WorldWideScience

Sample records for vehicle system studies

  1. Vehicle systems design optimization study

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, J. L.

    1980-04-01

    The optimization of an electric vehicle layout requires a weight distribution in the range of 53/47 to 62/38 in order to assure dynamic handling characteristics comparable to current production internal combustion engine vehicles. It is possible to achieve this goal and also provide passenger and cargo space comparable to a selected current production sub-compact car either in a unique new design or by utilizing the production vehicle as a base. Necessary modification of the base vehicle can be accomplished without major modification of the structure or running gear. As long as batteries are as heavy and require as much space as they currently do, they must be divided into two packages - one at front under the hood and a second at the rear under the cargo area - in order to achieve the desired weight distribution. The weight distribution criteria requires the placement of batteries at the front of the vehicle even when the central tunnel is used for the location of some batteries. The optimum layout has a front motor and front wheel drive. This configuration provides the optimum vehicle dynamic handling characteristics and the maximum passsenger and cargo space for a given size vehicle.

  2. Advanced hybrid vehicle propulsion system study

    Science.gov (United States)

    Schwarz, R.

    1982-01-01

    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  3. Hybrid vehicles system studies and development

    Energy Technology Data Exchange (ETDEWEB)

    Weijer, C.J.T. van de; Schmal, Dick [TNO Road-Vehicles Research Inst. (Netherlands)

    1996-12-31

    In the design of hybrid vehicles, several factors must be taken into account. Amongst others, accurate analysis of the proposed driving cycle and the state of charge of the battery systems can allow for full optimisation of the proposed design, which can be fully validated by effective simulation programs. (Author)

  4. Research study: Space vehicle control systems

    Science.gov (United States)

    Likins, P. W.; Longman, R. W.

    1979-01-01

    From the control point of view, spacecraft are classified into two main groups: those for which the spacecraft is fully defined before the control system is designed; and those for which the control system must be specified before certain interchangeable parts of a multi-purpose spacecraft are selected for future missions. Consideration is given to both classes of problems.

  5. Scheduling vehicles in automated transportation systems : algorithms and case study

    NARCIS (Netherlands)

    van der Heijden, Matthijs C.; Ebben, Mark; Gademann, Noud; van Harten, Aart

    2000-01-01

    One of the major planning issues in large scale automated transportation systems is so-called empty vehicle management, the timely supply of vehicles to terminals in order to reduce cargo waiting times. Motivated by a Dutch pilot project on an underground cargo transportation system using Automated

  6. Durability study of a vehicle-scale hydrogen storage system.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry Alan; Dedrick, Daniel E.; Behrens, Richard, Jr.

    2010-11-01

    Sandia National Laboratories has developed a vehicle-scale demonstration hydrogen storage system as part of a Work for Others project funded by General Motors. This Demonstration System was developed based on the properties and characteristics of sodium alanates which are complex metal hydrides. The technology resulting from this program was developed to enable heat and mass management during refueling and hydrogen delivery to an automotive system. During this program the Demonstration System was subjected to repeated hydriding and dehydriding cycles to enable comparison of the vehicle-scale system performance to small-scale sample data. This paper describes the experimental results of life-cycle studies of the Demonstration System. Two of the four hydrogen storage modules of the Demonstration System were used for this study. A well-controlled and repeatable sorption cycle was defined for the repeated cycling, which began after the system had already been cycled forty-one times. After the first nine repeated cycles, a significant hydrogen storage capacity loss was observed. It was suspected that the sodium alanates had been affected either morphologically or by contamination. The mechanisms leading to this initial degradation were investigated and results indicated that water and/or air contamination of the hydrogen supply may have lead to oxidation of the hydride and possibly kinetic deactivation. Subsequent cycles showed continued capacity loss indicating that the mechanism of degradation was gradual and transport or kinetically limited. A materials analysis was then conducted using established methods including treatment with carbon dioxide to react with sodium oxides that may have formed. The module tubes were sectioned to examine chemical composition and morphology as a function of axial position. The results will be discussed.

  7. A Study of Vehicle Detection and Counting System Based on Video

    Directory of Open Access Journals (Sweden)

    Shuang XU

    2014-10-01

    Full Text Available About the video image processing's vehicle detection and counting system research, which has video vehicle detection, vehicle targets' image processing, and vehicle counting function. Vehicle detection is the use of inter-frame difference method and vehicle shadow segmentation techniques for vehicle testing. Image processing functions is the use of color image gray processing, image segmentation, mathematical morphology analysis and image fills, etc. on target detection to be processed, and then the target vehicle extraction. Counting function is to count the detected vehicle. The system is the use of inter-frame video difference method to detect vehicle and the use of the method of adding frame to vehicle and boundary comparison method to complete the counting function, with high recognition rate, fast, and easy operation. The purpose of this paper is to enhance traffic management modernization and automation levels. According to this study, it can provide a reference for the future development of related applications.

  8. Commercial vehicle fleet management and information systems. Technical memorandum 2 : summary of case study interviews

    Science.gov (United States)

    1997-10-01

    The FHWA has commissioned the Commercial Vehicle Fleet Management and Information Systems study to determine if there are fleet management needs that the public sector can address through the development of ITS for commercial vehicle operations. As p...

  9. Crew emergency return vehicle - Electrical power system design study

    Science.gov (United States)

    Darcy, E. C.; Barrera, T. P.

    1989-01-01

    A crew emergency return vehicle (CERV) is proposed to perform the lifeboat function for the manned Space Station Freedom. This escape module will be permanently docked to Freedom and, on demand, will be capable of safely returning the crew to earth. The unique requirements that the CERV imposes on its power source are presented, power source options are examined, and a baseline system is selected. It consists of an active Li-BCX DD-cell modular battery system and was chosen for the maturity of its man-rated design and its low development costs.

  10. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO

    Science.gov (United States)

    Duffy, James B.

    1993-01-01

    The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo

  11. Pilot Study of Systems to Drive Autonomous Vehicles on Test Tracks

    OpenAIRE

    Agardt, Erik; Löfgren, Markus

    2008-01-01

    This Master’s thesis is a pilot study that investigates different systems to drive autonomous and non-autonomous vehicles simultaneously on test tracks. The thesis includes studies of communication, positioning, collision avoidance, and techniques for surveillance of vehicles which are suitable for implementation. The investigation results in a suggested system outline. Differential GPS combined with laser scanner vision is used for vehicle state estimation (position, heading, velocity, etc.)...

  12. Electric Vehicle Propulsion System

    OpenAIRE

    Keshri, Ritesh Kumar

    2014-01-01

    Electric vehicles are being considered as one of the pillar of eco-friendly solutions to overcome the problem of global pollution and radiations due to greenhouse gases. Present thesis work reports the improvement in overall performance of the propulsion system of an electric vehicle by improving autonomy and torque-speed characteristic. Electric vehicle propulsion system consists of supply and traction system, and are coordinated by the monitoring & control system. Case of light electric veh...

  13. Catalysis study for space shuttle vehicle thermal protection systems. [for vehicle surface

    Science.gov (United States)

    Breen, J.; Rosner, D. E.; Delgass, W. N.; Nordine, P. C.; Cibrian, R.; Krishnan, N. G.

    1973-01-01

    Experimental results on the problem of reducing aerodynamic heating on space shuttle orbiter surfaces are presented. Data include: (1) development of a laboratory flow reactor technique for measuring gamma sub O and gamma sub N on candidate materials at surfaces, T sub w, in the nominal range 1000 to 2000, (2) measurements of gamma sub O and gamma sub N above 1000 K for both the glass coating of a reusable surface insulation material and the siliconized surface of a reinforced pyrolyzed plastic material, (3) measurement of the ablation behavior of the coated RPP material at T sub w is greater than or equal to 2150 K, (4) X-ray photoelectron spectral studies of the chemical constituents on these surfaces before and after dissociated gas exposure, (5) scanning electron micrograph examination of as-received and reacted specimens, and (6) development and exploitation of a method of predicting the aerodynamic heating consquences of these gamma sub O(T sub w) and gamma sub N(T sub w) measurements for critical locations on a radiation cooled orbiter vehicle.

  14. Parametric studies of electric propulsion systems for orbit transfer vehicles

    Science.gov (United States)

    Manvi, R.; Fujita, T.

    1988-01-01

    The present parametric tradeoff study for OTV electric propulsion systems encompasses ammonia and hydrogen arcjets as well as Xe-ion propulsion systems with performance characteristics currently being projected for 1993 operation. In all cases, the power source is a nuclear-electric system with 30 kg/kW(e) specific mass, and the mission involves the movement of payloads from lower orbits to GEO. Attention is given to payload capabilities and associated propellant requirements. Mission trip time is identified as the key parameter for selection; while arcjets are preferable for shorter trip times, ion propulsion is more advantageous for longer trip times due to reduced propellant mass fraction.

  15. Vehicle usage verification system

    NARCIS (Netherlands)

    Scanlon, W.G.; McQuiston, Jonathan; Cotton, Simon L.

    2012-01-01

    EN)A computer-implemented system for verifying vehicle usage comprising a server capable of communication with a plurality of clients across a communications network. Each client is provided in a respective vehicle and with a respective global positioning system (GPS) by which the client can

  16. HYBRID VEHICLE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2016-06-01

    Full Text Available The hybrid vehicle control system includes a start–stop system for an internal combustion engine. The system works in a hybrid mode and normal vehicle operation. To simplify the start–stop system, there were user new possibilities of a hybrid car, which appeared after the conversion. Results of the circuit design of the proposed system of basic blocks are analyzed.

  17. Stirling engine electric hybrid vehicle propulsion system conceptual design study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dochat, G; Artiles, A; Killough, J; Ray, A; Chen, H S

    1978-08-01

    Results of a six-month study to characterize a series Stirling engine electric hybrid vehicle propulsion system are presented. The Stirling engine was selected as the heat conversion element to exploit the high efficiency (> .36), low pollution, multi-fuel and quiet operation of this machine. A free-piston Stirling engine driving a linear alternator in a hermatically sealed enclosure was chosen to gain the reliability, long life, and maintenance free characteristics of a sealed unit. The study performs trade off evaluations, selection of engine, battery, motor and inverter size, optimization of components, and develops a conceptual design and characterization of the total propulsion system. The conclusion of the study is that a Stirling engine electric hybrid propulsion system can be used successfully to augment the battery storage of a passenger vehicle and will result in significant savings of petroleum energy over present passenger vehicles. The performance and range augmentation of the hybrid design results in significant improvements over an all electric vehicle. The hybrid will be capable of performing 99% of the passenger vehicle annual trip distribution requirements with extremely low fuel usage. (TFD)

  18. Intelligent transportation systems field operational test cross-cutting study : commercial vehicle administrative processes

    Science.gov (United States)

    1998-09-01

    Commercial Vehicle Administrative (CVO) Processes Cross-Cutting report summarizes and interprets the results of several Field Operational Tests (FOTs) conducted to evaluate systems that increase the efficiency of commercial vehicle administrative pro...

  19. Smart Vehicle System

    Science.gov (United States)

    Pahadiya, Pallavi; Gupta, Rajni

    2010-11-01

    An approach to overcome the accidental problem happens in the night, while the driver is drunk or feels sleepy. This system controls the speed of the vehicle at steep turns. It is designed, to provide the information to the driver, whether the next turn is right/left, is there any traffic jam or land sliding in the coming way. It also assists during heavy rains and mist conditions. It may be implemented by using computer or by using a dedicated microcontroller. If we have a group of vehicles connected with the system then we can locate them by using the cameras, at different places. Information regarding any vehicle can be transmitted anywhere using Internet provided at the monitoring system, so as to prevent accidents or provide information during any calamity.

  20. Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

  1. Electric vehicle drive systems

    Science.gov (United States)

    Appleyard, M.

    1992-01-01

    New legislation in the State of California requires that 2% of vehicles sold there from 1998 will be 'zero-emitting'. This provides a unique market opportunity for developers of electric vehicles but substantial improvements in the technology are probably required if it is to be successfully exploited. There are around a dozen types of battery that are potentially relevant to road vehicles but, at the present, lead/acid and sodium—sulphur come closest to combining acceptable performance, life and cost. To develop an efficient, lightweight electric motor system requires up-to-date techniques of magnetics design, and the latest power-electronic and microprocessor control methods. Brushless machines, coupled with solid-state inverters, offer the most economical solution for mass production, even though their development costs are higher than for direct-current commutator machines. Fitted to a small car, even the highest energy-density batteries will only provide around 200 km average range before recharging. Therefore, some form of supplementary on-board power generation will probably be needed to secure widespread acceptance by the driving public. Engine-driven generators of quite low power can achieve useful increases in urban range but will fail to qualify as 'zero-emitting'. On the other hand, if the same function could be economically performed by a small fuel-cell using hydrogen derived from a methanol reformer, then most of the flexibility provided by conventional vehicles would be retained. The market prospects for electric cars would then be greatly enhanced and their dependence on very advanced battery technology would be reduced.

  2. Hybrid-Vehicle Transmission System

    Science.gov (United States)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  3. Distributed manufacturing with 3-D printing: a case study of recreational vehicle solar photovoltaic mounting systems

    National Research Council Canada - National Science Library

    Wittbrodt, Ben; Laureto, John; Tymrak, Brennan; Pearce, Joshua M

    2015-01-01

    ... of a 3-D printable parametric design for recreational vehicle (RV) solar photovoltaic (PV) racking systems. The design is a four-corner mounting device with the ability to customize the tilt angle and height of the standoff...

  4. Electric vehicle data acquisition system

    DEFF Research Database (Denmark)

    Svendsen, Mathias; Winther-Jensen, Mads; Pedersen, Anders Bro

    2014-01-01

    A data acquisition system for electric vehicles is presented. The system connects to the On-board Diagnostic port of newer vehicles, and utilizes the in-vehicle sensor network, as well as auxiliary sensors, to gather data. Data is transmitted continuously to a central database for academic...... and industrial applications, e.g. research in electric vehicle driving patterns, vehicle substitutability analysis and fleet management. The platform is based on a embedded computer running Linux, and features a high level of modularity and flexibility. The system operates independently of the make of the car......, by using the On-board Diagnostic port to identify car model and adapt its software accordingly. By utilizing on-board Global Navigation Satellite System, General Packet Radio Service, accelerometer, gyroscope and magnetometer, the system not only provides valuable data for research in the field of electric...

  5. A Study of Coordinated Vehicle Traction Control System Based on Optimal Slip Ratio Algorithm

    Directory of Open Access Journals (Sweden)

    Gang Liu

    2016-01-01

    Full Text Available Under complicated situations, such as the low slippery road surface and split-μ road surface, traction control system is the key issue to improve the performance of vehicle acceleration and stability. In this paper, a novel control strategy with engine controller and active pressure controller is presented. First and foremost, an ideal vehicle model is proposed for simulation; then a method for the calculation of optimal slip ratio is also brought. Finally, the scheme of control method with engine controller and active brake controller is presented. From the results of simulation and road tests, it can be concluded that the acceleration performance and stability of a vehicle equipped with traction control system (TCS can be improved.

  6. Development of a US Child-Focused Motor Vehicle Crash Surveillance System: A Pilot Study.

    Science.gov (United States)

    Durbin, Dennis R; Curry, Allison; Myers, Rachel K

    2011-01-01

    Current motor vehicle crash (MVC) surveillance systems, in particular the National Automotive Sampling System (NASS), either do not contain sufficient numbers of children, or do not contain child-specific data needed to support policy and prevention efforts. The objective of this pilot study was to develop and evaluate methods that could be utilized for supplemental child-specific data collection on a sample of cases identified through the NASS-GES program. Procedures were developed to identify a sample of police accident reports (PARs) involving child occupants for supplemental collection of child-specific data via three survey modes: phone, web-based and hard-copy self administered. Contact was initiated with 650 eligible parent drivers and surveys were completed by 156 (24.0%). Response rates were highest for telephone-based surveys (41.0% of those initially contacted by phone). Surveys were completed via the web by only 6.1% of those invited to do so. Overall agreement between survey and PAR data was good to excellent. Results of this pilot study indicate that creating procedures to identify cases for supplemental child-specific data collection based on the NASS-GES system is feasible. In order to sustain a supplemental child-focused data collection system that relies on identification of cases from NASS-GES, efforts must be made to enhance contact procedures in order to optimize response rates.

  7. Advanced propulsion system concept for hybrid vehicles

    Science.gov (United States)

    Bhate, S.; Chen, H.; Dochat, G.

    1980-01-01

    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.

  8. NONLINEAR MODEL OF STABILITY STUDY OF SYSTEM "SURFACE CONTROL – ACTUATOR" OF MANEUVERABLE UNMANNED AERIAL VEHICLE

    Directory of Open Access Journals (Sweden)

    V. N. Akimov

    2017-01-01

    Full Text Available One of the important problems of the designing of maneuverable unmanned aerial vehicles (UAV is to ensure aeroelastic stability with automatic control system (ACS. One of the possible types of aeroelastic instability of UAV with ACS is loss of stability in the system "surface control – actuator".  A nonlinear model for the study of the stability of the system "surface control – actuator" is designed for solving problems of joint design of airframe and ACS with the requirements of aeroelasticity. The electric actuator is currently the most widely used on highly maneuverable UAV. The wide bandwidth and the availability of frequency characteristic lifts are typical for the modern electric actuator. This exacerbates the problem of providing aeroelastic stability of the UAV with ACS, including the problem of ensuring the stability of the system "surface control – actuator". In proposed model the surface control, performing bending-torsion oscillations in aerodynamic flow, in fact, is the loading for the actuator. Experimental frequency characteristics of the isolated actuator, obtained for different levels of the control signal, are used for the mathematical description of the actuator, then, as dynamic hinge moment, which is determined by aeroelastic vibrations of the surface control in the air flow, is calculated. Investigation of the stability of the system "surface control – actuator" is carried out by frequency method using frequency characteristics of the open-loop system. The undeniable advantage of the proposed model is the simplicity of obtaining the transfer functions of the isolated actuator. The experiment by its definition is a standard method of determining frequency characteristics of the actuator in contrast to time-consuming experiments for determining the dynamic stiffness of the actuator (with the surface control or the transfer function of the actuator using electromechanical simulation of aeroelastic loading of the

  9. An empirical study of the effectiveness of electronic stability control system in reducing loss of vehicle control.

    Science.gov (United States)

    Papelis, Yiannis E; Watson, Ginger S; Brown, Timothy L

    2010-05-01

    A significant percentage of fatal vehicle crashes involve loss of control (LOC). Electronic stability control (ESC) is an active safety system that detects impending LOC and activates counter-measures that help the driver maintain or re-gain control. To assess the effectiveness of ESC in preventing LOC, an empirical study was conducted on a high-fidelity driving simulator. The ESC systems for two vehicles were incorporated into the simulator's dynamics code which was calibrated to ensure engineering validation. The study utilized three scenarios designed to recreate typical LOC situations, and was designed to assess the effects of ESC presence, vehicle type, scenario, age and gender. A total of 120 research participants completed the study. Results showed a statistically significant reduction in LOC with ESC compared to without ESC (F=52.72, pdriver behavior. Study conclusions suggest that wide-spread utilization of ESC is likely to reduce traffic fatalities. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  10. Orbit/launch vehicle tradeoff studies. Earth Observatory Satellite system definition study (EOS)

    Science.gov (United States)

    1974-01-01

    An evaluation of the Earth Observatory Satellite (EOS) design, performance, and cost factors which affect the choices of an orbit and a launch vehicle is presented. Primary emphasis is given to low altitude (300 to 900 nautical miles) land resources management applications for which payload design factors are defined. The subjects considered are: (1) a mission model, (2) orbit analysis and characterization, (3) characteristics and capabilities of candidate conventional launch vehicles, and space shuttle support. Recommendations are submitted for the EOS-A mission, the Single Multispectral Scanner payload, the Single Multispectral Scanner plus Thematic Mapper payload, the Dual Multispectral Scanner payload, and the Dual Multispectral Scanner plus Thematic Mapper payload.

  11. Advanced Propulsion Power Distribution System for Next Generation Electric/Hybrid Vehicle. Phase 1; Preliminary System Studies

    Science.gov (United States)

    Bose, Bimal K.; Kim, Min-Huei

    1995-01-01

    The report essentially summarizes the work performed in order to satisfy the above project objective. In the beginning, different energy storage devices, such as battery, flywheel and ultra capacitor are reviewed and compared, establishing the superiority of the battery. Then, the possible power sources, such as IC engine, diesel engine, gas turbine and fuel cell are reviewed and compared, and the superiority of IC engine has been established. Different types of machines for drive motor/engine generator, such as induction machine, PM synchronous machine and switched reluctance machine are compared, and the induction machine is established as the superior candidate. Similar discussion was made for power converters and devices. The Insulated Gate Bipolar Transistor (IGBT) appears to be the most superior device although Mercury Cadmium Telluride (MCT) shows future promise. Different types of candidate distribution systems with the possible combinations of power and energy sources have been discussed and the most viable system consisting of battery, IC engine and induction machine has been identified. Then, HFAC system has been compared with the DC system establishing the superiority of the former. The detailed component sizing calculations of HFAC and DC systems reinforce the superiority of the former. A preliminary control strategy has been developed for the candidate HFAC system. Finally, modeling and simulation study have been made to validate the system performance. The study in the report demonstrates the superiority of HFAC distribution system for next generation electric/hybrid vehicle.

  12. Study on the Vehicle Dynamic Load Considering the Vehicle-Pavement Coupled Effect

    Science.gov (United States)

    Xu, H. L.; He, L.; An, D.

    2017-11-01

    The vibration of vehicle-pavement interaction system is sophisticated random vibration process and the vehicle-pavement coupled effect was not considered in the previous study. A new linear elastic model of the vehicle-pavement coupled system was established in the paper. The new model was verified with field measurement which could reflect the real vibration between vehicle and pavement. Using the new model, the study on the vehicle dynamic load considering the vehicle-pavement coupled effect showed that random forces (centralization) between vehicle and pavement were influenced largely by vehicle-pavement coupled effect. Numerical calculation indicated that the maximum of random forces in coupled model was 2.4 times than that in uncoupled model. Inquiring the reason, it was found that the main vibration frequency of the vehicle non-suspension system was similar with that of the vehicle suspension system in the coupled model and the resonance vibration lead to vehicle dynamic load increase significantly.

  13. Earth Observatory Satellite system definition study. Report 1: Orbit/launch vehicle trade-off studies and recommendations

    Science.gov (United States)

    1974-01-01

    A summary of the constraints and requirements on the Earth Observatory Satellite (EOS-A) orbit and launch vehicle analysis is presented. The propulsion system (hydrazine) and the launch vehicle (Delta 2910) selected for EOS-A are examined. The rationale for the selection of the recommended orbital altitude of 418 nautical miles is explained. The original analysis was based on the EOS-A mission with the Thematic Mapper and the High Resolution Pointable Imager. The impact of the revised mission model is analyzed to show how the new mission model affects the previously defined propulsion system, launch vehicle, and orbit. A table is provided to show all aspects of the EOS multiple mission concepts. The subjects considered include the following: (1) mission orbit analysis, (2) spacecraft parametric performance analysis, (3) launch system performance analysis, and (4) orbits/launch vehicle selection.

  14. Study Of Calculation Of Degaussing System For Reducing Magnetic Field From Submersible Vehicle

    Directory of Open Access Journals (Sweden)

    Sardono Sarwito

    2017-03-01

    Full Text Available The rapid development of maritime technology in the world to make Indonesia are also increasingly taking the development of maritime technology, such as in a Submersible Vehicle one is degaussing system, this technology should be owned by the vessel so that the vessel can avoid dangerous explosive equipment contained in the sea. Degaussing system is a system that is in use on the metal parts or electronic devices that are at risk of a magnetic field. This system is used to prevent the vessel from dangerous equipment in the sea which can trigger an explosion and the damage that utilize magnetic fields as a metal-detection sensor when the boat was doing dives. To the authors will plan the design degaussing system, and calculating the system in order to reduce the magnetic properties of the Submersible Vehicle which were obtained by the use of Coil Degaussing along 214,5 meters, a diameter of 0,2, with 500.000 coil that will generate a current of 0,0157 Ampere's 0.0787 Tesla generates a magnetic field.

  15. A Study on Electric Vehicle Heat Pump Systems in Cold Climates

    Directory of Open Access Journals (Sweden)

    Ziqi Zhang

    2016-10-01

    Full Text Available Electric vehicle heat pumps are drawing more and more attention due to their energy-saving and high efficiency designs. Some problems remain, however, in the usage of the heat pumps in electric vehicles, such as a drainage problem regarding the external heat exchangers while in heat pump mode, and the decrease in heating performance when operated in a cold climate. In this article, an R134a economized vapor injection (EVI heat pump system was built and tested. The drainage problem common amongst external heat exchangers was solved by an optimized 5 mm diameter tube-and-fin heat exchanger, which can meet both the needs of a condenser and evaporator based on simulation and test results. The EVI system was also tested under several ambient temperatures. It was found that the EVI was a benefit to the system heating capacity. Under a −20 °C ambient temperature, an average improvement of 57.7% in heating capacity was achieved with EVI and the maximum capacity was 2097 W, with a coefficient of performance (COP of 1.25. The influences of injection pressure and economizer capacity are also discussed in this article.

  16. Study of design factors of vehicle headlamp control systems; Zenshoto seigyo system no hyoka shuho no kento

    Energy Technology Data Exchange (ETDEWEB)

    Kamishima, H.; Miwa, T.; Sasaki, T.; Imai, M. [Nissan Motor Co. Ltd., Tokyo (Japan); Sumi, T. [Niles Parts Co. Ltd., Tokyo (Japan)

    1997-10-01

    The on-and-off timing of vehicle headlamp control systems varies with weather conditions. Cloudy weather has a wider light energy distribution from visible to infrared radiation than clear weather. Silicon photodiodes, which can detect visible to infrared radiation, have larger output currents on cloudy evenings than on clear evenings under the same brightness conditions. The systems should be designed with such factors in mind as spectral characteristics of windshield, filters, sensor, and eyesight. 4 refs., 9 figs.

  17. Feasibility Study of a Building-Integrated PV Manager to Power a Last-Mile Electric Vehicle Sharing System

    Directory of Open Access Journals (Sweden)

    Manuel Fuentes

    2017-01-01

    Full Text Available Transportation is one of the largest single sources of air pollution in urban areas. This paper analyzes a model of solar-powered vehicle sharing system using building-integrated photovoltaics (BIPV, resulting in a zero-emission and zero-energy mobility system for last-mile employee transportation. As a case study, an electric bicycle sharing system between a public transportation hub and a work center is modeled mathematically and optimized in order to minimize the number of pickup trips to satisfy the demand, while minimizing the total energy consumption of the system. The whole mobility system is fully powered with BIPV-generated energy. Results show a positive energy balance in e-bike batteries and pickup vehicle batteries in the worst day of the year regarding solar radiation. Even in this worst-case scenario, we achieve reuse rates of 3.8 people per bike, using actual data. The proposed system manages PV energy using only the batteries from the electric vehicles, without requiring supportive energy storage devices. Energy requirements and PV generation have been analyzed in detail to ensure the feasibility of this approach.

  18. Mobility Systems For Robotic Vehicles

    Science.gov (United States)

    Chun, Wendell

    1987-02-01

    The majority of existing robotic systems can be decomposed into five distinct subsystems: locomotion, control/man-machine interface (MMI), sensors, power source, and manipulator. When designing robotic vehicles, there are two main requirements: first, to design for the environment and second, for the task. The environment can be correlated with known missions. This can be seen by analyzing existing mobile robots. Ground mobile systems are generally wheeled, tracked, or legged. More recently, underwater vehicles have gained greater attention. For example, Jason Jr. made history by surveying the sunken luxury liner, the Titanic. The next big surge of robotic vehicles will be in space. This will evolve as a result of NASA's commitment to the Space Station. The foreseeable robots will interface with current systems as well as standalone, free-flying systems. A space robotic vehicle is similar to its underwater counterpart with very few differences. Their commonality includes missions and degrees-of-freedom. The issues of stability and communication are inherent in both systems and environment.

  19. Vehicle electrical system state controller

    Science.gov (United States)

    Bissontz, Jay E.

    2017-10-17

    A motor vehicle electrical power distribution system includes a plurality of distribution sub-systems, an electrical power storage sub-system and a plurality of switching devices for selective connection of elements of and loads on the power distribution system to the electrical power storage sub-system. A state transition initiator provides inputs to control system operation of switching devices to change the states of the power distribution system. The state transition initiator has a plurality of positions selection of which can initiate a state transition. The state transition initiator can emulate a four position rotary ignition switch. Fail safe power cutoff switches provide high voltage switching device protection.

  20. Study of advanced electric propulsion system concept using a flywheel for electric vehicles

    Science.gov (United States)

    Younger, F. C.; Lackner, H.

    1979-01-01

    Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.

  1. FY2015 Vehicle Systems Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-31

    The Vehicle Systems research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to advancing light-, medium-, and heavy-duty vehicle systems to help maximize the number of electric miles driven and increase the energy efficiency of transportation vehicles.

  2. Experimental Autonomous Vehicle Systems

    DEFF Research Database (Denmark)

    Ravn, Ole; Andersen, Nils Axel

    1998-01-01

    ANSI-C program extending the TCL system is used for plan execution and a combination of MATLAB and a custom made Java GUI as user interface on the remote operator console. The choice of these standard software components is explained and the individual components demonstrated. Examples of how specific...

  3. Earth Observatory Satellite system definition study. Report no. 1: Orbit/launch vehicle tradeoff studies and recommendations

    Science.gov (United States)

    1974-01-01

    A study was conducted to determine the recommended orbit for the Earth Observatory Satellite (EOS) Land Resources Mission. It was determined that a promising sun synchronous orbit is 366 nautical miles when using an instrument with a 100 nautical mile swath width. The orbit has a 17 day repeat cycle and a 14 nautical mile swath overlap. Payloads were developed for each mission, EOS A through F. For each mission, the lowest cost booster that was capable of lifting the payload to the EOS orbit was selected. The launch vehicles selected for the missions are identified on the basis of tradeoff studies and recommendations. The reliability aspects of the launch vehicles are analyzed.

  4. Research and Simulation of the Electrical Vehicle Based Dynamical System

    Directory of Open Access Journals (Sweden)

    Ko-Chun Chen

    2015-01-01

    Full Text Available This study developed a dynamic model of electric vehicle system by using the MATLAB/Simulink tool. The vehicle model comprises two system components: an electrical system and a suspension system. This study also designed various road conditions for simulating the motion of vehicle traveling along a road. The results show that the electrical and suspension system parameters can be adjusted immediately to enhance passenger comfort. The findings of this research have practical teaching applications. Students can modify the vehicle model parameters byes using the MATLAB graphical user interface, allowing them to observe the motion of vehicle under various road conditions.

  5. In-Vehicle Information Systems

    Directory of Open Access Journals (Sweden)

    Gordana Štefančić

    2012-10-01

    Full Text Available The work considers different information systems, includingthe infonnation ~ystems with autonomous units, whichcany all their intelligence around with them, and those withcommunicating units, which infonn the motorist about the currentsituation of the road system by radio or other means. Thesymbols of various messages have three main objectives: to provideinstruction, to warn of oncoming dange1~ or to give adviceregarding parking or looking for altemative routes. When notused for these pwposes, they are used to provide general informationabout the weathe1~ temperature or possible attractions.The in-vehicle information systems fly to assist the motorist indriving, and they are promoted as part of the comprehensive intelligenttransport system.

  6. Experimental Study on Communication Delay of Powertrain System of Plug-In Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Dafang Wang

    2013-01-01

    Full Text Available In order to contrast and analyze the real-time performance of the powertrain system of a plug-in hybrid electric vehicle, a mathematical model of the system delay is established under the circumstances that the transmission adopts the CAN (controller area network protocol and the TTCAN (time-triggered CAN protocol, respectively, and the interior of the controller adopts the foreground-background mode and the OSEK mode respectively. In addition, an experimental platform is developed to test communication delays of messages under 4 different implementation models. The 4 models are testing under the CAN protocol while the controller interior adopts the foreground-background mode; testing under the CAN protocol while the controller interior adopts the OSEK mode; testing under the TTCAN protocol while the controller interior adopts the foreground-background mode, and testing under the TTCAN protocol while the controller interior adopts the OSEK mode. The theoretical and testing results indicate that the communication delay of the OSEK mode is a little longer than the one of the foreground-background mode. Moreover, compared with the CAN protocol, the periodic message has a better real-time performance under the TTCAN protocol, while the nonperiodic message has a worse one.

  7. In-Vehicle Information Systems

    Directory of Open Access Journals (Sweden)

    Gordana Štefančić

    2002-03-01

    Full Text Available The paper considers different systems, including thesystems with autonomous units, which cany all their knowledgewith them, and those with communication units, which informthe driver about the current situation of the road system byradio or other means. The symbols of various messageshave three main goals: to provide instruction, to warn ofoncoming danger, or to give advice regarding parking or lookingfor alternative routes. When not used for these purposes,they are used to provide general information about/he weathe1;temperature or possible attractions. The in-vehicle informationsystems try to assist the motorist in driving, and they arepromoted as part of the comprehensive intelligent transport system.

  8. Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems: A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, Norman [General Moters Corporation, Flint, MI (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Weber, Trudy [General Moters Corporation, Flint, MI (United States); Darlington, Thomas [Air Improvement Resource, Inc., Novi, MI (United States)

    2005-05-01

    An accurate assessment of future fuel/propulsion system options requires a complete vehicle fuel-cycle analysis, commonly called a well-to-wheels (WTW) analysis. This WTW study analyzes energy use and emissions associated with fuel production (or well-to-tank [WTT]) activities and energy use and emissions associated with vehicle operation (or tank-to-wheels [TTW]) activities.

  9. Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 4: IPAD system design

    Science.gov (United States)

    Goldfarb, W.; Carpenter, L. C.; Redhed, D. D.; Hansen, S. D.; Anderson, L. O.; Kawaguchi, A. S.

    1973-01-01

    The computing system design of IPAD is described and the requirements which form the basis for the system design are discussed. The system is presented in terms of a functional design description and technical design specifications. The functional design specifications give the detailed description of the system design using top-down structured programming methodology. Human behavioral characteristics, which specify the system design at the user interface, security considerations, and standards for system design, implementation, and maintenance are also part of the technical design specifications. Detailed specifications of the two most common computing system types in use by the major aerospace companies which could support the IPAD system design are presented. The report of a study to investigate migration of IPAD software between the two candidate 3rd generation host computing systems and from these systems to a 4th generation system is included.

  10. Energy-Based Design Methodology for Air Vehicle Systems: Aerodynamic Correlation Study

    National Research Council Canada - National Science Library

    Figliola, Richard S

    2005-01-01

    .... The developed approach was a joint effort with AFRL personnel in energy- based design. The work represents a new and different approach for detailed drag estimation and vehicle-level utilization of energy...

  11. Advanced propulsion system for hybrid vehicles

    Science.gov (United States)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  12. Analytical Studies on Ride Quality and Ride Comfort in Chennai Mass Rapid Transit System (MRTS) Railroad Vehicle

    Science.gov (United States)

    Gangadharan, K. V.; Chandramohan, Sujatha

    2017-12-01

    In this paper analytical ride index studies and ISO 2631 based ride comfort analysis of a suburban MRTS railroad vehicle is presented. Track power spectral densities (PSDs) were used as inputs to a finite element (FE) model of the vehicle and track and the acceleration responses were computed using random vibration theory. From these responses, ride quality and ride comfort have been computed at different locations of the vehicle at different speeds in the vertical and lateral directions.

  13. Launch vehicle systems design analysis

    Science.gov (United States)

    Ryan, Robert; Verderaime, V.

    1993-01-01

    Current launch vehicle design emphasis is on low life-cycle cost. This paper applies total quality management (TQM) principles to a conventional systems design analysis process to provide low-cost, high-reliability designs. Suggested TQM techniques include Steward's systems information flow matrix method, quality leverage principle, quality through robustness and function deployment, Pareto's principle, Pugh's selection and enhancement criteria, and other design process procedures. TQM quality performance at least-cost can be realized through competent concurrent engineering teams and brilliance of their technical leadership.

  14. Usability Analysis of Collision Avoidance System in Vehicle-to-Vehicle Communication Environment

    Directory of Open Access Journals (Sweden)

    Hong Cho

    2014-01-01

    Full Text Available Conventional intelligent vehicles have performance limitations owing to the short road and obstacle detection range of the installed sensors. In this study, to overcome this limitation, we tested the usability of a new conceptual autonomous emergency braking (AEB system that employs vehicle-to-vehicle (V2V communication technology in the existing AEB system. To this end, a radar sensor and a driving and communication environment constituting the AEB system were simulated; the simulation was then linked by applying vehicle dynamics and control logic. The simulation results show that the collision avoidance relaxation rate of V2V communication-based AEB system was reduced compared with that of existing vehicle-mounted-sensor-based system. Thus, a method that can lower the collision risk of the existing AEB system, which uses only a sensor cluster installed on the vehicle, is realized.

  15. Information technology feasibility study for the Washington State commercial vehicle information systems and networks (CVISN) pilot project

    Science.gov (United States)

    1998-01-08

    The CVISN Pilot Project will prototype the use of a comprehensive interface to state and federal motor carrier data systems and will deliver real-time, decision-making information to weigh stations and commercial vehicle enforcement officers. In addi...

  16. A Study on the Control Performance of Electronic Differential System for Four-Wheel Drive Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Dejun Yin

    2017-01-01

    Full Text Available The electronic differential system (EDS is an important issue for four-wheel drive electric vehicles. This paper delineates an advanced EDS steering strategy and carries out a careful study of its control performance by numerical simulations that comply with the requirements of ISO4238:2012. The results demonstrate that the EDS feedback gain plays an important role to its control performance, particularly to its steering characteristics. Moreover, the analysis and discussion disclose the mechanism of the relationship between the feedback gain and the steering characteristics, which will contribute to further research and EDS development.

  17. Dynamics of vehicle-road coupled system

    CERN Document Server

    Yang, Shaopu; Li, Shaohua

    2015-01-01

    Vehicle dynamics and road dynamics are usually considered to be two largely independent subjects. In vehicle dynamics, road surface roughness is generally regarded as random excitation of the vehicle, while in road dynamics, the vehicle is generally regarded as a moving load acting on the pavement. This book suggests a new research concept to integrate the vehicle and the road system with the help of a tire model, and establishes a cross-subject research framework dubbed vehicle-pavement coupled system dynamics. In this context, the dynamics of the vehicle, road and the vehicle-road coupled system are investigated by means of theoretical analysis, numerical simulations and field tests. This book will be a valuable resource for university professors, graduate students and engineers majoring in automotive design, mechanical engineering, highway engineering and other related areas. Shaopu Yang is a professor and deputy president of Shijiazhuang Tiedao University, China; Liqun Chen is a professor at Shanghai Univ...

  18. Impacts of Electric Vehicle Loads on Power Distribution Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2010-01-01

    Electric vehicles (EVs) are the most promising alternative to replace a significant amount of gasoline vehicles to provide cleaner, CO2 free and climate friendly transportation. On integrating more electric vehicles, the electric utilities must analyse the related impacts on the electricity system...... operation. This paper investigates the effects on the key power distribution system parameters like voltages, line drops, system losses etc. by integrating electric vehicles in the range of 0-50% of the cars with different charging capacities. The dump as well as smart charging modes of electric vehicles...... is applied in this analysis. A typical Danish primary power distribution system is used as a test case for the studies. From the simulation results, not more than 10% of electric vehicles could be integrated in the test system for the dump charging mode. About 40% of electric vehicle loads could...

  19. Feasibility Study Of Advanced Technology Hov Systems: Volume 2a: Feasibility Of Implementing Roadway Powered Electric Vehicle Technology In El Monte Busway: A Case Study

    OpenAIRE

    Chira-Chavala, Ted; Lechner, Edward H.; Empey, Dan M.

    1992-01-01

    This study investigates issues concerning the implementation and impacts of lateral guidance/control systems and the phased implementation of these systems in exclusive-access High Occupancy Vehicle (HOV) lanes. The study is divided into 5 volumes. The objectives of each volume are as follows: Vol. 1: identify strategies for early deployment of longitudinal control technologies on the highway, and to evaluate potential impacts of these strategies on traffic operation, highway capacity, and tr...

  20. Vehicle health management for guidance, navigation and control systems

    Science.gov (United States)

    Radke, Kathleen; Frazzini, Ron; Bursch, Paul; Wald, Jerry; Brown, Don

    The objective of the program was to architect a vehicle health management (VHM) system for space systems avionics that assures system readiness for launch vehicles and for space-based dormant vehicles. The platforms which were studied and considered for application of VHM for guidance, navigation and control (GN&C) included the Advanced Manned Launch System (AMLS), the Horizontal Landing-20/Personnel Launch System (HL-20/PLS), the Assured Crew Return Vehicle (ACRV) and the Extended Duration Orbiter (EDO). This set was selected because dormancy and/or availability requirements are driving the designs of these future systems.

  1. Introducing Dual Suspension System in Road Vehicles

    Directory of Open Access Journals (Sweden)

    Imtiaz Hussain

    2013-04-01

    Full Text Available The main objective of suspension system is to reduce the motions of the vehicle body with respect to road disturbances. The conventional suspension systems in road vehicles use passive elements such as springs and dampers to suppress the vibrations induced by the irregularities in the road. But these conventional suspension systems can suppress vibrations to a certain limit. This paper presents a novel idea to improve the ride quality of roads vehicles without compromising vehicle?s stability. The paper proposes the use of primary and secondary suspension to suppress the vibrations more effectively.

  2. Using electric vehicles as flexible resource in power systems: A case study in the Netherlands

    OpenAIRE

    Beltramo, Agnese; Julea, Andreea; Refa, Nazir; Drossinos, Yannis; Thiel, Christian; Quoilin, Sylvain

    2017-01-01

    The European Union (EU) is actively encouraging member countries to phase out traditional oil-fuelled cars in cities in favour of Electric Vehicles (EV) as a solution for increasing efficiency, contributing to ensure security of supply, decrease CO2 emission and decrease local (especially urban) air pollution coming from the transport sector. With the increasing associated charging infrastructure deployment all over European countries, the demand coming from these technologies might impact th...

  3. Heat Exchanger for Motor Vehicle Cooling System

    OpenAIRE

    Thuliez, Jean-Luc; Chevroulet, Tristan; Stoll, Daniel

    1997-01-01

    Heat exchanger for a motor vehicle cooling system including a sleeve-like meter hermetically mounted on, and surrounding, a hollow tubular chassis meter of the vehicle. The sleeve is provided with inlets and outlets communicating with the space between the sleeve and the chassis meter and vehicle coolant flows through the inlet and outlet. Air, flowing over the outside surface of the sleeve and the inside surface of the chassis meter, cools the vehicle coolant. SMH - MCC Smart, car concepts (...

  4. Comparison Study of Two Semi-Active Hybrid Energy Storage Systems for Hybrid Electric Vehicle Applications and Their Experimental Validation

    Directory of Open Access Journals (Sweden)

    Haitao Min

    2017-02-01

    Full Text Available Both the battery/supercapacitor (SC and SC/battery are two common semi-active configurations of hybrid energy storage systems (HESSs in hybrid electric vehicles, which can take advantage of the battery’s and supercapacitor’s respective characteristics, including the energy ability, power ability and the long lifetime. To explore in depth the characteristics and applicability of the two kinds of HESS, an analysis and comparison study is proposed in this paper. Based on the data collected from public transit hybrid electric bus (PTHEB with battery-only on-board energy storage, the range and distribution probability of electric power/energy demand is comprehensively statistically analyzed with the decomposing and normalizing methods. Accordingly, the performance of each topology under different parameter matching conditions but same mass, volume and cost values with battery-only energy storage, are presented and compared quantitatively. The results show that both HESS configurations can meet the electric power demand of the hybrid electric vehicle (HEV through reasonable design. In particular, the SC/battery can make better use of the SC features resulting in high efficiency and long life cycles compared with the battery/SC. Equally, it proves that the SC/battery topology is a better choice for the HEV. Finally, an experimental validation of a real HEV is carried out, which indicated that a 7% fuel economy improvement can be achieved by a SC/battery system compared with battery-only topology.

  5. Classification of Dynamic Vehicle Routing Systems

    DEFF Research Database (Denmark)

    Larsen, Allan; Madsen, Oli B.G.; Solomon, Marius M.

    2007-01-01

    This chapter discusses important characteristics seen within dynamic vehicle routing problems. We discuss the differences between the traditional static vehicle routing problems and its dynamic counterparts. We give an in-depth introduction to the degree of dynamism measure which can be used...... to classify dynamic vehicle routing systems. Methods for evaluation of the performance of algorithms that solve on-line routing problems are discussed and we list some of the most important issues to include in the system objective. Finally, we provide a three-echelon classification of dynamic vehicle routing...... systems based on their degree of dynamism and the system objective....

  6. Hybrid and Electric Advanced Vehicle Systems Simulation

    Science.gov (United States)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  7. Study on Mixed Working Fluids with Different Compositions in Organic Rankine Cycle (ORC Systems for Vehicle Diesel Engines

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2014-08-01

    Full Text Available One way to increase the thermal efficiency of vehicle diesel engines is to recover waste heat by using an organic Rankine cycle (ORC system. Tests were conducted to study the running performances of diesel engines in the whole operating range. The law of variation of the exhaust energy rate under various engine operating conditions was also analyzed. A diesel engine-ORC combined system was designed, and relevant evaluation indexes proposed. The variation of the running performances of the combined system under various engine operating conditions was investigated. R245fa and R152a were selected as the components of the mixed working fluid. Thereafter, six kinds of mixed working fluids with different compositions were presented. The effects of mixed working fluids with different compositions on the running performances of the combined system were revealed. Results show that the running performances of the combined system can be improved effectively when mass fraction R152a in the mixed working fluid is high and the engine operates with high power. For the mixed working fluid M1 (R245fa/R152a, 0.1/0.9, by mass fraction, the net power output of the combined system reaches the maximum of 34.61 kW. Output energy density of working fluid (OEDWF, waste heat recovery efficiency (WHRE, and engine thermal efficiency increasing ratio (ETEIR all reach their maximum values at 42.7 kJ/kg, 10.90%, and 11.29%, respectively.

  8. Advanced hybrid and electric vehicles system optimization and vehicle integration

    CERN Document Server

    2016-01-01

    This contributed volume contains the results of the research program “Agreement for Hybrid and Electric Vehicles”, funded by the International Energy Agency. The topical focus lies on technology options for the system optimization of hybrid and electric vehicle components and drive train configurations which enhance the energy efficiency of the vehicle. The approach to the topic is genuinely interdisciplinary, covering insights from fields. The target audience primarily comprises researchers and industry experts in the field of automotive engineering, but the book may also be beneficial for graduate students.

  9. AUTOMATED COMPUTER SYSTEM OF VEHICLE VOICE CONTROL

    Directory of Open Access Journals (Sweden)

    A. Kravchenko

    2009-01-01

    Full Text Available Domestic cars and foreign analogues are considered. Failings are marked related to absence of the auxiliary electronic system which serves for the increase of safety and comfort of vehicle management. Innovative development of the complex system of vocal management which provides reliability, comfort and simplicity of movement in a vehicle is offered.

  10. FY2016 Vehicle Systems Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-10-31

    Vehicle Systems is concerned with advancing light-, medium-, and heavy-duty (HD) vehicle systems to support DOE’s goals of developing technologies for the U.S. transportation sector that enhance national energy security,increase U.S. competitiveness in the global economy, and support improvement of U.S. transportation and energy infrastructure.

  11. Scheduling vehicles in automated transportation systems

    NARCIS (Netherlands)

    van der Heijden, Matthijs C.; Ebben, Mark; Gademann, Noud; van Harten, Aart

    2002-01-01

    One of the major planning issues in large scale automated transportation systems is so-called empty vehicle management, the timely supply of vehicles to terminals in order to reduce cargo waiting times. Motivated by a Dutch pilot project on an underground cargo transportation system using Automated

  12. ADAPTIVE OPTICAL SYSTEMS LIGHTING EQUIPMENT VEHICLES

    OpenAIRE

    S. P. Sernov; D. V. Balokhonov; T. V. Kolontaeva; A. V. Zhuravok

    2011-01-01

    This article describes the main principles of implementation of modern adaptive signal lighting equipment of vehicles, provides an analysis of optical systems are used, the necessity of the use of LEDs. We present the design of adaptive optical system, rear combination LED lamp of a vehicle with several levels of intensity, we discuss the algorithm of its work in different modes. 

  13. Simultaneous Observation of Hybrid States for Cyber-Physical Systems: A Case Study of Electric Vehicle Powertrain.

    Science.gov (United States)

    Lv, Chen; Liu, Yahui; Hu, Xiaosong; Guo, Hongyan; Cao, Dongpu; Wang, Fei-Yue

    2017-08-22

    As a typical cyber-physical system (CPS), electrified vehicle becomes a hot research topic due to its high efficiency and low emissions. In order to develop advanced electric powertrains, accurate estimations of the unmeasurable hybrid states, including discrete backlash nonlinearity and continuous half-shaft torque, are of great importance. In this paper, a novel estimation algorithm for simultaneously identifying the backlash position and half-shaft torque of an electric powertrain is proposed using a hybrid system approach. System models, including the electric powertrain and vehicle dynamics models, are established considering the drivetrain backlash and flexibility, and also calibrated and validated using vehicle road testing data. Based on the developed system models, the powertrain behavior is represented using hybrid automata according to the piecewise affine property of the backlash dynamics. A hybrid-state observer, which is comprised of a discrete-state observer and a continuous-state observer, is designed for the simultaneous estimation of the backlash position and half-shaft torque. In order to guarantee the stability and reachability, the convergence property of the proposed observer is investigated. The proposed observer are validated under highly dynamical transitions of vehicle states. The validation results demonstrates the feasibility and effectiveness of the proposed hybrid-state observer.

  14. Emergency vehicle traffic signal preemption system

    Science.gov (United States)

    Bachelder, Aaron D. (Inventor); Foster, Conrad F. (Inventor)

    2011-01-01

    An emergency vehicle traffic light preemption system for preemption of traffic lights at an intersection to allow safe passage of emergency vehicles. The system includes a real-time status monitor of an intersection which is relayed to a control module for transmission to emergency vehicles as well as to a central dispatch office. The system also provides for audio warnings at an intersection to protect pedestrians who may not be in a position to see visual warnings or for various reasons cannot hear the approach of emergency vehicles. A transponder mounted on an emergency vehicle provides autonomous control so the vehicle operator can attend to getting to an emergency and not be concerned with the operation of the system. Activation of a priority-code (i.e. Code-3) situation provides communications with each intersection being approached by an emergency vehicle and indicates whether the intersection is preempted or if there is any conflict with other approaching emergency vehicles. On-board diagnostics handle various information including heading, speed, and acceleration sent to a control module which is transmitted to an intersection and which also simultaneously receives information regarding the status of an intersection. Real-time communications and operations software allow central and remote monitoring, logging, and command of intersections and vehicles.

