Fahrerarbeitsplaetzen in Nutzfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, W. [HAW-Hamburg (Germany)

    2003-07-01

    Nowadays, ergonomics and design are quality factors and indispensable elements of commercial vehicle design and development. Whereas a vehicle's appearance, i.e. its outside design, produces fascination and image, the design of its passenger cell focuses entirely on drivers and their tasks. Today, passenger-cell design and the ergonomics of driver workstations in commercial vehicles are clearly becoming more and more important. This article concentrates above all on defining commercial vehicle drivers, which, within the scope of research projects on coach-driver workstations, has provided new insight into the design of driver workstations. In light of the deficits determined, the research project mainly focused on designing driver workstations which were in line with the latest findings in ergonomics and human engineering. References to the methodology of driver-workstation optimization seems important in this context. The afore-mentioned innovations in the passenger cells of commercial vehicles will be explained and described by means of topical and practical examples. (orig.) [German] Ergonomie und Design sind heute Qualitaetsfaktoren und unverzichtbarer Bestandteil bei der Entwicklung von Nutzfahrzeugen. Erzeugt das Erscheinungsbild, die Aussengestaltung des Fahrzeugs, die Faszination und das Image, so ist die Innengestaltung weitgehend ganz auf die Bedienpersonen und ihre Arbeitsaufgaben bezogen. Die Innenraumgestaltung und die Ergonomie von Fahrerarbeitsplaetzen in Nutzfahrzeugen sind heute in einer Phase der deutlichen Aufwertung zu sehen. Im Beitrag wird besonders auf die Definition der Bedienpersonen fuer Nutzfahrzeuge eingegangen, die im Rahmen des Forschungsprojekts Fahrerarbeitsplatz im Reisebus zu neuen Erkenntnissen bei der Auslegung von Arbeitsplaetzen fuehrte. Gemaess der ermittelten Defizite konzentriert sich die Studie im Kern auf das Gestaltungskonzept des Fahrerarbeitsplatzes nach ergonomischen und arbeitswissenschaftlichen Erkenntnissen

  2. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    OpenAIRE

    Chen, Jia-Shiun

    2015-01-01

    Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs) ar...

  3. Design of integrated autopilot/autothrottle for NASA TSRV airplane using integral LQG methodology. [transport systems research vehicle

    Science.gov (United States)

    Kaminer, Isaac; Benson, Russell A.

    1989-01-01

    An integrated autopilot/autothrottle control system has been developed for the NASA transport system research vehicle using a two-degree-of-freedom approach. Based on this approach, the feedback regulator was designed using an integral linear quadratic regulator design technique, which offers a systematic approach to satisfy desired feedback performance requirements and guarantees stability margins in both control and sensor loops. The resulting feedback controller was discretized and implemented using a delta coordinate concept, which allows for transient free controller switching by initializing all controller states to zero and provides a simple solution for dealing with throttle limiting cases.

  4. Design of Modular, Shape-transitioning Inlets for a Conical Hypersonic Vehicle

    Science.gov (United States)

    Gollan, Rowan J.; Smart, Michael K.

    2010-01-01

    For a hypersonic vehicle, propelled by scramjet engines, integration of the engines and airframe is highly desirable. Thus, the forward capture shape of the engine inlet should conform to the vehicle body shape. Furthermore, the use of modular engines places a constraint on the shape of the inlet sidewalls. Finally, one may desire a combustor cross- section shape that is different from that of the inlet. These shape constraints for the inlet can be accommodated by employing a streamline-tracing and lofting technique. This design technique was developed by Smart for inlets with a rectangular-to-elliptical shape transition. In this paper, we generalise that technique to produce inlets that conform to arbitrary shape requirements. As an example, we show the design of a body-integrated hypersonic inlet on a winged-cone vehicle, typical of what might be used in a three-stage orbital launch system. The special challenge of inlet design for this conical vehicle at an angle-of-attack is also discussed. That challenge is that the bow shock sits relatively close to the vehicle body.

  5. Comparison of Two Multidisciplinary Optimization Strategies for Launch-Vehicle Design

    Science.gov (United States)

    Braun, R. D.; Powell, R. W.; Lepsch, R. A.; Stanley, D. O.; Kroo, I. M.

    1995-01-01

    The investigation focuses on development of a rapid multidisciplinary analysis and optimization capability for launch-vehicle design. Two multidisciplinary optimization strategies in which the analyses are integrated in different manners are implemented and evaluated for solution of a single-stage-to-orbit launch-vehicle design problem. Weights and sizing, propulsion, and trajectory issues are directly addressed in each optimization process. Additionally, the need to maintain a consistent vehicle model across the disciplines is discussed. Both solution strategies were shown to obtain similar solutions from two different starting points. These solutions suggests that a dual-fuel, single-stage-to-orbit vehicle with a dry weight of approximately 1.927 x 10(exp 5)lb, gross liftoff weight of 2.165 x 10(exp 6)lb, and length of 181 ft is attainable. A comparison of the two approaches demonstrates that treatment or disciplinary coupling has a direct effect on optimization convergence and the required computational effort. In comparison with the first solution strategy, which is of the general form typically used within the launch vehicle design community at present, the second optimization approach is shown to he 3-4 times more computationally efficient.

  6. Probabilistic performance-based design for high performance control systems

    Science.gov (United States)

    Micheli, Laura; Cao, Liang; Gong, Yongqiang; Cancelli, Alessandro; Laflamme, Simon; Alipour, Alice

    2017-04-01

    High performance control systems (HPCS) are advanced damping systems capable of high damping performance over a wide frequency bandwidth, ideal for mitigation of multi-hazards. They include active, semi-active, and hybrid damping systems. However, HPCS are more expensive than typical passive mitigation systems, rely on power and hardware (e.g., sensors, actuators) to operate, and require maintenance. In this paper, a life cycle cost analysis (LCA) approach is proposed to estimate the economic benefit these systems over the entire life of the structure. The novelty resides in the life cycle cost analysis in the performance based design (PBD) tailored to multi-level wind hazards. This yields a probabilistic performance-based design approach for HPCS. Numerical simulations are conducted on a building located in Boston, MA. LCA are conducted for passive control systems and HPCS, and the concept of controller robustness is demonstrated. Results highlight the promise of the proposed performance-based design procedure.

  7. A methodology for the validated design space exploration of fuel cell powered unmanned aerial vehicles

    Science.gov (United States)

    Moffitt, Blake Almy

    Unmanned Aerial Vehicles (UAVs) are the most dynamic growth sector of the aerospace industry today. The need to provide persistent intelligence, surveillance, and reconnaissance for military operations is driving the planned acquisition of over 5,000 UAVs over the next five years. The most pressing need is for quiet, small UAVs with endurance beyond what is capable with advanced batteries or small internal combustion propulsion systems. Fuel cell systems demonstrate high efficiency, high specific energy, low noise, low temperature operation, modularity, and rapid refuelability making them a promising enabler of the small, quiet, and persistent UAVs that military planners are seeking. Despite the perceived benefits, the actual near-term performance of fuel cell powered UAVs is unknown. Until the auto industry began spending billions of dollars in research, fuel cell systems were too heavy for useful flight applications. However, the last decade has seen rapid development with fuel cell gravimetric and volumetric power density nearly doubling every 2--3 years. As a result, a few design studies and demonstrator aircraft have appeared, but overall the design methodology and vehicles are still in their infancy. The design of fuel cell aircraft poses many challenges. Fuel cells differ fundamentally from combustion based propulsion in how they generate power and interact with other aircraft subsystems. As a result, traditional multidisciplinary analysis (MDA) codes are inappropriate. Building new MDAs is difficult since fuel cells are rapidly changing in design, and various competitive architectures exist for balance of plant, hydrogen storage, and all electric aircraft subsystems. In addition, fuel cell design and performance data is closely protected which makes validation difficult and uncertainty significant. Finally, low specific power and high volumes compared to traditional combustion based propulsion result in more highly constrained design spaces that are

  8. Integrated Vehicle and Trajectory Design of Small Spacecraft with Electric Propulsion for Earth and Interplanetary Missions

    Science.gov (United States)

    Spangelo, Sara; Dalle, Derek; Longmier, Benjamin

    2015-01-01

    This paper investigates the feasibility of Earth-transfer and interplanetary mission architectures for miniaturized spacecraft using emerging small solar electric propulsion technologies. Emerging small SEP thrusters offer significant advantages relative to existing technologies and will enable U-class systems to perform trajectory maneuvers with significant Delta V requirements. The approach in this paper is unique because it integrates trajectory design with vehicle sizing and accounts for the system and operational constraints of small U-class missions. The modeling framework includes integrated propulsion, orbit, energy, and external environment dynamics and systems-level power, energy, mass, and volume constraints. The trajectory simulation environment models orbit boosts in Earth orbit and flyby and capture trajectories to interplanetary destinations. A family of small spacecraft mission architectures are studied, including altitude and inclination transfers in Earth orbit and trajectories that escape Earth orbit and travel to interplanetary destinations such as Mercury, Venus, and Mars. Results are presented visually to show the trade-offs between competing performance objectives such as maximizing available mass and volume for payloads and minimizing transfer time. The results demonstrate the feasibility of using small spacecraft to perform significant Earth and interplanetary orbit transfers in less than one year with reasonable U-class mass, power, volume, and mission durations.

