WorldWideScience

Sample records for vehicle particulate emissions

  1. Emissions of nitrogen oxides and particulates of diesel vehicles

    OpenAIRE

    Kadijk, G.; Ligterink, N.E.; Mensch, P. van; Spreen, J.S.; Vermeulen, R.J.; Vonk, W.A.

    2015-01-01

    In real-world conditions, modern Euro VI heavy-duty vehicles produce an average of ten times less nitrogen oxide (NOx)emissions than previous generations of Euro IV and Euro V heavy-duty vehicles. However, Euro 6 passenger cars and light commercial vehicles present an entirely different picture since, despite a continual tightening of European emissions limits, the real-world NOx emissions of new diesel passenger cars and light commercial vehicles have remained virtually unchanged over the la...

  2. Final report for measurement of primary particulate matter emissions from light-duty motor vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Norbeck, J. M.; Durbin, T. D.; Truex, T. J.

    1998-12-31

    This report describes the results of a particulate emissions study conducted at the University of California, Riverside, College of Engineering-Center for Environmental Research and Technology (CE-CERT) from September of 1996 to August of 1997. The goal of this program was to expand the database of particulate emissions measurements from motor vehicles to include larger numbers of representative in-use vehicles. This work was co-sponsored by the Coordinating Research Council (CRC), the South Coast Air Quality Management District (SCAQMD), and the National Renewable Energy Laboratory (NREL) and was part of a larger study of particulate emissions being conducted in several states under sponsorship by CRC. For this work, FTP particulate mass emission rates were determined for gasoline and diesel vehicles, along with the fractions of particulates below 2.5 and 10 microns aerodynamic diameter. A total of 129 gasoline-fueled vehicles and 19 diesel-fueled vehicles were tested as part of the program.

  3. Particulate emission rates from light-duty vehicles in the South Coast Air Quality Management District

    International Nuclear Information System (INIS)

    Durbin, T.D.; Norbeck, J.M.; Smith, M.R.; Truex, T.J.

    1999-01-01

    This paper presents the results of a particulate emission rate study conducted on 129 light-duty gasoline and 19 light-duty diesel vehicles for the Coordinating Research Council's (CRC's) Project E-24-2. Total particulate emission rates for newer gasoline vehicles were low with modest increases with vehicle age and older technology. Average FTP particulate emission rates as a function of model year for gasoline vehicles were found to be 2.5 mg/mi for 1991 and newer models, 14.4 mg/mi for 1986--1990 models, 49.0 mg/mi for 1981--1985 models, and 33.8 mg/mi for 1980 and older models. High gaseous emitters were found to have approximately 5--10 times the particulate emission rates of normal emitters. The diesel vehicles had an average particulate emission rate of 561 mg/mi. It should be noted that the light-duty diesel vehicles were predominantly older, pre-1985 vehicles; the 1985 and newer diesel vehicles had substantially lower particulate emissions, i.e., less than 100 mg/mi. Emission inventory estimates in the South Coast Air Basin based on the fleet emission rates were higher than those obtained using the default values in EMFAC7G, due primarily to the contribution of high emitters

  4. Emissions of nitrogen oxides and particulates of diesel vehicles

    NARCIS (Netherlands)

    Kadijk, G.; Ligterink, N.E.; Mensch, P. van; Spreen, J.S.; Vermeulen, R.J.; Vonk, W.A.

    2015-01-01

    In real-world conditions, modern Euro VI heavy-duty vehicles produce an average of ten times less nitrogen oxide (NOx)emissions than previous generations of Euro IV and Euro V heavy-duty vehicles. However, Euro 6 passenger cars and light commercial vehicles present an entirely different picture

  5. Gaseous and particulate emissions from rural vehicles in China

    Science.gov (United States)

    Yao, Zhiliang; Huo, Hong; Zhang, Qiang; Streets, David G.; He, Kebin

    2011-06-01

    Rural vehicles (RVs) could contribute significantly to air pollutant emissions throughout Asia due to their considerable population, extensive usage, and high emission rates, but their emissions have not been measured before and have become a major concern for the accuracy of regional and global emission inventories. In this study, we measured CO, HC, NO x and PM emissions of RVs using a combined on-board emission measurement system on real roads in China. We also compared the emission levels of the twenty RVs to those of nineteen Euro II light-duty diesel trucks (LDDTs) that we measured for previous studies. The results show that one-cylinder RVs have lower distance-based emission factors compared to LDDTs because of their smaller weight and engine power, but they have significantly higher fuel-based PM emission factors than LDDTs. Four-cylinder RVs have equivalent emission levels to LDDTs. Based on the emission factors and the activity data obtained, we estimate that the total emissions of RVs in China in 2006 were 1049 Gg of CO, 332 Gg of HC, 933 Gg of NO x, and 54 Gg of PM, contributing over 40% to national on-road diesel CO, NO x, and PM emissions. As RVs are a significant contributor to national emissions, further research work is needed to improve the accuracy of inventories at all levels, and the government should strengthen the management of RVs to facilitate both policy making and research work.

  6. Assessing the impacts of ethanol and isobutanol on gaseous and particulate emissions from flexible fuel vehicles.

    Science.gov (United States)

    Karavalakis, Georgios; Short, Daniel; Russell, Robert L; Jung, Heejung; Johnson, Kent C; Asa-Awuku, Akua; Durbin, Thomas D

    2014-12-02

    This study investigated the effects of higher ethanol blends and an isobutanol blend on the criteria emissions, fuel economy, gaseous toxic pollutants, and particulate emissions from two flexible-fuel vehicles equipped with spark ignition engines, with one wall-guided direct injection and one port fuel injection configuration. Both vehicles were tested over triplicate Federal Test Procedure (FTP) and Unified Cycles (UC) using a chassis dynamometer. Emissions of nonmethane hydrocarbons (NMHC) and carbon monoxide (CO) showed some statistically significant reductions with higher alcohol fuels, while total hydrocarbons (THC) and nitrogen oxides (NOx) did not show strong fuel effects. Acetaldehyde emissions exhibited sharp increases with higher ethanol blends for both vehicles, whereas butyraldehyde emissions showed higher emissions for the butanol blend relative to the ethanol blends at a statistically significant level. Particulate matter (PM) mass, number, and soot mass emissions showed strong reductions with increasing alcohol content in gasoline. Particulate emissions were found to be clearly influenced by certain fuel parameters including oxygen content, hydrogen content, and aromatics content.

  7. Developing particulate thin filter using coconut fiber for motor vehicle emission

    Science.gov (United States)

    Wardoyo, A. Y. P.; Juswono, U. P.; Riyanto, S.

    2016-03-01

    Amounts of motor vehicles in Indonesia have been recognized a sharply increase from year to year with the increment reaching to 22 % per annum. Meanwhile motor vehicles produce particulate emissions in different sizes with high concentrations depending on type of vehicles, fuels, and engine capacity. Motor Particle emissions are not only to significantly contribute the atmosphric particles but also adverse to human health. In order to reduce the particle emission, it is needed a filter. This study was aimed to develop a thin filter using coconut fiber to reduce particulate emissions for motor vehicles. The filter was made of coconut fibers that were grinded into power and mixed with glues. The filter was tested by the measurements of particle concentrations coming out from the vehicle exhaust directly and the particle concentrations after passing through the filter. The efficiency of the filter was calculated by ratio of the particle concentrations before comming in the filter to the particle conentrations after passing through the filter. The results showed that the efficiency of the filter obtained more than 30 %. The efficiency increases sharply when a number of the filters are arranged paralelly.

  8. Alignment of policies to maximize the climate benefits of diesel vehicles through control of particulate matter and black carbon emissions

    International Nuclear Information System (INIS)

    Minjares, Ray; Blumberg, Kate; Posada Sanchez, Francisco

    2013-01-01

    Diesel vehicles offer greater fuel-efficiency and lower greenhouse gas emissions at a time when national governments seek to reduce the energy and climate impacts of the vehicle fleet. Policies that promote diesels like preferential fuel taxes, fuel economy standards and greenhouse gas emission standards can produce higher emissions of diesel particulate matter if diesel particulate filters or equivalent emission control technology is not in place. This can undermine the expected climate benefits of dieselization and increase impacts on public health. This paper takes a historical look at Europe to illustrate the degree to which dieselization and lax controls on particulate matter can undermine the potential benefits sought from diesel vehicles. We show that countries on the dieselization pathway can fully capture the value of diesels with the adoption of tailpipe emission standards equivalent to Euro 6 or Tier 2 for passenger cars, and fuel quality standards that limit the sulfur content of diesel fuel to no greater than 15 ppm. Adoption of these policies before or in parallel with adoption of fuel consumption and greenhouse gas standards can avert the negative impacts of dieselization. - Highlights: ► Preferential tax policies have increased the dieselization of some light-duty vehicle fleets. ► Dieselization paired with lax emission standards produces large black carbon emissions. ► Diesel black carbon undermines the perceived climate benefits of diesel vehicles. ► Stringent controls on diesel particulate emissions will also reduce black carbon. ► Euro 6/VI equivalent emission standards can preserve the climate benefits of diesel vehicles

  9. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer

    OpenAIRE

    Dallmann, T. R.; Onasch, T. B.; Kirchstetter, T. W.; Worton, D. R.; Fortner, E. C.; Herndon, S. C.; Wood, E. C.; Franklin, J. P.; Worsnop, D. R.; Goldstein, A. H.; Harley, R. A.

    2014-01-01

    Particulate matter (PM) emissions were measured in July 2010 from on-road motor vehicles driving through a highway tunnel in the San Francisco Bay area. A soot particle aerosol mass spectrometer (SP-AMS) was used to measure the chemical composition of PM emitted by gasoline and diesel vehicles at high time resolution. Organic aerosol (OA) and black carbon (BC) concentrations were measured during various time periods that had different levels of diesel influence, as well as d...

  10. Particulate emissions from new heavy duty vehicles (Euro IV and V); Partikeludslip fra nye tunge koeretoejer (Euronorm IV og V)

    Energy Technology Data Exchange (ETDEWEB)

    Jordal-Joergensen, J.; Ohm, A.; Willumsen, E. (COWI A/S, Kgs. Lyngby (DK))

    2008-07-01

    The new Danish act on environmental zones allows local authorities to define zones where EURO III or older heavy duty vehicles should be equipped with a particulate filter. The introduction of EURO IV and V has reduced particulate emissions from heavy duty vehicles by approximately 80 % based on the mass of particles. There is, however, substantial uncertainty about the impact on the number of ultrafine particles, since they are not covered by Euronorm standards. When passing the bill, the Danish Minister for the Environment of the time stated that all relevant knowledge about particle emission from heavy duty vehicles needed to be collected for subsequent publication. To this end, the Danish Environmental Protection Agency (DEPA) commissioned a literature survey. The purpose of the survey is to provide an overview of the latest knowledge in the field of particle emissions from heavy duty vehicles, with special focus on the average size of the particle emissions. Another objective of the study is to analyse the direct emissions of NO{sub 2} from heavy duty vehicles classified under EURO IV and V. (au)

  11. Particle number and particulate mass emissions of heavy duty vehicles in real operating conditions

    Directory of Open Access Journals (Sweden)

    Rymaniak Lukasz

    2017-01-01

    Full Text Available The article investigates the issue of PM emissions from HDV vehicles. The theoretical part discusses the problem of emission of this toxic compound in terms of particle structure taking into account the mass and dimensions of PM. Next, the methodology of the research and the results of the measurements performed under the conditions of actual operation were presented. The test drive routes were chosen in accordance with the operational purpose of the selected test vehicles. Two heavy vehicles were used for the study: a tractor with trailer and an eighteen meter long city bus. The test vehicles complied with the Euro V standard, with the second vehicle additionally complying with the EEV standard and being equipped with a DPF. The analysis of the research results was performed in the aspect of determining the operating time densities of vehicles and their drive systems as well as defining their emission characteristics and ecological indicators. PM and PN emissions were measured in the tests and particle size distribution was determined. It was shown that the exhaust gas after treatment system used in the city bus had a positive influence on the ecological indicators and had contributed to the reduction of PN emissions for heavier particles.

  12. Evaluation of solid particle number and black carbon for very low particulate matter emissions standards in light-duty vehicles.

    Science.gov (United States)

    Chang, M-C Oliver; Shields, J Erin

    2017-06-01

    To reliably measure at the low particulate matter (PM) levels needed to meet California's Low Emission Vehicle (LEV III) 3- and 1-mg/mile particulate matter (PM) standards, various approaches other than gravimetric measurement have been suggested for testing purposes. In this work, a feasibility study of solid particle number (SPN, d50 = 23 nm) and black carbon (BC) as alternatives to gravimetric PM mass was conducted, based on the relationship of these two metrics to gravimetric PM mass, as well as the variability of each of these metrics. More than 150 Federal Test Procedure (FTP-75) or Supplemental Federal Test Procedure (US06) tests were conducted on 46 light-duty vehicles, including port-fuel-injected and direct-injected gasoline vehicles, as well as several light-duty diesel vehicles equipped with diesel particle filters (LDD/DPF). For FTP tests, emission variability of gravimetric PM mass was found to be slightly less than that of either SPN or BC, whereas the opposite was observed for US06 tests. Emission variability of PM mass for LDD/DPF was higher than that of both SPN and BC, primarily because of higher PM mass measurement uncertainties (background and precision) near or below 0.1 mg/mile. While strong correlations were observed from both SPN and BC to PM mass, the slopes are dependent on engine technologies and driving cycles, and the proportionality between the metrics can vary over the course of the test. Replacement of the LEV III PM mass emission standard with one other measurement metric may imperil the effectiveness of emission reduction, as a correlation-based relationship may evolve over future technologies for meeting stringent greenhouse standards. Solid particle number and black carbon were suggested in place of PM mass for the California LEV III 1-mg/mile FTP standard. Their equivalence, proportionality, and emission variability in comparison to PM mass, based on a large light-duty vehicle fleet examined, are dependent on engine

  13. VIPEN - Vehicle induced particulate emissions from non-exhaust sources; Katupoelypaeaestoejen ajoneuvomittaukset. VIPEN-projekti

    Energy Technology Data Exchange (ETDEWEB)

    Kupiainen, K.; Tervahattu, H. [Nordic Envicon Oy, Helsinki (Finland); Pirjola, L.; Perhoniemi, P. [Stadia Helsinki Polytechnic, Helsinki (Finland); Vesala, H. [VTT Processes, Espoo (Finland)

    2006-10-15

    In the VIPEN-project the measurement set up of the mobile laboratory Sniffer (see project LIPIKA) was extended to include on-line measurements of non-exhaust particles. The test measurements showed that the system is a good tool for studying emissions of respirable particles from street surface. Valuable information about emission levels in different situations has been gathered. So far Sniffer has measured spring-time road dust in Helsinki on a route set in urban environment. PM levels in Helsinki were observed to decline towards beginning of May. Hot spot street sections with higher emission levels could be identified. Also the effect of studded tires and road sanding has been studied in Nokia. Both studs and traction sanding increased emission levels. Emission levels from studs varied with stud design and amount of studs per tire. The direct emission increase from traction sanding was larger than from studded tires but the levels started to decline immediately after dispersion as passing traffic swept the material aside. (orig.)

  14. On-road particulate emission measurement

    Science.gov (United States)

    Mazzoleni, Claudio

    Particulate matter (PM) suspended in the atmosphere has harmful health effects, contributes to visibility impairment, and affects atmospheric radiative transfer, thereby contributing to global change. Vehicles contribute substantially to the ambient PM concentration in urban areas, yet the fraction of ambient PM originating from vehicle emissions is poorly characterized because suitable measurement methods have not been available. This dissertation describes the development and the use of a new vehicle emission remote sensing system (VERSS) for the on-road measurement of PM emission factors for vehicles. The PM VERSS measures PM by ultraviolet backscattering and transmission. PM backscattering and transmission mass efficiencies have been calculated from Mie theory based on an homogeneous spherical model for gasoline particles and on a two-layers, spherical model for diesel particles. The VERSS was used in a large-scale study in Las Vegas, NV. A commercial gaseous VERSS was used for the measurement of gaseous emission factors (i.e., carbon monoxide, hydrocarbons, and nitrogen oxide). Speed and acceleration were also measured for each vehicle. A video image of each vehicle's rear license plate was acquired and license plate numbers were matched with the Clark County department of motor vehicle database to retrieve vehicle information such as model year, vehicle weight category and engine ignition type. PM VERSS has precisely estimated PM fleet average emission factors and clearly shown the dependence of PM emission factors on vehicle model year. Under mostly hot-stabilized operation, diesel vehicle PM emission factors are about 25 times higher than those of gasoline vehicles. Furthermore, the fleet frequency distributions of PM emission factors are highly skewed, meaning that most of the fleet emission factor is accounted for by a small portion of the fleet. The PM VERSS can measure PM emission factors for these high emitting vehicles on an individual basis. PM

  15. Application of modern online instrumentation for chemical analysis of gas and particulate phases of exhaust at the European Commission heavy-duty vehicle emission laboratory.

    Science.gov (United States)

    Adam, T W; Chirico, R; Clairotte, M; Elsasser, M; Manfredi, U; Martini, G; Sklorz, M; Streibel, T; Heringa, M F; Decarlo, P F; Baltensperger, U; De Santi, G; Krasenbrink, A; Zimmermann, R; Prevot, A S H; Astorga, C

    2011-01-01

    The European Commission recently established a novel test facility for heavy-duty vehicles to enhance more sustainable transport. The facility enables the study of energy efficiency of various fuels/scenarios as well as the chemical composition of evolved exhaust emissions. Sophisticated instrumentation for real-time analysis of the gas and particulate phases of exhaust has been implemented. Thereby, gas-phase characterization was carried out by a Fourier transform infrared spectrometer (FT-IR; carbonyls, nitrogen-containing species, small hydrocarbons) and a resonance-enhanced multiphoton ionization time-of-flight mass spectrometer (REMPI-TOFMS; monocyclic and polycyclic aromatic hydrocarbons). For analysis of the particulate phase, a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS; organic matter, chloride, nitrate), a condensation particle counter (CPC; particle number), and a multiangle absorption photometer (MAAP; black carbon) were applied. In this paper, the first application of the new facility in combination with the described instruments is presented, whereby a medium-size truck was investigated by applying different driving cycles. The goal was simultaneous chemical characterization of a great variety of gaseous compounds and particulate matter in exhaust on a real-time basis. The time-resolved data allowed new approaches to view the results; for example, emission factors were normalized to time-resolved consumption of fuel and were related to emission factors evolved during high speeds. Compounds could be identified that followed the fuel consumption, others showed very different behavior. In particular, engine cold start, engine ignition (unburned fuel), and high-speed events resulted in unique emission patterns.

  16. PIXE analysis of vehicle exhaust particulate

    International Nuclear Information System (INIS)

    Shi Xianfeng; Yao Huiying; Liu Bo; Sun Minde; Xu Huawei; Mi Yong; Shen Hao

    2001-01-01

    PIXE technique on the analysis of vehicle exhaust particulate is introduced. The clement composition and concentration of particulate are obtained. Some elements which are related to environmental pollution such as sulfur lead, silicon and manganese, were analyzed and discussed in detail by PIXE technique Nowadays although unleaded gasoline is widely used, the lead concentration is still very high in exhaust particulate. The concentrations of silicon and manganese in exhaust particulate from different model vehicles are also quite high from measurements. It shows that an evidence for exhaust pollution control could be provided from this work

  17. Vehicle Emissions Risk Management

    International Nuclear Information System (INIS)

    Ibrahem, L.G.

    2004-01-01

    Vehicle emissions are considered as a main source for air pollution. Emissions regulation is now well developed in most countries to meet cleaner air quality. Reducing emissions by using cleaner fuels, which meet certain specification, is not enough to get cleaner air, yet the vehicle technology is not improved. Here we will outline the following: - development in fuel specification and emissions regulation. main facts linking vehicle emissions, fuel properties and air quality. catalytic converter technology. Emissions sources: In modem cities, vehicle traffic is potentially a major source of emissions. However sometimes other sources of emissions from industry and other stationary sources can be equally important and include emissions that are of greater toxicity than those from vehicles

  18. Particulate Matter Emission Factors for Biomass Combustion

    Directory of Open Access Journals (Sweden)

    Simone Simões Amaral

    2016-10-01

    Full Text Available Emission factor is a relative measure and can be used to estimate emissions from multiple sources of air pollution. For this reason, data from literature on particulate matter emission factors from different types of biomass were evaluated in this paper. Initially, the main sources of particles were described, as well as relevant concepts associated with particle measurements. In addition, articles about particle emissions were classified and described in relation to the sampling environment (open or closed and type of burned biomass (agricultural, garden, forest, and dung. Based on this analysis, a set of emission factors was presented and discussed. Important observations were made about the main emission sources of particulate matter. Combustion of compacted biomass resulted in lower particulate emission factors. PM2.5 emissions were predominant in the burning of forest biomass. Emission factors were more elevated in laboratory burning, followed by burns in the field, residences and combustors.

  19. Particulate Emissions and Biodiesel: A review

    Directory of Open Access Journals (Sweden)

    Michal Angelovič

    2013-05-01

    Full Text Available Abstract The current mode of transport using fuel it cannot be characterized as harmless to human health or as sustainable. The whole process of extracting, processing and using of petroleum products can be seen as the raw material cycle in nature. This cycle also cause serious damage to the environment and human health. Many studies on air pollutant emissions with biodiesel have been carried out worldwide. Studies have shown that diesel-powered vehicles are the major contributors of PM emissions. PM particulates are especially important in regard to adverse health outcomes, such as increased cardiovascular, respiratory morbidity and mortality rates, due to their larger active surface and the higher likelihood of deposition in the alveolar region of the lungs. Hence, it is overwhelming argument that the use of biodiesel instead of diesel causes reduce of PM emissions. Of course, this reduction will become smaller with the reduction of biodiesel proportion in the blended fuel. The trend with which PM emissions of biodiesel will be reduced, is due to lower aromatic and sulfur compounds and higher cetane number for biodiesel, but the more important factor is the higher oxygen content.

  20. Transportable Emissions Testing Laboratory for Alternative Vehicles Emissions Testing

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Nigel

    2012-01-31

    The overall objective of this project was to perform research to quantify and improve the energy efficiency and the exhaust emissions reduction from advanced technology vehicles using clean, renewable and alternative fuels. Advanced vehicle and alternative fuel fleets were to be identified, and selected vehicles characterized for emissions and efficiency. Target vehicles were to include transit buses, school buses, vocational trucks, delivery trucks, and tractor-trailers. Gaseous species measured were to include carbon monoxide, carbon dioxide, oxides of nitrogen, hydrocarbons, and particulate matter. An objective was to characterize particulate matter more deeply than by mass. Accurate characterization of efficiency and emissions was to be accomplished using a state-of-the-art portable emissions measurement system and an accompanying chassis dynamometer available at West Virginia University. These two units, combined, are termed the Transportable Laboratory. An objective was to load the vehicles in a real-world fashion, using coast down data to establish rolling resistance and wind drag, and to apply the coast down data to the dynamometer control. Test schedules created from actual vehicle operation were to be employed, and a specific objective of the research was to assess the effect of choosing a test schedule which the subject vehicle either cannot follow or can substantially outperform. In addition the vehicle loading objective was to be met better with an improved flywheel system.

  1. Externality costs by emission. E. Particulates

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Fossil-fuel-fired electricity generating systems, particularly coal and oil-fired facilities, are significant emitters of particulate matter. The major components of particulate emissions from a power plant include ash, which is made up of heavy metals, radioactive isotopes and hydrocarbons, and sulfates (SO 4 ) and nitrates (NO 3 ), which are formed by reaction of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ) in the atmosphere. The smallest ash particulates (including sulfates and nitrates) cause human respiratory effects and impaired visibility. Other effects may include materials damage due to soiling and possibly corrosion, damage to domestic and wild flora through deposition of particulates on foliage, and possible health effects on domestic animals and wild fauna. Several studies focus on the direct effects of high ambient levels of small particulates. This chapter reviews the available literature on the effects of particulate emissions on humans and their environment, and attempts to assign a cost figure to the environmental effects and human health impairments associated with particulate matter emissions. Specifically, this report focuses on the effects of particulates related to human health, visibility, flora, fauna and materials

  2. Biofuels, vehicle emissions, and urban air quality.

    Science.gov (United States)

    Wallington, Timothy J; Anderson, James E; Kurtz, Eric M; Tennison, Paul J

    2016-07-18

    Increased biofuel content in automotive fuels impacts vehicle tailpipe emissions via two mechanisms: fuel chemistry and engine calibration. Fuel chemistry effects are generally well recognized, while engine calibration effects are not. It is important that investigations of the impact of biofuels on vehicle emissions consider the impact of engine calibration effects and are conducted using vehicles designed to operate using such fuels. We report the results of emission measurements from a Ford F-350 fueled with either fossil diesel or a biodiesel surrogate (butyl nonanoate) and demonstrate the critical influence of engine calibration on NOx emissions. Using the production calibration the emissions of NOx were higher with the biodiesel fuel. Using an adjusted calibration (maintaining equivalent exhaust oxygen concentration to that of the fossil diesel at the same conditions by adjusting injected fuel quantities) the emissions of NOx were unchanged, or lower, with biodiesel fuel. For ethanol, a review of the literature data addressing the impact of ethanol blend levels (E0-E85) on emissions from gasoline light-duty vehicles in the U.S. is presented. The available data suggest that emissions of NOx, non-methane hydrocarbons, particulate matter (PM), and mobile source air toxics (compounds known, or suspected, to cause serious health impacts) from modern gasoline and diesel vehicles are not adversely affected by increased biofuel content over the range for which the vehicles are designed to operate. Future increases in biofuel content when accomplished in concert with changes in engine design and calibration for new vehicles should not result in problematic increases in emissions impacting urban air quality and may in fact facilitate future required emissions reductions. A systems perspective (fuel and vehicle) is needed to fully understand, and optimize, the benefits of biofuels when blended into gasoline and diesel.

  3. Particulate emissions from diesel engines: correlation between engine technology and emissions.

    Science.gov (United States)

    Fiebig, Michael; Wiartalla, Andreas; Holderbaum, Bastian; Kiesow, Sebastian

    2014-03-07

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted.Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions.Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the

  4. Particulate emissions from biodiesel fuelled CI engines

    International Nuclear Information System (INIS)

    Agarwal, Avinash Kumar; Gupta, Tarun; Shukla, Pravesh C.; Dhar, Atul

    2015-01-01

    Highlights: • Physical and chemical characterization of biodiesel particulates. • Toxicity of biodiesel particulate due to EC/OC, PAHs and BTEX. • Trace metals and unregulated emissions from biodiesel fuelled diesel engines. • Influence of aftertreatment devices and injection strategy on biodiesel particulates. • Characterization of biodiesel particulate size-number distribution. - Abstract: Compression ignition (CI) engines are the most popular prime-movers for transportation sector as well as for stationary applications. Petroleum reserves are rapidly and continuously depleting at an alarming pace and there is an urgent need to find alternative energy resources to control both, the global warming and the air pollution, which is primarily attributed to combustion of fossil fuels. In last couple of decades, biodiesel has emerged as the most important alternative fuel candidate to mineral diesel. Numerous experimental investigations have confirmed that biodiesel results in improved engine performance, lower emissions, particularly lower particulate mass emissions vis-à-vis mineral diesel and is therefore relatively more environment friendly fuel, being renewable in nature. Environmental and health effects of particulates are not simply dependent on the particulate mass emissions but these change depending upon varying physical and chemical characteristics of particulates. Particulate characteristics are dependent on largely unpredictable interactions between engine technology, after-treatment technology, engine operating conditions as well as fuel and lubricating oil properties. This review paper presents an exhaustive summary of literature on the effect of biodiesel and its blends on exhaust particulate’s physical characteristics (such as particulate mass, particle number-size distribution, particle surface area-size distribution, surface morphology) and chemical characteristics (such as elemental and organic carbon content, speciation of polyaromatic

  5. Quantification of vehicle fleet PM_1_0 particulate matter emission factors from exhaust and non-exhaust sources using tunnel measurement techniques

    International Nuclear Information System (INIS)

    Lawrence, Samantha; Sokhi, Ranjeet; Ravindra, Khaiwal

    2016-01-01

    Road tunnels act like large laboratories; they provide an excellent environment to quantify atmospheric particles emission factors from exhaust and non-exhaust sources due to their known boundary conditions. Current work compares the High Volume, Dichotomous Stacked Filter Unit and Partisol Air Sampler for coarse, PM_1_0 and PM_2_._5 particle concentration measurement and found that they do not differ significantly (p = 95%). PM_2_._5 fraction contributes 66% of PM_1_0 proportions and significantly influenced by traffic (turbulence) and meteorological conditions. Mass emission factors for PM_1_0 varies from 21.3 ± 1.9 to 28.8 ± 3.4 mg/vkm and composed of Motorcycle (0.0003–0.001 mg/vkm), Cars (26.1–33.4 mg/vkm), LDVs (2.4–3.0 mg/vkm), HDVs (2.2–2.8 mg/vkm) and Buses (0.1 mg/vkm). Based on Lawrence et al. (2013), source apportionment modelling, the PM_1_0 emission of brake wear (3.8–4.4 mg/vkm), petrol exhaust (3.9–4.5 mg/vkm), diesel exhaust (7.2–8.3 mg/vkm), re-suspension (9–10.4 mg/vkm), road surface wear (3.9–4.5 mg/vkm), and unexplained (7.2 mg/vkm) were also calculated. The current study determined that the combined non-exhaust fleet PM_1_0 emission factor (16.7–19.3 mg/vkm) are higher than the combined exhaust emission factor (11.1–12.8 mg/vkm). Thus, highlight the significance of non-exhaust emissions and the need for legislation and abatement strategies to reduce their contributions to ambient PM concentrations. - Highlights: • Calculations of exhaust/non-exhaust particulate emission factors using tunnel sampling and source apportionment techniques. • Non-exhaust emission dominates in the fine particle fraction, considered responsible for adverse human health impacts. • Emission factors for non-exhaust sources (e.g. tyre and brake) were calculated. • Fleet source PM_1_0 emission factor were also calculated, which can be used in dispersion modelling and health risk assessment. • Tukey mean

  6. Evaluation of particulate filtration efficiency of retrofit particulate filters for light duty vehicles

    International Nuclear Information System (INIS)

    Van Asch, R.; Verbeek, R.

    2009-10-01

    In the light of the currently running subsidy programme for particulate filters in the Netherlands, the Dutch ministry of spatial planning and environment (VROM) asked TNO to execute a desk study to evaluate the particulates filtration efficiency of retrofit particulate filters for light duty vehicles (passenger cars and vans). The typical retrofit particulate filters for light duty vehicles are also called 'open' or 'half-open' filters, because a part of the exhaust gas can pass through the particulate filter unfiltered. From design point they are very different from the majority of the factory installed particulate filters, which are also called wall-flow or 'closed' particulate filters. Due to these differences there is a large difference in filtration efficiency. Whereas the 'dosed' particulate filters show a filtration efficiency of larger than 90%, the filtration efficiency of 'open' particulate filters is generally lower (type approval minimum 30%), and strongly dependent on the conditions of use. The objective of the current project was to assess the average filtration efficiency of retrofit (open) particulate fillters on light duty vehicles in real world day to day driving, based on available literature data. Also, the reasons of a possible deviation with the type approval test results (minimum filtration efficiency of 30%) was investigated.

  7. New Approaches for Estimating Motor Vehicle Emissions in Megacities

    Science.gov (United States)

    Marr, L. C.; Thornhill, D. A.; Herndon, S. C.; Onasch, T. B.; Wood, E. C.; Kolb, C. E.; Knighton, W. B.; Mazzoleni, C.; Zavala, M. A.; Molina, L. T.

    2007-12-01

    The rapid proliferation of megacities and their air quality problems is producing unprecedented air pollution health risks and management challenges. Quantifying motor vehicle emissions in the developing world's megacities, where vehicle ownership is skyrocketing, is critical for evaluating the cities' impacts on the atmosphere at urban, regional, and global scales. The main goal of this research is to quantify gasoline- and diesel-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA). We apply positive matrix factorization to fast measurements of gaseous and particulate pollutants made by the Aerodyne Mobile Laboratory as it drove throughout the MCMA in 2006. We consider carbon dioxide; carbon monoxide; volatile organic compounds including benzene and formaldehyde; nitrogen oxides; ammonia; fine particulate matter; particulate polycyclic aromatic hydrocarbons; and black carbon. Analysis of the video record confirms the apportionment of emissions to different engine types. From the derived source profiles, we calculate fuel-based fleet-average emission factors and then estimate the total motor vehicle emission inventory. The advantages of this method are that it can capture a representative sample of vehicles in a variety of on-road driving conditions and can separate emissions from gasoline versus diesel engines. The results of this research can be used to help assess the accuracy of emission inventories and to guide the development of strategies for reducing vehicle emissions.

  8. Particulate emissions from residential wood combustion

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo; Jensen, Ole Michael; Tarelho, Luis A. C.

    Residential wood combustion (RWC) in fireplaces and conventional appliances is the main contributor to fine particulate matter (PM2.5) emissions in Denmark and Portugal representing more than 30% of the total emissions [1;2]. Such estimations are uncertain concerning the wood consumption...... and official emission factors, not taking into account actual burning conditions in dwellings [3]. There is limited knowledge on the real-life performance and spatial distribution of existing appliance types. Few studies have been targeting to understand the influence of fuel operation habits on PM2...... the available estimations for Denmark and Portugal, suggesting a methodology to increase the accuracy of activity data and emission factors. This work is based on new studies carried out to quantify the PM2.5 emissions in daily life through field experiments in Danish dwellings and by considering typical...

  9. 4th international exhaust gas and particulate emissions forum. Proceedings; 4. internationales FORUM Abgas- und Partikelemissionen. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Lectures of the conference addressed the following topics: European and US American pollution regulations, particulate measuring systems, emission factors for vehicles, particulate emission abatement through simulation and optimization, selective catalytic reduction in heavy duty diesel trucks, filters, combustion properties, performance assessment, contribution of biofuels. (uke)

  10. Airborne soil particulates as vehicles for Salmonella contamination of tomatoes.

    Science.gov (United States)

    Kumar, Govindaraj Dev; Williams, Robert C; Al Qublan, Hamzeh M; Sriranganathan, Nammalwar; Boyer, Renee R; Eifert, Joseph D

    2017-02-21

    The presence of dust is ubiquitous in the produce growing environment and its deposition on edible crops could occur. The potential of wind-distributed soil particulate to serve as a vehicle for S. Newport transfer to tomato blossoms and consequently, to fruits, was explored. Blossoms were challenged with previously autoclaved soil containing S. Newport (9.39log CFU/g) by brushing and airborne transfer. One hundred percent of blossoms brushed with S. Newport-contaminated soil tested positive for presence of the pathogen one week after contact (PCompressed air was used to simulate wind currents and direct soil particulates towards blossoms. Airborne soil particulates resulted in contamination of 29% of the blossoms with S. Newport one week after contact. Biophotonic imaging of blossoms post-contact with bioluminescent S. Newport-contaminated airborne soil particulates revealed transfer of the pathogen on petal, stamen and pedicel structures. Both fruits and calyxes that developed from blossoms contaminated with airborne soil particulates were positive for presence of S. Newport in both fruit (66.6%) and calyx (77.7%). Presence of S. Newport in surface-sterilized fruit and calyx tissue tested indicated internalization of the pathogen. These results show that airborne soil particulates could serve as a vehicle for Salmonella. Hence, Salmonella contaminated dust and soil particulate dispersion could contribute to pathogen contamination of fruit, indicating an omnipresent yet relatively unexplored contamination route. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Impact of dedicated E85 vehicle use on ozone and particulate matter in the US

    Science.gov (United States)

    Nopmongcol, Uarporn; Griffin, W. Michael; Yarwood, Greg; Dunker, Alan M.; MacLean, Heather L.; Mansell, Gerard; Grant, John

    2011-12-01

    Increased use of ethanol as a vehicle fuel worldwide warrants the need to understand air quality impacts of replacing gasoline with ethanol. This study evaluates the impacts of dedicated E85 (85% ethanol/15% gasoline) light-duty vehicles on emissions, ozone and particulate matter (PM) concentrations in the United States for a future year (2022) using a 3-D photochemical model, detailed emissions inventories that account for changes in all sectors studied, and winter and summer meteorology that occurred in 2002. Use of E85 introduces new emissions from ethanol production and distribution, reduces petrochemical industry emissions due to lower gasoline consumption, changes on-road vehicle emissions and alters biogenic emissions due to land use changes. Three scenarios with increased ethanol production for dedicated E85 light-duty vehicles were compared to a base case without increased ethanol production. Increased use of E85 caused both increases and decreases in ozone and PM, driven mainly by changes in NO x emissions related to biogenic and upstream petrochemical industry sources. In all states modeled, adoption of dedicated E85 vehicles caused negligible change in average higher ozone and PM concentrations of importance for air quality management strategies. Ozone and PM changes are relatively insensitive to how land area is allocated for switchgrass production. The findings are subject to various uncertainties, especially those in vehicle technology and emissions from cellulosic ethanol production.

  12. Particulate emission abatement for Krakow boiler houses

    Energy Technology Data Exchange (ETDEWEB)

    Wysk, R.

    1995-12-31

    Among the many strategies for improving air quality in Krakow, one possible method is to adapt new and improved emission control technology. This project focuses on such a strategy. In order to reduce dust emissions from coal-fueled boilers, a new device called a Core Separator has been introduced in several boiler house applications. This advanced technology has been successfully demonstrated in Poland and several commercial units are now in operation. Particulate emissions from the Core Separator are typically 3 to 5 times lower than those from the best cyclone collectors. It can easily meet the new standard for dust emissions which will be in effect in Poland after 1997. The Core Separator is a completely inertial collector and is based on a unique recirculation method. It can effectively remove dust particles below 10 microns in diameter, the so-called PM-10 emissions. Its performance approaches that of fabric filters, but without the attendant cost and maintenance. It is well-suited to the industrial size boilers located in Krakow. Core Separators are now being marketed and sold by EcoInstal, one of the leading environmental firms in Poland, through a cooperative agreement with LSR Technologies.

  13. Inventory of primary particulates emissions; Inventaire des emissions de particules primaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    CITEPA carried out a national inventory on particulate emissions. This report presents the results of this study for a great number of sectors and it covers a larger number of sources than the previous CITEPA inventories on particles and some other inventories carried out by International organisms (TNO, IIASA). In particular, at the present time, fugitive dust emissions for some sources are rarely taken into account in inventories because of poor knowledge and they are still the subject of researches in order to validate the emission results. (author)

  14. Non-exhaust PM emissions from electric vehicles

    Science.gov (United States)

    Timmers, Victor R. J. H.; Achten, Peter A. J.

    2016-06-01

    Particulate matter (PM) exposure has been linked to adverse health effects by numerous studies. Therefore, governments have been heavily incentivising the market to switch to electric passenger cars in order to reduce air pollution. However, this literature review suggests that electric vehicles may not reduce levels of PM as much as expected, because of their relatively high weight. By analysing the existing literature on non-exhaust emissions of different vehicle categories, this review found that there is a positive relationship between weight and non-exhaust PM emission factors. In addition, electric vehicles (EVs) were found to be 24% heavier than equivalent internal combustion engine vehicles (ICEVs). As a result, total PM10 emissions from EVs were found to be equal to those of modern ICEVs. PM2.5 emissions were only 1-3% lower for EVs compared to modern ICEVs. Therefore, it could be concluded that the increased popularity of electric vehicles will likely not have a great effect on PM levels. Non-exhaust emissions already account for over 90% of PM10 and 85% of PM2.5 emissions from traffic. These proportions will continue to increase as exhaust standards improve and average vehicle weight increases. Future policy should consequently focus on setting standards for non-exhaust emissions and encouraging weight reduction of all vehicles to significantly reduce PM emissions from traffic.

  15. The Advanced Petroleum-Based Fuels Program Evaluation of EC-Diesel and Diesel Particulate Filters in Southern California Vehicle Fleets

    International Nuclear Information System (INIS)

    None

    2000-01-01

    The EC-Diesel and particulate filter combination greatly reduced the particulate matter, hydrocarbon, and carbon monoxide emissions of all vehicles tested in the program to date. Particulate matter reductions greater than 98% were achieved. For several vehicles tested, the PM and HC emissions were less than background levels. Based on preliminary statistical analysis, there is 95%+ confidence that EC-D and particulate filters reduced emissions from three different types of vehicles. A fuel consumption penalty was not detectable using the current test procedures and chassis dynamometer laboratory. Test vehicles equipped with the CRT and DPX particulate filters and fueled with EC-Diesel fuel have operated reliably during the program start-up period

  16. Particulate matter speciation profiles for light-duty gasoline vehicles in the United States.

    Science.gov (United States)

    Sonntag, Darrell B; Baldauf, Richard W; Yanca, Catherine A; Fulper, Carl R

    2014-05-01

    Representative profiles for particulate matter particles less than or equal to 2.5 microm (PM2.5) are developed from the Kansas City Light-Duty Vehicle Emissions Study for use in the US. Environmental Protection Agency (EPA) vehicle emission model, the Motor Vehicle Emission Simulator (MOVES), and for inclusion in the EPA SPECIATE database for speciation profiles. The profiles are compatible with the inputs of current photochemical air quality models, including the Community Multiscale Air Quality Aerosol Module Version 6 (AE6). The composition of light-duty gasoline PM2.5 emissions differs significantly between cold start and hot stabilized running emissions, and between older and newer vehicles, reflecting both impacts of aging/deterioration and changes in vehicle technology. Fleet-average PM2.5 profiles are estimated for cold start and hot stabilized running emission processes. Fleet-average profiles are calculated to include emissions from deteriorated high-emitting vehicles that are expected to continue to contribute disproportionately to the fleet-wide PM2.5 emissions into the future. The profiles are calculated using a weighted average of the PM2.5 composition according to the contribution of PM2.5 emissions from each class of vehicles in the on-road gasoline fleet in the Kansas City Metropolitan Statistical Area. The paper introduces methods to exclude insignificant measurements, correct for organic carbon positive artifact, and control for contamination from the testing infrastructure in developing speciation profiles. The uncertainty of the PM2.5 species fraction in each profile is quantified using sampling survey analysis methods. The primary use of the profiles is to develop PM2.5 emissions inventories for the United States, but the profiles may also be used in source apportionment, atmospheric modeling, and exposure assessment, and as a basis for light-duty gasoline emission profiles for countries with limited data. PM2.5 speciation profiles were

  17. Air pollution from motor vehicle emissions

    International Nuclear Information System (INIS)

    Petrushevska, Ljubica

    1996-01-01

    This paper presents some aspects of air pollution from motor vehicle emissions as: characteristic primary and secondary pollutants, dependence of the motor vehicle emission from the engine type; the relationship of typical engine emission and performance to air-fuel ratio, transport of pollutants from mobile sources of emissions, as well as some world experiences in the control approaches for exhaust emissions. (author)

  18. Particulate Emission Abatement for Krakow Boilerhouses

    International Nuclear Information System (INIS)

    Hucko, R.E.

    1997-01-01

    Environmental clean-up and pollution control are considered the foremost national priorities in Poland. The target of this cleanup is the Polish coal industry, which supplies the fuel to generate over 78% of Poland's primary energy production. This project addresses the problem of airborne dust and uncontrolled particulate emissions from boilerhouses, which represent a large fraction of the total in Poland. In Krakow alone, there are more than 2,000 uncontrolled boilers accounting for about half the total fuel use. The large number of low-capacity boilers poses both technical and economic challenges, since the cost of control equipment is a significant factor in the reduction of emissions. A new concept in dust collection, called a Core Separator, is proposed for this important application. The Core Separator is an advanced technology developed through research sponsored by the Department of Energy. It utilizes a highly efficient collector, which functions on the principle of inertial separation. The system is able to control fine particulate matter, as in the PMIO regulations, which limit the emission of dust particles below 10 microns in diameter. Its dust removal performance has been shown to be comparable to that of a medium-efficiency electrostatic precipitator (ESP). Yet, its cost is substantially lower than that of either an ESP or fabric filter. While the Core Separator achieves high efficiency, its power consumption is just slightly higher than that of a cyclone. It functions dry and without the aid of energy-consuming enhancements. It is simple, reliable, and unlike the ESP and fabric filter, easy to maintain. This combination of features make it ideal for the small boiler market in the City of Krakow. A highly qualified team has been assembled to execute this project. LSR Technologies, Inc., a technology-based company located in Acton, Massachusetts, is the developer of the Core Separator and holder of its patent rights. LSR has sold several of these

  19. Particulate Emission Abatement for Krakow Boilerhouses

    International Nuclear Information System (INIS)

    Hucko, R.E.

    1997-01-01

    Environmental clean-up and pollution control are considered the foremost national priorities in Poland. The target of this cleanup is the Polish coal industry, which supplies the fuel to generate over 78% of Poland's primary energy production. This project addresses the problem of airborne dust and uncontrolled particulate emissions from boilerhouses, which represent a large fraction of the total in Poland. In Krakow alone, there are more than 2,000 uncontrolled boilers accounting for about half the total fuel use. The large number of low-capacity boilers poses both technical and economic challenges, since the cost of control equipment is a significant factor in the reduction of emissions. A new concept in dust collection, called a Core Separator, is proposed for this important application. The Core Separator is an advanced technology developed through research sponsored by the Department of Energy. It utilizes a highly efficient collector, which functions on the principle of inertial separation. The system is able to control fine particulate matter, as in the PMIO regulations, which limit the emission of dust particles below 10 microns in diameter. Its dust removal performance has been shown to be comparable to that of a medium-efficiency electrostatic precipitator (ESP). Yet, its cost is substantially lower than that of either an ESP or fabric filter. While the Core Separator achieves high efficiency, its power consumption is just slightly higher than that of a cyclone. It functions dry and without the aid of energy-consuming enhancements. It is simple, reliable, and unlike the ESP and fabric filter, easy to maintain. This combination of features make it ideal for the small boiler market in the City of Krakow. A highly qualified team has been assembled to execute this project. LSR Technologies, Inc., a technology-based company located in Acton, Massachusetts, is the developer of the Core Separator and holder of its patent rights. LSR has sold several of these

  20. Particulate emission characteristics of a port-fuel-injected SI engine

    International Nuclear Information System (INIS)

    Gupta, S.; Poola, R.; Lee, K. O.; Sekar, R.

    2000-01-01

    Particulate emissions from spark-ignited (SI) engines have come under close scrutiny as they tend to be smaller than 50 nm, are composed mainly of volatile organic compounds, and are emitted in significant numbers. To assess the impact of such emissions, measurements were performed in the exhaust of a current-technology port-fuel-injected SI engine, which was operated at various steady-state conditions. To gain further insights into the particulate formation mechanisms, measurements were also performed upstream of the catalytic converter. At all engine speeds, a general trend was observed in the number densities and mass concentrations: a moderate increase at low loads followed by a decrease at mid-range loads, which was followed by a steep increase at high loads. Within reasonable bounds, one could attribute such a trend to three different mechanisms. An unidentified mechanism at low loads results in particulate emissions monotonically increasing with load. At medium loads, wherein the engine operates close to stoichiometric conditions, high exhaust temperatures lead to particulate oxidation. At high loads, combustion occurs mostly under fuel-rich conditions, and the contribution from combustion soot becomes significant. Estimates of the number of particles emitted per kilometer by a vehicle carrying the current test engine were found to be lower than those from a comparable diesel vehicle by three orders of magnitude. Similar estimates for mass emissions (grams of particulates emitted per kilometer) were found to be two orders of magnitude lower than the future regulated emission value of 0.006 (g/km) for light-duty diesel vehicles. Moreover, considering the fact that these particles have typical lifetimes of 15 min, the health hazard from particulate emissions from SI engines appears to be low

  1. 76 FR 72404 - Adequacy Status of Motor Vehicle Emissions Budgets in Submitted PM10

    Science.gov (United States)

    2011-11-23

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9495-4] Adequacy Status of Motor Vehicle Emissions Budgets in Submitted PM 10 Maintenance Plan for Sacramento County; CA AGENCY: Environmental Protection Agency (EPA... found that the motor vehicle emissions budgets (MVEBs) for particulate matter with an aerodynamic...

  2. Catalyzed Diesel Particulate Filter Performance in a Light-Duty Vehicle

    International Nuclear Information System (INIS)

    Sluder, C.S.

    2001-01-01

    Light-duty chassis dynamometer driving cycle tests were conducted on a Mercedes A170 diesel vehicle with various sulfur-level fuels and exhaust emission control systems. Triplicate runs of a modified light-duty federal test procedure (FTP), US06 cycle, and SCO3 cycle were conducted with each exhaust configuration and fuel. Ultra-low sulfur (3-ppm) diesel fuel was doped to 30- and 150-ppm sulfur so that all other fuel properties remained the same. The fuels used in these experiments met the specifications of the fuels from the DECSE (Diesel Emission Control Sulfur Effects) program. Although the Mercedes A170 vehicle is not available in the US, its emissions in the as tested condition fell within the U.S. Tier 1 full useful life standards with the OEM catalysts installed. Tests with the OEM catalysts removed showed that the OEM catalysts reduced PM emissions from the engine-out condition by 30-40% but had negligible effects on NOx emissions. Fuel sulfur level had very little effect on th e OEM catalyst performance. A prototype catalyzed diesel particulate filter (CDPF) mounted in an underfloor configuration reduced particulate matter emissions by more than 90% compared to the factory emissions control system. The results show that the CDPF did not promote any significant amounts of SO(sub 2)-to-sulfate conversion during these light-duty drive cycles

  3. Emissions from Plug-in Hybrid Electric Vehicle (PHEV) During Real World Driving Under Various Weather Conditions

    Science.gov (United States)

    2018-02-02

    Exposure to particulate matter (PM) and pollutant gas (NOx) is associated with increased cardiopulmonary morbidity and mortality. Mobile source emissions contribute to PM and NOx emissions significantly in urban areas. Hybrid Electric Vehicles (HEVs)...

  4. PARTICULATE EMISSION ABATEMENT FOR KRAKOW BOILERHOUSES

    Energy Technology Data Exchange (ETDEWEB)

    Bruce H. Easom; Leo A, Smolensky; S. Ronald Wysk; Jan Surowka; Miroslaw Litke; Jacek Ginter

    1998-09-30

    A U.S./Polish Bilateral Steering Committee (BSC) and the Department of Energy (DOE) selected LSR Technologies, Inc. as a contractor to participate in the Krakow Clean Fuels and Energy Efficiency Program. The objective of this program was the formation of business ventures between U.S. and Polish firms to provide equipment and services to reduce air emissions in the city of Krakow. A cooperative agreement was entered into by DOE and LSR to begin work in April 1994 involving implementation of particulate control technology called a Core Separator{trademark} for coal-fueled boilerhouses in the city. The major work tasks included: (1) conducting a market analysis, (2) completion of a formal marketing plan, (3) obtaining patent protection within Poland, (4) selecting a manufacturing partner, and (5) completing a demonstration unit and commercial installations. In addition to work performed by LSR Technologies, key contributors to this project were (1) the Polish Foundation for Energy Efficiency (FEWE), a non-profit consulting organization specializing in energy and environmental-related technologies, and (2) EcoInstal, a privately held Polish company serving the air pollution control market. As the project concluded in late 1998, five (5) Core Separator{trademark} installations had been implemented in the city of Krakow, while about 40 others were completed in other regions of Poland.

  5. Effects of vehicle type and fuel quality on real world toxic emissions from diesel vehicles

    Science.gov (United States)

    Nelson, Peter F.; Tibbett, Anne R.; Day, Stuart J.

    Diesel vehicles are an important source of emissions of air pollutants, particularly oxides of nitrogen (NO x), particulate matter (PM), and toxic compounds with potential health impacts including volatile organic compounds (VOCs) such as benzene and aldehydes, and polycyclic aromatic hydrocarbons (PAHs). Current developments in engine design and fuel quality are expected to reduce these emissions in the future, but many vehicles exceed 10 years of age and may make a major contribution to urban pollutant concentrations and related health impacts for many years. In this study, emissions of a range of toxic compounds are reported using in-service vehicles which were tested using urban driving cycles developed for Australian conditions. Twelve vehicles were chosen from six vehicle weight classes and, in addition, two of these vehicles were driven through the urban drive cycle using a range of diesel fuel formulations. The fuels ranged in sulphur content from 24 to 1700 ppm, and in total aromatics from 7.7 to 33 mass%. Effects of vehicle type and fuel composition on emissions are reported. The results show that emissions of these toxic species were broadly comparable to those observed in previous dynamometer and tunnel studies. Emissions of VOCs and smaller PAHs such as naphthalene, which are derived largely from the combustion process, appear to be related, and show relatively little variability when compared with the variability in emissions of aldehydes and larger PAHs. In particular, aldehyde emissions are highly variable and may be related to engine operating conditions. Fuels of lower sulphur and aromatic content did not have a significant influence on emissions of VOCs and aldehydes, but tended to result in lower emissions of PAHs. The toxicity of vehicle exhaust, as determined by inhalation risk and toxic equivalency factor (TEF)-weighted PAH emissions, was reduced with fuels of lower aromatic content.

  6. Electrically heated particulate filter regeneration methods and systems for hybrid vehicles

    Science.gov (United States)

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2010-10-12

    A control system for controlling regeneration of a particulate filter for a hybrid vehicle is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate regeneration. An engine control module controls operation of an engine of the hybrid vehicle based on the control of the current to the particulate filter.

  7. Emissions from US waste collection vehicles

    International Nuclear Information System (INIS)

    Maimoun, Mousa A.; Reinhart, Debra R.; Gammoh, Fatina T.; McCauley Bush, Pamela

    2013-01-01

    Highlights: ► Life-cycle emissions for alternative fuel technologies. ► Fuel consumption of alternative fuels for waste collection vehicles. ► Actual driving cycle of waste collection vehicles. ► Diesel-fueled waste collection vehicle emissions. - Abstract: This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6–10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving

  8. Analysis of tractor particulate emissions in a modified NRSC test after implementing a particulate filter in the exhaust system

    Directory of Open Access Journals (Sweden)

    Siedlecki Maciej

    2017-01-01

    Full Text Available Retrofitting, which means retrofitting old generation engine systems with modern exhaust after treatment systems, is becoming increasingly popular, which allow vehicles to adhere to the newer and more stringent emission norms. This can save the operators of such vehicles money using older engineered designs without the need to design a new unit or buy an expensive new machine or vehicle. At present, there is a growing interest in emissions from off-road vehicles and the introduction of minimum limits for older vehicles that must be met in order to be able to allow for their operation. For the purposes of this article, the Stage IIIA farm tractor has been fitted with a particulate filter in the exhaust system. The study investigated the impact of the use of exhaust after treatment systems on particle emissions in terms of mass, size distribution and number using PEMS analyzers in the modified NRSC stationary test by engine loading, using a mobile engine dynamometer and comparison of test results.

  9. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Destaillats, Hugo; Jakober, Chris A.; Robert, Michael A.; Riddle, Sarah G.; Destaillats, Hugo; Charles, M. Judith; Green, Peter G.; Kleeman, Michael J.

    2007-12-01

    Carbonyls from gasoline powered light-duty vehicles (LDVs) and heavy-duty diesel powered vehicles (HDDVs) operated on chassis dynamometers were measured using an annular denuder-quartz filter-polyurethane foam sampler with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine derivatization and chromatography-mass spectrometry analyses. Two internal standards were utilized based on carbonyl recovery, 4-fluorobenzaldehyde for_C8 compounds. Gas- and particle-phase emissions for 39 aliphatic and 20 aromatic carbonyls ranged from 0.1 ? 2000 ?g/L fuel for LDVs and 1.8 - 27000 mu g/L fuel for HDDVs. Gas-phase species accounted for 81-95percent of the total carbonyls from LDVs and 86-88percent from HDDVs. Particulate carbonyls emitted from a HDDV under realistic driving conditions were similar to concentrations measured in a diesel particulate matter (PM) standard reference material. Carbonyls accounted for 19percent of particulate organic carbon (POC) emissions from low-emission LDVs and 37percent of POC emissions from three-way catalyst equipped LDVs. This identifies carbonyls as one of the largest classes of compounds in LDV PM emissions. The carbonyl fraction of HDDV POC was lower, 3.3-3.9percent depending upon operational conditions. Partitioning analysis indicates the carbonyls had not achieved equilibrium between the gas- and particle-phase under the dilution factors of 126-584 used in the current study.

  10. Evolution of on-road vehicle exhaust emissions in Delhi

    Science.gov (United States)

    Goel, Rahul; Guttikunda, Sarath K.

    2015-03-01

    For a 40-year horizon (1990-2030), on-road vehicle exhaust emissions were evaluated, retrospectively and prospectively, for the largest urban agglomeration in India - the Greater Delhi region with a combined population of 22 million in 2011 (Delhi along with Ghaziabad, Noida, Greater Noida, Faridabad and Gurgaon). Emissions of particulate matter, sulfur dioxide, carbon monoxide and volatile organic compounds (VOCs) reached their peak during late 1990s through early 2000s after which they reduced significantly through year 2012. On the other hand, nitrogen oxides (NOx) and carbon dioxide show an increasing trend. The most reduction in emissions between 1998 and 2012 occurred as a result of implementation of four sets of vehicular emission standards, removal of lead, reduction of sulfur content, mandatory retirement of older commercial vehicles, and conversion of diesel and petrol run public transport vehicles to compressed natural gas. In addition, changes in the vehicular technology have also contributed to controlling emissions especially in case of auto-rickshaws and motorized two-wheelers, which changed from two-stroke to four-stroke. The rising trend of NOx along with the presence of VOCs indicates increasing tendency to form ground-level ozone and as a result, smog in the region. We predict that the current regime of vehicle technology, fuel standards, and high growth rate of private vehicles, is likely to nullify all the past emission reductions by the end of 2020s.

  11. Characterization of particulate emissions from Australian open-cut coal mines: Toward improved emission estimates.

    Science.gov (United States)

    Richardson, Claire; Rutherford, Shannon; Agranovski, Igor

    2018-06-01

    Given the significance of mining as a source of particulates, accurate characterization of emissions is important for the development of appropriate emission estimation techniques for use in modeling predictions and to inform regulatory decisions. The currently available emission estimation methods for Australian open-cut coal mines relate primarily to total suspended particulates and PM 10 (particulate matter with an aerodynamic diameter available relating to the PM 2.5 (currently available emission estimation techniques, this paper presents results of sampling completed at three open-cut coal mines in Australia. The monitoring data demonstrate that the particulate size fraction varies for different mining activities, and that the region in which the mine is located influences the characteristics of the particulates emitted to the atmosphere. The proportion of fine particulates in the sample increased with distance from the source, with the coarse fraction being a more significant proportion of total suspended particulates close to the source of emissions. In terms of particulate composition, the results demonstrate that the particulate emissions are predominantly sourced from naturally occurring geological material, and coal comprises less than 13% of the overall emissions. The size fractionation exhibited by the sampling data sets is similar to that adopted in current Australian emission estimation methods but differs from the size fractionation presented in the U.S. Environmental Protection Agency methodology. Development of region-specific emission estimation techniques for PM 10 and PM 2.5 from open-cut coal mines is necessary to allow accurate prediction of particulate emissions to inform regulatory decisions and for use in modeling predictions. Development of region-specific emission estimation techniques for PM 10 and PM 2.5 from open-cut coal mines is necessary to allow accurate prediction of particulate emissions to inform regulatory decisions and for

  12. Impact of reformulated fuels on motor vehicle emissions

    Science.gov (United States)

    Kirchstetter, Thomas

    Motor vehicles continue to be an important source of air pollution. Increased vehicle travel and degradation of emission control systems have offset some of the effects of increasingly stringent emission standards and use of control technologies. A relatively new air pollution control strategy is the reformulation of motor vehicle fuels, both gasoline and diesel, to make them cleaner- burning. Field experiments in a heavily traveled northern California roadway tunnel revealed that use of oxygenated gasoline reduced on-road emissions of carbon monoxide (CO) and volatile organic compounds (VOC) by 23 +/- 6% and 19 +/- 8%, respectively, while oxides of nitrogen (NOx) emissions were not significantly affected. The introduction of reformulated gasoline (RFG) in California led to large changes in gasoline composition including decreases in alkene, aromatic, benzene, and sulfur contents, and an increase in oxygen content. The combined effects of RFG and fleet turnover between summers 1994 and 1997 were decreases in on-road vehicle exhaust emissions of CO, non-methane VOC, and NOx by 31 +/- 5, 43 +/- 8, and 18 +/- 4%, respectively. Although it was difficult to separate the fleet turnover and RFG contributions to these changes, it was clear that the effect of RFG was greater for VOC than for NOx. The RFG effect on exhaust emissions of benzene was a 30-40% reduction. Use of RFG reduced the reactivity of liquid gasoline and gasoline headspace vapors by 23 and 19%, respectively. Increased use of methyl tert-butyl ether in gasoline led to increased concentrations of highly reactive formaldehyde and isobutene in vehicle exhaust. As a result, RFG reduced the reactivity of exhaust emissions by only about 5%. Per unit mass of fuel burned, heavy-duty diesel trucks emit about 25 times more fine particle mass and 15-20 times the number of fine particles compared to light-duty vehicles. Exhaust fine particle emissions from heavy-duty diesels contain more black carbon than particulate

  13. Particulate and carbon monoxide emissions from small scale firewood combustion

    International Nuclear Information System (INIS)

    Todd, J.J.

    1990-01-01

    One of the serious adverse effects of residential firewood use is the deterioration in air quality caused by wood-smoke. Low combustion zone temperatures, flame quenching, poor gas mixing, and lack of oxygen all contribute to relatively high emissions of particulates and CO. Average emission rates for particulates of 11 g/h for modern woodheaters can certainly be improved upon. More research effort is needed to reduce emissions from cooking stoves used in developing countries and more public information on correct heater use is needed in the developed countries. (author)

  14. Investigating the Potential of Ridesharing to Reduce Vehicle Emissions

    Directory of Open Access Journals (Sweden)

    Roozbeh Jalali

    2017-06-01

    Full Text Available As urban populations grow, cities need new strategies to maintain a good standard of living while enhancing services and infrastructure development. A key area for improving city operations and spatial layout is the transportation of people and goods. While conventional transportation systems (i.e., fossil fuel based are struggling to serve mobility needs for growing populations, they also represent serious environmental threats. Alternative-fuel vehicles can reduce emissions that contribute to local air pollution and greenhouse gases as mobility needs grow. However, even if alternative-powered vehicles were widely employed, road congestion would still increase. This paper investigates ridesharing as a mobility option to reduce emissions (carbon, particulates and ozone while accommodating growing transportation needs and reducing overall congestion. The potential of ridesharing to reduce carbon emissions from personal vehicles in Changsha, China, is examined by reviewing mobility patterns of approximately 8,900 privately-owned vehicles over two months. Big data analytics identify ridesharing potential among these drivers by grouping vehicles by their trajectory similarity. The approach includes five steps: data preprocessing, trip recognition, feature vector creation, similarity measurement and clustering. Potential reductions in vehicle emissions through ridesharing among a specific group of drivers are calculated and discussed. While the quantitative results of this analysis are specific to the population of Changsha, they provide useful insights for the potential of ridesharing to reduce vehicle emissions and the congestion expected to grow with mobility needs. Within the study area, ridesharing has the potential to reduce total kilometers driven by about 24% assuming a maximum distance between trips less than 10 kilometers, and schedule time less than 60 minutes. For a more conservative maximum trip distance of 2 kilometers and passenger

  15. Heavy-duty diesel vehicles dominate vehicle emissions in a tunnel study in northern China.

    Science.gov (United States)

    Song, Congbo; Ma, Chao; Zhang, Yanjie; Wang, Ting; Wu, Lin; Wang, Peng; Liu, Yan; Li, Qian; Zhang, Jinsheng; Dai, Qili; Zou, Chao; Sun, Luna; Mao, Hongjun

    2018-05-09

    The relative importance of contributions of gasoline vehicles (GVs) and diesel vehicles (DVs), heavy-duty diesel vehicles (HDDVs) and non-HDDVs to on-road vehicle emissions remains unclear. Vehicle emission factors (EFs), including fine particulate matter (PM 2.5 ), NO-NO 2 -NO x , and carbon monoxide (CO), were measured (August 4-18, 2017) in an urban tunnel in Tianjin, northern China. The average EFs (mg km -1 veh -1 ) of the fleet were as follows: 9.21 (95% confidence interval: 1.60, 23.07) for PM 2.5 , 62.08 (21.21, 138.25) for NO, 20.42 (0.79, 45.48) for NO 2 , 83.72 (26.29, 162.87) for NO x , and 284.54 (18.22, 564.67) for CO. The fleet-average EFs exhibited diurnal variations, due to diurnal variations in the proportion of HDDVs in the fleet, though the hourly proportion of HDDVs never exceeded 10% during the study period. The reconstructed average EFs for on-road vehicle emissions of PM 2.5 , NO, NO 2 , and NO x , and CO were approximately 2.2, 1.7, 1.5, 2.0, and 1.6 times as much as those in the tunnel, respectively, due to the higher HDDV fractions in the whole city than those in the tunnel. The EFs of PM 2.5 , NO, NO 2 , and NO x , and CO from each HDDV were approximately 75, 81, 24, 65, and 33 times of those from each non-HDDV, respectively. HDDVs were responsible for approximately 81.92%, 83.02%, 59.79%, 79.79%, and 66.77% of the total PM 2.5 , NO, NO 2 , and NO x , and CO emissions from on-road vehicles in Tianjin, respectively. DVs, especially HDDVs, are major sources of on-road PM 2.5 , NO-NO 2 -NO x , and CO emissions in northern China. The contribution of HDDVs to fleet emissions calculated by the EFs from Chinese 'on-road vehicle emission inventory guidebook' were underestimated, as compared to our results. The EFs from on-road vehicles should be updated due to the rapid progression of vehicle technology combined with emission standards in China. The management and control of HDDV emissions have become urgent to reduction of on-road vehicle

  16. Particulate Matter from the Road Surface Abrasion as a Problem of Non-Exhaust Emission Control

    Directory of Open Access Journals (Sweden)

    Magdalena Penkała

    2018-01-01

    Full Text Available Along with house heating and industry, emissions from road traffic (exhaust and tire, brake, car body or road surface abrasions are one of the primary sources of particulate matter (PM in the atmosphere in urban areas. Though numerous regulations and vehicle-control mechanisms have led to a significant decline of PM emissions from vehicle exhaust gases, other sources of PM remain related to road and car abrasion are responsible for non-exhaust emissions. Quantifying these emissions is a hard problem in both laboratory and field conditions. First, we must recognize the physicochemical properties of the PM that is emitted by various non-exhaust sources. In this paper, we underline the problem of information accessibility with regards to the properties and qualities of PM from non-exhaust sources. We also indicate why scarce information is available in order to find the possible solution to this ongoing issue.