  15. A study of novel regenerative braking system based on supercapacitor for electric vehicle driven by in-wheel motors

    Directory of Open Access Journals (Sweden)

    Li-qiang Jin

    2015-03-01

    Full Text Available Taking supercapacitor and battery pack as the energy storage unit, a novel type of regenerative braking system for electric vehicle driven by in-wheel motors is presented, and a braking energy regeneration control strategy is set up. Then, a co-simulation test based on CRUISE and Simulink is conducted. The results of simulation show that the novel type of system can ensure the safety of battery pack and significantly improve the rate of energy regeneration.

  16. A comparison study of different semi-active hybrid energy storage system topologies for electric vehicles

    Science.gov (United States)

    Song, Ziyou; Hofmann, Heath; Li, Jianqiu; Han, Xuebing; Zhang, Xiaowu; Ouyang, Minggao

    2015-01-01

    In this paper, four different semi-active hybrid energy storage systems (HESSs), which use both supercapacitors (SCs) and batteries, are compared based on an electric city bus running the China Bus Driving Cycle (CBDC). The SC sizes of the different HESS topologies are optimized by using the dynamic programming (DP) approach, based on a dynamic degradation model of the LiFePO4 battery. The operation costs of different HESSs, including the electricity and the battery degradation costs over a whole CBDC, are minimized in the optimization process. Based on the DP results, near-optimal control strategies of different HESSs for on-line uses are proposed. Finally, the four HESS topologies are comprehensively compared from different aspects, including operation cost, initial cost, and DC bus voltage variation. Simulation results show that all HESS topologies have their merits and drawbacks, and can be used in different applications with different requirements. In addition, about 50% of the operation cost of the energy storage system is reduced by the semi-active HESSs when compared to the battery-only topology. Thus the effectiveness of adopting the SC in the HESS is verified.

  17. Electric and Hybrid Vehicle System Research and Development Project: Hybrid Vehicle Potential Assessment. Volume 1. Summary

    Energy Technology Data Exchange (ETDEWEB)

    Surber, F.T.

    1979-09-30

    The results of investigations conducted under Ce Hybrid Vehicle Potential Assessment Task are reported in 10 volumes. This volume contains an overview of the study and its results. The purpose of the overall study was to determine if the petroleum fuel savings achievable through the use of hybrid electric vehicles is worth the R and D expenditures needed to develop the hybrid vehicles and to determine R and D priorities. It was concluded that by the year 2010 hybrid vehicles could replace 80% of the automotive power that would otherwise be produced from petroleum fuels; the public should not suffer any mobility loss through the use of hybrid vehicles; high initial and life-cycle costs are a limiting factor; and R and D funds should be spent for systems design and the development of low-cost batteries and controllers. (LCL)

  18. Fusion Enhanced Vehicle Level Diagnostic System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Technology Connection, Inc. in conjunction with its partner, Vanderbilt University, is proposing to build a Fusion-enhanced Vehicle Diagnostics System (FVDS)...

  19. A Vehicle Control Strategy in AGV System

    Science.gov (United States)

    Kai, Cao; Yamada, Jun; Suzuki, Yuuki; Hamamatsu, Yoshio

    It is important to discuss the behavior of traffic at merging sections in the design of the overall Automated Guided Vehicle System (AGVS) and in the realization of the system. In this paper, we deal with a merging section of the AGVS under time limit for merging. Near the merging section, one flow of traffic must form a queue to avoid collision of vehicles. We propose an improved control strategy and clarify the fundamental features comparing with previous model. It is analyzed that the vehicle behavior at the merging section of the AGVS using the recurrence relation. The analytical solutions have been obtained.

  20. ADAPTIVE OPTICAL SYSTEMS LIGHTING EQUIPMENT VEHICLES

    Directory of Open Access Journals (Sweden)

    S. P. Sernov

    2011-01-01

    Full Text Available This article describes the main principles of implementation of modern adaptive signal lighting equipment of vehicles, provides an analysis of optical systems are used, the necessity of the use of LEDs. We present the design of adaptive optical system, rear combination LED lamp of a vehicle with several levels of intensity, we discuss the algorithm of its work in different modes. 

  1. Sensor system for fuel transport vehicle

    Science.gov (United States)

    Earl, Dennis Duncan; McIntyre, Timothy J.; West, David L.

    2016-03-22

    An exemplary sensor system for a fuel transport vehicle can comprise a fuel marker sensor positioned between a fuel storage chamber of the vehicle and an access valve for the fuel storage chamber of the vehicle. The fuel marker sensor can be configured to measure one or more characteristics of one or more fuel markers present in the fuel adjacent the sensor, such as when the marked fuel is unloaded at a retail station. The one or more characteristics can comprise concentration and/or identity of the one or more fuel markers in the fuel. Based on the measured characteristics of the one or more fuel markers, the sensor system can identify the fuel and/or can determine whether the fuel has been adulterated after the marked fuel was last measured, such as when the marked fuel was loaded into the vehicle.

  2. Modelling and simulation of vehicle electric power system

    Science.gov (United States)

    Lee, Wootaik; Choi, Daeho; Sunwoo, Myoungho

    In recent years, the demand for an increased number of vehicle functions by legislation and customer expectations has introduced many electronic control systems and electrical driven units in vehicles and has resulted in steadily increasing electrical loads. Moreover, due to heavy urban traffic conditions, the idling time fraction has increased and reduced the power generation of the alternator. In the vehicle design phase, in order to avoid an over- or under-design problem of the electric power system, it is necessary to understand both the characteristics of each component of the vehicle electric power system and the interactions between the components. For this purpose, model and simulation algorithms of the vehicle power system are required. In this study, the vehicle electric power system, which is mainly composed of a generator and battery, is modelled and evaluated. Among the various proposed battery models, two types are compared in terms of accuracy and ease-of-use. These two models are distinguished by the consideration of inrush current at the beginning of charging and discharging. In addition, a variable terminal voltage alternator model (VTVA model) is proposed, and is compared with a constant terminal voltage alternator model (CTVA model). Based on the major component model, a simulation algorithm is developed and used to perform a case study. Compared with real data from the vehicle, the simulation results of energy generation and consumption are comparable.

  3. Modular design of the LED vehicle projector headlamp system.

    Science.gov (United States)

    Hsieh, Chi-Chang; Li, Yan-Huei; Hung, Chih-Ching

    2013-07-20

    A well designed headlamp for a vehicle lighting system is very important as it provides drivers with safe and comfortable driving conditions at night or in dark places. With the advances of the semiconductor technology, the LED has become the fourth generation lighting source in the auto industry. In this study, we will propose a LED vehicle projector headlamp system. This headlamp system contains several LED headlamp modules, and every module of it includes four components: focused LEDs, asymmetric metal-based plates, freeform surfaces, and condenser lenses. By optimizing the number of LED headlamp modules, the proposed LED vehicle projector headlamp system has only five LED headlamp modules. It not only provides the low-beam cutoff without a shield, but also meets the requirements of the ECE R112 regulation. Finally, a prototype of the LED vehicle projector headlamp system was assembled and fabricated to create the correct light pattern.

  4. Innovative control systems for tracked vehicle platforms

    CERN Document Server

    2014-01-01

     This book has been motivated by an urgent need for designing and implementation of innovative control algorithms and systems for tracked vehicles. Nowadays the unmanned vehicles are becoming more and more common. Therefore there is a need for innovative mechanical constructions capable of adapting to various applications regardless the ground, air or water/underwater environment. There are multiple various activities connected with tracked vehicles. They can be distributed among three main groups: design and control algorithms, sensoric and vision based in-formation, construction and testing mechanical parts of unmanned vehicles. Scientists and researchers involved in mechanics, control algorithms, image processing, computer vision, data fusion, or IC will find this book useful.

  5. Kinetic energy recovery systems in motor vehicles

    Science.gov (United States)

    Śliwiński, C.

    2016-09-01

    The article draws attention to the increasing environmental pollution caused by the development of vehicle transport and motorization. Different types of design solutions used in vehicles for the reduction of fuel consumption, and thereby emission of toxic gasses into the atmosphere, were specified. Historical design solutions concerning energy recovery devices in mechanical vehicles which used flywheels to accumulate kinetic energy were shown. Developmental tendencies in the area of vehicle manufacturing in the form of hybrid electric and electric devices were discussed. Furthermore, designs of energy recovery devices with electrical energy storage from the vehicle braking and shock absorbing systems were presented. A mechanical energy storing device using a flywheel operating under vacuum was presented, as were advantages and disadvantages of both systems, the limitations they impose on individual constructions and safety issues. The paper also discusses a design concept of an energy recovery device in mechanical vehicles which uses torsion springs as the main components of energy accumulation during braking. The desirability of a cooperation of both the mechanical- and electrical energy recovery devices was indicated.

  6. Fault-tolerant Actuator System for Electrical Steering of Vehicles

    DEFF Research Database (Denmark)

    Sørensen, Jesper Sandberg; Blanke, Mogens

    2006-01-01

    Being critical to the safety of vehicles, the steering system is required to maintain the vehicles ability to steer until it is brought to halt, should a fault occur. With electrical steering becoming a cost-effective candidate for electrical powered vehicles, a fault-tolerant architecture...... is needed that meets this requirement. This paper studies the fault-tolerance properties of an electrical steering system. It presents a fault-tolerant architecture where a dedicated AC motor design used in conjunction with cheap voltage measurements can ensure detection of all relevant faults...

  7. Power system modeling for a six legged walking vehicle

    Science.gov (United States)

    Nair, Satishkumar S.

    1988-08-01

    Power system of a legged vehicle is considerably more complex than the one used by a conventional land vehicle because of the wide range of power demands and the large number of degrees of freedom required for coordination and stability. Very little is currently known about the generalized power and actuation requirements for such vehicles. This dissertation undertakes a study of the conceptual and physical characteristics of the power system of a typical rough terrain six legged vehicle. Detailed analytical and digital simulation models have been developed for the power system consisting of the prime mover, energy storage system, mechanical drives, hydraulic actuation systems and the control systems. Modeling techniques and design concepts pertaining to such systems have been developed and the complex interactions between the mechanical, hydraulic and computer systems have been studied. These models and concepts can easily be extended to similar vehicles and robotic systems. Theoretical basis for studies of the dynamic and control issues for the legs has been established. A new model for the low frequency dynamics of the servovalve has been proposed using the describing function approach which explains the small signal limit cycle behavior of the actuation system successfully. Models for the mechanical transmission have been used successfully to modify system parameters and to eliminate potentially troublesome torsional vibrations.

  8. Vehicle dynamic prediction systems with on-line identification of vehicle parameters and road conditions.

    Science.gov (United States)

    Hsu, Ling-Yuan; Chen, Tsung-Lin

    2012-11-13

    This paper presents a vehicle dynamics prediction system, which consists of a sensor fusion system and a vehicle parameter identification system. This sensor fusion system can obtain the six degree-of-freedom vehicle dynamics and two road angles without using a vehicle model. The vehicle parameter identification system uses the vehicle dynamics from the sensor fusion system to identify ten vehicle parameters in real time, including vehicle mass, moment of inertial, and road friction coefficients. With above two systems, the future vehicle dynamics is predicted by using a vehicle dynamics model, obtained from the parameter identification system, to propagate with time the current vehicle state values, obtained from the sensor fusion system. Comparing with most existing literatures in this field, the proposed approach improves the prediction accuracy both by incorporating more vehicle dynamics to the prediction system and by on-line identification to minimize the vehicle modeling errors. Simulation results show that the proposed method successfully predicts the vehicle dynamics in a left-hand turn event and a rollover event. The prediction inaccuracy is 0.51% in a left-hand turn event and 27.3% in a rollover event.

  9. An Experimental Study on Hysteresis Characteristics of a Pneumatic Braking System for a Multi-Axle Heavy Vehicle in Emergency Braking Situations

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2017-08-01

    Full Text Available This study aims to investigate the hysteresis characteristics of a pneumatic braking system for multi-axle heavy vehicles (MHVs. Hysteresis affects emergency braking performance severely. The fact that MHVs have a large size and complex structure leads to more nonlinear coupling property of the pneumatic braking system compared to normal two-axle vehicles. Thus, theoretical analysis and simulation are not enough when studying hysteresis. In this article, the hysteresis of a pneumatic brake system for an eight-axle vehicle in an emergency braking situation is studied based on a novel test bench. A servo drive device is applied to simulate the driver’s braking intensions normally expressed by opening or moving speed of the brake pedal. With a reasonable arrangement of sensors and the NI LabVIEW platform, both the delay time of eight loops and the response time of each subassembly in a single loop are detected in real time. The outcomes of the experiment show that the delay time of each loop gets longer with the increase of pedal opening, and a quadratic relationship exists between them. Based on this, the pressure transient in the system is fitted to a first-order plus time delay model. Besides, the response time of treadle valve and controlling pipeline accounts for more than 80% of the loop’s total delay time, indicating that these two subassemblies are the main contributors to the hysteresis effect.

  10. Performance of an Automated-Mixed-Traffic-Vehicle /AMTV/ System. [urban people mover

    Science.gov (United States)

    Peng, T. K. C.; Chon, K.

    1978-01-01

    This study analyzes the operation and evaluates the expected performance of a proposed automatic guideway transit system which uses low-speed Automated Mixed Traffic Vehicles (AMTV's). Vehicle scheduling and headway control policies are evaluated with a transit system simulation model. The effect of mixed-traffic interference on the average vehicle speed is examined with a vehicle-pedestrian interface model. Control parameters regulating vehicle speed are evaluated for safe stopping and passenger comfort.

  11. Infrared signature studies of aerospace vehicles

    Science.gov (United States)

    Mahulikar, Shripad P.; Sonawane, Hemant R.; Arvind Rao, G.

    2007-10-01

    Infrared (IR) emissions from aircraft are used to detect, track, and lock-on to the target. MAN Portable Air Defence Systems (MANPADS) have emerged as a major cause of aircraft and helicopter loss. Therefore, IR signature studies are important to counter this threat for survivability enhancement, and are an important aspect of stealth technology. This paper reviews contemporary developments in this discipline, with particular emphasis on IR signature prediction from aerospace vehicles. The role of atmosphere in IR signature analysis, and relation between IR signature level and target susceptibility are illustrated. Also, IR signature suppression systems and countermeasure techniques are discussed, to highlight their effectiveness and implications in terms of penalties.

  12. Sensor Systems for Vehicle Environment Perception in a Highway Intelligent Space System

    Directory of Open Access Journals (Sweden)

    Xiaofeng Tang

    2014-05-01

    Full Text Available A Highway Intelligent Space System (HISS is proposed to study vehicle environment perception in this paper. The nature of HISS is that a space sensors system using laser, ultrasonic or radar sensors are installed in a highway environment and communication technology is used to realize the information exchange between the HISS server and vehicles, which provides vehicles with the surrounding road information. Considering the high-speed feature of vehicles on highways, when vehicles will be passing a road ahead that is prone to accidents, the vehicle driving state should be predicted to ensure drivers have road environment perception information in advance, thereby ensuring vehicle driving safety and stability. In order to verify the accuracy and feasibility of the HISS, a traditional vehicle-mounted sensor system for environment perception is used to obtain the relative driving state. Furthermore, an inter-vehicle dynamics model is built and model predictive control approach is used to predict the driving state in the following period. Finally, the simulation results shows that using the HISS for environment perception can arrive at the same results detected by a traditional vehicle-mounted sensors system. Meanwhile, we can further draw the conclusion that using HISS to realize vehicle environment perception can ensure system stability, thereby demonstrating the method’s feasibility.

  13. Sensor systems for vehicle environment perception in a Highway Intelligent Space System.

    Science.gov (United States)

    Tang, Xiaofeng; Gao, Feng; Xu, Guoyan; Ding, Nenggen; Cai, Yao; Ma, Mingming; Liu, Jianxing

    2014-05-15

    A Highway Intelligent Space System (HISS) is proposed to study vehicle environment perception in this paper. The nature of HISS is that a space sensors system using laser, ultrasonic or radar sensors are installed in a highway environment and communication technology is used to realize the information exchange between the HISS server and vehicles, which provides vehicles with the surrounding road information. Considering the high-speed feature of vehicles on highways, when vehicles will be passing a road ahead that is prone to accidents, the vehicle driving state should be predicted to ensure drivers have road environment perception information in advance, thereby ensuring vehicle driving safety and stability. In order to verify the accuracy and feasibility of the HISS, a traditional vehicle-mounted sensor system for environment perception is used to obtain the relative driving state. Furthermore, an inter-vehicle dynamics model is built and model predictive control approach is used to predict the driving state in the following period. Finally, the simulation results shows that using the HISS for environment perception can arrive at the same results detected by a traditional vehicle-mounted sensors system. Meanwhile, we can further draw the conclusion that using HISS to realize vehicle environment perception can ensure system stability, thereby demonstrating the method's feasibility.

  14. Characterization Test Procedures for Intersection Collision Avoidance Systems Based on Vehicle-to-Vehicle Communications

    Science.gov (United States)

    2015-12-01

    Characterization test procedures have been developed to quantify the performance of intersection collision avoidance (ICA) systems based on vehicle-to-vehicle communications. These systems warn the driver of an imminent crossing-path collision at a r...

  15. Passive vs. Parachute System Architecture for Robotic Sample Return Vehicles

    Science.gov (United States)

    Maddock, Robert W.; Henning, Allen B.; Samareh, Jamshid A.

    2016-01-01

    The Multi-Mission Earth Entry Vehicle (MMEEV) is a flexible vehicle concept based on the Mars Sample Return (MSR) EEV design which can be used in the preliminary sample return mission study phase to parametrically investigate any trade space of interest to determine the best entry vehicle design approach for that particular mission concept. In addition to the trade space dimensions often considered (e.g. entry conditions, payload size and mass, vehicle size, etc.), the MMEEV trade space considers whether it might be more beneficial for the vehicle to utilize a parachute system during descent/landing or to be fully passive (i.e. not use a parachute). In order to evaluate this trade space dimension, a simplified parachute system model has been developed based on inputs such as vehicle size/mass, payload size/mass and landing requirements. This model works in conjunction with analytical approximations of a mission trade space dataset provided by the MMEEV System Analysis for Planetary EDL (M-SAPE) tool to help quantify the differences between an active (with parachute) and a passive (no parachute) vehicle concept.

  16. Vehicle-manipulator systems modeling for simulation, analysis, and control

    CERN Document Server

    From, Pal Johan; Pettersen, Kristin Ytterstad

    2014-01-01

    Furthering the aim of reducing human exposure to hazardous environments, this monograph presents a detailed study of the modeling and control of vehicle-manipulator systems. The text shows how complex interactions can be performed at remote locations using systems that combine the manipulability of robotic manipulators with the ability of mobile robots to locomote over large areas.  The first part studies the kinematics and dynamics of rigid bodies and standard robotic manipulators and can be used as an introduction to robotics focussing on robust mathematical modeling. The monograph then moves on to study vehicle-manipulator systems in great detail with emphasis on combining two different configuration spaces in a mathematically sound way. Robustness of these systems is extremely important and Modeling and Control of Vehicle-manipulator Systems effectively represents the dynamic equations using a mathematically robust framework. Several tools from Lie theory and differential geometry are used to obtain glob...

  17. Component Control System for a Vehicle

    Science.gov (United States)

    Fraser-Chanpong, Nathan (Inventor); Spain, Ivan (Inventor); Dawson, Andrew D. (Inventor); Bluethmann, William J. (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Guo, Raymond (Inventor); Waligora, Thomas M. (Inventor); Akinyode, Akinjide Akinniyi (Inventor); Reed, Ryan M. (Inventor)

    2016-01-01

    A vehicle includes a chassis, a modular component, and a central operating system. The modular component is supported by the chassis. The central operating system includes a component control system, a primary master controller, and a secondary master controller. The component control system is configured for controlling the modular component. The primary and secondary master controllers are in operative communication with the component control system. The primary and secondary master controllers are configured to simultaneously transmit commands to the component control system. The component control system is configured to accept commands from the secondary master controller only when a fault occurs in the primary master controller.

  18. A COOPERATIVE ASSISTANCE SYSTEM BETWEEN VEHICLES FOR ELDERLY DRIVERS

    Directory of Open Access Journals (Sweden)

    Naohisa HASHIMOTO

    2009-01-01

    Full Text Available This paper proposes a new concept of elderly driver assistance systems, which performs the assistance by cooperative driving between two vehicles, and describes some experiments with elderly drivers. The assistance consists of one vehicle driven by an elderly driver called a guest vehicle and the other driven by a assisting driver called a host vehicle, and the host vehicle assists or escorts the guest vehicle through the inter-vehicle communications. The functions of the systems installed on a single-seat electric vehicle are highly evaluated by subjects of elderly drivers in virtual streets on a test track.

  19. Solar cell power systems for space vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, N.W. (Inst. for Defense Analyses, Washington, DC); Karcher, R.W.

    1961-01-01

    On May 3 and 4, 1960, a symposium was held in Washington, DC, under the sponsorship of the Advanced Research Projects Agency by the Institute for Defense Analyses. Ten programs involving solar cell power systems for current US space vehicles conducted under government sponsorship were discussed by the project engineers who directed these programs. The results of that symposium are highlighted and summarized.

  20. Robust Vehicle Suspension System by Converting Active & Passive Control of a Vehicle to Semi-Active Control System Analytically

    National Research Council Canada - National Science Library

    Hassan Elahi; Dr. Riffat Asim Pasha; Dr. Asif Israr; Dr. M. Zubair Khan

    2014-01-01

    .... Passive Vehicle Suspension System is converted into Semi Active Vehicle System. Major advantage achieved by this system is that it adjusts the damping of the suspension system without the application of any actuator by using MATLAB® simulations...

  1. Vehicle fault diagnostics and management system

    Science.gov (United States)

    Gopal, Jagadeesh; Gowthamsachin

    2017-11-01

    This project is a kind of advanced automatic identification technology, and is more and more widely used in the fields of transportation and logistics. It looks over the main functions with like Vehicle management, Vehicle Speed limit and Control. This system starts with authentication process to keep itself secure. Here we connect sensors to the STM32 board which in turn is connected to the car through Ethernet cable, as Ethernet in capable of sending large amounts of data at high speeds. This technology involved clearly shows how a careful combination of software and hardware can produce an extremely cost-effective solution to a problem.

  2. Unmanned Aerial Vehicle Systems for Disaster Relief: Tornado Alley

    Science.gov (United States)

    DeBusk, Wesley M.

    2009-01-01

    Unmanned aerial vehicle systems are currently in limited use for public service missions worldwide. Development of civil unmanned technology in the United States currently lags behind military unmanned technology development in part because of unresolved regulatory and technological issues. Civil unmanned aerial vehicle systems have potential to augment disaster relief and emergency response efforts. Optimal design of aerial systems for such applications will lead to unmanned vehicles which provide maximum potentiality for relief and emergency response while accounting for public safety concerns and regulatory requirements. A case study is presented that demonstrates application of a civil unmanned system to a disaster relief mission with the intent on saving lives. The concept utilizes unmanned aircraft to obtain advanced warning and damage assessments for tornados and severe thunderstorms. Overview of a tornado watch mission architecture as well as commentary on risk, cost, need for, and design tradeoffs for unmanned aerial systems are provided.

  3. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Hope, Mark E [Marshall, MI; Zou, Zhanjiang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  4. ac propulsion system for an electric vehicle

    Science.gov (United States)

    Geppert, S.

    1980-01-01

    It is pointed out that dc drives will be the logical choice for current production electric vehicles (EV). However, by the mid-80's, there is a good chance that the price and reliability of suitable high-power semiconductors will allow for a competitive ac system. The driving force behind the ac approach is the induction motor, which has specific advantages relative to a dc shunt or series traction motor. These advantages would be an important factor in the case of a vehicle for which low maintenance characteristics are of primary importance. A description of an EV ac propulsion system is provided, taking into account the logic controller, the inverter, the motor, and a two-speed transmission-differential-axle assembly. The main barrier to the employment of the considered propulsion system in EV is not any technical problem, but inverter transistor cost.

  5. Modular Energy Storage System for Alternative Energy Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Janice [Magna Electronics Inc., Auburn Hills, MI (United States); Ervin, Frank [Magna Electronics Inc., Auburn Hills, MI (United States)

    2012-05-15

    An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystems performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact

  6. Effects of electric vehicles on power systems in Northern Europe

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Ravn, Hans; Juul, Nina

    2012-01-01

    In this study, it is analysed how a large-scale implementation of plug-in hybrid electric vehicles and battery electric vehicles towards 2030 would influence the power systems of five Northern European countries, Denmark, Finland, Germany, Norway, and Sweden. Increasing shares of electric vehicles....... Moreover, due to vehicle-to-grid capability, EVs can reduce the need for new coal/natural gas power capacities. Wind power can be expected to provide a large share of the electricity for EVs in several of the countries. However, if EVs are not followed up by economic support for renewable energy...... technologies, coal based power will in several cases, particularly in the short term, likely provide a large part of this electricity. The effects of EVs vary significantly from country to country and are sensitive to fuel and CO2 price variations. The EVs bring CO2 reductions of 1e6% in 2025 and 3e28% in 2030...

  7. Lunar transfer vehicle design issues with electric propulsion systems

    Science.gov (United States)

    Palaszewski, Bryan

    1989-01-01

    This paper describes parametric design studies of electric propulsion lunar transfer vehicles. In designing a lunar transfer vehicle, selecting the 'best' operating points for the design parameters allows significant reductions in the mass in low earth orbit (LEO) for the mission. These parameters include the specific impulse, the power level, and the propulsion technology. Many of the decisions regarding the operating points are controlled by the propulsion and power system technologies that are available for the spacecraft. The relationship between these technologies is discussed and analyzed here. It is found that both ion and MPD propulsion offer significant LEO mass reductions over O2/H2 for lunar transfer vehicle missions. The recommended operating points for the lunar transfer vehicle are an I(sp) of 5000 lb(f)-s/lb(m) and a 1 MW power level. For large lunar missions, krypton may be the best choice for ion propulsion.

  8. ISSUES AND RECENT TRENDS IN VEHICLE SAFETY COMMUNICATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Sadayuki TSUGAWA

    2005-01-01

    Full Text Available This paper surveys the research on the applications of inter-vehicle communications, the issues of the deployment and technology, and the current status of inter-vehicle communications projects in Europe, the United States and Japan. The inter-vehicle communications, defined here as communications between on-board ITS computers, improve road traffic safety and efficiency by expanding the horizon of the drivers and on-board sensors. One of the earliest studies on inter-vehicle communications began in Japan in the early 1980s. The inter-vehicle communications play an essential role in automated platooning and cooperative driving systems developed since the 1990's by enabling vehicles to obtain data that would be difficult or impossible to measure with on-board sensors. During these years, interest in applications for inter-vehicle communications increased in the EU, the US and Japan, resulting in many national vehicle safety communications projects such as CarTALK2000 in the EU and VSCC in the US. The technological issues include protocol and communications media. Experiments employ various kinds of protocols and typically use infrared, microwave or millimeter wave media. The situation is ready for standardization. The deployment strategy is another issue. To be feasible, deployment should begin with multiple rather than single services that would work even at a low penetration rate of the communication equipment. In addition, non-technological, legal and institutional issues remained unsolved. Although inter-vehicle communications involve many issues, such applications should be promoted because they will lead to safer and more efficient automobile traffic.

  9. Electrical Systems (Vehicles and Weapon Subsystems)

    Science.gov (United States)

    1977-06-20

    Wattmeter ±1% of full scale range Multichannel oscillograph Voltage and current to ±2% of and appropriate voltage recorded value dropping resistor...lights), and for mechanical power for components (motors for hydraulic systems, fans, gun controls). ’i L.,.......... The vehicles usually have two ...Voltage Tests. 5.1.1 Engine Starting Power. 5.1.1.1 Method . To determine starting power requirements, use a fully charged battery in prime condition. Turn

  10. Remote Vision Systems for Teleoperated Ground Vehicles

    Science.gov (United States)

    1991-05-01

    Paperworkr Reductlo Proyect (0704-0188). Washingtont. DC 20503._____________________ I AGENCY USE ONLY (Leave bAW4V 2 REPORT DATE 3 REPORT TYPE AND DATES...of the sensory feedback to the operator." [2]. Based on NOSC’s experience with teleoperated vehicles and research in remote presence principles...effort. Lessons learned from this development, and from field tests of TOV vision systems, are presented in this paper. )UEe’ Figure 1. TOV Remote

  11. An Automatic Monitoring System for Vehicle Drivers

    OpenAIRE

    Selime Ozaktas; Feyza Galip; Ibrahim Furkan Ince; Md. Haidar Sharif

    2016-01-01

    — it is a key issue to prevent life and property from the accidents caused by vehicle drivers. Alcohol can, speed, drowsy driving, and sudden heart attack are the major reasons for road accidents, which can lead to severe physical injuries, deaths, and serious economic losses. Various methods have been proposed to detect automatically those causes to prevent accidents. We have addressed an automatic system to provide protection of drivers and travelers by dint of computer vision techniques al...

  12. Monitoring System for Drivers of Heavy Vehicles

    OpenAIRE

    Selime Ozaktas; Feyza Galip; Ibrahim Furkan Ince; Sahin Uyaver; Adil Guler; Md. Haidar Sharif

    2016-01-01

    It is a key important issue to prevent life and property from the accidents caused by vehicles of drivers. Alcohol can, speed, drowsy driving, and sudden heart attack are the major causes for road accidents, which can lead to severe physical injuries, deaths and significant economic losses. Various methods have been proposed to detect automatically those causes to prevent accidents. We have addressed an automatic system to provide protection of drivers and travelers by dint of computer vision...

  13. An Automatic Monitoring System for Vehicle Drivers

    OpenAIRE

    Selime Ozaktas; Feyza Galip; Ibrahim Furkan Ince; Md. Haidar Sharif

    2016-01-01

    It is a key issue to prevent life and property from the accidents caused by vehicle drivers. Alcohol can, speed, drowsy driving, and sudden heart attack are the major reasons for road accidents, which can lead to severe physical injuries, deaths, and serious economic losses. Various methods have been proposed to detect automatically those causes to prevent accidents. We have addressed an automatic system to provide protection of drivers and travelers by dint of computer vision techniques alon...

  14. Lunar roving vehicle thermal control system.

    Science.gov (United States)

    Elliott, R. G.; Paoletti, C. J.; Britt, M. A.

    1972-01-01

    A thermal control system was incorporated into the Lunar Roving Vehicle (LRV) to maintain temperature sensitive components within appropriate temperature limits during the translunar transportation phase, lunar surface operation, and quiescent periods between lunar traverses. This paper describes the thermal control system and discusses its thermal characteristics during all phases of operation. The basic concept is a passive system which stores internally generated energy during operation with subsequent radiation to space. The external environments are regulated by selected radiative surface finishes. Multi-layer insulation blankets, space radiators, flexible thermal straps, and fusible mass heat sinks were designed to control the temperatures of the electronic components.

  15. Electrical system for a motor vehicle

    Science.gov (United States)

    Tamor, Michael Alan

    1999-01-01

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor.

  16. Powertrain system for a hybrid electric vehicle

    Science.gov (United States)

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  17. Hybrid electric vehicle power management system

    Science.gov (United States)

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  18. Combined braking system for hybrid vehicle

    Science.gov (United States)

    Kulekina, A. V.; Bakholdin, P. A.; Shchurov, N. I.

    2017-10-01

    The paper presents an analysis of surface vehicle’s existing braking systems. The technical solution and brake-system design were developed for use of regenerative braking energy. A technical parameters comparison of energy storage devices of various types was made. Based on the comparative analysis, it was decided to use supercapacitor because of its applicability for an electric drive intermittent operation. The calculation methods of retarder key components were proposed. Therefrom, it was made a conclusion that rebuild gasoline-electric vehicles are more efficient than gasoline ones.

  19. Advanced transportation system studies technical area 2 (TA-2): Heavy lift launch vehicle development. volume 3; Program Cost estimates

    Science.gov (United States)

    McCurry, J. B.

    1995-01-01

    The purpose of the TA-2 contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. The basic period of performance of the TA-2 contract was from May 1992 through May 1993. No-cost extensions were exercised on the contract from June 1993 through July 1995. This document is part of the final report for the TA-2 contract. The final report consists of three volumes: Volume 1 is the Executive Summary, Volume 2 is Technical Results, and Volume 3 is Program Cost Estimates. The document-at-hand, Volume 3, provides a work breakdown structure dictionary, user's guide for the parametric life cycle cost estimation tool, and final report developed by ECON, Inc., under subcontract to Lockheed Martin on TA-2 for the analysis of heavy lift launch vehicle concepts.

  20. Digital Signal Processing for In-Vehicle Systems and Safety

    CERN Document Server

    Boyraz, Pinar; Takeda, Kazuya; Abut, Hüseyin

    2012-01-01

    Compiled from papers of the 4th Biennial Workshop on DSP (Digital Signal Processing) for In-Vehicle Systems and Safety this edited collection features world-class experts from diverse fields focusing on integrating smart in-vehicle systems with human factors to enhance safety in automobiles. Digital Signal Processing for In-Vehicle Systems and Safety presents new approaches on how to reduce driver inattention and prevent road accidents. The material addresses DSP technologies in adaptive automobiles, in-vehicle dialogue systems, human machine interfaces, video and audio processing, and in-vehicle speech systems. The volume also features: Recent advances in Smart-Car technology – vehicles that take into account and conform to the driver Driver-vehicle interfaces that take into account the driving task and cognitive load of the driver Best practices for In-Vehicle Corpus Development and distribution Information on multi-sensor analysis and fusion techniques for robust driver monitoring and driver recognition ...

  1. In-vehicle information system functions

    Energy Technology Data Exchange (ETDEWEB)

    Tufano, D.R.; Spelt, P.F.; Knee, H.E.

    1997-04-01

    This paper describes the functional requirement for an In-Vehicle Information System (IVIS), which will manage and display all driving-related information from many sources. There are numerous information systems currently being fielded or developed (e.g., routing and navigation, collision avoidance). However, without a logical integration of all of the possible on-board information, there is a potential for overwhelming the driver. The system described in this paper will filter and prioritize information across all sources, and present it to the driver in a timely manner, within a unified interface. To do this, IVIS will perform three general functions: (1) interact with other, on-board information subsystems and the vehicle; (2) manage the information by filtering, prioritizing, and integrating it; and (3) interact with the driver, both in terms of displaying information to the driver and allowing the driver to input requests, goals and preferences. The functional requirements described in this paper have either been derived from these three high-level functions or are directly mandated by the overriding requirements for modularity and flexibility. IVIS will have to be able to accommodate different types of information subsystems, of varying level of sophistication. The system will also have to meet the diverse needs of different types of drivers (private, commercial, transit), who may have very different levels of expertise in using information systems.

  2. System Architecture Design for Electric Vehicle (EV) Systems

    DEFF Research Database (Denmark)

    Xu, Zhao; Wu, Qiuwei; Nielsen, Arne Hejde

    2010-01-01

    The electric vehicle (EV) system should fulfill the energy needs of EVs to meet the EV users’ driving requirements and enable the system service from EVs to support the power system operation with high penetration of renewable energy resources (RES) by providing necessary infrastructures. In order...

  3. Composite armor, armor system and vehicle including armor system

    Science.gov (United States)

    Chu, Henry S.; Jones, Warren F.; Lacy, Jeffrey M.; Thinnes, Gary L.

    2013-01-01

    Composite armor panels are disclosed. Each panel comprises a plurality of functional layers comprising at least an outermost layer, an intermediate layer and a base layer. An armor system incorporating armor panels is also disclosed. Armor panels are mounted on carriages movably secured to adjacent rails of a rail system. Each panel may be moved on its associated rail and into partially overlapping relationship with another panel on an adjacent rail for protection against incoming ordnance from various directions. The rail system may be configured as at least a part of a ring, and be disposed about a hatch on a vehicle. Vehicles including an armor system are also disclosed.

  4. Potential of pedestrian protection systems--a parameter study using finite element models of pedestrian dummy and generic passenger vehicles.

    Science.gov (United States)

    Fredriksson, Rikard; Shin, Jaeho; Untaroiu, Costin D

    2011-08-01

    To study the potential of active, passive, and integrated (combined active and passive) safety systems in reducing pedestrian upper body loading in typical impact configurations. Finite element simulations using models of generic sedan car fronts and the Polar II pedestrian dummy were performed for 3 impact configurations at 2 impact speeds. Chest contact force, head injury criterion (HIC(15)), head angular acceleration, and the cumulative strain damage measure (CSDM(0.25)) were employed as injury parameters. Further, 3 countermeasures were modeled: an active autonomous braking system, a passive deployable countermeasure, and an integrated system combining the active and passive systems. The auto-brake system was modeled by reducing impact speed by 10 km/h (equivalent to ideal full braking over 0.3 s) and introducing a pitch of 1 degree and in-crash deceleration of 1 g. The deployable system consisted of a deployable hood, lifting 100 mm in the rear, and a lower windshield air bag. All 3 countermeasures showed benefit in a majority of impact configurations in terms of injury prevention. The auto-brake system reduced chest force in a majority of the configurations and decreased HIC(15), head angular acceleration, and CSDM in all configurations. Averaging all impact configurations, the auto-brake system showed reductions of injury predictors from 20 percent (chest force) to 82 percent (HIC). The passive deployable countermeasure reduced chest force and HIC(15) in a majority of configurations and head angular acceleration and CSDM in all configurations, although the CSDM decrease in 2 configurations was minimal. On average a reduction from 20 percent (CSDM) to 58 percent (HIC) was recorded in the passive deployable countermeasures. Finally, the integrated system evaluated in this study reduced all injury assessment parameters in all configurations compared to the reference situations. The average reductions achieved by the integrated system ranged from 56 percent

  5. Power Systems Evaluated for Solar Electric Propulsion Vehicles

    Science.gov (United States)

    Kerslake, Thomas W.; Gefert, Leon P.

    2000-01-01

    Solar electric propulsion (SEP) mission architectures are applicable to a wide range NASA missions including the robotic exploration of the outer planets in the next decade and the human exploration of Mars within the next 2 decades. SEP enables architectures that are very mass efficient with reasonable power levels (1-MW class) aerobrake and cryogenic upper-stage transportation technologies are utilized. In this architecture, the efficient SEP stage transfers the payload from low Earth orbit (LEO) High Energy Elliptical Parking Orbit (HEEPO) within a period of 6 to 12 months. highthrust, cryogenic upper stage and payload then separate from the SEP vehicle for injection to the planetary target, allowing for fast heliocentric trip times. This mission architecture offers a potential reduction in mass to LEO in comparison to alternative all-chemical nuclear propulsion schemes. Mass reductions may allow launch vehicle downsizing enable missions that would have been grounded because of cost constraints. The preceding figure illustrates a conceptual SEP stage design for a human Mars mission. Researchers at the NASA Glenn Research Center at Lewis Field designed conceptual SEP vehicle, conceived the mission architecture to use this vehicle, and analyzed the vehicle s performance. This SEP stage has a dry mass of 35 metric tons (MT), 40 MT of xenon propellant, and a photovoltaic array that spans 110 m, providing power to a cluster of eight 100-kW Hall thrusters. The stage can transfer an 80-MT payload and upper stage to the desired HEEPO. Preliminary packaging studies show this space-station-class SEP vehicle meets the proposed "Magnum" launch vehicle and volume requirements with considerable margin. An SEP vehicle for outer planetary missions, such as the Europa Mapper Mission, would be dramatically smaller than human Mars mission SEP stage. In this mission architecture, the SEP power system with the payload to provide spacecraft power throughout the mission. Several

  6. Wireless Intra-vehicle Communication System (WICS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Invocon's Wireless Intra-vehicle Communication System (WICS) is being designed as an enabling technology for low-cost launch vehicles. It will reduce the cost of...

  7. DESIGN AND CONTROL OF FULL VEHICLE SUSPENSION SYSTEM

    National Research Council Canada - National Science Library

    Ramë Likaj; Ahmet Shala

    2017-01-01

    This paper deals with the design and control of vehicle suspension system for a full vehicle model with the aim to improve the ride comfort and to guarantee permanent contact between road and wheel...

  8. The Commercial Vehicle Information Systems and Network program, 2012.

    Science.gov (United States)

    2014-03-01

    The Commercial Vehicle Information Systems and : Networks (CVISN) program supports that safety : mission by providing grant funds to States for: : Improving safety and productivity of motor : carriers, commercial motor vehicles : (CMVs), and thei...

  9. Smart mobile in-vehicle systems next generation advancements

    CERN Document Server

    Abut, Huseyin; Takeda, Kazuya; Hansen, John

    2014-01-01

    This is an edited collection by world-class experts, from diverse fields, focusing on integrating smart in-vehicle systems with human factors to enhance safety in automobiles. The book presents developments on road safety, in-vehicle technologies and state-of-the art systems. Includes coverage of DSP technologies in adaptive automobiles, algorithms and evaluation of in-car communication systems, driver-status monitoring and stress detection, in-vehicle dialogue systems and human-machine interfaces, challenges in video and audio processing for in-vehicle products, multi-sensor fusion for driver identification and vehicle to infrastructure wireless technologies.

  10. Vehicle System Management Modeling in UML for Ares I

    Science.gov (United States)

    Pearson, Newton W.; Biehn, Bradley A.; Curry, Tristan D.; Martinez, Mario R.

    2011-01-01

    The Spacecraft & Vehicle Systems Department of Marshall Space Flight Center is responsible for modeling the Vehicle System Management for the Ares I vehicle which was a part of the now canceled Constellation Program. An approach to generating the requirements for the Vehicle System Management was to use the Unified Modeling Language technique to build and test a model that would fulfill the Vehicle System Management requirements. UML has been used on past projects (flight software) in the design phase of the effort but this was the first attempt to use the UML technique from a top down requirements perspective.

  11. Vehicle-to-Grid Power in Danish Electric Power Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    The integration of renewable energy systems is often constrained by the variable nature of their output. This demands for the services of storing the electricity generated from most of the renewable energy sources. Vehicle-to-grid (V2G) power could use the inherent energy storage of electric...... vehicles and its quick response time to balance and stabilize a power system with fluctuating power. This paper outlines the use of battery electric vehicles in supporting large-scale integration of renewable energy in the Danish electric power systems. The reserve power requirements for a high renewable...... energy penetration could be met by an amount of V2G based electric vehicles less than 10% of the total vehicle need in Denmark. The participation of electric vehicle in ancillary services would earn significant revenues to the vehicle owner. The power balancing services of electric vehicles...

  12. Hybrid vehicle powertrain system with power take-off driven vehicle accessory

    Science.gov (United States)

    Beaty, Kevin D.; Bockelmann, Thomas R.; Zou, Zhanijang; Hope, Mark E.; Kang, Xiaosong; Carpenter, Jeffrey L.

    2006-09-12

    A hybrid vehicle powertrain system includes a first prime mover, a first prime mover driven power transmission mechanism having a power take-off adapted to drive a vehicle accessory, and a second prime mover. The second prime mover is operable to drive the power transmission mechanism alone or in combination with the first prime mover to provide power to the power take-off through the power transmission mechanism. The invention further includes methods for operating a hybrid vehicle powertrain system.

  13. An automated miniature robotic vehicle inspection system

    Energy Technology Data Exchange (ETDEWEB)

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles; Pierce, Gareth; Galbraith, Walter [Centre for Ultrasonic Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom)

    2014-02-18

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3D model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software.

  14. Intelligent Control of Vehicle-Based Internal Transport Systems

    NARCIS (Netherlands)

    T. Le-Anh (Tuan)

    2005-01-01

    textabstract“Intelligent control of vehicle-based internal transport (VBIT) systems” copes with real-time dispatching and scheduling of internal-transport vehicles, such as forklifts and guided vehicles. VBIT systems can be found in warehouses, distribution centers, manufacturing plants, airport and

  15. Contributions of vehicle inspection operations to traffic system in ...

    African Journals Online (AJOL)

    The general view about the routine vehicle inspection operations is to ensure that vehicles are road worthy and meet safety requirements. This is done to enhance safe and clean transport within urban centres since the nature and condition of vehicles on roads can be associated with the efficiency of traffic system.

  16. Parallel Hybrid Vehicle Optimal Storage System

    Science.gov (United States)

    Bloomfield, Aaron P.

    2009-01-01

    A paper reports the results of a Hybrid Diesel Vehicle Project focused on a parallel hybrid configuration suitable for diesel-powered, medium-sized, commercial vehicles commonly used for parcel delivery and shuttle buses, as the missions of these types of vehicles require frequent stops. During these stops, electric hybridization can effectively recover the vehicle's kinetic energy during the deceleration, store it onboard, and then use that energy to assist in the subsequent acceleration.

  17. Configuration and Design of Checkout System for Reusable Launch Vehicle

    Science.gov (United States)

    Muraleedharan, A.; Mohanan Chettiar, V.; Shyamkumar, U.; Vivekanand, V.; Sandeep, C. R.; Kishorenath, V.

    2017-11-01

    The structure and concept of the reusable launch vehicle (RLV) is different from conventional satellite launch vehicles including its avionic systems architecture, which introduces new concept for power distribution and closed loop control response timings. This work describes about the systems involved in the testing of this new concept launch vehicle. The work also describes about the new avionic systems powering scheme introduced and new measurement system adopted.

  18. Hypersonic Vehicle Propulsion System Simplified Model Development

    Science.gov (United States)

    Stueber, Thomas J.; Raitano, Paul; Le, Dzu K.; Ouzts, Peter

    2007-01-01

    This document addresses the modeling task plan for the hypersonic GN&C GRC team members. The overall propulsion system modeling task plan is a multi-step process and the task plan identified in this document addresses the first steps (short term modeling goals). The procedures and tools produced from this effort will be useful for creating simplified dynamic models applicable to a hypersonic vehicle propulsion system. The document continues with the GRC short term modeling goal. Next, a general description of the desired simplified model is presented along with simulations that are available to varying degrees. The simulations may be available in electronic form (FORTRAN, CFD, MatLab,...) or in paper form in published documents. Finally, roadmaps outlining possible avenues towards realizing simplified model are presented.

  19. Integrated Propulsion/Vehicle System Structurally Optimized

    Science.gov (United States)

    Hunter, James E.; McCurdy, David R.

    2003-01-01

    Ongoing research and testing are essential in the development of air-breathing hypersonic propulsion technology, and this year some positive advancement was made at the NASA Glenn Research Center. Recent work performed for GTX, a rocket-based combined-cycle, single-stage-to-orbit concept, included structural assessments of both the engine and flight vehicle. In the development of air-breathing engine technology, it is impractical to design and optimize components apart from the fully integrated system because tradeoffs must be made between performance and structural capability. Efforts were made to control the flight trajectory, for example, to minimize the aerodynamic heating effects. Structural optimization was applied to evaluate concept feasibility and was instrumental in the determination of the gross liftoff weight of the integrated system. Achieving low Earth orbit with even a small payload requires an aggressive approach to weight minimization through the use of lightweight, oxidation-resistant composite materials. Assessing the integrated system involved investigating the flight trajectory to determine where the critical load events occur in flight and then generating the corresponding environment at each of these events. Structural evaluation requires the mapping of the critical flight loads to finite element models, including the combined effects of aerodynamic, inertial, combustion, and other loads. NASA s APAS code was used to generate aerodynamic pressure and temperature profiles at each critical event. The radiation equilibrium surface temperatures from APAS were used to predict temperatures through the thickness. Heat transfer solutions using NASA's MINIVER code and the SINDA code (Cullimore & Ring Technologies, Littleton, CO) were calculated at selective points external to the integrated vehicle system and then extrapolated over the entire exposed surface. FORTRAN codes were written to expedite the finite element mapping of the aerodynamic heating

  20. Control of AWD System for Vehicle Performance and Safety

    Directory of Open Access Journals (Sweden)

    Jung Hojin

    2016-01-01

    Full Text Available AWD (All-Wheel Drive system transfers drive force to all wheels so that it can help vehicle escape low mu surface or climb hill more conveniently. Recently, AWD system for on road vehicle has become popular to improve vehicle driving performance. However, there has not been enough research of applying AWD system for vehicle stability especially for lateral movement. Compared with ESC (Electronic Stability Control, AWD system does not cause any inconveniences to the driver because it controls vehicle only by distributing front and rear drive torque, without using brake. By allowing slipping/locking of wet clutch inside the transfer case, AWD system can distribute different amount of torque between front and rear axle. This paper introduces modelling of AWD system and suggests the control of AWD system based on peak slip ratio and slip angle at which tyre saturates. Carsim based vehicle simulation results of AWD controller is presented.

  1. Analysis of current Department of Defense risk management practices in weapon system acquisition : a case study of the Advanced Amphibious Assault Vehicle (AAAV) PDRR and SDD risk management practices

    OpenAIRE

    Bailey, Robert O.

    2003-01-01

    Approved for public release; distribution in unlimited. This thesis discusses risk in Department of Defense (DoD) weapon systems acquisition. It uses the Marine Corps' Advanced Amphibious Assault Vehicle (AAAV) as a case study in risk management strategy and techniques. The AAAV will provide the Marine Corps with a fast deploying, over-the-horizon, waterborne insertion capability. The AAAV's improvements over the currently fielded Amphibious Assault Vehicle (AAV) will provide Marines with ...

  2. Satellite Power Systems (SPS) concept definition study. Volume 5: Transportation and operations analysis. [heavy lift launch and orbit transfer vehicles for orbital assembly

    Science.gov (United States)

    Hanley, G.

    1978-01-01

    The development of transportation systems to support the operations required for the orbital assembly of a 5-gigawatt satellite is discussed as well as the construction of a ground receiving antenna (rectenna). Topics covered include heavy lift launch vehicle configurations for Earth-to LEO transport; the use of chemical, nuclear, and electric orbit transfer vehicles for LEO to GEO operations; personnel transport systems; ground operations; end-to-end analysis of the construction, operation, and maintenance of the satellite and rectenna; propellant production and storage; and payload packaging.

  3. Performance evaluation and design of flight vehicle control systems

    CERN Document Server

    Falangas, Eric T

    2015-01-01

    This book will help students, control engineers and flight dynamics analysts to model and conduct sophisticated and systemic analyses of early flight vehicle designs controlled with multiple types of effectors and to design and evaluate new vehicle concepts in terms of satisfying mission and performance goals. Performance Evaluation and Design of Flight Vehicle Control Systems begins by creating a dynamic model of a generic flight vehicle that includes a range of elements from airplanes and launch vehicles to re-entry vehicles and spacecraft. The models may include dynamic effects dealing with structural flexibility, as well as dynamic coupling between structures and actuators, propellant sloshing, and aeroelasticity, and they are typically used for control analysis and design. The book shows how to efficiently combine different types of effectors together, such as aero-surfaces, TVC, throttling engines and RCS, to operate as a system by developing a mixing logic atrix. Methods of trimming a vehicle controll...

  4. Machine-Vision Systems Selection for Agricultural Vehicles: A Guide

    Directory of Open Access Journals (Sweden)

    Gonzalo Pajares

    2016-11-01

    Full Text Available Machine vision systems are becoming increasingly common onboard agricultural vehicles (autonomous and non-autonomous for different tasks. This paper provides guidelines for selecting machine-vision systems for optimum performance, considering the adverse conditions on these outdoor environments with high variability on the illumination, irregular terrain conditions or different plant growth states, among others. In this regard, three main topics have been conveniently addressed for the best selection: (a spectral bands (visible and infrared; (b imaging sensors and optical systems (including intrinsic parameters and (c geometric visual system arrangement (considering extrinsic parameters and stereovision systems. A general overview, with detailed description and technical support, is provided for each topic with illustrative examples focused on specific applications in agriculture, although they could be applied in different contexts other than agricultural. A case study is provided as a result of research in the RHEA (Robot Fleets for Highly Effective Agriculture and Forestry Management project for effective weed control in maize fields (wide-rows crops, funded by the European Union, where the machine vision system onboard the autonomous vehicles was the most important part of the full perception system, where machine vision was the most relevant. Details and results about crop row detection, weed patches identification, autonomous vehicle guidance and obstacle detection are provided together with a review of methods and approaches on these topics.