  9. TARDEC Ground Vehicle Robotics: Vehicle Dynamic Characterization and Research

    Science.gov (United States)

    2015-09-01

    of Contents I. Introduction II. Physical Vehicle Design Properties a. All-Terrain Vehicle Classification b. UGV Classification c. OEMs in...Vehicle Design Properties The physical components of a vehicle naturally have a large effect on its performance. Body and chassis type have the...Diesel-Electric, Series, Parallel. Power Distribution: RWD, FWD, AWD, open diff, LSD , Torsen diff, differential braking (traction control), drive by

  10. An Advanced Open-Source Aircraft Design Platform for Personal Air Vehicle Geometry, Aerodynamics, and Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovators working to revolutionize air travel through personal aviation pioneers need innovative aircraft design tools. Vehicle Sketch Pad (VSP) is an aircraft...

  11. A hybrid multi-objective imperialist competitive algorithm and Monte Carlo method for robust safety design of a rail vehicle

    Science.gov (United States)

    Nejlaoui, Mohamed; Houidi, Ajmi; Affi, Zouhaier; Romdhane, Lotfi

    2017-10-01

    This paper deals with the robust safety design optimization of a rail vehicle system moving in short radius curved tracks. A combined multi-objective imperialist competitive algorithm and Monte Carlo method is developed and used for the robust multi-objective optimization of the rail vehicle system. This robust optimization of rail vehicle safety considers simultaneously the derailment angle and its standard deviation where the design parameters uncertainties are considered. The obtained results showed that the robust design reduces significantly the sensitivity of the rail vehicle safety to the design parameters uncertainties compared to the determinist one and to the literature results.

  12. INK - Designing for Performative Literary Interactions

    DEFF Research Database (Denmark)

    Fritsch, Jonas; Pold, Søren Bro; Vestergaard, Lasse Steenbock

    2014-01-01

    In this article, we present the interactive literary installation Ink, an experimental installation displayed at the Roskilde library, and the Roskilde Festival, which is designed to prompt public reflection on the nature and role of digital literature. By manipulating three books embedded...... tendencies when designing affectively engaging literary interactions at the edge of art and design. Keywords: Affective engagement, Digital literature, Ergodic reading, Public displays, Performative interaction...

  13. Near Space Hypersonic Unmanned Aerial Vehicle Dynamic Surface Backstepping Control Design

    Directory of Open Access Journals (Sweden)

    Jinyong YU

    2014-07-01

    Full Text Available Compared with traditional aircraft, the near space hypersonic unmanned aerial vehicle control system design must deal with the extra prominent dynamics characters, which are differ from the traditional aircrafts control system design. A new robust adaptive control design method is proposed for one hypersonic unmanned aerial vehicle (HSUAV uncertain MIMO nonaffine block control system by using multilayer neural networks, feedback linearization technology, and dynamic surface backstepping. Multilayer neural networks are used to compensate the influence from the uncertain, which designs the robust terms to solve the problem from approach error. Adaptive backstepping is adopted designed to ensure control law, the dynamic surface control strategy to eliminate “the explosion of terms” by introducing a series of first order filters to obtain the differentiation of the virtual control inputs. Finally, nonlinear six-degree-of-freedom (6-DOF numerical simulation results for a HSUAV model are presented to demonstrate the effectiveness of the proposed method.

  14. Schoolbus driver performance can be improved with driver training, safety incentivisation, and vehicle roadworthy modifications

    Directory of Open Access Journals (Sweden)

    A van Niekerk

    2017-03-01

    Full Text Available In South Africa (SA, the school transport industry provides millions of children with a means of travelling to and from school. The industry has, however, been reported to be plagued by widespread safety concerns. The consequent road traffic incidents have often been attributed to driver factors, including driving in excess of legal speeds or at inappropriate speeds; driving while under the influence of alcohol, while sleepy or fatigued; or driving without using protective equipment for vehicle occupants. There are currently very few SA interventions that specifically target this important industry role-player. The Safe Travel to School Programme was recently implemented by a national child safety agency, with a focus on driver road safety awareness, defensive driver training, eye- testing, vehicle roadworthy inspections with selected upgrades, incentives for safe performance, and implementation of a vehicle telematics tracking system with regular, individual driving behaviour information updates. This quasi-experimental study offers an evaluation of the initial impact on safety performance of this telematics-based driver and vehicle safety intervention in terms of speeding, acceleration, braking, cornering, and time-of-day driving, and compares the school transport driver performance with that of general motorists. Despite concerns that some school transport vehicles are used for multiple purposes outside of school transport duties, at night, and for longer distances, overall these vehicles recorded lower percentages of speeding, lower harsh braking, and lower average harsh cornering and acceleration than general drivers.

  15. Cooling System Design for PEM Fuel Cell Powered Air Vehicles

    Science.gov (United States)

    2010-06-18

    McGraw- Hill, New York, 2005. 3. Incropera , Frank P. and David P. DeWitt, Fundamentals of Heat and Mass Transfer , 4th Ed., John Wiley & Sons, New...Normalizing the mass in this way was useful when comparing the heat transfer performance of multiple radiators because the overall heat transfer ...Vehicles”, AIAA Paper 2008-6413, Aug. 2003. 2. Kays, William, Michael Crawford and Bernard Weigand, Convection Heat and Mass Transfer , 4th Ed

  16. Refinements in the Design of the Ares V Cargo Launch Vehicle for NASA's, Exploration Strategy

    Science.gov (United States)

    Creech, Steve

    2008-01-01

    NASA is developing a new launch vehicle fleet to fulfill the national goals of replacing the shuttle fleet, completing the International Space Station (ISS), and exploring the Moon on the way to eventual exploration of Mars and beyond. Programmatic and technical decisions during early architecture studies and subsequent design activities were focused on safe, reliable operationally efficient vehicles that could support a sustainable exploration program. A pair of launch vehicles was selected to support those goals the Ares I crew launch vehicle and the Ares V cargo launch vehicle. They will be the first new human-rated launch vehicles developed by NASA in more than 30 years (Figure 1). Ares I will be the first to fly, beginning space station ferry operations no later than 2015. It will be able to carry up to six astronauts to ISS or support up to four astronauts for expeditions to the moon. Ares V is scheduled to be operational in the 2020 timeframe and will provide the propulsion systems and payload to truly extend human exploration beyond low-Earth orbit. (LEO).

  17. A wireless sensor network design and implementation for vehicle detection, classification, and tracking

    Science.gov (United States)

    Aljaafreh, A.; Al Assaf, A.

    2013-05-01

    Vehicle intrusion is considered a significant threat for critical zones specially the militarized zones and therefore vehicles monitoring has a great importance. In this paper a small wireless sensor network for vehicle intrusion monitoring consists of a five inexpensive sensor nodes distributed over a small area and connected with a gateway using star topology has been designed and implemented. The system is able to detect a passage of an intrusive vehicle, classify it either wheeled or tracked, and track the direction of its movement. The approach is based on Vehicle's ground vibrations for detection, vehicle's acoustic signature for classification and the Energy- based target localization for tracking. Detection and classification are implemented by using different algorithms and techniques including Analog to Digital Conversion, Fast Fourier Transformation (FFT) and Neural Network .All of these algorithms and techniques are implemented locally in the sensor node using Microchip dsPIC digital signal controller. Results are sent from the sensor node to the gateway using ZigBee technology and then from the gateway to a web server using GPRS technology.

  18. Noise, vibration and harshness (NVH) criteria as functions of vehicle design and consumer expectations

    Science.gov (United States)

    Raichel, Daniel R.

    2005-09-01

    The criteria for NVH design are to a large degree determined by the types of vehicles and the perceived desires of the purchasers of vehicles, as well as the cost of incorporating NVH measures. Vehicles may be classified into specific types, e.g., economy car, midsize passenger, near-luxury and luxury passenger cars, sports cars, vans, minivans, and sports utility vehicles of varying sizes. The owner of a luxury sedan would expect a quiet ride with minimal vibration and harshness-however, if that sedan is to display sporting characteristics, some aspects of NVH may actually have to be increased in order to enhance a feeling of driver exhilaration. A discussion of the requirements for specific types of vehicles is provided, with due regard for effects on the usability of installed sound/video systems, driver and passenger fatigue, feel of steering mechanisms and other mechanical components, consumer market research, etc. A number of examples of vehicles on the market are cited.

  19. Design and analysis of Air flow duct for improving the thermal performance of disc brake rotor

    Science.gov (United States)

    Raja, T.; Mathiselvan, G.; Sreenivasulureddy, M.; Goldwin Xavier, X.

    2017-05-01

    safety in automotive engineering has been considered as a number one priority in development of new vehicle. A brake system is one of the most critical systems in the vehicle, without which the vehicle will put a passenger in an unsafe position. Temperature distribution on disc rotor brake and the performance brake of disc rotor is influenced by the air flow around the disc rotor. In this paper, the effect of air flow over the disc rotor is analyzed using the CFD software. The air flow over the disc rotor is increased by using a duct to supply more air flow over the disc rotor. The duct is designed to supply more air to the rotor surface and it can be placed in front of the vehicle for better performance. Increasing the air flow around the rotor will maximize the heat convection from the rotor surface. The rotor life and the performance can be improved.