  17. Black carbon emissions in gasoline exhaust and a reduction alternative with a gasoline particulate filter.

    Science.gov (United States)

    Chan, Tak W; Meloche, Eric; Kubsh, Joseph; Brezny, Rasto

    2014-05-20

    Black carbon (BC) mass and solid particle number emissions were obtained from two pairs of gasoline direct injection (GDI) vehicles and port fuel injection (PFI) vehicles over the U.S. Federal Test Procedure 75 (FTP-75) and US06 Supplemental Federal Test Procedure (US06) drive cycles on gasoline and 10% by volume blended ethanol (E10). BC solid particles were emitted mostly during cold-start from all GDI and PFI vehicles. The reduction in ambient temperature had significant impacts on BC mass and solid particle number emissions, but larger impacts were observed on the PFI vehicles than the GDI vehicles. Over the FTP-75 phase 1 (cold-start) drive cycle, the BC mass emissions from the two GDI vehicles at 0 °F (-18 °C) varied from 57 to 143 mg/mi, which was higher than the emissions at 72 °F (22 °C; 12-29 mg/mi) by a factor of 5. For the two PFI vehicles, the BC mass emissions over the FTP-75 phase 1 drive cycle at 0 °F varied from 111 to 162 mg/mi, higher by a factor of 44-72 when compared to the BC emissions of 2-4 mg/mi at 72 °F. The use of a gasoline particulate filter (GPF) reduced BC emissions from the selected GDI vehicle by 73-88% at various ambient temperatures over the FTP-75 phase 1 drive cycle. The ambient temperature had less of an impact on particle emissions for a warmed-up engine. Over the US06 drive cycle, the GPF reduced BC mass emissions from the GDI vehicle by 59-80% at various temperatures. E10 had limited impact on BC emissions from the selected GDI and PFI vehicles during hot-starts. E10 was found to reduce BC emissions from the GDI vehicle by 15% at standard temperature and by 75% at 19 °F (-7 °C).

  18. Development of database of real-world diesel vehicle emission factors for China.

    Science.gov (United States)

    Shen, Xianbao; Yao, Zhiliang; Zhang, Qiang; Wagner, David Vance; Huo, Hong; Zhang, Yingzhi; Zheng, Bo; He, Kebin

    2015-05-01

    A database of real-world diesel vehicle emission factors, based on type and technology, has been developed following tests on more than 300 diesel vehicles in China using a portable emission measurement system. The database provides better understanding of diesel vehicle emissions under actual driving conditions. We found that although new regulations have reduced real-world emission levels of diesel trucks and buses significantly for most pollutants in China, NOx emissions have been inadequately controlled by the current standards, especially for diesel buses, because of bad driving conditions in the real world. We also compared the emission factors in the database with those calculated by emission factor models and used in inventory studies. The emission factors derived from COPERT (Computer Programmer to calculate Emissions from Road Transport) and MOBILE may both underestimate real emission factors, whereas the updated COPERT and PART5 (Highway Vehicle Particulate Emission Modeling Software) models may overestimate emission factors in China. Real-world measurement results and emission factors used in recent emission inventory studies are inconsistent, which has led to inaccurate estimates of emissions from diesel trucks and buses over recent years. This suggests that emission factors derived from European or US-based models will not truly represent real-world emissions in China. Therefore, it is useful and necessary to conduct systematic real-world measurements of vehicle emissions in China in order to obtain the optimum inputs for emission inventory models. Copyright © 2015. Published by Elsevier B.V.

  19. Developing a 'Research Test Bed' to introduce innovative Emission Testing Technology to improve New Zealand's Vehicle Emission Standards

    International Nuclear Information System (INIS)

    Cox, Stephen J

    2012-01-01

    Vehicle exhaust emissions arise from the combustion of the fuel and air mixture in the engine. Exhaust emission gases generally include carbon monoxide (CO), oxides of nitrogen (NOx), hydrocarbons (HC), particulates, and the greenhouse gas carbon dioxide (CO2). In New Zealand improvements have occurred in emissions standards over the past 20 years however significant health related issues are now being discovered in Auckland as a direct effect of high vehicle emission levels. Pollution in New Zealand, especially via vehicle emissions are an increasing concern and threatens New Zealand's 'clean and green' image. Unitec Institute of Technology proposes establishing a Vehicle Emissions Testing Facility, and with an understanding with Auckland University, National Institute of Water and Atmosphere Research Ltd (NIWA) this research group can work collaboratively on vehicle emissions testing. New Zealand research providers would support an application in the UK led by the University of Huddersfield to a range of European Union Structural Funds. New Zealand has an ideal 'vehicle emissions research environment' supported by significant expertise in vehicle emission control technology and associated protocols at the University of Auckland, and the effects of high vehicle emissions on health at the National Institutes of Water and Atmosphere (NIWA).

  20. Estimating national exhaust emissions from railway vehicles in Turkey

    International Nuclear Information System (INIS)

    Dincer, Faruk; Elbir, Tolga

    2007-01-01

    The estimated exhaust emissions from railway vehicles in Turkey were presented. The emissions of nitrogen oxides (NO x ), hydrocarbon compounds (HC), carbon monoxide (CO), particulate matter (PM), sulfur dioxide (SO 2 ) and carbon dioxide (CO 2 ) from the diesel locomotives and railcars were calculated using the railway traffic data recorded by Turkish State Railways (TSR) for the period of 2000-2005. EPA emission factors were used for different vehicle types and operation modes such as shunting and line-hauling. Total emissions from railway vehicles in Turkey were estimated as 384 t y - 1 for HC, 1016 t y - 1 for CO, 6799 t y - 1 for NO X , 256 t y - 1 for PM, 357 t y - 1 for SO 2 and 383 537 t y - 1 for CO 2 for the year 2005. The distribution of emissions with respect to type of railway vehicles shows that the mainline locomotives contribute ∝ 91% to the total emissions. The increases of 22%, 39% and 49% in the current numbers of mainline locomotives, shunting locomotives and diesel railcars, respectively corresponding to the full capacity of railway network in Turkey will increase the annual emissions to 431 t y - 1 for HC, 1121 t y - 1 for CO, 7399 t y - 1 for NO X , 342 t y - 1 for PM, 552 t y - 1 for SO 2 and 420 256 t y - 1 for CO 2 . Total railway emissions constitute 0.15%, 0.08% and 4.21% of total Turkish traffic emissions for HC, CO and NO X , respectively. (author)

  1. Ionization for reducing particulate matter emissions from poultry houses

    NARCIS (Netherlands)

    Cambra-López, M.; Winkel, A.; Harn, van J.; Ogink, N.W.M.; Aarnink, A.J.A.

    2009-01-01

    We evaluated the effect of ionization in reducing particulate and gaseous emissions in broiler houses and its effect on particle size distribution. Furthermore, we evaluated the performance of the tested ionization system and its influence on bird performance. The experiment was done during two

  2. Comparisons of the nanoparticle emission characteristics between GDI and PFI vehicles

    International Nuclear Information System (INIS)

    Jang, Jihwan; Lee, Jongtae; Kim, Jeongsoo; Park, Sungwook

    2015-01-01

    To compare the particle emissions of gasoline direct injection (GDI) and port fuel injection (PFI) vehicles in this study, the particulate matter of exhaust emissions was sampled from a constant volume sampler tunnel and tailpipe using a chassis dynamometer. Using the gravimetric method and a condensation particle counter, the particulate matter mass (PM) and particle number (PN) of the particle size according to the current regulations were measured. Nanometer-sized particle emissions, which are smaller than regulated particle emissions, were measured by an engine exhaust particle sizer. Four test vehicles, which included two GDI vehicles and two PFI vehicles, were tested in various driving modes. The test results show that the particle emissions from the GDI vehicles were higher than the particle emissions from the PFI vehicles. In addition, the test vehicles had the highest emissions in cold start conditions. In the GDI vehicles, the PM and PN satisfied the current regulations but PN did not satisfy the EURO 6c regulations that will be implemented in 2017. In all driving modes, the particle size distribution show that the most common particle size was approximately 50 nm, and the results according to the driving patterns of each mode were confirmed

  3. Comparisons of the nanoparticle emission characteristics between GDI and PFI vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jihwan [Graduate School of Hanyang University (Korea, Republic of); Lee, Jongtae; Kim, Jeongsoo [National Institute of Environmental Research (Korea, Republic of); Park, Sungwook, E-mail: parks@hanyang.ac.kr [Hanyang University, School of Mechanical Engineering (Korea, Republic of)

    2015-12-15

    To compare the particle emissions of gasoline direct injection (GDI) and port fuel injection (PFI) vehicles in this study, the particulate matter of exhaust emissions was sampled from a constant volume sampler tunnel and tailpipe using a chassis dynamometer. Using the gravimetric method and a condensation particle counter, the particulate matter mass (PM) and particle number (PN) of the particle size according to the current regulations were measured. Nanometer-sized particle emissions, which are smaller than regulated particle emissions, were measured by an engine exhaust particle sizer. Four test vehicles, which included two GDI vehicles and two PFI vehicles, were tested in various driving modes. The test results show that the particle emissions from the GDI vehicles were higher than the particle emissions from the PFI vehicles. In addition, the test vehicles had the highest emissions in cold start conditions. In the GDI vehicles, the PM and PN satisfied the current regulations but PN did not satisfy the EURO 6c regulations that will be implemented in 2017. In all driving modes, the particle size distribution show that the most common particle size was approximately 50 nm, and the results according to the driving patterns of each mode were confirmed.

  4. Comparisons of the nanoparticle emission characteristics between GDI and PFI vehicles

    Science.gov (United States)

    Jang, Jihwan; Lee, Jongtae; Kim, Jeongsoo; Park, Sungwook

    2015-12-01

    To compare the particle emissions of gasoline direct injection (GDI) and port fuel injection (PFI) vehicles in this study, the particulate matter of exhaust emissions was sampled from a constant volume sampler tunnel and tailpipe using a chassis dynamometer. Using the gravimetric method and a condensation particle counter, the particulate matter mass (PM) and particle number (PN) of the particle size according to the current regulations were measured. Nanometer-sized particle emissions, which are smaller than regulated particle emissions, were measured by an engine exhaust particle sizer. Four test vehicles, which included two GDI vehicles and two PFI vehicles, were tested in various driving modes. The test results show that the particle emissions from the GDI vehicles were higher than the particle emissions from the PFI vehicles. In addition, the test vehicles had the highest emissions in cold start conditions. In the GDI vehicles, the PM and PN satisfied the current regulations but PN did not satisfy the EURO 6c regulations that will be implemented in 2017. In all driving modes, the particle size distribution show that the most common particle size was approximately 50 nm, and the results according to the driving patterns of each mode were confirmed.

  5. Emissions credits from natural gas vehicles

    International Nuclear Information System (INIS)

    Anderson, J.F.; Kodjak, D.

    1997-01-01

    Dedicated natural gas vehicles (NGVs) often are capable of testing to lower than federally required engine certification standards. NGVs often meet inherently low emission vehicle (ILEV) and ultra low emission vehicle (ULEV) standards. Over the useful life of the vehicle, a significant amount of mobile source emission reduction credits (MSERCs) can be generated. This paper will discuss key elements of establishing a workable methodology to quantify the emissions benefits generated through the purchase and use of heavy-duty natural gas vehicles instead of heavy-duty diesel vehicles. The paper will focus on a public fleet of transit buses owned by the Massachusetts Bay Transit Agency, the Massachusetts Port Authority, and a private fleet of waste haulers. Public fleets may generate emission credits as a key compliance option to offset emission shortfalls from changes to the Employee Commute Options (ECO) program, the Inspection and Maintenance program, and facilitate annual surface transportation conformity. Private fleets may generate emission credits for open market trading to area and stationary sources seeking to buy credits from mobile sources, where allowed by EPA and state policy

  6. An evaluation of fuels and retrofit diesel particulate filters to reduce diesel particulate matter emissions in an underground mine

    CSIR Research Space (South Africa)

    Wattrus, MC

    2016-09-01

    Full Text Available Through an industry wide collaborative project, this paper explores what potential exists for South African underground mines to reduce diesel particulate emissions, where the starting point is a mine using older engine technology (Tier 1 emission...

  7. Emissions control techniques applied to industrial vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Martin, B.

    2004-12-15

    As emission standards for industrial vehicles become increasingly stringent, many research projects are seeking to develop after-treatment systems. These systems will have to combine efficiency, durability and low operating cost.

  8. Managing the diffusion of low emission vehicles

    NARCIS (Netherlands)

    Vooren, A. van der; Alkemade, F.

    2012-01-01

    There is significant uncertainty among technology providers, governments, and consumers about which technology will be the vehicle technology of the future. Governments try to stimulate the diffusion of low emission vehicles with diverse policy measures such as purchase price subsidies. However, the

  9. Dedicated natural gas vehicle with low emission

    NARCIS (Netherlands)

    Voogd, A. de; Weide, J. van der; Konig, A.; Wegener, R.

    1995-01-01

    In the introduction an overview is given of international activities in the field of natural gas vehicles. The main incentives for the use of natural gas in vehicles are: emission reduction in urban areas, fuel diversification, and long term availability. Heavy duty natural gas engines are mainly

  10. Gaseous and particulate emissions from prescribed burning in Georgia.

    Science.gov (United States)

    Lee, Sangil; Baumann, Karsten; Schauer, James J; Sheesley, Rebecca J; Naeher, Luke P; Meinardi, Simone; Blake, Donald R; Edgerton, Eric S; Russell, Armistead G; Clements, Mark

    2005-12-01

    Prescribed burning is a significant source of fine particulate matter (PM2.5) in the southeastern United States. However, limited data exist on the emission characteristics from this source. Various organic and inorganic compounds both in the gas and particle phase were measured in the emissions of prescribed burnings conducted at two pine-dominated forest areas in Georgia. The measurements of volatile organic compounds (VOCs) and PM2.5 allowed the determination of emission factors for the flaming and smoldering stages of prescribed burnings. The VOC emission factors from smoldering were distinctly higher than those from flaming except for ethene, ethyne, and organic nitrate compounds. VOC emission factors show that emissions of certain aromatic compounds and terpenes such as alpha and beta-pinenes, which are important precursors for secondary organic aerosol (SOA), are much higher from active prescribed burnings than from fireplace wood and laboratory open burning studies. Levoglucosan is the major particulate organic compound (POC) emitted for all these studies, though its emission relative to total organic carbon (mg/g OC) differs significantly. Furthermore, cholesterol, an important fingerprint for meat cooking, was observed only in our in situ study indicating a significant release from the soil and soil organisms during open burning. Source apportionment of ambient primary fine particulate OC measured at two urban receptor locations 20-25 km downwind yields 74 +/- 11% during and immediately after the burns using our new in situ profile. In comparison with the previous source profile from laboratory simulations, however, this OC contribution is on average 27 +/- 5% lower.

  11. Atmospheric particulate emissions from dry abrasive blasting using coal slag

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskar Kura; Kalpalatha Kambham; Sivaramakrishnan Sangameswaran; Sandhya Potana [University of New Orleans, New Orleans, LA (United States). Department of Civil and Environmental Engineering

    2006-08-15

    Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions. 40 refs., 5 figs., 2 tabs.

  12. A Comprehensive Examination of Heavy Vehicle Emissions Factors

    Science.gov (United States)

    2010-08-01

    This report summarizes the findings from reviewing the literature on several topics that are related to heavy vehicle emissions including engine and fuel types, vehicle technologies that can be used to reduce or mitigate vehicle emissions, the factor...

  13. Effects of improved spatial and temporal modeling of on-road vehicle emissions.

    Science.gov (United States)

    Lindhjem, Christian E; Pollack, Alison K; DenBleyker, Allison; Shaw, Stephanie L

    2012-04-01

    Numerous emission and air quality modeling studies have suggested the need to accurately characterize the spatial and temporal variations in on-road vehicle emissions. The purpose of this study was to quantify the impact that using detailed traffic activity data has on emission estimates used to model air quality impacts. The on-road vehicle emissions are estimated by multiplying the vehicle miles traveled (VMT) by the fleet-average emission factors determined by road link and hour of day. Changes in the fraction of VMT from heavy-duty diesel vehicles (HDDVs) can have a significant impact on estimated fleet-average emissions because the emission factors for HDDV nitrogen oxides (NOx) and particulate matter (PM) are much higher than those for light-duty gas vehicles (LDGVs). Through detailed road link-level on-road vehicle emission modeling, this work investigated two scenarios for better characterizing mobile source emissions: (1) improved spatial and temporal variation of vehicle type fractions, and (2) use of Motor Vehicle Emission Simulator (MOVES2010) instead of MOBILE6 exhaust emission factors. Emissions were estimated for the Detroit and Atlanta metropolitan areas for summer and winter episodes. The VMT mix scenario demonstrated the importance of better characterizing HDDV activity by time of day, day of week, and road type. More HDDV activity occurs on restricted access road types on weekdays and at nonpeak times, compared to light-duty vehicles, resulting in 5-15% higher NOx and PM emission rates during the weekdays and 15-40% lower rates on weekend days. Use of MOVES2010 exhaust emission factors resulted in increases of more than 50% in NOx and PM for both HDDVs and LDGVs, relative to MOBILE6. Because LDGV PM emissions have been shown to increase with lower temperatures, the most dramatic increase from MOBILE6 to MOVES2010 emission rates occurred for PM2.5 from LDGVs that increased 500% during colder wintertime conditions found in Detroit, the northernmost

  14. Particulate emissions from road transportation (gasoline and diesel). Chemical and granulometric characteristics; relative contribution; Emissions particulaires par les transports routiers (essence et diesel) caracteristiques chimiques et granulometriques contribution relative

    Energy Technology Data Exchange (ETDEWEB)

    Belot, G. [PSA-Peugiot-Citroen, 92 - La Garenne-Colombes (France)

    1996-12-31

    The formation process and chemical composition of diesel, leaded and lead-free gasoline combustion particulates are presented, and the effects of engine technology, post-treatments (oxidative catalysis), automobile speed and fuel type (more especially diesel type), on the granulometry of gasoline and diesel automotive particulates are studied. The emission contributions from the various diesel vehicle types (automobiles, trucks, buses), gasoline and diesel automobiles and other natural and anthropogenic particulate sources, are presented and compared

  15. An overview of particulate emissions from residential biomass combustion

    Science.gov (United States)

    Vicente, E. D.; Alves, C. A.

    2018-01-01

    Residential biomass burning has been pointed out as one of the largest sources of fine particles in the global troposphere with serious impacts on air quality, climate and human health. Quantitative estimations of the contribution of this source to the atmospheric particulate matter levels are hard to obtain, because emission factors vary greatly with wood type, combustion equipment and operating conditions. Updated information should improve not only regional and global biomass burning emission inventories, but also the input for atmospheric models. In this work, an extensive tabulation of particulate matter emission factors obtained worldwide is presented and critically evaluated. Existing quantifications and the suitability of specific organic markers to assign the input of residential biomass combustion to the ambient carbonaceous aerosol are also discussed. Based on these organic markers or other tracers, estimates of the contribution of this sector to observed particulate levels by receptor models for different regions around the world are compiled. Key areas requiring future research are highlighted and briefly discussed.

  16. Modelisation des emissions de particules microniques et nanometriques en usinage

    Science.gov (United States)

    Khettabi, Riad

    La mise en forme des pieces par usinage emet des particules, de tailles microscopiques et nanometriques, qui peuvent etre dangereuses pour la sante. Le but de ce travail est d'etudier les emissions de ces particules pour fins de prevention et reduction a la source. L'approche retenue est experimentale et theorique, aux deux echelles microscopique et macroscopique. Le travail commence par des essais permettant de determiner les influences du materiau, de l'outil et des parametres d'usinage sur les emissions de particules. E nsuite un nouveau parametre caracterisant les emissions, nomme Dust unit , est developpe et un modele predictif est propose. Ce modele est base sur une nouvelle theorie hybride qui integre les approches energetiques, tribologiques et deformation plastique, et inclut la geometrie de l'outil, les proprietes du materiau, les conditions de coupe et la segmentation des copeaux. Il ete valide au tournage sur quatre materiaux: A16061-T6, AISI1018, AISI4140 et fonte grise.

  17. Diesel emission control: Catalytic filters for particulate removal

    Directory of Open Access Journals (Sweden)

    Debora Fino

    2007-01-01

    Full Text Available The European diesel engine industry represents a vital sector across the Continent, with more than 2 million direct work positions and a turnover of over 400 billion Euro. Diesel engines provide large paybacks to society since they are extensively used to transport goods, services and people. In recent years increasing attention has been paid to the emissions from diesel engines which, like gasoline engine emissions, include carbon monoxide (CO, hydrocarbons (HC and oxides of nitrogen (NOx. Diesel engines also produce significant levels of particulate matter (PM, which consists mostly of carbonaceous soot and a soluble organic fraction (SOF of hydrocarbons that have condensed on the soot.

  18. Real-world emissions of in-use off-road vehicles in Mexico.

    Science.gov (United States)

    Zavala, Miguel; Huertas, Jose Ignacio; Prato, Daniel; Jazcilevich, Aron; Aguilar, Andrés; Balam, Marco; Misra, Chandan; Molina, Luisa T

    2017-09-01

    Off-road vehicles used in construction and agricultural activities can contribute substantially to emissions of gaseous pollutants and can be a major source of submicrometer carbonaceous particles in many parts of the world. However, there have been relatively few efforts in quantifying the emission factors (EFs) and for estimating the potential emission reduction benefits using emission control technologies for these vehicles. This study characterized the black carbon (BC) component of particulate matter and NOx, CO, and CO 2 EFs of selected diesel-powered off-road mobile sources in Mexico under real-world operating conditions using on-board portable emissions measurements systems (PEMS). The vehicles sampled included two backhoes, one tractor, a crane, an excavator, two front loaders, two bulldozers, an air compressor, and a power generator used in the construction and agricultural activities. For a selected number of these vehicles the emissions were further characterized with wall-flow diesel particle filters (DPFs) and partial-flow DPFs (p-DPFs) installed. Fuel-based EFs presented less variability than time-based emission rates, particularly for the BC. Average baseline EFs in working conditions for BC, NOx, and CO ranged from 0.04 to 5.7, from 12.6 to 81.8, and from 7.9 to 285.7 g/kg-fuel, respectively, and a high dependency by operation mode and by vehicle type was observed. Measurement-base frequency distributions of EFs by operation mode are proposed as an alternative method for characterizing the variability of off-road vehicles emissions under real-world conditions. Mass-based reductions for black carbon EFs were substantially large (above 99%) when DPFs were installed and the vehicles were idling, and the reductions were moderate (in the 20-60% range) for p-DPFs in working operating conditions. The observed high variability in measured EFs also indicates the need for detailed vehicle operation data for accurately estimating emissions from off

  19. Managing the Diffusion of Low Emission Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Van der Vooren, A.; Alkemade, F. [Innovation Studies Group, Copernicus Institute of Sustainable Development, Utrecht University, 3508TC Utrecht (Netherlands)

    2012-03-13

    There is significant uncertainty among technology providers, governments, and consumers about which technology will be the vehicle technology of the future. Governments try to stimulate the diffusion of low emission vehicles with diverse policy measures such as purchase price subsidies. However, the effect of such support measures on the speed and direction of technological change is unclear as different vehicle technologies might be preferred under different policy conditions. Decision makers, such as firm actors involved in green technology management, are thus strongly dependent on government policy when making strategic decisions. For these firm actors, determining their strategy regarding low emission vehicles is a complex task in a changing environment of coevolving consumer preferences, technology characteristics, and green technology policies. This paper presents an agent-based model of the competition between several emerging and market-ready low emission vehicle technologies and the dominant fossil-fuel-based internal combustion engine vehicles. The simulations illustrate the effects of different policy measures on technological change and their implications for the strategic actions of firm actors. More specifically, collaboration and standardization strategies can lead to synergies that contribute to technological change without risking early lock-in.

  20. Investigating the impact of in-vehicle transients on diesel soot emissions

    Directory of Open Access Journals (Sweden)

    Filipi Zoran

    2008-01-01

    Full Text Available This paper describes development of a test cell setup for concurrent running of a real engine and a simulation of the vehicle system, and its use for investigating highly-dynamic engine-in-vehicle operation and its effect on diesel engine emissions. Running an engine in the test cell under conditions experienced in the vehicle enables acquiring detailed insight into dynamic interactions between power train sub-systems, and the impact of it on fuel consumption and transient emissions. This type of data may otherwise be difficult and extremely costly to obtain from a vehicle prototype test. In particular, engine system response during critical transients and the effect of transient excursions on emissions are investigated using advanced, fast-response test instrumentation and emissions analyzers. Main enablers of the work include the highly dynamic AC electric dynamometer with the accompanying computerized control system and the computationally efficient simulation of the driveline/vehicle system. The latter is developed through systematic energy-based proper modeling that tailors the virtual model to capture critical powertrain transients while running in real time. Coupling the real engine with the virtual driveline/vehicle offers a chance to easily modify vehicle parameters, and even study different power train configurations. In particular, the paper describes the engine-in-the-loop study of a V-8, 6l engine coupled to a virtual 4´4 off road vehicle. This engine is considered as a high-performance option for this truck and the real prototype of the complete vehicle does not exist yet. The results shed light on critical transients in a conventional powertrain and their effect on NOx and soot emissions. Measurements demonstrate very large spikes of particulate concentration at the initiation of vehicle acceleration events. Characterization of transients and their effect on particulate emission provides a basis for devising engine-level or

  1. 40 CFR 86.1724-01 - Emission data vehicle selection.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Emission data vehicle selection. 86... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Provisions for the Voluntary National Low Emission Vehicle Program for Light-Duty Vehicles and...

  2. Gaseous and particulate emissions from a DC arc melter.

    Science.gov (United States)

    Overcamp, Thomas J; Speer, Matthew P; Griner, Stewart J; Cash, Douglas M

    2003-01-01

    Tests treating soils contaminated with metal compounds and radionuclide surrogates were conducted in a DC arc melter. The soil melted, and glassy or ceramic waste forms with a separate metal phase were produced. Tests were run in the melter plenum with either air or N2 purge gases. In addition to nitrogen, the primary emissions of gases were CO2, CO, oxygen, methane, and oxides of nitrogen (NO(x)). Although the gas flow through the melter was low, the particulate concentrations ranged from 32 to 145 g/m3. Cerium, a nonradioactive surrogate for plutonium and uranium, was not enriched in the particulate matter (PM). The PM was enriched in cesium and highly enriched in lead.

  3. Characterisation of diesel particulate emission from engines using commercial diesel and biofuels

    Science.gov (United States)

    Ajtai, T.; Pintér, M.; Utry, N.; Kiss-Albert, G.; Gulyás, G.; Pusztai, P.; Puskás, R.; Bereczky, Á.; Szabados, Gy.; Szabó, G.; Kónya, Z.; Bozóki, Z.

    2016-06-01

    In this paper, the number concentration and the size distribution of diluted diesel exhaust particulate matter were measured at three different engine operating points in the speed-load range of the engine as follows: 1600 rpm; 50% load, 1900 rpm; 25% load, 1900 rpm; 75% load, adopted from the UN ECE Vehicle Regulation no. 49 (Revision 2) test protocol using pure diesel and biodiesel fuels, as well as their controlled blends. The emitted particulate assembly had lognormal size distribution in the accumulation mode regardless of the engine operational condition and the type of fuel. The total number and volume concentration emitted by the diesel engine decreased with increasing revolution per minute and rated torque in case of all the fuel types. The mixing ratio of the fuels did not linearly affect the total emission but had a minimum at 75% biodiesel content. We also studied the thermal evolution of the emitted particulates using a specially designed thermodenuder (TD) heated at specific temperatures (50 °C, 120 °C, and 250 °C). The first transition, when the temperature was increased from 50 °C to 120 °C resulted in lower number concentrations with small relative shifts of the peak position. However, in case of the second transition, when the temperature reached 250 °C the individual volatile particulates adsorbed onto the surface of soot particles were completely or partly vaporised resulting in lower total number concentrations with a substantial shift in peak position.

  4. Emission rates of regulated pollutants from on-road heavy-duty diesel vehicles

    Science.gov (United States)

    Shah, Sandip D.; Johnson, Kent C.; Wayne Miller, J.; Cocker, David R.

    Emissions from heavy-duty diesel (HDD) vehicles are affected by many factors. Changes in engine technology, operating mode, fuel properties, vehicle speed and ambient conditions can have significant effects on emission rates of regulated species. This paper presents the results of on-road emissions testing of 11 HDD vehicles (model years 1996-2000) over the ARB Four Phase driving schedule and the urban dynamometer driving schedule (UDDS). Emission rates were found to be highly dependent on vehicle operating mode. Per mile NO x emission rates for vehicle operation at low speeds, in simulated congested traffic, were three times higher per mile emissions then while cruising on the freeway. Comparisons of NO x emission factors to EMFAC baseline emission factors were within 5-40% for vehicles of various model years tested over the UDDS. A comparison of NO x emission factors for a weighted average of the ARB four phase driving schedule yielded values within 17-57% of EMFAC values. Generally, particulate matter (PM) emission rates were lower than EMFAC values.

  5. Light vehicle regulated and unregulated emissions from different biodiesels

    International Nuclear Information System (INIS)

    Karavalakis, George; Stournas, Stamoulis; Bakeas, Evangelos

    2009-01-01

    In this study, the regulated and unregulated emissions profile and fuel consumption of an automotive diesel and biodiesel blends, prepared from two different biodiesels, were investigated. The biodiesels were a rapeseed methyl ester (RME) and a palm-based methyl ester (PME). The tests were performed on a chassis dynamometer with constant volume sampling (CVS) over the New European Driving Cycle (NEDC) and the non-legislated Athens Driving Cycle (ADC), using a Euro 2 compliant passenger vehicle. The objectives were to evaluate the impact of biodiesel chemical structure on the emissions, as well as the influence of the applied driving cycle on the formation of exhaust emissions and fuel consumption. The results showed that NOx emissions were influenced by certain biodiesel properties, such as those of cetane number and iodine number. NOx emissions followed a decreasing trend over both cycles, where the most beneficial reduction was obtained with the application of the more saturated biodiesel. PM emissions were decreased with the palm-based biodiesel blends over both cycles, with the exception of the 20% blend which was higher compared to diesel fuel. PME blends led to increases in PM emissions over the ADC. The majority of the biodiesel blends showed a tendency for lower CO and HC emissions. The differences in CO2 emissions were not statistically significant. Fuel consumption presented an increase with both biodiesels. Total PAH and nitro-PAH emission levels were decreased with the use of biodiesel independently of the source material. Lower molecular weight PAHs were predominant in both gaseous and particulate phases. Both biodiesels had a negative impact on certain carbonyl emissions. Formaldehyde and acetaldehyde were the dominant aldehydes emitted from both fuels.

  6. Particulate and gaseous emissions from residential biomass combustion

    International Nuclear Information System (INIS)

    Boman, Christoffer

    2005-04-01

    Biomass is considered to be a sustainable energy source with significant potentials for replacing electricity and fossil fuels, not at least in the residential sector. However, present wood combustion is a major source of ambient concentrations of hydrocarbons (e.g. VOC and PAH) and particulate matter (PM) and exposure to these pollutants have been associated with adverse health effects. Increased focus on combustion related particulate emissions has been seen concerning the formation, characteristics and implications to human health. Upgraded biomass fuels (e.g. pellets) provide possibilities of more controlled and optimized combustion with less emission of products of incomplete combustion (PICs). For air quality and health impact assessments, regulatory standards and evaluations concerning residential biomass combustion, there is still a need for detailed emission characterization and quantification when using different fuels and combustion techniques. This thesis summarizes the results from seven different papers. The overall objective was to carefully and systematically study the emissions from residential biomass combustion with respect to: i) experimental characterization and quantification, ii) influences of fuel, appliance and operational variables and iii) aspects of ash and trace element transformations and aerosol formation. Special concern in the work was on sampling, quantification and characterization of particulate emissions using different appliances, fuels and operating procedures. An initial review of health effects showed epidemiological evidence of potential adverse effect from wood smoke exposure. A robust whole flow dilution sampling set-up for residential biomass appliances was then designed, constructed and evaluated, and subsequently used in the following emission studies. Extensive quantifications and characterizations of particulate and gases emissions were performed for residential wood and pellet appliances. Emission factor ranges for

  7. 40 CFR 205.52 - Vehicle noise emission standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Vehicle noise emission standards. 205... ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks § 205.52 Vehicle noise emission standards. (a) Low Speed Noise Emission Standard. Vehicles which are manufactured after...

  8. 5th international exhaust gas and particulate emissions forum. Proceedings; 5. Internationales Forum Abgas- und Partikelemissionen. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-11

    The Proceedings of the 5th International Exhaust Gas and Particulate Emissions Forum contains 22 printed contributions as well as a CD-ROM. The titles of them are: (1) Diesel Emissions Control in the United States - 2010 and Beyond; (2) The MBE90 commercial vehicle engine for EPA '07 emissions regulations; (3) Concepts for engines and exhaust-gas cleaning systems for heavy duty trucks of the future; (4) HD Engine Technology for Near-Zero Emissions and Lowest Cost of Ownership; (5) (Partially-) Homogeneous Diesel Combustion; (6) Exhaust gas sensors for NOx storage catalysts and ammonia-SCR systems; (7) Sensors for modern exhaust gas after-treatment systems; (8) New reducing agents for low NOx-SCR Techno-logy; (9) Exhaust gas Aftertreatment on Lean Burn Gasoline Direct Injection Engines: The System of TWC and NOx-Storage Catalyst; (10) New Platinum/Palladium based catalyzed filter technologies for future passenger car applications; (11) Development of a Roadway Hydrocarbon Sorption Model and Characterization of a Novel PM Generator; (12) Requirements for current and future particulate measurement instrumentation from the point of view of the Physikalisch-Technische Bundesanstalt; (13) Standardized dilution conditions for gravimetric PM sampling - measures to assure results that correlate; (14) Particle Counting according PMP; (15) Future high-confidence measurement of diesel particulate emissions for approval and development; (16) New developments in optical instrumentation for exhaust gas; (17) Simultaneous Detection of Gaseous and Particulate Exhaust Components by Photoacoustic Spectroscopy; (18) Boundaries of modern exhaust gas instrumentation; (19) Raising quality and reducing application effort through efficient data input to the particulate filter load model for a EURO5 diesel car; (20) Stop-start operation of diesel engines - modified require-ment for exhaust gas after-treatment?; (21) Particulates emission with Biodiesel B30 impact on CSF management; (22

  9. 5th international exhaust gas and particulate emissions forum. Proceedings; 5. Internationales Forum Abgas- und Partikelemissionen. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-11

    The Proceedings of the 5th International Exhaust Gas and Particulate Emissions Forum contains 22 printed contributions as well as a CD-ROM. The titles of them are: (1) Diesel Emissions Control in the United States - 2010 and Beyond; (2) The MBE90 commercial vehicle engine for EPA '07 emissions regulations; (3) Concepts for engines and exhaust-gas cleaning systems for heavy duty trucks of the future; (4) HD Engine Technology for Near-Zero Emissions and Lowest Cost of Ownership; (5) (Partially-) Homogeneous Diesel Combustion; (6) Exhaust gas sensors for NOx storage catalysts and ammonia-SCR systems; (7) Sensors for modern exhaust gas after-treatment systems; (8) New reducing agents for low NOx-SCR Techno-logy; (9) Exhaust gas Aftertreatment on Lean Burn Gasoline Direct Injection Engines: The System of TWC and NOx-Storage Catalyst; (10) New Platinum/Palladium based catalyzed filter technologies for future passenger car applications; (11) Development of a Roadway Hydrocarbon Sorption Model and Characterization of a Novel PM Generator; (12) Requirements for current and future particulate measurement instrumentation from the point of view of the Physikalisch-Technische Bundesanstalt; (13) Standardized dilution conditions for gravimetric PM sampling - measures to assure results that correlate; (14) Particle Counting according PMP; (15) Future high-confidence measurement of diesel particulate emissions for approval and development; (16) New developments in optical instrumentation for exhaust gas; (17) Simultaneous Detection of Gaseous and Particulate Exhaust Components by Photoacoustic Spectroscopy; (18) Boundaries of modern exhaust gas instrumentation; (19) Raising quality and reducing application effort through efficient data input to the particulate filter load model for a EURO5 diesel car; (20) Stop-start operation of diesel engines - modified require-ment for exhaust gas after-treatment?; (21) Particulates emission with Biodiesel B30 impact on CSF management; (22

  10. Method for modeling driving cycles, fuel use, and emissions for over snow vehicles.

    Science.gov (United States)

    Hu, Jiangchuan; Frey, H Christopher; Sandhu, Gurdas S; Graver, Brandon M; Bishop, Gary A; Schuchmann, Brent G; Ray, John D

    2014-07-15

    As input to a winter use plan, activity, fuel use, and tailpipe exhaust emissions of over snow vehicles (OSV), including five snow coaches and one snowmobile, were measured on a designated route in Yellowstone National Park (YNP). Engine load was quantified in terms of vehicle specific power (VSP), which is a function of speed, acceleration, and road grade. Compared to highway vehicles, VSP for OSVs is more sensitive to rolling resistance and less sensitive to aerodynamic drag. Fuel use rates increased linearly (R2>0.96) with VSP. For gasoline-fueled OSVs, fuel-based emission rates of carbon monoxide (CO) and nitrogen oxides (NOx) typically increased with increasing fuel use rate, with some cases of very high CO emissions. For the diesel OSVs, which had selective catalytic reduction and diesel particulate filters, fuel-based NOx and particulate matter (PM) emission rates were not sensitive to fuel flow rate, and the emission controls were effective. Inter vehicle variability in cycle average fuel use and emissions rates for CO and NOx was substantial. However, there was relatively little inter-cycle variation in cycle average fuel use and emission rates when comparing driving cycles. Recommendations are made regarding how real-world OSV activity, fuel use, and emissions data can be improved.

  11. Emissions During and Real-world Frequency of Heavy-duty Diesel Particulate Filter Regeneration.

    Science.gov (United States)

    Ruehl, Chris; Smith, Jeremy D; Ma, Yilin; Shields, Jennifer Erin; Burnitzki, Mark; Sobieralski, Wayne; Ianni, Robert; Chernich, Donald J; Chang, M-C Oliver; Collins, John Francis; Yoon, Seungju; Quiros, David; Hu, Shaohua; Dwyer, Harry

    2018-05-15

    Recent tightening of particulate matter (PM) emission standards for heavy-duty engines has spurred the widespread adoption of diesel particulate filters (DPFs), which need to be regenerated periodically to remove trapped PM. The total impact of DPFs therefore depends not only on their filtering efficiency during normal operation, but also on the emissions during and the frequency of regeneration events. We performed active (parked and driving) and passive regenerations on two heavy-duty diesel vehicles (HDDVs), and report the chemical composition of emissions during these events, as well as the efficiency with which trapped PM is converted to gas-phase products. We also collected activity data from 85 HDDVs to determine how often regeneration occurs during real-world operation. PM emitted during regeneration ranged from 0.2 to 16.3 g, and the average time and distance between real-world active regenerations was 28.0 h and 599 miles. These results indicate that regeneration of real-world DPFs does not substantially offset the reduction of PM by DPFs during normal operation. The broad ranges of regeneration frequency per truck (3-100 h and 23-4078 miles) underscore the challenges in designing engines and associated aftertreatments that reduce emissions for all real-world duty cycles.

  12. Global anthropogenic emissions of particulate matter including black carbon

    Science.gov (United States)

    Klimont, Zbigniew; Kupiainen, Kaarle; Heyes, Chris; Purohit, Pallav; Cofala, Janusz; Rafaj, Peter; Borken-Kleefeld, Jens; Schöpp, Wolfgang

    2017-07-01

    This paper presents a comprehensive assessment of historical (1990-2010) global anthropogenic particulate matter (PM) emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10), as well as primary carbonaceous aerosols including black carbon (BC) and organic carbon (OC). The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping), presented for 25 global regions, and allocated to 0.5° × 0.5° longitude-latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global anthropogenic total, and residential combustion

  13. Global anthropogenic emissions of particulate matter including black carbon

    Directory of Open Access Journals (Sweden)

    Z. Klimont

    2017-07-01

    Full Text Available This paper presents a comprehensive assessment of historical (1990–2010 global anthropogenic particulate matter (PM emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10, as well as primary carbonaceous aerosols including black carbon (BC and organic carbon (OC. The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping, presented for 25 global regions, and allocated to 0.5°  ×  0.5° longitude–latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global

  14. Development of South African vehicle emission factors

    CSIR Research Space (South Africa)

    Forbes, P

    2009-10-01

    Full Text Available for each pollutant, which have been derived from monitoring campaigns in Europe and the USA. In this study, direct exhaust emission monitoring was performed on 58 diesel and 78 petrol passenger vehicles in both idling and accelerated modes. South African...

  15. A study to reduce DPM(Diesel Particulate Matter) emission

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bok Youn; Kang, Chang Hee; Jo, Young Do; Lim, Sang Taek [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    This research commenced in 1994 for the purpose of providing safety and environmental measures of underground mines where the mobile diesel equipment are operating. In this last research year, research on filtering of DPM(diesel particulate matter) has been carried out. Through the research, it was known that water scrubber is only one practical way to reduce DPM emission as of now. There are several kinds of the sophisticated DPM filters, but it is not practical yet to be used in underground equipment due to the many adverse effects of the devices such as tremendous increase of SOx, NOx and back pressure etc. (author). 1 tab., 3 figs.

  16. Filtration of Carbon Particulate Emissions from a Plasma Pyrolysis Assembly

    Science.gov (United States)

    Agui, Juan H.; Green, Robert; Vijayakumar, R.; Berger, Gordon; Greenwood, Zach; Abney, Morgan; Peterson, Elspeth

    2016-01-01

    NASA is investigating plasma pyrolysis as a candidate technology that will enable the recovery of hydrogen from the methane produced by the ISS Sabatier Reactor. The Plasma Pyrolysis Assembly (PPA) is the current prototype of this technology which converts the methane product from the Carbon Dioxide Reduction Assembly (CRA) to acetylene and hydrogen with 90% or greater conversion efficiency. A small amount of solid carbon particulates are generated as a side product and must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on several options for filtering out the carbon particulate emissions from the PPA exit gas stream. The filtration technologies and concepts investigated range from fibrous media to monolithic ceramic and sintered metal media. This paper describes the different developed filter prototypes and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC. In addition, characterization data on the generated carbon particulates, that help to define filter requirements, are also presented.

  17. Particulate matter emissions of different brands of mentholated cigarettes.

    Science.gov (United States)

    Gerharz, Julia; Bendels, Michael H K; Braun, Markus; Klingelhöfer, Doris; Groneberg, David A; Mueller, Ruth

    2018-01-09

    Inhaling particulate matter (PM) in environmental tobacco smoke (ETS) endangers the health of nonsmokers. Menthol, an additive in cigarettes, attenuates respiratory irritation of tobacco smoke. It reduces perceptibility of smoke and therefore passive smokers may inhale ETS unnoticed. To investigate a possible effect of menthol on PM concentrations (PM 10 , PM 2.5 , and PM 1 ), ETS of four mentholated cigarette brands (Elixyr Menthol, Winston Menthol, Reyno Classic, and Pall Mall Menthol Blast) with varying menthol content was analyzed. ETS was generated in a standardized way using an automatic environmental tobacco smoke emitter (AETSE), followed by laser aerosol spectrometry. This analysis shows that the tested cigarette brands, despite having different menthol concentrations, do not show differences with regard to PM emissions, with the exception of Reyno Classic, which shows an increased emission, although the menthol level ranged in the midfield. More than 90% of the emitted particles had a size smaller than or equal to 1 µm. Regardless of the menthol level, the count median diameter (CMD) and the mass median diameter (MMD) were found to be 0.3 µm and 0.5 µm, respectively. These results point out that there is no effect of menthol on PM emission and that other additives might influence the increased PM emission of Reyno Classic. Particulate matter (PM) in ETS endangers the health of nonsmokers and smokers. This study considers the effect of menthol, an additive in cigarettes, on PM emissions. Does menthol increase the amount of PM? Due to the exposure to secondhand smoke nearly 900,000 people die each year worldwide. The aim of the study is to measure the particle concentration (L -1 ), mass concentration (µg m -3 ), and dust mass fractions shown as PM 10 , PM 2.5 , and PM 1 of five different cigarette brands, including four with different menthol concentrations and one menthol-free reference cigarette, in a well-established standardized system.

  18. Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources

    Science.gov (United States)

    Querol, Xavier; Alastuey, Andrés; Rodriguez, Sergio; Plana, Felicià; Mantilla, Enrique; Ruiz, Carmen R.

    Investigations on the monitoring of ambient air levels of atmospheric particulates were developed around a large source of primary anthropogenic particulate emissions: the industrial ceramic area in the province of Castelló (Eastern Spain). Although these primary particulate emissions have a coarse grain-size distribution, the atmospheric transport dominated by the breeze circulation accounts for a grain-size segregation, which results in ambient air particles occurring mainly in the 2.5-10 μm range. The chemical composition of the ceramic particulate emissions is very similar to the crustal end-member but the use of high Al, Ti and Fe as tracer elements as well as a peculiar grain-size distribution in the insoluble major phases allow us to identify the ceramic input in the bulk particulate matter. PM2.5 instead of PM10 monitoring may avoid the interference of crustal particles without a major reduction in the secondary anthropogenic load, with the exception of nitrate. However, a methodology based in PM2.5 measurement alone is not adequate for monitoring the impact of primary particulate emissions (such as ceramic emissions) on air quality, since the major ambient air particles derived from these emissions are mainly in the range of 2.5-10 μm. Consequently, in areas characterised by major secondary particulate emissions, PM2.5 monitoring should detect anthropogenic particulate pollutants without crustal particulate interference, whereas PM10 measurements should be used in areas with major primary anthropogenic particulate emissions.

  19. Modeling vehicle emissions in different types of Chinese cities: Importance of vehicle fleet and local features

    International Nuclear Information System (INIS)

    Huo Hong; Zhang Qiang; He Kebin; Yao Zhiliang; Wang Xintong; Zheng Bo; Streets, David G.; Wang Qidong; Ding Yan

    2011-01-01

    We propose a method to simulate vehicle emissions in Chinese cities of different sizes and development stages. Twenty two cities are examined in this study. The target year is 2007. Among the cities, the vehicle emission factors were remarkably different (the highest is 50-90% higher than the lowest) owing to their distinct local features and vehicle technology levels, and the major contributors to total vehicle emissions were also different. A substantial increase in vehicle emissions is foreseeable unless stronger measures are implemented because the benefit of current policies can be quickly offset by the vehicle growth. Major efforts should be focused on all cities, especially developing cities where the requirements are lenient. This work aims a better understanding of vehicle emissions in all types of Chinese cities. The proposed method could benefit national emission inventory studies in improving accuracy and help in designing national and local policies for vehicle emission control. - Highlights: → We examine vehicle emissions in 22 Chinese cities of different types and locations. → Vehicle emission factors of the cities differ by 50-90% due to distinct local features. → Each vehicle type contributes differently to total emissions among the cities. → A substantial increase in vehicle emissions in most Chinese cities is foreseeable. → City-specific fleet and local features are important in research and policy making. - Vehicle emission characteristics of Chinese cities are remarkably different, and local features need to be taken into account in vehicle emission studies and control strategy.

  20. Effect of Vehicle Characteristics on Unpaved Road Dust Emissions

    National Research Council Canada - National Science Library

    Gillies, J. A; Etyemezian, V; Kuhns, H; Nikolic, D; Gillette, D. A

    2005-01-01

    This paper presents PM10 fugitive dust emission factors for a range of vehicles types and examines the influence of vehicle and wake characteristics on the strength of emissions from an unpaved road...

  1. Potential Energy and Emission Benefits of Vehicle Automation and Connectivity

    Science.gov (United States)

    2017-08-01

    Driving behavior greatly impacts vehicle tailpipe emissions. Connected and automated vehicle (CAV) technologies are designed to smooth driving and relieve traffic congestion and are therefore expected to reduce fuel consumption and tailpipe emissions...

  2. Particulate matter emission from livestock houses: measurement methods, emission levels and abatement systems

    NARCIS (Netherlands)

    Winkel, Albert

    2016-01-01

    Animal houses are extremely dusty environments. Airborne particulate matter (PM) poses a health threat not only to the farmer and the animals, but, as a result of emissions from ventilation systems, also to residents living in livestock farming areas. In relation to this problem, the objectives

  3. Automated Vehicle Regulation: An Energy and Emissions Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Aaron

    2016-05-18

    This presentation provides a summary of the current automated vehicles polices in the United States and how they related to reducing greenhouse gas (GHG) emissions. The presentation then looks at future automated vehicle trends that will increase and reduce GHG emissions and what current policies utilized in other areas of law could be adapted for automated vehicle GHG emissions.

  4. 40 CFR 52.2424 - Motor vehicle emissions budgets.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Motor vehicle emissions budgets. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Virginia § 52.2424 Motor vehicle emissions budgets. (a) Motor vehicle emissions budget for the Hampton Roads maintenance area adjusting the...

  5. 40 CFR 52.244 - Motor vehicle emissions budgets.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Motor vehicle emissions budgets. 52.244... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.244 Motor vehicle emissions budgets. (a) Approval of the motor vehicle emissions budgets for the following ozone rate-of-progress and...

  6. Vehicle emission factors of solid nanoparticles in the laboratory and on the road using Portable Emission Measurement Systems (PEMS

    Directory of Open Access Journals (Sweden)

    Barouch eGiechaskiel

    2015-12-01

    Full Text Available Emission inventories are used to quantify sources and identify trends in the emissions of air pollutants. They use vehicle-specific emission factors that are typically determined in the laboratory, through remote-sensing, vehicle chasing experiments and, more recently, on-board Portable Emission Measurement Systems (PEMS. Although PEMS is widely applied to measure gaseous pollutants, their application to Solid Particle Number (SPN emissions is new. In this paper, we discuss the current status of determining SPN emission factors both on the chassis dynamometer and on-road using PEMS-SPN. First, we determine the influence of the measurement equipment, ambient temperature, driving style and cycle characteristics, and the extra mass of the PEMS equipment on the SPN emissions. Afterward, we present the SPN emissions under type-approval conditions as well as on the road of two heavy-duty diesel vehicles equipped with Diesel Particulate Filter (DPF (one Euro VI, two light-duty diesel vehicles equipped with DPF, one light-duty vehicle equipped with a Port Fuel Injection engine (PFI, and seven Gasoline Direct Injection (GDI passenger cars (two Euro 6. We find that cold-start and strong accelerations tend to substantially increase SPN emissions. The two heavy-duty vehicles showed emissions around 2×10^13 p/km (Euro V truck and 6×10^10 p/km (Euro VI truck, respectively. One of the DPF-equipped light-duty vehicles showed emissions of 8×10^11 p/km, while the other one had one order of magnitude lower emissions. The PFI car had SPN emissions slightly higher than 1×10^12 p/km. The emissions of GDI cars spanned approximately from 8×10^11 p/km to 8×10^12 p/km. For the cars without DPF, the SPN emissions remained within a factor of two of the laboratory results. This factor was on average around 0.8 for the Euro 6 and 1.6 for the Euro 5 GDIs. The DPF equipped vehicles showed a difference of almost one order of magnitude between laboratory and on-road tests

  7. Emissions from light and medium goods vehicles in Denmark

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1996-01-01

    The article analyses atmospheric pollution of light goods vehicles (i.e. freight vehicles lighter than 6 tonnes) and medium goods vehicles (i.e. 6-24 t delivery trucks) in Denmark, and evaluated the scope for emission reductions. Light goods vehicles are very inefficient vehicles, and moreover have...

  8. Tailpipe, resuspended road dust, and brake-wear emission factors from on-road vehicles

    Science.gov (United States)

    Abu-Allaban, Mahmoud; Gillies, John A.; Gertler, Alan W.; Clayton, Russ; Proffitt, David

    Intensive mass and chemical measurements were performed at roadside locations in Reno, Nevada, and Durham/Research Triangle Park), North Carolina to derive tailpipe, resuspended road dust, and brake-wear emission factors from in-use vehicles. Continuous particulate matter (PM) data were utilized to derive total emission factors while integrated PM data were used to attribute the calculated emission factors to different mechanisms using chemical mass balance receptor modeling and scanning electron microscopy techniques. Resuspended road dust and tailpipe emissions were found to be the dominant mechanisms that contribute significantly to the total PM 10 and PM 2.5 emission factors, respectively. Small contributions from brake-wear were observed at locations where strong braking occurs, but no tire-wear was seen at any sampling location. PM 10 emission rates from light-duty spark ignition (LDSI) vehicles ranged from 40 to 780 mg/km, 10 to 70 mg/km, and 0 to 80 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively. PM 10 emission rates from heavy-duty vehicles ranged from 230 to 7800 mg/km, 60 to 570 mg/km, and 0 to 610 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively. PM 2.5 emission rates from LDSI vehicles ranged from 2 to 25 mg/km, 10 to 50 mg/km, and 0 to 5 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively. PM 2.5 emission rates from heavy-duty vehicles ranged from 15 to 300 mg/km, 60 to 480 mg/km, and 0 to 15 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively.

  9. Evaluation of On-Road Vehicle Emission Trends in the United States

    Science.gov (United States)

    Harley, R. A.; Dallmann, T. R.; Kirchstetter, T.

    2010-12-01

    Mobile sources contribute significantly to emissions of nitrogen oxides (NOx), carbon monoxide (CO), fine particulate matter (PM2.5), and black carbon (BC). These emissions lead to a variety of environmental problems including air pollution and climate change. At present, national and state-level mobile source emission inventories are developed using statistical models to predict emissions from large and diverse populations of vehicles. Activity is measured by total vehicle-km traveled, and pollutant emission factors are predicted based on laboratory testing of individual vehicles. Despite efforts to improve mobile source emission inventories, they continue to have large associated uncertainties. Alternate methods, such as the fuel-based approach used here, are needed to evaluate estimates of mobile source emissions and to help reduce uncertainties. In this study we quantify U.S. national emissions of NOx, CO, PM2.5, and BC from on-road diesel and gasoline vehicles for the years 1990-2010, including effects of a weakened national economy on fuel sales and vehicle travel from 2008-10. Pollutant emissions are estimated by multiplying total amounts of fuel consumed with emission factors expressed per unit of fuel burned. Fuel consumption is used as a measure of vehicle activity, and is based on records of taxable fuel sales. Pollutant emission factors are derived from roadside and tunnel studies, remote sensing measurements, and individual vehicle exhaust plume capture experiments. Emission factors are updated with new results from a summer 2010 field study conducted at the Caldecott tunnel in the San Francisco Bay Area.

  10. Particulate emissions from a mid-latitude prescribed chaparral fire

    Science.gov (United States)

    Cofer, Wesley R., III; Levine, Joel S.; Sebacher, Daniel I.; Winstead, Edward L.; Riggin, Philip J.; Brass, James A.; Ambrosia, Vincent G.

    1988-01-01

    Particulate emission from a 400-acre prescribed chaparral fire in the San Dimas Experimental Forest was investigated by collecting smoke aerosol on Teflon and glass-fiber filters from a helicopter, and using SEM and EDAX to study the features of the particles. Aerosol particles ranged in size from about 0.1 to 100 microns, with carbon, oxygen, magnesium, aluminum, silicon, calcium, and iron as the primary elements. The results of ion chromatographic analysis of aerosol-particle extracts (in water-methanol) revealed the presence of significant levels of NO2(-), NO3(-), SO4(2-), Cl(-), PO4(3-), C2O4(2-), Na(+), NH4(+), and K(+). The soluble ionic portion of the aerosol was estimated to be about 2 percent by weight.

  11. Trends in Aggregate Vehicle Emissions: Do We Need To Emissions Test?

    OpenAIRE

    Matthew Kahn

    1995-01-01

    Vehicle emissions are falling. As the oldest vehicles in the fleet are scrapped and are replaced by cleaner vehicles, aggregate emissions decline. Given this trend, must costly used car regulation continue? The Clean Air Act of 1990 requires more stringent used car testing without considering the counter-factual of how aggregate emissions would evolve in the absence of more regulation. This paper use data on vehicle scrappage rates, vehicle emissions by model year, and county air quality leve...

  12. Modeling vehicle emissions in different types of Chinese cities: importance of vehicle fleet and local features.

    Science.gov (United States)

    Huo, Hong; Zhang, Qiang; He, Kebin; Yao, Zhiliang; Wang, Xintong; Zheng, Bo; Streets, David G; Wang, Qidong; Ding, Yan

    2011-10-01

    We propose a method to simulate vehicle emissions in Chinese cities of different sizes and development stages. Twenty two cities are examined in this study. The target year is 2007. Among the cities, the vehicle emission factors were remarkably different (the highest is 50-90% higher than the lowest) owing to their distinct local features and vehicle technology levels, and the major contributors to total vehicle emissions were also different. A substantial increase in vehicle emissions is foreseeable unless stronger measures are implemented because the benefit of current policies can be quickly offset by the vehicle growth. Major efforts should be focused on all cities, especially developing cities where the requirements are lenient. This work aims a better understanding of vehicle emissions in all types of Chinese cities. The proposed method could benefit national emission inventory studies in improving accuracy and help in designing national and local policies for vehicle emission control. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Toxicity and health effects of vehicle emissions in Shanghai

    Science.gov (United States)

    Ye, Shun-Hua; Zhou, Wei; Song, Jian; Peng, Bao-Cheng; Yuan, Dong; Lu, Yuan-Ming; Qi, Ping-Ping

    In China, the number of vehicles is increasing rapidly with the continuous development of economy, and vehicle emission pollution in major cities is more serious than ever. In this article, we summarized the results of a series of short-term assays, animal experiments and epidemiology investigations on the genotoxicity, immunotoxicity, respiratory toxicity and health effects of vehicle emissions in Shanghai, including gasoline exhausts (gas condensate and particles), diesel exhaust particles (DEP) and scooter exhaust particles (SEP). The results showed that: (1) Both gases and particulate phases of the exhausts of different kinds of vehicles showed strong mutagenicity in Ames test (TA98 and TA100 strains), rat hepatocyte unscheduled DNA synthesis (UDS) assay, and mouse micronucleus assay, and vehicle emissions could induce the transformation of Syrian hamster embryo (SHE) cells. DEP and SEP could induce the transformation of human diploid cell strain (KMB-13) cells, immunohistochemistry assay showed that c-myc and p21 proteins were highly expressed in the transformed cells. DEP and SEP could also inhibit the gap junctional intercellular communication (GJIC) of BALB/C3T3 cells (2) Vehicle emissions could decrease the number of macrophages in the lung (bronchial alveolar lavage fluid) (BALF) of male SD rats. Vehicle emissions could also increase the proportion of polymorphonuclear leukocytes (PMN), the content of cetyneuraminic acid (NA), the activity of lactate dehydrogenase (LDH), alkali phosphate (AKP), acid phosphate (ACP) in the lung BALF of the animals. (3) In epidemiology investigation, the proportion of those who have respiratory symptoms and chronic obstructive pulmonary diseases (COPD) in the workers who were exposed to DEP ( n=806) were much higher than those of the controls ( n=413). The OR (odd ratio) values of angina, nasal obstruction, phlegm, short of breath and COPD were 2.27, 3.08, 3.00, 3.19 and 2.32, respectively, and the proportion of those who

  14. Toxicity and health effects of vehicle emissions in Shanghai

    Energy Technology Data Exchange (ETDEWEB)

    Shunhua Ye; Wei Zhou; Jian Song; Baocheng Peng; Dong Yuan; Yuanming Lu; Pingping Qi [Shanghai Medical University (China). Dept. of Environmental Health

    2000-07-01

    In China, the number of vehicles is increasing rapidly with the continuous development of economy, and vehicle emission pollution in major cities is more serious than ever. In this article, we summarized the results of a series of short-term assays, animal experiments and epidemiology investigations on the genotoxicity, immunotoxicity, respiratory toxicity and health effects of vehicle emissions in Shanghai, including gasoline exhausts (gas condensate and particles), diesel exhaust particles (DEP) and scooter exhaust particles (SEP). The results showed that: (1) Both gases and particulate phases of the exhausts of different kinds of vehicles showed strong mutagenicity in Ames test (TA98 and TA100 strains), rat hepatocyte unscheduled DNA synthesis (UDS) assay, and mouse micronucleus assay, and vehicle emissions could induce the transformation of Syrian hamster embryo (SHE) cells. DEP and SEP could induce the transformation of human diploid cell strain (KMB-13) cells, immunohistochemistry assay showed that c-myc and p21 proteins were highly expressed in the transformed cells. DEP and SEP could also inhibit the gap junctional intercellular communication (GJIC) of BALB/C3T3 cells (2) Vehicle emissions could decrease the number of macrophages in the lung (bronchial alveolar lavage fluid) (BALF) of male SD rats. Vehicle emissions could also increase the proportion of polymorphonuclear leukocytes (PMN), the content of cetyneuraminic acid (NA), the activity of lactate dehydrogenase (LDH), alkali phosphate (AKP), acid phosphate (ACP) in the lung BALF of the animals. (3) In epidemiology investigation, the proportion of those who have respiratory symptoms and chronic obstructive pulmonary diseases (COPD) in the workers who were exposed to DEP (n = 806) were much higher than those of the controls (n = 413). The OR (odd ratio) values of angina, nasal obstruction, phlegm, short of breath and COPD were 2.27, 3.08, 3.00, 3.19 and 2.32, respectively, and the proportion of those who

  15. Real-time black carbon emission factor measurements from light duty vehicles.

    Science.gov (United States)

    Forestieri, Sara D; Collier, Sonya; Kuwayama, Toshihiro; Zhang, Qi; Kleeman, Michael J; Cappa, Christopher D

    2013-11-19

    Eight light-duty gasoline low emission vehicles (LEV I) were tested on a Chassis dynamometer using the California Unified Cycle (UC) at the Haagen-Smit vehicle test facility at the California Air Resources Board in El Monte, CA during September 2011. The UC includes a cold start phase followed by a hot stabilized running phase. In addition, a light-duty gasoline LEV vehicle and ultralow emission vehicle (ULEV), and a light-duty diesel passenger vehicle and gasoline direct injection (GDI) vehicle were tested on a constant velocity driving cycle. A variety of instruments with response times ≥0.1 Hz were used to characterize how the emissions of the major particulate matter components varied for the LEVs during a typical driving cycle. This study focuses primarily on emissions of black carbon (BC). These measurements allowed for the determination of BC emission factors throughout the driving cycle, providing insights into the temporal variability of BC emission factors during different phases of a typical driving cycle.

  16. Unregulated greenhouse gas and ammonia emissions from current technology heavy-duty vehicles.

    Science.gov (United States)

    Thiruvengadam, Arvind; Besch, Marc; Carder, Daniel; Oshinuga, Adewale; Pasek, Randall; Hogo, Henry; Gautam, Mridul

    2016-11-01

    The study presents the measurement of carbonyl, BTEX (benzene, toluene, ethyl benzene, and xylene), ammonia, elemental/organic carbon (EC/OC), and greenhouse gas emissions from modern heavy-duty diesel and natural gas vehicles. Vehicles from different vocations that included goods movement, refuse trucks, and transit buses were tested on driving cycles representative of their duty cycle. The natural gas vehicle technologies included the stoichiometric engine platform equipped with a three-way catalyst and a diesel-like dual-fuel high-pressure direct-injection technology equipped with a diesel particulate filter (DPF) and a selective catalytic reduction (SCR). The diesel vehicles were equipped with a DPF and SCR. Results of the study show that the BTEX emissions were below detection limits for both diesel and natural gas vehicles, while carbonyl emissions were observed during cold start and low-temperature operations of the natural gas vehicles. Ammonia emissions of about 1 g/mile were observed from the stoichiometric natural gas vehicles equipped with TWC over all the driving cycles. The tailpipe GWP of the stoichiometric natural gas goods movement application was 7% lower than DPF and SCR equipped diesel. In the case of a refuse truck application the stoichiometric natural gas engine exhibited 22% lower GWP than a diesel vehicle. Tailpipe methane emissions contribute to less than 6% of the total GHG emissions. Modern heavy-duty diesel and natural gas engines are equipped with multiple after-treatment systems and complex control strategies aimed at meeting both the performance standards for the end user and meeting stringent U.S. Environmental Protection Agency (EPA) emissions regulation. Compared to older technology diesel and natural gas engines, modern engines and after-treatment technology have reduced unregulated emissions to levels close to detection limits. However, brief periods of inefficiencies related to low exhaust thermal energy have been shown to

  17. Particulate emission factor: A case study of a palm oil mill boiler

    International Nuclear Information System (INIS)

    Chong, W.C.; Rashid, M.; Ramli, M.; Zainura, Z.N.; NorRuwaida, J.

    2010-01-01

    A study to investigate the particulate emission from a boiler of a palm oil mill plant equipped with a multi-cyclones particulate arrest or was performed and reported in this paper. The particulate emission concentration was measured at the outlet of a 8 mt/ hr capacity water-tube typed boiler of a palm oil mill plant processing 27mt/ hr of fresh fruit bunch (FFB). The particulate sample was collected iso-kinetically using the USEPA method 5 sampling train through a sampling port made at the duct of the exiting flue gas between the boiler and a multi-cyclones unit. Results showed that the particulate emission rates exiting the boiler varied from 0.09 to 0.60 g/s with an average of 0.29 + 0.18 g/ s. While the average particulate emission concentration exiting the boiler was 12.1 + 7.36 g/ Nm 3 (corrected to 7 % oxygen concentration), ranging from 3.62 to 25.3 g/ Nm 3 (at 7 % O 2 ) of the flue gas during the measurement. Based on the 27 mt/ hr FFB processed and the capacity of the boiler of 8mt steam/ hr, the calculated particulate emission factor was 39 g particulate/ mt FFB processed or 131 g particulate/ mt boiler capacity, respectively. In addition, based on the finding and in order to comply with the emission limits of 0.4 g/ Nm 3 , the collection efficiency of any given particulate emission pollution control system to consider for the mill will be from 87 to 98 %, which is not easily achievable with the existing multi-cyclones unit. A considerable amount of efforts are still needed pertaining to the particulate emission control problem in the industry. (author)

  18. Emission Sectoral Contributions of Foreign Emissions to Particulate Matter Concentrations over South Korea

    Science.gov (United States)

    Kim, E.; Kim, S.; Kim, H. C.; Kim, B. U.; Cho, J. H.; Woo, J. H.

    2017-12-01

    In this study, we investigated the contributions of major emission source categories located upwind of South Korea to Particulate Matter (PM) in South Korea. In general, air quality in South Korea is affected by anthropogenic air pollutants emitted from foreign countries including China. Some studies reported that foreign emissions contributed 50 % of annual surface PM total mass concentrations in the Seoul Metropolitan Area, South Korea in 2014. Previous studies examined PM contributions of foreign emissions from all sectors considering meteorological variations. However, little studies conducted to assess contributions of specific foreign source categories. Therefore, we attempted to estimate sectoral contributions of foreign emissions from China to South Korea PM using our air quality forecasting system. We used Model Inter-Comparison Study in Asia 2010 for foreign emissions and Clean Air Policy Support System 2010 emission inventories for domestic emissions. To quantify contributions of major emission sectors to South Korea PM, we applied the Community Multi-scale Air Quality system with brute force method by perturbing emissions from industrial, residential, fossil-fuel power plants, transportation, and agriculture sectors in China. We noted that industrial sector was pre-dominant over the region except during cold season for primary PMs when residential emissions drastically increase due to heating demand. This study will benefit ensemble air quality forecasting and refined control strategy design by providing quantitative assessment on seasonal contributions of foreign emissions from major source categories.