  5. Autonomous Underwater Vehicle Magnetic Mapping System

    Science.gov (United States)

    Steigerwalt, R.; Johnson, R. M.; Trembanis, A. C.; Schmidt, V. E.; Tait, G.

    2012-12-01

    An Autonomous Underwater Vehicle (AUV) Magnetic Mapping (MM) System has been developed and tested for military munitions detection as well as pipeline locating, wreck searches, and geologic surveys in underwater environments. The system is comprised of a high sensitivity Geometrics G-880AUV cesium vapor magnetometer integrated with a Teledyne-Gavia AUV and associated Doppler enabled inertial navigation further utilizing traditional acoustic bathymetric and side scan imaging. All onboard sensors and associated electronics are managed through customized crew members to autonomously operate through the vehicles primary control module. Total field magnetic measurements are recorded with asynchronous time-stamped data logs which include position, altitude, heading, pitch, roll, and electrical current usage. Pre-planned mission information can be uploaded to the system operators to define data collection metrics including speed, height above seafloor, and lane or transect spacing specifically designed to meet data quality objectives for the survey. As a result of the AUVs modular design, autonomous navigation and rapid deployment capabilities, the AUV MM System provides cost savings over current surface vessel surveys by reducing the mobilization/demobilization effort, thus requiring less manpower for operation and reducing or eliminating the need for a surface support vessel altogether. When the system completes its mission, data can be remotely downloaded via W-LAN and exported for use in advanced signal processing platforms. Magnetic compensation software has been concurrently developed to accept electrical current measurements directly from the AUV to address distortions from permanent and induced magnetization effects on the magnetometer. Maneuver and electrical current compensation terms can be extracted from the magnetic survey missions to perform automated post-process corrections. Considerable suppression of system noise has been observed over traditional

  6. Letter to the Editor: Electric Vehicle Demand Model for Load Flow Studies

    DEFF Research Database (Denmark)

    Garcia-Valle, Rodrigo; Vlachogiannis, Ioannis (John)

    2009-01-01

    This paper introduces specific and simple model for electric vehicles suitable for load flow studies. The electric vehicles demand system is modelled as PQ bus with stochastic characteristics based on the concept of queuing theory. All appropriate variables of stochastic PQ buses are given...... with closed formulae as a function of charging time. Specific manufacturer model of electric vehicles is used as study case....

  7. Evaluating the effectiveness of active vehicle safety systems.

    Science.gov (United States)

    Jeong, Eunbi; Oh, Cheol

    2017-03-01

    Advanced vehicle safety systems have been widely introduced in transportation systems and are expected to enhance traffic safety. However, these technologies mainly focus on assisting individual vehicles that are equipped with them, and less effort has been made to identify the effect of vehicular technologies on the traffic stream. This study proposed a methodology to assess the effectiveness of active vehicle safety systems (AVSSs), which represent a promising technology to prevent traffic crashes and mitigate injury severity. The proposed AVSS consists of longitudinal and lateral vehicle control systems, which corresponds to the Level 2 vehicle automation presented by the National Highway Safety Administration (NHTSA). The effectiveness evaluation for the proposed technology was conducted in terms of crash potential reduction and congestion mitigation. A microscopic traffic simulator, VISSIM, was used to simulate freeway traffic stream and collect vehicle-maneuvering data. In addition, an external application program interface, VISSIM's COM-interface, was used to implement the AVSS. A surrogate safety assessment model (SSAM) was used to derive indirect safety measures to evaluate the effectiveness of the AVSS. A 16.7-km freeway stretch between the Nakdong and Seonsan interchanges on Korean freeway 45 was selected for the simulation experiments to evaluate the effectiveness of AVSS. A total of five simulation runs for each evaluation scenario were conducted. For the non-incident conditions, the rear-end and lane-change conflicts were reduced by 78.8% and 17.3%, respectively, under the level of service (LOS) D traffic conditions. In addition, the average delay was reduced by 55.5%. However, the system's effectiveness was weakened in the LOS A-C categories. Under incident traffic conditions, the number of rear-end conflicts was reduced by approximately 9.7%. Vehicle delays were reduced by approximately 43.9% with 100% of market penetration rate (MPR). These results

  8. Computational Modeling of Flow Control Systems for Aerospace Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. proposes to develop computational methods for designing active flow control systems on aerospace vehicles with the primary objective of...

  9. Vehicle Safety Enhancement System: Sensing and Communication

    OpenAIRE

    Huihuan Qian; Yongquan Chen; Yuandong Sun; Niansheng Liu; Ning Ding; Yangsheng Xu; Guoqing Xu; Yunjian Tang; Jingyu Yan

    2013-01-01

    With the substantial increase of vehicles on road, driving safety and transportation efficiency have become increasingly concerned focus from drivers, passengers, and governments. Wireless networks constructed by vehicles and infrastructures provide abundant information to share for the sake of both enhanced safety and network efficiency. This paper presents the systematic research to enhance the vehicle safety by wireless communication, in the aspects of information acquisition through vehic...

  10. Dropsonde System for Unmanned Aerial Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Unmanned Aerial Vehicles (UAVs) are assuming more numerous and increasingly important roles in global environmental and atmospheric research. There is a...

  11. Systems and methods for vehicle speed management

    Energy Technology Data Exchange (ETDEWEB)

    Sujan, Vivek Anand; Vajapeyazula, Phani; Follen, Kenneth; Wu, An; Forst, Howard Robert

    2016-03-01

    Controlling a speed of a vehicle based on at least a portion of a route grade and a route distance divided into a plurality of route sections, each including at least one of a section grade and section length. Controlling the speed of the vehicle is further based on determining a cruise control speed mode for the vehicle for each of the plurality of route sections and determining a speed reference command of the vehicle based on at least one of the cruise control speed mode, the section length, the section grade, and a current speed.

  12. Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

    2012-03-01

    The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

  13. Safety problems in vehicles with adaptive cruise control system

    Directory of Open Access Journals (Sweden)

    Yadav Arun K.

    2017-06-01

    Full Text Available In today’s world automotive industries are still putting efforts towards more autonomous vehicles (AVs. The main concern of introducing the autonomous technology is safety of driver. According to a survey 90% of accidents happen due to mistake of driver. The adaptive cruise control system (ACC is a system which combines cruise control with a collision avoidance system. The ACC system is based on laser and radar technologies. This system is capable of controlling the velocity of vehicle automatically to match the velocity of car, bus or truck in front of vehicle. If the lead vehicle gets slow down or accelerate, than ACC system automatically matches that velocity. The proposed paper is focusing on more accurate methods of detecting the preceding vehicle by using a radar and lidar sensors by considering the vehicle side slip and by controlling the distance between two vehicles. By using this approach i.e. logic for calculation of former vehicle distance and controlling the throttle valve of ACC equipped vehicle, an improvement in driving stability was achieved. The own contribution results with fuel efficient driving and with more safer and reliable driving system, but still some improvements are going on to make it more safe and reliable.

  14. Remotely Accessed Vehicle Traffic Management System

    Science.gov (United States)

    Al-Alawi, Raida

    2010-06-01

    The ever increasing number of vehicles in most metropolitan cities around the world and the limitation in altering the transportation infrastructure, led to serious traffic congestion and an increase in the travelling time. In this work we exploit the emergence of novel technologies such as the internet, to design an intelligent Traffic Management System (TMS) that can remotely monitor and control a network of traffic light controllers located at different sites. The system is based on utilizing Embedded Web Servers (EWS) technology to design a web-based TMS. The EWS located at each intersection uses IP technology for communicating remotely with a Central Traffic Management Unit (CTMU) located at the traffic department authority. Friendly GUI software installed at the CTMU will be able to monitor the sequence of operation of the traffic lights and the presence of traffic at each intersection as well as remotely controlling the operation of the signals. The system has been validated by constructing a prototype that resembles the real application.

  15. Design of vehicle overload detection system based on geophone

    Science.gov (United States)

    Hu, Siquan; Kong, Min; She, Chundong

    2017-08-01

    A vehicle overload detection system is proposed based on geophone. Under normal circumstances, when overloaded vehicles and ordinary vehicles pass through the road, the amplitude of the ground vibration will be different, and the geophone sensor can detect tiny vibrations of the ground. The system includes information acquisition module, signal conditioning module and wireless transmission module. The collected vibration data is transmitted through the wireless transmission module to the background, and the SVM algorithm is used to classify the information and determine whether the vehicle is overloaded. Experiments show that the system can detect overload accurately.

  16. Design of a digital adaptive control system for reentry vehicles.

    Science.gov (United States)

    Picon-Jimenez, J. L.; Montgomery, R. C.; Grigsby, L. L.

    1972-01-01

    The flying qualities of atmospheric reentry vehicles experience considerable variations due to the wide changes in flight conditions characteristic of reentry trajectories. A digital adaptive control system has been designed to modify the vehicle's dynamic characteristics and to provide desired flying qualities for all flight conditions. This adaptive control system consists of a finite-memory identifier which determines the vehicle's unknown parameters, and a gain computer which calculates feedback gains to satisfy flying quality requirements.

  17. Lane-Level Vehicle Trajectory Reckoning for Cooperative Vehicle-Infrastructure System

    Directory of Open Access Journals (Sweden)

    Yinsong Wang

    2012-01-01

    Full Text Available This paper presents a lane-level positioning method by trajectory reckoning without Global Positioning System (GPS equipment in the environment of Cooperative Vehicle-Infrastructure System (CVIS. Firstly, the accuracy requirements of vehicle position in CVIS applications and the applicability of GPS positioning methods were analyzed. Then, a trajectory reckoning method based on speed and steering data from vehicle’s Control Area Network (CAN and roadside calibration facilities was proposed, which consists of three critical models, including real-time estimation of steering angle and vehicle direction, vehicle movement reckoning, and wireless calibration. Finally, the proposed method was validated through simulation and field tests under a variety of traffic conditions. Results show that the accuracy of the reckoned vehicle position can reach the lane level and match the requirements of common CVIS applications.

  18. Design of Launch Vehicle Flight Control Systems Using Ascent Vehicle Stability Analysis Tool

    Science.gov (United States)

    Jang, Jiann-Woei; Alaniz, Abran; Hall, Robert; Bedossian, Nazareth; Hall, Charles; Jackson, Mark

    2011-01-01

    A launch vehicle represents a complicated flex-body structural environment for flight control system design. The Ascent-vehicle Stability Analysis Tool (ASAT) is developed to address the complicity in design and analysis of a launch vehicle. The design objective for the flight control system of a launch vehicle is to best follow guidance commands while robustly maintaining system stability. A constrained optimization approach takes the advantage of modern computational control techniques to simultaneously design multiple control systems in compliance with required design specs. "Tower Clearance" and "Load Relief" designs have been achieved for liftoff and max dynamic pressure flight regions, respectively, in the presence of large wind disturbances. The robustness of the flight control system designs has been verified in the frequency domain Monte Carlo analysis using ASAT.

  19. GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

    2003-08-24

    The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple

  20. Electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, Susan R.

    1995-01-01

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

  1. Case Study – Idling Reduction Technologies for Emergency Service Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Laughlin, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Owens, Russell J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    This case study explores the use of idle reduction technologies (IRTs) on emergency service vehicles in police, fire, and ambulance applications. Various commercially available IRT systems and approaches can decrease, or ultimately eliminate, engine idling. Fleets will thus save money on fuel, and will also decrease their criteria pollutant emissions, greenhouse gas emissions, and noise.

  2. Hybrid and electric advanced vehicle systems (heavy) simulation

    Science.gov (United States)

    Hammond, R. A.; Mcgehee, R. K.

    1981-01-01

    A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.

  3. A 6-DOF vibration isolation system for hydraulic hybrid vehicles

    Science.gov (United States)

    Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul

    2006-03-01

    This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of

  4. Dynamic interactions between hypersonic vehicle aerodynamics and propulsion system performance

    Science.gov (United States)

    Flandro, G. A.; Roach, R. L.; Buschek, H.

    1992-01-01

    Described here is the development of a flexible simulation model for scramjet hypersonic propulsion systems. The primary goal is determination of sensitivity of the thrust vector and other system parameters to angle of attack changes of the vehicle. Such information is crucial in design and analysis of control system performance for hypersonic vehicles. The code is also intended to be a key element in carrying out dynamic interaction studies involving the influence of vehicle vibrations on propulsion system/control system coupling and flight stability. Simple models are employed to represent the various processes comprising the propulsion system. A method of characteristics (MOC) approach is used to solve the forebody and external nozzle flow fields. This results in a very fast computational algorithm capable of carrying out the vast number of simulation computations needed in guidance, stability, and control studies. The three-dimensional fore- and aft body (nozzle) geometry is characterized by the centerline profiles as represented by a series of coordinate points and body cross-section curvature. The engine module geometry is represented by an adjustable vertical grid to accommodate variations of the field parameters throughout the inlet and combustor. The scramjet inlet is modeled as a two-dimensional supersonic flow containing adjustable sidewall wedges and multiple fuel injection struts. The inlet geometry including the sidewall wedge angles, the number of injection struts, their sweepback relative to the vehicle reference line, and strut cross-section are user selectable. Combustion is currently represented by a Rayleigh line calculation including corrections for variable gas properties; improved models are being developed for this important element of the propulsion flow field. The program generates (1) variation of thrust magnitude and direction with angle of attack, (2) pitching moment and line of action of the thrust vector, (3) pressure and temperature

  5. Compatibility Study of Silver Biocide in Drinking Water with Candidate Metals for Crew Exploration Vehicle Potable Water System

    Science.gov (United States)

    Adam, Niklas M.

    2009-01-01

    The stability of silver biocide, used to keep drinking water on the CEV potable water sterile, is unknown as the system design is still in progress. Silver biocide in water can deplete rapidly when exposed to various metal surfaces. Additionally, silver depletion rates may be affected by the surface-area-to-volume (SA/V) ratios in the water system. Therefore, to facilitate the CEV water system design, it would be advantageous to know the biocide depletion rates in water exposed to the surfaces of these candidate metals at various SA/V ratios. Certain surface treatments can be employed to reduce the depletion rates of silver compared to the base metal. The purpose of this work is to determine the compatibility of specific spaceflight-certified metals that could used in the design of the CEV potable water system with silver biocide as well as understand the effect of surface are to volume ratios of metals used in the construction of the potable water system on the silver concentration.

  6. Converting a Manned LCU into an Unmanned Surface Vehicle (USV): An Open Systems Architecture (OSA) Case Study

    Science.gov (United States)

    2014-09-01

    set five years in the future. Autonomous systems of interest include submerged , surfaced, airborne and space-based robots as well as advanced...through pier-like structure or perform stern- gate marriages to amphibious well deck ships. Welded steel hull construction

  7. Robust Vehicle Suspension System by Converting Active & Passive Control of a Vehicle to Semi-Active Control System Analytically

    Directory of Open Access Journals (Sweden)

    Hassan Elahi

    2014-12-01

    Full Text Available In this research work a simplified translational model of an automotive suspension system is constructed by only considering the translation motion of one wheel of a car. Passive Vehicle Suspension System is converted into Semi Active Vehicle System. Major advantage achieved by this system is that it adjusts the damping of the suspension system without the application of any actuator by using MATLAB® simulations. The semi-active control is found to control the vibration of suspension system very well.

  8. Dropsonde System for Unmanned Aerial Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A small, modular dropsonde launcher is being developed for Unmanned Aerial Vehicles (UAVs). Some critical measurement needs can only be satisfied by in-situ...

  9. Human factors evaluation of an in-vehicle active traffic and demand management (ATDM) system : final report.

    Science.gov (United States)

    2016-02-15

    This research study focused on the development and subsequent evaluation of an in-vehicle Active Traffic and Demand Management (ATDM) system deployed on Interstate 66 in Northern Virginia. The ATDM elements inside the vehicle allowed drivers to remai...

  10. Automated mixed traffic vehicle control and scheduling study

    Science.gov (United States)

    Peng, T. K. C.; Chon, K.

    1976-01-01

    The operation and the expected performance of a proposed automatic guideway transit system which uses low speed automated mixed traffic vehicles (AMTVs) were analyzed. Vehicle scheduling and headway control policies were evaluated with a transit system simulation model. The effect of mixed traffic interference on the average vehicle speed was examined with a vehicle pedestrian interface model. Control parameters regulating vehicle speed were evaluated for safe stopping and passenger comfort. Some preliminary data on the cost and operation of an experimental AMTV system are included. These data were the result of a separate task conducted at JPL, and were included as background information.

  11. Integrated vehicle control and guidance systems in unmanned ground vehicles for commercial applications

    Science.gov (United States)

    Kenyon, Chase H.

    1995-01-01

    While there is a lot of recent development in the entire IVHS field, very few have had the opportunity to combine the many areas of development into a single integrated `intelligent' unmanned vehicle. One of our systems was developed specifically to serve a major automobile manufacturer's need for an automated vehicle chassis durability test facility. Due to the severity of the road surface human drivers could not be used. A totally automated robotic vehicle driver and guidance system was necessary. In order to deliver fixed price commercial projects now, it was apparent system and component costs were of paramount importance. Cyplex has developed a robust, cost effective single wire guidance system. This system has inherent advantages in system simplicity. Multi-signal (per vehicle lane) systems complicate path planning and layout when multiple lanes and lane changes are required, as on actual highways. The system has demonstrated high enough immunity to rain and light snow cover that normal safety reductions in speed are adequate to stay within the required system performance envelope. This system and it's antenna interface have shown the ability to guide the vehicle at slow speeds (10 MPH) with a tracking repeatability of plus or minus 1/8 of an inch. The basic guide and antenna system has been tested at speeds up to 80 mph. The system has inherently superior abilities for lane changes and precision vehicle placement. The operation of this system will be described and the impact of a system that is commercially viable now for highway and off road use will be discussed.

  12. Use of MBS (ADAMS / CAR software in simulations of vehicle suspension systems

    Directory of Open Access Journals (Sweden)

    Łukasz KONIECZNY

    2014-03-01

    Full Text Available The results of the examination of a vehicle suspension system in the plate position are presented in the paper. The model vehicle is a Fiat Seicento with front independent suspension, McPherson type, with the steering system and with the semi-trailing arm in the rear suspension. Identification of the model was made by comparing the simulation results with the results from the test stand. A multibody model of the vehicle will be used in studies of the impact of shock absorber technical conditions on the dynamics of automotive vehicles.

  13. Review on Automotive Power Generation System on Plug-in Hybrid Electric Vehicles & Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Leong Yap Wee

    2016-01-01

    Full Text Available Regenerative braking is a function to recharge power bank on the Plug-in electric vehicles (PHEV and electric vehicles (EV. The weakness of this system is, it can only perform its function when the vehicle is slowing down or by stepping the brake foot pedal. In other words, the electricity recharging system is inconsistent, non-continuous and geography dependent. To overcome the weakness of the regenerative braking system, it is suggested that to apply another generator which is going to be parallel with the regenerative braking system so that continuous charging can be achieved. Since the ironless electricity generator has a less counter electromotive force (CEMF comparing to an ironcored electricity generator and no cogging torque. Applying the ironless electricity generator parallel to the regenerative braking system is seen one of the options which creates sustainable charging system compared to cored electricity generator.

  14. Active System for Electromagnetic Perturbation Monitoring in Vehicles

    Science.gov (United States)

    Matoi, Adrian Marian; Helerea, Elena

    Nowadays electromagnetic environment is rapidly expanding in frequency domain and wireless services extend in terms of covered area. European electromagnetic compatibility regulations refer to limit values regarding emissions, as well as procedures for determining susceptibility of the vehicle. Approval procedure for a series of cars is based on determining emissions/immunity level for a few vehicles picked randomly from the entire series, supposing that entire vehicle series is compliant. During immunity assessment, the vehicle is not subjected to real perturbation sources, but exposed to electric/magnetic fields generated by laboratory equipment. Since current approach takes into account only partially real situation regarding perturbation sources, this paper proposes an active system for determining electromagnetic parameters of vehicle's environment, that implements a logical diagram for measurement, satisfying the imposed requirements. This new and original solution is useful for EMC assessment of hybrid and electrical vehicles.

  15. Modeling thermal effects in braking systems of railway vehicles

    Directory of Open Access Journals (Sweden)

    Milošević Miloš S.

    2012-01-01

    Full Text Available The modeling of thermal effects has become increasingly important in product design in different transport means, road vehicles, airplanes, railway vehicles, and so forth. The thermal analysis is a very important stage in the study of braking systems, especially of railway vehicles, where it is necessary to brake huge masses, because the thermal load of a braked railway wheel prevails compared to other types of loads. In the braking phase, kinetic energy transforms into thermal energy resulting in intense heating and high temperature states of railway wheels. Thus induced thermal loads determine thermomechanical behavior of the structure of railway wheels. In cases of thermal overloads, which mainly occur as a result of long-term braking on down-grade railroads, the generation of stresses and deformations occurs, whose consequences are the appearance of cracks on the rim of a wheel and the final total wheel defect. The importance to precisely determine the temperature distribution caused by the transfer process of the heat generated during braking due to the friction on contact surfaces of the braking system makes it a challenging research task. Therefore, the thermal analysis of a block-braked solid railway wheel of a 444 class locomotive of the national railway operator Serbian Railways is processed in detail in this paper, using analytical and numerical modeling of thermal effects during long-term braking for maintaining a constant speed on a down-grade railroad.

  16. Automatic electronic and mechanical system to avoid vehicle theft

    Energy Technology Data Exchange (ETDEWEB)

    Tejeda, J.O.

    1988-05-24

    An automatic vehicle anti-theft system having an anti-theft mode and an anti-hijack mode, for a vehicle having both an ignition switch and an open door switch for a door is described comprising in combination: (a) an electrically controlled fuel supply system supplied with switched electrical current by the ignition switch S; (b) a momentary switch supplied with switched electrical current by the ignition switch; (c) an electronic valve; (d) an open door override switch to selectively disable the open door switch and to disable the anti-hijack mode; and (e) a valet parking override switch to selectively disable the anti-theft mode while the vehicles in the valet mode. The automatic vehicle anti-theft system permits the owner of the vehicle to disable either of two protection modes.

  17. Lp String Stability of Cascaded Systems: application to vehicle platooning

    NARCIS (Netherlands)

    Ploeg, J.; Wouw, N. van de; Nijmeijer, H.

    2014-01-01

    Nowadays, throughput has become a limiting factor in road transport. An effective means to increase the road throughput is to employ a small intervehicle time gap using automatic vehicle-following control systems. String stability, i.e., the disturbance attenuation along the vehicle string, is

  18. Driver memory retention of in-vehicle information system messages

    Science.gov (United States)

    1997-01-01

    Memory retention of drivers was tested for traffic- and traveler-related messages displayed on an in-vehicle information system (IVIS). Three research questions were asked: (a) How does in-vehicle visual message format affect comprehension? (b) How d...

  19. Improving Vehicle Safety: A New Methodology for Vehicle Steering System Inspection by Means of Forces Measure

    Directory of Open Access Journals (Sweden)

    D. García-Pozuelo

    2014-09-01

    Full Text Available Some mechanical systems, such as steering, brakes, and suspension, critically affect the safety of the vehicle. These systems are subject to wear through use and time, changing their status throughout the lifetime of a vehicle. It is, therefore, essential to develop adequate components and procedures of inspection that ensure the correct operation of these systems. Moreover, the steering inspection must guarantee certain requirements, such as, being able to test any vehicle steering system and being low priced. In addition, one of the most important requirements for any inspection procedure is to provide the measurements in a short time. This fact conditions the measurement process and sensors to be employed. The current steering system that measures the steering angles is time consuming. The aim of this research is to introduce a steering system inspection based on forces measured by means of a dynamometer plate. The main features of the proposed system ensure minimum testing time, and simple operation and avoid manipulation of the vehicle. In addition, precise and objective limits for acceptance and rejection have been established. Therefore, the proposed procedure meets all the requirements for the periodic motor vehicle inspection (PMVI.

  20. Crash analysis of a conceptual electric vehicle with a multifunctional battery system

    Science.gov (United States)

    Kukreja, Jaspreet S.

    For current electric vehicles, batteries are employed only as an energy source. Due to safety concerns, the space for battery storage is co-allocated with passenger space, which would constrain the design for the vehicle. An architectured multifunctional battery-structure material, namely Granular Battery Assembly (GBA), has been proposed by Tsutsui et al., 2014. Such a material system utilizes the deformation of sacrificing tubes to dissipate impact energy and protect the battery cells, thereby allowing the batteries to be placed in the front crumple zone of an electric vehicle, while also ensuring occupant safety. The primary focus of this study was vehicle level design analysis of GBA for application in an electric vehicle. A parametric study was performed to determine suitable characteristics of the GBA system for installation in a vehicle. To reduce computational cost, a homogenized material was used to represent GBA in the finite element model of the vehicle. Frontal crash simulation of a vehicle with GBA placed in crumple zone was performed on LS-DYNA platform.The crash response was used to demonstrate the utility of GBA mechanism to keep the batteries and passengers safe. The incorporation of GBA into an electric vehicle would allow for battery space to be decoupled from passenger space, thereby increasing the vehicle design freedom. Use of the crumple zone for battery storage would also result in increasing the available battery space.

  1. Study and Implementation of a Two-Phase Interleaved Bidirectional DC/DC Converter for Vehicle and DC-Microgrid Systems

    Directory of Open Access Journals (Sweden)

    Ching-Ming Lai

    2015-09-01

    Full Text Available The objective of this paper is to implement a two-phase, interleaved, bidirectional DC/DC converter topology with an improved voltage conversion ratio for electric vehicle (EV and DC-microgrid systems. In this study, a two-phase interleaved charge-pump topology is introduced to achieve a high voltage conversion ratio with very simple control circuits. In discharge mode, the circuit topology acts as a voltage-multiplier boost converter to achieve a high step-up conversion ratio (48 V to 240 V. In charge mode, the circuit topology acts as a voltage-divider buck converter to achieve a high voltage step-down conversion ratio (240 V to 48 V. The circuit configuration, operating principle, steady-state analysis and the closed-loop control of the proposed converter are presented. Experiments conducted on a laboratory prototype with 500 W power-rating are presented to verify the effectiveness. The maximum efficiency levels in discharge and charge modes are about 97.7% and 98.4% respectively.

  2. Lean NOx Trap Modeling in Vehicle Systems Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiming [ORNL; Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL; Conklin, Jim [ORNL

    2010-09-01

    A one-dimensional model for simulating lean NOx trap (LNT) performance is developed and validated using both steady state cycling data and transient data from FTP testing cycles. The model consists of the conservation equations for chemical species and energy in the bulk flow, energy of the solid walls, O2 storage and NOx storage (in the form of nitrites and nitrates). Nitrites and nitrates are formed by diffusion of NO and NO2, respectively, into sorbent particles (assumed to be hemi-spherical in shape) along with O2 and their formation rates are controlled by chemical kinetics as well as solid-phase diffusion rates of NOx species. The model also accounts for thermal aging and sulfation of LNTs. Empirical correlations are developed on the basis of published experimental data to capture these effects. These empirical correlations depend on total mileage for which the LNT has been in use, the mileage accumulated since the last desulfation event in addition to the freshly degreened catalyst characteristics. The model has been used in studies of vehicle systems (integration, performance etc.) including hybrid powertrain configurations. Since the engines in hybrid vehicles turn on and off multiple number of times during single drive cycles, the exhaust systems may encounter multiple cold start transients. Accurate modeling of catalyst warm-up and cooling is, therefore, very important to simulate LNT performance in such vehicles. For this purpose, the convective heat loss from the LNT to the ambient is modeled using a Nusselt number correlation that includes effects of both forced convection and natural convection (with later being important when vehicle is stationary). Using the model, the fuel penalty associated with operating LNTs on small diesel engine powered car during FTP drive cycles is estimated.

  3. A PEMFC hybrid electric vehicle real time control system

    Science.gov (United States)

    Sun, Hongqiao

    In recent years, environmental friendly technologies and alternative energy solutions have drawn a lot of public attentions due to global energy crisis and pollution issues. Fuel cell (FC), a technology invented almost at the same time as the internal combustion (IC) engine, is now the focus of the automotive industry again. The fuel cell vehicle (FCV) has zero emission and its efficiency is significantly higher than the conventional IC engine power vehicles. Among a variety of FCV technologies, proton exchange membrane (PEM) FC vehicle appears to be far more attractive and mature. The prototype PEMFC vehicle has been developed and demonstrated to the public by nearly all the major automotive manufacturers in recent years. However, to the interest of the public research, publications and documentations on the PEMFC vehicle technology are rarely available due to its proprietary nature, which essentially makes it a secured technology. This dissertation demonstrates a real world application of a PEMFC hybrid electric vehicle. Through presenting the vehicle design concept, developing the real time control system and generating generic operation principles, this dissertation targets at establishing the public knowledge base on this new technology. A complete PEMFC hybrid electric vehicle design, including vehicle components layout, process flow diagram, real time control system architecture, subsystem structures and control algorithms, is presented in order to help understand the whole vehicle system. The design concept is validated through the vehicle demonstration. Generic operating principles are established along with the validation process, which helps populate this emerging technology. Thereafter, further improvements and future research directions are discussed.

  4. An operating system for future aerospace vehicle computer systems

    Science.gov (United States)

    Foudriat, E. C.; Berman, W. J.; Will, R. W.; Bynum, W. L.

    1984-01-01

    The requirements for future aerospace vehicle computer operating systems are examined in this paper. The computer architecture is assumed to be distributed with a local area network connecting the nodes. Each node is assumed to provide a specific functionality. The network provides for communication so that the overall tasks of the vehicle are accomplished. The O/S structure is based upon the concept of objects. The mechanisms for integrating node unique objects with node common objects in order to implement both the autonomy and the cooperation between nodes is developed. The requirements for time critical performance and reliability and recovery are discussed. Time critical performance impacts all parts of the distributed operating system; e.g., its structure, the functional design of its objects, the language structure, etc. Throughout the paper the tradeoffs - concurrency, language structure, object recovery, binding, file structure, communication protocol, programmer freedom, etc. - are considered to arrive at a feasible, maximum performance design. Reliability of the network system is considered. A parallel multipath bus structure is proposed for the control of delivery time for time critical messages. The architecture also supports immediate recovery for the time critical message system after a communication failure.

  5. Designing for sustainability - mobility systems based on electrical vehicles

    DEFF Research Database (Denmark)

    Søndergård, Bent; Hansen, Ole Erik

    2013-01-01

    in interaction with public authorities and transportation companies), configuring the electric car sharing system as an element in an alternative mobility service system, and designing the technical and organizational system The concluding discussion falls into two parts: an assessment of the design process......-design, concerned with design as meta-level processes of regime transformation and the constructive configuration of design spaces. The case study examines an attempt to integrate electric vehicles in the Danish mobility systems. It maps the framework conditions and contemporary (competing) strategies....../projects, but focuses on a specific car-sharing project (‘Cleardrive’), with the objective to examine the early and constitutive stages of the design-process. It is conducted as an intensive study tracing elements of interpretation, interaction and intervention, which have been part of the project formation process...

  6. Lights and siren: a review of emergency vehicle warning systems.

    Science.gov (United States)

    De Lorenzo, R A; Eilers, M A

    1991-12-01

    Emergency medical services providers routinely respond to emergencies using lights and siren. This practice is not without risk of collision. Audible and visual warning devices and vehicle markings are integral to efficient negotiation of traffic and reduction of collision risk. An understanding of warning system characteristics is necessary to implement appropriate guidelines for prehospital transportation systems. The pertinent literature on emergency vehicle warning systems is reviewed, with emphasis on potential health hazards associated with these techniques. Important findings inferred from the literature are 1) red flashing lights alone may not be as effective as other color combinations, 2) there are no data to support a seizure risk with strobe lights, 3) lime-yellow is probably superior to traditional emergency vehicle colors, 4) the siren is an extremely limited warning device, and 5) exposure to siren noise can cause hearing loss. Emergency physicians must ensure that emergency medical services transportation systems consider the pertinent literature on emergency vehicle warning systems.

  7. RF Infrastructure Cooperative System for in Lane Vehicle Localization

    Directory of Open Access Journals (Sweden)

    Nabil Houdali

    2014-11-01

    Full Text Available This paper presents a sensor which can be included in an Advanced Driver Assistance System (ADAS that is compliant with the Vehicle to Infrastructure communication standard (V2I. This system allows estimation of the vehicle lateral position in real time by ensuring cooperation between an on-board vehicle system and passive transponders integrated in the lateral white strips of the road. Based on an optimization method, the lateral position vehicle is provided with a distance error less than 3 cm. In this paper, experimental results are presented in order to evaluate the robustness of the proposed system in a realistic environment. Three scenarios are considered to take into account the bitumen properties, the presence of parasitic reflectors in different positions around the system and the interaction between transponders.

  8. Roll control resonance test vehicle (RCRTV) system postflight evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    Kryvoruka, J.K.

    1973-03-01

    This report presents the flight test results for a reentry vehicle spin-fin roll control system. The test vehicle, designated the Roll Control Resonance Test Vehicle, was flight tested on May 10, 1972, at the Sandia Laboratories Tonopah Test Range. The purpose of the flight were (1) to demonstrate and evaluate the capability of the control system to overcome a roll resonance flight instability and (2) to confirm the analytic predictions of system performance. The flight test vehicle had built-in asymmetries which, without roll control, would have caused a persistent roll resonance instability to occur. The test was successful in that all systems functioned properly and all program and flight test objectives were accomplished. Flight test data presented herein confirm analytic predictions and flight simulation methods. Results show that the system maintained roll rate control and prevented the roll resonance instability.

  9. Control system and method for a hybrid electric vehicle

    Science.gov (United States)

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2001-01-01

    A vehicle system controller (20) is presented for a LSR parallel hybrid electric vehicle having an engine (10), a motor (12), wheels (14), a transmission (16) and a battery (18). The vehicle system controller (20) has a state machine having a plurality of predefined states (22-32) that represent operating modes for the vehicle. A set of rules is defined for controlling the transition between any two states in the state machine. The states (22-32) are prioritized according to driver demands, energy management concerns and system fault occurrences. The vehicle system controller (20) controls the transitions from a lower priority state to a higher priority state based on the set of rules. In addition, the vehicle system controller (20) will control a transition to a lower state from a higher state when the conditions no longer warrant staying in the current state. A unique set of output commands is defined for each state for the purpose of controlling lower level subsystem controllers. These commands serve to achieve the desire vehicle functionality within each state and insure smooth transitions between states.

  10. Vehicle Remote Health Monitoring and Prognostic Maintenance System

    Directory of Open Access Journals (Sweden)

    Uferah Shafi

    2018-01-01

    Full Text Available In many industries inclusive of automotive vehicle industry, predictive maintenance has become more important. It is hard to diagnose failure in advance in the vehicle industry because of the limited availability of sensors and some of the designing exertions. However with the great development in automotive industry, it looks feasible today to analyze sensor’s data along with machine learning techniques for failure prediction. In this article, an approach is presented for fault prediction of four main subsystems of vehicle, fuel system, ignition system, exhaust system, and cooling system. Sensor is collected when vehicle is on the move, both in faulty condition (when any failure in specific system has occurred and in normal condition. The data is transmitted to the server which analyzes the data. Interesting patterns are learned using four classifiers, Decision Tree, Support Vector Machine, K Nearest Neighbor, and Random Forest. These patterns are later used to detect future failures in other vehicles which show the similar behavior. The approach is produced with the end goal of expanding vehicle up-time and was demonstrated on 70 vehicles of Toyota Corolla type. Accuracy comparison of all classifiers is performed on the basis of Receiver Operating Characteristics (ROC curves.

  11. Direct hydrogen fuel cell systems for hybrid vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.

    Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.

  12. Solution or suspension - Does it matter for lipid based systems? In vivo studies of chase dosing lipid vehicles with aqueous suspensions of a poorly soluble drug.

    Science.gov (United States)

    Larsen, A T; Holm, R; Müllertz, A

    2017-08-01

    In this study, the potential of co-administering an aqueous suspension with a placebo lipid vehicle, i.e. chase dosing, was investigated in rats relative to the aqueous suspension alone or a solution of the drug in the lipid vehicle. The lipid investigated in the present study was Labrafil M2125CS and three evaluated poorly soluble model compounds, danazol, cinnarizine and halofantrine. For cinnarizine and danazol the oral bioavailability in rats after chase dosing or dosing the compound dissolved in Labrafil M21515CS was similar and significantly higher than for the aqueous suspension. For halofantrine the chase dosed group had a tendency towards a low bioavailability relative to the Labrafil M2125CS solution, but still a significant higher bioavailability relative to the aqueous suspension. This could be due to factors such as a slower dissolution rate in the intestinal phase of halofantrine or a lower solubility in the colloidal structures formed during digestion, but other mechanisms may also be involved. The study thereby supported the potential of chase dosing as a potential dosing regimen in situations where it is beneficial to have a drug in the solid state, e.g. due to chemical stability issues in the lipid vehicle. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Modeling and Prototyping of Automatic Clutch System for Light Vehicles

    Science.gov (United States)

    Murali, S.; Jothi Prakash, V. M.; Vishal, S.

    2017-03-01

    Nowadays, recycling or regenerating the waste in to something useful is appreciated all around the globe. It reduces greenhouse gas emissions that contribute to global climate change. This study deals with provision of the automatic clutch mechanism in vehicles to facilitate the smooth changing of gears. This study proposed to use the exhaust gases which are normally expelled out as a waste from the turbocharger to actuate the clutch mechanism in vehicles to facilitate the smooth changing of gears. At present, clutches are operated automatically by using an air compressor in the four wheelers. In this study, a conceptual design is proposed in which the clutch is operated by the exhaust gas from the turbocharger and this will remove the usage of air compressor in the existing system. With this system, usage of air compressor is eliminated and the riders need not to operate the clutch manually. This work involved in development, analysation and validation of the conceptual design through simulation software. Then the developed conceptual design of an automatic pneumatic clutch system is tested with proto type.

  14. Highway vehicle systems contractors coordination meeting. Seventeenth summary report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Separate abstracts was prepared for each of the 62 papers presented at the Contractors' Coordination meeting on highway vehicle systems. One paper had previously appeared in DOE's data base.

  15. Variable buoyancy system for unmanned multi-domain vehicles

    Science.gov (United States)

    MacLeod, Marc; Bryant, Matthew

    2016-04-01

    This paper presents the system design, construction, and testing of an active variable buoyancy system (VBS) actuator with applications to unmanned multi-domain vehicles. Unmanned multi-domain vehicles require nontraditional VBS designs because of their unique operation requirements. We present a VBS actuator design that targets multi-domain vehicle design objectives of high endurance, stealth, and underwater loitering. The design features a rigid ballast tank with an inner elastic bladder connected to a hydraulic pump and a proportionally controlled vent valve. The system working fluid is obtained from the ambient surrounding water and the elastic bladder separates the water from pressurized gas, thus preventing any gas from escaping during a venting operation. An analytic model of the VBS characterizing the system dynamics is derived. Ballast tank prototype design and construction is discussed. A VBS test platform vehicle is presented, featuring two ballast tanks, motor, pump, and RF receiver for control.

  16. Roadway weather information system and automatic vehicle location (AVL) coordination.

    Science.gov (United States)

    2011-02-28

    Roadway Weather Information System and Automatic Vehicle Location Coordination involves the : development of an Inclement Weather Console that provides a new capability for the state of Oklahoma : to monitor weather-related roadway conditions. The go...

  17. The commercial vehicle information systems and networks program, 2013.

    Science.gov (United States)

    2015-04-01

    The Commercial Vehicle Information Systems and Networks (CVISN) grant program supports the Federal Motor Carrier Safety Administrations (FMCSAs) safety mission by providing grant funds to States to: : Improve safety and productivity of moto...

  18. Hypersonic Vehicle Propulsion System Control Model Development Roadmap and Activities

    Science.gov (United States)

    Stueber, Thomas J.; Le, Dzu K.; Vrnak, Daniel R.

    2009-01-01

    The NASA Fundamental Aeronautics Program Hypersonic project is directed towards fundamental research for two classes of hypersonic vehicles: highly reliable reusable launch systems (HRRLS) and high-mass Mars entry systems (HMMES). The objective of the hypersonic guidance, navigation, and control (GN&C) discipline team is to develop advanced guidance and control algorithms to enable efficient and effective operation of these challenging vehicles. The ongoing work at the NASA Glenn Research Center supports the hypersonic GN&C effort in developing tools to aid the design of advanced control algorithms that specifically address the propulsion system of the HRRLSclass vehicles. These tools are being developed in conjunction with complementary research and development activities in hypersonic propulsion at Glenn and elsewhere. This report is focused on obtaining control-relevant dynamic models of an HRRLS-type hypersonic vehicle propulsion system.

  19. Advanced Control System Design for Hypersonic Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Guidance and control system design for hypersonic vehicles is more challenging than their subsonic and supersonic counterparts. Some of these challenges are (i)...

  20. Sustained small oscillations in nonlinear control systems. [launch vehicle dynamics

    Science.gov (United States)

    George, J. H.; Gunderson, R. W.; Hahn, H.

    1975-01-01

    Some results of bifurcation theory were used to study the existence of small-amplitude periodic behavior in launch vehicle dynamics, assuming that nonlinearity exists as a cubic term in the rudder response. The analysis follows closely Sattinger's (1973) approach to the theory of periodic bifurcations. The conditions under which a bifurcating branch of orbitally stable periodic solutions will exist are determined. It is shown that in more complicated cases, the conditions under which the system matrix has a pair of simple purely imaginary eigenvalues can be determined with the aid of linear stability techniques.

  1. The ac propulsion system for an electric vehicle, phase 1

    Science.gov (United States)

    Geppert, S.

    1981-01-01

    A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.

  2. Drive system failure control for distributed drive electric vehicles

    Science.gov (United States)

    Liu, Tao; Tang, Yuan; Wang, Jianfeng; Li, Yaou; Yang, Na; Liu, Yiqun

    2017-09-01

    Aiming at the failure problem of distributed electric drive vehicle, the conventional control strategy of drive system failure is designed according to the characteristics of each wheel torque independent control and the redundant configuration of the power unit. On this basis, combined with the traditional body stability control technology, the direct yaw moment control method is used. The simulation results show that the conventional control method designed of the drive system failure can effectively improve the driving condition of the vehicle. The driving stability of the vehicle is further improved after the direct yaw torque control is applied.

  3. The control system of an autonomous underwater vehicle

    Directory of Open Access Journals (Sweden)

    Bjørn Jalving

    1995-04-01

    Full Text Available This paper presents the flight control system of an Autonomous Underwater Vehicle (AUV developed at the Norwegian Defence Research Establishment. A mathematical model of the vehicle is derived and discussed. The system is separated into lightly interacting subsystems and three autopilots are designed for steering, diving and speed control. The design of the separate controllers is based on PID techniques. Results from sea trials show robust performance and stability for the autopilot.

  4. A high performance pneumatic braking system for heavy vehicles

    Science.gov (United States)

    Miller, Jonathan I.; Cebon, David

    2010-12-01

    Current research into reducing actuator delays in pneumatic brake systems is opening the door for advanced anti-lock braking algorithms to be used on heavy goods vehicles. However, these algorithms require the knowledge of variables that are impractical to measure directly. This paper introduces a sliding mode braking force observer to support a sliding mode controller for air-braked heavy vehicles. The performance of the observer is examined through simulations and field testing of an articulated heavy vehicle. The observer operated robustly during single-wheel vehicle simulations, and provided reasonable estimates of surface friction from test data. The effect of brake gain errors on the controller and observer are illustrated, and a recursive least squares estimator is derived for the brake gain. The estimator converged within 0.3 s in simulations and vehicle trials.

  5. RLV vehicle health management system modeling and simulation

    Science.gov (United States)

    Wangu, Srimal

    1999-02-01

    Sanders, a Lockheed Martin Company, is leading the development and integration of the Vehicle Health Management (VHM) system for Lockheed Martin's VentureStar Reusable Launch Vehicle. The primary objective of this effort is to provide an automated health status and decision-making system for the vehicle. A detailed simulation of the VHM system on RLV is currently being developed using the Foresight Design and Modeling Tool. The simulation will consists of models of key components of the RLV VHM system. An effective detailed system simulation will allow for system and design engineering, as well as program management teams, to accurately and efficiently system designs, analyze the behavior of current systems, and predict the feasibility of making smooth and cost-efficient transitions form older technologies to newer ones. This methodology will reduce program costs, decrease total program life-cycle time, and ultimately increase mission success.

  6. Soil Models and Vehicle System Dynamics

    Science.gov (United States)

    2013-05-07

    soil was modeled using the parametric CU-ARL sand model. The vehicle consisted of interconnected subcomponents which include the chassis, suspension ...the dynamic tire - soft soil interaction in a straight-line scenario. A suspension - less set of four tires was used to investigate soil compaction...Terramechanics, 48(2), pp. 113-123. [34] Lee, J.H., 2011, “Finite Element Modeling of Interfacial Forces and Contact Stresses of Pneumatic Tire on Fresh

  7. The JASON Remotely Operated Vehicle System

    Science.gov (United States)

    1993-02-01

    Project FAMOUS were the French bathyscaph ARCHIMEDE and the submersible CYANA as well as the American submersible ALVIN (ref. 6). In all, forty-two dives...their thrust characteristics and improved their low-level control over the thrusters broad dynamic range (ref. 31). During the JASON vehicle design a...his console is the JASON control box (figure 12). On the left is a grip control for thrusting JASON up or down. Next to it is a push button for

  8. ADVANCED DRIVER SAFETY SUPPORT SYSTEMS FOR THE URBAN TYPE VEHICLE

    Directory of Open Access Journals (Sweden)

    Katarzyna JEZIERSKA-KRUPA

    2015-12-01

    Full Text Available Smart Power Team is currently working on the design of an urban electric vehicle designed to compete in the Shell Eco-marathon. One important aspect of this type of vehicle characteristics is it safety. The project of advanced driver assistance systems has included some proposals of such systems and the concept of their execution. The first concept, BLIS (Blind Spot Information System, is to build a system of informing a driver about vehicles appearing in the blind spot. The system constitutes a second concept, CDIS (Collision Detection and Information System, and it is designed to detect a vehicle collision and inform the team. Further systems are: DPMS (Dew Point Measurement System - a system which does not allow a situation, where the windows are fogged, OHRS (Overtaking Horn Reminder System - a system which checks overtaking and MSS (main supervision system - a supervisory system. These concepts are based on the assumption of the use of laser sensors, photoelectric, humidity and temperature, and other commercially available systems. The article presents a detailed description of driver assistance systems and virtual prototyping methodology for these systems, as well as the numerical results of the verification of one of the systems.

  9. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    DEFF Research Database (Denmark)

    Nielsen, L.H.; Jørgensen K.

    2000-01-01

    vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and forthe conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport......The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore toillustrate the potential synergistic interplay...... between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalisedelectricity market are analysed. The project focuses on battery electric vehicles and fuel cell...

  10. Cooperative Path-Planning for Multi-Vehicle Systems

    Directory of Open Access Journals (Sweden)

    Qichen Wang

    2014-11-01

    Full Text Available In this paper, we propose a collision avoidance algorithm for multi-vehicle systems, which is a common problem in many areas, including navigation and robotics. In dynamic environments, vehicles may become involved in potential collisions with each other, particularly when the vehicle density is high and the direction of travel is unrestricted. Cooperatively planning vehicle movement can effectively reduce and fairly distribute the detour inconvenience before subsequently returning vehicles to their intended paths. We present a novel method of cooperative path planning for multi-vehicle systems based on reinforcement learning to address this problem as a decision process. A dynamic system is described as a multi-dimensional space formed by vectors as states to represent all participating vehicles’ position and orientation, whilst considering the kinematic constraints of the vehicles. Actions are defined for the system to transit from one state to another. In order to select appropriate actions whilst satisfying the constraints of path smoothness, constant speed and complying with a minimum distance between vehicles, an approximate value function is iteratively developed to indicate the desirability of every state-action pair from the continuous state space and action space. The proposed scheme comprises two phases. The convergence of the value function takes place in the former learning phase, and it is then used as a path planning guideline in the subsequent action phase. This paper summarizes the concept and methodologies used to implement this online cooperative collision avoidance algorithm and presents results and analysis regarding how this cooperative scheme improves upon two baseline schemes where vehicles make movement decisions independently.

  11. System dynamics of electrified vehicles: some facts, thoughts, and challenges

    Science.gov (United States)

    Rauh, Jochen; Ammon, Dieter

    2011-07-01

    Mainly motivated by ecological aspects and the resulting worldwide regulations, electrified vehicles are getting increasing attention from researchers, car manufacturers, and consumers. While most discussions are focusing on the hybrid or completely electric propulsion technologies, this contribution will focus on the aspects of system dynamics related to electrified vehicles. Most of the aspects discussed here are also interesting for vehicles with conventional combustion engines, which will be dominating the mobility market for many years to come. Here, after discussing some basic principles of energy consumption and recuperation potentials, chassis systems are discussed with respect to energy efficiency and fitness for electrified vehicles. Further on, some system implementations are presented to show promising or already successful solutions to the arising challenges.

  12. Electrical and Wind Energy Coordination System for Vehicles

    Science.gov (United States)

    Kumar, Rajeev

    2010-11-01

    Nowadays, policies are being developed in many countries in order to decrease their greenhouse gases emissions. While in this area some technologies are widely installed (hydro and solar energy), other ones, like the Wind energy could get an important role in the medium and long term. Coal, gas, diesel, atomic etc. are the basic Natural source of energy. The uses of these sources are also harmful to the nature because they produce the different types of pollution. On the other hand hydro and wind energy are Clean, Green, renewable energy and pollution free sources. Now a day's most of the Company manufactures the hybrid vehicles with the coordination. But they are suffering lot of limitation like the speed of the vehicle and travel distance by the vehicle. So here we have proposed the Electrical and wind energy coordination (EWEC) system. This system is highly useful to improve the overall performance of hybrid vehicle. This system is also 100% pollution free.

  13. NASA Exploration Launch Projects Overview: The Crew Launch Vehicle and the Cargo Launch Vehicle Systems

    Science.gov (United States)

    Snoddy, Jimmy R.; Dumbacher, Daniel L.; Cook, Stephen A.

