WorldWideScience

Sample records for vehicle model experiment

  1. Longitudinal Control for Mengshi Autonomous Vehicle via Gauss Cloud Model

    Directory of Open Access Journals (Sweden)

    Hongbo Gao

    2017-12-01

    Full Text Available Dynamic robustness and stability control is a requirement for self-driving of autonomous vehicle. Longitudinal control technique of autonomous vehicle is basic theory and one key complex technique which must have the reliability and precision of vehicle controller. The longitudinal control technique is one of the foundations of the safety and stability of autonomous vehicle control. In our paper, we present a longitudinal control algorithm based on cloud model for Mengshi autonomous vehicle to ensure the dynamic stability and tracking performance of Mengshi autonomous vehicle. The longitudinal control algorithm mainly uses cloud model generator to control the acceleration of the autonomous vehicle to achieve the goal that controls the speed of Mengshi autonomous vehicle. The proposed longitudinal control algorithm based on cloud model is verified by real experiments on Highway driving scene. The experiments results of the acceleration and speed show that the algorithm is validity and stability.

  2. A model predictive control approach combined unscented Kalman filter vehicle state estimation in intelligent vehicle trajectory tracking

    Directory of Open Access Journals (Sweden)

    Hongxiao Yu

    2015-05-01

    Full Text Available Trajectory tracking and state estimation are significant in the motion planning and intelligent vehicle control. This article focuses on the model predictive control approach for the trajectory tracking of the intelligent vehicles and state estimation of the nonlinear vehicle system. The constraints of the system states are considered when applying the model predictive control method to the practical problem, while 4-degree-of-freedom vehicle model and unscented Kalman filter are proposed to estimate the vehicle states. The estimated states of the vehicle are used to provide model predictive control with real-time control and judge vehicle stability. Furthermore, in order to decrease the cost of solving the nonlinear optimization, the linear time-varying model predictive control is used at each time step. The effectiveness of the proposed vehicle state estimation and model predictive control method is tested by driving simulator. The results of simulations and experiments show that great and robust performance is achieved for trajectory tracking and state estimation in different scenarios.

  3. Inflatable Re-Entry Vehicle Experiment (IRVE) Design Overview

    Science.gov (United States)

    Hughes, Stephen J.; Dillman, Robert A.; Starr, Brett R.; Stephan, Ryan A.; Lindell, Michael C.; Player, Charles J.; Cheatwood, F. McNeil

    2005-01-01

    Inflatable aeroshells offer several advantages over traditional rigid aeroshells for atmospheric entry. Inflatables offer increased payload volume fraction of the launch vehicle shroud and the possibility to deliver more payload mass to the surface for equivalent trajectory constraints. An inflatable s diameter is not constrained by the launch vehicle shroud. The resultant larger drag area can provide deceleration equivalent to a rigid system at higher atmospheric altitudes, thus offering access to higher landing sites. When stowed for launch and cruise, inflatable aeroshells allow access to the payload after the vehicle is integrated for launch and offer direct access to vehicle structure for structural attachment with the launch vehicle. They also offer an opportunity to eliminate system duplication between the cruise stage and entry vehicle. There are however several potential technical challenges for inflatable aeroshells. First and foremost is the fact that they are flexible structures. That flexibility could lead to unpredictable drag performance or an aerostructural dynamic instability. In addition, durability of large inflatable structures may limit their application. They are susceptible to puncture, a potentially catastrophic insult, from many possible sources. Finally, aerothermal heating during planetary entry poses a significant challenge to a thin membrane. NASA Langley Research Center and NASA's Wallops Flight Facility are jointly developing inflatable aeroshell technology for use on future NASA missions. The technology will be demonstrated in the Inflatable Re-entry Vehicle Experiment (IRVE). This paper will detail the development of the initial IRVE inflatable system to be launched on a Terrier/Orion sounding rocket in the fourth quarter of CY2005. The experiment will demonstrate achievable packaging efficiency of the inflatable aeroshell for launch, inflation, leak performance of the inflatable system throughout the flight regime, structural

  4. A Dynamic Travel Time Estimation Model Based on Connected Vehicles

    Directory of Open Access Journals (Sweden)

    Daxin Tian

    2015-01-01

    Full Text Available With advances in connected vehicle technology, dynamic vehicle route guidance models gradually become indispensable equipment for drivers. Traditional route guidance models are designed to direct a vehicle along the shortest path from the origin to the destination without considering the dynamic traffic information. In this paper a dynamic travel time estimation model is presented which can collect and distribute traffic data based on the connected vehicles. To estimate the real-time travel time more accurately, a road link dynamic dividing algorithm is proposed. The efficiency of the model is confirmed by simulations, and the experiment results prove the effectiveness of the travel time estimation method.

  5. Longitudinal Control for Mengshi Autonomous Vehicle via Cloud Model

    Science.gov (United States)

    Gao, H. B.; Zhang, X. Y.; Li, D. Y.; Liu, Y. C.

    2018-03-01

    Dynamic robustness and stability control is a requirement for self-driving of autonomous vehicle. Longitudinal control method of autonomous is a key technique which has drawn the attention of industry and academe. In this paper, we present a longitudinal control algorithm based on cloud model for Mengshi autonomous vehicle to ensure the dynamic stability and tracking performance of Mengshi autonomous vehicle. An experiments is applied to test the implementation of the longitudinal control algorithm. Empirical results show that if the longitudinal control algorithm based Gauss cloud model are applied to calculate the acceleration, and the vehicles drive at different speeds, a stable longitudinal control effect is achieved.

  6. Effect of suspension kinematic on 14 DOF vehicle model

    Science.gov (United States)

    Wongpattananukul, T.; Chantharasenawong, C.

    2017-12-01

    Computer simulations play a major role in shaping modern science and engineering. They reduce time and resource consumption in new studies and designs. Vehicle simulations have been studied extensively to achieve a vehicle model used in minimum lap time solution. Simulation result accuracy depends on the abilities of these models to represent real phenomenon. Vehicles models with 7 degrees of freedom (DOF), 10 DOF and 14 DOF are normally used in optimal control to solve for minimum lap time. However, suspension kinematics are always neglected on these models. Suspension kinematics are defined as wheel movements with respect to the vehicle body. Tire forces are expressed as a function of wheel slip and wheel position. Therefore, the suspension kinematic relation is appended to the 14 DOF vehicle model to investigate its effects on the accuracy of simulate trajectory. Classical 14 DOF vehicle model is chosen as baseline model. Experiment data is collected from formula student style car test runs as baseline data for simulation and comparison between baseline model and model with suspension kinematic. Results show that in a single long turn there is an accumulated trajectory error in baseline model compared to model with suspension kinematic. While in short alternate turns, the trajectory error is much smaller. These results show that suspension kinematic had an effect on the trajectory simulation of vehicle. Which optimal control that use baseline model will result in inaccuracy control scheme.

  7. Comparison of Vehicle Choice Models

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Thomas S. [Argonne National Lab. (ANL), Argonne, IL (United States); Levinson, Rebecca S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brooker, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Liu, Changzheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lin, Zhenhong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Birky, Alicia [Energetics Incorporated, Columbia, MD (United States); Kontou, Eleftheria [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-10-01

    Five consumer vehicle choice models that give projections of future sales shares of light-duty vehicles were compared by running each model using the same inputs, where possible, for two scenarios. The five models compared — LVCFlex, MA3T, LAVE-Trans, ParaChoice, and ADOPT — have been used in support of the Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Office in analyses of future light-duty vehicle markets under different assumptions about future vehicle technologies and market conditions. The models give projections of sales shares by powertrain technology. Projections made using common, but not identical, inputs showed qualitative agreement, with the exception of ADOPT. ADOPT estimated somewhat lower advanced vehicle shares, mostly composed of hybrid electric vehicles. Other models projected large shares of multiple advanced vehicle powertrains. Projections of models differed in significant ways, including how different technologies penetrated cars and light trucks. Since the models are constructed differently and take different inputs, not all inputs were identical, but were the same or very similar where possible.

  8. Vehicle logo recognition using multi-level fusion model

    Science.gov (United States)

    Ming, Wei; Xiao, Jianli

    2018-04-01

    Vehicle logo recognition plays an important role in manufacturer identification and vehicle recognition. This paper proposes a new vehicle logo recognition algorithm. It has a hierarchical framework, which consists of two fusion levels. At the first level, a feature fusion model is employed to map the original features to a higher dimension feature space. In this space, the vehicle logos become more recognizable. At the second level, a weighted voting strategy is proposed to promote the accuracy and the robustness of the recognition results. To evaluate the performance of the proposed algorithm, extensive experiments are performed, which demonstrate that the proposed algorithm can achieve high recognition accuracy and work robustly.

  9. 2001 Joint ADVISOR/PSAT Vehicle Systems Modeling User's Conference Proceedings (CD)

    International Nuclear Information System (INIS)

    Markel, T.

    2001-01-01

    The 2001 Joint ADVISOR/PSAT Vehicle Systems Modeling User Conference provided an opportunity for engineers in the automotive industry and the research environment to share their experiences in vehicle systems modeling using ADVISOR and PSAT. ADVISOR and PSAT are vehicle systems modeling tools developed and supported by the National Renewable Energy Laboratory and Argonne National Laboratory respectively with the financial support of the US Department of Energy. During this conference peers presented the results of studies using the simulation tools and improvements that they have made or would like to see in the simulation tools. Focus areas of the presentations included Control Strategy, Model Validation, Optimization and Co-Simulation, Model Development, Applications, and Fuel Cell Vehicle Systems Analysis. Attendees were offered the opportunity to give feedback on future model development plans

  10. Comparison of Vehicle Choice Models

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Thomas S. [Argonne National Lab. (ANL), Argonne, IL (United States); Levinson, Rebecca S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brooker, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Liu, Changzheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lin, Zhenhong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Birky, Alicia [Energetics Incorporated, Columbia, MD (United States); Kontou, Eleftheria [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-10-31

    Five consumer vehicle choice models that give projections of future sales shares of light-duty vehicles were compared by running each model using the same inputs, where possible, for two scenarios. The five models compared — LVCFlex, MA3T, LAVE-Trans, ParaChoice, and ADOPT — have been used in support of the Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Office in analyses of future light-duty vehicle markets under different assumptions about future vehicle technologies and market conditions. The models give projections of sales shares by powertrain technology. Projections made using common, but not identical, inputs showed qualitative agreement, with the exception of ADOPT. ADOPT estimated somewhat lower advanced vehicle shares, mostly composed of hybrid electric vehicles. Other models projected large shares of multiple advanced vehicle powertrains. Projections of models differed in significant ways, including how different technologies penetrated cars and light trucks. Since the models are constructed differently and take different inputs, not all inputs were identical, but were the same or very similar where possible. Projections by all models were in close agreement only in the first few years. Although the projections from LVCFlex, MA3T, LAVE-Trans, and ParaChoice were in qualitative agreement, there were significant differences in sales shares given by the different models for individual powertrain types, particularly in later years (2030 and later). For example, projected sales shares of conventional spark-ignition vehicles in 2030 for a given scenario ranged from 35% to 74%. Reasons for such differences are discussed, recognizing that these models were not developed to give quantitatively accurate predictions of future sales shares, but to represent vehicles markets realistically and capture the connections between sales and important influences. Model features were also compared at a high level, and suggestions for further comparison

  11. Damping-tunable energy-harvesting vehicle damper with multiple controlled generators: Design, modeling and experiments

    Science.gov (United States)

    Xie, Longhan; Li, Jiehong; Li, Xiaodong; Huang, Ledeng; Cai, Siqi

    2018-01-01

    Hydraulic dampers are used to decrease the vibration of a vehicle, where vibration energy is dissipated as heat. In addition to resulting in energy waste, the damping coefficient in hydraulic dampers cannot be changed during operation. In this paper, an energy-harvesting vehicle damper was proposed to replace traditional hydraulic dampers. The goal is not only to recover kinetic energy from suspension vibration but also to change the damping coefficient during operation according to road conditions. The energy-harvesting damper consists of multiple generators that are independently controlled by switches. One of these generators connects to a tunable resistor for fine tuning the damping coefficient, while the other generators are connected to a control and rectifying circuit, each of which both regenerates electricity and provides a constant damping coefficient. A mathematical model was built to investigate the performance of the energy-harvesting damper. By controlling the number of switched-on generators and adjusting the value of the external tunable resistor, the damping can be fine tuned according to the requirement. In addition to the capability of damping tuning, the multiple controlled generators can output a significant amount of electricity. A prototype was built to test the energy-harvesting damper design. Experiments on an MTS testing system were conducted, with results that validated the theoretical analysis. Experiments show that changing the number of switched-on generators can obviously tune the damping coefficient of the damper and simultaneously produce considerable electricity.

  12. Modeling take-over performance in level 3 conditionally automated vehicles.

    Science.gov (United States)

    Gold, Christian; Happee, Riender; Bengler, Klaus

    2017-11-28

    Taking over vehicle control from a Level 3 conditionally automated vehicle can be a demanding task for a driver. The take-over determines the controllability of automated vehicle functions and thereby also traffic safety. This paper presents models predicting the main take-over performance variables take-over time, minimum time-to-collision, brake application and crash probability. These variables are considered in relation to the situational and driver-related factors time-budget, traffic density, non-driving-related task, repetition, the current lane and driver's age. Regression models were developed using 753 take-over situations recorded in a series of driving simulator experiments. The models were validated with data from five other driving simulator experiments of mostly unrelated authors with another 729 take-over situations. The models accurately captured take-over time, time-to-collision and crash probability, and moderately predicted the brake application. Especially the time-budget, traffic density and the repetition strongly influenced the take-over performance, while the non-driving-related tasks, the lane and drivers' age explained a minor portion of the variance in the take-over performances. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Vehicle Weight in Gipps' Car-Following Model

    OpenAIRE

    Nerem, Sebastian

    2013-01-01

    Car-following models are mathematical models, which describe the situation where vehicles drive behind each other on a single lane road section with no overtaking possibilities. The purpose of the models is to estimate how a vehicle reacts to the behavior of the vehicle ahead. A weakness in these models is that they do not take the weight of each vehicle into account. It can however be shown that a vehicle?s weight affects its driving behavior.The purpose of this master?s thesis is to investi...

  14. 2001 Joint ADVISOR/PSAT Vehicle Systems Modeling User's Conference Proceedings (CD)

    Energy Technology Data Exchange (ETDEWEB)

    Markel, T.

    2001-08-01

    The 2001 Joint ADVISOR/PSAT Vehicle Systems Modeling User Conference provided an opportunity for engineers in the automotive industry and the research environment to share their experiences in vehicle systems modeling using ADVISOR and PSAT. ADVISOR and PSAT are vehicle systems modeling tools developed and supported by the National Renewable Energy Laboratory and Argonne National Laboratory respectively with the financial support of the US Department of Energy. During this conference peers presented the results of studies using the simulation tools and improvements that they have made or would like to see in the simulation tools. Focus areas of the presentations included Control Strategy, Model Validation, Optimization and Co-Simulation, Model Development, Applications, and Fuel Cell Vehicle Systems Analysis. Attendees were offered the opportunity to give feedback on future model development plans.

  15. Vehicle rollover sensor test modeling

    NARCIS (Netherlands)

    McCoy, R.W.; Chou, C.C.; Velde, R. van de; Twisk, D.; Schie, C. van

    2007-01-01

    A computational model of a mid-size sport utility vehicle was developed using MADYMO. The model includes a detailed description of the suspension system and tire characteristics that incorporated the Delft-Tyre magic formula description. The model was correlated by simulating a vehicle suspension

  16. Vehicle Lightweighting: 40% and 45% Weight Savings Analysis: Technical Cost Modeling for Vehicle Lightweighting

    Energy Technology Data Exchange (ETDEWEB)

    Mascarin, Anthony [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hannibal, Ted [Idaho National Lab. (INL), Idaho Falls, ID (United States); Raghunathan, Anand [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ivanic, Ziga [Idaho National Lab. (INL), Idaho Falls, ID (United States); Francfort, James [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The U.S. Department of Energy’s Vehicle Technologies Office, Materials area commissioned a study to model and assess manufacturing economics of alternative design and production strategies for a series of lightweight vehicle concepts. The strategic targets were a 40% and a 45% mass reduction relative to a standard North American midsize passenger sedan at an effective cost of $3.42 per pound (lb) saved. The baseline vehicle was an average of several available vehicles in this class. Mass and cost breakdowns from several sources were used, including original equipment manufacturers’ (OEMs’) input through U.S. Department of Energy’s Vehicle Technologies Office programs and public presentations, A2Mac1 LLC’s teardown information, Lotus Engineering Limited and FEV, Inc. breakdowns in their respective lightweighting studies, and IBIS Associates, Inc.’s decades of experience in automotive lightweighting and materials substitution analyses. Information on lightweighting strategies in this analysis came from these same sources and the ongoing U.S. Department of Energy-funded Vehma International of America, Inc. /Ford Motor Company Multi-Material Lightweight Prototype Vehicle Demonstration Project, the Aluminum Association Transportation Group, and many United States Council for Automotive Research’s/United States Automotive Materials Partnership LLC lightweight materials programs.

  17. Modeling of electric vehicle battery for vehicle-to-grid applications

    DEFF Research Database (Denmark)

    Pang, Ying; Brady, Cormac; Pellegrino, Giustino

    2013-01-01

    Electric vehicle battery models are essential when performing analysis of EV systems. The battery package of electric vehicles is complicated and unpredictable because of its chemical based functioning. In this paper, a battery model is presented with a number of internal and external factors taken...

  18. Electric Vehicle Grid Experiments and Analysis

    Science.gov (United States)

    2018-02-02

    This project developed a low cost building energy management system (EMS) and conducted vehicle-to-grid (V2G) experiments on a commercial office building. The V2G effort included theinstallation and operation of a Princeton Power System CA-30 bi-dire...

  19. Consumer Vehicle Choice Model Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Changzheng [ORNL; Greene, David L [ORNL

    2012-08-01

    In response to the Fuel Economy and Greenhouse Gas (GHG) emissions standards, automobile manufacturers will need to adopt new technologies to improve the fuel economy of their vehicles and to reduce the overall GHG emissions of their fleets. The U.S. Environmental Protection Agency (EPA) has developed the Optimization Model for reducing GHGs from Automobiles (OMEGA) to estimate the costs and benefits of meeting GHG emission standards through different technology packages. However, the model does not simulate the impact that increased technology costs will have on vehicle sales or on consumer surplus. As the model documentation states, “While OMEGA incorporates functions which generally minimize the cost of meeting a specified carbon dioxide (CO2) target, it is not an economic simulation model which adjusts vehicle sales in response to the cost of the technology added to each vehicle.” Changes in the mix of vehicles sold, caused by the costs and benefits of added fuel economy technologies, could make it easier or more difficult for manufacturers to meet fuel economy and emissions standards, and impacts on consumer surplus could raise the costs or augment the benefits of the standards. Because the OMEGA model does not presently estimate such impacts, the EPA is investigating the feasibility of developing an adjunct to the OMEGA model to make such estimates. This project is an effort to develop and test a candidate model. The project statement of work spells out the key functional requirements for the new model.

  20. Development of vehicle model test-bending of a simple structural surfaces model for automotive vehicle sedan

    Science.gov (United States)

    Nor, M. K. Mohd; Noordin, A.; Ruzali, M. F. S.; Hussen, M. H.; Mustapa@Othman, N.

    2017-04-01

    Simple Structural Surfaces (SSS) method is offered as a means of organizing the process for rationalizing the basic vehicle body structure load paths. The application of this simplified approach is highly beneficial in the development of modern passenger car structure design. In Malaysia, the SSS topic has been widely adopted and seems compulsory in various automotive programs related to automotive vehicle structures in many higher education institutions. However, there is no real physical model of SSS available to gain considerable insight and understanding into the function of each major subassembly in the whole vehicle structures. Based on this motivation, a real physical SSS of sedan model and the corresponding model vehicle tests of bending is proposed in this work. The proposed approach is relatively easy to understand as compared to Finite Element Method (FEM). The results prove that the proposed vehicle model test is useful to physically demonstrate the importance of providing continuous load path using the necessary structural components within the vehicle structures. It is clearly observed that the global bending stiffness reduce significantly when more panels are removed from the complete SSS model. The analysis shows the front parcel shelf is an important subassembly to sustain bending load.

  1. TIRE MODELS USED IN VEHICLE DYNAMIC APPLICATIONS AND THEIR USING IN VEHICLE ACCIDENT SIMULATIONS

    Directory of Open Access Journals (Sweden)

    Osman ELDOĞAN

    1995-01-01

    Full Text Available Wheel model is very important in vehicle modelling, it is because the contact between vehicle and road is achieved by wheel. Vehicle models can be dynamic models which are used in vehicle design, they can also be models used in accident simulations. Because of the importance of subject, many studies including theoretical, experimental and mixed type have been carried out. In this study, information is given about development of wheel modelling and research studies and also use of these modellings in traffic accident simulations.

  2. An overview of experimental results and dispersion modelling of nanoparticles in the wake of moving vehicles

    International Nuclear Information System (INIS)

    Carpentieri, Matteo; Kumar, Prashant; Robins, Alan

    2011-01-01

    Understanding the transformation of nanoparticles emitted from vehicles is essential for developing appropriate methods for treating fine scale particle dynamics in dispersion models. This article provides an overview of significant research work relevant to modelling the dispersion of pollutants, especially nanoparticles, in the wake of vehicles. Literature on vehicle wakes and nanoparticle dispersion is reviewed, taking into account field measurements, wind tunnel experiments and mathematical approaches. Field measurements and modelling studies highlighted the very short time scales associated with nanoparticle transformations in the first stages after the emission. These transformations strongly interact with the flow and turbulence fields immediately behind the vehicle, hence the need of characterising in detail the mixing processes in the vehicle wake. Very few studies have analysed this interaction and more research is needed to build a basis for model development. A possible approach is proposed and areas of further investigation identified. - Research highlights: → Nanoparticle emissions experience very short transformation time scales. → Vehicle wakes need to be characterised to analyse nanoparticle dispersion. → Fast response measurements of nanoparticle evolution in vehicle wakes are very rare. → Wind tunnel methodologies can be further improved to include nanoparticle dynamics. → A simple mathematical approach has been proposed for future development. - The transformation of nanoparticles and the flow characteristics in both the near and far wake regions must be understood in order to develop mathematical models.

  3. Influence of Wheel Eccentricity on Vertical Vibration of Suspended Monorail Vehicle: Experiment and Simulation

    OpenAIRE

    Kaikai Lv; Kaiyun Wang; Zhihui Chen; Chengbiao Cai; Lirong Guo

    2017-01-01

    This paper investigates the influence of wheel eccentricity on vertical vibration of suspended monorail vehicle based on experiment and simulation. Two sets of tests are conducted in the first Chinese suspended monorail, and the tested acceleration is analyzed and exhibited. A multibody dynamic model of the suspended monorail vehicle is established to simulate the vertical vibration of car body excited by wheel eccentricity. The results show that there are three factors which may cause an abn...

  4. Non-Model-Based Control of a Wheeled Vehicle Pulling Two Trailers to Provide Early Powered Mobility and Driving Experiences.

    Science.gov (United States)

    Sanders Td Vr, David A

    2018-01-01

    Non-model-based control of a wheeled vehicle pulling two trailers is proposed. It is a fun train for disabled children consisting of a locomotive and two carriages. The fun train has afforded opportunities for both disabled and able bodied young people to share an activity and has provided early driving experiences for disabled children; it has introduced them to assistive and powered mobility. The train is a nonlinear system and subject to nonholonomic kinematic constraints, so that position and state depend on the path taken to get there. The train is described, and then, a robust control algorithm using proportional-derivative filtered errors is proposed to control the locomotive. The controller was not dependent on an accurate model of the train, because the mass of the vehicle and two carriages changed depending on the number, size, and shape of children and wheelchair seats on the train. The controller was robust and stable in uncertainty. Results are presented to show the effectiveness of the approach, and the suggested control algorithm is shown to be acceptable without knowing the exact plant dynamics.

  5. Vehicle Lightweighting: Mass Reduction Spectrum Analysis and Process Cost Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Mascarin, Anthony [IBIS Associates, Inc., Waltham, MA (United States); Hannibal, Ted [IBIS Associates, Inc., Waltham, MA (United States); Raghunathan, Anand [Energetics Inc., Columbia, MD (United States); Ivanic, Ziga [Energetics Inc., Columbia, MD (United States); Clark, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    The U.S. Department of Energy’s Vehicle Technologies Office, Materials area commissioned a study to model and assess manufacturing economics of alternative design and production strategies for a series of lightweight vehicle concepts. In the first two phases of this effort examined combinations of strategies aimed at achieving strategic targets of 40% and a 45% mass reduction relative to a standard North American midsize passenger sedan at an effective cost of $3.42 per pound (lb) saved. These results have been reported in the Idaho National Laboratory report INL/EXT-14-33863 entitled Vehicle Lightweighting: 40% and 45% Weight Savings Analysis: Technical Cost Modeling for Vehicle Lightweighting published in March 2015. The data for these strategies were drawn from many sources, including Lotus Engineering Limited and FEV, Inc. lightweighting studies, U.S. Department of Energy-funded Vehma International of America, Inc./Ford Motor Company Multi-Material Lightweight Prototype Vehicle Demonstration Project, the Aluminum Association Transportation Group, many United States Council for Automotive Research’s/United States Automotive Materials Partnership LLC lightweight materials programs, and IBIS Associates, Inc.’s decades of experience in automotive lightweighting and materials substitution analyses.

  6. Vehicle Lightweighting: Mass Reduction Spectrum Analysis and Process Cost Modeling

    International Nuclear Information System (INIS)

    Mascarin, Anthony; Hannibal, Ted; Raghunathan, Anand; Ivanic, Ziga; Clark, Michael

    2016-01-01

    The U.S. Department of Energy's Vehicle Technologies Office, Materials area commissioned a study to model and assess manufacturing economics of alternative design and production strategies for a series of lightweight vehicle concepts. In the first two phases of this effort examined combinations of strategies aimed at achieving strategic targets of 40% and a 45% mass reduction relative to a standard North American midsize passenger sedan at an effective cost of $3.42 per pound (lb) saved. These results have been reported in the Idaho National Laboratory report INL/EXT-14-33863 entitled Vehicle Lightweighting: 40% and 45% Weight Savings Analysis: Technical Cost Modeling for Vehicle Lightweighting published in March 2015. The data for these strategies were drawn from many sources, including Lotus Engineering Limited and FEV, Inc. lightweighting studies, U.S. Department of Energy-funded Vehma International of America, Inc./Ford Motor Company Multi-Material Lightweight Prototype Vehicle Demonstration Project, the Aluminum Association Transportation Group, many United States Council for Automotive Research's/United States Automotive Materials Partnership LLC lightweight materials programs, and IBIS Associates, Inc.'s decades of experience in automotive lightweighting and materials substitution analyses.

  7. Relationship between US Societal Fatality Risk per Vehicle Miles of Travel and Mass, for Individual Vehicle Models over Time (Model Year)

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Tom P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Technologies Area. Building Technology and Urban Systems Division

    2016-07-27

    This report presents a new approach to analyze the relationship between vehicle mass and risk: tracking fatality risk by vehicle model year and mass, for individual vehicle models. This approach is appealing as it greatly minimizes the influence of driver characteristics and behavior, and crash circumstances, on fatality risk. However, only the most popular vehicle models, with the largest number of fatalities, can be analyzed in this manner. While the analysis of all vehicle models of a given type suggests that there is a relationship between increased mass and fatality risk, analysis of the ten most popular four-door car models separately suggests that this relationship is weak: in many cases when the mass of a specific vehicle model is increased societal fatality risk is unchanged or even increases. These results suggest that increasing the mass of an individual vehicle model does not necessarily lead to decreased societal fatality risk.

  8. Launch vehicle selection model

    Science.gov (United States)

    Montoya, Alex J.

    1990-01-01

    Over the next 50 years, humans will be heading for the Moon and Mars to build scientific bases to gain further knowledge about the universe and to develop rewarding space activities. These large scale projects will last many years and will require large amounts of mass to be delivered to Low Earth Orbit (LEO). It will take a great deal of planning to complete these missions in an efficient manner. The planning of a future Heavy Lift Launch Vehicle (HLLV) will significantly impact the overall multi-year launching cost for the vehicle fleet depending upon when the HLLV will be ready for use. It is desirable to develop a model in which many trade studies can be performed. In one sample multi-year space program analysis, the total launch vehicle cost of implementing the program reduced from 50 percent to 25 percent. This indicates how critical it is to reduce space logistics costs. A linear programming model has been developed to answer such questions. The model is now in its second phase of development, and this paper will address the capabilities of the model and its intended uses. The main emphasis over the past year was to make the model user friendly and to incorporate additional realistic constraints that are difficult to represent mathematically. We have developed a methodology in which the user has to be knowledgeable about the mission model and the requirements of the payloads. We have found a representation that will cut down the solution space of the problem by inserting some preliminary tests to eliminate some infeasible vehicle solutions. The paper will address the handling of these additional constraints and the methodology for incorporating new costing information utilizing learning curve theory. The paper will review several test cases that will explore the preferred vehicle characteristics and the preferred period of construction, i.e., within the next decade, or in the first decade of the next century. Finally, the paper will explore the interaction

  9. 3-D model-based vehicle tracking.

    Science.gov (United States)

    Lou, Jianguang; Tan, Tieniu; Hu, Weiming; Yang, Hao; Maybank, Steven J

    2005-10-01

    This paper aims at tracking vehicles from monocular intensity image sequences and presents an efficient and robust approach to three-dimensional (3-D) model-based vehicle tracking. Under the weak perspective assumption and the ground-plane constraint, the movements of model projection in the two-dimensional image plane can be decomposed into two motions: translation and rotation. They are the results of the corresponding movements of 3-D translation on the ground plane (GP) and rotation around the normal of the GP, which can be determined separately. A new metric based on point-to-line segment distance is proposed to evaluate the similarity between an image region and an instantiation of a 3-D vehicle model under a given pose. Based on this, we provide an efficient pose refinement method to refine the vehicle's pose parameters. An improved EKF is also proposed to track and to predict vehicle motion with a precise kinematics model. Experimental results with both indoor and outdoor data show that the algorithm obtains desirable performance even under severe occlusion and clutter.

  10. Motor Vehicle Emission Modeling and Software Simulation Computing for Roundabout in Urban City

    Directory of Open Access Journals (Sweden)

    Haiwei Wang

    2013-01-01

    Full Text Available In urban road traffic systems, roundabout is considered as one of the core traffic bottlenecks, which are also a core impact of vehicle emission and city environment. In this paper, we proposed a transport control and management method for solving traffic jam and reducing emission in roundabout. The platform of motor vehicle testing system and VSP-based emission model was established firstly. By using the topology chart of the roundabout and microsimulation software, we calculated the instantaneous emission rates of different vehicle and total vehicle emissions. We argued that Integration-Model, combing traffic simulation and vehicle emission, can be performed to calculate the instantaneous emission rates of different vehicle and total vehicle emissions at the roundabout. By contrasting the exhaust emissions result between no signal control and signal control in this area at the rush hour, it draws a conclusion that setting the optimizing signal control can effectively reduce the regional vehicle emission. The proposed approach has been submitted to a simulation and experiment that involved an environmental assessment in Satellite Square, a roundabout in medium city located in China. It has been verified that setting signal control with knowledge engineering and Integration-Model is a practical way for solving the traffic jams and environmental pollution.

  11. Consumer preferences for alternative fuel vehicles: Comparing a utility maximization and a regret minimization model

    International Nuclear Information System (INIS)

    Chorus, Caspar G.; Koetse, Mark J.; Hoen, Anco

    2013-01-01

    This paper presents a utility-based and a regret-based model of consumer preferences for alternative fuel vehicles, based on a large-scale stated choice-experiment held among company car leasers in The Netherlands. Estimation and application of random utility maximization and random regret minimization discrete choice models shows that while the two models achieve almost identical fit with the data and differ only marginally in terms of predictive ability, they generate rather different choice probability-simulations and policy implications. The most eye-catching difference between the two models is that the random regret minimization model accommodates a compromise-effect, as it assigns relatively high choice probabilities to alternative fuel vehicles that perform reasonably well on each dimension instead of having a strong performance on some dimensions and a poor performance on others. - Highlights: • Utility- and regret-based models of preferences for alternative fuel vehicles. • Estimation based on stated choice-experiment among Dutch company car leasers. • Models generate rather different choice probabilities and policy implications. • Regret-based model accommodates a compromise-effect

  12. Potential demand for household alternative fuelled vehicles in Hamilton, Canada : a stated choices experiment and survey

    Energy Technology Data Exchange (ETDEWEB)

    Potoglou, D.; Kanaroglou, P.S. [McMaster Univ., Hamilton, ON (Canada). Centre for Spatial Analysis]|[McMaster Univ., Hamilton, ON (Canada). School of Geography and Earth Science

    2005-07-01

    Alternative fuelled vehicle (AFV) technologies are a key strategy towards improved air quality and sustainable development. These fuel-efficient, low- or zero-emission vehicles have the potential to reduce greenhouse gas emissions and other negative externalities linked with the transportation sector. They include battery electric vehicles, fuel cell vehicles, and hybrid electric vehicles with internal combustion engines. This paper discussed AFVs development trends and modelling the demand for AFVs. It was noted that before creating policy measures that promote new vehicle technologies, one should first evaluate the demand for AFVs and the effectiveness of incentives and marketing promotions. This paper discussed the design and application of a stated choices experiment in which urban level surveys were conducted on the Internet to obtain data and public opinion on the demand for AFVs. A Choice Internet Based Experiment for Research on Cars (CIBER-CARS) was designed. This self-administered online questionnaire was used in Hamilton, Ontario. The survey design was described in detail and its implementation and data collection procedures were reviewed. Measures for evaluating the efficiency of the Internet survey were also highlighted and the characteristics of the collected information were summarized with emphasis on the profiles of respondents and households. The purpose was to determine the impact of vehicle attributes and household characteristics to the actual choice of certain vehicles. 28 refs., 2 tabs., 4 figs.

  13. Design of Field Experiments for Adaptive Sampling of the Ocean with Autonomous Vehicles

    Science.gov (United States)

    Zheng, H.; Ooi, B. H.; Cho, W.; Dao, M. H.; Tkalich, P.; Patrikalakis, N. M.

    2010-05-01

    Due to the highly non-linear and dynamical nature of oceanic phenomena, the predictive capability of various ocean models depends on the availability of operational data. A practical method to improve the accuracy of the ocean forecast is to use a data assimilation methodology to combine in-situ measured and remotely acquired data with numerical forecast models of the physical environment. Autonomous surface and underwater vehicles with various sensors are economic and efficient tools for exploring and sampling the ocean for data assimilation; however there is an energy limitation to such vehicles, and thus effective resource allocation for adaptive sampling is required to optimize the efficiency of exploration. In this paper, we use physical oceanography forecasts of the coastal zone of Singapore for the design of a set of field experiments to acquire useful data for model calibration and data assimilation. The design process of our experiments relied on the oceanography forecast including the current speed, its gradient, and vorticity in a given region of interest for which permits for field experiments could be obtained and for time intervals that correspond to strong tidal currents. Based on these maps, resources available to our experimental team, including Autonomous Surface Craft (ASC) are allocated so as to capture the oceanic features that result from jets and vortices behind bluff bodies (e.g., islands) in the tidal current. Results are summarized from this resource allocation process and field experiments conducted in January 2009.

  14. Experiments in teleoperator and autonomous control of space robotic vehicles

    Science.gov (United States)

    Alexander, Harold L.

    1991-01-01

    A program of research embracing teleoperator and automatic navigational control of freely flying satellite robots is presented. Current research goals include: (1) developing visual operator interfaces for improved vehicle teleoperation; (2) determining the effects of different visual interface system designs on operator performance; and (3) achieving autonomous vision-based vehicle navigation and control. This research program combines virtual-environment teleoperation studies and neutral-buoyancy experiments using a space-robot simulator vehicle currently under development. Visual-interface design options under investigation include monoscopic versus stereoscopic displays and cameras, helmet-mounted versus panel-mounted display monitors, head-tracking versus fixed or manually steerable remote cameras, and the provision of vehicle-fixed visual cues, or markers, in the remote scene for improved sensing of vehicle position, orientation, and motion.

  15. Crash-related mortality and model year: are newer vehicles safer?

    Science.gov (United States)

    Ryb, Gabriel E; Dischinger, Patricia C; McGwin, Gerald; Griffin, Russell L

    2011-01-01

    The objective of this study was to determine whether occupants of newer vehicles experience a lower risk of crash-related mortality. The occurrence of death was studied in relation to vehicle model year (MY) among front seat vehicular occupants, age ≥ 16 captured in the National Automotive Sampling System Crashworthiness Data System (NASS-CDS) between 2000 and 2008. The associations between death and other occupant, vehicular and crash characteristics were also explored. Multiple logistic regression models for the prediction of death were built with model year as the independent variable and other characteristics linked to death as covariates. Imputation was used for missing data; weighted data was used. A total of 70,314 cases representing 30,514,372 weighted cases were available for analysis. Death occurred in 0.6% of the weighted population. Death was linked to age>60, male gender, higher BMI, near lateral direction of impact, high delta v, rollover, ejection and vehicle mismatch, and negatively associated with seatbelt use and rear and far lateral direction of impact. Mortality decreased with later model year groups (MY<94 0.78%, MY 94-97 0.53%, MY 98-04 0.51% and MY 05-08 0.38%, p=<0.0001). After adjustment for confounders, MY 94-97, MY 98-04 and MY 05-08 showed decreased odds of death [OR 0.80 (0.69-0.94), 0.82 (0.70-0.97), and 0.67 (0.47-0.96), respectively] when compared to MY <94. Newer vehicles are associated with lower crash-related mortality. Their introduction into the vehicle fleet may explain, at least in part, the decrease in mortality rates in the past two decades.

  16. Experimental Exploration of RSSI Model for the Vehicle Intelligent Position System

    Directory of Open Access Journals (Sweden)

    Zhichao Cao

    2015-01-01

    Full Text Available Vehicle intelligent position systems based on Received Signal Strength Indicator (RSSI in Wireless Sensor Networks (WSNs are efficiently utilized. The vehicle’s position accuracy is of great importance for transportation behaviors, such as dynamic vehicle routing problems and multiple pedestrian routing choice behaviors and so on. Therefore, a precise position and available optimization is necessary for total parameters of conventional RSSI model. In this papar, we investigate the experimental performance of translating the power measurements to corresponding distance between each pair of nodes. The priori knowledge about the environment interference could impact the accuracy of vehicles’s position and the reliability of paremeters greatly. Based on the real-world outdoor experiments, we compares different regression analysis of the RSSI model, in order to establish a calibration scheme on RSSI model. We showed that the average error of RSSI model is able to decrease throughout the rules of environmental factor n and shadowing factor ? respectively. Moreover, the calculation complexity is reduced. Since variation tendency of environmental factor n, shadowing factor ? with distance and signal strength could be simulated respectively, RSSI model fulfills the precision of the vehicle intelligent position system.

  17. Adoption barriers for electric vehicles: Experiences from early adopters in Sweden

    International Nuclear Information System (INIS)

    Vassileva, Iana; Campillo, Javier

    2017-01-01

    Electric vehicles are considered as one of the most effective technologies for reducing current greenhouse gas emissions from the transport sector. Although in many countries, local and national governments have introduced incentives and subsidies to facilitate the electric vehicle market penetration, in Sweden, such benefits have been limited. Results from a survey carried out among private owners of electric vehicles are presented in this paper, including the analysis of the respondents socio-demographic characteristics, reasons for choosing an electric vehicle, charging locations and driving preferences, among others. The main results characterize current electric vehicle drivers as male, well-educated, with medium-high income; electric vehicles are used mainly for private purposes and charged at home during night time. Furthermore, the paper presents an analysis of the impact of large-scale penetration of electric vehicles on existing power distribution systems. The findings presented in this paper provide important insights for assuring a sustainable large-scale penetration of electric vehicles by learning from the experiences of early adopters of the technology and by analyzing the impact of different EV penetration scenarios on the power distribution grid. - Highlights: • A survey was conducted on EV owners' experience and characteristics. • Impact on the power system of large-scale EV adoption was analyzed. • Feedback from EV owners should be used to engage potential users. • Coordinated smart charging is needed to reduce power grid impact. • Coordinated smart charging is required to minimize disturbances on the power grid.

  18. An overview of experimental results and dispersion modelling of nanoparticles in the wake of moving vehicles.

    Science.gov (United States)

    Carpentieri, Matteo; Kumar, Prashant; Robins, Alan

    2011-03-01

    Understanding the transformation of nanoparticles emitted from vehicles is essential for developing appropriate methods for treating fine scale particle dynamics in dispersion models. This article provides an overview of significant research work relevant to modelling the dispersion of pollutants, especially nanoparticles, in the wake of vehicles. Literature on vehicle wakes and nanoparticle dispersion is reviewed, taking into account field measurements, wind tunnel experiments and mathematical approaches. Field measurements and modelling studies highlighted the very short time scales associated with nanoparticle transformations in the first stages after the emission. These transformations strongly interact with the flow and turbulence fields immediately behind the vehicle, hence the need of characterising in detail the mixing processes in the vehicle wake. Very few studies have analysed this interaction and more research is needed to build a basis for model development. A possible approach is proposed and areas of further investigation identified. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Tensegrity Models and Shape Control of Vehicle Formations

    OpenAIRE

    Nabet, Benjamin; Leonard, Naomi Ehrich

    2009-01-01

    Using dynamic models of tensegrity structures, we derive provable, distributed control laws for stabilizing and changing the shape of a formation of vehicles in the plane. Tensegrity models define the desired, controlled, multi-vehicle system dynamics, where each node in the tensegrity structure maps to a vehicle and each interconnecting strut or cable in the structure maps to a virtual interconnection between vehicles. Our method provides a smooth map from any desired planar formation shape ...

  20. Comprehensive modeling and control of flexible flapping wing micro air vehicles

    Science.gov (United States)

    Nogar, Stephen Michael

    Flapping wing micro air vehicles hold significant promise due to the potential for improved aerodynamic efficiency, enhanced maneuverability and hover capability compared to fixed and rotary configurations. However, significant technical challenges exist to due the lightweight, highly integrated nature of the vehicle and coupling between the actuators, flexible wings and control system. Experimental and high fidelity analysis has demonstrated that aeroelastic effects can change the effective kinematics of the wing, reducing vehicle stability. However, many control studies for flapping wing vehicles do not consider these effects, and instead validate the control strategy with simple assumptions, including rigid wings, quasi-steady aerodynamics and no consideration of actuator dynamics. A control evaluation model that includes aeroelastic effects and actuator dynamics is developed. The structural model accounts for geometrically nonlinear behavior using an implicit condensation technique and the aerodynamic loads are found using a time accurate approach that includes quasi-steady, rotational, added mass and unsteady effects. Empirically based parameters in the model are fit using data obtained from a higher fidelity solver. The aeroelastic model and its ingredients are compared to experiments and computations using models of higher fidelity, and indicate reasonable agreement. The developed control evaluation model is implemented in a previously published, baseline controller that maintains stability using an asymmetric wingbeat, known as split-cycle, along with changing the flapping frequency and wing bias. The model-based controller determines the control inputs using a cycle-averaged, linear control design model, which assumes a rigid wing and no actuator dynamics. The introduction of unaccounted for dynamics significantly degrades the ability of the controller to track a reference trajectory, and in some cases destabilizes the vehicle. This demonstrates the

  1. Smart Automation, Customer Experience and Customer Engagement in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Asad Ullah

    2018-04-01

    Full Text Available A major challenge to cleaner and more sustainable transportation is the lack of adoptability of electric vehicles (EVs by customers. Therefore, most of the vehicles we see on the road use fossil fuel instead of sustainable green energy sources. One way to improve customer acceptance is to market EVs as a socially desirable product, rather than only environmentally friendly. The silver lining to promote is the potential of information and communications technology (ICT features in EVs, which can lead to a deeper connection between the EVs and their users. These engaging technologies can bring customers closer to the company, resulting in generating big data, which can lead to even deeper insights into customer preferences. Because the technology of vehicle connectivity and automation is just taking off, it is important to understand how these technologies in EVs can enhance customer experiences and result in sustainable customer engagement. Unfortunately, this important research area remains neglected. This research, therefore, is focused on building a conceptual framework for understanding the influence of electric vehicle (EV automation and connectivity on customer experience, and ultimately, customer engagement.

  2. Simulation modeling of wheeled vehicle dynamics on the stand "Roller"

    Directory of Open Access Journals (Sweden)

    G. O. Kotiev

    2014-01-01

    Full Text Available The tests are an integral part of the wheeled vehicle design, manufacturing, and operation. The need for their conducting arises from the research and experimental activities to assess the qualitative and quantitative characteristics of the vehicles in general, as well as the individual components and assemblies. It is obvious that a variety of design features of wheeled vehicles request a development of methods both for experimental studies and for creating the original bench equipment for these purposes.The main positive feature of bench tests of automotive engineering is a broad capability to control the combinations of traction loads, speed rates, and external input conditions. Here, the steady state conditions can be used for a long time, allowing all the necessary measurements to be made, including those with video and photo recording experiment.It is known that the benefits of test "M" type (using a roller dynamometer include a wide range of test modes, which do not depend on the climatic conditions, as well as a capability to use a computer-aided testing programs. At the same time, it is known that the main drawback of bench tests of full-size vehicle is that the tire rolling conditions on the drum mismatch to the real road pavements, which are difficult to simulate on the drum surface. This problem can be solved owing to wheeled vehicle tests at the benches "Roller" to be, in efficiency, the most preferable research method. The article gives a detailed presentation of developed at BMSTU approach to its solving.Problem of simulation mathematical modeling has been solved for the vehicle with the wheel formula 8 × 8, and individual wheel-drive.The simulation results have led to the conclusion that the proposed principle to simulate a vehicle rolling on a smooth non-deformable support base using a bench " Roller " by simulation modeling is efficient.

  3. Vehicle System Management Modeling in UML for Ares I

    Science.gov (United States)

    Pearson, Newton W.; Biehn, Bradley A.; Curry, Tristan D.; Martinez, Mario R.

    2011-01-01

    The Spacecraft & Vehicle Systems Department of Marshall Space Flight Center is responsible for modeling the Vehicle System Management for the Ares I vehicle which was a part of the now canceled Constellation Program. An approach to generating the requirements for the Vehicle System Management was to use the Unified Modeling Language technique to build and test a model that would fulfill the Vehicle System Management requirements. UML has been used on past projects (flight software) in the design phase of the effort but this was the first attempt to use the UML technique from a top down requirements perspective.

  4. Power-based electric vehicle energy consumption model: Model development and validation

    International Nuclear Information System (INIS)

    Fiori, Chiara; Ahn, Kyoungho; Rakha, Hesham A.

    2016-01-01

    Highlights: • The study developed an instantaneous energy consumption model (VT-CPEM) for EVs. • The model captures instantaneous braking energy regeneration. • The model can be used for transportation modeling and vehicle applications (e.g. eco-routing). • The proposed model can be easily calibrated using publically available EV data. • Usages of air conditioning and heating systems reduce EV energy consumption by up to 10% and 24%, respectively. - Abstract: The limited drive range (The maximum distance that an EV can travel.) of Electric Vehicles (EVs) is one of the major challenges that EV manufacturers are attempting to overcome. To this end, a simple, accurate, and efficient energy consumption model is needed to develop real-time eco-driving and eco-routing systems that can enhance the energy efficiency of EVs and thus extend their travel range. Although numerous publications have focused on the modeling of EV energy consumption levels, these studies are limited to measuring energy consumption of an EV’s control algorithm, macro-project evaluations, or simplified well-to-wheels analyses. Consequently, this paper addresses this need by developing a simple EV energy model that computes an EV’s instantaneous energy consumption using second-by-second vehicle speed, acceleration and roadway grade data as input variables. In doing so, the model estimates the instantaneous braking energy regeneration. The proposed model can be easily implemented in the following applications: in-vehicle, Smartphone eco-driving, eco-routing and transportation simulation software to quantify the network-wide energy consumption levels for a fleet of EVs. One of the main advantages of EVs is their ability to recover energy while braking using a regenerative braking system. State-of-the-art vehicle energy consumption models consider an average constant regenerative braking energy efficiency or regenerative braking factors that are mainly dependent on the vehicle’s average

  5. Fuel Consumption and Vehicle Emission Models for Evaluating Environmental Impacts of the ETC System

    Directory of Open Access Journals (Sweden)

    Jiancheng Weng

    2015-07-01

    Full Text Available The environmental outcome of the Electronic Toll Collection (ETC system is an important aspect in evaluating the impacts of the ETC system, which is influenced by various factors including the vehicle type, travel speed, traffic volume, and average queue length of Manual Toll Collection (MTC lanes. The primary objective of this paper is to develop a field data-based practical model for evaluating the effects of ETC system on the fuel efficiency and vehicle emission. First, laboratory experiments of seven types of vehicles under various scenarios for toll collection were conducted based on the Vehicle Emissions Testing System (VETS. The indicator calculation models were then established to estimate the comprehensive benefit of ETC system by comparing the test results of MTC lane and ETC lane. Finally, taking Beijing as a case study, the paper calibrated the model parameters, and estimated the monetization value of environmental benefit of the ETC system in terms of vehicle emissions reduction and fuel consumption decrease. The results shows that the applications of ETC system are expected to save fuel consumption of 4.1 million liters and reduce pollution emissions by 730.89 tons in 2013 in Beijing.