  19. Characterising vehicle emissions from the burning of biodiesel made from vegetable oil

    International Nuclear Information System (INIS)

    Zou, L.; Atkinson, S.

    2003-01-01

    Biodiesel manufactured from canola oil was blended with diesel and used as fuel in two diesel vehicles. This study aimed to test the emissions of diesel engines using blends of 100%, 80%, 60%, 40%, 20% biodiesel and 100% petroleum diesel, and characterise the particulate matter and gaseous emissions, with particular attention to levels of polycyclic aromatic hydrocarbons (PAHs) which are harmful to humans. A real time dust monitor was also used to monitor the continuous dust emissions during the entire testing cycle. The ECE(Euro 2) drive cycle was used for all emission tests. It was found that the particle concentration was up to 33% less when the engine burnt 100% biodiesel, compared to 100% diesel. Particle emission reduced with increased percentages of biodiesel in the fuel blends. Reductions of NOx, HC and CO were limited to about 10% when biodiesel was burned. Levels of CO, emissions from the use of biodiesel and diesel were similar. Eighteen EPA priority PAHs were targeted, with only 6 species detected in the gaseous phase from the samples. 9 PAHs were detected in particulate phases at much lower levels than gaseous PAHs. Some marked reductions were observed for less toxic gaseous PAHs such as naphthalene when burning 100% biodiesel, but the particulate PAH emissions, which have more implications to adverse health effects, were virtually unchanged and did not show a statistically significant reduction. These findings are useful to gain an understanding of the emissions and environmental impacts of biodiesel (Author)

  20. A constant-volume rapid exhaust dilution system for motor vehicle particulate matter number and mass measurements.

    Science.gov (United States)

    Maricq, M Matti; Chase, Richard E; Xu, Ning; Podsiadlik, Diane H

    2003-10-01

    An improved version of the constant volume sampling (CVS) methodology that overcomes a number of obstacles that exist with the current CVS dilution tunnel system used in most diesel and gasoline vehicle emissions test facilities is presented. The key feature of the new sampling system is the introduction of dilution air immediately at the vehicle tailpipe. In the present implementation, this is done concentrically through a cylindrical air filter. Elimination of the transfer hose conventionally used to connect the tailpipe to the dilution tunnel significantly reduces the hydrocarbon and particulate matter (PM) storage release artifacts that can lead to wildly incorrect particle number counts and to erroneous filter-collected PM mass. It provides accurate representations of particle size distributions for diesel vehicles by avoiding the particle coagulation that occurs in the transfer hose. Furthermore, it removes the variable delay time that otherwise exists between the time that emissions exit the tailpipe and when they are detected in the dilution tunnel. The performance of the improved CVS system is examined with respect to diesel, gasoline, and compressed natural gas vehicles.

  1. 40 CFR 86.1828-01 - Emission data vehicle selection.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Emission data vehicle selection. 86... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light...

  2. 40 CFR 86.1828-10 - Emission data vehicle selection.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Emission data vehicle selection. 86... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light...

  3. PM₂.₅ emissions from light-duty gasoline vehicles in Beijing, China.

    Science.gov (United States)

    Shen, Xianbao; Yao, Zhiliang; Huo, Hong; He, Kebin; Zhang, Yingzhi; Liu, Huan; Ye, Yu

    2014-07-15

    As stricter standards for diesel vehicles are implemented in China, and the use of diesel trucks is forbidden in urban areas, determining the contribution of light-duty gasoline vehicles (LDGVs) to on-road PM2.5 emissions in cities is important. Additionally, in terms of particle number and size, particulates emitted from LDGVs have a greater health impact than particulates emitted from diesel vehicles. In this work, we measured PM2.5 emissions from 20 LDGVs in Beijing, using an improved combined on-board emission measurement system. We compared these measurements with those reported in previous studies, and estimated the contribution of LDGVs to on-road PM2.5 emissions in Beijing. The results show that the PM2.5 emission factors for LDGVs, complying with European Emission Standards Euro-0 through Euro-4 were: 117.4 ± 142, 24.1 ± 20.4, 4.85 ± 7.86, 0.99 ± 1.32, 0.17 ± 0.15 mg/km, respectively. Our results show a significant decline in emissions with improving vehicle technology. However, this trend is not reflected in recent emission inventory studies. The daytime contributions of LDGVs to PM2.5 emissions on highways, arterials, residential roads, and within urban areas of Beijing were 44%, 62%, 57%, and 57%, respectively. The contribution of LDGVs to PM2.5 emissions varied both for different road types and for different times. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets

    Science.gov (United States)

    Anenberg, Susan C.; Miller, Joshua; Minjares, Ray; Du, Li; Henze, Daven K.; Lacey, Forrest; Malley, Christopher S.; Emberson, Lisa; Franco, Vicente; Klimont, Zbigniew; Heyes, Chris

    2017-05-01

    Vehicle emissions contribute to fine particulate matter (PM2.5) and tropospheric ozone air pollution, affecting human health, crop yields and climate worldwide. On-road diesel vehicles produce approximately 20 per cent of global anthropogenic emissions of nitrogen oxides (NOx), which are key PM2.5 and ozone precursors. Regulated NOx emission limits in leading markets have been progressively tightened, but current diesel vehicles emit far more NOx under real-world operating conditions than during laboratory certification testing. Here we show that across 11 markets, representing approximately 80 per cent of global diesel vehicle sales, nearly one-third of on-road heavy-duty diesel vehicle emissions and over half of on-road light-duty diesel vehicle emissions are in excess of certification limits. These excess emissions (totalling 4.6 million tons) are associated with about 38,000 PM2.5- and ozone-related premature deaths globally in 2015, including about 10 per cent of all ozone-related premature deaths in the 28 European Union member states. Heavy-duty vehicles are the dominant contributor to excess diesel NOx emissions and associated health impacts in almost all regions. Adopting and enforcing next-generation standards (more stringent than Euro 6/VI) could nearly eliminate real-world diesel-related NOx emissions in these markets, avoiding approximately 174,000 global PM2.5- and ozone-related premature deaths in 2040. Most of these benefits can be achieved by implementing Euro VI standards where they have not yet been adopted for heavy-duty vehicles.

  5. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets.

    Science.gov (United States)

    Anenberg, Susan C; Miller, Joshua; Minjares, Ray; Du, Li; Henze, Daven K; Lacey, Forrest; Malley, Christopher S; Emberson, Lisa; Franco, Vicente; Klimont, Zbigniew; Heyes, Chris

    2017-05-25

    Vehicle emissions contribute to fine particulate matter (PM 2.5 ) and tropospheric ozone air pollution, affecting human health, crop yields and climate worldwide. On-road diesel vehicles produce approximately 20 per cent of global anthropogenic emissions of nitrogen oxides (NO x ), which are key PM 2.5 and ozone precursors. Regulated NO x emission limits in leading markets have been progressively tightened, but current diesel vehicles emit far more NO x under real-world operating conditions than during laboratory certification testing. Here we show that across 11 markets, representing approximately 80 per cent of global diesel vehicle sales, nearly one-third of on-road heavy-duty diesel vehicle emissions and over half of on-road light-duty diesel vehicle emissions are in excess of certification limits. These excess emissions (totalling 4.6 million tons) are associated with about 38,000 PM 2.5 - and ozone-related premature deaths globally in 2015, including about 10 per cent of all ozone-related premature deaths in the 28 European Union member states. Heavy-duty vehicles are the dominant contributor to excess diesel NO x emissions and associated health impacts in almost all regions. Adopting and enforcing next-generation standards (more stringent than Euro 6/VI) could nearly eliminate real-world diesel-related NO x emissions in these markets, avoiding approximately 174,000 global PM 2.5 - and ozone-related premature deaths in 2040. Most of these benefits can be achieved by implementing Euro VI standards where they have not yet been adopted for heavy-duty vehicles.

  6. [Investigation of emission characteristics for light duty vehicles with a portable emission measurement system].

    Science.gov (United States)

    Wang, Hai-Kun; Fu, Li-Xin; Zhou, Yu; Lin, Xin; Chen, Ai-Zhong; Ge, Wei-hu; Du, Xuan

    2008-10-01

    Emission from 7 typical light-duty vehicles under actual driving conditions was monitored using a portable emission measurement system to gather data for characterization of the real world vehicle emission in Shenzhen, including the effects of driving modes on vehicle emission, comparison of fuel consumption based emission factors (g x L(-1) with mileage based emission factors (g x km(-1)), and the average emission factors of the monitored vehicles. The acceleration and deceleration modes accounted for 66.7% of total travel time, 80.3% of traveling distance and 74.6%-79.2% of vehicle emission; the acceleration mode contributed more than other driving modes. The fuel based emission factors were less dependent on the driving speed; they may be utilized in building macro-scale vehicle emission inventory with smaller sensitivity to the vehicle driving conditions. The effect of vehicle technology on vehicle emission was significant; the emission factors of CO, HC and NO(x) of carbureted vehicles were 19.9-20.5, 5.6-26.1 and 1.8-2.0 times the more advanced vehicles of Euro II, respectively. Using the ECE + EUDC driving cycle would not produce the desired real-world emission rates of light duty vehicles in a typical Chinese city.

  7. Deriving fuel-based emission factor thresholds to interpret heavy-duty vehicle roadside plume measurements.

    Science.gov (United States)

    Quiros, David C; Smith, Jeremy D; Ham, Walter A; Robertson, William H; Huai, Tao; Ayala, Alberto; Hu, Shaohua

    2018-04-13

    Remote sensing devices have been used for decades to measure gaseous emissions from individual vehicles at the roadside. Systems have also been developed that entrain diluted exhaust and can also measure particulate matter (PM) emissions. In 2015, the California Air Resources Board (CARB) reported that 8% of in-field diesel particulate filters (DPF) on heavy-duty (HD) vehicles were malfunctioning and emitted about 70% of total diesel PM emissions from the DPF-equipped fleet. A new high-emitter problem in the heavy-duty vehicle fleet had emerged. Roadside exhaust plume measurements reflect a snapshot of real-world operation, typically lasting several seconds. In order to relate roadside plume measurements to laboratory emission tests, we analyzed carbon dioxide (CO 2 ), oxides of nitrogen (NO X ), and PM emissions collected from four HD vehicles during several driving cycles on a chassis dynamometer. We examined the fuel-based emission factors corresponding to possible exceedances of emission standards as a function of vehicle power. Our analysis suggests that a typical HD vehicle will exceed the model year (MY) 2010 emission standards (of 0.2 g NO X /bhp-hr and 0.01 g PM/bhp-hr) by three times when fuel-based emission factors are 9.3 g NO X /kg fuel and 0.11 g PM/kg using the roadside plume measurement approach. Reported limits correspond to 99% confidence levels, which were calculated using the detection uncertainty of emissions analyzers, accuracy of vehicle power calculations, and actual emissions variability of fixed operational parameters. The PM threshold was determined for acceleration events between 0.47 and 1.4 mph/sec only, and the NO X threshold was derived from measurements where aftertreatment temperature was above 200°C. Anticipating a growing interest in real-world driving emissions, widespread implementation of roadside exhaust plume measurements as a compliment to in-use vehicle programs may benefit from expanding this analysis to a larger

  8. Black carbon concentrations in California vehicles and estimation of in-vehicle diesel exhaust particulate matter exposures

    Science.gov (United States)

    Fruin, Scott A.; Winer, Arthur M.; Rodes, Charles E.

    This research assessed in-vehicle exposures to black carbon (BC) as an indicator of diesel particulate matter (DPM) exposures. Approximately 50 h of real-time Aethalometer BC measurements were made inside vehicles driven on freeway and arterial loops in Los Angeles and Sacramento. Video tapes of the driver's view were transcribed to record the traffic conditions, vehicles followed, and vehicle occupant observations, and these results were tested for their associations with BC concentration. In-vehicle BC concentrations were highest when directly following diesel-powered vehicles, particularly those with low exhaust pipe locations. The lowest BC concentrations were observed while following gasoline-powered passenger cars, on average no different than not following any vehicle. Because diesel vehicles were over-sampled in the field study, results were not representative of real-world driving. To calculate representative exposures, in-vehicle BC concentrations were grouped by the type of vehicle followed, for each road type and congestion level. These groupings were then re-sampled stochastically, in proportion to the fraction of statewide vehicle miles traveled (VMT) under each of those conditions. The approximately 6% of time spent following diesel vehicles led to 23% of the in-vehicle BC exposure, while the remaining exposure was due to elevated roadway BC concentrations. In-vehicle BC exposures averaged 6 μg m -3 in Los Angeles and the Bay Area, the regions with the highest congestion and the majority of the state's VMT. The statewide average in-vehicle BC exposure was 4 μg m -3, corresponding to DPM concentrations of 7-23 μg m -3, depending on the Aethalometer response to elemental carbon (EC) and the EC fraction of the DPM. In-vehicle contributions to overall DPM exposures ranged from approximately 30% to 55% of total DPM exposure on a statewide population basis. Thus, although time spent in vehicles was only 1.5 h day -1 on average, vehicles may be the most

  9. Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles

    OpenAIRE

    Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

    1993-01-01

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquified petroleum gas, compressed natural gas, and electricity. Vehicle emission es...

  10. Chassis dynamometer study of emissions from 21 in-use heavy-duty diesel vehicles

    International Nuclear Information System (INIS)

    Yanowitz, J.; Graboski, M.S.; Ryan, L.B.A.; Alleman, T.L.; McCormick, R.L.

    1999-01-01

    Regulated emissions from 21 in-use heavy-duty diesel vehicles were measured on a heavy-duty chassis dynamometer via three driving cycles using a low-sulfur diesel fuel. Emissions of particulate matter (PM), nitrogen oxides (NO x ), carbon monoxide (CO), total hydrocarbon (THC), and PM sulfate fraction were measured. For hot start tests, emissions ranged from 0.30 to 7.43 g/mi (mean 1.96) for PM; 4.15--54.0 g/mi (mean 23.3) for NO x ; 2.09--86.2 g/mi (mean 19.5) for CO; and 0.25--8.25 g/mi (mean 1.70) for THC. When emissions are converted to a g/gal basis, the effect of driving cycle is eliminated for NO x and largely eliminated for PM. Sulfate comprised less than 1% of the emitted PM for all vehicles and test cycles. A strong correlation is observed between emissions of CO and PM. Cold starting at 77 F produced an 11% increase in PM emissions. Multivariate regression analyses indicate that in-use PM emissions have decreased at a slower rate than anticipated based on the stricter engine certification test standards put into effect since 1985. NO x emissions do not decrease with model year for the vehicles tested here. Smoke opacity measurements are not well correlated with mass emissions of regulated pollutants

  11. Battery condenser system particulate emission factors for cotton gins: Particle size distribution characteristics

    Science.gov (United States)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, the Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or e...

  12. Fine particulate matter (PM) and organic speciation of fireplace emissions

    International Nuclear Information System (INIS)

    Purvis, C.R.; McCrillis, R.C.; Kariher, P.H.

    2000-01-01

    This paper presents a summary of fireplace particle size and organic speciation data gathered to date in an ongoing project. Tests are being conducted in a residential wood combustion (RWC) laboratory on three factory-built fireplaces. RWC wood smoke particles <10 microm (PM10) consist primarily of a mixture of organic compounds that have condensed into droplets; therefore, the size distribution and total mass are influenced by temperature of the sample during its collection. During the series 1 tests (15 tests), the dilution tunnel used to cool and dilute the stack gases gave an average mixed gas temperature of 47.3 C and an average dilution ration of 4.3. Averages for the PM2.5 (particles <2.5 microm) and PM10 fractions were 74 and 84%, respectively. For the series 2 tests, the dilution tunnel was modified, reducing the average mixed gas temperatures to 33.8 C and increasing the average dilution ratio to 11.0 in tests completed to date. PM2.5 and PM10 fractions were 83 and 91%, respectively. Since typical winter-time mixed gas temperatures would usually be less than 10 C, these size fraction results probably represent the lower bound; the PM10 and PM2.5 size fraction results might be higher at typical winter temperatures. The particles collected on the first stage were light gray and appeared to include inorganic ash. Particles collected on the remainder of the stages were black and appeared to be condensed organics because there was noticeable lateral bleeding of the collected materials into the filter substrate. Total particulate emission rates ranged from 10.3 to 58.4 g/h; corresponding emission factors ranged from 3.3 to 14.9 g/kg of dry wood burned. A wide range of Environmental Protection Agency (EPA) Method 8270 semivolatile organic compounds were found in the emissions; of the 17 target compounds quantified, major constituents are phenol, 2-methylphenol, 4-methylphenol, 2,4-dimethylphenol, and naphthalene

  13. 40 CFR 86.1343-88 - Calculations; particulate exhaust emissions.

    Science.gov (United States)

    2010-07-01

    ... determined from the following equation: er31au93.070 (1) Pmass = Mass of particulate emitted per test phase... (cubic meters) per revolution. This volume is dependent on the pressure differential across the positive... be applied before Vsf is determined. (4) Pf = Mass of particulate on the sample filter (or sample and...

  14. Secondary organic aerosol formation from road vehicle emissions

    Science.gov (United States)

    Pieber, Simone M.; Platt, Stephen M.; El Haddad, Imad; Zardini, Alessandro A.; Suarez-Bertoa, Ricardo; Slowik, Jay G.; Huang, Ru-Jin; Hellebust, Stig; Temime-Roussel, Brice; Marchand, Nicolas; Drinovec, Luca; Mocnik, Grisa; Baltensperger, Urs; Astorga, Covadogna; Prévôt, André S. H.

    2014-05-01

    Organic aerosol particles (OA) are a major fraction of the submicron particulate matter. OA consists of directly emitted primary (POA) and secondary OA (SOA). SOA is formed in-situ in the atmosphere via the reaction of volatile organic precursors. The partitioning of SOA species depends not only on the exposure to oxidants, but for instance also on temperature, relative humidity (RH), and the absorptive mass chemical composition (presence of inorganics) and concentration. Vehicle exhaust is a known source of POA and likely contributes to SOA formation in urban areas [1;2]. This has recently been estimated by (i) analyzing ambient data from urban areas combined with fuel consumption data [3], (ii) by examining the chemical composition of raw fuels [4], or (iii) smog chamber studies [5, 6]. Contradictory and thus somewhat controversial results in the relative quantity of SOA from diesel vs. gasoline vehicle exhaust were observed. In order to elucidate the impact of variable ambient conditions on the potential SOA formation of vehicle exhaust, and its relation to the emitted gas phase species, we studied SOA formed from the exhaust of passenger cars and trucks as a function of fuel and engine type (gasoline, diesel) at different temperatures (T 22 vs. -7oC) and RH (40 vs. 90%), as well as with different levels of inorganic salt concentrations. The exhaust was sampled at the tailpipe during regulatory driving cycles on chassis dynamometers, diluted (200 - 400x) and introduced into the PSI mobile smog chamber [6], where the emissions were subjected to simulated atmospheric ageing. Particle phase instruments (HR-ToF-AMS, aethalometers, CPC, SMPS) and gas phase instruments (PTR-TOF-MS, CO, CO2, CH4, THC, NH3 and other gases) were used online during the experiments. We found that gasoline emissions, because of cold starts, were generally larger than diesel, especially during cold temperatures driving cycles. Gasoline vehicles also showed the highest SOA formation

  15. Ambient particulate air pollution from vehicles promotes lipid peroxidation and inflammatory responses in rat lung.

    Science.gov (United States)

    Pereira, C E L; Heck, T G; Saldiva, P H N; Rhoden, C R

    2007-10-01

    Oxidative stress plays a major role in the pathogenesis of particle-dependent lung injury. Ambient particle levels from vehicles have not been previously shown to cause oxidative stress to the lungs. The present study was conducted to a) determine whether short-term exposure to ambient levels of particulate air pollution from vehicles elicits inflammatory responses and lipid peroxidation in rat lungs, and b) determine if intermittent short-term exposures (every 4 days) induce some degree of tolerance. Three-month-old male Wistar rats were exposed to ambient particulate matter (PM) from vehicles (N = 30) for 6 or 20 continuous hours, or for intermittent (5 h) periods during 20 h for 4 consecutive days or to filtered air (PM polluted air for 20 h (P-20) showed a significant increase in the total number of leukocytes in bronchoalveolar lavage compared to control (C-20: 2.61 x 105 +/- 0.51;P-20: 5.01 x 105 +/- 0.81; P air pollution did not cause a significant increase in lung water content. These data suggest oxidative stress as one of the mechanisms responsible for the acute adverse respiratory effects of particles, and suggest that short-term inhalation of ambient particulate air pollution from street with high automobile traffic represents a biological hazard.

  16. AMMONIA EMISSIONS FROM THE EPA'S LIGHT DUTY TEST VEHICLE

    Science.gov (United States)

    The paper discusses measurements of ammonia (NH3) emissions from EPA's light duty test vehicle while operated on a dynamometer. The vehicle's (1993 Chevrolet equipped with a three-way catalyst) emissions were measured for three transient (urban driving, highway fuel economy, and ...

  17. Characterizing and Quantifying Local and Regional Particulate Matter Emissions from Department of Defense Installations

    National Research Council Canada - National Science Library

    Gillies, J. A; Arnott, W. P; Etyemezian, V; Kuhns, H; Moosmueller, H; Schwemmer, Geary; Gillette, D. A; Nickling, W. G; Wilkerson, T; Varma, R

    2005-01-01

    ...) Develop a dust emission factor database for military vehicles traveling on unpaved surfaces that reflects the influence of the surface over which the travel takes place and the speed of the vehicles; 3...

  18. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory

    Science.gov (United States)

    Giechaskiel, Barouch

    2018-01-01

    Particulate matter (PM), and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN) emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG), or Liquefied Natural Gas (LNG). Urban, rural and motorway (highway) emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS). Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed. PMID:29425174

  19. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory

    Directory of Open Access Journals (Sweden)

    Barouch Giechaskiel

    2018-02-01

    Full Text Available Particulate matter (PM, and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG, or Liquefied Natural Gas (LNG. Urban, rural and motorway (highway emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS. Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed.

  20. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory.

    Science.gov (United States)

    Giechaskiel, Barouch

    2018-02-09

    Particulate matter (PM), and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN) emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG), or Liquefied Natural Gas (LNG). Urban, rural and motorway (highway) emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS). Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed.

  1. Atmospheric oxidative chemistry of organic particulate emissions from fuel combustion.

    Science.gov (United States)

    2011-03-25

    "Construction and characterization of the University of Vermont Environmental Chamber (UVMEC) : were completed in this last phase of the project. The primary function of the UVMEC is to enable : tropospheric particulate formation and aging studies to...

  2. Criteria and air-toxic emissions from in-use automobiles in the National Low-Emission Vehicle program.

    Science.gov (United States)

    Baldauf, Rich W; Gabele, Pete; Crews, William; Snow, Richard; Cook, J Rich

    2005-09-01

    The U.S. Environmental Protection Agency (EPA) implemented a program to identify tailpipe emissions of criteria and air-toxic contaminants from in-use, light-duty low-emission vehicles (LEVs). EPA recruited 25 LEVs in 2002 and measured emissions on a chassis dynamometer using the cold-start urban dynamometer driving schedule of the Federal Test Procedure. The emissions measured included regulated pollutants, particulate matter, speciated hydrocarbon compounds, and carbonyl compounds. The results provided a comparison of emissions from real-world LEVs with emission standards for criteria and air-toxic compounds. Emission measurements indicated that a portion of the in-use fleet tested exceeded standards for the criteria gases. Real-time regulated and speciated hydrocarbon measurements demonstrated that the majority of emissions occurred during the initial phases of the cold-start portion of the urban dynamometer driving schedule. Overall, the study provided updated emission factor data for real-world, in-use operation of LEVs for improved emissions modeling and mobile source inventory development.

  3. Modeling Of In-Vehicle Human Exposure to Ambient Fine Particulate Matter

    Science.gov (United States)

    Liu, Xiaozhen; Frey, H. Christopher

    2012-01-01

    A method for estimating in-vehicle PM2.5 exposure as part of a scenario-based population simulation model is developed and assessed. In existing models, such as the Stochastic Exposure and Dose Simulation model for Particulate Matter (SHEDS-PM), in-vehicle exposure is estimated using linear regression based on area-wide ambient PM2.5 concentration. An alternative modeling approach is explored based on estimation of near-road PM2.5 concentration and an in-vehicle mass balance. Near-road PM2.5 concentration is estimated using a dispersion model and fixed site monitor (FSM) data. In-vehicle concentration is estimated based on air exchange rate and filter efficiency. In-vehicle concentration varies with road type, traffic flow, windspeed, stability class, and ventilation. Average in-vehicle exposure is estimated to contribute 10 to 20 percent of average daily exposure. The contribution of in-vehicle exposure to total daily exposure can be higher for some individuals. Recommendations are made for updating exposure models and implementation of the alternative approach. PMID:23101000

  4. Emissions of CO2, CO, NOx, HC, PM, HFC-134a, N2O and CH4 from the global light duty vehicle fleet

    Directory of Open Access Journals (Sweden)

    Timothy J. Wallington

    2008-04-01

    Full Text Available Vehicles emit carbon dioxide (CO2, carbon monoxide (CO, nitrogen oxides (NOx, hydrocarbons (HC, particulate matter (PM, hydrofluorocarbon 134a (HFC-134a, methane (CH4, and nitrous oxide (N2O. An understanding of these emissions is needed in discussions of climate change and local air pollution issues. To facilitate such discussions an overview of past, present, and likely future emissions from light duty vehicles is presented. Emission control technologies have reduced the emissions of CO, VOCs, PM, HFC-134a, CH4, and N2O from modern vehicles to very low levels.

  5. Emission Reduction Potential with the Renewal of the Vehicle Fleet in Croatia

    International Nuclear Information System (INIS)

    Zidov, B.; Brlek, G.; Brajkovic, J.; Karan, M.

    2015-01-01

    The European Union has identified the typical areas of application of measures to tackle the problem of pollutants emissions into the air. Road transport is recognized as the largest polluter of the environment and an increase in CO2 emissions is most difficult to suppress in this type of transport. Looking at the projected trend of emission reductions in Croatia, it is clear that for achieving the minimum targets by 2050, as proposed by the European Union, implementation of the very strong measures in the coming period will be inevitable. The main aim of the paper refers to the analysis of potential emission reduction of pollutants generated by passenger vehicles registered in Croatia, assuming the implementation of measures that will result in technological renewal of the fleet at the national level. Generally considering, passenger cars before the Euro 1 standard, Euro 1 and Euro 2 standards together emit nearly 40 percent of all CO2 emissions generated by passenger cars registered in Croatia. Assuming replacement of all cars up to and including Euro 2, with Euro 6 vehicles, and taking into account certain assumptions, the potential reductions in emissions of NOx, CO, CH4 and particles were quantified. The potential reduction in NOx emissions is approximately 3,061 tons, in CO emissions approximately 14482 tons, in CH4 approximately 114 tons and in particulate matter approximately 257 tons. Depending on the engine size, with the replacement of the typical gasoline 20 years old passenger vehicle with the new one, without changing the driving mode, annual savings of up to 209 liters of gasoline fuel and reduction of CO2 emissions by 475 kg could be achieved (according to the assumptions described in the paper). With the replacement of diesel vehicles under the same conditions, the savings of up to 311 liters of diesel fuel annually and reduction of CO2 emissions by 815 kg could be achieved. (author).

  6. The importance of high vehicle power for passenger car emissions

    Science.gov (United States)

    Carslaw, David C.; Williams, Martin L.; Tate, James E.; Beevers, Sean D.

    2013-04-01

    In this paper we use a quantile regression technique to explore the emissions characteristics of petrol and diesel passenger cars to reveal the importance of high vehicle power on exhaust emissions. A large database of ≈67,000 passenger cars from vehicle emission remote sensing data was used from surveys from several campaigns around the UK. Most previous remote sensing studies have focused on presenting mean emission estimates by vehicle type over time. However, as shown in the current work, considerably more insight can be gained into vehicle emission characteristics if techniques are used that can describe and model the full distribution of vehicle emissions as a function of important explanatory variables. For post-2000 model year (Euro 3-5) diesel cars it is shown that there is a strong dependence of vehicle specific power for emissions of NOx that was absent in earlier models and is absent for other pollutants such as CO, hydrocarbons and 'smoke'. Furthermore, we also find a stronger dependence on vehicle specific power for older catalyst-equipped petrol vehicles (Euro 1/2) on emissions of NOx that is less important for other emissions such as CO and hydrocarbons. Moreover, it is shown that while the rated maximum power output of petrol cars has remained almost constant over the past 15-20 years, the power output from diesel cars has increased markedly by about 50%. These results suggest that changes to vehicle technology, driving conditions and driver behaviour have become more important determinants of passenger car NOx emissions in recent years and may help explain why urban ambient concentrations of NOx have not decreased as much as anticipated.

  7. Idle emissions from heavy-duty diesel and natural gas vehicles at high altitude.

    Science.gov (United States)

    McCormick, R L; Graboski, M S; Alleman, T L; Yanowitz, J

    2000-11-01

    Idle emissions of total hydrocarbon (THC), CO, NOx, and particulate matter (PM) were measured from 24 heavy-duty diesel-fueled (12 trucks and 12 buses) and 4 heavy-duty compressed natural gas (CNG)-fueled vehicles. The volatile organic fraction (VOF) of PM and aldehyde emissions were also measured for many of the diesel vehicles. Experiments were conducted at 1609 m above sea level using a full exhaust flow dilution tunnel method identical to that used for heavy-duty engine Federal Test Procedure (FTP) testing. Diesel trucks averaged 0.170 g/min THC, 1.183 g/min CO, 1.416 g/min NOx, and 0.030 g/min PM. Diesel buses averaged 0.137 g/min THC, 1.326 g/min CO, 2.015 g/min NOx, and 0.048 g/min PM. Results are compared to idle emission factors from the MOBILE5 and PART5 inventory models. The models significantly (45-75%) overestimate emissions of THC and CO in comparison with results measured from the fleet of vehicles examined in this study. Measured NOx emissions were significantly higher (30-100%) than model predictions. For the pre-1999 (pre-consent decree) truck engines examined in this study, idle NOx emissions increased with model year with a linear fit (r2 = 0.6). PART5 nationwide fleet average emissions are within 1 order of magnitude of emissions for the group of vehicles tested in this study. Aldehyde emissions for bus idling averaged 6 mg/min. The VOF averaged 19% of total PM for buses and 49% for trucks. CNG vehicle idle emissions averaged 1.435 g/min for THC, 1.119 g/min for CO, 0.267 g/min for NOx, and 0.003 g/min for PM. The g/min PM emissions are only a small fraction of g/min PM emissions during vehicle driving. However, idle emissions of NOx, CO, and THC are significant in comparison with driving emissions.

  8. Particle number emissions of gasoline hybrid electric vehicles; Partikelanzahl-Emission bei Hybridfahrzeugen mit Ottomotor

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Scott [Horiba Instruments Inc., Ann Arbor, MI (United States)

    2012-04-15

    Hybrid Electric Vehicles (HEV) are commonly reputed to be environmentally friendly. Different studies show that this assumption raises some questions in terms of particle number emissions. Against the background that upcoming emission standards will not only limit particle matter emissions but also particle number emissions for gasoline engines, the exhaust behaviour of downsized gasoline engines used in HEV should be investigated more extensively. A Horiba study compares the particle number emissions of a gasoline vehicle to those of a gasoline powered HEV. (orig.)

  9. Air emission in France. Metropolitan area particulate matter; Emissions dans l'air en France. Metropole poussieres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    Substances and index currently in survey are: Particulate matter: Total suspended particulates (TSP), Fine particulates with an equivalent aerodynamic diameter less than 10 {mu}m (PM{sub 10}), 2.5 {mu}m (PM{sub 2.5}) and 1.0 {mu}m (PM{sub 1.0}). Density ratios relating to population, area, gross product, primary energy consumption, etc. Annual emissions are provided for each substance since 1990. Dates corresponding to the maximum and minimum values are also included. Results are provisional for 2001. (author)

  10. Particulate emission reduction in small-scale biomass combustion plants by a condensing heat exchanger

    NARCIS (Netherlands)

    Best, de C.J.J.M.; Kemenade, van H.P.; Brunner, T.; Obernberger, I.

    2008-01-01

    Use of biomass fuels for energy purposes has gained increasing importance as a method to reduce greenhouse gas emissions. In comparison to gaseous and liquid fossil fuels, the emissions of particulate matter are higher, leading to concerns about the availability of cost-effective techniques to

  11. Effect of Drive Cycle and Gasoline Particulate Filter on the Size and Morphology of Soot Particles Emitted from a Gasoline-Direct-Injection Vehicle.

    Science.gov (United States)

    Saffaripour, Meghdad; Chan, Tak W; Liu, Fengshan; Thomson, Kevin A; Smallwood, Gregory J; Kubsh, Joseph; Brezny, Rasto

    2015-10-06

    The size and morphology of particulate matter emitted from a light-duty gasoline-direct-injection (GDI) vehicle, over the FTP-75 and US06 transient drive cycles, have been characterized by transmission-electron-microscope (TEM) image analysis. To investigate the impact of gasoline particulate filters on particulate-matter emission, the results for the stock-GDI vehicle, that is, the vehicle in its original configuration, have been compared to the results for the same vehicle equipped with a catalyzed gasoline particulate filter (GPF). The stock-GDI vehicle emits graphitized fractal-like aggregates over all driving conditions. The mean projected area-equivalent diameter of these aggregates is in the 78.4-88.4 nm range and the mean diameter of primary particles varies between 24.6 and 26.6 nm. Post-GPF particles emitted over the US06 cycle appear to have an amorphous structure, and a large number of nucleation-mode particles, depicted as low-contrast ultrafine droplets, are observed in TEM images. This indicates the emission of a substantial amount of semivolatile material during the US06 cycle, most likely generated by the incomplete combustion of accumulated soot in the GPF during regeneration. The size of primary particles and soot aggregates does not vary significantly by implementing the GPF over the FTP-75 cycle; however, particles emitted by the GPF-equipped vehicle over the US06 cycle are about 20% larger than those emitted by the stock-GDI vehicle. This may be attributed to condensation of large amounts of organic material on soot aggregates. High-contrast spots, most likely solid nonvolatile cores, are observed within many of the nucleation-mode particles emitted over the US06 cycle by the GPF-equipped vehicle. These cores are either generated inside the engine or depict incipient soot particles which are partially carbonized in the exhaust line. The effect of drive cycle and the GPF on the fractal parameters of particles, such as fractal dimension and

  12. Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters

    Energy Technology Data Exchange (ETDEWEB)

    Alleman, T. L.; Eudy, L.; Miyasato, M.; Oshinuga, A.; Allison, S.; Corcoran, T.; Chatterjee, S.; Jacobs, T.; Cherrillo, R. A.; Clark, R.; Virrels, I.; Nine, R.; Wayne, S.; Lansing, R.

    2005-11-01

    A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT diesel particulate filter. No engine modifications were made.

  13. High-resolution mapping of motor vehicle carbon dioxide emissions

    Science.gov (United States)

    McDonald, Brian C.; McBride, Zoe C.; Martin, Elliot W.; Harley, Robert A.

    2014-05-01

    A fuel-based inventory for vehicle emissions is presented for carbon dioxide (CO2) and mapped at various spatial resolutions (10 km, 4 km, 1 km, and 500 m) using fuel sales and traffic count data. The mapping is done separately for gasoline-powered vehicles and heavy-duty diesel trucks. Emission estimates from this study are compared with the Emissions Database for Global Atmospheric Research (EDGAR) and VULCAN. All three inventories agree at the national level within 5%. EDGAR uses road density as a surrogate to apportion vehicle emissions, which leads to 20-80% overestimates of on-road CO2 emissions in the largest U.S. cities. High-resolution emission maps are presented for Los Angeles, New York City, San Francisco-San Jose, Houston, and Dallas-Fort Worth. Sharp emission gradients that exist near major highways are not apparent when emissions are mapped at 10 km resolution. High CO2 emission fluxes over highways become apparent at grid resolutions of 1 km and finer. Temporal variations in vehicle emissions are characterized using extensive day- and time-specific traffic count data and are described over diurnal, day of week, and seasonal time scales. Clear differences are observed when comparing light- and heavy-duty vehicle traffic patterns and comparing urban and rural areas. Decadal emission trends were analyzed from 2000 to 2007 when traffic volumes were increasing and a more recent period (2007-2010) when traffic volumes declined due to recession. We found large nonuniform changes in on-road CO2 emissions over a period of 5 years, highlighting the importance of timely updates to motor vehicle emission inventories.

  14. Diesel particulate emission in the South African mining industry.

    CSIR Research Space (South Africa)

    Van Niekerk, WCA

    2002-06-01

    Full Text Available measurements was confirmed by comparison of duplicate samples with analyses conducted by the Health and Safety Executive (HSE) in the UK. Furthermore, good agreement in readings was obtained between the Horiba instrument and the R&P direct-reading analyser... ......................................................................................................3 2.2 Characteristics and biological significance of particulates.................................................... 3 2.3 Animal studies...

  15. 40 CFR 86.145-82 - Calculations; particulate emissions.

    Science.gov (United States)

    2010-07-01

    ... = 0.43(Mp1 + Mp2)/(Dct + Ds) + 0.57(Mp3 + Mp2)/(Dht = Ds) where: (1) Mp1 = Mass of particulate... the cold start test, in miles. (6) Dht = The measured driving distance from the “transient” phase of...

  16. Emissions from Diesel and Gasoline Vehicles Fuelled by Fischer-Tropsch Fuels and Similar Fuels

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Lundorff, Peter; Ivarsson, Anders

    2007-01-01

    The described investigation was carried out under the umbrella of IEA Advanced Motor Fuels Agreement. The purpose was to evaluate the emissions of carbon monoxide (CO), unburned hydrocarbons (HC), nitrogen oxides (NOx), particulate matter (PM) and polycyclic aromatic hydrocarbons (PAH) from...... vehicles fuelled by Fischer Tropsch (FT) based diesel and gasoline fuel, compared to the emissions from ordinary diesel and gasoline. The comparison for diesel fuels was based on a literature review, whereas the gasoline comparison had to be based on our own experiments, since almost no references were...... found in this field. In this context measurement according to the Federal Test Procedure (FTP) and the New European Driving Cycle (NEDC) were carried out on a chassis dynamometer with a directly injected gasoline vehicle. Experiments were carried out with a reference fuel, a fuel based 70% on FT...

  17. Fifty years of fuel quality and vehicle emissions

    Energy Technology Data Exchange (ETDEWEB)

    Rose, K. [CONCAWE, Brussels (Belgium)

    2013-04-01

    In the late 1970s, with growing emphasis on urban air quality in Europe, CONCAWE embarked on new research related to fuels and vehicles. After only a few years, it became clear that fuel properties and specifications would be increasingly important to the future of the European refining industry, and considerable research was completed in the 1970s to better understand the impact of fuel composition on vehicle performance and emissions. This early work led to the formation of the first Fuels and Emissions Management Group (FEMG) in 1982, almost 20 years after the formation of the CONCAWE Association. Since these early days, FEMG has been responsible for ensuring CONCAWE's strategic outlook on future vehicle and fuel developments, monitoring regulatory and vehicle developments, and overseeing a diverse portfolio of fuel quality and vehicle emissions research. Since the 1980s, tremendous progress has been made in improving European air quality, in part by reducing emissions from road transport and other sectors, and major improvements in European fuel qualities have contributed to these reductions. Nevertheless, many challenges are still ahead, especially further reductions in pollutant emissions from vehicles while also reducing greenhouse gas (GHG) emissions from transport. In the near-term, these GHG reductions will largely come from improvements in engine and vehicle fuel consumption and by blending of GHG-reducing bio-blending components. Dealing with these challenges to fuel quality and performance will require a continuing focus on CONCAWE's founding principles: sound science, cost effectiveness and transparency.

  18. Estimating Vehicle Fuel Consumption and Emissions Using GPS Big Data.

    Science.gov (United States)

    Kan, Zihan; Tang, Luliang; Kwan, Mei-Po; Zhang, Xia

    2018-03-21

    The energy consumption and emissions from vehicles adversely affect human health and urban sustainability. Analysis of GPS big data collected from vehicles can provide useful insights about the quantity and distribution of such energy consumption and emissions. Previous studies, which estimated fuel consumption/emissions from traffic based on GPS sampled data, have not sufficiently considered vehicle activities and may have led to erroneous estimations. By adopting the analytical construct of the space-time path in time geography, this study proposes methods that more accurately estimate and visualize vehicle energy consumption/emissions based on analysis of vehicles' mobile activities ( MA ) and stationary activities ( SA ). First, we build space-time paths of individual vehicles, extract moving parameters, and identify MA and SA from each space-time path segment (STPS). Then we present an N-Dimensional framework for estimating and visualizing fuel consumption/emissions. For each STPS, fuel consumption, hot emissions, and cold start emissions are estimated based on activity type, i.e., MA , SA with engine-on and SA with engine-off. In the case study, fuel consumption and emissions of a single vehicle and a road network are estimated and visualized with GPS data. The estimation accuracy of the proposed approach is 88.6%. We also analyze the types of activities that produced fuel consumption on each road segment to explore the patterns and mechanisms of fuel consumption in the study area. The results not only show the effectiveness of the proposed approaches in estimating fuel consumption/emissions but also indicate their advantages for uncovering the relationships between fuel consumption and vehicles' activities in road networks.

  19. Investigation of the Impact of Fuel Properties on Particulate Number Emission of a Modern Gasoline Direct Injection Engine

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fioroni, Gina [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fatouraie, Mohammad [Robert Bosch LLC; Frommherz, Mario [Robert Bosch LLC; Mosburger, Michael [Robert Bosch LLC; Chapman, Elana [General Motors LLC; Li, Sharon [General Motors LLC

    2018-04-03

    Gasoline Direct Injection (GDI) has become the preferred technology for spark-ignition engines resulting in greater specific power output and lower fuel consumption, and consequently reduction in CO2 emission. However, GDI engines face a substantial challenge in meeting new and future emission limits, especially the stringent particle number (PN) emissions recently introduced in Europe and China. Studies have shown that the fuel used by a vehicle has a significant impact on engine out emissions. In this study, nine fuels with varying chemical composition and physical properties were tested on a modern turbo-charged side-mounted GDI engine with design changes to reduce particulate emissions. The fuels tested included four fuels meeting US certification requirements; two fuels meeting European certification requirements; and one fuel meeting China 6 certification requirements being proposed at the time of this work. Two risk safeguard fuels (RSG), representing the properties of worst case market fuels in Europe and China, were also included. The particle number concentration of the solid particulates was measured in the engine-out exhaust flow at steady state engine operations with load and speed sweeps, and semi-transient load steps. The test results showed a factor of 6 PN emission difference among all certification fuels tested. Combined with detailed fuel analyses, this study evaluated important factors (such as oxygenates, carbon chain length and thermo-physical properties) that cause PN emissions which were not included in PMI index. A linear regression was performed to develop a PN predictive model which showed improved fitting quality than using PMI.

  20. Simultaneously reducing CO2 and particulate exposures via fractional recirculation of vehicle cabin air.

    Science.gov (United States)

    Jung, Heejung S; Grady, Michael L; Victoroff, Tristan; Miller, Arthur L

    2017-07-01

    Prior studies demonstrate that air recirculation can reduce exposure to nanoparticles in vehicle cabins. However when people occupy confined spaces, air recirculation can lead to carbon dioxide (CO 2 ) accumulation which can potentially lead to deleterious effects on cognitive function. This study proposes a fractional air recirculation system for reducing nanoparticle concentration while simultaneously suppressing CO 2 levels in the cabin. Several recirculation scenarios were tested using a custom-programmed HVAC (heat, ventilation, air conditioning) unit that varied the recirculation door angle in the test vehicle. Operating the recirculation system with a standard cabin filter reduced particle concentrations to 1000 particles/cm 3 , although CO 2 levels rose to 3000 ppm. When as little as 25% fresh air was introduced (75% recirculation), CO 2 levels dropped to 1000 ppm, while particle concentrations remained below 5000 particles/cm 3 . We found that nanoparticles were removed selectively during recirculation and demonstrated the trade-off between cabin CO 2 concentration and cabin particle concentration using fractional air recirculation. Data showed significant increases in CO 2 levels during 100% recirculation. For various fan speeds, recirculation fractions of 50-75% maintained lower CO 2 levels in the cabin, while still reducing particulate levels. We recommend fractional recirculation as a simple method to reduce occupants' exposures to particulate matter and CO 2 in vehicles. A design with several fractional recirculation settings could allow air exchange adequate for reducing both particulate and CO 2 exposures. Developing this technology could lead to reductions in airborne nanoparticle exposure, while also mitigating safety risks from CO 2 accumulation.

  1. Emissions from Road Vehicles Fuelled by Fischer Tropsch Based Diesel and Gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, U; Lundorf, P; Ivarsson, A; Schramm, J [Technical University of Denmark (Denmark); Rehnlund, B [Atrax Energi AB (Sweden); Blinge, M [The Swedish Transport Institute (Sweden)

    2006-11-15

    The described results were carried out under the umbrella of IEA Advanced Motor Fuels Agreement. The purpose was to evaluate the emissions of carbon monoxide (CO), unburned hydrocarbons (HC), nitrogen oxides (NOx), particulate matter (PM) and polycyclic aromatic hydrocarbons (PAH) from vehicles fuelled by Fischer Tropsch (FT) based diesel and gasoline fuel, compared to the emissions from ordinary diesel and gasoline. The comparison for diesel fuels was based on a literature review, whereas the gasoline comparison had to be based on our own experiments, since almost no references were found in this field. In this context measurement according to the Federal Test Procedure (FTP) and the New European Driving Cycle (NEDC) were carried out on a chassis dynamometer with a directly injected gasoline vehicle. Experiments were carried out with a reference fuel, a fuel based 70% on FT and an alkylate fuel (Aspen), which was supposed to be very similar, in many ways, to FT fuel. FT based diesel generally showed good emission performance, whereas the FT based gasoline not necessary lead to lower emissions. On the other hand, the Aspen fuel did show many advantages for the emissions from the gasoline vehicle.

  2. Emission factors of black carbon and co-pollutants from diesel vehicles in Mexico City

    Science.gov (United States)

    Zavala, Miguel; Molina, Luisa T.; Yacovitch, Tara I.; Fortner, Edward C.; Roscioli, Joseph R.; Floerchinger, Cody; Herndon, Scott C.; Kolb, Charles E.; Knighton, Walter B.; Paramo, Victor Hugo; Zirath, Sergio; Mejía, José Antonio; Jazcilevich, Aron

    2017-12-01

    Diesel-powered vehicles are intensively used in urban areas for transporting goods and people but can substantially contribute to high emissions of black carbon (BC), organic carbon (OC), and other gaseous pollutants. Strategies aimed at controlling mobile emissions sources thus have the potential to improve air quality and help mitigate the impacts of air pollutants on climate, ecosystems, and human health. However, in developing countries there are limited data on the BC and OC emission characteristics of diesel-powered vehicles, and thus there are large uncertainties in the estimation of the emission contributions from these sources. We measured BC, OC, and other inorganic components of fine particulate matter (PM), as well as carbon monoxide (CO), nitrogen oxides (NOx), sulfur dioxide (SO2), ethane, acetylene, benzene, toluene, and C2-benzenes under real-world driving conditions for 20 diesel-powered vehicles encompassing multiple emission level technologies in Mexico City with the chasing technique using the Aerodyne mobile laboratory. Average BC emission factors ranged from 0.41-2.48 g kg-1 of fuel depending on vehicle type. The vehicles were also simultaneously measured using the cross-road remote sensing technique to obtain the emission factors of nitrogen oxide (NO), CO, total hydrocarbons, and fine PM, thus allowing for the intercomparison of the results from the two techniques. There is overall good agreement between the two techniques and both can identify high and low emitters, but substantial differences were found in some of the vehicles, probably due to the ability of the chasing technique to capture a larger diversity of driving conditions in comparison to the remote sensing technique. A comparison of the results with the US EPA MOVES2014b model showed that the model underestimates CO, OC, and selected VOC species, whereas there is better agreement for NOx and BC. Larger OC / BC ratios were found in comparison to ratios measured in California using

  3. Emission factors of black carbon and co-pollutants from diesel vehicles in Mexico City

    Directory of Open Access Journals (Sweden)

    M. Zavala

    2017-12-01

    Full Text Available Diesel-powered vehicles are intensively used in urban areas for transporting goods and people but can substantially contribute to high emissions of black carbon (BC, organic carbon (OC, and other gaseous pollutants. Strategies aimed at controlling mobile emissions sources thus have the potential to improve air quality and help mitigate the impacts of air pollutants on climate, ecosystems, and human health. However, in developing countries there are limited data on the BC and OC emission characteristics of diesel-powered vehicles, and thus there are large uncertainties in the estimation of the emission contributions from these sources. We measured BC, OC, and other inorganic components of fine particulate matter (PM, as well as carbon monoxide (CO, nitrogen oxides (NOx, sulfur dioxide (SO2, ethane, acetylene, benzene, toluene, and C2-benzenes under real-world driving conditions for 20 diesel-powered vehicles encompassing multiple emission level technologies in Mexico City with the chasing technique using the Aerodyne mobile laboratory. Average BC emission factors ranged from 0.41–2.48 g kg−1 of fuel depending on vehicle type. The vehicles were also simultaneously measured using the cross-road remote sensing technique to obtain the emission factors of nitrogen oxide (NO, CO, total hydrocarbons, and fine PM, thus allowing for the intercomparison of the results from the two techniques. There is overall good agreement between the two techniques and both can identify high and low emitters, but substantial differences were found in some of the vehicles, probably due to the ability of the chasing technique to capture a larger diversity of driving conditions in comparison to the remote sensing technique. A comparison of the results with the US EPA MOVES2014b model showed that the model underestimates CO, OC, and selected VOC species, whereas there is better agreement for NOx and BC. Larger OC / BC ratios were found in comparison to ratios

  4. Developing Markets for Zero-Emission Vehicles in Goods Movement

    Science.gov (United States)

    2018-03-01

    This report evaluates the market status and potential freight market penetration of zero emission vehicles (ZEVs) and near ZEVs in the medium and heavy duty class within the California market. It evaluates alternative technologies, primarily battery ...

  5. Semi-volatile and particulate emissions from the combustion of alternative diesel fuels.

    Science.gov (United States)

    Sidhu, S; Graham, J; Striebich, R

    2001-01-01

    Motor vehicle emissions are a major anthropogenic source of air pollution and contribute to the deterioration of urban air quality. In this paper, we report results of a laboratory investigation of particle formation from four different alternative diesel fuels, namely, compressed natural gas (CNG), dimethyl ether (DME), biodiesel, and diesel, under fuel-rich conditions in the temperature range of 800-1200 degrees C at pressures of approximately 24 atm. A single pulse shock tube was used to simulate compression ignition (CI) combustion conditions. Gaseous fuels (CNG and DME) were exposed premixed in air while liquid fuels (diesel and biodiesel) were injected using a high-pressure liquid injector. The results of surface analysis using a scanning electron microscope showed that the particles formed from combustion of all four of the above-mentioned fuels had a mean diameter less than 0.1 microm. From results of gravimetric analysis and fuel injection size it was found that under the test conditions described above the relative particulate yields from CNG, DME, biodiesel, and diesel were 0.30%. 0.026%, 0.52%, and 0.51%, respectively. Chemical analysis of particles showed that DME combustion particles had the highest soluble organic fraction (SOF) at 71%, followed by biodiesel (66%), CNG (38%) and diesel (20%). This illustrates that in case of both gaseous and liquid fuels, oxygenated fuels have a higher SOF than non-oxygenated fuels.

  6. Global time trends in PAH emissions from motor vehicles

    Science.gov (United States)

    Shen, Huizhong; Tao, Shu; Wang, Rong; Wang, Bin; Shen, Guofeng; Li, Wei; Su, Shenshen; Huang, Ye; Wang, Xilong; Liu, Wenxin; Li, Bengang; Sun, Kang

    2011-04-01

    Emission from motor vehicles is the most important source of polycyclic aromatic hydrocarbons (PAHs) in urban areas. Emission factors of individual PAHs for motor vehicles reported in the literature varied 4 to 5 orders of magnitude, leading to high uncertainty in emission inventory. In this study, key factors affecting emission factors of PAHs (EF PAH) for motor vehicles were evaluated quantitatively based on thousands of EF PAH measured in 16 countries for over 50 years. The result was used to develop a global emission inventory of PAHs from motor vehicles. It was found that country and vehicle model year are the most important factors affecting EF PAH, which can be quantified using a monovariate regression model with per capita gross domestic production (purchasing power parity) as a sole independent variable. On average, 29% of variation in log-transformed EF PAH could be explained by the model, which was equivalent to 90% reduction in overall uncertainty on arithmetic scale. The model was used to predict EF PAH and subsequently PAH emissions from motor vehicles for various countries in the world during a period from 1971 to 2030. It was estimated that the global emission reached its peak value of approximate 101 Gg in 1978 and decreased afterwards due to emission control in developed countries. The annual emission picked up again since 1990 owing to accelerated energy consumption in China and other developing countries. With more and more rigid control measures taken in the developing world, global emission of PAHs is currently passing its second peak. It was predicted that the emission would decrease from 77 Gg in 2010 to 42 Gg in 2030.

  7. Utility emissions associated with electric and hybrid vehicle (EHV) charging

    International Nuclear Information System (INIS)

    1993-04-01

    This project is a joint effort between the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI) to conduct a comprehensive, in-depth assessment of the emission impacts of electric and hybrid vehicles (EHVs). The study determines local and regional emission impacts under a variety of scenarios, covering both conservative and optimistic assumptions about vehicle efficiency, power plant efficiency, and other factors. In all scenarios, EHV use significantly reduces urban emissions of CO, VOC, and TSP. Changes in NO x and CO 2 emissions are very sensitive to average or marginal power plant emissions and vehicle efficiency assumptions. NO x and CO 2 emissions changes vary dramatically by region. Certain combinations of EHV and CV scenarios and regions result in significant reductions, while other combinations result in significant increases. Careful use of these results is advised. In all scenarios, SO 2 increases with EHV use although the amount is small-less than 1% of total utility emissions even vath the deployment of 12 million EHVS. But because of emission cap provisions of the Clean Air Act Amendments of 1990, national SO 2 totals will not be allowed to increase. Thus, utilities will have to apply more stringent measures to combat increased SO 2 emissions due to the increased use of electric vehicles

  8. MOVES (MOTOR VEHICLE EMISSION SIMULATOR) MODEL ...

    Science.gov (United States)

    A computer model, intended to eventually replace the MOBILE model and to incorporate the NONROAD model, that will provide the ability to estimate criteria and toxic air pollutant emission factors and emission inventories that are specific to the areas and time periods of interest, at scales ranging from local to national. Development of a new emission factor and inventory model for mobile source emissions. The model will be used by air pollution modelers within EPA, and at the State and local levels.

  9. Emissions deterioration for three alternative fuel vehicle types: Natural gas, ethanol, and methanol vehicles

    International Nuclear Information System (INIS)

    Winebrake, J.J.; Deaton, M.L.

    1997-01-01

    Although there have been several studies examining emissions from in-use alternative fuel vehicles (AFVs), little is known about the deterioration of these emissions over vehicle lifetimes and how this deterioration compares with deterioration from conventional vehicles (CVs). This paper analyzes emissions data from 70 AFVs and 70 CVs operating in the federal government fleet to determine whether AFV emissions deterioration differs significantly from CV emissions deterioration. The authors conduct the analysis on three alternative fuel types (natural gas, methanol, and ethanol) and on five pollutants (carbon monoxide, carbon dioxide, total hydrocarbons, non-methane hydrocarbons, and nitrogen oxides). They find that for most cases they studied, deterioration differences are not statistically significant; however, several exceptions suggest that air quality planners and regulators must further analyze AFV emissions deterioration in order to properly include these technologies into broader air quality management schemes

  10. Variability in the primary emissions and secondary gas and particle formation from vehicles using bioethanol mixtures.

    Science.gov (United States)

    Gramsch, E; Papapostolou, V; Reyes, F; Vásquez, Y; Castillo, M; Oyola, P; López, G; Cádiz, A; Ferguson, S; Wolfson, M; Lawrence, J; Koutrakis, P

    2018-04-01

    Bioethanol for use in vehicles is becoming a substantial part of global energy infrastructure because it is renewable and some emissions are reduced. Carbon monoxide (CO) emissions and total hydrocarbons (THC) are reduced, but there is still controversy regarding emissions of nitrogen oxides (NO x ), aldehydes, and ethanol; this may be a concern because all these compounds are precursors of ozone and secondary organic aerosol (SOA). The amount of emissions depends on the ethanol content, but it also may depend on the engine quality and ethanol origin. Thus, a photochemical chamber was used to study secondary gas and aerosol formation from two flex-fueled vehicles using different ethanol blends in gasoline. One vehicle and the fuel used were made in the United States, and the others were made in Brazil. Primary emissions of THC, CO, carbon dioxide (CO 2 ), and nonmethane hydrocarbons (NMHC) from both vehicles decreased as the amount of ethanol in gasoline increased. NO x emissions in the U.S. and Brazilian cars decreased with ethanol content. However, emissions of THC, CO, and NO x from the Brazilian car were markedly higher than those from the U.S. car, showing high variability between vehicle technologies. In the Brazilian car, formation of secondary nitrogen dioxide (NO 2 ) and ozone (O 3 ) was lower for higher ethanol content in the fuel. In the U.S. car, NO 2 and O 3 had a small increase. Secondary particle (particulate matter [PM]) formation in the chamber decreased for both vehicles as the fraction of ethanol in fuel increased, consistent with previous studies. Secondary to primary PM ratios for pure gasoline is 11, also consistent with previous studies. In addition, the time required to form secondary PM is longer for higher ethanol blends. These results indicate that using higher ethanol blends may have a positive impact on air quality. The use of bioethanol can significantly reduce petroleum use and greenhouse gas emissions worldwide. Given the extent of

  11. Concerning the debate on electric-powered-vehicle emissions

    International Nuclear Information System (INIS)

    Sporckmann, B.

    1994-01-01

    The fact that electric-powered vehicles do not emit pollutants locally is obvious and must be considered as the main motive for their use. The global air pollution situation can only be of secondary importance because within the foreseeable future emissions linked to the use of electric-powered vehicles will remain within the variation width of power generation emissions that is not to be influenced. All the same, it is indispensable to consider the global situation. The author compares electric-powered vehicles with conventional ones by referring to the power generation of all federal German states. (orig.) [de

  12. Observation of increases in emission from modern vehicles over time in Hong Kong using remote sensing

    International Nuclear Information System (INIS)

    Lau, Jason; Hung, W.T.; Cheung, C.S.

    2012-01-01

    In this study on-road gaseous emissions of vehicles are investigated using remote sensing measurements collected over three different periods. The results show that a high percentage of gaseous pollutants were emitted from a small percentage of vehicles. Liquified Petroleum Gas (LPG) vehicles generally have higher gaseous emissions compared to other vehicles, particularly among higher-emitting vehicles. Vehicles with high vehicle specific power (VSP) tend to have lower CO and HC emissions while petrol and LPG vehicles tend to have higher NO emissions when engine load is high. It can be observed that gaseous emission factors of petrol and LPG vehicles increase greatly within 2 years of being introduced to the vehicle fleet, suggesting that engine and catalyst performance deteriorate rapidly. It can be observed that LPG vehicles have higher levels of gaseous emissions than petrol vehicles, suggesting that proper maintenance of LPG vehicles is essential in reducing gaseous emissions from vehicles. - Highlights: ► Emissions collected in 3 different periods to examine changes in emission over time. ► LPG vehicles generally emit more gaseous pollutants compared to other vehicles. ► Large increase in emissions from modern petrol/LPG vehicles after 2 years' operation. ► CO and NO emissions of modern diesel vehicles are similar to those of older vehicles. - Remote sensing measurements show large increases in gaseous emissions from vehicles in Hong Kong after 2 years of operation, indicating that engine and catalyst performance deteriorate rapidly.

  13. QUIC Transport and Dispersion Modeling of Vehicle Emissions in Cities for Better Public Health Assessments

    Directory of Open Access Journals (Sweden)

    Michael J. Brown

    2015-01-01

    Full Text Available The Quick Urban and Industrial Complex (QUIC plume modeling system is used to explore how the transport and dispersion of vehicle emissions in cities are impacted by the presence of buildings. Using downtown Philadelphia as a test case, notional vehicle emissions of gases and particles are specified as line source releases on a subset of the east–west and north–south streets. Cases were run in flat terrain and with 3D buildings present in order to show the differences in the model-computed outdoor concentration fields with and without buildings present. The QUIC calculations show that buildings result in regions with much higher concentrations and other areas with much lower concentrations when compared to the flat-earth case. On the roads with vehicle emissions, street-level concentrations were up to a factor of 10 higher when buildings were on either side of the street as compared to the flat-earth case due to trapping of pollutants between buildings. However, on roads without vehicle emissions and in other open areas, the concentrations were up to a factor of 100 times smaller as compared to the flat earth case because of vertical mixing of the vehicle emissions to building height in the cavity circulation that develops on the downwind side of unsheltered buildings. QUIC was also used to calculate infiltration of the contaminant into the buildings. Indoor concentration levels were found to be much lower than outdoor concentrations because of deposition onto indoor surfaces and particulate capture for buildings with filtration systems. Large differences in indoor concentrations from building to building resulted from differences in leakiness, air handling unit volume exchange rates, and filter type and for naturally ventilated buildings, whether or not the building was sheltered from the prevailing wind by a building immediately upwind.

  14. Components of Particle Emissions from Light-Duty Spark-Ignition Vehicles with Varying Aromatic Content and Octane Rating in Gasoline.

    Science.gov (United States)

    Short, Daniel Z; Vu, Diep; Durbin, Thomas D; Karavalakis, Georgios; Asa-Awuku, Akua

    2015-09-01

    Typical gasoline consists of varying concentrations of aromatic hydrocarbons and octane ratings. However, their impacts on particulate matter (PM) such as black carbon (BC) and water-soluble and insoluble particle compositions are not well-defined. This study tests seven 2012 model year vehicles, which include one port fuel injection (PFI) configured hybrid vehicle, one PFI vehicle, and six gasoline direct injection (GDI) vehicles. Each vehicle was driven on the Unified transient testing cycle (UC) using four different fuels. Three fuels had a constant octane rating of 87 with varied aromatic concentrations at 15%, 25%, and 35%. A fourth fuel with higher octane rating, 91, contained 35% aromatics. BC, PM mass, surface tension, and water-soluble organic mass (WSOM) fractions were measured. The water-insoluble mass (WIM) fraction of the vehicle emissions was estimated. Increasing fuel aromatic content increases BC emission factors (EFs) of transient cycles. BC concentrations were higher for the GDI vehicles than the PFI and hybrid vehicles, suggesting a potential climate impact for increased GDI vehicle production. Vehicle steady-state testing showed that the hygroscopicity of PM emissions at high speeds (70 mph; κ > 1) are much larger than emissions at low speeds (30 mph; κ < 0.1). Iso-paraffin content in the fuels was correlated to the decrease in WSOM emissions. Both aromatic content and vehicle speed increase the amount of hygroscopic material found in particle emissions.

  15. The impact of electric vehicles on CO2 emissions

    International Nuclear Information System (INIS)

    Bentley, J.M.; Teagan, P.; Walls, D.; Balles, E.; Parish, T.

    1992-05-01

    A number of recent studies have examined the greenhouse gas emissions of various light duty vehicle alternatives in some detail. These studies have highlighted the extreme range of predicted net greenhouse gas emissions depending on scenarios for fuel types, vehicle and power generation efficiencies, the relative greenhouse contributions of emitted gases and a number of uncertainties in fuel chain efficiencies. Despite the potential range of results, most studies have confirmed that electric vehicles generally have significant potential for reducing greenhouse gas emissions relative to gasoline and most alternative fuels under consideration. This report summarizes the results of a study which builds on previous efforts with a particular emphasis on: (1) A detailed analysis of ICEV, FCV, and EV vehicle technology and electric power generation technology. Most previous transportation greenhouse studies have focused on characterization of fuel chains that have relatively high efficiency (65--85%) when compared with power generation (30--40%) and vehicle driveline (13--16%) efficiencies. (2) A direct comparison of EVs, FCVs with gasoline and dedicated alternative fuel, ICEVs using equivalent vehicle technology assumptions with careful attention to likely technology improvements in both types of vehicles. (3) Consideration of fuel cell vehicles and associated hydrogen infrastructure. (4) Extension of analyses for several decades to assess the prospects for EVs with a longer term prospective

  16. Vehicle lightweighting vs. electrification: Life cycle energy and GHG emissions results for diverse powertrain vehicles

    International Nuclear Information System (INIS)

    Lewis, Anne Marie; Kelly, Jarod C.; Keoleian, Gregory A.

    2014-01-01

    Highlights: • We modeled life cycle energy and greenhouse gas (GHG) emissions from diverse powertrain vehicles. • Lightweight versions of the vehicle models were compared against baseline models. • Maximum energy and GHG emissions occur with aluminum vs. advanced high strength steel. • Design harmonization method shows 0.2–0.3 kg of support required per 1 kg powertrain mass increase. - Abstract: This work assesses the potential of electrified vehicles and mass reduction to reduce life cycle energy and greenhouse gas (GHG) emissions. Life cycle assessment (LCA) is used to account for processes upstream and downstream of the vehicle operation, thereby incorporating regional variation of energy and GHG emissions due to electricity production and distinct energy and GHG emissions due to conventional and lightweight materials. Design harmonization methods developed in previous work are applied to create baseline and lightweight vehicle models of an internal combustion vehicle (ICV), hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV). Thus, each vehicle is designed to be functionally equivalent and incorporate the structural support required for heavier powertrains. Lightweight vehicles are designed using body-in-white (BIW) mass reduction scenarios with aluminum and advanced/high strength steel (A/HSS). For the mass reduction scenarios considered in this work, results indicate that the greatest life cycle energy and GHG emissions reductions occur when steel is replaced by aluminum. However, since A/HSS requires less energy to produce as compared to aluminum, the energy and GHG reductions per unit mass removed is greatest for A/HSS. Results of the design harmonization modeling method show that 0.2–0.3 kg of structural support is required per unit increase in powertrain mass, thus extending previous methods

  17. Estimating Vehicle Fuel Consumption and Emissions Using GPS Big Data

    Directory of Open Access Journals (Sweden)

    Zihan Kan

    2018-03-01

    Full Text Available The energy consumption and emissions from vehicles adversely affect human health and urban sustainability. Analysis of GPS big data collected from vehicles can provide useful insights about the quantity and distribution of such energy consumption and emissions. Previous studies, which estimated fuel consumption/emissions from traffic based on GPS sampled data, have not sufficiently considered vehicle activities and may have led to erroneous estimations. By adopting the analytical construct of the space-time path in time geography, this study proposes methods that more accurately estimate and visualize vehicle energy consumption/emissions based on analysis of vehicles’ mobile activities (MA and stationary activities (SA. First, we build space-time paths of individual vehicles, extract moving parameters, and identify MA and SA from each space-time path segment (STPS. Then we present an N-Dimensional framework for estimating and visualizing fuel consumption/emissions. For each STPS, fuel consumption, hot emissions, and cold start emissions are estimated based on activity type, i.e., MA, SA with engine-on and SA with engine-off. In the case study, fuel consumption and emissions of a single vehicle and a road network are estimated and visualized with GPS data. The estimation accuracy of the proposed approach is 88.6%. We also analyze the types of activities that produced fuel consumption on each road segment to explore the patterns and mechanisms of fuel consumption in the study area. The results not only show the effectiveness of the proposed approaches in estimating fuel consumption/emissions but also indicate their advantages for uncovering the relationships between fuel consumption and vehicles’ activities in road networks.