    2006-01-01

    The U.S. Vision for Space Exploration (January 2004) serves as the foundation for the National Aeronautics and Space Administration's (NASA) strategic goals and objectives. As the NASA Administrator outlined during his confirmation hearing in April 2005, these include: 1) Flying the Space Shuttle as safely as possible until its retirement, not later than 2010. 2) Bringing a new Crew Exploration Vehicle (CEV) into service as soon as possible after Shuttle retirement. 3) Developing a balanced overall program of science, exploration, and aeronautics at NASA, consistent with the redirection of the human space flight program to focus on exploration. 4) Completing the International Space Station (ISS) in a manner consistent with international partner commitments and the needs of human exploration. 5) Encouraging the pursuit of appropriate partnerships with the emerging commercial space sector. 6) Establishing a lunar return program having the maximum possible utility for later missions to Mars and other destinations. In spring 2005, the Agency commissioned a team of aerospace subject matter experts to perform the Exploration Systems Architecture Study (ESAS). The ESAS team performed in-depth evaluations of a number of space transportation architectures and provided recommendations based on their findings? The ESAS analysis focused on a human-rated Crew Launch Vehicle (CLV) for astronaut transport and a heavy lift Cargo Launch Vehicle (CaLV) to carry equipment, materials, and supplies for lunar missions and, later, the first human journeys to Mars. After several months of intense study utilizing safety and reliability, technical performance, budget, and schedule figures of merit in relation to design reference missions, the ESAS design options were unveiled in summer 2005. As part of NASA's systems engineering approach, these point of departure architectures have been refined through trade studies during the ongoing design phase leading to the development phase that

  14. Impact of digital systems technology on man-vehicle systems research

    Science.gov (United States)

    Bretoi, R. N.

    1983-01-01

    The present study, based on a NASA technology assessment, examines the effect of new technologies on trends in crew-systems design and their implications from the vantage point of man-vehicle systems research. Those technologies that are most relevant to future trends in crew-systems design are considered along with problems associated with the introduction of rapidly changing technologies and systems concepts from a human-factors point of view. The technologies discussed include information processing, displays and controls, flight and propulsion control, flight and systems management, air traffic control, training and simulation, and flight and resource management. The historical evolution of cockpit systems design is used to illustrate past and possible future trends in man-vehicle systems research.

  15. System for sterilizing objects. [cleaning space vehicle systems

    Science.gov (United States)

    Bryan, C. J.; Wright, E. E., Jr.; Moyers, C. V. (Inventor)

    1981-01-01

    A system for producing a stream of humidified sterilizing gas for sterilizing objects such as the water systems of space vehicles and the like includes a source of sterilant gas which is fed to a mixing chamber which has inlet and outlet ports. The level of the water only partially fills the mixing chamber so as to provide an empty space adjacent the top of the chamber. A heater is provided for heating the water in the chamber so as to produce a humidified atmosphere. The sterilant gas is fed through an arcuate shaped tubular member connected to the inlet port of the mixing chamber for producing a vortex type of flow of sterilant gas into the chamber for humidification. A tubular member extends from the mixing chamber for supplying the humidified sterilant gas to the object for being sterilized. Scrubbers are provided for removing the sterilant gas after use.

  16. A Review Of Design And Control Of Automated Guided Vehicle Systems

    OpenAIRE

    Le-Anh, Tuan; Koster, René

    2004-01-01

    textabstractThis paper presents a review on design and control of automated guided vehicle systems. We address most key related issues including guide-path design, estimating the number of vehicles, vehicle scheduling, idle-vehicle positioning, battery management, vehicle routing, and conflict resolution. We discuss and classify important models and results from key publications in literature on automated guided vehicle systems, including often-neglected areas, such as idle-vehicle positionin...

  17. An analytical study of electric vehicle handling dynamics

    Science.gov (United States)

    Greene, J. E.; Segal, D. J.

    1979-01-01

    Hypothetical electric vehicle configurations were studied by applying available analytical methods. Elementary linearized models were used in addition to a highly sophisticated vehicle dynamics computer simulation technique. Physical properties of specific EV's were defined for various battery and powertrain packaging approaches applied to a range of weight distribution and inertial properties which characterize a generic class of EV's. Computer simulations of structured maneuvers were performed for predicting handling qualities in the normal driving range and during various extreme conditions related to accident avoidance. Results indicate that an EV with forward weight bias will possess handling qualities superior to a comparable EV that is rear-heavy or equally balanced. The importance of properly matching tires, suspension systems, and brake system front/rear torque proportioning to a given EV configuration during the design stage is demonstrated.

  18. Stochastic transport in complex systems from molecules to vehicles

    CERN Document Server

    Schadschneider, Andreas; Nishinari, Katsuhiro

    2011-01-01

    What is common between a motor protein, an ant and a vehicle? Each can be modelled as a"self-propelled particle"whose forward movement can be hindered by another in front of it. Traffic flow of such interacting driven"particles"has become an active area of interdisciplinary research involving physics, civil engineering and computer science. We present a unified pedagogical introduction to the analytical and computational methods which are currently used for studying such complex systems far from equilibrium. We also review a number of applications ranging from intra-cellular molecular motor transport in living systems to ant trails and vehicular traffic. Researchers working on complex systems, in general, and on classical stochastic transport, in particular, will find the pedagogical style, scholarly critical overview and extensive list of references extremely useful.

  19. Navigation System Fault Diagnosis for Underwater Vehicle

    DEFF Research Database (Denmark)

    Falkenberg, Thomas; Gregersen, Rene Tavs; Blanke, Mogens

    2014-01-01

    This paper demonstrates fault diagnosis on unmanned underwater vehicles (UUV) based on analysis of structure of the nonlinear dynamics. Residuals are generated using dierent approaches in structural analysis followed by statistical change detection. Hypothesis testing thresholds are made signal...... based to cope with non-ideal properties seen in real data. Detection of both sensor and thruster failures are demonstrated. Isolation is performed using the residual signature of detected faults and the change detection algorithm is used to assess severity of faults by estimating their magnitude...

  20. An anticipative escape system for vehicles in water crashes

    Science.gov (United States)

    Shen, Chuanliang; Wang, Jiawei; Yin, Qi; Zhu, Yantao; Yang, Jiawei; Liao, Mengdi; Yang, Liming

    2017-07-01

    In this article, it designs an escape system for vehicles in water crashes. The structure mainly contains sensors, control organs and actuating mechanism for both doors and windows. Sensors judge whether the vehicle falls into water or is in the falling process. The actuating mechanism accepts the signal delivered by the control organs, then open the electronic central lock on doors and meanwhile lower the window. The water escape system is able to anticipate drowning situations for vehicles and controls both doors and windows in such an emergency. Under the premise of doors staying in an undamaged state, it is for sure that people in the vehicle can open the door while drowning in the water and safely escape.

  1. Study on the ride comfort of vehicles driven by in-wheel motors

    Directory of Open Access Journals (Sweden)

    Liqiang Jin

    2016-02-01

    Full Text Available Vehicles driven by in-wheel motors have received more and more attention. However, due to the introduction of in-wheel motors, the ratio between unsprung and sprung mass is increased. In this article, to study the influence of this change on ride comfort of vehicles driven by in-wheel motors, an 11 degrees of freedom of vehicle ride comfort model will be presented and studied with MATLAB/Simulink. Then, road tests will be conducted to corroborate the simulation results. It can be obtained that the vehicle ride comfort becomes poor with the increasing unsprung mass. Finally, semi-active air-suspension proportional–integral–derivative control system will be proposed to improve the vehicle ride comfort. Through the simulation results, one can come to a conclusion that the proportional–integral–derivative control system for air suspension is feasible and effective to improve the ride comfort of the vehicles driven by in-wheel motors.

  2. GPS/Low-Cost IMU/Onboard Vehicle Sensors Integrated Land Vehicle Positioning System

    Directory of Open Access Journals (Sweden)

    Gao Jianchen

    2007-01-01

    Full Text Available This paper aims to develop a GPS, low-cost IMU, and onboard vehicle sensors integrated land vehicle positioning system at low cost and with high (cm level accuracy. Using a centralized Kalman filter, the integration strategies and algorithms are discussed. A mechanism is proposed for detecting and alleviating the violation of the lateral nonholonomic constraint on the wheel speed sensors that is widely used in previous research. With post-mission and real-time tests, the benefits gained from onboard vehicle sensors and the side slip detection and alleviation mechanism in terms of the horizontal positioning accuracy are analyzed. It is illustrated by all the tests that GPS plays a dominant role in determining the absolute positioning accuracy of the system when GPS is fully available. The integration of onboard vehicle sensors can improve the horizontal positioning accuracy during GPS outages. With respect to GPS and low-cost IMU integrated system, the percentage improvements from the wheel speed sensor are 90.4% for the open-sky test and 56.0% for suburban area real-time test. By integrating all sensors to detect and alleviate the violation of the lateral nonholonomic constraint, the percentage improvements over GPS and low-cost IMU integrated system can be enhanced to 92.6% for open-sky test and 65.1% for the real-time test in suburban area.

  3. Catalog of components for electric and hybrid vehicle propulsion systems

    Science.gov (United States)

    Eissler, H. C.

    1981-01-01

    This catalog of commercially available electric and hybrid vehicle propulsion system components is intended for designers and builders of these vehicles and contains 50 categories of components. These categories include those components used between the battery terminals and the output axle hub, as well as some auxiliary equipment. An index of the components and a listing of the suppliers and their addresses and phone numbers are included.

  4. Modelling of an advanced charging system for electric vehicles

    Science.gov (United States)

    Hassan Jaafar, Abdul; Rahman, Ataur; Mohiuddin, A. K. M.; Rashid, Mahbubur

    2017-03-01

    Climate Change is recognized as one of the greatest environmental problem facing the World today and it has long been appreciated by governments that reducing the impact of the internal combustion (IC) engine powered motor vehicle has an important part to play in addressing this threat. In Malaysia, IC engine powered motor vehicle accounts almost 90% of the national greenhouse gas (GHG) emissions. The need to reduce the emission is paramount, as Malaysia has pledged to reduce 40% of CO2 intensity by 2020 from 2005 level by 25% of improvement in average fuel consumption. The introduction of electric vehicles (EVs) is one of the initiatives. However in terms of percentage, the electric vehicles have not been commonly used by people nowadays and one of the reasons is lack in charging infrastructure especially when cars are on the road. The aim of this study is to simulate and model an advanced charging system for the charging infrastructure of EVs/HEVs all over the nation with slow charging mode with charging current 25 A, medium charging mode with charging current 50 A and fast charging mode with charging current 100 A. The slow charging mode is proposed for residence, medium charging mode for office parking lots, and fast charging mode is called fast charging track for charging station on road. With three modes charger topology, consumers could choose a suitable mode for their car based on their need. The simulation and experiment of advanced charging system has been conducted on a scale down battery pack of nominal voltage of 3.75 V and capacity of 1020 mAh. Result shows that the battery could be charging less than 1 hour with fast charging mode. However, due to limitation of Tenaga Nasional Berhad (TNB) power grid, the maximum 50 A current is considered to be the optimized passive mode for the EV’s battery charging system. The developed advanced charger prototype performance has been compared with the simulation result and conventional charger performance, the

  5. Advanced electric propulsion system concept for electric vehicles

    Science.gov (United States)

    Raynard, A. E.; Forbes, F. E.

    1979-01-01

    Seventeen propulsion system concepts for electric vehicles were compared to determine the differences in components and battery pack to achieve the basic performance level. Design tradeoffs were made for selected configurations to find the optimum component characteristics required to meet all performance goals. The anticipated performance when using nickel-zinc batteries rather than the standard lead-acid batteries was also evaluated. The two systems selected for the final conceptual design studies included a system with a flywheel energy storage unit and a basic system that did not have a flywheel. The flywheel system meets the range requirement with either lead-acid or nickel-zinc batteries and also the acceleration of zero to 89 km/hr in 15 s. The basic system can also meet the required performance with a fully charged battery, but, when the battery approaches 20 to 30 percent depth of discharge, maximum acceleration capability gradually degrades. The flywheel system has an estimated life-cycle cost of $0.041/km using lead-acid batteries. The basic system has a life-cycle cost of $0.06/km. The basic system, using batteries meeting ISOA goals, would have a life-cycle cost of $0.043/km.

  6. Study on Reverse Reconstruction Method of Vehicle Group Situation in Urban Road Network Based on Driver-Vehicle Feature Evolution

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Wang

    2017-01-01

    Full Text Available Vehicle group situation is the status and situation of dynamic permutation which is composed of target vehicle and neighboring traffic entities. It is a concept which is frequently involved in the research of traffic flow theory, especially the active vehicle security. Studying vehicle group situation in depth is of great significance for traffic safety. Three-lane condition was taken as an example; the characteristics of target vehicle and its neighboring vehicles were synthetically considered to restructure the vehicle group situation in this paper. The Gamma distribution theory was used to identify the vehicle group situation when target vehicle arrived at the end of the study area. From the perspective of driver-vehicle feature evolution, the reverse reconstruction method of vehicle group situation in the urban road network was proposed. Results of actual driving, virtual driving, and simulation experiments showed that the model established in this paper was reasonable and feasible.

  7. Optimal Electric Vehicle Scheduling: A Co-Optimized System and Customer Perspective

    Science.gov (United States)

    Maigha

    Electric vehicles provide a two pronged solution to the problems faced by the electricity and transportation sectors. They provide a green, highly efficient alternative to the internal combustion engine vehicles, thus reducing our dependence on fossil fuels. Secondly, they bear the potential of supporting the grid as energy storage devices while incentivising the customers through their participation in energy markets. Despite these advantages, widespread adoption of electric vehicles faces socio-technical and economic bottleneck. This dissertation seeks to provide solutions that balance system and customer objectives under present technological capabilities. The research uses electric vehicles as controllable loads and resources. The idea is to provide the customers with required tools to make an informed decision while considering the system conditions. First, a genetic algorithm based optimal charging strategy to reduce the impact of aggregated electric vehicle load has been presented. A Monte Carlo based solution strategy studies change in the solution under different objective functions. This day-ahead scheduling is then extended to real-time coordination using a moving-horizon approach. Further, battery degradation costs have been explored with vehicle-to-grid implementations, thus accounting for customer net-revenue and vehicle utility for grid support. A Pareto front, thus obtained, provides the nexus between customer and system desired operating points. Finally, we propose a transactive business model for a smart airport parking facility. This model identifies various revenue streams and satisfaction indices that benefit the parking lot owner and the customer, thus adding value to the electric vehicle.

  8. Effects of automobile steering characteristics on driver vehicle system dynamics in regulation tasks

    Science.gov (United States)

    Mcruer, D. T.; Klein, R.

    1975-01-01

    A regulation task which subjected the automobile to a random gust disturbance which is countered by driver control action is used to study the effects of various automobile steering characteristics on the driver/vehicle system. The experiments used a variable stability automobile specially configured to permit insertion of the simulated gust disturbance and the measurement of the driver/vehicle system characteristics. Driver/vehicle system dynamics were measured and interpreted as an effective open loop system describing function. Objective measures of system bandwidth, stability, and time delays were deduced and compared. These objective measures were supplemented by driver ratings. A tentative optimum range of vehicle dynamics for the directional regulation task was established.

  9. Thruster Modelling for Underwater Vehicle Using System Identification Method

    Directory of Open Access Journals (Sweden)

    Mohd Shahrieel Mohd Aras

    2013-05-01

    Full Text Available Abstract This paper describes a study of thruster modelling for a remotely operated underwater vehicle (ROV by system identification using Microbox 2000/2000C. Microbox 2000/2000C is an XPC target machine device to interface between an ROV thruster with the MATLAB 2009 software. In this project, a model of the thruster will be developed first so that the system identification toolbox in MATLAB can be used. This project also presents a comparison of mathematical and empirical modelling. The experiments were carried out by using a mini compressor as a dummy depth pressure applied to a pressure sensor. The thruster model will thrust and submerge until it reaches a set point and maintain the set point depth. The depth was based on pressure sensor measurement. A conventional proportional controller was used in this project and the results gathered justified its selection.

  10. Mining vehicle classifications from the Columbus Metropolitan Freeway Management System.

    Science.gov (United States)

    2015-01-01

    Vehicle classification data are used in many transportation applications, including: pavement design, : environmental impact studies, traffic control, and traffic safety. Ohio has over 200 permanent count stations, : supplemented by many more short-t...

  11. Optimization of Steering System of Forklift Vehicle for Idle Performance

    Directory of Open Access Journals (Sweden)

    Yuan Shen

    2015-01-01

    Full Text Available This paper presents an optimal design process for the steering system of a forklift vehicle. An efficient procedure for minimizing the engine-induced idle vibration is developed in this study. Reciprocating unbalance and gas pressure torque as two major sources of engine excitation are studied. Using the field vibration tests and FEM analysis, the cause and characteristics of steering system’s idle vibration are recognized. So as to distribute the characteristic modes based on the optimization strategy, global sensitivity analysis of the main parameters is also carried out to achieve the optimal combination of the optimization factors. Based on all analysis above, some structure modifications for optimization are presented to control the idle vibration. The effectiveness and rationality of the improvements are also verified through experimental prototyping testing. This study also makes it possible to provide a design guideline using CAE (computer aided engineering analysis for some other objects.

  12. Wireless alerting system using vibration for vehicles dashboard

    Science.gov (United States)

    Raj, Sweta; Rai, Shweta; Magaramagara, Wilbert; Sivacoumar, R.

    2017-11-01

    This paper aims at improving the engine life of any vehicle through a continuous measurement and monitoring of vital engine operational parameters and providing an effective alerting to drivers for any abnormality. Vehicles currently are using audio and visible alerting signals through alarms and light as a warning to the driver but these are not effective in noisy environments and during daylight. Through the use of the sense of feeling a driver can be alerted effectively. The need to no other vehicle parameter needs to be aided through the mobile display (phone).Thus a system is designed and implements to measure engine temperature, RPM, Oil level and Coolant level using appropriate sensors and a wireless communication (Bluetooth) is established to actuate a portable vibration control device and to read the different vehicle sensor readings through an android application for display and diagnosis.

  13. Systems analysis of decontamination options for civilian vehicles.

    Energy Technology Data Exchange (ETDEWEB)

    Foltz, Greg W.; Hoette, Trisha Marie

    2010-11-01

    The objective of this project, which was supported by the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) Chemical and Biological Division (CBD), was to investigate options for the decontamination of the exteriors and interiors of vehicles in the civilian setting in order to restore those vehicles to normal use following the release of a highly toxic chemical. The decontamination of vehicles is especially challenging because they often contain sensitive electronic equipment, multiple materials some of which strongly adsorb chemical agents, and in the case of aircraft, have very rigid material compatibility requirements (i.e., they cannot be exposed to reagents that may cause even minor corrosion). A systems analysis approach was taken examine existing and future civilian vehicle decontamination capabilities.

  14. Effectiveness of vehicle weight enforcement in a developing country using weigh-in-motion sorting system considering vehicle by-pass and enforcement capability

    OpenAIRE

    Karim, Mohamed Rehan; Ibrahim, Nik Ibtishamiah; Saifizul, Ahmad Abdullah; Yamanaka, Hideo

    2014-01-01

    Vehicle overloading has been identified as one of the major contributors to road pavement damage in Malaysia. In this study, the weigh-in-motion (WIM) system has been used to function as a vehicle weight sorting tool to complement the exsiting static weigh bridge enforcement station. Data collected from the developed system is used to explore the effectiveness of using WIM system in terms of generating more accurate data for enforcement purposes and at the same time improving safety and reduc...

  15. Design Considerations for a Launch Vehicle Development Flight Instrumentation System

    Science.gov (United States)

    Johnson, Martin L.; Crawford, Kevin

    2011-01-01

    When embarking into the design of a new launch vehicle, engineering models of expected vehicle performance are always generated. While many models are well established and understood, some models contain design features that are only marginally known. Unfortunately, these analytical models produce uncertainties in design margins. The best way to answer these analytical issues is with vehicle level testing. The National Aeronautics and Space Administration respond to these uncertainties by using a vehicle level system called the Development Flight Instrumentation, or DFI. This DFI system can be simple to implement, with only a few measurements, or it may be a sophisticated system with hundreds of measurement and video, without a recording capability. From experience with DFI systems, DFI never goes away. The system is renamed and allowed to continue, in most cases. Proper system design can aid the transition to future data requirements. This paper will discuss design features that need to be considered when developing a DFI system for a launch vehicle. It will briefly review the data acquisition units, sensors, multiplexers and recorders, telemetry components and harnessing. It will present a reasonable set of requirements which should be implemented in the beginning of the program in order to start the design. It will discuss a simplistic DFI architecture that could be the basis for the next NASA launch vehicle. This will be followed by a discussion of the "experiences gained" from a past DFI system implementation, such as the very successful Ares I-X test flight. Application of these design considerations may not work for every situation, but they may direct a path toward success or at least make one pause and ask the right questions.

  16. Hypersonic Research Vehicle (HRV) real-time flight test support feasibility and requirements study. Part 2: Remote computation support for flight systems functions

    Science.gov (United States)

    Rediess, Herman A.; Hewett, M. D.

    1991-01-01

    The requirements are assessed for the use of remote computation to support HRV flight testing. First, remote computational requirements were developed to support functions that will eventually be performed onboard operational vehicles of this type. These functions which either cannot be performed onboard in the time frame of initial HRV flight test programs because the technology of airborne computers will not be sufficiently advanced to support the computational loads required, or it is not desirable to perform the functions onboard in the flight test program for other reasons. Second, remote computational support either required or highly desirable to conduct flight testing itself was addressed. The use is proposed of an Automated Flight Management System which is described in conceptual detail. Third, autonomous operations is discussed and finally, unmanned operations.

  17. Energy Efficiency in Heavy Vehicle Tires, Drivetrains, and Braking Systems

    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Blau

    2000-04-26

    This document was prepared to support the primary goals of the Department of Energy, Office of Heavy Vehicle Technologies. These were recently stated as follows: ''Develop by 2004 the enabling technologies for a class 7-8 truck with a fuel efficiency of 10 mpg (at 65 mph) which will meet prevailing emission standards. For Class 3-6 trucks operating on an urban driving cycle, develop by 2004 commercially viable vehicles that achieve at least double the fuel economy of comparable current vehicles (1999), and as a research goal, reduce criteria pollutants to 30% below EPA standards. Develop by 2004 the diesel engine enabling technologies to support large-scale industry dieselization of Class 1 and 2 trucks, achieving a 35 % fuel efficiency improvement over comparable gasoline-fueled trucks, while meeting applicable emissions standards.'' The enabling technologies for improving the fuel efficiency of trucks, include not only engine technologies but also technologies involved with lowering the rolling resistance of tires, reducing vehicle aerodynamic drag, improving thermal management, and reducing parasitic frictional losses in drive train components. Opportunities also exist for making better use of the energy that might ordinarily be dissipated during vehicle braking. Braking systems must be included in this evaluation since safety in truck operations is vital, and braking requirements are greater for vehicles having lowered resistance to rolling. The Office of Heavy Vehicle Technologies has initiated a program to improve the aerodynamics of heavy vehicles through wind tunnel testing, computational modeling, and on-road evaluations. That activity is described in a separate multi-year plan; therefore, emphasis in this document will be on tires, drive trains, and braking systems. Recent, dramatic fluctuations in diesel fuel prices have emphasized the importance of effecting savings in truck fuel economy by implementing new component designs and

  18. Track-to-track association for object matching in an inter-vehicle communication system

    Science.gov (United States)

    Yuan, Ting; Roth, Tobias; Chen, Qi; Breu, Jakob; Bogdanovic, Miro; Weiss, Christian A.

    2015-09-01

    Autonomous driving poses unique challenges for vehicle environment perception due to the complex driving environment the autonomous vehicle finds itself in and differentiates from remote vehicles. Due to inherent uncertainty of the traffic environments and incomplete knowledge due to sensor limitation, an autonomous driving system using only local onboard sensor information is generally not sufficiently enough for conducting a reliable intelligent driving with guaranteed safety. In order to overcome limitations of the local (host) vehicle sensing system and to increase the likelihood of correct detections and classifications, collaborative information from cooperative remote vehicles could substantially facilitate effectiveness of vehicle decision making process. Dedicated Short Range Communication (DSRC) system provides a powerful inter-vehicle wireless communication channel to enhance host vehicle environment perceiving capability with the aid of transmitted information from remote vehicles. However, there is a major challenge before one can fuse the DSRC-transmitted remote information and host vehicle Radar-observed information (in the present case): the remote DRSC data must be correctly associated with the corresponding onboard Radar data; namely, an object matching problem. Direct raw data association (i.e., measurement-to-measurement association - M2MA) is straightforward but error-prone, due to inherent uncertain nature of the observation data. The uncertainties could lead to serious difficulty in matching decision, especially, using non-stationary data. In this study, we present an object matching algorithm based on track-to-track association (T2TA) and evaluate the proposed approach with prototype vehicles in real traffic scenarios. To fully exploit potential of the DSRC system, only GPS position data from remote vehicle are used in fusion center (at host vehicle), i.e., we try to get what we need from the least amount of information; additional feature

  19. Design and research on the electronic parking brake system of the medium and heavy duty vehicles

    Directory of Open Access Journals (Sweden)

    Hongliang WANG

    2015-04-01

    Full Text Available Focusing on auto control of parking brake system of the medium and heavy duty vehicles, the key problems are studied including the system design and control strategies. The structure and working principle of the parking brake system of the medium and heavy duty vehicles are analyzed. The functions of EPB are proposed. The important information of the vehicle are analyzed which could influence the EPB system. The overall plan of the pneumatic EPB system is designed, which adopts the two-position three-way electromagnetic valve with double coil as actuator. The system could keep the vehicle parking brake status or parking release status for a long time without power supply. The function modules of the system are planned, and the control strategies of automatic parking brake and parking release are made. The experiment is performed on a medium-sized commercial vehicle which is experimentally modified. The overall plan of the pneumatic EPB system and the automatic parking function are proved through real vehicle tests.

  20. 2001 Joint ADVISOR/PSAT Vehicle Systems Modeling User's Conference Proceedings (CD)

    Energy Technology Data Exchange (ETDEWEB)

    Markel, T.

    2001-08-01

    The 2001 Joint ADVISOR/PSAT Vehicle Systems Modeling User Conference provided an opportunity for engineers in the automotive industry and the research environment to share their experiences in vehicle systems modeling using ADVISOR and PSAT. ADVISOR and PSAT are vehicle systems modeling tools developed and supported by the National Renewable Energy Laboratory and Argonne National Laboratory respectively with the financial support of the US Department of Energy. During this conference peers presented the results of studies using the simulation tools and improvements that they have made or would like to see in the simulation tools. Focus areas of the presentations included Control Strategy, Model Validation, Optimization and Co-Simulation, Model Development, Applications, and Fuel Cell Vehicle Systems Analysis. Attendees were offered the opportunity to give feedback on future model development plans.

  1. System Would Predictively Preempt Traffic Lights for Emergency Vehicles

    Science.gov (United States)

    Bachelder, Aaron; Foster, Conrad

    2004-01-01

    Two electronic communication-and-control systems have been proposed as means of modifying the switching of traffic lights to give priority to emergency vehicles. Both systems would utilize the inductive loops already installed in the streets of many municipalities to detect vehicles for timing the switching of traffic lights. The proposed systems could be used alone or to augment other automated emergency traffic-light preemption systems that are already present in some municipalities, including systems that recognize flashing lights or siren sounds or that utilize information on the positions of emergency vehicles derived from the Global Positioning System (GPS). Systems that detect flashing lights and siren sounds are limited in range, cannot "see" or "hear" well around corners, and are highly vulnerable to noise. GPS-based systems are effective in rural areas and small cities, but are often ineffective in large cities because of frequent occultation of GPS satellite signals by large structures. In contrast, the proposed traffic-loop forward prediction system would be relatively invulnerable to noise, would not be subject to significant range limitations, and would function well in large cities -- even in such places as underneath bridges and in tunnels, where GPS-based systems do not work. One proposed system has been characterized as "car-active" because each participating emergency vehicle would be equipped with a computer and a radio transceiver that would communicate with stationary transceivers at the traffic loops. The other proposed system has been characterized as "car-passive" because a passive radio transponder would be installed on the underside of a participating vehicle.

  2. Low-Environmental Impact Tram Vehicle Study

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report provides an assessment of the range of low-environmental impact tram vehicles that could be used at National Wildlife Refuges and public lands throughout...

  3. Electric Vehicle (EV) Charging Management with Dynamic Distribution System Tariff

    DEFF Research Database (Denmark)

    O'Connell, Niamh; Wu, Qiuwei; Østergaard, Jacob

    2011-01-01

    An electric vehicle (EV) charging schedule algorithm was proposed in this paper in order to charge EVs to meet EV users’ driving needs with the minimum EV charging cost and respect the local distribution system constraints. A day-ahead dynamic distribution system tariff scheme was proposed to avoid...

  4. A Review Of Design And Control Of Automated Guided Vehicle Systems

    NARCIS (Netherlands)

    T. Le-Anh (Tuan); M.B.M. de Koster (René)

    2004-01-01

    textabstractThis paper presents a review on design and control of automated guided vehicle systems. We address most key related issues including guide-path design, estimating the number of vehicles, vehicle scheduling, idle-vehicle positioning, battery management, vehicle routing, and conflict

  5. A laboratory facility for electric vehicle propulsion system testing

    Science.gov (United States)

    Sargent, N. B.

    1980-01-01

    The road load simulator facility located at the NASA Lewis Research Center enables a propulsion system or any of its components to be evaluated under a realistic vehicle inertia and road loads. The load is applied to the system under test according to the road load equation: F(net)=K1F1+K2F2V+K3 sq V+K4(dv/dt)+K5 sin theta. The coefficient of each term in the equation can be varied over a wide range with vehicle inertial representative of vehicles up to 7500 pounds simulated by means of flywheels. The required torque is applied by the flywheels, a hydroviscous absorber and clutch, and a drive motor integrated by a closed loop control system to produce a smooth, continuous load up to 150 horsepower.

  6. gPark: Vehicle Parking Management System Using Smart Glass

    Directory of Open Access Journals (Sweden)

    Rana E. Ahmed

    2016-01-01

    Full Text Available Recent advances in wearable technologies have opened new avenues for their applications in various fields. This paper presents the design, implementation, and testing results for a vehicle parking management system using smart Glass technology. The management system consists of four major interconnected applications. The most important one, running on the smart Glass, scans the vehicle number plate and extracts the related information in real time. The vehicle information is sent to the remote server for checking of any violation. The server sends the updates back to the Glass that allows the parking attendant to take further actions, if needed. The system was tested in real-life scenarios, and it was found that the detection accuracy up to 75% can be easily achieved with current hardware and software capabilities of the Google Glass.

  7. Effectiveness of vehicle weight enforcement in a developing country using weigh-in-motion sorting system considering vehicle by-pass and enforcement capability

    Directory of Open Access Journals (Sweden)

    Mohamed Rehan Karim

    2014-03-01

    Full Text Available Vehicle overloading has been identified as one of the major contributors to road pavement damage in Malaysia. In this study, the weigh-in-motion (WIM system has been used to function as a vehicle weight sorting tool to complement the exsiting static weigh bridge enforcement station. Data collected from the developed system is used to explore the effectiveness of using WIM system in terms of generating more accurate data for enforcement purposes and at the same time improving safety and reducing the number of vehicle weight violations on the roads. This study specifically focus on the effect of vehicle by-pass and static weigh station enforcement capability on the overall effectiveness of vehicle weight enforcement system in a developing country. Results from this study suggest that the WIM system will significantly enhance the effectiveness and efficiency of the current vehicle weight enforcement, thus generating substantial revenue that would greatly off-set the current road maintenance budget that comes from tax payers money. If there is substantial reduction in overloaded vehicles, the public will still gain through reduction in road maintenance budget, less accident risks involving heavy trucks, and lesser greenhouse gases (GHGs emissions.

  8. Vehicle routing for the last mile of power system restoration

    Energy Technology Data Exchange (ETDEWEB)

    Bent, Russell W [Los Alamos National Laboratory; Coffrin, Carleton [Los Alamos National Laboratory; Van Hentenryck, Pascal [BROWN UNIV.

    2010-11-23

    This paper studied a novel problem in power system restoration: the Power Restoration Vehicle Routing Problem (PRVRP). The goal of PRVRPs is to decide how coordinate repair crews effectively in order to recover from blackouts as fast as possible after a disaster has occurred. PRVRPs are complex problems that combine vehicle routing and power restoration scheduling problems. The paper proposed a multi-stage optimization algorithm based on the idea of constraint injection that meets the aggressive runtime constraints necessary for disaster recovery. The algorithms were validated on benchmarks produced by the Los Alamos National Laboratory, using the infrastructure of the United States. The disaster scenarios were generated by state-of-the-art hurricane simulation tools similar to those used by the National Hurricane Center. Experimental results show that the constraint-injection algorithms can reduce the blackouts by 50% or more over field practices. Moreover, the results show that the constraint-injection algorithm using large neighborhood search over a blackbox simulator provide competitive quality and scales better than using a MIP solver on the subproblems.

  9. Optimal Planning of the Nordic Transmission System with 100% Electric Vehicle Penetration of passenger cars by 2050

    DEFF Research Database (Denmark)

    Graabak, Ingeborg; Wu, Qiuwei; Warland, Leif

    2016-01-01

    This paper presents the optimal planning of the Nordic backbone transmission system with 100% electric vehicle penetration of passenger cars by 2050. Electric vehicles will play an important role in the future energy systems and can reduce the greenhouse gas emission from the transport sector....... However, the electric vehicles will increase the electricity consumption and might induce congestions in the transmission systems. In order to deal with the electricity consumption increase from the electric vehicle integration into the power system and maximize the social welfare, the optimal investments...... of the Nordic transmission system are studied. Case studies were conducted using the market simulation model EMPS and two electric vehicle charging scenarios: a spot price based scenario and a dumb charging scenario. The electric vehicle charging power is assumed to be 3.68 kW with 1 phase 16A. The complete...

  10. Solar power satellite system definition study. Part 2, volume 8: SPS launch vehicle ascent and entry sonic overpressure and noise effects

    Science.gov (United States)

    1977-01-01

    Recoverable launch vehicle concepts for the Solar Power Satellite program were identified. These large launch vehicles are powered by proposed engines in the F-1 thrust level class. A description of the candidate launch vehicles and their operating mode was provided. Predictions of the sonic over pressures during ascent and entry for both types of vehicles, and prediction of launch noise levels in the vicinity of the launch site were included. An overall assessment and criteria for sonic overpressure and noise levels was examined.

  11. Development of a DC propulsion system for an electric vehicle

    Science.gov (United States)

    Kelledes, W. L.

    1984-01-01

    The suitability of the Eaton automatically shifted mechanical transaxle concept for use in a near-term dc powered electric vehicle is evaluated. A prototype dc propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the contractor's site. The system consisted of a two-axis, three-speed, automatically-shifted mechanical transaxle, 15.2 Kw rated, separately excited traction motor, and a transistorized motor controller with a single chopper providing limited armature current below motor base speed and full range field control above base speed at up to twice rated motor current. The controller utilized a microprocessor to perform motor and vehicle speed monitoring and shift sequencing by means of solenoids applying hydraulic pressure to the transaxle clutches. Bench dynamometer and track testing was performed. Track testing showed best system efficiency for steady-state cruising speeds of 65-80 Km/Hz (40-50 mph). Test results include acceleration, steady speed and SAE J227A/D cycle energy consumption, braking tests and coast down to characterize the vehicle road load.

  12. 36 CFR 1192.173 - Automated guideway transit vehicles and systems.

    Science.gov (United States)

    2010-07-01

    ... other appropriate devices. (d) Light rail and rapid rail AGT vehicles and systems shall comply with... TRANSPORTATION BARRIERS COMPLIANCE BOARD AMERICANS WITH DISABILITIES ACT (ADA) ACCESSIBILITY GUIDELINES FOR TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.173 Automated guideway transit vehicles and systems. (a...

  13. System for cooling hybrid vehicle electronics, method for cooling hybrid vehicle electronics

    Energy Technology Data Exchange (ETDEWEB)

    France, David M.; Yu, Wenhua; Singh, Dileep; Zhao, Weihuan

    2017-11-21

    The invention provides a single radiator cooling system for use in hybrid electric vehicles, the system comprising a surface in thermal communication with electronics, and subcooled boiling fluid contacting the surface. The invention also provides a single radiator method for simultaneously cooling electronics and an internal combustion engine in a hybrid electric vehicle, the method comprising separating a coolant fluid into a first portion and a second portion; directing the first portion to the electronics and the second portion to the internal combustion engine for a time sufficient to maintain the temperature of the electronics at or below 175.degree. C.; combining the first and second portion to reestablish the coolant fluid; and treating the reestablished coolant fluid to the single radiator for a time sufficient to decrease the temperature of the reestablished coolant fluid to the temperature it had before separation.

  14. Tethered Vehicle Control and Tracking System

    Science.gov (United States)

    North, David D. (Inventor); Aull, Mark J. (Inventor)

    2017-01-01

    A kite system includes a kite and a ground station. The ground station includes a sensor that can be utilized to determine an angular position and velocity of the kite relative to the ground station. A controller utilizes a fuzzy logic control system to autonomously fly the kite. The system may include a ground station having powered winding units that generate power as the lines to the kite are unreeled. The control system may be configured to fly the kite in a crosswind trajectory to increase line tension for power generation. The sensors for determining the position of the kite are preferably ground-based.

  15. Design of a recovery system for a reentry vehicle

    Science.gov (United States)

    von Eckroth, Wulf; Garrard, William L.; Miller, Norman

    Engineers are often required to design decelerator systems which are deployed in cross-wind orientations. If the system is not designed to minimize 'line sail', damage to the parachutes could result. A Reentry Vehicle Analysis Code (RVAC) and an accompanying graphics animation software program (DISPLAY) are presented in this paper. These computer codes allow the user to quickly apply the Purvis line sail modeling technique to any vehicle and then observe the relative motion of the vehicle, nose cap, suspension lines, pilot and drogue bags and canopies on a computer screen. Data files are created which allow plots of velocities, spacial positions, and dynamic pressures versus time to be generated. The code is an important tool for the design engineer because it integrates two degrees of freedom (DOF) line sail equations with a three DOF model of the reentry body and jettisoned nose cap to provide an animated output.

  16. Design of a recovery system for a reentry vehicle

    Science.gov (United States)

    Von Eckroth, Wulf; Garrard, William L.; Miller, Norman

    1993-01-01

    Engineers are often required to design decelerator systems which are deployed in cross-wind orientations. If the system is not designed to minimize 'line sail', damage to the parachutes could result. A Reentry Vehicle Analysis Code (RVAC) and an accompanying graphics animation software program (DISPLAY) are presented in this paper. These computer codes allow the user to quickly apply the Purvis line sail modeling technique to any vehicle and then observe the relative motion of the vehicle, nose cap, suspension lines, pilot and drogue bags and canopies on a computer screen. Data files are created which allow plots of velocities, spacial positions, and dynamic pressures versus time to be generated. The code is an important tool for the design engineer because it integrates two degrees of freedom (DOF) line sail equations with a three DOF model of the reentry body and jettisoned nose cap to provide an animated output.

  17. An intelligent IoT emergency vehicle warning system using RFID and WiFi technologies for emergency medical services.

    Science.gov (United States)

    Lai, Yeong-Lin; Chou, Yung-Hua; Chang, Li-Chih

    2017-10-13

    Collisions between emergency vehicles for emergency medical services (EMS) and public road users have been a serious problem, impacting on the safety of road users, emergency medical technicians (EMTs), and the patients on board. The aim of this study is to develop a novel intelligent emergency vehicle warning system for EMS applications. The intelligent emergency vehicle warning system is developed by Internet of Things (IoT), radio-frequency identification (RFID), and WiFi technologies. The system consists of three major parts: a system trigger tag, an RFID system in an emergency vehicle, and an RFID system at an intersection. The RFID system either in an emergency vehicle or at an intersection contains a controller, an ultrahigh-frequency (UHF) RFID reader module, a WiFi module, and a 2.4-GHz antenna. In addition, a UHF ID antenna is especially designed for the RFID system in an emergency vehicle. The IoT system provides real-time visual warning at an intersection and siren warning from an emergency vehicle in order to effectively inform road users about an emergency vehicle approaching. The developed intelligent IoT emergency vehicle warning system demonstrates the capabilities of real-time visual and siren warnings for EMS safety.

  18. Development of Matlab Simulink model for dynamics analysis of passive suspension system for lightweight vehicle

    Science.gov (United States)

    Jamali, M. S.; Ismail, K. A.; Taha, Z.; Aiman, M. F.

    2017-10-01

    In designing suitable isolators to reduce unwanted vibration in vehicles, the response from a mathematical model which characterizes the transmissibility ratio of the input and output of the vehicle is required. In this study, a Matlab Simulink model is developed to study the dynamic behaviour performance of passive suspension system for a lightweight electric vehicle. The Simulink model is based on the two degrees of freedom system quarter car model. The model is compared to the theoretical plots of the transmissibility ratios between the amplitudes of the displacements and accelerations of the sprung and unsprung masses to the amplitudes of the ground, against the frequencies at different damping values. It was found that the frequency responses obtained from the theoretical calculations and from the Simulink simulation is comparable to each other. Hence, the model may be extended to a full vehicle model.

  19. Integrating Sensory/Actuation Systems in Agricultural Vehicles

    Science.gov (United States)

    Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo

    2014-01-01

    In recent years, there have been major advances in the development of new and more powerful perception systems for agriculture, such as computer-vision and global positioning systems. Due to these advances, the automation of agricultural tasks has received an important stimulus, especially in the area of selective weed control where high precision is essential for the proper use of resources and the implementation of more efficient treatments. Such autonomous agricultural systems incorporate and integrate perception systems for acquiring information from the environment, decision-making systems for interpreting and analyzing such information, and actuation systems that are responsible for performing the agricultural operations. These systems consist of different sensors, actuators, and computers that work synchronously in a specific architecture for the intended purpose. The main contribution of this paper is the selection, arrangement, integration, and synchronization of these systems to form a whole autonomous vehicle for agricultural applications. This type of vehicle has attracted growing interest, not only for researchers but also for manufacturers and farmers. The experimental results demonstrate the success and performance of the integrated system in guidance and weed control tasks in a maize field, indicating its utility and efficiency. The whole system is sufficiently flexible for use in other agricultural tasks with little effort and is another important contribution in the field of autonomous agricultural vehicles. PMID:24577525

  20. Integrating Sensory/Actuation Systems in Agricultural Vehicles

    Directory of Open Access Journals (Sweden)

    Luis Emmi

    2014-02-01

    Full Text Available In recent years, there have been major advances in the development of new and more powerful perception systems for agriculture, such as computer-vision and global positioning systems. Due to these advances, the automation of agricultural tasks has received an important stimulus, especially in the area of selective weed control where high precision is essential for the proper use of resources and the implementation of more efficient treatments. Such autonomous agricultural systems incorporate and integrate perception systems for acquiring information from the environment, decision-making systems for interpreting and analyzing such information, and actuation systems that are responsible for performing the agricultural operations. These systems consist of different sensors, actuators, and computers that work synchronously in a specific architecture for the intended purpose. The main contribution of this paper is the selection, arrangement, integration, and synchronization of these systems to form a whole autonomous vehicle for agricultural applications. This type of vehicle has attracted growing interest, not only for researchers but also for manufacturers and farmers. The experimental results demonstrate the success and performance of the integrated system in guidance and weed control tasks in a maize field, indicating its utility and efficiency. The whole system is sufficiently flexible for use in other agricultural tasks with little effort and is another important contribution in the field of autonomous agricultural vehicles.

  1. Posture estimation system for underground mine vehicles

    CSIR Research Space (South Africa)

    Hlophe, K

    2010-09-01

    Full Text Available International Conference of CAD/CAM, Robotics & Factories of the Future Conference, 13-16 July 2010, Pretoria, South Africa derivative of the work done at Olivetti Research Lab under the banner of the Active Badge [1], the DOLPHIN [2][3], which... of current indoor positioning systems, Vilniaus Gedimino Technikos Universitetas - Geodesy and Cartography, 2009. [2] Fukuju T., Minami M., Morikawa H., Aoyama T., Dolphin: An autonomous indoor positioning system in ubiquitous computing environment, Proc...

  2. Conceptual Study on Hypersonic Turbojet Experimental Vehicle (HYTEX)

    Science.gov (United States)

    Taguchi, Hideyuki; Murakami, Akira; Sato, Tetsuya; Tsuchiya, Takeshi

    Pre-cooled turbojet engines have been investigated aiming at realization of reusable space transportation systems and hypersonic airplanes. Evaluation methods of these engine performances have been established based on ground tests. There are some plans on the demonstration of hypersonic propulsion systems. JAXA focused on hypersonic propulsion systems as a key technology of hypersonic transport airplane. Demonstrations of Mach 5 class hypersonic technologies are stated as a development target at 2025 in the long term vision. In this study, systems analyses of hypersonic turbojet experiment (HYTEX) with Mach 5 flight capability is performed. Aerodynamic coefficients are obtained by CFD analyses and wind tunnel tests. Small Pre-cooled turbojet is fabricated and tested using liquid hydrogen as fuel. As a result, characteristics of the baseline vehicle shape is clarified, . and effects of pre-cooling are confirmed at the firing test.

  3. Intrusion protection of in-vehicle network: study and recommendations

    OpenAIRE

    Asvestopoulos, Alexandros

    2015-01-01

    Modern vehicles include several electronic control units (ECUs), organized in a controller area network (CAN), and interact with external networks for reasons such as comfort, infotainment, and autonomy. The security risks from this increasing external interaction are alarming for the safety-critical vehicle systems, since possible attackers have more options for intrusion. For example, an attack might result in malfunctioning braking system and put lives in danger. This thesis examines the t...

  4. Impact of propulsion system R and D on electric vehicle performance and cost

    Science.gov (United States)

    Schwartz, H. J.; Gordan, A. L.

    1980-01-01

    The efficiency, weight, and manufacturing cost of the propulsion subsystem (motor, motor controller, transmission, and differential, but excluding the battery) are major factors in the purchase price and cost of ownership of a traffic-compatible electric vehicle. The relative impact of each was studied, and the conclusions reached are that propulsion system technology advances can result in a major reduction of the sticker price of an electric vehicle and a smaller, but significant, reduction in overall cost of ownership.

  5. Propulsion system research and development for electric and hybrid vehicles

    Science.gov (United States)

    Schwartz, H. J.

    1980-01-01

    An approach to propulsion subsystem technology is presented. Various tests of component reliability are described to aid in the production of better quality vehicles. component characterization work is described to provide engineering data to manufacturers on component performance and on important component propulsion system interactions.

  6. Mechanical Design of a Manipulation System for Unmanned Aerial Vehicles

    NARCIS (Netherlands)

    Keemink, A.Q.L.; Fumagalli, M.; Stramigioli, S.; Carloni, R.

    In this paper, we present the mechanical design and modeling of a manipulation system for unmanned aerial vehicles, which have to physically interact with environments and perform ultrasonic non-destructive testing experiments and other versatile tasks at unreachable locations for humans. The

  7. Traffic control and intelligent vehicle highway systems: a survey

    NARCIS (Netherlands)

    Baskar, L.D.; Schutter, B. de; Hellendoorn, J.; Papp, Z.

    2011-01-01

    Traffic congestion in highway networks is one of the main issues to be addressed by today's traffic management schemes. Automation combined with the increasing market penetration of on-line communication, navigation and advanced driver assistance systems will ultimately result in intelligent vehicle

  8. Space vehicle electromechanical system and helical antenna winding fixture

    Energy Technology Data Exchange (ETDEWEB)

    Judd, Stephen; Dallmann, Nicholas; Guenther, David; Enemark, Donald; Seitz, Daniel; Martinez, John; Storms, Steven

    2017-12-26

    A space vehicle electromechanical system may employ an architecture that enables convenient and practical testing, reset, and retesting of solar panel and antenna deployment on the ground. A helical antenna winding fixture may facilitate winding and binding of the helical antenna.

  9. Electric Vehicles in Power Systems with 50% Wind Power Penetration

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Foosnæs, Anders; Xu, Zhao

    2009-01-01

    Electric vehicles (EVs) provide a unique opportunity to reduce the CO2-emissions from the transport sector. At the same time, EVs have the potential to play an important role in an economic and reliable operation of an electricity system with high penetration of renewable energy. EVs...... will be an important balancing measure to enable the Danish government’s energy strategy, which implies 50% wind power penetration in the electric power system. An EV will be a storage device for smoothing power fluctuations from renewable resources especially wind power and provide valuable system services...... for a reliable power system operation. Cost-benefit analysis shows that intelligent bidirectional charging – vehicle to grid (V2G) – provides a socio-economic profit of 150 million Euro/year in the Danish electric power system in 2025 assuming that 15% of the Danish road transport need is supplied by electricity...

  10. 49 CFR 571.135 - Standard No. 135; Light vehicle brake systems.

    Science.gov (United States)

    2010-10-01

    ... is conducted with no electrical power supplied to the vehicle's propulsion motor(s), but with the RBS... 49 Transportation 6 2010-10-01 2010-10-01 false Standard No. 135; Light vehicle brake systems. 571... Federal Motor Vehicle Safety Standards § 571.135 Standard No. 135; Light vehicle brake systems. S1. Scope...

  11. Fault Risk Assessment of Underwater Vehicle Steering System Based on Virtual Prototyping and Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    He Deyu

    2016-09-01

    Full Text Available Assessing the risks of steering system faults in underwater vehicles is a human-machine-environment (HME systematic safety field that studies faults in the steering system itself, the driver’s human reliability (HR and various environmental conditions. This paper proposed a fault risk assessment method for an underwater vehicle steering system based on virtual prototyping and Monte Carlo simulation. A virtual steering system prototype was established and validated to rectify a lack of historic fault data. Fault injection and simulation were conducted to acquire fault simulation data. A Monte Carlo simulation was adopted that integrated randomness due to the human operator and environment. Randomness and uncertainty of the human, machine and environment were integrated in the method to obtain a probabilistic risk indicator. To verify the proposed method, a case of stuck rudder fault (SRF risk assessment was studied. This method may provide a novel solution for fault risk assessment of a vehicle or other general HME system.

  12. Study questions environmental impact of fuel-cell vehicles

    Science.gov (United States)

    Stafford, Ned

    2015-09-01

    Fuel-cell electric vehicles are seen by many as an environmentally friendly technology that can reduce greenhousegas emissions by producing no harmful emissions. But a new study has found that overall a fuel cell electric vehicle has about the same negative environmental impact as a luxury sports car.

  13. Intelligent Unmanned Vehicle Systems Suitable For Individual or Cooperative Missions

    Energy Technology Data Exchange (ETDEWEB)

    Matthew O. Anderson; Mark D. McKay; Derek C. Wadsworth

    2007-04-01

    The Department of Energy’s Idaho National Laboratory (INL) has been researching autonomous unmanned vehicle systems for the past several years. Areas of research have included unmanned ground and aerial vehicles used for hazardous and remote operations as well as teamed together for advanced payloads and mission execution. Areas of application include aerial particulate sampling, cooperative remote radiological sampling, and persistent surveillance including real-time mosaic and geo-referenced imagery in addition to high resolution still imagery. Both fixed-wing and rotary airframes are used possessing capabilities spanning remote control to fully autonomous operation. Patented INL-developed auto steering technology is taken advantage of to provide autonomous parallel path swathing with either manned or unmanned ground vehicles. Aerial look-ahead imagery is utilized to provide a common operating picture for the ground and air vehicle during cooperative missions. This paper will discuss the various robotic vehicles, including sensor integration, used to achieve these missions and anticipated cost and labor savings.