  6. Space Vehicle Reliability Modeling in DIORAMA

    Energy Technology Data Exchange (ETDEWEB)

    Tornga, Shawn Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-12

    When modeling system performance of space based detection systems it is important to consider spacecraft reliability. As space vehicles age the components become prone to failure for a variety of reasons such as radiation damage. Additionally, some vehicles may lose the ability to maneuver once they exhaust fuel supplies. Typically failure is divided into two categories: engineering mistakes and technology surprise. This document will report on a method of simulating space vehicle reliability in the DIORAMA framework.

  7. Simulation of hybrid vehicle propulsion with an advanced battery model

    Energy Technology Data Exchange (ETDEWEB)

    Nallabolu, S.; Kostetzer, L.; Rudnyi, E. [CADFEM GmbH, Grafing (Germany); Geppert, M.; Quinger, D. [LION Smart GmbH, Frieding (Germany)

    2011-07-01

    In the recent years there has been observed an increasing concern about global warming and greenhouse gas emissions. In addition to the environmental issues the predicted scarcity of oil supplies and the dramatic increase in oil price puts new demands on vehicle design. As a result energy efficiency and reduced emission have become one of main selling point for automobiles. Hybrid electric vehicles (HEV) have therefore become an interesting technology for the governments and automotive industries. HEV are more complicated compared to conventional vehicles due to the fact that these vehicles contain more electrical components such as electric machines, power electronics, electronic continuously variable transmissions (CVT), and embedded powertrain controllers. Advanced energy storage devices and energy converters, such as Li-ion batteries, ultracapacitors, and fuel cells are also considered. A detailed vehicle model used for an energy flow analysis and vehicle performance simulation is necessary. Computer simulation is indispensible to facilitate the examination of the vast hybrid electric vehicle design space with the aim to predict the vehicle performance over driving profiles, estimate fuel consumption and the pollution emissions. There are various types of mathematical models and simulators available to perform system simulation of vehicle propulsion. One of the standard methods to model the complete vehicle powertrain is ''backward quasistatic modeling''. In this method vehicle subsystems are defined based on experiential models in the form of look-up tables and efficiency maps. The interaction between adjacent subsystems of the vehicle is defined through the amount of power flow. Modeling the vehicle subsystems like motor, engine, gearbox and battery is under this technique is based on block diagrams. The vehicle model is applied in two case studies to evaluate the vehicle performance and fuel consumption. In the first case study the affect

  8. Development and applications of GREET 2.7 -- The Transportation Vehicle-Cycle Model

    International Nuclear Information System (INIS)

    Burnham, A.; Wang, M. Q.; Wu, Y.

    2006-01-01

    Argonne National Laboratory has developed a vehicle-cycle module for the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The fuel-cycle GREET model has been cited extensively and contains data on fuel cycles and vehicle operations. The vehicle-cycle model evaluates the energy and emission effects associated with vehicle material recovery and production, vehicle component fabrication, vehicle assembly, and vehicle disposal/recycling. With the addition of the vehicle-cycle module, the GREET model now provides a comprehensive, lifecycle-based approach to compare the energy use and emissions of conventional and advanced vehicle technologies (e.g., hybrid electric vehicles and fuel cell vehicles). This report details the development and application of the GREET 2.7 model. The current model includes six vehicles--a conventional material and a lightweight material version of a mid-size passenger car with the following powertrain systems: internal combustion engine, internal combustion engine with hybrid configuration, and fuel cell with hybrid configuration. The model calculates the energy use and emissions that are required for vehicle component production; battery production; fluid production and use; and vehicle assembly, disposal, and recycling. This report also presents vehicle-cycle modeling results. In order to put these results in a broad perspective, the fuel-cycle model (GREET 1.7) was used in conjunction with the vehicle-cycle model (GREET 2.7) to estimate total energy-cycle results

  9. Development and applications of GREET 2.7 -- The Transportation Vehicle-CycleModel.

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A.; Wang, M. Q.; Wu, Y.

    2006-12-20

    Argonne National Laboratory has developed a vehicle-cycle module for the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The fuel-cycle GREET model has been cited extensively and contains data on fuel cycles and vehicle operations. The vehicle-cycle model evaluates the energy and emission effects associated with vehicle material recovery and production, vehicle component fabrication, vehicle assembly, and vehicle disposal/recycling. With the addition of the vehicle-cycle module, the GREET model now provides a comprehensive, lifecycle-based approach to compare the energy use and emissions of conventional and advanced vehicle technologies (e.g., hybrid electric vehicles and fuel cell vehicles). This report details the development and application of the GREET 2.7 model. The current model includes six vehicles--a conventional material and a lightweight material version of a mid-size passenger car with the following powertrain systems: internal combustion engine, internal combustion engine with hybrid configuration, and fuel cell with hybrid configuration. The model calculates the energy use and emissions that are required for vehicle component production; battery production; fluid production and use; and vehicle assembly, disposal, and recycling. This report also presents vehicle-cycle modeling results. In order to put these results in a broad perspective, the fuel-cycle model (GREET 1.7) was used in conjunction with the vehicle-cycle model (GREET 2.7) to estimate total energy-cycle results.

  10. Incorporating vehicle mix in stimulus-response car-following models

    Directory of Open Access Journals (Sweden)

    Saidi Siuhi

    2016-06-01

    Full Text Available The objective of this paper is to incorporate vehicle mix in stimulus-response car-following models. Separate models were estimated for acceleration and deceleration responses to account for vehicle mix via both movement state and vehicle type. For each model, three sub-models were developed for different pairs of following vehicles including “automobile following automobile,” “automobile following truck,” and “truck following automobile.” The estimated model parameters were then validated against other data from a similar region and roadway. The results indicated that drivers' behaviors were significantly different among the different pairs of following vehicles. Also the magnitude of the estimated parameters depends on the type of vehicle being driven and/or followed. These results demonstrated the need to use separate models depending on movement state and vehicle type. The differences in parameter estimates confirmed in this paper highlight traffic safety and operational issues of mixed traffic operation on a single lane. The findings of this paper can assist transportation professionals to improve traffic simulation models used to evaluate the impact of different strategies on ameliorate safety and performance of highways. In addition, driver response time lag estimates can be used in roadway design to calculate important design parameters such as stopping sight distance on horizontal and vertical curves for both automobiles and trucks.

  11. Occupant-vehicle dynamics and the role of the internal model

    Science.gov (United States)

    Cole, David J.

    2018-05-01

    With the increasing need to reduce time and cost of vehicle development there is increasing advantage in simulating mathematically the dynamic interaction of a vehicle and its occupant. The larger design space arising from the introduction of automated vehicles further increases the potential advantage. The aim of the paper is to outline the role of the internal model hypothesis in understanding and modelling occupant-vehicle dynamics, specifically the dynamics associated with direction and speed control of the vehicle. The internal model is the driver's or passenger's understanding of the vehicle dynamics and is thought to be employed in the perception, cognition and action processes of the brain. The internal model aids the estimation of the states of the vehicle from noisy sensory measurements. It can also be used to optimise cognitive control action by predicting the consequence of the action; thus model predictive control (MPC) theory provides a foundation for modelling the cognition process. The stretch reflex of the neuromuscular system also makes use of the prediction of the internal model. Extensions to the MPC approach are described which account for: interaction with an automated vehicle; robust control; intermittent control; and cognitive workload. Further work to extend understanding of occupant-vehicle dynamic interaction is outlined. This paper is based on a keynote presentation given by the author to the 13th International Symposium on Advanced Vehicle Control (AVEC) conference held in Munich, September 2016.

  12. Numerical simulation of hypersonic flight experiment vehicle

    OpenAIRE

    Yamamoto, Yukimitsu; Yoshioka, Minako; 山本 行光; 吉岡 美菜子

    1994-01-01

    Hypersonic aerodynamic characteristics of Hypersonic FLight EXperiment (HYFLEX vehicle were investigated by numerical simulations using Navier-Stokes CFD (Computational Fluid Dynamics) code of NAL. Numerical results were compared with experimental data obtained at Hypersonic Wind Tunnel at NAL. In order to investigate real flight aerodynamic characteristics. numerical calculations corresponding to the flight conditions suffering from maximum aero thermodynamic heating were also made and the d...

  13. The adaptive cruise control vehicles in the cellular automata model

    International Nuclear Information System (INIS)

    Jiang Rui; Wu Qingsong

    2006-01-01

    This Letter presented a cellular automata model where the adaptive cruise control vehicles are modelled. In this model, the constant time headway policy is adopted. The fundamental diagram is presented. The simulation results are in good agreement with the analytical ones. The mixture of ACC vehicles with manually driven vehicles is investigated. It is shown that with the introduction of ACC vehicles, the jam can be suppressed

  14. Development of Vehicle Model Test for Road Loading Analysis of Sedan Model

    Science.gov (United States)

    Mohd Nor, M. K.; Noordin, A.; Ruzali, M. F. S.; Hussen, M. H.

    2016-11-01

    Simple Structural Surfaces (SSS) method is offered as a means of organizing the process for rationalizing the basic vehicle body structure load paths. The application of this simplified approach is highly beneficial in the design development of modern passenger car structure especially during the conceptual stage. In Malaysia, however, there is no real physical model of SSS available to gain considerable insight and understanding into the function of each major subassembly in the whole vehicle structures. Based on this motivation, a physical model of SSS for sedan model with the corresponding model vehicle tests of bending and torsion is proposed in this work. The proposed approach is relatively easy to understand as compared to Finite Element Method (FEM). The results show that the proposed vehicle model test is capable to show that satisfactory load paths can give a sufficient structural stiffness within the vehicle structure. It is clearly observed that the global bending stiffness reduce significantly when more panels are removed from a complete SSS model. It is identified that parcel shelf is an important subassembly to sustain bending load. The results also match with the theoretical hypothesis, as the stiffness of the structure in an open section condition is shown weak when subjected to torsion load compared to bending load. The proposed approach can potentially be integrated with FEM to speed up the design process of automotive vehicle.

  15. Dynamics control of autonomous vehicle at driving limits and experiment on an autonomous formula racing car

    Science.gov (United States)

    Ni, Jun; Hu, Jibin

    2017-06-01

    In this paper, a novel dynamics controller for autonomous vehicle to simultaneously control it to the driving limits and follow the desired path is proposed. The dynamics controller consists of longitudinal and lateral controllers. In longitudinal controller, the G-G diagram is utilized to describe the driving and handling limits of the vehicle. The accurate G-G diagram is obtained based on phase plane approach and a nonlinear vehicle dynamic model with accurate tyre model. In lateral controller, the tyre cornering stiffness is estimated to improve the robustness of the controller. The stability analysis of the closed-looped error dynamics shows that the controller remains stable against parameters uncertainties in extreme condition such as tyre saturation. Finally, an electric autonomous Formula race car developed by the authors is used to validate the proposed controller. The autonomous driving experiment on an oval race track shows the efficiency and robustness of the proposed controller.

  16. Dynamic performances analysis of a real vehicle driving

    Science.gov (United States)

    Abdullah, M. A.; Jamil, J. F.; Salim, M. A.

    2015-12-01

    Vehicle dynamic is the effects of movement of a vehicle generated from the acceleration, braking, ride and handling activities. The dynamic behaviours are determined by the forces from tire, gravity and aerodynamic which acting on the vehicle. This paper emphasizes the analysis of vehicle dynamic performance of a real vehicle. Real driving experiment on the vehicle is conducted to determine the effect of vehicle based on roll, pitch, and yaw, longitudinal, lateral and vertical acceleration. The experiment is done using the accelerometer to record the reading of the vehicle dynamic performance when the vehicle is driven on the road. The experiment starts with weighing a car model to get the center of gravity (COG) to place the accelerometer sensor for data acquisition (DAQ). The COG of the vehicle is determined by using the weight of the vehicle. A rural route is set to launch the experiment and the road conditions are determined for the test. The dynamic performance of the vehicle are depends on the road conditions and driving maneuver. The stability of a vehicle can be controlled by the dynamic performance analysis.

  17. Modeling and Analysis of an Air-Breathing Flexible Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Xi-bin Zhang

    2014-01-01

    Full Text Available By using light-weighted material in hypersonic vehicle, the vehicle body can be easily deformed. The mutual couplings in aerodynamics, flexible structure, and propulsion system will bring great challenges for vehicle modeling. In this work, engineering estimated method is used to calculate the aerodynamic forces, moments, and flexible modes to get the physics-based model of an air-breathing flexible hypersonic vehicle. The model, which contains flexible effects and viscous effects, can capture the physical characteristics of high-speed flight. To overcome the analytical intractability of the model, a simplified control-oriented model of the hypersonic vehicle is presented with curve fitting approximations. The control-oriented model can not only reduce the complexity of the model, but also retain aero-flexible structure-propulsion interactions of the physics-based model and can be applied for nonlinear control.

  18. Model Predictive Control for Connected Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Kaijiang Yu

    2015-01-01

    Full Text Available This paper presents a new model predictive control system for connected hybrid electric vehicles to improve fuel economy. The new features of this study are as follows. First, the battery charge and discharge profile and the driving velocity profile are simultaneously optimized. One is energy management for HEV for Pbatt; the other is for the energy consumption minimizing problem of acc control of two vehicles. Second, a system for connected hybrid electric vehicles has been developed considering varying drag coefficients and the road gradients. Third, the fuel model of a typical hybrid electric vehicle is developed using the maps of the engine efficiency characteristics. Fourth, simulations and analysis (under different parameters, i.e., road conditions, vehicle state of charge, etc. are conducted to verify the effectiveness of the method to achieve higher fuel efficiency. The model predictive control problem is solved using numerical computation method: continuation and generalized minimum residual method. Computer simulation results reveal improvements in fuel economy using the proposed control method.

  19. Modeling of Combined Phenomena Affecting an AUV Stealth Vehicle

    Directory of Open Access Journals (Sweden)

    Miroslaw Gerigk

    2016-12-01

    Full Text Available In the paper some results of research connected with modeling the basic stealth characteristics of an AUV vehicle are presented. First of all a general approach to design of the stealth AUV autonomous underwater vehicles under consideration is introduced. Then the AUV stealth vehicle concept is briefly described. Next a method of modeling of the stealth characteristics is briefly described. As an example of the stealth characteristics investigations some results of modeling the boundary layer and wake are presented. Some remarks regarding the behavior of the AUV stealth vehicle in the submerged conditions are given. The final conclusions are presented.

  20. Model Design on Emergency Power Supply of Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Yuanliang Zhao

    2017-01-01

    Full Text Available According to the mobile storage characteristic of electric vehicles, an emergency power supply model about the electric vehicles is presented through analyzing its storage characteristic. The model can ensure important consumer loss minimization during power failure or emergency and can make electric vehicles cost minimization about running, scheduling, and vindicating. In view of the random dispersion feature in one area, an emergency power supply scheme using the electric vehicles is designed based on the K-means algorithm. The purpose is to improve the electric vehicles initiative gathering ability and reduce the electric vehicles gathering time. The study can reduce the number of other emergency power supply equipment and improve the urban electricity reliability.

  1. Intent-Estimation- and Motion-Model-Based Collision Avoidance Method for Autonomous Vehicles in Urban Environments

    Directory of Open Access Journals (Sweden)

    Rulin Huang

    2017-04-01

    Full Text Available Existing collision avoidance methods for autonomous vehicles, which ignore the driving intent of detected vehicles, thus, cannot satisfy the requirements for autonomous driving in urban environments because of their high false detection rates of collisions with vehicles on winding roads and the missed detection rate of collisions with maneuvering vehicles. This study introduces an intent-estimation- and motion-model-based (IEMMB method to address these disadvantages. First, a state vector is constructed by combining the road structure and the moving state of detected vehicles. A Gaussian mixture model is used to learn the maneuvering patterns of vehicles from collected data, and the patterns are used to estimate the driving intent of the detected vehicles. Then, a desirable long-term trajectory is obtained by weighting time and comfort. The long-term trajectory and the short-term trajectory, which are predicted using a constant yaw rate motion model, are fused to achieve an accurate trajectory. Finally, considering the moving state of the autonomous vehicle, collisions can be detected and avoided. Experiments have shown that the intent estimation method performed well, achieving an accuracy of 91.7% on straight roads and an accuracy of 90.5% on winding roads, which is much higher than that achieved by the method that ignores the road structure. The average collision detection distance is increased by more than 8 m. In addition, the maximum yaw rate and acceleration during an evasive maneuver are decreased, indicating an improvement in the driving comfort.

  2. Modeling ground vehicle acoustic signatures for analysis and synthesis

    International Nuclear Information System (INIS)

    Haschke, G.; Stanfield, R.

    1995-01-01

    Security and weapon systems use acoustic sensor signals to classify and identify moving ground vehicles. Developing robust signal processing algorithms for this is expensive, particularly in presence of acoustic clutter or countermeasures. This paper proposes a parametric ground vehicle acoustic signature model to aid the system designer in understanding which signature features are important, developing corresponding feature extraction algorithms and generating low-cost, high-fidelity synthetic signatures for testing. The authors have proposed computer-generated acoustic signatures of armored, tracked ground vehicles to deceive acoustic-sensored smart munitions. They have developed quantitative measures of how accurately a synthetic acoustic signature matches those produced by actual vehicles. This paper describes parameters of the model used to generate these synthetic signatures and suggests methods for extracting these parameters from signatures of valid vehicle encounters. The model incorporates wide-bandwidth and narrow- bandwidth components that are modulated in a pseudo-random fashion to mimic the time dynamics of valid vehicle signatures. Narrow- bandwidth feature extraction techniques estimate frequency, amplitude and phase information contained in a single set of narrow frequency- band harmonics. Wide-bandwidth feature extraction techniques estimate parameters of a correlated-noise-floor model. Finally, the authors propose a method of modeling the time dynamics of the harmonic amplitudes as a means adding necessary time-varying features to the narrow-bandwidth signal components. The authors present results of applying this modeling technique to acoustic signatures recorded during encounters with one armored, tracked vehicle. Similar modeling techniques can be applied to security systems

  3. Relationship Between Vehicle Size and Fatality Risk in Model Year 1985-93 Passenger Cars and Light Trucks

    Science.gov (United States)

    1997-01-01

    Fatality rates per million exposure years are computed by make, model and model year, : based on the crash experience of model year 1985-93 passenger cars and light trucks (pickups) vans : and sport utility vehicles) in the United States during calen...

  4. Modelling and Simulation of Cooperative Control for Bus Rapid Transit Vehicle Platoon in a Connected Vehicle Environment

    Directory of Open Access Journals (Sweden)

    Jiahui Liu

    2017-02-01

    Full Text Available The aim of this paper is to develop a cooperative control model for improving the operational efficiency of Bus Rapid Transit (BRT vehicles. The model takes advantage of the emerging connected vehicle technology. A connected vehicle centre is established to assign a specific reservation time interval and transmit the corresponding dynamic speed guidance to each BRT vehicle. Furthermore, a set of constraints have been set up to avoid bus queuing and waiting phenomena in downstream BRT stations. Therefore, many BRT vehicles are strategically guided to form a platoon, which can pass through an intersection with no impedance. An actual signalized intersection along the Guangzhou BRT corridor is employed to verify and assess the cooperative control model in various traffic conditions. The simulation-based evaluation results demonstrate that the proposed approach can reduce delays, decrease the number of stops, and improve the sustainability of the BRT vehicles.

  5. ADOPT: A Historically Validated Light Duty Vehicle Consumer Choice Model

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, A.; Gonder, J.; Lopp, S.; Ward, J.

    2015-05-04

    The Automotive Deployment Option Projection Tool (ADOPT) is a light-duty vehicle consumer choice and stock model supported by the U.S. Department of Energy’s Vehicle Technologies Office. It estimates technology improvement impacts on U.S. light-duty vehicles sales, petroleum use, and greenhouse gas emissions. ADOPT uses techniques from the multinomial logit method and the mixed logit method estimate sales. Specifically, it estimates sales based on the weighted value of key attributes including vehicle price, fuel cost, acceleration, range and usable volume. The average importance of several attributes changes nonlinearly across its range and changes with income. For several attributes, a distribution of importance around the average value is used to represent consumer heterogeneity. The majority of existing vehicle makes, models, and trims are included to fully represent the market. The Corporate Average Fuel Economy regulations are enforced. The sales feed into the ADOPT stock model. It captures key aspects for summing petroleum use and greenhouse gas emissions This includes capturing the change in vehicle miles traveled by vehicle age, the creation of new model options based on the success of existing vehicles, new vehicle option introduction rate limits, and survival rates by vehicle age. ADOPT has been extensively validated with historical sales data. It matches in key dimensions including sales by fuel economy, acceleration, price, vehicle size class, and powertrain across multiple years. A graphical user interface provides easy and efficient use. It manages the inputs, simulation, and results.

  6. Off-road vehicle dynamics analysis, modelling and optimization

    CERN Document Server

    Taghavifar, Hamid

    2017-01-01

    This book deals with the analysis of off-road vehicle dynamics from kinetics and kinematics perspectives and the performance of vehicle traversing over rough and irregular terrain. The authors consider the wheel performance, soil-tire interactions and their interface, tractive performance of the vehicle, ride comfort, stability over maneuvering, transient and steady state conditions of the vehicle traversing, modeling the aforementioned aspects and optimization from energetic and vehicle mobility perspectives. This book brings novel figures for the transient dynamics and original wheel terrain dynamics at on-the-go condition.

  7. Study on Standard Fatigue Vehicle Load Model

    Science.gov (United States)

    Huang, H. Y.; Zhang, J. P.; Li, Y. H.

    2018-02-01

    Based on the measured data of truck from three artery expressways in Guangdong Province, the statistical analysis of truck weight was conducted according to axle number. The standard fatigue vehicle model applied to industrial areas in the middle and late was obtained, which adopted equivalence damage principle, Miner linear accumulation law, water discharge method and damage ratio theory. Compared with the fatigue vehicle model Specified by the current bridge design code, the proposed model has better applicability. It is of certain reference value for the fatigue design of bridge in China.

  8. Modeling Of In-Vehicle Human Exposure to Ambient Fine Particulate Matter

    Science.gov (United States)

    Liu, Xiaozhen; Frey, H. Christopher

    2012-01-01

    A method for estimating in-vehicle PM2.5 exposure as part of a scenario-based population simulation model is developed and assessed. In existing models, such as the Stochastic Exposure and Dose Simulation model for Particulate Matter (SHEDS-PM), in-vehicle exposure is estimated using linear regression based on area-wide ambient PM2.5 concentration. An alternative modeling approach is explored based on estimation of near-road PM2.5 concentration and an in-vehicle mass balance. Near-road PM2.5 concentration is estimated using a dispersion model and fixed site monitor (FSM) data. In-vehicle concentration is estimated based on air exchange rate and filter efficiency. In-vehicle concentration varies with road type, traffic flow, windspeed, stability class, and ventilation. Average in-vehicle exposure is estimated to contribute 10 to 20 percent of average daily exposure. The contribution of in-vehicle exposure to total daily exposure can be higher for some individuals. Recommendations are made for updating exposure models and implementation of the alternative approach. PMID:23101000

  9. Control Relevant Modeling and Design of Scramjet-Powered Hypersonic Vehicles

    Science.gov (United States)

    Dickeson, Jeffrey James

    This report provides an overview of scramjet-powered hypersonic vehicle modeling and control challenges. Such vehicles are characterized by unstable non-minimum phase dynamics with significant coupling and low thrust margins. Recent trends in hypersonic vehicle research are summarized. To illustrate control relevant design issues and tradeoffs, a generic nonlinear 3DOF longitudinal dynamics model capturing aero-elastic-propulsive interactions for wedge-shaped vehicle is used. Limitations of the model are discussed and numerous modifications have been made to address control relevant needs. Two different baseline configurations are examined over a two-stage to orbit ascent trajectory. The report highlights how vehicle level-flight static (trim) and dynamic properties change over the trajectory. Thermal choking constraints are imposed on control system design as a direct consequence of having a finite FER margin. The implication of this state-dependent nonlinear FER margin constraint, the right half plane (RHP) zero, and lightly damped flexible modes, on control system bandwidth (BW) and FPA tracking has been discussed. A control methodology has been proposed that addresses the above dynamics while providing some robustness to modeling uncertainty. Vehicle closure (the ability to fly a trajectory segment subject to constraints) is provided through a proposed vehicle design methodology. The design method attempts to use open loop metrics whenever possible to design the vehicle. The design method is applied to a vehicle/control law closed loop nonlinear simulation for validation. The 3DOF longitudinal modeling results are validated against a newly released NASA 6DOF code.

  10. Large-scale model-based assessment of deer-vehicle collision risk.

    Directory of Open Access Journals (Sweden)

    Torsten Hothorn

    Full Text Available Ungulates, in particular the Central European roe deer Capreolus capreolus and the North American white-tailed deer Odocoileus virginianus, are economically and ecologically important. The two species are risk factors for deer-vehicle collisions and as browsers of palatable trees have implications for forest regeneration. However, no large-scale management systems for ungulates have been implemented, mainly because of the high efforts and costs associated with attempts to estimate population sizes of free-living ungulates living in a complex landscape. Attempts to directly estimate population sizes of deer are problematic owing to poor data quality and lack of spatial representation on larger scales. We used data on >74,000 deer-vehicle collisions observed in 2006 and 2009 in Bavaria, Germany, to model the local risk of deer-vehicle collisions and to investigate the relationship between deer-vehicle collisions and both environmental conditions and browsing intensities. An innovative modelling approach for the number of deer-vehicle collisions, which allows nonlinear environment-deer relationships and assessment of spatial heterogeneity, was the basis for estimating the local risk of collisions for specific road types on the scale of Bavarian municipalities. Based on this risk model, we propose a new "deer-vehicle collision index" for deer management. We show that the risk of deer-vehicle collisions is positively correlated to browsing intensity and to harvest numbers. Overall, our results demonstrate that the number of deer-vehicle collisions can be predicted with high precision on the scale of municipalities. In the densely populated and intensively used landscapes of Central Europe and North America, a model-based risk assessment for deer-vehicle collisions provides a cost-efficient instrument for deer management on the landscape scale. The measures derived from our model provide valuable information for planning road protection and defining

  11. Analysis of traversable pits model to make intelligent wheeled vehicles

    Directory of Open Access Journals (Sweden)

    F. Abbasi

    2017-11-01

    Full Text Available In this paper, the issue of passing wheeled vehicles from pits is discussed. The issue is modeled by defining the limits of passing wheeled vehicles. The proposed model has been studied based on changes in the effective parameters. Finally, in order to describe the problem, the proposed model has been solved for wheeled vehicles based on the effective parameters by using one of the numerical methods.

  12. Vehicle - Bridge interaction, comparison of two computing models

    Science.gov (United States)

    Melcer, Jozef; Kuchárová, Daniela

    2017-07-01

    The paper presents the calculation of the bridge response on the effect of moving vehicle moves along the bridge with various velocities. The multi-body plane computing model of vehicle is adopted. The bridge computing models are created in two variants. One computing model represents the bridge as the Bernoulli-Euler beam with continuously distributed mass and the second one represents the bridge as the lumped mass model with 1 degrees of freedom. The mid-span bridge dynamic deflections are calculated for both computing models. The results are mutually compared and quantitative evaluated.

  13. Modeling hydraulic regenerative hybrid vehicles using AMESim and Matlab/Simulink

    Science.gov (United States)

    Lynn, Alfred; Smid, Edzko; Eshraghi, Moji; Caldwell, Niall; Woody, Dan

    2005-05-01

    This paper presents the overview of the simulation modeling of a hydraulic system with regenerative braking used to improve vehicle emissions and fuel economy. Two simulation software packages were used together to enhance the simulation capability for fuel economy results and development of vehicle and hybrid control strategy. AMESim, a hydraulic simulation software package modeled the complex hydraulic circuit and component hardware and was interlinked with a Matlab/Simulink model of the vehicle, engine and the control strategy required to operate the vehicle and the hydraulic hybrid system through various North American and European drive cycles.

  14. An Improved Car-Following Model in Vehicle Networking Based on Network Control

    Directory of Open Access Journals (Sweden)

    D. Y. Kong

    2014-01-01

    Full Text Available Vehicle networking is a system to realize information interoperability between vehicles and people, vehicles and roads, vehicles and vehicles, and cars and transport facilities, through the network information exchange, in order to achieve the effective monitoring of the vehicle and traffic flow. Realizing information interoperability between vehicles and vehicles, which can affect the traffic flow, is an important application of network control system (NCS. In this paper, a car-following model using vehicle networking theory is established, based on network control principle. The car-following model, which is an improvement of the traditional traffic model, describes the traffic in vehicle networking condition. The impact that vehicle networking has on the traffic flow is quantitatively assessed in a particular scene of one-way, no lane changing highway. The examples show that the capacity of the road is effectively enhanced by using vehicle networking.

  15. Operations Assessment of Launch Vehicle Architectures using Activity Based Cost Models

    Science.gov (United States)

    Ruiz-Torres, Alex J.; McCleskey, Carey

    2000-01-01

    The growing emphasis on affordability for space transportation systems requires the assessment of new space vehicles for all life cycle activities, from design and development, through manufacturing and operations. This paper addresses the operational assessment of launch vehicles, focusing on modeling the ground support requirements of a vehicle architecture, and estimating the resulting costs and flight rate. This paper proposes the use of Activity Based Costing (ABC) modeling for this assessment. The model uses expert knowledge to determine the activities, the activity times and the activity costs based on vehicle design characteristics. The approach provides several advantages to current approaches to vehicle architecture assessment including easier validation and allowing vehicle designers to understand the cost and cycle time drivers.

  16. Characteristic Model-Based Robust Model Predictive Control for Hypersonic Vehicles with Constraints

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2017-06-01

    Full Text Available Designing robust control for hypersonic vehicles in reentry is difficult, due to the features of the vehicles including strong coupling, non-linearity, and multiple constraints. This paper proposed a characteristic model-based robust model predictive control (MPC for hypersonic vehicles with reentry constraints. First, the hypersonic vehicle is modeled by a characteristic model composed of a linear time-varying system and a lumped disturbance. Then, the identification data are regenerated by the accumulative sum idea in the gray theory, which weakens effects of the random noises and strengthens regularity of the identification data. Based on the regenerated data, the time-varying parameters and the disturbance are online estimated according to the gray identification. At last, the mixed H2/H∞ robust predictive control law is proposed based on linear matrix inequalities (LMIs and receding horizon optimization techniques. Using active tackling system constraints of MPC, the input and state constraints are satisfied in the closed-loop control system. The validity of the proposed control is verified theoretically according to Lyapunov theory and illustrated by simulation results.

  17. Sensitivity Analysis of Launch Vehicle Debris Risk Model

    Science.gov (United States)

    Gee, Ken; Lawrence, Scott L.

    2010-01-01

    As part of an analysis of the loss of crew risk associated with an ascent abort system for a manned launch vehicle, a model was developed to predict the impact risk of the debris resulting from an explosion of the launch vehicle on the crew module. The model consisted of a debris catalog describing the number, size and imparted velocity of each piece of debris, a method to compute the trajectories of the debris and a method to calculate the impact risk given the abort trajectory of the crew module. The model provided a point estimate of the strike probability as a function of the debris catalog, the time of abort and the delay time between the abort and destruction of the launch vehicle. A study was conducted to determine the sensitivity of the strike probability to the various model input parameters and to develop a response surface model for use in the sensitivity analysis of the overall ascent abort risk model. The results of the sensitivity analysis and the response surface model are presented in this paper.

  18. Three-dimensional flow structure measurements behind a queue of studied model vehicles

    International Nuclear Information System (INIS)

    Huang, J.F.; Chan, T.L.; Zhou, Y.

    2009-01-01

    The three-dimensional flow structures of a queue of studied model vehicles (i.e., one-, two- and three-vehicle cases) were investigated comprehensively in a closed-circuit wind tunnel using particle image velocimetry (PIV) for the typical urban vehicle speeds (i.e., 10, 30 and 50 km/h). In this three-dimensional vehicle wake, a pair of longitudinal vortices is characterized by counter-rotating and moving downstream at relatively low velocity than their surrounding flow. The flow structures of multiple studied model vehicles are dominated by the wake generated from the last studied model vehicle but the preceding studied model vehicle(s) also has/have some minor effects. Cross-sectional turbulence distribution is non-uniform in the far-wake region for all studied cases. The lowest turbulence occurs at the center part of the vehicle wake while high turbulence occurs at its two sides. As such, it may lead to considerable underestimation in turbulence magnitude if the measurement is only taken along the centerline of the vehicle wake.

  19. A Queueing Model for Supervisory Control of Unmanned Autonomous Vehicles

    Science.gov (United States)

    2013-09-01

    Autonomous Vehicles Joseph DiVita, PhD Robert L. Morris Maria Olinda Rodas SSC Pacific Approved...298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 09–2013 Final A Queueing Model for Supervisory Control of Unmanned Autonomous Vehicles Joseph...Mission Area: Command and Control, Queueing Model; Supervisory Control; Unmanned Autonomous Vehicles M. O. Rodas U U U U 38 (619)

  20. Modeling speed and width parameters of vehicle tires for prediction of the reduction in vehicle noise pollution

    Directory of Open Access Journals (Sweden)

    Amir Esmael Forouhid

    2016-06-01

    Full Text Available Introduction: Safe driving requires the ability of the driver to receive the messages and complying with them. The most significant consequences of noise pollution are on the human auditory system. Disorders in the auditory system can have harmful side effects for human health. By reducing this kind of pollution in large cities, the quality of life, which is one of the biggest goals of the governments, can be considerably increased. Hence, in the present research, some parameters of vehicle tires were examined as a source of noise pollution, and the results can be taken into consideration in noise pollution reduction. Material and Method: Several vehicles with different tire width were selected for measuring sound level. The sound levels were measured for moving vehicles with the use of the Statistical Pass By Method (SPB, ISO 11819-1. Following sound level measurements for moving vehicles and by considering tire width, mathematical model of noise level was predicted on the basis of the obtained information and by usage of SPSS program and considering vehicle tire parameters. Result: The result of this study showed that the vehicle speed and tire width can affect different sound levels emitted by moving tire on road surface. The average speed of vehicles can play an important role in the noise pollution. By increasing speed, rotation of the the tires on the asphalt is increased, as it is a known factors for noise pollution. Moreover, changing the speed of vehicles is accompanied with abnormal sounds of vehicle engine. According to regression model analysis, the obtained value of R2 for the model is 0.8367 which represents the coefficient of determination. Conclusion: The results suggest the main role of the vehicle speed and tire width in increasing the noise reaches to the drivers and consequent noise pollution, which demonstrates the necessity for noise control measures. According to the obtained model, it is understood that changes in noise

  1. Modeling and Analysis of Static and Dynamic Characteristics of Nonlinear Seat Suspension for Off-Road Vehicles

    OpenAIRE

    Yan, Zhenhua; Zhu, Bing; Li, Xuefei; Wang, Guoqiang

    2015-01-01

    Low-frequency vibrations (0.5–5 Hz) that harm drivers occur in off-road vehicles. Thus, researchers have focused on finding methods to effectively isolate or control low-frequency vibrations. A novel nonlinear seat suspension structure for off-road vehicles is designed, whose static characteristics and seat-human system dynamic response are modeled and analyzed, and experiments are conducted to verify the theoretical solutions. Results show that the stiffness of this nonlinear seat suspension...

  2. TAFV Alternative Fuels and Vehicles Choice Model Documentation; TOPICAL

    International Nuclear Information System (INIS)

    Greene, D.L.

    2001-01-01

    A model for predicting choice of alternative fuel and among alternative vehicle technologies for light-duty motor vehicles is derived. The nested multinomial logit (NML) mathematical framework is used. Calibration of the model is based on information in the existing literature and deduction based on assuming a small number of key parameters, such as the value of time and discount rates. A spreadsheet model has been developed for calibration and preliminary testing of the model

  3. Hyperspectral Vehicle BRDF Learning: An Exploration of Vehicle Reflectance Variation and Optimal Measures of Spectral Similarity for Vehicle Reacquisition and Tracking Algorithms

    Science.gov (United States)

    Svejkosky, Joseph

    The spectral signatures of vehicles in hyperspectral imagery exhibit temporal variations due to the preponderance of surfaces with material properties that display non-Lambertian bi-directional reflectance distribution functions (BRDFs). These temporal variations are caused by changing illumination conditions, changing sun-target-sensor geometry, changing road surface properties, and changing vehicle orientations. To quantify these variations and determine their relative importance in a sub-pixel vehicle reacquisition and tracking scenario, a hyperspectral vehicle BRDF sampling experiment was conducted in which four vehicles were rotated at different orientations and imaged over a six-hour period. The hyperspectral imagery was calibrated using novel in-scene methods and converted to reflectance imagery. The resulting BRDF sampled time-series imagery showed a strong vehicle level BRDF dependence on vehicle shape in off-nadir imaging scenarios and a strong dependence on vehicle color in simulated nadir imaging scenarios. The imagery also exhibited spectral features characteristic of sampling the BRDF of non-Lambertian targets, which were subsequently verified with simulations. In addition, the imagery demonstrated that the illumination contribution from vehicle adjacent horizontal surfaces significantly altered the shape and magnitude of the vehicle reflectance spectrum. The results of the BRDF sampling experiment illustrate the need for a target vehicle BRDF model and detection scheme that incorporates non-Lambertian BRDFs. A new detection algorithm called Eigenvector Loading Regression (ELR) is proposed that learns a hyperspectral vehicle BRDF from a series of BRDF measurements using regression in a lower dimensional space and then applies the learned BRDF to make test spectrum predictions. In cases of non-Lambertian vehicle BRDF, this detection methodology performs favorably when compared to subspace detections algorithms and graph-based detection algorithms that

  4. Assesing the Impact of Direct Experience on Individual Preferences and Attitudes for Electric Vehicles

    DEFF Research Database (Denmark)

    Jensen, Anders Fjendbo

    Over the last decades, several studies have focused on understanding what drives the demand for electric vehicles (EVs). However, EVs still face large difficulties in developing into a mass market product. It is now recognised that individuals make choices based on a mixture of strategies...... elasticity and the diffusion of the EV into the car market. In particular the thesis (1) proposes a methodology to collect adequate data on choices before and after respondents obtain experience with EVs; (2) uses advanced hybrid choice models estimated jointly on the before and the after data to model...... of statements to measure the attitudes of environmental concern, appreciation of car features, interest in technology, general opinions towards EVs and scepticism. The same survey was then repeated in wave 2. First, a SC experiment was built with orthogonal design and tested with a sample of 369 individuals...

  5. A Comprehensive Piezoelectric Bending-Beam Model Inspired by Microaerial Vehicle Applications

    Science.gov (United States)

    Szabo, Peter Andras Kovacs

    Microaerial vehicles are an up-and-coming area of robotics which is fuelled by modern understanding of the unsteady aerodynamics of insect flight and the development of new actuation technologies. In the past two decades computer simulations have aided in uncovering the lift mechanisms which flying insects use to stay aloft. Using these details, roboticists had begun using lightweight structures and high power density actuators to mimic the physical parameters and flapping kinematics of flying insects with the intent to recreate the dynamics of insect flight. One of the most important aspects of flapping-wing microaerial vehicles is the actuation method. Piezoelectric bending-beam actuators have been scaled up from MEMS technology for use in microaerial vehicle applications owing to their high power density and performance at low mass. The initial development toward the UTIAS Robotic Dragonfly, a microaerial vehicle platform using a piezoelectric-based actuator, is outlined. The components are fabricated from lightweight materials such as a carbon fibre frame, polymide film joints, and polyester film wings while the actuator is a piezoelectric bending-beam which was designed using existing mathematical models. The design and fabrication of the wings, actuator, transmission, and power supply are detailed. The prototypes are measured for lift generation using custom lift sensors which had undergone static and dynamic calibration for low-force, high-bandwidth measurement. Although the resulting lift curves qualitatively correspond with the literature, it was determined that more power was needed for lift-off to be achieved and existing piezoelectric models do not fully account for maximizing the force-deflection relationship. An extension to the existing Ballas model of piezoelectric bending-beam devices is derived. This modified Ballas model incorporates devices beyond constant width. Actuator performance limitations highlighted the need for a more comprehensive

  6. Fugitive dust control experiments using soil fixatives on vehicle traffic surfaces

    International Nuclear Information System (INIS)

    Winberg, M.R.; Wixom, V.E.

    1992-08-01

    This report presents the results of engineering scale dust control experiments using soil fixative for contamination control during handling of transuranic waste. These experiments focused on controlling dust during retrieval operations of buried waste where waste and soil are intimately mixed. Sources of dust generation during retrieval operations include digging, dumping, and vehicle traffic. Because contaminants are expected to attach to soil particles and move with the generated dust, control of the dust spread may be the key to contamination control. Dust control techniques examined in these experiments include the use of soil fixatives to control generation of fugitive dusts during vehicle traffic operations. Previous experiments conducted in FY 1990 included testing of the soil fixative, ENTAC. These experiments showed that ENTAC was effective in controlling dust generation but had several undesirable properties such as slow cure times and clogged the pumps and application nozzles. Therefore, other products would have to be evaluated to find a suitable candidate. As a result, two soil fixatives were tested in these present experiments, COHEREX-PM, an asphalt emulsion product manufactured by Witco Corporation and FLAMBINDER, a calcium lignosulfonate product manufactured by Flambeau Corporation. The results of the experiments include product performance and recommended application methods for application in a field deployable contamination control unit to be built in FY 1993

  7. DORADO/DOLPHIN: A Unique Semi-submersible Autonomous Vehicle for Ocean Field Experiments.

    Science.gov (United States)

    Wallace, D.

    2016-02-01

    The Ocean Science and Technology research group (CERC.OCEAN) at Dalhousie University focuses on new approaches to the design and development of autonomous platforms to study biogeochemical and ecological changes in the world's oceans. Mesoscale "patch" experiments involving tracers are used to test hypotheses (e.g. iron fertilization) and examine near-surface processes and air-sea exchange. Such experiments typically require mapping of rapidly-evolving properties on scales of 10's to 100's of kilometers. These experiments typically employ a research vessel to monitor patch movement and to support process studies: however allocation of expensive vessel time between these uses can be problematic. We present a class of autonomous vehicle with unique potential for mesoscale mapping and experimental science at sea. The Dorado/Dolphin semi-submersibles, manufactured by International Submarine Engineering Ltd., travel just below the sea surface. A surface-piercing, "snorkel" mast allows use of a diesel engine allowing speeds of up to 16 knots and sufficient power for support of complex payloads. A tow-body can profile to 200m. The mast allows air sampling with near-zero atmospheric disturbance as well as remote sensing of the sea surface. The characteristics of this type of vehicle will be compared with those of other available platforms. We will report on our adaptation of the vehicle for measurement of gases and purposeful tracers (e.g. SF5CF3) as well as properties such as T, S, pCO2, O2, fluorescence, etc. and present and solicit ideas for the vehicles' further application/use for ocean science.

  8. Real-time model for simulating a tracked vehicle on deformable soils

    Directory of Open Access Journals (Sweden)

    Martin Meywerk

    2016-05-01

    Full Text Available Simulation is one possibility to gain insight into the behaviour of tracked vehicles on deformable soils. A lot of publications are known on this topic, but most of the simulations described there cannot be run in real-time. The ability to run a simulation in real-time is necessary for driving simulators. This article describes an approach for real-time simulation of a tracked vehicle on deformable soils. The components of the real-time model are as follows: a conventional wheeled vehicle simulated in the Multi Body System software TRUCKSim, a geometric description of landscape, a track model and an interaction model between track and deformable soils based on Bekker theory and Janosi–Hanamoto, on one hand, and between track and vehicle wheels, on the other hand. Landscape, track model, soil model and the interaction are implemented in MATLAB/Simulink. The details of the real-time model are described in this article, and a detailed description of the Multi Body System part is omitted. Simulations with the real-time model are compared to measurements and to a detailed Multi Body System–finite element method model of a tracked vehicle. An application of the real-time model in a driving simulator is presented, in which 13 drivers assess the comfort of a passive and an active suspension of a tracked vehicle.

  9. Ground Vehicle System Integration (GVSI) and Design Optimization Model

    National Research Council Canada - National Science Library

    Horton, William

    1996-01-01

    This report documents the Ground Vehicle System Integration (GVSI) and Design Optimization Model GVSI is a top-level analysis tool designed to support engineering tradeoff studies and vehicle design optimization efforts...

  10. Vehicles' Sample Generation and Realization in Car-Following Mathematical Models

    Directory of Open Access Journals (Sweden)

    Algimantas Danilevičius

    2016-02-01

    Full Text Available The object of the article is the adjustment of car-following mathematical models according to collected traffic data. Here the problem of ineffectively burdened road section is solved by adjusting the speed of vehicles in order to reduce the distance between the cars to a safe distance. The paper analyzes the car-following models to measure the interaction between vehicles in the same lane. Experimental data processed in Matlab and traffic distribution histograms are created using the most appropriate distribution curve. Distribution curve is used to compile congestion scenario of road section. Applicable model uses fundamental diagrams, which are created from the kind of traffic flow measurements. The mathematical model allows to choose the optimal vehicle speed while maintaining safe distance between vehicles, and to make recommendations to improve the traffic as the process.

  11. Lightweight Vehicle and Driver’s Whole-Body Models for Vibration Analysis

    Science.gov (United States)

    MdSah, Jamali; Taha, Zahari; Azwan Ismail, Khairul

    2018-03-01

    Vehicle vibration is a main factor for driving fatigue, discomfort and health problems. The ability to simulate the vibration characteristics in the vehicle and its effects on driver’s whole-body vibration will give significant advantages to designers especially on the vehicle development time and cost. However, it is difficult to achieve optimal condition of ride comfort and handling when using passive suspension system. This paper presents mathematical equations that can be used to describe the vibration characteristics of a lightweight electric vehicle that had been developed. The vehicle’s model was combined with the lumped-parameter model of driver to determine the whole-body vibration level when the vehicle is passing over a road hump using Matlab Simulink. The models were simulated at a constant speed and the results were compared with the experimental data. The simulated vibration level at the vehicle floor and seat were almost similar to the experimental vibration results. The suspension systems that are being used for the solar vehicle are able to reduce the vibration level due to the road hump. The models can be used to simulate and choose the optimal parameters for the suspensions.

  12. Network modeling for reverse flows of end-of-life vehicles

    International Nuclear Information System (INIS)

    Ene, Seval; Öztürk, Nursel

    2015-01-01

    Highlights: • We developed a network model for reverse flows of end-of-life vehicles. • The model considers all recovery operations for end-of-life vehicles. • A scenario-based model is used for uncertainty to improve real case applications. • The model is adequate to real case applications for end-of-life vehicles recovery. • Considerable insights are gained from the model by sensitivity analyses. - Abstract: Product recovery operations are of critical importance for the automotive industry in complying with environmental regulations concerning end-of-life products management. Manufacturers must take responsibility for their products over the entire life cycle. In this context, there is a need for network design methods for effectively managing recovery operations and waste. The purpose of this study is to develop a mathematical programming model for managing reverse flows in end-of-life vehicles’ recovery network. A reverse flow is the collection of used products from consumers and the transportation of these products for the purpose of recycling, reuse or disposal. The proposed model includes all operations in a product recovery and waste management network for used vehicles and reuse for vehicle parts such as collection, disassembly, refurbishing, processing (shredding), recycling, disposal and reuse of vehicle parts. The scope of the network model is to determine the numbers and locations of facilities in the network and the material flows between these facilities. The results show the performance of the model and its applicability for use in the planning of recovery operations in the automotive industry. The main objective of recovery and waste management is to maximize revenue and minimize pollution in end-of-life product operations. This study shows that with an accurate model, these activities may provide economic benefits and incentives in addition to protecting the environment

  13. Network modeling for reverse flows of end-of-life vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ene, Seval; Öztürk, Nursel

    2015-04-15

    Highlights: • We developed a network model for reverse flows of end-of-life vehicles. • The model considers all recovery operations for end-of-life vehicles. • A scenario-based model is used for uncertainty to improve real case applications. • The model is adequate to real case applications for end-of-life vehicles recovery. • Considerable insights are gained from the model by sensitivity analyses. - Abstract: Product recovery operations are of critical importance for the automotive industry in complying with environmental regulations concerning end-of-life products management. Manufacturers must take responsibility for their products over the entire life cycle. In this context, there is a need for network design methods for effectively managing recovery operations and waste. The purpose of this study is to develop a mathematical programming model for managing reverse flows in end-of-life vehicles’ recovery network. A reverse flow is the collection of used products from consumers and the transportation of these products for the purpose of recycling, reuse or disposal. The proposed model includes all operations in a product recovery and waste management network for used vehicles and reuse for vehicle parts such as collection, disassembly, refurbishing, processing (shredding), recycling, disposal and reuse of vehicle parts. The scope of the network model is to determine the numbers and locations of facilities in the network and the material flows between these facilities. The results show the performance of the model and its applicability for use in the planning of recovery operations in the automotive industry. The main objective of recovery and waste management is to maximize revenue and minimize pollution in end-of-life product operations. This study shows that with an accurate model, these activities may provide economic benefits and incentives in addition to protecting the environment.