  20. Design of a Permanent Magnet Synchronous Machine for a Flywheel Energy Storage System within a Hybrid Electric Vehicle

    Science.gov (United States)

    Jiang, Ming

    As an energy storage device, the flywheel has significant advantages over conventional chemical batteries, including higher energy density, higher efficiency, longer life time, and less pollution to the environment. An effective flywheel system can be attributed to its good motor/generator (M/G) design. This thesis describes the research work on the design of a permanent magnet synchronous machine (PMSM) as an M/G suitable for integration in a flywheel energy storage system within a large hybrid electric vehicle (HEV). The operating requirements of the application include wide power and speed ranges combined with high total system efficiency. Along with presenting the design, essential issues related to PMSM design including cogging torque, iron losses and total harmonic distortion (THD) are investigated. An iterative approach combining lumped parameter analysis with 2D Finite Element Analysis (FEA) was used, and the final design is presented showing excellent performance.

  1. Building performance modelling for sustainable building design

    Directory of Open Access Journals (Sweden)

    Olufolahan Oduyemi

    2016-12-01

    The output revealed that BPM delivers information needed for enhanced design and building performance. Recommendations such as the establishment of proper mechanisms to monitor the performance of BPM related construction are suggested to allow for its continuous implementation. This research consolidates collective movements towards wider implementation of BPM and forms a base for developing a sound BIM strategy and guidance.

  2. Vehicle's lightweight design vs. electrification from life cycle assessment perspective

    Energy Technology Data Exchange (ETDEWEB)

    Mayyas, Ahmad; Omar, Mohammed; Hayajneh, Mohammed; Mayyas, Abdel Raouf

    2017-11-01

    Lightwiegh materials and vehicles' electrification are among the most viable and economic solutions to improve fuel ecocnmoy of vehicles and reduce environmental impacts in the operational phase of typical vehicle's life cycle span. This study aims to shed more light on the combined effect of lightweighing and electrification by assessing different lightweight designs and electric powetrians from the environmental perspective using a life cycle analysis coupled with an emphasis on energy expenditures and carbon dioxide emissions. This paper discusses the life cycle assessment for several advanced powertrains namely; plug-in hybrid electric vehicles (PHEV), battery electric vehicles (BEV) and hybrid electric vehicles (HEV) relative to the conventional gasoline operated internal combustion engine based power train vehicles. The main focus will be on the energy greenhouse gas emissions (GHG) in the material extraction and resources phase, manufacturing phase and use phase (operation and maintenance). While most of the current studies focus on the use phase that does not reflect the correct environmental impacts associated with advanced powertrains, thus the presented text applies a holistic LCA approach that covers pre-manufacturing, manufacturing, operational and end-of-life phases, plus another indirect phase to account for fuel extraction, refining and transportation to the end-users or customers. Based on the LCA emissions results, one may infer that environmental policies that reduce emissions rates from the electricity sector can mitigate this effect without completely eliminating it. Interestingly, the analysis show that lightweight vehicles with internal combustion engines have less impacts on the environment as a direct result of upstream emissions associated with electricity generation in United States. This scenario can differ in other countries with higher renewable and sustainable energy generated electric powers.

  3. Demonstration of improved vehicle fuel efficiency through innovative tire design, materials, and weight reduction technologies

    Energy Technology Data Exchange (ETDEWEB)

    Donley, Tim [Cooper Tire & Rubber Company Incorporated, Findlay, OH (United States)

    2014-12-31

    Cooper completed an investigation into new tire technology using a novel approach to develop and demonstrate a new class of fuel efficient tires using innovative materials technology and tire design concepts. The objective of this work was to develop a new class of fuel efficient tires, focused on the “replacement market” that would improve overall passenger vehicle fuel efficiency by 3% while lowering the overall tire weight by 20%. A further goal of this project was to accomplish the objectives while maintaining the traction and wear performance of the control tire. This program was designed to build on what has already been accomplished in the tire industry for rolling resistance based on the knowledge and general principles developed over the past decades. Cooper’s CS4 (Figure #1) premium broadline tire was chosen as the control tire for this program. For Cooper to achieve the goals of this project, the development of multiple technologies was necessary. Six technologies were chosen that are not currently being used in the tire industry at any significant level, but that showed excellent prospects in preliminary research. This development was divided into two phases. Phase I investigated six different technologies as individual components. Phase II then took a holistic approach by combining all the technologies that showed positive results during phase one development.

  4. Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles.

    Science.gov (United States)

    Eom, Hwisoo; Lee, Sang Hun

    2015-06-12

    A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model.

  5. Applying Monte Carlo Simulation to Launch Vehicle Design and Requirements Verification

    Science.gov (United States)

    Hanson, John M.; Beard, Bernard B.

    2010-01-01

    This paper is focused on applying Monte Carlo simulation to probabilistic launch vehicle design and requirements verification. The approaches developed in this paper can be applied to other complex design efforts as well. Typically the verification must show that requirement "x" is met for at least "y" % of cases, with, say, 10% consumer risk or 90% confidence. Two particular aspects of making these runs for requirements verification will be explored in this paper. First, there are several types of uncertainties that should be handled in different ways, depending on when they become known (or not). The paper describes how to handle different types of uncertainties and how to develop vehicle models that can be used to examine their characteristics. This includes items that are not known exactly during the design phase but that will be known for each assembled vehicle (can be used to determine the payload capability and overall behavior of that vehicle), other items that become known before or on flight day (can be used for flight day trajectory design and go/no go decision), and items that remain unknown on flight day. Second, this paper explains a method (order statistics) for determining whether certain probabilistic requirements are met or not and enables the user to determine how many Monte Carlo samples are required. Order statistics is not new, but may not be known in general to the GN&C community. The methods also apply to determining the design values of parameters of interest in driving the vehicle design. The paper briefly discusses when it is desirable to fit a distribution to the experimental Monte Carlo results rather than using order statistics.

  6. Analyzing the influence of median cross-section design on highway safety using vehicle dynamics simulations.

    Science.gov (United States)

    Stine, Jason S; Hamblin, Bridget C; Brennan, Sean N; Donnell, Eric T

    2010-11-01

    Although vehicle dynamics simulations have long been used in vehicle design and crash reconstruction, their use for highway design is rare. This paper investigates the safety of highway medians through iterative simulations of off-road median encroachments. The commercially available software CarSim was used to simulate over one hundred thousand encroachments, representing the entire passenger vehicle fleet and a wide range of encroachment angles, departure speeds, steering inputs, and braking inputs. Each individual simulation output was then weighted using data from previous studies to reflect the probability of each specific accident scenario occurring in a real-life median encroachment. Results of this analysis illustrate the relative influence of median cross-section geometry on the resulting accident outcomes. The simulations indicate that the overall safety of a highway median depends on the occurrence of both vehicle rollover and median crossover events, and the cross-section shape, slope, and width are all shown to greatly affect each of these incidents. An evaluation of the simulation results was conducted with vehicle trajectories from previous experimental crash tests. Further assessment of the aggregate simulation results to actual crash data was achieved through comparison with several databases of crash statistics. Both efforts showed a strong agreement between the simulations and the real-life crash data. 2010 Elsevier Ltd. All rights reserved.

  7. The scalable design of flapping micro air vehicles inspired by insect flight

    NARCIS (Netherlands)

    Lentink, D.; Jongerius, S.R.; Bradshaw, N.L.

    2009-01-01

    Here we explain how flapping micro air vehicles (MAVs) can be designed at different scales, from bird to insect size. The common believe is that micro fixed wing airplanes and helicopters outperform MAVs at bird scale, but become inferior to flapping MAVs at the scale of insects as small as fruit

  8. The design of a kerosene turbopump for a South African commercial launch vehicle

    CSIR Research Space (South Africa)

    Snedden, Glen C

    2012-08-01

    Full Text Available -1 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Altlanta, Georgia, USA, 30 July - 1 August 2012 The Design of a Kerosene Turbopump for a South African Commercial Launch Vehicle Jonathan Smyth*, Jeffery Bindon ?, Michael Brooks...

  9. Mechanistic-empirical subgrade design model based on heavy vehicle simulator test results

    CSIR Research Space (South Africa)

    Theyse, HL

    2006-06-01

    Full Text Available -empirical design models. This paper presents a study on subgrade permanent deformation based on the data generated from a series of Heavy Vehicle Simulator (HVS) tests done at the Richmond Field Station in California. The total subgrade deflection was found to be a...

  10. Cost and design study for electric vehicle lead--acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    A design and cost study for electric-vehicle lead--acid batteries is presented; a research and development program leading to demonstration and testing of 20- to 30-kWh batteries is proposed. Both flat pasted and tubular positive electrodes are included. Detailed testing programs are set forth. 110 figures, 8 tables (RWR)

  11. Racing with the Sun: Students Learn Physics while Designing a Solar-Powered Vehicle

    Science.gov (United States)

    Marshall, Jeff

    2004-01-01

    In this article, the author describes his experience conducting an inquiry investigation in his classroom in which high school physics students design, create, and race a solar-powered vehicle. Students learn invaluable science, technology, mathematics, communication, and critical thinking skills. Fueled by their knowledge, creativity, and the…

  12. Design Process of Flight Vehicle Structures for a Common Bulkhead and an MPCV Spacecraft Adapter

    Science.gov (United States)

    Aggarwal, Pravin; Hull, Patrick V.