  14. Systems design analysis applied to launch vehicle configuration

    Science.gov (United States)

    Ryan, R.; Verderaime, V.

    1993-01-01

    As emphasis shifts from optimum-performance aerospace systems to least lift-cycle costs, systems designs must seek, adapt, and innovate cost improvement techniques in design through operations. The systems design process of concept, definition, and design was assessed for the types and flow of total quality management techniques that may be applicable in a launch vehicle systems design analysis. Techniques discussed are task ordering, quality leverage, concurrent engineering, Pareto's principle, robustness, quality function deployment, criteria, and others. These cost oriented techniques are as applicable to aerospace systems design analysis as to any large commercial system.

  15. Potential Occupant Injury Reduction in Pre-Crash System Equipped Vehicles in the Striking Vehicle of Rear-end Crashes.

    Science.gov (United States)

    Kusano, Kristofer D; Gabler, Hampton C

    2010-01-01

    To mitigate the severity of rear-end and other collisions, Pre-Crash Systems (PCS) are being developed. These active safety systems utilize radar and/or video cameras to determine when a frontal crash, such as a front-to-back rear-end collisions, is imminent and can brake autonomously, even with no driver input. Of these PCS features, the effects of autonomous pre-crash braking are estimated. To estimate the maximum potential for injury reduction due to autonomous pre-crash braking in the striking vehicle of rear-end crashes, a methodology is presented for determining 1) the reduction in vehicle crash change in velocity (ΔV) due to PCS braking and 2) the number of injuries that could be prevented due to the reduction in collision severity. Injury reduction was only performed for belted drivers, as unbelted drivers have an unknown risk of being thrown out of position. The study was based on 1,406 rear-end striking vehicles from NASS / CDS years 1993 to 2008. PCS parameters were selected from realistic values and varied to examine the effect on system performance. PCS braking authority was varied from 0.5 G's to 0.8 G's while time to collision (TTC) was held at 0.45 seconds. TTC was then varied from 0.3 second to 0.6 seconds while braking authority was held constant at 0.6 G's. A constant braking pulse (step function) and ramp-up braking pulse were used. The study found that automated PCS braking could reduce the crash ΔV in rear-end striking vehicles by an average of 12% - 50% and avoid 0% - 14% of collisions, depending on PCS parameters. Autonomous PCS braking could potentially reduce the number of injured drivers who are belted by 19% to 57%.

  16. AC propulsion system for an electric vehicle, phase 2

    Science.gov (United States)

    Slicker, J. M.

    1983-01-01

    A second-generation prototype ac propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the Contractor's site. The system consisted of a Phase 2, 18.7 kw rated ac induction traction motor, a 192-volt, battery powered, pulse-width-modulated, transistorized inverter packaged for under rear seat installation, a 2-axis, 2-speed, automatically-shifted mechanical transaxle and a microprocessor-based powertrain/vehicle controller. A diagnostics computer to assist tuning and fault finding was fabricated. Dc-to-mechanical-system efficiency varied from 78% to 82% as axle speed/torque ranged from 159 rpm/788 nm to 65 rpm/328 nm. Track test efficiency results suggest that the ac system will be equal or superior to dc systems when driving urban cycles. Additional short-term work is being performed under a third contract phase (AC-3) to raise transaxle efficiency to predicted levels, and to improve starting and shifting characteristics. However, the long-term challenge to the system's viability remains inverter cost. A final report on the Phase 2 system, describing Phase 3 modifications, will be issued at the conclusion of AC-3.

  17. Optimal Vibration Control for Tracked Vehicle Suspension Systems

    Directory of Open Access Journals (Sweden)

    Yan-Jun Liang

    2013-01-01

    Full Text Available Technique of optimal vibration control with exponential decay rate and simulation for vehicle active suspension systems is developed. Mechanical model and dynamic system for a class of tracked vehicle suspension vibration control is established and the corresponding system of state space form is described. In order to prolong the working life of suspension system and improve ride comfort, based on the active suspension vibration control devices and using optimal control approach, an optimal vibration controller with exponential decay rate is designed. Numerical simulations are carried out, and the control effects of the ordinary optimal controller and the proposed controller are compared. Numerical simulation results illustrate the effectiveness of the proposed technique.

  18. A Hydraulic Blowdown Servo System For Launch Vehicle

    Science.gov (United States)

    Chen, Anping; Deng, Tao

    2016-07-01

    This paper introduced a hydraulic blowdown servo system developed for a solid launch vehicle of the family of Chinese Long March Vehicles. It's the thrust vector control (TVC) system for the first stage. This system is a cold gas blowdown hydraulic servo system and consist of gas vessel, hydraulic reservoir, servo actuator, digital control unit (DCU), electric explosion valve, and pressure regulator etc. A brief description of the main assemblies and characteristics follows. a) Gas vessel is a resin/carbon fiber composite over wrapped pressure vessel with a titanium liner, The volume of the vessel is about 30 liters. b) Hydraulic reservoir is a titanium alloy piston type reservoir with a magnetostrictive sensor as the fluid level indicator. The volume of the reservoir is about 30 liters. c) Servo actuator is a equal area linear piston actuator with a 2-stage low null leakage servo valve and a linear variable differential transducer (LVDT) feedback the piston position, Its stall force is about 120kN. d) Digital control unit (DCU) is a compact digital controller based on digital signal processor (DSP), and deployed dual redundant 1553B digital busses to communicate with the on board computer. e) Electric explosion valve is a normally closed valve to confine the high pressure helium gas. f) Pressure regulator is a spring-loaded poppet pressure valve, and regulates the gas pressure from about 60MPa to about 24MPa. g) The whole system is mounted in the aft skirt of the vehicle. h) This system delivers approximately 40kW hydraulic power, by contrast, the total mass is less than 190kg. the power mass ratio is about 0.21. Have finished the development and the system test. Bench and motor static firing tests verified that all of the performances have met the design requirements. This servo system is complaint to use of the solid launch vehicle.

  19. Planning Systems for Autonomous Legged Vehicles

    Science.gov (United States)

    1989-05-01

    theoretical and experimental studies from the fields of ethology and psychology. The subjects of the studies range from invertebrate to human. One component...found in both the ethological and psychological literature30 ,2 1 ,22 ,28 . S...... .o... te. Borlyne also made distinctions between specific and...Chapuis. 1983. RoutL Planning In Cats , in Relation to the Visibility of the Goal. Animal Behavior. 81:594-599. A-6 While the purpose of the

  20. Heavy Lift Vehicle (HLV) Avionics Flight Computing Architecture Study

    Science.gov (United States)

    Hodson, Robert F.; Chen, Yuan; Morgan, Dwayne R.; Butler, A. Marc; Sdhuh, Joseph M.; Petelle, Jennifer K.; Gwaltney, David A.; Coe, Lisa D.; Koelbl, Terry G.; Nguyen, Hai D.

    2011-01-01

    A NASA multi-Center study team was assembled from LaRC, MSFC, KSC, JSC and WFF to examine potential flight computing architectures for a Heavy Lift Vehicle (HLV) to better understand avionics drivers. The study examined Design Reference Missions (DRMs) and vehicle requirements that could impact the vehicles avionics. The study considered multiple self-checking and voting architectural variants and examined reliability, fault-tolerance, mass, power, and redundancy management impacts. Furthermore, a goal of the study was to develop the skills and tools needed to rapidly assess additional architectures should requirements or assumptions change.

  1. Ares Launch Vehicles Lean Practices Case Study

    Science.gov (United States)

    Doreswamy, Rajiv, N.; Self, Timothy A.

    2008-01-01

    This viewgraph presentation describes test strategies and lean philisophies and practices that are applied to Ares Launch Vehicles. The topics include: 1) Testing strategy; 2) Lean Practices in Ares I-X; 3) Lean Practices Applied to Ares I-X Schedule; 4) Lean Event Results; 5) Lean, Six Sigma, and Kaizen Practices in the Ares Projects Office; 6) Lean and Kaizen Success Stories; and 7) Ares Six Sigma Practices.

  2. Preventing Distribution Grid Congestion by Integrating Indirect Control in a Hierarchical Electric Vehicles Management System

    DEFF Research Database (Denmark)

    Hu, Junjie; Si, Chengyong; Lind, Morten

    2016-01-01

    In this paper, a hierarchical management system is proposed to integrate electric vehicles (EVs) into a distribution grid. Three types of actors are included in the system: Distribution system operators (DSOs), Fleet operators (FOs) and EV owners. In contrast to a typical hierarchical control...... system where the upper level controller directly controls the lower level subordinated nodes, this study aims to integrate two common indirect control methods:market-based control and price-based control into the hierarchical electric vehicles management system. Specifically, on the lower level...... of the hierarchy, the FOs coordinate the charging behaviors of their EV users using a price-based control method. A parametric utility model is used on the lower level to characterize price elasticity of electric vehicles and thus used by the FO to coordinate the individual EV charging. On the upper level...

  3. Optimization and Control of Cyber-Physical Vehicle Systems.

    Science.gov (United States)

    Bradley, Justin M; Atkins, Ella M

    2015-09-11

    A cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined.

  4. Optimization and Control of Cyber-Physical Vehicle Systems

    Science.gov (United States)

    Bradley, Justin M.; Atkins, Ella M.

    2015-01-01

    A cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined. PMID:26378541

  5. Optimization and Control of Cyber-Physical Vehicle Systems

    Directory of Open Access Journals (Sweden)

    Justin M. Bradley

    2015-09-01

    Full Text Available A cyber-physical system (CPS is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined.

  6. Fuel Consumption and Vehicle Emission Models for Evaluating Environmental Impacts of the ETC System

    Directory of Open Access Journals (Sweden)

    Jiancheng Weng

    2015-07-01

    Full Text Available The environmental outcome of the Electronic Toll Collection (ETC system is an important aspect in evaluating the impacts of the ETC system, which is influenced by various factors including the vehicle type, travel speed, traffic volume, and average queue length of Manual Toll Collection (MTC lanes. The primary objective of this paper is to develop a field data-based practical model for evaluating the effects of ETC system on the fuel efficiency and vehicle emission. First, laboratory experiments of seven types of vehicles under various scenarios for toll collection were conducted based on the Vehicle Emissions Testing System (VETS. The indicator calculation models were then established to estimate the comprehensive benefit of ETC system by comparing the test results of MTC lane and ETC lane. Finally, taking Beijing as a case study, the paper calibrated the model parameters, and estimated the monetization value of environmental benefit of the ETC system in terms of vehicle emissions reduction and fuel consumption decrease. The results shows that the applications of ETC system are expected to save fuel consumption of 4.1 million liters and reduce pollution emissions by 730.89 tons in 2013 in Beijing.

  7. Investigation of Child Restraint System (CRS) Compatibility in the Vehicle Seat Environment.

    Science.gov (United States)

    Bing, Julie A; Bolte, John H; Agnew, Amanda M

    2015-01-01

    Child restraint system (CRS) misuse is common and can have serious consequences to child safety. Physical incompatibilities between CRS and vehicles can complicate the installation process and may worsen CRS misuse rates. This study aims to identify the most common sources of incompatibility between representative groups of CRS and vehicles. Detailed dimensional data were collected from 59 currently marketed CRS and 61 late model vehicles. Key dimensions were compared across all 3,599 theoretical CRS/vehicle combinations and the most common predicted incompatibilities were determined. A subset of 34 physical installations was analyzed to validate the results. Only 58.2% of rear-facing (RF) CRS/vehicle combinations were predicted to have proper agreement between the vehicle's seat pan angle and the CRS manufacturers' required base angle. The width of the base of the CRS was predicted to fit snugly between the vehicle's seat pan bolsters in 63.3% of RF CRS/vehicle combinations and 62.2% of forward-facing (FF) CRS/vehicle combinations. FF CRS were predicted to be free of interaction with the vehicle's head restraint in 66.4% of combinations. Roughly 90.0% of RF CRS/vehicle combinations were predicted to have enough horizontal clearance space to set the front seat in the middle its fore/aft slider track. Compatibility rates were above 98% regarding the length of the CRS base compared to the length of the vehicle seat pan and the ability of the top tether to reach the tether anchor. Validation studies revealed that the predictions of RF CRS base angle range vs. seat pan angle compatibility were accurate within 6%, and head restraint interference and front row clearance incompatibilities may be more common than the dimensional analysis approach has predicted. The results of this study indicate that RF CRS base angles and front row clearance space, as well as FF CRS head restraint interference, are frequent compatibility concerns. These results enable manufacturers

  8. ATHLETE: A Limbed Vehicle for Solar System Exploration

    Science.gov (United States)

    Wilcox, Brian H.

    2012-01-01

    As part of the Human-Robot Systems project funded by NASA, the Jet Propulsion Laboratory has developed a vehicle called ATHLETE: the All-Terrain Hex-Limbed Extra-Terrestrial Explorer. Each vehicle is based on six wheels at the ends of six multi-degree-of-freedom limbs. Because each limb has enough degrees of freedom for use as a general-purpose leg, the wheels can be locked and used as feet to walk out of excessively soft or other extreme terrain. Since the vehicle has this alternative mode of traversing through or at least out of extreme terrain, the wheels and wheel actuators can be sized for nominal terrain. There are substantial mass savings in the wheel and wheel actuators associated with designing for nominal instead of extreme terrain. These mass savings are comparable-to or larger-than the extra mass associated with the articulated limbs. As a result, the entire mobility system, including wheels and limbs, can be about 25% lighter than a conventional mobility chassis. A side benefit of this approach is that each limb has sufficient degrees-of-freedom to use as a general-purpose manipulator (hence the name "limb" instead of "leg"). Our prototype ATHLETE vehicles have quick-disconnect tool adapters on the limbs that allow tools to be drawn out of a "tool belt" and maneuvered by the limb.

  9. Modelling of structural flexiblity in multibody railroad vehicle systems

    Science.gov (United States)

    Escalona, José L.; Sugiyama, Hiroyuki; Shabana, Ahmed A.

    2013-07-01

    This paper presents a review of recent research investigations on the computer modelling of flexible bodies in railroad vehicle systems. The paper will also discuss the influence of the structural flexibility of various components, including the wheelset, the truck frames, tracks, pantograph/catenary systems, and car bodies, on the dynamics of railroad vehicles. While several formulations and computer techniques for modelling structural flexibility are discussed in this paper, a special attention is paid to the floating frame of reference formulation which is widely used and leads to reduced-order finite-element models for flexible bodies by employing component modes synthesis techniques. Other formulations and numerical methods such as semi-analytical approaches, absolute nodal coordinate formulation, finite-segment method, boundary elements method, and discrete elements method are also discussed. This investigation is motivated by the fact that the structural flexibility can have a significant effect on the overall dynamics of railroad vehicles, ride comfort, vibration suppression and noise level reduction, lateral stability, track response to vehicle forces, stress analysis, wheel-rail contact forces, wear and crashworthiness.

  10. Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Willson, B. (Colorado State Univ., Fort Collins, CO (United States))

    1992-09-01

    This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the best-case'' results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author's experience with fuel delivery systems for light-duty vehicles.

  11. Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Willson, B. [Colorado State Univ., Fort Collins, CO (United States)

    1992-09-01

    This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the ``best-case`` results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author`s experience with fuel delivery systems for light-duty vehicles.

  12. ATHLETE: A Cargo-Handling Vehicle for Solar System Exploration

    Science.gov (United States)

    Wilcox, Brian H.

    2011-01-01

    As part of the NASA Exploration Technology Development Program, the Jet Propulsion Laboratory is developing a vehicle called ATHLETE: the All-Terrain Hex-Limbed Extra-Terrestrial Explorer. Each vehicle is based on six wheels at the ends of six multi-degree-of-freedom limbs. Because each limb has enough degrees of freedom for use as a general-purpose leg, the wheels can be locked and used as feet to walk out of excessively soft or other extreme terrain. Since the vehicle has this alternative mode of traversing through or at least out of extreme terrain, the wheels and wheel actuators can be sized for nominal terrain. There are substantial mass savings in the wheel and wheel actuators associated with designing for nominal instead of extreme terrain. These mass savings are comparable-to or larger-than the extra mass associated with the articulated limbs. As a result, the entire mobility system, including wheels and limbs, can be about 25% lighter than a conventional mobility chassis. A side benefit of this approach is that each limb has sufficient degrees-of-freedom to use as a general-purpose manipulator (hence the name "limb" instead of "leg"). Our prototype ATHLETE vehicles have quick-disconnect tool adapters on the limbs that allow tools to be drawn out of a "tool belt" and maneuvered by the limb. A power-take-off from the wheel actuates the tools, so that they can take advantage of the 1+ horsepower motor in each wheel to enable drilling, gripping or other power-tool functions. Architectural studies have indicated that one useful role for ATHLETE in planetary (moon or Mars) exploration is to "walk" cargo off the payload deck of a lander and transport it across the surface. Recent architectural approaches are focused on the concept that the lander descent stage will use liquid hydrogen as a propellant. This is the highest performance chemical fuel, but it requires very large tanks. A natural geometry for the lander is to have a single throttleable rocket engine on

  13. A Microcontroller Based Car-Safety System Implementing Drowsiness Detection And Vehicle-Vehicle Distance Detection In Parallel.

    Directory of Open Access Journals (Sweden)

    Pragyaditya Das.

    2015-08-01

    Full Text Available Abstract Accidents due to drowsiness can be controlled and prevented with the help of eye blink sensor using IR rays. It consists of IR transmitter and an IR receiver. The transmitter transmits IR rays into the eye. If the eye is shut then the output is high. If the eye is open then the output is low. This output is interfaced with an alarm inside and outside the vehicle. This module can be connected to the braking system of the vehicle and can be used to reduce the speed of the vehicle. The alarm inside the vehicle will go on for a period of time until the driver is back to his senses. If the driver is unable to take control of the vehicle after that stipulated amount of time then the alarm outside the vehicle will go on to warn and tell others to help the driver.

  14. System Design and Implementation of Smart Dashboard for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Sheng Hu

    2015-01-01

    Full Text Available Recently, the development of automobile focuses on the chassis structure and motion control. However, due to the concept of smart and safe vehicle, the integrated dashboard becomes a necessary issue. The proposed system can not only represent the conventional dashboard in a digital form but also endow the system with an intelligent guidance. The statuses such as speed, battery SOC, braking, mileage, and the activation of TCS and ABS can be seen and monitored in all driving scenarios. For example, the current modern electric vehicles face the danger of self-ignition problem when the over load problem is consisted. Basically, these severe conditions can be eliminated by a guard of smart interface. Consequently, under a proper design, the presented system can assist the driver to maintain the energy efficiency, steering stability, and so on. Then the operation procedure can be simplified and hence driver can concentrate more on steering.

  15. Development of portable measuring system for testing of electrical vehicle's heat energy recovery system

    Science.gov (United States)

    Sarvajcz, K.; Váradiné Szarka, A.

    2016-11-01

    Nowadays the consumer society applies a huge amount of energy in many fields including transportation sector. Internal combustion vehicles contribute substantially to the air pollution. An alternative solution for reducing energy consumption is replacing the internal combustion vehicles by electrical or hybrid vehicles. Today one of the biggest disadvantages of the electrical vehicles is the finite capacity of batteries. The research topic presented in this paper is the „Energy Harvesting”, and development of energy recovery system for electrical vehicles which largely contributes in increasing the driving range. At the current phase of the research efficiency analysis of the heat energy recovery devices are investigated in real driving circumstances. Computer based mobile and wireless measurement system for the analysis was developed, tested and installed in a real vehicle. Driving tests were performed and analysed in different circumstances.

  16. Lightweight Ablative and Ceramic Thermal Protection System Materials for NASA Exploration Systems Vehicles

    Science.gov (United States)

    Valentine, Peter G.; Lawrence, Timothy W.; Gubert, Michael K.; Milos, Frank S.; Kiser, James D.; Ohlhorst, Craig W.; Koenig, John R.

    2006-01-01

    As a collaborative effort among NASA Centers, the "Lightweight Nonmetallic Thermal Protection Materials Technology" Project was set up to assist mission/vehicle design trade studies, to support risk reduction in thermal protection system (TPS) material selections, to facilitate vehicle mass optimization, and to aid development of human-rated TPS qualification and certification plans. Missions performing aerocapture, aerobraking, or direct aeroentry rely on advanced heatshields that allow reductions in spacecraft mass by minimizing propellant requirements. Information will be presented on candidate materials for such reentry approaches and on screening tests conducted (material property and space environmental effects tests) to evaluate viable candidates. Seventeen materials, in three classes (ablatives, tiles, and ceramic matrix composites), were studied. In additional to physical, mechanical, and thermal property tests, high heat flux laser tests and simulated-reentry oxidation tests were performed. Space environmental effects testing, which included exposures to electrons, atomic oxygen, and hypervelocity impacts, was also conducted.

  17. An Integrated Tool for System Analysis of Sample Return Vehicles

    Science.gov (United States)

    Samareh, Jamshid A.; Maddock, Robert W.; Winski, Richard G.

    2012-01-01

    The next important step in space exploration is the return of sample materials from extraterrestrial locations to Earth for analysis. Most mission concepts that return sample material to Earth share one common element: an Earth entry vehicle. The analysis and design of entry vehicles is multidisciplinary in nature, requiring the application of mass sizing, flight mechanics, aerodynamics, aerothermodynamics, thermal analysis, structural analysis, and impact analysis tools. Integration of a multidisciplinary problem is a challenging task; the execution process and data transfer among disciplines should be automated and consistent. This paper describes an integrated analysis tool for the design and sizing of an Earth entry vehicle. The current tool includes the following disciplines: mass sizing, flight mechanics, aerodynamics, aerothermodynamics, and impact analysis tools. Python and Java languages are used for integration. Results are presented and compared with the results from previous studies.

  18. Visualization Component of Vehicle Health Decision Support System

    Science.gov (United States)

    Jacob, Joseph; Turmon, Michael; Stough, Timothy; Siegel, Herbert; Walter, patrick; Kurt, Cindy

    2008-01-01

    The visualization front-end of a Decision Support System (DSS) also includes an analysis engine linked to vehicle telemetry, and a database of learned models for known behaviors. Because the display is graphical rather than text-based, the summarization it provides has a greater information density on one screen for evaluation by a flight controller.This tool provides a system-level visualization of the state of a vehicle, and drill-down capability for more details and interfaces to separate analysis algorithms and sensor data streams. The system-level view is a 3D rendering of the vehicle, with sensors represented as icons, tied to appropriate positions within the vehicle body and colored to indicate sensor state (e.g., normal, warning, anomalous state, etc.). The sensor data is received via an Information Sharing Protocol (ISP) client that connects to an external server for real-time telemetry. Users can interactively pan, zoom, and rotate this 3D view, as well as select sensors for a detail plot of the associated time series data. Subsets of the plotted data can be selected and sent to an external analysis engine to either search for a similar time series in an historical database, or to detect anomalous events. The system overview and plotting capabilities are completely general in that they can be applied to any vehicle instrumented with a collection of sensors. This visualization component can interface with the ISP for data streams used by NASA s Mission Control Center at Johnson Space Center. In addition, it can connect to, and display results from, separate analysis engine components that identify anomalies or that search for past instances of similar behavior. This software supports NASA's Software, Intelligent Systems, and Modeling element in the Exploration Systems Research and Technology Program by augmenting the capability of human flight controllers to make correct decisions, thus increasing safety and reliability. It was designed specifically as a

  19. Vision-based pedestrian protection systems for intelligent vehicles

    CERN Document Server

    Geronimo, David

    2013-01-01

    Pedestrian Protection Systems (PPSs) are on-board systems aimed at detecting and tracking people in the surroundings of a vehicle in order to avoid potentially dangerous situations. These systems, together with other Advanced Driver Assistance Systems (ADAS) such as lane departure warning or adaptive cruise control, are one of the most promising ways to improve traffic safety. By the use of computer vision, cameras working either in the visible or infra-red spectra have been demonstrated as a reliable sensor to perform this task. Nevertheless, the variability of human's appearance, not only in

  20. Vehicle height and posture control of the electronic air suspension system using the hybrid system approach

    Science.gov (United States)

    Sun, Xiaoqiang; Cai, Yingfeng; Chen, Long; Liu, Yanling; Wang, Shaohua

    2016-03-01

    The electronic air suspension (EAS) system can improve ride comfort, fuel economy and handling safety of vehicles by adjusting vehicle height. This paper describes the development of a novel controller using the hybrid system approach to adjust the vehicle height (height control) and to regulate the roll and pitch angles of the vehicle body during the height adjustment process (posture control). The vehicle height adjustment system of EAS poses challenging hybrid control problems, since it features different discrete modes of operation, where each mode has an associated linear continuous-time dynamic. In this paper, we propose a novel approach to the modelling and controller design problem for the vehicle height adjustment system of EAS. The system model is described firstly in the hybrid system description language (HYSDEL) to obtain a mixed logical dynamical (MLD) hybrid model. For the resulting model, a hybrid model predictive controller is tuned to improve the vehicle height and posture tracking accuracy and to achieve the on-off statuses direct control of solenoid valves. The effectiveness and performance of the proposed approach are demonstrated by simulations and actual vehicle tests.

  1. Systems Analysis and Structural Design of an Unpressurized Cargo Delivery Vehicle

    Science.gov (United States)

    Wu, K. Chauncey; Cruz, Jonathan N.; Antol, Jeffrey; Sasamoto, Washito A.

    2007-01-01

    The International Space Station will require a continuous supply of replacement parts for ongoing maintenance and repair after the planned retirement of the Space Shuttle in 2010. These parts are existing line-replaceable items collectively called Orbital Replacement Units, and include heavy and oversized items such as Control Moment Gyroscopes and stowed radiator arrays originally intended for delivery aboard the Space Shuttle. Current resupply spacecraft have limited to no capability to deliver these external logistics. In support of NASA's Exploration Systems Architecture Study, a team at Langley Research Center designed an Unpressurized Cargo Delivery Vehicle to deliver bulk cargo to the Space Station. The Unpressurized Cargo Delivery Vehicle was required to deliver at least 13,200 lbs of cargo mounted on at least 18 Flight Releasable Attachment Mechanisms. The Crew Launch Vehicle design recommended in the Exploration Systems Architecture Study would be used to launch one annual resupply flight to the International Space Station. The baseline vehicle design developed here has a cargo capacity of 16,000 lbs mounted on up to 20 Flight Releasable Attachment Mechanisms. Major vehicle components are a 5.5m-diameter cargo module containing two detachable cargo pallets with the payload, a Service Module to provide propulsion and power, and an aerodynamic nose cone. To reduce cost and risk, the Service Module is identical to the one used for the Crew Exploration Vehicle design.

  2. DEVELOPMENT OF A GEOGRAPHIC VISUALIZATION AND COMMUNICATIONS SYSTEMS (GVCS) FOR MONITORING REMOTE VEHICLES

    Energy Technology Data Exchange (ETDEWEB)

    COLEMAN, P.; DUNCAN, M.; DURFEE, R.C.; GOELTZ, R; HARRISON, G.; HODGSON, M.E.; KOOK, M.; MCCLAIN, S.

    1998-03-30

    The purpose of this project is to integrate a variety of geographic information systems capabilities and telecommunication technologies for potential use in geographic network and visualization applications. The specific technical goals of the project were to design, develop, and simulate the components of an audio/visual geographic communications system to aid future real-time monitoring, mapping and managing of transport vehicles. The system components of this feasibility study are collectively referred to as a Geographic Visualization and Communications System (GVCS). State-of-the-art techniques will be used and developed to allow both the vehicle operator and network manager to monitor the location and surrounding environment of a transport vehicle during shipment.

  3. Security credentials management system (SCMS) design and analysis for the connected vehicle system : draft.

    Science.gov (United States)

    2013-12-27

    This report presents an analysis by Booz Allen Hamilton (Booz Allen) of the technical design for the Security Credentials Management System (SCMS) intended to support communications security for the connected vehicle system. The SCMS technical design...

  4. FY2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-02-01

    FY 2013 annual report focuses on the following areas: vehicle modeling and simulation, component and systems evaluations, laboratory and field evaluations, codes and standards, industry projects, and vehicle systems optimization.

  5. Evaluation of Hydrogen Storage System Characteristics for Light-Duty Vehicle Applications (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, M.; Day, K.; Brooker, A.

    2010-05-01

    This poster presentation demonstrates an approach to evaluate trade-offs among hydrogen storage system characteristic across several vehicle configurations and estimates the sensitivity of hydrogen storage system improvements on vehicle viability.

  6. Vehicle Propulsion Systems Introduction to Modeling and Optimization

    CERN Document Server

    Guzzella, Lino

    2013-01-01

    This text provides an introduction to the mathematical modeling and subsequent optimization of vehicle propulsion systems and their supervisory control algorithms. Automobiles are responsible for a substantial part of the world's consumption of primary energy, mostly fossil liquid hydrocarbons and the reduction of the fuel consumption of these vehicles has become a top priority. Increasing concerns over fossil fuel consumption and the associated environmental impacts have motivated many groups in industry and academia to propose new propulsion systems and to explore new optimization methodologies. This third edition has been prepared to include many of these developments. In the third edition, exercises are included at the end of each chapter and the solutions are available on the web.

  7. Real-time Vehicle Reidentification System for Freeway Performance Measurements

    OpenAIRE

    Jeng, Shin-Ting

    2007-01-01

    Computational resources in the traffic operation field as well as the bandwidth of field communication links, are often quite limited. Accordingly, for real-time implementation of Advanced Transportation Management and Information Systems (ATMIS) strategies, such as vehicle reidentification, there is strong interest in development of field-based techniques and models that can perform satisfactorily while minimizing computational and communication requirements in the field. The ILD (Inductive ...

  8. Calibrating Dissimilar Payment Vehicles in Contingent Valuation Studies: An Example of Reducing Hydrilla in Two North Florida Spring-Fed River Systems

    OpenAIRE

    Thomas, Victoria; Thomas, Michael H.

    2013-01-01

    Choice of payment vehicle (PV) is important to contingent-valuation practitioners. They are often left using scenarios that may elicit bias responses; for example hypothetical gate fees in open access areas. Utility bills may avoid bias, but introduce a scaling problem. A survey of north-Florida spring-based recreation calibrates these two dissimilar PVs.

  9. Control system for maximum use of adhesive forces of a railway vehicle in a tractive mode

    Science.gov (United States)

    Spiryagin, Maksym; Lee, Kwan Soo; Yoo, Hong Hee

    2008-04-01

    The realization of maximum adhesive forces for a railway vehicle is a very difficult process, because it involves using tractive efforts and depends on friction characteristics in the contact zone between wheels and rails. Tractive efforts are realized by means of tractive torques of motors, and their maximum values can provide negative effects such as slip and skid. These situations usually happen when information about friction conditions is lacking. The negative processes have a major influence on wearing of contact bodies and tractive units. Therefore, many existing control systems for vehicles use an effect of a prediction of a friction coefficient between wheels and rails because measuring a friction coefficient at the moment of running vehicle movement is very difficult. One of the ways to solve this task is to use noise spectrum analysis for friction coefficient detection. This noise phenomenon has not been clearly studied and analyzed. In this paper, we propose an adhesion control system of railway vehicles based on an observer, which allows one to determine the maximum tractive torque based on the optimal adhesive force between the wheels (wheel pair) of a railway vehicle and rails (rail track) depending on weight load from a wheel to a rail, friction conditions in the contact zone, a lateral displacement of wheel set and wheel sleep. As a result, it allows a railway vehicle to be driven in a tractive mode by the maximum adhesion force for real friction conditions.

  10. Electric and hybrid vehicle environmental control subsystem study

    Science.gov (United States)

    Heitner, K. L.

    1980-01-01

    An environmental control subsystem (ECS) in electric and hybrid vehicles is studied. A combination of a combustion heater and gasoline engine (Otto cycle) driven vapor compression air conditioner is selected. The combustion heater, the small gasoline engine, and the vapor compression air conditioner are commercially available. These technologies have good cost and performance characteristics. The cost for this ECS is relatively close to the cost of current ECS's. Its effect on the vehicle's propulsion battery is minimal and the ECS size and weight do not have significant impact on the vehicle's range.

  11. Design of Propulsion System for a Fuel Cell Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Andreasen, Søren Juhl; Rasmussen, Peter Omand

    2007-01-01

    This paper presents a design method of propulsion systems for fuel cell vehicles complying with the 42V PowerNet standard. The method is based on field measurements during several weeks. Several cases of combining energy storage devices to a common bus voltage are investigated, and the total mass......, volume, cost and efficiency of the propulsion system are compared. It is concluded that the number of energy storage devices and their connecting to the common bus have a significant affect of the mass, volume, cost and efficiency of the propulsion system....

  12. Visual tracking strategies for intelligent vehicle highway systems

    Science.gov (United States)

    Smith, Christopher E.; Papanikolopoulos, Nikolaos P.; Brandt, Scott A.; Richards, Charles

    1995-01-01

    The complexity and congestion of current transportation systems often produce traffic situations that jeopardize the safety of the people involved. These situations vary from maintaining a safe distance behind a leading vehicle to safely allowing a pedestrian to cross a busy street. Environmental sensing plays a critical role in virtually all of these situations. Of the sensors available, vision sensors provide information that is richer and more complete than other sensors, making them a logical choice for a multisensor transportation system. In this paper we present robust techniques for intelligent vehicle-highway applications where computer vision plays a crucial role. In particular, we demonstrate that the controlled active vision framework can be utilized to provide a visual sensing modality to a traffic advisory system in order to increase the overall safety margin in a variety of common traffic situations. We have selected two application examples, vehicle tracking and pedestrian tracking, to demonstrate that the framework can provide precisely the type of information required to effectively manage the given situation.

  13. Comparative analysis of aluminum-air battery propulsion systems for passenger vehicles

    Science.gov (United States)

    Salisbury, J. D.; Behrin, E.; Kong, M. K.; Whisler, D. J.

    1980-02-01

    Three electric propulsion systems using an aluminum air battery were analyzed and compared to the internal combustion engine (ICE) vehicle. The engine and fuel systems of a representative five passenger highway vehicle were replaced conceptually by each of the three electric propulsion systems. The electrical vehicles were constrained by the computer simulation to be equivalent to the ICE vehicle in range and acceleration performance. The vehicle masses and aluminum consumption rates were then calculated for the electric vehicles and these data were used as figures of merit. The Al-air vehicles analyzed were (1) an Al-air battery only electric vehicle; (2) an Al-air battery combined with a nickel zinc secondary battery for power leveling and regenerative braking; and (3) an Al-air battery combined with a flywheel for power leveling and regenerative braking. All three electric systems compared favorably with the ICE vehicle.

  14. Development of a dedicated ethanol ultra-low emission vehicle (ULEV) system design

    Science.gov (United States)

    Bourn, G.; Callahan, T.; Dodge, L.; Mulik, J.; Naegeli, D.; Shouse, K.; Smith, L.; Whitney, K.

    1995-02-01

    The objective of this 3.5 year project is to develop a commercially competitive vehicle powered by ethanol (or ethanol blend) that can meet California's ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes a system design study completed after six months of effort on this project. The design study resulted in recommendations for ethanol-fuel blends that shall be tested for engine low-temperature cold-start performance and other criteria. The study also describes three changes to the engine and two other changes to the vehicle to improve low-temperature starting, efficiency, and emissions. The three engine changes are to increase the compression ratio, to replace the standard fuel injectors with fine spray injectors, and to replace the powertrain controller. The two other vehicle changes involve the fuel tank and the aftertreatment system. The fuel tank will likely need to be replaced to reduce evaporative emissions. In addition to changes in the main catalyst, supplemental aftertreatment systems will be analyzed to reduce emissions before the main catalyst reaches operating temperature.

  15. 77 FR 22637 - Federal Motor Vehicle Safety Standards; Accelerator Control Systems

    Science.gov (United States)

    2012-04-16

    ..., in the case of an electric drive system, attenuate the electric current driving the vehicle... advancement of engine technology, and to better regulate advanced vehicle propulsion systems, improved... new test procedures that can be applied to a variety of vehicle propulsion systems. C. Applicability...

  16. Optimal Operation of Electric Vehicles in Competitive Electricity Markets and Its Impact on Distribution Power Systems

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2011-01-01

    represent the future of electricity markets in some ways, is chosen as the studied power system in this paper. The impact of the optimal operation strategy for electric vehicles together with the optimal load response to spot market price on the distribution power system with high wind power penetrations......Since the hourly spot market price is available one day ahead in Denmark, the electricity price could be transferred to the consumers and they may make some optimal charge and discharge schedules for their electric vehicles in order to minimize their energy costs. This paper presents an optimal...... operation strategy for a Plug-In Electric Vehicle (PEV) in relation to the hourly electricity price in order to achieve minimum energy costs of the PEV. The western Danish power system, which is currently the grid area in the world that has the largest share of wind power in its generation profiles and may...

  17. A neutron based vehicle-borne improvised explosive device detection system

    Science.gov (United States)

    Koltick, D.; Kim, Y.; McConchie, S.; Novikov, I.; Belbot, M.; Gardner, G.

    2007-08-01

    Vehicle-borne improvised explosive devices pose significant risk to government facilities, economic centers and the general public. The detonation of large-scale explosive devices is a worldwide phenomenon. Checkpoint operations currently call for a manual search of vehicles, putting personnel at high risk. We have built a prototype, remotely controlled system to non-intrusively and non-destructively detect explosives with a vehicle inspection time of between 2 and 5 min. The system utilizes a neutron generator and high-purity germanium (HPGe) detectors housed in moving components that scan the entire vehicle and allow for a single location rescan. The neutron generator operates at ∼108 neutrons per second resulting in extremely small induced radiation levels and low exposure to possible stowaways. A control software operator interface is fully automated for remote operation of the hardware components and execution of the data analysis and threat algorithm with no operator intervention. Studies have been completed to characterize the performance of the system as a function of the weight of explosive within a complete set of vehicles. The underlying physical concepts of the system development are presented.

  18. Analysis of Emission Effects Related to Drivers’ Compliance Rates for Cooperative Vehicle-Infrastructure System at Signalized Intersections

    Directory of Open Access Journals (Sweden)

    Ruohua Liao

    2018-01-01

    Full Text Available Unknown remaining time of signal phase at a signalized intersection generally results in extra accelerations and decelerations that increase variations of operating conditions and thus emissions. A cooperative vehicle-infrastructure system can reduce unnecessary speed changes by establishing communications between vehicles and the signal infrastructure. However, the environmental benefits largely depend on drivers’ compliance behaviors. To quantify the effects of drivers’ compliance rates on emissions, this study applied VISSIM 5.20 (Planung Transport Verkehr AG, Karlsruhe, Germany to develop a simulation model for a signalized intersection, in which light duty vehicles were equipped with a cooperative vehicle-infrastructure system. A vehicle-specific power (VSP-based model was used to estimate emissions. Based on simulation data, the effects of different compliance rates on VSP distributions, emission factors, and total emissions were analyzed. The results show the higher compliance rate decreases the proportion of VSP bin = 0, which means that the frequencies of braking and idling were lower and light duty vehicles ran more smoothly at the intersection if more light duty vehicles complied with the cooperative vehicle-infrastructure system, and emission factors for light duty vehicles decreased significantly as the compliance rate increased. The case study shows higher total emission reductions were observed with higher compliance rate for all of CO2, NOx, HC, and CO emissions. CO2 was reduced most significantly, decreased by 16% and 22% with compliance rates of 0.3 and 0.7, respectively.

  19. Experimental and Numerical Analysis of Bridge Response due to Modular Combination Vehicle Systems

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Bang, R.

    2004-01-01

    paper investigates the dynamic amplification of a minor Danish highway bridge due to passage of such modular combination vehicle systems. A simulation model for a typical Danish highway bridge and the two different vehicles is established. The two different vehicles are a standard 48.8 ton articulated...... vehicle and a 60 ton vehicle consisting of a lorry and semi-trailer carried by a dolly. The dynamic parameters of the vehicles and the modal parameters of the bridge are estimated from measurements obtained for different passage situations of the two vehicles. Results show a good agreement between...... simulated and measured bridge acceleration response and dynamic amplification factors....

  20. A Collaborative Analysis Tool for Thermal Protection Systems for Single Stage to Orbit Launch Vehicles

    Science.gov (United States)

    Alexander, Reginald A.; Stanley, Thomas Troy

    1999-01-01

    Presented is a design tool and process that connects several disciplines which are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system and in the case of SSTO vehicles with air breathing propulsion, which is currently being studied by the National Aeronautics and Space Administration (NASA); the thermal protection system (TPS) is linked directly to almost every major system. The propulsion system pushes the vehicle to velocities on the order of 15 times the speed of sound in the atmosphere before pulling up to go to orbit which results high temperatures on the external surfaces of the vehicle. Thermal protection systems to maintain the structural integrity of the vehicle must be able to mitigate the heat transfer to the structure and be lightweight. Herein lies the interdependency, in that as the vehicle's speed increases, the TPS requirements are increased. And as TPS masses increase the effect on the propulsion system and all other systems is compounded. To adequately determine insulation masses for a vehicle such as the one described above, the aeroheating loads must be calculated and the TPS thicknesses must be calculated for the entire vehicle. To accomplish this an ascent or reentry trajectory is obtained using the computer code Program to Optimize Simulated Trajectories (POST). The trajectory is then used to calculate the convective heat rates on several locations on the vehicles using the Miniature Version of the JA70 Aerodynamic Heating Computer Program (MINIVER). Once the heat rates are defined for each body point on the vehicle, then insulation thicknesses that are required to maintain the vehicle within structural limits are calculated using Systems Improved Numerical Differencing Analyzer (SINDA) models. If the TPS masses are too heavy for the performance of the vehicle the process may be repeated altering the trajectory or some other input to

  1. Modal and Dynamic Analysis of a Vehicle with Kinetic Dynamic Suspension System

    Directory of Open Access Journals (Sweden)

    Bangji Zhang

    2016-01-01

    Full Text Available A novel kinetic dynamic suspension (KDS system is presented for the cooperative control of the roll and warp motion modes of off-road vehicles. The proposed KDS system consists of two hydraulic cylinders acting on the antiroll bars. Hence, the antiroll bars are not completely replaced by the hydraulic system, but both systems are installed. In this paper, the vibration analysis in terms of natural frequencies of different motion modes in frequency domain for an off-road vehicle equipped with different configurable suspension systems is studied by using the modal analysis method. The dynamic responses of the vehicle with different configurable suspension systems are investigated under different road excitations and maneuvers. The results of the modal and dynamic analysis prove that the KDS system can reduce the roll and articulation motions of the off-road vehicle without adding extra bounce stiffness and deteriorating the ride comfort. Furthermore, the roll stiffness is increased and the warp stiffness is decreased by the KDS system, which could significantly enhance handing performance and off-road capability.

  2. Production and exploitation of thermoelectric air conditioning systems for vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Dudnik, Vladimir [Conditioner Ltd, Gagarin (Russian Federation); Skipidarov, Sergey [SCTB NORD, Moskau (Russian Federation); Rapp, Axel [Quick-Ohm Kupper und Co. GmbH, Wuppertal-Cronenberg (Germany)

    2011-07-01

    In the paper more than 10-year experience of thermoelectric devices batch manufacturing is described for the field of their obvious advantages. This field of application includes thermoelectric air conditioning systems which have shown their competitive advantage when used in vehicles of elevated vibration where compressor equipment application is difficult because of leakage of refrigerant. Energy characteristics of air conditioners for tractors, excavators, tanks, locomotive driver's cabins and cranes are described. Thermoelectric (TE) air conditioners mechanical test data as well as operation experience in vehicles are presented. It is shown that consumption of tellurium, which is a strategic component for thermoelectric materials manufacturing, may be lowered to 40 grams per 1 kW of cooling. (orig.)

  3. Vehicle engine sound design based on an active noise control system

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, M. [Siemens VDO Automotive, Auburn Hills, MI (United States)

    2002-07-01

    A study has been carried out to identify the types of vehicle engine sounds that drivers prefer while driving at different locations and under different driving conditions. An active noise control system controlled the sound at the air intake orifice of a vehicle engine's first sixteen orders and half orders. The active noise control system was used to change the engine sound to quiet, harmonic, high harmonic, spectral shaped and growl. Videos were made of the roads traversed, binaural recording of vehicle interior sounds, and vibrations of the vehicle floor pan. Jury tapes were made up for day driving, nighttime driving and driving in the rain during the day for each of the sites. Jurors used paired comparisons to evaluate the vehicle interior sounds while sitting in a vehicle simulator developed by Siemens VDO that replicated videos of the road traversed, binaural recording of the vehicle interior sounds and vibrations of the floor pan and seat. (orig.) [German] Im Rahmen einer Studie wurden Typen von Motorgeraeuschen identifiziert, die von Fahrern unter verschiedenen Fahrbedingungen als angenehm empfunden werden. Ein System zur aktiven Geraeuschbeeinflussung am Ansauglufteinlass im Bereich des Luftfilters modifizierte den Klang des Motors bis zur 16,5ten Motorordnung, und zwar durch Bedaempfung, Verstaerkung und Filterung der Signalfrequenzen. Waehrend der Fahrt wurden Videoaufnahmen der befahrenen Strassen, Stereoaufnahmen der Fahrzeuginnengeraeusche und Aufnahmen der Vibrationsamplituden des Fahrzeugbodens erstellt; dies bei Tag- und Nachtfahrten und bei Tagfahrten im Regen. Zur Beurteilung der aufgezeichneten Geraeusche durch Versuchspersonen wurde ein Fahrzeug-Laborsimulator mit Fahrersitz, Bildschirm, Lautsprecher und mechanischer Erregung der Bodenplatte aufgebaut, um die aufgenommenen Signale moeglichst wirklichkeitsgetreu wiederzugeben. (orig.)

  4. Forming the Calculated Dynamic Transmission Systems of Wheeled Vehicles

    Directory of Open Access Journals (Sweden)

    A. B. Fominykh

    2017-01-01

    Full Text Available To calculate dynamic loading of transmission parts of wheeled vehicles, it is necessary to build up the appropriate calculated dynamic systems and determine their inertial, elastic, and damping parameters.The initial point of this process is to form an initial dynamic system. Hereafter, to cut the time of computations there is a need to reduce the number of masses of this system, and sometimes simplify its structure. The main requirement to be fulfilled in this case is that the calculated dynamical system is to be equivalent to the initial one (in terms of similarity of the vibrational process characteristics in these systems, i.e., the frequencies and modes of oscillations of both systems, their amplitude-frequency characteristics. This is possible when the energy characteristics of the corresponding systems are equal, i.e. their kinetic and potential energies, dissipative functions, and external force energies.Usually, when forming the initial and calculated dynamic systems, all types of friction are reduced to a linearly viscous one. However, it disables us to investigate the motion of these systems if there is an arbitrary, in particular, poly-harmonic action (for example, on the side of the internal combustion engine, since in this case the linear friction coefficients given will depend on the frequency and amplitude of the oscillations.The paper is aimed at determining the equivalent parameters of calculated dynamic systems of wheeled vehicles, including the dissipative parameters for the general case of friction.On the basis of energy principles, the expressions are obtained to determine the equivalent inertial, elastic, and damping parameters of the calculated dynamical systems of wheeled vehicles when the structure is changed and the number of masses of the system is decreased. The presented technique enables us to investigate the motion of these systems under arbitrary, including poly-harmonic, action on the system, using the

  5. Electric vehicles batteries thermal management systems employing phase change materials

    Science.gov (United States)

    Ianniciello, Lucia; Biwolé, Pascal Henry; Achard, Patrick

    2018-02-01

    Battery thermal management is necessary for electric vehicles (EVs), especially for Li-ion batteries, due to the heat dissipation effects on those batteries. Usually, air or coolant circuits are employed as thermal management systems in Li-ion batteries. However, those systems are expensive in terms of investment and operating costs. Phase change materials (PCMs) may represent an alternative which could be cheaper and easier to operate. In fact, PCMs can be used as passive or semi-passive systems, enabling the global system to sustain near-autonomous operations. This article presents the previous developments introducing PCMs for EVs battery cooling. Different systems are reviewed and solutions are proposed to enhance PCMs efficiency in those systems.

  6. Microcontroller-based Vehicle Security System with Tracking Capability using GSM and GPS Technologies

    Directory of Open Access Journals (Sweden)

    Engr. Orven F. Mendoza

    2017-05-01

    Full Text Available The security of vehicles is ext remely essential for vehicle owners especially to those whose hard - earned income was used to avail of one or simply, its loss would mean inconveniences to family and work. With these, it becomes the major problem of every vehicle owner. This thesis, Microc ontroller - based Vehicle Security System with Tracking Capability using GSM and GPS Technologies, is a system that can be used to increase vehicle security, as it can track location of missing vehicle, and help authorities have credible evidence that the ve hicle is stolen. The project uses the Global System for Mobile (GSM and the Global Positioning System (GPS technology, which includes the use of GPS receiver module, GSM module, and microcontroller as its primary components. It also uses a vibration sens or that senses vehicle movement and a buzzer that sends an alarm when sensors are triggered. A confirmation message is sent to the vehicle owner of the vehicle by the device. The system also features capability of tracking the location of the vehicle with the help of the GPS receiver which gives data to the location of the vehicle by way of coordinates. These coordinates provide exact location of the motor vehicle. The SMS message that the vehicle owner will send to the device attached to the vehicle should follow correct format of limitation for successful use and the use of the four character password followed by the command. The command is for power switching or activating automatically the key switch, engine and alarm. If not observed, the device would not work. The project is deemed to provide vehicle owners the security of their vehicle. The system will not only ensure vehicle security but also lessen the threats on vehicles.

  7. Proposal of an intelligent wayside monitoring system for detection of critical ice accumulations on railway vehicles

    Science.gov (United States)

    Michelberger, Frank; Wagner, Adrian; Ostermann, Michael; Maly, Thomas

    2017-09-01

    At railway lines with ballasted tracks, under unfavourable conditions, the so-called flying ballast can occur predominantly for trains driving at high speeds. Especially in wintertime, it is highly likely that the causes are adhered snow or ice deposits, which are falling off the vehicle. Due to the high kinetic energy, the impact can lead to the removal of ballast stones from the structure of the ballasted track. If the stones reach the height of vehicles underside, they may be accelerated significantly due to the collision with the vehicle or may detach further ice blocks. In the worst case, a reinforcing effect occurs, which can lead to considerable damage to railway vehicles (under-floor-area, vehicle exteriors, etc.) and infrastructure (signal masts, noise barriers, etc.). Additionally the flying gravel is a significant danger to people in the nearby area of the tracks. With this feasibility study the applicability and meaningfulness of an intelligent monitoring system for identification of the critical ice accumulation to prevent the ballast fly induced by ice dropping was examined. The key findings of the research are that the detection of ice on railway vehicles and the development of an intelligent monitoring seem to be possible with existing technologies, but a proof of concept in terms of field tests is necessary.

  8. Performance Characteristics of a Modularized and Integrated PTC Heating System for an Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Yoon Hyuk Shin

    2015-12-01

    Full Text Available A modularized positive temperature coefficient heating system has controller-integrated heater modules. Such a heating system that uses a high-voltage power of 330 V was developed in the present study for use in electric vehicles. Four heater modules and one controller with an input power of 5.6 kW were integrated in the modularized system, which was designed for improved heating power density and light weight compared to the conventional heating system, in which the controller is separated. We experimentally investigated the performance characteristics, namely, the heating capacity, energy efficiency, and pressure drop, of a prototype of the developed heating system and found it to have satisfactory performance. The findings of this study will contribute to the development of heating systems for electric vehicles.