  14. Optimal Vehicle Design Using the Integrated System and Cost Modeling Tool Suite

    Science.gov (United States)

    2010-08-01

    Space Vehicle Costing ( ACEIT ) • New Small Sat Model Development & Production Cost O&M Cost Module  Radiation Exposure  Radiation Detector Response...Reliability OML Availability Risk l l Tools CEA, SRM Model, POST, ACEIT , Inflation Model, Rotor Blade Des, Microsoft Project, ATSV, S/1-iABP...space STK, SOAP – Specific mission • Space Vehicle Design (SMAD) • Space Vehicle Propulsion • Orbit Propagation • Space Vehicle Costing ( ACEIT ) • New

  15. Influence of wheel-rail contact modelling on vehicle dynamic simulation

    Science.gov (United States)

    Burgelman, Nico; Sichani, Matin Sh.; Enblom, Roger; Berg, Mats; Li, Zili; Dollevoet, Rolf

    2015-08-01

    This paper presents a comparison of four models of rolling contact used for online contact force evaluation in rail vehicle dynamics. Until now only a few wheel-rail contact models have been used for online simulation in multibody software (MBS). Many more models exist and their behaviour has been studied offline, but a comparative study of the mutual influence between the calculation of the creep forces and the simulated vehicle dynamics seems to be missing. Such a comparison would help researchers with the assessment of accuracy and calculation time. The contact methods investigated in this paper are FASTSIM, Linder, Kik-Piotrowski and Stripes. They are compared through a coupling between an MBS for the vehicle simulation and Matlab for the contact models. This way the influence of the creep force calculation on the vehicle simulation is investigated. More specifically this study focuses on the influence of the contact model on the simulation of the hunting motion and on the curving behaviour.

  16. Detection and 3d Modelling of Vehicles from Terrestrial Stereo Image Pairs

    Science.gov (United States)

    Coenen, M.; Rottensteiner, F.; Heipke, C.

    2017-05-01

    The detection and pose estimation of vehicles plays an important role for automated and autonomous moving objects e.g. in autonomous driving environments. We tackle that problem on the basis of street level stereo images, obtained from a moving vehicle. Processing every stereo pair individually, our approach is divided into two subsequent steps: the vehicle detection and the modelling step. For the detection, we make use of the 3D stereo information and incorporate geometric assumptions on vehicle inherent properties in a firstly applied generic 3D object detection. By combining our generic detection approach with a state of the art vehicle detector, we are able to achieve satisfying detection results with values for completeness and correctness up to more than 86%. By fitting an object specific vehicle model into the vehicle detections, we are able to reconstruct the vehicles in 3D and to derive pose estimations as well as shape parameters for each vehicle. To deal with the intra-class variability of vehicles, we make use of a deformable 3D active shape model learned from 3D CAD vehicle data in our model fitting approach. While we achieve encouraging values up to 67.2% for correct position estimations, we are facing larger problems concerning the orientation estimation. The evaluation is done by using the object detection and orientation estimation benchmark of the KITTI dataset (Geiger et al., 2012).

  17. NUMERICAL PREDICTION MODELS FOR AIR POLLUTION BY MOTOR VEHICLE EMISSIONS

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2016-12-01

    Full Text Available Purpose. Scientific work involves: 1 development of 3D numerical models that allow calculating the process of air pollution by motor vehicles emissions; 2 creation of models which would allow predicting the air pollution level in urban areas. Methodology. To solve the problem upon assessing the level of air pollution by motor vehicles emissions fundamental equations of aerodynamics and mass transfer are used. For the solution of differential equations of aerodynamics and mass transfer finite-difference methods are used. For the numerical integration of the equation for the velocity potential the method of conditional approximations is applied. The equation for the velocity potential written in differential form, splits into two equations, where at each step of splitting an unknown value of the velocity potential is determined by an explicit scheme of running computation, while the difference scheme is implicit one. For the numerical integration of the emissions dispersion equation in the atmosphere applies the implicit alternating-triangular difference scheme of splitting. Emissions from the road are modeled by a series of point sources of given intensity. Developed numerical models form is the basis of the created software package. Findings. 3D numerical models were developed; they belong to the class of «diagnostic models». These models take into account main physical factors that influence the process of dispersion of harmful substances in the atmosphere when emissions from vehicles in the city occur. Based on the constructed numerical models the computational experiment was conducted to assess the level of air pollution in the street. Originality. Authors have developed numerical models that allow to calculate the 3D aerodynamics of the wind flow in urban areas and the process of mass transfer emissions from the highway. Calculations to determine the area of contamination, which is formed near the buildings, located along the highway were

  18. Fault-tolerant Control of Unmanned Underwater Vehicles with Continuous Faults: Simulations and Experiments

    Directory of Open Access Journals (Sweden)

    Qian Liu

    2010-02-01

    Full Text Available A novel thruster fault diagnosis and accommodation method for open-frame underwater vehicles is presented in the paper. The proposed system consists of two units: a fault diagnosis unit and a fault accommodation unit. In the fault diagnosis unit an ICMAC (Improved Credit Assignment Cerebellar Model Articulation Controllers neural network information fusion model is used to realize the fault identification of the thruster. The fault accommodation unit is based on direct calculations of moment and the result of fault identification is used to find the solution of the control allocation problem. The approach resolves the continuous faulty identification of the UV. Results from the experiment are provided to illustrate the performance of the proposed method in uncertain continuous faulty situation.

  19. Fault-tolerant Control of Unmanned Underwater Vehicles with Continuous Faults: Simulations and Experiments

    Directory of Open Access Journals (Sweden)

    Qian Liu

    2009-12-01

    Full Text Available A novel thruster fault diagnosis and accommodation method for open-frame underwater vehicles is presented in the paper. The proposed system consists of two units: a fault diagnosis unit and a fault accommodation unit. In the fault diagnosis unit an ICMAC (Improved Credit Assignment Cerebellar Model Articulation Controllers neural network information fusion model is used to realize the fault identification of the thruster. The fault accommodation unit is based on direct calculations of moment and the result of fault identification is used to find the solution of the control allocation problem. The approach resolves the continuous faulty identification of the UV. Results from the experiment are provided to illustrate the performance of the proposed method in uncertain continuous faulty situation.

  20. THE CONTENT MODEL AND THE EQUATIONS OF MOTION OF ELECTRIC VEHICLE

    Directory of Open Access Journals (Sweden)

    K. O. Soroka

    2015-06-01

    Full Text Available Purpose. The calculation methods improvement of the electric vehicle curve movement and the cost of electricity with the aim of performance and accuracy of calculations improving are considered in the paper. Methodology. The method is based upon the general principles of mathematical simulation, when a conceptual model of problem domain is created and then a mathematic model is formulated according to the conceptual model. Development of an improved conceptual model of electric vehicles motion is proposed and a corresponding mathematical model is studied. Findings. The authors proposed model in which the vehicle considers as a system of interacting point-like particles with defined interactions under the influence of external forces. As a mathematical model the Euler-Lagrange equation of the second kind is used. Conservative and dissipative forces affecting the system dynamics are considered. Equations for calculating motion of electric vehicles with taking into account the energy consumption are proposed. Originality. In the paper the conceptual model of motion for electric vehicles with distributed masses has been developed as a system of interacting point-like particles. In the easiest case the system has only one degree of freedom. The mathematical model is based on Lagrange equations. The shown approach allows a detailed and physically based description of the electric vehicles dynamics. The derived motion equations for public electric transport are substantially more precise than the equations recommended in textbooks and the reference documentation. The motion equations and energy consumption calculations for transportation of one passenger with a trolleybus are developed. It is shown that the energy consumption depends on the data of vehicle and can increase when the manload is above the certain level. Practical value. The authors received the equations of motion and labour costs in the calculations focused on the use of computer methods

  1. Generalized Linear Models in Vehicle Insurance

    Directory of Open Access Journals (Sweden)

    Silvie Kafková

    2014-01-01

    Full Text Available Actuaries in insurance companies try to find the best model for an estimation of insurance premium. It depends on many risk factors, e.g. the car characteristics and the profile of the driver. In this paper, an analysis of the portfolio of vehicle insurance data using a generalized linear model (GLM is performed. The main advantage of the approach presented in this article is that the GLMs are not limited by inflexible preconditions. Our aim is to predict the relation of annual claim frequency on given risk factors. Based on a large real-world sample of data from 57 410 vehicles, the present study proposed a classification analysis approach that addresses the selection of predictor variables. The models with different predictor variables are compared by analysis of deviance and Akaike information criterion (AIC. Based on this comparison, the model for the best estimate of annual claim frequency is chosen. All statistical calculations are computed in R environment, which contains stats package with the function for the estimation of parameters of GLM and the function for analysis of deviation.

  2. Technology and implementation of electric vehicles and plug‐in hybrid electric vehicles

    DEFF Research Database (Denmark)

    Hansen, Kenneth; Mathiesen, Brian Vad; Connolly, David

    2011-01-01

    In this report state of the art electric vehicle and plug‐in hybrid electric vehicle technology is presented to clarify the current and near term development. The current status of diffusion for electric vehicles in Denmark, Sweden and internationally is presented as well as the expected......‐2013). Also the power capabilities may increase meaning that e.g. acceleration capabilities will improve as well as the top speed. This development occurs due to new battery technology that may experience substantial improvements in the coming years. When looking at plug‐in hybrid electric vehicles...... developments. Different business models and policies are also outlined along with a description of the on‐going research and demonstration projects. An analysis of the current and near term electric and plug‐in hybrid electric vehicles indicate that the cost for family cars will not change much, while...

  3. Time-varying mixed logit model for vehicle merging behavior in work zone merging areas.

    Science.gov (United States)

    Weng, Jinxian; Du, Gang; Li, Dan; Yu, Yao

    2018-08-01

    This study aims to develop a time-varying mixed logit model for the vehicle merging behavior in work zone merging areas during the merging implementation period from the time of starting a merging maneuver to that of completing the maneuver. From the safety perspective, vehicle crash probability and severity between the merging vehicle and its surrounding vehicles are regarded as major factors influencing vehicle merging decisions. Model results show that the model with the use of vehicle crash risk probability and severity could provide higher prediction accuracy than previous models with the use of vehicle speeds and gap sizes. It is found that lead vehicle type, through lead vehicle type, through lag vehicle type, crash probability of the merging vehicle with respect to the through lag vehicle, crash severities of the merging vehicle with respect to the through lead and lag vehicles could exhibit time-varying effects on the merging behavior. One important finding is that the merging vehicle could become more and more aggressive in order to complete the merging maneuver as quickly as possible over the elapsed time, even if it has high vehicle crash risk with respect to the through lead and lag vehicles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. A Choice Experiment on Alternative Fuel Vehicle Preferences of Private Car Owners in the Netherlands

    NARCIS (Netherlands)

    Hoen, A.; Koetse, M.J.

    2014-01-01

    This paper presents results of an online stated choice experiment on preferences of Dutch private car owners for alternative fuel vehicles (AFVs) and their characteristics. Results show that negative preferences for alternative fuel vehicles are large, especially for the electric and fuel cell car,

  5. On distributed model predictive control for vehicle platooning with a recursive feasibility guarantee

    NARCIS (Netherlands)

    Shi, Shengling; Lazar, Mircea

    2017-01-01

    This paper proposes a distributed model predictive control algorithm for vehicle platooning and more generally networked systems in a chain structure. The distributed models of the vehicle platoon are coupled through the input of the preceding vehicles. Using the principles of robust model

  6. Geometry Modeling and Adaptive Control of Air-Breathing Hypersonic Vehicles

    Science.gov (United States)

    Vick, Tyler Joseph

    Air-breathing hypersonic vehicles have the potential to provide global reach and affordable access to space. Recent technological advancements have made scramjet-powered flight achievable, as evidenced by the successes of the X-43A and X-51A flight test programs over the last decade. Air-breathing hypersonic vehicles present unique modeling and control challenges in large part due to the fact that scramjet propulsion systems are highly integrated into the airframe, resulting in strongly coupled and often unstable dynamics. Additionally, the extreme flight conditions and inability to test fully integrated vehicle systems larger than X-51 before flight leads to inherent uncertainty in hypersonic flight. This thesis presents a means to design vehicle geometries, simulate vehicle dynamics, and develop and analyze control systems for hypersonic vehicles. First, a software tool for generating three-dimensional watertight vehicle surface meshes from simple design parameters is developed. These surface meshes are compatible with existing vehicle analysis tools, with which databases of aerodynamic and propulsive forces and moments can be constructed. A six-degree-of-freedom nonlinear dynamics simulation model which incorporates this data is presented. Inner-loop longitudinal and lateral control systems are designed and analyzed utilizing the simulation model. The first is an output feedback proportional-integral linear controller designed using linear quadratic regulator techniques. The second is a model reference adaptive controller (MRAC) which augments this baseline linear controller with an adaptive element. The performance and robustness of each controller are analyzed through simulated time responses to angle-of-attack and bank angle commands, while various uncertainties are introduced. The MRAC architecture enables the controller to adapt in a nonlinear fashion to deviations from the desired response, allowing for improved tracking performance, stability, and

  7. Experimental investigation of biodynamic human body models subjected to whole-body vibration during a vehicle ride.

    Science.gov (United States)

    Taskin, Yener; Hacioglu, Yuksel; Ortes, Faruk; Karabulut, Derya; Arslan, Yunus Ziya

    2018-02-06

    In this study, responses of biodynamic human body models to whole-body vibration during a vehicle ride were investigated. Accelerations were acquired from three different body parts, such as the head, upper torso and lower torso, of 10 seated passengers during a car ride while two different road conditions were considered. The same multipurpose vehicle was used during all experiments. Additionally, by two widely used biodynamic models in the literature, a set of simulations were run to obtain theoretical accelerations of the models and were compared with those obtained experimentally. To sustain a quantified comparison between experimental and theoretical approaches, the root mean square acceleration and acceleration spectral density were calculated. Time and frequency responses of the models demonstrated that neither of the models showed the best prediction performance of the human body behaviour in all cases, indicating that further models are required for better prediction of the human body responses.

  8. Accelerated Lane-Changing Trajectory Planning of Automated Vehicles with Vehicle-to-Vehicle Collaboration

    Directory of Open Access Journals (Sweden)

    Haijian Bai

    2017-01-01

    Full Text Available Considering the complexity of lane changing using automated vehicles and the frequency of turning lanes in city settings, this paper aims to generate an accelerated lane-changing trajectory using vehicle-to-vehicle collaboration (V2VC. Based on the characteristics of accelerated lane changing, we used a polynomial method and cooperative strategies for trajectory planning to establish a lane-changing model under different degrees of collaboration with the following vehicle in the target lane by considering vehicle kinematics and comfort requirements. Furthermore, considering the shortcomings of the traditional elliptical vehicle and round vehicle models, we established a rectangular vehicle model with collision boundary conditions by analysing the relationships between the possible collision points and the outline of the vehicle. Then, we established a simulation model for the accelerated lane-changing process in different environments under different degrees of collaboration. The results show that, by using V2VC, we can achieve safe accelerated lane-changing trajectories and simultaneously satisfy the requirements of vehicle kinematics and comfort control.

  9. Modeling of hybrid vehicle fuel economy and fuel engine efficiency

    Science.gov (United States)

    Wu, Wei

    "Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.

  10. Models Supporting Trajectory Planning in Autonomous Vehicles

    OpenAIRE

    Ward, Erik

    2018-01-01

    Autonomous vehicles have the potential to drastically improve the safety, efficiency and cost of transportation. Instead of a driver, an autonomous vehicle is controlled by an algorithm, offering improved consistency and the potential to eliminate human error from driving: by far the most common cause of accidents. Data collected from different types of sensors, along with prior information such as maps, are used to build models of the surrounding traffic scene, encoding relevant aspects of t...

  11. Letter to the Editor: Electric Vehicle Demand Model for Load Flow Studies

    DEFF Research Database (Denmark)

    Garcia-Valle, Rodrigo; Vlachogiannis, Ioannis (John)

    2009-01-01

    This paper introduces specific and simple model for electric vehicles suitable for load flow studies. The electric vehicles demand system is modelled as PQ bus with stochastic characteristics based on the concept of queuing theory. All appropriate variables of stochastic PQ buses are given...... with closed formulae as a function of charging time. Specific manufacturer model of electric vehicles is used as study case....

  12. Automotive Control Systems: For Engine, Driveline, and Vehicle

    Science.gov (United States)

    Kiencke, Uwe; Nielsen, Lars

    Advances in automotive control systems continue to enhance safety and comfort and to reduce fuel consumption and emissions. Reflecting the trend to optimization through integrative approaches for engine, driveline, and vehicle control, this valuable book enables control engineers to understand engine and vehicle models necessary for controller design, and also introduces mechanical engineers to vehicle-specific signal processing and automatic control. The emphasis on measurement, comparisons between performance and modeling, and realistic examples derive from the authors' unique industrial experience

  13. Influence of Wheel Eccentricity on Vertical Vibration of Suspended Monorail Vehicle: Experiment and Simulation

    Directory of Open Access Journals (Sweden)

    Kaikai Lv

    2017-01-01

    Full Text Available This paper investigates the influence of wheel eccentricity on vertical vibration of suspended monorail vehicle based on experiment and simulation. Two sets of tests are conducted in the first Chinese suspended monorail, and the tested acceleration is analyzed and exhibited. A multibody dynamic model of the suspended monorail vehicle is established to simulate the vertical vibration of car body excited by wheel eccentricity. The results show that there are three factors which may cause an abnormal vibration considering the track and the vehicle system. The influence of wheel eccentricity on the car body vibration was firstly analyzed. Simulated acceleration of car body has a great accordance with test. The wheel eccentricity could excite the resonance of car body at the speed of 21 km/h, and the vertical acceleration would increase considerably. Decreasing the secondary stiffness can effectively reduce the vertical vibration caused by wheel eccentricity, especially at the resonant speed. In the secondary test, the peak of car body acceleration at speed of 20 km/h is not appearing when only renewing the wheels, and the acceleration is decreasing obviously at the domain frequency. It is further determined that the abnormal vibration is mainly caused by the wheel eccentricity.

  14. The development and validation of a thermal model for the cabin of a vehicle

    International Nuclear Information System (INIS)

    Marcos, David; Pino, Francisco J.; Bordons, Carlos; Guerra, José J.

    2014-01-01

    Energy management in modern vehicles is a crucial issue, especially in the case of electric vehicles (EV) or hybrid vehicles (HV), in which different energy sources and loads must be considered for the operation of a vehicle. Air conditioning is an important load that must be thoroughly analysed because it can constitute a considerable percentage of the energy demand. In this paper, a simplified and dynamic thermal model for the cabin of a vehicle is proposed and validated. The developed model can be used for the design and testing of the heating, ventilation, and air conditioning (HVAC) system of a vehicle and for the study of its effects on the performance and fuel consumption of vehicles, such as EVs or HVs. The model is based on theoretical heat transfer, thermal inertia, and radiation treatment equations. The model results obtained from simulations are compared with the cabin air temperature of a vehicle under different conditions. This comparison demonstrates the accuracy between the simulation results and actual results. - Highlights: •A thermal model of a vehicle cabin with two thermal inertias is developed. •The model is validated with experimental data. •The simulation results and the experimental data fit

  15. Post-vehicle-application lithium-ion battery remanufacturing, repurposing and recycling capacity: Modeling and analysis

    Directory of Open Access Journals (Sweden)

    Charles Robert Standridge

    2015-05-01

    Full Text Available Purpose: A mathematical model is used to help determine the manufacturing capacity needed to support post-vehicle-application remanufacturing, repurposing, and recycling of lithium-ion batteries over time.  Simulation is used in solving the model to estimate capacity in kWh.  Lithium-ion batteries that are commonly used in the electrification of vehicles cannot be simply discarded post-vehicle-application due to the materials of which they are composed.  Eventually, each will fail to hold a charge and will need to be recycled.  Remanufacturing, allowing a battery to return to a vehicle application, and repurposing, transforming a battery for use in a non-vehicle application, postpone recycling and increase value. The mathematical model and its solution using simulation test the hypothesis that the capacity needed for remanufacturing, repurposing, and recycling as well as new battery production is a function of a single parameter:  the percent of post-vehicle-application batteries that are remanufactured. Design/methodology/approach: Equations in the mathematical model represent the capacity needed for remanufacturing, repurposing, and recycling as well as new battery production as dependent variables.  Independent variables are exogenous quantities as such as the demand for electrified vehicles of all types, physical properties of batteries such as their application life distribution including the time to recycling, and a single decision variable:  the percent of post-vehicle-application batteries that are remanufactured.  Values of the dependent variables over time are estimated by simulation for values of the percent of post-vehicle-application batteries ranging from 0% to 85% in steps of 5%. Findings and Originality/value: The simulation results support important insights for investment in capacity for remanufacturing, repurposing, and recycling of post-vehicle-application batteries as well as new batteries.  The capacity needed for

  16. Modeling and simulation of dust behaviors behind a moving vehicle

    Science.gov (United States)

    Wang, Jingfang

    Simulation of physically realistic complex dust behaviors is a difficult and attractive problem in computer graphics. A fast, interactive and visually convincing model of dust behaviors behind moving vehicles is very useful in computer simulation, training, education, art, advertising, and entertainment. In my dissertation, an experimental interactive system has been implemented for the simulation of dust behaviors behind moving vehicles. The system includes physically-based models, particle systems, rendering engines and graphical user interface (GUI). I have employed several vehicle models including tanks, cars, and jeeps to test and simulate in different scenarios and conditions. Calm weather, winding condition, vehicle turning left or right, and vehicle simulation controlled by users from the GUI are all included. I have also tested the factors which play against the physical behaviors and graphics appearances of the dust particles through GUI or off-line scripts. The simulations are done on a Silicon Graphics Octane station. The animation of dust behaviors is achieved by physically-based modeling and simulation. The flow around a moving vehicle is modeled using computational fluid dynamics (CFD) techniques. I implement a primitive variable and pressure-correction approach to solve the three dimensional incompressible Navier Stokes equations in a volume covering the moving vehicle. An alternating- direction implicit (ADI) method is used for the solution of the momentum equations, with a successive-over- relaxation (SOR) method for the solution of the Poisson pressure equation. Boundary conditions are defined and simplified according to their dynamic properties. The dust particle dynamics is modeled using particle systems, statistics, and procedure modeling techniques. Graphics and real-time simulation techniques, such as dynamics synchronization, motion blur, blending, and clipping have been employed in the rendering to achieve realistic appearing dust

  17. Optimal sizing of plug-in fuel cell electric vehicles using models of vehicle performance and system cost

    International Nuclear Information System (INIS)

    Xu, Liangfei; Ouyang, Minggao; Li, Jianqiu; Yang, Fuyuan; Lu, Languang; Hua, Jianfeng

    2013-01-01

    Highlights: ► An analytical model for vehicle performance and power-train parameters. ► Quantitative relationships between vehicle performance and power-train parameters. ► Optimal sizing rules that help designing an optimal PEM fuel cell power-train. ► An on-road testing showing the performance of the proposed vehicle. -- Abstract: This paper presents an optimal sizing method for plug-in proton exchange membrane (PEM) fuel cell and lithium-ion battery (LIB) powered city buses. We propose a theoretical model describing the relationship between components’ parameters and vehicle performance. Analysis results show that within the working range of the electric motor, the maximal velocity and driving distance are influenced linearly by the parameters of the components, e.g. fuel cell efficiency, fuel cell output power, stored hydrogen mass, vehicle auxiliary power, battery capacity, and battery average resistance. Moreover, accelerating time is also linearly dependant on the abovementioned parameters, except of those of the battery. Next, we attempt to minimize fixed and operating costs by introducing an optimal sizing problem that uses as constraints the requirements on vehicle performance. By solving this problem, we attain several optimal sizing rules. Finally, we use these rules to design a plug-in PEM fuel cell city bus and present performance results obtained by on-road testing.

  18. Battery electric vehicle energy consumption modelling for range estimation

    NARCIS (Netherlands)

    Wang, J.; Besselink, I.J.M.; Nijmeijer, H.

    2017-01-01

    Range anxiety is considered as one of the major barriers to the mass adoption of battery electric vehicles (BEVs). One method to solve this problem is to provide accurate range estimation to the driver. This paper describes a vehicle energy consumption model considering the influence of weather

  19. A time-use model for the automated vehicle-era

    NARCIS (Netherlands)

    Pudāne, Baiba; Molin, Eric J.E.; Arentze, Theo A.; Maknoon, Yousef; Chorus, Caspar G.

    2018-01-01

    Automated Vehicles (AVs) offer their users a possibility to perform new non-driving activities while being on the way. The effects of this opportunity on travel choices and travel demand have mostly been conceptualised and modelled via a reduced penalty associated with (in-vehicle) travel time. This

  20. A Time-use Model for the Automated Vehicle-era

    NARCIS (Netherlands)

    Pudane, B.; Molin, E.J.E.; Arentze, TA; Maknoon, M.Y.; Chorus, C.G.

    2018-01-01

    Automated Vehicles (AVs) offer their users a possibility to perform new non-driving activities while being on the way. The effects of this opportunity on travel choices and travel demand have mostly been conceptualised and modelled via a reduced penalty associated with (in-vehicle) travel time. This

  1. Port-based Modeling and Control of Underactuated Aerial Vehicles

    NARCIS (Netherlands)

    Mersha, A.Y.; Carloni, Raffaella; Stramigioli, Stefano

    2011-01-01

    In this paper, we propose a generic model and a controller design for a class of underactuated aerial vehicles, namely for unmanned aerial vehicles whose primary support against gravity is thrust. The approach followed is based on energetic consideration and uses the formalisms of port-Hamiltonian

  2. Modelling and analysis of the dynamics of a tilting three-wheeled vehicle

    International Nuclear Information System (INIS)

    Edelmann, Johannes; Plöchl, Manfred; Lugner, Peter

    2011-01-01

    To understand the handling behaviour of a three-wheeled tilting vehicle, models of the vehicle with different level of detail, corresponding to specific fields of investigation, have been developed. Then the proposed kinematics of the three-wheeler are assessed and optimized with respect to desired dynamic properties by applying a detailed multibody system model. The partially unstable nature of the motion of the vehicle suggests the application of an analytically derived, simplified model, to allow for focusing on stability aspects and steady-state handling properties. These investigations reveal the necessity of employing a steer-by-wire control system to support the driver by stabilizing the motion of the vehicle. Thus, an additional basic vehicle model is derived for control design, and an energy-efficient control strategy is presented. Numerical simulation results demonstrate the dynamic properties of the optimized kinematics and the control system, approved by successful test runs of a prototype.

  3. Modelling of an advanced charging system for electric vehicles

    Science.gov (United States)

    Hassan Jaafar, Abdul; Rahman, Ataur; Mohiuddin, A. K. M.; Rashid, Mahbubur

    2017-03-01

    Climate Change is recognized as one of the greatest environmental problem facing the World today and it has long been appreciated by governments that reducing the impact of the internal combustion (IC) engine powered motor vehicle has an important part to play in addressing this threat. In Malaysia, IC engine powered motor vehicle accounts almost 90% of the national greenhouse gas (GHG) emissions. The need to reduce the emission is paramount, as Malaysia has pledged to reduce 40% of CO2 intensity by 2020 from 2005 level by 25% of improvement in average fuel consumption. The introduction of electric vehicles (EVs) is one of the initiatives. However in terms of percentage, the electric vehicles have not been commonly used by people nowadays and one of the reasons is lack in charging infrastructure especially when cars are on the road. The aim of this study is to simulate and model an advanced charging system for the charging infrastructure of EVs/HEVs all over the nation with slow charging mode with charging current 25 A, medium charging mode with charging current 50 A and fast charging mode with charging current 100 A. The slow charging mode is proposed for residence, medium charging mode for office parking lots, and fast charging mode is called fast charging track for charging station on road. With three modes charger topology, consumers could choose a suitable mode for their car based on their need. The simulation and experiment of advanced charging system has been conducted on a scale down battery pack of nominal voltage of 3.75 V and capacity of 1020 mAh. Result shows that the battery could be charging less than 1 hour with fast charging mode. However, due to limitation of Tenaga Nasional Berhad (TNB) power grid, the maximum 50 A current is considered to be the optimized passive mode for the EV’s battery charging system. The developed advanced charger prototype performance has been compared with the simulation result and conventional charger performance, the

  4. Measuring a conceptual model of the relationship between compulsive cell phone use, in-vehicle cell phone use, and motor vehicle crash.

    Science.gov (United States)

    O'Connor, Stephen S; Shain, Lindsey M; Whitehill, Jennifer M; Ebel, Beth E

    2017-02-01

    Previous research suggests that anticipation of incoming phone calls or messages and impulsivity are significantly associated with motor vehicle crash. We took a more explanative approach to investigate a conceptual model regarding the direct and indirect effect of compulsive cell phone use and impulsive personality traits on crash risk. We recruited a sample of 307 undergraduate college students to complete an online survey that included measures of cell phone use, impulsivity, and history of motor vehicle crash. Using a structural equation model, we examined the direct and indirect relationships between factors of the Cell Phone Overuse Scale-II (CPOS-II), impulsivity, in-vehicle phone use, and severity and frequency of previous motor vehicle crash. Self-reported miles driven per week and year in college were included as covariates in the model. Our findings suggest that anticipation of incoming communication has a direct association with greater in-vehicle phone use, but was not directly or indirectly associated with increasing risk of previous motor vehicle crash. Of the three latent factors comprising the CPOS-II, only anticipation was significantly associated with elevated cell phone use while driving. Greater impulsivity and use of in-vehicle cell phone use while driving were directly and significantly associated with greater risk of motor vehicle crash. Anticipation of incoming cellular contacts (calls or texts) is associated with greater in-vehicle phone use, while greater in-vehicle cell phone use and impulsive traits are associated with elevated risk of motor vehicle crashes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. New Electro-Thermal Battery Pack Model of an Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Muhammed Alhanouti

    2016-07-01

    Full Text Available Since the evolution of the electric and hybrid vehicle, the analysis of batteries’ characteristics and influence on driving range has become essential. This fact advocates the necessity of accurate simulation modeling for batteries. Different models for the Li-ion battery cell are reviewed in this paper and a group of the highly dynamic models is selected for comparison. A new open circuit voltage (OCV model is proposed. The new model can simulate the OCV curves of lithium iron magnesium phosphate (LiFeMgPO4 battery type at different temperatures. It also considers both charging and discharging cases. The most remarkable features from different models, in addition to the proposed OCV model, are integrated in a single hybrid electrical model. A lumped thermal model is implemented to simulate the temperature development in the battery cell. The synthesized electro-thermal battery cell model is extended to model a battery pack of an actual electric vehicle. Experimental tests on the battery, as well as drive tests on the vehicle are performed. The proposed model demonstrates a higher modeling accuracy, for the battery pack voltage, than the constituent models under extreme maneuver drive tests.

  6. Control of Supercavitating Vehicles using Transverse Jets

    Science.gov (United States)

    2016-03-15

    Supercavitating Vehicles using Transverse Jets Sb. GRANT NUMBER N00014-13-1-0747 Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT NUMBER Ayers, Bradley...ANSI Std. Z39.18 CONTROL OF SUPERCAVITATING VEHICLES USING TRANSVERSE JETS Final Technical Report for Office of Naval Research contract N00014-13-1...fully-submerged, supercavitating vehicle model using the thrust of the zero-net-mass-flux device. The experiments were conducted in NUWC Newport’ s

  7. Hyper-X Vehicle Model - Side View

    Science.gov (United States)

    1996-01-01

    A side-view of an early desk-top model of NASA's X-43A 'Hyper-X,' or Hypersonic Experimental Vehicle, which has been developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic

  8. Hyper-X Vehicle Model - Front View

    Science.gov (United States)

    1996-01-01

    A front view of an early desk-top model of NASA's X-43A 'Hyper-X,' or Hypersonic Experimental Vehicle, which has been developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic

  9. Vehicle-manipulator systems modeling for simulation, analysis, and control

    CERN Document Server

    From, Pal Johan; Pettersen, Kristin Ytterstad

    2014-01-01

    Furthering the aim of reducing human exposure to hazardous environments, this monograph presents a detailed study of the modeling and control of vehicle-manipulator systems. The text shows how complex interactions can be performed at remote locations using systems that combine the manipulability of robotic manipulators with the ability of mobile robots to locomote over large areas.  The first part studies the kinematics and dynamics of rigid bodies and standard robotic manipulators and can be used as an introduction to robotics focussing on robust mathematical modeling. The monograph then moves on to study vehicle-manipulator systems in great detail with emphasis on combining two different configuration spaces in a mathematically sound way. Robustness of these systems is extremely important and Modeling and Control of Vehicle-manipulator Systems effectively represents the dynamic equations using a mathematically robust framework. Several tools from Lie theory and differential geometry are used to obtain glob...

  10. Vehicle modeling and duty cycle analysis to validate technology feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Castonguay, S. [National Centre for Advanced Transportation, Saint-Jerome, PQ (Canada)

    2010-07-01

    The National Centre for Advanced Transportation (CNTA) is a non-profit organization with a board consisting of representatives from the transportation industry, public service and public transit organizations, research and teaching institutions, and from municipal and economic development organizations. The objectives of the CNTA are to accelerate the introduction of electric and hybrid vehicles; act as a catalyst in projects; assist in increasing Canadian technology assets; initiate and support electric vehicle conversion projects; increase Canadian business for electric vehicles, hybrid vehicles, and plug-in electric vehicles; and provide a cost-effective solution and aggressive payback for road/off-road vehicles. This presentation provided an overview of the objectives and services of the CNTA. It discussed various road and off-road vehicles, duty cycle and technology of electric vehicles. Specific topics related to the technology were discussed, including configuration; controls and interface; efficiency maps; models and simulation; validation; and support. figs.

  11. Cellular automata model for traffic flow at intersections in internet of vehicles

    Science.gov (United States)

    Zhao, Han-Tao; Liu, Xin-Ru; Chen, Xiao-Xu; Lu, Jian-Cheng

    2018-03-01

    Considering the effect of the front vehicle's speed, the influence of the brake light and the conflict of the traffic flow, we established a cellular automata model called CE-NS for traffic flow at the intersection in the non-vehicle networking environment. According to the information interaction of Internet of Vehicles (IoV), introducing parameters describing the congestion and the accurate speed of the front vehicle into the CE-NS model, we improved the rules of acceleration, deceleration and conflict, and finally established a cellular automata model for traffic flow at intersections of IoV. The relationship between traffic parameters such as vehicle speed, flow and average travel time is obtained by numerical simulation of two models. Based on this, we compared the traffic situation of the non-vehicle networking environment with conditions of IoV environment, and analyzed the influence of the different degree of IoV on the traffic flow. The results show that the traffic speed is increased, the travel time is reduced, the flux of intersections is increased and the traffic flow is more smoothly under IoV environment. After the vehicle which achieves IoV reaches a certain proportion, the operation effect of the traffic flow begins to improve obviously.

  12. Modeling and predicting low-speed vehicle emissions as a function of driving kinematics.

    Science.gov (United States)

    Hao, Lijun; Chen, Wei; Li, Lei; Tan, Jianwei; Wang, Xin; Yin, Hang; Ding, Yan; Ge, Yunshan

    2017-05-01

    An instantaneous emission model was developed to model and predict the real driving emissions of the low-speed vehicles. The emission database used in the model was measured by using portable emission measurement system (PEMS) under actual traffic conditions in the rural area, and the characteristics of the emission data were determined in relation to the driving kinematics (speed and acceleration) of the low-speed vehicle. The input of the emission model is driving cycle, and the model requires instantaneous vehicle speed and acceleration levels as input variables and uses them to interpolate the pollutant emission rate maps to calculate the transient pollutant emission rates, which will be accumulated to calculate the total emissions released during the whole driving cycle. And the vehicle fuel consumption was determined through the carbon balance method. The model predicted the emissions and fuel consumption of an in-use low-speed vehicle type model, which agreed well with the measured data. Copyright © 2016. Published by Elsevier B.V.

  13. An efficient background modeling approach based on vehicle detection

    Science.gov (United States)

    Wang, Jia-yan; Song, Li-mei; Xi, Jiang-tao; Guo, Qing-hua

    2015-10-01

    The existing Gaussian Mixture Model(GMM) which is widely used in vehicle detection suffers inefficiency in detecting foreground image during the model phase, because it needs quite a long time to blend the shadows in the background. In order to overcome this problem, an improved method is proposed in this paper. First of all, each frame is divided into several areas(A, B, C and D), Where area A, B, C and D are decided by the frequency and the scale of the vehicle access. For each area, different new learning rate including weight, mean and variance is applied to accelerate the elimination of shadows. At the same time, the measure of adaptive change for Gaussian distribution is taken to decrease the total number of distributions and save memory space effectively. With this method, different threshold value and different number of Gaussian distribution are adopted for different areas. The results show that the speed of learning and the accuracy of the model using our proposed algorithm surpass the traditional GMM. Probably to the 50th frame, interference with the vehicle has been eliminated basically, and the model number only 35% to 43% of the standard, the processing speed for every frame approximately has a 20% increase than the standard. The proposed algorithm has good performance in terms of elimination of shadow and processing speed for vehicle detection, it can promote the development of intelligent transportation, which is very meaningful to the other Background modeling methods.

  14. Effective business models for electric vehicles

    Directory of Open Access Journals (Sweden)

    Gavrilescu Ileana

    2017-07-01

    Full Text Available The proposed study aims to use asyncretic and synthetic approach of two elements that have an intrinsic efficiency value: business models and electric vehicles. Our approach seeks to circumscribe more widespread concerns globally - on the one hand, to oil shortages and climate change - and on the other hand, economic efficiency to business models customized to new types of mobility. New “electric” cars projects besiege the traditional position of the conventional car. In the current economy context the concept of efficiency of business models is quite different from what it meant in a traditional sense, particularly because of new technological fields. The arguments put forward by us will be both factual and emotional. Therefore, we rely on interviews and questionnaires designed to fit significantly to the point of the study. Research in the field of new propulsion systems for vehicles has been exploring various possibilities lately, such as: electricity, hydrogen, compressed air, biogas, etc. Theoretically or in principle, it is possible for tomorrow’s vehicles to be driven by the widest variety if resources. A primary goal of our study would be to theoretically reconsider some of the contemporary entrepreneurship coordinates and secondly to provide minimum guidance for decision-making of businesses that will operate in the field of electric mobility. To achieve this, we shall specifically analyze an electric mobility system but in parallel we will address business models that lend themselves effectively on aspects of this field. With a methodology based on questionnaires that had to overcome the conventional mechanism using some of the most unusual ingredients, we hope that the results of our research will successfully constitute a contribution to the goals and especially as a means of managerial orientation for entrepreneurs in the Romanian market.

  15. Fleet average NOx emission performance of 2004 model year light-duty vehicles, light-duty trucks and medium-duty passenger vehicles

    International Nuclear Information System (INIS)

    2006-05-01

    The On-Road Vehicle and Engine Emission Regulations came into effect on January 1, 2004. The regulations introduced more stringent national emission standards for on-road vehicles and engines, and also required that companies submit reports containing information concerning the company's fleets. This report presented a summary of the regulatory requirements relating to nitric oxide (NO x ) fleet average emissions for light-duty vehicles, light-duty trucks, and medium-duty passenger vehicles under the new regulations. The effectiveness of the Canadian fleet average NO x emission program at achieving environmental performance objectives was also evaluated. A summary of the fleet average NO x emission performance of individual companies was presented, as well as the overall Canadian fleet average of the 2004 model year based on data submitted by companies in their end of model year reports. A total of 21 companies submitted reports covering 2004 model year vehicles in 10 test groups, comprising 1,350,719 vehicles of the 2004 model year manufactured or imported for the purpose of sale in Canada. The average NO x value for the entire Canadian LDV/LDT fleet was 0.2016463 grams per mile. The average NO x values for the entire Canadian HLDT/MDPV fleet was 0.321976 grams per mile. It was concluded that the NO x values for both fleets were consistent with the environmental performance objectives of the regulations for the 2004 model year. 9 tabs

  16. On electric vehicle battery charger modeling

    OpenAIRE

    Sainz Sapera, Luis; Mesas García, Juan José; Balcells Sendra, Josep

    2011-01-01

    The increase of electric vehicle (EV) battery chargers connected to electric networks could lead to future harmonic problems in power systems. These loads are nonlinear devices that inject harmonic currents and pollute network voltages. Thus, battery charger modeling must be studied in detail to determine their harmonic emissions and prevent future problems. This paper investigates EV battery charger behavior, analyzes its equivalent circuit and reports a model for each ...

  17. Adaptive Modeling, Engineering Analysis and Design of Advanced Aerospace Vehicles

    Science.gov (United States)

    Mukhopadhyay, Vivek; Hsu, Su-Yuen; Mason, Brian H.; Hicks, Mike D.; Jones, William T.; Sleight, David W.; Chun, Julio; Spangler, Jan L.; Kamhawi, Hilmi; Dahl, Jorgen L.

    2006-01-01

    This paper describes initial progress towards the development and enhancement of a set of software tools for rapid adaptive modeling, and conceptual design of advanced aerospace vehicle concepts. With demanding structural and aerodynamic performance requirements, these high fidelity geometry based modeling tools are essential for rapid and accurate engineering analysis at the early concept development stage. This adaptive modeling tool was used for generating vehicle parametric geometry, outer mold line and detailed internal structural layout of wing, fuselage, skin, spars, ribs, control surfaces, frames, bulkheads, floors, etc., that facilitated rapid finite element analysis, sizing study and weight optimization. The high quality outer mold line enabled rapid aerodynamic analysis in order to provide reliable design data at critical flight conditions. Example application for structural design of a conventional aircraft and a high altitude long endurance vehicle configuration are presented. This work was performed under the Conceptual Design Shop sub-project within the Efficient Aerodynamic Shape and Integration project, under the former Vehicle Systems Program. The project objective was to design and assess unconventional atmospheric vehicle concepts efficiently and confidently. The implementation may also dramatically facilitate physics-based systems analysis for the NASA Fundamental Aeronautics Mission. In addition to providing technology for design and development of unconventional aircraft, the techniques for generation of accurate geometry and internal sub-structure and the automated interface with the high fidelity analysis codes could also be applied towards the design of vehicles for the NASA Exploration and Space Science Mission projects.

  18. CyberTORCS: An Intelligent Vehicles Simulation Platform for Cooperative Driving

    Directory of Open Access Journals (Sweden)

    Ming Yang

    2011-05-01

    Full Text Available Simulation platforms play an important role in helping intelligent vehicle research, especially for the research of cooperative driving due to the high cost and risk of the real experiments. In order to ease and bring more convenience for cooperative driving tests, we introduce an intelligent vehicle simulation platform, called CyberTORCS, for the research in cooperative driving. Details of the simulator modules including vehicle body control, vehicle visualization modeling and track visualization modeling are presented. Two simulation examples are given to validate the feasibility and effectiveness of the proposed simulation platform.

  19. Model-based design approaches for plug-in hybrid vehicle design

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, C.J. [CrossChasm Technologies, Cambridge, ON (Canada); Stevens, M.B.; Fowler, M.W. [Waterloo Univ., ON (Canada). Dept. of Chemical Engineering; Fraser, R.A. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering; Wilhelm, E.J. [Paul Scherrer Inst., Villigen (Switzerland). Energy Systems Analysis

    2007-07-01

    A model-based design process for plug-in hybrid vehicles (PHEVs) was presented. The paper discussed steps between the initial design concept and a working vehicle prototype, and focused on an investigation of the software-in-the-loop (SIL), hardware-in-the-loop (HIL), and component-in-the-loop (CIL) design phases. The role and benefits of using simulation were also reviewed. A method for mapping and identifying components was provided along with a hybrid control strategy and component-level control optimization process. The role of simulation in component evaluation, architecture design, and de-bugging procedures was discussed, as well as the role simulation networks can play in speeding deployment times. The simulations focused on work performed on a 2005 Chevrolet Equinox converted to a fuel cell hybrid electric vehicle (FCHEV). Components were aggregated to create a complete virtual vehicle. A simplified vehicle model was implemented onto the on-board vehicle control hardware. Optimization metrics were estimated at 10 alpha values during each control loop iteration. The simulation was then used to tune the control system under a variety of drive cycles and conditions. A CIL technique was used to place a physical hybrid electric vehicle (HEV) component under the control of a real time HEV/PHEV simulation. It was concluded that controllers should have a standardized component description that supports integration into advanced testing procedures. 4 refs., 9 figs.

  20. Modeling Hydrogen Refueling Infrastructure to Support Passenger Vehicles

    Directory of Open Access Journals (Sweden)

    Matteo Muratori

    2018-05-01

    Full Text Available The year 2014 marked hydrogen fuel cell electric vehicles (FCEVs first becoming commercially available in California, where significant investments are being made to promote the adoption of alternative transportation fuels. A refueling infrastructure network that guarantees adequate coverage and expands in line with vehicle sales is required for FCEVs to be successfully adopted by private customers. In this paper, we provide an overview of modelling methodologies used to project hydrogen refueling infrastructure requirements to support FCEV adoption, and we describe, in detail, the National Renewable Energy Laboratory’s scenario evaluation and regionalization analysis (SERA model. As an example, we use SERA to explore two alternative scenarios of FCEV adoption: one in which FCEV deployment is limited to California and several major cities in the United States; and one in which FCEVs reach widespread adoption, becoming a major option as passenger vehicles across the entire country. Such scenarios can provide guidance and insights for efforts required to deploy the infrastructure supporting transition toward different levels of hydrogen use as a transportation fuel for passenger vehicles in the United States.

  1. A study on model fidelity for model predictive control-based obstacle avoidance in high-speed autonomous ground vehicles

    Science.gov (United States)

    Liu, Jiechao; Jayakumar, Paramsothy; Stein, Jeffrey L.; Ersal, Tulga

    2016-11-01

    This paper investigates the level of model fidelity needed in order for a model predictive control (MPC)-based obstacle avoidance algorithm to be able to safely and quickly avoid obstacles even when the vehicle is close to its dynamic limits. The context of this work is large autonomous ground vehicles that manoeuvre at high speed within unknown, unstructured, flat environments and have significant vehicle dynamics-related constraints. Five different representations of vehicle dynamics models are considered: four variations of the two degrees-of-freedom (DoF) representation as lower fidelity models and a fourteen DoF representation with combined-slip Magic Formula tyre model as a higher fidelity model. It is concluded that the two DoF representation that accounts for tyre nonlinearities and longitudinal load transfer is necessary for the MPC-based obstacle avoidance algorithm in order to operate the vehicle at its limits within an environment that includes large obstacles. For less challenging environments, however, the two DoF representation with linear tyre model and constant axle loads is sufficient.

  2. Stochastic time-dependent vehicle routing problem: Mathematical models and ant colony algorithm

    Directory of Open Access Journals (Sweden)

    Zhengyu Duan

    2015-11-01

    Full Text Available This article addresses the stochastic time-dependent vehicle routing problem. Two mathematical models named robust optimal schedule time model and minimum expected schedule time model are proposed for stochastic time-dependent vehicle routing problem, which can guarantee delivery within the time windows of customers. The robust optimal schedule time model only requires the variation range of link travel time, which can be conveniently derived from historical traffic data. In addition, the robust optimal schedule time model based on robust optimization method can be converted into a time-dependent vehicle routing problem. Moreover, an ant colony optimization algorithm is designed to solve stochastic time-dependent vehicle routing problem. As the improvements in initial solution and transition probability, ant colony optimization algorithm has a good performance in convergence. Through computational instances and Monte Carlo simulation tests, robust optimal schedule time model is proved to be better than minimum expected schedule time model in computational efficiency and coping with the travel time fluctuations. Therefore, robust optimal schedule time model is applicable in real road network.

  3. An extended two-lane car-following model accounting for inter-vehicle communication

    Science.gov (United States)

    Ou, Hui; Tang, Tie-Qiao

    2018-04-01

    In this paper, we develop a novel car-following model with inter-vehicle communication to explore each vehicle's movement in a two-lane traffic system when an incident occurs on a lane. The numerical results show that the proposed model can perfectly describe each vehicle's motion when an incident occurs, i.e., no collision occurs while the classical full velocity difference (FVD) model produces collision on each lane, which shows the proposed model is more reasonable. The above results can help drivers to reasonably adjust their driving behaviors when an incident occurs in a two-lane traffic system.

  4. Assessing the Impact of Direct Experience on Individual Preferences and Attitudes for Electric Vehicles

    DEFF Research Database (Denmark)

    Jensen, Anders Fjendbo

    Over the last decades, several studies have focused on understanding what drives the demand for electric vehicles (EVs). However, EVs still face large difficulties in developing into a mass market product. It is now recognised that individuals make choices based on a mixture of strategies...... elasticity and the diffusion of the EV into the car market. In particular the thesis (1) proposes a methodology to collect adequate data on choices before and after respondents obtain real-life experience with EVs; (2) uses advanced hybrid choice models estimated jointly on the before and the after data......, and (iv) a number of statements to measure the attitudes of environmental concern, appreciation of car features, interest in technology, general opinions towards EVs and scepticism. The same survey was then repeated in wave 2. First, a SC experiment was built with orthogonal design and tested...