  18. Economic analysis of Japanese air pollution regulation : an optimal retirement problem under the vehicle type regulation in the NOx-particulate matter law

    Science.gov (United States)

    2009-05-01

    This paper examines the vehicle type regulation that was introduced under the Automobile : Nitrogen OxidesParticulate Matter Law to mitigate air pollution in Japanese metropolitan : areas. The vehicle type regulation effectively sets the timing fo...

  19. Economic analysis of a Japanese air pollution regulation : an optimal retirement problem under vehicle type regulation in the NOx-particulate matter law

    Science.gov (United States)

    2008-06-01

    This paper empirically examines the vehicle type regulation that was introduced under the : Automobile Nitrogen OxidesParticulate Matter Law to mitigate air pollution problems in Japanese metropolitan areas. The vehicle type regulation effectively...

  20. Assessment of the influence on vehicle emissions of driving style, vehicle technology and traffic measures

    NARCIS (Netherlands)

    Burgwal, H.C. van de; Gense, N.L.J.; Mierlo, J. van; Maggetto, G.

    2002-01-01

    The influence of traffic measures and driving style on different vehicle emissions and on primary energy consumption, and the definition of vehicle parameters influencing the relation between them, is an interesting issue to be assessed in order to allow more realistic estimations of the impact of

  1. Near-roadway monitoring of vehicle emissions as a function of mode of operation for light-duty vehicles.

    Science.gov (United States)

    Wen, Dongqi; Zhai, Wenjuan; Xiang, Sheng; Hu, Zhice; Wei, Tongchuan; Noll, Kenneth E

    2017-11-01

    Determination of the effect of vehicle emissions on air quality near roadways is important because vehicles are a major source of air pollution. A near-roadway monitoring program was undertaken in Chicago between August 4 and October 30, 2014, to measure ultrafine particles, carbon dioxide, carbon monoxide, traffic volume and speed, and wind direction and speed. The objective of this study was to develop a method to relate short-term changes in traffic mode of operation to air quality near roadways using data averaged over 5-min intervals to provide a better understanding of the processes controlling air pollution concentrations near roadways. Three different types of data analysis are provided to demonstrate the type of results that can be obtained from a near-roadway sampling program based on 5-min measurements: (1) development of vehicle emission factors (EFs) for ultrafine particles as a function of vehicle mode of operation, (2) comparison of measured and modeled CO 2 concentrations, and (3) application of dispersion models to determine concentrations near roadways. EFs for ultrafine particles are developed that are a function of traffic volume and mode of operation (free flow and congestion) for light-duty vehicles (LDVs) under real-world conditions. Two air quality models-CALINE4 (California Line Source Dispersion Model, version 4) and AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model)-are used to predict the ultrafine particulate concentrations near roadways for comparison with measured concentrations. When using CALINE4 to predict air quality levels in the mixing cell, changes in surface roughness and stability class have no effect on the predicted concentrations. However, when using AERMOD to predict air quality in the mixing cell, changes in surface roughness have a significant impact on the predicted concentrations. The paper provides emission factors (EFs) that are a function of traffic volume and mode of

  2. Exposure to in-vehicle respirable particulate matter in passenger vehicles under different ventilation conditions and seasons

    Directory of Open Access Journals (Sweden)

    Suresh Jain

    2017-03-01

    Full Text Available This study presents the in-vehicle particulate matter (PM concentration in a number of passenger vehicles under various ventilation modes, land use land cover (LULC in different seasons in megacity Delhi, India. In-vehicle monitoring was conducted in buses, cars and autos (three-wheeler using air-conditioned (AC and Non-AC during peak and off-peak hours. The site selected is a ∼15 km long stretch from Punjabi Bagh to Safdarjung Hospital, based on diversity in LULC, availability of vehicles and heavy traffic flow along the direction of travelling. In-vehicle PM was measured using GRIMM aerosol spectrometer and categorised in three classes (PM1, PM2.5 and PM10. The study found that concentration of PM1, PM2.5 and PM10 were significantly (p ≤ 0.05 higher in winters as compared to summers. It was observed that PM concentration was significantly (p ≤ 0.05 higher in Non-AC travel modes compared to AC modes. PM concentrations were high near industrial and commercial areas and during traffic congestion showing the influence of LULC. It is also important to highlight that PM1, PM2.5 and PM10 concentrations were significantly (p ≤ 0.05 higher in case of taxis (cars compared to personal cars which varied from 2.5 to 3.5 times higher in case of AC mode and ∼1.5 times in case of Non-AC mode. Exposures to PM concentration were highest in case of Non-AC bus compared AC-Bus, Non-AC cars, autos and AC-cars. PM concentrations in case of autos and Non-AC cars were almost comparable without any significant (p > 0.05 difference. Regression analysis showed significant correlation between ambient and in-vehicle concentration for PM2.5. Regional deposition fractions were calculated using International Commission on Radiological Protection model to show the deposition in head air-pass, trachea-bronchial and alveolar regions. It was found that deposition of PM1 was highest in the alveolar region.

  3. The effect of magnesium-based additives on particulate emissions from oil-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, L.S.; Galeano, V.C.; Pena, E.S.; Caballero, P.G.

    1986-02-01

    To improve present knowledge of characteristics of particulate emissions from large-size boilers, in particular the role played by magnesium-oxide slurries, research was carried out with the following main objectives in mind: To identify the elementary chemical composition of emissions from a large boiler burning heavy fuel-oil; To define the differences caused by the use of MgO slurries regarding both quantity and characteristics of emissions; To study the boiler's transient response to sudden changes in additive dosage. The use of different fuel-oil during the experiments has given cause to discuss the following aspects: The joint presence of carbon and sulfur in particulate matter; The influence of certain characteristics of fuel-oil in emissions.

  4. Regional on-road vehicle running emissions modeling and evaluation for conventional and alternative vehicle technologies.

    Science.gov (United States)

    Frey, H Christopher; Zhai, Haibo; Rouphail, Nagui M

    2009-11-01

    This study presents a methodology for estimating high-resolution, regional on-road vehicle emissions and the associated reductions in air pollutant emissions from vehicles that utilize alternative fuels or propulsion technologies. The fuels considered are gasoline, diesel, ethanol, biodiesel, compressed natural gas, hydrogen, and electricity. The technologies considered are internal combustion or compression engines, hybrids, fuel cell, and electric. Road link-based emission models are developed using modal fuel use and emission rates applied to facility- and speed-specific driving cycles. For an urban case study, passenger cars were found to be the largest sources of HC, CO, and CO(2) emissions, whereas trucks contributed the largest share of NO(x) emissions. When alternative fuel and propulsion technologies were introduced in the fleet at a modest market penetration level of 27%, their emission reductions were found to be 3-14%. Emissions for all pollutants generally decreased with an increase in the market share of alternative vehicle technologies. Turnover of the light duty fleet to newer Tier 2 vehicles reduced emissions of HC, CO, and NO(x) substantially. However, modest improvements in fuel economy may be offset by VMT growth and reductions in overall average speed.

  5. CHARACTERIZATION OF PARTICULATE EMISSIONS FROM CONTROLLED CONSTRUCTION ACTIVITIES: MUD/DIRT CARRYOUT

    Science.gov (United States)

    The report describes a field study of PM-2.5 and PM-10 (particulate matter with aerodynamic diameter less than 2.5 and 10 micrometers, respectively) emissions from a public paved road in Overland Park, Kansas, adjacent to a 200-acre construction site which will ultimately have 4 ...

  6. CHARACTERIZATION OF THE FUGITIVE PARTICULATE EMISSIONS FROM CONSTRUCTION MUD/DIRT CARRYOUT

    Science.gov (United States)

    The paper describes a research program which directly determined mud/dirt carryout emission factors for both particulate matter (PM) with aerodynamic diameters of 10 micrometers or less (PM10) and PM with aerodynamic diameters of 2.5 micrometers or less (PM2.5). The research was ...

  7. Crude glycerol combustion: Particulate, acrolein, and other volatile organic emissions

    KAUST Repository

    Steinmetz, Scott; Herrington, Jason S.; Winterrowd, Chris K.; Roberts, William L.; Wendt, Jost O L; Linak, William P.

    2013-01-01

    to be formed from the low temperature thermal decomposition of glycerol. Currently, there is no known reliable method for measuring acrolein in sources. Acrolein and emissions of other volatile organic compounds were characterized through the use of a SUMMA

  8. Black carbon and polycyclic aromatic hydrocarbon emissions from vehicles in the United States-Mexico border region: pilot study.

    Science.gov (United States)

    Kelly, Kerry; Wagner, David; Lighty, JoAnn; Quintero Núñez, Margarito; Vazquez, F Adrian; Collins, Kimberly; Barud-Zubillaga, Alberto

    2006-03-01

    The investigators developed a system to measure black carbon (BC) and particle-bound polycyclic aromatic hydrocarbon (PAH) emission factors during roadside sampling in four cities along the United States-Mexico border, Calexico/Mexicali and El Paso/Juarez. The measurement system included a photoacoustic analyzer for BC, a photoelectric aerosol sensor for particle-bound PAHs, and a carbon dioxide (CO2) analyzer. When a vehicle with measurable emissions passed the system probe, corresponding BC, PAH, and CO2 peaks were evident, and a fuel-based emission factor was estimated. A picture of each vehicle was also recorded with a digital camera. The advantage of this system, compared with other roadside methods, is the direct measurement of particulate matter components and limited interference from roadside dust. The study revealed some interesting trends: Mexican buses and all medium-duty trucks were more frequently identified as high emitters of BC and PAH than heavy-duty trucks or passenger vehicles. In addition, because of the high daily mileage of buses, they are good candidates for additional study. Mexican trucks and buses had higher average emission factors compared with U.S. trucks and buses, but the differences were not statistically significant. Few passenger vehicles had measurable BC and PAH emissions, although the highest emission factor came from an older model passenger vehicle licensed in Baja California.

  9. 40 CFR 86.1830-01 - Acceptance of vehicles for emission testing.

    Science.gov (United States)

    2010-07-01

    ... shall have tires with appropriate tire wear. (b) Special provisions for durability data vehicles. (1... previous model year emission data vehicles, running change vehicles, fuel economy data vehicles, and...

  10. Genetic Algorithm Based Microscale Vehicle Emissions Modelling

    Directory of Open Access Journals (Sweden)

    Sicong Zhu

    2015-01-01

    Full Text Available There is a need to match emission estimations accuracy with the outputs of transport models. The overall error rate in long-term traffic forecasts resulting from strategic transport models is likely to be significant. Microsimulation models, whilst high-resolution in nature, may have similar measurement errors if they use the outputs of strategic models to obtain traffic demand predictions. At the microlevel, this paper discusses the limitations of existing emissions estimation approaches. Emission models for predicting emission pollutants other than CO2 are proposed. A genetic algorithm approach is adopted to select the predicting variables for the black box model. The approach is capable of solving combinatorial optimization problems. Overall, the emission prediction results reveal that the proposed new models outperform conventional equations in terms of accuracy and robustness.

  11. Vehicle emissions and consumer information in car advertisements

    Directory of Open Access Journals (Sweden)

    Thomson George

    2008-04-01

    Full Text Available Abstract Background The advertising of vehicles has been studied from a safety perspective but not in terms of vehicle air pollutants. We aimed to examine the content and trends of greenhouse gas emissions and air pollution-related information, in light passenger vehicle advertisements. Methods Content analysis of the two most popular current affairs magazines in New Zealand for the five year period 2001–2005 was undertaken (n = 514 advertisements. This was supplemented with vehicle data from official websites. Results The advertisements studied provided some information on fuel type (52%, and engine size (39%; but hardly any provided information on fuel efficiency (3%, or emissions (4%. Over the five-year period the reported engine size increased significantly, while fuel efficiency did not improve. For the vehicles advertised, for which relevant official website data could be obtained, the average "greenhouse rating" for carbon dioxide (CO2 emissions was 5.1, with a range from 0.5 to 8.5 (on a scale with 10 being the best and 0.5 being the most polluting. The average CO2 emissions were 50% higher than the average for cars made by European manufacturers. The average "air pollution" rating for the advertised vehicles was 5.4 (on the same 1–10 scale. The yearly averages for the "greenhouse" or "air pollution" ratings did not change significantly over the five-year period. One advertised hybrid vehicle had a fuel consumption that was under half the average (4.4 versus 9.9 L/100 km, as well as the best "greenhouse" and "air pollution" ratings. Conclusion To enhance informed consumer choice and to control greenhouse gas and air pollution emissions, governments should introduce regulations on the content of vehicle advertisements and marketing (as started by the European Union. Similar regulations are already in place for the marketing of many other consumer products.

  12. Vehicle emissions and consumer information in car advertisements

    Science.gov (United States)

    Wilson, Nick; Maher, Anthony; Thomson, George; Keall, Michael

    2008-01-01

    Background The advertising of vehicles has been studied from a safety perspective but not in terms of vehicle air pollutants. We aimed to examine the content and trends of greenhouse gas emissions and air pollution-related information, in light passenger vehicle advertisements. Methods Content analysis of the two most popular current affairs magazines in New Zealand for the five year period 2001–2005 was undertaken (n = 514 advertisements). This was supplemented with vehicle data from official websites. Results The advertisements studied provided some information on fuel type (52%), and engine size (39%); but hardly any provided information on fuel efficiency (3%), or emissions (4%). Over the five-year period the reported engine size increased significantly, while fuel efficiency did not improve. For the vehicles advertised, for which relevant official website data could be obtained, the average "greenhouse rating" for carbon dioxide (CO2) emissions was 5.1, with a range from 0.5 to 8.5 (on a scale with 10 being the best and 0.5 being the most polluting). The average CO2 emissions were 50% higher than the average for cars made by European manufacturers. The average "air pollution" rating for the advertised vehicles was 5.4 (on the same 1–10 scale). The yearly averages for the "greenhouse" or "air pollution" ratings did not change significantly over the five-year period. One advertised hybrid vehicle had a fuel consumption that was under half the average (4.4 versus 9.9 L/100 km), as well as the best "greenhouse" and "air pollution" ratings. Conclusion To enhance informed consumer choice and to control greenhouse gas and air pollution emissions, governments should introduce regulations on the content of vehicle advertisements and marketing (as started by the European Union). Similar regulations are already in place for the marketing of many other consumer products. PMID:18445291

  13. Vehicle emissions and consumer information in car advertisements.

    Science.gov (United States)

    Wilson, Nick; Maher, Anthony; Thomson, George; Keall, Michael

    2008-04-29

    The advertising of vehicles has been studied from a safety perspective but not in terms of vehicle air pollutants. We aimed to examine the content and trends of greenhouse gas emissions and air pollution-related information, in light passenger vehicle advertisements. Content analysis of the two most popular current affairs magazines in New Zealand for the five year period 2001-2005 was undertaken (n = 514 advertisements). This was supplemented with vehicle data from official websites. The advertisements studied provided some information on fuel type (52%), and engine size (39%); but hardly any provided information on fuel efficiency (3%), or emissions (4%). Over the five-year period the reported engine size increased significantly, while fuel efficiency did not improve. For the vehicles advertised, for which relevant official website data could be obtained, the average "greenhouse rating" for carbon dioxide (CO2) emissions was 5.1, with a range from 0.5 to 8.5 (on a scale with 10 being the best and 0.5 being the most polluting). The average CO2 emissions were 50% higher than the average for cars made by European manufacturers. The average "air pollution" rating for the advertised vehicles was 5.4 (on the same 1-10 scale). The yearly averages for the "greenhouse" or "air pollution" ratings did not change significantly over the five-year period. One advertised hybrid vehicle had a fuel consumption that was under half the average (4.4 versus 9.9 L/100 km), as well as the best "greenhouse" and "air pollution" ratings. To enhance informed consumer choice and to control greenhouse gas and air pollution emissions, governments should introduce regulations on the content of vehicle advertisements and marketing (as started by the European Union). Similar regulations are already in place for the marketing of many other consumer products.

  14. Costs, emissions reductions, and vehicle repair: evidence from Arizona.

    Science.gov (United States)

    Ando, A; McConnell, V; Harrington, W

    2000-04-01

    The Arizona inspection and maintenance (I/M) program provides one of the first opportunities to examine the costs and effectiveness of vehicle emission repair. This paper examines various aspects of emission reductions, fuel economy improvements, and repair costs, drawing data from over 80,000 vehicles that failed the I/M test in Arizona between 1995 and the first half of 1996. We summarize the wealth of data on repair from the Arizona program and highlight its limitations. Because missing or incomplete cost information has been a serious shortcoming for the evaluation of I/M programs, we develop a method for estimating repair costs when they are not reported. We find surprising evidence that almost one quarter of all vehicles that take the I/M test are never observed to pass the test. Using a statistical analysis, we provide some information about the differences between the vehicles that pass and those that do not. Older, more polluting vehicles are much more likely never to pass the I/M test, and their expected repair costs are much higher than those for newer cars. This paper summarizes the evidence on costs and emission reductions in the Arizona program, comparing costs and emissions reductions between cars and trucks. Finally, we examine the potential for more cost-effective repair, first through an analysis of tightening I/M cut points and then by calculating the cost savings of achieving different emission reduction goals when the most cost-effective repairs are made first.

  15. Characterization of particle bound organic carbon from diesel vehicles equipped with advanced emission control technologies.

    Science.gov (United States)

    Pakbin, Payam; Ning, Zhi; Schauer, James J; Sioutas, Constantinos

    2009-07-01

    A chassis dynamometer study was carried out by the University of Southern California in collaboration with the Air Resources Board (CARB) to investigate the physical, chemical, and toxicological characteristics of diesel emissions of particulate matter (PM) from heavy-duty vehicles. These heavy-duty diesel vehicles (HDDV) were equipped with advanced emission control technologies, designed to meet CARB retrofit regulations. A HDDV without any emission control devices was used as the baseline vehicle. Three advanced emission control technologies; continuously regenerating technology (CRT), zeolite- and vanadium-based selective catalytic reduction technologies (Z-SCRT and V-SCRT), were tested under transient (UDDS) (1) and cruise (80 kmph) driving cycles to simulate real-world driving conditions. This paper focuses on the characterization of the particle bound organic species from the vehicle exhaust. Physical and chemical properties of PM emissions have been reported by Biswas et al. Atmos. Environ. 2008, 42, 5622-5634) and Hu et al. (Atmos. Environ. 2008, submitted) Significant reductions in the emission factors (microg/mile) of particle bound organic compounds were observed in HDDV equipped with advanced emission control technologies. V-SCRT and Z-SCRT effectively reduced PAHs, hopanes and steranes, n-alkanes and acids by more than 99%, and often to levels below detection limits for both cruise and UDDS cycles. The CRT technology also showed similar reductions with SCRT for medium and high molecular weight PAHs, acids, but with slightly lower removal efficiencies for other organic compounds. Ratios of particle bound organics-to-OC mass (microg/g) from the baseline exhaust were compared with their respective ratios in diesel fuel and lubricating oil, which revealed that hopanes and steranes originate from lubricating oil, whereas PAHs can either form during the combustion process or originate from diesel fuel itself. With the introduction of emission control

  16. Exhaust gas emissions from various automotive fuels for light-duty vehicles. Effects on health, environment and energy utilization

    International Nuclear Information System (INIS)

    Ahlvik, P.; Brandberg, Aa.

    1999-12-01

    The main aim of the investigation has been to assess the effects on health and environment from various alternative fuels for light-duty vehicles. Effects that can be identified and quantified, such as acidification, ozone formation, cancer risk and climate change, have been of primary interest but other effects, such as respiratory diseases, have also been investigated. Data have been collected through literature surveys for subsequent calculation of the mentioned effects in different time-frames. Corrections have been used to take into consideration the influence of climate, ageing and driving pattern. Emissions generated in fuel production have also been accounted for. The most significant and important differences between the fuels have been found for effects as ozone formation cancer risk and particulate emissions. Alternative fuels, such as methanol and methane (natural gas and biogas), significantly decrease the ozone formation in comparison to petrol, while ethanol, methanol and methane are advantageous concerning cancer risk. The particulate emissions are considerably higher for diesel engines fuelled by diesel oil and RME in comparison to the other fuels. In the future, the importance of acid emissions in the fuel production will increase since the NO x and SO x emissions will decrease from the vehicles. The emissions of climate gases could be significantly reduced by using non-fossil fuels but the efficiency of the drive train is also of importance. The technical development potential for further emission reductions is considerable for all fuels but the advantage for the best fuel options will remain in the future

  17. Emissions from ethanol- and LPG-fueled vehicles

    International Nuclear Information System (INIS)

    Pitstick, M.E.

    1995-01-01

    This paper addresses the environmental concerns of using neat ethanol and liquefied petroleum gas (LPG) as transportation fuels in the United States. Low-level blends of ethanol (10%) with gasoline have been used as fuels in the United States for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the United States, but its use has been limited primarily to converted fleet vehicles. Increasing U.S. interest in alternative fuels has raised the possibility of introducing neat-ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles, and increased production and consumption of fuel ethanol and LPG, will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat-ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural impacts from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG as compared with other transportation fuels. The environmental concerns are reviewed and summarized, but only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat-ethanol-fueled vehicles or the increase in LPG-fueled vehicles

  18. Emissions factors for gaseous and particulate pollutants from offshore diesel engine vessels in China

    Science.gov (United States)

    Zhang, F.; Chen, Y.; Tian, C.; Li, J.; Zhang, G.; Matthias, V.

    2015-09-01

    Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbor districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel engine power offshore vessels in China were measured in this study. Concentrations, fuel-based and power-based emissions factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emissions factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low engine power vessel than for the two higher engine power vessels. Fuel-based average emissions factors for all pollutants except sulfur dioxide in the low engine power engineering vessel were significantly higher than that of the previous studies, while for the two higher engine power vessels, the fuel-based average emissions factors for all pollutants were comparable to the results of the previous studies. The fuel-based average emissions factor for nitrogen oxides for the small engine power vessel was more than twice the International Maritime Organization standard, while those for the other two vessels were below the standard. Emissions factors for all three vessels were significantly different during different operating modes. Organic carbon and elemental carbon were the main components of particulate matter, while water-soluble ions and elements were present in trace amounts. Best-fit engine speeds

  19. Effects of natural gas composition on performance and regulated, greenhouse gas and particulate emissions in spark-ignition engines

    International Nuclear Information System (INIS)

    Amirante, R.; Distaso, E.; Di Iorio, S.; Sementa, P.; Tamburrano, P.; Vaglieco, B.M.; Reitz, R.D.

    2017-01-01

    Highlights: • The influence of natural gas composition is investigated. • Real-time methane/propane fuel mixtures were realized. • IMEP, HRR and MBF were used to evaluate the effects on engine performance. • Gaseous, greenhouse and Particulate emissions were studied. • The propane content strongly influenced performance and emissions. - Abstract: In vehicles fueled with compressed natural gas, a variation in the fuel composition can have non-negligible effects on their performance, as well as on their emissions. The present work aimed to provide more insight on this crucial aspect by performing experiments on a single-cylinder port-fuel injected spark-ignition engine. In particular, methane/propane mixtures were realized to isolate the effects of a variation of the main constituents in natural gas on engine performance and associated pollutant emissions. The propane volume fraction was varied from 10 to 40%. Using an experimental procedure designed and validated to obtain precise real-time mixture fractions to inject directly into the intake manifold. Indicative Mean Effective Pressure, Heat Release Rate and Mass Burned Fraction were used to evaluate the effects on engine performance. Gaseous emissions were measured as well. Particulate Mass, Number and Size Distributions were analyzed with the aim to identify possible correlations existing between fuel composition and soot emissions. Emissions samples were taken from the exhaust flow, just downstream of the valves. Opacity was measured downstream the Three-Way Catalyst. Three different engine speeds were investigated, namely 2000, 3000 and 4000 rpm. Stoichiometric and full load conditions were considered in all tests. The results were compared with pure methane and propane, as well as with natural gas. The results indicated that both performance and emissions were strongly influenced by the variation of the propane content. Increasing the propane fraction favored more complete combustion and increased NO

  20. Source apportionment of particulate matter in Chinese megacities: the implication for emission control strategies

    Science.gov (United States)

    Huang, Ru-Jin; Elser, Miriam; Wang, Qiyuan Wang; Bozzetti, Carlo; Wolf, Robert; Wang, Yichen; Ni, Haiyan; Wang, Meng; Ho, Kin-Fai; Han, Yongming; Dällenbach, Kaspar; Canonaco, Francesco; Slowik, Jay; El Haddad, Imad; Baltensperger, Urs; Cao, Junji; Prévôt, André S. H.

    2015-04-01

    The rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. A quantitative understanding of these effects has proven extremely challenging due to spatial and temporal variability in the sources of aerosols and their precursors, the complexity of particle composition, and uncertainties associated with the atmospheric aging of existing particles (Pöschl 2005; Hallquist et al., 2009; Huang et al., 2014). Nowadays the average PM2.5 concentrations in China are approximately one to two orders of magnitude higher than those observed in urban areas in the US and European countries (Cao 2012). This has forced the Chinese government to announce its first national environmental standard for PM2.5 in 2012 and to make highly ambitious plans for emission control. The Chinese aim to reduce the PM2.5 concentrations by up to 25% of the 2012 levels by 2017, backed by 277 billion investments from the central government. To achieve this ambitious aim, a better understanding of the aerosol composition, sources, and atmospheric processing is required. In this study, we present the results from intensive field measurement campaigns carried out in Chinese megacities in 2013/2014. The sources of PM2.5 and the organic aerosol (OA) were investigated by applying the multi-linear engine (ME-2) receptor model (Canonaco et al., 2013) to a comprehensive dataset. Primary sources including vehicle emissions, biomass burning, coal burning, and dust-related emissions were identified and quantified. The contributions from secondary aerosol formation processes to total PM2.5 mass and OA mass were evaluated. Detailed results will be presented and discussed. References Cao, J. J. (2012) J. Earth Environ., 3, 1030

  1. Characteristics of particulate matter emissions from toy cars with electric motors.

    Science.gov (United States)

    Wang, Xiaofei; Williams, Brent J; Biswas, Pratim

    2015-04-01

    Aerosol emissions from toy cars with electric motors were characterized. Particle emission rates from the toy cars, as high as 7.47×10(7) particles/s, were measured. This emission rate is lower than other indoor sources such as smoking and cooking. The particles emitted from toy cars are generated from spark discharges inside the electric motors that power the toy cars. Size distribution measurements indicated that most particles were below 100 nm in diameter. Copper was the dominant inorganic species in these particles. By deploying aerosol mass spectrometers, high concentrations of particulate organic matter were also detected and characterized in detail. Several organic compounds were identified using a thermal desorption aerosol gas chromatography. The mass size distribution of particulate organic matter was bimodal. The formation mechanism of particulate organic matter from toy cars was elucidated. A possible new source of indoor air pollution, particles from electric motors in toy cars, was identified. This study characterized aerosol emissions from toy cars in detail. Most of these particles have a diameter less than 100 nm. Copper and some organics are the major components of these particles. Conditions that minimize these emissions were determined.

  2. Chemical Composition and Emission Sources of the Fine Particulate Matters in a Southeast Asian Mega City (Dhaka, Bangladesh)

    Science.gov (United States)

    Salam, Abdus

    2016-04-01

    Air pollution has significant impact on human health, climate change, agriculture, visibility reduction, and also on the atmospheric chemistry. There are many studies already reported about the direct relation of the human mortality and morbidity with the increase of the atmospheric particulate matters. Especially, fine particulate matters can easily enter into the human respiratory system and causes many diseases. Particulate matters have the properties to absorb the solar radiation and impact on the climate. Dhaka, Bangladesh is a densely populated mega-city in the world. About 16 million inhabitants are living within an area of 360 square kilometers. Air quality situation has been degrading due to unplanned growth, increasing vehicles, severe traffic jams, brick kilns, industries, construction, and also transboundary air pollution. A rapidly growing number of vehicles has worsen the air quality in spite of major policy interventions, e.g., ban of two-stroke and three-wheeled vehicles, phase out of 20 years old vehicles, conversion to compressed natural gas (CNGs), etc. Introduction of CNGs to reduce air pollution was not the solution for fine particles at all, as evidence shows that CNGs and diesel engines are the major sources of fine particles. High concentration of the air pollutants in Dhaka city such as PM, carbonaceous species (black and organic carbon), CO, etc. has already been reported. PM2.5 mass, chemical composition (e.g., BC, OC, SO42-, NO3-, trace elements, etc.), aerosol Optical Depth (AOD) and emission sources of our recent measurements at the highly polluted south East Asian Mega city (Dhaka) Bangladesh will be presented in the conference. PM2.5 samples were collected on filters with Digital PM2.5 sampler (Switzerland) and Air photon, USA. BC was measured from filters (with thermal and optical method) and also real time with an Aethalometer AE42 (Magee Scitific., USA). Water soluble ions were determined from filters with ion chromatogram. AOD

  3. A review on idling reduction strategies to improve fuel economy and reduce exhaust emissions of transport vehicles

    International Nuclear Information System (INIS)

    Shancita, I.; Masjuki, H.H.; Kalam, M.A.; Rizwanul Fattah, I.M.; Rashed, M.M.; Rashedul, H.K.

    2014-01-01

    Highlights: • Introduce various idling reduction technologies for transport vehicles. • Exhibit their energy use, advantages, disadvantages to understand their capability. • Conduct critical review to improve fuel economy and exhaust emissions. • Suggest better technology according to their performance ability. - Abstract: To achieve reductions in vehicle idling, strategies and actions must be taken to minimize the time spent by drivers idling their engines. A number of benefits can be obtained in limiting the idling time. These benefits include savings in fuel use and maintenance costs, vehicle life extension, and reduction in exhaust emissions. The main objective of idling reduction (IR) devices is to reduce the amount of energy wasted by idling trucks, rail locomotives, and automobiles. During idling, gasoline vehicles emit a minimum amount of nitrogen oxides (NO x ) and negligible particulate matter (PM). However, generally a large amount of carbon monoxide (CO) and hydrocarbons (HC) are produced from these vehicles. Gasoline vehicles consume far more fuel at an hourly rate than their diesel counterparts during idling. Higher NOx and comparatively larger PM are produced by diesel vehicles than gasoline vehicles on the average during idling. Auxiliary power unit (APU), direct-fired heaters, fuel cells, thermal storage system, truck stop electrification, battery-based systems, engine idle management (shutdown) systems, electrical (shore power) solutions, cab comfort system, and hybridization are some of the available IR technologies whose performances for reducing fuel consumption and exhaust emissions have been compared. This paper analyzes the availability and capability of most efficient technologies to reduce fuel consumption and exhaust emissions from diesel and gasoline vehicles by comparing the findings of previous studies. The analysis reveals that among all the options direct fired heaters, APUs and electrified parking spaces exhibit better

  4. Zero emission vehicle for dense grid urban public transportation

    Energy Technology Data Exchange (ETDEWEB)

    D' Ovidio, G. [University of l' Aquila, Faculty of Engineering, DAU (Italy)

    2000-07-01

    This paper reports the operating scheme of a public transportation vehicle with zero polluting emission, working in urban areas in a transport network which has short and regular stop spacing not greater than 400-500 m, and by segments covered by 'shuttle-type' vehicles with high operating frequencies. In particular, the traction of the vehicle, of electric type exclusively, is supported by the functional coupling of an accumulation and alimentation system composed respectively of Fuel Cell e Flywheel Energy Storage Unite. This study proposes and analyzes a typology of hybrid vehicle of which the configuration of traction is specialized for the exigency connected to the different phases of the motion. The study contains the analysis and the measurement of the principal components of the propulsion system to the vary of the loading capabilities of the vehicles and of the geometric characteristic of the transport network.

  5. The impact of China's vehicle emissions on regional air quality in 2000 and 2020: a scenario analysis

    Directory of Open Access Journals (Sweden)

    E. Saikawa

    2011-09-01

    Full Text Available The number of vehicles in China has been increasing rapidly. We evaluate the impact of current and possible future vehicle emissions from China on Asian air quality. We modify the Regional Emission Inventory in Asia (REAS for China's road transport sector in 2000 using updated Chinese data for the number of vehicles, annual mileage, and emission factors. We develop two scenarios for 2020: a scenario where emission factors remain the same as they were in 2000 (No-Policy, NoPol, and a scenario where Euro 3 vehicle emission standards are applied to all vehicles (except motorcycles and rural vehicles. The Euro 3 scenario is an approximation of what may be the case in 2020 as, starting in 2008, all new vehicles in China (except motorcycles were required to meet the Euro 3 emission standards. Using the Weather Research and Forecasting model coupled with Chemistry (WRF/Chem, we examine the regional air quality response to China's vehicle emissions in 2000 and in 2020 for the NoPol and Euro 3 scenarios. We evaluate the 2000 model results with observations in Japan, China, Korea, and Russia. Under NoPol in 2020, emissions of carbon monoxide (CO, nitrogen oxides (NOx, non-methane volatile organic compounds (NMVOCs, black carbon (BC, and organic carbon (OC from China's vehicles more than double compared to the 2000 baseline. If all vehicles meet the Euro 3 regulations in 2020, however, these emissions are reduced by more than 50% relative to NoPol. The implementation of stringent vehicle emission standards leads to a large, simultaneous reduction of the surface ozone (O3 mixing ratios and particulate matter (PM2.5 concentrations. In the Euro 3 scenario, surface O3 is reduced by more than 10 ppbv and surface PM2.5 is reduced by more than 10 μg m−3 relative to NoPol in Northeast China in all seasons. In spring, surface O3 mixing ratios and PM2.5 concentrations in

  6. Emission factors of carbonaceous particulate matter and polycyclic aromatic hydrocarbons from residential solid fuel combustions

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Guofeng [Jiangsu Academy of Environmental Science, Nanjing (China). Inst. of Atmospheric Sciences

    2014-07-01

    Emission inventory is basic for the understanding of environmental behaviors and potential effects of compounds, however, current inventories are often associated with relatively high uncertainties. One important reason is the lack of emission factors, especially for the residential solid fuel combustion in developing countries. In the present study, emission factors of a group of pollutants including particulate matter, organic carbon, elemental carbon (sometimes known as black carbon) and polycyclic aromatic hydrocarbons were measured for a variety of residential solid fuels including coal, crop straw, wood, and biomass pellets in rural China. The study provided a large number of emission factors that can be further used in emission estimation. Composition profiles and isomer ratios were investigated and compared so as to be used in source apportionment. In addition, the present study identified and quantified the influence of factors like fuel moisture, volatile matter on emission performance.

  7. Online Traffic Signal Control for Reducing Vehicle Carbon Dioxide Emissions

    Science.gov (United States)

    Oda, Toshihiko; Otokita, Tohru; Niikura, Satoshi

    In Japan, carbon dioxide (CO2) emissions caused by vehicles have been increasing year by year and it is well known that CO2 causes a serious global warming problem. For urban traffic control systems, there is a great demand for realization of signal control measures as soon as possible due to the urgency of the recent environmental situation. This paper describes a new traffic signal control for reducing vehicle CO2 emissions on an arterial road. First, we develop a model for estimating the emissions using the traffic delay and the number of stops a driver makes. Second, to find the optimal control parameters, we introduce a random search method with rapid convergence suitable for an online traffic control. We conduct experiments in Kawasaki to verify the effectiveness of our method. The experiments show that our approach decreases not only the emissions but also congestion and travel time significantly, compared to the method implemented in the real system.

  8. Vehicle and fuel taxes cut emissions

    International Nuclear Information System (INIS)

    Johansson, Lasse.

    1991-01-01

    Rapidly growing road traffic accounts for a large share of the air pollution produced within Sweden's borders. Nitrogen oxides, carbon dioxide, lead, hydrocarbons and ozone formation cause extensive damage to the environment. Economic instruments are an important means of tackling emissions from the hundreds of thousands of mobile pollution sources on the country's roads

  9. Control of fine particulate (PM2.5) emissions from restaurant operations.

    Science.gov (United States)

    Whynot, J; Quinn, G; Perryman, P; Votlucka, P

    1999-09-01

    This paper describes efforts to reduce particulate matter (PM) emissions from restaurant operations, including application of an existing control method to a new equipment type. Commercial charbroiling in the South Coast Air Basin results in emissions of approximately 10 tons/day of fine particulate matter (PM2.5) and 1.3 tons/day of volatile organic compounds (VOCs). Over a seven-year period, the South Coast Air Quality Management District worked with industry to develop test methods for measuring emissions from various cooking operations, evaluate control technologies, and develop a rule to reduce these emissions. Of the two basic types of charbroilers--chain-driven and underfired--underfired produce four times the emissions when equivalent amounts of product are cooked. Cost-effective control technology is currently available only for chain-driven charbroilers. The application of flameless catalytic oxidizers to chain-driven charbroilers was found to effectively reduce emissions by at least 83% and is cost-effective. The catalysts have been used worldwide at restaurants for several years. Research efforts are underway to identify control options for underfired charbroilers. Implementation of Rule 1138, Control of Emissions from Restaurant Operations, adopted November 14, 1997, will result in reductions of 0.5 tons/day of PM2.5 and 0.2 tons/day of VOCs. Future rules will result in reductions from underfired charbroilers and possibly other restaurant equipment when cost-effective solutions are available.

  10. Crude glycerol combustion: Particulate, acrolein, and other volatile organic emissions

    KAUST Repository

    Steinmetz, Scott

    2013-01-01

    Crude glycerol is an abundant by-product of biodiesel production. As volumes of this potential waste grow, there is increasing interest in developing new value added uses. One possible use, as a boiler fuel for process heating, offers added advantages of energy integration and fossil fuel substitution. However, challenges to the use of crude glycerol as a boiler fuel include its low energy density, high viscosity, and high autoignition temperature. We have previously shown that a refractory-lined, high swirl burner can overcome challenges related to flame ignition and stability. However, critical issues related to ash behavior and the possible formation of acrolein remained. The work presented here indicates that the presence of dissolved catalysts used during the esterification and transesterification processes results in extremely large amounts of inorganic species in the crude glycerol. For the fuels examined here, the result is a submicron fly ash comprised primarily of sodium carbonates, phosphates, and sulfates. These particles report to a well-developed accumulation mode (0.3-0.7 μm diameter), indicating extensive ash vaporization and particle formation via nucleation, condensation, and coagulation. Particle mass emissions were between 2 and 4 g/m3. These results indicate that glycerol containing soluble catalyst is not suitable as a boiler fuel. Fortunately, process improvements are currently addressing this issue. Additionally, acrolein is of concern due to its toxicity, and is known to be formed from the low temperature thermal decomposition of glycerol. Currently, there is no known reliable method for measuring acrolein in sources. Acrolein and emissions of other volatile organic compounds were characterized through the use of a SUMMA canister-based sampling method followed by GC-MS analysis designed for ambient measurements. Results indicate crude glycerol combustion produces relatively small amounts of acrolein (∼15 ppbv) and other volatile organic

  11. Particulate matter emissions from biochar-amended soils as a potential tradeoff to the negative emission potential

    Science.gov (United States)

    Ravi, Sujith; Sharratt, Brenton S.; Li, Junran; Olshevski, Stuart; Meng, Zhongju; Zhang, Jianguo

    2016-10-01

    Novel carbon sequestration strategies such as large-scale land application of biochar may provide sustainable pathways to increase the terrestrial storage of carbon. Biochar has a long residence time in the soil and hence comprehensive studies are urgently needed to quantify the environmental impacts of large-scale biochar application. In particular, black carbon emissions from soils amended with biochar may counteract the negative emission potential due to the impacts on air quality, climate, and biogeochemical cycles. We investigated, using wind tunnel experiments, the particulate matter emission potential of a sand and two agriculturally important soils amended with different concentrations of biochar, in comparison to control soils. Our results indicate that biochar application considerably increases particulate emissions possibly by two mechanisms-the accelerated emission of fine biochar particles and the generation and emission of fine biochar particles resulting from abrasion of large biochar particles by sand grains. Our study highlights the importance of considering the background soil properties (e.g., texture) and geomorphological processes (e.g., aeolian transport) for biochar-based carbon sequestration programs.

  12. Impacts of traffic emissions on atmospheric particulate nitrate and organics at a downwind site on the periphery of Guangzhou, China

    Science.gov (United States)

    Qin, Yi Ming; Tan, Hao Bo; Jie Li, Yong; Schurman, Misha I.; Li, Fei; Canonaco, Francesco; Prévôt, André S. H.; Chan, Chak K.

    2017-09-01

    Particulate matter (PM) pollution on the peripheries of Chinese megacities can be as serious as in cities themselves. Given the substantial vehicular emissions in inner-city areas, the direct transport of primary PM (e.g., black carbon and primary organics) and effective formation of secondary PM from precursors (e.g., NOx and volatile organic compounds) can contribute to PM pollution in buffer zones between cities. To investigate how traffic emissions in inner-city areas impact these adjacent buffer zones, a suite of real-time instruments were deployed in Panyu, downwind from central Guangzhou, from November to December 2014. Nitrate mass fraction was higher on high-PM days, with the average nitrate-to-sulfate ratio increasing from around 0.35 to 1.5 as the PM mass concentration increased from 10 to 160 µg m-3. Particulate nitrate was strongly correlated with excess ammonium (([NH4+] / [SO42-] - 1.5) × [SO42-]), with higher concentrations in December than in November due to lower temperatures. The organic mass fraction was the highest across all PM1 levels throughout the campaign. While organic aerosols (OA) were dominated by secondary organic aerosols (SOA = semi-volatile oxygenated organic aerosols + low-volatility oxygenated organic aerosols) as a campaign average, freshly emitted hydrocarbon-like organic aerosols (HOA) contributed up to 40 % of OA during high-OA periods, which typically occurred at nighttime and contributed 23.8 to 28.4 % on average. This was due to daytime traffic restrictions on heavy-duty vehicles in Guangzhou, and HOA almost increased linearly with total OA concentration. SOA increased as odd oxygen (Ox = O3 + NO2) increased during the day due to photochemistry. A combination of nighttime traffic emissions and daytime photochemistry contributed to the buildup of PM in Panyu. The mitigation of PM pollution in inner-city areas by reducing vehicular traffic can potentially improve air quality in peripheral areas.

  13. Consumption-based Total Suspended Particulate Matter Emissions in Jing-Jin-Ji Area of China

    Science.gov (United States)

    Yang, S.; Chen, S.; Chen, B.

    2014-12-01

    The highly-industrialized regions in China have been facing a serious problem of haze mainly consisted of total suspended particulate matter (TSPM), which has attracted great attention from the public since it directly impairs human health and clinically increases the risks of various respiratory and pulmonary diseases. In this paper, we set up a multi-regional input-output (MRIO) model to analyze the transferring routes of TSPM emissions between regions through trades. TSPM emission from particulate source regions and sectors are identified by analyzing the embodied TSPM flows through monetary flow and carbon footprint. The track of TSPM from origin to end via consumption activities are also revealed by tracing the product supply chain associated with the TSPM emissions. Beijing-Tianjin-Hebei (Jing-Jin-Ji) as the most industrialized area of China is selected for a case study. The result shows that over 70% of TSPM emissions associated with goods consumed in Beijing and Tianjin occurred outside of their own administrative boundaries, implying that Beijing and Tianjin are net embodied TSPM importers. Meanwhile, 63% of the total TSPM emissions in Hebei Province are resulted from the outside demand, indicating Hebei is a net exporter. In addition, nearly half of TSPM emissions are the by-products related to electricity and heating supply and non-metal mineral products in Jing-Jin-Ji Area. Based on the model results, we provided new insights into establishing systemic strategies and identifying mitigation priorities to stem TSPM emissions in China. Keywords: total suspended particulate matter (TSPM); urban ecosystem modeling; multi-regional input-output (MRIO); China

  14. METEV: Measurement Technologies for Emissions from Ethanol Fuelled Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Sandtroem-Dahl, Charlotte

    2009-11-15

    The interest of using alcohols, and especially ethanol, as vehicle fuel is high in Sweden. The advantages are many, such as; being renewable, the ethanol can be produced locally and it is easily mixed with gasoline. Alcohol fuels are considered to be a substantial part of the alternative fuel market, especially in Brazil, USA and Sweden. With this growing interest it is of most importance to investigate the emission performance of vehicles fuelled with alcohols. The focus in this study is on measurement and calculation of hydrocarbon emissions. The emission regulations in different countries have different ways to treat alcohol fuelled vehicles. When alcohols are used as blending components in gasoline, uncombusted alcohols from the fuel are emitted in the exhaust in various amounts. If a Flame Ionization Detector (FID) is used to measure hydrocarbons, the uncombusted alcohol will be included in the measurement. The alcohol is, per definition, however not a hydrocarbon (hydrocarbons contains only hydrogen and carbon). In the US regulations, the alcohol content is measured separately, and the FID measurement is adjusted for the alcohol part. This is not performed in the European regulations. The aim of this project is to highlight the need for a discussion regarding the methodology for measuring hydrocarbon and alcohol emissions from flexible fuelled vehicles operating on alcohol fuel blends.

  15. Electric vehicles in China: emissions and health impacts.

    Science.gov (United States)

    Ji, Shuguang; Cherry, Christopher R; J Bechle, Matthew; Wu, Ye; Marshall, Julian D

    2012-02-21

    E-bikes in China are the single largest adoption of alternative fuel vehicles in history, with more than 100 million e-bikes purchased in the past decade and vehicle ownership about 2× larger for e-bikes as for conventional cars; e-car sales, too, are rapidly growing. We compare emissions (CO(2), PM(2.5), NO(X), HC) and environmental health impacts (primary PM(2.5)) from the use of conventional vehicles (CVs) and electric vehicles (EVs) in 34 major cities in China. CO(2) emissions (g km(-1)) vary and are an order of magnitude greater for e-cars (135-274) and CVs (150-180) than for e-bikes (14-27). PM(2.5) emission factors generally are lower for CVs (gasoline or diesel) than comparable EVs. However, intake fraction is often greater for CVs than for EVs because combustion emissions are generally closer to population centers for CVs (tailpipe emissions) than for EVs (power plant emissions). For most cities, the net result is that primary PM(2.5) environmental health impacts per passenger-km are greater for e-cars than for gasoline cars (3.6× on average), lower than for diesel cars (2.5× on average), and equal to diesel buses. In contrast, e-bikes yield lower environmental health impacts per passenger-km than the three CVs investigated: gasoline cars (2×), diesel cars (10×), and diesel buses (5×). Our findings highlight the importance of considering exposures, and especially the proximity of emissions to people, when evaluating environmental health impacts for EVs.

  16. Sensitive emission spectrometric method for the analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    Sugimae, A.

    1975-01-01

    A rapid and sensitive emission spectrometric method for the routine analysis of airborne particulate matter collected on the glass fiber filter is reported. The method is a powder--dc arc technique involving no chemical pre-enrichment procedures. The elements--Ag, BA: Be, Bi, Cd, Co, Cr, Cu, Fe, Ga, La, Mn, Ni, Pb, Sn, V, Y, Yb, and Zn--were determined. (U.S.)

  17. Potential ozone impacts of excess NO2 emissions from diesel particulate filters for on- and off-road diesel engines.

    Science.gov (United States)

    Bar-llan, Amnon; Johnson, Jeremiah R; Denbleyker, Allison; Chan, Lit-Mian; Yarwood, Gregory; Hitchcock, David; Pinto, Joseph P

    2010-08-01

    This study considers potential impacts of increased use of diesel oxidation catalysts (DOCs) and catalyzed diesel particulate filters (DPFs) on ozone formation in the Dallas/ Fort Worth (DFW) area. There is concern that excess nitrogen dioxide (NO2) emissions from vehicles equipped with these devices could increase ambient ozone levels. The approach involved developing two scenarios for use of these devices, quantifying excess NO2 emissions in each scenario, and using a photochemical model to estimate the resulting ozone changes. In the "maximum penetration" scenario, DOC/DPF devices in a 2009 fleet of heavy-duty on-road trucks, school buses, and construction equipment were significantly increased by accelerating turnover of these vehicles and equipment to models that would require DOCs/DPFs. In the "realistic" scenario, current fractional usage of these devices was assessed for 2009. For both scenarios, excess NO2 emissions from DOCs/DPFs were estimated using U.S. Environmental Protection Agency's MOBILE6 and NONROAD emissions inventory modeling tools. The emissions analyses were used to adjust the DFW photochemical modeling emissions inventories and the Comprehensive Air Quality Model with extensions air quality model was rerun for the DFW area to determine the impact of these two scenarios on ozone formation. The maximum penetration scenario, which showed an overall reduction in oxides of nitrogen (NO(x)) because of the accelerated turnover of equipment to cleaner models, resulted in a net decrease in daily maximum 8-hr ozone of 4-5 parts per billion (ppb) despite the increase in NO2 emissions. The realistic scenario resulted in a small increase in daily maximum 8-hr ozone of less than 1 ppb for the DFW area. It was concluded that the excess NO2 emissions from DOC/DPF devices result in very small ozone impacts, particularly for the realistic scenario, in the DFW area. There are noticeable decreases in ozone for the maximum penetration scenario because NO

  18. Particulate Matter Emission from Dual Fuel Diesel Engine Fuelled with Natural Gas

    Directory of Open Access Journals (Sweden)

    Stelmasiak Zdzisław

    2017-06-01

    Full Text Available The paper presents the results of examination of particulate matter emission from the Diesel engine FPT 1.3 MJT simultaneously fuelled with diesel oil and natural gas CNG. The basic premise for engine adaptation was the addition of a small amount of CNG to reduce exhaust gas opacity and particulate matter emission. At this assumption, diesel oil remained the basic fuel, with contribution amounting to 0,70-0,85 of total energy delivered to the engine. The dual fuel engine was examined using an original controller installed in the Diesel engine FPT 1.3 MJT which controlled the diesel fuel dose. The dose of the injected natural gas was controlled by changing the opening time of gas injectors at constant pressure in the gas collector. The examined issues included the exhaust gas opacity, and the total number and fractional distribution of the emitted particles. The measurements were performed at twenty selected measuring points corresponding to the New European Driving Cycle (NEDC test. The performed tests have demonstrated a positive effect of gas addition on exhaust gas opacity and particulate matter emission. Depending on test conditions, the exhaust gas opacity was reduced by 10÷92%, and the total number of particles by 30÷40%. The performed tests have revealed that a small addition of gas can reduce the load of the DPF filter, extend its lifetime, and increase engine reliability. Longer time intervals between successive DPF filter regenerations improve ecological properties of the engine.

  19. ASSESSMENT OF EMISSIONS FROM MOVING VEHICLES FOR ENVIRONMENTAL SAFETY OF TOWNSPEOPLE

    Directory of Open Access Journals (Sweden)

    Kovrigin Artur Arnol'dovich

    2016-09-01

    Full Text Available We consider that in the majority of cities the percentage of emissions from mobile sources has increased and has now reached 80...90 %; in 2011 the total emission of pollutants from motor vehicles amounted to more than 1 million tons (more than 90 % of total emissions, so the negative impact from a moving vehicle is large. Hydrocarbons (CnHn are emitted into urban air, including benzo(αpyrene, carbon monoxide (CO, nitrogen oxides (NOx, particulate matter, soot, Pb, etc. Studies by various authors have shown that the impact of such air pollution results in the decrease of the weight of children at birth, the amount of development defects increase, preterm children are born more often, etc. The influence of motor transport contaminate urban soils and water, causing great damage to the biota. It was found out that the improvement of the environmental situation requires optimization of the planning structure of a city, proper organization of freight traffic due to construction of relief roads for and appropriate road junctions at intersections of streets and highways, and other measures.

  20. A methodology for calculating transport emissions in cities with limited traffic data: Case study of diesel particulates and black carbon emissions in Murmansk.

    Science.gov (United States)

    Kholod, N; Evans, M; Gusev, E; Yu, S; Malyshev, V; Tretyakova, S; Barinov, A

    2016-03-15

    This paper presents a methodology for calculating exhaust emissions from on-road transport in cities with low-quality traffic data and outdated vehicle registries. The methodology consists of data collection approaches and emission calculation methods. For data collection, the paper suggests using video survey and parking lot survey methods developed for the International Vehicular Emissions model. Additional sources of information include data from the largest transportation companies, vehicle inspection stations, and official vehicle registries. The paper suggests using the European Computer Programme to Calculate Emissions from Road Transport (COPERT) 4 model to calculate emissions, especially in countries that implemented European emissions standards. If available, the local emission factors should be used instead of the default COPERT emission factors. The paper also suggests additional steps in the methodology to calculate emissions only from diesel vehicles. We applied this methodology to calculate black carbon emissions from diesel on-road vehicles in Murmansk, Russia. The results from Murmansk show that diesel vehicles emitted 11.7 tons of black carbon in 2014. The main factors determining the level of emissions are the structure of the vehicle fleet and the level of vehicle emission controls. Vehicles without controls emit about 55% of black carbon emissions. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Mobil emission reduction credits for natural gas vehicle programs

    International Nuclear Information System (INIS)

    Baker, G.F.

    1993-01-01

    Since the passage of the Clean Air Act Amendments in 1990, there has been increasing interest among regulators and business interests alike in innovative, market-based strategies to air quality control. In particular, larger metropolitan areas have begun to examine marketable emission reduction credit (ERC) programs. These programs limit the total allowable emissions in a non-attainment area, allocate these emission open-quotes creditsclose quotes among sources in the region, and allow the sources to redistribute their allowances through trading. This approach provides for the most cost-effective distribution of control burdens among affected sources, taking advantage of the differences in marginal control costs. Some control measures applied to mobile sources may be significantly less expensive than those applied to stationary sources, making mobile sources an excellent candidate for inclusion in an ERC program. However, there are several potential problems involving quantification, enforcement, and credit trading issues that hinder the development of mobile source ERC programs. This paper will evaluate those obstacles and discuss how they are being addressed in a Natural Gas Vehicle (NGV) program currently under development for the Houston ozone non-attainment area. Specifically, the study will outline the credit validation (i.e., quantification) procedure, including baseline emission determination and emission testing for each NGV in the program. In addition, the study will describe the vehicle/fuel consumption tracking system, and discuss issues related to credit trading with stationary sources. Finally, observations are made concerning the applicability of mobile ERC programs for other emission control measures such as old vehicle scrappage and vehicle Inspection and Maintenance programs

  2. Impact of biogenic emission uncertainties on the simulated response of ozone and fine particulate matter to anthropogenic emission reductions.

    Science.gov (United States)

    Hogrefe, Christian; Isukapalli, Sastry S; Tang, Xiaogang; Georgopoulos, Panos G; He, Shan; Zalewsky, Eric E; Hao, Winston; Ku, Jia-Yeong; Key, Tonalee; Sistla, Gopal

    2011-01-01

    The role of emissions of volatile organic compounds and nitric oxide from biogenic sources is becoming increasingly important in regulatory air quality modeling as levels of anthropogenic emissions continue to decrease and stricter health-based air quality standards are being adopted. However, considerable uncertainties still exist in the current estimation methodologies for biogenic emissions. The impact of these uncertainties on ozone and fine particulate matter (PM2.5) levels for the eastern United States was studied, focusing on biogenic emissions estimates from two commonly used biogenic emission models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emissions Inventory System (BEIS). Photochemical grid modeling simulations were performed for two scenarios: one reflecting present day conditions and the other reflecting a hypothetical future year with reductions in emissions of anthropogenic oxides of nitrogen (NOx). For ozone, the use of MEGAN emissions resulted in a higher ozone response to hypothetical anthropogenic NOx emission reductions compared with BEIS. Applying the current U.S. Environmental Protection Agency guidance on regulatory air quality modeling in conjunction with typical maximum ozone concentrations, the differences in estimated future year ozone design values (DVF) stemming from differences in biogenic emissions estimates were on the order of 4 parts per billion (ppb), corresponding to approximately 5% of the daily maximum 8-hr ozone National Ambient Air Quality Standard (NAAQS) of 75 ppb. For PM2.5, the differences were 0.1-0.25 microg/m3 in the summer total organic mass component of DVFs, corresponding to approximately 1-2% of the value of the annual PM2.5 NAAQS of 15 microg/m3. Spatial variations in the ozone and PM2.5 differences also reveal that the impacts of different biogenic emission estimates on ozone and PM2.5 levels are dependent on ambient levels of anthropogenic emissions.

  3. Estimating Anthropogenic Emissions of Hydrogen Chloride and Fine Particulate Chloride in China

    Science.gov (United States)

    Fu, X.; Wang, T.; Wang, S.; Zhang, L.

    2017-12-01

    Nitryl chloride (ClNO2) can significantly impact the atmospheric photochemistry via photolysis and subsequent reactions of chlorine radical with other gases. The formation of ClNO2 in the atmosphere is sensitive to the emissions of chlorine-containing particulates from oceanic and anthropogenic sources. For China, the only available anthropogenic chlorine emission inventory was compiled for the year 1990 with a coarse resolution of 1 degree. In this study, we developed an up-to-date anthropogenic inventory of hydrogen chloride (HCl) and fine particulate chloride (Cl-) emissions in China for the year 2014, including coal burning, industrial processes, biomass burning and waste burning. Bottom-up and top-down methodologies were combined. Detailed local data (e.g. Cl content in coal, control technologies, etc.) were collected and applied. In order to improve the spatial resolution of emissions, detailed point source information were collected for coal-fired power plants, cement factories, iron & steel factories and waste incineration factories. Uncertainties of this emission inventory and their major causes were analyzed using the Monte Carlo method. This work enables better quantification of the ClNO2 production and impact over China.

  4. Nanoparticle emissions from combustion engines

    CERN Document Server

    Merkisz, Jerzy

    2015-01-01

     This book focuses on particulate matter emissions produced by vehicles with combustion engines. It describes the physicochemical properties of the particulate matter, the mechanisms of its formation and its environmental impacts (including those on human beings). It discusses methods for measuring particulate mass and number, including the state-of-the-art in Portable Emission Measurement System (PEMS) equipment for measuring the exhaust emissions of both light and heavy-duty vehicles and buses under actual operating conditions. The book presents the authors’ latest investigations into the relations between particulate emission (mass and number) and engine operating parameters, as well as their new findings obtained through road tests performed on various types of vehicles, including those using diesel particulate filter regeneration. The book, which addresses the needs of academics and professionals alike, also discusses relevant European regulations on particulate emissions and highlights selected metho...

  5. Historic and projected vehicle use and carbon dioxide emissions

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Data are presented in this chapter that show a decline in total carbon dioxide emissions per vehicle of about 20 between 1970 and 1987. However, it is also shown that the fuel economy gains of the 1970s and early 1980s in many countries have begun to erode. In the US, low fuel prices combined with a failure to strengthen fuel efficiency standards have led to recent declines in new-car fuel efficiency. Even if these trends are reversed carbon dioxide in the transport sector will not be reduced if over all motor vehicle use continues along present lines

  6. Nitrous Oxide (N2O) Emissions from Vehicles

    International Nuclear Information System (INIS)

    Becker, K.H.; Kurtenbach, R.; Lorzer, J.C.; Wiesen, P.; Jensen, T.; Wallington, T.J.

    2000-01-01

    N2O is an important greenhouse gas and accurate emission data are required to assess its impact on global climate. It is well established that automobiles, particularly those equipped with 3-way catalysts, emit N2O. However, the vehicle contribution to the global N2O budget is uncertain. We report results of N2O emission measurements performed in a road tunnel in Germany and using a chassis dynamometer system in the USA. We estimate that the global vehicle fleet emits (0.12±0.06) Tg yr-1 of N2O. From the emission factor (g N2O/g CO2) determined an annual N2O emission of (0.12±0.06) Tg yr-1 of N2O (0.08±0.04 Tg N yr-1) for the global vehicle fleet has been estimated which represents 1-4% of the atmospheric growth rate of this species. 9 refs

  7. Intelligent emission-sensitive routing for plugin hybrid electric vehicles.

    Science.gov (United States)

    Sun, Zhonghao; Zhou, Xingshe

    2016-01-01

    The existing transportation sector creates heavily environmental impacts and is a prime cause for the current climate change. The need to reduce emissions from this sector has stimulated efforts to speed up the application of electric vehicles (EVs). A subset of EVs, called plug-in hybrid electric vehicles (PHEVs), backup batteries with combustion engine, which makes PHEVs have a comparable driving range to conventional vehicles. However, this hybridization comes at a cost of higher emissions than all-electric vehicles. This paper studies the routing problem for PHEVs to minimize emissions. The existing shortest-path based algorithms cannot be applied to solving this problem, because of the several new challenges: (1) an optimal route may contain circles caused by detour for recharging; (2) emissions of PHEVs not only depend on the driving distance, but also depend on the terrain and the state of charge (SOC) of batteries; (3) batteries can harvest energy by regenerative braking, which makes some road segments have negative energy consumption. To address these challenges, this paper proposes a green navigation algorithm (GNA) which finds the optimal strategies: where to go and where to recharge. GNA discretizes the SOC, then makes the PHEV routing problem to satisfy the principle of optimality. Finally, GNA adopts dynamic programming to solve the problem. We evaluate GNA using synthetic maps generated by the delaunay triangulation. The results show that GNA can save more than 10 % energy and reduce 10 % emissions when compared to the shortest path algorithm. We also observe that PHEVs with the battery capacity of 10-15 KWh detour most and nearly no detour when larger than 30 KWh. This observation gives some insights when developing PHEVs.

  8. Evaluation of EDAR vehicle emissions remote sensing technology.

    Science.gov (United States)

    Ropkins, Karl; DeFries, Timothy H; Pope, Francis; Green, David C; Kemper, Jim; Kishan, Sandeep; Fuller, Gary W; Li, Hu; Sidebottom, Jim; Crilley, Leigh R; Kramer, Louisa; Bloss, William J; Stewart Hager, J

    2017-12-31

    Despite much work in recent years, vehicle emissions remain a significant contributor in many areas where air quality standards are under threat. Policy-makers are actively exploring options for next generation vehicle emission control and local fleet management policies, and new monitoring technologies to aid these activities. Therefore, we report here on findings from two separate but complementary blind evaluation studies of one new-to-market real-world monitoring option, HEAT LLC's Emission Detection And Reporting system or EDAR, an above-road open path instrument that uses Differential Absorption LIDAR to provide a highly sensitive and selective measure of passing vehicle emissions. The first study, by Colorado Department of Public Health and Environment and Eastern Research Group, was a simulated exhaust gas test exercise used to investigate the instrumental accuracy of the EDAR. Here, CO, NO, CH 4 and C 3 H 8 measurements were found to exhibit high linearity, low bias, and low drift over a wide range of concentrations and vehicle speeds. Instrument accuracy was high (R 2 0.996 for CO, 0.998 for NO; 0.983 for CH 4 ; and 0.976 for C 3 H 8 ) and detection limits were 50 to 100ppm for CO, 10 to 30ppm for NO, 15 to 35ppmC for CH 4 , and, depending on vehicle speed, 100 to 400ppmC 3 for C 3 H 8 . The second study, by the Universities of Birmingham and Leeds and King's College London, used the comparison of EDAR, on-board Portable Emissions Measurement System (PEMS) and car chaser (SNIFFER) system measurements collected under real-world conditions to investigate in situ EDAR performance. Given the analytical challenges associated with aligning these very different measurements, the observed agreements (e.g. EDAR versus PEMS R 2 0.92 for CO/CO 2 ; 0.97 for NO/CO 2 ; ca. 0.82 for NO 2 /CO 2 ; and, 0.94 for PM/CO 2 ) were all highly encouraging and indicate that EDAR also provides a representative measure of vehicle emissions under real-world conditions. Copyright

  9. Policies for Promotion of Electric Vehicles and Factors Influencing Consumers’ Purchasing Decisions of Low Emission Vehicles

    Directory of Open Access Journals (Sweden)

    Matjaz Knez

    2017-06-01

    Full Text Available Recently different studies of green transport have become interesting for policy makers,car manufacturers, customers and energy suppliers. Many stakeholders from the publicand private sectors are investing a lot of effort to identify consumer behaviour for futureimprovements in development of green products and effective strategies, which couldaccelerate the transition to sustainable future. This paper presents the effects of electricvehicle promotional policies and customer preferences about alternative fuel vehicles.This study has shown that the electric vehicle promotional policies adopted in Sloveniahave been unsuccessful, as the share of first-time registered electric vehicles in 2013 wasbelow 1%. For different segments of people whose opinions about low emission vehiclesdiffer, different measures must be adopted. When designing promotional policies focusmust be on the most relevant factors such as the total vehicle price and fuel economy.