  9. Synthesis of the unmanned aerial vehicle remote control augmentation system

    Energy Technology Data Exchange (ETDEWEB)

    Tomczyk, Andrzej, E-mail: A.Tomczyk@prz.edu.pl [Department of Avionics and Control Systems, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Al. Powstañców Warszawy 12, 35-959 Rzeszów (Poland)

    2014-12-10

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.

  10. Design study of toroidal traction CVT for electric vehicles

    Science.gov (United States)

    Raynard, A. E.; Kraus, J.; Bell, D. D.

    1980-01-01

    The development, evaluation, and optimization of a preliminary design concept for a continuously variable transmission (CVT) to couple the high-speed output shaft of an energy storage flywheel to the drive train of an electric vehicle is discussed. An existing computer simulation program was modified and used to compare the performance of five CVT design configurations. Based on this analysis, a dual-cavity full-toroidal drive with regenerative gearing is selected for the CVT design configuration. Three areas are identified that will require some technological development: the ratio control system, the traction fluid properities, and evaluation of the traction contact performance. Finally, the suitability of the selected CVT design concept for alternate electric and hybrid vehicle applications and alternate vehicle sizes and maximum output torques is determined. In all cases the toroidal traction drive design concept is applicable to the vehicle system. The regenerative gearing could be eliminated in the electric powered vehicle because of the reduced ratio range requirements. In other cases the CVT with regenerative gearing would meet the design requirements after appropriate adjustments in size and reduction gearing ratio.

  11. A Malaysian Vehicle License Plate Localization and Recognition System

    Directory of Open Access Journals (Sweden)

    Ganapathy Velappa

    2008-02-01

    Full Text Available Technological intelligence is a highly sought after commodity even in traffic-based systems. These intelligent systems do not only help in traffic monitoring but also in commuter safety, law enforcement and commercial applications. In this paper, a license plate localization and recognition system for vehicles in Malaysia is proposed. This system is developed based on digital images and can be easily applied to commercial car park systems for the use of documenting access of parking services, secure usage of parking houses and also to prevent car theft issues. The proposed license plate localization algorithm is based on a combination of morphological processes with a modified Hough Transform approach and the recognition of the license plates is achieved by the implementation of the feed-forward backpropagation artificial neural network. Experimental results show an average of 95% successful license plate localization and recognition in a total of 589 images captured from a complex outdoor environment.

  12. Sensor network based vehicle classification and license plate identification system

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, Janette Rose [Los Alamos National Laboratory; Brennan, Sean M [Los Alamos National Laboratory; Rosten, Edward J [Los Alamos National Laboratory; Raby, Eric Y [Los Alamos National Laboratory; Kulathumani, Vinod K [WEST VIRGINIA UNIV.

    2009-01-01

    Typically, for energy efficiency and scalability purposes, sensor networks have been used in the context of environmental and traffic monitoring applications in which operations at the sensor level are not computationally intensive. But increasingly, sensor network applications require data and compute intensive sensors such video cameras and microphones. In this paper, we describe the design and implementation of two such systems: a vehicle classifier based on acoustic signals and a license plate identification system using a camera. The systems are implemented in an energy-efficient manner to the extent possible using commercially available hardware, the Mica motes and the Stargate platform. Our experience in designing these systems leads us to consider an alternate more flexible, modular, low-power mote architecture that uses a combination of FPGAs, specialized embedded processing units and sensor data acquisition systems.

  13. Study on Active Suppression Control of Drivetrain Oscillations in an Electric Vehicle

    Science.gov (United States)

    Huang, Lei; Cui, Ying

    2017-07-01

    Due to the low damping in a central driven electric vehicle and lack of passive damping mechanisms as compared with a conventional vehicle, the vehicle may endure torsional vibrations which may deteriorates the vehicle’s drivability. Thus active damping control strategy is required to reduce the undesirable oscillations in an EV. In this paper, the origin of the vibration and the design of a damping control method to suppress such oscillations to improve the drivability of an EV are studied. The traction motor torque that is given by the vehicle controller is adjusted according to the acceleration rate of the motor speed to attenuate the resonant frequency. Simulations and experiments are performed to validate the system. The results show that the proposed control system can effectively suppress oscillations and hence improve drivability.

  14. Human-inspired sound environment recognition system for assistive vehicles

    Science.gov (United States)

    González Vidal, Eduardo; Fredes Zarricueta, Ernesto; Auat Cheein, Fernando

    2015-02-01

    Objective. The human auditory system acquires environmental information under sound stimuli faster than visual or touch systems, which in turn, allows for faster human responses to such stimuli. It also complements senses such as sight, where direct line-of-view is necessary to identify objects, in the environment recognition process. This work focuses on implementing human reaction to sound stimuli and environment recognition on assistive robotic devices, such as robotic wheelchairs or robotized cars. These vehicles need environment information to ensure safe navigation. Approach. In the field of environment recognition, range sensors (such as LiDAR and ultrasonic systems) and artificial vision devices are widely used; however, these sensors depend on environment constraints (such as lighting variability or color of objects), and sound can provide important information for the characterization of an environment. In this work, we propose a sound-based approach to enhance the environment recognition process, mainly for cases that compromise human integrity, according to the International Classification of Functioning (ICF). Our proposal is based on a neural network implementation that is able to classify up to 15 different environments, each selected according to the ICF considerations on environment factors in the community-based physical activities of people with disabilities. Main results. The accuracy rates in environment classification ranges from 84% to 93%. This classification is later used to constrain assistive vehicle navigation in order to protect the user during daily activities. This work also includes real-time outdoor experimentation (performed on an assistive vehicle) by seven volunteers with different disabilities (but without cognitive impairment and experienced in the use of wheelchairs), statistical validation, comparison with previously published work, and a discussion section where the pros and cons of our system are evaluated. Significance

  15. Electric and hybrid vehicle environmental control subsystem study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Heitner, K. L.

    1980-12-04

    The purpose of this study is to select the best technologies for the environmental control subsystem (ECS) for interior heating and cooling in electric and hybrid vehicles. The best technology must be selected from technologies that are available in the near term. The selected technology will serve as a basis on which development of a prototype ECS could start immediately. The technology selected as best ECS for the electric vehicle is the combination of a combustion heater and gasoline engine (Otto cycle) driven vapor compression air conditioner. All of the major ECS components, i.e., the combustion heater, the small gasoline engine, and the vapor compression air conditioner are commercially available. These technologies have good cost and performance characteristics. The cost for this best ECS is relatively close to the cost of current ECS's. At the same time, its effect on the vehicle's propulsion battery is minimal and the ECS size and weight do not have significant impact on the vehicle's range. The required technology also minimizes risk for the vehicle manufacturer because little new capital investment will be needed to produce the ECS. Since electric vehicles are likely to be in limited production for several years, the technology is appropriate for the market size.

  16. Performance Evaluation of Real-time Scheduling Approaches in Vehicle-based Internal Transport Systems

    NARCIS (Netherlands)

    T. Le-Anh (Tuan); M.B.M. de Koster (René); Y. Yu (Yugang)

    2006-01-01

    textabstractThis paper studies the performance of static and real-time scheduling approaches in vehicle-based internal transport (VBIT) systems, which can be found in manufacturing and warehouse facilities. We propose three heuristic approaches for static VBIT problems (insertion, combined and

  17. 77 FR 47043 - Work Group on Measuring Systems for Electric Vehicle Fueling

    Science.gov (United States)

    2012-08-07

    ... National Institute of Standards and Technology Work Group on Measuring Systems for Electric Vehicle Fueling... devices and systems used to assess charges to consumers for electric vehicle fuel. There is no cost for... residential and business locations and those used to measure and sell electricity dispensed as a vehicle fuel...

  18. 49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.

    Science.gov (United States)

    2010-10-01

    ... compressed natural gas vehicles. 571.303 Section 571.303 Transportation Other Regulations Relating to... system integrity of compressed natural gas vehicles. S1. Scope. This standard specifies requirements for the integrity of motor vehicle fuel systems using compressed natural gas (CNG), including the CNG fuel...

  19. 49 CFR 38.179 - Trams, and similar vehicles, and systems

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Trams, and similar vehicles, and systems 38.179 Section 38.179 Transportation Office of the Secretary of Transportation AMERICANS WITH DISABILITIES ACT (ADA) ACCESSIBILITY SPECIFICATIONS FOR TRANSPORTATION VEHICLES Other Vehicles and Systems § 38.179...

  20. 49 CFR 38.173 - Automated guideway transit vehicles and systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Automated guideway transit vehicles and systems. 38.173 Section 38.173 Transportation Office of the Secretary of Transportation AMERICANS WITH DISABILITIES ACT (ADA) ACCESSIBILITY SPECIFICATIONS FOR TRANSPORTATION VEHICLES Other Vehicles and Systems § 38...

  1. 75 FR 15620 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2010-03-30

    ... National Highway Traffic Safety Administration 49 CFR Part 571 RIN 2127-AK62 Federal Motor Vehicle Safety... that amended the Federal motor vehicle safety standard for air brake systems by requiring substantial... 37122) amending Federal Motor Vehicle Safety Standard (FMVSS) No. 121, Air Brake Systems, to require...

  2. Inductive Power Transfer Systems for Bus-Stop-Powered Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Chung-Chuan Hou

    2016-06-01

    Full Text Available This study presents an inductive power transfer (IPT system for electric vehicles (EVs based on EE-shaped ferrite cores. The issues of the IPT system such as efficiency, air gap, displacement, dislocation, and motion are discussed. Furthermore, finite element analysis software is utilized to simulate the IPT system operated under large air gap conditions. Simulation and measurement results are presented to validate the performance of the proposed scheme and meet the requirements for bus-stop-powered EVs.

  3. On-Road Driver Monitoring System Based on a Solar-Powered In-Vehicle Embedded Platform

    Directory of Open Access Journals (Sweden)

    Yen-Lin Chen

    2014-01-01

    Full Text Available This study presents an on-road driver monitoring system, which is implemented on a stand-alone in-vehicle embedded system and driven by effective solar cells. The driver monitoring function is performed by an efficient eye detection technique. Through the driver’s eye movements captured from the camera, the attention states of the driver can be determined and any fatigue states can be avoided. This driver monitoring technique is implemented on a low-power embedded in-vehicle platform. Besides, this study also proposed monitoring machinery that can detect the brightness around the car to effectively determine whether this in-vehicle system is driven by the solar cells or by the vehicle battery. On sunny days, the in-vehicle system can be powered by solar cell in places without the vehicle battery. While in the evenings or on rainy days, the ambient solar brightness is insufficient, and the system is powered by the vehicle battery. The proposed system was tested under the conditions that the solar irradiance is 10 to 113 W/m2 and solar energy and brightness at 10 to 170. From the testing results, when the outside solar radiation is high, the brightness of the inside of the car is increased, and the eye detection accuracy can also increase as well. Therefore, this solar powered driver monitoring system can be efficiently applied to electric cars to save energy consumption and promote the driving safety.

  4. Literature review on recent international activity in cooperative vehicle-highway automation systems.

    Science.gov (United States)

    2012-12-01

    This literature review supports the report, Recent International Activity in Cooperative VehicleHighway Automation Systems. It : reviews the published literature in English dating from 2007 or later about non-U.S.-based work on cooperative vehicle...

  5. Evaluating effectiveness of real-time advanced traveler information systems using a small test vehicle fleet

    Science.gov (United States)

    1997-01-01

    ADVANCE was an in-vehicle advanced traveler information system (ATIS) providing route guidance in real time that operated in the northwestern portion and northwest suburbs of Chicago, Illinois. It used probe vehicles to generate dynamically travel ti...

  6. In-vehicle stereo vision system for identification of traffic conflicts between bus and pedestrian

    Directory of Open Access Journals (Sweden)

    Salvatore Cafiso

    2017-02-01

    Full Text Available The traffic conflict technique (TCT was developed as “surrogate measure of road safety” to identify near-crash events by using measures of the spatial and temporal proximity of road users. Traditionally applications of TCT focus on a specific site by the way of manually or automated supervision. Nowadays the development of in-vehicle (IV technologies provides new opportunities for monitoring driver behavior and interaction with other road users directly into the traffic stream. In the paper a stereo vision and GPS system for traffic conflict investigation is presented for detecting conflicts between vehicle and pedestrian. The system is able to acquire geo-referenced sequences of stereo frames that are used to provide real time information related to conflict occurrence and severity. As case study, an urban bus was equipped with a prototype of the system and a trial in the city of Catania (Italy was carried out analyzing conflicts with pedestrian crossing in front of the bus. Experimental results pointed out the potentialities of the system for collection of data that can be used to get suitable traffic conflict measures. Specifically, a risk index of the conflict between pedestrians and vehicles is proposed to classify collision probability and severity using data collected by the system. This information may be used to develop in-vehicle warning systems and urban network risk assessment.

  7. Virginia Connected Vehicle Test Bed System Performance (V2I System Performance)

    OpenAIRE

    Viray, Reginald; Sarkar, Abhijit; Doerzaph, Zachary

    2016-01-01

    This project identified vehicle-to-infrastructure (V2I) communication system limitations on the Northern Virginia Connected Vehicle Test Bed. Real-world historical data were analyzed to determine wireless Dedicated Short Range Communication (DSRC) coverage gaps and overlaps. In addition, a simulated scalability test was run to determine the effects of network congestion on the system. The results from the real-world historical data showed that significant loss of signal occurred due to obstru...

  8. Vehicle and cargo container inspection system for drugs

    Science.gov (United States)

    Verbinski, Victor V.; Orphan, Victor J.

    1999-06-01

    A vehicle and cargo container inspection system has been developed which uses gamma-ray radiography to produce digital images useful for detection of drugs and other contraband. The system is comprised of a 1 Ci Cs137 gamma-ray source collimated into a fan beam which is aligned with a linear array of NaI gamma-ray detectors located on the opposite side of the container. The NaI detectors are operated in the pulse-counting mode. A digital image of the vehicle or container is obtained by moving the aligned source and detector array relative to the object. Systems have been demonstrated in which the object is stationary (source and detector array move on parallel tracks) and in which the object moves past a stationary source and detector array. Scanning speeds of ˜30 cm/s with a pixel size (at the object) of ˜1 cm have been achieved. Faster scanning speeds of ˜2 m/s have been demonstrated on railcars with more modest spatial resolution (4 cm pixels). Digital radiographic images are generated from the detector count rates. These images, recorded on a PC-based data acquisition and display system, are shown from several applications: 1) inspection of trucks and containers at a border crossing, 2) inspection of railcars at a border crossing, 3) inspection of outbound cargo containers for stolen automobiles, and 4) inspection of trucks and cars for terrorist bombs.

  9. Driving Pattern Analysis for Electric Vehicle (EV) Grid Integration Study

    DEFF Research Database (Denmark)

    Wu, Qiuwei; Nielsen, Arne Hejde; Østergaard, Jacob

    2010-01-01

    In order to facilitate the integration of electric vehicles (EVs) into the Danish power system, the driving data in Denmark were analyzed to extract the information of driving distances and driving time periods which were used to represent the driving requirements and the EV unavailability...

  10. Solar thermionic bimodal propulsion and power system for different vehicles

    Science.gov (United States)

    Kirillov, E. Ya.; Ogloblin, B. G.; Klimov, A. V.; Shumov, D. P.

    1997-01-01

    The search of ways to decrease the per-unit cost of space vehicles injection into high operational orbits and to increase their power-to-weight ratio at the present time is centered on the promising propulsion systems with high specific impulse and with high specific electric power. Such system makes it possible to decrease significantly the propellant mass, as well as on the promising power systems. While SV injects from LEO to final operational orbit, the SPPS must heat hydrogen to temperatures required by specific impulse and generate auxiliary electric power. This paper deals with a solar power and propulsion system with a thermionic energy conversion. The SPPS performance data are given.

  11. Stop and Restart Effects on Modern Vehicle Starting System Components

    Energy Technology Data Exchange (ETDEWEB)

    Windover, Paul R. [Argonne National Lab. (ANL), Argonne, IL (United States); Owens, Russell J. [Argonne National Lab. (ANL), Argonne, IL (United States); Levinson, Terry M. [Argonne National Lab. (ANL), Argonne, IL (United States); Laughlin, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Gaines, Linda [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-01

    Many drivers of personal and commercial vehicles believe that turning the vehicle off and on frequently instead of idling will cause premature wear of the starter system (starter motor and starter battery). As a result, they are concerned that the replacement cost of the starter motor and/or battery due to increased manual engine cycling would be more than the cumulative cost of the fuel saved by not idling unnecessarily. A number of variables play a role in addressing this complex concern, including the number of starting cycles per day, the time between starting cycles, the intended design life of the starting system, the amount of fuel used to restart an engine, and the cumulative cost of the saved fuel. Qualitative and quantitative information from a variety of sources was used to develop a life-cycle economic model to evaluate the cost and quantify the realistic factors that are related to the permissible frequency of starter motor cycles for the average vehicle to economically minimize engine idle time. Annual cost savings can be calculated depending on shutdown duration and the number of shutdown cycles per day. Analysis shows that cost savings are realized by eliminating idling exceeding one minute by shutting down the engine and restarting it. For a typical motorist, the damage to starting system components resulting from additional daily start cycles will be negligible. Overall, it was found that starter life is mostly dependent on the total number of start cycles, while battery life is more dependent on ensuring a full charge between start events.

  12. FY2014 Vehicle and Systems Simulation and Testing Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    The Vehicle and Systems Simulation and Testing research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to advancing light-, medium-, and heavy-duty vehicle systems to help maximize the number of electric miles driven and increase the energy efficiency of transportation vehicles.

  13. Development of quick charging system for electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Anegawa, Takafumi

    2010-09-15

    Despite low environmental impact and high energy efficiency, electric vehicles (EV) have not been widely accepted. The lack of charging infrastructure is one reason. Since lithium-ion battery has high energy density and low internal resistance that allows quick charging, the convenience of EV may be greatly improved if charging infrastructure is prepared adequately. TEPCO aims for EV spread to reduce CO2 emissions and to increase demand for electric power, and has developed quick charging system for fleet-use EV to improve the convenience of EV. And based on research results, we will propose desirable characteristics of quick charger for public use.

  14. Improvement the DTC system for electric vehicles induction motors

    Directory of Open Access Journals (Sweden)

    Arif Ali

    2010-01-01

    Full Text Available A three-phase squirrel-cage induction motor is used as a propulsion system of an electric vehicle (EV. Two different control methods have been designed. The first is based on the conventional DTC Scheme adapted for three level inverter. The second is based on the application of fuzzy logic controller to the DTC scheme. The motor is controlled at different operating conditions using a FLC based DTC technique. In the simulation the novel proposed technique reduces the torque and current ripples. The EV dynamics are taken into account.

  15. Systems analysis of Mars solar electric propulsion vehicles

    Science.gov (United States)

    Hickman, J. M.; Curtis, H. B.; Kenny, B. H.; Sefcik, R. J.

    1990-01-01

    Mission performance, mass, initial power, and cost are determined for solar electric propulsion vehicles across a range of payload masses, reference powers, and mission trajectories. Thick radiation shielding is added to arrays using indium phosphide or III-V multijunction solar cells to reduce the damage incurred through the radiation belts. Special assessments of power management and distribution systems, atmospheric drag, and energy storage are made. It is determined that atmospheric drag is of no great concern and that the energy storage used in countering drag is unnecessary. A scheme to package the arrays, masts, and ion thrusters into a single fairing is presented.

  16. Stress-oriented driver assistance system for electric vehicles.

    Science.gov (United States)

    Athanasiou, Georgia; Tsotoulidis, Savvas; Mitronikas, Epaminondas; Lymberopoulos, Dimitrios

    2014-01-01

    Stress is physiological and physical reaction that appears in highly demanding situations and affects human's perception and reaction capability. Occurrence of stress events within highly dynamic road environment could lead to life-threatening situation. With the perspective of safety and comfort driving provision to anxious drivers, in this paper a stress-oriented Driver Assistance System (DAS) is proposed. The DAS deployed on Electric Vehicle. This novel DAS customizes driving command signal in respect to road context, when stress is detected. The effectiveness of this novel DAS is verified by simulation in MATLAB/SIMULINK environment.

  17. Polymers for hydrogen infrastructure and vehicle fuel systems :

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Rachel Reina; Simmons, Kevin L.; San Marchi, Christopher W.

    2013-10-01

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  18. Systems analysis of Mars solar electric propulsion vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hickman, J.M.; Curtis, H.B.; Kenny, B.H.; Sefcik, R.J.

    1990-01-01

    Mission performance, mass, initial power, and cost are determined for solar electric propulsion vehicles across a range of payload masses, reference powers, and mission trajectories. Thick radiation shielding is added to arrays using indium phosphide or III-V multijunction solar cells to reduce the damage incurred through the radiation belts. Special assessments of power management and distribution systems, atmospheric drag, and energy storage are made. It is determined that atmospheric drag is of no great concern and that the energy storage used in countering drag is unnecessary. A scheme to package the arrays, masts, and ion thrusters into a single fairing is presented. 19 refs.

  19. Numerical study of aerodynamic effects on road vehicles lifting surfaces

    Science.gov (United States)

    Cernat, Mihail Victor; Cernat Bobonea, Andreea

    2017-01-01

    The aerodynamic performance analysis of road vehicles depends on the study of engine intake and cooling flow, internal ventilation, tire cooling, and overall external flow as the motion of air around a moving vehicle affects all of its components in one form or another. Due to the complex geometry of these, the aerodynamic interaction between the various body components is significant, resulting in vortex flow and lifting surface shapes. The present study, however focuses on the effects of external aerodynamics only, and in particular on the flow over the lifting surfaces of a common compact car, designed especially for this study.

  20. In-use vehicle emissions in China: Beijing study

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, Hongyan H.; Gallagher, Kelly Sims (Energy Technology Innovation Policy Research Group, Harvard Kennedy School, Cambridge, MA (US)); Li, Mengliang; Qin, Kongjian; Zhang, Jianwei (China Automotive Research and Technology Center (CN)); Liu, Huan; He, Kebin (Department of Environmental Engineering and Science, Tsinghua Univ. (CN))

    2009-05-01

    China's economic boom in the last three decades has spurred increasing demand for transportation services and personal mobility. Consequently, vehicle population has grown rapidly since the early 1990s, especially in megacities such as Beijing, Guangzhou, and Tianjin. As a result, mobile sources have become more conspicuous contributors to urban air pollution in Chinese cities. Tianjin was our first focus city, and the study there took us about two years to complete. Building upon the experience and partnership generated through the Tianjin study, the research team carried out the Beijing study from fall 2007–fall 2008. Beijing was chosen to be our second focus city for several reasons: it has the largest local fleet and the highest percentage of the population owning vehicles among all Chinese cities, and it has suffered from severe air pollution, partially due to the ever-growing population of on-road vehicles.

  1. Crew Exploration Vehicle (CEV) Potable Water System Verification Description

    Science.gov (United States)

    Peterson, Laurie; DeVera, Jean; Vega, Leticia; Adam, Nik; Steele, John; Gazda, Daniel; Roberts, Michael

    2009-01-01

    The Crew Exploration Vehicle (CEV), also known as Orion, will ferry a crew of up to six astronauts to the International Space Station (ISS), or a crew of up to four astronauts to the moon. The first launch of CEV is scheduled for approximately 2014. A stored water system on the CEV will supply the crew with potable water for various purposes: drinking and food rehydration, hygiene, medical needs, sublimation, and various contingency situations. The current baseline biocide for the stored water system is ionic silver, similar in composition to the biocide used to maintain quality of the water transferred from the Orbiter to the ISS and stored in Contingency Water Containers (CWCs). In the CEV water system, the ionic silver biocide is expected to be depleted from solution due to ionic silver plating onto the surfaces of the materials within the CEV water system, thus negating its effectiveness as a biocide. Since the biocide depletion is expected to occur within a short amount of time after loading the water into the CEV water tanks at the Kennedy Space Center (KSC), an additional microbial control is a 0.1 micron point of use filter that will be used at the outlet of the Potable Water Dispenser (PWD). Because this may be the first time NASA is considering a stored water system for longterm missions that does not maintain a residual biocide, a team of experts in materials compatibility, biofilms and point of use filters, surface treatment and coatings, and biocides has been created to pinpoint concerns and perform testing to help alleviate those concerns related to the CEV water system. Results from the test plans laid out in the paper presented to SAE last year (Crew Exploration Vehicle (CEV) Potable Water System Verification Coordination, 2008012083) will be detailed in this paper. Additionally, recommendations for the CEV verification will be described for risk mitigation in meeting the physicochemical and microbiological requirements on the CEV PWS.

  2. Dynamics of braking vehicles: from Coulomb friction to anti-lock braking systems

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, J M [Instituto Superior de Engenharia de Lisboa, Avenida Conselheiro EmIdio Navarro 1, 1959-007 Lisboa (Portugal)], E-mail: jtavares@dem.isel.ipl.pt

    2009-07-15

    The dynamics of braking of wheeled vehicles is studied using the Coulomb approximation for the friction between road and wheels. The dependence of the stopping distance on the mass of the vehicle, on the number of its wheels and on the intensity of the braking torque is established. It is shown that there are two regimes of braking, with and without sliding. The advantage of using an anti-lock braking system (ABS) is put in evidence, and a quantitative estimate of its efficiency is proposed and discussed.

  3. Integrated Vehicle Health Management (IVHM) for Aerospace Systems

    Science.gov (United States)

    Baroth, Edmund C.; Pallix, Joan

    2006-01-01

    To achieve NASA's ambitious Integrated Space Transportation Program objectives, aerospace systems will implement a variety of new concept in health management. System level integration of IVHM technologies for real-time control and system maintenance will have significant impact on system safety and lifecycle costs. IVHM technologies will enhance the safety and success of complex missions despite component failures, degraded performance, operator errors, and environment uncertainty. IVHM also has the potential to reduce, or even eliminate many of the costly inspections and operations activities required by current and future aerospace systems. This presentation will describe the array of NASA programs participating in the development of IVHM technologies for NASA missions. Future vehicle systems will use models of the system, its environment, and other intelligent agents with which they may interact. IVHM will be incorporated into future mission planners, reasoning engines, and adaptive control systems that can recommend or execute commands enabling the system to respond intelligently in real time. In the past, software errors and/or faulty sensors have been identified as significant contributors to mission failures. This presentation will also address the development and utilization of highly dependable sohare and sensor technologies, which are key components to ensure the reliability of IVHM systems.

  4. Prototyping low-cost and flexible vehicle diagnostic systems

    Directory of Open Access Journals (Sweden)

    Marisol GARCÍA-VALLS

    2016-12-01

    Full Text Available Diagnostic systems are software and hardware-based equipment that interoperate with an external monitored system. Traditionally, they have been expensive equipment running test algorithms to monitor physical properties of, e.g., vehicles, or civil infrastructure equipment, among others. As computer hardware is increasingly powerful (whereas its cost and size is decreasing and communication software becomes easier to program and more run-time efficient, new scenarios are enabled that yield to lower cost monitoring solutions. This paper presents a low cost approach towards the development of a diagnostic systems relying on a modular component-based approach and running on a resource limited embedded computer. Results on a prototype implementation are shown that validate the presented design, its flexibility, performance, and communication latency.

  5. Aerospace Sensor Systems: From Sensor Development To Vehicle Application

    Science.gov (United States)

    Hunter, Gary W.

    2008-01-01

    This paper presents an overview of years of sensor system development and application for aerospace systems. The emphasis of this work is on developing advanced capabilities for measurement and control of aeropropulsion and crew vehicle systems as well as monitoring the safety of those systems. Specific areas of work include chemical species sensors, thin film thermocouples and strain gages, heat flux gages, fuel gages, SiC based electronic devices and sensors, space qualified electronics, and MicroElectroMechanical Systems (MEMS) as well as integrated and multifunctional sensor systems. Each sensor type has its own technical challenges related to integration and reliability in a given application. The general approach has been to develop base sensor technology using microfabrication techniques, integrate sensors with "smart" hardware and software, and demonstrate those systems in a range of aerospace applications. Descriptions of the sensor elements, their integration into sensors systems, and examples of sensor system applications will be discussed. Finally, suggestions related to the future of sensor technology will be given. It is concluded that smart micro/nano sensor technology can revolutionize aerospace applications, but significant challenges exist in maturing the technology and demonstrating its value in real-life applications.

  6. Aerodynamic characteristics of the National Launch System (NLS) 1 1/2 stage launch vehicle

    Science.gov (United States)

    Springer, A. M.; Pokora, D. C.

    1994-01-01

    The National Aeronautics and Space Administration (NASA) is studying ways of assuring more reliable and cost effective means to space. One launch system studied was the NLS which included the l l/2 stage vehicle. This document encompasses the aerodynamic characteristics of the 1 l/2 stage vehicle. To support the detailed configuration definition two wind tunnel tests were conducted in the NASA Marshall Space Flight Center's 14x14-Inch Trisonic Wind Tunnel during 1992. The tests were a static stability and a pressure test, each utilizing 0.004 scale models. The static stability test resulted in the forces and moments acting on the vehicle. The aerodynamics for the reference configuration with and without feedlines and an evaluation of three proposed engine shroud configurations were also determined. The pressure test resulted in pressure distributions over the reference vehicle with and without feedlines including the reference engine shrouds. These pressure distributions were integrated and balanced to the static stability coefficients resulting in distributed aerodynamic loads on the vehicle. The wind tunnel tests covered a Mach range of 0.60 to 4.96. These ascent flight aerodynamic characteristics provide the basis for trajectory and performance analysis, loads determination, and guidance and control evaluation.

  7. NASA Ares I Launch Vehicle Roll and Reaction Control Systems Design Status

    Science.gov (United States)

    Butt, Adam; Popp, Chris G.; Pitts, Hank M.; Sharp, David J.

    2009-01-01

    This paper provides an update of design status following the preliminary design review of NASA s Ares I first stage roll and upper stage reaction control systems. The Ares I launch vehicle has been chosen to return humans to the moon, mars, and beyond. It consists of a first stage five segment solid rocket booster and an upper stage liquid bi-propellant J-2X engine. Similar to many launch vehicles, the Ares I has reaction control systems used to provide the vehicle with three degrees of freedom stabilization during the mission. During launch, the first stage roll control system will provide the Ares I with the ability to counteract induced roll torque. After first stage booster separation, the upper stage reaction control system will provide the upper stage element with three degrees of freedom control as needed. Trade studies and design assessments conducted on the roll and reaction control systems include: propellant selection, thruster arrangement, pressurization system configuration, and system component trades. Since successful completion of the preliminary design review, work has progressed towards the critical design review with accomplishments made in the following areas: pressurant / propellant tank, thruster assembly, and other component configurations, as well as thruster module design, and waterhammer mitigation approach. Also, results from early development testing are discussed along with plans for upcoming system testing. This paper concludes by summarizing the process of down selecting to the current baseline configuration for the Ares I roll and reaction control systems.

  8. Evaluation of ISO CRS Envelopes Relative to U.S. Vehicles and Child Restraint Systems.

    Science.gov (United States)

    Hu, Jingwen; Manary, Miriam A; Klinich, Kathleen D; Reed, Matthew P

    2015-01-01

    The objectives of this study are to use computer simulation to evaluate the International Organization for Standardization (ISO) 13216-3:2006(E) child restraint system (CRS) envelopes relative to rear seat compartments from vehicles and CRSs in the U.S. market, investigate the potential compatibility issues of U.S. vehicles and CRSs, and demonstrate whether necessary modifications can be made to introduce such a system into compatibility evaluations between U.S. vehicles and CRSs. Three-dimensional geometry models for 26 vehicles and 16 convertible CRS designs developed previously were used. Geometry models of 3 forward-facing and 3 rear-facing CRS envelopes provided by the ISO were built in the current study. The virtual fit process closely followed the physical procedures described in the ISO standards. The results showed that the current ISO rear-facing envelopes can provide reasonable classifications for CRSs and vehicles, but the forward-facing envelopes do not represent products currently in the U.S. market. In particular, all of the selected vehicles could accommodate the largest forward-facing CRS envelope at the second-row seat location behind the driver seat. In contrast, half of the selected CRSs could not fit within any of the forward-facing ISO CRS envelopes, mainly due to protrusion at the rear-top corner of the envelope. The results also indicate that the rear seat compartment in U.S. vehicles often cannot accommodate a large portion of convertible CRSs in the rear-facing position. The increased demand for vehicle fuel economy and the recommendation to keep children rear-facing longer may lead to smaller cars and larger CRSs, which may increase the potential for fit problems. The virtual classifications indicated that contact between the forward-facing CRSs and the head restraints in the rear seats as well as that between the rear-facing CRSs and the back of the front seats is a main concern regarding the compatibility between the vehicles and the

  9. A rapid method for optimization of the rocket propulsion system for single-stage-to-orbit vehicles

    Science.gov (United States)

    Eldred, C. H.; Gordon, S. V.

    1976-01-01

    A rapid analytical method for the optimization of rocket propulsion systems is presented for a vertical take-off, horizontal landing, single-stage-to-orbit launch vehicle. This method utilizes trade-offs between propulsion characteristics affecting flight performance and engine system mass. The performance results from a point-mass trajectory optimization program are combined with a linearized sizing program to establish vehicle sizing trends caused by propulsion system variations. The linearized sizing technique was developed for the class of vehicle systems studied herein. The specific examples treated are the optimization of nozzle expansion ratio and lift-off thrust-to-weight ratio to achieve either minimum gross mass or minimum dry mass. Assumed propulsion system characteristics are high chamber pressure, liquid oxygen and liquid hydrogen propellants, conventional bell nozzles, and the same fixed nozzle expansion ratio for all engines on a vehicle.

  10. Dynamic route guidance strategy in a two-route pedestrian-vehicle mixed traffic flow system

    Science.gov (United States)

    Liu, Mianfang; Xiong, Shengwu; Li, Bixiang

    2016-05-01

    With the rapid development of transportation, traffic questions have become the major issue for social, economic and environmental aspects. Especially, during serious emergencies, it is very important to alleviate road traffic congestion and improve the efficiency of evacuation to reduce casualties, and addressing these problems has been a major task for the agencies responsible in recent decades. Advanced road guidance strategies have been developed for homogeneous traffic flows, or to reduce traffic congestion and enhance the road capacity in a symmetric two-route scenario. However, feedback strategies have rarely been considered for pedestrian-vehicle mixed traffic flows with variable velocities and sizes in an asymmetric multi-route traffic system, which is a common phenomenon in many developing countries. In this study, we propose a weighted road occupancy feedback strategy (WROFS) for pedestrian-vehicle mixed traffic flows, which considers the system equilibrium to ease traffic congestion. In order to more realistic simulating the behavior of mixed traffic objects, the paper adopted a refined and dynamic cellular automaton model (RDPV_CA model) as the update mechanism for pedestrian-vehicle mixed traffic flow. Moreover, a bounded rational threshold control was introduced into the feedback strategy to avoid some negative effect of delayed information and reduce. Based on comparisons with the two previously proposed strategies, the simulation results obtained in a pedestrian-vehicle traffic flow scenario demonstrated that the proposed strategy with a bounded rational threshold was more effective and system equilibrium, system stability were reached.

  11. An adaptive compound control system for the ESC of electric-wheel vehicle

    Directory of Open Access Journals (Sweden)

    Wang Cheng

    2015-01-01

    Full Text Available The aim of this study is to achieve the adaptive control for the Electronic Stability Control (ESC of electric-wheel vehicle. An adaptive compound control system is designed. The system main includes a yaw velocity controller and a side slip angle controller. The yaw velocity controller is robust PID. The side slip angle controller is neural network PID. The PID parameters are adjusted adaptively through robust and neural network. The two controllers constitute the compound controller. Lateral acceleration is used as a limit value and added to the yaw velocity control. A full vehicle model is built to simulate the real electric-wheel vehicle. The ideal values of control parameters are introduced through the ideal vehicle model. Simulation experiments were dong, which included a steering wheel step input experiment and a sine input experiment. The experimental results show that the steady state and the transient performance of the control system are good. The adaptive compound control system is fit for the ESC.

  12. Operation of Vehicles in AGV System and Method for Analyzing the Operation

    Science.gov (United States)

    Hoshino, Takahiro; Tsuboi, Kazuhiro; Yamanaka, Kazuo; Hamamatsu, Yoshio

    It is important to discuss the behavior of traffic at merging sections for the design and realization of an automated guided vehicle system (AGVS). In this study, we deal with a merging section of the AGVS by considering a time limit for the merging of vehicles. Near the merging section, traffic flowing in one direction must form a queue to avoid collisions between vehicles. We propose an improvement in the control strategy proposed in the previous research. However, it is difficult to analyze the mathematical model of the merging section. Analysis can be performed only for the case in which the time limit is one unit. We also propose a method for analyzing the model for an arbitrary time limit using a linear recurrence relation. We quantitatively discuss the influence of the time limit on the average queue length and the detour rate.

  13. Study of long term options for electric vehicle air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, J.; Mallory, D. [Little (Arthur D.), Inc., Cambridge, MA (United States)

    1991-07-01

    There are strong incentives in terms of national energy and environmental policy to encourage the commercialization of electrically powered vehicles in the U.S. Among these incentives are reduced petroleum consumption, improved electric generation capacity utilization, reduced IC engine emissions, and, depending on the primary fuel used for electric power generation, reduced emissions of carbon dioxide. A basic requirement for successfully commercializing any motor vehicle in the US is provision of adequate passenger comfort heating and air conditioning (cooling). Although air conditioning is generally sold as optional equipment, in excess of 80% of the automobiles and small trucks sold in the US have air conditioning systems. In current, pre-commercial electric vehicles, comfort heating is provided by a liquid fuel fired heater that heats water which is circulated through the standard heater core in the conventional interior air handling unit. Air conditioning is provided by electric motor driven compressors, installed in a system having, perhaps, an {open_quotes}upsized{close_quotes} condenser and a standard evaporator (front and rear evaporators in some instances) installed in the conventional interior air handler. Although this approach is adequate in the near term for initial commercialization efforts, a number of shortcomings of this arrangement, as well as longer range concerns need to be addressed. In this project, the long term alternatives for cooling and heating electric vehicles effectively, efficiently (with minimum range penalties), and without adverse environmental impacts have been examined. Identification of options that can provide both heating and cooling is important, in view of the disadvantages of carrying separate heating and cooling systems in the vehicle.

  14. Study of long term options for electric vehicle air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, J.; Mallory, D. (Little (Arthur D.), Inc., Cambridge, MA (United States))

    1991-07-01

    There are strong incentives in terms of national energy and environmental policy to encourage the commercialization of electrically powered vehicles in the U.S. Among these incentives are reduced petroleum consumption, improved electric generation capacity utilization, reduced IC engine emissions, and, depending on the primary fuel used for electric power generation, reduced emissions of carbon dioxide. A basic requirement for successfully commercializing any motor vehicle in the US is provision of adequate passenger comfort heating and air conditioning (cooling). Although air conditioning is generally sold as optional equipment, in excess of 80% of the automobiles and small trucks sold in the US have air conditioning systems. In current, pre-commercial electric vehicles, comfort heating is provided by a liquid fuel fired heater that heats water which is circulated through the standard heater core in the conventional interior air handling unit. Air conditioning is provided by electric motor driven compressors, installed in a system having, perhaps, an [open quotes]upsized[close quotes] condenser and a standard evaporator (front and rear evaporators in some instances) installed in the conventional interior air handler. Although this approach is adequate in the near term for initial commercialization efforts, a number of shortcomings of this arrangement, as well as longer range concerns need to be addressed. In this project, the long term alternatives for cooling and heating electric vehicles effectively, efficiently (with minimum range penalties), and without adverse environmental impacts have been examined. Identification of options that can provide both heating and cooling is important, in view of the disadvantages of carrying separate heating and cooling systems in the vehicle.

  15. Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid; a case study

    NARCIS (Netherlands)

    van der Kam, Mart|info:eu-repo/dai/nl/375362339; van Sark, Wilfried|info:eu-repo/dai/nl/074628526

    2015-01-01

    We present a model developed to study the increase of self-consumption of photovoltaic (PV) power by smart charging of electric vehicles (EVs) and vehicle-to-grid (V2G) technology. Whereas previous studies mostly use large EV fleets in their models, our focus is on a smaller scale. We apply the

  16. 76 FR 55829 - Federal Motor Vehicle Safety Standards; Electronic Stability Control Systems

    Science.gov (United States)

    2011-09-09

    ... National Highway Traffic Safety Administration 49 CFR Part 571 RIN 2127-AL02 Federal Motor Vehicle Safety Standards; Electronic Stability Control Systems AGENCY: National Highway Traffic Safety Administration... changes to a new Federal motor vehicle safety standard requiring light vehicles to be equipped with...

  17. 78 FR 9623 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2013-02-11

    ... National Highway Traffic Safety Administration 49 CFR Part 571 RIN 2127-AL11 Federal Motor Vehicle Safety... published a final rule that amended the Federal motor vehicle safety standard for air brake systems by... published a final rule in the Federal Register amending Federal Motor Vehicle Safety Standard (FMVSS) No...

  18. Mechatronics design and experimental verification of an electric-vehicle-based hybrid thermal management system

    Directory of Open Access Journals (Sweden)

    Yi-Hsuan Hung

    2016-02-01

    Full Text Available In this study, an electric-vehicle-based thermal management system was designed for dual energy sources. An experimental platform developed in a previous study was modified. Regarding the mechanical components, a heat exchanger with a radiator, proportional valve, coolant pipes, and coolant pump was appropriately integrated. Regarding the electric components, two heaters emulating waste heat were controlled using two programmable power supply machines. A rapid-prototyping controller with two temperature inputs and three outputs was designed. Rule-based control strategies were coded to maintain optimal temperatures for the emulated proton exchange membrane fuel cells and lithium batteries. To evaluate the heat power of dual energy sources, driving cycles, energy management control, and efficiency maps of energy sources were considered for deriving time-variant values. The main results are as follows: (a an advanced mechatronics platform was constructed; (b a driving cycle simulation was successfully conducted; and (c coolant temperatures reached their optimal operating ranges when the proportional valve, radiator, and coolant pump were sequentially controlled. The benefits of this novel electric-vehicle-based thermal management system are (a high-efficiency operation of energy sources, (b low occupied volume integrated with energy sources, and (c higher electric vehicle traveling mileage. This system will be integrated with real energy sources and a real electric vehicle in the future.

  19. Thermal Property Analysis of Axle Load Sensors for Weighing Vehicles in Weigh-in-Motion System

    OpenAIRE

    Piotr Burnos; Janusz Gajda

    2016-01-01

    Systems which permit the weighing of vehicles in motion are called dynamic Weigh-in-Motion scales. In such systems, axle load sensors are embedded in the pavement. Among the influencing factors that negatively affect weighing accuracy is the pavement temperature. This paper presents a detailed analysis of this phenomenon and describes the properties of polymer, quartz and bending plate load sensors. The studies were conducted in two ways: at roadside Weigh-in-Motion sites and at a laboratory ...

  20. Development of Sense and Avoid system based on multi sensor integration for unmanned vehicle system

    Science.gov (United States)

    Legowo, Ari; Ramli, M. Faiz Bin; Syafiq Shamsudin, Syariful

    2017-03-01

    Unmanned Aerial Vehicles (UAV) have a great potential to replace manned aircraft in many tasks or missions. However, in order to allow these UAVs to execute their mission appropriately and especially to deploy them in national or civil airspace, UAVs must have a proper and reliable collision avoidance system. This avoidance system is known as a Sense and avoidance (SAA) system. The purpose of the system is to detect any obstacles either in static or moving condition and respond with proper avoidance maneuvers in order to maintain minimum separation distances. Therefore the research project deals with the development of a unique SAA system which is based on multisensory integration. In particular, it focuses on sensors, processing logic and hardware required on the UAVs to acquire situational awareness. Dissimilar kind of sensors which is optical and laser type is proposed to be employed, so that weaknesses from each individual sensor can be tolerated. Proper logics or algorithm related to the fusion of output from each sensor will also be studied.The combination of Extended KalmanFilter (EKF) and Differential Evolution(DE) method is used for the purpose of development of detection and tracking system which considered to be the main challenges in SAA system development. Subsequently, once the algorithms are put together, including maneuvers avoidance technique algorithm, the developed SAA system will be experimentally tested in order to validate and evaluate the overall capability of the system.

  1. Performance Evaluation of an In-Wheel Motor Cooling System in an Electric Vehicle/Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Dong Hyun Lim

    2014-02-01

    Full Text Available High power and miniaturization of motors in an in-wheel drive system, which is installed inside the wheels of a vehicle, are required for directly driving the wheels. In addition, an efficient cooling system is required to ensure high driving performance and durability. This study experimentally evaluated the heat dissipation performance of a 35-kW-class large-capacity in-wheel motor equipped with an internal-circulation-type oil-cooling system that exhibits high cooling performance and can be easily miniaturized to this motor. Temperatures of the coil and stator core of cooling systems with and without a radiator were measured in real time under in-wheel motor driving conditions. It was found that operating the cooling system at a continuous-rating maximum speed without the radiator was difficult. We confirmed that under continuous-rating base speed and continuous-rating maximum speed driving conditions, the cooling system with the radiator showed thermally stable operation. Furthermore, under maximum-rating base speed and maximum-rating maximum speed driving conditions, the cooling system with the radiator provided additional driving times of approximately 22 s and 2 s, respectively.

  2. Control Information and Data Processing of Vehicle based on Global Position System

    OpenAIRE

    Shupeng Zhao; Miao Tian; Shifang Zhang; Jiuxi Li

    2013-01-01

    A testing system based on Data Stream function of vehicle electronic control system was developed to test the city bus driving cycle. A mufti-function Vehicle Traveling Data Recorder based on GPS which can realize the vehicles positioning and navigating was investigated. The system included data acquisition module, display module, print module, GPS module, communication module and so on. This system adopts the FRAM memory as the storing equipment in which the automobile realized the real-time...

  3. Online Dispatching Rules For Vehicle-Based Internal Transport Systems

    NARCIS (Netherlands)

    T. Le-Anh (Tuan); M.B.M. de Koster (René)

    2004-01-01

    textabstractOn-line vehicles dispatching rules are widely used in many facilities such as warehouses to control vehicles' movements. Single-attribute dispatching rules, which dispatch vehicles based on only one parameter, are used commonly. However, multi-attribute dispatching rules prove to be

  4. Robust Design Optimization of an Aerospace Vehicle Prolusion System

    Directory of Open Access Journals (Sweden)

    Muhammad Aamir Raza

    2011-01-01

    Full Text Available This paper proposes a robust design optimization methodology under design uncertainties of an aerospace vehicle propulsion system. The approach consists of 3D geometric design coupled with complex internal ballistics, hybrid optimization, worst-case deviation, and efficient statistical approach. The uncertainties are propagated through worst-case deviation using first-order orthogonal design matrices. The robustness assessment is measured using the framework of mean-variance and percentile difference approach. A parametric sensitivity analysis is carried out to analyze the effects of design variables variation on performance parameters. A hybrid simulated annealing and pattern search approach is used as an optimizer. The results show the objective function of optimizing the mean performance and minimizing the variation of performance parameters in terms of thrust ratio and total impulse could be achieved while adhering to the system constraints.

  5. Concept development of control system for perspective unmanned aerial vehicles

    Directory of Open Access Journals (Sweden)

    Koryanov Vsevolod V.

    2018-01-01

    Full Text Available Presented actual aspects of the development of the control system of unmanned aerial vehicles (UAVs in the example of perspective. Because the current and future UAV oriented to implementation of a wide range of tasks, taking into account the use of several types of payload, in this paper discusses the general principles of construction of onboard control complex, in turn, a hardware implementation of the automatic control system has been implemented in the microcontroller Arduino platform and the Raspberry Pi. In addition, in the paper presents the most common and promising way to ensure the smooth and reliable communication of the command post with the UAV as well as to the ways of parry considered and abnormal situations.

  6. TRACKING VEHICLE IN GSM NETWORK TO SUPPORT INTELLIGENT TRANSPORTATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Z. Koppanyi

    2012-07-01

    Full Text Available The penetration of GSM capable devices is very high, especially in Europe. To exploit the potential of turning these mobile devices into dynamic data acquisition nodes that provides valuable data for Intelligent Transportation Systems (ITS, position information is needed. The paper describes the basic operation principles of the GSM system and provides an overview on the existing methods for deriving location data in the network. A novel positioning solution is presented that rely on handover (HO zone measurements; the zone geometry properties are also discussed. A new concept of HO zone sequence recognition is introduced that involves application of Probabilistic Deterministic Finite State Automata (PDFA. Both the potential commercial applications and the use of the derived position data in ITS is discussed for tracking vehicles and monitoring traffic flow. As a practical cutting edge example, the integration possibility of the technology in the SafeTRIP platform (developed in an EC FP7 project is presented.

  7. Flight envelope protection system for unmanned aerial vehicles

    KAUST Repository

    Claudel, Christian G.

    2016-04-28

    Systems and methods to protect the flight envelope in both manual flight and flight by a commercial autopilot are provided. A system can comprise: an inertial measurement unit (IMU); a computing device in data communication with the IMU; an application executable by the computing device comprising: logic that estimates an angle of attack; a slip angle; and a speed of an unmanned aerial vehicle (UAV) based at least in part on data received from the UAV. A method can comprise estimating, via a computing device, flight data of a UAV based at least in part on data received from an IMU; comparing the estimated flight data with measured flight data; and triggering an error indication in response to a determination that the measured flight data exceeds a predefined deviation of the estimated flight data. The estimated speed can comprise an estimated airspeed, vertical speed and/or ground velocity.

  8. Tracking Vehicle in GSM Network to Support Intelligent Transportation Systems

    Science.gov (United States)

    Koppanyi, Z.; Lovas, T.; Barsi, A.; Demeter, H.; Beeharee, A.; Berenyi, A.

    2012-07-01

    The penetration of GSM capable devices is very high, especially in Europe. To exploit the potential of turning these mobile devices into dynamic data acquisition nodes that provides valuable data for Intelligent Transportation Systems (ITS), position information is needed. The paper describes the basic operation principles of the GSM system and provides an overview on the existing methods for deriving location data in the network. A novel positioning solution is presented that rely on handover (HO) zone measurements; the zone geometry properties are also discussed. A new concept of HO zone sequence recognition is introduced that involves application of Probabilistic Deterministic Finite State Automata (PDFA). Both the potential commercial applications and the use of the derived position data in ITS is discussed for tracking vehicles and monitoring traffic flow. As a practical cutting edge example, the integration possibility of the technology in the SafeTRIP platform (developed in an EC FP7 project) is presented.

  9. Development and testing of an unmanned air vehicle telemetry system

    Science.gov (United States)

    Wilhelm, Kevin T.