  5. Guidelines for Vehicle Robbery Prevention using Remote Blocking Signals

    Directory of Open Access Journals (Sweden)

    Narong Sangwaranatee

    2016-01-01

    Full Text Available In this paper, the radio signal remote sensing device was used to control the vehicle door switching control, which was the field trials experiment. The switching "On" and "Off" of the switching signals were used to control the vehicle door and investigated. In application, the blocking signal from the commit the remote vehicle crime in the venerable place can be protected. The results obtained have shown that the signal blocking by using another remote control over 5 meters, 10 meters and 15 meters could be achieved. The proposed models and tested results have shown that the Vehicle Brand A Model No. 1 could be blocked by 83.33 percent, while Brand A Model No.2 by 83.33 percent, Brand B Model No.1 by 40 percent, Brand B Model No.2 by 60 percent, Brand C Model No. 1 by 83.33 percent, Brand C Model No. 2 by 83.33 percent, meanwhile, the remote control for general vehicle are used radio waves with frequency 315 and 433 MHz, where the criminal will use the interference signals to form the blocking (jamming signals, the vehicle can be robbed.

  6. Discrete Optimization Model for Vehicle Routing Problem with Scheduling Side Cosntraints

    Science.gov (United States)

    Juliandri, Dedy; Mawengkang, Herman; Bu'ulolo, F.

    2018-01-01

    Vehicle Routing Problem (VRP) is an important element of many logistic systems which involve routing and scheduling of vehicles from a depot to a set of customers node. This is a hard combinatorial optimization problem with the objective to find an optimal set of routes used by a fleet of vehicles to serve the demands a set of customers It is required that these vehicles return to the depot after serving customers’ demand. The problem incorporates time windows, fleet and driver scheduling, pick-up and delivery in the planning horizon. The goal is to determine the scheduling of fleet and driver and routing policies of the vehicles. The objective is to minimize the overall costs of all routes over the planning horizon. We model the problem as a linear mixed integer program. We develop a combination of heuristics and exact method for solving the model.

  7. Guidelines for the Establishment of a Model Neighborhood Electric Vehicle (NEV) Fleet

    Energy Technology Data Exchange (ETDEWEB)

    Roberta Brayer; Donald Karner; Kevin Morrow; James Francfort

    2006-06-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests neighborhood electric vehicles (NEVs) in both track and fleet testing environments. NEVs, which are also known as low speed vehicles, are light-duty vehicles with top speeds of between 20 and 25 mph, and total gross vehicle weights of approximately 2,000 pounds or less. NEVs have been found to be very viable alternatives to internal combustion engine vehicles based on their low operating costs. However, special charging infrastructure is usually necessary for successful NEV fleet deployment. Maintenance requirements are also unique to NEVs, especially if flooded lead acid batteries are used as they have watering requirements that require training, personnel protection equipment, and adherence to maintenance schedules. This report provides guidelines for fleet managers to follow in order to successfully introduce and operate NEVs in fleet environments. This report is based on the NEV testing and operational experience of personnel from the Advanced Vehicle Testing Activity, Electric Transportation Applications, and the Idaho National Laboratory.

  8. Prediction of vehicle crashes by drivers' characteristics and past traffic violations in Korea using a zero-inflated negative binomial model.

    Science.gov (United States)

    Kim, Dae-Hwan; Ramjan, Lucie M; Mak, Kwok-Kei

    2016-01-01

    Traffic safety is a significant public health challenge, and vehicle crashes account for the majority of injuries. This study aims to identify whether drivers' characteristics and past traffic violations may predict vehicle crashes in Korea. A total of 500,000 drivers were randomly selected from the 11.6 million driver records of the Ministry of Land, Transport and Maritime Affairs in Korea. Records of traffic crashes were obtained from the archives of the Korea Insurance Development Institute. After matching the past violation history for the period 2004-2005 with the number of crashes in year 2006, a total of 488,139 observations were used for the analysis. Zero-inflated negative binomial model was used to determine the incident risk ratio (IRR) of vehicle crashes by past violations of individual drivers. The included covariates were driver's age, gender, district of residence, vehicle choice, and driving experience. Drivers violating (1) a hit-and-run or drunk driving regulation at least once and (2) a signal, central line, or speed regulation more than once had a higher risk of a vehicle crash with respective IRRs of 1.06 and 1.15. Furthermore, female gender, a younger age, fewer years of driving experience, and middle-sized vehicles were all significantly associated with a higher likelihood of vehicle crashes. Drivers' demographic characteristics and past traffic violations could predict vehicle crashes in Korea. Greater resources should be assigned to the provision of traffic safety education programs for the high-risk driver groups.

  9. Study on Reverse Reconstruction Method of Vehicle Group Situation in Urban Road Network Based on Driver-Vehicle Feature Evolution

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Wang

    2017-01-01

    Full Text Available Vehicle group situation is the status and situation of dynamic permutation which is composed of target vehicle and neighboring traffic entities. It is a concept which is frequently involved in the research of traffic flow theory, especially the active vehicle security. Studying vehicle group situation in depth is of great significance for traffic safety. Three-lane condition was taken as an example; the characteristics of target vehicle and its neighboring vehicles were synthetically considered to restructure the vehicle group situation in this paper. The Gamma distribution theory was used to identify the vehicle group situation when target vehicle arrived at the end of the study area. From the perspective of driver-vehicle feature evolution, the reverse reconstruction method of vehicle group situation in the urban road network was proposed. Results of actual driving, virtual driving, and simulation experiments showed that the model established in this paper was reasonable and feasible.

  10. A spring-mass-damper system dynamics-based driver-vehicle integrated model for representing heterogeneous traffic

    Science.gov (United States)

    Munigety, Caleb Ronald

    2018-04-01

    The traditional traffic microscopic simulation models consider driver and vehicle as a single unit to represent the movements of drivers in a traffic stream. Due to this very fact, the traditional car-following models have the driver behavior related parameters, but ignore the vehicle related aspects. This approach is appropriate for homogeneous traffic conditions where car is the major vehicle type. However, in heterogeneous traffic conditions where multiple vehicle types are present, it becomes important to incorporate the vehicle related parameters exclusively to account for the varying dynamic and static characteristics. Thus, this paper presents a driver-vehicle integrated model hinged on the principles involved in physics-based spring-mass-damper mechanical system. While the spring constant represents the driver’s aggressiveness, the damping constant and the mass component take care of the stability and size/weight related aspects, respectively. The proposed model when tested, behaved pragmatically in representing the vehicle-type dependent longitudinal movements of vehicles.

  11. Study on the Vehicle Dynamic Load Considering the Vehicle-Pavement Coupled Effect

    Science.gov (United States)

    Xu, H. L.; He, L.; An, D.

    2017-11-01

    The vibration of vehicle-pavement interaction system is sophisticated random vibration process and the vehicle-pavement coupled effect was not considered in the previous study. A new linear elastic model of the vehicle-pavement coupled system was established in the paper. The new model was verified with field measurement which could reflect the real vibration between vehicle and pavement. Using the new model, the study on the vehicle dynamic load considering the vehicle-pavement coupled effect showed that random forces (centralization) between vehicle and pavement were influenced largely by vehicle-pavement coupled effect. Numerical calculation indicated that the maximum of random forces in coupled model was 2.4 times than that in uncoupled model. Inquiring the reason, it was found that the main vibration frequency of the vehicle non-suspension system was similar with that of the vehicle suspension system in the coupled model and the resonance vibration lead to vehicle dynamic load increase significantly.

  12. A Vehicle Active Safety Model: Vehicle Speed Control Based on Driver Vigilance Detection Using Wearable EEG and Sparse Representation.

    Science.gov (United States)

    Zhang, Zutao; Luo, Dianyuan; Rasim, Yagubov; Li, Yanjun; Meng, Guanjun; Xu, Jian; Wang, Chunbai

    2016-02-19

    In this paper, we present a vehicle active safety model for vehicle speed control based on driver vigilance detection using low-cost, comfortable, wearable electroencephalographic (EEG) sensors and sparse representation. The proposed system consists of three main steps, namely wireless wearable EEG collection, driver vigilance detection, and vehicle speed control strategy. First of all, a homemade low-cost comfortable wearable brain-computer interface (BCI) system with eight channels is designed for collecting the driver's EEG signal. Second, wavelet de-noising and down-sample algorithms are utilized to enhance the quality of EEG data, and Fast Fourier Transformation (FFT) is adopted to extract the EEG power spectrum density (PSD). In this step, sparse representation classification combined with k-singular value decomposition (KSVD) is firstly introduced in PSD to estimate the driver's vigilance level. Finally, a novel safety strategy of vehicle speed control, which controls the electronic throttle opening and automatic braking after driver fatigue detection using the above method, is presented to avoid serious collisions and traffic accidents. The simulation and practical testing results demonstrate the feasibility of the vehicle active safety model.

  13. Passivity-based model predictive control for mobile vehicle motion planning

    CERN Document Server

    Tahirovic, Adnan

    2013-01-01

    Passivity-based Model Predictive Control for Mobile Vehicle Navigation represents a complete theoretical approach to the adoption of passivity-based model predictive control (MPC) for autonomous vehicle navigation in both indoor and outdoor environments. The brief also introduces analysis of the worst-case scenario that might occur during the task execution. Some of the questions answered in the text include: • how to use an MPC optimization framework for the mobile vehicle navigation approach; • how to guarantee safe task completion even in complex environments including obstacle avoidance and sideslip and rollover avoidance; and  • what to expect in the worst-case scenario in which the roughness of the terrain leads the algorithm to generate the longest possible path to the goal. The passivity-based MPC approach provides a framework in which a wide range of complex vehicles can be accommodated to obtain a safer and more realizable tool during the path-planning stage. During task execution, the optimi...

  14. Study on Emission Measurement of Vehicle on Road Based on Binomial Logit Model

    OpenAIRE

    Aly, Sumarni Hamid; Selintung, Mary; Ramli, Muhammad Isran; Sumi, Tomonori

    2011-01-01

    This research attempts to evaluate emission measurement of on road vehicle. In this regard, the research develops failure probability model of vehicle emission test for passenger car which utilize binomial logit model. The model focuses on failure of CO and HC emission test for gasoline cars category and Opacity emission test for diesel-fuel cars category as dependent variables, while vehicle age, engine size, brand and type of the cars as independent variables. In order to imp...

  15. Adaptive real-time models of vehicle dynamics; Adaptive Echtzeitmodelle fuer die Kraftfahrzeugdynamik

    Energy Technology Data Exchange (ETDEWEB)

    Halfmann, C.; Holzmann, H.; Isermann, R. [Technische Univ. Darmstadt (Germany). Inst. fuer Automatisierungstechnik; Hamann, C.D.; Simm, N. [Opel (A.) AG, Ruesselsheim (Germany). Gruppe Chassis und Fahrerassistenzsysteme

    1999-12-01

    The application of modern simulation tools offering additional support during the vehicle development process is accepted to a large extent by most car manufacturers. Just like new model-based control strategies, these simulation investigations require very accurate - and thus very complex - models of vehicle dynamics, which can be processed in real time. As an example of such a vehicle model, this article describes a real-time vehicle simulation model which was developed at the Institute of Automatic Control at Darmstadt University of Technology, in co-operation with the ITDC of the Adam OPEL AG. By applying modern adaptation techniques, this vehicle model is able to calculate onboard the important variables describing the actual driving state even if the environmental conditions change. (orig.) [German] Der Einsatz von Simulationswerkzeugen zur Unterstuetzung der Fahrzeugentwicklung hat sich bei den meisten Automobilherstellern weitgehend durchgesetzt. Ebenso wie neuartige modellbasierte Regelstrategien verlangen diese Simulationsuntersuchungen nach immer exakteren - und damit komplexeren - fahrdynamischen Modellen, die in Echtzeit ausgewertet werden. Als Beispiel fuer ein solches Gesamtfahrzeugmodell beschreibt dieser Beitrag ein echtzeitfaehiges Modell fuer die Bewegung des Fahrzeugs um alle drei Hauptachsen, das am Institut fuer Automatisierungstechnik der TU Darmstadt in Kooperation mit dem Internationalen Technischen Entwicklungszentrum (ITEZ) der Adam Opel AG entwickelt wurde. Es ist durch den Einsatz von Adaptionsmethoden in der Lage, wichtige fahrdynamische Zustandsgroessen im Fahrzeug auch unter veraenderlichen Umgebungsbedingungen zu ermitteln. (orig.)

  16. Nonlinear dynamics modeling and simulation of two-wheeled self-balancing vehicle

    Directory of Open Access Journals (Sweden)

    Yunping Liu

    2016-11-01

    Full Text Available Two-wheeled self-balancing vehicle system is a kind of naturally unstable underactuated system with high-rank unstable multivariable strongly coupling complicated dynamic nonlinear property. Nonlinear dynamics modeling and simulation, as a basis of two-wheeled self-balancing vehicle dynamics research, has the guiding effect for system design of the project demonstration and design phase. Dynamics model of the two-wheeled self-balancing vehicle is established by importing a TSi ProPac package to the Mathematica software (version 8.0, which analyzes the stability and calculates the Lyapunov exponents of the system. The relationship between external force and stability of the system is analyzed by the phase trajectory. Proportional–integral–derivative control is added to the system in order to improve the stability of the two-wheeled self-balancing vehicle. From the research, Lyapunov exponent can be used to research the stability of hyperchaos system. The stability of the two-wheeled self-balancing vehicle is better by inputting the proportional–integral–derivative control. The Lyapunov exponent and phase trajectory can help us analyze the stability of a system better and lay the foundation for the analysis and control of the two-wheeled self-balancing vehicle system.

  17. Network modeling for reverse flows of end-of-life vehicles.

    Science.gov (United States)

    Ene, Seval; Öztürk, Nursel

    2015-04-01

    Product recovery operations are of critical importance for the automotive industry in complying with environmental regulations concerning end-of-life products management. Manufacturers must take responsibility for their products over the entire life cycle. In this context, there is a need for network design methods for effectively managing recovery operations and waste. The purpose of this study is to develop a mathematical programming model for managing reverse flows in end-of-life vehicles' recovery network. A reverse flow is the collection of used products from consumers and the transportation of these products for the purpose of recycling, reuse or disposal. The proposed model includes all operations in a product recovery and waste management network for used vehicles and reuse for vehicle parts such as collection, disassembly, refurbishing, processing (shredding), recycling, disposal and reuse of vehicle parts. The scope of the network model is to determine the numbers and locations of facilities in the network and the material flows between these facilities. The results show the performance of the model and its applicability for use in the planning of recovery operations in the automotive industry. The main objective of recovery and waste management is to maximize revenue and minimize pollution in end-of-life product operations. This study shows that with an accurate model, these activities may provide economic benefits and incentives in addition to protecting the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Large-Scale Spacecraft Fire Safety Experiments in ISS Resupply Vehicles

    Science.gov (United States)

    Ruff, Gary A.; Urban, David

    2013-01-01

    Our understanding of the fire safety risk in manned spacecraft has been limited by the small scale of the testing we have been able to conduct in low-gravity. Fire growth and spread cannot be expected to scale linearly with sample size so we cannot make accurate predictions of the behavior of realistic scale fires in spacecraft based on the limited low-g testing to date. As a result, spacecraft fire safety protocols are necessarily very conservative and costly. Future crewed missions are expected to be longer in duration than previous exploration missions outside of low-earth orbit and accordingly, more complex in terms of operations, logistics, and safety. This will increase the challenge of ensuring a fire-safe environment for the crew throughout the mission. Based on our fundamental uncertainty of the behavior of fires in low-gravity, the need for realistic scale testing at reduced gravity has been demonstrated. To address this concern, a spacecraft fire safety research project is underway to reduce the uncertainty and risk in the design of spacecraft fire safety systems by testing at nearly full scale in low-gravity. This project is supported by the NASA Advanced Exploration Systems Program Office in the Human Exploration and Operations Mission Directorate. The activity of this project is supported by an international topical team of fire experts from other space agencies to maximize the utility of the data and to ensure the widest possible scrutiny of the concept. The large-scale space flight experiment will be conducted on three missions; each in an Orbital Sciences Corporation Cygnus vehicle after it has deberthed from the ISS. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew allows the fire products to be released into the cabin. The tests will be fully automated with the data downlinked at the conclusion of the test before the Cygnus vehicle reenters the

  19. Modeling Languages Refine Vehicle Design

    Science.gov (United States)

    2009-01-01

    Cincinnati, Ohio s TechnoSoft Inc. is a leading provider of object-oriented modeling and simulation technology used for commercial and defense applications. With funding from Small Business Innovation Research (SBIR) contracts issued by Langley Research Center, the company continued development on its adaptive modeling language, or AML, originally created for the U.S. Air Force. TechnoSoft then created what is now known as its Integrated Design and Engineering Analysis Environment, or IDEA, which can be used to design a variety of vehicles and machinery. IDEA's customers include clients in green industries, such as designers for power plant exhaust filtration systems and wind turbines.

  20. Evaluating the accuracy of vehicle tracking data obtained from Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Giuseppe Guido

    2016-10-01

    Full Text Available This paper presents a methodology for tracking moving vehicles that integrates Unmanned Aerial Vehicles with video processing techniques. The authors investigated the usefulness of Unmanned Aerial Vehicles to capture reliable individual vehicle data by using GPS technology as a benchmark. A video processing algorithm for vehicles trajectory acquisition is introduced. The algorithm is based on OpenCV libraries. In order to assess the accuracy of the proposed video processing algorithm an instrumented vehicle was equipped with a high precision GPS. The video capture experiments were performed in two case studies. From the field, about 24,000 positioning data were acquired for the analysis. The results of these experiments highlight the versatility of the Unmanned Aerial Vehicles technology combined with video processing technique in monitoring real traffic data.

  1. Josephson cross-sectional model experiment

    International Nuclear Information System (INIS)

    Ketchen, M.B.; Herrell, D.J.; Anderson, C.J.

    1985-01-01

    This paper describes the electrical design and evaluation of the Josephson cross-sectional model (CSM) experiment. The experiment served as a test vehicle to verify the operation at liquid-helium temperatures of Josephson circuits integrated in a package environment suitable for high-performance digital applications. The CSM consisted of four circuit chips assembled on two cards in a three-dimensional card-on-board package. The chips (package) were fabricated in a 2.5-μm (5-μm) minimum linewidth Pb-alloy technology. A hierarchy of solder and pluggable connectors was used to attach the parts together and to provide electrical interconnections between parts. A data path which simulated a jump control sequence and a cache access in each machine cycle was successfully operated with cycle times down to 3.7 ns. The CSM incorporated the key components of the logic, power, and package of a prototype Josephson signal processor and demonstrated the feasibility of making such a processor with a sub-4-ns cycle time

  2. Mission aware energy saving strategies for Army ground vehicles

    Science.gov (United States)

    Dattathreya, Macam S.

    on, gear is on neutral position, the vehicle is stationary, and the alternator powers the systems. The proposed energy saving strategy for silent surveillance mission minimizes unnecessary battery discharges by controlling the power states of systems according to the mission needs and available battery capacity. Initial experiments show that the proposed approach saves 3% energy when compared with the baseline strategy for one scenario and 1.8% for the second scenario. The proposed energy saving strategy for normal surveillance mission operates the engine at fuel-efficient speeds to meet vehicle demand and to save fuel. The experiment and simulation uses a computerized vehicle model and a test bench to validate the approach. In comparison to vehicles with fixed high-idle engine speed increments, experiments show that the proposed strategy saves fuel energy in the range of 0-4.9% for the tested power demand range of 44-69 kW. It is hoped to implement the proposed strategies on a real Army ground vehicle to start realizing the energy savings.

  3. Two models of the capacitated vehicle routing problem

    Directory of Open Access Journals (Sweden)

    Zuzana Borčinova

    2017-01-01

    Full Text Available The aim of the Capacitated Vehicle Routing Problem (CVRP is to find a set of minimum total cost routes for a fleet of capacitated vehicles based at a single depot, to serve a set of customers. There exist various integer linear programming models of the CVRP. One of the main differences lies in the way to eliminate sub-tours, i.e. cycles that do not go through the depot. In this paper, we describe a well-known flow formulation of CVRP, where sub-tour elimination constraints have a cardinality exponentially growing with the number of customers. Then we present a mixed linear programming formulation with polynomial cardinality of sub-tour elimination constraints. Both of the models were implemented and compared on several benchmarks.

  4. Hyper-X Vehicle Model - Top Front View

    Science.gov (United States)

    1996-01-01

    A top front view of an early desk-top model of NASA's X-43A 'Hyper-X,' or Hypersonic Experimental Vehicle, developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will

  5. Hyper-X Vehicle Model - Top Rear View

    Science.gov (United States)

    1996-01-01

    This aft-quarter model view of NASA's X-43A 'Hyper-X' or Hypersonic Experimental Vehicle shows its sleek, geometric design. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen

  6. Effects of improved spatial and temporal modeling of on-road vehicle emissions.

    Science.gov (United States)

    Lindhjem, Christian E; Pollack, Alison K; DenBleyker, Allison; Shaw, Stephanie L

    2012-04-01

    Numerous emission and air quality modeling studies have suggested the need to accurately characterize the spatial and temporal variations in on-road vehicle emissions. The purpose of this study was to quantify the impact that using detailed traffic activity data has on emission estimates used to model air quality impacts. The on-road vehicle emissions are estimated by multiplying the vehicle miles traveled (VMT) by the fleet-average emission factors determined by road link and hour of day. Changes in the fraction of VMT from heavy-duty diesel vehicles (HDDVs) can have a significant impact on estimated fleet-average emissions because the emission factors for HDDV nitrogen oxides (NOx) and particulate matter (PM) are much higher than those for light-duty gas vehicles (LDGVs). Through detailed road link-level on-road vehicle emission modeling, this work investigated two scenarios for better characterizing mobile source emissions: (1) improved spatial and temporal variation of vehicle type fractions, and (2) use of Motor Vehicle Emission Simulator (MOVES2010) instead of MOBILE6 exhaust emission factors. Emissions were estimated for the Detroit and Atlanta metropolitan areas for summer and winter episodes. The VMT mix scenario demonstrated the importance of better characterizing HDDV activity by time of day, day of week, and road type. More HDDV activity occurs on restricted access road types on weekdays and at nonpeak times, compared to light-duty vehicles, resulting in 5-15% higher NOx and PM emission rates during the weekdays and 15-40% lower rates on weekend days. Use of MOVES2010 exhaust emission factors resulted in increases of more than 50% in NOx and PM for both HDDVs and LDGVs, relative to MOBILE6. Because LDGV PM emissions have been shown to increase with lower temperatures, the most dramatic increase from MOBILE6 to MOVES2010 emission rates occurred for PM2.5 from LDGVs that increased 500% during colder wintertime conditions found in Detroit, the northernmost

  7. A control-oriented simulation model of a power-split hybrid electric vehicle

    International Nuclear Information System (INIS)

    Cipek, Mihael; Pavković, Danijel; Petrić, Joško

    2013-01-01

    Highlights: ► A simulation model of a two mode power-split hybrid electric vehicle (HEV) is proposed. ► Modeling the energy losses in the HEV transmission components are presented. ► The control optimization model implementation aspects are discussed. -- Abstract: A simulation model of a two mode power-split hybrid electric vehicle (HEV) is proposed in this paper for the purpose of HEV dynamics analysis and control system design. The bond graph methodology is used to model dominant dynamic effects of the mechanical part of the HEV transmission. Simple quasi-static battery model, the environment model, the tire and the power losses model of a vehicle are included, as well. A low-level electric generator speed control loop is designed, which includes a PI controller tuned according to the symmetrical optimum tuning procedure. Finally, off-line optimization by conjugate gradient-based BPTT-like optimal control algorithm, which is based on the presented mathematical model, is also given in the paper.

  8. FASTSim: A Model to Estimate Vehicle Efficiency, Cost and Performance

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, A.; Gonder, J.; Wang, L.; Wood, E.; Lopp, S.; Ramroth, L.

    2015-05-04

    The Future Automotive Systems Technology Simulator (FASTSim) is a high-level advanced vehicle powertrain systems analysis tool supported by the U.S. Department of Energy’s Vehicle Technologies Office. FASTSim provides a quick and simple approach to compare powertrains and estimate the impact of technology improvements on light- and heavy-duty vehicle efficiency, performance, cost, and battery batches of real-world drive cycles. FASTSim’s calculation framework and balance among detail, accuracy, and speed enable it to simulate thousands of driven miles in minutes. The key components and vehicle outputs have been validated by comparing the model outputs to test data for many different vehicles to provide confidence in the results. A graphical user interface makes FASTSim easy and efficient to use. FASTSim is freely available for download from the National Renewable Energy Laboratory’s website (see www.nrel.gov/fastsim).

  9. A Vehicle Active Safety Model: Vehicle Speed Control Based on Driver Vigilance Detection Using Wearable EEG and Sparse Representation

    Directory of Open Access Journals (Sweden)

    Zutao Zhang

    2016-02-01

    Full Text Available In this paper, we present a vehicle active safety model for vehicle speed control based on driver vigilance detection using low-cost, comfortable, wearable electroencephalographic (EEG sensors and sparse representation. The proposed system consists of three main steps, namely wireless wearable EEG collection, driver vigilance detection, and vehicle speed control strategy. First of all, a homemade low-cost comfortable wearable brain-computer interface (BCI system with eight channels is designed for collecting the driver’s EEG signal. Second, wavelet de-noising and down-sample algorithms are utilized to enhance the quality of EEG data, and Fast Fourier Transformation (FFT is adopted to extract the EEG power spectrum density (PSD. In this step, sparse representation classification combined with k-singular value decomposition (KSVD is firstly introduced in PSD to estimate the driver’s vigilance level. Finally, a novel safety strategy of vehicle speed control, which controls the electronic throttle opening and automatic braking after driver fatigue detection using the above method, is presented to avoid serious collisions and traffic accidents. The simulation and practical testing results demonstrate the feasibility of the vehicle active safety model.

  10. Investigation Into The Model Of The Vehicle System For Speed Support

    Directory of Open Access Journals (Sweden)

    Jurij Grigorovič

    2013-12-01

    Full Text Available The paper presents a rectilinear motion of a car modelled applyingsoftware package “Matlab/Simulink“ where two vehicles aremoving simultaneously one after the other. The parameters ofeach vehicle have been identified separately assessing a driver,road and environment.

  11. Analysis of crashes using FE vehicle models. Relations between vehicle types and crash characteristics; Yugen yoso model wo mochiita sharyo no shototsu kaiseki. Sharyo type to shototsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Takatori, O. [Japan Automobile Research Institute Inc., Tsukuba (Japan)

    2000-01-01

    The objective of this study is to analyze the crash characteristics of vehicles under the condition of real-world accidents. This paper pays attention to the differences in the crash characteristics of a vehicle colliding with a vehicle which is a different type. Vehicles on the market can be divided broadly into two vehicle structures, monocoque structure and frame structure. Monocoque structure is mainly used for passenger vehicles and frame structure is for recreational vehicles (RV). In recent years, RV has been a large seller on the market. So accidents between passenger vehicles and a RVs occur frequently. The analysis of experimental data and computer simulation, which is predicated on the experimental data, was carried out for this study. In the analysis of experimental data, barrier force data from the New Car Assessment Program (NCAP) were analyzed. The FE passenger vehicle model which is based on systematic validation tests was used for the computer simulation of car-to-car collisions. (author)

  12. Nonlinear model predictive control of a passenger vehicle for automated lane changes

    NARCIS (Netherlands)

    Acosta, A.F.; Marquez-Ruiz, A.; Espinosa, J.J.

    2017-01-01

    This article presents a nonlinear Model Predictive Control (MPC) for lane changes, based on a simplified Single Track Model (STM) of the vehicle. The STM includes the position of the vehicle in global coordinates as a state so that the position of the target lane can be specified to the MPC for

  13. EXPERIENCES WITH ACQUIRING HIGHLY REDUNDANT SPATIAL DATA TO SUPPORT DRIVERLESS VEHICLE TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Z. Koppanyi

    2018-05-01

    Full Text Available As vehicle technology is moving towards higher autonomy, the demand for highly accurate geospatial data is rapidly increasing, as accurate maps have a huge potential of increasing safety. In particular, high definition 3D maps, including road topography and infrastructure, as well as city models along the transportation corridors represent the necessary support for driverless vehicles. In this effort, a vehicle equipped with high-, medium- and low-resolution active and passive cameras acquired data in a typical traffic environment, represented here by the OSU campus, where GPS/GNSS data are available along with other navigation sensor data streams. The data streams can be used for two purposes. First, high-definition 3D maps can be created by integrating all the sensory data, and Data Analytics/Big Data methods can be tested for automatic object space reconstruction. Second, the data streams can support algorithmic research for driverless vehicle technologies, including object avoidance, navigation/positioning, detecting pedestrians and bicyclists, etc. Crucial cross-performance analyses on map database resolution and accuracy with respect to sensor performance metrics to achieve economic solution for accurate driverless vehicle positioning can be derived. These, in turn, could provide essential information on optimizing the choice of geospatial map databases and sensors’ quality to support driverless vehicle technologies. The paper reviews the data acquisition and primary data processing challenges and performance results.

  14. Experiences with Acquiring Highly Redundant Spatial Data to Support Driverless Vehicle Technologies

    Science.gov (United States)

    Koppanyi, Z.; Toth, C. K.

    2018-05-01

    As vehicle technology is moving towards higher autonomy, the demand for highly accurate geospatial data is rapidly increasing, as accurate maps have a huge potential of increasing safety. In particular, high definition 3D maps, including road topography and infrastructure, as well as city models along the transportation corridors represent the necessary support for driverless vehicles. In this effort, a vehicle equipped with high-, medium- and low-resolution active and passive cameras acquired data in a typical traffic environment, represented here by the OSU campus, where GPS/GNSS data are available along with other navigation sensor data streams. The data streams can be used for two purposes. First, high-definition 3D maps can be created by integrating all the sensory data, and Data Analytics/Big Data methods can be tested for automatic object space reconstruction. Second, the data streams can support algorithmic research for driverless vehicle technologies, including object avoidance, navigation/positioning, detecting pedestrians and bicyclists, etc. Crucial cross-performance analyses on map database resolution and accuracy with respect to sensor performance metrics to achieve economic solution for accurate driverless vehicle positioning can be derived. These, in turn, could provide essential information on optimizing the choice of geospatial map databases and sensors' quality to support driverless vehicle technologies. The paper reviews the data acquisition and primary data processing challenges and performance results.

  15. The Bekker Model Analysis for Small Robotic Vehicles

    National Research Council Canada - National Science Library

    Gerhart, Grant R

    2004-01-01

    .... This formalism consists of two fundamental equations. The first uses the Coulomb-Mohr law and a linear, one degree of freedom spring/mass/damper model to predict terrain shear rates from maximum vehicle tractive effort...

  16. On the required complexity of vehicle dynamic models for use in simulation-based highway design.

    Science.gov (United States)

    Brown, Alexander; Brennan, Sean

    2014-06-01

    This paper presents the results of a comprehensive project whose goal is to identify roadway design practices that maximize the margin of safety between the friction supply and friction demand. This study is motivated by the concern for increased accident rates on curves with steep downgrades, geometries that contain features that interact in all three dimensions - planar curves, grade, and superelevation. This complexity makes the prediction of vehicle skidding quite difficult, particularly for simple simulation models that have historically been used for road geometry design guidance. To obtain estimates of friction margin, this study considers a range of vehicle models, including: a point-mass model used by the American Association of State Highway Transportation Officials (AASHTO) design policy, a steady-state "bicycle model" formulation that considers only per-axle forces, a transient formulation of the bicycle model commonly used in vehicle stability control systems, and finally, a full multi-body simulation (CarSim and TruckSim) regularly used in the automotive industry for high-fidelity vehicle behavior prediction. The presence of skidding--the friction demand exceeding supply--was calculated for each model considering a wide range of vehicles and road situations. The results indicate that the most complicated vehicle models are generally unnecessary for predicting skidding events. However, there are specific maneuvers, namely braking events within lane changes and curves, which consistently predict the worst-case friction margins across all models. This suggests that any vehicle model used for roadway safety analysis should include the effects of combined cornering and braking. The point-mass model typically used by highway design professionals may not be appropriate to predict vehicle behavior on high-speed curves during braking in low-friction situations. However, engineers can use the results of this study to help select the appropriate vehicle dynamic

  17. Modeling Powered Aerodynamics for the Orion Launch Abort Vehicle Aerodynamic Database

    Science.gov (United States)

    Chan, David T.; Walker, Eric L.; Robinson, Philip E.; Wilson, Thomas M.

    2011-01-01

    Modeling the aerodynamics of the Orion Launch Abort Vehicle (LAV) has presented many technical challenges to the developers of the Orion aerodynamic database. During a launch abort event, the aerodynamic environment around the LAV is very complex as multiple solid rocket plumes interact with each other and the vehicle. It is further complicated by vehicle separation events such as between the LAV and the launch vehicle stack or between the launch abort tower and the crew module. The aerodynamic database for the LAV was developed mainly from wind tunnel tests involving powered jet simulations of the rocket exhaust plumes, supported by computational fluid dynamic simulations. However, limitations in both methods have made it difficult to properly capture the aerodynamics of the LAV in experimental and numerical simulations. These limitations have also influenced decisions regarding the modeling and structure of the aerodynamic database for the LAV and led to compromises and creative solutions. Two database modeling approaches are presented in this paper (incremental aerodynamics and total aerodynamics), with examples showing strengths and weaknesses of each approach. In addition, the unique problems presented to the database developers by the large data space required for modeling a launch abort event illustrate the complexities of working with multi-dimensional data.

  18. Modeling vehicle operating speed on urban roads in Montreal: a panel mixed ordered probit fractional split model.

    Science.gov (United States)

    Eluru, Naveen; Chakour, Vincent; Chamberlain, Morgan; Miranda-Moreno, Luis F

    2013-10-01

    Vehicle operating speed measured on roadways is a critical component for a host of analysis in the transportation field including transportation safety, traffic flow modeling, roadway geometric design, vehicle emissions modeling, and road user route decisions. The current research effort contributes to the literature on examining vehicle speed on urban roads methodologically and substantively. In terms of methodology, we formulate a new econometric model framework for examining speed profiles. The proposed model is an ordered response formulation of a fractional split model. The ordered nature of the speed variable allows us to propose an ordered variant of the fractional split model in the literature. The proposed formulation allows us to model the proportion of vehicles traveling in each speed interval for the entire segment of roadway. We extend the model to allow the influence of exogenous variables to vary across the population. Further, we develop a panel mixed version of the fractional split model to account for the influence of site-specific unobserved effects. The paper contributes substantively by estimating the proposed model using a unique dataset from Montreal consisting of weekly speed data (collected in hourly intervals) for about 50 local roads and 70 arterial roads. We estimate separate models for local roads and arterial roads. The model estimation exercise considers a whole host of variables including geometric design attributes, roadway attributes, traffic characteristics and environmental factors. The model results highlight the role of various street characteristics including number of lanes, presence of parking, presence of sidewalks, vertical grade, and bicycle route on vehicle speed proportions. The results also highlight the presence of site-specific unobserved effects influencing the speed distribution. The parameters from the modeling exercise are validated using a hold-out sample not considered for model estimation. The results indicate

  19. The Bekker Model Analysis for Small Robotic Vehicles

    National Research Council Canada - National Science Library

    Gerhart, Grant R

    2004-01-01

    .... This formalism consists or two fundamental equations. The ii ret uses the Coulomb-Mohr law and a linear, one degree or freedom spring/mass/damper model to predict terrain shear rates from maximum vehicle tractive effort...

  20. Development and demonstration of a validation methodology for vehicle lateral dynamics simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Kutluay, Emir

    2013-02-01

    In this thesis a validation methodology to be used in the assessment of the vehicle dynamics simulation models is presented. Simulation of vehicle dynamics is used to estimate the dynamic responses of existing or proposed vehicles and has a wide array of applications in the development of vehicle technologies. Although simulation environments, measurement tools and mathematical theories on vehicle dynamics are well established, the methodical link between the experimental test data and validity analysis of the simulation model is still lacking. The developed validation paradigm has a top-down approach to the problem. It is ascertained that vehicle dynamics simulation models can only be validated using test maneuvers although they are aimed for real world maneuvers. Test maneuvers are determined according to the requirements of the real event at the start of the model development project and data handling techniques, validation metrics and criteria are declared for each of the selected maneuvers. If the simulation results satisfy these criteria, then the simulation is deemed ''not invalid''. If the simulation model fails to meet the criteria, the model is deemed invalid, and model iteration should be performed. The results are analyzed to determine if the results indicate a modeling error or a modeling inadequacy; and if a conditional validity in terms of system variables can be defined. Three test cases are used to demonstrate the application of the methodology. The developed methodology successfully identified the shortcomings of the tested simulation model, and defined the limits of application. The tested simulation model is found to be acceptable but valid only in a certain dynamical range. Several insights for the deficiencies of the model are reported in the analysis but the iteration step of the methodology is not demonstrated. Utilizing the proposed methodology will help to achieve more time and cost efficient simulation projects with

  1. Hybrid Electric Vehicle Experimental Model with CAN Network Real Time Control

    Directory of Open Access Journals (Sweden)

    RATOI, M.

    2010-05-01

    Full Text Available In this paper an experimental model with a distributed control system of a hybrid electrical vehicle is presented. A communication CAN network of high speed (1 Mbps assures a distributed control of the all components. The modeling and the control of different operating regimes are realized on an experimental test-bench of a hybrid electrical vehicle. The experimental results concerning the variations of the mains variables (currents, torques, speeds are presented.

  2. Regional on-road vehicle running emissions modeling and evaluation for conventional and alternative vehicle technologies.

    Science.gov (United States)

    Frey, H Christopher; Zhai, Haibo; Rouphail, Nagui M

    2009-11-01

    This study presents a methodology for estimating high-resolution, regional on-road vehicle emissions and the associated reductions in air pollutant emissions from vehicles that utilize alternative fuels or propulsion technologies. The fuels considered are gasoline, diesel, ethanol, biodiesel, compressed natural gas, hydrogen, and electricity. The technologies considered are internal combustion or compression engines, hybrids, fuel cell, and electric. Road link-based emission models are developed using modal fuel use and emission rates applied to facility- and speed-specific driving cycles. For an urban case study, passenger cars were found to be the largest sources of HC, CO, and CO(2) emissions, whereas trucks contributed the largest share of NO(x) emissions. When alternative fuel and propulsion technologies were introduced in the fleet at a modest market penetration level of 27%, their emission reductions were found to be 3-14%. Emissions for all pollutants generally decreased with an increase in the market share of alternative vehicle technologies. Turnover of the light duty fleet to newer Tier 2 vehicles reduced emissions of HC, CO, and NO(x) substantially. However, modest improvements in fuel economy may be offset by VMT growth and reductions in overall average speed.

  3. Simulating the value of electric-vehicle-grid integration using a behaviourally realistic model

    Science.gov (United States)

    Wolinetz, Michael; Axsen, Jonn; Peters, Jotham; Crawford, Curran

    2018-02-01

    Vehicle-grid integration (VGI) uses the interaction between electric vehicles and the electrical grid to provide benefits that may include reducing the cost of using intermittent renwable electricity or providing a financial incentive for electric vehicle ownerhip. However, studies that estimate the value of VGI benefits have largely ignored how consumer behaviour will affect the magnitude of the impact. Here, we simulate the long-term impact of VGI using behaviourally realistic and empirically derived models of vehicle adoption and charging combined with an electricity system model. We focus on the case where a central entity manages the charging rate and timing for participating electric vehicles. VGI is found not to increase the adoption of electric vehicles, but does have a a small beneficial impact on electricity prices. By 2050, VGI reduces wholesale electricity prices by 0.6-0.7% (0.7 MWh-1, 2010 CAD) relative to an equivalent scenario without VGI. Excluding consumer behaviour from the analysis inflates the value of VGI.

  4. An Integrated Model of Motion, Steering, Positioning and Stabilization of an Unmanned Autonomous Maritime Vehicle

    Directory of Open Access Journals (Sweden)

    Miroslaw Gerigk

    2015-12-01

    Full Text Available In the paper the aim of an interdisciplinary research is presented. The research method is introduced. An object the unmanned autonomous maritime vehicle is briefly described. The key research problem concerns a combined model of the vehicle motion including the loads of lift and hydrodynamic nature. The model takes into account the gravity and displacement forces, resistance and thrust forces, lift and other hydrodynamic forces. One of the major research tasks is to precisely predict the position of the vehicle. To do that an integrated model of acquiring, analyzing and processing the signals is necessary. The processed signals may then be used for the precise steering of the vehicle. The vehicle should be equipped with a stabilization system. Some information on an integrated steering, positioning and stabilization system of the vehicle is briefly presented in the paper. Such the system enables to obtain a fully autonomous vehicle. Some information on the propulsion and underwater energy supply systems are presented in the paper, too.

  5. Quasi steady-state aerodynamic model development for race vehicle simulations

    Science.gov (United States)

    Mohrfeld-Halterman, J. A.; Uddin, M.

    2016-01-01

    Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.

  6. Climate control loads prediction of electric vehicles

    International Nuclear Information System (INIS)

    Zhang, Ziqi; Li, Wanyong; Zhang, Chengquan; Chen, Jiangping

    2017-01-01

    Highlights: • A model of vehicle climate control loads is proposed based on experiments. • Main climate control loads of the modeled vehicle are quantitatively analyzed. • Range reductions of the modeled vehicle under different conditions are simulated. - Abstract: A new model of electric vehicle climate control loads is provided in this paper. The mathematical formulations of the major climate control loads are developed, and the coefficients of the formulations are experimentally determined. Then, the detailed climate control loads are analyzed, and the New European Driving Cycle (NEDC) range reductions due to these loads are calculated under different conditions. It is found that in an electric vehicle, the total climate control loads vary with the vehicle speed, HVAC mode and blower level. The ventilation load is the largest climate control load, followed by the solar radiation load. These two add up to more than 80% of total climate control load in summer. The ventilation load accounts for 70.7–83.9% of total heating load under the winter condition. The climate control loads will cause a 17.2–37.1% reduction of NEDC range in summer, and a 17.1–54.1% reduction in winter, compared to the AC off condition. The heat pump system has an advantage in range extension. A heat pump system with an average heating COP of 1.7 will extend the range by 7.6–21.1% based on the simulation conditions.

  7. A model predictive speed tracking control approach for autonomous ground vehicles

    Science.gov (United States)

    Zhu, Min; Chen, Huiyan; Xiong, Guangming

    2017-03-01

    This paper presents a novel speed tracking control approach based on a model predictive control (MPC) framework for autonomous ground vehicles. A switching algorithm without calibration is proposed to determine the drive or brake control. Combined with a simple inverse longitudinal vehicle model and adaptive regulation of MPC, this algorithm can make use of the engine brake torque for various driving conditions and avoid high frequency oscillations automatically. A simplified quadratic program (QP) solving algorithm is used to reduce the computational time, and the approach has been applied in a 16-bit microcontroller. The performance of the proposed approach is evaluated via simulations and vehicle tests, which were carried out in a range of speed-profile tracking tasks. With a well-designed system structure, high-precision speed control is achieved. The system can robustly model uncertainty and external disturbances, and yields a faster response with less overshoot than a PI controller.

  8. Research on safety evaluation model for in-vehicle secondary task driving.

    Science.gov (United States)

    Jin, Lisheng; Xian, Huacai; Niu, Qingning; Bie, Jing

    2015-08-01

    This paper presents a new method for evaluating in-vehicle secondary task driving safety. There are five in-vehicle distracter tasks: tuning the radio to a local station, touching the touch-screen telephone menu to a certain song, talking with laboratory assistant, answering a telephone via Bluetooth headset, and finding the navigation system from Ipad4 computer. Forty young drivers completed the driving experiment on a driving simulator. Measures of fixations, saccades, and blinks are collected and analyzed. Based on the measures of driver eye movements which have significant difference between the baseline and secondary task driving conditions, the evaluation index system is built. The Analytic Network Process (ANP) theory is applied for determining the importance weight of the evaluation index in a fuzzy environment. On the basis of the importance weight of the evaluation index, Fuzzy Comprehensive Evaluation (FCE) method is utilized to evaluate the secondary task driving safety. Results show that driving with secondary tasks greatly distracts the driver's attention from road and the evaluation model built in this study could estimate driving safety effectively under different driving conditions. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  9. Vibration Analysis of 5-DOF Vehicle Model under Stochastic Road Surface Excitation

    Directory of Open Access Journals (Sweden)

    Zhang Yanlong

    2016-01-01

    Full Text Available Considering human body vertical motion, vehicle body vertical motion, pitch movement and vertical jump of front and rear wheels, a five-degree-of-freedom vehicle model is established to study basic driving characteristics of the vehicle. Using Fourier transform method, acceleration power spectral density of the seat and the mean square value curves of seat vertical weighted acceleration are obtained by numerical simulation. Combined with comfort provision standards, the influence of vehicle model parameters and speed on seat acceleration power spectral density and vertical root-mean-square value of seat weighted acceleration are analyzed. Results show that the stiffness and damping of the seat have no significant effect on seat acceleration power spectral density, and seat acceleration PSD increases with increasing front or rear suspension stiffness, but it decreases with increasing front or rear suspension damping. It should also be concluded that the model stiffness and the mean square value of seat vertical weighted acceleration present positive correlation in general, but seat vertical weighted acceleration decrease first and then increase when model damping increase. Such analysis results can provide reference for the parameter optimization design of the automobile.

  10. The wheel-rail contact friction influence on high speed vehicle model stability

    Directory of Open Access Journals (Sweden)

    Mirosław DUSZA

    2015-09-01

    Full Text Available Right estimating of the coefficient of friction between the wheel and rail is essential in modelling rail vehicle dynamics. Constant value of coefficient of friction is the typical assumption in theoretical studies. But it is obvious that in real circumstances a few factors may have significant influence on the rails surface condition and this way on the coefficient of friction value. For example the weather condition, the railway location etc. Influence of the coefficient of friction changes on high speed rail vehicle model dynamics is presented in this paper. Four axle rail vehicle model were built. The FASTSIM code is employed for calculation of the tangential contact forces between wheel and rail. One coefficient of friction value is adopted in the particular simulation process. To check the vehicle model properties under the influence of wheel-rail coefficient of friction changes, twenty four series of simulations were performed. For three curved tracks of radii R = 3000m, 6000m and  (straight track, the coefficient of friction was changed from 0.1 to 0.8. The results are presented in form of bifurcation diagrams.

  11. Model-predictive control based on Takagi-Sugeno fuzzy model for electrical vehicles delayed model

    DEFF Research Database (Denmark)

    Khooban, Mohammad-Hassan; Vafamand, Navid; Niknam, Taher

    2017-01-01

    Electric vehicles (EVs) play a significant role in different applications, such as commuter vehicles and short distance transport applications. This study presents a new structure of model-predictive control based on the Takagi-Sugeno fuzzy model, linear matrix inequalities, and a non......-quadratic Lyapunov function for the speed control of EVs including time-delay states and parameter uncertainty. Experimental data, using the Federal Test Procedure (FTP-75), is applied to test the performance and robustness of the suggested controller in the presence of time-varying parameters. Besides, a comparison...... is made between the results of the suggested robust strategy and those obtained from some of the most recent studies on the same topic, to assess the efficiency of the suggested controller. Finally, the experimental results based on a TMS320F28335 DSP are performed on a direct current motor. Simulation...

  12. Development of Matlab Simulink model for dynamics analysis of passive suspension system for lightweight vehicle

    Science.gov (United States)

    Jamali, M. S.; Ismail, K. A.; Taha, Z.; Aiman, M. F.

    2017-10-01

    In designing suitable isolators to reduce unwanted vibration in vehicles, the response from a mathematical model which characterizes the transmissibility ratio of the input and output of the vehicle is required. In this study, a Matlab Simulink model is developed to study the dynamic behaviour performance of passive suspension system for a lightweight electric vehicle. The Simulink model is based on the two degrees of freedom system quarter car model. The model is compared to the theoretical plots of the transmissibility ratios between the amplitudes of the displacements and accelerations of the sprung and unsprung masses to the amplitudes of the ground, against the frequencies at different damping values. It was found that the frequency responses obtained from the theoretical calculations and from the Simulink simulation is comparable to each other. Hence, the model may be extended to a full vehicle model.

  13. Modelling energy demand for a fleet of hydrogen-electric vehicles interacting with a clean energy hub

    International Nuclear Information System (INIS)

    Syed, F.; Fowler, M.; Wan, D.; Maniyali, Y.