    2015-01-01

    Design and manufacturing space flight vehicle structures is a skillset that has grown considerably at NASA during that last several years. Beginning with the Ares program and followed by the Space Launch System (SLS); in-house designs were produced for both the Upper Stage and the SLS Multipurpose crew vehicle (MPCV) spacecraft adapter. Specifically, critical design review (CDR) level analysis and flight production drawing were produced for the above mentioned hardware. In particular, the experience of this in-house design work led to increased manufacturing infrastructure for both Marshal Space Flight Center (MSFC) and Michoud Assembly Facility (MAF), improved skillsets in both analysis and design, and hands on experience in building and testing (MSA) full scale hardware. The hardware design and development processes from initiation to CDR and finally flight; resulted in many challenges and experiences that produced valuable lessons. This paper builds on these experiences of NASA in recent years on designing and fabricating flight hardware and examines the design/development processes used, as well as the challenges and lessons learned, i.e. from the initial design, loads estimation and mass constraints to structural optimization/affordability to release of production drawing to hardware manufacturing. While there are many documented design processes which a design engineer can follow, these unique experiences can offer insight into designing hardware in current program environments and present solutions to many of the challenges experienced by the engineering team.

  13. Designing Innovation: Prototypes and Team Performance in Design Thinking

    OpenAIRE

    Vetterli, Christophe; Hoffmann, Friederike; Brenner, Walter; Eppler, Martin J.; Uebernickel, Falk

    2012-01-01

    This study investigates design thinking innovation teams working on three different innovation tasks: business model innovation, service innovation, and product innovation. Each task involves the generation of many prototypes, one of which needs to be selected as the final prototype. Further, one of the teams collaborated through virtual collaboration. By measuring both subjective and objective performances of the teams, we compared the different innovation tasks and their impact on design th...

  14. Developing a Ballistic Software Kit to Estimate Vehicle Characteristics at the Draft Design Stage

    Directory of Open Access Journals (Sweden)

    V. I. Maiorova

    2015-01-01

    Full Text Available The article describes a ballistic software kit to calculate a moving vehicle trajectory in atmosphere and space. Such software gives an opportunity to accelerate the acquisition of flying vehicle’s ballistic parameters at the stage of draft design. It contributes to improving collaboration efficiency between adjacent departments involved in the project. The developed software kit includes three different programs: Trajectory-LAND© (motion in atmosphere with possible correction of a trajectory, Trajectory-SPACE© (motion in the non-central gravity field with possible simulation of maneuvers, Trajectory-LAUNCH© (launch-vehicle’s insertion into the orbit with possible defining the impact points of separated stages. Each of the software concedes the addition of computational modules to use the solution results of the basic task. Implemented mathematical models permit to take into account the influence of main perturbations on the flying vehicle during the flight. For illustration purposes, the article gives some examples of using each of the programs and their block-diagrams.The developed software implements some algorithms, which allow attaining the convergence of numerical simulation of differential equations of motion. This problem arises, for example, while determining an attitude in case the stages have already separated from the launch vehicle. The mathematical conversion from Rodriguez-Hamilton parameters into Euler’s angles disables us to obtain reliable values of attitude angles due to the limitations for existing area of inverse trigonometric functions being used. Incorrect values of pitch lead to raw and roll channels divergences. Moreover, the mistakes in attitude determination lead to mistakes in obtained values of attack angle, which is included into the forms for aerodynamic forces and torques. As a result, the solution of system of differential equations is a failure when a flying vehicle enters the height of 30-35 km. The

  15. Investigating the Mobility of Light Autonomous Tracked Vehicles using a High Performance Computing Simulation Capability

    Science.gov (United States)

    Negrut, Dan; Mazhar, Hammad; Melanz, Daniel; Lamb, David; Jayakumar, Paramsothy; Letherwood, Michael; Jain, Abhinandan; Quadrelli, Marco

    2012-01-01

    This paper is concerned with the physics-based simulation of light tracked vehicles operating on rough deformable terrain. The focus is on small autonomous vehicles, which weigh less than 100 lb and move on deformable and rough terrain that is feature rich and no longer representable using a continuum approach. A scenario of interest is, for instance, the simulation of a reconnaissance mission for a high mobility lightweight robot where objects such as a boulder or a ditch that could otherwise be considered small for a truck or tank, become major obstacles that can impede the mobility of the light autonomous vehicle and negatively impact the success of its mission. Analyzing and gauging the mobility and performance of these light vehicles is accomplished through a modeling and simulation capability called Chrono::Engine. Chrono::Engine relies on parallel execution on Graphics Processing Unit (GPU) cards.

  16. Multidisciplinary Analysis and Control of High Performance Air Vehicles

    Science.gov (United States)

    2005-05-06

    Control and Simulation, Wiley, 1992. 4 Jan Roskam , Airplane Flight Dynamics and Automatic Flight Control part I, DARCORPORATION, 1997. 5 NASA Hypersonic...Coefficients at Mach 2 REFERENCES 04 Elevtor Deflecion I. Roskam . J.. "Airplane Design, Part l-VlII." Roskam "Aviation and Engineering Corporation. 1989. Ŗ...34, IEEE Trans. In this paper, we consider the control problem of a class of nonlinear Automat. Contr., vol. 11, no. I, pp. 69-79, Jan . 2000. MIMO with

  17. Design, fabrication, and characterization of multifunctional wings to harvest solar energy in flapping wing air vehicles

    Science.gov (United States)

    Perez-Rosado, Ariel; Gehlhar, Rachel D.; Nolen, Savannah; Gupta, Satyandra K.; Bruck, Hugh A.

    2015-06-01

    Currently, flapping wing unmanned aerial vehicles (a.k.a., ornithopters or robotic birds) sustain very short duration flight due to limited on-board energy storage capacity. Therefore, energy harvesting elements, such as flexible solar cells, need to be used as materials in critical components, such as wing structures, to increase operational performance. In this paper, we describe a layered fabrication method that was developed for realizing multifunctional composite wings for a unique robotic bird we developed, known as Robo Raven, by creating compliant wing structure from flexible solar cells. The deformed wing shape and aerodynamic lift/thrust loads were characterized throughout the flapping cycle to understand wing mechanics. A multifunctional performance analysis was developed to understand how integration of solar cells into the wings influences flight performance under two different operating conditions: (1) directly powering wings to increase operation time, and (2) recharging batteries to eliminate need for external charging sources. The experimental data is then used in the analysis to identify a performance index for assessing benefits of multifunctional compliant wing structures. The resulting platform, Robo Raven III, was the first demonstration of a robotic bird that flew using energy harvested from solar cells. We developed three different versions of the wing design to validate the multifunctional performance analysis. It was also determined that residual thrust correlated to shear deformation of the wing induced by torsional twist, while biaxial strain related to change in aerodynamic shape correlated to lift. It was also found that shear deformation of the solar cells induced changes in power output directly correlating to thrust generation associated with torsional deformation. Thus, it was determined that multifunctional solar cell wings may be capable of three functions: (1) lightweight and flexible structure to generate aerodynamic forces, (2

  18. A Method of Integrating Aeroheating into Conceptual Reusable Launch Vehicle Design: Evaluation of Advanced Thermal Protection Techniques for Future Reusable Launch Vehicles

    Science.gov (United States)

    Olds, John R.; Cowart, Kris

    2001-01-01

    A method for integrating Aeroheating analysis into conceptual reusable launch vehicle (RLV) design is presented in this thesis. This process allows for faster turn-around time to converge a RLV design through the advent of designing an optimized thermal protection system (TPS). It consists of the coupling and automation of four computer software packages: MINIVER, TPSX, TCAT, and ADS. MINIVER is an Aeroheating code that produces centerline radiation equilibrium temperatures, convective heating rates, and heat loads over simplified vehicle geometries. These include flat plates and swept cylinders that model wings and leading edges, respectively. TPSX is a NASA Ames material properties database that is available on the World Wide Web. The newly developed Thermal Calculation Analysis Tool (TCAT) uses finite difference methods to carry out a transient in-depth 1-D conduction analysis over the center mold line of the vehicle. This is used along with the Automated Design Synthesis (ADS) code to correctly size the vehicle's thermal protection system (TPS). The numerical optimizer ADS uses algorithms that solve constrained and unconstrained design problems. The resulting outputs for this process are TPS material types, unit thicknesses, and acreage percentages. TCAT was developed for several purposes. First, it provides a means to calculate the transient in-depth conduction seen by the surface of the TPS material that protects a vehicle during ascent and reentry. Along with the in-depth conduction, radiation from the surface of the material is calculated along with the temperatures at the backface and interior parts of the TPS material. Secondly, TCAT contributes added speed and automation to the overall design process. Another motivation in the development of TCAT is optimization. In some vehicles, the TPS accounts for a high percentage of the overall vehicle dry weight. Optimizing the weight of the TPS will thereby lower the percentage of the dry weight accounted for by

  19. Space vehicle chassis

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; Seitz, Daniel; Martinez, John; Storms, Steven; Kestell, Gayle

    2017-07-18

    A modular space vehicle chassis may facilitate convenient access to internal components of the space vehicle. Each module may be removable from the others such that each module may be worked on individually. Multiple panels of at least one of the modules may swing open or otherwise be removable, exposing large portions of the internal components of the space vehicle. Such chassis architectures may reduce the time required for and difficulty of performing maintenance or modifications, may allow multiple space vehicles to take advantage of a common chassis design, and may further allow for highly customizable space vehicles.

  20. A Characterization of the Terrestrial Environment of Kodiak Island, Alaska for the Design, Development and Operation of Launch Vehicles

    Science.gov (United States)

    Rawlins, Michael A.; Johnson, Dale L.; Batts, Glen W.