  10. Review, improvement and harmonisation of the Nordic particulate matter air emission inventories

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M; Boll Illerup, J [Aarhus Univ. National Environmental Research Institute (NERI) (Denmark); Kindbom, K; Sjodin, AA [Swedish Environmental Research Institute (IVL) (Sweden); Saarinen, K; Mikkola-Pusa, J [Finlands Miljoecentral (SYKE) (Finland); Aasestad, K [Statistisk Sentralbyraa (SSB) (Norway); Hallsdottir, B [Environmental and Food Agency Iceland (IS); Makela, K [Technical Research Centre of Finland (VTT) (Finland)

    2010-12-15

    In this study the Nordic particulate matter (PM) emission inventories are compared and for the most important sources - residential wood burning and road transport - a quality analysis is carried out based on PM measurements conducted and models used in the Nordic countries. All the institutions in charge of the work on emission inventories in the Nordic countries have participated in this project together with researchers performing PM measurements in the residential and transport sectors in the Nordic countries in order to increase the quality of the PM national inventories. The ratio between the reported emissions of PM{sub 10} and PM{sub 2.5} was calculated for each country. Norway has the largest share of PM{sub 2.5} compared to PM{sub 10} (88 %), whereas Finland has the lowest (66 %). Denmark and Sweden are right in the middle with 73 and 76 %, respectively. The completeness of the inventories was assessed with particular emphasis on the categories where emissions were reported by one or more countries, while the other categories reported notation keys. It is found that the PM emission inventories generally are complete and that the sources reported as not estimated only are expected to have minor contributions to the total PM emissions. The variability of emission factors for residential wood combustion is discussed and it is illustrated that the emission factors can vary by several orders of magnitude. (Author)

  11. The effect of diesel properties on the emissions of particulate matter

    International Nuclear Information System (INIS)

    Bello, A; Torres, J; Herrera, J; Sarmiento, J

    2000-01-01

    An evaluation was carried out on the effect that modifying some properties of Colombian diesel fuel, such as final boiling point (FBP), density and sulfur content, has on the emissions of particulate matter (PM). Four diesel engines with different technologies and work capacity were used for the evaluation. Different alternatives to modify the properties of commercial diesel fuel, from the fuel treatment viewpoint, as well as that of the incorporation or segregation of some of the streams from the pool at the Barrancabermeja refinery were studied. The particulate matter was measured using a partial flow (AVL-SPC472) Constant volume sampler (CVS) with following the 13-step steady state European cycle and the ECE-R49 European guideline. The tests were performed at the Instituto Colombiano del Petroleo. (ICP) test cell in the city of Bucaramanga, Colombia. General tendencies show reductions of up to 25% in PM emissions when final boiling point and sulfur content are reduced. But levels of reduction vary from one engine to another depending on technology and working time. As a baseline, the emission levels of the commercial diesel fuel for each engine are used, and as a reference the results obtained are compared with the EURO I and II European standards defined for the emission levels of heavy duty engines

  12. PM, NOx and butane emissions from on-road vehicle fleets in Hong Kong and their implications on emission control policy

    Science.gov (United States)

    Ning, Zhi; Wubulihairen, Maimaitireyimu; Yang, Fenhuan

    2012-12-01

    Vehicular emissions are the major sources of air pollution in urban areas. For metropolitan cities with large population working and living in environments with direct traffic impact, emission control is of great significance to protect public health. Implementation of more stringent emission standards, retrofitting fleet with emission control devices and switching to clearer fuel has been commonly practiced in different cities including Hong Kong. The present study employed a new plume chasing method for effective and quick evaluation of on-road fleet emission factors of particulate matter (PM), nitrogen oxides (NOx), and butane from heavy duty diesel trucks, diesel buses and liquefied petroleum gas (LPG) vehicles. The results showed distinct profiles of the emissions from different fleets with excessive butane emissions from LPG fleet and contrasting PM and NOx emissions from diesel trucks and buses fleets. A cross comparison was also made with emission data from other cities and from historic local studies. The implications of the observed difference on the effectiveness of emission control measures and policy are discussed with recommendations of direction for future research and policy making.

  13. Ammonia, hydrogen sulfide, carbon dioxide and particulate matter emissions from California high-rise layer houses

    Science.gov (United States)

    Lin, X.-J.; Cortus, E. L.; Zhang, R.; Jiang, S.; Heber, A. J.

    2012-01-01

    Ammonia and hydrogen sulfide are hazardous substances that are regulated by the U.S. Environmental Protection Agency through community right-to-know legislation (EPCRA, EPA, 2011). The emissions of ammonia and hydrogen sulfide from large commercial layer facilities are of concern to legislators and nearby neighbors. Particulate matter (PM 10 and PM 2.5) released from layer houses are two of seven criteria pollutants for which EPA has set National Ambient Air Quality Standards as required by the Clean Air Act. Therefore, it is important to quantify the baseline emissions of these pollutants. The emissions of ammonia, hydrogen sulfide, carbon dioxide and PM from two California high-rise layer houses were monitored for two years from October 2007 to October 2009. Each house had 32,500 caged laying hens. The monitoring site was setup in compliance with a U.S. EPA-approved quality assurance project plan. The results showed the average daily mean emission rates of ammonia, hydrogen sulfide and carbon dioxide were 0.95 ± 0.67 (standard deviation) g d -1 bird -1, 1.27 ± 0.78 mg d -1 bird -1 and 91.4 ± 16.5 g d -1 bird -1, respectively. The average daily mean emission rates of PM 2.5, PM 10 and total suspended particulate (TSP) were 5.9 ± 12.6, 33.4 ± 27.4, and 78.0 ± 42.7 mg d -1 bird -1, respectively. It was observed that ammonia emission rates in summer were lower than in winter because the high airflow stabilized the manure by drying it. The reductions due to lower moisture content were greater than the increases due to higher temperature. However, PM 10 emission rates in summer were higher than in winter because the drier conditions coupled with higher internal air velocities increased PM 10 release from feathers, feed and manure.

  14. Vehicle emissions and effects on air quality: indoors and outdoors

    International Nuclear Information System (INIS)

    Perry, R.; Gee, I.L.

    1994-01-01

    Vehicle emissions of non-regulated volatile organic compounds (VOCs), such as benzene, can form a major contribution to pollution of the indoor as well as the outdoor environment. Several of these compounds are considered to be a health risk and are important factors in the production of photochemical smog. The introduction of unleaded and particularly 'super unleaded' fuels has significantly increased levels of aromatic compounds in petrol world-wide and has led to changes in fuel composition with respect to olefins and the use of oxygenates. Increased aromatics, olefins and other compounds in fuels used in vehicles not fitted with catalytic converters have shown to increase emissions of benzene, 1,4-budatiene and other VOCs as well as contributing to increases in photochemical smog precursors. Increases in VOC levels in ambient air clearly produce increased indoor air pollution, particularly in naturally ventilated buildings. (author) 6 figs., 5 tabs., 30 refs

  15. Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, John [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wood, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Shapiro, Evan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-11

    With the aim of reducing greenhouse gas emissions associated with the transportation sector, policy-makers are supporting a multitude of measures to increase electric vehicle adoption. The actual level of emission reduction associated with the electrification of the transport sector is dependent on the contexts that determine when and where drivers charge electric vehicles. This analysis contributes to our understanding of the degree to which a particular electricity grid profile, vehicle type, and charging patterns impact CO2 emissions from light-duty, plug-in electric vehicles. We present an analysis of emissions resulting from both battery electric and plug-in hybrid electric vehicles for four charging scenarios and five electricity grid profiles. A scenario that allows drivers to charge electric vehicles at the workplace yields the lowest level of emissions for the majority of electricity grid profiles. However, vehicle emissions are shown to be highly dependent on the percentage of fossil fuels in the grid mix, with different vehicle types and charging scenarios resulting in fewer emissions when the carbon intensity of the grid is above a defined level. Restricting charging to off-peak hours results in higher total emissions for all vehicle types, as compared to other charging scenarios.

  16. PARTICULATE MATTER CONCENTRATION AND EMISSION FACTOR IN THREE DIFFERENT LAYING HEN HOUSING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Annamaria Costa

    2009-09-01

    Full Text Available The aim of this study was to evaluate PM10 concentration in three different laying hens houses (traditional battery cages with aerated open manure storage, aviary system and vertical tiered cages with manure belts with forced air drying and to evaluate particulate matter emission into atmosphere during one year of observation. Internal and external temperature and relative humidity, ventilation rate, PM10 concentration have been continuously monitored in order to evaluate particulate matter concentration changes during the day and the season and to define PM10 emission factors. PM10 concentration was corrected by gravimetric technique to lower measurements error. In the aviary system house, TSP and fine particulate matter (particles smaller than 2.5 micron concentration was measured. Average yearly PM10 concentration was remarkably higher in the aviary system house with 0.215 mg m-3 vs 108 mg m-3 for the ventilated belt house and vs 0.094 mg m-3 for the traditional battery cages house. In the Aviary system housing, TSP concentration was 0.444 mg m-3 and PM2.5 was 0.032 mg m-3, highlighting the existence of a severe working environment for men and animals. Recorded values for PM10 emission were 0.433 mg h-1 hen-1 for battery cages housing type, 0.081 mg h-1 hen-1 for ventilated belt cages house, values lower than those available in literature, while the aviary system housing type showed the highest PM10 emission (1.230 mg h-1 hen-1 with appreciable peaks during the morning, together with the increased animal activity and daily farmer operations, as feed administration, cleaning and droppings removal.

  17. Particulate Filtration from Emissions of a Plasma Pyrolysis Assembly Reactor Using Regenerable Porous Metal Filters

    Science.gov (United States)

    Agui, Juan H.; Abney, Morgan; Greenwood, Zachary; West, Philip; Mitchell, Karen; Vijayakumar, R.; Berger, Gordon M.

    2017-01-01

    Microwave-based plasma pyrolysis technology is being studied as a means of supporting oxygen recovery in future spacecraft life support systems. The process involves the conversion of methane produced from a Sabatier reactor to acetylene and hydrogen, with a small amount of solid carbon particulates generated as a side product. The particles must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on porous metal media filters for removing the carbon particulate emissions from the PPA exit gas stream and to provide in situ media regeneration capability. Because of the high temperatures involved in oxidizing the deposited carbon during regeneration, there was particular focus in this development on the materials that could be used, the housing design, and heating methods. This paper describes the design and operation of the filter and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC.

  18. Power plant emissions: particulate matter-related health damages and the benefits of alternative emission reduction scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, C.

    2004-06-15

    This report estimates the avoidable health effects of each of a series of alternative regulatory scenarios for power plants, focusing on the adverse human health effects due to exposure to fine particulate matter (PM2.5) This report uses the same analytical methods that the U.S. Environmental Protection Agency used in 2003 to prepare an analysis of the potential health effects of the proposed Clear Skies Act (EPA 2003). This report conducts an analysis of the impacts in 2010 and 2020 of three policy alternatives to the proposed Clear Skies Act, The Jeffords/Lieberman/Collins 'The Clean Power Act', S. 366, and the EPA August 2001 Straw Proposal (one of several alternatives EPA analyzed prior to the announcement of the Clear Skies Initiative in 2002). The report also examines the health impacts associated with the total emissions from coal fired electricity generating units in 2010. Chapter 2 describes the emissions inventory estimates, and the changes in the emissions associated with each scenario analyzed. Chapter 3 describes the methods used to estimate changes in particulate matter concentrations. Chapter 4 describes general issues arising in estimating and valuing changes in adverse health effects associated with changes in particulate matter. Chapter 5 describes in some detail the methods used for estimating and valuing adverse health effects, and Chapter 6 presents the results of these analyses. Chapter 7 presents estimates of the impact of these alternative policy options on the PM non-attainment status. 117 refs., 21 figs., 32 tabs., 3 apps.

  19. Radiation dose estimates due to air particulate emissions from selected phosphate industry operations

    International Nuclear Information System (INIS)

    Partridge, J.E.; Horton, T.R.; Sensintaffar, E.L.; Boysen, G.A.

    1978-06-01

    The EPA Office of Radiation Programs has conducted a series of studies to determine the radiological impact of the phosphate mining and milling industry. This report describes the efforts to estimate the radiation doses due to airborne emissions of particulates from selected phosphate milling operations in Florida. Two wet process phosphoric acid plants and one ore drying facility were selected for this study. The 1976 Annual Operations/Emissions Report, submitted by each facility to the Florida Department of Environmental Regulation, and a field survey trip by EPA personnel to each facility were used to develop data for dose calculations. The field survey trip included sampling for stack emissions and ambient air samples collected in the general vicinity of each plant. Population and individual radiation dose estimates are made based on these sources of data

  20. Particulate matter emission modelling based on soot and SOF from direct injection diesel engines

    International Nuclear Information System (INIS)

    Tan, P.Q.; Hu, Z.Y.; Deng, K.Y.; Lu, J.X.; Lou, D.M.; Wan, G.

    2007-01-01

    Particulate matter (PM) emission is one of the major pollutants from diesel engines, and it is harmful for human health and influences the atmospheric visibility. In investigations for reducing PM emission, a simulation model for PM emission is a useful tool. In this paper, a phenomenological, composition based PM model of direct injection (DI) diesel engines has been proposed and formulated to simulate PM emission. The PM emission model is based on a quasi-dimensional multi-zone combustion model using the formation mechanisms of the two main compositions of PM: soot and soluble organic fraction (SOF). First, the quasi-dimensional multi-zone combustion model is given. Then, two models for soot and SOF emissions are established, respectively, and after that, the two models are integrated into a single PM emission model. The soot emission model is given by the difference between a primary formation model and an oxidation model of soot. The soot primary formation model is the Hiroyasu soot formation model, and the Nagle and Strickland-Constable model is adopted for soot oxidation. The SOF emission model is based on an unburned hydrocarbons (HC) emission model, and the HC emission model is given by the difference between a HC primary formation model and a HC oxidation model. The HC primary formation model considers fuel injected and mixed beyond the lean combustion limit during ignition delay and fuel effusing from the nozzle sac volume at low pressure and low velocity. In order to validate the PM emission model, experiments were performed on a six cylinder, turbocharged and intercooled DI diesel engine. The simulation results show good agreement with the experimental data, which indicates the validity of the PM emission model. The calculation results show that the distinctions between PM and soot formation rates are mainly in the early combustion stage. The SOF formation has an important influence on the PM formation at lower loads, and soot formation dominates the

  1. On-road heavy-duty diesel particulate matter emissions modeled using chassis dynamometer data.

    Science.gov (United States)

    Kear, Tom; Niemeier, D A

    2006-12-15

    This study presents a model, derived from chassis dynamometer test data, for factors (operational correction factors, or OCFs) that correct (g/mi) heavy-duty diesel particle emission rates measured on standard test cycles for real-world conditions. Using a random effects mixed regression model with data from 531 tests of 34 heavy-duty vehicles from the Coordinating Research Council's E55/E59 research project, we specify a model with covariates that characterize high power transient driving, time spent idling, and average speed. Gram per mile particle emissions rates were negatively correlated with high power transient driving, average speed, and time idling. The new model is capable of predicting relative changes in g/mi on-road heavy-duty diesel particle emission rates for real-world driving conditions that are not reflected in the driving cycles used to test heavy-duty vehicles.

  2. 78 FR 32223 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards

    Science.gov (United States)

    2013-05-29

    ...-OAR-2011-0135; FRL-9818-5] RIN 2060-A0 Control of Air Pollution From Motor Vehicles: Tier 3 Motor... extension of the public comment period for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards'' (the proposed rule is hereinafter referred to as...

  3. Measurement of emissions of fine particulate organic matter from Chinese cooking

    Science.gov (United States)

    He, Ling-Yan; Hu, Min; Huang, Xiao-Feng; Yu, Ben-De; Zhang, Yuan-Hang; Liu, De-Quan

    Cooking emissions may contribute significantly to atmospheric organic particles in urban environment in China, and thus need to be examined first for its chemical compositions and characteristics. The particulate organic emissions of the two cooking styles of Chinese cuisine, that is, Hunan Cooking and Cantonese Cooking, were characterized in Shenzhen. More than half of the PM 2.5 mass is due to organic compounds, and over 90 species of organic compounds were identified and quantified, accounting for 26.1% of bulk organic particle mass and 20.7% of PM 2.5. Fatty acids, diacids and steroids were the major organic compounds emitted from both styles of cooking. Of the quantified organic mass, over 90% was fatty acids. The mass of organic species, and the molecular distribution of n-alkanes and PAHs indicated the dissimilarities between the two different cooking styles, but generally the major parts of the organic particulate emissions of the two restaurants were similar, showing less difference than between Chinese and American cooking.

  4. Particulate emissions calculations from fall tillage operations using point and remote sensors.

    Science.gov (United States)

    Moore, Kori D; Wojcik, Michael D; Martin, Randal S; Marchant, Christian C; Bingham, Gail E; Pfeiffer, Richard L; Prueger, John H; Hatfield, Jerry L

    2013-07-01

    Soil preparation for agricultural crops produces aerosols that may significantly contribute to seasonal atmospheric particulate matter (PM). Efforts to reduce PM emissions from tillage through a variety of conservation management practices (CMPs) have been made, but the reductions from many of these practices have not been measured in the field. A study was conducted in California's San Joaquin Valley to quantify emissions reductions from fall tillage CMP. Emissions were measured from conventional tillage methods and from a "combined operations" CMP, which combines several implements to reduce tractor passes. Measurements were made of soil moisture, bulk density, meteorological profiles, filter-based total suspended PM (TSP), concentrations of PM with an equivalent aerodynamic diameter ≤10 μm (PM) and PM with an equivalent aerodynamic diameter ≤2.5 μm (PM), and aerosol size distribution. A mass-calibrated, scanning, three-wavelength light detection and ranging (LIDAR) procedure estimated PM through a series of algorithms. Emissions were calculated via inverse modeling with mass concentration measurements and applying a mass balance to LIDAR data. Inverse modeling emission estimates were higher, often with statistically significant differences. Derived PM emissions for conventional operations generally agree with literature values. Sampling irregularities with a few filter-based samples prevented calculation of a complete set of emissions through inverse modeling; however, the LIDAR-based emissions dataset was complete. The CMP control effectiveness was calculated based on LIDAR-derived emissions to be 29 ± 2%, 60 ± 1%, and 25 ± 1% for PM, PM, and TSP size fractions, respectively. Implementation of this CMP provides an effective method for the reduction of PM emissions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide

    Directory of Open Access Journals (Sweden)

    J.-P. Jalkanen

    2012-03-01

    Full Text Available A method is presented for the evaluation of the exhaust emissions of marine traffic, based on the messages provided by the Automatic Identification System (AIS, which enable the positioning of ship emissions with a high spatial resolution (typically a few tens of metres. The model also takes into account the detailed technical data of each individual vessel. The previously developed model was applicable for evaluating the emissions of NOx, SOx and CO2. This paper addresses a substantial extension of the modelling system, to allow also for the mass-based emissions of particulate matter (PM and carbon monoxide (CO. The presented Ship Traffic Emissions Assessment Model (STEAM2 allows for the influences of accurate travel routes and ship speed, engine load, fuel sulphur content, multiengine setups, abatement methods and waves. We address in particular the modeling of the influence on the emissions of both engine load and the sulphur content of the fuel. The presented methodology can be used to evaluate the total PM emissions, and those of organic carbon, elemental carbon, ash and hydrated sulphate. We have evaluated the performance of the extended model against available experimental data on engine power, fuel consumption and the composition-resolved emissions of PM. We have also compared the annually averaged emission values with those of the corresponding EMEP inventory, As example results, the geographical distributions of the emissions of PM and CO are presented for the marine regions of the Baltic Sea surrounding the Danish Straits.

  6. Effect of external hot EGR dilution on combustion, performance and particulate emissions of a GDI engine

    International Nuclear Information System (INIS)

    Xie, Fangxi; Hong, Wei; Su, Yan; Zhang, Miaomiao; Jiang, Beiping

    2017-01-01

    Highlights: • Effect of hot EGR on combustion and PN emission is investigated on a GDI engine. • Appropriate addition of hot EGR can reduce fuel consumption, NO_x and PN emission. • Relationship between BSFC and emissions of hot EGR is better than cooled EGR. • Condition with low-medium speeds and medium loads are more suitable for hot EGR. - Abstract: In this paper, an experimental investigation about the influence of hot EGR addition on the engine combustion, performance and particulate number emission was conducted at a spark-ignition gasoline direct injection (GDI) engine. Meanwhile, the different effects between cooled and hot EGR addition methods were compared and the variations of fuel consumption and particle number emissions under six engine operating conditions with different speeds and loads were analyzed. The research result indicated that increasing hot EGR ratio properly with adjustment of ignition timing could effectively improve the relationship among brake-specific fuel consumption (BSFC), NO_x and particle number emissions. When hot EGR ratio increased to 20%, not only BSFC but also the NO_x and particle number emissions were reduced, which were about 7%, 87% and 36% respectively. Compared with cooled EGR, the flame development and propagation speeds were accelerated, and cycle-by-cycle combustion variation decreased with hot EGR. Meanwhile, using hot EGR made the engine realize a better relationship among fuel consumption, NO_x and particle number emissions. The biggest improvements of BSFC, NO_x and particle number emissions were obtained at low-medium speed and medium load engine conditions by hot EGR addition method. While engine speed increased and load decreased, the improvement of engine fuel consumption and emission reduced with hot EGR method.

  7. Methods of analysis for complex organic aerosol mixtures from urban emission sources of particulate carbon

    International Nuclear Information System (INIS)

    Mazurek, M.A.; Hildemann, L.M.; Simoneit, B.R.T.

    1990-10-01

    Organic aerosols comprise approximately 30% by mass of the total fine particulate matter present in urban atmospheres. The chemical composition of such aerosols is complex and reflects input from multiple sources of primary emissions to the atmosphere, as well as from secondary production of carbonaceous aerosol species via photochemical reactions. To identify discrete sources of fine carbonaceous particles in urban atmospheres, analytical methods must reconcile both bulk chemical and molecular properties of the total carbonaceous aerosol fraction. This paper presents an overview of the analytical protocol developed and used in a study of the major sources of fine carbon particles emitted to an urban atmosphere. 23 refs., 1 fig., 2 tabs

  8. The impact of particulate matter (PM and nitric oxides (NOx on human health and an analysis of selected sources accounting for their emission in Poland

    Directory of Open Access Journals (Sweden)

    Jakub Krzeszowiak

    2016-10-01

    Full Text Available Introduction and objective: This paper is concerned with the harmful impact of nitric oxides (NOx and particulate matter (PM on humans. The objective was to determine which source of emission is the most urgent in terms of its reduction.Abbreviated description of the state of knowledge: In published epidemiological studies multiple notifications indicating the harmful impact of particulate matter on human health can be found. The harmful impact is underscored by the increase in the number of hospitalisations owing to diseases of respiratory and cardio-vascular systems, as well as by the rise in general fatality rate. The analysis of the PM impact on the human body is prompted by the fact that its detrimental effects are not clearly defined. Additionally, nitric oxides contribute to the increased number of exacerbations of respiratory disease and are a factor increasing susceptibility to development of local inflammation. Conclusions: The following study is meant to show that the air pollution which derives from vehicles (NOx and PM has a significant impact on human health. This applies particularly to residents of cities and big towns. This issue has gained special importance in Poland. According to the data from the Central Statistical Office, the increasing number of vehicles in use and their age lead to increased emission of the pollutants considered.

  9. A comparative analysis of several vehicle emission models for road freight transportation

    NARCIS (Netherlands)

    Demir, E.; Bektas, T.; Laporte, G.

    2011-01-01

    Reducing greenhouse gas emissions in freight transportation requires using appropriate emission models in the planning process. This paper reviews and numerically compares several available freight transportation vehicle emission models and also considers their outputs in relations to field studies.

  10. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Science.gov (United States)

    2010-07-01

    ....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Oxides of nitrogen, carbon monoxide...

  11. 40 CFR Table 2 to Subpart Ddddd of... - Operating Limits for Boilers and Process Heaters With Particulate Matter Emission Limits

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false Operating Limits for Boilers and Process Heaters With Particulate Matter Emission Limits 2 Table 2 to Subpart DDDDD of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION...

  12. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States

    Science.gov (United States)

    The aerosol emissions from prescribed fires in the Southeastern United States were measured and compared to emissions from laboratory burns with fuels collected from the site. Fine particulate matter (PM2.5), black carbon, and aerosol light scattering and absorption were characte...

  13. Proton-induced X-ray emission analysis of marine particulates

    International Nuclear Information System (INIS)

    Burnett, W.C.; Mitchum, G.T.

    1981-01-01

    We report a methodology used to analyze suspended marine particulates by particle induced X-ray emission (PIXE). Water samples from an estuary in Brazil were filtered soon after collection onto pre-weighed Nuclepore filters, washed with deionized water, dried to constant weight and analyzed as thin targets. Because of the relatively high mass loadings (0.1-1.0 mg/cm 2 ) on the filters, proton bombardment times of a few minutes were adequate for maintaining good counting statistics. Precision and accuary were determined by replicate analysis and intercomparison to geochemical standards. Suspensions of standards in deionized water were filtered dried, weighed and analyzed in a similar fashion as our samples of marine particulates. Net X-ray intensities were related to mass by calibration against pure elemental standards. Initial experiments showed systematically low concentrations for all elements determined by PIXE relative to known values. Further experiments verified that this systematic errors was due to an uneven distribution of mass on the surface of the filters. Improvements in the filtration technique have eliminated the topographic effect on our samples and the PIXE resultes were substantially improved. Variations in matrix and particle size of the samples analyzed did not cause any measureable analytical effect. PIXE thus seems well suited for providing rapid, multi-element data on samples of marine particulates if suitable precautions are made during the sample preparation process. (orig.)

  14. Emissions of particulate-bound elements from stationary diesel engine: Characterization and risk assessment

    Science.gov (United States)

    Betha, Raghu; Balasubramanian, Rajasekhar

    2011-09-01

    There has been an increasing concern about the emissions of airborne particulate matter (PM) from diesel engines because of their close association with adverse health and environmental impacts. Among the alternative fuels being considered, biodiesel made by the transesterification of waste cooking oil has received wide attention in recent years because of its low cost and the added advantage of reducing waste oil disposal. This study was conducted to make a comparative evaluation of the particulate-bound elements emitted from ultra low sulphur diesel (ULSD) and waste cooking oil-derived biodiesel (B100) and a blend of both the fuels (B50). It was observed that the PM mass concentrations were reduced by about 36% when B100 was used. Crustal elements such as Mg, K and Al were found to be in higher concentrations compared to other elements emitted from both B100 and ULSD. Zn, Cr, Cu, Fe, Ni, Mg, Ba, K were found to be higher in the biodiesel exhaust while Co, Pb, Mn, Cd, Sr, and As were found to be higher in the ULSD exhaust. To evaluate the potential health risk due to inhalation of PM emitted from diesel engines running on ULSD and B100, health risk estimates based on exposure and dose-response assessments of particulate-bound elements were calculated assuming exposure for 24 h. The findings indicate that the exposure to PM of the B100 exhaust is relatively more hazardous and may pose adverse health effects compared to ULSD.

  15. Emissions from residential energy use dominate exposure to ambient fine particulate matter in India

    Science.gov (United States)

    Conibear, L.; Butt, E. W.; Knote, C. J.; Arnold, S.; Spracklen, D. V.

    2017-12-01

    Exposure to ambient particulate matter of less than 2.5 µm in diameter (PM2.5) is a leading cause of disease burden in India. Information on the source contributions to the burden of disease attributable to ambient PM2.5 exposure is critical to support the national and sub-national control of air pollution. Previous studies analysing the contributions of different emission sectors to disease burden in India have been limited by coarse model resolutions and a lack of extensive PM2.5 observations before 2016. We use a regional numerical weather prediction model online-coupled with chemistry, evaluated against extensive surface observations, to make the first high resolution study of the contributions of seven emission sectors to the disease burden associated with ambient PM2.5 exposure in India. We find that residential energy use is the dominant contributing emission sector. Removing air pollution emissions from residential energy use would reduce population-weighted annual mean ambient PM2.5 concentrations by 52%, reducing the number of premature mortalities caused by exposure to ambient PM2.5 by 26%, equivalent to 268,000 (95% uncertainty interval (95UI): 167,000-360,000) lives every year. The smaller fractional reduction in mortality burden is due to the non-linear exposure-response relationship at the high PM2.5 concentrations observed across India and consequently large reductions in emissions are required to reduce the health burden from ambient PM2.5 exposure in India. Keywords: ambient air quality, India, residential energy use, health impact, particulate matter, WRF-Chem

  16. Total Particle Number Emissions from Modern Diesel, Natural Gas, and Hybrid Heavy-Duty Vehicles During On-Road Operation.

    Science.gov (United States)

    Wang, Tianyang; Quiros, David C; Thiruvengadam, Arvind; Pradhan, Saroj; Hu, Shaohua; Huai, Tao; Lee, Eon S; Zhu, Yifang

    2017-06-20

    Particle emissions from heavy-duty vehicles (HDVs) have significant environmental and public health impacts. This study measured total particle number emission factors (PNEFs) from six newly certified HDVs powered by diesel and compressed natural gas totaling over 6800 miles of on-road operation in California. Distance-, fuel- and work-based PNEFs were calculated for each vehicle. Distance-based PNEFs of vehicles equipped with original equipment manufacturer (OEM) diesel particulate filters (DPFs) in this study have decreased by 355-3200 times compared to a previous retrofit DPF dynamometer study. Fuel-based PNEFs were consistent with previous studies measuring plume exhaust in the ambient air. Meanwhile, on-road PNEF shows route and technology dependence. For vehicles with OEM DPFs and Selective Catalytic Reduction Systems, PNEFs under highway driving (i.e., 3.34 × 10 12 to 2.29 × 10 13 particles/mile) were larger than those measured on urban and drayage routes (i.e., 5.06 × 10 11 to 1.31 × 10 13 particles/mile). This is likely because a significant amount of nucleation mode volatile particles were formed when the DPF outlet temperature reached a critical value, usually over 310 °C, which was commonly achieved when vehicle speed sustained over 45 mph. A model year 2013 diesel HDV produced approximately 10 times higher PNEFs during DPF active regeneration events than nonactive regeneration.

  17. Emission of particulate matter from a desktop three-dimensional (3D) printer

    Science.gov (United States)

    Yi, Jinghai; LeBouf, Ryan F.; Duling, Matthew G.; Nurkiewicz, Timothy; Chen, Bean T.; Schwegler-Berry, Diane; Virji, M. Abbas; Stefaniak, Aleksandr B.

    2016-01-01

    ABSTRACT Desktop three-dimensional (3D) printers are becoming commonplace in business offices, public libraries, university labs and classrooms, and even private homes; however, these settings are generally not designed for exposure control. Prior experience with a variety of office equipment devices such as laser printers that emit ultrafine particles (UFP) suggests the need to characterize 3D printer emissions to enable reliable risk assessment. The aim of this study was to examine factors that influence particulate emissions from 3D printers and characterize their physical properties to inform risk assessment. Emissions were evaluated in a 0.5-m3 chamber and in a small room (32.7 m3) using real-time instrumentation to measure particle number, size distribution, mass, and surface area. Factors evaluated included filament composition and color, as well as the manufacturer-provided printer emissions control technologies while printing an object. Filament type significantly influenced emissions, with acrylonitrile butadiene styrene (ABS) emitting larger particles than polylactic acid (PLA), which may have been the result of agglomeration. Geometric mean particle sizes and total particle (TP) number and mass emissions differed significantly among colors of a given filament type. Use of a cover on the printer reduced TP emissions by a factor of 2. Lung deposition calculations indicated a threefold higher PLA particle deposition in alveoli compared to ABS. Desktop 3D printers emit high levels of UFP, which are released into indoor environments where adequate ventilation may not be present to control emissions. Emissions in nonindustrial settings need to be reduced through the use of a hierarchy of controls, beginning with device design, followed by engineering controls (ventilation) and administrative controls such as choice of filament composition and color. PMID:27196745

  18. Emission of particulate matter from a desktop three-dimensional (3D) printer.

    Science.gov (United States)

    Yi, Jinghai; LeBouf, Ryan F; Duling, Matthew G; Nurkiewicz, Timothy; Chen, Bean T; Schwegler-Berry, Diane; Virji, M Abbas; Stefaniak, Aleksandr B

    2016-01-01

    Desktop three-dimensional (3D) printers are becoming commonplace in business offices, public libraries, university labs and classrooms, and even private homes; however, these settings are generally not designed for exposure control. Prior experience with a variety of office equipment devices such as laser printers that emit ultrafine particles (UFP) suggests the need to characterize 3D printer emissions to enable reliable risk assessment. The aim of this study was to examine factors that influence particulate emissions from 3D printers and characterize their physical properties to inform risk assessment. Emissions were evaluated in a 0.5-m(3) chamber and in a small room (32.7 m(3)) using real-time instrumentation to measure particle number, size distribution, mass, and surface area. Factors evaluated included filament composition and color, as well as the manufacturer-provided printer emissions control technologies while printing an object. Filament type significantly influenced emissions, with acrylonitrile butadiene styrene (ABS) emitting larger particles than polylactic acid (PLA), which may have been the result of agglomeration. Geometric mean particle sizes and total particle (TP) number and mass emissions differed significantly among colors of a given filament type. Use of a cover on the printer reduced TP emissions by a factor of 2. Lung deposition calculations indicated a threefold higher PLA particle deposition in alveoli compared to ABS. Desktop 3D printers emit high levels of UFP, which are released into indoor environments where adequate ventilation may not be present to control emissions. Emissions in nonindustrial settings need to be reduced through the use of a hierarchy of controls, beginning with device design, followed by engineering controls (ventilation) and administrative controls such as choice of filament composition and color.

  19. Study on Emission Measurement of Vehicle on Road Based on Binomial Logit Model

    OpenAIRE

    Aly, Sumarni Hamid; Selintung, Mary; Ramli, Muhammad Isran; Sumi, Tomonori

    2011-01-01

    This research attempts to evaluate emission measurement of on road vehicle. In this regard, the research develops failure probability model of vehicle emission test for passenger car which utilize binomial logit model. The model focuses on failure of CO and HC emission test for gasoline cars category and Opacity emission test for diesel-fuel cars category as dependent variables, while vehicle age, engine size, brand and type of the cars as independent variables. In order to imp...

  20. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    Science.gov (United States)

    2017-03-06

    WP-201317) Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-volatile Particulate Matter (PM... Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M. DeWitt, C. Klingshirn, M.D. Cheng, R. Miake-Lye, J. Peck...the performance and viability of two devices to condition aircraft turbine engine exhaust to allow the accurate measurement of total (volatile and non

  1. On-road emissions of light-duty vehicles in europe.

    Science.gov (United States)

    Weiss, Martin; Bonnel, Pierre; Hummel, Rudolf; Provenza, Alessio; Manfredi, Urbano

    2011-10-01

    For obtaining type approval in the European Union, light-duty vehicles have to comply with emission limits during standardized laboratory emissions testing. Although emission limits have become more stringent in past decades, light-duty vehicles remain an important source of nitrogen oxides and carbon monoxide emissions in Europe. Furthermore, persisting air quality problems in many urban areas suggest that laboratory emissions testing may not accurately capture the on-road emissions of light-duty vehicles. To address this issue, we conduct the first comprehensive on-road emissions test of light-duty vehicles with state-of-the-art Portable Emission Measurement Systems. We find that nitrogen oxides emissions of gasoline vehicles as well as carbon monoxide and total hydrocarbon emissions of both diesel and gasoline vehicles generally remain below the respective emission limits. By contrast, nitrogen oxides emissions of diesel vehicles (0.93 ± 0.39 grams per kilometer [g/km]), including modern Euro 5 diesel vehicles (0.62 ± 0.19 g/km), exceed emission limits by 320 ± 90%. On-road carbon dioxide emissions surpass laboratory emission levels by 21 ± 9%, suggesting that the current laboratory emissions testing fails to accurately capture the on-road emissions of light-duty vehicles. Our findings provide the empirical foundation for the European Commission to establish a complementary emissions test procedure for light-duty vehicles. This procedure could be implemented together with more stringent Euro 6 emission limits in 2014. The envisaged measures should improve urban air quality and provide incentive for innovation in the automotive industry.

  2. Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, G.A.; Kerstetter, J.; Lyons, J.K. [and others

    1993-06-01

    Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

  3. Impact of agricultural emission reductions on fine-particulate matter and public health

    Directory of Open Access Journals (Sweden)

    A. Pozzer

    2017-10-01

    Full Text Available A global chemistry-climate model has been used to study the impacts of pollutants released by agriculture on fine-particulate matter (PM2.5, with a focus on Europe, North America, East and South Asia. Simulations reveal that a relatively strong reduction in PM2.5 levels can be achieved by decreasing agricultural emissions, notably of ammonia (NH3 released from fertilizer use and animal husbandry. The absolute impact on PM2.5 reduction is strongest in East Asia, even for small emission decreases. Conversely, over Europe and North America, aerosol formation is not immediately limited by the availability of ammonia. Nevertheless, reduction of NH3 can also substantially decrease PM2.5 concentrations over the latter regions, especially when emissions are abated systematically. Our results document how reduction of agricultural emissions decreases aerosol pH due to the depletion of aerosol ammonium, which affects particle liquid phase and heterogeneous chemistry. Further, it is shown that a 50 % reduction of agricultural emissions could prevent the mortality attributable to air pollution by  ∼ 250 000 people yr−1 worldwide, amounting to reductions of 30, 19, 8 and 3 % over North America, Europe, East and South Asia, respectively. A theoretical 100 % reduction could even reduce the number of deaths globally by about 800 000 per year.

  4. Impact of agricultural emission reductions on fine-particulate matter and public health

    Science.gov (United States)

    Pozzer, Andrea; Tsimpidi, Alexandra P.; Karydis, Vlassis A.; de Meij, Alexander; Lelieveld, Jos

    2017-10-01

    A global chemistry-climate model has been used to study the impacts of pollutants released by agriculture on fine-particulate matter (PM2.5), with a focus on Europe, North America, East and South Asia. Simulations reveal that a relatively strong reduction in PM2.5 levels can be achieved by decreasing agricultural emissions, notably of ammonia (NH3) released from fertilizer use and animal husbandry. The absolute impact on PM2.5 reduction is strongest in East Asia, even for small emission decreases. Conversely, over Europe and North America, aerosol formation is not immediately limited by the availability of ammonia. Nevertheless, reduction of NH3 can also substantially decrease PM2.5 concentrations over the latter regions, especially when emissions are abated systematically. Our results document how reduction of agricultural emissions decreases aerosol pH due to the depletion of aerosol ammonium, which affects particle liquid phase and heterogeneous chemistry. Further, it is shown that a 50 % reduction of agricultural emissions could prevent the mortality attributable to air pollution by ˜ 250 000 people yr-1 worldwide, amounting to reductions of 30, 19, 8 and 3 % over North America, Europe, East and South Asia, respectively. A theoretical 100 % reduction could even reduce the number of deaths globally by about 800 000 per year.

  5. A Comparison of the Health Effects of Ambient Particulate Matter Air Pollution from Five Emission Sources

    Directory of Open Access Journals (Sweden)

    Neil J. Hime

    2018-06-01

    Full Text Available This article briefly reviews evidence of health effects associated with exposure to particulate matter (PM air pollution from five common outdoor emission sources: traffic, coal-fired power stations, diesel exhaust, domestic wood combustion heaters, and crustal dust. The principal purpose of this review is to compare the evidence of health effects associated with these different sources with a view to answering the question: Is exposure to PM from some emission sources associated with worse health outcomes than exposure to PM from other sources? Answering this question will help inform development of air pollution regulations and environmental policy that maximises health benefits. Understanding the health effects of exposure to components of PM and source-specific PM are active fields of investigation. However, the different methods that have been used in epidemiological studies, along with the differences in populations, emission sources, and ambient air pollution mixtures between studies, make the comparison of results between studies problematic. While there is some evidence that PM from traffic and coal-fired power station emissions may elicit greater health effects compared to PM from other sources, overall the evidence to date does not indicate a clear ‘hierarchy’ of harmfulness for PM from different emission sources. Further investigations of the health effects of source-specific PM with more advanced approaches to exposure modeling, measurement, and statistics, are required before changing the current public health protection approach of minimising exposure to total PM mass.

  6. Emission factors for gaseous and particulate pollutants from offshore diesel engine vessels in China

    Science.gov (United States)

    Zhang, Fan; Chen, Yingjun; Tian, Chongguo; Lou, Diming; Li, Jun; Zhang, Gan; Matthias, Volker

    2016-05-01

    Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbour districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel-engine-powered offshore vessels in China (350, 600 and 1600 kW) were measured in this study. Concentrations, fuel-based and power-based emission factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emission factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low-engine-power vessel (HH) than for the two higher-engine-power vessels (XYH and DFH); for instance, HH had NOx EF (emission factor) of 25.8 g kWh-1 compared to 7.14 and 6.97 g kWh-1 of DFH, and XYH, and PM EF of 2.09 g kWh-1 compared to 0.14 and 0.04 g kWh-1 of DFH, and XYH. Average emission factors for all pollutants except sulfur dioxide in the low-engine-power engineering vessel (HH) were significantly higher than that of the previous studies (such as 30.2 g kg-1 fuel of CO EF compared to 2.17 to 19.5 g kg-1 fuel in previous studies, 115 g kg-1 fuel of NOx EF compared to 22.3 to 87 g kg-1 fuel in previous studies and 9.40 g kg-1 fuel of PM EF compared to 1.2 to 7.6 g kg-1 fuel in previous studies), while for the two higher-engine-power vessels (DFH and XYH), most of the average emission factors for pollutants were comparable to the results of the previous studies, engine type was

  7. Determination of inorganic beryllium species in the particulate matter of emissions and working areas

    Energy Technology Data Exchange (ETDEWEB)

    Profumo, A.; Spini, G.; Cucca, L.; Pesavento, M. [Dipartimento di Chimica Gen., Pavia (Italy)

    2002-07-01

    A sequential extraction procedure for separating and determining Be(0), soluble Be(II) inorganic compounds, BeO and beryllium silicates in samples, such as particulate matter of emissions and working areas, has been developed. The proposed procedure has been tested on synthetic samples prepared with the inorganic beryllium compounds, in the presence of atmospherical particulate matter sampled in a laboratory, previously checked for the absence of beryllium. The speciation was then repeated on a sample of fly ash deriving from a solid waste incinerator and on a reference material (Coal Fly ash SRM 1633a, by NIST), followed by an evaluation of matrix spiking and recovery analyses. Performing multiple analyses of the spiked samples assessed the repeatability of the procedure. Quantitative determinations have been made by inductively coupled plasma optical emission spectrometry (ICP-OES) and electrothermal atomic absorption spectrometry (ETAAS). The possible interferences of the most common ions have been investigated. The selective sequential extractions allow one to separate and to determine different inorganic beryllium species, to which a different toxicity and therefore, a different risk are related: it is the case for example of metallic beryllium and beryllium oxide.

  8. NUMERICAL PREDICTION MODELS FOR AIR POLLUTION BY MOTOR VEHICLE EMISSIONS

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2016-12-01

    Full Text Available Purpose. Scientific work involves: 1 development of 3D numerical models that allow calculating the process of air pollution by motor vehicles emissions; 2 creation of models which would allow predicting the air pollution level in urban areas. Methodology. To solve the problem upon assessing the level of air pollution by motor vehicles emissions fundamental equations of aerodynamics and mass transfer are used. For the solution of differential equations of aerodynamics and mass transfer finite-difference methods are used. For the numerical integration of the equation for the velocity potential the method of conditional approximations is applied. The equation for the velocity potential written in differential form, splits into two equations, where at each step of splitting an unknown value of the velocity potential is determined by an explicit scheme of running computation, while the difference scheme is implicit one. For the numerical integration of the emissions dispersion equation in the atmosphere applies the implicit alternating-triangular difference scheme of splitting. Emissions from the road are modeled by a series of point sources of given intensity. Developed numerical models form is the basis of the created software package. Findings. 3D numerical models were developed; they belong to the class of «diagnostic models». These models take into account main physical factors that influence the process of dispersion of harmful substances in the atmosphere when emissions from vehicles in the city occur. Based on the constructed numerical models the computational experiment was conducted to assess the level of air pollution in the street. Originality. Authors have developed numerical models that allow to calculate the 3D aerodynamics of the wind flow in urban areas and the process of mass transfer emissions from the highway. Calculations to determine the area of contamination, which is formed near the buildings, located along the highway were

  9. Health impact assessment of ambient fine particulate matter exposure in impacts by different vehicle control measures in China

    Science.gov (United States)

    LI, S.; Wang, H.; Jiang, F.; Zhang, S.

    2017-12-01

    Road transportation is the one of the largest emission sources contributing to ambient PM2.5 pollution in China. Since the 1990s, China has adopted comprehensive control measures to mitigate vehicle emissions. However, the effects of these measures on reducing emissions, improving air quality and avoiding negative health impacts have not been systematically evaluated. In this study, we combine emissions inventory, air quality modeling, and IER model to evaluate the effect of various vehicle control measures on premature deaths attributable to ambient PM2.5 at a spatial resolution of 36 km × 36 km across China. Our results show that, comparing to no control scenarios, the total vehicular emissions with the actual vehicle emission controls implemented have reduced the emissions of NOX, HC, CO, PM2.5 by 57%, 69%, 75%, 71% respectively; and reduced the national annual mean PM2.5 concentration by 2.5ug/m³ across China by 2010. The number of avoidable deaths associated with reducing PM2.5 level is 150 thousands (95% Confidence interval: 66 thousand - 212 thousand). The geographic distribution of the absolute number of avoidable deaths presents a distinct regional feature and is particularly evident in several regions. The most influential areas are mainly concentrated in Beijing and its south part, which formed a large area of continuous high value. Our results have important policy implications on prioritizing vehicular emission control strategy in China.

  10. Particulate emissions from biomass combustion in small district heating plants; Partikelemissioner fraan biobraensleeldade mindre fjaerrvaermecentraler

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Henrik; Johansson, Linda; Tullin, Claes; Oesterberg, Stefan; Johansson, Mathias [Swedish National Testing and Research Inst., Boraas (Sweden); Leckner, Bo [Chalmers Univ. of Technology, Goeteborg (Sweden). Energy Conversion

    2001-12-01

    In recent years, negative health effects associated with increased levels of PM{sub 10} and PM{sub 2.5} (particles less then 10 and 2.5 {mu}m, respectively) in the ambient air have been highlighted. The development towards a sustainable society will lead to an increased use of biomass in Sweden. Conversion from oil to biomass can lead to increased local levels of particulate matter. In smaller district heating plants (up to a few MW), the dust reduction often is restricted to the use of cyclones/multicyclones having limited separation efficiency for submicron particles (particles less than 1 {mu}m). The emissions are often in the range 100 Mg/nm{sup 3} or higher but very few data regarding particle size distributions from district heating plants have been reported in the literature. In addition to the particle size, a number of other properties might be important for the health effects but the knowledge in this area is limited. It is therefore important to characterise the particles in detail regarding physical and chemical qualities. The objective with the present investigation is to measure and characterise the particulate emissions from two biomass based smaller district heating centrals for different fuel qualities (pellets, briquettes, forest residues and wood chips) and operating parameters such as load and excess air. In addition to analyses of dust and particulates, extensive measurements of the flue composition have been performed. Measurements were performed downstream the multicyclones. The dust emissions were found to be in the range 20 to 120 mg/MJ supplied fuel depending on operating condition and fuel quality. At normal operation, the dust emissions were about 35 to 40 mg/MJ supplied fuel. The particle size distributions were measured using an ELPI (Electric Low Pressure Impactor). The number size distributions were found to be dominated by submicron particles with maxima at diameters between 0. 1 and 0.3 gm. Additional measurements indicated that

  11. Impact of Agricultural Emission Reductions on Fine Particulate Matter and Public Health

    Science.gov (United States)

    Pozzer, A.; Tsimpidi, A.; Karydis, V.; De Meij, A.; Lelieveld, J.

    2017-12-01

    A global chemistry-climate model has been used to study the impacts of pollutants released by agriculture on fine particulate matter (PM2.5), with a focus on Europe, North America, South and East Asia. Hypothetical reduction of agricultural emission of 50%, 66% and 100% have been simulated and compared with the reference simulation. The simulations results reveal that a relatively strong reduction in PM2.5 levels can be achieved by decreasing agricultural emissions, and this effect can almost be exclusively explain by the reduction of ammonia (NH3) emissions, released from fertilizer use and animal husbandry. The absolute impact on PM2.5 reduction is strongest in East Asia, even for small emission decreases, although the relative reduction is very low (below 13% for a full removal of agricultural emissions) . Conversely, over Europe and North America, aerosol formation is not directly limited by the availability of ammonia. Nevertheless, reduction of NH3 can also substantially decrease PM2.5concentrations over the latter regions, especially when emissions are abated systematically and an ammonia limited regions of aerosol growth is reached. Further, our results document how reduction of agricultural emissions decreases aerosol pH due to the depletion of aerosol ammonium, which affects particle liquid phase and heterogeneous chemistry. It is calculated that ammonia emission controls could reduce the particle pH up to 1.5 pH-units in East Asia during winter, and more than 1.7 pH-units in South Asia, theoretically assuming complete agricultural emission removal, which could have repercussions for the reactive uptake of gases from the gas phase and the outgassing of relative weak acids. It is finally shown that a 50% reduction of agricultural emissions could prevent the mortality attributable to air pollution by 250 thousands people per year worldwide, amounting to reductions of 30%, 19% , 8% and 3% over North America, Europe and South Asia and East Asia, respectively

  12. Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services.

    Science.gov (United States)

    Sioshansi, Ramteen; Denholm, Paul

    2009-02-15

    Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology to reduce emissions of greenhouse gases and other pollutants by using electricity instead of petroleum, and byimproving electric system efficiency by providing vehicle-to-grid (V2G) services. We use an electric power system model to explicitly evaluate the change in generator dispatches resulting from PHEV deployment in the Texas grid, and apply fixed and non-parametric estimates of generator emissions rates, to estimate the resulting changes in generation emissions. We find that by using the flexibility of when vehicles may be charged, generator efficiency can be increased substantially. By changing generator dispatch, a PHEVfleet of up to 15% of light-duty vehicles can actually decrease net generator NOx emissions during the ozone season, despite the additional charging load. By adding V2G services, such as spinning reserves and energy storage, CO2, SO2, and NOx emissions can be reduced even further.

  13. Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Date Report No. 3: Diesel Fuel Sulfur Effects on Particulate Matter Emissions

    Energy Technology Data Exchange (ETDEWEB)

    DOE; ORNL; NREL; EMA; MECA

    1999-11-15

    The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim report covers the effects of diesel fuel sulfur level on particulate matter emissions for four technologies.

  14. Cardiovascular effects in patrol officers are associated with fine particulate matter from brake wear and engine emissions

    Directory of Open Access Journals (Sweden)

    Herbst Margaret C

    2004-12-01

    Full Text Available Abstract Background Exposure to fine particulate matter air pollutants (PM2.5 affects heart rate variability parameters, and levels of serum proteins associated with inflammation, hemostasis and thrombosis. This study investigated sources potentially responsible for cardiovascular and hematological effects in highway patrol troopers. Results Nine healthy young non-smoking male troopers working from 3 PM to midnight were studied on four consecutive days during their shift and the following night. Sources of in-vehicle PM2.5 were identified with variance-maximizing rotational principal factor analysis of PM2.5-components and associated pollutants. Two source models were calculated. Sources of in-vehicle PM2.5 identified were 1 crustal material, 2 wear of steel automotive components, 3 gasoline combustion, 4 speed-changing traffic with engine emissions and brake wear. In one model, sources 1 and 2 collapsed to a single source. Source factors scores were compared to cardiac and blood parameters measured ten and fifteen hours, respectively, after each shift. The "speed-change" factor was significantly associated with mean heart cycle length (MCL, +7% per standard deviation increase in the factor score, heart rate variability (+16%, supraventricular ectopic beats (+39%, % neutrophils (+7%, % lymphocytes (-10%, red blood cell volume MCV (+1%, von Willebrand Factor (+9%, blood urea nitrogen (+7%, and protein C (-11%. The "crustal" factor (but not the "collapsed" source was associated with MCL (+3% and serum uric acid concentrations (+5%. Controlling for potential confounders had little influence on the effect estimates. Conclusion PM2.5 originating from speed-changing traffic modulates the autonomic control of the heart rhythm, increases the frequency of premature supraventricular beats and elicits pro-inflammatory and pro-thrombotic responses in healthy young men.

  15. Comparison of Gasoline Direct-Injection (GDI) and Port Fuel Injection (PFI) Vehicle Emissions: Emission Certification Standards, Cold-Start, Secondary Organic Aerosol Formation Potential, and Potential Climate Impacts.

    Science.gov (United States)

    Saliba, Georges; Saleh, Rawad; Zhao, Yunliang; Presto, Albert A; Lambe, Andrew T; Frodin, Bruce; Sardar, Satya; Maldonado, Hector; Maddox, Christine; May, Andrew A; Drozd, Greg T; Goldstein, Allen H; Russell, Lynn M; Hagen, Fabian; Robinson, Allen L

    2017-06-06

    Recent increases in the Corporate Average Fuel Economy standards have led to widespread adoption of vehicles equipped with gasoline direct-injection (GDI) engines. Changes in engine technologies can alter emissions. To quantify these effects, we measured gas- and particle-phase emissions from 82 light-duty gasoline vehicles recruited from the California in-use fleet tested on a chassis dynamometer using the cold-start unified cycle. The fleet included 15 GDI vehicles, including 8 GDIs certified to the most-stringent emissions standard, superultra-low-emission vehicles (SULEV). We quantified the effects of engine technology, emission certification standards, and cold-start on emissions. For vehicles certified to the same emissions standard, there is no statistical difference of regulated gas-phase pollutant emissions between PFIs and GDIs. However, GDIs had, on average, a factor of 2 higher particulate matter (PM) mass emissions than PFIs due to higher elemental carbon (EC) emissions. SULEV certified GDIs have a factor of 2 lower PM mass emissions than GDIs certified as ultralow-emission vehicles (3.0 ± 1.1 versus 6.3 ± 1.1 mg/mi), suggesting improvements in engine design and calibration. Comprehensive organic speciation revealed no statistically significant differences in the composition of the volatile organic compounds emissions between PFI and GDIs, including benzene, toluene, ethylbenzene, and xylenes (BTEX). Therefore, the secondary organic aerosol and ozone formation potential of the exhaust does not depend on engine technology. Cold-start contributes a larger fraction of the total unified cycle emissions for vehicles meeting more-stringent emission standards. Organic gas emissions were the most sensitive to cold-start compared to the other pollutants tested here. There were no statistically significant differences in the effects of cold-start on GDIs and PFIs. For our test fleet, the measured 14.5% decrease in CO 2 emissions from GDIs was much greater than

  16. 40 CFR 93.118 - Criteria and procedures: Motor vehicle emissions budget.

    Science.gov (United States)

    2010-07-01

    ... emissions budget. 93.118 Section 93.118 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... and procedures: Motor vehicle emissions budget. (a) The transportation plan, TIP, and project not from a conforming transportation plan and TIP must be consistent with the motor vehicle emissions budget...

  17. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  18. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies

    International Nuclear Information System (INIS)

    Wang, M. Q.

    1998-01-01

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions

  19. Methodology to estimate particulate matter emissions from certified commercial aircraft engines.

    Science.gov (United States)

    Wayson, Roger L; Fleming, Gregg G; Lovinelli, Ralph

    2009-01-01

    Today, about one-fourth of U.S. commercial service airports, including 41 of the busiest 50, are either in nonattainment or maintenance areas per the National Ambient Air Quality Standards. U.S. aviation activity is forecasted to triple by 2025, while at the same time, the U.S. Environmental Protection Agency (EPA) is evaluating stricter particulate matter (PM) standards on the basis of documented human health and welfare impacts. Stricter federal standards are expected to impede capacity and limit aviation growth if regulatory mandated emission reductions occur as for other non-aviation sources (i.e., automobiles, power plants, etc.). In addition, strong interest exists as to the role aviation emissions play in air quality and climate change issues. These reasons underpin the need to quantify and understand PM emissions from certified commercial aircraft engines, which has led to the need for a methodology to predict these emissions. Standardized sampling techniques to measure volatile and nonvolatile PM emissions from aircraft engines do not exist. As such, a first-order approximation (FOA) was derived to fill this need based on available information. FOA1.0 only allowed prediction of nonvolatile PM. FOA2.0 was a change to include volatile PM emissions on the basis of the ratio of nonvolatile to volatile emissions. Recent collaborative efforts by industry (manufacturers and airlines), research establishments, and regulators have begun to provide further insight into the estimation of the PM emissions. The resultant PM measurement datasets are being analyzed to refine sampling techniques and progress towards standardized PM measurements. These preliminary measurement datasets also support the continued refinement of the FOA methodology. FOA3.0 disaggregated the prediction techniques to allow for independent prediction of nonvolatile and volatile emissions on a more theoretical basis. The Committee for Aviation Environmental Protection of the International Civil

  20. Projection of Chinese motor vehicle growth, oil demand, and CO2 emissions through 2050

    Science.gov (United States)

    2007-01-01

    During this study a methodology was developed to project growth trends of the motor vehicle population and associated oil demand and carbon dioxide (CO2) emissions in China through 2050. In particular, the numbers of highway vehicles, motorcycles, an...

  1. Vehicle fleet emissions of black carbon, polycyclic aromatic hydrocarbons, and other pollutants measured by a mobile laboratory in Mexico City

    Directory of Open Access Journals (Sweden)

    M. Jiang

    2005-01-01

    Full Text Available Black carbon (BC and polycyclic aromatic hydrocarbons (PAHs are of concern due to their effects on climate and health. The main goal of this research is to provide the first estimate of emissions of BC and particle-phase PAHs (PPAHs from motor vehicles in Mexico City. The emissions of other pollutants including carbon monoxide (CO, oxides of nitrogen (NOx, volatile organic compounds (VOCs, and particulate matter of diameter 2.5 μm and less (PM2.5 are also estimated. As a part of the Mexico City Metropolitan Area field campaign in April 2003 (MCMA-2003, a mobile laboratory was driven throughout the city. The laboratory was equipped with a comprehensive suite of gas and particle analyzers, including an aethalometer that measured BC and a photoionization aerosol sensor that measured PPAHs. While driving through traffic, the mobile lab continuously sampled exhaust plumes from the vehicles around it. We have developed a method of automatically identifying exhaust plumes, which are then used as the basis for calculation of fleet-average emissions. In the approximately 75 h of on-road sampling during the field campaign, we have identified ~30 000 exhaust measurement points that represent a variety of vehicle types and driving conditions. The large sample provides a basis for estimating fleet-average emission factors and thus the emission inventory. Motor vehicles in the Mexico City area are estimated to emit 1700±200 metric tons BC, 57±6 tons PPAHs, 1 190 000±40 000 tons CO, 120 000±3000 tons NOx, 240 000±50 000 tons VOCs, and 4400±400 tons PM2.5 per year, not including cold start emissions. The estimates for CO, NOx, and PPAHs may be low by up to 10% due to the slower response time of analyzers used to measure these species. Compared to the government's official motor vehicle emission inventory for the year 2002, the estimates for CO, NOx, VOCs, and PM2.5 are 38% lower, 23% lower, 27% higher, and 25% higher, respectively. The

  2. Mitigating gas emissions at signalised intersections using wireless vehicle detectors

    Directory of Open Access Journals (Sweden)

    Moses Kwasi Torkudzor

    2015-09-01

    Full Text Available Traffic congestion on roads wastes travel times and increases fuel consumption as well as gas emissions which are dangerous to human health. This has led to growing concern about environmental protection and energy conservation and a number of studies to increase fuel economy and reduce gas emissions. To increase travel times so as to reduce fuel consumption and gas emissions, traffic signals at intersections must be well implemented. It is therefore necessary to employ the current technology of wireless sensor networks to enhance the optimisation of the signalised intersections so as to address such a concern. In this study, a vehicular traffic control model was developed to optimise a signalised intersection, using wireless vehicle detectors. Real-time traffic volume gathered were analysed to obtain the peak hour traffic volume causing congestion. The intersection was modelled and simulated in Synchro7 as an actuated signalised model using results from the analysed data. The model for morning peak and evening peak periods gave optimal cycle lengths which result in the reduction of gas emissions, fuel consumption and delay at the intersection.

  3. Evaluation of emission characteristics and compliance of emission standards for in-use petrol driven vehicles in Delhi.

    Science.gov (United States)

    Sarin, S M; Singh, A; Sharma, N; Sharma, K; Shanmugum, P

    2001-01-01

    The tail pipe CO (carbon monoxide) and HC (hydrocarbon) emission characteristics of in-use petrol driven vehicles were evaluated between November 1996 through September 1997 in Delhi. A total of 4300 vehicles were checked at CRRI Pollution Checking Centre. Approximately 90% of the total vehicles meet the prescribed CO emission standards even without following routine I/M practices. The age of the vehicles appeared to have influence on the emission characteristics. The non-compliance level was found to be higher for older vehicles. Insignificant correlation was observed between CO and HC emissions for all categories of in-use petrol driven vehicles. The emission reduction (gain) in CO and HC emissions was observed for two wheelers equipped with four-stroke engines and four wheelers fitted with catalytic converters over their respective conventional vehicles. The observed high compliance levels indicate that existing tail pipe emission standards are lenient and need to be reviewed. The emission standards are proposed for different categories of in-use petrol driven vehicles.

  4. CORRELATION ANALYSIS OF DRIVING CONDITIONS AND ON-ROAD EMISSIONS TRENDS FOR VEHICLES

    Directory of Open Access Journals (Sweden)

    Jawad H. Al-rifai

    2017-01-01

    Full Text Available This paper presents the impact of road grade, vehicle speed, nu mber of vehicles and vehicle type on vehicle emissions. ANOVA analyses were conducte d among different driving conditions and vehicle emissions to discover the signif icant effects of driving conditions on measured emission rates. This study is intended t o improve the understanding of vehicle emission levels in Jordan. Gas emissio ns in real-world driving conditions were measured by a por table emissions measurement un it over six sections of an urban road. The road grade, speed, type and number of veh icles were found to have a significant influence on the rate of gas emissions. Road grade and diesel-fueled vehicles were positively correlate d with average emission rates . The average emission rates were higher at speeds ranging between 60–69 km/h than at three other speed ranges. The results of ANOVA showed a strong and consistent reg ression between rates of emissions measured and grade, speed and diesel vehicle parameters. The grade parameter contributed the most to the rate of emissions compare d to other parameters. Gasoline vehicles contributed the least.

  5. A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles

    International Nuclear Information System (INIS)

    Ma Hongrui; Balthasar, Felix; Tait, Nigel; Riera-Palou, Xavier; Harrison, Andrew

    2012-01-01

    Electric vehicles have recently been gaining increasing worldwide interest as a promising potential long-term solution to sustainable personal mobility; in particular, battery electric vehicles (BEVs) offer zero tailpipe emissions. However, their true ability to contribute to greenhouse gas (GHG) emissions reductions can only be properly assessed by comparing a life cycle assessment of their GHG emissions with a similar assessment for conventional internal combustion vehicles (ICVs). This paper presents an analysis for vehicles typically expected to be introduced in 2015 in two example markets (the UK and California), taking into account the impact of three important factors: •Like-for-like vehicle comparison and effect of real-world driving conditions. •Accounting for the GHG emissions associated with meeting the additional electricity demand for charging the batteries. •GHG emissions associated with vehicle manufacture, disposal, etc. This work demonstrates that all of these factors are important and emphasises that it is therefore crucial to clearly define the context when presenting conclusions about the relative GHG performance of BEVs and ICVs – such relative performance depends on a wide range of factors, including the marginal regional grid GHG intensity, vehicle size, driving pattern, loading, etc. - Highlights: ► Develops new insights into the life cycle GHG emissions of electric vehicles. ► Addresses like-for-like vehicle comparison and effect of real-world driving. ► Accounts for marginal GHG intensity of the electricity used to charge EVs. ► Accounts for the GHG emissions associated with vehicle manufacture and disposal.

  6. Emission characteristics of petrol and diesel driven vehicles in Rewa town

    International Nuclear Information System (INIS)

    Mishra, R.M.; Gupta, A.K.; Parihar, Sarita

    1993-01-01

    Air pollution by road traffic is likely to be severe in most of the major cities of India, in near future. An emission survey was conducted in Rewa town to obtain the basic data on emission characteristics of inservice vehicles. About 250 two wheelers, 110 cars and 350 diesel vehicles were tested for the emissions of carbon monoxide and hydrocarbons. Present paper summarizes the data of vehicular emissions observed in this survey and discusses the emission level of different categories of vehicles, in the light of the proposed national standards and the emission standards enforced in developed countries. (author). 9 refs., 4 tabs

  7. Mobile air quality studies (MAQS in inner cities: particulate matter PM10 levels related to different vehicle driving modes and integration of data into a geographical information program

    Directory of Open Access Journals (Sweden)

    Uibel Stefanie

    2012-10-01

    Full Text Available Abstract Background Particulate matter (PM is assumed to exert a major burden on public health. Most studies that address levels of PM use stationary measure systems. By contrast, only few studies measure PM concentrations under mobile conditions to analyze individual exposure situations. Methods By combining spatial-temporal analysis with a novel vehicle-mounted sensor system, the present Mobile Air Quality Study (MAQS aimed to analyse effects of different driving conditions in a convertible vehicle. PM10 was continuously monitored in a convertible car, driven with roof open, roof closed, but windows open, or windows closed. Results PM10 values inside the car were nearly always higher with open roof than with roof and windows closed, whereas no difference was seen with open or closed windows. During the day PM10 values varied with high values before noon, and occasional high median values or standard deviation values due to individual factors. Vehicle speed in itself did not influence the mean value of PM10; however, at traffic speed (10 – 50 km/h the standard deviation was large. No systematic difference was seen between PM10 values in stationary and mobile cars, nor was any PM10 difference observed between driving within or outside an environmental (low emission zone. Conclusions The present study has shown the feasibility of mobile PM analysis in vehicles. Individual exposure of the occupants varies depending on factors like time of day as well as ventilation of the car; other specific factors are clearly identifiably and may relate to specific PM10 sources. This system may be used to monitor individual exposure ranges and provide recommendations for preventive measurements. Although differences in PM10 levels were found under certain ventilation conditions, these differences are likely not of concern for the safety and health of passengers.

  8. Variations in speciated emissions from spark-ignition and compression-ignition motor vehicles in California's south coast air basin.

    Science.gov (United States)

    Fujita, Eric M; Zielinska, Barbara; Campbell, David E; Arnott, W Patrick; Sagebiel, John C; Mazzoleni, Lynn; Chow, Judith C; Gabele, Peter A; Crews, William; Snow, Richard; Clark, Nigel N; Wayne, W Scott; Lawson, Douglas R

    2007-06-01

    The U.S. Department of Energy Gasoline/Diesel PM Split Study examined the sources of uncertainties in using an organic compound-based chemical mass balance receptor model to quantify the contributions of spark-ignition (SI) and compression-ignition (CI) engine exhaust to ambient fine particulate matter (PM2.5). This paper presents the chemical composition profiles of SI and CI engine exhaust from the vehicle-testing portion of the study. Chemical analysis of source samples consisted of gravimetric mass, elements, ions, organic carbon (OC), and elemental carbon (EC) by the Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciation Trends Network (STN) thermal/optical methods, polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, alkanes, and polar organic compounds. More than half of the mass of carbonaceous particles emitted by heavy-duty diesel trucks was EC (IMPROVE) and emissions from SI vehicles contained predominantly OC. Although total carbon (TC) by the IMPROVE and STN protocols agreed well for all of the samples, the STN/IMPROVE ratios for EC from SI exhaust decreased with decreasing sample loading. SI vehicles, whether low or high emitters, emitted greater amounts of high-molecular-weight particulate PAHs (benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and coronene) than did CI vehicles. Diesel emissions contained higher abundances of two- to four-ring semivolatile PAHs. Diacids were emitted by CI vehicles but are also prevalent in secondary organic aerosols, so they cannot be considered unique tracers. Hopanes and steranes were present in lubricating oil with similar composition for both gasoline and diesel vehicles and were negligible in gasoline or diesel fuels. CI vehicles emitted greater total amounts of hopanes and steranes on a mass per mile basis, but abundances were comparable to SI exhaust normalized to TC emissions within measurement uncertainty. The combustion-produced high-molecular-weight PAHs were found in used

  9. Potential air pollutant emission from private vehicles based on vehicle route

    Science.gov (United States)

    Huboyo, H. S.; Handayani, W.; Samadikun, B. P.