    2009-01-01

    This paper details the development of an energy demand model for a hydrogen-electric vehicle fleet and the modelling of the fleet interactions with a clean energy hub. The approach taken is to model the architecture and daily operation of every individual vehicle in the fleet. A generic architecture was developed based on understanding gained from existing detailed models used in vehicle powertrain design, with daily operation divided into two periods: charging and travelling. During the charging period, the vehicle charges its Electricity Storage System (ESS) and refills its Hydrogen Storage System (HSS), and during the travelling period, the vehicle depletes the ESS and HSS based on distance travelled. Daily travel distance is generated by a stochastic model and is considered an input to the fleet model. The modelling of a clean energy hub is also presented. The clean energy hub functions as an interface between electricity supply and the energy demand (i.e. hydrogen and electricity) of the vehicle fleet. Finally, a sample case is presented to demonstrate the use of the fleet model and its implications on clean energy hub sizing. (author)

  14. On-Road Vehicle Recognition Using the Symmetry Property and Snake Models

    Directory of Open Access Journals (Sweden)

    Shumin Liu

    2013-12-01

    Full Text Available Vehicle recognition is a fundamental task for advanced driver assistance systems and contributes to the avoidance of collisions with other vehicles. In recent years, numerous approaches using monocular image analysis have been reported for vehicle detection. These approaches are primarily applied in motorway scenarios and may not be suitable for complex urban traffic with a diversity of obstacles and a clustered background. In this paper, stereovision is firstly used to segment potential vehicles from the traffic background. Given that the contour curve is the most straightforward cue for object recognition, we present here a novel method for complete contour curve extraction using symmetry properties and a snake model. Finally, two shape factors, including the aspect ratio and the area ratio calculated from the contour curve, are used to judge whether the object detected is a vehicle or not. The approach presented here was tested with substantial urban traffic images and the experimental results demonstrated that the correction rate for vehicle recognition reaches 93%.

  15. Methodology for assessing electric vehicle charging infrastructure business models

    International Nuclear Information System (INIS)

    Madina, Carlos; Zamora, Inmaculada; Zabala, Eduardo

    2016-01-01

    The analysis of economic implications of innovative business models in networked environments, as electro-mobility is, requires a global approach to ensure that all the involved actors obtain a benefit. Although electric vehicles (EVs) provide benefits for the society as a whole, there are a number of hurdles for their widespread adoption, mainly the high investment cost for the EV and for the infrastructure. Therefore, a sound business model must be built up for charging service operators, which allows them to recover their costs while, at the same time, offer EV users a charging price which makes electro-mobility comparable to internal combustion engine vehicles. For that purpose, three scenarios are defined, which present different EV charging alternatives, in terms of charging power and charging station ownership and accessibility. A case study is presented for each scenario and the required charging station usage to have a profitable business model is calculated. We demonstrate that private home charging is likely to be the preferred option for EV users who can charge at home, as it offers a lower total cost of ownership under certain conditions, even today. On the contrary, finding a profitable business case for fast charging requires more intensive infrastructure usage. - Highlights: • Ecosystem is a network of actors who collaborate to create a positive business case. • Electro-mobility (electricity-powered road vehicles and ICT) is a complex ecosystem. • Methodological analysis to ensure that all actors benefit from electro-mobility. • Economic analysis of charging infrastructure deployment linked to its usage. • Comparison of EV ownership cost vs. ICE for vehicle users.

  16. SIMPLIFIED MATHEMATICAL MODEL OF SMALL SIZED UNMANNED AIRCRAFT VEHICLE LAYOUT

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available Strong reduction of new aircraft design period using new technology based on artificial intelligence is the key problem mentioned in forecasts of leading aerospace industry research centers. This article covers the approach to devel- opment of quick aerodynamic design methods based on artificial intelligence neural system. The problem is being solved for the classical scheme of small sized unmanned aircraft vehicle (UAV. The principal parts of the method are the mathe- matical model of layout, layout generator of this type of aircraft is built on aircraft neural networks, automatic selection module for cleaning variety of layouts generated in automatic mode, robust direct computational fluid dynamics method, aerodynamic characteristics approximators on artificial neural networks.Methods based on artificial neural networks have intermediate position between computational fluid dynamics methods or experiments and simplified engineering approaches. The use of ANN for estimating aerodynamic characteris-tics put limitations on input data. For this task the layout must be presented as a vector with dimension not exceeding sev-eral hundred. Vector components must include all main parameters conventionally used for layouts description and com- pletely replicate the most important aerodynamics and structural properties.The first stage of the work is presented in the paper. Simplified mathematical model of small sized UAV was developed. To estimate the range of geometrical parameters of layouts the review of existing vehicle was done. The result of the work is the algorithm and computer software for generating the layouts based on ANN technolo-gy. 10000 samples were generated and the dataset containig geometrical and aerodynamic characteristics of layoutwas created.

  17. Modeling of in-vehicle magnetic refrigeration

    DEFF Research Database (Denmark)

    Olsen, Ulrik Lund; Bahl, Christian R.H.; Engelbrecht, Kurt

    2014-01-01

    A high-performance magnetic refrigeration device is considered as a potential technology for in-vehicle air conditioners in electric vehicles. The high power consumption of a conventional air conditioner in an electric vehicle has considerable impacts on cruising distance. For this purpose...

  18. Modeling of In-vehicle Magnetic refrigeration

    DEFF Research Database (Denmark)

    Olsen, Ulrik Lund; Bahl, Christian; Engelbrecht, Kurt

    2012-01-01

    A high-performance magnetic refrigeration device is considered as a potential technology for in-vehicle air conditioners in electric vehicles. The high power consumption of a conventional air conditioner in an electric vehicle has considerable impacts on cruising distance. For this purpose...

  19. New evidence concerning fatal crashes of passenger vehicles before and after adding antilock braking systems.

    Science.gov (United States)

    Farmer, C M

    2001-05-01

    Fatal crash rates for passenger cars and vans were compared for the last model year before four-wheel antilock brakes were introduced and the first model year for which antilock brakes were standard equipment. A prior study, based on fatal crash experience through 1995, reported that vehicle models with antilock brakes were more likely than identical but 1-year-earlier models to be involved in crashes fatal to their own occupants, but were less likely to be involved in crashes fatal to occupants of other vehicles. Overall, there was no significant effect of antilocks on the likelihood of fatal crashes. Similar analyses, based on fatal crash experience during 1996-98, yielded very different results. During 1996-98, vehicles with antilock brakes were again less likely than earlier models to be involved in crashes fatal to occupants of other vehicles, but they were no longer overinvolved in crashes fatal to their own occupants.

  20. Intelligent model-based diagnostics for vehicle health management

    Science.gov (United States)

    Luo, Jianhui; Tu, Fang; Azam, Mohammad S.; Pattipati, Krishna R.; Willett, Peter K.; Qiao, Liu; Kawamoto, Masayuki

    2003-08-01

    The recent advances in sensor technology, remote communication and computational capabilities, and standardized hardware/software interfaces are creating a dramatic shift in the way the health of vehicles is monitored and managed. These advances facilitate remote monitoring, diagnosis and condition-based maintenance of automotive systems. With the increased sophistication of electronic control systems in vehicles, there is a concomitant increased difficulty in the identification of the malfunction phenomena. Consequently, the current rule-based diagnostic systems are difficult to develop, validate and maintain. New intelligent model-based diagnostic methodologies that exploit the advances in sensor, telecommunications, computing and software technologies are needed. In this paper, we will investigate hybrid model-based techniques that seamlessly employ quantitative (analytical) models and graph-based dependency models for intelligent diagnosis. Automotive engineers have found quantitative simulation (e.g. MATLAB/SIMULINK) to be a vital tool in the development of advanced control systems. The hybrid method exploits this capability to improve the diagnostic system's accuracy and consistency, utilizes existing validated knowledge on rule-based methods, enables remote diagnosis, and responds to the challenges of increased system complexity. The solution is generic and has the potential for application in a wide range of systems.

  1. High performance modeling of atmospheric re-entry vehicles

    International Nuclear Information System (INIS)

    Martin, Alexandre; Scalabrin, Leonardo C; Boyd, Iain D

    2012-01-01

    Re-entry vehicles designed for space exploration are usually equipped with thermal protection systems made of ablative material. In order to properly model and predict the aerothermal environment of the vehicle, it is imperative to account for the gases produced by ablation processes. In the case of charring ablators, where an inner resin is pyrolyzed at a relatively low temperature, the composition of the gas expelled into the boundary layer is complex and may lead to thermal chemical reactions that cannot be captured with simple flow chemistry models. In order to obtain better predictions, an appropriate gas flow chemistry model needs to be included in the CFD calculations. Using a recently developed chemistry model for ablating carbon-phenolic-in-air species, a CFD calculation of the Stardust re-entry at 71 km is presented. The code used for that purpose has been designed to take advantage of the nature of the problem and therefore remains very efficient when a high number of chemical species are involved. The CFD result demonstrates the need for such chemistry model when modeling the flow field around an ablative material. Modeling of the nonequilibrium radiation spectra is also presented, and compared to the experimental data obtained during Stardust re-entry by the Echelle instrument. The predicted emission from the CN lines compares quite well with the experimental results, demonstrating the validity of the current approach.

  2. A cellular automata model for traffic flow based on kinetics theory, vehicles capabilities and driver reactions

    Science.gov (United States)

    Guzmán, H. A.; Lárraga, M. E.; Alvarez-Icaza, L.; Carvajal, J.

    2018-02-01

    In this paper, a reliable cellular automata model oriented to faithfully reproduce deceleration and acceleration according to realistic reactions of drivers, when vehicles with different deceleration capabilities are considered is presented. The model focuses on describing complex traffic phenomena by coding in its rules the basic mechanisms of drivers behavior, vehicles capabilities and kinetics, while preserving simplicity. In particular, vehiclés kinetics is based on uniform accelerated motion, rather than in impulsive accelerated motion as in most existing CA models. Thus, the proposed model calculates in an analytic way three safe preserving distances to determine the best action a follower vehicle can take under a worst case scenario. Besides, the prediction analysis guarantees that under the proper assumptions, collision between vehicles may not happen at any future time. Simulations results indicate that all interactions of heterogeneous vehicles (i.e., car-truck, truck-car, car-car and truck-truck) are properly reproduced by the model. In addition, the model overcomes one of the major limitations of CA models for traffic modeling: the inability to perform smooth approach to slower or stopped vehicles. Moreover, the model is also capable of reproducing most empirical findings including the backward speed of the downstream front of the traffic jam, and different congested traffic patterns induced by a system with open boundary conditions with an on-ramp. Like most CA models, integer values are used to make the model run faster, which makes the proposed model suitable for real time traffic simulation of large networks.

  3. Dynamic modeling and ascent flight control of Ares-I Crew Launch Vehicle

    Science.gov (United States)

    Du, Wei

    This research focuses on dynamic modeling and ascent flight control of large flexible launch vehicles such as the Ares-I Crew Launch Vehicle (CLV). A complete set of six-degrees-of-freedom dynamic models of the Ares-I, incorporating its propulsion, aerodynamics, guidance and control, and structural flexibility, is developed. NASA's Ares-I reference model and the SAVANT Simulink-based program are utilized to develop a Matlab-based simulation and linearization tool for an independent validation of the performance and stability of the ascent flight control system of large flexible launch vehicles. A linearized state-space model as well as a non-minimum-phase transfer function model (which is typical for flexible vehicles with non-collocated actuators and sensors) are validated for ascent flight control design and analysis. This research also investigates fundamental principles of flight control analysis and design for launch vehicles, in particular the classical "drift-minimum" and "load-minimum" control principles. It is shown that an additional feedback of angle-of-attack can significantly improve overall performance and stability, especially in the presence of unexpected large wind disturbances. For a typical "non-collocated actuator and sensor" control problem for large flexible launch vehicles, non-minimum-phase filtering of "unstably interacting" bending modes is also shown to be effective. The uncertainty model of a flexible launch vehicle is derived. The robust stability of an ascent flight control system design, which directly controls the inertial attitude-error quaternion and also employs the non-minimum-phase filters, is verified by the framework of structured singular value (mu) analysis. Furthermore, nonlinear coupled dynamic simulation results are presented for a reference model of the Ares-I CLV as another validation of the feasibility of the ascent flight control system design. Another important issue for a single main engine launch vehicle is

  4. Hypersonic Vehicle Propulsion System Simplified Model Development

    Science.gov (United States)

    Stueber, Thomas J.; Raitano, Paul; Le, Dzu K.; Ouzts, Peter

    2007-01-01

    This document addresses the modeling task plan for the hypersonic GN&C GRC team members. The overall propulsion system modeling task plan is a multi-step process and the task plan identified in this document addresses the first steps (short term modeling goals). The procedures and tools produced from this effort will be useful for creating simplified dynamic models applicable to a hypersonic vehicle propulsion system. The document continues with the GRC short term modeling goal. Next, a general description of the desired simplified model is presented along with simulations that are available to varying degrees. The simulations may be available in electronic form (FORTRAN, CFD, MatLab,...) or in paper form in published documents. Finally, roadmaps outlining possible avenues towards realizing simplified model are presented.

  5. A proposed model of factors influencing hydrogen fuel cell vehicle acceptance

    Science.gov (United States)

    Imanina, N. H. Noor; Kwe Lu, Tan; Fadhilah, A. R.

    2016-03-01

    Issues such as environmental problem and energy insecurity keep worsening as a result of energy use from household to huge industries including automotive industry. Recently, a new type of zero emission vehicle, hydrogen fuel cell vehicle (HFCV) has received attention. Although there are argues on the feasibility of hydrogen as the future fuel, there is another important issue, which is the acceptance of HFCV. The study of technology acceptance in the early stage is a vital key for a successful introduction and penetration of a technology. This paper proposes a model of factors influencing green vehicle acceptance, specifically HFCV. This model is built base on two technology acceptance theories and other empirical studies of vehicle acceptance. It aims to provide a base for finding the key factors influencing new sustainable energy fuelled vehicle, HFCV acceptance which is achieved by explaining intention to accept HFCV. Intention is influenced by attitude, subjective norm and perceived behavioural control from Theory of Planned Behaviour and personal norm from Norm Activation Theory. In the framework, attitude is influenced by perceptions of benefits and risks, and social trust. Perceived behavioural control is influenced by government interventions. Personal norm is influenced by outcome efficacy and problem awareness.

  6. Will Automated Vehicles Negatively Impact Traffic Flow?

    Directory of Open Access Journals (Sweden)

    S. C. Calvert

    2017-01-01

    Full Text Available With low-level vehicle automation already available, there is a necessity to estimate its effects on traffic flow, especially if these could be negative. A long gradual transition will occur from manual driving to automated driving, in which many yet unknown traffic flow dynamics will be present. These effects have the potential to increasingly aid or cripple current road networks. In this contribution, we investigate these effects using an empirically calibrated and validated simulation experiment, backed up with findings from literature. We found that low-level automated vehicles in mixed traffic will initially have a small negative effect on traffic flow and road capacities. The experiment further showed that any improvement in traffic flow will only be seen at penetration rates above 70%. Also, the capacity drop appeared to be slightly higher with the presence of low-level automated vehicles. The experiment further investigated the effect of bottleneck severity and truck shares on traffic flow. Improvements to current traffic models are recommended and should include a greater detail and understanding of driver-vehicle interaction, both in conventional and in mixed traffic flow. Further research into behavioural shifts in driving is also recommended due to limited data and knowledge of these dynamics.

  7. "Can Vehicle-to-Grid Revenue Help Electric Vehicles on the Market?"

    OpenAIRE

    George R. Parsons; Michael K. Hidrue; Willett Kempton; Meryl P. Gardner

    2011-01-01

    Vehicle-to-grid (V2G) electric vehicles can return power stored in their batteries back to the power grid and be programmed to do so at times when power prices are high. Since providing this service can lead to payments to owners of vehicles, it effectively reduces the cost of electric vehicles. Using data from a national stated preference survey (n = 3029), this paper presents the first study of the potential consumer demand for V2G electric vehicles. In our choice experiment, 3029 responden...

  8. Li-NMC Batteries Model Evaluation with Experimental Data for Electric Vehicle Application

    Directory of Open Access Journals (Sweden)

    Aleksandra Baczyńska

    2018-02-01

    Full Text Available The aim of the paper is to present the battery equivalent circuit for electric vehicle application. Moreover, the model described below is dedicated to lithium-ion types of batteries. The purpose of this paper is to introduce an efficient and transparent method to develop a battery equivalent circuit model. Battery modeling requires, depending on the chosen method, either significant calculations or a highly developed mathematical model for optimization. The model is evaluated in comparison to the real data measurements, to present the performance of the method. Battery measurements based on charge/discharge tests at a fixed C-rate are presented to show the relation of the output voltage profiles with the battery state of charge. The pulse discharge test is presented to obtain the electric parameters of the battery equivalent circuit model, using a Thévenin circuit. According to the Reverse Trike Ecologic Electric Vehicle (VEECO RT characteristics used as a case study in this work, new values for vehicle autonomy and battery pack volume based on lithium nickel manganese cobalt oxide cells are evaluated.

  9. Changes in speed distribution: Applying aggregated safety effect models to individual vehicle speeds.

    Science.gov (United States)

    Vadeby, Anna; Forsman, Åsa

    2017-06-01

    This study investigated the effect of applying two aggregated models (the Power model and the Exponential model) to individual vehicle speeds instead of mean speeds. This is of particular interest when the measure introduced affects different parts of the speed distribution differently. The aim was to examine how the estimated overall risk was affected when assuming the models are valid on an individual vehicle level. Speed data from two applications of speed measurements were used in the study: an evaluation of movable speed cameras and a national evaluation of new speed limits in Sweden. The results showed that when applied on individual vehicle speed level compared with aggregated level, there was essentially no difference between these for the Power model in the case of injury accidents. However, for fatalities the difference was greater, especially for roads with new cameras where those driving fastest reduced their speed the most. For the case with new speed limits, the individual approach estimated a somewhat smaller effect, reflecting that changes in the 15th percentile (P15) were somewhat larger than changes in P85 in this case. For the Exponential model there was also a clear, although small, difference between applying the model to mean speed changes and individual vehicle speed changes when speed cameras were used. This applied both for injury accidents and fatalities. There were also larger effects for the Exponential model than for the Power model, especially for injury accidents. In conclusion, applying the Power or Exponential model to individual vehicle speeds is an alternative that provides reasonable results in relation to the original Power and Exponential models, but more research is needed to clarify the shape of the individual risk curve. It is not surprising that the impact on severe traffic crashes was larger in situations where those driving fastest reduced their speed the most. Further investigations on use of the Power and/or the

  10. Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter

    2010-01-01

    Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.

  11. Mathematical modelling of unmanned aerial vehicles

    International Nuclear Information System (INIS)

    Sarwar, S.; Rehman, S.U.

    2013-01-01

    UAVs (Unmanned Aerial Vehicles) UAVs are emerging as requirement of time and it is expected that in next five to ten years, complete air space will be flooded with UAVs, committed in varied assignments ranging from military, scientific and commercial usage. Non availability of human pilot inside UAV necessitates the requirement of an onboard auto pilot in order to maintain desired flight profile against any unexpected disturbance and/or parameter variations. Design of such an auto pilot requires an accurate mathematical model of UAV. The aim of this paper is to present a consolidated picture of UAV model. This paper first consolidates complete 6 DOF Degree of Freedom) equations of motion into a nonlinear mathematical model and its simulation using model parameters of a real UAV. Model is then linearized into longitudinal and lateral modes. State space models of linearized modes are simulated and analyzed for stability parameters. The developed model can be used to design auto pilot for UAV. (author)

  12. Modeling connected and autonomous vehicles in heterogeneous traffic flow

    Science.gov (United States)

    Ye, Lanhang; Yamamoto, Toshiyuki

    2018-01-01

    The objective of this study was to develop a heterogeneous traffic-flow model to study the possible impact of connected and autonomous vehicles (CAVs) on the traffic flow. Based on a recently proposed two-state safe-speed model (TSM), a two-lane cellular automaton (CA) model was developed, wherein both the CAVs and conventional vehicles were incorporated in the heterogeneous traffic flow. In particular, operation rules for CAVs are established considering the new characteristics of this emerging technology, including autonomous driving through the adaptive cruise control and inter-vehicle connection via short-range communication. Simulations were conducted under various CAV-penetration rates in the heterogeneous flow. The impact of CAVs on the road capacity was numerically investigated. The simulation results indicate that the road capacity increases with an increase in the CAV-penetration rate within the heterogeneous flow. Up to a CAV-penetration rate of 30%, the road capacity increases gradually; the effect of the difference in the CAV capability on the growth rate is insignificant. When the CAV-penetration rate exceeds 30%, the growth rate is largely decided by the capability of the CAV. The greater the capability, the higher the road-capacity growth rate. The relationship between the CAV-penetration rate and the road capacity is numerically analyzed, providing some insights into the possible impact of the CAVs on traffic systems.

  13. A heterogeneous fleet vehicle routing model for solving the LPG distribution problem: A case study

    International Nuclear Information System (INIS)

    Onut, S; Kamber, M R; Altay, G

    2014-01-01

    Vehicle Routing Problem (VRP) is an important management problem in the field of distribution and logistics. In VRPs, routes from a distribution point to geographically distributed points are designed with minimum cost and considering customer demands. All points should be visited only once and by one vehicle in one route. Total demand in one route should not exceed the capacity of the vehicle that assigned to that route. VRPs are varied due to real life constraints related to vehicle types, number of depots, transportation conditions and time periods, etc. Heterogeneous fleet vehicle routing problem is a kind of VRP that vehicles have different capacity and costs. There are two types of vehicles in our problem. In this study, it is used the real world data and obtained from a company that operates in LPG sector in Turkey. An optimization model is established for planning daily routes and assigned vehicles. The model is solved by GAMS and optimal solution is found in a reasonable time

  14. A heterogeneous fleet vehicle routing model for solving the LPG distribution problem: A case study

    Science.gov (United States)

    Onut, S.; Kamber, M. R.; Altay, G.

    2014-03-01

    Vehicle Routing Problem (VRP) is an important management problem in the field of distribution and logistics. In VRPs, routes from a distribution point to geographically distributed points are designed with minimum cost and considering customer demands. All points should be visited only once and by one vehicle in one route. Total demand in one route should not exceed the capacity of the vehicle that assigned to that route. VRPs are varied due to real life constraints related to vehicle types, number of depots, transportation conditions and time periods, etc. Heterogeneous fleet vehicle routing problem is a kind of VRP that vehicles have different capacity and costs. There are two types of vehicles in our problem. In this study, it is used the real world data and obtained from a company that operates in LPG sector in Turkey. An optimization model is established for planning daily routes and assigned vehicles. The model is solved by GAMS and optimal solution is found in a reasonable time.

  15. California's experience with alternative fuel vehicles

    International Nuclear Information System (INIS)

    Sullivan, C.

    1993-01-01

    California is often referred to as a nation-state, and in many aspects fits that description. The state represents the seventh largest economy in the world. Most of California does not have to worry about fuel to heat homes in the winter. What we do worry about is fuel for our motor vehicles, approximately 24 million of them. In fact, California accounts for ten percent of new vehicle sales in the United States each year, much of it used in the transportation sector. The state is the third largest consumer of gasoline in the world, only exceeded by the United States as a whole and the former Soviet Union. California is also a leader in air pollution. Of the nine worst ozone areas in the country cited in the 1990 Clean Air Act Amendments, two areas the Los Angeles Basin and San Diego are located in California. Five of California's cities made the top 20 smoggiest cities in the United States. In reality, all of California's major metropolitan areas have air quality problems. This paper will discuss the beginnings of California's investigations of alternative fuels use in vehicles; the results of the state's demonstration programs; and future plans to improve California's air quality and energy security in the mobile sector

  16. Hypersonic drone vehicle design: A multidisciplinary experience

    Science.gov (United States)

    1988-01-01

    UCLA's Advanced Aeronautic Design group focussed their efforts on design problems of an unmanned hypersonic vehicle. It is felt that a scaled hypersonic drone is necesary to bridge the gap between present theory on hypersonics and the future reality of the National Aerospace Plane (NASP) for two reasons: (1) to fulfill a need for experimental data in the hypersonic regime, and (2) to provide a testbed for the scramjet engine which is to be the primary mode of propulsion for the NASP. The group concentrated on three areas of great concern to NASP design: propulsion, thermal management, and flight systems. Problem solving in these areas was directed toward design of the drone with the idea that the same design techniques could be applied to the NASP. A 70 deg swept double-delta wing configuration, developed in the 70's at the NASA Langley, was chosen as the aerodynamic and geometric model for the drone. This vehicle would be air launched from a B-1 at Mach 0.8 and 48,000 feet, rocket boosted by two internal engines to Mach 10 and 100,000 feet, and allowed to cruise under power of the scramjet engine until burnout. It would then return to base for an unpowered landing. Preliminary energy calculations based on flight requirements give the drone a gross launch weight of 134,000 pounds and an overall length of 85 feet.

  17. A system model for assessing vehicle use-phase water consumption in urban mobility networks

    International Nuclear Information System (INIS)

    Yen, Jeff; Bras, Bert

    2012-01-01

    Water consumption is emerging as an important issue potentially influencing the composition of future urban transportation networks, especially as projected urban populations are expected to outpace water availability and as alternative fuels and vehicles are being implemented in such regions. National and State policies aimed at reducing dependence on imported fuels and energy can increase local production of fuels and energy, impacting demand on local water resources. This article details the development of a model-based assessment on water consumption and withdrawal pertaining to the use-phase of conventional and alternative transportation modes based on regional energy and fuel production. An extensive literature review details water consumption from fuel extraction, processing, and distribution as well as power plant operations. Using Model-Based Systems Engineering principles and the Systems Modeling Language, a multi-level, multi-modal framework was developed and applied to the Metro Atlanta transportation system consisting of conventional and alternative vehicles across varying conditions. According to the analysis, vehicles powered by locally produced biofuels and electricity (assuming average local grid mix for charging) consume more water than locally refined gasoline and CNG-powered vehicles. Improvements in power plant technologies, electricity generation (e.g., use of solar and wind versus hydro power) and vehicle efficiencies can reduce such water consumption significantly. Total water withdrawal for each vehicle and fuel is significantly greater than water consumption. - Highlights: ► A model was made to assess the local water consumption due to conventional and alternatively powered vehicles in a city. ► Water consumed in the local and external production of various fuels was reviewed and included. ► Basic battery electric and biofuel powered vehicles consume on average more water than conventional gasoline and Compressed Natural Gas (CNG

  18. Modeling and design of cooperative braking in electric and hybrid vehicles using induction machine and hydraulic brake

    Directory of Open Access Journals (Sweden)

    Zaini Dalimus

    2016-07-01

    Full Text Available In mixed-mode braking applications, the electric motor / generator (M/G and hydraulic pressure valve are controlled to meet the driver’s braking demand. Controlling these braking elements is achieved by modulating the current generated by the M/G and adjusting the fluid pressure to the wheel brake cylinders. This paper aims to model and design combined regenerative and hydraulic braking systems which, comprise an induction electric machine, inverter, NiMH battery, controller, a pressure source, pressure control unit, and brake calipers. A 15 kW 1500 rpm induction machine equipped with a reduction gear having a gear ratio of 4 is used. A hydraulic brake capable to produce fluid pressure up to 40 bar is used. Direct torque control and pressure control are chosen as the control criteria in the M/G and the hydraulic solenoid valve. The braking demands for the system are derived from the Federal Testing Procedure (FTP drive cycle. Two simulation models have been developed in Matlab®/Simulink® to analyze the performance of the control strategy in each braking system. The developed model is validated through experiment. It is concluded that the control system does introduce torque ripple and pressure oscillation in the braking system, but these effects do not affect vehicle braking performance due to the high frequency nature of pressure fluctuation and the damping effect of the vehicle inertia. Moreover, experiment results prove the effectiveness of the developed model.

  19. Flight Performance of the Inflatable Reentry Vehicle Experiment 3

    Science.gov (United States)

    Dillman, Robert; DiNonno, John; Bodkin, Richard; Gsell, Valerie; Miller, Nathanael; Olds, Aaron; Bruce, Walter

    2013-01-01

    The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) launched July 23, 2012, from NASA Wallops Flight Facility (WFF) on a Black Brant XI suborbital sounding rocket and successfully performed its mission, demonstrating the survivability of a hypersonic inflatable aerodynamic decelerator (HIAD) in the reentry heating environment and also illustrating the effect of an offset center of gravity on the HIAD's lift-to-drag ratio. IRVE-3 was a follow-on to 2009's IRVE-II mission, which demonstrated exo-atmospheric inflation, reentry survivability - without significant heating - and the aerodynamic stability of a HIAD down to subsonic flight conditions. NASA Langley Research Center is leading the development of HIAD technology for use on future interplanetary and Earth reentry missions.

  20. A control-oriented cycle-life model for hybrid electric vehicle lithium-ion batteries

    International Nuclear Information System (INIS)

    Suri, Girish; Onori, Simona

    2016-01-01

    In this paper, a semi-empirical Lithium-iron phosphate-graphite battery aging model is identified over data mimicking actual cycling conditions that a hybrid electric vehicle battery encounters under real driving scenarios. The aging model is then used to construct the severity factor map, used to characterize relative aging of the battery under different operating conditions. This is used as a battery degradation criterion within a multi-objective optimization problem where battery aging minimization is to be achieved along with fuel consumption minimization. The method proposed is general and can be applied to other battery chemistry as well as different vehicular applications. Finally, simulations conducted using a hybrid electric vehicle simulator show how the two modeling tools developed in this paper, i.e., the severity factor map and the aging model, can be effectively used in a multi-objective optimization problem to predict and control battery degradation. - Highlights: • Battery aging model for hybrid electric vehicles using real driving conditions data. • Development of a modeling tool to assess battery degradation for real time optimization. • "3"1P NMR analysis of an enzyme-treated extract showed expected hydrolysis of P forms. • Development of an energy management strategy to minimize battery degradation. • Simulation results from hybrid electric vehicle simulator.

  1. Study of Model Predictive Control for Path-Following Autonomous Ground Vehicle Control under Crosswind Effect

    Directory of Open Access Journals (Sweden)

    Fitri Yakub

    2016-01-01

    Full Text Available We present a comparative study of model predictive control approaches of two-wheel steering, four-wheel steering, and a combination of two-wheel steering with direct yaw moment control manoeuvres for path-following control in autonomous car vehicle dynamics systems. Single-track mode, based on a linearized vehicle and tire model, is used. Based on a given trajectory, we drove the vehicle at low and high forward speeds and on low and high road friction surfaces for a double-lane change scenario in order to follow the desired trajectory as close as possible while rejecting the effects of wind gusts. We compared the controller based on both simple and complex bicycle models without and with the roll vehicle dynamics for different types of model predictive control manoeuvres. The simulation result showed that the model predictive control gave a better performance in terms of robustness for both forward speeds and road surface variation in autonomous path-following control. It also demonstrated that model predictive control is useful to maintain vehicle stability along the desired path and has an ability to eliminate the crosswind effect.

  2. Estimation model for evaporative emissions from gasoline vehicles based on thermodynamics.

    Science.gov (United States)

    Hata, Hiroo; Yamada, Hiroyuki; Kokuryo, Kazuo; Okada, Megumi; Funakubo, Chikage; Tonokura, Kenichi

    2018-03-15

    In this study, we conducted seven-day diurnal breathing loss (DBL) tests on gasoline vehicles. We propose a model based on the theory of thermodynamics that can represent the experimental results of the current and previous studies. The experiments were performed using 14 physical parameters to determine the dependence of total emissions on temperature, fuel tank fill, and fuel vapor pressure. In most cases, total emissions after an apparent breakthrough were proportional to the difference between minimum and maximum environmental temperatures during the day, fuel tank empty space, and fuel vapor pressure. Volatile organic compounds (VOCs) were measured using a Gas Chromatography Mass Spectrometer and Flame Ionization Detector (GC-MS/FID) to determine the Ozone Formation Potential (OFP) of after-breakthrough gas emitted to the atmosphere. Using the experimental results, we constructed a thermodynamic model for estimating the amount of evaporative emissions after a fully saturated canister breakthrough occurred, and a comparison between the thermodynamic model and previous models was made. Finally, the total annual evaporative emissions and OFP in Japan were determined and compared by each model. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Electric and hybrid vehicles

    Science.gov (United States)

    1979-01-01

    Report characterizes state-of-the-art electric and hybrid (combined electric and heat engine) vehicles. Performance data for representative number of these vehicles were obtained from track and dynamometer tests. User experience information was obtained from fleet operators and individual owners of electric vehicles. Data on performance and physical characteristics of large number of vehicles were obtained from manufacturers and available literature.

  4. Design and validation of a slender guideway for Maglev vehicle by simulation and experiment

    Science.gov (United States)

    Han, Jong-Boo; Han, Hyung-Suk; Kim, Sung-Soo; Yang, Seok-Jo; Kim, Ki-Jung

    2016-03-01

    Normally, Maglev (magnetic levitation) vehicles run on elevated guideways. The elevated guideway must satisfy various load conditions of the vehicle, and has to be designed to ensure ride quality, while ensuring that the levitation stability of the vehicle is not affected by the deflection of the guideway. However, because the elevated guideways of Maglev vehicles in South Korea and other countries fabricated so far have been based on over-conservative design criteria, the size of the structures has increased. Further, from the cost perspective, they are unfavourable when compared with other light rail transits such as monorail, rubber wheel, and steel wheel automatic guided transit. Therefore, a slender guideway that does have an adverse effect on the levitation stability of the vehicle is required through optimisation of design criteria. In this study, to predict the effect of various design parameters of the guideway on the dynamic behaviour of the vehicle, simulations were carried out using a dynamics model similar to the actual vehicle and guideway, and a limiting value of deflection ratio of the slender guideway to ensure levitation control is proposed. A guideway that meets the requirement as per the proposed limit for deflection ratio was designed and fabricated, and through a driving test of the vehicle, the validity of the slender guideway was verified. From the results, it was confirmed that although some increase in airgap and cabin acceleration was observed with the proposed slender guideway when compared with the conventional guideway, there was no notable adverse effect on the levitation stability and ride quality of the vehicle. Therefore, it can be inferred that the results of this study will become the basis for establishing design criteria for slender guideways of Maglev vehicles in future.

  5. Vehicle Propulsion Systems Introduction to Modeling and Optimization

    CERN Document Server

    Guzzella, Lino

    2013-01-01

    This text provides an introduction to the mathematical modeling and subsequent optimization of vehicle propulsion systems and their supervisory control algorithms. Automobiles are responsible for a substantial part of the world's consumption of primary energy, mostly fossil liquid hydrocarbons and the reduction of the fuel consumption of these vehicles has become a top priority. Increasing concerns over fossil fuel consumption and the associated environmental impacts have motivated many groups in industry and academia to propose new propulsion systems and to explore new optimization methodologies. This third edition has been prepared to include many of these developments. In the third edition, exercises are included at the end of each chapter and the solutions are available on the web.

  6. Updraft Model for Development of Autonomous Soaring Uninhabited Air Vehicles

    Science.gov (United States)

    Allen, Michael J.

    2006-01-01

    Large birds and glider pilots commonly use updrafts caused by convection in the lower atmosphere to extend flight duration, increase cross-country speed, improve range, or simply to conserve energy. Uninhabited air vehicles may also have the ability to exploit updrafts to improve performance. An updraft model was developed at NASA Dryden Flight Research Center (Edwards, California) to investigate the use of convective lift for uninhabited air vehicles in desert regions. Balloon and surface measurements obtained at the National Oceanic and Atmospheric Administration Surface Radiation station (Desert Rock, Nevada) enabled the model development. The data were used to create a statistical representation of the convective velocity scale, w*, and the convective mixing-layer thickness, zi. These parameters were then used to determine updraft size, vertical velocity profile, spacing, and maximum height. This paper gives a complete description of the updraft model and its derivation. Computer code for running the model is also given in conjunction with a check case for model verification.

  7. Modeling the Turning Speed and Car Following Behaviors of Autonomous Vehicles in a Virtual World

    Directory of Open Access Journals (Sweden)

    Carrillo-González José Gerardo

    2015-07-01

    Full Text Available This article deals with mathematical models for controlling vehicles behavior in a virtual world, where two behaviors are considered: 1 curve turning and 2 car following situations, in this last is essential to provide a safety distance between the leader and the follower and at the same time keep the follower not delayed with respect to the leader, and in a curve turning the complexity is to provide a safety speed inside the curve and keep the car inside the lane. Using basic information as vehicles position, mathematical models can be developed for explaining the heading angle and the autonomous vehicles speed on curves, i.e. the controlled by the models. A model that predicts the autonomous vehicle speed on curves is developed considering previous data in other curves. Two models that control the acceleration/deceleration behavior of autonomous vehicles in a car following situation are proposed. In the first model, the parameters are calibrated with a proposed algorithm which enables accuracy in order to imitate the human behavior for accelerating and braking, and the second model provides a safety distance between the follower and the leader at sudden stops of the latter and employs the acceleration/deceleration top capabilities to follow the leader car similar to the human behavior.

  8. Analysis of Pilot-Induced-Oscillation and Pilot Vehicle System Stability Using UAS Flight Experiments

    Directory of Open Access Journals (Sweden)

    Tanmay K. Mandal

    2016-11-01

    Full Text Available This paper reports the results of a Pilot-Induced Oscillation (PIO and human pilot control characterization study performed using flight data collected with a Remotely Controlled (R/C unmanned research aircraft. The study was carried out on the longitudinal axis of the aircraft. Several existing Category 1 and Category 2 PIO criteria developed for manned aircraft are first surveyed and their effectiveness for predicting the PIO susceptibility for the R/C unmanned aircraft is evaluated using several flight experiments. It was found that the Bandwidth/Pitch rate overshoot and open loop onset point (OLOP criteria prediction results matched flight test observations. However, other criteria failed to provide accurate prediction results. To further characterize the human pilot control behavior during these experiments, a quasi-linear pilot model is used. The parameters of the pilot model estimated using data obtained from flight tests are then used to obtain information about the stability of the Pilot Vehicle System (PVS for Category 1 PIOs occurred during straight and level flights. The batch estimation technique used to estimate the parameters of the quasi-linear pilot model failed to completely capture the compatibility nature of the human pilot. The estimation results however provided valuable insights into the frequency characteristics of the human pilot commands. Additionally, stability analysis of the Category 2 PIOs for elevator actuator rate limiting is carried out using simulations and the results are compared with actual flight results.

  9. Generalized dynamic model and control of ambiguous mono axial vehicle robot

    Directory of Open Access Journals (Sweden)

    Frantisek Duchon

    2016-09-01

    Full Text Available This article deals with the novel concept of ambiguous mono axial vehicle robot. Such robot is a combination of Segway and dicycle, which utilizes the advantages of each chassis. The advantage of dicycle is lower energy consumption during the movement and the higher safety of carried payload. The movable platform inside the ambiguous mono axial vehicle allows using the various sensors or devices. This will change the ambiguous mono axial vehicle to the Segway type robot. Both these modes are necessary to control in the stable mode to ensure the safety of the ambiguous mono axial vehicle’s movement. The main contents of the article contain description of generalized dynamic model of ambiguous mono axial vehicle and related control of ambiguous mono axial vehicle. The proposal is unique in that the same controller is used for both modes. Several simulations verify proposed control schemes and identified parameters. Moreover, the dicycle type of platform has never been used in robotics and that is another novelty.

  10. Propulsion System Dynamic Modeling for the NASA Supersonic Concept Vehicle: AeroPropulsoServoElasticity

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph; Seidel, Jonathan

    2014-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural-aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report.propulsion system dynamics, the structural dynamics, and aerodynamics.

  11. Simulation of an electric vehicle model on the new WLTC test cycle using AVL CRUISE software

    Science.gov (United States)

    Cristian Cioroianu, Constantin; Marinescu, Dănuţ Gabriel; Iorga, Adrian; Răzvan Sibiceanu, Adrian

    2017-10-01

    Nowadays, environmental pollution has become a general issue and the automotive industry is probably the most affected. The principal air-quality pollutant emissions from petrol, diesel and LPG engines are carbon dioxide, oxides of nitrogen, un-burnt hydrocarbons. Modern cars produce only quite small quantities of the air quality pollutants, but the emissions from large numbers of cars add to a significant air quality problem. Electric vehicles are an answer to this problem because they have absolutely no emissions. These vehicles have some major disadvantages regarding cost and range. In this paper, an electric vehicle model will be created in the AVL Cruise software. The constructed model is based on the existing Dacia Sandero. Also unlike the real car, the model presented has different characteristics since it is a full electric vehicle. It has an electric motor instead of the petrol engine and a battery pack placed in the trunk. The model will be simulated in order to obtain data regarding vehicle performance, energy consumption and range on the new WLTC test cycle. The obtained know-how will help on later improvements of the electric model regarding methods to increase the vehicle range on the new WLTC test cycle.

  12. Overview of the In-Flight Experimentations and Measurements on the IXV Experimental Vehicle

    Science.gov (United States)

    Cosson, E.; Giusto, S.; Del Vecchio, A.; Mancuso, S.

    2009-01-01

    After an assessment and then a trade-off of all the passenger experiments proposed by different partners within Europe, a selection of Core Experiments to be embarked on-board IXV to fulfil the Mission and System Requirements has been made. Some Passenger Experiments have also been identified to be potentially embarked, provided it is compatible with the system allocations, since they could bring valuable additional in-flight data. All those experiments include Thermal Protection System (TPS) experiments (including innovative TPS materials), AeroThermoDynamic (ATD) experiments and Health Monitoring System (HMS) experiments. Aside the previously mentioned experiments, a specific Vehicle Model Identification experiment (VMI) aims at validating in-flight the mathematical models of flight dynamics for a gliding re-entry vehicle. This paper also presents a preliminary version of the in- flight measurement plan, encompassing both conventional instrumentation and advanced sensors or even innovative measurement techniques.

  13. A path-following driver/vehicle model with optimized lateral dynamic controller

    Directory of Open Access Journals (Sweden)

    Behrooz Mashadi

    Full Text Available Reduction in traffic congestion and overall number of accidents, especially within the last decade, can be attributed to the enormous progress in active safety. Vehicle path following control with the presence of driver commands can be regarded as one of the important issues in vehicle active safety systems development and more realistic explanation of vehicle path tracking problem. In this paper, an integrated driver/DYC control system is presented that regulates the steering angle and yaw moment, considering driver previewed path. Thus, the driver previewed distance, the heading error and the lateral deviation between the vehicle and desired path are used as inputs. Then, the controller determines and applies a corrective steering angle and a direct yaw moment to make the vehicle follow the desired path. A PID controller with optimized gains is used for the control of integrated driver/DYC system. Genetic Algorithm as an intelligent optimization method is utilized to adapt PID controller gains for various working situations. Proposed integrated driver/DYC controller is examined on lane change manuvers andthe sensitivity of the control system is investigated through the changes in the driver model and vehicle parameters. Simulation results show the pronounced effectiveness of the controller in vehicle path following and stability.

  14. Beam response analysis of moving vehicle with half car modeling

    International Nuclear Information System (INIS)

    Badriyah, A.N.; Arifianto, D.; Susatio, Y.

    2016-01-01

    There were several tragedies concerning damages of bridge which seem to be sooner than the predicted period. One of hypothesis in this situation is an addition of vibration caused by long vehicle such as super long truck which has huge force transferred into the bridge and its long body causes more vibration due to phase difference of front and rear tire. The selected method which is used in this problem is using a simulation for modeling a bridge- vehicle system using half car vehicle model. The simulation is done using ANSYS Workbench 15.0 with some variation such us the thickness of beam and its supports. There are 3 kind of variation used in the thickness variety which are 2 m, 1 m, and 0.5 m. While in supports variation, we have fixed support, knife-edge support, and slider support. The results show that there is addition of vibration caused by long vehicle. It is proved by an oscillation which is showed in every response of beam's total deformation. Highest total deformation is achieved in slider support beam of 0.5 thicknesses, 1.08 mm in 1.12 second. First ripple seen in responses is at 0.84 second. Meanwhile, response of knife-edge and fixed support beam show a similarity. The ripple in this situation is caused by beat modulation from the front and rear tire. (paper)

  15. Beam response analysis of moving vehicle with half car modeling

    Science.gov (United States)

    Badriyah, A. N.; Arifianto, D.; Susatio, Y.

    2016-11-01

    There were several tragedies concerning damages of bridge which seem to be sooner than the predicted period. One of hypothesis in this situation is an addition of vibration caused by long vehicle such as super long truck which has huge force transferred into the bridge and its long body causes more vibration due to phase difference of front and rear tire. The selected method which is used in this problem is using a simulation for modeling a bridge- vehicle system using half car vehicle model. The simulation is done using ANSYS Workbench 15.0 with some variation such us the thickness of beam and its supports. There are 3 kind of variation used in the thickness variety which are 2 m, 1 m, and 0.5 m. While in supports variation, we have fixed support, knife-edge support, and slider support. The results show that there is addition of vibration caused by long vehicle. It is proved by an oscillation which is showed in every response of beam's total deformation. Highest total deformation is achieved in slider support beam of 0.5 thicknesses, 1.08 mm in 1.12 second. First ripple seen in responses is at 0.84 second. Meanwhile, response of knife-edge and fixed support beam show a similarity. The ripple in this situation is caused by beat modulation from the front and rear tire.

  16. Modified Motor Vehicles Travel Speed Models on the Basis of Curb Parking Setting under Mixed Traffic Flow

    Directory of Open Access Journals (Sweden)

    Zhenyu Mei

    2012-01-01

    Full Text Available The ongoing controversy about in what condition should we set the curb parking has few definitive answers because comprehensive research in this area has been lacking. Our goal is to present a set of heuristic urban street speed functions under mixed traffic flow by taking into account impacts of curb parking. Two impacts have been defined to classify and quantify the phenomena of motor vehicles' speed dynamics in terms of curb parking. The first impact is called Space impact, which is caused by the curb parking types. The other one is the Time impact, which results from the driver maneuvering in or out of parking space. In this paper, based on the empirical data collected from six typical urban streets in Nanjing, China, two models have been proposed to describe these phenomena for one-way traffic and two-way traffic, respectively. An intensive experiment has been conducted in order to calibrate and validate these proposed models, by taking into account the complexity of the model parameters. We also provide guidelines in terms of how to cluster and calculate those models' parameters. Results from these models demonstrated promising performance of modeling motor vehicles' speed for mixed traffic flow under the influence of curb parking.

  17. Does Driving Range of Electric Vehicles Influence Electric Vehicle Adoption?

    Directory of Open Access Journals (Sweden)

    Seiho Kim

    2017-10-01

    Full Text Available This study aims to determine the influential factors on the market share of electric vehicles through panel data analysis based on time series data from 2011 to 2015 in 31 countries. We selected five significant independent variables that are expected to affect electric vehicle adoption based on literature review. The econometric model in this study suggests that the relative price of electric vehicle compared to internal combustion engine vehicle, driving range, and number of models available in markets are correlated to the market share of electric vehicles. On the other hand, relationship between recharging infrastructure—an important factor for electric vehicle adoption in many studies—and market share of electric vehicles turned out to be insignificant in this study. From a political point of view, we argue that policy makers need to allocate more resources to research and development in order to extend driving range at the early stage of electric vehicle deployment in the markets.

  18. Hybrid Computational Model for High-Altitude Aeroassist Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A hybrid continuum/noncontinuum computational model will be developed for analyzing the aerodynamics and heating on aeroassist vehicles. Unique features of this...

  19. Research on vehicles and cargos matching model based on virtual logistics platform

    Science.gov (United States)

    Zhuang, Yufeng; Lu, Jiang; Su, Zhiyuan

    2018-04-01

    Highway less than truckload (LTL) transportation vehicles and cargos matching problem is a joint optimization problem of typical vehicle routing and loading, which is also a hot issue of operational research. This article based on the demand of virtual logistics platform, for the problem of the highway LTL transportation, the matching model of the idle vehicle and the transportation order is set up and the corresponding genetic algorithm is designed. Then the algorithm is implemented by Java. The simulation results show that the solution is satisfactory.

  20. Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Non-Conformance Penalties for 2004 and later Model Year Emission Standards for Heavy-Duty Diesel Engines and Heavy-Duty Diesel Vehicles

    Science.gov (United States)

    Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Non-Conformance Penalties for 2004 and later Model Year Emission Standards for Heavy-Duty Diesel Engines and Heavy-Duty Diesel Vehicles

  1. Simulation of hydrogen releases from fuel-cell vehicles in tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Houf, William G.; Evans, Greg H.; James, Scott C. [Sandia National Labs., Livermore, CA (United States); Merilo, Erik; Groethe, Mark [SRI International, Menlo Park, CA (United States)

    2010-07-01

    Simulation results for a hydrogen fuel-cell vehicle in a full-scale tunnel have been performed for the case where hydrogen gas is vented from the vehicle as a result of thermal activation of the pressure relief device (PRD). The same modeling approach used in the full-scale tunnel modeling was validated in a scaled model by comparing simulated results with measured results from a series of scaled-tunnel test experiments performed at the SRI Corral Hollow test facility. Results of the simulations were found to be in good agreement with the experimental data. Finally, a rudimentary risk analysis indicated that the level of potential risk from hydrogen vehicles accidents involving thermally activated PRDs in tunnels does not appear to significantly increase the current level of individual risk to the public from everyday life. (orig.)