    2000-01-01

    A quantitative characterization of the terrestrial environment is an important component in the success of a launch vehicle program. Environmental factors such as winds, atmospheric thermodynamics, precipitation, fog, and cloud characteristics are among many parameters that must be accurately defined for flight success. The National Aeronautics and Space Administration (NASA) is currently coordinating weather support and performing analysis for the launch of a NASA payload from a new facility located at Kodiak Island, Alaska in late 2001 (NASA, 1999). Following the first launch from the Kodiak Launch Complex, an Air Force intercontinental ballistic missile on November 5, 1999, the site's developer, the Alaska Aerospace Development Corporation (AADC), is hoping to acquire a sizable share of the many launches that will occur over the next decade. One such customer is NASA, which is planning to launch the Vegetation Canopy Lidar satellite aboard an Athena I rocket, the first planned mission to low earth orbit from the new facility. To support this launch, a statistical model of the atmospheric and surface environment for Kodiak Island, AK has been produced from rawinsonde and surface-based meteorological observations for use as an input to future launch vehicle design and/or operations. In this study, the creation of a "reference atmosphere" from rawinsonde observations is described along with comparisons between the reference atmosphere and existing model representations for Kodiak. Meteorological conditions that might result in a delay on launch day (cloud cover, visibility, precipitation, etc.) are also explored and described through probabilities of launch by month and hour of day. This atmospheric "mission analysis" is also useful during the early stages of a vehicle program, when consideration of the climatic characteristics of a location can be factored into vehicle designs. To be most beneficial, terrestrial environment definitions should a) be available at

  1. High-performance computing for flight vehicles; Proceedings of the Symposium, Washington, Dec. 7-9, 1992

    Science.gov (United States)

    Noor, Ahmed K. (Editor); Venneri, Samuel L. (Editor)

    1992-01-01

    The present conference discusses high-performance computing systems for flight vehicles, large-scale simulations on high-performance flight computers and software, multidisciplinary and design/optimization applications of computers, computational electromagnetics and acoustics, the simulation of aircraft powerplant turbomachinery and reacting flows, and flow calculations on parallel machines. Also discussed are direct flow simulation Monte Carlo methods, structural mechanics sensitivity and fracture calculations on parallel machines, grid-generation and advanced algorithms for CFD, advanced solid-mechanics and structures applications, and advancements in flow visualization technology and neural networks.

  2. Design and Manufacture of a Solar-Powered Unmanned Aerial Vehicle for Civilian Surveillance Missions

    OpenAIRE

    Betancourth, Nelson Javier Pedraza; Villamarin, Julio Enoc Parra; Rios, John Jairo Vaca; Bravo-Mosquera, Pedro David; Cerón-Muñoz, Hernán Darío

    2016-01-01

    ABSTRACT In order to promote the development of renewable energy and take advantage of the new technologies for the benefit of sustainability, both the design and the manufacture methodologies of an experimental solarpowered unmanned aerial vehicle for civilian surveillance applications are presented. Throughout the document, it is provided the historical process around the development of the aircraft. Therefore, in the first part, it is shown the aerodynamic design, which includes the 2-D an...

  3. DHM in human-centered product design: a case-study on public transport vehicle.

    Science.gov (United States)

    Santos, V; Guimarães, C P; Franca, G A N; Cid, G L; Paranhos, A G

    2012-01-01

    The goal of this paper is to present the advantages on the use of 3D Digital Human Models (DHM) on the design of public transport vehicles. In this case, the subjects were scanned using the WBX Cyberware 3D Whole Body Scanner, with functional and daily postures according to the use of public transportation and some especial cases, such as a mother with her offspring or a business man with his valise, so the volume of the person would be taken in consideration. A data collection was created to simulate several situations of the daily use of the vehicle.

  4. Design of on line detection system for static evaporation rate of LNG vehicle cylinders

    Science.gov (United States)

    Tang, P.; Wang, M.; Tan, W. H.; Ling, Z. W.; Li, F.

    2017-06-01

    In order to solve the problems existing in the regular inspection of LNG vehicle cylinders, the static evaporation rate on line detection system of LNG cylinders is discussed in this paper. A non-disassembling, short-term and high-efficiency on line detection system for LNG vehicle cylinders is proposed, which can meet the requirement of evaporation rate test under different media and different test pressures. And then test methods under the experimental conditions, atmospheric pressure and pressure are given respectively. This online detection system designed in this paper can effectively solve the technical problems during the inspection of the cylinder.

  5. A Collaborative Analysis Tool for Integrated Hypersonic Aerodynamics, Thermal Protection Systems, and RBCC Engine Performance for Single Stage to Orbit Vehicles

    Science.gov (United States)

    Stanley, Thomas Troy; Alexander, Reginald; Landrum, Brian

    2000-01-01

    Presented is a computer-based tool that connects several disciplines that are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system, as is the case of SSTO vehicles with air breathing propulsion, which is currently being studied by NASA. An RBCC propulsion system integrates airbreathing and rocket propulsion into a single engine assembly enclosed within a cowl or duct. A typical RBCC propulsion system operates as a ducted rocket up to approximately Mach 3. Then there is a transition to a ramjet mode for supersonic-to-hypersonic acceleration. Around Mach 8 the engine transitions to a scramjet mode. During the ramjet and scramjet modes, the integral rockets operate as fuel injectors. Around Mach 10-12 (the actual value depends on vehicle and mission requirements), the inlet is physically closed and the engine transitions to an integral rocket mode for orbit insertion. A common feature of RBCC propelled vehicles is the high degree of integration between the propulsion system and airframe. At high speeds the vehicle forebody is fundamentally part of the engine inlet, providing a compression surface for air flowing into the engine. The compressed air is mixed with fuel and burned. The combusted mixture must be expanded to an area larger than the incoming stream to provide thrust. Since a conventional nozzle would be too large, the entire lower after body of the vehicle is used as an expansion surface. Because of the high external temperatures seen during atmospheric flight, the design of an airbreathing SSTO vehicle requires delicate tradeoffs between engine design, vehicle shape, and thermal protection system (TPS) sizing in order to produce an optimum system in terms of weight (and cost) and maximum performance. To adequately determine the performance of the engine/vehicle, the Hypersonic Flight Inlet Model (HYFIM) module was designed to interface with the RBCC

  6. NASA Ares I Launch Vehicle Roll and Reaction Control Systems Design Status

    Science.gov (United States)

    Butt, Adam; Popp, Chris G.; Pitts, Hank M.; Sharp, David J.

    2009-01-01

    This paper provides an update of design status following the preliminary design review of NASA s Ares I first stage roll and upper stage reaction control systems. The Ares I launch vehicle has been chosen to return humans to the moon, mars, and beyond. It consists of a first stage five segment solid rocket booster and an upper stage liquid bi-propellant J-2X engine. Similar to many launch vehicles, the Ares I has reaction control systems used to provide the vehicle with three degrees of freedom stabilization during the mission. During launch, the first stage roll control system will provide the Ares I with the ability to counteract induced roll torque. After first stage booster separation, the upper stage reaction control system will provide the upper stage element with three degrees of freedom control as needed. Trade studies and design assessments conducted on the roll and reaction control systems include: propellant selection, thruster arrangement, pressurization system configuration, and system component trades. Since successful completion of the preliminary design review, work has progressed towards the critical design review with accomplishments made in the following areas: pressurant / propellant tank, thruster assembly, and other component configurations, as well as thruster module design, and waterhammer mitigation approach. Also, results from early development testing are discussed along with plans for upcoming system testing. This paper concludes by summarizing the process of down selecting to the current baseline configuration for the Ares I roll and reaction control systems.

  7. Development of a conceptual flight vehicle design weight estimation method library and documentation

    Science.gov (United States)

    Walker, Andrew S.

    The state of the art in estimating the volumetric size and mass of flight vehicles is held today by an elite group of engineers in the Aerospace Conceptual Design Industry. This is not a skill readily accessible or taught in academia. To estimate flight vehicle mass properties, many aerospace engineering students are encouraged to read the latest design textbooks, learn how to use a few basic statistical equations, and plunge into the details of parametric mass properties analysis. Specifications for and a prototype of a standardized engineering "tool-box" of conceptual and preliminary design weight estimation methods were developed to manage the growing and ever-changing body of weight estimation knowledge. This also bridges the gap in Mass Properties education for aerospace engineering students. The Weight Method Library will also be used as a living document for use by future aerospace students. This "tool-box" consists of a weight estimation method bibliography containing unclassified, open-source literature for conceptual and preliminary flight vehicle design phases. Transport aircraft validation cases have been applied to each entry in the AVD Weight Method Library in order to provide a sense of context and applicability to each method. The weight methodology validation results indicate consensus and agreement of the individual methods. This generic specification of a method library will be applicable for use by other disciplines within the AVD Lab, Post-Graduate design labs, or engineering design professionals.

  8. Numerical study for flame deflector design of a space launch vehicle

    Science.gov (United States)

    Oh, Hwayoung; Lee, Jungil; Um, Hyungsik; Huh, Hwanil

    2017-04-01

    A flame deflector is a structure that prevents damage to a launch vehicle and a launch pad due to exhaust plumes of a lifting-off launch vehicle. The shape of a flame deflector should be designed to restrain the discharged gas from backdraft inside the deflector and to reflect the impact to the surrounding environment and the engine characteristics of the vehicle. This study presents the five preliminary flame deflector configurations which are designed for the first-stage rocket engine of the Korea Space Launch Vehicle-II and surroundings of the Naro space center. The gas discharge patterns of the designed flame deflectors are investigated using the 3D flow field analysis by assuming that the air, in place of the exhaust gas, forms the plume. In addition, a multi-species unreacted flow model is investigated through 2D analysis of the first-stage engine of the KSLV-II. The results indicate that the closest Mach number and temperature distributions to the reacted flow model can be achieved from the 4-species unreacted flow model which employs H2O, CO2, and CO and specific heat-corrected plume.