    2017-06-01

    Air emissions related to the transportation sector has been identified as the second largest emitter of ambient air quality in Indonesia. This is due to large numbers of private vehicles commuting within the city as well as inter-city. A questionnaire survey was conducted in Semarang city involving 711 private vehicles consisting of cars and motorcycles. The survey was conducted in random parking lots across the Semarang districts and in vehicle workshops. Based on the parking lot survey, the average distance private cars travelled in kilometers (VKT) was 17,737 km/year. The machine start-up number of cars during weekdays; weekends were on average 5.19 and 3.79 respectively. For motorcycles the average of kilometers travelled was 27,092 km/year. The machine start-up number of motorcycles during weekdays and weekends were on average 5.84 and 3.98, respectively. The vehicle workshop survey showed the average kilometers travelled to be 9,510 km/year for motorcycles, while for private cars the average kilometers travelled was 21,347 km/year. Odometer readings for private cars showed a maximum of 3,046,509 km and a minimum of 700 km. Meanwhile, for motorcycles, odometer readings showed a maximum of 973,164 km and a minimum of roughly 54.24 km. Air pollutant emissions on East-West routes were generally higher than those on South-North routes. Motorcycles contribute significantly to urban air pollution, more so than cars. In this study, traffic congestion and traffic volume contributed much more to air pollution than the impact of fluctuating terrain.

  10. Effect of fumigation methanol and ethanol on the gaseous and particulate emissions of a direct-injection diesel engine

    Science.gov (United States)

    Zhang, Z. H.; Tsang, K. S.; Cheung, C. S.; Chan, T. L.; Yao, C. D.

    2011-02-01

    Experiments were conducted on a four-cylinder direct-injection diesel engine with methanol or ethanol injected into the air intake of each cylinder, to compare their effect on the engine performance, gaseous emissions and particulate emissions of the engine under five engine loads at the maximum torque speed of 1800 rev/min. The methanol or ethanol was injected to top up 10% and 20% of the engine loads under different engine operating conditions. The experimental results show that both fumigation methanol and fumigation ethanol decrease the brake thermal efficiency (BTE) at low engine load but improves it at high engine load; however the fumigation methanol has higher influence on the BTE. Compared with Euro V diesel fuel, fumigation methanol or ethanol could lead to reduction of both NOx and particulate mass and number emissions of the diesel engine, with fumigation methanol being more effective than fumigation ethanol in particulate reduction. The NOx and particulate reduction is more effective with increasing level of fumigation. However, in general, fumigation fuels increase the HC, CO and NO 2 emissions, with fumigation methanol leading to higher increase of these pollutants. Compared with ethanol, the fumigation methanol has stronger influence on the in-cylinder gas temperature, the air/fuel ratio, the combustion processes and hence the emissions of the engine.

  11. Comparison of real-world and certification emission rates for light duty gasoline vehicles.

    Science.gov (United States)

    Khan, Tanzila; Frey, H Christopher

    2018-05-01

    U.S. light duty vehicles are subject to the U.S. Environmental Protection Agency (EPA) emission standards. Emission compliance is determined by certification testing of selected emissions from representative vehicles on standard driving cycles using chassis dynamometers. Test results are also used in many emission inventories. The dynamometer based emission rates are adjusted to provide the certification levels (CL), which must be lower than the standards for compliance. Although standard driving cycles are based on specific observations of real-world driving, they are not necessarily real-world representative. A systematic comparison of the real-world emission rates of U.S. light duty gasoline vehicles (LDGVs) versus CL, and emission standards has not been previously reported. The purpose of this work is to compare regulatory limits (both CLs and emission standards) and the real-world emissions of LDGVs. The sensitivity of the comparisons to cold start emission was assessed. Portable Emission Measurement Systems (PEMS) were used to measure hot stabilized exhaust emissions of 122 LDGVs on a specified 110 mile test route. Cold start emissions were measured with PEMS for a selected vehicle sample of 32 vehicles. Emissions were measured for carbon dioxide (CO 2 ), carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NO x ). For each vehicle, a Vehicle Specific Power (VSP) modal emission rate model was developed. The VSP modal rates were weighted by the standard driving cycles and real-world driving cycles to estimate the respective cycle average emission rates (CAERs). Measured vehicles were matched with certification test vehicles for comparison. For systematic trends in comparison, vehicles were classified into four groups based on the Tier 1 and Tier 2 emission regulation, and the vehicle type such as passenger car and passenger truck. Depending on the cycle-pollutant and the vehicle groups, hot stabilized CAERs are on average either statistically

  12. On-road vehicle emissions and their control in China: A review and outlook.

    Science.gov (United States)

    Wu, Ye; Zhang, Shaojun; Hao, Jiming; Liu, Huan; Wu, Xiaomeng; Hu, Jingnan; Walsh, Michael P; Wallington, Timothy J; Zhang, K Max; Stevanovic, Svetlana

    2017-01-01

    The large (26-fold over the past 25years) increase in the on-road vehicle fleet in China has raised sustainability concerns regarding air pollution prevention, energy conservation, and climate change mitigation. China has established integrated emission control policies and measures since the 1990s, including implementation of emission standards for new vehicles, inspection and maintenance programs for in-use vehicles, improvement in fuel quality, promotion of sustainable transportation and alternative fuel vehicles, and traffic management programs. As a result, emissions of major air pollutants from on-road vehicles in China have peaked and are now declining despite increasing vehicle population. As might be expected, progress in addressing vehicle emissions has not always been smooth and challenges such as the lack of low sulfur fuels, frauds over production conformity and in-use inspection tests, and unreliable retrofit programs have been encountered. Considering the high emission density from vehicles in East China, enhanced vehicle, fuel and transportation strategies will be required to address vehicle emissions in China. We project the total vehicle population in China to reach 400-500 million by 2030. Serious air pollution problems in many cities of China, in particular high ambient PM 2.5 concentration, have led to pressure to accelerate the progress on vehicle emission reduction. A notable example is the draft China 6 emission standard released in May 2016, which contains more stringent emission limits than those in the Euro 6 regulations, and adds a real world emission testing protocol and a 48-h evaporation testing procedure including diurnal and hot soak emissions. A scenario (PC[1]) considered in this study suggests that increasingly stringent standards for vehicle emissions could mitigate total vehicle emissions of HC, CO, NO X and PM 2.5 in 2030 by approximately 39%, 57%, 59% and 79%, respectively, compared with 2013 levels. With additional actions

  13. In-vehicle exposures to particulate air pollution in Canadian metropolitan areas: the urban transportation exposure study.

    Science.gov (United States)

    Weichenthal, Scott; Van Ryswyk, Keith; Kulka, Ryan; Sun, Liu; Wallace, Lance; Joseph, Lawrence

    2015-01-06

    Commuters may be exposed to increased levels of traffic-related air pollution owing to close proximity to traffic-emissions. We collected in-vehicle and roof-top air pollution measurements over 238 commutes in Montreal, Toronto, and Vancouver, Canada between 2010 and 2013. Voice recordings were used to collect real-time information on traffic density and the presence of diesel vehicles and multivariable linear regression models were used to estimate the impact of these factors on in-vehicle pollutant concentrations (and indoor/outdoor ratios) along with parameters for road type, land use, and meteorology. In-vehicle PM2.5 and NO2 concentrations consistently exceeded regional outdoor levels and each unit increase in the rate of encountering diesel vehicles (count/min) was associated with substantial increases (>100%) in in-vehicle concentrations of ultrafine particles (UFPs), black carbon, and PM2.5 as well as strong increases (>15%) in indoor/outdoor ratios. A model based on meteorology and the length of highway roads within a 500 m buffer explained 53% of the variation in in-vehicle UFPs; however, models for PM2.5 (R(2) = 0.24) and black carbon (R(2) = 0.30) did not perform as well. Our findings suggest that vehicle commuters experience increased exposure to air pollutants and that traffic characteristics, land use, road types, and meteorology are important determinants of these exposures.

  14. City-specific vehicle emission control strategies to achieve stringent emission reduction targets in China's Yangtze River Delta region.

    Science.gov (United States)

    Zhang, Shaojun; Wu, Ye; Zhao, Bin; Wu, Xiaomeng; Shu, Jiawei; Hao, Jiming

    2017-01-01

    The Yangtze River Delta (YRD) region is one of the most prosperous and densely populated regions in China and is facing tremendous pressure to mitigate vehicle emissions and improve air quality. Our assessment has revealed that mitigating vehicle emissions of NOx would be more difficult than reducing the emissions of other major vehicular pollutants (e.g., CO, HC and PM 2.5 ) in the YRD region. Even in Shanghai, where the emission control implemented are more stringent than in Jiangsu and Zhejiang, we observed little to no reduction in NOx emissions from 2000 to 2010. Emission-reduction targets for HC, NOx and PM 2.5 are determined using a response surface modeling tool for better air quality. We design city-specific emission control strategies for three vehicle-populated cities in the YRD region: Shanghai and Nanjing and Wuxi in Jiangsu. Our results indicate that even if stringent emission control consisting of the Euro 6/VI standards, the limitation of vehicle population and usage, and the scrappage of older vehicles is applied, Nanjing and Wuxi will not be able to meet the NOx emissions target by 2020. Therefore, additional control measures are proposed for Nanjing and Wuxi to further mitigate NOx emissions from heavy-duty diesel vehicles. Copyright © 2016. Published by Elsevier B.V.

  15. Emission characteristics and chemical components of size-segregated particulate matter in iron and steel industry

    Science.gov (United States)

    Jia, Jia; Cheng, Shuiyuan; Yao, Sen; Xu, Tiebing; Zhang, Tingting; Ma, Yuetao; Wang, Hongliang; Duan, Wenjiao

    2018-06-01

    As one of the highest energy consumption and pollution industries, the iron and steel industry is regarded as a most important source of particulate matter emission. In this study, chemical components of size-segregated particulate matters (PM) emitted from different manufacturing units in iron and steel industry were sampled by a comprehensive sampling system. Results showed that the average particle mass concentration was highest in sintering process, followed by puddling, steelmaking and then rolling processes. PM samples were divided into eight size fractions for testing the chemical components, SO42- and NH4+ distributed more into fine particles while most of the Ca2+ was concentrated in coarse particles, the size distribution of mineral elements depended on the raw materials applied. Moreover, local database with PM chemical source profiles of iron and steel industry were built and applied in CMAQ modeling for simulating SO42- and NO3- concentration, results showed that the accuracy of model simulation improved with local chemical source profiles compared to the SPECIATE database. The results gained from this study are expected to be helpful to understand the components of PM in iron and steel industry and contribute to the source apportionment researches.

  16. Secondary organic aerosol formation from in-use motor vehicle emissions using a potential aerosol mass reactor.

    Science.gov (United States)

    Tkacik, Daniel S; Lambe, Andrew T; Jathar, Shantanu; Li, Xiang; Presto, Albert A; Zhao, Yunliang; Blake, Donald; Meinardi, Simone; Jayne, John T; Croteau, Philip L; Robinson, Allen L

    2014-10-07

    Secondary organic aerosol (SOA) formation from in-use vehicle emissions was investigated using a potential aerosol mass (PAM) flow reactor deployed in a highway tunnel in Pittsburgh, Pennsylvania. Experiments consisted of passing exhaust-dominated tunnel air through a PAM reactor over integrated hydroxyl radical (OH) exposures ranging from ∼ 0.3 to 9.3 days of equivalent atmospheric oxidation. Experiments were performed during heavy traffic periods when the fleet was at least 80% light-duty gasoline vehicles on a fuel-consumption basis. The peak SOA production occurred after 2-3 days of equivalent atmospheric oxidation. Additional OH exposure decreased the SOA production presumably due to a shift from functionalization to fragmentation dominated reaction mechanisms. Photo-oxidation also produced substantial ammonium nitrate, often exceeding the mass of SOA. Analysis with an SOA model highlight that unspeciated organics (i.e., unresolved complex mixture) are a very important class of precursors and that multigenerational processing of both gases and particles is important at longer time scales. The chemical evolution of the organic aerosol inside the PAM reactor appears to be similar to that observed in the atmosphere. The mass spectrum of the unoxidized primary organic aerosol closely resembles ambient hydrocarbon-like organic aerosol (HOA). After aging the exhaust equivalent to a few hours of atmospheric oxidation, the organic aerosol most closely resembles semivolatile oxygenated organic aerosol (SV-OOA) and then low-volatility organic aerosol (LV-OOA) at higher OH exposures. Scaling the data suggests that mobile sources contribute ∼ 2.9 ± 1.6 Tg SOA yr(-1) in the United States, which is a factor of 6 greater than all mobile source particulate matter emissions reported by the National Emissions Inventory. This highlights the important contribution of SOA formation from vehicle exhaust to ambient particulate matter concentrations in urban areas.

  17. Particulate matter regulation for two-stroke two wheelers: necessity or haphazard legislation?

    NARCIS (Netherlands)

    Rijkeboer, R.C.; Bremmers, D.A.C.M.; Samaras, Z.; Ntziachristos, L.

    2005-01-01

    Although interest in particulate emissions has increased considerably during recent years, the subject of particulate matter (PM) emissions from small two-stroke engines used in road vehicles is still largely unexplored. This paper presents the results of an investigation, which examined the typical

  18. Particulate matter 2.5 (PM2.5) personal exposure evaluation on mechanics and administrative officers at the motor vehicle testing center at Pulo Gadung, DKI Jakarta.

    Science.gov (United States)

    Rizky, Zuly Prima; Yolla, Patricia Bebby; Ramdhan, Doni Hikmat

    2016-03-01

    Exposure to fine particulate matter (PM2.5) in both the short and long term has been known to cause deaths and health effects, especially related to the heart, blood vessels, and lungs. Based on this information, researchers conducted this study at a motor vehicle testing center unit at Pulo Gadung, in Jarkarta, to determine the concentration of PM2.5 that workers were exposed to. The major source of PM2.5 in this area is from the exhaust of gas emissions from motor vehicles, which is one of the largest contributors to the levels of PM in urban areas. Ten mechanics were picked from 16 mechanics that work in this station. Four administration workers from different posts were also picked to participate. The researcher conducted the PM2.5 personal exposure measurement during weekdays from 6 to 14 April 2015 (2 workers/day). This research was conducted to measure the particle number concentration with size Organization Air Quality Guidelines, the PM2.5 exposure of the mechanics and administrative officers exceeded the recommended exposure (25 μm/m3).

  19. Emission factors for CH{sub 4}, NO{sub x}, particulates and black carbon for domestic shipping in Norway, revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Joergen Bremnes; Stenersen, Dag

    2010-11-15

    In this report new and updated emission factors for diesel, HFO and gas fuelled ships are presented and discussed as follows; NO{sub x} reduction factors from ships with NO{sub x} reduction measures; NO{sub x} emission factor from gas operated vessels; Methane emission factors for gas operated vessels; Updated emission factors for particulate emissions (PM) with a specific factor for the black carbon (BC) fraction of particulate emissions; A discussion on how low sulfur fuel will affect emissions of PM emissions and the BC fraction of PM is also included. (Author)

  20. A new inventory for two-wheel vehicle emissions in West Africa for 2002

    Science.gov (United States)

    Assamoi, Eric-Michel; Liousse, Catherine

    2010-10-01

    Rather surprisingly, urban atmospheric particulate levels in West Africa compare with measured concentrations in Europe and Asia megacities (Liousse, C., Galy-Lacaux, C., Assamoi, E.-M., Ndiaye, A., Diop, B., Cachier, H., Doumbia, T., Gueye, P., Yoboue, V., Lacaux, J.-P., Guinot, B., Guillaume, B., Rosset, R., Castera, P., Gardrat, E., Zouiten, C., Jambert, C., Diouf, A., Koita, O., Baeza, A., Annesi-Maesano, I., Didier, A., Audry, S., Konare, A., 2009. Integrated Focus on West African Cities (Cotonou, Bamako, Dakar, Ouagadougou, Abidjan, Niamey): Emissions, Air Quality and Health Impacts of Gases and Aerosols. Third International AMMA Conference on Predictability of the West African Moosoon Weather, Climate and Impacts. Ouagadougou, Burkina Faso. July 20-24). This pollution mainly derives from road traffic emissions with, in some capitals (e.g. Cotonou), the strong contribution of two-wheel vehicles. Two key questions arise: are presently available emission inventories (e.g. Junker, C., Liousse, C., 2008. A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860-1997. Atmospheric Chemistry Physics, 8, 1-13; Bond, T.C., Streets, D.G., Yarber, K.F., Nelson, S.M., Woo, J.H., Klimont, Z., 2004. A technology-based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research, 1009, D14203, DOI:10.1029/2003JD003697) able to account for these emissions? And, if not, how can we remedy this? The aim of this paper is to develop a methodology to estimate emissions produced by two-wheel vehicles in West Africa for 2002 in a context where reliable information is hardly available. Fuel consumption ratios between two-wheel engines (in this work) and all vehicles issued from UN database ( http://data.un.org/Data.aspx?d=EDATA&f=cmID%3aMO%3btrID%3a1221) are as high as 169%, 264% and 628%, for Burkina Faso, Mali and Chad respectively, indicating that this global

  1. Field determination of multipollutant, open area combustion source emission factors with a hexacopter unmanned aerial vehicle

    Science.gov (United States)

    Aurell, J.; Mitchell, W.; Chirayath, V.; Jonsson, J.; Tabor, D.; Gullett, B.

    2017-10-01

    An emission sensor/sampler system was coupled to a National Aeronautics and Space Administration (NASA) hexacopter unmanned aerial vehicle (UAV) to characterize gases and particles in the plumes emitted from open burning of military ordnance. The UAV/sampler was tested at two field sites with test and sampling flights spanning over 16 h of flight time. The battery-operated UAV was remotely maneuvered into the plumes at distances from the pilot of over 600 m and at altitudes of up to 122 m above ground level. While the flight duration could be affected by sampler payload (3.2-4.6 kg) and meteorological conditions, the 57 sampling flights, ranging from 4 to 12 min, were typically terminated when the plume concentrations of CO2 were diluted to near ambient levels. Two sensor/sampler systems, termed ;Kolibri,; were variously configured to measure particulate matter, metals, chloride, perchlorate, volatile organic compounds, chlorinated dioxins/furans, and nitrogen-based organics for determination of emission factors. Gas sensors were selected based on their applicable concentration range, light weight, freedom from interferents, and response/recovery times. Samplers were designed, constructed, and operated based on U.S. Environmental Protection Agency (EPA) methods and quality control criteria. Results show agreement with published emission factors and good reproducibility (e.g., 26% relative standard deviation for PM2.5). The UAV/Kolibri represents a significant advance in multipollutant emission characterization capabilities for open area sources, safely and effectively making measurements heretofore deemed too hazardous for personnel or beyond the reach of land-based samplers.

  2. Comparative Assessment of Particulate Air Pollution Exposure from Municipal Solid Waste Incinerator Emissions

    Science.gov (United States)

    Ashworth, Danielle C.; Fuller, Gary W.; Toledano, Mireille B.; Font, Anna; Elliott, Paul; Hansell, Anna L.; de Hoogh, Kees

    2013-01-01

    Background. Research to date on health effects associated with incineration has found limited evidence of health risks, but many previous studies have been constrained by poor exposure assessment. This paper provides a comparative assessment of atmospheric dispersion modelling and distance from source (a commonly used proxy for exposure) as exposure assessment methods for pollutants released from incinerators. Methods. Distance from source and the atmospheric dispersion model ADMS-Urban were used to characterise ambient exposures to particulates from two municipal solid waste incinerators (MSWIs) in the UK. Additionally an exploration of the sensitivity of the dispersion model simulations to input parameters was performed. Results. The model output indicated extremely low ground level concentrations of PM10, with maximum concentrations of incinerator characteristics, magnitude of emissions, and surrounding meteorological and topographical conditions are considered. Reducing exposure misclassification is particularly important in environmental epidemiology to aid detection of low-level risks. PMID:23935644

  3. Cost-effective reduction of fine primary particulate matter emissions in Finland

    International Nuclear Information System (INIS)

    Karvosenoja, Niko; Klimont, Zbigniew; Tohka, Antti; Johansson, Matti

    2007-01-01

    Policies to reduce adverse health impacts of fine particulate matter (PM 2.5 ) require information on costs of abatement and associated costs. This paper explores the potential for cost-efficient control of anthropogenic primary PM 2.5 emissions in Finland. Based on a Kyoto-compliant energy projection, two emission control scenarios for 2020 were developed. 'Baseline' assumes implementation of PM controls in compliance with existing legislation. 'Reduction' assumes ambitious further reductions. Emissions for 2020 were estimated at 26 and 18.6 Gg a -1 for 'Baseline' and 'Reduction', respectively. The largest abatement potential, 3.0 Gg a -1 , was calculated for power plants and industrial combustion. The largest potential with marginal costs below 5000 Euro MG(PM 2.5 ) -1 was for domestic wood combustion, 1.7 Gg a -1 . For traffic the potential was estimated at 1.0 Gg a -1 , but was associated with high costs. The results from this paper are used in the policy-driven national integrated assessment modeling that explores cost-efficient reductions of the health impacts of PM

  4. Particulate and un burned carbon emissions reduction from oil fired boilers using combustion promoters

    Energy Technology Data Exchange (ETDEWEB)

    Balsiger, Andreas; Carvalho, Jose Guilherme de [ACOTEQ, Rio de Janeiro, RJ (Brazil)

    1993-12-31

    This paper describes the results obtained in the tests carried out with a combustion promoter on a 530 MW utility boiler, in order to reduce solid particle emissions in steady state and transient operations. Tests have been performed at Unit II of Bahia de Algeciras Power Station, owned by Sevillana de Electricidad. Sevillana de Electricidad activities include the production, transmission and distribution of electric power. The distribution area is 40000 square miles (aprox. 20% of peninsular Spains territory).Companys total capacity is 4400 MW, of which 1476 are fuel-oil fired. The demand for electricity in the market served by Sevillana has been 18345 GWh in 1989. Fuel-oil plants output was only 1,6% of total demand in accordance with Spanish energy policy guidelines. Along tests described in this paper, steady state emission, are expected to be reduced due to depletion of the un burned carbon content in particulates. Transient operation emissions should also be reduced if the boiler is kept clean to eliminating soot blowing requirements. (author) 9 refs., 6 figs., 5 tabs.

  5. Incorporating time-corrected life cycle greenhouse gas emissions in vehicle regulations.

    Science.gov (United States)

    Kendall, Alissa; Price, Lindsay

    2012-03-06

    Beginning with model year 2012, light-duty vehicles sold in the U.S. are subject to new rules that regulate tailpipe greenhouse gas (GHG) emissions based on grams of CO(2)-equivalent per mile (gCO(2)e/mi). However, improvements in vehicle technology, lower-carbon fuels, and improvements in GHG accounting practices which account for distortions related to emissions timing all contribute to shifting a greater portion of life cycle emissions away from the vehicle use phase and toward the vehicle production phase. This article proposes methods for calculating time-corrected life cycle emissions intensity on a gCO(2)e/mi basis and explores whether regulating only tailpipe CO(2) could lead to an undesirable regulatory outcome, where technologies and vehicle architectures with higher life cycle GHGs are favored over technologies with lower life cycle emissions but with higher tailpipe GHG emissions. Two life cycle GHG assessments for future vehicles are presented in addition to time correction factors for production and end-of-life GHG emissions. Results demonstrate that, based on the vehicle designs considered here, there is a potential for favoring vehicles with higher life cycle emissions if only tailpipe emissions are regulated; moreover, the application of time correction factors amplifies the importance of production emissions and the potential for a perverse outcome.

  6. Motor Vehicle Emission Modeling and Software Simulation Computing for Roundabout in Urban City

    Directory of Open Access Journals (Sweden)

    Haiwei Wang

    2013-01-01

    Full Text Available In urban road traffic systems, roundabout is considered as one of the core traffic bottlenecks, which are also a core impact of vehicle emission and city environment. In this paper, we proposed a transport control and management method for solving traffic jam and reducing emission in roundabout. The platform of motor vehicle testing system and VSP-based emission model was established firstly. By using the topology chart of the roundabout and microsimulation software, we calculated the instantaneous emission rates of different vehicle and total vehicle emissions. We argued that Integration-Model, combing traffic simulation and vehicle emission, can be performed to calculate the instantaneous emission rates of different vehicle and total vehicle emissions at the roundabout. By contrasting the exhaust emissions result between no signal control and signal control in this area at the rush hour, it draws a conclusion that setting the optimizing signal control can effectively reduce the regional vehicle emission. The proposed approach has been submitted to a simulation and experiment that involved an environmental assessment in Satellite Square, a roundabout in medium city located in China. It has been verified that setting signal control with knowledge engineering and Integration-Model is a practical way for solving the traffic jams and environmental pollution.

  7. On-road vehicle emission control in Beijing: past, present, and future.

    Science.gov (United States)

    Wu, Ye; Wang, Renjie; Zhou, Yu; Lin, Bohong; Fu, Lixin; He, Kebin; Hao, Jiming

    2011-01-01

    Beijing, the capital of China, has experienced rapid motorization since 1990; a trend that is likely to continue. The growth in vehicles and the corresponding emissions create challenges to improving the urban air quality. In an effort to reduce the impact of vehicle emissions on urban air quality, Beijing has adopted a number of vehicle emission control strategies and policies since the mid 1990 s. These are classified into seven categories: (1) emission control on new vehicles; (2) emission control on in-use vehicles; (3) fuel quality improvements; (4) alternative-fuel and advanced vehicles; (5) economic policies; (6) public transport; and (7) temporal traffic control measures. Many have proven to be successful, such as the Euro emission standards, unleaded gasoline and low sulfur fuel, temporal traffic control measures during the Beijing Olympic Games, etc. Some, however, have been failures, such as the gasoline-to-LPG taxi retrofit program. Thanks to the emission standards for new vehicles as well as other controls, the fleet-average emission rates of CO, HC, NO(X), and PM(10) by each major vehicle category are decreasing over time. For example, gasoline cars decreased fleet-average emission factors by 12.5% for CO, 10.0% for HC, 5.8% for NO(X), and 13.0% for PM(10) annually since 1995, and such a trend is likely to continue. Total emissions for Beijing's vehicle fleet increased from 1995 to 1998. However, they show a clear and steady decrease between 1999 and 2009. In 2009, total emissions of CO, HC, NO(X), and PM(10) were 845,000 t, 121,000 t, 84,000 t, and 3700 t, respectively; with reductions of 47%, 49%, 47%, and 42%, relative to 1998. Beijing has been considered a pioneer in controlling vehicle emissions within China, similar to the role of California to the U.S. The continued rapid growth of vehicles, however, is challenging Beijing's policy-makers.

  8. How will greenhouse gas emissions from motor vehicles be constrained in China around 2030?

    International Nuclear Information System (INIS)

    Zheng, Bo; Zhang, Qiang; Borken-Kleefeld, Jens; Huo, Hong; Guan, Dabo; Klimont, Zbigniew; Peters, Glen P.; He, Kebin

    2015-01-01

    Highlights: • We build a projection model to predict vehicular GHG emissions on provincial basis. • Fuel efficiency gains cannot constrain vehicle GHGs in major southern provinces. • We propose an integrated policy set through sensitivity analysis of policy options. • The policy set will peak GHG emissions of 90% provinces and whole China by 2030. - Abstract: Increasing emissions from road transportation endanger China’s objective to reduce national greenhouse gas (GHG) emissions. The unconstrained growth of vehicle GHG emissions are mainly caused by the insufficient improvement of energy efficiency (kilometers traveled per unit energy use) under current policies, which cannot offset the explosion of vehicle activity in China, especially the major southern provinces. More stringent polices are required to decline GHG emissions in these provinces, and thereby help to constrain national total emissions. In this work, we make a provincial-level projection for vehicle growth, energy demand and GHG emissions to evaluate vehicle GHG emission trends under various policy options in China and determine the way to constrain national emissions. Through sensitivity analysis of various single policies, we propose an integrated policy set to assure the objective of peak national vehicle GHG emissions be achieved around 2030. The integrated policy involves decreasing the use of urban light-duty vehicles by 25%, improving fuel economy by 25% by 2035 comparing 2020, and promoting electric vehicles and biofuels. The stringent new policies would allow China to constrain GHG emissions from road transport sector around 2030. This work provides a perspective to understand vehicle GHG emission growth patterns in China’s provinces, and proposes a strong policy combination to constrain national GHG emissions, which can support the achievement of peak GHG emissions by 2030 promised by the Chinese government

  9. Emission of particulates from the Dutch coal-fired power plants. Trend of the last 50 years

    International Nuclear Information System (INIS)

    Meij, R.; Te Winkel, B.H.

    2005-01-01

    Stricter boundary values in the European Union for particulates (PM 10 /PM 2,5 ) in the ambient air initiated a discussion. Within the framework of the 6th Environmental Action Programme (MAP) of the European Commission the programme Clean Air for Europe (CAFE) started in 2001. The aim of CAFE is to improve the air quality. In 2004 the final programme was published, recommending emission values not only for PM 10 , but also for PM 2,5 and to determine a so-called National Emission Ceiling (NEC). The question is how much the electric power sector contributes to the total emission of fine particulates. In this article an overview is given of the emissions in the last fifty years as well as for the present situation [nl

  10. Preliminary report to NEDO (April, 1995). California zero-emission vehicle program review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    In 1998, auto manufacturers will be required to sell Zero Emission Vehicles (ZEVs) in California. The California Air Resources Board (CARB) adopted this mandate in 1990 and have endorsed it repeatedly since. The regulations establish four new vehicle categories; namely, TLEVs (transitional low emission vehicles), LEVs (low emission vehicles), ULEVs (ultra low emission vehicles), and ZEVs (zero emission vehicles). The opponents of the mandate including the auto manufacturers and the oil industry are increasingly optimistic that the mandates can be eliminated or delayed. National and state political trends support this optimism. However, supporters of the mandates insist that the CARB support the existing mandates. The CARB adopted a compromise measure that kept the mandates intact through the year 2003. The opponents argue that the mandates are neither economically nor technologically feasible. The CARB have become receptive towards the economic impact arguments presented by the oil/auto coalition. (NEDO)

  11. Impact of reformulated gasoline on emissions from current and future vehicles

    International Nuclear Information System (INIS)

    Colucci, J.M.; Benson, J.D.

    1993-01-01

    Gasolines reformulated specifically for reducing vehicle emissions will result in the most significant changes in the U.S. refining industry since the advent of unleaded gasoline. This paper will review the results from the Auto/Oil Air Quality Improvement Research Program showing the beneficial effects on vehicle emissions of individually decreasing gasoline aromatic, olefin and sulfur contents, 90% distillation temperature, and Reid vapor pressure, and of adding oxygenates. The paper discusses the importance of reformulated gasolines for reducing emissions from existing vehicles by complying with requirements in the Clean Air Act and California's Low Emission Vehicle/Clean Fuels Program. It will show the importance of controlling Vehicle/Clean Fuels Program. It will show the importance of controlling specific aromatic and olefin compounds in gasoline, and it will discuss how automotive manufacturers will utilize reformulated gasolines to meet future stringent vehicle emission standards

  12. Testing the near field/far field model performance for prediction of particulate matter emissions in a paint factory

    DEFF Research Database (Denmark)

    Koivisto, A.J.; Jensen, A.C.Ø.; Levin, Marcus

    2015-01-01

    A Near Field/Far Field (NF/FF) model is a well-accepted tool for precautionary exposure assessment but its capability to estimate particulate matter (PM) concentrations is not well studied. The main concern is related to emission source characterization which is not as well defined for PM emitters...

  13. On-board measurements of emissions from light-duty gasoline vehicles in three mega-cities of China

    Science.gov (United States)

    Huo, Hong; Yao, Zhiliang; Zhang, Yingzhi; Shen, Xianbao; Zhang, Qiang; Ding, Yan; He, Kebin

    2012-03-01

    This paper is the second in a series of three papers aimed at understanding the emissions of vehicles in China by conducting on-board emission measurements. This paper focuses on light-duty gasoline vehicles. In this study, we measured 57 light-duty gasoline vehicles (LDGVs) in three Chinese mega-cites (Beijing, Guangzhou, and Shenzhen), covering Euro 0 through Euro IV technologies, and generated CO, HC, and NOx emission factors and deterioration rates for each vehicle technology. The results show that the vehicle emission standards have played a significant role in reducing vehicle emission levels in China. The vehicle emission factors are reduced by 47-81%, 53-64%, 46-71%, and 78-82% for each phase from Euro I to Euro IV. Euro 0 vehicles have a considerably high emission level, which is hundreds of times larger than that of Euro IV vehicles. Three old taxis and four other Euro I and Euro II LDGVs are also identified as super emitters with equivalent emission levels to Euro 0 vehicles. Of the measured fleet, 23% super emitters were estimated to contribute 50-80% to total emissions. Besides vehicle emission standards, measures for restricting super emitters are equally important to reduce vehicle emissions. This study is intended to improve the understanding of the vehicle emission levels in China, but some key issues such as emission deterioration rates are yet to be addressed with the presence of a sufficient amount of vehicle emission measurements.

  14. Effects of particulate oxidation catalyst on unregulated pollutant emission and toxicity characteristics from heavy-duty diesel engine.

    Science.gov (United States)

    Feng, Xiangyu; Ge, Yunshan; Ma, Chaochen; Tan, Jianwei

    2015-01-01

    To evaluate the effects of particulate oxidation catalyst (POC) on unregulated pollutant emission and toxicity characteristics, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), soot, soluble organic fractions (SOF) and sulphate emissions emitted from a heavy-duty diesel engine retrofitted with a POC were investigated on a diesel bench. The particulate matter (PM) in the exhaust was collected by Teflon membrane, and the PAHs and VOCs were analysed by a gas chromatography/mass spectrometer (GC/MS). The results indicate that the POC exhibits good performance on the emission control of VOCs, PAHs and PM. The POC and the diesel particulate filters (DPF) both show a good performance on reducing the VOCs emission. Though the brake-specific emission (BSE) reductions of the total PAHs by the POC were lower than those by the DPF, the POC still removed almost more than 50% of the total PAHs emission. After the engine was retrofitted with the POC, the reductions of the PM mass, SOF and soot emissions were 45.2-89.0%, 7.8-97.7% and 41.7-93.3%, respectively. The sulphate emissions decreased at low and medium loads, whereas at high load, the results were contrary. The PAHs emissions were decreased by 32.4-69.1%, and the contributions of the PAH compounds were affected by the POC, as well as by load level. The benzo[a]pyrene equivalent (BaPeq) of PAHs emissions were reduced by 35.9-97.6% with the POC. The VOCs emissions were reduced by 21.8-94.1% with the POC, and the reduction was more evident under high load.

  15. Size-segregated emissions and metal content of vehicle-emitted particles as a function of mileage: Implications to population exposure

    International Nuclear Information System (INIS)

    Golokhvast, Kirill S.; Chernyshev, Valery V.; Chaika, Vladimir V.; Ugay, Sergey M.; Zelinskaya, Elena V.; Tsatsakis, Aristidis M.; Karakitsios, Spyros P.; Sarigiannis, Denis A.

    2015-01-01

    The study aims at investigating the characteristics (size distribution, active surface and metal content) of particles emitted by cars as a function of mileage using a novel methodology for characterizing particulate emissions captured by Exhaust Gas Suspension (EGS). EGS was obtained by passing the exhaust gases through a container of deionized water. EGS analysis was performed using laser granulometry, electron scanning microscopy, and high resolution mass spectrometry. Implications of the differences in key features of the emitted particles on population exposure were investigated using numerical simulation for estimating size-segregated PM deposition across human respiratory tract (HRT). It was found that vehicle mileage, age and the respective emissions class have almost no effect on the size distribution of the exhaust gas particulate released into the environment; about half of the examined vehicles with low mileage were found to release particles of aerodynamic diameter above 10 μm. The exhaust gas particulate detected in the EGS of all cars can be classified into three major size classes: (1) 0.1–5 µm – soot and ash particles, metals (Au, Pt, Pd, Ir); (2) 10–30 µm – metal (Cr, Fe, Cu, Zr, Ni) and ash particles; (3) 400–1,000 µm – metal (Fe, Cr, Pb) and ash particles. Newer vehicles with low mileage are substantial sources of soot and metal particles with median diameter of 200 nm with a higher surface area (up to 89,871.16 cm 2 /cm 3 ). These tend to deposit in the lower part of the human respiratory tract. - Highlights: • Car mileage has virtually no effect on the size of the solid particles released. • Newer diesel vehicles emit particles of lower aerodynamic diameter. • Particle active surface emitted by newer vehicles is on average 3 times higher. • Real-life emissions were translated into actual internal PM exposure.

  16. Size-segregated emissions and metal content of vehicle-emitted particles as a function of mileage: Implications to population exposure

    Energy Technology Data Exchange (ETDEWEB)

    Golokhvast, Kirill S.; Chernyshev, Valery V.; Chaika, Vladimir V.; Ugay, Sergey M. [Far Eastern Federal University, Vladivostok (Russian Federation); Zelinskaya, Elena V. [National Research Irkutsk State Technical University, Irkutsk (Russian Federation); Tsatsakis, Aristidis M. [University of Crete, Medical School, Department of Toxicology and Forensic Science, Heraklion, Crete (Greece); Karakitsios, Spyros P. [Aristotle University of Thessaloniki, Department of Chemical Engineering, Thessaloniki (Greece); Sarigiannis, Denis A., E-mail: denis@eng.auth.gr [Aristotle University of Thessaloniki, Department of Chemical Engineering, Thessaloniki (Greece)

    2015-10-15

    The study aims at investigating the characteristics (size distribution, active surface and metal content) of particles emitted by cars as a function of mileage using a novel methodology for characterizing particulate emissions captured by Exhaust Gas Suspension (EGS). EGS was obtained by passing the exhaust gases through a container of deionized water. EGS analysis was performed using laser granulometry, electron scanning microscopy, and high resolution mass spectrometry. Implications of the differences in key features of the emitted particles on population exposure were investigated using numerical simulation for estimating size-segregated PM deposition across human respiratory tract (HRT). It was found that vehicle mileage, age and the respective emissions class have almost no effect on the size distribution of the exhaust gas particulate released into the environment; about half of the examined vehicles with low mileage were found to release particles of aerodynamic diameter above 10 μm. The exhaust gas particulate detected in the EGS of all cars can be classified into three major size classes: (1) 0.1–5 µm – soot and ash particles, metals (Au, Pt, Pd, Ir); (2) 10–30 µm – metal (Cr, Fe, Cu, Zr, Ni) and ash particles; (3) 400–1,000 µm – metal (Fe, Cr, Pb) and ash particles. Newer vehicles with low mileage are substantial sources of soot and metal particles with median diameter of 200 nm with a higher surface area (up to 89,871.16 cm{sup 2}/cm{sup 3}). These tend to deposit in the lower part of the human respiratory tract. - Highlights: • Car mileage has virtually no effect on the size of the solid particles released. • Newer diesel vehicles emit particles of lower aerodynamic diameter. • Particle active surface emitted by newer vehicles is on average 3 times higher. • Real-life emissions were translated into actual internal PM exposure.

  17. Application of GIS to modified models of vehicle emission dispersion

    Science.gov (United States)

    Jin, Taosheng; Fu, Lixin

    This paper reports on a preliminary study of the forecast and evaluation of transport-related air pollution dispersion in urban areas. Some modifications of the traditional Gauss dispersion models are provided, and especially a crossroad model is built, which considers the great variation of vehicle emission attributed to different driving patterns at the crossroad. The above models are combined with a self-developed geographic information system (GIS) platform, and a simulative system with graphical interfaces is built. The system aims at visually describing the influences on the urban environment by urban traffic characteristics and therefore gives a reference to the improvement of urban air quality. Due to the introduction of a self-developed GIS platform and a creative crossroad model, the system is more effective, flexible and accurate. Finally, a comparison of the simulated (predicted) and observed hourly concentration is given, which indicates a good simulation.

  18. 4-Nitrophenol, 1-nitropyrene, and 9-nitroanthracene emissions in exhaust particles from diesel vehicles with different exhaust gas treatments

    Science.gov (United States)

    Inomata, Satoshi; Fushimi, Akihiro; Sato, Kei; Fujitani, Yuji; Yamada, Hiroyuki

    2015-06-01

    The dependence of nitro-organic compound emissions in automotive exhaust particles on the type of aftertreatment used was investigated. Three diesel vehicles with different aftertreatment systems (an oxidation catalyst, vehicle-DOC; a particulate matter and NOx reduction system, vehicle-DPNR; and a urea-based selective catalytic reduction system, vehicle-SCR) and a gasoline car with a three-way catalyst were tested. Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) and nitrophenols in the particles emitted were analyzed by thermal desorption gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. The secondary production of nitro-organic compounds on the filters used to collect particles and the adsorption of gaseous nitro-organic compounds by the filters were evaluated. Emissions of 1-nitropyrene, 9-nitroanthracene, and 4-nitrophenol in the diesel exhaust particles were then quantified. The NOx reduction process in vehicle-DPNR appeared to remove nitro-hydrocarbons efficiently but not to remove nitro-oxygenated hydrocarbons efficiently. The nitro-PAH emission factors were lower for vehicle-DOC when it was not fitted with a catalyst than when it was fitted with a catalyst. The 4-nitrophenol emission factors were also lower for vehicle-DOC with a catalyst than vehicle-DOC without a catalyst, suggesting that the oxidation catalyst was a source of both nitro-PAHs and 4-nitrophenol. The time-resolved aerosol mass spectrometry data suggested that nitro-organic compounds are mainly produced when an engine is working under load. The presence of 4-nitrophenol in the particles was not confirmed statistically because of interference from gaseous 4-nitrophenol. Systematic errors in the estimated amounts of gaseous 1-nitropyrene and 9-nitroanthracene adsorbed onto the filters and the estimated amounts of volatile nitro-organic compounds that evaporated during sampling and during post-sampling conditioning could not be excluded. An analytical method

  19. The effects of biodiesels on semivolatile and nonvolatile particulate matter emissions from a light-duty diesel engine.

    Science.gov (United States)

    Cheng, Yuan; Li, Shao-Meng; Liggio, John; Hayden, Katherine; Han, Yuemei; Stroud, Craig; Chan, Tak; Poitras, Marie-Josée

    2017-11-01

    Semivolatile organic compounds (SVOCs) represent a dominant category of secondary organic aerosol precursors that are increasingly included in air quality models. In the present study, an experimental system was developed and applied to a light-duty diesel engine to determine the emission factors of particulate SVOCs (pSVOCs) and nonvolatile particulate matter (PM) components at dilution ratios representative of ambient conditions. The engine was tested under three steady-state operation modes, using ultra-low-sulfur diesel (ULSD), three types of pure biodiesels and their blends with ULSD. For ULSD, the contribution of pSVOCs to total particulate organic matter (POM) mass in the engine exhaust ranged between 21 and 85%. Evaporation of pSVOCs from the diesel particles during dilution led to decreases in the hydrogen to carbon ratio of POM and the PM number emission factor of the particles. Substituting biodiesels for ULSD could increase pSVOCs emissions but brought on large reductions in black carbon (BC) emissions. Among the biodiesels tested, tallow/used cooking oil (UCO) biodiesel showed advantages over soybean and canola biodiesels in terms of both pSVOCs and nonvolatile PM emissions. It is noteworthy that PM properties, such as particle size and BC mass fraction, differed substantially between emissions from conventional diesel and biodiesels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Urban air chemistry and diesel vehicles emissions: Quantifying small and big hydrocarbons by CIMS to improve emission inventories

    Science.gov (United States)

    Jobson, B. T.; Derstroff, B.; Edtbauer, A.; VanderSchelden, G. S.; Williams, J.

    2017-10-01

    Emissions from vehicles are a major source of volatile organic compounds (VOCs) in urban environments. Photochemical oxidation of VOCs emitted from vehicle exhaust contributes to O3 and PM2.5 formation, harmful pollutants that major urban areas struggle to control. How will a shift to a diesel engine fleet impact urban air chemistry? Diesel vehicles are a growing fraction of the passenger vehicle fleet in Europe as a result of a deliberate policy to reduce energy consumption and CO2 emissions from the transportation sector (Sullivan et al., 2004). In countries such as France the diesel passenger fleet was already ∼50% of the total in 2009, up from 20% in 1995. Dunmore et al. (2015) have recently inferred that in London, HO radical loss rates to organic compounds is dominated by diesel engine emissions. In the US, increasingly more stringent vehicles emission standards and requirement for improved energy efficiency means spark ignition passenger vehicle emissions have declined significantly over the last 20 years, resulting in the urban diesel fleet traffic (freight trucks) having a growing importance as a source of vehicle pollution (McDonald et al., 2013). The recent scandal involving a major car manufacturer rigging emission controls for diesel passenger cars is a reminder that real world emissions of VOCs from diesel engines are not well understood nor thoroughly accounted for in air quality modeling.

  1. Design optimization of zero-emission vehicle chassis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.; Killing, D.; Saleh, F.; Kashani-Zadeh, H.; Kim, I.Y. [Queen' s Univ., Kingston, ON (Canada)

    2007-07-01

    This paper described the design of a zero emission chassis for a prototype 2-passenger, zero emission, 3 season drive-by-wire vehicle capable of driving at a speed of 60 km/h for up to 100 km. The chassis design was part of vehicle design project developed to improve collaboration tools and methodologies used by engineers in the automotive design field. The chassis was comprised of tube members in a truss structure to reduce equipment requirements. Design iterations were conducted to ensure that the chassis met with interior space requirements. Static and dynamic finite element analyses were used to minimize chassis weight, and to ensure that structural requirements were preserved. ANSYS implicit FEA simulation tools with specific loading configurations were then used to consider torsional stiffness, bending stiffness and natural frequency. A crashworthiness analysis was then conducted using explicit FEA analysis tools. The analysis focused on full frontal impact and considered maximum deceleration and the head injury criterion (HIC) over a specific time range. Non-structural mass elements were added in specific locations to address the low mass of the chassis. The chassis was then given an initial velocity of 48 km/h and impacted into a wall. Weight was chosen as the objective function for the pseudo-topology optimization process. Structural characteristics developed from the static and dynamic FEA were used as constraints, and cockpit dimensions were tracked. It was concluded that the weight of the chassis was reduced from 139 kg to 103.4 kg using the optimization process. 2 refs.

  2. Zero-emission vehicle technology assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Woods, T.

    1995-08-01

    This is the final report in the Zero-Emission Vehicle (ZEV) Technology Assessment, performed for NYSERDA by Booz-Allen & Hamilton Inc. Booz-Allen wrote the final report, and performed the following tasks as part of the assessment: assembled a database of key ZEV organizations, their products or services, and plans; described the current state of ZEV technologies; identified barriers to widespread ZEV deployment and projected future ZEV technical capabilities; and estimated the cost of ZEVs from 1998 to 2004. Data for the ZEV Technology Assessment were obtained from several sources, including the following: existing ZEV industry publications and Booz-Allen files; major automotive original equipment manufacturers; independent electric vehicle manufacturers; battery developers and manufacturers; infrastructure and component developers and manufacturers; the U.S. Department of Energy, the California Air Resources Board, and other concerned government agencies; trade associations such as the Electric Power Research Institute and the Electric Transportation Coalition; and public and private consortia. These sources were contacted by phone, mail, or in person. Some site visits of manufacturers also were conducted. Where possible, raw data were analyzed by Booz-Allen staff and/or verified by independent sources. Performance data from standardized test cycles were used as much as possible.

  3. The use of cation exchange matrix separation coupled with ICP-MS to directly determine platinum group element (PGE) and other trace element emissions from passenger cars equipped with diesel particulate filters (DPF)

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, Warren R.L.; Cozzi, Giulio [Institute for the Dynamics of Environmental Processes-CNR, Venice (Italy); De Boni, Antonella; Gabrieli, Jacopo [University of Venice, Department of Environmental Science, Venice (Italy); Asti, Massimo; Merlone Borla, Edoardo; Parussa, Flavio [Centro Ricerche Fiat, Orbassano (Italy); Moretto, Ezio [FIAT Powertrain Technologies S.p.A, Turin (Italy); Cescon, Paolo; Barbante, Carlo [University of Venice, Department of Environmental Science, Venice (Italy); Institute for the Dynamics of Environmental Processes-CNR, Venice (Italy); Boutron, Claude [Laboratoire de Glaciologie et Geophysique de l' Environnement, UMR CNRS 5183, B.P. 96, Saint Martin d' Heres Cedex (France)

    2011-03-15

    Inductively coupled plasma-mass spectrometry coupled with cation exchange matrix separation has been optimised for the direct determination of platinum group element (PGE) and trace element emissions from a diesel engine car. After matrix separation method detection limits of 1.6 ng g{sup -1} for Pd, 0.4 ng g{sup -1} for Rh and 4.3 ng g{sup -1} for Pt were achieved, the method was validated against the certified reference material BCR 723, urban road dust. The test vehicle was fitted with new and aged catalytic converters with and without diesel particulate filters (DPF). Samples were collected after three consecutive New European Driving Cycle (NEDC) of the particulate and ''soluble'' phases using a home-made sampler optimised for trace element analysis. Emission factors for the PGEs ranged from 0.021 ng km{sup -1} for Rh to 70.5 ng km{sup -1} for Pt; when a DPF was fitted, the emission factors for the PGEs actually used in the catalysts dropped by up to 97% (for Pt). Trace element emission factors were found to drop by a maximum of 92% for Ni to a minimum of 18% for Y when a DPF was fitted; a new DPF was also found to cause a reduction of up to 86% in the emission of particulate matter. (orig.)

  4. Emissions of hydrogen cyanide from on-road gasoline and diesel vehicles

    Science.gov (United States)

    Moussa, Samar G.; Leithead, Amy; Li, Shao-Meng; Chan, Tak W.; Wentzell, Jeremy J. B.; Stroud, Craig; Zhang, Junhua; Lee, Patrick; Lu, Gang; Brook, Jeffery R.; Hayden, Katherine; Narayan, Julie; Liggio, John

    2016-04-01

    Hydrogen cyanide (HCN) is considered a marker for biomass burning emissions and is a component of vehicle exhaust. Despite its potential health impacts, vehicular HCN emissions estimates and their contribution to regional budgets are highly uncertain. In the current study, Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) was used to measure HCN emission factors from the exhaust of individual diesel, biodiesel and gasoline vehicles. Laboratory emissions data as a function of fuel type and driving mode were combined with ambient measurement data and model predictions. The results indicate that gasoline vehicles have the highest emissions of HCN (relative to diesel fuel) and that biodiesel fuel has the potential to significantly reduce HCN emissions even at realistic 5% blend levels. The data further demonstrate that gasoline direct injection (GDI) engines emit more HCN than their port fuel injection (PFI) counterparts, suggesting that the expected full transition of vehicle fleets to GDI will increase HCN emissions. Ambient measurements of HCN in a traffic dominated area of Toronto, Canada were strongly correlated to vehicle emission markers and consistent with regional air quality model predictions of ambient air HCN, indicating that vehicle emissions of HCN are the dominant source of exposure in urban areas. The results further indicate that additional work is required to quantify HCN emissions from the modern vehicle fleet, particularly in light of continuously changing engine, fuel and after-treatment technologies.

  5. [Dynamic road vehicle emission inventory simulation study based on real time traffic information].

    Science.gov (United States)

    Huang, Cheng; Liu, Juan; Chen, Chang-Hong; Zhang, Jian; Liu, Deng-Guo; Zhu, Jing-Yu; Huang, Wei-Ming; Chao, Yuan

    2012-11-01

    The vehicle activity survey, including traffic flow distribution, driving condition, and vehicle technologies, were conducted in Shanghai. The databases of vehicle flow, VSP distribution and vehicle categories were established according to the surveyed data. Based on this, a dynamic vehicle emission inventory simulation method was designed by using the real time traffic information data, such as traffic flow and average speed. Some roads in Shanghai city were selected to conduct the hourly vehicle emission simulation as a case study. The survey results show that light duty passenger car and taxi are major vehicles on the roads of Shanghai city, accounting for 48% - 72% and 15% - 43% of the total flow in each hour, respectively. VSP distribution has a good relationship with the average speed. The peak of VSP distribution tends to move to high load section and become lower with the increase of average speed. Vehicles achieved Euro 2 and Euro 3 standards are majorities of current vehicle population in Shanghai. Based on the calibration of vehicle travel mileage data, the proportions of Euro 2 and Euro 3 standard vehicles take up 11% - 70% and 17% - 51% in the real-world situation, respectively. The emission simulation results indicate that the ratios of emission peak and valley for the pollutants of CO, VOC, NO(x) and PM are 3.7, 4.6, 9.6 and 19.8, respectively. CO and VOC emissions mainly come from light-duty passenger car and taxi, which has a good relationship with the traffic flow. NO(x) and PM emissions are mainly from heavy-duty bus and public buses and mainly concentrate in the morning and evening peak hours. The established dynamic vehicle emission simulation method can reflect the change of actual road emission and output high emission road sectors and hours in real time. The method can provide an important technical means and decision-making basis for transportation environment management.

  6. Greenhouse Gas and Particulate Emissions and Impacts from Cooking Technologies in Africa

    Science.gov (United States)

    Kammen, D. M.; Bailis, R.; Kituyi, E.; Ezzati, M.

    2003-12-01

    In much of Africa, the largest fraction of energy consumption occurs within the residential sector and is derived primarily from woodfuels burned in simple stoves with poor combustion characteristics. Many of the products of incomplete combustion (PICs) are damaging to human health, particularly when they are concentrated in poorly ventilated indoor environments. Incomplete combustion also has potentially harmful impacts on the climate. Prevalent PICs include methane, a potent greenhouse gas (GHG) that is among the pollutants subject to controls under the Kyoto Protocol as well as carbon monoxide (CO), non-methane hydrocarbons (NMHCs) and particulate matter (PM), which can all have an effect on climate, but are not subject to controls under Kyoto. In addition, when woodfuels are used at a rate that reduces standing stocks of trees over the medium or long term, the CO2 released by combustion also has an impact. The choice of stove and fuel technology can have a significant impact on the emission of GHGs as well as on human exposure to health damaging pollutants. In this paper we analyze the emissions of different household energy technologies on a life-cycle basis. We use emission factors to estimate the emissions associated with production, distribution and end-use of common household fuels and assess the likely impacts of these emissions on public health and the global environment. We focus largely on charcoal, a popular fuel in many sub-Saharan African countries. Charcoal is produced by heating wood in the absence of sufficient air for complete combustion to occur. This process removes moisture and most of the volatile compounds. The compounds driven off in the process consist of condensable tars as well as many gaseous hydrocarbons, including ~40 g CH4 per kg of charcoal produced. Combining upstream and end-use emissions, every meal cooked with charcoal has 2-10 times the global warming effect of cooking the same meal with firewood and 5-12 times the effect of

  7. Emission, Dispersion, Transformation, and Deposition of Asian Particulates Over the Western Pacific Ocean. Part II

    International Nuclear Information System (INIS)

    Turco, Richard P.

    2005-01-01

    In this project we developed and applied a coupled three-dimensional meteorology/chemistry/microphysics model to study the patterns of aerosol dispersion and deposition in the western Pacific area; carried out a series of detailed regional aerosol simulations to test the ability of models to treat emission, dispersion and removal processes prior to long-range transport; calculated and analyzed trajectories that originate in Asian dust source regions and reach the Pacific Basin; performed detailed simulations of regional and trans-Pacific transport, as well as the microphysical and chemical properties, of aerosols in the Asia-Pacific region to quantify processes that control the emission, dispersion and removal of particles; and assessed the contributions of regional-scale Asian particulate sources to the deposition of pollutants onto surface waters. The transport and deposition of aerosols and vapors were found to be strongly controlled by large and synoptic scale meteorology, convection, turbulence, and precipitation, as well as strong interactions between surface conditions and topographical features. The present analysis suggests that accurate representations of aerosol sources, transport and deposition can be obtained using a comprehensive modeling approach

  8. Factors influencing mobile source particulate matter emissions-to-exposure relationships in the Boston urban area.

    Science.gov (United States)

    Greco, Susan L; Wilson, Andrew M; Hanna, Steven R; Levy, Jonathan I

    2007-11-15

    Benefit-cost and regulatory impact analyses often use atmospheric dispersion models with coarse resolution to estimate the benefits of proposed mobile source emission control regulations. This approach may bias health estimates or miss important intra-urban variability for primary air pollutants. In this study, we estimate primary fine particulate matter (PM2.5) intake fractions (iF; the fraction of a pollutant emitted from a source that is inhaled by the population) for each of 23 398 road segments in the Boston Metro Core area to evaluate the potential for intra-urban variability in the emissions-to-exposure relationship. We estimate iFs using the CAL3QHCR line source model combined with residential populations within 5000 m of each road segment. The annual average values for the road segments range from 0.8 to 53 per million, with a mean of 12 per million. On average, 46% of the total exposure is realized within 200 m of the road segment, though this varies from 0 to 93% largely due to variable population patterns. Our findings indicate the likelihood of substantial intra-urban variability in mobile source primary PM2.5 iF that accounting for population movement with time, localized meteorological conditions, and street-canyon configurations would likely increase.

  9. EPA Supersites Program-related emissions-based particulate matter modeling: initial applications and advances.

    Science.gov (United States)

    Russell, Armistead G

    2008-02-01

    One objective of the U.S. Environmental Protection Agency's (EPA's) Supersite Program was to provide data that could be used to more thoroughly evaluate and improve air quality models, and then have those models used to address both scientific and policy-related issues dealing with air quality management. In this direction, modeling studies have used Supersites-related data and are reviewed here. Fine temporal resolution data have been used both to test model components (e.g., the inorganic thermodynamic routines) and air quality modeling systems (in particular, Community Multiscale Air Quality [CMAQ] and Comprehensive Air Quality Model with extensions [CAMx] applications). Such evaluations suggest that the inorganic thermodynamic approaches being used are accurate, as well as the description of sulfate production, although there are significant uncertainties in production of nitric acid, biogenic and ammonia emissions, secondary organic aerosol formation, and the ability to follow the formation and evolution of ultrafine particles. Model applications have investigated how PM levels will respond to various emissions controls, suggesting that nitrate will replace some of the reductions in sulfate particulate matter (PM), although the replacement is small in the summer. Although not part of the Supersite program, modeling being conducted by EPA, regional planning organizations, and states for policy purposes has benefited from the detailed data collected, and the PM models have advanced by their more widespread use.

  10. Effects of cold temperature and ethanol content on VOC emissions from light-duty gasoline vehicles

    Science.gov (United States)

    Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty spark ignition vehicles operating on summer and winter grade gasoline (E0) and ethanol blended (E10 and E85) fuels. Vehicle...

  11. 19 CFR 12.73 - Motor vehicle and engine compliance with Federal antipollution emission requirements.

    Science.gov (United States)

    2010-04-01

    ... requirements. This section is ancillary to the regulations of the U.S. Environmental Protection Agency (EPA.... Those regulations should be consulted for more detailed information concerning EPA emission requirements... and exclusions from emission requirements based on age of vehicle. The following motor vehicles...

  12. Urban emissions hotspots: Quantifying vehicle congestion and air pollution using mobile phone GPS data

    International Nuclear Information System (INIS)

    Gately, Conor K.; Hutyra, Lucy R.; Peterson, Scott; Sue Wing, Ian

    2017-01-01

    On-road emissions vary widely on time scales as short as minutes and length scales as short as tens of meters. Detailed data on emissions at these scales are a prerequisite to accurately quantifying ambient pollution concentrations and identifying hotspots of human exposure within urban areas. We construct a highly resolved inventory of hourly fluxes of CO, NO 2 , NO x , PM 2.5 and CO 2 from road vehicles on 280,000 road segments in eastern Massachusetts for the year 2012. Our inventory integrates a large database of hourly vehicle speeds derived from mobile phone and vehicle GPS data with multiple regional datasets of vehicle flows, fleet characteristics, and local meteorology. We quantify the ‘excess’ emissions from traffic congestion, finding modest congestion enhancement (3–6%) at regional scales, but hundreds of local hotspots with highly elevated annual emissions (up to 75% for individual roadways in key corridors). Congestion-driven reductions in vehicle fuel economy necessitated ‘excess’ consumption of 113 million gallons of motor fuel, worth ∼ $415M, but this accounted for only 3.5% of the total fuel consumed in Massachusetts, as over 80% of vehicle travel occurs in uncongested conditions. Across our study domain, emissions are highly spatially concentrated, with 70% of pollution originating from only 10% of the roads. The 2011 EPA National Emissions Inventory (NEI) understates our aggregate emissions of NO x , PM 2.5 , and CO 2 by 46%, 38%, and 18%, respectively. However, CO emissions agree within 5% for the two inventories, suggesting that the large biases in NO x and PM 2.5 emissions arise from differences in estimates of diesel vehicle activity. By providing fine-scale information on local emission hotspots and regional emissions patterns, our inventory framework supports targeted traffic interventions, transparent benchmarking, and improvements in overall urban air quality. - Highlights: • A high resolution, bottom-up inventory of

  13. Elemental characterization of inhalable particulate emissions on New Year's day in Metro Manila

    Energy Technology Data Exchange (ETDEWEB)

    Santos Flora, L; Pabroa, Corazon B; Morco, Ryan P; Racho, Joseph Michael D [Analytical Measurement Research Section, Atomic Research Division, Philippine Nuclear Research Institute, Commonwealth Ave., Diliman, Quezon City (Philippines)

    2010-07-01

    In the Philippines, it has been a yearly tradition to welcome the coming of the New Year with the loudest noise as can be achieved. Firecrackers and fireworks have been a necessity for Filipinos during this time despite bans on the use of most of these and despite the Department of Health's campaign to use alternative safe practices to welcome the New Year. Data for PM{sub 1}0 samples (fractionated as PM{sub 1}0-2.5 and PM{sub 2}.5) collected from four PNRI sampling sites in Metro Manila show the air pollution impacts of fireworks on New Year's Eve. Samples were collected from 1998 to 2006 using a Gent dichotomous sampler. Particulate mass was determined by gravimetry. Elemental analysis was done using two multi-elemental non-destructive nuclear analytical techniques: X-ray Fluorescence Spectrometry (XRF) and Particle Induced X-ray Emission (PIXE). Black carbon was analyzed using reflectometry. PM{sub 1}0 values increased by two to four times the usual averages (36.4 to 55.4 {mu} m-{sup 3}) and in 2002 even exceeded the PNAAQ short-term guideline value of 150 {mu}g m-{sup 3}), even many times exceeding US EPA short-term guideline value of 35 {mu}g m-{sup 3}. The increase in the particulate mass of New Year's Day samples can be attributed more to an increase in the elemental pollutants rather than the black carbon, with higher contribution from the fine fraction. Increase in the elemental concentrations of A1, S, CI, K, Ba, Sr, Ti, V, Mn, Cu and Pb were observed with the highest contribution from K. Results show that the usual practices of burning firecrackers and fireworks during New Year's Day celebration is a very strong source of air pollution which contributes significantly high amount of elemental pollutants in the air. (author)

  14. Elemental characterization of inhalable particulate emissions on New Year's day in Metro Manila

    International Nuclear Information System (INIS)

    Santos Flora, L.; Pabroa, Corazon B.; Morco, Ryan P.; Racho, Joseph Michael D.

    2010-01-01

    In the Philippines, it has been a yearly tradition to welcome the coming of the New Year with the loudest noise as can be achieved. Firecrackers and fireworks have been a necessity for Filipinos during this time despite bans on the use of most of these and despite the Department of Health's campaign to use alternative safe practices to welcome the New Year. Data for PM 1 0 samples (fractionated as PM 1 0-2.5 and PM 2 .5) collected from four PNRI sampling sites in Metro Manila show the air pollution impacts of fireworks on New Year's Eve. Samples were collected from 1998 to 2006 using a Gent dichotomous sampler. Particulate mass was determined by gravimetry. Elemental analysis was done using two multi-elemental non-destructive nuclear analytical techniques: X-ray Fluorescence Spectrometry (XRF) and Particle Induced X-ray Emission (PIXE). Black carbon was analyzed using reflectometry. PM 1 0 values increased by two to four times the usual averages (36.4 to 55.4 μ m- 3 ) and in 2002 even exceeded the PNAAQ short-term guideline value of 150 μg m- 3 ), even many times exceeding US EPA short-term guideline value of 35 μg m- 3 . The increase in the particulate mass of New Year's Day samples can be attributed more to an increase in the elemental pollutants rather than the black carbon, with higher contribution from the fine fraction. Increase in the elemental concentrations of A1, S, CI, K, Ba, Sr, Ti, V, Mn, Cu and Pb were observed with the highest contribution from K. Results show that the usual practices of burning firecrackers and fireworks during New Year's Day celebration is a very strong source of air pollution which contributes significantly high amount of elemental pollutants in the air. (author)

  15. Assessing stationary laboratory test methods for underground mining vehicles to determine their suitability in replicating real-world emissions

    CSIR Research Space (South Africa)

    Wattrus, MC

    2016-09-01

    Full Text Available Fuel, engine and after-treatment technologies are powerful levers to reduce diesel particulate matter emissions, however these benefits can only be guaranteed through routine maintenance and equipment monitoring. Portable emissions measurement...

  16. Real-time measurements of nitrogen oxide emissions from in-use New York City transit buses using a chase vehicle.

    Science.gov (United States)

    Shorter, Joanne H; Herndon, Scott; Zahniser, Mark S; Nelson, David D; Wormhoudt, Joda; Demerjian, Kenneth L; Kolb, Charles E

    2005-10-15

    New diesel engine technologies and alternative fuel engines are being introduced into fleets of mass transit buses to try to meet stricter emission regulations of nitrogen oxides and particulates: Real-time instruments including an Aerodyne Research tunable infrared laser differential absorption spectrometer (TILDAS) were deployed in a mobile laboratory to assess the impact of the implementation of the new technologies on nitrogen oxide emissions in real world driving conditions. Using a "chase" vehicle sampling strategy, the mobile laboratory followed target vehicles, repeatedly sampling their exhaust. Nitrogen oxides from approximately 170 in-use New York City mass transit buses were sampled during the field campaigns. Emissions from conventional diesel buses, diesel buses with continuously regenerating technology (CRT), diesel hybrid electric buses, and compressed natural gas (CNG) buses were compared. The chase vehicle sampling method yields real world emissions that can be included in more realistic emission inventories. The NO, emissions from the diesel and CNG buses were comparable. The hybrid electric buses had approximately one-half the NOx emissions. In CRT diesels, NO2 accounts for about one-third of the NOx emitted in the exhaust, while for non-CRT buses the NO2 fraction is less than 10%.

  17. Including impacts of particulate emissions on marine ecosystems in life cycle assessment: the case of offshore oil and gas production.