  2. Vehicle Dynamic Prediction Systems with On-Line Identification of Vehicle Parameters and Road Conditions

    Science.gov (United States)

    Hsu, Ling-Yuan; Chen, Tsung-Lin

    2012-01-01

    This paper presents a vehicle dynamics prediction system, which consists of a sensor fusion system and a vehicle parameter identification system. This sensor fusion system can obtain the six degree-of-freedom vehicle dynamics and two road angles without using a vehicle model. The vehicle parameter identification system uses the vehicle dynamics from the sensor fusion system to identify ten vehicle parameters in real time, including vehicle mass, moment of inertial, and road friction coefficients. With above two systems, the future vehicle dynamics is predicted by using a vehicle dynamics model, obtained from the parameter identification system, to propagate with time the current vehicle state values, obtained from the sensor fusion system. Comparing with most existing literatures in this field, the proposed approach improves the prediction accuracy both by incorporating more vehicle dynamics to the prediction system and by on-line identification to minimize the vehicle modeling errors. Simulation results show that the proposed method successfully predicts the vehicle dynamics in a left-hand turn event and a rollover event. The prediction inaccuracy is 0.51% in a left-hand turn event and 27.3% in a rollover event. PMID:23202231

  3. Natural Environment Modeling and Fault-Diagnosis for Automated Agricultural Vehicle

    DEFF Research Database (Denmark)

    Blas, Morten Rufus; Blanke, Mogens

    2008-01-01

    This paper presents results for an automatic navigation system for agricultural vehicles. The system uses stereo-vision, inertial sensors and GPS. Special emphasis has been placed on modeling the natural environment in conjunction with a fault-tolerant navigation system. The results are exemplified...... by an agricultural vehicle following cut grass (swath). It is demonstrated how faults in the system can be detected and diagnosed using state of the art techniques from fault-tolerant literature. Results in performing fault-diagnosis and fault accomodation are presented using real data....

  4. High-Fidelity Battery Model for Model Predictive Control Implemented into a Plug-In Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Nicolas Sockeel

    2017-04-01

    Full Text Available Power management strategies have impacts on fuel economy, greenhouse gasses (GHG emission, as well as effects on the durability of power-train components. This is why different off-line and real-time optimal control approaches are being developed. However, real-time control seems to be more attractive than off-line control because it can be directly implemented for managing power and energy flows inside an actual vehicle. One interesting illustration of these power management strategies is the model predictive control (MPC based algorithm. Inside a MPC, a cost function is optimized while system constraints are validated in real time. The MPC algorithm relies on dynamic models of the vehicle and the battery. The complexity and accuracy of the battery model are usually neglected to benefit the development of new cost functions or better MPC algorithms. The contribution of this manuscript consists of developing and evaluating a high-fidelity battery model of a plug-in hybrid electric vehicle (PHEV that has been used for MPC. Via empirical work and simulation, the impact of a high-fidelity battery model has been evaluated and compared to a simpler model in the context of MPC. It is proven that the new battery model reduces the absolute voltage, state of charge (SoC, and battery power loss error by a factor of 3.2, 1.9 and 2.1 on average respectively, compared to the simpler battery model.

  5. Vibration test of 1/5 scale H-II launch vehicle

    Science.gov (United States)

    Morino, Yoshiki; Komatsu, Keiji; Sano, Masaaki; Minegishi, Masakatsu; Morita, Toshiyuki; Kohsetsu, Y.

    In order to predict dynamic loads on the newly designed Japanese H-II launch vehicle, the adequacy of prediction methods has been assessed by the dynamic scale model testing. The three-dimensional dynamic model was used in the analysis to express coupling effects among axial, lateral (pitch and yaw) and torsional vibrations. The liquid/tank interaction was considered by use of a boundary element method. The 1/5 scale model of the H-II launch vehicle was designed to simulate stiffness and mass properties of important structural parts, such as core/SRB junctions, first and second stage Lox tanks and engine mount structures. Modal excitation of the test vehicle was accomplished with 100-1000 N shakers which produced random or sinusoidal vibrational forces. The vibrational response of the test vehicle was measured at various locations with accelerometers and pressure sensor. In the lower frequency range, corresmpondence between analysis and experiment was generally good. The basic procedures in analysis seem to be adequate so far, but some improvements in mathematical modeling are suggested by comparison of test and analysis.

  6. A hybrid positioning strategy for vehicles in a tunnel based on RFID and in-vehicle sensors.

    Science.gov (United States)

    Song, Xiang; Li, Xu; Tang, Wencheng; Zhang, Weigong; Li, Bin

    2014-12-05

    Many intelligent transportation system applications require accurate, reliable, and continuous vehicle positioning. How to achieve such positioning performance in extended GPS-denied environments such as tunnels is the main challenge for land vehicles. This paper proposes a hybrid multi-sensor fusion strategy for vehicle positioning in tunnels. First, the preliminary positioning algorithm is developed. The Radio Frequency Identification (RFID) technology is introduced to achieve preliminary positioning in the tunnel. The received signal strength (RSS) is used as an indicator to calculate the distances between the RFID tags and reader, and then a Least Mean Square (LMS) federated filter is designed to provide the preliminary position information for subsequent global fusion. Further, to improve the positioning performance in the tunnel, an interactive multiple model (IMM)-based global fusion algorithm is developed to fuse the data from preliminary positioning results and low-cost in-vehicle sensors, such as electronic compasses and wheel speed sensors. In the actual implementation of IMM, the strong tracking extended Kalman filter (STEKF) algorithm is designed to replace the conventional extended Kalman filter (EKF) to achieve model individual filtering. Finally, the proposed strategy is evaluated through experiments. The results validate the feasibility and effectiveness of the proposed strategy.

  7. A Hybrid Positioning Strategy for Vehicles in a Tunnel Based on RFID and In-Vehicle Sensors

    Directory of Open Access Journals (Sweden)

    Xiang Song

    2014-12-01

    Full Text Available Many intelligent transportation system applications require accurate, reliable, and continuous vehicle positioning. How to achieve such positioning performance in extended GPS-denied environments such as tunnels is the main challenge for land vehicles. This paper proposes a hybrid multi-sensor fusion strategy for vehicle positioning in tunnels. First, the preliminary positioning algorithm is developed. The Radio Frequency Identification (RFID technology is introduced to achieve preliminary positioning in the tunnel. The received signal strength (RSS is used as an indicator to calculate the distances between the RFID tags and reader, and then a Least Mean Square (LMS federated filter is designed to provide the preliminary position information for subsequent global fusion. Further, to improve the positioning performance in the tunnel, an interactive multiple model (IMM-based global fusion algorithm is developed to fuse the data from preliminary positioning results and low-cost in-vehicle sensors, such as electronic compasses and wheel speed sensors. In the actual implementation of IMM, the strong tracking extended Kalman filter (STEKF algorithm is designed to replace the conventional extended Kalman filter (EKF to achieve model individual filtering. Finally, the proposed strategy is evaluated through experiments. The results validate the feasibility and effectiveness of the proposed strategy.

  8. Vehicle charging and return current measurements during electron-beam emission experiments from the Shuttle Orbiter

    International Nuclear Information System (INIS)

    Hawkins, J.G.

    1988-01-01

    The prime objective of this research was to investigate the electro-dynamic response of the Shuttle Orbiter during electron beam emission from the payload bay. This investigation has been conducted by examining data collected by the Vehicle Charging And Potential (VCAP) Experiment. The VCAP experiment has flown on two Shuttle missions with a Fast Pulse Electron Generator (FPEG) capable of emitting a 100 mA beam of 1 keV electrons. Diagnostics of the charging and return current during beam emission were provided by a combined Charge and Current Probe (CCP) located in the payload bay of the Orbiter. The CCP measurements were used to conduct a parametric study of the vehicle charging and return current as a function of vehicle attitude, ambient plasma parameters, and emitted beam current. In particular, the CCP measurements were found to depend strongly on the ambient plasma density. The vehicle charging during a 100 mA beam emission was small when the predicted ambient plasma density was greater than 3 x 10 5 cm -3 , but appreciable charging occurred when the density was less than this value. These observations indicated that the effective current-collecting area of the Orbiter is approximately 42 m 2 , consistent with estimates for the effective area of the Orbiter's engine nozzles. The operation of the Orbiter's Reaction Control System thrusters can create perturbations in the Orbiter's neutral and plasma environment that affect the CCP measurements. The CCP signatures of thruster firings are quite complex, but in general they are consistent with the depletion of plasma density in the ram direction and the enhancement of plasma density in the Orbiter's wake

  9. Statistical models of petrol engines vehicles dynamics

    Science.gov (United States)

    Ilie, C. O.; Marinescu, M.; Alexa, O.; Vilău, R.; Grosu, D.

    2017-10-01

    This paper focuses on studying statistical models of vehicles dynamics. It was design and perform a one year testing program. There were used many same type cars with gasoline engines and different mileage. Experimental data were collected of onboard sensors and those on the engine test stand. A database containing data of 64th tests was created. Several mathematical modelling were developed using database and the system identification method. Each modelling is a SISO or a MISO linear predictive ARMAX (AutoRegressive-Moving-Average with eXogenous inputs) model. It represents a differential equation with constant coefficients. It were made 64th equations for each dependency like engine torque as output and engine’s load and intake manifold pressure, as inputs. There were obtained strings with 64 values for each type of model. The final models were obtained using average values of the coefficients. The accuracy of models was assessed.

  10. Estimation of longitudinal force, lateral vehicle speed and yaw rate for four-wheel independent driven electric vehicles

    Science.gov (United States)

    Chen, Te; Xu, Xing; Chen, Long; Jiang, Haobing; Cai, Yingfeng; Li, Yong

    2018-02-01

    Accurate estimation of longitudinal force, lateral vehicle speed and yaw rate is of great significance to torque allocation and stability control for four-wheel independent driven electric vehicle (4WID-EVs). A fusion method is proposed to estimate the longitudinal force, lateral vehicle speed and yaw rate for 4WID-EVs. The electric driving wheel model (EDWM) is introduced into the longitudinal force estimation, the longitudinal force observer (LFO) is designed firstly based on the adaptive high-order sliding mode observer (HSMO), and the convergence of LFO is analyzed and proved. Based on the estimated longitudinal force, an estimation strategy is then presented in which the strong tracking filter (STF) is used to estimate lateral vehicle speed and yaw rate simultaneously. Finally, co-simulation via Carsim and Matlab/Simulink is carried out to demonstrate the effectiveness of the proposed method. The performance of LFO in practice is verified by the experiment on chassis dynamometer bench.

  11. A New Model of Stopping Sight Distance of Curve Braking Based on Vehicle Dynamics

    Directory of Open Access Journals (Sweden)

    Rong-xia Xia

    2016-01-01

    Full Text Available Compared with straight-line braking, cornering brake has longer braking distance and poorer stability. Therefore, drivers are more prone to making mistakes. The braking process and the dynamics of vehicles in emergency situations on curves were analyzed. A biaxial four-wheel vehicle was simplified to a single model. Considering the braking process, dynamics, force distribution, and stability, a stopping sight distance of the curve braking calculation model was built. Then a driver-vehicle-road simulation platform was built using multibody dynamic software. The vehicle test of brake-in-turn was realized in this platform. The comparison of experimental and calculated values verified the reliability of the computational model. Eventually, the experimental values and calculated values were compared with the stopping sight distance recommended by the Highway Route Design Specification (JTGD20-2006; the current specification of stopping sight distance does not apply to cornering brake sight distance requirements. In this paper, the general values and limits of the curve stopping sight distance are presented.

  12. Hybrid Computational Model for High-Altitude Aeroassist Vehicles, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort addresses a need for accurate computational models to support aeroassist and entry vehicle system design over a broad range of flight conditions...

  13. Takagi-Sugeno Fuzzy Model of a One-Half Semiactive Vehicle Suspension: Lateral Approach

    Directory of Open Access Journals (Sweden)

    L. C. Félix-Herrán

    2015-01-01

    Full Text Available This work presents a novel semiactive model of a one-half lateral vehicle suspension. The contribution of this research is the inclusion of actuator dynamics (two magnetorheological nonlinear dampers in the modelling, which means that more realistic outcomes will be obtained, because, in real life, actuators have physical limitations. Takagi-Sugeno (T-S fuzzy approach is applied to a four-degree-of-freedom (4-DOF lateral one-half vehicle suspension. The system has two magnetorheological (MR dampers, whose numerical values come from a real characterization. T-S allows handling suspension’s components and actuator’s nonlinearities (hysteresis, saturation, and viscoplasticity by means of a set of linear subsystems interconnected via fuzzy membership functions. Due to their linearity, each subsystem can be handled with the very well-known control theory, for example, stability and performance indexes (this is an advantage of the T-S approach. To the best of authors’ knowledge, reported work does not include the aforementioned nonlinearities in the modelling. The generated model is validated via a case of study with simulation results. This research is paramount because it introduces a more accurate (the actuator dynamics, a complex nonlinear subsystem model that could be applied to one-half vehicle suspension control purposes. Suspension systems are extremely important for passenger comfort and stability in ground vehicles.

  14. Fuzzy-Skyhook Control for Active Suspension Systems Applied to a Full Vehicle Model

    Directory of Open Access Journals (Sweden)

    Aref M.A. Soliman

    2012-04-01

    Full Text Available Nowadays, most modern vehicles are equipped with controlled suspension systems for improving the vehicle ride comfort. Therefore, this paper is concerned with a theoretical study for the ride comfort performance of the vehicle. The theoretical investigation includes a suggestion of an active suspension system controller using fuzzy-skyhook control theory, which offers new opportunities for the improvement of vehicle ride performance. The ride comfort of the active suspension system has been evaluated using a 7 degree of freedom full vehicle mathematical model. The simulation results are presented in the time and frequency domain, also in terms of RMS values, and it’s shown that the proposed active suspension system with fuzzy-skyhook control improved the vehicle ride quality in terms of body acceleration, suspension working space and dynamic tyre load in comparison with the passive and skyhook suspension systems.

  15. Travel Time Model for Right-Turning Vehicles of Secondary Street at Unsignalized Intersections

    Directory of Open Access Journals (Sweden)

    Feng Yu-Qin

    2013-01-01

    Full Text Available The travel time of right-turning vehicles on secondary street at unsignalized intersection is discussed in this paper. Under the assumption that the major-street through vehicles’ headway follows Erlang distribution and secondary-street right-turning vehicles’ headway follows Poisson distribution. The right-turning vehicles travel time model is established on the basis of gap theory and M/G/1 queue theory. Comparison is done with the common model based on the assumption that the major-street vehicles’ headway follows Poisson distribution. An intersection is selected to verify each model. The results show that the model established in this paper has stronger applicability, and its most relative error is less than 15%. In addition, the sensitivity analysis has been done. The results show that right-turning flow rate and major-street flow rate have a significant impact on the travel time. Hence, the methodology for travel time of right-turning vehicles at unsignalized intersection proposed in this paper is effective and applicable.

  16. Data Fusion Modeling for an RT3102 and Dewetron System Application in Hybrid Vehicle Stability Testing

    Directory of Open Access Journals (Sweden)

    Zhibin Miao

    2015-08-01

    Full Text Available More and more hybrid electric vehicles are driven since they offer such advantages as energy savings and better active safety performance. Hybrid vehicles have two or more power driving systems and frequently switch working condition, so controlling stability is very important. In this work, a two-stage Kalman algorithm method is used to fuse data in hybrid vehicle stability testing. First, the RT3102 navigation system and Dewetron system are introduced. Second, a modeling of data fusion is proposed based on the Kalman filter. Then, this modeling is simulated and tested on a sample vehicle, using Carsim and Simulink software to test the results. The results showed the merits of this modeling.

  17. Development of in-vehicle noise prediction models for Mumbai Metropolitan Region, India

    Directory of Open Access Journals (Sweden)

    Vishal Konbattulwar

    2016-08-01

    Full Text Available Traffic noise is one of the major sources of noise pollution in metropolitan regions causing various health hazards (e.g., long-term sleep disturbance, increase in blood pressure, physical tension, etc.. In this research, noise prediction models, which can measure the noise level experienced by the commuters while driving or traveling by motorized vehicles in the Mumbai Metropolitan Region, India, were developed. These models were developed by conducting a comprehensive study of various factors (e.g., vehicle speed, traffic volume and road characteristics, etc. affecting the levels of concentration of noise. A widespread data collection was done by conducting road trips of total length of 403.80 km via different modes of transport, such as air-conditioned (A/C car, non A/C car, bus and intermediate public transport (i.e., traditional 3-wheeler autos. Multiple regression analyses were performed to develop a functional relation between equivalent noise levels experienced by passengers while traveling (which was considered as a dependent variable and explanatory variables such as traffic characteristics, vehicle class, vehicle speed, various other location characteristics, etc. Noise levels are generally higher in the vicinity of intersections and signalized junctions. Independent data sets (for each mode of transport were used to validate the developed models. It was noted that maximum differences between observed and estimated values from the model were within the range of ±7.8% of the observed value.

  18. MAS architecture and knowledge model for vehicles data communication

    Directory of Open Access Journals (Sweden)

    René MANDIAU

    2013-07-01

    Full Text Available Normal 0 21 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} Completely autonomous vehicles in traffic should allow to decrease the number of road accident victims greatly, and should allow gains in terms of performance and economy. Modelling the vehicles interaction, and especially knowledge sharing, is one of the main challenges to optimize traffic flow with autonomous vehicles. We propose in this paper a model of knowledge communication between mobile agents on a traffic network. The model of knowledge and of interaction enables to propagate new knowledge without overloading the system with a too large number of communications. For that, only the new knowledge is communicated, and two agents communicate the same knowledge only once. Moreover, in order to allow agents to update their knowledge (perceived or created, a notion of degradation is used. A simulator has been built to evaluate the proposal, before to implement it in mobile robots. Some results of the simulator are proposed in this article.

  19. MAS architecture and knowledge model for vehicles data communication

    Directory of Open Access Journals (Sweden)

    Emmanuel ADAM

    2012-07-01

    Full Text Available Normal 0 21 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} Completely autonomous vehicles in traffic should allow to decrease the number of road accident victims greatly, and should allow gains in terms of performance and economy. Modelling the vehicles interaction, and especially knowledge sharing, is one of the main challenges to optimize traffic flow with autonomous vehicles. We propose in this paper a model of knowledge communication between mobile agents on a traffic network. The model of knowledge and of interaction enables to propagate new knowledge without overloading the system with a too large number of communications. For that, only the new knowledge is communicated, and two agents communicate the same knowledge only once. Moreover, in order to allow agents to update their knowledge (perceived or created, a notion of degradation is used. A simulator has been built to evaluate the proposal, before to implement it in mobile robots. Some results of the simulator are proposed in this article.

  20. Impact of experience on government policy toward acceptance of hydrogen fuel cell vehicles in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Min Jung [Department of Information and Industrial Engineering, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul 120-749 (Korea, Republic of); Park, Heejun, E-mail: h.park@yonsei.ac.kr [Department of Information and Industrial Engineering, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul 120-749 (Korea, Republic of)

    2011-06-15

    As the 'low carbon, green growth' agenda, which emphasized sustainable development through equilibrium between economic growth and environmental preservation, is propagated rapidly in Korea. Despite this progress, it is not uncommon for new products made through advanced technologies, such as hydrogen fuel cell vehicles, to face public skepticism preventing market penetration. Therefore, the factors impacting customer acceptance of hydrogen fuel cell vehicles have to be estimated. Furthermore, it is necessary to examine whether or not the policies related to these products can prevent public skepticism regarding them. This empirical study examining the relationship between personal experiences related to the policy and acceptance of the innovative products of hydrogen fuel cell vehicles shows that government involvement in technology targeting and promotions administered by the 'low carbon, green growth' agenda rarely stimulate potential customers' purchase intentions. Thus, technology targeting administered by the 'low carbon, green growth' agenda needs to be reconciled with customer responses to the future market. - Highlights: > Experience of the 'low carbon, green growth' policy affects perception of it. > Positive perception on the policy seldom arouses positive perception on HFCV performance. > Technology targeting by the policy rarely stimulates purchase intention of HFCV. > Desire to be regarded as a person with environment concern impacts purchase intentions.> Technology targeting by the policy needs to be reconciled with customer responses to it.

  1. Impact of experience on government policy toward acceptance of hydrogen fuel cell vehicles in Korea

    International Nuclear Information System (INIS)

    Kang, Min Jung; Park, Heejun

    2011-01-01

    As the 'low carbon, green growth' agenda, which emphasized sustainable development through equilibrium between economic growth and environmental preservation, is propagated rapidly in Korea. Despite this progress, it is not uncommon for new products made through advanced technologies, such as hydrogen fuel cell vehicles, to face public skepticism preventing market penetration. Therefore, the factors impacting customer acceptance of hydrogen fuel cell vehicles have to be estimated. Furthermore, it is necessary to examine whether or not the policies related to these products can prevent public skepticism regarding them. This empirical study examining the relationship between personal experiences related to the policy and acceptance of the innovative products of hydrogen fuel cell vehicles shows that government involvement in technology targeting and promotions administered by the 'low carbon, green growth' agenda rarely stimulate potential customers' purchase intentions. Thus, technology targeting administered by the 'low carbon, green growth' agenda needs to be reconciled with customer responses to the future market. - Highlights: → Experience of the 'low carbon, green growth' policy affects perception of it. → Positive perception on the policy seldom arouses positive perception on HFCV performance. → Technology targeting by the policy rarely stimulates purchase intention of HFCV. → Desire to be regarded as a person with environment concern impacts purchase intentions.→ Technology targeting by the policy needs to be reconciled with customer responses to it.

  2. Disturbance observer-based L1 robust tracking control for hypersonic vehicles with T-S disturbance modeling

    Directory of Open Access Journals (Sweden)

    Yang Yi

    2016-11-01

    Full Text Available This article concerns a disturbance observer-based L1 robust anti-disturbance tracking algorithm for the longitudinal models of hypersonic flight vehicles with different kinds of unknown disturbances. On one hand, by applying T-S fuzzy models to represent those modeled disturbances, a disturbance observer relying on T-S disturbance models can be constructed to track the dynamics of exogenous disturbances. On the other hand, L1 index is introduced to analyze the attenuation performance of disturbance for those unmodeled disturbances. By utilizing the existing convex optimization algorithm, a disturbance observer-based proportional-integral-controlled input is proposed such that the stability of hypersonic flight vehicles can be ensured and the tracking error for velocity and altitude in hypersonic flight vehicle models can converge to equilibrium point. Furthermore, the satisfactory disturbance rejection and attenuation with L1 index can be obtained simultaneously. Simulation results on hypersonic flight vehicle models can reflect the feasibility and effectiveness of the proposed control algorithm.

  3. A Model of Active Roll Vehicle Suspension

    Directory of Open Access Journals (Sweden)

    I. Čech

    2010-01-01

    Full Text Available This paper describes active suspension with active roll for four-wheel vehicle (bus by means of an in-series pump actuator with doubled hydropneumatic springs. It also gives full control law with no sky-craping. Lateral stiffness and solid axle geometry in the mechanical model are not neglected. Responses to lateral input as well as responses to statistical unevennesses show considerable improvement of passengers comfort and safety when cornering.

  4. Morphological Analysis on Business Model of Electric Vehicles Charging Infrastructure in China

    DEFF Research Database (Denmark)

    Li, Suxiu; Liu, Yingqi; Wang, Jingyu

    2016-01-01

    of EVs charging infrastructure business model for China, and takes the city Shenzhen as a case study. The research shows that we can achieve EVs Charging infrastructure business model innovation by combining design possibility on the right side of morphological box as much as possible.......The issues of energy crisis and environment pollution have paved opportunities to electric vehicles (EVs), many countries take it as an effective way to reducing the depletion of fossil fuels and CO2 emissions. As the energy supply of electric vehicles, the development of charging infrastructure...

  5. On the stability of preferences and attitudes before and after experiencing an electric vehicle

    DEFF Research Database (Denmark)

    Jensen, Anders Fjendbo; Cherchi, Elisabetta; Mabit, Stefan Lindhard

    2013-01-01

    -wave stated preference experiment where data was collected before and after the respondents experienced an electric vehicle for three months. We estimate a hybrid choice model using jointly the stated choices before and after the test period. The results show that individual preferences change significantly......In this study, we investigate the extent to which experience affects individual preferences for specific electric vehicle characteristics, individual attitudes toward the environment, and the impact of the attitudes on the choice between an electric and a conventional vehicle. We use a two...... after a real experience with an electric vehicle in the household. In particular, there are major changes in the preference for driving range, top speed, fuel cost, battery life and charging in city centres and train stations. In line with other studies, we find that environmental concern has a positive...

  6. Modeling Vehicle Collision Angle in Traffic Crashes Based on Three-Dimensional Laser Scanning Data

    Directory of Open Access Journals (Sweden)

    Nengchao Lyu

    2017-02-01

    Full Text Available In road traffic accidents, the analysis of a vehicle’s collision angle plays a key role in identifying a traffic accident’s form and cause. However, because accurate estimation of vehicle collision angle involves many factors, it is difficult to accurately determine it in cases in which less physical evidence is available and there is a lack of monitoring. This paper establishes the mathematical relation model between collision angle, deformation, and normal vector in the collision region according to the equations of particle deformation and force in Hooke’s law of classical mechanics. At the same time, the surface reconstruction method suitable for a normal vector solution is studied. Finally, the estimation model of vehicle collision angle is presented. In order to verify the correctness of the model, verification of multi-angle collision experiments and sensitivity analysis of laser scanning precision for the angle have been carried out using three-dimensional (3D data obtained by a 3D laser scanner in the collision deformation zone. Under the conditions with which the model has been defined, validation results show that the collision angle is a result of the weighted synthesis of the normal vector of the collision point and the weight value is the deformation of the collision point corresponding to normal vectors. These conclusions prove the applicability of the model. The collision angle model proposed in this paper can be used as the theoretical basis for traffic accident identification and cause analysis. It can also be used as a theoretical reference for the study of the impact deformation of elastic materials.

  7. Statistical analysis of road-vehicle-driver interaction as an enabler to designing behavioural models

    International Nuclear Information System (INIS)

    Chakravarty, T; Chowdhury, A; Ghose, A; Bhaumik, C; Balamuralidhar, P

    2014-01-01

    Telematics form an important technology enabler for intelligent transportation systems. By deploying on-board diagnostic devices, the signatures of vehicle vibration along with its location and time are recorded. Detailed analyses of the collected signatures offer deep insights into the state of the objects under study. Towards that objective, we carried out experiments by deploying telematics device in one of the office bus that ferries employees to office and back. Data is being collected from 3-axis accelerometer, GPS, speed and the time for all the journeys. In this paper, we present initial results of the above exercise by applying statistical methods to derive information through systematic analysis of the data collected over four months. It is demonstrated that the higher order derivative of the measured Z axis acceleration samples display the properties Weibull distribution when the time axis is replaced by the amplitude of such processed acceleration data. Such an observation offers us a method to predict future behaviour where deviations from prediction are classified as context-based aberrations or progressive degradation of the system. In addition we capture the relationship between speed of the vehicle and median of the jerk energy samples using regression analysis. Such results offer an opportunity to develop a robust method to model road-vehicle interaction thereby enabling us to predict such like driving behaviour and condition based maintenance etc

  8. Mathematical Modelling of Unmanned Aerial Vehicles with Four Rotors

    Directory of Open Access Journals (Sweden)

    Zoran Benić

    2016-01-01

    Full Text Available Mathematical model of an unmanned aerial vehicle with four propulsors (quadcopter is indispensable in quadcopter movement simulation and later modelling of the control algorithm. Mathematical model is, at the same time, the first step in comprehending the mathematical principles and physical laws which are applied to the quadcopter system. The objective is to define the mathematical model which will describe the quadcopter behavior with satisfactory accuracy and which can be, with certain modifications, applicable for the similar configurations of multirotor aerial vehicles. At the beginning of mathematical model derivation, coordinate systems are defined and explained. By using those coordinate systems, relations between parameters defined in the earth coordinate system and in the body coordinate system are defined. Further, the quadcopter kinematic is described which enables setting those relations. Also, quadcopter dynamics is used to introduce forces and torques to the model through usage of Newton-Euler method. Final derived equation is Newton’s second law in the matrix notation. For the sake of model simplification, hybrid coordinate system is defined, and quadcopter dynamic equations derived with the respect to it. Those equations are implemented in the simulation. Results of behavior of quadcopter mathematical model are graphically shown for four cases. For each of the cases the propellers revolutions per minute (RPM are set in a way that results in the occurrence of the controllable variables which causes one of four basic quadcopter movements in space.

  9. Propulsion System Dynamic Modeling of the NASA Supersonic Concept Vehicle for AeroPropulsoServoElasticity

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Seiel, Jonathan

    2016-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report

  10. Comparison of policies on vehicle ownership and use between Beijing and Shanghai and their impacts on fuel consumption by passenger vehicles

    International Nuclear Information System (INIS)

    Hao Han; Wang Hewu; Ouyang Minggao

    2011-01-01

    The fast growth of vehicle population in China has caused problems such as traffic congestion and excessive fuel consumption. There have been demands for policy control on growth in private vehicle travel demand. Beijing and Shanghai are China's first two cities to implement policies on vehicle ownership and use. In this paper, we compared policies in the two cities and estimated their impacts on fuel consumption by passenger vehicles. The limitation of vehicle use in Beijing provides limited but immediate reduction in fuel consumption. The limitation of vehicle ownership in Shanghai provides large potential of fuel conservation in a longer term. Under current policy, fuel consumptions by passenger vehicles in Beijing and Shanghai in 2020 were estimated to reach 7.5 and 3.9 billion liters, respectively. The experiences of Beijing and Shanghai are highly relevant for cities in China and abroad that are facing the same problems. - Research Highlights: → Beijing and Shanghai are the first two cities in China to implement policies on vehicle ownership and use. This paper compared policies in the two cities and evaluated their effectiveness. → A bottom-up model was established to simulate the fuel consumption by passenger vehicles. By using this model, fuel consumptions by passenger vehicles in Beijing and Shanghai from 1990 to 2020 under two scenarios of current policy and no policy were estimated. Under current policy, fuel consumptions by passenger vehicles in Beijing and Shanghai in 2020 were estimated to reach 7.5 and 3.9 billion liters, respectively. → This paper discussed the benefits and negative impacts of policies in Beijing and Shanghai, which are highly relevant for cities in China and abroad that are facing the problems of traffic congestion and excessive vehicle fuel consumption.

  11. Inverse Force Determination on a Small Scale Launch Vehicle Model Using a Dynamic Balance

    Science.gov (United States)

    Ngo, Christina L.; Powell, Jessica M.; Ross, James C.

    2017-01-01

    A launch vehicle can experience large unsteady aerodynamic forces in the transonic regime that, while usually only lasting for tens of seconds during launch, could be devastating if structural components and electronic hardware are not designed to account for them. These aerodynamic loads are difficult to experimentally measure and even harder to computationally estimate. The current method for estimating buffet loads is through the use of a few hundred unsteady pressure transducers and wind tunnel test. Even with a large number of point measurements, the computed integrated load is not an accurate enough representation of the total load caused by buffeting. This paper discusses an attempt at using a dynamic balance to experimentally determine buffet loads on a generic scale hammer head launch vehicle model tested at NASA Ames Research Center's 11' x 11' transonic wind tunnel. To use a dynamic balance, the structural characteristics of the model needed to be identified so that the natural modal response could be and removed from the aerodynamic forces. A finite element model was created on a simplified version of the model to evaluate the natural modes of the balance flexures, assist in model design, and to compare to experimental data. Several modal tests were conducted on the model in two different configurations to check for non-linearity, and to estimate the dynamic characteristics of the model. The experimental results were used in an inverse force determination technique with a psuedo inverse frequency response function. Due to the non linearity, the model not being axisymmetric, and inconsistent data between the two shake tests from different mounting configuration, it was difficult to create a frequency response matrix that satisfied all input and output conditions for wind tunnel configuration to accurately predict unsteady aerodynamic loads.

  12. Decentralized Model Predictive Control for Cooperative Multiple Vehicles Subject to Communication Loss

    Directory of Open Access Journals (Sweden)

    Hojjat A. Izadi

    2011-01-01

    Full Text Available The decentralized model predictive control (DMPC of multiple cooperative vehicles with the possibility of communication loss/delay is investigated. The neighboring vehicles exchange their predicted trajectories at every sample time to maintain the cooperation objectives. In the event of a communication loss (packet dropout, the most recent available information, which is potentially delayed, is used. Then the communication loss problem changes to a cooperative problem when random large communication delays are present. Such large communication delays can lead to poor cooperation performance and unsafe behaviors such as collisions. A new DMPC approach is developed to improve the cooperation performance and achieve safety in the presence of the large communication delays. The proposed DMPC architecture estimates the tail of neighbor's trajectory which is not available due to the large communication delays for improving the performance. The concept of the tube MPC is also employed to provide the safety of the fleet against collisions, in the presence of large intervehicle communication delays. In this approach, a tube shaped trajectory set is assumed around the trajectory of the neighboring vehicles whose trajectory is delayed/lost. The radius of tube is a function of the communication delay and vehicle's maneuverability (in the absence of model uncertainty. The simulation of formation problem of multiple vehicles is employed to illustrate the effectiveness of the proposed approach.

  13. EVC EXPO 80. Proceedings of the third international electric vehicle conference, St. Louis, MO, May 20-22, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, L.

    1980-01-01

    Issues and trends in the case of electric vehicles are considered along with vehicle systems, EV fleet user experience, batteries, aspects of vehicle testing, EV commercial market and vehicle potentials, EV cost considerations, the effective utilization of EVs, and modeling, mission analysis, and impact assessment. Attention is given to EV component reliability, automatic gearshift control for an efficient battery vehicle drive system, a brushless DC motor-power conditioner unit designed and built for propulsion of electric passenger vehicles, a roadway powered electric vehicle system, inductively coupled power systems for electric vehicles, a fuel-cell-powered golf cart, electric vehicles in telephone service, electric vehicle use in the U.S. Postal Service, high performance electric commercial vehicles, nickel iron battery design and performance, the development of the nickel-iron-battery system for electric vehicle propulsion, the advancing performance threshold of the lead-acid electric vehicle battery, advances in zinc bromine batteries for motive power, some aspects of battery vehicle evaluation with particular attention to a battery model, and a generic battery model for electric and hybrid vehicle simulation performance prediction.

  14. Vehicle Integrated Performance Analysis, the VIPA Experience: Reconnecting with Technical Integration

    Science.gov (United States)

    McGhee, David S.

    2005-01-01

    Today's NASA is facing significant challenges and changes. The Exploration initiative indicates a large increase in projects with limited increase in budget. The Columbia report has criticized NASA for its lack of insight and technical integration impacting its ability to provide safety. The Aldridge report is advocating NASA find new ways of doing business. Very early in the Space Launch Initiative (SLI) program a small team of engineers at MSFC were asked to propose a process for performing a system level assessment of a launch vehicle. The request was aimed primarily at providing insight and making NASA a "smart buyer." Out of this effort the VIPA team was created. The difference between the VIPA effort and many integration attempts is that VIPA focuses on using experienced people from various disciplines and a process which focuses them on a technically integrated assessment. Most previous attempts have focused on developing an all encompassing software tool. In addition, VIPA anchored its process formulation in the experience of its members and in early developmental Space Shuttle experience. The primary reference for this is NASA-TP-2001-210092, "Launch Vehicle Design Process: Characterization, Technical Integration, and Lessons Learned," and discussions with its authors. The foundations of VIPA's process are described. The VIPA team also recognized the need to drive detailed analysis earlier in the design process. Analyses and techniques typically done in later design phases, are brought forward using improved computing technology. The intent is to allow the identification of significant sensitivities, trades, and design issues much earlier in the program. This process is driven by the T-model for Technical Integration described in the aforementioned reference. VIPA's approach to performing system level technical integration is discussed in detail. Proposed definitions are offered to clarify this discussion and the general systems integration dialog. VIPA

  15. World modeling for cooperative intelligent vehicles

    NARCIS (Netherlands)

    Papp, Z.; Brown, C.; Bartels, C.

    2008-01-01

    Cooperative intelligent vehicle systems constitute a promising way to improving traffic throughput, safety and comfort. The state-of-the-art intelligent-vehicle applications usually can be described as a collection of interacting, highly autonomous, complex dynamical systems (the individual

  16. Business Models for Solar Powered Charging Stations to Develop Infrastructure for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jessica Robinson

    2014-10-01

    Full Text Available Electric power must become less dependent on fossil fuels and transportation must become more electric to decrease carbon emissions and mitigate climate change. Increasing availability and accessibility of charging stations is predicted to increase purchases of electric vehicles. In order to address the current inadequate charging infrastructure for electric vehicles, major entities must adopt business models for solar powered charging stations (SPCS. These SPCS should be located in parking lots to produce electricity for the grid and provide an integrated infrastructure for charging electric vehicles. Due to the lack of information related to SPCS business models, this manuscript designs several models for major entities including industry, the federal and state government, utilities, universities, and public parking. A literature review of the available relevant business models and case studies of constructed charging stations was completed to support the proposals. In addition, a survey of a university’s students, staff, and faculty was conducted to provide consumer research on people’s opinion of SPCS construction and preference of business model aspects. Results showed that 69% of respondents would be more willing to invest in an electric vehicle if there was sufficient charging station infrastructure at the university. Among many recommendations, the business models suggest installing level 1 charging for the majority of entities, and to match entities’ current pricing structures for station use. The manuscript discusses the impacts of fossil fuel use, and the benefits of electric car and SPCS use, accommodates for the present gap in available literature on SPCS business models, and provides current consumer data for SPCS and the models proposed.

  17. Predicting vehicle fuel consumption patterns using floating vehicle data.

    Science.gov (United States)

    Du, Yiman; Wu, Jianping; Yang, Senyan; Zhou, Liutong

    2017-09-01

    The status of energy consumption and air pollution in China is serious. It is important to analyze and predict the different fuel consumption of various types of vehicles under different influence factors. In order to fully describe the relationship between fuel consumption and the impact factors, massive amounts of floating vehicle data were used. The fuel consumption pattern and congestion pattern based on large samples of historical floating vehicle data were explored, drivers' information and vehicles' parameters from different group classification were probed, and the average velocity and average fuel consumption in the temporal dimension and spatial dimension were analyzed respectively. The fuel consumption forecasting model was established by using a Back Propagation Neural Network. Part of the sample set was used to train the forecasting model and the remaining part of the sample set was used as input to the forecasting model. Copyright © 2017. Published by Elsevier B.V.

  18. Advanced Emergency Braking Control Based on a Nonlinear Model Predictive Algorithm for Intelligent Vehicles

    Directory of Open Access Journals (Sweden)

    Ronghui Zhang

    2017-05-01

    Full Text Available Focusing on safety, comfort and with an overall aim of the comprehensive improvement of a vision-based intelligent vehicle, a novel Advanced Emergency Braking System (AEBS is proposed based on Nonlinear Model Predictive Algorithm. Considering the nonlinearities of vehicle dynamics, a vision-based longitudinal vehicle dynamics model is established. On account of the nonlinear coupling characteristics of the driver, surroundings, and vehicle itself, a hierarchical control structure is proposed to decouple and coordinate the system. To avoid or reduce the collision risk between the intelligent vehicle and collision objects, a coordinated cost function of tracking safety, comfort, and fuel economy is formulated. Based on the terminal constraints of stable tracking, a multi-objective optimization controller is proposed using the theory of non-linear model predictive control. To quickly and precisely track control target in a finite time, an electronic brake controller for AEBS is designed based on the Nonsingular Fast Terminal Sliding Mode (NFTSM control theory. To validate the performance and advantages of the proposed algorithm, simulations are implemented. According to the simulation results, the proposed algorithm has better integrated performance in reducing the collision risk and improving the driving comfort and fuel economy of the smart car compared with the existing single AEBS.

  19. Feasibility Study of a Solar-Powered Electric Vehicle Charging Station Model

    Directory of Open Access Journals (Sweden)

    Bin Ye

    2015-11-01

    Full Text Available In China, the power sector is currently the largest carbon emitter and the transportation sector is the fastest-growing carbon emitter. This paper proposes a model of solar-powered charging stations for electric vehicles to mitigate problems encountered in China’s renewable energy utilization processes and to cope with the increasing power demand by electric vehicles for the near future. This study applies the proposed model to Shenzhen City to verify its technical and economic feasibility. Modeling results showed that the total net present value of a photovoltaic power charging station that meets the daily electricity demand of 4500 kWh is $3,579,236 and that the cost of energy of the combined energy system is $0.098/kWh. In addition, the photovoltaic powered electric vehicle model has pollutant reduction potentials of 99.8%, 99.7% and 100% for carbon dioxide, sulfur dioxide, and nitrogen oxides, respectively, compared with a traditional gasoline-fueled car. Sensitivity analysis results indicated that interest rate has a relatively strong influence on COE (Cost of Energy. An increase in the interest rate from 0% to 6% increases COE from $0.027/kWh to $0.097/kWh. This analysis also suggests that carbon pricing promotes renewable energy only when the price of carbon is above $20/t.

  20. Operations and support cost modeling of conceptual space vehicles

    Science.gov (United States)

    Ebeling, Charles

    1994-01-01

    The University of Dayton is pleased to submit this annual report to the National Aeronautics and Space Administration (NASA) Langley Research Center which documents the development of an operations and support (O&S) cost model as part of a larger life cycle cost (LCC) structure. It is intended for use during the conceptual design of new launch vehicles and spacecraft. This research is being conducted under NASA Research Grant NAG-1-1327. This research effort changes the focus from that of the first two years in which a reliability and maintainability model was developed to the initial development of an operations and support life cycle cost model. Cost categories were initially patterned after NASA's three axis work breakdown structure consisting of a configuration axis (vehicle), a function axis, and a cost axis. A revised cost element structure (CES), which is currently under study by NASA, was used to established the basic cost elements used in the model. While the focus of the effort was on operations and maintenance costs and other recurring costs, the computerized model allowed for other cost categories such as RDT&E and production costs to be addressed. Secondary tasks performed concurrent with the development of the costing model included support and upgrades to the reliability and maintainability (R&M) model. The primary result of the current research has been a methodology and a computer implementation of the methodology to provide for timely operations and support cost analysis during the conceptual design activities.

  1. Modeling of a Photovoltaic-Powered Electric Vehicle Charging Station with Vehicle-to-Grid Implementation

    Directory of Open Access Journals (Sweden)

    Azhar Ul-Haq

    2016-12-01

    Full Text Available This paper is aimed at modelling of a distinct smart charging station for electric vehicles (EVs that is suitable for DC quick EV charging while ensuring minimum stress on the power grid. Operation of the charging station is managed in such a way that it is either supplied by photovoltaic (PV power or the power grid, and the vehicle-to-grid (V2G is also implemented for improving the stability of the grid during peak load hours. The PV interfaced DC/DC converter and grid interfaced DC/AC bidirectional converter share a DC bus. A smooth transition of one operating mode to another demonstrates the effectiveness of the employed control strategy. Modelling and control of the different components are explained and are implemented in Simulink. Simulations illustrate the feasible behaviour of the charging station under all operating modes in terms of the four-way interaction among PV, EVs and the grid along with V2G operation. Additionally, a business model is discussed with comprehensive analysis of cost estimation for the deployment of charging facilities in a residential area. It has been recognized that EVs bring new opportunities in terms of providing regulation services and consumption flexibility by varying the recharging power at a certain time instant. The paper also discusses the potential financial incentives required to inspire EV owners for active participation in the demand response mechanism.

  2. Nationwide impact and vehicle to grid application of electric vehicles mobility using an activity based model

    OpenAIRE

    Álvaro, Roberto; González, Jairo; Fraile Ardanuy, José Jesús; Knapen, Luk; Janssens, Davy

    2013-01-01

    This paper describes the impact of electric mobility on the transmission grid in Flanders region (Belgium), using a micro-simulation activity based models. These models are used to provide temporal and spatial estimation of energy and power demanded by electric vehicles (EVs) in different mobility zones. The increment in the load demand due to electric mobility is added to the background load demand in these mobility areas and the effects over the transmission substations are analyzed. From t...

  3. Deriving vehicle-to-grid business models from consumer preferences

    NARCIS (Netherlands)

    Bohnsack, René; van den Hoed, Robert; Oude Reimer, Hugo

    2015-01-01

    Combining electric cars with utility services seems to be a natural fit and holds the promise to tackle various mobility as well as electricity challenges at the same time. So far no viable business model for vehicle-to-grid technology has emerged, raising the question which characteristics a

  4. Modeling vehicle emissions in different types of Chinese cities: Importance of vehicle fleet and local features

    International Nuclear Information System (INIS)

    Huo Hong; Zhang Qiang; He Kebin; Yao Zhiliang; Wang Xintong; Zheng Bo; Streets, David G.; Wang Qidong; Ding Yan

    2011-01-01

    We propose a method to simulate vehicle emissions in Chinese cities of different sizes and development stages. Twenty two cities are examined in this study. The target year is 2007. Among the cities, the vehicle emission factors were remarkably different (the highest is 50-90% higher than the lowest) owing to their distinct local features and vehicle technology levels, and the major contributors to total vehicle emissions were also different. A substantial increase in vehicle emissions is foreseeable unless stronger measures are implemented because the benefit of current policies can be quickly offset by the vehicle growth. Major efforts should be focused on all cities, especially developing cities where the requirements are lenient. This work aims a better understanding of vehicle emissions in all types of Chinese cities. The proposed method could benefit national emission inventory studies in improving accuracy and help in designing national and local policies for vehicle emission control. - Highlights: → We examine vehicle emissions in 22 Chinese cities of different types and locations. → Vehicle emission factors of the cities differ by 50-90% due to distinct local features. → Each vehicle type contributes differently to total emissions among the cities. → A substantial increase in vehicle emissions in most Chinese cities is foreseeable. → City-specific fleet and local features are important in research and policy making. - Vehicle emission characteristics of Chinese cities are remarkably different, and local features need to be taken into account in vehicle emission studies and control strategy.

  5. Flight Experiments for Hypersonic Vehicle Development (Experimentations envol pour le developpement d'un vehicule hypersonique) (CD-ROM)

    National Research Council Canada - National Science Library

    2007-01-01

    ...: 1 CD-ROM; 4 3/4 in.; 124 MB. ABSTRACT: This RTO-AVT/VKI Lecture Series brought together specialists from Europe, USA, and Russia to discuss flight experiments that pertain to the development of hypersonic vehicles...

  6. Sensor Fault Diagnosis Observer for an Electric Vehicle Modeled as a Takagi-Sugeno System

    Directory of Open Access Journals (Sweden)

    S. Gómez-Peñate

    2018-01-01

    Full Text Available A sensor fault diagnosis of an electric vehicle (EV modeled as a Takagi-Sugeno (TS system is proposed. The proposed TS model considers the nonlinearity of the longitudinal velocity of the vehicle and parametric variation induced by the slope of the road; these considerations allow to obtain a mathematical model that represents the vehicle for a wide range of speeds and different terrain conditions. First, a virtual sensor represented by a TS state observer is developed. Sufficient conditions are given by a set of linear matrix inequalities (LMIs that guarantee asymptotic convergence of the TS observer. Second, the work is extended to perform fault detection and isolation based on a generalized observer scheme (GOS. Numerical simulations are presented to show the performance and applicability of the proposed method.

  7. Analyzing The Impacts of the Biogas-to-Electricity Purchase Incentives on Electric Vehicle Deployment with the MA3T Vehicle Choice Model

    Energy Technology Data Exchange (ETDEWEB)

    Podkaminer, Kara [U.S. Department of Energy (DOE); Xie, Fei [ORNL; Lin, Zhenhong [ORNL

    2017-01-01

    This analysis represents the biogas-to-electricity pathway under the Renewable Fuel Standard (RFS) as a point of purchase incentive and tests the impact of this incentive on EV deployment using a vehicle consumer choice model. The credit value generated under this policy was calculated in a number of scenarios based on electricity use of each power train choice on a yearly basis over the 15 year vehicle lifetime, accounting for the average electric vehicle miles travelled and vehicle efficiency, competition for biogas-derived electricity among electric vehicles (EVs), the RIN equivalence value and the time value of money. The credit value calculation in each of these scenarios is offered upfront as a point of purchase incentive for EVs using the Market Acceptance of Advanced Automotive Technologies (MA3T) vehicle choice model, which tracks sales, fleet size and energy use over time. The majority of the scenarios use a proposed RIN equivalence value, which increases the credit value as a way to explore the analysis space. Additional model runs show the relative impact of the equivalence value on EV deployment. The MA3T model output shows that a consumer incentive accelerates the deployment of EVs for all scenarios relative to the baseline (no policy) case. In the scenario modeled to represent the current biogas-to-electricity generation capacity (15 TWh/year) with a 5.24kWh/RIN equivalence value, the policy leads to an additional 1.4 million plug-in hybrid electric vehicles (PHEVs) and 3.5 million battery electric vehicles (BEVs) in 2025 beyond the no-policy case of 1.3 million PHEVs and 2.1 million BEVs when the full value of the credit is passed on to the consumer. In 2030, this increases to 2.4 million PHEVs and 7.3 million BEVs beyond the baseline. This larger impact on BEVs relative to PHEVs is due in part to the larger credit that BEVs receive in the model based on the greater percentage of electric vehicle miles traveled by BEVs relative to PHEVs. In this

  8. Optimization of Vehicle Suspension Parameters for Ride Comfort Based on RSM

    Science.gov (United States)

    Mitra, A. C.; Patil, M. V.; Banerjee, N.