    1991-09-01

    Unmanned air vehicles (UAV's) provide a low-cost, low-maintenance, and effective platform upon which experimentation can be performed to validate conceptual aerodynamic ideas. However, the UAV flight test data acquisition process is complex and requires a reliable recording system for post-flight data analysis. The thrust of this thesis was the development, construction, and validation of a viable telemetry system for data gathering and processing. Major areas of focus were: integration of the telemetry into a 1/8 scale model, radio controlled F-16A airplane; telemetry circuitry optimization; recording and display of instrumented parameters; and data reduction techniques necessary to obtain useful information. A flight test was flown and data was gathered using a steady-heading side-slip maneuver to demonstrate successful integration of all supporting elements.

  10. EHV systems technology - A look at the principles and current status. [Electric and Hybrid Vehicle

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1983-01-01

    An examination of the basic principles and practices of systems engineering is undertaken in the context of their application to the component and subsystem technologies involved in electric and hybrid vehicle (EHV) development. The limitations of purely electric vehicles are contrasted with hybrid, heat engine-incorporating vehicle technology, which is inherently more versatile. A hybrid vehicle concept assessment methodology is presented which employs current technology and yet fully satisfies U.S. Department of Energy petroleum displacement goals.

  11. The systems of automatic weight control of vehicles in the road and rail transport in Poland

    OpenAIRE

    Wiśnicki, Bogusz; Wolnowska, Anna

    2011-01-01

    Condition of roads in Poland, despite the on-going modernisation works is still unsatisfactory. One reason is the excessive wear caused by overloaded vehicles. This problem also applies to rail transport, although to a much lesser extent. One solution may be the system of automatic weight control of road and rail vehicles. The article describes the legal and organizational conditions of oversize vehicles inspection in Poland. Characterized current practices weighing road vehicles, based on...

  12. System safety engineering in the development of advanced surface transportation vehicles

    Science.gov (United States)

    Arnzen, H. E.

    1971-01-01

    Applications of system safety engineering to the development of advanced surface transportation vehicles are described. As a pertinent example, the paper describes a safety engineering efforts tailored to the particular design and test requirements of the Tracked Air Cushion Research Vehicle (TACRV). The test results obtained from this unique research vehicle provide significant design data directly applicable to the development of future tracked air cushion vehicles that will carry passengers in comfort and safety at speeds up to 300 miles per hour.

  13. Large-Scale Battery System Development and User-Specific Driving Behavior Analysis for Emerging Electric-Drive Vehicles

    OpenAIRE

    Yihe Sun; Li Shang; Qin Lv; Kun Li; Yifei Jiang; Jie Wu

    2011-01-01

    Emerging green-energy transportation, such as hybrid electric vehicles (HEVs) and plug-in HEVs (PHEVs), has a great potential for reduction of fuel consumption and greenhouse emissions. The lithium-ion battery system used in these vehicles, however, is bulky, expensive and unreliable, and has been the primary roadblock for transportation electrification. Meanwhile, few studies have considered user-specific driving behavior and its significant impact on (P)HEV fuel efficiency, battery system l...

  14. Road transport management system: a self regulation initiative to promote load optimisation, vehicle maintenance and driver wellness in heavy vehicle transport in South Africa

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2008-04-01

    Full Text Available vehicle transport industry through a Road Transport Management System (RTMS) with the aim of contributing to the road authorities’ efforts to address the above problems. During 2003 a heavy vehicle accreditation scheme was developed and implemented...

  15. Electric vehicles to support large wind power penetration in future danish power systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte; Thøgersen, Paul

    2012-01-01

    Electric Vehicles (EVs) could play major role in the future intelligent grids to support a large penetration of renewable energy in Denmark, especially electricity production from wind turbines. The future power systems aims to phase-out big conventional fossil-fueled generators with large number...... and generation. This paper analyses power balancing support services from EVs and the feasible levels of electric vehicle integration possible to provide grid ancillary services in Danish power systems. This evaluation is conducted on typical wind dominated distribution and transmission networks in Denmark....... The analyses show that EV integration of around 10% is capable of providing sufficient grid regulation services in Danish power systems to support wind power penetration of around 50% in Denmark. The aggregated EV penetration levels quantified on system levels are validated with impact assessment studies...

  16. Data Applicability of Heritage and New Hardware for Launch Vehicle System Reliability Models

    Science.gov (United States)

    Al Hassan Mohammad; Novack, Steven

    2015-01-01

    Many launch vehicle systems are designed and developed using heritage and new hardware. In most cases, the heritage hardware undergoes modifications to fit new functional system requirements, impacting the failure rates and, ultimately, the reliability data. New hardware, which lacks historical data, is often compared to like systems when estimating failure rates. Some qualification of applicability for the data source to the current system should be made. Accurately characterizing the reliability data applicability and quality under these circumstances is crucial to developing model estimations that support confident decisions on design changes and trade studies. This presentation will demonstrate a data-source classification method that ranks reliability data according to applicability and quality criteria to a new launch vehicle. This method accounts for similarities/dissimilarities in source and applicability, as well as operating environments like vibrations, acoustic regime, and shock. This classification approach will be followed by uncertainty-importance routines to assess the need for additional data to reduce uncertainty.

  17. The GNC Measurement System for the Automated Transfer Vehicle

    Science.gov (United States)

    Roux, Y.; da Cunha, P.

    The Automated Transfer Vehicle (ATV) is a European Space Agency (ESA) funded spacecraft developed by EADS Space Transportation as prime contractor for the space segment together with major European industrial partners, in the frame of the International Space Station (ISS). Its mission objective is threefold : to supply the station with fret and propellant, to reboost ISS to a higher orbit and to dispose of waste from the station. The ATV first flight, called Jules Verne and planned on 2005, will be the first European Vehicle to perform an orbital rendezvous. The GNC Measurement System (GMS) is the ATV on board function in charge of the measurement data collection and preconditioning for the navigation, guidance and control (GNC) algorithms. The GMS is made up of hardware which are the navigation sensors (with a certain level of hardware redundancy for each of them), and of an on-board software that manages, monitors and performs consistency checks to detect and isolate potential sensor failures. The GMS relies on six kinds of navigation sensors, used during various phases of the mission : the gyrometers assembly (GYRA), the accelerometers assembly (ACCA), the star trackers (STR), the GPS receivers, the telegoniometers (TGM) and the videometers (VDM), the last two being used for the final rendezvous phase. The GMS function is developed by EADS Space Transportation together with other industrial partners: EADS Astrium, EADS Sodern, Laben and Dasa Jena Optronik.

  18. POF hydrogen detection sensor systems for launch vehicles applications

    Science.gov (United States)

    Kazemi, Alex A.; Larson, David B.; Wuestling, Mark D.

    2011-06-01

    This paper describes the first successful Plastic Optical Fiber (POF) cable and glass fiber hydrogen detection sensor systems developed for Delta IV Launch Vehicle. Hydrogen detection in space application is very challenging; the hydrogen detection is priority for rocket industry and every transport device or any application where hydrogen is involved. H2 sensors are necessary to monitor the detection possible leak to avoid explosion, which can be highly dangerous. The hydrogen sensors had to perform in temperatures between -18° C to 60° C (0° F to 140° F). The response of the sensor in this temperature regime was characterized to ensure proper response of the sensors to fugitive hydrogen leakage during vehicle ground operations. We developed the first 75 m combination of POF and glass fiber H2 sensors. Performed detail investigation of POF-glass cables for attenuation loss, thermal, humidity, temperature, shock, accelerate testing for life expectancy. Also evaluated absorption, operating and high/low temperatures, and harsh environmental for glass-POF cables connectors. The same test procedures were performed for glass multi mode fiber part of the H2 and O2 sensors. A new optical waveguides was designed and developed to decrease the impact of both noise and long term drift of sensor. A field testing of sensors was performed at NASA Stennis on the Aerospike X-33 to quantify the element of the sensor package that was responsible for hydrogen detection and temperature.

  19. Crew Exploration Vehicle Potable Water System Verification Description

    Science.gov (United States)

    Tuan, George; Peterson, Laurie J.; Vega, Leticia M.

    2010-01-01

    A stored water system on the crew exploration vehicle (CEV) will supply the crew with potable water for: drinking and food rehydration, hygiene, medical needs, sublimation, and various contingency situations. The current baseline biocide for the stored water system is ionic silver, similar in composition to the biocide used to maintain the quality of the water, transferred from the orbiter to the International Space Station, stored in contingency water containers. In the CEV water system, a depletion of the ionic silver biocide is expected due to ionic silver-plating onto the surfaces of materials within the CEV water system, thus negating its effectiveness as a biocide. Because this may be the first time NASA is considering a stored water system for long-term missions that do not maintain a residual biocide, a team of experts in materials compatibility, biofilms and point-of-use filters, surface treatment and coatings, and biocides has been created to pinpoint concerns and perform the testing that will help alleviate concerns related to the CEV water system.

  20. A personal airbag system for the Orion Crew Exploration Vehicle

    Science.gov (United States)

    Do, Sydney; de Weck, Olivier

    2012-12-01

    Airbag-based methods for crew impact attenuation have been highlighted as a potential simple, lightweight means of enabling safe land-landings for the Orion Crew Exploration Vehicle, and the next generation of ballistic shaped spacecraft. To investigate the feasibility of this concept during a nominal 7.62 m/s Orion landing, a full-scale personal airbag system 24% lighter than the Orion baseline has been developed, and subjected to 38 drop tests on land. Through this effort, the system has demonstrated the ability to maintain the risk of injury to an occupant during a 7.85 m/s, 0° impact angle land-landing to within the NASA specified limit of 0.5%. In accomplishing this, the personal airbag system concept has been proven to be feasible. Moreover, the obtained test results suggest that by implementing anti-bottoming airbags to prevent direct contact between the system and the landing surface, the system performance during landings with 0° impact angles can be further improved, by at least a factor of two. Additionally, a series of drop tests from the nominal Orion impact angle of 30° indicated that severe injury risk levels would be sustained beyond impact velocities of 5 m/s. This is a result of the differential stroking of the airbags within the system causing a shearing effect between the occupant seat structure and the spacecraft floor, removing significant stroke from the airbags.

  1. Simulation Research on an Electric Vehicle Chassis System Based on a Collaborative Control System

    Directory of Open Access Journals (Sweden)

    Nenglian Feng

    2013-01-01

    Full Text Available This paper presents a collaborative control system for an electric vehicle chassis based on a centralized and hierarchical control architecture. The centralized controller was designed for the suspension and steering system, which is used for improving ride comfort and handling stability; the hierarchical controller was designed for the braking system, which is used for distributing the proportion of hydraulic braking and regenerative braking to improve braking performance. These two sub-controllers function at the same level of the vehicle chassis control system. In order to reduce the potential conflict between the two sub-controllers and realize a coordination optimization of electric vehicle performance, a collaborative controller was built, which serves as the upper controller to carry out an overall coordination analysis according to vehicle signals and revises the decisions of sub-controllers. A simulation experiment was carried out with the MATLAB/Simulink software. The simulation results show that the proposed collaborative control system can achieve an optimized vehicle handling stability and braking safety.

  2. Orbital transfer vehicle launch operations study. Volume 1: Executive summary

    Science.gov (United States)

    1986-01-01

    The purpose was to use the operational experience at the launch site to identify, describe and quantify the operational impacts of the various configurations on the Kennedy Space Center (KSC) and/or space station launch sites. Orbital Transfer Vehicle (OTV) configurations are being developed/defined by contractor teams. Lacking an approved configuration, the KSC Study Team defined a Reference Configuration to be used for this study. This configuration then become the baseline for the identification of the facilities, personnel and crew skills required for processing the OTV in a realistic manner that would help NASA achieve the lowest possible OTV life cycle costs. As the study progressed, researchers' initial apraisal that the vehicle, when delivered, would be a sophisticated, state-of-the-art vehicle was reinforced. It would be recovered and reused many times so the primary savings to be gained would be in the recurring-cycle of the vehicle operations--even to the point where it would be beneficial to break from tradition and make a significant expenditure in the development of processing facilities at the beginning of the program.

  3. Parameter Estimation and Verification of Unmanned Air Cushion Vehicle (UACV System

    Directory of Open Access Journals (Sweden)

    Ab Rashid Mohd Zamzuri

    2017-01-01

    Full Text Available This project is mainly about the dynamic modelling and parameter estimation of Unmanned Air Cushion Vehicle (UACV. The purpose of developing mathematical model of the Unmanned Air Cushion Vehicle (UACV is due to its under actuated nonlinearities where it has less input compared to the output required. This system able to maneuver over land, water and other surfaces either at certain speed or maintain at a stationary position. In order to model the UACV, the system is set to have two propellers which are responsible to lift the vehicle by forcing high pressure air under the system. The air inflates the “skirt” under the vehicle, causing it to rise above the surface while another two propellers are used to steer the UACV forward. UACV system can be considered as under actuated since it possess fewer controller inputs that its degree of freedom. The system’s motions are defined by the six degrees of freedom which are; heaved, sway and surge. Another three components are rotational motions which can be elaborated as roll, pitch and yaw. The problem related to UACV is normally related to obtaining accurate parameters of the system to be included into the mathematical model of the system. This is due to the body inertia of the system during the static and moving condition. Besides, the air that flows into the UACV skirt to create the cushion causes imbalance and will affect the system stability and controllability. In this research, UACV need to be mathematically modelled using Euler-Lagrange method. Then, parameters of the system can be obtained through direct calculation and Solidworks software. The parameters acquired are compared and verified using simulation and experimental studies.

  4. Emissions of halocarbons from mobile vehicle air conditioning system in Hong Kong.

    Science.gov (United States)

    Yan, H H; Guo, H; Ou, J M

    2014-08-15

    During the implementation of Montreal Protocol, emission inventories of halocarbons in different sectors at regional scale are fundamental to the formulation of relevant management strategy and inspection of the implementation efficiency. This study investigated the emission profile of halocarbons used in the mobile vehicle air conditioning system, the leading sector of refrigeration industry in terms of the refrigerant bank, market and emission, in the Hong Kong Special Administrative Region, using a bottom-up approach developed by 2006 IPCC Good Practice Guidance. The results showed that emissions of CFC-12 peaked at 53 tons ODP (Ozone Depletion Potential) in 1992 and then gradually diminished, whereas HFC-134a presented an increasing emission trend since 1990s and the emissions of HFC-134a reached 65,000 tons CO2-equivelant (CO2-eq) by the end of 2011. Uncertainty analysis revealed relatively high levels of uncertainties for special-purpose vehicles and government vehicles. Moreover, greenhouse gas (GHG) abatements under different scenarios indicated that potential emission reduction of HFC-134a ranged from 4.1 to 8.4 × 10(5)tons CO2-eq. The findings in this study advance our knowledge of halocarbon emissions from mobile vehicle air conditioning system in Hong Kong. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Traffic Congestion Detection System through Connected Vehicles and Big Data

    Directory of Open Access Journals (Sweden)

    Néstor Cárdenas-Benítez

    2016-04-01

    Full Text Available This article discusses the simulation and evaluation of a traffic congestion detection system which combines inter-vehicular communications, fixed roadside infrastructure and infrastructure-to-infrastructure connectivity and big data. The system discussed in this article permits drivers to identify traffic congestion and change their routes accordingly, thus reducing the total emissions of CO2 and decreasing travel time. This system monitors, processes and stores large amounts of data, which can detect traffic congestion in a precise way by means of a series of algorithms that reduces localized vehicular emission by rerouting vehicles. To simulate and evaluate the proposed system, a big data cluster was developed based on Cassandra, which was used in tandem with the OMNeT++ discreet event network simulator, coupled with the SUMO (Simulation of Urban MObility traffic simulator and the Veins vehicular network framework. The results validate the efficiency of the traffic detection system and its positive impact in detecting, reporting and rerouting traffic when traffic events occur.

  6. Static In-wheel Wireless Charging Systems for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Chirag Panchal

    2017-09-01

    Full Text Available Wireless charging is a popular upcoming technology with uses ranging from mobile phone charging through to electric vehicle EV charging. Large air gaps found in current EV wireless charging systems WCS pose a hurdle of its success. Air gaps in WCS cause issues in regards to efficiency power transfer and electromagnetic compatibility EMC leakage issues. A static In-Wheel WCS IW-WCS is presented which significantly reduces the issues associated with large air gaps. A small scale laboratory prototype utilizing a standard 10mm steel reinforced tyre has been created and compared to a typical 30mm air gap. The IW-WCS has been investigated by experimental and finite element method FEM based electro-magnetic field simulation methods to validate performance.

  7. Battery Management Systems in Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Michael Pecht

    2011-10-01

    Full Text Available The battery management system (BMS is a critical component of electric and hybrid electric vehicles. The purpose of the BMS is to guarantee safe and reliable battery operation. To maintain the safety and reliability of the battery, state monitoring and evaluation, charge control, and cell balancing are functionalities that have been implemented in BMS. As an electrochemical product, a battery acts differently under different operational and environmental conditions. The uncertainty of a battery’s performance poses a challenge to the implementation of these functions. This paper addresses concerns for current BMSs. State evaluation of a battery, including state of charge, state of health, and state of life, is a critical task for a BMS. Through reviewing the latest methodologies for the state evaluation of batteries, the future challenges for BMSs are presented and possible solutions are proposed as well.

  8. Improving land vehicle situational awareness using a distributed aperture system

    Science.gov (United States)

    Fortin, Jean; Bias, Jason; Wells, Ashley; Riddle, Larry; van der Wal, Gooitzen; Piacentino, Mike; Mandelbaum, Robert

    2005-05-01

    U.S. Army Research, Development, and Engineering Command (RDECOM) Communications Electronics Research, Development and Engineering Center (CERDEC) Night Vision and Electronic Sensors Directorate (NVESD) has performed early work to develop a Distributed Aperture System (DAS). The DAS aims at improving the situational awareness of armored fighting vehicle crews under closed-hatch conditions. The concept is based on a plurality of sensors configured to create a day and night dome of surveillance coupled with heads up displays slaved to the operator's head to give a "glass turret" feel. State-of-the-art image processing is used to produce multiple seamless hemispherical views simultaneously available to the vehicle commander, crew members and dismounting infantry. On-the-move automatic cueing of multiple moving/pop-up low silhouette threats is also done with the possibility to save/revisit/share past events. As a first step in this development program, a contract was awarded to United Defense to further develop the Eagle VisionTM system. The second-generation prototype features two camera heads, each comprising four high-resolution (2048x1536) color sensors, and each covering a field of view of 270°hx150°v. High-bandwidth digital links interface the camera heads with a field programmable gate array (FPGA) based custom processor developed by Sarnoff Corporation. The processor computes the hemispherical stitch and warp functions required for real-time, low latency, immersive viewing (360°hx120°v, 30° down) and generates up to six simultaneous extended graphics array (XGA) video outputs for independent display either on a helmet-mounted display (with associated head tracking device) or a flat panel display (and joystick). The prototype is currently in its last stage of development and will be integrated on a vehicle for user evaluation and testing. Near-term improvements include the replacement of the color camera heads with a pixel-level fused combination of

  9. Design and Implementation of Vehicle Navigation System in Urban Environments using Internet of Things (Iot)

    Science.gov (United States)

    Godavarthi, Bhavana; Nalajala, Paparao; Ganapuram, Vasavi

    2017-08-01

    Advanced vehicle monitoring and tracking system based on embedded Linux board and android application is designed and implemented for monitoring the school vehicle from any location A to location B at real time. The present system would make good use of new technology that based on embedded Linux namely Raspberry Pi and Smartphone android application. This system works on GPS/GPRS/GSM SIM900A. GPS finds the current location of the vehicle, GPRS sends the tracking information to the server and the GSM is used for sending alert message to vehicle’s owner mobile. This system is placed inside the vehicle whose position is to be determined on the web page and monitored at real time. There is a comparison between the current vehicle path already specified paths into the file system. Inside the raspberry pi’s file system taken from vehicle owners through android phone using android application. Means the selection of path from location A to B takes place from vehicle owner’s android application which gives more safety and secures traveling to the traveler. Hence the driver drives the vehicle only on the vehicle owner’s specified path. The driver drives the vehicle only on the vehicle owner’s specified path but if the driver drives in wrong path the message alert will be sent from this system to the vehicle owners mobile and also sent speakers alert to driver through audio jack. If the vehicles speed goes beyond the specified value of the speed, then warning message will be sent to owner mobile. This system also takes care of the traveler’s safety by using Gas leakage and Temperature sensors

  10. The design of a vehicle-mounted test system for the thermal performance of solar collector

    Science.gov (United States)

    Wen, S. R.; Wu, X. H.; Zhou, L.; Zheng, W.; Liu, L.; Yan, J. C.

    2016-08-01

    To increase the test efficiency of thermal performance of solar collector, a vehicle- mounted test system with high automation, simple operation, good mobility and stability is proposed in this paper. By refitting a medium bus, design of mechanical system and test loop, and using PC control technology, we implemented the vehicle-mounted system and realized effective integration between vehicle and test equipment. A number of tests have been done, and the results show that the vehicle-mounted test system has good parameters and performance and can be widely used to provide door-to-door testing services in the field of solar thermal application.

  11. Electric and hybrid electric vehicles: A technology assessment based on a two-stage Delphi study

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A.D.; Ng, H.K.; Santini, D.J.; Anderson, J.L.

    1997-12-01

    To address the uncertainty regarding future costs and operating attributes of electric and hybrid electric vehicles, a two stage, worldwide Delphi study was conducted. Expert opinions on vehicle attributes, current state of the technology, possible advancements, costs, and market penetration potential were sought for the years 2000, 2010, and 2020. Opinions related to such critical components as batteries, electric drive systems, and hybrid vehicle engines, as well as their respective technical and economic viabilities, were also obtained. This report contains descriptions of the survey methodology, analytical approach, and results of the analysis of survey data, together with a summary of other factors that will influence the degree of market success of electric and hybrid electric vehicle technologies. Responses by industry participants, the largest fraction among all the participating groups, are compared with the overall responses. An evaluation of changes between the two Delphi stages is also summarized. An analysis of battery replacement costs for various types is summarized, and variable operating costs for electric and hybrid vehicles are compared with those of conventional vehicles. A market penetration analysis is summarized, in which projected market shares from the survey are compared with predictions of shares on the basis of two market share projection models that use the cost and physical attributes provided by the survey. Finally, projections of market shares beyond the year 2020 are developed by use of constrained logit models of market shares, statistically fitted to the survey data.

  12. Design and Analysis for SFCL Combined System Utilizing On-line Electric Vehicle

    Science.gov (United States)

    Jung, S.; Jang, G.

    The various concepts of the wireless power transportation system have been already studied including the efficiency and harmonics issue as well as system stability. This paper deals with a utilizing process about superconducting fault current limiter (SFCL) at the distribution level to prepare the fault condition of the nearby system with On-Line Electric Vehicle (OLEV), which is designed using the resonance support system. These inductive power conversion systems are being considered to build closely to utility grid because the charging system could generate low voltage condition. Therefore, adoption of the current limiter on the system can be a possible solution to the terminal distribution system. Furthermore, the OLEV system utilizes resonance charging system which can respond fault condition immediately with segregated state. In this paper, combined SFCL system is introduced to solve the fault current issue under the low voltage distribution system by using the concept of the proposed OLEV and SFCL. The algorithm for the charging system of electric vehicles has been set for the examination of several operating condition, including default status.

  13. Automated Mixed Traffic Vehicle (AMTV) technology and safety study

    Science.gov (United States)

    Johnston, A. R.; Peng, T. K. C.; Vivian, H. C.; Wang, P. K.

    1978-01-01

    Technology and safety related to the implementation of an Automated Mixed Traffic Vehicle (AMTV) system are discussed. System concepts and technology status were reviewed and areas where further development is needed are identified. Failure and hazard modes were also analyzed and methods for prevention were suggested. The results presented are intended as a guide for further efforts in AMTV system design and technology development for both near term and long term applications. The AMTV systems discussed include a low speed system, and a hybrid system consisting of low speed sections and high speed sections operating in a semi-guideway. The safety analysis identified hazards that may arise in a properly functioning AMTV system, as well as hardware failure modes. Safety related failure modes were emphasized. A risk assessment was performed in order to create a priority order and significant hazards and failure modes were summarized. Corrective measures were proposed for each hazard.

  14. Optimal Operation of Plug-In Electric Vehicles in Power Systems with High Wind Power Penetrations

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Chen, Zhe

    2013-01-01

    in the power systems with high wind power penetrations. In this paper, the integration of plug-in electric vehicles in the power systems with high wind power penetrations is proposed and discussed. Optimal operation strategies of PEV in the spot market are proposed in order to decrease the energy cost for PEV......The Danish power system has a large penetration of wind power. The wind fluctuation causes a high variation in the power generation, which must be balanced by other sources. The battery storage based Plug-In Electric Vehicles (PEV) may be a possible solution to balance the wind power variations...... demand is chosen as the studied case. The results show that an optimal operation of PEV in both spot market and regulation market can not only decrease the energy costs for PEV owners, but also significantly decrease the power deviations between West Denmark and Union for the Coordination of Electricity...

  15. Electric vehicle propulsion alternatives

    Science.gov (United States)

    Secunde, R. R.; Schuh, R. M.; Beach, R. F.

    1983-01-01

    Propulsion technology development for electric vehicles is summarized. Analytical studies, technology evaluation, and the development of technology for motors, controllers, transmissions, and complete propulsion systems are included.

  16. On Board Data Acquisition System with Intelligent Transducers for Unmanned Aerial Vehicles

    Science.gov (United States)

    Rochala, Zdzisław

    2012-02-01

    This report presents conclusions from research project no. ON50900363 conducted at the Mechatronics Department, Military University of Technology in the years 2007-2010. As the main object of the study involved the preparation of a concept and the implementation of an avionics data acquisition system intended for research during flight of unmanned aerial vehicles of the mini class, this article presents a design of an avionics system and describes equipment solutions of a distributed measurement system intended for data acquisition consisting of intelligent transducers. The data collected during a flight controlled by an operator confirmed proper operation of the individual components of the data acquisition system.

  17. Orion Crew Exploration Vehicle Launch Abort System Guidance and Control Analysis Overview

    Science.gov (United States)

    Davidson, John B.; Kim, Sungwan; Raney, David L.; Aubuchon, Vanessa V.; Sparks, Dean W.; Busan, Ronald C.; Proud, Ryan W.; Merritt, Deborah S.

    2008-01-01

    Aborts during the critical ascent flight phase require the design and operation of Orion Crew Exploration Vehicle (CEV) systems to escape from the Crew Launch Vehicle (CLV) and return the crew safely to the Earth. To accomplish this requirement of continuous abort coverage, CEV ascent abort modes are being designed and analyzed to accommodate the velocity, altitude, atmospheric, and vehicle configuration changes that occur during ascent. Aborts from the launch pad to early in the flight of the CLV second stage are performed using the Launch Abort System (LAS). During this type of abort, the LAS Abort Motor is used to pull the Crew Module (CM) safely away from the CLV and Service Module (SM). LAS abort guidance and control studies and design trades are being conducted so that more informed decisions can be made regarding the vehicle abort requirements, design, and operation. This paper presents an overview of the Orion CEV, an overview of the LAS ascent abort mode, and a summary of key LAS abort analysis methods and results.

  18. Design of a Flush Airdata System (FADS) for the Hypersonic Air Launched Option (HALO) Vehicle

    Science.gov (United States)

    Whitmore, Stephen A.; Moes, Timothy R.; Deets, Dwain A. (Technical Monitor)

    1994-01-01

    This paper presents a design study for a pressure based Flush airdata system (FADS) on the Hypersonic Air Launched Option (HALO) Vehicle. The analysis will demonstrate the feasibility of using a pressure based airdata system for the HALO and provide measurement uncertainty estimates along a candidate trajectory. The HALO is a conceived as a man-rated vehicle to be air launched from an SR-71 platform and is proposed as a testbed for an airbreathing hydrogen scramjet. A feasibility study has been performed and indicates that the proposed trajectory is possible with minimal modifications to the existing SR71 vehicle. The mission consists of launching the HALO off the top of an SR-71 at Mach 3 and 80,000 ft. A rocket motor is then used to accelerate the vehicle to the test condition. After the scramjet test is completed the vehicle will glide to a lakebed runway landing. This option provides reusability of the vehicle and scramjet engine. The HALO design will also allow for various scramjet engine and flowpath designs to be flight tested. For the HALO flights, measurements of freestream airdata are considered to be a mission critical to perform gain scheduling and trajectory optimization. One approach taken to obtaining airdata involves measurement of certain parameters such as external atmospheric winds, temperature, etc to estimate the airdata quantities. This study takes an alternate approach. Here the feasibility of obtaining airdata using a pressure-based flush airdata system (FADS) methods is assessed. The analysis, although it is performed using the HALO configuration and trajectory, is generally applicable to other hypersonic vehicles. The method to be presented offers the distinct advantage of inferring total pressure, Mach number, and flow incidence angles, without stagnating the freestream flow. This approach allows for airdata measurements to be made using blunt surfaces and significantly diminishes the heating load at the sensor. In the FADS concept a

  19. 77 FR 51649 - Federal Motor Vehicle Safety Standards; Motorcycle Brake Systems

    Science.gov (United States)

    2012-08-24

    ... passenger cars.\\7\\ \\6\\ Response to Petitions for Reconsideration, Motorcycle Brake Systems, 37 FR 11973... CFR Part 571 Federal Motor Vehicle Safety Standards; Motorcycle Brake Systems; Final Rule #0;#0... Federal Motor Vehicle Safety Standards; Motorcycle Brake Systems AGENCY: National Highway Traffic Safety...

  20. 48 CFR 52.251-2 - Interagency Fleet Management System Vehicles and Related Services.

    Science.gov (United States)

    2010-10-01

    ... CLAUSES Text of Provisions and Clauses 52.251-2 Interagency Fleet Management System Vehicles and Related Services. As prescribed in 51.205, insert the following clause: Interagency Fleet Management System... to obtain interagency fleet management system vehicles and related services for use in the...

  1. Modelling cooperative roadside and in-vehicle intelligent transport systems using the its modeller

    NARCIS (Netherlands)

    Versteegt, E.; Klunder, G.; Arem, B. van

    2009-01-01

    Within the coming years, the developments of infrastructural and in-vehicle ITS systems will come together and result in the development of cooperative vehicle-infrastructure ITS systems. The development of these integrated cooperative systems will require new modelling tools that allow a detailed

  2. Investigation of passenger car using Macpherson strut for suspension system pt.1: Vehicle behaviour variation of time response

    Directory of Open Access Journals (Sweden)

    Ali Tanti

    2017-01-01

    Full Text Available It has been decade, researchers has been conducting researches on the topics concerning vehicle behavior. Suspension system, driving maneuver and road profile are the particular parameters in order to achieve the aim in vehicle behavior understanding. This paper combined these three criteria by means of using a passenger car equipped with MacPherson strut front suspension undergoes different driving behavior. The objective of this paper is to study the effect of passenger car equipped with MacPherson strut front suspension system vehicle behavior based on different driving maneuvers. For this study, Proton Persona Sedan 1.6 Manual Transmission Base Line was used to investigate the MacPherson strut suspension system. Data were collected using DEWESoft Software. As the velocity and direction varies with time, the vehicle response subjected to stationary excitation, while it varies with different velocity and different type of road. Acceleration, deceleration and bumpy test the suspension mechanism support the weight of the vehicle yet to cushion bumps and holes in the road. It can be concluded that the MacPherson strut suspension system has an effect on not only vehicle behavior but also comfort ride. These findings provide the following insights for future research in suspension vibration in order to optimize the performance of the MacPherson strut suspension system.

  3. Electric and Hybrid Vehicle System Research and Development Project: Hybrid Vehicle Potential Assessment. Volume IV. Series systems

    Energy Technology Data Exchange (ETDEWEB)

    Popinski, Z.

    1979-09-30

    In the Hybrid Vehicle Potential Assessment Task three major powertrain configurations (parallel, parallel with flywheel, and series) were studied. An evaluation of the series configuration is presented. The series configuration has the advantage that the engine is mechanically uncoupled from the wheels and can be operated at its best economy point much of the time. The mechanical energy produced by the engine is converted through a generator into electrical energy which is used to drive the motor or charge the batteries. This configuration offers a good degree of flexibility. It has the disadvantage that substantial losses of energy occur since the mechanical energy from the engine passes through several components before being used to drive the wheels. The energy produced by the engine is reduced by the product of efficiencies of components connected in series. Trade-offs involved in the study of the series configuration were directed toward establishing the size of the engine, motor and generator to meet vehicle acceleration performance; determining what level to operate the engine, and determining when to use the battery. These results were then used in the electric range simulation.

  4. System and method of vehicle operating condition management

    Science.gov (United States)

    Sujan, Vivek A.; Vajapeyazula, Phani; Follen, Kenneth; Wu, An; Moffett, Barty L.

    2015-10-20

    A vehicle operating condition profile can be determined over a given route while also considering imposed constraints such as deviation from time targets, deviation from maximum governed speed limits, etc. Given current vehicle speed, engine state and transmission state, the present disclosure optimally manages the engine map and transmission to provide a recommended vehicle operating condition that optimizes fuel consumption in transitioning from one vehicle state to a target state. Exemplary embodiments provide for offline and online optimizations relative to fuel consumption. The benefit is increased freight efficiency in transporting cargo from source to destination by minimizing fuel consumption and maintaining drivability.

  5. Vented Launch Vehicle Adaptor for a Manned Spacecraft with "Pusher" Launch Abort System

    Science.gov (United States)

    Vandervort, Robert E. (Inventor)

    2017-01-01

    A system, method, and apparatus for a vented launch vehicle adaptor (LVA) for a manned spacecraft with a "pusher" launch abort system are disclosed. The disclosed LVA provides a structural interface between a commercial crew vehicle (CCV) crew module/service module (CM/SM) spacecraft and an expendable launch vehicle. The LVA provides structural attachment of the module to the launch vehicle. It also provides a means to control the exhaust plume from a pusher-type launch abort system that is integrated into the module. In case of an on-pad or ascent abort, which requires the module to jettison away from the launch vehicle, the launch abort system exhaust plume must be safely directed away from critical and dangerous portions of the launch vehicle in order to achieve a safe and successful jettison.

  6. Innovative Structural and Joining Concepts for Lightweight Design of Heavy Vehicle Systems

    Energy Technology Data Exchange (ETDEWEB)

    Jacky C. Prucz; Samir N. Shoukry; Gergis W. William

    2005-08-31

    heavy vehicles. The research work planed for the first year of this project (June 1, 2003 through May 30, 2004) focused on a theoretical investigation of weight benefits and structural performance tradeoffs associated with the design, fabrication, and joining of MMC components for heavy-duty vehicles. This early research work conducted at West Virginia University yielded the development of integrated material-structural models that predicted marginal benefits and significant barriers to MMC applications in heavy trailers. The results also indicated that potential applications of MMC materials in heavy vehicles are limited to components identified as critical for either loadings or weight savings. Therefore, the scope of the project was expanded in the following year (June 1, 2004 through May 30, 2005) focused on expanding the lightweight material-structural design concepts for heavy vehicles from the component to the system level. Thus, the following objectives were set: (1) Devise and evaluate lightweight structural configurations for heavy vehicles. (2) Study the feasibility of using Metal Matrix Composites (MMC) for critical structural components and joints in heavy vehicles. (3) Develop analysis tools, methods, and validated test data for comparative assessments of innovative design and joining concepts. (4) Develop analytical models and software for durability predictions of typical heavy vehicle components made of particulate MMC or fiber-reinforced composites. This report summarizes the results of the research work conducted during the past two years in this projects.

  7. Design and Assessment of a Machine Vision System for Automatic Vehicle Wheel Alignment

    Directory of Open Access Journals (Sweden)

    Rocco Furferi

    2013-05-01

    Full Text Available Abstract Wheel alignment, consisting of properly checking the wheel characteristic angles against vehicle manufacturers' specifications, is a crucial task in the automotive field since it prevents irregular tyre wear and affects vehicle handling and safety. In recent years, systems based on Machine Vision have been widely studied in order to automatically detect wheels' characteristic angles. In order to overcome the limitations of existing methodologies, due to measurement equipment being mounted onto the wheels, the present work deals with design and assessment of a 3D machine vision-based system for the contactless reconstruction of vehicle wheel geometry, with particular reference to characteristic planes. Such planes, properly referred to as a global coordinate system, are used for determining wheel angles. The effectiveness of the proposed method was tested against a set of measurements carried out using a commercial 3D scanner; the absolute average error in measuring toe and camber angles with the machine vision system resulted in full compatibility with the expected accuracy of wheel alignment systems.

  8. Accurate Vehicle Location System Using RFID, an Internet of Things Approach

    Directory of Open Access Journals (Sweden)

    Jaco Prinsloo

    2016-06-01

    Full Text Available Modern infrastructure, such as dense urban areas and underground tunnels, can effectively block all GPS signals, which implies that effective position triangulation will not be achieved. The main problem that is addressed in this project is the design and implementation of an accurate vehicle location system using radio-frequency identification (RFID technology in combination with GPS and the Global system for Mobile communication (GSM technology, in order to provide a solution to the limitation discussed above. In essence, autonomous vehicle tracking will be facilitated with the use of RFID technology where GPS signals are non-existent. The design of the system and the results are reflected in this paper. An extensive literature study was done on the field known as the Internet of Things, as well as various topics that covered the integration of independent technology in order to address a specific challenge. The proposed system is then designed and implemented. An RFID transponder was successfully designed and a read range of approximately 31 cm was obtained in the low frequency communication range (125 kHz to 134 kHz. The proposed system was designed, implemented, and field tested and it was found that a vehicle could be accurately located and tracked. It is also found that the antenna size of both the RFID reader unit and RFID transponder plays a critical role in the maximum communication range that can be achieved.

  9. Ride performance of a high speed rail vehicle using controlled semi active suspension system

    Science.gov (United States)

    Sharma, Sunil Kumar; Kumar, Anil

    2017-05-01

    The rail-wheel interaction in a rail vehicle running at high speed results in large amplitude vibration of carbody that deteriorates the ride comfort of travellers. The role of suspension system is crucial to provide an acceptable level of ride performance. In this context, an existing rail vehicle is modelled in vertical, pitch and roll motions of carbody and bogies. Additionally, nonlinear stiffness and damping parameters of passive suspension system are defined based on experimental data. In the secondary vertical suspension system, a magneto-rheological (MR) damper is included to improve the ride quality and comfort. The parameters of MR damper depend on the current, amplitude and frequency of excitations. At different running speeds, three semi-active suspension strategies with MR damper are analysed for periodic track irregularity and the resulting performance indices are juxtaposed with the nonlinear passive suspension system. The disturbance rejection and force tracking damper controller algorithms are applied to control the desired force of MR damper. This study reveals that the vertical vibrations of a vehicle can be reduced significantly by using the proposed semi-active suspension strategies. Moreover, it naturally results in improved ride quality and passenger’s comfort in comparison to the existing passive system.

  10. An object detection and tracking system for unmanned surface vehicles

    Science.gov (United States)

    Yang, Jian; Xiao, Yang; Fang, Zhiwen; Zhang, Naiwen; Wang, Li; Li, Tao

    2017-10-01

    Object detection and tracking are critical parts of unmanned surface vehicles(USV) to achieve automatic obstacle avoidance. Off-the-shelf object detection methods have achieved impressive accuracy in public datasets, though they still meet bottlenecks in practice, such as high time consumption and low detection quality. In this paper, we propose a novel system for USV, which is able to locate the object more accurately while being fast and stable simultaneously. Firstly, we employ Faster R-CNN to acquire several initial raw bounding boxes. Secondly, the image is segmented to a few superpixels. For each initial box, the superpixels inside will be grouped into a whole according to a combination strategy, and a new box is thereafter generated as the circumscribed bounding box of the final superpixel. Thirdly, we utilize KCF to track these objects after several frames, Faster-RCNN is again used to re-detect objects inside tracked boxes to prevent tracking failure as well as remove empty boxes. Finally, we utilize Faster R-CNN to detect objects in the next image, and refine object boxes by repeating the second module of our system. The experimental results demonstrate that our system is fast, robust and accurate, which can be applied to USV in practice.

  11. Carbide-based fuel system for undersea vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Burke, A. Alan; Carreiro, Louis G.; Greene, Eric S. [Naval Undersea Warfare Center, Division Newport (NUWCDIVNPT), 1176 Howell Street, Building 1302/2, Newport, RI 02841 (United States)

    2008-01-21

    In underwater applications such as unmanned undersea vehicle (UUV) propulsion, mass and volume constraints often dictate system energy density and specific energy, which are targeted to exceed 300 Wh L{sup -1} and 300 Wh kg{sup -1}, respectively, in order to compete with state-of-the-art battery technologies. To address this need, a novel carbide-based fuel system (CFS) intended for use with a solid oxide fuel cell (SOFC) is under development that is capable of achieving these energy metrics as well as sequestering carbon dioxide. The proposed CFS uses calcium carbide and calcium hydride that react with water to generate acetylene and hydrogen as the fuel and calcium hydroxide as a carbon dioxide scrubber. The acetylene is hydrogenated to ethane and then reformed to syngas (carbon monoxide and hydrogen) before being utilized by the SOFC. Carbon dioxide effluent from the SOFC is reacted with the calcium hydroxide to produce a storable solid, calcium carbonate, thus eliminating gas evolution from the UUV. A system configuration is proposed and discussion follows concerning energy storage metrics, operational parameters and preliminary safety analysis. (author)

  12. Design of a Tele-Control Electrical Vehicle System Using a Fuzzy Logic Control

    Directory of Open Access Journals (Sweden)

    M. Boukhnifer

    2012-11-01

    Full Text Available This paper presents a fuzzy logic design of a tele-control electrical vehicle system. We showed that the application of fuzzy logic control allows the stability of tele-vehicle system in spite of communication delays between the operator and the vehicle. A robust bilateral controller design using fuzzy logic frameworks was proposed. This approach allows a convenient means to trade off robustness and stability for a pre-specified time-delay margin. Both the performance and robustness of the proposed method were demonstrated by simulation results for a constant time delay between the operator and the electrical vehicle system.

  13. Guidelines for Distribution System Operators on Reactive Power Provision by Electric Vehicles in Low Voltage Grids

    DEFF Research Database (Denmark)

    Zecchino, Antonio; Marinelli, Mattia; Træholt, Chresten

    2017-01-01

    The increasing success of electric vehicles is bringing new technical challenges to power system operators. This work intends to provide guidelines for distribution system operators in terms of reactive power requirements when evaluating and authorizing electric vehicles supply equipment with fast...... the amount of reactive power that an individual electric vehicle is expected to provide when connected to a low voltage feeder, in order to benefit of the desired voltage rise effect in comparison to the case of unitary power factor....

  14. Heuristic Storage System Sizing for Optimal Operation of Electric Vehicles Powered by Photovoltaic Charging Station

    OpenAIRE

    Blasius, Erik; Federau, Erik; Janik, Przemyslaw; Leonowicz, Zbigniew

    2016-01-01

    This paper discusses the utilisation of PV systems for electric vehicles charging for transportation requirements of smart cities. The gap between PV power output and vehicles charging demand is highly variable. Therefore, there is a need for additional support from a public distribution grid or a storage device in order to handle the residual power. Long term measurement data retrieved from a charging station for 15 vehicles equipped with a PV system were used in the research. Low and high i...

  15. A Vehicle Steering Recognition System Based on Low-Cost Smartphone Sensors

    Directory of Open Access Journals (Sweden)

    Xinhua Liu

    2017-03-01

    Full Text Available Recognizing how a vehicle is steered and then alerting drivers in real time is of utmost importance to the vehicle and driver’s safety, since fatal accidents are often caused by dangerous vehicle maneuvers, such as rapid turns, fast lane-changes, etc. Existing solutions using video or in-vehicle sensors have been employed to identify dangerous vehicle maneuvers, but these methods are subject to the effects of the environmental elements or the hardware is very costly. In the mobile computing era, smartphones have become key tools to develop innovative mobile context-aware systems. In this paper, we present a recognition system for dangerous vehicle steering based on the low-cost sensors found in a smartphone: i.e., the gyroscope and the accelerometer. To identify vehicle steering maneuvers, we focus on the vehicle’s angular velocity, which is characterized by gyroscope data from a smartphone mounted in the vehicle. Three steering maneuvers including turns, lane-changes and U-turns are defined, and a vehicle angular velocity matching algorithm based on Fast Dynamic Time Warping (FastDTW is adopted to recognize the vehicle steering. The results of extensive experiments show that the average accuracy rate of the presented recognition reaches 95%, which implies that the proposed smartphone-based method is suitable for recognizing dangerous vehicle steering maneuvers.

  16. A Vehicle Steering Recognition System Based on Low-Cost Smartphone Sensors

    Science.gov (United States)

    Liu, Xinhua; Mei, Huafeng; Lu, Huachang; Kuang, Hailan; Ma, Xiaolin

    2017-01-01

    Recognizing how a vehicle is steered and then alerting drivers in real time is of utmost importance to the vehicle and driver’s safety, since fatal accidents are often caused by dangerous vehicle maneuvers, such as rapid turns, fast lane-changes, etc. Existing solutions using video or in-vehicle sensors have been employed to identify dangerous vehicle maneuvers, but these methods are subject to the effects of the environmental elements or the hardware is very costly. In the mobile computing era, smartphones have become key tools to develop innovative mobile context-aware systems. In this paper, we present a recognition system for dangerous vehicle steering based on the low-cost sensors found in a smartphone: i.e., the gyroscope and the accelerometer. To identify vehicle steering maneuvers, we focus on the vehicle’s angular velocity, which is characterized by gyroscope data from a smartphone mounted in the vehicle. Three steering maneuvers including turns, lane-changes and U-turns are defined, and a vehicle angular velocity matching algorithm based on Fast Dynamic Time Warping (FastDTW) is adopted to recognize the vehicle steering. The results of extensive experiments show that the average accuracy rate of the presented recognition reaches 95%, which implies that the proposed smartphone-based method is suitable for recognizing dangerous vehicle steering maneuvers. PMID:28335540

  17. Vehicle Detection for RCTA/ANS (Autonomous Navigation System)

    Science.gov (United States)

    Brennan, Shane; Bajracharya, Max; Matthies, Larry H.; Howard, Andrew B.

    2012-01-01

    Using a stereo camera pair, imagery is acquired and processed through the JPLV stereo processing pipeline. From this stereo data, large 3D blobs are found. These blobs are then described and classified by their shape to determine which are vehicles and which are not. Prior vehicle detection algorithms are either targeted to specific domains, such as following lead cars, or are intensity- based methods that involve learning typical vehicle appearances from a large corpus of training data. In order to detect vehicles, the JPL Vehicle Detection (JVD) algorithm goes through the following steps: 1. Take as input a left disparity image and left rectified image from JPLV stereo. 2. Project the disparity data onto a two-dimensional Cartesian map. 3. Perform some post-processing of the map built in the previous step in order to clean it up. 4. Take the processed map and find peaks. For each peak, grow it out into a map blob. These map blobs represent large, roughly vehicle-sized objects in the scene. 5. Take these map blobs and reject those that do not meet certain criteria. Build descriptors for the ones that remain. Pass these descriptors onto a classifier, which determines if the blob is a vehicle or not. The probability of detection is the probability that if a vehicle is present in the image, is visible, and un-occluded, then it will be detected by the JVD algorithm. In order to estimate this probability, eight sequences were ground-truthed from the RCTA (Robotics Collaborative Technology Alliances) program, totaling over 4,000 frames with 15 unique vehicles. Since these vehicles were observed at varying ranges, one is able to find the probability of detection as a function of range. At the time of this reporting, the JVD algorithm was tuned to perform best at cars seen from the front, rear, or either side, and perform poorly on vehicles seen from oblique angles.

  18. Preliminary study on gas-driven vehicles; Foerstudie om teknik foer gasdrivna fordon

    Energy Technology Data Exchange (ETDEWEB)

    Egebaeck, K.E. [Autoemission KE E Consultant AB, Nykoeping (Sweden); Ryden, C. [Stockholm MFO AB (Sweden)

    2001-10-01

    The use of alternative fuels for motor vehicles has been a subject of interest for a long time and alternative fuels have also been subject to extensive investigations. Studies and investigations of the alternatives have resulted in many positive and useful results in that both advantages and disadvantages of different fuels have been evaluated. An important prerequisite for an introduction of new fuels for motor vehicles is that engines and vehicles have been developed and adapted to the new fuel. In most of the cases there are specific differences in composition and physical function between alternative fuels and the commercial fuels, petrol and diesel oil. There is therefore a need for both engines and the exhaust control systems to be developed in order to take the full advantages of the positive property of the new fuel. The aim of the project was to study the technical development of natural gas and biogas fuelled engines and vehicles which had taken place during the last few years, from both a national and an international perspective. The method used has been to visit, among others, various car manufacturers in order to ascertain the state of the art concerning the development of gaseous-fuelled vehicles. In addition an extensive literature study has been carried out aiming at a widening of the knowledge about the development of natural gas fuelled vehicles in especially in USA, Europe and Japan. The results are presented in this report, which hopefully gives a broad picture of the state of the art of current gaseous-fuelled vehicles and information concerning the technology used for the development.

  19. On a simulation study of cyber attacks on vehicle-to-infrastructure communication (V2I) in Intelligent Transportation System (ITS)

    Science.gov (United States)

    Ekedebe, Nnanna; Yu, Wei; Song, Houbing; Lu, Chao

    2015-05-01

    An intelligent transportation system (ITS) is one typical cyber-physical system (CPS) that aims to provide efficient, effective, reliable, and safe driving experiences with minimal congestion and effective traffic flow management. In order to achieve these goals, various ITS technologies need to work synergistically. Nonetheless, ITS's reliance on wireless connectivity makes it vulnerable to cyber threats. Thus, it is critical to understand the impact of cyber threats on ITS. In this paper, using real-world transportation dataset, we evaluated the consequences of cyber threats - attacks against service availability by jamming the communication channel of ITS. In this way, we can have a better understanding of the importance of ensuring adequate security respecting safety and life-critical ITS applications before full and expensive real-world deployments. Our experimental data shows that cyber threats against service availability could adversely affect traffic efficiency and safety performances evidenced by exacerbated travel time, fuel consumed, and other evaluated performance metrics as the communication network is compromised. Finally, we discuss a framework to make ITS secure and more resilient against cyber threats.

  20. System Interface for an Integrated Intelligent Safety System (ISS for Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Mahammad A. Hannan

    2010-01-01

    Full Text Available This paper deals with the interface-relevant activity of a vehicle integrated intelligent safety system (ISS that includes an airbag deployment decision system (ADDS and a tire pressure monitoring system (TPMS. A program is developed in LabWindows/CVI, using C for prototype implementation. The prototype is primarily concerned with the interconnection between hardware objects such as a load cell, web camera, accelerometer, TPM tire module and receiver module, DAQ card, CPU card and a touch screen. Several safety subsystems, including image processing, weight sensing and crash detection systems, are integrated, and their outputs are combined to yield intelligent decisions regarding airbag deployment. The integrated safety system also monitors tire pressure and temperature. Testing and experimentation with this ISS suggests that the system is unique, robust, intelligent, and appropriate for in-vehicle applications.

  1. Solar Electric Propulsion Vehicle Design Study for Cargo Transfer to Earth-moon L1

    Science.gov (United States)

    Sarver-Verhey, Timothy R.; Kerslake, Thomas W.; Rawlin, Vincent K.; Falck, Robert D.; Dudzinski, Leonard J.; Oleson, Steven R.