    Science.gov (United States)

    Veltman, Karin; Huijbregts, Mark A J; Rye, Henrik; Hertwich, Edgar G

    2011-10-01

    Life cycle assessment is increasingly used to assess the environmental performance of fossil energy systems. Two of the dominant emissions of offshore oil and gas production to the marine environment are the discharge of produced water and drilling waste. Although environmental impacts of produced water are predominantly due to chemical stressors, a major concern regarding drilling waste discharge is the potential physical impact due to particles. At present, impact indicators for particulate emissions are not yet available in life cycle assessment. Here, we develop characterization factors for 2 distinct impacts of particulate emissions: an increased turbidity zone in the water column and physical burial of benthic communities. The characterization factor for turbidity is developed analogous to characterization factors for toxic impacts, and ranges from 1.4 PAF (potentially affected fraction) · m(3) /d/kg(p) (kilogram particulate) to 7.0 x 10³ [corrected] for drilling mud particles discharged from the rig. The characterization factor for burial describes the volume of sediment that is impacted by particle deposition on the seafloor and equals 2.0 × 10(-1) PAF · m(3) /d/kg(p) for cutting particles. This characterization factor is quantified on the basis of initial deposition layer characteristics, such as height and surface area, the initial benthic response, and the recovery rate. We assessed the relevance of including particulate emissions in an impact assessment of offshore oil and gas production. Accordingly, the total impact on the water column and on the sediment was quantified based on emission data of produced water and drilling waste for all oil and gas fields on the Norwegian continental shelf in 2008. Our results show that cutting particles contribute substantially to the total impact of offshore oil and gas production on marine sediments, with a relative contribution of 55% and 31% on the regional and global scale, respectively. In contrast, the

  18. Particulate emissions from the combustion of birch, beech, and spruce logs cause different cytotoxic responses in A549 cells.

    Science.gov (United States)

    Kasurinen, Stefanie; Jalava, Pasi I; Happo, Mikko S; Sippula, Olli; Uski, Oskari; Koponen, Hanna; Orasche, Jürgen; Zimmermann, Ralf; Jokiniemi, Jorma; Hirvonen, Maija-Riitta

    2017-05-01

    According to the World Health Organization particulate emissions from the combustion of solid fuels caused more than 110,000 premature deaths worldwide in 2010. Log wood combustion is the most prevalent form of residential biomass heating in developed countries, but it is unknown how the type of wood logs used in furnaces influences the chemical composition of the particulate emissions and their toxicological potential. We burned logs of birch, beech and spruce, which are used commonly as firewood in Central and Northern Europe in a modern masonry heater, and compared them to the particulate emissions from an automated pellet boiler fired with softwood pellets. We determined the chemical composition (elements, ions, and carbonaceous compounds) of the particulate emissions with a diameter of less than 1 µm and tested their cytotoxicity, genotoxicity, inflammatory potential, and ability to induce oxidative stress in a human lung epithelial cell line. The chemical composition of the samples differed significantly, especially with regard to the carbonaceous and metal contents. Also the toxic effects in our tested endpoints varied considerably between each of the three log wood combustion samples, as well as between the log wood combustion samples and the pellet combustion sample. The difference in the toxicological potential of the samples in the various endpoints indicates the involvement of different pathways of toxicity depending on the chemical composition. All three emission samples from the log wood combustions were considerably more toxic in all endpoints than the emissions from the pellet combustion. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1487-1499, 2017. © 2016 Wiley Periodicals, Inc.

  19. Particulate matters from diesel heavy duty trucks exhaust versus cigarettes emissions: a new educational antismoking instrument.

    Science.gov (United States)

    De Marco, Cinzia; Ruprecht, Ario Alberto; Pozzi, Paolo; Munarini, Elena; Ogliari, Anna Chiara; Mazza, Roberto; Boffi, Roberto

    2015-01-01

    Indoor smoking in public places and workplaces is forbidden in Italy since 2003, but some health concerns are arising from outdoor secondhand smoke (SHS) exposure for non-smokers. One of the biggest Italian Steel Manufacturer, with several factories in Italy and abroad, the Marcegaglia Group, recently introduced the outdoor smoking ban within the perimeter of all their factories. In order to encourage their smoker employees to quit, the Marcegaglia management decided to set up an educational framework by measuring the PM1, PM2.5 and PM10 emissions from heavy duty trucks and to compare them with the emissions of cigarettes in an indoor controlled environment under the same conditions. The exhaust pipe of two trucks powered by a diesel engine of about 13.000/14.000 cc(3) were connected with a flexible hose to a hole in the window of a container of 36 m(3) volume used as field office. The trucks operated idling for 8 min and then, after adequate office ventilation, a smoker smoked a cigarette. Particulate matter emission was thereafter analyzed. Cigarette pollution was much higher than the heavy duty truck one. Mean of the two tests was: PM1 truck 125.0(47.0), cigarettes 231.7(90.9) p = 0.002; PM2.5 truck 250.8(98.7), cigarettes 591.8(306.1) p = 0.006; PM10 truck 255.8(52.4), cigarettes 624.0(321.6) p = 0.002. Our findings may be important for policies that aim reducing outdoor SHS exposure. They may also help smokers to quit tobacco dependence by giving them an educational perspective that rebuts the common alibi that traffic pollution is more dangerous than cigarettes pollution.

  20. New Tropical Peatland Gas and Particulate Emissions Factors Indicate 2015 Indonesian Fires Released Far More Particulate Matter (but Less Methane than Current Inventories Imply

    Directory of Open Access Journals (Sweden)

    Martin J. Wooster

    2018-03-01

    Full Text Available Deforestation and draining of the peatlands in equatorial SE Asia has greatly increased their flammability, and in September–October 2015 a strong El Niño-related drought led to further drying and to widespread burning across parts of Indonesia, primarily on Kalimantan and Sumatra. These fires resulted in some of the worst sustained outdoor air pollution ever recorded, with atmospheric particulate matter (PM concentrations exceeding those considered “extremely hazardous to health” by up to an order of magnitude. Here we report unique in situ air quality data and tropical peatland fire emissions factors (EFs for key carbonaceous trace gases (CO2, CH4 and CO and PM2.5 and black carbon (BC particulates, based on measurements conducted on Kalimantan at the height of the 2015 fires, both at locations of “pure” sub-surface peat burning and spreading vegetation fires atop burning peat. PM2.5 are the most significant smoke constituent in terms of human health impacts, and we find in situ PM2.5 emissions factors for pure peat burning to be 17.8 to 22.3 g·kg−1, and for spreading vegetation fires atop burning peat 44 to 61 g·kg−1, both far higher than past laboratory burning of tropical peat has suggested. The latter are some of the highest PM2.5 emissions factors measured worldwide. Using our peatland CO2, CH4 and CO emissions factors (1779 ± 55 g·kg−1, 238 ± 36 g·kg−1, and 7.8 ± 2.3 g·kg−1 respectively alongside in situ measured peat carbon content (610 ± 47 g-C·kg−1 we provide a new 358 Tg (± 30% fuel consumption estimate for the 2015 Indonesian fires, which is less than that provided by the GFEDv4.1s and GFASv1.2 global fire emissions inventories by 23% and 34% respectively, and which due to our lower EFCH4 produces far less (~3× methane. However, our mean in situ derived EFPM2.5 for these extreme tropical peatland fires (28 ± 6 g·kg−1 is far higher than current emissions inventories assume, resulting in our total

  1. Electrically heated catalysts for cold-start emission control on gasoline- and methanol-fueled vehicles

    International Nuclear Information System (INIS)

    Heimrich, M.J.; Albu, S.; Ahuja, M.

    1992-01-01

    Cold-start emissions from current technology vehicles equipped with catalytic converters can account for over 80 percent of the emissions produced during the Federal Test Procedure (FTP). Excessive pollutants can be emitted for a period of one to two minutes following cold engine starting, partially because the catalyst has not reached an efficient operating temperature. Electrically heated catalysts, which are heated prior to engine starting, have been identified as a potential strategy for controlling cold-start emissions. This paper summarizes the emission results of three gasoline-fueled and three methanol-fueled vehicles equipped with electrically heated catalyst systems. Results from these vehicles demonstrate that heated catalyst technology can provide FTP emission levels of nonmethane organic gases (NMOG), carbon monoxide (CO), and oxides of nitrogen (NO x ) that show promise of meeting the Ultra-Low Emission Vehicle (ULEV) standards established by the California Air Resources Board

  2. Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Non-Conformance Penalties for 2004 and later Model Year Emission Standards for Heavy-Duty Diesel Engines and Heavy-Duty Diesel Vehicles

    Science.gov (United States)

    Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Non-Conformance Penalties for 2004 and later Model Year Emission Standards for Heavy-Duty Diesel Engines and Heavy-Duty Diesel Vehicles

  3. Gaseous and Particulate Emissions from Diesel Engines at Idle and under Load: Comparison of Biodiesel Blend and Ultralow Sulfur Diesel Fuels.

    Science.gov (United States)

    Chin, Jo-Yu; Batterman, Stuart A; Northrop, William F; Bohac, Stanislav V; Assanis, Dennis N

    2012-11-15

    Diesel exhaust emissions have been reported for a number of engine operating strategies, after-treatment technologies, and fuels. However, information is limited regarding emissions of many pollutants during idling and when biodiesel fuels are used. This study investigates regulated and unregulated emissions from both light-duty passenger car (1.7 L) and medium-duty (6.4 L) diesel engines at idle and load and compares a biodiesel blend (B20) to conventional ultralow sulfur diesel (ULSD) fuel. Exhaust aftertreatment devices included a diesel oxidation catalyst (DOC) and a diesel particle filter (DPF). For the 1.7 L engine under load without a DOC, B20 reduced brake-specific emissions of particulate matter (PM), elemental carbon (EC), nonmethane hydrocarbons (NMHCs), and most volatile organic compounds (VOCs) compared to ULSD; however, formaldehyde brake-specific emissions increased. With a DOC and high load, B20 increased brake-specific emissions of NMHC, nitrogen oxides (NO x ), formaldehyde, naphthalene, and several other VOCs. For the 6.4 L engine under load, B20 reduced brake-specific emissions of PM 2.5 , EC, formaldehyde, and most VOCs; however, NO x brake-specific emissions increased. When idling, the effects of fuel type were different: B20 increased NMHC, PM 2.5 , EC, formaldehyde, benzene, and other VOC emission rates from both engines, and changes were sometimes large, e.g., PM 2.5 increased by 60% for the 6.4 L/2004 calibration engine, and benzene by 40% for the 1.7 L engine with the DOC, possibly reflecting incomplete combustion and unburned fuel. Diesel exhaust emissions depended on the fuel type and engine load (idle versus loaded). The higher emissions found when using B20 are especially important given the recent attention to exposures from idling vehicles and the health significance of PM 2.5 . The emission profiles demonstrate the effects of fuel type, engine calibration, and emission control system, and they can be used as source profiles for

  4. Gaseous and Particulate Emissions from Diesel Engines at Idle and under Load: Comparison of Biodiesel Blend and Ultralow Sulfur Diesel Fuels

    Science.gov (United States)

    Chin, Jo-Yu; Batterman, Stuart A.; Northrop, William F.; Bohac, Stanislav V.; Assanis, Dennis N.

    2015-01-01

    Diesel exhaust emissions have been reported for a number of engine operating strategies, after-treatment technologies, and fuels. However, information is limited regarding emissions of many pollutants during idling and when biodiesel fuels are used. This study investigates regulated and unregulated emissions from both light-duty passenger car (1.7 L) and medium-duty (6.4 L) diesel engines at idle and load and compares a biodiesel blend (B20) to conventional ultralow sulfur diesel (ULSD) fuel. Exhaust aftertreatment devices included a diesel oxidation catalyst (DOC) and a diesel particle filter (DPF). For the 1.7 L engine under load without a DOC, B20 reduced brake-specific emissions of particulate matter (PM), elemental carbon (EC), nonmethane hydrocarbons (NMHCs), and most volatile organic compounds (VOCs) compared to ULSD; however, formaldehyde brake-specific emissions increased. With a DOC and high load, B20 increased brake-specific emissions of NMHC, nitrogen oxides (NOx), formaldehyde, naphthalene, and several other VOCs. For the 6.4 L engine under load, B20 reduced brake-specific emissions of PM2.5, EC, formaldehyde, and most VOCs; however, NOx brake-specific emissions increased. When idling, the effects of fuel type were different: B20 increased NMHC, PM2.5, EC, formaldehyde, benzene, and other VOC emission rates from both engines, and changes were sometimes large, e.g., PM2.5 increased by 60% for the 6.4 L/2004 calibration engine, and benzene by 40% for the 1.7 L engine with the DOC, possibly reflecting incomplete combustion and unburned fuel. Diesel exhaust emissions depended on the fuel type and engine load (idle versus loaded). The higher emissions found when using B20 are especially important given the recent attention to exposures from idling vehicles and the health significance of PM2.5. The emission profiles demonstrate the effects of fuel type, engine calibration, and emission control system, and they can be used as source profiles for apportionment

  5. Assessment of the Potential to Reduce Emissions from Road Transportation, Notably NOx, Through the Use of Alternative Vehicles and Fuels in the Great Smoky Mountains Region; TOPICAL

    International Nuclear Information System (INIS)

    Sheffield, J.

    2001-01-01

    Air pollution is a serious problem in the region of the Great Smoky Mountains. The U.S. Environmental Protection Agency (EPA) may designate non-attainment areas by 2003 for ozone. Pollutants include nitrogen oxides (NOx), sulfur dioxide (SO(sub 2)), carbon monoxide (CO), volatile organic compounds (VOCs), lead, and particulate matter (PM), which are health hazards, damage the environment, and limit visibility. The main contributors to this pollution are industry, transportation, and utilities. Reductions from all contributors are needed to correct this problem. While improvements are projected in each sector over the next decades, the May 2000 Interim Report issued by the Southern Appalachian Mountains Initiative (SAMI) suggests that the percentage of NOx emissions from transportation may increase. The conclusions are: (1) It is essential to consider the entire fuel cycle in assessing the benefits, or disadvantages, of an alternative fuel option, i.e., feedstock and fuel production, in addition to vehicle operation; (2) Many improvements to the energy efficiency of a particular vehicle and engine combination will also reduce emissions by reducing fuel use, e.g., engine efficiency, reduced weight, drag and tire friction, and regenerative braking; (3) In reducing emissions it will be important to install the infrastructure to provide the improved fuels, support the maintenance of advanced vehicles, and provide emissions testing of both local vehicles and those from out of state; (4) Public transit systems using lower emission vehicles can play an important role in reducing emissions per passenger mile by carrying passengers more efficiently, particularly in congested areas. However, analysis is required for each situation; (5) Any reduction in emissions will be welcome, but the problems of air pollution in our region will not be solved by a few modest improvements. Substantial reductions in emissions of key pollutants are required both in East Tennessee and in

  6. Volatile organic compounds emissions from gasoline and diesel powered vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Mugica, V [Universidad Autonoma Metropolitana, Mexico, D.F. (Mexico); Vega, E; Sanchez, G; Reyes, E; Arriaga, J. L [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Chow, J; Watson, J; Egami, R [Desert Research Institute, Reno, NV (United States)

    2001-01-01

    In this research, volatile organic compound emissions were characterized from gasoline and diesel vehicles. Sampling campaigns in the Metropolitan Area of Mexico City were designed and carried out in tunnels, crossroads, and truck and bus terminals. The samples were analyzed with gas chromatography getting more than 250 different compounds, being more or less 60 of them the 80% of all the emissions. The most abundant are the two carbon compounds, as a result of the combustion, and compounds related to fuels compositions, like isopentane, xylenes, toluene among others. The profiles obtained in tunnels and crossroads were very similar with the exception of the 3 and 4 carbon compounds, which were found in bigger proportion in the profiles at crossroads. This may probably be due to the blend with the ambient air. The profiles corresponding to trucks and buses have a smaller content of two carbon compounds and a bigger content of xylenes, toluene and ethylbenzene. The variations in the proportions of the compounds allow differentiating the profiles of vehicles using gasoline and diesel. [Spanish] En este trabajo se caracterizaron las emisiones de compuestos organicos volatiles provenientes de vehiculos a gasolina y a diesel. Para ello, se disenaron diversas campanas de muestreo en la zona Metropolitana de la Ciudad de Mexico, en tuneles, cruceros y estaciones de camiones de carga y autobuses. Las muestras se analizaron con cromatografia, de gases obteniendose mas de 250 compuestos distintos, de los cuales aproximadamente 60 corresponden a mas del 80% de las emisiones. Los compuestos mas abundantes son los de dos carbonos, resultado de la combustion, y 4 carbonos que se encontraron en mayor proporcion en los perfiles de cruceros, lo cual se debe probablemente a la mezcla con el aire ambiente. Los perfiles correspondientes a camiones de carga y autobuses tienen un menor contenido de compuestos de dos carbonos y un mayor contenido de xilenos, tolueno y etilbenceno. Estas

  7. Characterization of metal and trace element contents of particulate matter (PM10) emitted by vehicles running on Brazilian fuels-hydrated ethanol and gasoline with 22% of anhydrous ethanol.

    Science.gov (United States)

    Ferreira da Silva, Moacir; Vicente de Assunção, João; de Fátima Andrade, Maria; Pesquero, Célia R

    2010-01-01

    Emission of fine particles by mobile sources has been a matter of great concern due to its potential risk both to human health and the environment. Although there is no evidence that one sole component may be responsible for the adverse health outcomes, it is postulated that the metal particle content is one of the most important factors, mainly in relation to oxidative stress. Data concerning the amount and type of metal particles emitted by automotive vehicles using Brazilian fuels are limited. The aim of this study was to identify inhalable particles (PM(10)) and their trace metal content in two light-duty vehicles where one was fueled with ethanol while the other was fueled with gasoline mixed with 22% of anhydrous ethanol (gasohol); these engines were tested on a chassis dynamometer. The elementary composition of the samples was evaluated by the particle-induced x-ray emission technique. The experiment showed that total emission factors ranged from 2.5 to 11.8 mg/km in the gasohol vehicle, and from 1.2 to 3 mg/km in the ethanol vehicle. The majority of particles emitted were in the fine fraction (PM(2.5)), in which Al, Si, Ca, and Fe corresponded to 80% of the total weight. PM(10) emissions from the ethanol vehicle were about threefold lower than those of gasohol. The elevated amount of fine particulate matter is an aggravating factor, considering that these particles, and consequently associated metals, readily penetrate deeply into the respiratory tract, producing damage to lungs and other tissues.

  8. The Story of Ever Diminishing Vehicle Tailpipe Emissions as Observed in the Chicago, Illinois Area.

    Science.gov (United States)

    Bishop, Gary A; Haugen, Molly J

    2018-05-15

    The University of Denver has collected on-road fuel specific vehicle emissions measurements in the Chicago area since 1989. This nearly 30 year record illustrates the large reductions in light-duty vehicle tailpipe emissions and the remarkable improvements in emissions control durability to maintain low emissions over increasing periods of time. Since 1989 fuel specific carbon monoxide (CO) emissions have been reduced by an order of magnitude and hydrocarbon (HC) emissions by more than a factor of 20. Nitric oxide (NO) emissions have only been collected since 1997 but have seen reductions of 79%. This has increased the skewness of the emissions distribution where the 2016 fleet's 99th percentile contributes ∼3 times more of the 1990 total for CO and HC emissions. There are signs that these reductions may be leveling out as the emissions durability of Tier 2 vehicles in use today has almost eliminated the emissions reduction benefit of fleet turnover. Since 1997, the average age of the Chicago on-road fleet has increased 2 model years and the percentage of passenger vehicles has dropped from 71 to 52% of the fleet. Emissions are now so well controlled that the influence of driving mode has been completely eliminated as a factor for fuel specific CO and NO emissions.

  9. The fate of particulate emissions from an isolated power plant in the oil sands area of western Canada

    International Nuclear Information System (INIS)

    Barrie, L.A.

    1980-01-01

    The nature and fate of particulate emissions from an isolated power plant in the Athabasca oil sands area of western Canada are investigated on the basis of measurements of particulate elemental concentrations in the air 80 km from the source late one winter, and close to the source early the next summer, of dry deposition patterns of particulate sulfur and heavy metals in the early summer, and of total (wet and dry) deposition patterns of major ions and metals during two winters. Results of plume chemistry studies to investigate SO 2 oxidation during summer and winter and of fly-ash analyses for heavy metals are also used. It is found that: (1) many elements in particulate matter deposited around the plant originate primarily from a different source in summer and in winter (2) deposition near the source is more alkaline than in outlying areas, (3) wet and dry deposition of acidic oxides of sulfur and nitrogen from the power-plant emissions appear to be the main source of snowpack acidification in downwind areas, and (4) acidic compounds can be transported over long distances before being removed

  10. Chemical characterization of organic particulate matter from on-road traffic in Sao Paulo, Brazil

    NARCIS (Netherlands)

    Oyama, Beatriz Sayuri; Andrade, Maria de Fatima; Herckes, Pierre; Dusek, Ulrike; Rockmann, Thomas; Holzinger, Rupert

    2016-01-01

    This study reports emission of organic particulate matter by light-duty vehicles (LDVs) and heavy-duty vehicles (HDVs) in the city of Sao Paulo, Brazil, where vehicles run on three different fuel types: gasoline with 25% ethanol (called gasohol, E25), hydrated ethanol (E100), and diesel (with 5%

  11. Chemical characterization of organic particulate matter from on-road traffic in Sao Paulo, Brazil

    NARCIS (Netherlands)

    Oyama, Beatriz Sayuri; Andrade, Maria de Fatima; Herckes, Pierre; Dusek, Ulrike; Rockmann, Thomas; Holzinger, Rupert

    2016-01-01

    This study reports emission of organic particulate matter by light-duty vehicles (LDVs) and heavy-duty vehicles (HDVs) in the city of São Paulo, Brazil, where vehicles run on three different fuel types: gasoline with 25 % ethanol (called gasohol, E25), hydrated ethanol (E100), and diesel (with 5 %

  12. A Study on BC Emission from Vehicles using Different Types of Fuel

    Science.gov (United States)

    Kim, K.; Son, J.; Kim, J.; Kim, S.; Park, G.; Sung, K.; Kim, I.; Chung, T.; Park, T.; Kang, S.; Ban, J.; Kim, J.; Hong, Y. D.; Woo, J. H.; Lee, T.

    2017-12-01

    Black carbon (BC) is an anthropogenic aerosol from fossil fuels, and biomass burning. It absorbs solar radiation, and heats the atmosphere leading 0.4W m-2 radiative forcing. BC is a particle that can cause serious effects on human body as well. Toxicological studies of black carbon suggests that BC may be an important carrier of toxic chemicals to human body. The recent researches show that one of the main precursor of BC is vehicle emission, but the inventory of BC emission rate from vehicle is inadequate in South Korea. This study tries to find differences of BC emission from different sizes of vehicles using different types of fuels. Fuels used in vehicles are gasoline, liquefied petroleum gas (LPG), and diesel. BC was directly measured from the tail pipe of vehicles using Aethalometer (AE33, Magee Scientific Corporation). This study was conducted in Transport Pollutant Research Center, National Institute of Environmental Research, South Korea. Measurement was progressed with the five different test modes of speeds. Speed modes includes 4.7, 17.3, 34.1, 65.4, and 97.3 km h-1. Emission rate of BC was high in the slowest speed mode, and showed decrease with increase of the speed of vehicles. Gasoline vehicles had the relatively higher emission rate of BC than the LPG vehicle, while the emission rate of BC for Diesel with DPF (Diesel Particle Filter) was observed to be the lowest.

  13. Molecular composition of particulate matter emissions from dung and brushwood burning household cookstoves in Haryana, India

    Science.gov (United States)

    Fleming, Lauren T.; Lin, Peng; Laskin, Alexander; Laskin, Julia; Weltman, Robert; Edwards, Rufus D.; Arora, Narendra K.; Yadav, Ankit; Meinardi, Simone; Blake, Donald R.; Pillarisetti, Ajay; Smith, Kirk R.; Nizkorodov, Sergey A.

    2018-02-01

    Emissions of airborne particles from biomass burning are a significant source of black carbon (BC) and brown carbon (BrC) in rural areas of developing countries where biomass is the predominant energy source for cooking and heating. This study explores the molecular composition of organic aerosols from household cooking emissions with a focus on identifying fuel-specific compounds and BrC chromophores. Traditional meals were prepared by a local cook with dung and brushwood-fueled cookstoves in a village in Palwal district, Haryana, India. Cooking was done in a village kitchen while controlling for variables including stove type, fuel moisture, and meal. Fine particulate matter (PM2.5) emissions were collected on filters, and then analyzed via nanospray desorption electrospray ionization-high-resolution mass spectrometry (nano-DESI-HRMS) and high-performance liquid chromatography-photodiode array-high-resolution mass spectrometry (HPLC-PDA-HRMS) techniques. The nano-DESI-HRMS analysis provided an inventory of numerous compounds present in the particle phase. Although several compounds observed in this study have been previously characterized using gas chromatography methods a majority of the species in the nano-DESI spectra were newly observed biomass burning compounds. Both the stove (chulha or angithi) and the fuel (brushwood or dung) affected the composition of organic aerosols. The geometric mean of the PM2.5 emission factor and the observed molecular complexity increased in the following order: brushwood-chulha (7.3 ± 1.8 g kg-1 dry fuel, 93 compounds), dung-chulha (21.1 ± 4.2 g kg-1 dry fuel, 212 compounds), and dung-angithi (29.8 ± 11.5 g kg-1 dry fuel, 262 compounds). The mass-normalized absorption coefficient (MACbulk) for the organic-solvent extractable material for brushwood PM2.5 was 3.7 ± 1.5 and 1.9 ± 0.8 m2 g-1 at 360 and 405 nm, respectively, which was approximately a factor of two higher than that for dung PM2.5. The HPLC-PDA-HRMS analysis

  14. Effect of interactions between vehicles and pedestrians on fuel consumption and emissions

    Science.gov (United States)

    Li, Xiang; Sun, Jian-Qiao

    2014-12-01

    This paper presents a study of variations of fuel consumption and emissions of vehicles due to random street crossings of pedestrians. The pedestrian and vehicle movement models as well as the interaction model between the two entities are presented. Extensive numerical simulations of single and multiple cars are carried out to investigate the traffic flow rate, vehicle average speed, fuel consumption, CO, HC and NOx emissions. Generally more noncompliant road-crossings of pedestrians lead to higher level of fuel consumptions and emissions of vehicles, and the traffic situation can be improved by imposing higher vehicle speed limit to some extent. Different traffic characteristics in low and high vehicle density regions are studied. The traffic flow is more influenced by crossing pedestrians in the low vehicle density region, while in the high vehicle density region, the interactions among vehicles dominate. The main contribution of this paper lies in the qualitative analysis of the impact of the interactions between pedestrians and vehicles on the traffic, its energy economy and emissions.

  15. Properties and cellular effects of particulate matter from direct emissions and ambient sources.

    Science.gov (United States)

    Jin, Wenjie; Su, Shu; Wang, Bin; Zhu, Xi; Chen, Yilin; Shen, Guofeng; Liu, Junfeng; Cheng, Hefa; Wang, Xilong; Wu, Shuiping; Zeng, Eddy; Xing, Baoshan; Tao, Shu

    2016-10-14

    The pollution of particulate matter (PM) is of great concern in China and many other developing countries. It is generally recognized that the toxicity of PM is source and property dependent. However, the relationship between PM properties and toxicity is still not well understood. In this study, PM samples from direct emissions of wood, straw, coal, diesel combustion, cigarette smoking and ambient air were collected and characterized for their physicochemical properties. Their expression of intracellular reactive oxygen species (ROS) and levels of inflammatory cytokines (i.e., tumor necrosis factor-α (TNF-α)) was measured using a RAW264.7 cell model. Our results demonstrated that the properties of the samples from different origins exhibited remarkable differences. Significant increases in ROS were observed when the cells were exposed to PMs from biomass origins, including wood, straw and cigarettes, while increases in TNF-α were found for all the samples, particularly those from ambient air. The most important factor associated with ROS generation was the presence of water-soluble organic carbon, which was extremely abundant in the samples that directly resulted from biomass combustion. Metals, endotoxins and PM size were the most important properties associated with increases in TNF-α expression levels. The association of the origins of PM particles and physicochemical properties with cytotoxic properties is illustrated using a cluster analysis.

  16. Brand Cigarillos — A Cheap and Less Harmful Alternative to Cigarettes? Particulate Matter Emissions Suggest Otherwise

    Directory of Open Access Journals (Sweden)

    Alexander Gerber

    2015-01-01

    Full Text Available Background: Environmental tobacco smoke (ETS-associated particulate matter (PM constitutes a considerable health risk for passive smokers. It ought to be assessed separately from the other known toxic compounds of tobacco smoke. Brand-specific differences between cigarettes and particularly between cigarettes and favorably taxed cigarillos, are of public interest and therefore worth being investigated. Methods: An automatic environmental tobacco smoke emitter (AETSE was developed to generate cigarette and cigarillo smoke in a reliable and reproducible way. John Player Special (JPS Red cigarettes, JPS filter cigarillos and 3R4F standard research cigarettes were smoked automatically in a 2.88 m3 glass chamber according to a standardized protocol until 5 cm from the top were burned down. Results: Mean concentrations (Cmean and area of the curve (AUC of PM2.5 were measured and compared. Cmean PM2.5 were found to be 804 µg/m3 for 3R4F reference cigarettes, 1633 µg/m3 for JPS cigarettes, and 1059 µg/m3 for JPS filter cigarillos. AUC PM2.5-values are 433,873 µg/m3×s for 3R4F reference cigarettes, 534,267 µg/m3×s for JPS Red cigarettes and 782,850 µg/m3×s for JPS filter cigarillos. Conclusion: Potential brand-specific differences of ETS-associated PM emissions among brands of cigarettes, and between cigarettes and cigarillos of the same brand and size should be investigated and published. Information about relative PM-emissions should be printed on the package.

  17. 78 FR 20881 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards...

    Science.gov (United States)

    2013-04-08

    ...The EPA is announcing two public hearings to be held for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards'' (the proposed rule is hereinafter referred to as ``Tier 3''), which will be published separately in the Federal Register. The hearings will be held in Philadelphia, PA on April 24, 2013 and in Chicago, IL on April 29, 2013. The comment period for the proposed rulemaking will end on June 13, 2013.

  18. Auto-vehicles and environment: Emission limits and innovative technology

    International Nuclear Information System (INIS)

    Pinchera, G.

    1992-01-01

    Brief descriptions are given of the main design and performance characteristics and maintenance requirements of the principal types of catalytic converters currently being marketed in Italy. An assessment is made of the contribution of these devices to air pollution abatement in Italy as car owners conform to recently passed stricter emission limits. A historical review is made of trends in auto-vehicle pollution limits in the USA and Italy. Comparisons are made of efforts by industrialized countries to reduce air pollution in the transportation sector. Here, the author notes the slowness of Italy's response to the air pollution problem, in particular, this foreign-oil-dependent Nation's over-emphasis on energy consuming and highly polluting road transport systems, as well as, its lack of technology utilization and commercialization in the pollution equipment sector. Suggestions are made as to ways to overcome the worsening situation with regard to urban area traffic derived air pollution, e.g., the bolstering of mass transit systems and more R ampersand D investment in pollution abatement technologies

  19. Volatile organic compounds (VOCs) source profiles of on-road vehicle emissions in China.

    Science.gov (United States)

    Hong-Li, Wang; Sheng-Ao, Jing; Sheng-Rong, Lou; Qing-Yao, Hu; Li, Li; Shi-Kang, Tao; Cheng, Huang; Li-Ping, Qiao; Chang-Hong, Chen

    2017-12-31

    Volatile Organic Compounds (VOCs) source profiles of on-road vehicles were widely studied as their critical roles in VOCs source apportionment and abatement measures in megacities. Studies of VOCs source profiles from on-road motor vehicles from 2001 to 2016 were summarized in this study, with a focus on the comparisons among different studies and the potential impact of different factors. Generally, non-methane hydrocarbons dominated the source profile of on-road vehicle emissions. Carbonyls, potential important components of vehicle emission, were seldom considered in VOCs emissions of vehicles in the past and should be paid more attention to in further study. VOCs source profiles showed some variations among different studies, and 6 factors were extracted and studied due to their impact to VOCs source profile of on-road vehicles. Vehicle types, being dependent on engine types, and fuel types were two dominant factors impacting VOCs sources profiles of vehicles. In comparison, impacts of ignitions, driving conditions and accumulated mileage were mainly due to their influence on the combustion efficiency. An opening and interactive database of VOCs from vehicle emissions was critically essential in future, and mechanisms of sharing and inputting relative research results should be formed to encourage researchers join the database establishment. Correspondingly, detailed quality assurance and quality control procedures were also very important, which included the information of test vehicles and test methods as detailed as possible. Based on the community above, a better uncertainty analysis could be carried out for the VOCs emissions profiles, which was critically important to understand the VOCs emission characteristics of the vehicle emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Fuel conservation and GHG (Greenhouse gas) emissions mitigation scenarios for China’s passenger vehicle fleet

    International Nuclear Information System (INIS)

    Hao, Han; Wang, Hewu; Ouyang, Minggao

    2011-01-01

    Passenger vehicles are the main consumers of gasoline in China. We established a bottom-up model which focuses on the simulation of energy consumptions and greenhouse gas (GHG) emissions growth by China’s passenger vehicle fleet. The fuel conservation and GHG emissions mitigation effects of five measures including constraining vehicle registration, reducing vehicle travel, strengthening fuel consumption rate (FCR) limits, vehicle downsizing and promoting electric vehicle (EV) penetration were evaluated. Based on the combination of these measures, the fuel conservation and GHG emissions mitigation scenarios for China’s passenger vehicle fleet were analyzed. Under reference scenario with no measures implemented, the fuel consumptions and life cycle GHG emissions will reach 520 million tons of oil equivalent (Mtoe) and 2.15 billion tons in 2050, about 8.1 times the level in 2010. However, substantial fuel conservation can be achieved by implementing the measures. By implementing all five measures together, the fuel consumption will reach 138 Mtoe in 2030 and decrease to 126 Mtoe in 2050, which is only 37.1% and 24.3% of the consumption under reference scenario. Similar potential lies in GHG mitigation. The results and scenarios provided references for the Chinese government’s policy-making. -- Highlights: ► We established a bottom-up model to simulate the fuel consumptions and GHG (Greenhouse gas) emissions growth by China’s passenger vehicle fleet. ► Five measures including constraining vehicle registration, reducing vehicle travel, improving fuel efficiency, vehicle downsizing and promoting EV penetration were evaluated. ► The fuel conservation and GHG emissions mitigation scenarios for China’s passenger vehicle fleet were provided as references for policy-making.

  1. Estimation of light duty vehicle emissions in Islamabad and climate co-benefits of improved emission standards implementation

    Science.gov (United States)

    Shah, Izhar Hussain; Zeeshan, Muhammad

    2016-02-01

    Light Duty Vehicles (LDVs) hold a major share in Islamabad's vehicle fleet and their contribution towards air pollution has not been analyzed previously. Emissions for the base year (2014) and two optimistic 'what-if' scenarios were estimated by using the International Vehicle Emissions (IVE) model. Considering the recent implementation of Euro II as emission standard in Pakistan, scenario 1 assumed entire LDV fleet meeting at least Euro II standards while scenario 2 assumed all LDVs meeting Euro IV standards except motorcycles which would be meeting Euro III emission standards. Higher average age for all vehicles and lower share of Euro compliant vehicles was found in the base case. Low engine stress mode (lower speeds with frequent decelerations) was observed for all vehicles especially on arterials and residential roads. Highest overall emissions (59%) were observed on arterials, followed by residential roads (24%) and highways (17%) with higher emissions observed during morning (8-10 am) and evening (4-6 pm) rush hours. Composite emission factors were also calculated. Results reveal that 1094, 147, 11.1, 0.2 and 0.4 kt of CO2, CO, NOx, SO2 and PM10 respectively were emitted in 2014 by LDVs. Compared with the base year, scenario 1 showed a reduction of 9%, 69%, 73%, 13% and 31%, while scenario 2 exhibited a reduction of 5%, 92%, 90%, 92% and 81% for CO2, CO, NOx, SO2 and PM10 respectively. As compared to the base year, a 20 year CO2-equivalent Global Warming Potential (GWP) reduced by 55% and 64% under scenario 1 and 2 respectively, while a 100 year GWP reduced by 40% and 44% under scenario 1 and 2 respectively. Our results demonstrated significant co-benefits that could be achieved in emission reduction and air quality improvement in the city by vehicle technology implementation.

  2. Investigation of CO2 emission reduction strategy from in-use gasoline vehicle

    Science.gov (United States)

    Choudhary, Arti; Gokhale, Sharad

    2016-04-01

    On road transport emissions is kicking off in Indian cities due to high levels of urbanization and economic growth during the last decade in Indian subcontinent. In 1951, about 17% of India's population were living in urban areas that increased to 32% in 2011. Currently, India is fourth largest Green House Gas (GHG) emitter in the world, with its transport sector being the second largest contributor of CO2 emissions. For achieving prospective carbon reduction targets, substantial opportunity among in-use vehicle is necessary to quantify. Since, urban traffic flow and operating condition has significant impact on exhaust emission (Choudhary and Gokhale, 2016). This study examined the influence of vehicular operating kinetics on CO2 emission from predominant private transportation vehicles of Indian metropolitan city, Guwahati. On-board instantaneous data were used to quantify the impact of CO2 emission on different mileage passenger cars and auto-rickshaws at different times of the day. Further study investigates CO2 emission reduction strategies by using International Vehicle Emission (IVE) model to improve co-benefit in private transportation by integrated effort such as gradual phase-out of inefficient vehicle and low carbon fuel. The analysis suggests that fuel type, vehicles maintenance and traffic flow management have potential for reduction of urban sector GHG emissions. Keywords: private transportation, CO2, instantaneous emission, IVE model Reference Choudhary, A., Gokhale, S. (2016). Urban real-world driving traffic emissions during interruption and congestion. Transportation Research Part D: Transport and Environment 43: 59-70.

  3. Modeling and predicting low-speed vehicle emissions as a function of driving kinematics.

    Science.gov (United States)

    Hao, Lijun; Chen, Wei; Li, Lei; Tan, Jianwei; Wang, Xin; Yin, Hang; Ding, Yan; Ge, Yunshan

    2017-05-01

    An instantaneous emission model was developed to model and predict the real driving emissions of the low-speed vehicles. The emission database used in the model was measured by using portable emission measurement system (PEMS) under actual traffic conditions in the rural area, and the characteristics of the emission data were determined in relation to the driving kinematics (speed and acceleration) of the low-speed vehicle. The input of the emission model is driving cycle, and the model requires instantaneous vehicle speed and acceleration levels as input variables and uses them to interpolate the pollutant emission rate maps to calculate the transient pollutant emission rates, which will be accumulated to calculate the total emissions released during the whole driving cycle. And the vehicle fuel consumption was determined through the carbon balance method. The model predicted the emissions and fuel consumption of an in-use low-speed vehicle type model, which agreed well with the measured data. Copyright © 2016. Published by Elsevier B.V.

  4. Particulate emissions from a stationary engine fueled with ultra-low-sulfur diesel and waste-cooking-oil-derived biodiesel.

    Science.gov (United States)

    Betha, Raghu; Balasubramanian, Rajasekhar

    2011-10-01

    Stationary diesel engines, especially diesel generators, are increasingly being used in both developing countries and developed countries because of increased power demand. Emissions from such engines can have adverse effects on the environment and public health. In this study, particulate emissions from a domestic stationary diesel generator running on ultra-low-sulfur diesel (ULSD) and biodiesel derived from waste cooking oil were characterized for different load conditions. Results indicated a reduction in particulate matter (PM) mass and number emissions while switching diesel to biodiesel. With increase in engine load, it was observed that particle mass increased, although total particle counts decreased for all the fuels. The reduction in total number concentration at higher loads was, however, dependent on percentage of biodiesel in the diesel-biodiesel blend. For pure biodiesel (B100), the reduction in PM emissions for full load compared to idle mode was around 9%, whereas for ULSD the reduction was 26%. A large fraction of ultrafine particles (UFPs) was found in the emissions from biodiesel compared to ULSD. Nearly 90% of total particle concentration in biodiesel emissions comprised ultrafine particles. Particle peak diameter shifted from a smaller to a lower diameter with increase in biodiesel percentage in the fuel mixture.

  5. Regional Variability and Uncertainty of Electric Vehicle Life Cycle CO₂ Emissions across the United States.

    Science.gov (United States)

    Tamayao, Mili-Ann M; Michalek, Jeremy J; Hendrickson, Chris; Azevedo, Inês M L

    2015-07-21

    We characterize regionally specific life cycle CO2 emissions per mile traveled for plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) across the United States under alternative assumptions for regional electricity emission factors, regional boundaries, and charging schemes. We find that estimates based on marginal vs average grid emission factors differ by as much as 50% (using National Electricity Reliability Commission (NERC) regional boundaries). Use of state boundaries versus NERC region boundaries results in estimates that differ by as much as 120% for the same location (using average emission factors). We argue that consumption-based marginal emission factors are conceptually appropriate for evaluating the emissions implications of policies that increase electric vehicle sales or use in a region. We also examine generation-based marginal emission factors to assess robustness. Using these two estimates of NERC region marginal emission factors, we find the following: (1) delayed charging (i.e., starting at midnight) leads to higher emissions in most cases due largely to increased coal in the marginal generation mix at night; (2) the Chevrolet Volt has higher expected life cycle emissions than the Toyota Prius hybrid electric vehicle (the most efficient U.S. gasoline vehicle) across the U.S. in nearly all scenarios; (3) the Nissan Leaf BEV has lower life cycle emissions than the Prius in the western U.S. and in Texas, but the Prius has lower emissions in the northern Midwest regardless of assumed charging scheme and marginal emissions estimation method; (4) in other regions the lowest emitting vehicle depends on charge timing and emission factor estimation assumptions.

  6. Effects of Mid-Level Ethanol Blends on Conventional Vehicle Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, K.; West, B.; Huff, S.; Thomas, J.; Orban, J.; Cooper, C.

    2010-06-01

    Tests were conducted in 2008 on 16 late-model conventional vehicles (1999-2007) to determine short-term effects of mid-level ethanol blends on performance and emissions. Vehicle odometer readings ranged from 10,000 to 100,000 miles, and all vehicles conformed to federal emissions requirements for their federal certification level. The LA92 drive cycle, also known as the Unified Cycle, was used for testing because it more accurately represents real-world acceleration rates and speeds than the Federal Test Procedure. Test fuels were splash-blends of up to 20 volume percent ethanol with federal certification gasoline. Both regulated and unregulated air-toxic emissions were measured. For the 16-vehicle fleet, increasing ethanol content resulted in reductions in average composite emissions of both nonmethane hydrocarbons and carbon monoxide and increases in average emissions of ethanol and aldehydes.

  7. Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City

    Directory of Open Access Journals (Sweden)

    D. A. Thornhill

    2010-04-01

    Full Text Available The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA using on-road measurements captured by a mobile laboratory combined with positive matrix factorization (PMF receptor modeling. During the MCMA-2006 ground-based component of the MILAGRO field campaign, the Aerodyne Mobile Laboratory (AML measured many gaseous and particulate pollutants, including carbon dioxide, carbon monoxide (CO, nitrogen oxides (NOx, benzene, toluene, alkylated aromatics, formaldehyde, acetaldehyde, acetone, ammonia, particle number, fine particulate mass (PM2.5, and black carbon (BC. These serve as inputs to the receptor model, which is able to resolve three factors corresponding to gasoline engine exhaust, diesel engine exhaust, and the urban background. Using the source profiles, we calculate fuel-based emission factors for each type of exhaust. The MCMA's gasoline-powered vehicles are considerably dirtier, on average, than those in the US with respect to CO and aldehydes. Its diesel-powered vehicles have similar emission factors of NOx and higher emission factors of aldehydes, particle number, and BC. In the fleet sampled during AML driving, gasoline-powered vehicles are found to be responsible for 97% of total vehicular emissions of CO, 22% of NOx, 95–97% of each aromatic species, 72–85% of each carbonyl species, 74% of ammonia, negligible amounts of particle number, 26% of PM2.5, and 2% of BC; diesel-powered vehicles account for the balance. Because the mobile lab spent 17% of its time waiting at stoplights, the results may overemphasize idling conditions, possibly resulting in an underestimate of NOx and overestimate of CO emissions. On the other hand, estimates of the inventory that do not correctly account for emissions during idling are likely to produce bias in the opposite direction.The resulting fuel

  8. Efficient determination of vehicle emission factors by fuel use category using on-road measurements: downward trends on Los Angeles freight corridor I-710

    Directory of Open Access Journals (Sweden)

    N. Hudda

    2013-01-01

    Full Text Available To evaluate the success of vehicle emissions regulations, trends in both fleet-wide average emissions as well as high-emitter emissions are needed, but it is challenging to capture the full spread of vehicle emission factors (EFs with chassis dynamometer or tunnel studies, and remote sensing studies cannot evaluate particulate compounds. We developed an alternative method that links real-time on-road pollutant measurements from a mobile platform with real-time traffic data, and allows efficient calculation of both the average and the spread of EFs for light-duty gasoline-powered vehicles (LDG and heavy-duty diesel-powered vehicles (HDD. This is the first study in California to report EFs under a full range of real-world driving conditions on multiple freeways. Fleet average LDG EFs were in agreement with most recent studies and an order of magnitude lower than observed HDD EFs. HDD EFs reflected the relatively rapid decreases in diesel emissions that have recently occurred in Los Angeles/California, and on I-710, a primary route used for goods movement and a focus of additional truck fleet turnover incentives, HDD EFs were often lower than on other freeways. When freeway emission rates (ER were quantified as the product of EF and vehicle miles traveled (VMT per time per mile of freeway, despite a two- to three-fold difference in HDD fractions between freeways, ERs were found to be generally similar in magnitude. Higher LDG VMT on low HDD fraction freeways largely offset the difference. Therefore, the conventional assumption that freeways with the highest HDD fractions are significantly worse sources of total emissions in Los Angeles may no longer be~true.

  9. Efficient determination of vehicle emission factors by fuel use category using on-road measurements: downward trends on Los Angeles freight corridor I-710.

    Science.gov (United States)

    Hudda, N; Fruin, S; Delfino, R J; Sioutas, C

    2013-01-11

    To evaluate the success of vehicle emissions regulations, trends in both fleet-wide average emissions as well as high-emitter emissions are needed, but it is challenging to capture the full spread of vehicle emission factors (EFs) with chassis dynamometer or tunnel studies, and remote sensing studies cannot evaluate particulate compounds. We developed an alternative method that links real-time on-road pollutant measurements from a mobile platform with real-time traffic data, and allows efficient calculation of both the average and the spread of EFs for light-duty gasoline-powered vehicles (LDG) and heavy-duty diesel-powered vehicles (HDD). This is the first study in California to report EFs under a full range of real-world driving conditions on multiple freeways. Fleet average LDG EFs were in agreement with most recent studies and an order of magnitude lower than observed HDD EFs. HDD EFs reflected the relatively rapid decreases in diesel emissions that have recently occurred in Los Angeles/California, and on I-710, a primary route used for goods movement and a focus of additional truck fleet turnover incentives, HDD EFs were often lower than on other freeways. When freeway emission rates (ER) were quantified as the product of EF and vehicle miles traveled (VMT) per time per mile of freeway, despite a twoto three-fold difference in HDD fractions between freeways, ERs were found to be generally similar in magnitude. Higher LDG VMT on low HDD fraction freeways largely offset the difference. Therefore, the conventional assumption that free ways with the highest HDD fractions are significantly worse sources of total emissions in Los Angeles may no longer be true.

  10. Comparative field evaluation of vehicle cruise speed and acceleration level impacts on hot stabilized emissions

    International Nuclear Information System (INIS)

    El-Shawarby, Ihab; Ahn, Kyoungho; Rakha, Hesham

    2005-01-01

    The main objectives of this paper are two fold. First, the paper evaluates the impact of vehicle cruise speed and acceleration levels on vehicle fuel-consumption and emission rates using field data gathered under real-world driving conditions. Second, it validates the VT-Micro model for the modeling of real-world conditions. Specifically, an on-board emission-measurement device was used to collect emissions of oxides of nitrogen, hydrocarbons, carbon monoxide, and carbon dioxide using a light-duty test vehicle. The analysis demonstrates that vehicle fuel-consumption and emission rates per-unit distance are optimum in the range of 60-90 km/h, with considerable increase outside this optimum range. The study demonstrates that as the level of aggressiveness for acceleration maneuvers increases, the fuel-consumption and emission rates per maneuver decrease because the vehicle spends less time accelerating. However, when emissions are gathered over a sufficiently long fixed distance, fuel-consumption and mobile-source emission rates per-unit distance increase as the level of acceleration increases because of the history effects that accompany rich-mode engine operations. In addition, the paper demonstrates the validity of the VT-Micro framework for modeling steady-state vehicle fuel-consumption and emission behavior. Finally, the research demonstrates that the VT-Micro framework requires further refinement to capture non-steady-state history behavior when the engine operates in rich mode. (Author)

  11. Ammonia, nitrous oxide and hydrogen cyanide emissions from five passenger vehicles

    International Nuclear Information System (INIS)

    Karlsson, Hua Lu

    2004-01-01

    In this paper, three unregulated components, ammonia, nitrous oxide and hydrogen cyanide, emitted from five passenger vehicles are investigated. With focus upon emission factors from existing production technology, vehicles produced between 1989 and 1998 with considerable mileage (7000 to 280,000) are chosen. Among the five vehicles, four were sold in the European market, whereas one was sold in the US market. The vehicles are tested on a chassis dynamometer. An EU2000 Driving Cycle (NEDC) and a US Urban Driving Cycle (UDC) of the Federal Test Procedure 75 (FTP-75) are used in the study. The regulated emissions are measured using a Horiba Mexa series. Unregulated emissions, ammonia (NH 3 ), nitrous oxide (N 2 O) and hydrogen cyanide (HCN) are analysed by mass spectrometer, gas chromatography and CNT-NA, TIM315-74W method, respectively. Both the unregulated emissions and the regulated emissions show driving cycle dependency; and they are also improved with newer vehicle and emission control technology. However, a gasoline direct injection vehicle (relatively new technology in this study) has rather high regulated emissions, whereas the NH 3 , N 2 O and HCN emissions are low

  12. Ammonia, nitrous oxide and hydrogen cyanide emissions from five passenger vehicles.

    Science.gov (United States)

    Karlsson, Hua Lu

    2004-12-01

    In this paper, three unregulated components, ammonia, nitrous oxide and hydrogen cyanide, emitted from five passenger vehicles are investigated. With focus upon emission factors from existing production technology, vehicles produced between 1989 and 1998 with considerable mileage (7000 to 280,000) are chosen. Among the five vehicles, four were sold in the European market, whereas one was sold in the US market. The vehicles are tested on a chassis dynamometer. An EU2000 Driving Cycle (NEDC) and a US Urban Driving Cycle (UDC) of the Federal Test Procedure 75 (FTP-75) are used in the study. The regulated emissions are measured using a Horiba Mexa series. Unregulated emissions, ammonia (NH(3)), nitrous oxide (N(2)O) and hydrogen cyanide (HCN) are analysed by mass spectrometer, gas chromatography and CNT-NA, TIM315-74W method, respectively. Both the unregulated emissions and the regulated emissions show driving cycle dependency; and they are also improved with newer vehicle and emission control technology. However, a gasoline direct injection vehicle (relatively new technology in this study) has rather high regulated emissions, whereas the NH(3), N(2)O and HCN emissions are low.

  13. Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.

    Science.gov (United States)

    Stettler, Marc E J; Midgley, William J B; Swanson, Jacob J; Cebon, David; Boies, Adam M

    2016-02-16

    Dual fuel diesel and natural gas heavy goods vehicles (HGVs) operate on a combination of the two fuels simultaneously. By substituting diesel for natural gas, vehicle operators can benefit from reduced fuel costs and as natural gas has a lower CO2 intensity compared to diesel, dual fuel HGVs have the potential to reduce greenhouse gas (GHG) emissions from the freight sector. In this study, energy consumption, greenhouse gas and noxious emissions for five after-market dual fuel configurations of two vehicle platforms are compared relative to their diesel-only baseline values over transient and steady state testing. Over a transient cycle, CO2 emissions are reduced by up to 9%; however, methane (CH4) emissions due to incomplete combustion lead to CO2e emissions that are 50-127% higher than the equivalent diesel vehicle. Oxidation catalysts evaluated on the vehicles at steady state reduced CH4 emissions by at most 15% at exhaust gas temperatures representative of transient conditions. This study highlights that control of CH4 emissions and improved control of in-cylinder CH4 combustion are required to reduce total GHG emissions of dual fuel HGVs relative to diesel vehicles.

  14. Real-world NOx emissions of Euro V and Euro VI heavy duty vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, R.; Dekker, H.; Vonk, W.

    2012-04-15

    TNO regularly performs measurements to determine the in-service performance and durability with respect to the pollutant emissions of heavy-duty vehicles under representative driving conditions. The 2011 measurement programme yields new insights regarding the emission performance of the upcoming Euro VI technology for heavy-duty vehicles, mandatory as of 31 December 2013 and, together with the results from earlier performed programmes, leads to conclusions on the emission performance of past and present generations of heavy-duty vehicles (Euro V, EEV)

  15. The importance of grid integration for achievable greenhouse gas emissions reductions from alternative vehicle technologies

    International Nuclear Information System (INIS)

    Tarroja, Brian; Shaffer, Brendan; Samuelsen, Scott

    2015-01-01

    Alternative vehicles must appropriately interface with the electric grid and renewable generation to contribute to decarbonization. This study investigates the impact of infrastructure configurations and management strategies on the vehicle–grid interface and vehicle greenhouse gas reduction potential with regard to California's Executive Order S-21-09 goal. Considered are battery electric vehicles, gasoline-fueled plug-in hybrid electric vehicles, hydrogen-fueled fuel cell vehicles, and plug-in hybrid fuel cell vehicles. Temporally resolved models of the electric grid, electric vehicle charging, hydrogen infrastructure, and vehicle powertrain simulations are integrated. For plug-in vehicles, consumer travel patterns can limit the greenhouse gas reductions without smart charging or energy storage. For fuel cell vehicles, the fuel production mix must be optimized for minimal greenhouse gas emissions. The plug-in hybrid fuel cell vehicle has the largest potential for emissions reduction due to smaller battery and fuel cells keeping efficiencies higher and meeting 86% of miles on electric travel keeping the hydrogen demand low. Energy storage is required to meet Executive Order S-21-09 goals in all cases. Meeting the goal requires renewable capacities of 205 GW for plug-in hybrid fuel cell vehicles and battery electric vehicle 100s, 255 GW for battery electric vehicle 200s, and 325 GW for fuel cell vehicles. - Highlights: • Consumer travel patterns limit greenhouse gas reductions with immediate charging. • Smart charging or energy storage are required for large greenhouse gas reductions. • Fuel cells as a plug-in vehicle range extender provided the most greenhouse gas reductions. • Energy storage is required to meet greenhouse gas goals regardless of vehicle type. • Smart charging reduces the required energy storage size for a given greenhouse gas goal

  16. Assessment of risks for elevated NOx emissions of diesel vehicles outside the boundaries of RDE. Identifying relevant driving and vehicle conditions and possible abatement measures

    NARCIS (Netherlands)

    Mensch, P. van; Cuelenaere, R.F.A.; Ligterink, N.E.

    2017-01-01

    With RDE (Real Driving Emissions) legislation a new chapter in emission testing has started for light-duty vehicles. RDE legislation poses new and more complex engineering targets for manufacturers. The expectation is that RDE will bring major improvements in the emission performance of LD vehicles

  17. Isotopic Tracing of Fuel Components in Particulate Emissions from Diesel Engines using Accelerator Mass Spectrometry (AMS)

    International Nuclear Information System (INIS)

    Buchholz, B A; Mueller, C J; Garbak, J.

    2001-01-01

    Accelerator mass spectrometry (AMS) is an isotope-ratio measurement technique developed in the late 1970s for tracing long-lived radioisotopes (e.g., 14 C half life = 5760 y). The technique counts individual nuclei rather than waiting for their radioactive decay, allowing measurement of more than 100 low-level 14 C samples per day (Vogel et al, 1995). The LLNL AMS system is shown in Fig.1. The contemporary quantity of 14 C in living things ( 14 C/C = 1.2 x 10 -12 or 110 fmol 14 C/ g C) is highly elevated compared to the quantity of 14 C in petroleum-derived products. This isotopic elevation is sufficient to trace the fate of bio-derived fuel components in the emissions of an engine without the use of radioactive materials. If synthesis of a fuel component from biologically-derived source material is not feasible, another approach is to purchase 14 C-labeled material (e.g., dibutyl maleate (DBM)) and dilute it with petroleum-derived material to yield a contemporary level of 14 C. In each case, the virtual absence of 14 C in petroleum based fuels gives a very low 14 C background that makes this approach to tracing fuel components practical. Regulatory pressure to significantly reduce the particulate emissions from diesel engines is driving research into understanding mechanisms of soot formation. If mechanisms are understood, then combustion modeling can be used to evaluate possible changes in fuel formulation and suggest possible fuel components that can improve combustion and reduce PM emissions. The combustion paradigm assumes that large molecules break down into small components and then build up again during soot formation. AMS allows us to label specific fuel components, including oxygenates, trace the carbon atoms, and test this combustion modeling paradigm. Volatile and non-volatile organic fractions (VOF, NVOF) in the PM can be further separated. The VOF of the PM can be oxidized with catalysts in the exhaust stream to further decrease PM. The effectiveness

  18. Analysis of energy consumption and emission of the heterogeneous traffic flow consisting of traditional vehicles and electric vehicles

    Science.gov (United States)

    Xiao, Hong; Huang, Hai-Jun; Tang, Tie-Qiao

    2017-12-01

    Electric vehicle (EV) has become a potential traffic tool, which has attracted researchers to explore various traffic phenomena caused by EV (e.g. congestion, electricity consumption, etc.). In this paper, we study the energy consumption (including the fuel consumption and the electricity consumption) and emissions of heterogeneous traffic flow (that consists of the traditional vehicle (TV) and EV) under three traffic situations (i.e. uniform flow, shock and rarefaction waves, and a small perturbation) from the perspective of macro traffic flow. The numerical results show that the proportion of electric vehicular flow has great effects on the TV’s fuel consumption and emissions and the EV’s electricity consumption, i.e. the fuel consumption and emissions decrease while the electricity consumption increases with the increase of the proportion of electric vehicular flow. The results can help us better understand the energy consumption and emissions of the heterogeneous traffic flow consisting of TV and EV.

  19. Urban emissions hotspots: Quantifying vehicle congestion and air pollution using mobile phone GPS data.

    Science.gov (United States)

    Gately, Conor K; Hutyra, Lucy R; Peterson, Scott; Sue Wing, Ian

    2017-10-01

    On-road emissions vary widely on time scales as short as minutes and length scales as short as tens of meters. Detailed data on emissions at these scales are a prerequisite to accurately quantifying ambient pollution concentrations and identifying hotspots of human exposure within urban areas. We construct a highly resolved inventory of hourly fluxes of CO, NO 2 , NO x , PM 2.5 and CO 2 from road vehicles on 280,000 road segments in eastern Massachusetts for the year 2012. Our inventory integrates a large database of hourly vehicle speeds derived from mobile phone and vehicle GPS data with multiple regional datasets of vehicle flows, fleet characteristics, and local meteorology. We quantify the 'excess' emissions from traffic congestion, finding modest congestion enhancement (3-6%) at regional scales, but hundreds of local hotspots with highly elevated annual emissions (up to 75% for individual roadways in key corridors). Congestion-driven reductions in vehicle fuel economy necessitated 'excess' consumption of 113 million gallons of motor fuel, worth ∼ $415M, but this accounted for only 3.5% of the total fuel consumed in Massachusetts, as over 80% of vehicle travel occurs in uncongested conditions. Across our study domain, emissions are highly spatially concentrated, with 70% of pollution originating from only 10% of the roads. The 2011 EPA National Emissions Inventory (NEI) understates our aggregate emissions of NO x , PM 2.5 , and CO 2 by 46%, 38%, and 18%, respectively. However, CO emissions agree within 5% for the two inventories, suggesting that the large biases in NO x and PM 2.5 emissions arise from differences in estimates of diesel vehicle activity. By providing fine-scale information on local emission hotspots and regional emissions patterns, our inventory framework supports targeted traffic interventions, transparent benchmarking, and improvements in overall urban air quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Laboratory Validation of Four Black Carbon Measurement Methods for Determination of the Nonvolatile Particulate Matter (nvPM) Mass Emissions from Commercial Aircraft Engines

    Science.gov (United States)

    Four candidate black carbon (BC) measurement techniques have been identified by the SAE International E-31 Committee for possible use in determining nonvolatile particulate matter (nvPM) mass emissions during commercial aircraft engine certification. These techniques are carbon b...

  1. Final Rule for Control of Air Pollution From New Motor Vehicles: Tier 2 Motor Vehicle Emissions Standards and Gasoline Sulfur Control Requirements

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) is announcing more protective tailpipe emissions standards for all passenger vehicles, including sport utility vehicles (SUVs), minivans, vans and pick-up trucks.

  2. [Methodical approaches to evaluation of air pollution by emissions of motor vehicles in population areas].

    Science.gov (United States)

    Lyapkalo, A A; Dement'ev, A A; Tsurgan, A M

    2014-01-01

    There are results of comparative analysis of air pollution by emissions of motor vehicles in the residential districts of Ryazan via different methodical approaches. Emissions were calculated regarding analysis of the traffic intensity on the elements of the city traffic network. Relative emissions, equivalent relative emissions and relative coefficient of emission hazard were calculated for each district. Rating of the comparing districts was done according to the pollution level using the above-mentioned indices. Gorodskaya Roscha was detected as the most polluted district. The most informative approach was comparison of the residential districts according to the equivalent relative emissions and relative coefficient of emission hazard.

  3. Potential hazards of particulate noble metal emissions from car exhaust catalysts. Gefaehrdungspotential von partikulaeren Edelmetallemissionen aus Automobilabgas-Katalysatoren

    Energy Technology Data Exchange (ETDEWEB)

    Stoeber, W.

    1985-01-01

    The aim of the present bibliographical study is to investigate into the possibility of health impairment by emissions of eroded and particulate precious metals of catalytic converters for motor-car exhaust gas. Connected therewith is a survey of environmental pollution so far caused by platinum metals and of their biological impact. The risk estimation relates solely to the data on emission obtained during normal operation; research work is still needed with respect to the chemical composition, the size distribution and the particle forms of the precious metals emitted. Besides, only limited data are available as to the environmental behaviour of the precious metals.

  4. Emission factors of particulate matter, polycyclic aromatic hydrocarbons, and levoglucosan from wood combustion in south-central Chile.

    Science.gov (United States)

    Jimenez, Jorge; Farias, Oscar; Quiroz, Roberto; Yañez, Jorge

    2017-07-01

    In south-central Chile, wood stoves have been identified as an important source of air pollution in populated areas. Eucalyptus (Eucalyptus globulus), Chilean oak (Nothofagus oblique), and mimosa (Acacia dealbata) were burned in a single-chamber slow-combustion wood stove at a controlled testing facility located at the University of Concepción, Chile. In each experiment, 2.7-3.1 kg of firewood were combusted while continuously monitoring temperature, exhaust gases, burn rate, and collecting particulate matter samples in Teflon filters under isokinetic conditions for polycyclic aromatic hydrocarbon and levoglucosan analyses. Mean particulate matter emission factors were 2.03, 4.06, and 3.84 g/kg dry wood for eucalyptus, oak, and mimosa, respectively. The emission factors were inversely correlated with combustion efficiency. The mean emission factors of the sums of 12 polycyclic aromatic hydrocarbons in particle phases were 1472.5, 2134.0, and 747.5 μg/kg for eucalyptus, oak, and mimosa, respectively. Fluoranthene, pyrene, benzo[a]anthracene, and chrysene were present in the particle phase in higher proportions compared with other polycyclic aromatic hydrocarbons that were analyzed. Mean levoglucosan emission factors were 854.9, 202.3, and 328.0 mg/kg for eucalyptus, oak, and mimosa, respectively. Since the emissions of particulate matter and other pollutants were inversely correlated with combustion efficiency, implementing more efficient technologies would help to reduce air pollutant emissions from wood combustion. Residential wood burning has been identified as a significant source of air pollution in populated areas. Local wood species are combusted for home cooking and heating, which releases several toxic air pollutants, including particulate matter, carbon monoxide, and polycyclic aromatic hydrocarbons. Air pollutant emissions depend on the type of wood and the technology and operational conditions of the wood stove. A better understanding of emissions from

  5. Recent evidence concerning higher NO x emissions from passenger cars and light duty vehicles

    Science.gov (United States)

    Carslaw, David C.; Beevers, Sean D.; Tate, James E.; Westmoreland, Emily J.; Williams, Martin L.

    2011-12-01

    Ambient trends in nitrogen oxides (NO x) and nitrogen dioxide (NO 2) for many air pollution monitoring sites in European cities have stabilised in recent years. The lack of a decrease in the concentration of NO x and in particular NO 2 is of concern given European air quality standards are set in law. The lack of decrease in the concentration of NO x and NO 2 is also in clear disagreement with emission inventory estimates and projections. This work undertakes a comprehensive analysis of recent vehicle emissions remote sensing data from seven urban locations across the UK. The large sample size of 84,269 vehicles was carefully cross-referenced to a detailed and comprehensive database of vehicle information. We find that there are significant discrepancies between current UK/European estimates of NO x emissions and those derived from the remote sensing data for several important classes of vehicle. In the case of light duty diesel vehicles it is found that NO x emissions have changed little over 20 years or so over a period when the proportion of directly emitted NO 2 has increased substantially. For diesel cars it is found that absolute emissions of NO x are higher across all legislative classes than suggested by UK and other European emission inventories. Moreover, the analysis shows that more recent technology diesel cars (Euro 3-5) have clear increasing NO x emissions as a function of Vehicle Specific Power, which is absent for older technology vehicles. Under higher engine loads, these newer model diesel cars have a NO x/CO 2 ratio twice that of older model cars, which may be related to the increased use of turbo-charging. Current emissions of NO x from early technology catalyst-equipped petrol cars (Euro 1/2) were also found to be higher than emission inventory estimates - and comparable with NO x emissions from diesel cars. For heavy duty vehicles, it is found that NO x emissions were relatively stable until the introduction of Euro IV technology when

  6. Concentration measurement in a road tunnel as a method to assess "real-world" vehicles exhaust emissions

    Science.gov (United States)

    Zanini, G.; Berico, M.; Monforti, F.; Vitali, L.; Zambonelli, S.; Chiavarini, S.; Georgiadis, T.; Nardino, M.