    2015-04-01

    Vehicle suspension design requires an investigation to determine the spring and damper settings that assure optimal ride comfort (RC) of vehicle. In the present work response surface methodology (RSM), one of the methods of design of experiment has been successfully implemented for the purpose of finding optimal setting. Design of experiment sometimes requires accurate representation of the independent variables which are usually difficult to measure or else unavailable for experimentation. This paper proposes a simulation model to analyze the ride comfort with accurate independent variables as per Box-Behnken design of RSM. A prediction model of response variable, RC is developed using regression analysis which leads to a good agreement with simulated model ( R 2 = 99.74 %). The fitted model can be effectively used to evaluate optimal setting of spring stiffness and damping coefficient with the help of response optimization of a high desirability value.

  9. An automotive vehicle dynamics prototyping platform based on a remote control model car

    OpenAIRE

    SOLMAZ, Selim; COŞKUN, Türker

    2013-01-01

    The use of a modified remote control (RC) model car as a vehicle dynamics testing and development platform is detailed. Vehicle dynamics testing is an important aspect of automotive engineering and it plays a key role during the design and tuning of active safety control systems. Considering the fact that such tests are conductedi at great expense, scaled model cars can potentially be used to help with the process to reduce the costs. With this view, we instrument and develop a stand...

  10. Introduction of Autonomous Vehicles: Roundabouts Design and Safety Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Aleksandra Deluka Tibljaš

    2018-04-01

    Full Text Available Driving experiences provided by the introduction of new vehicle technologies are directly impacting the criteria for road network design. New criteria should be taken into consideration by designers, researchers and car owners in order to assure traffic safety in changed conditions that will appear with, for example, introduction of Autonomous Vehicles (AVs in everyday traffic. In this paper, roundabout safety level is analysed on the originally developed microsimulation model in circumstances where different numbers of AVs vehicles are mixed with Conventional Vehicles (CVs. Field data about speed and traffic volumes from existing roundabouts in Croatia were used for development of the model. The simulations done with the Surrogate Safety Assessment Model (SSAM give some relevant highlights on how the introduction of AVs could change both operational and safety parameters at roundabouts. To further explore the effects on safety of roundabouts with the introduction of different shares of AVs, hypothetical safety treatments could be tested to explore whether their effects may change, leading to the estimation of a new set of Crash Modification Factors.

  11. Dynamic Modeling and Simulation of a Switched Reluctance Motor in a Series Hybrid Electric Vehicle

    OpenAIRE

    Siavash Sadeghi; Mojtaba Mirsalim; Arash Hassanpour Isfahani

    2010-01-01

    Dynamic behavior analysis of electric motors is required in order to accuratelyevaluate the performance, energy consumption and pollution level of hybrid electricvehicles. Simulation tools for hybrid electric vehicles are divided into steady state anddynamic models. Tools with steady-state models are useful for system-level analysiswhereas tools that utilize dynamic models give in-depth information about the behavior ofsublevel components. For the accurate prediction of hybrid electric vehicl...

  12. A modelling framework for mitigating customers' waiting time at a vehicle inspection centre

    Science.gov (United States)

    Ahmad, Norazura; Abidin, Norhaslinda Zainal; Ilyas, Khibtiyah; Abduljabbar, Waleed Khalid

    2017-11-01

    In Malaysia, an agency that is entrusted by the Government to perform mandatory vehicle inspection for public, commercial and private vehicles, receive many customers daily. Often complaints of problems received from the customers are associated with waiting time that leads to lost of business and dissatisfied customers. To address this issue, we propose a framework for modelling a vehicle inspection system using an integration of simulation and optimization approaches. The strengths of simulation and optimization are reviewed briefly that is hoped to reveal the synergy between the established methods in determining an appropriate customer's waiting time for inspection at a vehicle inspection centre. Relevant concepts and preliminary results are also presented and discussed in this paper.

  13. Research on Correlation between Vehicle Cycle and Engine Cycle in Heavy-duty commercial vehicle

    Science.gov (United States)

    lin, Chen; Zhong, Wang; Shuai, Liu

    2017-12-01

    In order to study the correlation between vehicle cycle and engine cycle in heavy commercial vehicles, the conversion model of vehicle cycle to engine cycle is constructed based on the vehicle power system theory and shift strategy, which considers the verification on diesel truck. The results show that the model has high rationality and reliability in engine operation. In the acceleration process of high speed, the difference of model gear selection leads to the actual deviation. Compared with the drum test, the engine speed distribution obtained by the model deviates to right, which fits to the lower grade. The grade selection has high influence on the model.

  14. A vehicle-to-infrastructure channel model for blind corner scattering environments

    KAUST Repository

    Chelli, Ali

    2013-09-01

    In this paper, we derive a new geometrical blind corner scattering model for vehicle-to-infrastructure (V2I) communications. The proposed model takes into account single-bounce and double-bounce scattering stemming from fixed scatterers located on both sides of the curved street. Starting from the geometrical blind corner model, the exact expression of the angle of departure (AOD) is derived. Based on this expression, the probability density function (PDF) of the AOD and the Doppler power spectrum are determined. Analytical expressions for the channel gain and the temporal autocorrelation function (ACF) are provided under non-line-of-sight (NLOS) conditions. Moreover, we investigate the impact of the position of transmitting vehicle relatively to the receiving road-side unit on the channel statistics. The proposed channel model is useful for the design and analysis of future V2I communication systems. Copyright © 2013 by the Institute of Electrical and Electronic Engineers, Inc.

  15. Modeling thermal effects in braking systems of railway vehicles

    Directory of Open Access Journals (Sweden)

    Milošević Miloš S.

    2012-01-01

    Full Text Available The modeling of thermal effects has become increasingly important in product design in different transport means, road vehicles, airplanes, railway vehicles, and so forth. The thermal analysis is a very important stage in the study of braking systems, especially of railway vehicles, where it is necessary to brake huge masses, because the thermal load of a braked railway wheel prevails compared to other types of loads. In the braking phase, kinetic energy transforms into thermal energy resulting in intense heating and high temperature states of railway wheels. Thus induced thermal loads determine thermomechanical behavior of the structure of railway wheels. In cases of thermal overloads, which mainly occur as a result of long-term braking on down-grade railroads, the generation of stresses and deformations occurs, whose consequences are the appearance of cracks on the rim of a wheel and the final total wheel defect. The importance to precisely determine the temperature distribution caused by the transfer process of the heat generated during braking due to the friction on contact surfaces of the braking system makes it a challenging research task. Therefore, the thermal analysis of a block-braked solid railway wheel of a 444 class locomotive of the national railway operator Serbian Railways is processed in detail in this paper, using analytical and numerical modeling of thermal effects during long-term braking for maintaining a constant speed on a down-grade railroad.

  16. Establishing bonds between vehicle certification data and real-world vehicle fuel consumption – A Vehicle Specific Power approach

    International Nuclear Information System (INIS)

    Duarte, G.O.; Gonçalves, G.A.; Baptista, P.C.; Farias, T.L.

    2015-01-01

    Highlights: • Innovative methodology to estimate VSP fuel consumption based on public available data. • Model validation with accurate fuel consumption results (absolute deviation from 4.7% to 9.2%). • Best-selling vehicles in Portugal case study was developed for different driving cycles. - Abstract: A method to perform the energy characterization of a vehicle according to the specific power required while driving was developed using public vehicle certification data. Using a portable emission measurement system, fuel consumption was quantified in a second-by-second basis under on-road conditions for 19 vehicles (spark-ignition, compression-ignition and hybrids). This data allowed building generic curves of fuel consumption as a function of the specific power, according to Vehicle Specific Power methodology. Comparing on-road measurements and the model estimates, a R 2 higher than 0.9 for conventional and hybrid vehicles was obtained regarding modal fuel consumption. Comparing the fuel consumption measured on the drive cycles performed by each vehicle and the correspondent estimates, an absolute deviation of 9.2% ± 9.2% was found for conventional vehicles and 4.7% ± 1.8% for hybrids vehicles. This methodology was validated and applied to estimate the energy impacts of the best-selling vehicles in Portugal for different driving cycles. This prompt method, that does not require vehicle monitoring, can estimate curves of fuel consumption in g/s, as a function of specific power, which allows quantifying the absolute fuel use for any driving cycle

  17. Emergency Vehicle Scheduling Problem with Time Utility in Disasters

    Directory of Open Access Journals (Sweden)

    Xiaobing Gan

    2015-01-01

    Full Text Available This paper presents a flexible emergency rescue system which is chiefly composed of three parts, namely, disaster assistance center, relief vehicles, and disaster areas. A novel objective of utility maximization is used to evaluate the entire system in disasters. Considering the uncertain road conditions in the relief distribution, we implement triangular fuzzy number to calculate the vehicle velocity. As a consequence, a fuzzy mathematical model is built to maximize the utility of emergency rescue system and then converted to the crisp counterpart. Finally, the results of numerical experiments obtained by particle swarm optimization (PSO prove the validity of this proposed mathematical model.

  18. Measurement and modelling of noise emission of road vehicles for use in prediction models

    Energy Technology Data Exchange (ETDEWEB)

    Jonasson, H.G.

    2000-07-01

    The road vehicle as sound source has been studied within a wide frequency range. Well defined measurements have been carried out on moving and stationary vehicles. Measurement results have been checked against theoretical simulations. A Nordtest measurement method to obtain input data for prediction methods has been proposed and tested in four different countries. The effective sound source of a car has its centre close to the nearest wheels. For trucks this centre seems to be closer to the centre of the car. The vehicle as sound source is directional both in the vertical and the horizontal plane. The difference between SEL and L{sub pFmax} during a pass-by varies with frequency. At low frequencies interference effects between correlated sources may be the problem. At high frequencies the directivity of tyre/road noise affects the result. The time when L{sub pFmax} is obtained varies with frequency. Thus traditional maximum measurements are not suitable for frequency band applications. The measurements support the fact that the tyre/road noise source is very low. Measurements on a stationary vehicle indicate that the engine source is also very low. Engine noise is screened by the body of the car. The ground attenuation, also at short distances, will be significant whenever we use low microphone positions and have some 'soft' ground in between. Unless all measurements are restricted to propagation over 'hard' surfaces only it is necessary to use rather high microphone positions. The Nordtest method proposed will yield a reproducibility standard deviation of 1-3 dB depending on frequency. High frequencies are more accurate. In order to get accurate results at low frequencies large numbers of vehicles are required. To determine the sound power level from pass-by measurement requires a proper source and propagation model. As these models may change it is recommended to measure and report both SEL and L{sub pFmax} normalized to a specified distance.

  19. Hypersonic vehicle model and control law development using H(infinity) and micron synthesis

    Science.gov (United States)

    Gregory, Irene M.; Chowdhry, Rajiv S.; Mcminn, John D.; Shaughnessy, John D.

    1994-01-01

    The control system design for a Single Stage To Orbit (SSTO) air breathing vehicle will be central to a successful mission because a precise ascent trajectory will preserve narrow payload margins. The air breathing propulsion system requires the vehicle to fly roughly halfway around the Earth through atmospheric turbulence. The turbulence, the high sensitivity of the propulsion system to inlet flow conditions, the relatively large uncertainty of the parameters characterizing the vehicle, and continuous acceleration make the problem especially challenging. Adequate stability margins must be provided without sacrificing payload mass since payload margins are critical. Therefore, a multivariable control theory capable of explicitly including both uncertainty and performance is needed. The H(infinity) controller in general provides good robustness but can result in conservative solutions for practical problems involving structured uncertainty. Structured singular value mu framework for analysis and synthesis is potentially much less conservative and hence more appropriate for problems with tight margins. An SSTO control system requires: highly accurate tracking of velocity and altitude commands while limiting angle-of-attack oscillations, minimized control power usage, and a stabilized vehicle when atmospheric turbulence and system uncertainty are present. The controller designs using H(infinity) and mu-synthesis procedures were compared. An integrated flight/propulsion dynamic mathematical model of a conical accelerator vehicle was linearized as the vehicle accelerated through Mach 8. Vehicle acceleration through the selected flight condition gives rise to parametric variation that was modeled as a structured uncertainty. The mu-analysis approach was used in the frequency domain to conduct controller analysis and was confirmed by time history plots. Results demonstrate the inherent advantages of the mu framework for this class of problems.

  20. Assessing the Predictability of Scheduled-Vehicle Travel Times

    DEFF Research Database (Denmark)

    Tiesyte, Dalia; Jensen, Christian Søndergaard

    2009-01-01

    One of the most desired and challenging services in collective transport systems is the real-time prediction of the near-future travel times of scheduled vehicles, especially public buses, thus improving the experience of the transportation users, who may be able to better schedule their travel......, and also enabling system operators to perform real-time monitoring. While travel-time prediction has been researched extensively during the past decade, the accuracies of existing techniques fall short of what is desired, and proposed mathematical prediction models are often not transferable to other...... systems because the properties of the travel-time-related data of vehicles are highly context-dependent, making the models difficult to fit. We propose a framework for evaluating various predictability types of the data independently of the model, and we also compare predictability analysis results...

  1. Dr. von Braun With a Model of a Launch Vehicle

    Science.gov (United States)

    1950-01-01

    Dr. von Braun stands beside a model of the upper stage (Earth-returnable stage) of the three-stage launch vehicle built for the series of the motion picture productions of space flight produced by Walt Disney in the mid-1950's.

  2. Switched Cooperative Driving Model towards Human Vehicle Copiloting Situation: A Cyberphysical Perspective

    Directory of Open Access Journals (Sweden)

    Yang Li

    2018-01-01

    Full Text Available Development of highly automated and intelligent vehicles can lead to the reduction of driver workload. However, it also causes the out-of-the-loop problem to drivers, which leaves drivers handicapped in their ability to take over manual operations in emergency situations. This contribution puts forth a new switched driving strategy to avoid some of the negative consequences associated with out-of-the-loop performance by having drivers assume manual control at periodic intervals. To minimize the impact of the transitions between automated and manual driving on traffic operations, a switched cooperative driving model towards human vehicle copiloting situation is proposed by considering the vehicle dynamics and the realistic intervehicle communication in a cyberphysical view. The design method of the switching signal for the switched cooperative driving model is given based on the Lyapunov stability theory with the comprehensive consideration of platoon stability and human factors. The good agreement between simulation results and theoretical analysis illustrates the effectiveness of the proposed methods.

  3. Evaluation of odometry algorithm performances using a railway vehicle dynamic model

    Science.gov (United States)

    Allotta, B.; Pugi, L.; Ridolfi, A.; Malvezzi, M.; Vettori, G.; Rindi, A.

    2012-05-01

    In modern railway Automatic Train Protection and Automatic Train Control systems, odometry is a safety relevant on-board subsystem which estimates the instantaneous speed and the travelled distance of the train; a high reliability of the odometry estimate is fundamental, since an error on the train position may lead to a potentially dangerous overestimation of the distance available for braking. To improve the odometry estimate accuracy, data fusion of different inputs coming from a redundant sensor layout may be used. Simplified two-dimensional models of railway vehicles have been usually used for Hardware in the Loop test rig testing of conventional odometry algorithms and of on-board safety relevant subsystems (like the Wheel Slide Protection braking system) in which the train speed is estimated from the measures of the wheel angular speed. Two-dimensional models are not suitable to develop solutions like the inertial type localisation algorithms (using 3D accelerometers and 3D gyroscopes) and the introduction of Global Positioning System (or similar) or the magnetometer. In order to test these algorithms correctly and increase odometry performances, a three-dimensional multibody model of a railway vehicle has been developed, using Matlab-Simulink™, including an efficient contact model which can simulate degraded adhesion conditions (the development and prototyping of odometry algorithms involve the simulation of realistic environmental conditions). In this paper, the authors show how a 3D railway vehicle model, able to simulate the complex interactions arising between different on-board subsystems, can be useful to evaluate the odometry algorithm and safety relevant to on-board subsystem performances.

  4. Rail vehicle dynamic response to a nonlinear physical 'in-service' model of its secondary suspension hydraulic dampers

    Science.gov (United States)

    Wang, W. L.; Zhou, Z. R.; Yu, D. S.; Qin, Q. H.; Iwnicki, S.

    2017-10-01

    A full nonlinear physical 'in-service' model was built for a rail vehicle secondary suspension hydraulic damper with shim-pack-type valves. In the modelling process, a shim pack deflection theory with an equivalent-pressure correction factor was proposed, and a Finite Element Analysis (FEA) approach was applied. Bench test results validated the damper model over its full velocity range and thus also proved that the proposed shim pack deflection theory and the FEA-based parameter identification approach are effective. The validated full damper model was subsequently incorporated into a detailed vehicle dynamics simulation to study how its key in-service parameter variations influence the secondary-suspension-related vehicle system dynamics. The obtained nonlinear physical in-service damper model and the vehicle dynamic response characteristics in this study could be used in the product design optimization and nonlinear optimal specifications of high-speed rail hydraulic dampers.

  5. Design, Modeling And Control Of Steering And Braking For An Urban Electric Vehicle

    OpenAIRE

    Maciua, Dragos

    1996-01-01

    This report describes research which involved the design modification, modeling and control of automatic steering and braking systems for an urban electric vehicle. The vehicle is equipped with four-wheel independent drive, four-wheel independent braking and four-wheel steering. Control algorithms were developed for steering and braking. Simulation results show the feasibility of the algorithms.

  6. Methodology for assessing electric vehicle charging infrastructure business models

    OpenAIRE

    Madina, Carlos; Zamora, Inmaculada; Zabala, Eduardo

    2016-01-01

    The analysis of economic implications of innovative business models in networked environments, as electro-mobility is, requires a global approach to ensure that all the involved actors obtain a benefit. Although electric vehicles (EVs) provide benefits for the society as a whole, there are a number of hurdles for their widespread adoption, mainly the high investment cost for the EV and for the infrastructure. Therefore, a sound business model must be built up for charging service operators, w...

  7. Modeling vehicle interior noise exposure dose on freeways: Considering weaving segment designs and engine operation.

    Science.gov (United States)

    Li, Qing; Qiao, Fengxiang; Yu, Lei; Shi, Junqing

    2017-07-05

    Vehicle interior noise functions at the dominant frequencies of 500 Hz below and around 800 Hz, which fall into the bands that may impair hearing. Recent studies demonstrated that freeway commuters are chronically exposed to vehicle interior noise, bearing the risk of hearing impairment. The interior noise evaluation process is mostly conducted in a laboratory environment. The test results and the developed noise models may underestimate or ignore the noise effects from dynamic traffic and road conditions and configuration. However, the interior noise is highly associated with vehicle maneuvering. The vehicle maneuvering on a freeway weaving segment is more complex because of its nature of conflicting areas. This research is intended to explore the risk of the interior noise exposure on freeway weaving segments for freeway commuters and to improve the interior noise estimation by constructing a decision tree learning-based noise exposure dose (NED) model, considering weaving segment designs and engine operation. On-road driving tests were conducted on 12 subjects on State Highway 288 in Houston, Texas. On-board Diagnosis (OBD) II, a smartphone-based roughness app, and a digital sound meter were used to collect vehicle maneuvering and engine information, International Roughness Index, and interior noise levels, respectively. Eleven variables were obtainable from the driving tests, including the length and type of a weaving segment, serving as predictors. The importance of the predictors was estimated by their out-of-bag-permuted predictor delta errors. The hazardous exposure level of the interior noise on weaving segments was quantified to hazard quotient, NED, and daily noise exposure level, respectively. Results showed that the risk of hearing impairment on freeway is acceptable; the interior noise level is the most sensitive to the pavement roughness and is subject to freeway configuration and traffic conditions. The constructed NED model shows high predictive

  8. Parabolic Flights @ Home. An Unmanned Air Vehicle for Short-Duration Low-Gravity Experiments

    Science.gov (United States)

    Hofmeister, Paul Gerke; Blum, Jürgen

    2011-02-01

    We developed an unmanned air vehicle (UAV) suitable for small parabolic-flight experiments. The flight speed of 100 m s - 1 is sufficient for zero-gravity parabolas of 16 s duration. The flight path's length of slightly more than 1 km and 400 m difference in altitude is suitable for ground controlled or supervised flights. Since this fits within the limits set for model aircraft, no additional clearance is required for operation. Our UAV provides a cost-effective platform readily available for low-g experiments, which can be performed locally without major preparation. A payload with a size of up to 0.9 ×0.3 ×0.3 m3 and a mass of ˜5 kg can be exposed to 0 g 0-5 g 0, with g 0 being the gravitational acceleration of the Earth. Flight-duration depends on the desired acceleration level, e.g. 17 s at 0.17 g 0 (lunar surface level) or 21 s at 0.38 g 0 (Martian surface level). The aircraft has a mass of 25 kg (including payload) and a wingspan of 2 m. It is powered by a jet engine with an exhaust speed of 450 m s - 1 providing a thrust of 180 N. The parabolic-flight curves are automated by exploiting the advantages of sophisticated micro-electronics to minimize acceleration errors.

  9. A Traction Control Strategy with an Efficiency Model in a Distributed Driving Electric Vehicle

    OpenAIRE

    Lin, Cheng; Cheng, Xingqun

    2014-01-01

    Both active safety and fuel economy are important issues for vehicles. This paper focuses on a traction control strategy with an efficiency model in a distributed driving electric vehicle. In emergency situation, a sliding mode control algorithm was employed to achieve antislip control through keeping the wheels' slip ratios below 20%. For general longitudinal driving cases, an efficiency model aiming at improving the fuel economy was built through an offline optimization stream within the tw...

  10. Comparison performance of split plug-in hybrid electric vehicle and hybrid electric vehicle using ADVISOR

    Directory of Open Access Journals (Sweden)

    Mohd Rashid Muhammad Ikram

    2017-01-01

    Full Text Available Electric vehicle suffers from relatively short range and long charging times and consequently has not become an acceptable solution to the automotive consumer. The addition of an internal combustion engine to extend the range of the electric vehicle is one method of exploiting the high efficiency and lack of emissions of the electric vehicle while retaining the range and convenient refuelling times of a conventional gasoline powered vehicle. The term that describes this type of vehicle is a hybrid electric vehicle. Many configurations of hybrid electric vehicles have been designed and implemented, namely the series, parallel and power-split configurations. This paper discusses the comparison between Split Plug-in Hybrid Electric Vehicle(SPHEV and Hybrid Electric Vehicle(HEV. Modelling methods such as physics-based Resistive Companion Form technique and Bond Graph method are presented with powertrain component and system modelling examples. The modelling and simulation capability of existing tools such as ADvanced VehIcle SimulatOR (ADVISOR is demonstrated through application examples. Since power electronics is indispensable in hybrid vehicles, the issue of numerical oscillations in dynamic simulations involving power electronics is briefly addressed.

  11. Model and algorithm for bi-fuel vehicle routing problem to reduce GHG emissions.

    Science.gov (United States)

    Abdoli, Behroz; MirHassani, Seyed Ali; Hooshmand, Farnaz

    2017-09-01

    Because of the harmful effects of greenhouse gas (GHG) emitted by petroleum-based fuels, the adoption of alternative green fuels such as biodiesel and compressed natural gas (CNG) is an inevitable trend in the transportation sector. However, the transition to alternative fuel vehicle (AFV) fleets is not easy and, particularly at the beginning of the transition period, drivers may be forced to travel long distances to reach alternative fueling stations (AFSs). In this paper, the utilization of bi-fuel vehicles is proposed as an operational approach. We present a mathematical model to address vehicle routing problem (VRP) with bi-fuel vehicles and show that the utilization of bi-fuel vehicles can lead to a significant reduction in GHG emissions. Moreover, a simulated annealing algorithm is adopted to solve large instances of this problem. The performance of the proposed algorithm is evaluated on some random instances.

  12. An agent-based model to study market penetration of plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Eppstein, Margaret J.; Grover, David K.; Marshall, Jeffrey S.; Rizzo, Donna M.

    2011-01-01

    A spatially explicit agent-based vehicle consumer choice model is developed to explore sensitivities and nonlinear interactions between various potential influences on plug-in hybrid vehicle (PHEV) market penetration. The model accounts for spatial and social effects (including threshold effects, homophily, and conformity) and media influences. Preliminary simulations demonstrate how such a model could be used to identify nonlinear interactions among potential leverage points, inform policies affecting PHEV market penetration, and help identify future data collection necessary to more accurately model the system. We examine sensitivity of the model to gasoline prices, to accuracy in estimation of fuel costs, to agent willingness to adopt the PHEV technology, to PHEV purchase price and rebates, to PHEV battery range, and to heuristic values related to gasoline usage. Our simulations indicate that PHEV market penetration could be enhanced significantly by providing consumers with ready estimates of expected lifetime fuel costs associated with different vehicles (e.g., on vehicle stickers), and that increases in gasoline prices could nonlinearly magnify the impact on fleet efficiency. We also infer that a potential synergy from a gasoline tax with proceeds is used to fund research into longer-range lower-cost PHEV batteries. - Highlights: → We model consumer agents to study potential market penetration of PHEVs. → The model accounts for spatial, social, and media effects. → We identify interactions among potential leverage points that could inform policy. → Consumer access to expected lifetime fuel costs may enhance PHEV market penetration. → Increasing PHEV battery range has synergistic effects on fleet efficiency.

  13. Mathematical model for studying cyclist kinematics in vehicle-bicycle frontal collisions

    Science.gov (United States)

    Condrea, OA; Chiru, A.; Chiriac, RL; Vlase, S.

    2017-10-01

    For the development of effective vehicle related safety solutions to improve cyclist protection, kinematic predictions are essential. The objective of the paper was the elaboration of a simple mathematical model for predicting cyclist kinematics, with the advantage of yielding simple results for relatively complicated impact situations. Thus, the use of elaborated math software is not required and the calculation time is shortened. The paper presents a modelling framework to determine cyclist kinematic behaviour for the situations in which a M1 category vehicle frontally hits the rear part of a bicycle. After the primary impact between the vehicle front bumper and the bicycle, the cyclist hits the vehicle’s bonnet, the windscreen or both the vehicle’s bonnet and the windscreen in short succession. The head-windshield impact is often the most severe impact, causing serious and potentially lethal injuries. The cyclist is represented by a rigid segment and the equations of motion for the cyclist after the primary impact are obtained by applying Newton’s second law of motion. The impact time for the contact between the vehicle and the cyclist is yielded afterwards by formulating and intersecting the trajectories for two points positioned on the cyclist’s head/body and the vehicle’s windscreen/bonnet while assuming that the cyclist’s equations of motion after the primary impact remain the same. Postimpact kinematics for the secondary impact are yielded by applying linear and angular momentum conservation laws.

  14. A comparative analysis of several vehicle emission models for road freight transportation

    NARCIS (Netherlands)

    Demir, E.; Bektas, T.; Laporte, G.

    2011-01-01

    Reducing greenhouse gas emissions in freight transportation requires using appropriate emission models in the planning process. This paper reviews and numerically compares several available freight transportation vehicle emission models and also considers their outputs in relations to field studies.

  15. Vehicle operation characteristic under different ramp entrance conditions in underground road: Analysis, simulation and modelling

    Science.gov (United States)

    Yao, Qiming; Liu, Shuo; Liu, Yang

    2018-05-01

    An experimental design was used to study the vehicle operation characteristics of different ramp entrance conditions in underground road. With driving simulator, the experimental scenarios include left or right ramp with first, second and third service level, respectively, to collect vehicle speed, acceleration, lateral displacement and location information at the ramp entrance section. By using paired t-test and ANOVA, the influence factors of vehicle operating characteristics are studied. The result shows that effects of ramp layout and mainline traffic environment on vehicle operation characteristics are significant. The regression model of vehicle traveling distance on acceleration lane is established. Suggestions are made for ramp entrance design of underground road.

  16. A new car-following model for autonomous vehicles flow with mean expected velocity field

    Science.gov (United States)

    Wen-Xing, Zhu; Li-Dong, Zhang

    2018-02-01

    Due to the development of the modern scientific technology, autonomous vehicles may realize to connect with each other and share the information collected from each vehicle. An improved forward considering car-following model was proposed with mean expected velocity field to describe the autonomous vehicles flow behavior. The new model has three key parameters: adjustable sensitivity, strength factor and mean expected velocity field size. Two lemmas and one theorem were proven as criteria for judging the stability of homogeneousautonomous vehicles flow. Theoretical results show that the greater parameters means larger stability regions. A series of numerical simulations were carried out to check the stability and fundamental diagram of autonomous flow. From the numerical simulation results, the profiles, hysteresis loop and density waves of the autonomous vehicles flow were exhibited. The results show that with increased sensitivity, strength factor or field size the traffic jam was suppressed effectively which are well in accordance with the theoretical results. Moreover, the fundamental diagrams corresponding to three parameters respectively were obtained. It demonstrates that these parameters play almost the same role on traffic flux: i.e. before the critical density the bigger parameter is, the greater flux is and after the critical density, the opposite tendency is. In general, the three parameters have a great influence on the stability and jam state of the autonomous vehicles flow.

  17. Distributed Model Predictive Control over Multiple Groups of Vehicles in Highway Intelligent Space for Large Scale System

    Directory of Open Access Journals (Sweden)

    Tang Xiaofeng

    2014-01-01

    Full Text Available The paper presents the three time warning distances for solving the large scale system of multiple groups of vehicles safety driving characteristics towards highway tunnel environment based on distributed model prediction control approach. Generally speaking, the system includes two parts. First, multiple vehicles are divided into multiple groups. Meanwhile, the distributed model predictive control approach is proposed to calculate the information framework of each group. Each group of optimization performance considers the local optimization and the neighboring subgroup of optimization characteristics, which could ensure the global optimization performance. Second, the three time warning distances are studied based on the basic principles used for highway intelligent space (HIS and the information framework concept is proposed according to the multiple groups of vehicles. The math model is built to avoid the chain avoidance of vehicles. The results demonstrate that the proposed highway intelligent space method could effectively ensure driving safety of multiple groups of vehicles under the environment of fog, rain, or snow.

  18. Modeling vehicle emissions in different types of Chinese cities: importance of vehicle fleet and local features.

    Science.gov (United States)

    Huo, Hong; Zhang, Qiang; He, Kebin; Yao, Zhiliang; Wang, Xintong; Zheng, Bo; Streets, David G; Wang, Qidong; Ding, Yan

    2011-10-01

    We propose a method to simulate vehicle emissions in Chinese cities of different sizes and development stages. Twenty two cities are examined in this study. The target year is 2007. Among the cities, the vehicle emission factors were remarkably different (the highest is 50-90% higher than the lowest) owing to their distinct local features and vehicle technology levels, and the major contributors to total vehicle emissions were also different. A substantial increase in vehicle emissions is foreseeable unless stronger measures are implemented because the benefit of current policies can be quickly offset by the vehicle growth. Major efforts should be focused on all cities, especially developing cities where the requirements are lenient. This work aims a better understanding of vehicle emissions in all types of Chinese cities. The proposed method could benefit national emission inventory studies in improving accuracy and help in designing national and local policies for vehicle emission control. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. A traction control strategy with an efficiency model in a distributed driving electric vehicle.

    Science.gov (United States)

    Lin, Cheng; Cheng, Xingqun

    2014-01-01

    Both active safety and fuel economy are important issues for vehicles. This paper focuses on a traction control strategy with an efficiency model in a distributed driving electric vehicle. In emergency situation, a sliding mode control algorithm was employed to achieve antislip control through keeping the wheels' slip ratios below 20%. For general longitudinal driving cases, an efficiency model aiming at improving the fuel economy was built through an offline optimization stream within the two-dimensional design space composed of the acceleration pedal signal and the vehicle speed. The sliding mode control strategy for the joint roads and the efficiency model for the typical drive cycles were simulated. Simulation results show that the proposed driving control approach has the potential to apply to different road surfaces. It keeps the wheels' slip ratios within the stable zone and improves the fuel economy on the premise of tracking the driver's intention.

  20. A Traction Control Strategy with an Efficiency Model in a Distributed Driving Electric Vehicle

    Science.gov (United States)

    Lin, Cheng

    2014-01-01

    Both active safety and fuel economy are important issues for vehicles. This paper focuses on a traction control strategy with an efficiency model in a distributed driving electric vehicle. In emergency situation, a sliding mode control algorithm was employed to achieve antislip control through keeping the wheels' slip ratios below 20%. For general longitudinal driving cases, an efficiency model aiming at improving the fuel economy was built through an offline optimization stream within the two-dimensional design space composed of the acceleration pedal signal and the vehicle speed. The sliding mode control strategy for the joint roads and the efficiency model for the typical drive cycles were simulated. Simulation results show that the proposed driving control approach has the potential to apply to different road surfaces. It keeps the wheels' slip ratios within the stable zone and improves the fuel economy on the premise of tracking the driver's intention. PMID:25197697

  1. Impact of Social Network and Business Model on Innovation Diffusion of Electric Vehicles in China

    Directory of Open Access Journals (Sweden)

    D. Y. Kong

    2014-01-01

    Full Text Available The diffusion of electric vehicles (EVs involves not only the technological development but also the construction of complex social networks. This paper uses the theory of network control to analyze the influence of network forms on EV diffusion in China, especially focusing on the building of EV business models (BMs and the resulting effects and control on the diffusion of EVs. The Bass model is adopted to forecast the diffusion process of EVs and genetic algorithm is used to estimate the parameters based on the diffusion data of Hybrid Electric Vehicle (HEV in the United States and Japan. Two different social network forms and BMs are selected, that is, battery leasing model and vehicle purchasing model, to analyze how different network forms may influence the innovation coefficient and imitation coefficient in the Bass model, which will in turn result in different diffusion results. Thereby, we can find the appropriate network forms and BMs for EVs which is suitable to the local market conditions.

  2. The Role of Spatial Ability in the Relationship Between Video Game Experience and Route Effectiveness Among Unmanned Vehicle Operators

    Science.gov (United States)

    2008-12-01

    Effective route planning is essential to the successful operation of unmanned vehicles. Video game experience has been shown to affect route planning...and execution, but why video game experience helps has not been addressed. One answer may be that spatial skills, necessary for route planning and...mediates the relationship between video game experience and route planning. Results indicated that this mediated relationship existed for the UGV

  3. On Autonomous Articulated Vehicles

    OpenAIRE

    Nayl, Thaker

    2015-01-01

    The objective of this thesis is to address the problems of modeling, path planning and path following for an articulated vehicle in a realistic environment and in the presence of multiple obstacles.In greater detail, the problem of the kinematic modeling of an articulated vehicle is revisited through the proposal of a proper model in which the dimensions and properties of the vehicle can be fully described, rather than considering it as a unit point. Based on this approach, nonlinear and line...

  4. Development of a numerical model for vehicle-bridge interaction analysis of railway bridges

    Science.gov (United States)

    Kim, Hee Ju; Cho, Eun Sang; Ham, Jun Su; Park, Ki Tae; Kim, Tae Heon

    2016-04-01

    In the field of civil engineering, analyzing dynamic response was main concern for a long time. These analysis methods can be divided into moving load analysis method and moving mass analysis method, and formulating each an equation of motion has recently been studied after dividing vehicles and bridges. In this study, the numerical method is presented, which can consider the various train types and can solve the equations of motion for a vehicle-bridge interaction analysis by non-iteration procedure through formulating the coupled equations for motion. Also, 3 dimensional accurate numerical models was developed by KTX-vehicle in order to analyze dynamic response characteristics. The equations of motion for the conventional trains are derived, and the numerical models of the conventional trains are idealized by a set of linear springs and dashpots with 18 degrees of freedom. The bridge models are simplified by the 3 dimensional space frame element which is based on the Euler-Bernoulli theory. The rail irregularities of vertical and lateral directions are generated by PSD functions of the Federal Railroad Administration (FRA).

  5. Study on the combined influence of battery models and sizing strategy for hybrid and battery-based electric vehicles

    DEFF Research Database (Denmark)

    Pinto, Cláudio; Barreras, Jorge V.; de Castro, Ricardo

    2017-01-01

    This paper presents a study of the combined influence of battery models and sizing strategy for hybrid and battery-based electric vehicles. In particular, the aim is to find the number of battery (and supercapacitor) cells to propel a light vehicle to run two different standard driving cycles....... Despite the same tendency, when a hybrid vehicle is taken into account, the influence of the battery models is dependent on the sizing strategy. In this work, two sizing strategies are evaluated: dynamic programming and filter-based. For the latter, the complexity of the battery model has a clear....... Three equivalent circuit models are considered to simulate the battery electrical performance: linear static, non-linear static and non-linear with first-order dynamics. When dimensioning a battery-based vehicle, less complex models may lead to a solution with more battery cells and higher costs...

  6. Dynamic Vehicle Scheduling for Working Service Network with Dual Demands

    Directory of Open Access Journals (Sweden)

    Bing Li

    2017-01-01

    Full Text Available This study aims to develop some models to aid in making decisions on the combined fleet size and vehicle assignment in working service network where the demands include two types (minimum demands and maximum demands, and vehicles themselves can act like a facility to provide services when they are stationary at one location. This type of problem is named as the dynamic working vehicle scheduling with dual demands (DWVS-DD and formulated as a mixed integer programming (MIP. Instead of a large integer program, the problem is decomposed into small local problems that are guided by preset control parameters. The approach for preset control parameters is given. By introducing them into the MIP formulation, the model is reformulated as a piecewise form. Further, a piecewise method by updating preset control parameters is proposed for solving the reformulated model. Numerical experiments show that the proposed method produces better solution within reasonable computing time.

  7. Modelling the impacts of a carbon emission-differentiated vehicle tax system on CO2 emissions intensity from new vehicle purchases in Ireland

    International Nuclear Information System (INIS)

    Giblin, S.; McNabola, A.

    2009-01-01

    The increasing awareness of the effects of climate change on the environment and the economic pressure on oil supply has focused international attention on reducing CO 2 emissions and energy usage across all sectors. In order to meet their Kyoto protocol commitments and in line with European Union policy, the Irish government has introduced a carbon-based tax system for new vehicles purchased from the 1st of July 2008. This new legislation aims to reduce carbon emissions in the transport sector, a sector which is responsible for a significant proportion of both. This paper presents the results of the development, calibration, and application of a car choice model which predicts the changes in CO 2 emissions intensity from new vehicle purchases as a result of the changes in vehicle tax policy and fuel price in Ireland. The model also predicts the impact of such changes on tax revenue for the Irish government and the changes in the split between the number of diesel and petrol vehicles purchased. The investigation found that the introduction of these new carbon-based taxes in Ireland will result in a reduction of 3.6-3.8% in CO 2 emissions intensity and a reduction in annual tax revenue of EUR191 M. (author)

  8. A Discrete-Event Simulation Model for Evaluating Air Force Reusable Military Launch Vehicle Post-Landing Operations

    National Research Council Canada - National Science Library

    Martindale, Michael

    2006-01-01

    The purpose of this research was to develop a discrete-event computer simulation model of the post-landing vehicle recoveoperations to allow the Air Force Research Laboratory, Air Vehicles Directorate...

  9. Interval linear programming model for long-term planning of vehicle recycling in the Republic of Serbia under uncertainty.

    Science.gov (United States)

    Simic, Vladimir; Dimitrijevic, Branka

    2015-02-01

    An interval linear programming approach is used to formulate and comprehensively test a model for optimal long-term planning of vehicle recycling in the Republic of Serbia. The proposed model is applied to a numerical case study: a 4-year planning horizon (2013-2016) is considered, three legislative cases and three scrap metal price trends are analysed, availability of final destinations for sorted waste flows is explored. Potential and applicability of the developed model are fully illustrated. Detailed insights on profitability and eco-efficiency of the projected contemporary equipped vehicle recycling factory are presented. The influences of the ordinance on the management of end-of-life vehicles in the Republic of Serbia on the vehicle hulks procuring, sorting generated material fractions, sorted waste allocation and sorted metals allocation decisions are thoroughly examined. The validity of the waste management strategy for the period 2010-2019 is tested. The formulated model can create optimal plans for procuring vehicle hulks, sorting generated material fractions, allocating sorted waste flows and allocating sorted metals. Obtained results are valuable for supporting the construction and/or modernisation process of a vehicle recycling system in the Republic of Serbia. © The Author(s) 2015.

  10. Experimental and Computational Modal Analyses for Launch Vehicle Models considering Liquid Propellant and Flange Joints

    Directory of Open Access Journals (Sweden)

    Chang-Hoon Sim

    2018-01-01

    Full Text Available In this research, modal tests and analyses are performed for a simplified and scaled first-stage model of a space launch vehicle using liquid propellant. This study aims to establish finite element modeling techniques for computational modal analyses by considering the liquid propellant and flange joints of launch vehicles. The modal tests measure the natural frequencies and mode shapes in the first and second lateral bending modes. As the liquid filling ratio increases, the measured frequencies decrease. In addition, as the number of flange joints increases, the measured natural frequencies increase. Computational modal analyses using the finite element method are conducted. The liquid is modeled by the virtual mass method, and the flange joints are modeled using one-dimensional spring elements along with the node-to-node connection. Comparison of the modal test results and predicted natural frequencies shows good or moderate agreement. The correlation between the modal tests and analyses establishes finite element modeling techniques for modeling the liquid propellant and flange joints of space launch vehicles.

  11. Methodology for modelling plug-in electric vehicles in the power system and cost estimates for a system with either smart or dumb electric vehicles

    DEFF Research Database (Denmark)

    Kiviluoma, Juha; Meibom, Peter

    2011-01-01

    The article estimates the costs of plug-in electric vehicles (EVs) in a future power system as well as the benefits from smart charging and discharging EVs (smart EVs). To arrive in a good estimate, a generation planning model was used to create power plant portfolios, which were operated in a more...... detailed unit commitment and dispatch model. In both models the charging and discharging of EVs is optimised together with the rest of the power system. Neither the system cost nor the market price of electricity for EVs turned out to be high (36–263 €/vehicle/year in the analysed scenarios). Most...

  12. Hydrogen vehicle fueling station

    Energy Technology Data Exchange (ETDEWEB)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A. [Los Alamos National Lab., NM (United States)] [and others

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  13. A Compendium of Wind Statistics and Models for the NASA Space Shuttle and Other Aerospace Vehicle Programs

    Science.gov (United States)

    Smith, O. E.; Adelfang, S. I.

    1998-01-01

    The wind profile with all of its variations with respect to altitude has been, is now, and will continue to be important for aerospace vehicle design and operations. Wind profile databases and models are used for the vehicle ascent flight design for structural wind loading, flight control systems, performance analysis, and launch operations. This report presents the evolution of wind statistics and wind models from the empirical scalar wind profile model established for the Saturn Program through the development of the vector wind profile model used for the Space Shuttle design to the variations of this wind modeling concept for the X-33 program. Because wind is a vector quantity, the vector wind models use the rigorous mathematical probability properties of the multivariate normal probability distribution. When the vehicle ascent steering commands (ascent guidance) are wind biased to the wind profile measured on the day-of-launch, ascent structural wind loads are reduced and launch probability is increased. This wind load alleviation technique is recommended in the initial phase of vehicle development. The vehicle must fly through the largest load allowable versus altitude to achieve its mission. The Gumbel extreme value probability distribution is used to obtain the probability of exceeding (or not exceeding) the load allowable. The time conditional probability function is derived from the Gumbel bivariate extreme value distribution. This time conditional function is used for calculation of wind loads persistence increments using 3.5-hour Jimsphere wind pairs. These increments are used to protect the commit-to-launch decision. Other topics presented include the Shuttle Shuttle load-response to smoothed wind profiles, a new gust model, and advancements in wind profile measuring systems. From the lessons learned and knowledge gained from past vehicle programs, the development of future launch vehicles can be accelerated. However, new vehicle programs by their very

  14. Total dynamic response of a PSS vehicle negotiating asymmetric road excitations

    Science.gov (United States)

    Zhu, Jian Jun; Khajepour, Amir; Esmailzadeh, Ebrahim

    2012-12-01

    A planar suspension system (PSS) is a novel automobile suspension system in which an individual spring-damper strut is implemented in both the vertical and longitudinal directions, respectively. The wheels in a vehicle with such a suspension system can move back and forth relative to the chassis. When a PSS vehicle experiences asymmetric road excitations, the relative longitudinal motion of wheels with respect to the chassis in two sides of the same axle are not identical, and thus the two wheels at one axle will not be aligned in the same axis. The total dynamic responses, including those of the bounce, pitch and the roll of the PSS vehicle, to the asymmetric road excitation may exhibit different characteristics from those of a conventional vehicle. This paper presents an investigation into the comprehensive dynamic behaviour of a vehicle with the PSS, in such a road condition, on both the straight and curved roads. The study was carried out using an 18 DOF full-car model incorporating a radial-spring tyre-ground contact model and a 2D tyre-ground dynamic friction model. Results demonstrate that the total dynamic behaviour of a PSS vehicle is generally comparable with that of the conventional vehicle, while PSS exhibits significant improvement in absorbing the impact forces along the longitudinal direction when compared to the conventional suspension system. The PSS vehicle is found to be more stable than the conventional vehicle in terms of the directional performance against the disturbance of the road potholes on a straight line manoeuvre, while exhibiting a very similar handling performance on a curved line.

  15. Mechanical Design of a Manipulation System for Unmanned Aerial Vehicles

    NARCIS (Netherlands)

    Keemink, A.Q.L.; Fumagalli, M.; Stramigioli, S.; Carloni, R.

    In this paper, we present the mechanical design and modeling of a manipulation system for unmanned aerial vehicles, which have to physically interact with environments and perform ultrasonic non-destructive testing experiments and other versatile tasks at unreachable locations for humans. The

  16. Vision-Based Leader Vehicle Trajectory Tracking for Multiple Agricultural Vehicles.

    Science.gov (United States)

    Zhang, Linhuan; Ahamed, Tofael; Zhang, Yan; Gao, Pengbo; Takigawa, Tomohiro

    2016-04-22

    The aim of this study was to design a navigation system composed of a human-controlled leader vehicle and a follower vehicle. The follower vehicle automatically tracks the leader vehicle. With such a system, a human driver can control two vehicles efficiently in agricultural operations. The tracking system was developed for the leader and the follower vehicle, and control of the follower was performed using a camera vision system. A stable and accurate monocular vision-based sensing system was designed, consisting of a camera and rectangular markers. Noise in the data acquisition was reduced by using the least-squares method. A feedback control algorithm was used to allow the follower vehicle to track the trajectory of the leader vehicle. A proportional-integral-derivative (PID) controller was introduced to maintain the required distance between the leader and the follower vehicle. Field experiments were conducted to evaluate the sensing and tracking performances of the leader-follower system while the leader vehicle was driven at an average speed of 0.3 m/s. In the case of linear trajectory tracking, the RMS errors were 6.5 cm, 8.9 cm and 16.4 cm for straight, turning and zigzag paths, respectively. Again, for parallel trajectory tracking, the root mean square (RMS) errors were found to be 7.1 cm, 14.6 cm and 14.0 cm for straight, turning and zigzag paths, respectively. The navigation performances indicated that the autonomous follower vehicle was able to follow the leader vehicle, and the tracking accuracy was found to be satisfactory. Therefore, the developed leader-follower system can be implemented for the harvesting of grains, using a combine as the leader and an unloader as the autonomous follower vehicle.

  17. An Analytical Planning Model to Estimate the Optimal Density of Charging Stations for Electric Vehicles.

    Directory of Open Access Journals (Sweden)

    Yongjun Ahn

    Full Text Available The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive

  18. An Analytical Planning Model to Estimate the Optimal Density of Charging Stations for Electric Vehicles.

    Science.gov (United States)

    Ahn, Yongjun; Yeo, Hwasoo

    2015-01-01

    The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC) stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive adoption of electric

  19. An innovative wheel–rail contact model for railway vehicles under degraded adhesion conditions

    International Nuclear Information System (INIS)

    Meli, E.; Ridolfi, A.

    2015-01-01

    The accurate modelling of the wheel–rail contact plays a fundamental role in the railway field since the contact forces heavily affect the vehicle dynamics, the wear of the contact surfaces and the vehicle safety. Concerning the wheel–rail contact, an important open problem is represented by the degraded adhesion. A realistic adhesion model is quite difficult to obtain because of the complex and highly non-linear behaviour of the adhesion coefficient and the presence of external unknown contaminants (the third body); this is especially true when degraded adhesion and large sliding between the wheel and rail contact surfaces occur.In this work the authors present an adhesion model particularly developed to describe degraded adhesion conditions. The new approach will have to be suitable to be employed within the wheel–rail contact models typical of the multibody applications. In other words, the contact model, comprising the new adhesion model, will have to guarantee a good accuracy and, at the same time, a high numerical efficiency to be implemented directly online inside the general multibody model of the vehicles (e.g. in Matlab-Simulink or Simpack environments) ( www.mathworks.com http://www.mathworks.com , 2012; www.simpack.com http://www.simpack.com , 2012).The model analysed in the paper is based on some of the main phenomena characterising the degraded adhesion, such as large sliding at the contact interface, high energy dissipation, the consequent cleaning effect on the contact surfaces and the final adhesion recovery due to the removal of external unknown contaminants.The adhesion model has been validated because of the experimental data provided by Trenitalia S.p.A. coming from on-track tests performed in Velim (Czech Republic). The tests have been carried out on a straight railway track under degraded adhesion conditions with the railway vehicle UIC-Z1 equipped with a fully-working Wheel Slide Protection (WSP) system.The validation highlighted the

  20. An innovative wheel–rail contact model for railway vehicles under degraded adhesion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Meli, E., E-mail: enrico.meli@unifi.it; Ridolfi, A., E-mail: a.ridolfi@unifi.it [University of Florence, Department of Industrial Engineering (Italy)

    2015-03-15

    The accurate modelling of the wheel–rail contact plays a fundamental role in the railway field since the contact forces heavily affect the vehicle dynamics, the wear of the contact surfaces and the vehicle safety. Concerning the wheel–rail contact, an important open problem is represented by the degraded adhesion. A realistic adhesion model is quite difficult to obtain because of the complex and highly non-linear behaviour of the adhesion coefficient and the presence of external unknown contaminants (the third body); this is especially true when degraded adhesion and large sliding between the wheel and rail contact surfaces occur.In this work the authors present an adhesion model particularly developed to describe degraded adhesion conditions. The new approach will have to be suitable to be employed within the wheel–rail contact models typical of the multibody applications. In other words, the contact model, comprising the new adhesion model, will have to guarantee a good accuracy and, at the same time, a high numerical efficiency to be implemented directly online inside the general multibody model of the vehicles (e.g. in Matlab-Simulink or Simpack environments) ( www.mathworks.com http://www.mathworks.com , 2012; www.simpack.com http://www.simpack.com , 2012).The model analysed in the paper is based on some of the main phenomena characterising the degraded adhesion, such as large sliding at the contact interface, high energy dissipation, the consequent cleaning effect on the contact surfaces and the final adhesion recovery due to the removal of external unknown contaminants.The adhesion model has been validated because of the experimental data provided by Trenitalia S.p.A. coming from on-track tests performed in Velim (Czech Republic). The tests have been carried out on a straight railway track under degraded adhesion conditions with the railway vehicle UIC-Z1 equipped with a fully-working Wheel Slide Protection (WSP) system.The validation highlighted the

  1. Building and Deploying Remotely Operated Vehicles in the First-Year Experience

    Science.gov (United States)

    O'Brien-Gayes, A.; Fuss, K.; Gayes, P.