  9. Architectural design and energy performance; Conception architecturale et performance energetique

    Energy Technology Data Exchange (ETDEWEB)

    Beaud, Ph. [Agence de l' Environnement et de la Maitrise de l' Energie, (ADEME), 06 - Valbonne (France); Pouget, A. [Bureau Etude Thermique, 75 - Paris (France); Sesolis, B. [TRIBU, 75 - Paris (France)] [and others

    2000-07-01

    This day was organized around the energy performance of the architecture in three parts. A first time dealt with the design of new buildings and private houses. Simulation tools for the energy optimization and practice of design are discussed. The second part was devoted to the new 2000 regulation with an open discussion on the regulatory costs. The last part forecasted the evolution until 2015 taking into account the french program of fight against the greenhouse effect, the limitation of the air conditioning consumption and the definition of a quality label concerning the energy performances. (A.L.B.)

  10. Ultra wideband antennas design, methodologies, and performance

    CERN Document Server

    Galvan-Tejada, Giselle M; Jardón Aguilar, Hildeberto

    2015-01-01

    Ultra Wideband Antennas: Design, Methodologies, and Performance presents the current state of the art of ultra wideband (UWB) antennas, from theory specific for these radiators to guidelines for the design of omnidirectional and directional UWB antennas. Offering a comprehensive overview of the latest UWB antenna research and development, this book:Discusses the developed theory for UWB antennas in frequency and time domainsDelivers a brief exposition of numerical methods for electromagnetics oriented to antennasDescribes solid-planar equivalen

  11. Multi-objective design of vehicle suspension systems via a local diffusion genetic algorithm for disjoint Pareto frontiers

    Science.gov (United States)

    Aly, Mohamed F.; Nassef, Ashraf O.; Hamza, Karim

    2015-05-01

    This article presents a multi-objective design optimization study of a vehicle suspension system with passive variable stiffness and active damping. Design of suspension systems is particularly challenging when the effective mass of the vehicle is subject to considerable variation during service. Perfectly maintaining the suspension performance under the variable load typically requires a controlled actuator to emulate variable stiffness. This is typically done through a hydraulic or pneumatic system, which can be too costly for small/medium pick-up trucks. The system in this article employs two springs with an offset to the second spring so that it engages during large deformation only, thereby providing passive variable stiffness without expensive hydraulics. The system damping is assumed to be controlled via variable viscosity magnetizable fluid, which can be implemented in a compact, low-power set-up. Performance indices from the literature are evaluated at minimum and maximum weight, and regarded as objectives in a multi-objective problem. As the individual objectives are prone to having local optima, the multi-objective problem is prone to having a disjointed Pareto-space. To deal with this issue, a modification is proposed to a multi-objective genetic algorithm. The algorithm performance is investigated via analytical test functions as well as the design case of the suspension system.

  12. Virginia Connected Vehicle Test Bed System Performance (V2I System Performance)

    OpenAIRE

    Viray, Reginald; Sarkar, Abhijit; Doerzaph, Zachary

    2016-01-01

    This project identified vehicle-to-infrastructure (V2I) communication system limitations on the Northern Virginia Connected Vehicle Test Bed. Real-world historical data were analyzed to determine wireless Dedicated Short Range Communication (DSRC) coverage gaps and overlaps. In addition, a simulated scalability test was run to determine the effects of network congestion on the system. The results from the real-world historical data showed that significant loss of signal occurred due to obstru...

  13. Modeling an impact of road geometric design on vehicle energy consumption

    Science.gov (United States)

    Luin, Blaž; Petelin, Stojan; Al-Mansour, Fouad

    2017-11-01

    Some roads connect traffic origins and destinations directly, some use winding, indirect routes. Indirect connections result in longer distances driven and increased fuel consumption. A similar effect is observed on congested roads and mountain roads with many changes in altitude. Therefore a framework to assess road networks based on energy consumption is proposed. It has been shown that road geometry has significant impact on overall traffic energy consumption and emissions. The methodology presented in the paper analyzes impact of traffic volume, shares of vehicle classes, road network configuration on the energy used by the vehicles. It can be used to optimize energy consumption with efficient traffic management and to choose optimum new road in the design phase. This is especially important as the energy consumed by the vehicles shortly after construction supersedes the energy spent for the road construction.

  14. Design, control and power management of a battery/ultra-capacitor hybrid system for small electric vehicles

    DEFF Research Database (Denmark)

    Li, Zhihao; Onar, Omer; Khaligh, Alireza

    2009-01-01

    This paper introduces design, control, and power management of a battery/ultra-capacitor hybrid system, utilized for small electric vehicles (EV). The batteries are designed and controlled to work as the main energy storage source of the vehicle, supplying average power to the load; and the ultra...

  15. Preliminary Design of a Manned Nuclear Electric Propulsion Vehicle Using Genetic Algorithms

    Science.gov (United States)

    Irwin, Ryan W.; Tinker, Michael L.

    2005-01-01

    Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate designs must be identified for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combined analysis codes for NEP subsystems with a genetic algorithm. The use of penalty functions with scaling ratios was investigated to increase computational efficiency. Also, the selection of design variables for optimization was considered to reduce computation time without losing beneficial design search space. Finally, trend analysis of a reference mission to the asteroids yielded a group of candidate designs for further analysis.

  16. The 2006 Kennedy Space Center Range Reference Atmosphere Model Validation Study and Sensitivity Analysis to the Performance of the National Aeronautics and Space Administration's Space Shuttle Vehicle

    Science.gov (United States)

    Burns, Lee; Decker, Ryan; Harrington, Brian; Merry, Carl

    2008-01-01

    The Kennedy Space Center (KSC) Range Reference Atmosphere (RRA) is a statistical model that summarizes wind and thermodynamic atmospheric variability from surface to 70 km. The National Aeronautics and Space Administration's (NASA) Space Shuttle program, which launches from KSC, utilizes the KSC RRA data to evaluate environmental constraints on various aspects of the vehicle during ascent. An update to the KSC RRA was recently completed. As part of the update, the Natural Environments Branch at NASA's Marshall Space Flight Center (MSFC) conducted a validation study and a comparison analysis to the existing KSC RRA database version 1983. Assessments to the Space Shuttle vehicle ascent profile characteristics were performed by JSC/Ascent Flight Design Division to determine impacts of the updated model to the vehicle performance. Details on the model updates and the vehicle sensitivity analyses with the update model are presented.

  17. Design and modelling of high gain DC-DC converters for fuel cell hybrid electric vehicles

    Science.gov (United States)

    Elangovan, D.; Karthigeyan, V.; Subhanu, B.; Ashwin, M.; Arunkumar, G.

    2017-11-01

    Transportation (Diesel and petrol internal combustion engine vehicles) approximately contributes to 25.5% of total CO2 emission. Thus diesel and petrol engine vehicles are the most dominant contributors of CO2 emission which leads global warming which causes climate change. The problem of CO2 emission and global warming can be reduced by focusing on renewable energy vehicles. Out of the available renewable energy sources fuel cell is the only source which has reasonable efficiency and can be used in vehicles. But the main disadvantage of fuel cell is its slow response time. So energy storage systems like batteries and super capacitors are used in parallel with the fuel cell. Fuel cell is used during steady state vehicle operation while during transient conditions like starting, acceleration and braking batteries and super capacitors can supply or absorb energy. In this paper a unidirectional fuel cell DC-DC converter and bidirectional energy storage system DC-DC converter is proposed, which can interface dc sources at different voltage levels to the dc bus and also it can independently control the power flow from each energy source to the dc bus and vice versa. The proposed converters are designed and simulated using PSIM version 9.1.1 and gate pulse pattern, input and output voltage waveforms of the converters for steady state operation are studied.

  18. Designing a Reverse Logistics Network for End-of-Life Vehicles Recovery

    Directory of Open Access Journals (Sweden)

    Masoud Zarei

    2010-01-01

    Full Text Available The environmental factors are receiving increasing attention in different life cycle stages of products. When a product reaches its End-Of-Life (EOL stage, the management of its recovery process is affected by the environmental and also economical factors. Selecting efficient methods for the collection and recovery of EOL products has become an important issue. The European Union Directive 2000/53/EC extends the responsibility of the vehicle manufacturers to the postconsumer stage of the vehicle. In order to fulfill the requirements of this Directive and also efficient management of the whole recovery process, the conceptual framework of a reverse logistics network is presented. The distribution of new vehicles in an area and also collecting the End-of-Life Vehicles (ELVs and their recovery are considered jointly. It is assumed that the new vehicles distributors are also responsible for collecting the ELVs. Then a mathematical model is developed which minimizes the costs of setting up the network and also the relevant transportation costs. Because of the complexity of the model, a solution methodology based on the genetic algorithm is designed which enables achieving good quality solutions in a reasonable algorithm run time.

  19. 4g-Based Specialty Vehicles Real-Time Monitoring System Design and Implementation

    Directory of Open Access Journals (Sweden)

    Zhuang Yu-Feng

    2017-01-01

    Full Text Available In the future development of natural gas transportation industry, emerging ITS technology will be applied more and more, aiming at integrating precise positioning technology, geographic information system technology, database technology, multimedia technology and modern communication technology, sensor network technology and video capture technology, so as to achieve the transport steam (oil vehicles in real time monitoring and management. The main research content of this paper is to design and research the monitoring and locating system of luck (oil vehicle based on 4G on Android System. Real-time monitoring and alarming by sensor module, real-time video recording and uploading through camera module, real-time position recording and uploading through GPS module, vehicle navigation module and quick alarm module, which is composed of five parts. The system is the application of new intelligent transport technology in the field of special vehicle transport. It apply electronic information technology and internet of things technology to the vehicle system, so we can monitor natural gas and other special dangerous goods anytime, anywhere.