    An experiment aimed at comparing particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) concentrations produced in a road tunnel by buses is described. The experiment took place in 2001 in Bologna when a couple of buses belonging to the public transport fleet where driven backwards and forwards in a road tunnel closed to all other vehicles. Buses run in the tunnel for 8 h a day for 4 experiment days, each day using a different fuel: biodiesel, diesel-water emulsion, diesel-water emulsion with low sulphur content and commercial diesel. Average daily concentrations of PM of different sizes and of 12 PHAs were measured and comparison between different fuels was attempted in order to assess "real-world" exhaust emissions of different fuels. Due to heterogeneity of experimental conditions in different days and the relatively large measurement uncertainties, the effort was only partially successful, and it was not possible to state any firm conclusion on fuels reliability even if some indications in agreement with literature were found. Nevertheless, the experiment and the data analysis method developed could be of interest as a methodological approach for future experiments aimed at evaluating "real-world" exhaust emissions of single vehicles.

  7. Black carbon emissions in gasoline vehicle exhaust: a measurement and instrument comparison.

    Science.gov (United States)

    Kamboures, Michael A; Hu, Shishan; Yu, Yong; Sandoval, Julia; Rieger, Paul; Huang, Shiou-Mei; Zhang, Sherry; Dzhema, Inna; Huo, Darey; Ayala, Alberto; Chang, M C Oliver

    2013-08-01

    A pilot study was conducted to evaluate the performance and agreement of several commercially available black carbon (BC) measurement instruments, when applied to the quantification of BC in light-duty vehicle (LDV) exhaust. Samples from six vehicles, three fuels, and three driving cycles were used. The pilot study included determinations of the method detection limit (MDL) and repeatability. With respect to the MDL, the real-time instruments outperformed the time-integrated instruments, with MDL = 0.12 mg/mi for the AE51 Aethalometer, and 0.15 mg/mi for the Micro Soot Sensor (MSS), versus 0.38 mg/mi for the IMPROVE_A thermal/ optical method, and 0.35 mg/mi for the OT21_T Optical Transmissometer. The real-time instruments had repeatability values ranging from 30% to 35%, which are somewhat better than those of the time-integrated instruments (40-41%). These results suggest that, despite being less resource intensive, real-time methods can be equivalent or superior to time-integrated methods in terms of sensitivity and repeatability. BC mass data, from the photoacoustic and light attenuation instruments, were compared against same-test EC data, determined using the IMPROVE_A method. The MSS BC data was well correlated with EC, with R2 = 0.85 for the composite results and R2 = 0.86 for the phase-by-phase (PBP) results. The correlation of BC, by the AE51, AE22, and OT21_T with EC was moderate to weak. The weaker correlation was driven by the inclusion of US06 test data in the linear regression analysis. We hypothesize that test-cycle-dependent BC:EC ratios are due to the different physicochemical properties of particulate matter (PM) in US06 and Federal Test Procedure (FTP) tests. Correlation amongst the real-time MSS, PASS-1, AE51, and AE22 instruments was excellent (R2 = 0.83-0.95), below 1 mg/mi levels. In the process of investigating these BC instruments, we learned that BC emissions at sub-1 mg/mi levels can be measured and are achievable by current

  8. Effects of a catalytic volatile particle remover (VPR) on the particulate matter emissions from a direct injection spark ignition engine.

    Science.gov (United States)

    Xu, Fan; Chen, Longfei; Stone, Richard

    2011-10-15

    Emissions of fine particles have been shown to have a large impact on the atmospheric environment and human health. Researchers have shown that gasoline engines, especially direct injection spark ignition (DISI) engines, tend to emit large amounts of small size particles compared to diesel engines fitted with diesel particulate filters (DPFs). As a result, the particle number emissions of DISI engines will be restricted by the forthcoming EU6 legislation. The particulate emission level of DISI engines means that they could face some challenges in meeting the EU6 requirement. This paper is an experimental study on the size-resolved particle number emissions from a spray guided DISI engine and the performance of a catalytic volatile particle remover (VPR), as the EU legislation seeks to exclude volatile particles. The performance of the catalytic VPR was evaluated by varying its temperature and the exhaust residence time. The effect of the catalytic VPR acting as an oxidation catalyst on particle emissions was also tested. The results show that the catalytic VPR led to a marked reduction in the number of particles, especially the smaller size (nucleation mode) particles. The catalytic VPR is essentially an oxidation catalyst, and when post three-way catalyst (TWC) exhaust was introduced to the catalytic VPR, the performance of the catalytic VPR was not affected much by the use of additional air, i.e., no significant oxidation of the PM was observed.

  9. A fuel-based approach to estimating motor vehicle exhaust emissions

    Science.gov (United States)

    Singer, Brett Craig

    Motor vehicles contribute significantly to air pollution problems; accurate motor vehicle emission inventories are therefore essential to air quality planning. Current travel-based inventory models use emission factors measured from potentially biased vehicle samples and predict fleet-average emissions which are often inconsistent with on-road measurements. This thesis presents a fuel-based inventory approach which uses emission factors derived from remote sensing or tunnel-based measurements of on-road vehicles. Vehicle activity is quantified by statewide monthly fuel sales data resolved to the air basin level. Development of the fuel-based approach includes (1) a method for estimating cold start emission factors, (2) an analysis showing that fuel-normalized emission factors are consistent over a range of positive vehicle loads and that most fuel use occurs during loaded-mode driving, (3) scaling factors relating infrared hydrocarbon measurements to total exhaust volatile organic compound (VOC) concentrations, and (4) an analysis showing that economic factors should be considered when selecting on-road sampling sites. The fuel-based approach was applied to estimate carbon monoxide (CO) emissions from warmed-up vehicles in the Los Angeles area in 1991, and CO and VOC exhaust emissions for Los Angeles in 1997. The fuel-based CO estimate for 1991 was higher by a factor of 2.3 +/- 0.5 than emissions predicted by California's MVEI 7F model. Fuel-based inventory estimates for 1997 were higher than those of California's updated MVEI 7G model by factors of 2.4 +/- 0.2 for CO and 3.5 +/- 0.6 for VOC. Fuel-based estimates indicate a 20% decrease in the mass of CO emitted, despite an 8% increase in fuel use between 1991 and 1997; official inventory models predict a 50% decrease in CO mass emissions during the same period. Cold start CO and VOC emission factors derived from parking garage measurements were lower than those predicted by the MVEI 7G model. Current inventories

  10. Particulate matter emissions, and metals and toxic elements in airborne particulates emitted from biomass combustion: The importance of biomass type and combustion conditions.

    Science.gov (United States)

    Zosima, Angela T; Tsakanika, Lamprini-Areti V; Ochsenkühn-Petropoulou, Maria Th

    2017-05-12

    The aim of this study was to investigate the impact of biomass combustion with respect to burning conditions and fuel types on particulate matter emissions (PM 10 ) and their metals as well as toxic elements content. For this purpose, different lab scale burning conditions were tested (20 and 13% O 2 in the exhaust gas which simulate an incomplete and complete combustion respectively). Furthermore, two pellet stoves (8.5 and 10 kW) and one open fireplace were also tested. In all cases, 8 fuel types of biomass produced in Greece were used. Average PM 10 emissions ranged at laboratory-scale combustions from about 65 to 170 mg/m 3 with flow oxygen at 13% in the exhaust gas and from 85 to 220 mg/m 3 at 20% O 2 . At pellet stoves the emissions were found lower (35 -85 mg/m 3 ) than the open fireplace (105-195 mg/m 3 ). The maximum permitted particle emission limit is 150 mg/m 3 . Metals on the PM 10 filters were determined by several spectrometric techniques after appropriate digestion or acid leaching of the filters, and the results obtained by these two methods were compared. The concentration of PM 10 as well as the total concentration of the metals on the filters after the digestion procedure appeared higher at laboratory-scale combustions with flow oxygen at 20% in the exhaust gas and even higher at fireplace in comparison to laboratory-scale combustions with 13% O 2 and pellet stoves. Modern combustion appliances and appropriate types of biomass emit lower PM 10 emissions and lower concentration of metals than the traditional devices where incomplete combustion conditions are observed. Finally, a comparison with other studies was conducted resulting in similar results.

  11. Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands

    International Nuclear Information System (INIS)

    Kyle, Page; Kim, Son H.

    2011-01-01

    This study assesses global light-duty vehicle (LDV) transport in the upcoming century, and the implications of vehicle technology advancement and fuel-switching on greenhouse gas emissions and primary energy demands. Five different vehicle technology scenarios are analyzed with and without a CO 2 emissions mitigation policy using the GCAM integrated assessment model: a reference internal combustion engine vehicle scenario, an advanced internal combustion engine vehicle scenario, and three alternative fuel vehicle scenarios in which all LDVs are switched to natural gas, electricity, or hydrogen by 2050. The emissions mitigation policy is a global CO 2 emissions price pathway that achieves 450 ppmv CO 2 at the end of the century with reference vehicle technologies. The scenarios demonstrate considerable emissions mitigation potential from LDV technology; with and without emissions pricing, global CO 2 concentrations in 2095 are reduced about 10 ppmv by advanced ICEV technologies and natural gas vehicles, and 25 ppmv by electric or hydrogen vehicles. All technological advances in vehicles are important for reducing the oil demands of LDV transport and their corresponding CO 2 emissions. Among advanced and alternative vehicle technologies, electricity- and hydrogen-powered vehicles are especially valuable for reducing whole-system emissions and total primary energy. - Highlights: → Alternative-fuel LDVs reduce whole-system CO 2 emissions, even without carbon pricing. → Alternative-fuel LDVs enhance the CO 2 mitigation capacity of the transportation sector. → Electric and hydrogen vehicles reduce whole-system primary energy supporting LDV transport.

  12. Impact on vehicle fuel economy of the soot loading on diesel particulate filters made of different substrate materials

    International Nuclear Information System (INIS)

    Millo, Federico; Andreata, Maurizio; Rafigh, Mahsa; Mercuri, Davide; Pozzi, Chiara

    2015-01-01

    Wall flow DPFs (Diesel Particulate Filters) are nowadays universally adopted for all European passenger cars. Since the properties of the filter substrate material play a fundamental role in determining the optimal soot loading level to be reached before DPF regeneration, three different filter material substrates (Silicon Carbide, Aluminum Titanate and Cordierite) were investigated in this work, considering different driving conditions, after treatment layouts and regeneration strategies. In the first step of the research, an experimental investigation on the three different substrates over the NEDC (New European Driving Cycle) was performed. The data obtained from experiments were then used for the calibration and the validation of a one dimensional fluid-dynamic engine and after treatment simulation model. Afterward, the model was used to predict the vehicle fuel consumption increments as a function of the exhaust back pressure due to the soot loading for different driving cycles. The results showed that appreciable fuel consumption increments could be noticed only in particular driving conditions, and, as a consequence, in most of the cases the optimal filter regeneration strategy corresponds to reach the highest soot loading that still ensures the component safety even in case of uncontrolled regeneration events. - Highlights: • Three different substrate materials for a Diesel Particulate Filter were investigated. • Fuel consumption increases due to DPF soot loading were generally not appreciable. • Optimal soot loading before regeneration was the highest safeguarding DPF integrity. • SiC substrate showed highest soot load limit and lowest fuel consumption penalties. • AT and Cd substrate properties lead to lower soot load limits than SiC

  13. A Study on Vehicle Emission Factor Correction Based on Fuel Consumption Measurement

    Science.gov (United States)

    Wang, Xiaoning; Li, Meng; Peng, Bo

    2018-01-01

    The objective of this study is to address the problem of obvious differences between the calculated and measured emissions of pollutants from motor vehicle by using the existing "Environmental Impact Assessment Specification of Highway Construction Projects". First, a field study collects the vehicle composition ratio, speed, slope, fuel consumption and other essential data. Considering practical applications, the emission factors corresponding to 40km/h and 110km/h and 120km/h velocity are introduced by data fitting. Then, the emission factors of motor vehicle are revised based on the measured fuel consumption, and the pollutant emission modified formula was calculated and compared with the standard recommendation formula. The results show the error between calculated and measured values are within 5%, which can better reflect the actual discharge of the motor vehicle.

  14. National Emissions Inventory Vehicle Miles Traveled, U.S., 2014, EPA/OAR/OAQPS/AQAD

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web service contains layers that depict gridded Vehicle Miles Traveled (VMT) for 2014 from the National Emission Inventory (NEI). The default 2014 National...

  15. Effects of Cold Temperature and Ethanol Content on VOC Emissions from Light-Duty Gasoline Vehicles

    Data.gov (United States)

    U.S. Environmental Protection Agency — Supporting information Table S6 provides emission rates in g/km of volatile organic compounds measured from gasoline vehicle exhaust during chassis dynamometer...

  16. Light-duty vehicle greenhouse gas emission standards and corporate average fuel economy standards : final rule

    Science.gov (United States)

    2010-05-07

    Final Rule to establish a National Program consisting of new standards for light-duty vehicles that will reduce greenhouse gas emissions and improve fuel economy. This joint : Final Rule is consistent with the National Fuel Efficiency Policy announce...

  17. Executive Summary: EPA's Waiver Decision on California's Greenhouse Gas Emission Standards for New Motor Vehicles

    Science.gov (United States)

    This letter from EPA Administrator Stephen Johnson to Governor Schwarzenegger denies California's request for a waiver of Federal preemption for motor vehicle greenhouse gas emission standards submitted by the California Air Resources Board (CARB).

  18. On-road emission characteristics of heavy-duty diesel vehicles in Shanghai

    Science.gov (United States)

    Chen, Changhong; Huang, Cheng; Jing, Qiguo; Wang, Haikun; Pan, Hansheng; Li, Li; Zhao, Jing; Dai, Yi; Huang, Haiying; Schipper, Lee; Streets, David G.

    On-road vehicle tests of nine heavy-duty diesel trucks were conducted using SEMTECH-D, an emissions measuring instrument provided by Sensors, Inc. The total length of roads for the tests was 186 km. Data were obtained for 37,255 effective driving cycles, including 17,216 on arterial roads, 15,444 on residential roads, and 4595 on highways. The impacts of speed and acceleration on fuel consumption and emissions were analyzed. Results show that trucks spend an average of 16.5% of the time in idling mode, 25.5% in acceleration mode, 27.9% in deceleration mode, and only 30.0% at cruise speed. The average emission factors of CO, total hydrocarbons (THC), and NO x for the selected vehicles are (4.96±2.90), (1.88±1.03) and (6.54±1.90) g km -1, respectively. The vehicle emission rates vary significantly with factors like speed and acceleration. The test results reflect the actual traffic situation and the current emission status of diesel trucks in Shanghai. The measurements show that low-speed conditions with frequent acceleration and deceleration, particularly in congestion conditions, are the main factors that aggravate vehicle emissions and cause high emissions of CO and THC. Alleviating congestion would significantly improve vehicle fuel economy and reduce CO and THC emissions.

  19. Impact of freeway weaving segment design on light-duty vehicle exhaust emissions.

    Science.gov (United States)

    Li, Qing; Qiao, Fengxiang; Yu, Lei; Chen, Shuyan; Li, Tiezhu

    2018-06-01

    In the United States, 26% of greenhouse gas emissions is emitted from the transportation sector; these emisssions meanwhile are accompanied by enormous toxic emissions to humans, such as carbon monoxide (CO), nitrogen oxides (NO x ), and hydrocarbon (HC), approximately 2.5% and 2.44% of a total exhaust emissions for a petrol and a diesel engine, respectively. These exhaust emissions are typically subject to vehicles' intermittent operations, such as hard acceleration and hard braking. In practice, drivers are inclined to operate intermittently while driving through a weaving segment, due to complex vehicle maneuvering for weaving. As a result, the exhaust emissions within a weaving segment ought to vary from those on a basic segment. However, existing emission models usually rely on vehicle operation information, and compute a generalized emission result, regardless of road configuration. This research proposes to explore the impacts of weaving segment configuration on vehicle emissions, identify important predictors for emission estimations, and develop a nonlinear normalized emission factor (NEF) model for weaving segments. An on-board emission test was conducted on 12 subjects on State Highway 288 in Houston, Texas. Vehicles' activity information, road conditions, and real-time exhaust emissions were collected by on-board diagnosis (OBD), a smartphone-based roughness app, and a portable emission measurement system (PEMS), respectively. Five feature selection algorithms were used to identify the important predictors for the response of NEF and the modeling algorithm. The predictive power of four algorithm-based emission models was tested by 10-fold cross-validation. Results showed that emissions are also susceptible to the type and length of a weaving segment. Bagged decision tree algorithm was chosen to develop a 50-grown-tree NEF model, which provided a validation error of 0.0051. The estimated NEFs are highly correlated with the observed NEFs in the training

  20. Gaseous nitrous acid (HONO) and nitrogen oxides (NOx) emission from gasoline and diesel vehicles under real-world driving test cycles.

    Science.gov (United States)

    Trinh, Ha T; Imanishi, Katsuma; Morikawa, Tazuko; Hagino, Hiroyuki; Takenaka, Norimichi

    2017-04-01

    Reactive nitrogen species emission from the exhausts of gasoline and diesel vehicles, including nitrogen oxides (NO x ) and nitrous acid (HONO), contributes as a significant source of photochemical oxidant precursors in the ambient air. Multiple laboratory and on-road exhaust measurements have been performed to estimate the NO x emission factors from various vehicles and their contribution to atmospheric pollution. Meanwhile, HONO emission from vehicle exhaust has been under-measured despite the fact that HONO can contribute up to 60% of the total hydroxyl budget during daytime and its formation pathway is not fully understood. A profound traffic-induced HONO to NO x ratio of 0.8%, established by Kurtenbach et al. since 2001, has been widely applied in various simulation studies and possibly linked to under-estimation of HONO mixing ratios and OH radical budget in the morning. The HONO/NO x ratios from direct traffic emission have become debatable when it lacks measurements for direct HONO emission from vehicles upon the fast-changing emission reduction technology. Several recent studies have reported updated values for this ratio. This study has reported the measurement of HONO and NO x emission as well as the estimation of exhaust-induced HONO/NO x ratios from gasoline and diesel vehicles using different chassis dynamometer tests under various real-world driving cycles. For the tested gasoline vehicle, which was equipped with three-way catalyst after-treatment device, HONO/NO x ratios ranged from 0 to 0.95 % with very low average HONO concentrations. For the tested diesel vehicle equipped with diesel particulate active reduction device, HONO/NO x ratios varied from 0.16 to 1.00 %. The HONO/NO x ratios in diesel exhaust were inversely proportional to the average speeds of the tested vehicles. Photolysis of HONO is a dominant source of morning OH radicals. Conventional traffic-induced HONO/NO x ratio of 0.8% has possibly linked to underestimation of the total HONO

  1. ELVIS: Comparing Electric and Conventional Vehicle Energy Consumption and CO2 Emissions

    DEFF Research Database (Denmark)

    Andersen, Ove; Krogh, Benjamin Bjerre; Torp, Kristian

    2017-01-01

    Making the transition from conventional combustion vehicles (CVs) to electric vehicles (EVs) requires the users to be comfortable with the limited range of EVs. We present a system named ELVIS that enables a direct comparison of energy/fuel consumption, CO2 emissions, and travel-time between CVs...

  2. Cold Temperature Effects on Speciated VOC Emissions from Modern GDI Light-Duty Vehicles 1

    Science.gov (United States)

    In this study, speciated VOC emissions were characterized from three modern GDI light-duty vehicles. The vehicles were tested on a chassis dynamometer housed in a climate-controlled chamber at two temperatures (20 and 72 °F) using the EPA Federal Test Procedure (FTP) and a portio...

  3. Marine spark-ignition engine and off-road recreational vehicle emission regulations : discussion document

    International Nuclear Information System (INIS)

    2004-07-01

    In February 2001, the Minister of Environment Canada outlined a series of measures to reduce emissions from vehicles and engines, including off-road engines. This report describes proposed regulations to control emissions form outboard engines, personal watercraft engines, snowmobiles, off-highway motorcycles, all-terrain vehicles and utility vehicles. Since most marine engines and recreational vehicles sold in Canada are imported, the agenda includes the development of new regulations under Division 5 of the Canadian Environmental Protection Act (CEPA) to align Canada's emission standards for off-road vehicles with those of the United States Environmental Protection Agency. A harmonized approach on emissions standards is expected to result in fewer transition and implementation problems. This report describes which vehicles and engines will be subjected to the planned regulations along with those that will be exempted. Planned emission standard swill apply to vehicles and engines of the 2007 and later model years. Persons affected by the planned regulations were also identified. tabs., figs

  4. Exhaust gas emissions from various automotive fuels for light-duty vehicles. Effects on health, environment and energy utilization; Avgasemissioner fraan laetta fordon drivna med olika drivmedel

    Energy Technology Data Exchange (ETDEWEB)

    Ahlvik, P.; Brandberg, Aa. [Ecotraffic RandD AB, Stockholm (Sweden)

    1999-12-01

    The main aim of the investigation has been to assess the effects on health and environment from various alternative fuels for light-duty vehicles. Effects that can be identified and quantified, such as acidification, ozone formation, cancer risk and climate change, have been of primary interest but other effects, such as respiratory diseases, have also been investigated. Data have been collected through literature surveys for subsequent calculation of the mentioned effects in different time-frames. Corrections have been used to take into consideration the influence of climate, ageing and driving pattern. Emissions generated in fuel production have also been accounted for. The most significant and important differences between the fuels have been found for effects as ozone formation cancer risk and particulate emissions. Alternative fuels, such as methanol and methane (natural gas and biogas), significantly decrease the ozone formation in comparison to petrol, while ethanol, methanol and methane are advantageous concerning cancer risk. The particulate emissions are considerably higher for diesel engines fuelled by diesel oil and RME in comparison to the other fuels. In the future, the importance of acid emissions in the fuel production will increase since the NO{sub x} and SO{sub x} emissions will decrease from the vehicles. The emissions of climate gases could be significantly reduced by using non-fossil fuels but the efficiency of the drive train is also of importance. The technical development potential for further emission reductions is considerable for all fuels but the advantage for the best fuel options will remain in the future.

  5. Experimental investigation of particulate emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with diglyme

    Science.gov (United States)

    Di, Yage; Cheung, C. S.; Huang, Zuohua

    2010-01-01

    Experiments are conducted on a 4-cylinder direct-injection diesel engine using ultralow-sulfur diesel as the base fuel and diglyme as the oxygenate component to investigate the particulate emissions of the engine under five engine loads at two engine speeds of 1800 rev min -1 and 2400 rev min -1. Blended fuels containing 5%, 10.1%, 15.2%, 20.4%, 25.7% and 53% by volume of diglyme, corresponding to 2%, 4%, 6%, 8%, 10% and 20% by mass of oxygen, are studied. The study shows that with the increase of oxygen in the fuel blends, smoke opacity, particulate mass concentration, NO x concentration and brake specific particulate emission are reduced at the two engine speeds. However, the proportion of soluble organic fraction is increased. For each blended fuel, the total particle number concentration is higher while the geometric mean diameter is smaller, compared with that of ultralow-sulfur diesel, though the particle number decreases with the oxygen content of the blended fuel. Furthermore, the blended fuels also increase the number concentrations of particles smaller than 100 nm.

  6. Physicochemical characterization of particulate emissions from a compression ignition engine employing two injection technologies and three fuels.

    Science.gov (United States)

    Surawski, N C; Miljevic, B; Ayoko, G A; Roberts, B A; Elbagir, S; Fairfull-Smith, K E; Bottle, S E; Ristovski, Z D

    2011-07-01

    Alternative fuels and injection technologies are a necessary component of particulate emission reduction strategies for compression ignition engines. Consequently, this study undertakes a physicochemical characterization of diesel particulate matter (DPM) for engines equipped with alternative injection technologies (direct injection and common rail) and alternative fuels (ultra low sulfur diesel, a 20% biodiesel blend, and a synthetic diesel). Particle physical properties were addressed by measuring particle number size distributions, and particle chemical properties were addressed by measuring polycyclic aromatic hydrocarbons (PAHs) and reactive oxygen species (ROS). Particle volatility was determined by passing the polydisperse size distribution through a thermodenuder set to 300 °C. The results from this study, conducted over a four point test cycle, showed that both fuel type and injection technology have an impact on particle emissions, but injection technology was the more important factor. Significant particle number emission (54%-84%) reductions were achieved at half load operation (1% increase-43% decrease at full load) with the common rail injection system; however, the particles had a significantly higher PAH fraction (by a factor of 2 to 4) and ROS concentrations (by a factor of 6 to 16) both expressed on a test-cycle averaged basis. The results of this study have significant implications for the health effects of DPM emissions from both direct injection and common rail engines utilizing various alternative fuels.

  7. Magnetic Field Emissions for Ferrite and Non-Ferrite Geometries for Wireless Power Transfer to Vehicles

    DEFF Research Database (Denmark)

    Batra, Tushar; Schaltz, Erik

    2014-01-01

    Minimizing magnetic field emissions to surroundings is one of the most challenging design criteria for wireless power transfer to vehicles. In this paper, concept of division of the emissions into three zones (primary, secondary, and combined zone) in the vertical direction is introduced. For geo......Minimizing magnetic field emissions to surroundings is one of the most challenging design criteria for wireless power transfer to vehicles. In this paper, concept of division of the emissions into three zones (primary, secondary, and combined zone) in the vertical direction is introduced...... for vertical separation between the coils in range of 100-180 mm. It is observed that lower vertical separation results in higher overlapping of the zones and the coils behave as they are effectively placed close to center of air gap. The analysis in this work provides a better understanding of the space...... profile of magnetic field emissions (with and without ferrite) for wireless power transfer to vehicles....

  8. Light absorption of biomass burning and vehicle emission-sourced carbonaceous aerosols of the Tibetan Plateau.

    Science.gov (United States)

    Hu, Zhaofu; Kang, Shichang; Li, Chaoliu; Yan, Fangping; Chen, Pengfei; Gao, Shaopeng; Wang, Zhiyong; Zhang, Yulan; Sillanpää, Mika

    2017-06-01

    Carbonaceous aerosols over the Tibetan Plateau originate primarily from biomass burning and vehicle emissions (BB and VEs, respectively). The light absorption characteristics of these carbonaceous aerosols are closely correlated with the burning conditions and represent key factors that influence climate forcing. In this study, the light absorption characteristics of elemental carbon (EC) and water-soluble organic carbon (WSOC) in PM 2.5 (fine particulate matter smaller than 2.5 μm) generated from BB and VEs were investigated over the Tibetan Plateau (TP). The results showed that the organic carbon (OC)/EC ratios from BB- and VE-sourced PM 2.5 were 17.62 ± 10.19 and 1.19 ± 0.36, respectively. These values were higher than the ratios in other regions, which was primarily because of the diminished amount of oxygen over the TP. The mass absorption cross section of EC (MAC EC ) at 632 nm for the BB-sourced PM 2.5 (6.10 ± 1.21 m 2 .g -1 ) was lower than that of the VE-sourced PM 2.5 (8.10 ± 0.98 m 2 .g -1 ), indicating that the EC content of the BB-sourced PM 2.5 was overestimated because of the high OC/EC ratio. The respective absorption per mass (α/ρ) values at 365 nm for the VE- and BB-sourced PM 2.5 were 0.71 ± 0.17 m 2 .g -1 and 0.91 ± 0.18 m 2 .g -1 . The α/ρ value of the VEs was loaded between that of gasoline and diesel emissions, indicating that the VE-sourced PM 2.5 originated from both types of emissions. Because OC and WSOC accounts for most of the carbonaceous aerosols at remote area of the TP, the radiative forcing contributed by the WSOC should be high, and requires further investigation.

  9. Particulate and PCDD/F emissions from coal co-firing with solid biofuels in a bubbling fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    H. Lopes; I. Gulyurtlu; P. Abelha; T. Crujeira; D. Salema; M. Freire; R. Pereira; I. Cabrita [INETI, Lisbon (Portugal). DEECA

    2009-12-15

    In the scope of the COPOWER project SES6-CT-2004 to investigate potential synergies of co-combustion of different biofuels with coal, a study of emissions of particulate matter and PCDD/F was carried out. The biofuels tested were meat and bone meal (MBM), sewage sludge biopellets (BP), straw pellets (SP), olive bagasse (OB) and wood pellets (WP). The tests performed include co-firing of 5%, 15% and 25% by weight of biofuels with coals of different origin. Both monocombustion and co-firing were carried out. Combustion tests were performed on a pilot fluidised bed, equipped with cyclones and air staging was used in order to achieve almost complete combustion of fuels with high volatile contents and to control gaseous emissions. Particulate matter emissions were isokinetically sampled in the stack and their particle size analysis was performed with a cascade impactor (Mark III). The results showed that most particles emitted were below 10 {mu}m (PM10) for all the tests, however, with the increasing share of biofuels and also during combustion of pure biofuels, especially olive bagasse, straw and MBM, very fine particles, below about 1 {mu}m were present. With the exception of sewage sludge, greater amounts of biofuels appeared to give rise to the decrease in particulate mean diameters and increase in PM percentages below 1 {mu}m. The formation of very fine particles could be related with the presence of aerosol forming elements such as K, Na (in the case of MBM) and Cl in biofuels, which even resulted in higher PM emissions when the ash content of fuels decreased. A correlation wasverified between the increase of PCDD/F with the decrease of PM mean diameter. This may be due to higher specific surface area and greater Cu concentration in the fly ashes. 33 refs., 11 figs., 4 tabs.

  10. Methods for measurements of energy and emissions related to motor vehicles: Identification of needs for improvements

    Energy Technology Data Exchange (ETDEWEB)

    Karl-Erik Egebaeck, K.E. [Luleaa Univ. of Technology, Luleaa (Sweden). Dept. of Environmental Technology; Karlsson, Hua L. [MTC AB, Haninge (Sweden); Westerholm, R. [Stockholm Univ. (Sweden). Dept. of Analytical Chemistry

    2002-01-01

    The official methods in use today for emission testing of vehicles and engines were primarily developed for the characterisation of exhaust emissions from motor vehicles fuelled with petrol or diesel oil. The setting of new lower emission standards will make it difficult to obtain sufficient accuracy, using the present systems, for the quantification of exhaust emissions in the future. Development of new emission control technology and improved fuels has made it possible to meet these more stringent standards. Consequently new emission standards will lead to a need for new and improved methodologies and new instrumentation for the characterisation of the emissions from vehicles/engines/fuels. The present report comprises a discussion and comments on questions related to improved methods for emission measurements. The report is based on a study of the literature, site visits to laboratories and research institutes etc in the US and a meeting with representatives of the EU Commission, carried out during the spring of 2001. The conclusions and recommendations in the pre-study report are summarised in sub titles: General, regulated emissions, unregulated emissions, greenhouse gases and fuel consumption. Since the questions and problems discussed have an international connection they should be discussed in an international forum. However, before such discussions can be organised the problems related to measurement of emissions and fuel consumption must be more extensively studied than in this pre-study.

  11. Fuel choices for fuel-cell vehicles : well-to-wheel energy and emission impacts

    International Nuclear Information System (INIS)

    Wang, M.

    2002-01-01

    Because of their high energy efficiencies and low emissions, fuel-cell vehicles (FCVs) are undergoing extensive research and development. While hydrogen will likely be the ultimate fuel to power fuel-cell vehicles, because of current infrastructure constraints, hydrogen-carrying fuels are being investigated as transitional fuel-cell fuels. A complete well-to-wheels (WTW) evaluation of fuel-cell vehicle energy and emission effects that examines (1) energy feedstock recovery and transportation; (2) fuel production, transportation, and distribution; and (3) vehicle operation must be conducted to assist decision makers in selecting the fuel-cell fuels that achieve the greatest energy and emission benefits. A fuel-cycle model developed at Argonne National Laboratory--called the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model--was used to evaluate well-to-wheels energy and emission impacts of various fuel-cell fuels. The results show that different fuel-cell fuels can have significantly different energy and greenhouse gas emission effects. Therefore, if fuel-cell vehicles are to achieve the envisioned energy and emission reduction benefits, pathways for producing the fuels that power them must be carefully examined.

  12. Vehicle emission trends and spatial distribution in Shandong province, China, from 2000 to 2014

    Science.gov (United States)

    Sun, Shida; Jiang, Wei; Gao, Weidong

    2016-12-01

    Vehicle emissions have become a major source of air pollution in Shandong province, which has experienced a sharp growth of vehicle numbers in recent years and now has the largest vehicle population in China. This paper combines the COPERT IV model with the vehicle age distribution to estimate the temporal trends and map the spatial distributions of vehicle emissions in Shandong province during the period ranging from 2000 to 2014. Both conventional air pollutants and greenhouse gases are included. In addition, a high-resolution vehicle emission inventory at the prefecture level is developed and mapped on a 0.05° × 0.05° grid based on road information. Our results show that the emissions of all of the conventional air pollutants have decreased to various extents over the recent past, but greenhouse gas emissions have continued to increase due to the lack of effective control strategies. The total emissions of CO, NMVOC, NOX, PM10, CO2, CH4 and N2O from the Shandong vehicle fleet changed from 1734.5 Gg, 277.9 Gg, 177.0 Gg, 12.4 Gg, 19239.7 Gg, 11.3 Gg and 0.6 Gg, respectively, in 2000 to 1723.3 Gg, 234.2 Gg, 513.8 Gg, 29.5 Gg, 138,419.5 Gg, 15.3 Gg and 3.9 Gg, respectively, in 2014. Vehicle emissions were mainly concentrated in cities and became more dispersed in Shandong province between 2000 and 2014.

  13. A Review of Electric Vehicle Lifecycle Emissions and Policy Recommendations to Increase EV Penetration in India

    Directory of Open Access Journals (Sweden)

    Rachana Vidhi

    2018-02-01

    Full Text Available Electric vehicles reduce pollution only if a high percentage of the electricity mix comes from renewable sources and if the battery manufacturing takes place at a site far from the vehicle use region. Industries developed due to increased electric vehicle adoption may also cause additional air pollution. The Indian government has committed to solving New Delhi’s air pollution issues through an ambitious policy of switching 100% of the light duty consumer vehicles to electric vehicles by 2030. This policy is based on vehicle grid interaction and relies on shared mobility through the electric vehicle fleet. There are several human behavioral changes necessary to achieve 100% adoption of electric vehicles. This paper reviews different steps in the lifecycle of an electric vehicle (EV, their impact on environmental emissions, and recommends policies suitable for different socio-economic group that are relevant to the Indian market. To reduce air pollution through adoption of electric vehicles, the Indian government needs to adopt policies that increase sale of electric vehicles, increase percentage of renewable energy in the electricity mix, and prevent air pollution caused from battery manufacturing. The recommended policies can be customized for any market globally for reducing air pollution through increased adoption of electric vehicles.

  14. Modelling the impacts of a carbon emission-differentiated vehicle tax system on CO2 emissions intensity from new vehicle purchases in Ireland

    International Nuclear Information System (INIS)

    Giblin, S.; McNabola, A.

    2009-01-01

    The increasing awareness of the effects of climate change on the environment and the economic pressure on oil supply has focused international attention on reducing CO 2 emissions and energy usage across all sectors. In order to meet their Kyoto protocol commitments and in line with European Union policy, the Irish government has introduced a carbon-based tax system for new vehicles purchased from the 1st of July 2008. This new legislation aims to reduce carbon emissions in the transport sector, a sector which is responsible for a significant proportion of both. This paper presents the results of the development, calibration, and application of a car choice model which predicts the changes in CO 2 emissions intensity from new vehicle purchases as a result of the changes in vehicle tax policy and fuel price in Ireland. The model also predicts the impact of such changes on tax revenue for the Irish government and the changes in the split between the number of diesel and petrol vehicles purchased. The investigation found that the introduction of these new carbon-based taxes in Ireland will result in a reduction of 3.6-3.8% in CO 2 emissions intensity and a reduction in annual tax revenue of EUR191 M. (author)

  15. A study of particulate emissions during 23 major industrial fires: Implications for human health.

    Science.gov (United States)

    Griffiths, Simon D; Chappell, Philip; Entwistle, Jane A; Kelly, Frank J; Deary, Michael E

    2018-03-01

    Public exposure to significantly elevated levels of particulate matter (PM) as a result of major fires at industrial sites is a worldwide problem. Our paper describes how the United Kingdom developed its Air Quality in Major Incidents (AQinMI) service to provide fire emission plume concentration data for use by managers at the time of the incident and to allow an informed public health response. It is one of the first civilian services of its type anywhere in the world. Based on the involvement of several of the authors in the AQinMI service, we describe the service's function, detail the nature of fires covered by the service, and report for the first time on the concentration ranges of PM to which populations may be exposed in major incident fires. We also consider the human health impacts of short-term exposure to significantly elevated PM concentrations and reflect on the appropriateness of current short-term guideline values in providing public health advice. We have analysed monitoring data for airborne PM (≤10μm, PM 10 ;≤2.5μm, PM 2.5 and ≤1.0μm, PM 1 ) collected by AQinMI teams using an Osiris laser light scattering monitor, the UK Environment Agency's 'indicative standard' equipment, during deployment to 23 major incident industrial fires. In this context, 'indicative' is applied to monitoring equipment that provides confirmation of the presence of particulates and indicates a measured mass concentration value. Incident-averaged concentrations ranged from 38 to 1450μgm -3 for PM 10 and 7 to 258μgm -3 for PM 2.5 . Of concern was that, for several incidents, 15-min averaged concentrations reached >6500μgm -3 for PM 10 and 650μgm -3 for PM 2.5 , though such excursions tended to be of relatively short duration. In the absence of accepted very short-term (15-min to 1-h) guideline values for PM 10 and PM 2.5, we have analysed the relationship between the 1-h and 24-h threshold values and whether the former can be used as a predictor of longer

  16. Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles

    OpenAIRE

    Burke, A.F.; Miller, M.

    1997-01-01

    The study focused on the emission reduction and fuel economy benefits of the application of hybrid/electric powertrain technology to tight-duty vehicles (mid-size and compact passenger cars). The approach taken was to calculate the exhaust emissions (gm/mi) energy use (Wh/mi and mpg) for a wide range of vehicle designs (steel and light-weight materials), engines, energy storage devices, control strategies, and driving cycles using two vehicle simulation programs (SIMPLEV and AVTE). The full f...

  17. Are emissions of black carbon from gasoline vehicles overestimated? Real-time, in situ measurement of black carbon emission factors.

    Science.gov (United States)

    Wang, Yang; Xing, Zhenyu; Zhao, Shuhui; Zheng, Mei; Mu, Chao; Du, Ke

    2016-03-15

    Accurately quantifying black carbon (BC) emission factors (EFs) is a prerequisite for estimation of BC emission inventory. BC EFs determined by measuring BC at the roadside or chasing a vehicle on-road may introduce large uncertainty for low emission vehicles. In this study, BC concentrations were measured inside the tailpipe of gasoline vehicles with different engine sizes under different driving modes to determine the respective EFs. BC EFs ranged from 0.005-7.14 mg/kg-fuel under the speeds of 20-70 km/h, 0.05-28.95 mg/kg-fuel under the accelerations of 0.5-1.5m/s(2). Although the water vapor in the sampling stream could result in an average of 12% negative bias, the BC EFs are significantly lower than the published results obtained with roadside or chasing vehicle measurement. It is suggested to conduct measurement at the tailpipe of gasoline vehicles instead of in the atmosphere behind the vehicles to reduce the uncertainty from fluctuation in ambient BC concentration. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Gasoline-fueled hybrid vs. conventional vehicle emissions and fuel economy.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.; Bharathan, D.; He, J.; Plotkin, S.; Santini, D.; Vyas, A.

    1999-06-18

    This paper addresses the relative fuel economy and emissions behavior, both measured and modeled, of technically comparable, contemporary hybrid and conventional vehicles fueled by gasoline, in terms of different driving cycles. Criteria pollutants (hydrocarbons, carbon monoxide, and nitrogen oxides) are discussed, and the potential emissions benefits of designing hybrids for grid connection are briefly considered. In 1997, Toyota estimated that their grid-independent hybrid vehicle would obtain twice the fuel economy of a comparable conventional vehicle on the Japan 10/15 mode driving cycle. This initial result, as well as the fuel economy level (66 mpg), made its way into the U.S. press. Criteria emissions amounting to one-tenth of Japanese standards were cited, and some have interpreted these results to suggest that the grid-independent hybrid can reduce criteria emissions in the U.S. more sharply than can a conventional gasoline vehicle. This paper shows that the potential of contemporary grid-independent hybrid vehicle technology for reducing emissions and fuel consumption under U.S. driving conditions is less than some have inferred. The importance (and difficulty) of doing test and model assessments with comparable driving cycles, comparable emissions control technology, and comparable performance capabilities is emphasized. Compared with comparable-technology conventional vehicles, grid-independent hybrids appear to have no clear criteria pollutant benefits (or disbenefits). (Such benefits are clearly possible with grid-connectable hybrids operating in zero emissions mode.) However, significant reductions in greenhouse gas emissions (i.e., fuel consumption) are possible with hybrid vehicles when they are used to best advantage.

  19. Mathematical Model of the Emissions of a selected vehicle

    Directory of Open Access Journals (Sweden)

    Matušů Radim

    2014-10-01

    Full Text Available The article addresses the quantification of exhaust emissions from gasoline engines during transient operation. The main targeted emissions are carbon monoxide and carbon dioxide. The result is a mathematical model describing the production of individual emissions components in all modes (static and dynamic. It also describes the procedure for the determination of emissions from the engine’s operating parameters. The result is compared with other possible methods of measuring emissions. The methodology is validated using the data from an on-road measurement. The mathematical model was created on the first route and validated on the second route.

  20. Recent changes in particulate air pollution over China observed from space and the ground: effectiveness of emission control.

    Science.gov (United States)

    Lin, Jintai; Nielsen, Chris P; Zhao, Yu; Lei, Yu; Liu, Yang; McElroy, Michael B

    2010-10-15

    The Chinese government has moved aggressively since 2005 to reduce emissions of a number of pollutants including primary particulate matter (PM) and sulfur dioxide (SO(2)), efforts inadvertently aided since late 2008 by economic recession. Satellite observations of aerosol optical depth (AOD) and column nitrogen dioxide (NO(2)) provide independent indicators of emission trends, clearly reflecting the sharp onset of the recession in the fall of 2008 and rebound of the economy in the latter half of 2009. Comparison of AOD with ground-based observations of PM over a longer period indicate that emission-control policies have not been successful in reducing concentrations of aerosol pollutants at smaller size range over industrialized regions of China. The lack of success is attributed to the increasing importance of anthropogenic secondary aerosols formed from precursor species including nitrogen oxides (NO(x)), non-methane volatile organic compounds (NMVOC), and ammonia (NH(3)).

  1. Particulate metals and organic compounds from electronic and tobacco-containing cigarettes: comparison of emission rates and secondhand exposure.

    Science.gov (United States)

    Saffari, Arian; Daher, Nancy; Ruprecht, Ario; De Marco, Cinzia; Pozzi, Paolo; Boffi, Roberto; Hamad, Samera H; Shafer, Martin M; Schauer, James J; Westerdahl, Dane; Sioutas, Constantinos

    2014-01-01

    In recent years, electronic cigarettes have gained increasing popularity as alternatives to normal (tobacco-containing) cigarettes. In the present study, particles generated by e-cigarettes and normal cigarettes have been analyzed and the degree of exposure to different chemical agents and their emission rates were quantified. Despite the 10-fold decrease in the total exposure to particulate elements in e-cigarettes compared to normal cigarettes, specific metals (e.g. Ni and Ag) still displayed a higher emission rate from e-cigarettes. Further analysis indicated that the contribution of e-liquid to the emission of these metals is rather minimal, implying that they likely originate from other components of the e-cigarette device or other indoor sources. Organic species had lower emission rates during e-cigarette consumption compared to normal cigarettes. Of particular note was the non-detectable emission of polycyclic aromatic hydrocarbons (PAHs) from e-cigarettes, while substantial emission of these species was observed from normal cigarettes. Overall, with the exception of Ni, Zn, and Ag, the consumption of e-cigarettes resulted in a remarkable decrease in secondhand exposure to all metals and organic compounds. Implementing quality control protocols on the manufacture of e-cigarettes would further minimize the emission of metals from these devices and improve their safety and associated health effects.

  2. Particulate monitoring, modeling, and management: natural sources, long-range transport, and emission control options: a case study of Cyprus

    Science.gov (United States)

    Kleanthous, Savvas; Savvides, Chrysanthos; Christofides, Ioannis; Hadjimitsis, Diofantos G.; Themistocleous, Kyriacos; Achilleos, Constantia; Akylas, Evangelos; Demetriadou, Chrystalla; Christodoulides, Pavlos; Douros, Ioannis; Moussiopoulos, Nicolas; Panayiotou, Charalambos; Gregoris, Charalambous; Fedra, Kurt; Kubat, Milan; Mihalopoulos, Nicolaos

    2013-08-01

    The LIFE+ Project PM3: Particulate Monitoring, Modeling, Management is coordinated by the Department of Labour Inspection in Cyprus and funded in part by LIFE+ Environment Policy & Governance. The project aims at the analysis of dust emissions, transport, and control options for Cyprus, as well as at the identification of "natural" contributions (Directive 2008/50/EC). The ultimate objective is to provide inputs for the design of a dust management plan to improve compliance to EC Directives and minimise impacts to human health and environment. This paper presents a short analysis of historical monitoring data and their patterns as well as a description of a dynamic dust entrainment model. The pyrogenic PM10 emissions combined with the wind driven emissions, are subject to a two phase non-linear multi-criteria emission control optimization procedure. The resulting emission scenarios with an hourly resolution provide input to the Comprehensive Air quality Model with extensions (CAMx) 3D fate and transport model, implemented for the 4,800 km master domain and embedded subdomains (270 km around the island of Cyprus and embedded smaller city domains of up to 30 km down to street canyon modeling). The models test the feasibility of candidate emission control solutions over a range of weather conditions. Model generated patterns of local emissions and long-range transport are discussed compared with the monitoring data, remote sensing (MODIS derived AOT), and the chemical analysis of dust samples.

  3. 40 CFR 86.1708-99 - Exhaust emission standards for 1999 and later light-duty vehicles.

    Science.gov (United States)

    2010-07-01

    ... for Light-Duty Vehicles and Light-Duty Trucks § 86.1708-99 Exhaust emission standards for 1999 and... are incorporated by reference (see § 86.1). (v) Hybrid electric vehicle requirements. Deterioration factors for hybrid electric vehicles shall be based on the emissions and mileage accumulation of the...

  4. Consequential life cycle air emissions externalities for plug-in electric vehicles in the PJM interconnection

    Science.gov (United States)

    Weis, Allison; Jaramillo, Paulina; Michalek, Jeremy

    2016-02-01

    We perform a consequential life cycle analysis of plug-in electric vehicles (PEVs), hybrid electric vehicles (HEVs), and conventional gasoline vehicles in the PJM interconnection using a detailed, normative optimization model of the PJM electricity grid that captures the change in power plant operations and related emissions due to vehicle charging. We estimate and monetize the resulting human health and environmental damages from life cycle air emissions for each vehicle technology. We model PJM using the most recent data available (2010) as well as projections of the PJM grid in 2018 and a hypothetical scenario with increased wind penetration. We assess a range of sensitivity cases to verify the robustness of our results. We find that PEVs have higher life cycle air emissions damages than gasoline HEVs in the recent grid scenario, which has a high percentage of coal generation on the margin. In particular, battery electric vehicles with large battery capacity can produce two to three times as much air emissions damage as gasoline HEVs, depending on charge timing. In our future 2018 grid scenarios that account for predicted coal plant retirements, PEVs would produce air emissions damages comparable to or slightly lower than HEVs.

  5. Impacts of urban form on future US passenger-vehicle greenhouse gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    Hankey, Steve; Marshall, Julian D. [Department of Civil Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, MN 55455 (United States)

    2010-09-15

    Urban form - for example, sprawl versus infill development - impacts people's daily travel patterns and annual vehicle-kilometers traveled (VKT). This paper explores how urban form impacts greenhouse gas (GHG) emissions from passenger-vehicles, the largest source of urban transportation GHG emissions. Our research uses a recently published urban scaling rule to develop six scenarios for high- and low-sprawl US urban growth. We develop and apply a Monte Carlo approach that describes ensemble statistics for several dozen urban areas rather than forecasting changes in individual urban areas. Then, employing three vehicle- and fuel-technology scenarios, we estimate total passenger VKT and resulting GHG emissions for US urban areas. Our results indicate that comprehensive compact development could reduce US 2000-2020 cumulative emissions by up to 3.2 GtCO{sub 2}e (15-20% of projected cumulative emissions). In general, vehicle GHG mitigation may involve three types of approaches: more-efficient vehicles, lower-GHG fuels, and reduced VKT. Our analyses suggest that all three categories must be evaluated; otherwise, improvements in one or two areas (e.g., vehicle fuel economy, fuel carbon content) can be offset by backsliding in a third area (e.g., VKT growth). (author)

  6. Impacts of urban form on future US passenger-vehicle greenhouse gas emissions

    International Nuclear Information System (INIS)

    Hankey, Steve; Marshall, Julian D.

    2010-01-01

    Urban form - for example, sprawl versus infill development - impacts people's daily travel patterns and annual vehicle-kilometers traveled (VKT). This paper explores how urban form impacts greenhouse gas (GHG) emissions from passenger-vehicles, the largest source of urban transportation GHG emissions. Our research uses a recently published urban scaling rule to develop six scenarios for high- and low-sprawl US urban growth. We develop and apply a Monte Carlo approach that describes ensemble statistics for several dozen urban areas rather than forecasting changes in individual urban areas. Then, employing three vehicle- and fuel-technology scenarios, we estimate total passenger VKT and resulting GHG emissions for US urban areas. Our results indicate that comprehensive compact development could reduce US 2000-2020 cumulative emissions by up to 3.2 GtCO 2 e (15-20% of projected cumulative emissions). In general, vehicle GHG mitigation may involve three types of approaches: more-efficient vehicles, lower-GHG fuels, and reduced VKT. Our analyses suggest that all three categories must be evaluated; otherwise, improvements in one or two areas (e.g., vehicle fuel economy, fuel carbon content) can be offset by backsliding in a third area (e.g., VKT growth).

  7. Consequential life cycle air emissions externalities for plug-in electric vehicles in the PJM interconnection

    International Nuclear Information System (INIS)

    Weis, Allison; Jaramillo, Paulina; Michalek, Jeremy

    2016-01-01

    We perform a consequential life cycle analysis of plug-in electric vehicles (PEVs), hybrid electric vehicles (HEVs), and conventional gasoline vehicles in the PJM interconnection using a detailed, normative optimization model of the PJM electricity grid that captures the change in power plant operations and related emissions due to vehicle charging. We estimate and monetize the resulting human health and environmental damages from life cycle air emissions for each vehicle technology. We model PJM using the most recent data available (2010) as well as projections of the PJM grid in 2018 and a hypothetical scenario with increased wind penetration. We assess a range of sensitivity cases to verify the robustness of our results. We find that PEVs have higher life cycle air emissions damages than gasoline HEVs in the recent grid scenario, which has a high percentage of coal generation on the margin. In particular, battery electric vehicles with large battery capacity can produce two to three times as much air emissions damage as gasoline HEVs, depending on charge timing. In our future 2018 grid scenarios that account for predicted coal plant retirements, PEVs would produce air emissions damages comparable to or slightly lower than HEVs. (letter)

  8. On-board emission measurement of high-loaded light-duty vehicles in Algeria.

    Science.gov (United States)

    Boughedaoui, Ménouèr; Kerbachi, Rabah; Joumard, Robert

    2008-01-01

    A sample of eight private gasoline and diesel conventional light-duty vehicles (LDVs) in use with various ages, carrying a load of 460 kg, were tested on a representative trip in the traffic flow of the city of Blida to obtain emission factors representing the actual use conditions of Algerian LDVs. The gas sampling system (mini-constant volume sampling) as well as the analyzers are carried on-board the vehicle. Around 55 tests were conducted during 3 months covering more than 480 km under various real driving conditions. The mean speed downtown is about 16.1 km/hr with a rather low acceleration, an average of 0.60 m/sec2. For each test, kinematics are recorded as well as the analysis of the four emitted pollutants carbon dioxide, carbon monoxide, oxides of nitrogen, and total hydrocarbons. Emission factors were evaluated according to speed for each category of gasoline and diesel engines. The influence of some parameters such as cold/hot start, age of vehicle and its state of maintenance are discussed. Results are compared with the European database ARTEMIS for comparable vehicles. These measurements contribute to the development of unit emission of the vehicles used in Algeria, which are necessary for the calculation of emission inventory of pollutants and greenhouse gases from the road transportation sector. The unit emissions constitute a tool of decisionmaking aid regarding the conception of new regulations of vehicle control and inspection in Algeria and even in similar developing countries.

  9. Emissions of halocarbons from mobile vehicle air conditioning system in Hong Kong.

    Science.gov (United States)

    Yan, H H; Guo, H; Ou, J M

    2014-08-15

    During the implementation of Montreal Protocol, emission inventories of halocarbons in different sectors at regional scale are fundamental to the formulation of relevant management strategy and inspection of the implementation efficiency. This study investigated the emission profile of halocarbons used in the mobile vehicle air conditioning system, the leading sector of refrigeration industry in terms of the refrigerant bank, market and emission, in the Hong Kong Special Administrative Region, using a bottom-up approach developed by 2006 IPCC Good Practice Guidance. The results showed that emissions of CFC-12 peaked at 53 tons ODP (Ozone Depletion Potential) in 1992 and then gradually diminished, whereas HFC-134a presented an increasing emission trend since 1990s and the emissions of HFC-134a reached 65,000 tons CO2-equivelant (CO2-eq) by the end of 2011. Uncertainty analysis revealed relatively high levels of uncertainties for special-purpose vehicles and government vehicles. Moreover, greenhouse gas (GHG) abatements under different scenarios indicated that potential emission reduction of HFC-134a ranged from 4.1 to 8.4 × 10(5)tons CO2-eq. The findings in this study advance our knowledge of halocarbon emissions from mobile vehicle air conditioning system in Hong Kong. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. [Real world instantaneous emission simulation for light-duty diesel vehicle].

    Science.gov (United States)

    Huang, Cheng; Chen, Chang-Hong; Dai, Pu; Li, Li; Huang, Hai-Ying; Cheng, Zhen; Jia, Ji-Hong

    2008-10-01

    Core architecture and input parameters of CMEM model were introduced to simulation the second by second vehicle emission rate on real world by taking a light-duty diesel car as a case. On-board test data by a portable emission measurement system were then used to validate the simulation results. Test emission factors of CO, THC, NO(x) and CO2 were respectively 0.81, 0.61, 2.09, and 193 g x km(-1), while calculated emission factors were 0.75, 0.47, 2.47, and 212 g x km(-1). The correlation coefficients reached 0.69, 0.69, 0.75, and 0.72. Simulated instantaneous emissions of the light duty diesel vehicle by CMEM model were strongly coherent with the transient driving cycle. By analysis, CO, THC, NO(x), and CO2 emissions would be reduced by 50%, 47%, 45%, and 44% after improving the traffic situation at the intersection. The result indicated that it is necessary and feasible to simulate the instantaneous emissions of mixed vehicle fleet in some typical traffic areas by the micro-scale vehicle emission model.

  11. Technical analysis on energy conservation and emission reduction of new energy electric vehicle in China

    Science.gov (United States)

    Zheng, Chaocheng

    2017-10-01

    With the global environmental problems and energy crisis continuously emerging, all countries are taking active measures to achieve the benign development of domestic economy and society. Vehicle, as a large oil consumption and emissions of carbon dioxide, nend to be a revolutionary change. Therefore, the development of new energy electric vehicle has become the consensus of the world. On this background, this paper has sorted out the current state and the related development planning of new energy electric vehicles in different countries to predict the car ownership of the new energy electric vehicles using elastic coefficient method and setting different path of development, conclude that under the consideration of energy conservation and emissions reduction factors, our country should mainly promote the BEV to realize the maximum energy conservation and emissions reduction.

  12. Development of a dedicated ethanol ultra-low-emissions vehicle (ULEV): Phase 3 report

    Energy Technology Data Exchange (ETDEWEB)

    Dodge, L; Callahan, T; Leone, D; Naegeli, D; Shouse, K; Smith, L; Whitney, K [Southwest Research Inst., San Antonio, TX (United States)

    1998-04-01

    The objective of the 3.5 year project discussed in this report was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s Ultra Low Emissions Vehicle (ULEV) standards and equivalent Corporate Average Fuel Economy (CAFE) energy efficiency for a light duty passenger car application. This particular report summarizes the third phase of the project, which lasted 12 months. Emissions tests were conducted with advanced after-treatment devices on one of the two, almost identical, test vehicles, a 1993 Ford Taurus flexible fuel vehicle. The report also covers tests on the engine removed from the second Taurus vehicle. This engine was modified for an increased compression ratio, fitted with air assist injectors, and included an advanced engine control system with model-based control.

  13. Particulate sulfate ion concentration and SO2 emission trends in the United States from the early 1990s through 2010

    Directory of Open Access Journals (Sweden)

    W. C. Malm

    2012-11-01

    Full Text Available We examined particulate sulfate ion concentrations across the United States from the early 1990s through 2010 using remote/rural data from the Interagency Monitoring of Protected Visual Environments (IMPROVE network and from early 2000 through 2010 using data from the Environmental Protection Agency's (EPA urban Chemical Speciation Network (CSN. We also examined measured sulfur dioxide (SO2 emissions from power plants from 1995 through 2010 from the EPA's Acid Rain Program. The 1992–2010 annual mean sulfate concentrations at long-term rural sites in the United States have decreased significantly and fairly consistently across the United States at a rate of −2.7% yr−1 (p −1 (p −1 (p 2 emissions from power plants across the United States have decreased at a similar rate as sulfate concentrations from 2001 to 2010 (−6.2% yr−1, p 2 emissions and average sulfate concentrations. This linearity was strongest in the eastern United States and weakest in the West where power plant SO2 emissions were lowest and sulfate concentrations were more influenced by non-power-plant and perhaps international SO2 emissions. In addition, annual mean, short-term sulfate concentrations decreased more rapidly in the East relative to the West due to differences in seasonal trends at certain regions in the West. Specifically, increased wintertime concentrations in the central and northern Great Plains and increased springtime concentrations in the western United States were observed. These seasonal and regional positive trends could not be explained by changes in known local and regional SO2 emissions, suggesting other contributing influences. This work implies that on an annual mean basis across the United States, air quality mitigation strategies have been successful in reducing the particulate loading of sulfate in the atmosphere; however, for certain seasons and regions, especially in the West, current mitigation strategies appear insufficient.

  14. A comparative analysis of vehicle-related greenhouse gas emissions between organic and conventional dairy production.

    Science.gov (United States)

    Aggestam, Vivianne; Buick, Jon

    2017-08-01

    Agricultural industrialisation and globalisation have steadily increased the transportation of food across the world. In efforts to promote sustainability and self-sufficiency, organic milk producers in Sweden are required to produce a higher level of cattle feed on-farm in the hope that increased self-sufficiency will reduce reliance on external inputs and reduce transport-related greenhouse gas emissions. Using data collected from 20 conventional and 20 organic milk producers in Sweden this paper aims to assess the global warming impact of farmyard vehicles and the transportation of feed produced 'off-farm' in order to compare the impact of vehicle-related emissions from the different production methods. The findings show organic and conventional production methods have different vehicle-related emission outputs that vary according to a reliance on either road transportation or increased farmyard machinery use. Mechanical weeding is more fuel demanding than conventional agrichemical sprayers. However, artificial fertilising is one of the highest farmyard vehicle-related emitters. The general findings show organic milk production emits higher levels of farm vehicle-related emissions that fail to be offset by reduced emissions occurring from international transport emissions. This paper does not propose to cover a comprehensive supply chain carbon footprint for milk production or attempt to determine which method of production has the largest climatic impact. However, it does demonstrate that Sweden's legal requirements for organic producers to produce more feed on-farm to reduce transport emissions have brought emissions back within Sweden's greenhouse gas inventory and raises questions around the effectiveness of policies to reduce vehicle-related emissions. Further research is needed into the effectiveness of climate change mitigation on food production policies, in particular looking at various trade-offs that affects the entire food supply chain.

  15. Alternatives to Diesel Fuel in California - Fuel Cycle Energy and Emission Effects of Possible Replacements Due to the TAC Diesel Particulate Decision; FINAL

    International Nuclear Information System (INIS)

    Christopher L. Saraicks; Donald M. Rote; Frank Stodolsky; James J. Eberhardt

    2000-01-01

    Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression ignition by spark ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7 percent above projected (total) consumption level. In the second case, ressionignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOx emissions, though all scenarios bring about PM10 reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated

  16. Switching to a U.S. hydrogen fuel cell vehicle fleet: The resultant change in emissions, energy use, and greenhouse gases

    Science.gov (United States)

    Colella, W. G.; Jacobson, M. Z.; Golden, D. M.

    This study examines the potential change in primary emissions and energy use from replacing the current U.S. fleet of fossil-fuel on-road vehicles (FFOV) with hybrid electric fossil fuel vehicles or hydrogen fuel cell vehicles (HFCV). Emissions and energy usage are analyzed for three different HFCV scenarios, with hydrogen produced from: (1) steam reforming of natural gas, (2) electrolysis powered by wind energy, and (3) coal gasification. With the U.S. EPA's National Emission Inventory as the baseline, other emission inventories are created using a life cycle assessment (LCA) of alternative fuel supply chains. For a range of reasonable HFCV efficiencies and methods of producing hydrogen, we find that the replacement of FFOV with HFCV significantly reduces emission associated with air pollution, compared even with a switch to hybrids. All HFCV scenarios decrease net air pollution emission, including nitrogen oxides, volatile organic compounds, particulate matter, ammonia, and carbon monoxide. These reductions are achieved with hydrogen production from either a fossil fuel source such as natural gas or a renewable source such as wind. Furthermore, replacing FFOV with hybrids or HFCV with hydrogen derived from natural gas, wind or coal may reduce the global warming impact of greenhouse gases and particles (measured in carbon dioxide equivalent emission) by 6, 14, 23, and 1%, respectively. Finally, even if HFCV are fueled by a fossil fuel such as natural gas, if no carbon is sequestered during hydrogen production, and 1% of methane in the feedstock gas is leaked to the environment, natural gas HFCV still may achieve a significant reduction in greenhouse gas and air pollution emission over FFOV.

  17. VOC species and emission inventory from vehicles and their SOA formation potentials estimation in Shanghai, China

    Science.gov (United States)

    Huang, C.; Wang, H. L.; Li, L.; Wang, Q.; Lu, Q.; de Gouw, J. A.; Zhou, M.; Jing, S. A.; Lu, J.; Chen, C. H.

    2015-10-01

    Volatile organic compound (VOC) species from vehicle exhausts and gas evaporation were investigated by chassis dynamometer and on-road measurements of nine gasoline vehicles, seven diesel vehicles, five motorcycles, and four gas evaporation samples. The secondary organic aerosol (SOA) mass yields of gasoline, diesel, motorcycle exhausts, and gas evaporation were estimated based on the mixing ratio of measured C2-C12 VOC species and inferred carbon number distributions. High aromatic contents were measured in gasoline exhausts and contributed comparatively more SOA yield. A vehicular emission inventory was compiled based on a local survey of on-road traffic in Shanghai and real-world measurements of vehicle emission factors from previous studies in the cities of China. The inventory-based vehicular organic aerosol (OA) productions to total CO emissions were compared with the observed OA to CO concentrations (ΔOA / ΔCO) in the urban atmosphere. The results indicate that vehicles dominate the primary organic aerosol (POA) emissions and OA production, which contributed about 40 and 60 % of OA mass in the urban atmosphere of Shanghai. Diesel vehicles, which accounted for less than 20 % of vehicle kilometers of travel (VKT), contribute more than 90 % of vehicular POA emissions and 80-90 % of OA mass derived by vehicles in urban Shanghai. Gasoline exhaust could be an important source of SOA formation. Tightening the limit of aromatic content in gasoline fuel will be helpful to reduce its SOA contribution. Intermediate-volatile organic compounds (IVOCs) in vehicle exhausts greatly contribute to SOA formation in the urban atmosphere of China. However, more experiments need to be conducted to determine the contributions of IVOCs to OA pollution in China.

  18. In vitro toxicological characterization of particulate emissions from residential biomass heating systems based on old and new technologies

    Science.gov (United States)

    Jalava, Pasi I.; Happo, Mikko S.; Kelz, Joachim; Brunner, Thomas; Hakulinen, Pasi; Mäki-Paakkanen, Jorma; Hukkanen, Annika; Jokiniemi, Jorma; Obernberger, Ingwald; Hirvonen, Maija-Riitta

    2012-04-01

    Residential wood combustion causes major effects on the air quality on a global scale. The ambient particulate levels are known to be responsible for severe adverse health effects that include e.g. cardio-respiratory illnesses and cancer related effects, even mortality. It is known that biomass combustion derived emissions are affected by combustion technology, fuel being used and user-related practices. There are also indications that the health related toxicological effects are influenced by these parameters. This study we evaluated toxicological effects of particulate emissions (PM1) from seven different residential wood combusting furnaces. Two appliances i.e. log wood boiler and stove represented old batch combustion technology, whereas stove and tiled stove were designated as new batch combustion as three modern automated boilers were a log wood boiler, a woodchip boiler and a pellet boiler. The PM1 samples from the furnaces were collected in an experimental setup with a Dekati® gravimetric impactor on PTFE filters with the samples being weighed and extracted from the substrates and prior to toxicological analyses. The toxicological analyses were conducted after a 24-hour exposure of the mouse RAW 264.7 macrophage cell line to four doses of emission particle samples and analysis of levels of the proinflammatory cytokine TNFα, chemokine MIP-2, cytotoxicity with three different methods (MTT, PI, cell cycle analysis) and genotoxicity with the comet assay. In the correlation analysis all the toxicological results were compared with the chemical composition of the samples. All the samples induced dose-dependent increases in the studied parameters. Combustion technology greatly affected the emissions and the concomitant toxicological responses. The modern automated boilers were usually the least potent inducers of most of the parameters while emissions from the old technology log wood boiler were the most potent. In correlation analysis, the PAH and other organic

  19. A comprehensive study of the characterization of particulate matter emissions from a Delmarva broiler poultry operation

    Science.gov (United States)

    Carter, Shannon E.

    Particulate matter (PM) emissions from agricultural practices, including those from animal feeding operations (AFO's) have become an increasingly important topic, and has generated considerable interest from local and state agencies, as well as, the local community over the past decade. Because of growth in population, and an increase in commercial and residential development within close proximity to these operations, which house a large number of animals in confinement, and because of a better understanding of the effects of exposure to airborne contaminants on health, this has lead to an increase in concerns and a demand for more research to be conducted on PM from AFO's. Particulate matter generated within, and emitted from, AFO's can carry with it various components including metals and microorganisms that can negatively affect health. This research was conducted in order to verify if PM from a broiler poultry operation on Delmarva has the potential to become a health concern. The first step was to determine concentrations of two size segregated fractions of PM from indoor and outdoor sampling sites over four seasonal periods, early summer (ES), late summer (LS), Fall (F), and Winter (W). Both PM10 and PM2.5 were collected because of their classification from the Environmental Protection Agency as having the ability to cause significant health effects with short-term exposure. Next, temporal and spatial characteristics were investigated to determine their effects on PM concentrations ov