    2002-01-01

    A design study for a cargo transfer vehicle using solar electric propulsion was performed for NASA's Revolutionary Aerospace Systems Concepts program. Targeted for 2016, the solar electric propulsion (SEP) transfer vehicle is required to deliver a propellant supply module with a mass of approximately 36 metric tons from Low Earth Orbit to the first Earth-Moon libration point (LL1) within 270 days. Following an examination of propulsion and power technology options, a SEP transfer vehicle design was selected that incorporated large-area (approx. 2700 sq m) thin film solar arrays and a clustered engine configuration of eight 50 kW gridded ion thrusters mounted on an articulated boom. Refinement of the SEP vehicle design was performed iteratively to properly estimate the required xenon propellant load for the out-bound orbit transfer. The SEP vehicle performance, including the xenon propellant estimation, was verified via the SNAP trajectory code. Further efforts are underway to extend this system model to other orbit transfer missions.

  2. 77 FR 30765 - Federal Motor Vehicle Safety Standards; Electronic Stability Control Systems for Heavy Vehicles

    Science.gov (United States)

    2012-05-23

    ..., oversteer, trailer swing or any other yaw motion leading to directional loss of control). In such situations... fatalities and injuries associated with vehicle rollover or collision. Based on the agency's estimates... by automatically applying brake force at selected wheel-ends to help maintain directional control of...

  3. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, Susan R.

    1994-01-01

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.

  4. A wireless sensor network-based portable vehicle detector evaluation system.

    Science.gov (United States)

    Yoo, Seong-eun

    2013-01-17

    In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy.

  5. Robust Road Condition Detection System Using In-Vehicle Standard Sensors

    Science.gov (United States)

    Castillo Aguilar, Juan Jesús; Cabrera Carrillo, Juan Antonio; Guerra Fernández, Antonio Jesús; Carabias Acosta, Enrique

    2015-01-01

    The appearance of active safety systems, such as Anti-lock Braking System, Traction Control System, Stability Control System, etc., represents a major evolution in road safety. In the automotive sector, the term vehicle active safety systems refers to those whose goal is to help avoid a crash or to reduce the risk of having an accident. These systems safeguard us, being in continuous evolution and incorporating new capabilities continuously. In order for these systems and vehicles to work adequately, they need to know some fundamental information: the road condition on which the vehicle is circulating. This early road detection is intended to allow vehicle control systems to act faster and more suitably, thus obtaining a substantial advantage. In this work, we try to detect the road condition the vehicle is being driven on, using the standard sensors installed in commercial vehicles. Vehicle models were programmed in on-board systems to perform real-time estimations of the forces of contact between the wheel and road and the speed of the vehicle. Subsequently, a fuzzy logic block is used to obtain an index representing the road condition. Finally, an artificial neural network was used to provide the optimal slip for each surface. Simulations and experiments verified the proposed method. PMID:26703605

  6. Robust Road Condition Detection System Using In-Vehicle Standard Sensors

    Directory of Open Access Journals (Sweden)

    Juan Jesús Castillo Aguilar

    2015-12-01

    Full Text Available The appearance of active safety systems, such as Anti-lock Braking System, Traction Control System, Stability Control System, etc., represents a major evolution in road safety. In the automotive sector, the term vehicle active safety systems refers to those whose goal is to help avoid a crash or to reduce the risk of having an accident. These systems safeguard us, being in continuous evolution and incorporating new capabilities continuously. In order for these systems and vehicles to work adequately, they need to know some fundamental information: the road condition on which the vehicle is circulating. This early road detection is intended to allow vehicle control systems to act faster and more suitably, thus obtaining a substantial advantage. In this work, we try to detect the road condition the vehicle is being driven on, using the standard sensors installed in commercial vehicles. Vehicle models were programmed in on-board systems to perform real-time estimations of the forces of contact between the wheel and road and the speed of the vehicle. Subsequently, a fuzzy logic block is used to obtain an index representing the road condition. Finally, an artificial neural network was used to provide the optimal slip for each surface. Simulations and experiments verified the proposed method.

  7. AUTOMATED GUIDED VEHICLE (AGV SYSTEMS AND ROUTING PROBLEM IN DEPOT MAINTENANCE

    Directory of Open Access Journals (Sweden)

    Fatih YİĞİT

    2003-02-01

    Full Text Available When full automation is realized in factory automation, material handing systems (MHS have a fairly important role. The most technological development among MHS's has been concentrated on Automated Guided Vehicle (AGV systems. An AGV is an unmanned vehicle capable of following an external guidance signal to deliver a unit load from destination to destination. Nowadays, there are a lot of applications lie along service sector to industrial sector because of flexibilities of AGVs. In this study, these subjects have been applied on the Army Aviation Depot Maintenance where aircraft's and aircraft parts can be maintained and overhauled is an application fields of AGV, requiring AGV numbers and AGV routing. The AGV routing problem and traveling sales person (TSP problems are identical problems; where the AGV routing problem is formulated as a zero one integer programming. Examples are presented to demonstrate the approach and LINGO has been used to solve the example.

  8. An approach to system optimization for solar electric orbital transfer vehicles

    Science.gov (United States)

    Miller, T. M.; Seaworth, G. B.

    1993-06-01

    The analysis of a low-thrust, solar electric orbital transfer vehicle (SEOTV) requires the combined optimization of performance, mission, and cost parameters. Power level, radiation characterization, power degradation, trip time, shadow, and steering requirements impose more variables to the solutions. To enable proper assessment of all these factors, a unique, approach was taken that involves multi-disciplinary optimization technology. The Optimized Advanced System Integration and Simulation (OASIS) program, an expert system-based software package, is described. Its ability to rapidly link to external codes through simple graphical interfaces provides a natural environment for SEOTV synthesis studies, allowing a rapid, interactive synthesis of orbital transfer missions and vehicles. This paper describes the methodology used in the optimization of SEOTV performance, trajectory, and cost parameters. Each element contained within the OASIS optimal design environment as applied to the SEOTV problem is described. A sample analysis, including inputs and outputs of optimal SEOTV cost and performance parameters is given.

  9. Electric vehicle system for charging and supplying electrical power

    Science.gov (United States)

    Su, Gui Jia

    2010-06-08

    A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.

  10. Dynamics of multirate sampled data control systems. [for space shuttle boost vehicle

    Science.gov (United States)

    Naylor, J. R.; Hynes, R. J.; Molnar, D. O.

    1974-01-01

    The effect was investigated of the synthesis approach (single or multirate) on the machine requirements for a digital control system for the space shuttle boost vehicle. The study encompassed four major work areas: synthesis approach trades, machine requirements trades, design analysis requirements and multirate adaptive control techniques. The primary results are two multirate autopilot designs for the low Q and maximum Q flight conditions that exhibits equal or better performance than the analog and single rate system designs. Also, a preferred technique for analyzing and synthesizing multirate digital control systems is included.

  11. Energy Management Strategy for Micro-Grids with PV-Battery Systems and Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jose Luis Torres-Moreno

    2018-02-01

    Full Text Available This paper analyzes the impact of photovoltaic (PV systems on storage and electric vehicles in micro-grids. As these kinds of systems are becoming increasingly popular in the residential sector, the development of a new generation of equipment, such as more efficient batteries or solar panels, makes further study necessary. These systems are especially interesting in commercial or office buildings, since they have a more repetitive daily pattern of electricity consumption, which usually occurs within the maximum solar radiation hours. Based on this need, a novel control strategy aimed at efficiently managing this kind of micro-grid is proposed. The core of this strategy is a rule-based controller managing the power flows between the grid and the batteries of both the PV system and the electric vehicle. Through experimental data and simulations, this strategy was tested under different scenarios. The selected testbed consisted of the laboratory of a research center, which could be easily scalable to the entire building. Results showed the benefits of using an electric vehicle as an active agent in energy balance, leading to a reduction of the energetic costs of a micro-grid.

  12. A Conceptual Aerospace Vehicle Structural System Modeling, Analysis and Design Process

    Science.gov (United States)

    Mukhopadhyay, Vivek

    2007-01-01

    A process for aerospace structural concept analysis and design is presented, with examples of a blended-wing-body fuselage, a multi-bubble fuselage concept, a notional crew exploration vehicle, and a high altitude long endurance aircraft. Aerospace vehicle structures must withstand all anticipated mission loads, yet must be designed to have optimal structural weight with the required safety margins. For a viable systems study of advanced concepts, these conflicting requirements must be imposed and analyzed early in the conceptual design cycle, preferably with a high degree of fidelity. In this design process, integrated multidisciplinary analysis tools are used in a collaborative engineering environment. First, parametric solid and surface models including the internal structural layout are developed for detailed finite element analyses. Multiple design scenarios are generated for analyzing several structural configurations and material alternatives. The structural stress, deflection, strain, and margins of safety distributions are visualized and the design is improved. Over several design cycles, the refined vehicle parts and assembly models are generated. The accumulated design data is used for the structural mass comparison and concept ranking. The present application focus on the blended-wing-body vehicle structure and advanced composite material are also discussed.

  13. A high accuracy vehicle positioning system implemented in a lane assistance system when GPS Is unavailable.

    Science.gov (United States)

    2011-07-01

    The use of lane assistance systems can reduce the stress levels experienced by drivers and allow for better lane : keeping in narrow, bus-dedicated lanes. In 2008, the Intelligent Vehicles (IV) Lab at the University of Minnesota : has developed such ...

  14. Optimal trajectory designs and systems engineering analyses of reusable launch vehicles

    Science.gov (United States)

    Tsai, Hung-I. Bruce

    Realizing a reusable launch vehicle (RLU) that is low cost with highly effective launch capability has become the "Holy Grail" within the aerospace community world-wide. Clear understanding of the vehicle's operational limitations and flight characteristics in all phases of the flight are preponderant components in developing such a launch system. This dissertation focuses on characterizing and designing the RLU optimal trajectories in order to aid in strategic decision making during mission planning in four areas: (1) nominal ascent phase, (2) abort scenarios and trajectories during ascent phase including abort-to-orbit (ATO), transoceanic-abort-landing (TAL) and return-to-launch-site (RTLS), (3) entry phase (including footprint), and (4) systems engineering aspects of such flight trajectory design. The vehicle chosen for this study is the Lockheed Martin X-33 lifting-body design that lifts off vertically with two linear aerospike rocket engines and lands horizontally. An in-depth investigation of the optimal endo-atmospheric ascent guidance parameters such as earliest abort time, engine throttle setting, number of flight phases, flight characteristics and structural design limitations will be performed and analyzed to establish a set of benchmarks for making better trade-off decisions. Parametric analysis of the entry guidance will also be investigated to allow the trajectory designer to pinpoint relevant parameters and to generate optimal constrained trajectories. Optimal ascent and entry trajectories will be generated using a direct transcription method to cast the optimal control problem as a nonlinear programming problem. The solution to the sparse nonlinear programming problem is then solved using sequential quadratic programming. Finally, guidance system hierarchy studies such as work breakdown structure, functional analysis, fault-tree analysis, and configuration management will be developed to ensure that the guidance system meets the definition of

  15. ITS for sustainable mobility: tools for designing and evaluating co-operative road-vehicle systems

    NARCIS (Netherlands)

    Baart, M.; Vink, W.; Horst, A.R.A. van der; Arem, B. van; Wilmink, I.

    2004-01-01

    Intelligent co-operative road-vehicle systems, in which intelligent road-side equipment co-operates with intelligent vehicles, have great potential to improve traffic flow safety, efficiency, reliability and quality of the environment. But what concepts for these systems are both realistic and

  16. Electrically heated particulate filter regeneration methods and systems for hybrid vehicles

    Science.gov (United States)

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2010-10-12

    A control system for controlling regeneration of a particulate filter for a hybrid vehicle is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate regeneration. An engine control module controls operation of an engine of the hybrid vehicle based on the control of the current to the particulate filter.

  17. Design of Embedded System and Data Communication for an Agricultural Autonomous Vehicle

    DEFF Research Database (Denmark)

    Nielsen, Jens F. Dalsgaard; Nielsen, Kirsten Mølgaard; Bendtsen, Jan Dimon

    2005-01-01

    This paper describes an implemented design of an autonomous vehicle used in precision agriculture for weed and crop map construction with special focus on the onboard controlsystem, the embedded system and the datacommunication system. The vehicle is four wheel driven and four wheel steered (eight...

  18. 75 FR 68664 - Federal Motor Vehicle Safety Standards; Child Restraint Systems; Booster Seat Effectiveness...

    Science.gov (United States)

    2010-11-08

    ... National Highway Traffic Safety Administration Federal Motor Vehicle Safety Standards; Child Restraint... Standard 213, Child Restraint Systems. The report's title is: Booster Seat ] Effectiveness Estimates Based... standards for child restraint systems, including booster seats, manufactured for use in motor vehicles as...

  19. Development of A Hydraulic Drive for a novel Diesel-Hydraulic system for Large commercial Vehicles

    DEFF Research Database (Denmark)

    Stecki, J. S.; Conrad, Finn; Matheson, P.

    2002-01-01

    The objectives and results of the research project Hybrid Diesel-Hydraulic System for Large commercial vehicles, e.g. urban freight delivery, buses or garbage trucks. The paper presents and discusses the research and development of the system, modelling approach and results from preliminary...... performance tests on a 10 ton vehicle....

  20. Large-Scale Battery System Development and User-Specific Driving Behavior Analysis for Emerging Electric-Drive Vehicles

    Directory of Open Access Journals (Sweden)

    Yihe Sun

    2011-04-01

    Full Text Available Emerging green-energy transportation, such as hybrid electric vehicles (HEVs and plug-in HEVs (PHEVs, has a great potential for reduction of fuel consumption and greenhouse emissions. The lithium-ion battery system used in these vehicles, however, is bulky, expensive and unreliable, and has been the primary roadblock for transportation electrification. Meanwhile, few studies have considered user-specific driving behavior and its significant impact on (PHEV fuel efficiency, battery system lifetime, and the environment. This paper presents a detailed investigation of battery system modeling and real-world user-specific driving behavior analysis for emerging electric-drive vehicles. The proposed model is fast to compute and accurate for analyzing battery system run-time and long-term cycle life with a focus on temperature dependent battery system capacity fading and variation. The proposed solution is validated against physical measurement using real-world user driving studies, and has been adopted to facilitate battery system design and optimization. Using the collected real-world hybrid vehicle and run-time driving data, we have also conducted detailed analytical studies of users’ specific driving patterns and their impacts on hybrid vehicle electric energy and fuel efficiency. This work provides a solid foundation for future energy control with emerging electric-drive applications.

  1. Minimum energy, liquid hydrogen supersonic cruise vehicle study

    Science.gov (United States)

    Brewer, G. D.; Morris, R. E.

    1975-01-01

    The potential was examined of hydrogen-fueled supersonic vehicles designed for cruise at Mach 2.7 and at Mach 2.2. The aerodynamic, weight, and propulsion characteristics of a previously established design of a LH2 fueled, Mach 2.7 supersonic cruise vehicle (SCV) were critically reviewed and updated. The design of a Mach 2.2 SCV was established on a corresponding basis. These baseline designs were then studied to determine the potential of minimizing energy expenditure in performing their design mission, and to explore the effect of fuel price and noise restriction on their design and operating performance. The baseline designs of LH2 fueled aircraft were than compared with equivalent designs of jet A (conventional hydrocarbon) fueled SCV's. Use of liquid hydrogen for fuel for the subject aircraft provides significant advantages in performance, cost, noise, pollution, sonic boom, and energy utilization.

  2. Study of the Correlation between the Performances of Lunar Vehicle Wheels Predicted by the Nepean Wheeled Vehicle Performance Model and Test Data

    Science.gov (United States)

    Wong, J. Y.; Asnani, V. M.

    2008-01-01

    This paper describes the results of a study of the correlation between the performances of wheels for lunar vehicles predicted using the Nepean wheeled vehicle performance model (NWVPM), developed under the auspices of Vehicle Systems Development Corporation, Ottawa, Canada, and the corresponding test data presented in Performance evaluation of wheels for lunar vehicles , Technical Report M-70-2, prepared for George C. Marshall Space Flight Center, National Aeronautics and Space Administration (NASA), USA, by the US Army Engineer Waterways Experiment Station (WES). The NWVPM was originally developed for design and performance evaluation of terrestrial off-road wheeled vehicles. The purpose of this study is to assess the potential of the NWVPM for evaluating wheel candidates for the new generation of extra-terrestrial vehicles. Two versions of a wire-mesh wheel and a hoop-spring wheel, which were considered as candidates for lunar roving vehicles for the NASA Apollo program in the late 1960s, together with a pneumatic wheel were examined in this study. The tractive performances of these wheels and of a 464 test vehicle with the pneumatic wheels on air-dry sand were predicted using the NWVPM and compared with the corresponding test data obtained under Earth s gravity and previously documented in the above-named report. While test data on wheel or vehicle performances obtained under Earth s gravity may not necessarily be representative of those on extra-terrestrial bodies, because of the differences in gravity and in environmental conditions, such as atmospheric pressure, it is still a valid approach to use test data obtained under Earth s gravity to evaluate the predictive capability of the NWVPM and its potential applications to predicting wheel or wheeled rover performances on extra-terrestrial bodies. Results of this study show that, using the ratio (P20/W) of the drawbar pull to normal load at 20 per cent slip as a performance indicator, there is a reasonable

  3. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Kreutz, T. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies

    1998-08-01

    In this progress report (covering the period May 1997--May 1998), the authors summarize results from ongoing technical and economic assessments of hydrogen energy systems. Generally, the goal of their research is to illuminate possible pathways leading from present hydrogen markets and technologies toward wide scale use of hydrogen as an energy carrier, highlighting important technologies for RD and D. Over the past year they worked on three projects. From May 1997--November 1997, the authors completed an assessment of hydrogen as a fuel for fuel cell vehicles, as compared to methanol and gasoline. Two other studies were begun in November 1997 and are scheduled for completion in September 1998. The authors are carrying out an assessment of potential supplies and demands for hydrogen energy in the New York City/New Jersey area. The goal of this study is to provide useful data and suggest possible implementation strategies for the New York City/ New Jersey area, as the Hydrogen Program plans demonstrations of hydrogen vehicles and refueling infrastructure. The authors are assessing the implications of CO{sub 2} sequestration for hydrogen energy systems. The goals of this work are (a) to understand the implications of CO{sub 2} sequestration for hydrogen energy system design; (b) to understand the conditions under which CO{sub 2} sequestration might become economically viable; and (c) to understand design issues for future low-CO{sub 2} emitting hydrogen energy systems based on fossil fuels.

  4. A Comparative Study on Emerging Electric Vehicle Technology Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Jonathan [Sentech, Inc.; Khowailed, Gannate [Sentech, Inc.; Blackburn, Julia [Sentech, Inc.; Sikes, Karen [Sentech, Inc.

    2011-03-01

    Numerous organizations have published reports in recent years that investigate the ever changing world of electric vehicle (EV) technologies and their potential effects on society. Specifically, projections have been made on greenhouse gas (GHG) emissions associated with these vehicles and how they compare to conventional vehicles or hybrid electric vehicles (HEVs). Similar projections have been made on the volumes of oil that these vehicles can displace by consuming large amounts of grid electricity instead of petroleum-based fuels. Finally, the projected rate that these new vehicle fleets will enter the market varies significantly among organizations. New ideas, technologies, and possibilities are introduced often, and projected values are likely to be refined as industry announcements continue to be made. As a result, over time, a multitude of projections for GHG emissions, oil displacement, and market penetration associated with various EV technologies has resulted in a wide range of possible future outcomes. This leaves the reader with two key questions: (1) Why does such a collective range in projected values exist in these reports? (2) What assumptions have the greatest impact on the outcomes presented in these reports? Since it is impractical for an average reader to review and interpret all the various vehicle technology reports published to date, Sentech Inc. and the Oak Ridge National Laboratory have conducted a comparative study to make these interpretations. The primary objective of this comparative study is to present a snapshot of all major projections made on GHG emissions, oil displacement, or market penetration rates of EV technologies. From the extensive data found in relevant publications, the key assumptions that drive each report's analysis are identified and 'apples-to-apples' comparisons between all major report conclusions are attempted. The general approach that was taken in this comparative study is comprised of six primary

  5. Integration of Advanced Concepts and Vehicles Into the Next Generation Air Transportation System. Volume 1; Introduction, Key Messages, and Vehicle Attributes

    Science.gov (United States)

    Zellweger, Andres; Resnick, Herbert; Stevens, Edward; Arkind, Kenneth; Cotton William B.

    2010-01-01

    Raytheon, in partnership with NASA, is leading the way in ensuring that the future air transportation continues to be a key driver of economic growth and stability and that this system provides an environmentally friendly, safe, and effective means of moving people and goods. A Raytheon-led team of industry and academic experts, under NASA contract NNA08BA47C, looked at the potential issues and impact of introducing four new classes of advanced aircraft into the next generation air transportation system -- known as NextGen. The study will help determine where NASA should further invest in research to support the safe introduction of these new air vehicles. Small uncrewed or unmanned aerial systems (SUAS), super heavy transports (SHT) including hybrid wing body versions (HWB), very light jets (VLJ), and supersonic business jets (SSBJ) are the four classes of aircraft that we studied. Understanding each vehicle's business purpose and strategy is critical to assessing the feasibility of new aircraft operations and their impact on NextGen's architecture. The Raytheon team used scenarios created by aviation experts that depict vehicles in year 2025 operations along with scripts or use cases to understand the issues presented by these new types of vehicles. The information was then mapped into the Joint Planning and Development Office's (JPDO s) Enterprise Architecture to show how the vehicles will fit into NextGen's Concept of Operations. The team also identified significant changes to the JPDO's Integrated Work Plan (IWP) to optimize the NextGen vision for these vehicles. Using a proven enterprise architecture approach and the JPDO s Joint Planning Environment (JPE) web site helped make the leap from architecture to planning efficient, manageable and achievable. Very Light Jets flying into busy hub airports -- Supersonic Business Jets needing to climb and descend rapidly to achieve the necessary altitude Super-heavy cargo planes requiring the shortest common flight

  6. Onboard power line conditioning system for an electric or hybrid vehicle

    Science.gov (United States)

    Kajouke, Lateef A.; Perisic, Milun

    2016-06-14

    A power line quality conditioning system for a vehicle includes an onboard rechargeable direct current (DC) energy storage system and an onboard electrical system coupled to the energy storage system. The energy storage system provides DC energy to drive an electric traction motor of the vehicle. The electrical system operates in a charging mode such that alternating current (AC) energy from a power grid external to the vehicle is converted to DC energy to charge the DC energy storage system. The electrical system also operates in a vehicle-to-grid power conditioning mode such that DC energy from the DC energy storage system is converted to AC energy to condition an AC voltage of the power grid.

  7. Electric and hybrid vehicles environmental control subsystem study

    Science.gov (United States)

    1981-01-01

    An environmental control subsystem (ECS) in the passenger compartment of electric and hybrid vehicles is studied. Various methods of obtaining the desired temperature control for the battery pack is also studied. The functional requirements of ECS equipment is defined. Following categorization by methodology, technology availability and risk, all viable ECS concepts are evaluated. Each is assessed independently for benefits versus risk, as well as for its feasibility to short, intermediate and long term product development. Selection of the preferred concept is made against these requirements, as well as the study's major goal of providing safe, highly efficient and thermally confortable ECS equipment.

  8. Predictability in space launch vehicle anomaly detection using intelligent neuro-fuzzy systems

    Science.gov (United States)

    Gulati, Sandeep; Toomarian, Nikzad; Barhen, Jacob; Maccalla, Ayanna; Tawel, Raoul; Thakoor, Anil; Daud, Taher

    1994-01-01

    Included in this viewgraph presentation on intelligent neuroprocessors for launch vehicle health management systems (HMS) are the following: where the flight failures have been in launch vehicles; cumulative delay time; breakdown of operations hours; failure of Mars Probe; vehicle health management (VHM) cost optimizing curve; target HMS-STS auxiliary power unit location; APU monitoring and diagnosis; and integration of neural networks and fuzzy logic.

  9. Electric vehicles, power generation systems of the solar age; Das Elektrofahrzeug als Regelenergiekraftwerk des Solarzeitalters

    Energy Technology Data Exchange (ETDEWEB)

    Engel, T. [EUROSOLAR-Sektion Deutschland (Germany)]|[Deutschen Gesellschaft fuer Sonnenenergie (Germany). Arbeitsschwerpunkt ' Solare Mobilitaet'

    2006-07-01

    Integration of electric vehicles with power storage and supply of stored power to the grid is a highly advantageous strategy for a decentral, solar power economy. The concept may also find its supporters in the existing fossil-atomic power economy where electric cars have their uses as well. Solar power autonomy necessitates power storage systems. Financial incentives should be specified in an amended EEG (Energy Conservation Act), and vehicles by the vehicle-to-grid principles should not be neglected. (orig.)

  10. Environmentally Responsible Aviation (ERA) Project - N+2 Advanced Vehicle Concepts Study and Conceptual Design of Subscale Test Vehicle (STV) Final Report

    Science.gov (United States)

    Bonet, John T.; Schellenger, Harvey G.; Rawdon, Blaine K.; Elmer, Kevin R.; Wakayama, Sean R.; Brown, Derrell L.; Guo, Yueping

    2011-01-01

    NASA has set demanding goals for technology developments to meet national needs to improve fuel efficiency concurrent with improving the environment to enable air transportation growth. A figure shows NASA's subsonic transport system metrics. The results of Boeing ERA N+2 Advanced Vehicle Concept Study show that the Blended Wing Body (BWB) vehicle, with ultra high bypass propulsion systems have the potential to meet the combined NASA ERA N+2 goals. This study had 3 main activities. 1) The development of an advanced vehicle concepts that can meet the NASA system level metrics. 2) Identification of key enabling technologies and the development of technology roadmaps and maturation plans. 3) The development of a subscale test vehicle that can demonstrate and mature the key enabling technologies needed to meet the NASA system level metrics. Technology maturation plans are presented and include key performance parameters and technical performance measures. The plans describe the risks that will be reduced with technology development and the expected progression of technical maturity.

  11. Fiber Optic Sensing Systems for Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The FOSS project primary test objectives are to demonstrate by flying on an Antares launch vehicle, the ability of FOSS flight hardware to measure strain and...

  12. Vehicle Travel Information System (VTRIS) - Data Download Tool

    Data.gov (United States)

    Department of Transportation — The VTRIS W-Tables are designed to provide a standard format for presenting the outcome of the Vehicle Weighing and Classification efforts at truck weigh sites. The...

  13. Study of Model Predictive Control for Path-Following Autonomous Ground Vehicle Control under Crosswind Effect

    Directory of Open Access Journals (Sweden)

    Fitri Yakub

    2016-01-01

    Full Text Available We present a comparative study of model predictive control approaches of two-wheel steering, four-wheel steering, and a combination of two-wheel steering with direct yaw moment control manoeuvres for path-following control in autonomous car vehicle dynamics systems. Single-track mode, based on a linearized vehicle and tire model, is used. Based on a given trajectory, we drove the vehicle at low and high forward speeds and on low and high road friction surfaces for a double-lane change scenario in order to follow the desired trajectory as close as possible while rejecting the effects of wind gusts. We compared the controller based on both simple and complex bicycle models without and with the roll vehicle dynamics for different types of model predictive control manoeuvres. The simulation result showed that the model predictive control gave a better performance in terms of robustness for both forward speeds and road surface variation in autonomous path-following control. It also demonstrated that model predictive control is useful to maintain vehicle stability along the desired path and has an ability to eliminate the crosswind effect.

  14. Dynamic Modeling and Simulation on a Hybrid Power System for Electric Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Hong-Wen He

    2010-11-01

    Full Text Available Hybrid power systems, formed by combining high-energy-density batteries and high-power-density ultracapacitors in appropriate ways, provide high-performance and high-efficiency power systems for electric vehicle applications. This paper first establishes dynamic models for the ultracapacitor, the battery and a passive hybrid power system, and then based on the dynamic models a comparative simulation between a battery only power system and the proposed hybrid power system was done under the UDDS (Urban Dynamometer Driving Schedule. The simulation results showed that the hybrid power system could greatly optimize and improve the efficiency of the batteries and their dynamic current was also decreased due to the participation of the ultracapacitors, which would have a good influence on batteries’ cycle life. Finally, the parameter matching for the passive hybrid power system was studied by simulation and comparisons.

  15. Evaluation of different speech and touch interfaces to in-vehicle music retrieval systems.

    Science.gov (United States)

    Garay-Vega, L; Pradhan, A K; Weinberg, G; Schmidt-Nielsen, B; Harsham, B; Shen, Y; Divekar, G; Romoser, M; Knodler, M; Fisher, D L

    2010-05-01

    In-vehicle music retrieval systems are becoming more and more popular. Previous studies have shown that they pose a real hazard to drivers when the interface is a tactile one which requires multiple entries and a combination of manual control and visual feedback. Voice interfaces exist as an alternative. Such interfaces can require either multiple or single conversational turns. In this study, each of 17 participants between the ages of 18 and 30 years old was asked to use three different music retrieval systems (one with a multiple entry touch interface, the iPod, one with a multiple turn voice interface, interface B, and one with a single turn voice interface, interface C) while driving through a virtual world. Measures of secondary task performance, eye behavior, vehicle control, and workload were recorded. When compared with the touch interface, the voice interfaces reduced the total time drivers spent with their eyes off the forward roadway, especially in prolonged glances, as well as both the total number of glances away from the forward roadway and the perceived workload. Furthermore, when compared with driving without a secondary task, both voice interfaces did not significantly impact hazard anticipation, the frequency of long glances away from the forward roadway, or vehicle control. The multiple turn voice interface (B) significantly increased both the time it took drivers to complete the task and the workload. The implications for interface design and safety are discussed. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  16. Multimodal Interface Based on Novel HMI UI/UX for In‐Vehicle Infotainment System

    National Research Council Canada - National Science Library

    Kim, Jinwoo; Ryu, Jae Hong; Han, Tae Man

    2015-01-01

    We propose a novel HMI UI/UX for an in‐vehicle infotainment system. Our proposed HMI UI comprises multimodal interfaces that allow a driver to safely and intuitively manipulate an infotainment system while driving...

  17. A Decentralized Control Strategy for High Density Material Flow Systems with Automated Guided Vehicles

    OpenAIRE

    Schwab, Melanie

    2015-01-01

    This work presents a universal decentralized control strategy for grid-based high-density material flow systems with automated guided vehicles and gives insights into the system behavior as well as the solution quality.

  18. Roadway system assessment using bluetooth-based automatic vehicle identification travel time data.

    Science.gov (United States)

    2012-12-01

    This monograph is an exposition of several practice-ready methodologies for automatic vehicle identification (AVI) data collection : systems. This includes considerations in the physical setup of the collection system as well as the interpretation of...

  19. Extrinsic Calibration for Vehicle-based Mobile Mapping System

    Directory of Open Access Journals (Sweden)

    SHI Limei

    2015-01-01

    Full Text Available Having the advantage of 360° imaging and rotation invariance, panoramic camera has gradually been used in mobile mapping systems(MMS. Calibration is an essential requirement to make sure that MMS can get high quality geo-information. This paper presents a way to address the extrinsic calibration for vehicle-based MMS composed of panoramic camera and Position and Orientation System (POS. Firstly, control points in the natural scene are set up, whose spatial coordinates are measured with high precision. Secondly, a panoramic spherical model is constructed and panoramic image can be projected to this model by means of spherical reverse transformation projection. Then, localize and select the control points in 3D spherical panoramic view but not in panoramic distorted image directly, the spherical coordinates of control points in panoramic image are gotten. After points correspondence is established, make use of direct geo-reference positioning equation and coordinate transformation, the translation and rotation parameters of panoramic camera relative to POS are computed. Experiments are conducted separately in space city calibration site located in Beijing and the Binhai New Area in Tianjin using our approach. Test results are listed as follows. When the GPS signal are of good quality, absolute positioning mean square error of a point is 10.3 cm in two-dimension plane and 16.5 cm in height direction; Otherwise, it is 35.4 cm in two-dimension plane and 54.8 cm in height direction. The max relative error of distance measurement is about 5 cm over a short distance (distance<3 km, which is not obviously affected by the GPS signal quality.

  20. NASA's Space Launch System: One Vehicle, Many Destinations

    Science.gov (United States)

    May, Todd A.; Creech, Stephen D.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will start its missions in 2017 with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. This paper will explore the capability of SLS to meet those requirements and enable those missions. It will explain how the SLS Program is executing this development within flat budgetary guidelines by using existing engines assets and developing advanced technology based on heritage systems, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability. It will also detail the significant progress that has already been made toward its first launch in 2017. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they will need for extended trips to explore new frontiers. In addition, this paper will summarize the SLS rocket's capability to support science and robotic precursor missions to other worlds, or uniquely high-mass space facilities in Earth orbit. As this paper will explain, the SLS is making measurable progress toward becoming a global

  1. Solar Electric Propulsion System Integration Technology (SEPSIT). Volume 2: Encke rendezvous mission and space vehicle functional description

    Science.gov (United States)

    Gardner, J. A.

    1972-01-01

    A solar electric propulsion system integration technology study is discussed. Detailed analyses in support of the solar electric propulsion module were performed. The thrust subsystem functional description is presented. The space vehicle and the space mission to which the propulsion system is applied are analyzed.

  2. Systems Studies

    Energy Technology Data Exchange (ETDEWEB)

    Graham, R.L.

    1998-03-17

    The Systems Studies Activity had two objectives: (1) to investigate nontechnical barriers to the deployment of biomass production and supply systems and (2) to enhance and extend existing systems models of bioenergy supply and use. For the first objective, the Activity focused on existing bioenergy markets. Four projects were undertaken: a comparative analysis of bioenergy in Sweden and Austria; a one-day workshop on nontechnical barriers jointly supported by the Production Systems Activity; the development and testing of a framework for analyzing barriers and drivers to bioenergy markets; and surveys of wood pellet users in Sweden, Austria and the US. For the second objective, two projects were undertaken. First, the Activity worked with the Integrated BioEnergy Systems (TBS) Activity of TEA Bioenergy Task XIII to enhance the BioEnergy Assessment Model (BEAM). This model is documented in the final report of the IBS Activity. The Systems Studies Activity contributed to enhancing the feedstock portion of the model by developing a coherent set of willow, poplar, and switchgrass production modules relevant to both the US and the UK. The Activity also developed a pretreatment module for switchgrass. Second, the Activity sponsored a three-day workshop on modeling bioenergy systems with the objectives of providing an overview of the types of models used to evaluate bioenergy and promoting communication among bioenergy modelers. There were nine guest speakers addressing different types of models used to evaluate different aspects of bioenergy, ranging from technoeconomic models based on the ASPEN software to linear programming models to develop feedstock supply curves for the US. The papers from this workshop have been submitted to Biomass and Bioenergy and are under editorial review.

  3. A Concept of Operations for an Integrated Vehicle Health Assurance System

    Science.gov (United States)

    Hunter, Gary W.; Ross, Richard W.; Berger, David E.; Lekki, John D.; Mah, Robert W.; Perey, Danie F.; Schuet, Stefan R.; Simon, Donald L.; Smith, Stephen W.

    2013-01-01

    This document describes a Concept of Operations (ConOps) for an Integrated Vehicle Health Assurance System (IVHAS). This ConOps is associated with the Maintain Vehicle Safety (MVS) between Major Inspections Technical Challenge in the Vehicle Systems Safety Technologies (VSST) Project within NASA s Aviation Safety Program. In particular, this document seeks to describe an integrated system concept for vehicle health assurance that integrates ground-based inspection and repair information with in-flight measurement data for airframe, propulsion, and avionics subsystems. The MVS Technical Challenge intends to maintain vehicle safety between major inspections by developing and demonstrating new integrated health management and failure prevention technologies to assure the integrity of vehicle systems between major inspection intervals and maintain vehicle state awareness during flight. The approach provided by this ConOps is intended to help optimize technology selection and development, as well as allow the initial integration and demonstration of these subsystem technologies over the 5 year span of the VSST program, and serve as a guideline for developing IVHAS technologies under the Aviation Safety Program within the next 5 to 15 years. A long-term vision of IVHAS is provided to describe a basic roadmap for more intelligent and autonomous vehicle systems.

  4. Road Vehicle Monitoring System Based on Intelligent Visual Internet of Things

    Directory of Open Access Journals (Sweden)

    Qingwu Li

    2015-01-01

    Full Text Available In recent years, with the rapid development of video surveillance infrastructure, more and more intelligent surveillance systems have employed computer vision and pattern recognition techniques. In this paper, we present a novel intelligent surveillance system used for the management of road vehicles based on Intelligent Visual Internet of Things (IVIoT. The system has the ability to extract the vehicle visual tags on the urban roads; in other words, it can label any vehicle by means of computer vision and therefore can easily recognize vehicles with visual tags. The nodes designed in the system can be installed not only on the urban roads for providing basic information but also on the mobile sensing vehicles for providing mobility support and improving sensing coverage. Visual tags mentioned in this paper consist of license plate number, vehicle color, and vehicle type and have several additional properties, such as passing spot and passing moment. Moreover, we present a fast and efficient image haze removal method to deal with haze weather condition. The experiment results show that the designed road vehicle monitoring system achieves an average real-time tracking accuracy of 85.80% under different conditions.

  5. Study on Vehicle Track Model in Road Curved Section Based on Vehicle Dynamic Characteristics

    Directory of Open Access Journals (Sweden)

    Ren Yuan-Yuan

    2012-01-01

    Full Text Available Plenty of experiments and data analysis of vehicle track type in road curved section show that the deviation and the crossing characteristics of vehicle track paths are directly related to the driving stability and security. In this connection, the concept of driving trajectory in curved section was proposed, six track types were classified and defined, and furthermore their characteristic features were determined. Most importantly, considering curve geometry and vehicle dynamic characteristics, each trajectory model was established, respectively, and the optimum driving trajectory models were finally determined based on the crucial factors of vehicle yaw rate, which was also the most important factor that impacts vehicle’s handling stability. Through it all, MATLAB was used to simulate and verify the correctness of models. Finally, this paper comes to the conclusion that normal trajectory and cutting trajectory are the optimum driving trajectories.

  6. Research on Control System of Three - phase Brushless DC Motor for Electric Vehicle

    Science.gov (United States)

    Wang, Zhiwei; Jin, Hai; Guo, Jie; Su, Jie; Wang, Miao

    2017-12-01

    In order to study the three-phase brushless motor control system of electric vehicle, Freescale9S12XS128 chip is used as the control core, and the power MOSFET is used as the inverter device. The software is compiled by Codewarrior software. The speed control link adopts open-loop control, and the control chip collects the external sensor signal voltage Change control PWM signal output control three-phase brushless DC motor speed. The whole system consists of Hall position detection module, current detection module, power drive module and voltage detection module. The basic functions of three-phase brushless DC motor drive control are realized.

  7. Battery System Modeling for a Military Electric Propulsion Vehicle with a Fault Simulation

    OpenAIRE

    Ham, Hyeongjin; Han, Kyuhong; Lee, Hyeongcheol

    2013-01-01

    This paper describes the development process and results of a battery system model with a fault simulation for electric propulsion vehicles. The developed battery system model can be used to verify control and fault diagnosis strategies of the supervisory controller in an electric propulsion vehicle. To develop this battery system model, three sub-models, including a battery model, a relay assembly model, and a battery management system (BMS) model, are connected together like in the target r...

  8. Motorcycle That See: Multifocal Stereo Vision Sensor for Advanced Safety Systems in Tilting Vehicles

    Directory of Open Access Journals (Sweden)

    Gustavo Gil

    2018-01-01

    Full Text Available Advanced driver assistance systems, ADAS, have shown the possibility to anticipate crash accidents and effectively assist road users in critical traffic situations. This is not the case for motorcyclists, in fact ADAS for motorcycles are still barely developed. Our aim was to study a camera-based sensor for the application of preventive safety in tilting vehicles. We identified two road conflict situations for which automotive remote sensors installed in a tilting vehicle are likely to fail in the identification of critical obstacles. Accordingly, we set two experiments conducted in real traffic conditions to test our stereo vision sensor. Our promising results support the application of this type of sensors for advanced motorcycle safety applications.

  9. Motorcycle That See: Multifocal Stereo Vision Sensor for Advanced Safety Systems in Tilting Vehicles.

    Science.gov (United States)

    Gil, Gustavo; Savino, Giovanni; Piantini, Simone; Pierini, Marco

    2018-01-19

    Advanced driver assistance systems, ADAS, have shown the possibility to anticipate crash accidents and effectively assist road users in critical traffic situations. This is not the case for motorcyclists, in fact ADAS for motorcycles are still barely developed. Our aim was to study a camera-based sensor for the application of preventive safety in tilting vehicles. We identified two road conflict situations for which automotive remote sensors installed in a tilting vehicle are likely to fail in the identification of critical obstacles. Accordingly, we set two experiments conducted in real traffic conditions to test our stereo vision sensor. Our promising results support the application of this type of sensors for advanced motorcycle safety applications.

  10. Motorcycles that See: Multifocal Stereo Vision Sensor for Advanced Safety Systems in Tilting Vehicles

    Science.gov (United States)

    2018-01-01

    Advanced driver assistance systems, ADAS, have shown the possibility to anticipate crash accidents and effectively assist road users in critical traffic situations. This is not the case for motorcyclists, in fact ADAS for motorcycles are still barely developed. Our aim was to study a camera-based sensor for the application of preventive safety in tilting vehicles. We identified two road conflict situations for which automotive remote sensors installed in a tilting vehicle are likely to fail in the identification of critical obstacles. Accordingly, we set two experiments conducted in real traffic conditions to test our stereo vision sensor. Our promising results support the application of this type of sensors for advanced motorcycle safety applications. PMID:29351267

  11. Designing method in current control system of permanent magnet synchronous motor for railway vehicle traction; Tetsudo sharyo kudoyo eikyu jishaku doki dendoki no denryu seigyokei sekkeiho

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, K.; Matsuoka, K. [Railway Technical Research Institute, Tokyo (Japan); Nakazawa, Y. [Toshiba Corp., Tokyo (Japan)

    1998-07-01

    We have been studying the application of permanent magnet synchronous motor (PMSM) for railway vehicle traction in order to reduce the weight and size of direct drive traction motor. As a part of this study establishing a current control system of PMSM suitable for railway vehicle traction should be investigated. In this paper we discuss about designing method of current control system mentioned above and suggest a method which is available under the condition of railway vehicle traction, low switching frequency and long digital calculating period. Next we investigate how to decide current response time constant Td and reach a conclusion that it is about 10ms is appropriate under some assumed condition. Then we checked this current control system for railway vehicle traction through experiments and studies of influence of parameter changing. Consequently we can recognize the current control system has satisfactory performance for railway vehicle traction. 10 refs., 13 figs.

  12. Cooling Performance Characteristics on Mobile Air-Conditioning System for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Ho-Seong Lee

    2013-01-01

    Full Text Available This study investigates the cooling performance characteristics of the mobile air-conditioning system using R744 (CO2 for the hybrid electric vehicle as an alternative to both the R-134a and the conventional air-conditioning system. The developed air-conditioning system is operated with an electric driven compressor in the battery driving mode and a belt driven compressor in the engine driving mode. The cooling performance characteristics of the developed system have been analyzed by experiments under various operating conditions of inlet air temperature, air flow rates for the gas cooler side and evaporator side, and electric compressor revolution respectively. As a result, cooling performances of the tested air-conditioning system for the EDC driving mode (electricity driven compressor were better than those for the BDC driving mode (belt driven compressor. The cooling capacity and cooling COP of the tested air-conditioning system for both driving modes were over 5.0 kW and 2.0, respectively. The observed cooling performance of the tested air-conditioning system may be sufficient for the cabin cooling of hybrid electric vehicles.

  13. Vehicle-to-grid (V2G) and grid conditioning systems

    OpenAIRE

    Zabihi Sheikhrajeh, Nima

    2013-01-01

    The term Vehicle-to-Grid (V2G) refers to the technology that enables a bidirectional power exchange between the electric grid and the batteries of plug-in electric vehicles (PEV). V2G technology can be a key element of the intelligent network, which may use the batteries of the vehicle as a system of local storage. The vehicle battery may contribute to the stability of the grid and to meeting the energy demand, especially in peak hours. A PEV needs a bidirectional charger to implement V2G, an...

  14. Alternative Sensor System and MLP Neural Network for Vehicle Pedal Activity Estimation

    Directory of Open Access Journals (Sweden)

    Ahmed M. Wefky

    2010-04-01

    Full Text Available It is accepted that the activity of the vehicle pedals (i.e., throttle, brake, clutch reflects the driver’s behavior, which is at least partially related to the fuel consumption and vehicle pollutant emissions. This paper presents a solution to estimate the driver activity regardless of the type, model, and year of fabrication of the vehicle. The solution is based on an alternative sensor system (regime engine, vehicle speed, frontal inclination and linear acceleration that reflects the activity of the pedals in an indirect way, to estimate that activity by means of a multilayer perceptron neural network with a single hidden layer.

  15. Electric Vehicles in Imperfect Electricity Markets: A German Case Study

    OpenAIRE

    Schill, Wolf-Peter

    2010-01-01

    We analyze the impacts of a hypothetical fleet of plug-in electric vehicles on the imperfectly competitive German electricity market with a game-theoretic model. Electric vehicles bring both additional demand and additional storage capacity to the market. We determine their effects on prices, welfare, and electricity generation for various cases with different players being in charge of vehicle operations. We find that vehicle loading increases generator profits, but decreases consumer surplu...

  16. Effects of Fuel Type and Fuel Delivery System on Pollutant Emissions of Pride and Samand Vehicles

    Directory of Open Access Journals (Sweden)

    Akbar Sarhadi

    2017-04-01

    Full Text Available This research was aimed to study the effect of the type of fuel delivery system (petrol, dedicated or bifuel, the type of consumed fuel (petrol or gas, the portion of consumed fuel and also the duration of dual-fuelling in producing carbon monoxide, carbon dioxide and unburned hydrocarbons from Pride and Samand. According to research objectives, data gathering from 2000 vehicles has been done by visiting Hafiz Vehicle Inspection Center every day for 2 months. The results of this survey indicated that although there is no significant difference between various fuel delivery systems in terms of producing the carbon monoxide, carbon dioxide and unburned hydrocarbons by Samand, considering the emission amount of carbon dioxide, the engine performance of Pride in bifuel and dedicated state in GTXI and 132 types is more unsatisfactory than that of petrol state by 0.3 and 0.4%, respectively. On the other hand, consuming natural gas increases the amount of carbon monoxide emission in dual- fuel Pride by 0.18% and decreases that in dual-fuel Samand by 1.2%, which signifies the better design of Samand in terms of fuel pumps, used kit type and other engine parts to use this alternative fuel compared to Pride. Since the portion of consumed fuel and also duration of dual-fuelling does not have a significant effect on the amount of output pollutants from the studied vehicles, it can be claimed that the output substances from the vehicle exhaust are more related to the vehicle’s condition than the fuel type.

  17. The impact of electric vehicles on the Southern California Edison System

    Energy Technology Data Exchange (ETDEWEB)

    Ford, A.

    1992-07-01

    This report describes the results of the first phase of an investigation of the impacts of electric vehicles (EVs) in southern California. The investigation focuses on the Southern California Edison Company (SCE) which provides electric service for approximately 60% of southern California. The project is supported by the Air Quality Impacts of Energy Efficiency'' Program of the California Institute for Energy Efficiency (CIEE). The first phase of the research is organized around how EVs might be viewed by customers, vehicle manufacturers and electric utility companies. The vehicle manufacturers' view has been studied with special emphasis on the role of marketable permit systems. The utilities' view of EVs is the subject of this report. The review is particularly important as several case studies of EVs in southern California have been conducted in recent years. The dynamics of a growing population of EVs is explained. Chapter 5 explains a simple method of deriving the electricity demands which could result from the operation of EVs in southern California. The method is demonstrated for several simple examples and then used to find the demands associated with each of the eight EV scenarios. Chapter 6 reports the impacts on SCE operations from the new demands for electricity. Impacts are summarized in terms of system operating costs, reliability of service, and changes in the utility's average electric rate. Chapter 7 turns to the emissions of air pollutants released by the operation of EVs, conventional vehicles (CVs) and power plants. Chapter 8 takes the air pollution analysis one step further by examining the possible reduction in ambient ozone concentration in southern California.

  18. The impact of electric vehicles on the Southern California Edison System. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ford, A.

    1992-07-01

    This report describes the results of the first phase of an investigation of the impacts of electric vehicles (EVs) in southern California. The investigation focuses on the Southern California Edison Company (SCE) which provides electric service for approximately 60% of southern California. The project is supported by the ``Air Quality Impacts of Energy Efficiency`` Program of the California Institute for Energy Efficiency (CIEE). The first phase of the research is organized around how EVs might be viewed by customers, vehicle manufacturers and electric utility companies. The vehicle manufacturers` view has been studied with special emphasis on the role of marketable permit systems. The utilities` view of EVs is the subject of this report. The review is particularly important as several case studies of EVs in southern California have been conducted in recent years. The dynamics of a growing population of EVs is explained. Chapter 5 explains a simple method of deriving the electricity demands which could result from the operation of EVs in southern California. The method is demonstrated for several simple examples and then used to find the demands associated with each of the eight EV scenarios. Chapter 6 reports the impacts on SCE operations from the new demands for electricity. Impacts are summarized in terms of system operating costs, reliability of service, and changes in the utility`s average electric rate. Chapter 7 turns to the emissions of air pollutants released by the operation of EVs, conventional vehicles (CVs) and power plants. Chapter 8 takes the air pollution analysis one step further by examining the possible reduction in ambient ozone concentration in southern California.

  19. The systems of automatic weight control of vehicles in the road and rail transport in Poland

    Directory of Open Access Journals (Sweden)

    2011-09-01

    Full Text Available . Condition of roads in Poland, despite the on-going modernisation works is still unsatisfactory. One reason is the excessive wear caused by overloaded vehicles. This problem also applies to rail transport, although to a much lesser extent. One solution may be the system of automatic weight control of road and rail vehicles. The article describes the legal and organizational conditions of oversize vehicles inspection in Poland. Characterized current practices weighing road vehicles, based on measurements of static technology. The article includes the description of the existing applications of the automatic dynamic weighing technology, known as systems WIM (Weigh in Motion. Additionally, the weighing technology and construction of weighing stands in road and rail are characterized. The article ends with authors' conclusions indicating the direction and ways of improving the weighing control systems for vehicles.

  20. Experimental study on dynamic buckling phenomena for supercavitating underwater vehicle

    Directory of Open Access Journals (Sweden)

    Minho Chung

    2012-09-01

    Full Text Available Dynamic buckling, also known as parametric resonance, is one of the dynamic instability phenomena which may lead to catastrophic failure of structures. It occurs when compressive dynamic loading is applied to the structures. Therefore it is essential to establish a reliable procedure to test and evaluate the dynamic buckling behaviors of structures, especially when the structure is designed to be utilized in compressive dynamic loading environment, such as supercavitating underwater vehicle. In the line of thought, a dynamic buckling test system is designed in this work. Using the test system, dynamic buckling tests including beam, plate, and stiffened plate are carried out, and the dynamic buckling characteristics of considered structures are investigated experimentally as well as theoretically and numerically.