  20. Thermal/structural/optical integrated design for optical sensor mounted on unmanned aerial vehicle

    Science.gov (United States)

    Zhang, Gaopeng; Yang, Hongtao; Mei, Chao; Wu, Dengshan; Shi, Kui

    2016-01-01

    With the rapid development of science and technology and the promotion of many local wars in the world, altitude optical sensor mounted on unmanned aerial vehicle is more widely applied in the airborne remote sensing, measurement and detection. In order to obtain high quality image of the aero optical remote sensor, it is important to analysis its thermal-optical performance on the condition of high speed and high altitude. Especially for the key imaging assembly, such as optical window, the temperature variation and temperature gradient can result in defocus and aberrations in optical system, which will lead to the poor quality image. In order to improve the optical performance of a high speed aerial camera optical window, the thermal/structural/optical integrated design method is developed. Firstly, the flight environment of optical window is analyzed. Based on the theory of aerodynamics and heat transfer, the convection heat transfer coefficient is calculated. The temperature distributing of optical window is simulated by the finite element analysis software. The maximum difference in temperature of the inside and outside of optical window is obtained. Then the deformation of optical window under the boundary condition of the maximum difference in temperature is calculated. The optical window surface deformation is fitted in Zernike polynomial as the interface, the calculated Zernike fitting coefficients is brought in and analyzed by CodeV Optical Software. At last, the transfer function diagrams of the optical system on temperature field are comparatively analyzed. By comparing and analyzing the result, it can be obtained that the optical path difference caused by thermal deformation of the optical window is 138.2 nm, which is under PV ≤1 4λ . The above study can be used as an important reference for other optical window designs.

  1. Earth Entry Vehicle Design for Sample Return Missions Using M-SAPE

    Science.gov (United States)

    Samareh, Jamshid

    2015-01-01

    Most mission concepts that return sample material to Earth share one common element: an Earth entry vehicle (EEV). The primary focus of this paper is the examination of EEV design space for relevant sample return missions. Mission requirements for EEV concepts can be divided into three major groups: entry conditions (e.g., velocity and flight path angle), payload (e.g., mass, volume, and g-load limit), and vehicle characteristics (e.g., thermal protection system, structural topology, and landing concepts). The impacts of these requirements on the EEV design have been studied with an integrated system analysis tool, and the results will be discussed in details. In addition, through sensitivities analyses, critical design drivers that have been identified will be reviewed.

  2. Assessment and preliminary design of an energy buffer for regenerative braking in electric vehicles

    Science.gov (United States)

    Buchholz, R.; Mathur, A. K.

    1979-01-01

    Energy buffer systems, capable of storing the vehicle energy during braking and reusing this stored energy during acceleration, were examined. Some of these buffer systems when incorporated in an electric vehicle would result in an improvement in the performance and range under stop and go driving conditions. Buffer systems considered included flywheels, hydropneumatic, pneumatic, spring, and regenerative braking. Buffer ranking and rating criteria were established. Buffer systems were rated based on predicted range improvements, consumer acceptance, driveability, safety, reliability and durability, and initial and life cycle costs. A hydropneumatic buffer system was selected.

  3. Performance Evaluation of an Autonomous Photovoltaic System for Recharging Electrical Vehicle Batteries

    OpenAIRE

    Benaouadj, M.; Aboubou, A.; Ayad, M.Y; Becherif, M.; Akhrif, O.

    2015-01-01

    – This paper deals with the performance evaluation of an autonomous photovoltaic system for recharging (with electrical power produced by photovoltaic panels) Lithium-ion batteries for an electrical vehicle. In this system, the power flow control is performed via a DC-DC converter using a Maximum Power Point Tracking (MPPT) technique. The performance evaluation is according to two operation modes: under degraded and optimal conditions

  4. Design, Construction and Performance Evaluation of Multiple ...

    African Journals Online (AJOL)

    Design and development of a new casting machine which performs the various casting techniques are presented. It may be noted that during solidification, crystal structures form in every fraction of a second and hence the time taken for solidification, plays an important role in the casting. There should not be any time delay ...

  5. Modelling, Design and Robust Control of a Remotely Operated Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Luis Govinda García-Valdovinos

    2014-01-01

    Full Text Available Underwater remotely operated vehicles (ROVs play an important role in a number of shallow and deep-water missions for marine science, oil and gas extraction, exploration and salvage. In these applications, the motions of the ROV are guided either by a human pilot on a surface support vessel through an umbilical cord providing power and telemetry, or by an automatic pilot. In the case of automatic control, ROV state feedback is provided by acoustic and inertial sensors and this state information, along with a controller strategy, is used to perform several tasks such as station-keeping and auto-immersion/heading, among others. In this paper, the modelling, design and control of the Kaxan ROV is presented: i The complete six degrees of freedom, non linear hydrodynamic model with its parameters, ii the Kaxan hardware/software architecture, iii numerical simulations in Matlab/Simulink platform of a model-free second order sliding mode control along with ocean currents as disturbances and thruster dynamics, iv a virtual environment to visualize the motion of the Kaxan ROV and v experimental results of a one degree of freedom underwater system.

  6. Onboard guidance system design for reusable launch vehicles in the terminal area energy management phase

    Science.gov (United States)

    Mu, Lingxia; Yu, Xiang; Zhang, Y. M.; Li, Ping; Wang, Xinmin

    2018-02-01

    A terminal area energy management (TAEM) guidance system for an unpowered reusable launch vehicle (RLV) is proposed in this paper. The mathematical model representing the RLV gliding motion is provided, followed by a transformation of extracting the required dynamics for reference profile generation. Reference longitudinal profiles are conceived based on the capability of maximum dive and maximum glide that a RLV can perform. The trajectory is obtained by iterating the motion equations at each node of altitude, where the angle of attack and the flight-path angle are regarded as regulating variables. An onboard ground-track predictor is constructed to generate the current range-to-go and lateral commands online. Although the longitudinal profile generation requires pre-processing using the RLV aerodynamics, the ground-track prediction can be executed online. This makes the guidance scheme adaptable to abnormal conditions. Finally, the guidance law is designed to track the reference commands. Numerical simulations demonstrate that the proposed guidance scheme is capable of guiding the RLV to the desired touchdown conditions.

  7. Mechatronics design and experimental verification of an electric-vehicle-based hybrid thermal management system

    Directory of Open Access Journals (Sweden)

    Yi-Hsuan Hung

    2016-02-01

    Full Text Available In this study, an electric-vehicle-based thermal management system was designed for dual energy sources. An experimental platform developed in a previous study was modified. Regarding the mechanical components, a heat exchanger with a radiator, proportional valve, coolant pipes, and coolant pump was appropriately integrated. Regarding the electric components, two heaters emulating waste heat were controlled using two programmable power supply machines. A rapid-prototyping controller with two temperature inputs and three outputs was designed. Rule-based control strategies were coded to maintain optimal temperatures for the emulated proton exchange membrane fuel cells and lithium batteries. To evaluate the heat power of dual energy sources, driving cycles, energy management control, and efficiency maps of energy sources were considered for deriving time-variant values. The main results are as follows: (a an advanced mechatronics platform was constructed; (b a driving cycle simulation was successfully conducted; and (c coolant temperatures reached their optimal operating ranges when the proportional valve, radiator, and coolant pump were sequentially controlled. The benefits of this novel electric-vehicle-based thermal management system are (a high-efficiency operation of energy sources, (b low occupied volume integrated with energy sources, and (c higher electric vehicle traveling mileage. This system will be integrated with real energy sources and a real electric vehicle in the future.

  8. Tracking Controller Design for Diving Behavior of an Unmanned Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Yi-Hsiang Tseng

    2013-01-01

    Full Text Available The study has investigated the almost disturbance decoupling problem of nonlinear uncertain control systems via the fuzzy feedback linearization approach. The significant dedication of this paper is to organize a control algorithm such that the closed-loop system is active for given initial condition and bounded tracking trajectory with the input-to-state stability and almost disturbance decoupling performance. This study presents a feedback linearization controller for diving control of an unmanned underwater vehicle. Unmanned underwater vehicle proposes difficult control subject due to its nonlinear dynamics, uncertain models, and the existence of disturbances that are difficult to measure. In general, while investigating the diving dynamics of an unmanned underwater vehicle, the pitch angle is always assumed to be small. This assumption is a strong restricting constraint in many interesting practical applications and will be relaxed in this study.

  9. Tracked Vehicle - Soft Soil Interactions and Design Sensitivities for Path Clearing Systems Utilizing Multi-Body Dynamics Simulation Methods

    Science.gov (United States)

    2013-08-13

    event: – 3395 N with 4 road wheels – 3750 N with 2 road wheels • Peak acceleration magnitude at chassis over pothole : – 1.76 g’s with 4 road ...Path clearing design comparative objective • Performance study of possible vehicle configurations – 2 or 4 road wheels per side – Segmented track or...Top figure – 4 road wheels per side, roller-rake, band track • Bottom figure – 2 road wheels per side, flail, segmented track Unclassified

  10. State-of-Charge Estimation and Active Cell Pack Balancing Design of Lithium Battery Power System for Smart Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Z. C. Gao

    2017-01-01

    Full Text Available This paper presents an integrated state-of-charge (SOC estimation model and active cell balancing of a 12-cell lithium iron phosphate (LiFePO4 battery power system. The strong tracking cubature extended Kalman filter (STCEKF gave an accurate SOC prediction compared to other Kalman-based filter algorithms. The proposed groupwise balancing of the multiple SOC exhibited a higher balancing speed and lower balancing loss than other cell balancing designs. The experimental results demonstrated the robustness and performance of the battery when subjected to current load profile of an electric vehicle under varying ambient temperature.

  11. Preliminary structural design of a lunar transfer vehicle aerobrake. M.S. Thesis

    Science.gov (United States)

    Bush, Lance B.

    1992-01-01

    An aerobrake concept for a Lunar transfer vehicle was weight optimized through the use of the Taguchi design method, structural finite element analyses and structural sizing routines. Six design parameters were chosen to represent the aerobrake structural configuration. The design parameters included honeycomb core thickness, diameter to depth ratio, shape, material, number of concentric ring frames, and number of radial frames. Each parameter was assigned three levels. The minimum weight aerobrake configuration resulting from the study was approx. half the weight of the average of all twenty seven experimental configurations. The parameters having the most significant impact on the aerobrake structural weight were identified.

  12. State of the art of plastic sorting and recycling : Feedback to vehicle design

    OpenAIRE

    FROELICH, Daniel; Maris, Elisabeth; Haoues, Nizar; Chemineau, Léonard; Renard, H.; Abraham, F.; Lassartesses, R.

    2007-01-01

    Today car manufacturers are beginning to integrate recycling constraints in the first stages of the design of a new car due to their concern regarding the effects of car design on the recovery of material after End-of-Life Vehicle treatment. Improved understanding of the recycling process can help designers to avoid contaminants in the recycled product and improve the efficiency of current and new sorting methods. The main goal of this paper is to describe the state of the art of the tech...

  13. Preliminary Design and Analysis of the ARES Atmospheric Flight Vehicle Thermal Control System

    Science.gov (United States)

    Gasbarre, J. F.; Dillman, R. A.

    2003-01-01

    The Aerial Regional-scale Environmental Survey (ARES) is a proposed 2007 Mars Scout Mission that will be the first mission to deploy an atmospheric flight vehicle (AFV) on another planet. This paper will describe the preliminary design and analysis of the AFV thermal control system for its flight through the Martian atmosphere and also present other analyses broadening the scope of that design to include other phases of the ARES mission. Initial analyses are discussed and results of trade studies are presented which detail the design process for AFV thermal control. Finally, results of the most recent AFV thermal analysis are shown and the plans for future work are discussed.

  14. Building Operations Efficiencies into NASA's Ares I Crew Launch Vehicle Design

    Science.gov (United States)

    Dumbacher, Daniel L.; Davis, Stephan R.

    2007-01-01

    The U.S. Vision for Space Exploration guides the National Aeronautics and Space Administration's (NASA's) challenging missions that expand humanity's boundaries and open new routes to the space frontier. With the Agency's commitment to complete the International Space Station (ISS) and to retire the venerable Space Shuttle by 2010, the NASA Administrator commissioned the Exploration Systems Architecture Study (ESAS) in 2005 to analyze options for safe, simple, cost-efficient launch solutions that could deliver human-rated space transportation capabilities in a timely manner within fixed budget guidelines. The Exploration Launch Projects (ELP) Office, chartered by the Constellation Program in October 2005, has been conducting systems engineering studies and business planning to successively refine the design configurations and better align vehicle concepts with customer and stakeholder requirements, such as significantly reduced life-cycle costs. As the Agency begins the process of replacing the Shuttle with a new generation of spacecraft destined for missions beyond low-Earth orbit to the Moon and Mars, NASA is designing the follow-on crew and cargo launch systems for maximum operational efficiencies. To sustain the long-term exploration of space, it is imperative to reduce the $4 billion NASA typically spends on space transportation each year. This paper gives toplevel information about how the follow-on Ares I Crew Launch Vehicle (CLV) is being designed for improved safety and reliability, coupled with reduced operations costs. These methods include carefully developing operational requirements; conducting operability design and analysis; using the latest information technology tools to design and simulate the vehicle; and developing a learning culture across the workforce to ensure a smooth transition between Space Shuttle operations and Ares vehicle development.

  15. Assessment of modern smartphone sensors performance on vehicle localization in urban environments

    Science.gov (United States)

    Lazarou, Theodoros; Danezis, Chris

    2017-09-01

    The advent of Global Navigation Satellite Systems (GNSS) initiated a revolution in Positioning, Navigation and Timing (PNT) applications. Besides the enormous impact on geospatial data acquisition and reality capture, satellite navigation has penetrated everyday life, a fact which is proved by the increasing degree of human reliance on GNSS-enabled smart devices to perform casual activities. Nevertheless, GNSS does not perform well in all cases. Specifically, in GNSS-challenging environments, such as urban canyons or forested areas, navigation performance may be significantly degraded or even nullified. Consequently, positioning is achieved by combining GNSS with additional heterogeneous information or sensors, such as inertial sensors. To date, most smartphones are equipped with at least accelerometers and gyroscopes, besides GNSS chipsets. In the frame of this research, difficult localization scenarios were investigated to assess the performance of these low-cost inertial sensors with respect to higher grade GNSS and IMU systems. Four state-of-the-art smartphones were mounted on a specifically designed on-purpose build platform along with reference equipment. The platform was installed on top of a vehicle, which was driven by a predefined trajectory that included several GNSS-challenging parts. Consequently, positioning and inertial readings were acquired by smartphones and compared to the information collected by the reference equipment. The results indicated that although the smartphone GNSS receivers have increased sensitivity, they were unable to produce an acceptable solution for more than 30% of the driven course. However, all smartphones managed to identify, up to a satisfactory degree, distinct driving features, such as curves or bumps.

  16. A Collaborative Analysis Tool for Integrating Hypersonic Aerodynamics, Thermal Protection Systems, and RBCC Engine Performance for Single Stage to Orbit Vehicles

    Science.gov (United States)

    Stanley, Thomas Troy; Alexander, Reginald

    1999-01-01

    Presented is a computer-based tool that connects several disciplines that are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system, as is the case of SSTO vehicles with air breathing propulsion, which is currently being studied by NASA. The deficiencies in the scramjet powered concept led to a revival of interest in Rocket-Based Combined-Cycle (RBCC) propulsion systems. An RBCC propulsion system integrates airbreathing and rocket propulsion into a single engine assembly enclosed within a cowl or duct. A typical RBCC propulsion system operates as a ducted rocket up to approximately Mach 3. At this point the transitions to a ramjet mode for supersonic-to-hypersonic acceleration. Around Mach 8 the engine transitions to a scram4jet mode. During the ramjet and scramjet modes, the integral rockets operate as fuel injectors. Around Mach 10-12 (the actual value depends on vehicle and mission requirements), the inlet is physically closed and the engine transitions to an integral rocket mode for orbit insertion. A common feature of RBCC propelled vehicles is the high degree of integration between the propulsion system and airframe. At high speeds the vehicle forebody is fundamentally part of the engine inlet, providing a compression surface for air flowing into the engine. The compressed air is mixed with fuel and burned. The combusted mixture must be expanded to an area larger than the incoming stream to provide thrust. Since a conventional nozzle would be too large, the entire lower after body of the vehicle is used as an expansion surface. Because of the high external temperatures seen during atmospheric flight, the design of an airbreathing SSTO vehicle requires delicate tradeoffs between engine design, vehicle shape, and thermal protection system (TPS) sizing in order to produce an optimum system in terms of weight (and cost) and maximum performance.

  17. Performance Evaluation of Real-time Scheduling Approaches in Vehicle-based Internal Transport Systems

    NARCIS (Netherlands)

    T. Le-Anh (Tuan); M.B.M. de Koster (René); Y. Yu (Yugang)

    2006-01-01

    textabstractThis paper studies the performance of static and real-time scheduling approaches in vehicle-based internal transport (VBIT) systems, which can be found in manufacturing and warehouse facilities. We propose three heuristic approaches for static VBIT problems (insertion, combined and

  18. Performance-based standards (PBS) vehicles for transport in the agricultural sector

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2008-07-01

    Full Text Available of haulage vehicles in South Africa complies with a set of prescriptive regulations which specify a number of parameters. However, it has been recognised that these regulations do not address a vehicle’s dynamic performance, and place a constraint...

  19. Performance of Batteries for electric vehicles on shorter and longer term

    NARCIS (Netherlands)

    Gerssen-Gondelach, S.J.; Faaij, A.P.C.

    2012-01-01

    In this work, the prospects of available and new battery technologies for battery electric vehicles (BEVs) are examined. Five selected battery technologies are assessed on battery performance and cost in the short, medium and long term. Driving cycle simulations are carried out to assess the

  20. Performance of batteries for electric vehicles on short and longer term

    NARCIS (Netherlands)

    Gerssen - Gondelach, Sarah|info:eu-repo/dai/nl/355262436; Faaij, André P C|info:eu-repo/dai/nl/10685903X

    2012-01-01

    In this work, the prospects of available and new battery technologies for battery electric vehicles (BEVs) are examined. Five selected battery technologies are assessed on battery performance and cost in the short, medium and long term. Driving cycle simulations are carried out to assess the