    2007-12-01

    Coastal Carolina University has committed to improving student retention and success in Mathematics and Science through a pilot program to engage first-year students in an applied and investigative project as part of the University's First-Year Experience (FYE). During the fall 2007 semester, five pilot sections of FYE classes, consisting of students from the College of Natural and Applied Sciences are building and deploying Remotely Operated Vehicles (ROVs). These ROV-based classes are designed to: accelerate exploration of the broad fields of science and mathematics; enlist interest in technology by engaging students in a multi-stepped, interdisciplinary problem solving experience; explore science and mathematical concepts; institute experiential learning; and build a culture of active learners to benefit student success across traditional departmental boundaries. Teams of three students (forty teams total) will build, based on the MIT Sea Perch design, and test ROVs in addition to collecting data with their ROVs. Various accessories attached to the vehicles for data collection will include temperature and light sensors, plankton nets and underwater cameras. The first-year students will then analyze the data, and the results will be documented as part of their capstone projects. Additionally, two launch days will take place on two campus ponds. Local middle and high school teachers and their students will be invited to observe this event. The teams of students with the most capable and successful ROVs will participate in a workshop held in November 2007 for regional elementary, middle and high school teachers. These students will give a presentation on the building of the ROVs and also provide a hands-on demonstration for the workshop participants. These activities will ensure an incorporation of service learning into the first semester of the freshmen experience. The desired outcomes of the ROV-based FYE classes are: increased retention at the postsecondary

  2. Modeling and Solving the Multi-depot Vehicle Routing Problem with Time Window by Considering the Flexible end Depot in Each Route

    Directory of Open Access Journals (Sweden)

    Mohammad Mirabi

    2016-11-01

    Full Text Available This paper considers the multi-depot vehicle routing problem with time window in which each vehicle starts from a depot and there is no need to return to its primary depot after serving customers. The mathematical model which is developed by new approach aims to minimizing the transportation cost including the travelled distance, the latest and the earliest arrival time penalties. Furthermore, in order to reduce the problem searching space, a novel GA clustering method is developed. Finally, Experiments are run on number problems of varying depots and time window, and customer sizes. The method is compared to two other clustering techniques, fuzzy C means (FCM and K-means algorithm. Experimental results show the robustness and effectiveness of the proposed algorithm.

  3. Simulation and experimental research on trans-media vehicle water-entry motion characteristics at low speed.

    Science.gov (United States)

    Yang, Jian; Li, Yongli; Feng, Jinfu; Hu, Junhua; Liu, An

    2017-01-01

    The motion characteristics of trans-media vehicles during the water-entry process were explored in this study in an effort to obtain the optimal water-entry condition of the vehicle for developing a novel, single control strategy integrating underwater non-control and in-air control. A water-entry dynamics model is established by combining the water-entry motion characteristics of the vehicle in uncontrolled conditions at low speed with time-varying parameters (e.g. buoyancy, added mass). A water-entry experiment is designed to confirm the effectiveness of the established model. After that, by comparing the experimental results with the simulated results, the model is further modified to more accurately reflect water-entry motion. The change laws of the vehicle's attitude and position during the water-entry process are also obtained by analyzing the simulation of the modified model under different velocity, angle, and angle of attack conditions. The results presented here have guiding significance for the future realization of reaching the stable underwater navigation state of the vehicle after water-entry process.

  4. Simulation and experimental research on trans-media vehicle water-entry motion characteristics at low speed.

    Directory of Open Access Journals (Sweden)

    Jian Yang

    Full Text Available The motion characteristics of trans-media vehicles during the water-entry process were explored in this study in an effort to obtain the optimal water-entry condition of the vehicle for developing a novel, single control strategy integrating underwater non-control and in-air control. A water-entry dynamics model is established by combining the water-entry motion characteristics of the vehicle in uncontrolled conditions at low speed with time-varying parameters (e.g. buoyancy, added mass. A water-entry experiment is designed to confirm the effectiveness of the established model. After that, by comparing the experimental results with the simulated results, the model is further modified to more accurately reflect water-entry motion. The change laws of the vehicle's attitude and position during the water-entry process are also obtained by analyzing the simulation of the modified model under different velocity, angle, and angle of attack conditions. The results presented here have guiding significance for the future realization of reaching the stable underwater navigation state of the vehicle after water-entry process.

  5. A wind-tunnel study on exhaust gas dispersion from road vehicles. Part 1. Velocity and concentration fields behind single vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, Isao; Uehara, Kiyoshi; Yamao, Yukio [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506 (Japan); Yoshikawa, Yasuo; Morikawa, Tazuko [Petroleum Energy Center, 4-3-9 Toranomon, Minato-ku, Tokyo, 105-0001 (Japan)

    2006-09-15

    By a reduced-scale model in a wind tunnel, we investigate the dispersion behavior of exhaust gas from automobiles. Two types of vehicles are considered, a passenger car and a small-size truck. Tracer gas experiments show that the exhaust gas dispersion is enhanced significantly by the vehicle wake compared to the case when the vehicle body is absent. The passenger car and the truck promote dispersion in the horizontal and the vertical direction, respectively. The wake field is analyzed by particle image velocimetry (PIV), and the distribution of the mean and the fluctuation fields is found to conform to the concentration field of the exhaust gas. The buoyancy of the exhaust gas has minor effect except on the vertical spread behind the truck whose wake flow amplifies the vertical displacement generated near the pipe exit. (author)

  6. Development of a method to rate the primary safety of vehicles using linked New Zealand crash and vehicle licensing data.

    Science.gov (United States)

    Keall, Michael D; Newstead, Stuart

    2016-01-01

    Vehicle safety rating systems aim firstly to inform consumers about safe vehicle choices and, secondly, to encourage vehicle manufacturers to aspire to safer levels of vehicle performance. Primary rating systems (that measure the ability of a vehicle to assist the driver in avoiding crashes) have not been developed for a variety of reasons, mainly associated with the difficult task of disassociating driver behavior and vehicle exposure characteristics from the estimation of crash involvement risk specific to a given vehicle. The aim of the current study was to explore different approaches to primary safety estimation, identifying which approaches (if any) may be most valid and most practical, given typical data that may be available for producing ratings. Data analyzed consisted of crash data and motor vehicle registration data for the period 2003 to 2012: 21,643,864 observations (representing vehicle-years) and 135,578 crashed vehicles. Various logistic models were tested as a means to estimate primary safety: Conditional models (conditioning on the vehicle owner over all vehicles owned); full models not conditioned on the owner, with all available owner and vehicle data; reduced models with few variables; induced exposure models; and models that synthesised elements from the latter two models. It was found that excluding young drivers (aged 25 and under) from all primary safety estimates attenuated some high risks estimated for make/model combinations favored by young people. The conditional model had clear biases that made it unsuitable. Estimates from a reduced model based just on crash rates per year (but including an owner location variable) produced estimates that were generally similar to the full model, although there was more spread in the estimates. The best replication of the full model estimates was generated by a synthesis of the reduced model and an induced exposure model. This study compared approaches to estimating primary safety that could mimic

  7. The Vehicle Integrated Performance Analysis Experience: Reconnecting With Technical Integration

    Science.gov (United States)

    McGhee, D. S.

    2006-01-01

    Very early in the Space Launch Initiative program, a small team of engineers at MSFC proposed a process for performing system-level assessments of a launch vehicle. Aimed primarily at providing insight and making NASA a smart buyer, the Vehicle Integrated Performance Analysis (VIPA) team was created. The difference between the VIPA effort and previous integration attempts is that VIPA a process using experienced people from various disciplines, which focuses them on a technically integrated assessment. The foundations of VIPA s process are described. The VIPA team also recognized the need to target early detailed analysis toward identifying significant systems issues. This process is driven by the T-model for technical integration. VIPA s approach to performing system-level technical integration is discussed in detail. The VIPA process significantly enhances the development and monitoring of realizable project requirements. VIPA s assessment validates the concept s stated performance, identifies significant issues either with the concept or the requirements, and then reintegrates these issues to determine impacts. This process is discussed along with a description of how it may be integrated into a program s insight and review process. The VIPA process has gained favor with both engineering and project organizations for being responsive and insightful

  8. Modeling and Analysis of Static and Dynamic Characteristics of Nonlinear Seat Suspension for Off-Road Vehicles

    Directory of Open Access Journals (Sweden)

    Zhenhua Yan

    2015-01-01

    Full Text Available Low-frequency vibrations (0.5–5 Hz that harm drivers occur in off-road vehicles. Thus, researchers have focused on finding methods to effectively isolate or control low-frequency vibrations. A novel nonlinear seat suspension structure for off-road vehicles is designed, whose static characteristics and seat-human system dynamic response are modeled and analyzed, and experiments are conducted to verify the theoretical solutions. Results show that the stiffness of this nonlinear seat suspension could achieve real zero stiffness through well-matched parameters, and precompression of the main spring could change the nonlinear seat suspension performance when a driver’s weight changes. The displacement transmissibility curve corresponds with the static characteristic curve of nonlinear suspension, where the middle part of the static characteristic curve is gentler and the resonance frequency of the displacement transmissibility curve and the isolation minimum frequency are lower. Damping should correspond with static characteristics, in which the corresponding suspension damping value should be smaller given a flatter static characteristic curve to prevent vibration isolation performance reduction.

  9. Dual extended Kalman filter for combined estimation of vehicle state and road friction

    Science.gov (United States)

    Zong, Changfu; Hu, Dan; Zheng, Hongyu

    2013-03-01

    Vehicle state and tire-road adhesion are of great use and importance to vehicle active safety control systems. However, it is always not easy to obtain the information with high accuracy and low expense. Recently, many estimation methods have been put forward to solve such problems, in which Kalman filter becomes one of the most popular techniques. Nevertheless, the use of complicated model always leads to poor real-time estimation while the role of road friction coefficient is often ignored. For the purpose of enhancing the real time performance of the algorithm and pursuing precise estimation of vehicle states, a model-based estimator is proposed to conduct combined estimation of vehicle states and road friction coefficients. The estimator is designed based on a three-DOF vehicle model coupled with the Highway Safety Research Institute(HSRI) tire model; the dual extended Kalman filter (DEKF) technique is employed, which can be regarded as two extended Kalman filters operating and communicating simultaneously. Effectiveness of the estimation is firstly examined by comparing the outputs of the estimator with the responses of the vehicle model in CarSim under three typical road adhesion conditions(high-friction, low-friction, and joint-friction). On this basis, driving simulator experiments are carried out to further investigate the practical application of the estimator. Numerical results from CarSim and driving simulator both demonstrate that the estimator designed is capable of estimating the vehicle states and road friction coefficient with reasonable accuracy. The DEKF-based estimator proposed provides the essential information for the vehicle active control system with low expense and decent precision, and offers the possibility of real car application in future.

  10. Vehicle lightweighting vs. electrification: Life cycle energy and GHG emissions results for diverse powertrain vehicles

    International Nuclear Information System (INIS)

    Lewis, Anne Marie; Kelly, Jarod C.; Keoleian, Gregory A.

    2014-01-01

    Highlights: • We modeled life cycle energy and greenhouse gas (GHG) emissions from diverse powertrain vehicles. • Lightweight versions of the vehicle models were compared against baseline models. • Maximum energy and GHG emissions occur with aluminum vs. advanced high strength steel. • Design harmonization method shows 0.2–0.3 kg of support required per 1 kg powertrain mass increase. - Abstract: This work assesses the potential of electrified vehicles and mass reduction to reduce life cycle energy and greenhouse gas (GHG) emissions. Life cycle assessment (LCA) is used to account for processes upstream and downstream of the vehicle operation, thereby incorporating regional variation of energy and GHG emissions due to electricity production and distinct energy and GHG emissions due to conventional and lightweight materials. Design harmonization methods developed in previous work are applied to create baseline and lightweight vehicle models of an internal combustion vehicle (ICV), hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV). Thus, each vehicle is designed to be functionally equivalent and incorporate the structural support required for heavier powertrains. Lightweight vehicles are designed using body-in-white (BIW) mass reduction scenarios with aluminum and advanced/high strength steel (A/HSS). For the mass reduction scenarios considered in this work, results indicate that the greatest life cycle energy and GHG emissions reductions occur when steel is replaced by aluminum. However, since A/HSS requires less energy to produce as compared to aluminum, the energy and GHG reductions per unit mass removed is greatest for A/HSS. Results of the design harmonization modeling method show that 0.2–0.3 kg of structural support is required per unit increase in powertrain mass, thus extending previous methods

  11. Reusable launch vehicle model uncertainties impact analysis

    Science.gov (United States)

    Chen, Jiaye; Mu, Rongjun; Zhang, Xin; Deng, Yanpeng

    2018-03-01

    Reusable launch vehicle(RLV) has the typical characteristics of complex aerodynamic shape and propulsion system coupling, and the flight environment is highly complicated and intensely changeable. So its model has large uncertainty, which makes the nominal system quite different from the real system. Therefore, studying the influences caused by the uncertainties on the stability of the control system is of great significance for the controller design. In order to improve the performance of RLV, this paper proposes the approach of analyzing the influence of the model uncertainties. According to the typical RLV, the coupling dynamic and kinematics models are built. Then different factors that cause uncertainties during building the model are analyzed and summed up. After that, the model uncertainties are expressed according to the additive uncertainty model. Choosing the uncertainties matrix's maximum singular values as the boundary model, and selecting the uncertainties matrix's norm to show t how much the uncertainty factors influence is on the stability of the control system . The simulation results illustrate that the inertial factors have the largest influence on the stability of the system, and it is necessary and important to take the model uncertainties into consideration before the designing the controller of this kind of aircraft( like RLV, etc).

  12. Switched causual modeling of transmission with clutch in hybrid electric vehicles

    OpenAIRE

    LHOMME, W; TRIGUI, R; DELARU, P; JEANNERET, B; BOUSCAUROL, A; BADIN, F

    2008-01-01

    Certain difficulties arise when attempting to model a clutch in a power train transmission due to its nonlinear behavior. Two different states have to be taken into account-the first being when the clutch is locked and the second being when the clutch is slipping. In this paper, a clutch model is developed using the Energetic Macroscopic Representation, which is, in turn, used in the modeling of complete hybrid electric vehicles (HEVs). Two different models are used, and a specific condition ...

  13. 40 CFR 86.008-10 - Emission standards for 2008 and later model year Otto-cycle heavy-duty engines and vehicles.

    Science.gov (United States)

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.008-10 Section 86.008-10 Protection of... Otto-cycle HDE. (d) Every manufacturer of new motor vehicle engines subject to the standards prescribed... production of heavy-duty Otto-cycle motor vehicle engines for model year 2008, except as explicitly allowed...

  14. Application of Novel Lateral Tire Force Sensors to Vehicle Parameter Estimation of Electric Vehicles.

    Science.gov (United States)

    Nam, Kanghyun

    2015-11-11

    This article presents methods for estimating lateral vehicle velocity and tire cornering stiffness, which are key parameters in vehicle dynamics control, using lateral tire force measurements. Lateral tire forces acting on each tire are directly measured by load-sensing hub bearings that were invented and further developed by NSK Ltd. For estimating the lateral vehicle velocity, tire force models considering lateral load transfer effects are used, and a recursive least square algorithm is adapted to identify the lateral vehicle velocity as an unknown parameter. Using the estimated lateral vehicle velocity, tire cornering stiffness, which is an important tire parameter dominating the vehicle's cornering responses, is estimated. For the practical implementation, the cornering stiffness estimation algorithm based on a simple bicycle model is developed and discussed. Finally, proposed estimation algorithms were evaluated using experimental test data.

  15. Experiments in a real scale maglev vehicle prototype

    Energy Technology Data Exchange (ETDEWEB)

    Sotelo, G G; Stephan, R M [Department of Electrical Engineering - Federal University of Rio de Janeiro. Address: CT, Bl. I-2000 Sala 148, Cidade Universitaria, Rio de Janeiro. PO-BOX: 68553, CEP.: 21941 - 972 (Brazil); Costa, G C [Universidade Estadual da Zona Oeste (Brazil); Dias, D H N; Machado, O J; David, E D; Andrade, R de Jr, E-mail: sotelo@coe.ufrj.b

    2010-06-01

    A Brazilian real scale magnetically levitated transport system prototype is under development at the Federal University of Rio de Janeiro. To test this system a 180 m long line has been projected and it will be concluded by the end of 2010. A superconducting linear bearing (SLB) is used to replace the wheels of a conventional train. High temperature superconductor bulks placed inside cryostats attached to the vehicle and a magnetic rail composes the SLB. To choose the magnetic rail for the test line three different rails, selected in a previous simulation work, were built and tested. They are composed by Nd-Fe-B and steel, arranged in a flux concentrator topology. The magnetic flux density for those magnetic rails was mapped. Also, the levitation force between those rails and the superconductor cryostat, for several cooling gaps, were measured to select the best rail geometry to be used in the real scale line. The SLB allows building a light vehicle with distributed load, silent and high energy efficient. The proposed vehicle is composed of four modules with just 1.5 m of length each one and it can transport up to 24 passengers. The test line having two curves with 45 m radius and a 15% acclivity ramp is also presented.

  16. Different Control Algorithms for a Platoon of Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Zoran Gacovski

    2014-05-01

    Full Text Available This paper presents a concept of platoon movement of autonomous vehicles (smart cars. These vehicles have Adaptive or Advanced cruise control (ACC system also called Intelligent cruise control (ICC or Adaptive Intelligent cruise control (AICC system. The vehicles are suitable to follow other vehicles on desired distance and to be organized in platoons. To perform a research on the control and stability of an AGV (Automated Guided Vehicles string, we have developed a car-following model. To do this, first a single vehicle is modeled and since all cars in the platoon have the same dynamics, the single vehicle model is copied ten times to form model of platoon (string with ten vehicles. To control this string, we have applied equal PID controllers to all vehicles, except the leading vehicle. These controllers try to keep the headway distance as constant as possible and the velocity error between subsequent vehicles - small. For control of vehicle with nonlinear dynamics combi­nation of feedforward control and feedback control approach is used. Feedforward control is based on the inverse model of nominal dynamics of the vehicle, and feedback PID control is designed based on the linearized model of the vehicle. For simulation and analysis of vehicle and platoon of vehicles – we have developed Matlab/Simulink models. Simulation results, discussions and conclusions are given at the end of the paper.

  17. A survey of light-vehicle driver education curriculum on sharing the road with heavy vehicles.

    Science.gov (United States)

    Baker, Stephanie; Schaudt, William A; Freed, J C; Toole, Laura

    2012-07-01

    Light-vehicle driver education programs that contain content about sharing the road with heavy vehicles may be helpful in reducing future light-vehicle/heavy-vehicle interactions. However, the extent of curricula in the United States including such content is unclear. Researchers developed an online survey targeted at instructors/administrators of state driver education programs to identify curricula addressing heavy vehicles and to determine perceived effectiveness. Ninety-one percent of respondents indicated that the light-vehicle driver education curriculum they teach/administer included a component covering how to safely share the road with heavy vehicles (82% perceived this component to be effective). Although a large proportion of these programs included a component on how to safely share the road with heavy vehicles, participants indicated there may be room for improvement. Participants recommended that future improvements to driver education programs include updated materials and student hands-on experience with heavy vehicles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Model predictive control-based dynamic coordinate strategy for hydraulic hub-motor auxiliary system of a heavy commercial vehicle

    Science.gov (United States)

    Zeng, Xiaohua; Li, Guanghan; Yin, Guodong; Song, Dafeng; Li, Sheng; Yang, Nannan

    2018-02-01

    Equipping a hydraulic hub-motor auxiliary system (HHMAS), which mainly consists of a hydraulic variable pump, a hydraulic hub-motor, a hydraulic valve block and hydraulic accumulators, with part-time all-wheel-drive functions improves the power performance and fuel economy of heavy commercial vehicles. The coordinated control problem that occurs when HHMAS operates in the auxiliary drive mode is addressed in this paper; the solution to this problem is the key to the maximization of HHMAS. To achieve a reasonable distribution of the engine power between mechanical and hydraulic paths, a nonlinear control scheme based on model predictive control (MPC) is investigated. First, a nonlinear model of HHMAS with vehicle dynamics and tire slip characteristics is built, and a controller-design-oriented model is simplified. Then, a steady-state feedforward + dynamic MPC feedback controller (FMPC) is designed to calculate the control input sequence of engine torque and hydraulic variable pump displacement. Finally, the controller is tested in the MATLAB/Simulink and AMESim co-simulation platform and the hardware-in-the-loop experiment platform, and its performance is compared with that of the existing proportional-integral-derivative controller and the feedforward controller under the same conditions. Simulation results show that the designed FMPC has the best performance, and control performance can be guaranteed in a real-time environment. Compared with the tracking control error of the feedforward controller, that of the designed FMPC is decreased by 85% and the traction efficiency performance is improved by 23% under a low-friction-surface condition. Moreover, under common road conditions for heavy commercial vehicles, the traction force can increase up to 13.4-15.6%.

  19. A Study on the Model of Traffic Flow and Vehicle Exhaust Emission

    Directory of Open Access Journals (Sweden)

    Han Xue

    2013-01-01

    Full Text Available The increase of traffic flow in cities causes traffic congestion and accidents as well as air pollution. Traffic problems have attracted the interest of many researchers from the perspective of theory and engineering. In order to provide a simple and practical method for measuring the exhaust emission and assessing the effect of pollution control, a model is based on the relationship between traffic flow and vehicle exhaust emission under a certain level of road capacity constraints. In the proposed model, the hydrocarbons (HC, carbon monoxide (CO, and nitrogen oxides (NOx are considered as the indexes of total exhaust emission, and the speed is used as an intermediate variable. To verify the rationality and practicality of the model, a case study for Beijing, China, is provided in which the effects of taxi fare regulation and the specific vehicle emission reduction policy are analyzed.

  20. Experimental investigation of a quad-rotor biplane micro air vehicle

    Science.gov (United States)

    Bogdanowicz, Christopher Michael

    Micro air vehicles are expected to perform demanding missions requiring efficient operation in both hover and forward flight. This thesis discusses the development of a hybrid air vehicle which seamlessly combines both flight capabilities: hover and high-speed forward flight. It is the quad-rotor biplane, which weighs 240 grams and consists of four propellers with wings arranged in a biplane configuration. The performance of the vehicle system was investigated in conditions representative of flight through a series of wind tunnel experiments. These studies provided an understanding of propeller-wing interaction effects and system trim analysis. This showed that the maximum speed of 11 m/s and a cruise speed of 4 m/s were achievable and that the cruise power is approximately one-third of the hover power. Free flight testing of the vehicle successfully highlighted its ability to achieve equilibrium transition flight. Key design parameters were experimentally investigated to understand their effect on overall performance. It was found that a trade-off between efficiency and compactness affects the final choice of the design. Design improvements have allowed for decreases in vehicle weight and ground footprint, while increasing structural soundness. Numerous vehicle designs, models, and flight tests have proven system scalability as well as versatility, including an upscaled model to be utilized in an extensive commercial package delivery system. Overall, the quad-rotor biplane is proven to be an efficient and effective multi-role vehicle.

  1. SMART VIDEO SURVEILLANCE SYSTEM FOR VEHICLE DETECTION AND TRAFFIC FLOW CONTROL

    Directory of Open Access Journals (Sweden)

    A. A. SHAFIE

    2011-08-01

    Full Text Available Traffic signal light can be optimized using vehicle flow statistics obtained by Smart Video Surveillance Software (SVSS. This research focuses on efficient traffic control system by detecting and counting the vehicle numbers at various times and locations. At present, one of the biggest problems in the main city in any country is the traffic jam during office hour and office break hour. Sometimes it can be seen that the traffic signal green light is still ON even though there is no vehicle coming. Similarly, it is also observed that long queues of vehicles are waiting even though the road is empty due to traffic signal light selection without proper investigation on vehicle flow. This can be handled by adjusting the vehicle passing time implementing by our developed SVSS. A number of experiment results of vehicle flows are discussed in this research graphically in order to test the feasibility of the developed system. Finally, adoptive background model is proposed in SVSS in order to successfully detect target objects such as motor bike, car, bus, etc.

  2. 40 CFR 86.005-10 - Emission standards for 2005 and later model year Otto-cycle heavy-duty engines and vehicles.

    Science.gov (United States)

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.005-10 Section 86.005-10 Protection of... AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for 1985 and Later...

  3. Full Vehicle Vibration and Noise Analysis Based on Substructure Power Flow

    Directory of Open Access Journals (Sweden)

    Zhien Liu

    2017-01-01

    Full Text Available Combining substructure and power flow theory, in this paper an external program is written to control MSC. Nastran solution process and the substructure frequency response are also formulated accordingly. Based on a simple vehicle model, characteristics of vibration, noise, and power flow are studied, respectively. After being compared with the result of conventional FEM (finite element method, the new method is confirmed to be feasible. When it comes to a vehicle with the problem of low-frequency noise, finite element models of substructures for vehicle body and chassis are established, respectively. In addition, substructure power flow method is also employed to examine the transfer characteristics of multidimensional vibration energy for the whole vehicle system. By virtue of the adjustment stiffness of drive shaft support and bushes at rear suspension lower arm, the vehicle interior noise is decreased by about 3 dB when the engine speed is near 1050 rpm and 1650 rpm in experiment. At the same time, this method can increase the computation efficiency by 78%, 38%, and 98% when it comes to the optimization of chassis structure, body structure, and vibration isolation components, respectively.

  4. Mathematical modelling of active safety system functions as tools for development of driverless vehicles

    Science.gov (United States)

    Ryazantsev, V.; Mezentsev, N.; Zakharov, A.

    2018-02-01

    This paper is dedicated to a solution of the issue of synthesis of the vehicle longitudinal dynamics control functions (acceleration and deceleration control) based on the element base of the vehicle active safety system (ESP) - driverless vehicle development tool. This strategy helps to reduce time and complexity of integration of autonomous motion control systems (AMCS) into the vehicle architecture and allows direct control of actuators ensuring the longitudinal dynamics control, as well as reduction of time for calibration works. The “vehicle+wheel+road” longitudinal dynamics control is complicated due to the absence of the required prior information about the control object. Therefore, the control loop becomes an adaptive system, i.e. a self-adjusting monitoring system. Another difficulty is the driver’s perception of the longitudinal dynamics control process in terms of comfort. Traditionally, one doesn’t pay a lot of attention to this issue within active safety systems, and retention of vehicle steerability, controllability and stability in emergency situations are considered to be the quality criteria. This is mainly connected to its operational limits, since it is activated only in critical situations. However, implementation of the longitudinal dynamics control in the AMCS poses another challenge for the developers - providing the driver with comfortable vehicle movement during acceleration and deceleration - while the possible highest safety level in terms of the road grip is provided by the active safety system (ESP). The results of this research are: universal active safety system - AMCS interaction interface; block diagram for the vehicle longitudinal acceleration and deceleration control as one of the active safety system’s integrated functions; ideology of adaptive longitudinal dynamics control, which enables to realize the deceleration and acceleration requested by the AMCS; algorithms synthesised; analytical experiments proving the

  5. CFD based aerodynamic modeling to study flight dynamics of a flapping wing micro air vehicle

    Science.gov (United States)

    Rege, Alok Ashok

    The demand for small unmanned air vehicles, commonly termed micro air vehicles or MAV's, is rapidly increasing. Driven by applications ranging from civil search-and-rescue missions to military surveillance missions, there is a rising level of interest and investment in better vehicle designs, and miniaturized components are enabling many rapid advances. The need to better understand fundamental aspects of flight for small vehicles has spawned a surge in high quality research in the area of micro air vehicles. These aircraft have a set of constraints which are, in many ways, considerably different from that of traditional aircraft and are often best addressed by a multidisciplinary approach. Fast-response non-linear controls, nano-structures, integrated propulsion and lift mechanisms, highly flexible structures, and low Reynolds aerodynamics are just a few of the important considerations which may be combined in the execution of MAV research. The main objective of this thesis is to derive a consistent nonlinear dynamic model to study the flight dynamics of micro air vehicles with a reasonably accurate representation of aerodynamic forces and moments. The research is divided into two sections. In the first section, derivation of the nonlinear dynamics of flapping wing micro air vehicles is presented. The flapping wing micro air vehicle (MAV) used in this research is modeled as a system of three rigid bodies: a body and two wings. The design is based on an insect called Drosophila Melanogaster, commonly known as fruit-fly. The mass and inertial effects of the wing on the body are neglected for the present work. The nonlinear dynamics is simulated with the aerodynamic data published in the open literature. The flapping frequency is used as the control input. Simulations are run for different cases of wing positions and the chosen parameters are studied for boundedness. Results show a qualitative inconsistency in boundedness for some cases, and demand a better

  6. Unmanned Vehicle Material Flammability Test

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Fernandez-Pello, A. Carlos; T’ien, James S.; Torero, Jose L.; Cowlard, Adam; Rouvreau, Sebastian; Minster, Olivier; Toth, Balazs; Legros, Guillaume; hide

    2013-01-01

    Microgravity combustion phenomena have been an active area of research for the past 3 decades however, there have been very few experiments directly studying spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample and environment sizes typical of those expected in a spacecraft fire. All previous experiments have been limited to samples of the order of 10 cm in length and width or smaller. Terrestrial fire safety standards for all other habitable volumes on earth, e.g. mines, buildings, airplanes, ships, etc., are based upon testing conducted with full-scale fires. Given the large differences between fire behavior in normal and reduced gravity, this lack of an experimental data base at relevant length scales forces spacecraft designers to base their designs using 1-g understanding. To address this question a large scale spacecraft fire experiment has been proposed by an international team of investigators. This poster presents the objectives, status and concept of this collaborative international project to examine spacecraft material flammability at realistic scales. The concept behind this project is to utilize an unmanned spacecraft such as Orbital Cygnus vehicle after it has completed its delivery of cargo to the ISS and it has begun its return journey to earth. This experiment will consist of a flame spread test involving a meter scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. A computer modeling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the examination of fire behavior on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This will be

  7. Development of a control model for a four wheel mecanum vehicle

    CSIR Research Space (South Africa)

    De Villiers, M

    2010-07-01

    Full Text Available Page 1 of 10 25th International Conference of CAD/CAM, Robotics & Factories of the Future Conference, 13-16 July 2010, Pretoria, South Africa DEVELOPMENT OF A CONTROL MODEL FOR A FOUR WHEEL MECANUM VEHICLE M. de Villiers1, Prof. G. Bright2... and summed to get the following equations (1)(2) defining the total force applied to the vehicle, the subscript T is applied to show that these are total forces: g1832g3021g3051 g2191 g3404 g3533 g1832g3051g3050 g2191 g2781 g2205g2880g2778 (1...

  8. Analysis of Future Vehicle Energy Demand in China Based on a Gompertz Function Method and Computable General Equilibrium Model

    Directory of Open Access Journals (Sweden)

    Tian Wu

    2014-11-01

    Full Text Available This paper presents a model for the projection of Chinese vehicle stocks and road vehicle energy demand through 2050 based on low-, medium-, and high-growth scenarios. To derive a gross-domestic product (GDP-dependent Gompertz function, Chinese GDP is estimated using a recursive dynamic Computable General Equilibrium (CGE model. The Gompertz function is estimated using historical data on vehicle development trends in North America, Pacific Rim and Europe to overcome the problem of insufficient long-running data on Chinese vehicle ownership. Results indicate that the number of projected vehicle stocks for 2050 is 300, 455 and 463 million for low-, medium-, and high-growth scenarios respectively. Furthermore, the growth in China’s vehicle stock will increase beyond the inflection point of Gompertz curve by 2020, but will not reach saturation point during the period 2014–2050. Of major road vehicle categories, cars are the largest energy consumers, followed by trucks and buses. Growth in Chinese vehicle demand is primarily determined by per capita GDP. Vehicle saturation levels solely influence the shape of the Gompertz curve and population growth weakly affects vehicle demand. Projected total energy consumption of road vehicles in 2050 is 380, 575 and 586 million tonnes of oil equivalent for each scenario.

  9. New TA Index-Based Rollover Prevention System for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xiang Liu

    2015-03-01

    Full Text Available In addition to clean transportation and energy savings, electric vehicles can inherently offer better performance in the field of active safety and dynamic stability control, thanks to the superior fast and accurate control characteristics of electric motors. With the novel wheel status parameter TA for electric vehicles proposed by the authors in an earlier publication, a new TA index (TAI-based rollover prevention method is presented in this paper to improve the driving performance of EVs equipped with in-wheel motors. A three-level electric vehicle control structure is used to analyze the effective control steps for rollover prevention with the newly proposed TAI method. The simulation is conducted using an in-house developed electric vehicle dynamic model. The simulation results prove the feasibility of using TAI to detect rollover. The experiment uses an electric vehicle equipped with four in-wheel motors in the authors’ research lab. The vehicle parameter and performance data are imported to CarSim, which is industrial standard vehicle dynamic analysis software to run the rollover test. The experimental results also demonstrate that TAI is an effective method of rollover prevention.

  10. Vehicle Dynamics and Control

    CERN Document Server

    Rajamani, Rajesh

    2012-01-01

    Vehicle Dynamics and Control provides a comprehensive coverage of vehicle control systems and the dynamic models used in the development of these control systems. The control system applications covered in the book include cruise control, adaptive cruise control, ABS, automated lane keeping, automated highway systems, yaw stability control, engine control, passive, active and semi-active suspensions, tire-road friction coefficient estimation, rollover prevention, and hybrid electric vehicle. In developing the dynamic model for each application, an effort is made to both keep the model simple enough for control system design but at the same time rich enough to capture the essential features of the dynamics. A special effort has been made to explain the several different tire models commonly used in literature and to interpret them physically. In the second edition of the book, chapters on roll dynamics, rollover prevention and hybrid electric vehicles have been added, and the chapter on electronic stability co...

  11. Light duty vehicle transportation and global climate policy: The importance of electric drive vehicles

    International Nuclear Information System (INIS)

    Bosetti, Valentina; Longden, Thomas

    2013-01-01

    With a focus on the interaction between long-term climate targets and personal transport we review the electrification of light duty vehicles (LDVs) within a model that utilizes a learning-by-researching structure. By modeling the demand of vehicles, the use of fuels and emissions implied, the model solves for the optimum RD and D investments that decrease the cost of hybrid, plug-in hybrid and electric vehicles. A range of technology and climate policy scenarios provide long term projections of vehicle use that highlight the potential synergies between innovation in the transportation sector and the energy sector. We find that even when the capital cost of electric drive vehicles (EDVs) remains higher than that of traditional combustion engine alternatives, EDVs are likely to play a key role in the decarbonisation implied by stringent climate policy. Limited innovation in batteries results in notable increases in policy costs consistent with a two degree climate policy target. - Highlights: • Significant increase in vehicles across regions in the medium to long term future. • Climate policy costs are sensitive to a lack of electric drive vehicles (EDVs). • Achieving 450ppm with no change in battery costs has a policy cost that is 2.86 percentage points higher than the base 450ppm scenario. • Climate policy hastens the introduction of electrified vehicles, however EDVs do not become the dominant vehicle of choice before the middle of the century

  12. 76 FR 48758 - 2017-2025 Model Year Light-Duty Vehicle GHG Emissions and CAFE Standards: Supplemental Notice of...

    Science.gov (United States)

    2011-08-09

    ... definitions of mild and strong HEV pickup trucks, but expect to include stop/start, regenerative braking... (light-duty vehicles) built in those model years. Together, these vehicle categories, which include... provides the opportunity to begin to transform the most challenging category of vehicles in terms of the...

  13. Metrological approach to the force exerted by the axle of a road vehicle in motion carrying liquid

    International Nuclear Information System (INIS)

    Faruolo, Luciano Bruno; Pinto, Fernando Augusto de Noronha Castro

    2016-01-01

    Weigh-in-motion (WIM) systems are used for identifying the dynamic force exerted on the ground by axles of a vehicle. These systems are important for monitoring the gross vehicle weight and the vehicle axle load. Overweighted trucks on the roads increase pavement damage and traffic accidents. Knowing the accuracy of WIM systems is necessary. In the case of liquid transport the ‘sloshing effect’ affects this accuracy. This paper aims to analyze the dynamic measurement of the axle forces in vehicles carrying liquid during WIM up to 6 km h −1 . Laboratory experiments using one vehicle with six axles and liquid loads on different levels in weighing instruments are presented. A non-linear computational multi-mass-springs model was developed and laboratory experiments were carried out to show the acceleration influences on axle forces of vehicles with six axles and with and without baffles to vary the ‘sloshing effect’. (paper)

  14. Modeling light-duty plug-in electric vehicles for national energy and transportation planning

    International Nuclear Information System (INIS)

    Wu, Di; Aliprantis, Dionysios C.

    2013-01-01

    This paper sets forth a family of models of light-duty plug-in electric vehicle (PEV) fleets, appropriate for conducting long-term national-level planning studies of the energy and transportation sectors in an integrated manner. Using one of the proposed models, three case studies on the evolution of the U.S. energy and transportation infrastructures are performed, where portfolios of optimum investments over a 40-year horizon are identified, and interdependencies between the two sectors are highlighted. The results indicate that with a gradual but aggressive introduction of PEVs coupled with investments in renewable energy, the total cost from the energy and transportation systems can be reduced by 5%, and that overall emissions from electricity generation and light-duty vehicle (LDV) tailpipes can be reduced by 10% over the 40-year horizon. The annual gasoline consumption from LDVs can be reduced by 66% by the end of the planning horizon, but an additional 800 TWh of annual electricity demand will be introduced. In addition, various scenarios of greenhouse gas (GHG) emissions reductions are investigated. It is found that GHG emissions can be significantly reduced with only a marginal cost increment, by shifting electricity generation from coal to renewable sources. - Highlights: • We model plug-in electric vehicles (PEVs) for long-term national planning studies. • Realistic travel patterns are used to estimate the vehicles' energy consumption. • National energy and transportation system interdependencies are considered. • Case studies illustrate optimum investments in energy and transportation sectors. • PEVs synergistically with renewable energy can aggressively reduce GHG emissions

  15. Constraint Embedding for Vehicle Suspension Dynamics

    Directory of Open Access Journals (Sweden)

    Jain Abhinandan

    2016-06-01

    Full Text Available The goal of this research is to achieve close to real-time dynamics performance for allowing auto-pilot in-the-loop testing of unmanned ground vehicles (UGV for urban as well as off-road scenarios. The overall vehicle dynamics performance is governed by the multibody dynamics model for the vehicle, the wheel/terrain interaction dynamics and the onboard control system. The topic of this paper is the development of computationally efficient and accurate dynamics model for ground vehicles with complex suspension dynamics. A challenge is that typical vehicle suspensions involve closed-chain loops which require expensive DAE integration techniques. In this paper, we illustrate the use the alternative constraint embedding technique to reduce the cost and improve the accuracy of the dynamics model for the vehicle.

  16. Development and validation of a Kalman filter-based model for vehicle slip angle estimation

    Science.gov (United States)

    Gadola, M.; Chindamo, D.; Romano, M.; Padula, F.

    2014-01-01

    It is well known that vehicle slip angle is one of the most difficult parameters to measure on a vehicle during testing or racing activities. Moreover, the appropriate sensor is very expensive and it is often difficult to fit to a car, especially on race cars. We propose here a strategy to eliminate the need for this sensor by using a mathematical tool which gives a good estimation of the vehicle slip angle. A single-track car model, coupled with an extended Kalman filter, was used in order to achieve the result. Moreover, a tuning procedure is proposed that takes into consideration both nonlinear and saturation characteristics typical of vehicle lateral dynamics. The effectiveness of the proposed algorithm has been proven by both simulation results and real-world data.

  17. Knowledge-based fault diagnosis system for refuse collection vehicle

    International Nuclear Information System (INIS)

    Tan, CheeFai; Juffrizal, K.; Khalil, S. N.; Nidzamuddin, M. Y.

    2015-01-01

    The refuse collection vehicle is manufactured by local vehicle body manufacturer. Currently; the company supplied six model of the waste compactor truck to the local authority as well as waste management company. The company is facing difficulty to acquire the knowledge from the expert when the expert is absence. To solve the problem, the knowledge from the expert can be stored in the expert system. The expert system is able to provide necessary support to the company when the expert is not available. The implementation of the process and tool is able to be standardize and more accurate. The knowledge that input to the expert system is based on design guidelines and experience from the expert. This project highlighted another application on knowledge-based system (KBS) approached in trouble shooting of the refuse collection vehicle production process. The main aim of the research is to develop a novel expert fault diagnosis system framework for the refuse collection vehicle

  18. Knowledge-based fault diagnosis system for refuse collection vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Tan, CheeFai; Juffrizal, K.; Khalil, S. N.; Nidzamuddin, M. Y. [Centre of Advanced Research on Energy, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka (Malaysia)

    2015-05-15

    The refuse collection vehicle is manufactured by local vehicle body manufacturer. Currently; the company supplied six model of the waste compactor truck to the local authority as well as waste management company. The company is facing difficulty to acquire the knowledge from the expert when the expert is absence. To solve the problem, the knowledge from the expert can be stored in the expert system. The expert system is able to provide necessary support to the company when the expert is not available. The implementation of the process and tool is able to be standardize and more accurate. The knowledge that input to the expert system is based on design guidelines and experience from the expert. This project highlighted another application on knowledge-based system (KBS) approached in trouble shooting of the refuse collection vehicle production process. The main aim of the research is to develop a novel expert fault diagnosis system framework for the refuse collection vehicle.

  19. Aerodynamic drag reduction tests on a box-shaped vehicle

    Science.gov (United States)

    Peterson, R. L.; Sandlin, D. R.

    1981-01-01

    The intent of the present experiment is to define a near optimum value of drag coefficient for a high volume type of vehicle through the use of a boattail, on a vehicle already having rounded front corners and an underbody seal, or fairing. The results of these tests will constitute a baseline for later follow-on studies to evaluate candidate methods of obtaining afterbody drag coefficients approaching the boattail values, but without resorting to such impractical afterbody extensions. The current modifications to the box-shaped vehicle consisted of a full and truncated boattail in conjunction with the faired and sealed underbody. Drag results from these configurations are compared with corresponding wind tunnel results of a 1/10 scale model. Test velocities ranged up to 96.6 km/h (60 mph) and the corresponding Reynolds numbers ranged up to 1.3 x 10 to the 7th power based on the vehicles length which includes the boattail. A simple coast-down technique was used to define drag.

  20. The identification and modeling of visual cue usage in manual control task experiments

    Science.gov (United States)

    Sweet, Barbara Townsend

    Many fields of endeavor require humans to conduct manual control tasks while viewing a perspective scene. Manual control refers to tasks in which continuous, or nearly continuous, control adjustments are required. Examples include flying an aircraft, driving a car, and riding a bicycle. Perspective scenes can arise through natural viewing of the world, simulation of a scene (as in flight simulators), or through imaging devices (such as the cameras on an unmanned aerospace vehicle). Designers frequently have some degree of control over the content and characteristics of a perspective scene; airport designers can choose runway markings, vehicle designers can influence the size and shape of windows, as well as the location of the pilot, and simulator database designers can choose scene complexity and content. Little theoretical framework exists to help designers determine the answers to questions related to perspective scene content. An empirical approach is most commonly used to determine optimum perspective scene configurations. The goal of the research effort described in this dissertation has been to provide a tool for modeling the characteristics of human operators conducting manual control tasks with perspective-scene viewing. This is done for the purpose of providing an algorithmic, as opposed to empirical, method for analyzing the effects of changing perspective scene content for closed-loop manual control tasks. The dissertation contains the development of a model of manual control using a perspective scene, called the Visual Cue Control (VCC) Model. Two forms of model were developed: one model presumed that the operator obtained both position and velocity information from one visual cue, and the other model presumed that the operator used one visual cue for position, and another for velocity. The models were compared and validated in two experiments. The results show that the two-cue VCC model accurately characterizes the output of the human operator with a

  1. Squid-inspired vehicle design using coupled fluid-solid analytical modeling

    Science.gov (United States)

    Giorgio-Serchi, Francesco; Weymouth, Gabriel

    2017-11-01

    The need for enhanced automation in the marine and maritime fields is fostering research into robust and highly maneuverable autonomous underwater vehicles. To address these needs we develop design principles for a new generation of soft-bodied aquatic vehicles similar to octopi and squids. In particular, we consider the capability of pulsed-jetting bodies to boost thrust by actively modifying their external body-shape and in this way benefit of the contribution from added-mass variation. We present an analytical formulation of the coupled fluid-structure interaction between the elastic body and the ambient fluid. The model incorporates a number of new salient contributions to the soft-body dynamics. We highlight the role of added-mass variation effects of the external fluid in enhancing thrust and assess how the shape-changing actuation is impeded by a confinement-related unsteady inertial term and by an external shape-dependent fluid stiffness contribution. We show how the analysis of these combined terms has guided us to the design of a new prototype of a squid-inspired vehicle tuning of the natural frequency of the coupled fluid-solid system with the purpose of optimizing its actuation routine.

  2. ROV90 - A prototype autonomous inspection vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Roedseth, Oe.J.; Hallset, J.O.

    1991-04-01

    Simple autonomous inspection vehicles are suitable for operations where the cost, danger to humans, or area of operation prohibits the use of conventional underwater technology. Autonomous vehicles are, however, in their infancy and few such vehicles are available. There are still some problems to be overcome before this technology becomes useful in commercial applications. We have built ROV90 to investigate these problems. It is a test bed for experimenting with the different parts of an autonomous underwater vehicle. ROV90 will be able to autonomously follow prominent features in the real world, man made or natural. Examples are pipelines or walls in tunnels. ROV90 is tethered, but we are planning to use experience and results from ROV90 to develop av ''real'' autonomous underwater vehicle (AUV) called PISCIS. 11 refs., 8 figs.

  3. Robust Road Condition Detection System Using In-Vehicle Standard Sensors

    Directory of Open Access Journals (Sweden)

    Juan Jesús Castillo Aguilar

    2015-12-01

    Full Text Available The appearance of active safety systems, such as Anti-lock Braking System, Traction Control System, Stability Control System, etc., represents a major evolution in road safety. In the automotive sector, the term vehicle active safety systems refers to those whose goal is to help avoid a crash or to reduce the risk of having an accident. These systems safeguard us, being in continuous evolution and incorporating new capabilities continuously. In order for these systems and vehicles to work adequately, they need to know some fundamental information: the road condition on which the vehicle is circulating. This early road detection is intended to allow vehicle control systems to act faster and more suitably, thus obtaining a substantial advantage. In this work, we try to detect the road condition the vehicle is being driven on, using the standard sensors installed in commercial vehicles. Vehicle models were programmed in on-board systems to perform real-time estimations of the forces of contact between the wheel and road and the speed of the vehicle. Subsequently, a fuzzy logic block is used to obtain an index representing the road condition. Finally, an artificial neural network was used to provide the optimal slip for each surface. Simulations and experiments verified the proposed method.

  4. Robust Road Condition Detection System Using In-Vehicle Standard Sensors.

    Science.gov (United States)

    Castillo Aguilar, Juan Jesús; Cabrera Carrillo, Juan Antonio; Guerra Fernández, Antonio Jesús; Carabias Acosta, Enrique

    2015-12-19

    The appearance of active safety systems, such as Anti-lock Braking System, Traction Control System, Stability Control System, etc., represents a major evolution in road safety. In the automotive sector, the term vehicle active safety systems refers to those whose goal is to help avoid a crash or to reduce the risk of having an accident. These systems safeguard us, being in continuous evolution and incorporating new capabilities continuously. In order for these systems and vehicles to work adequately, they need to know some fundamental information: the road condition on which the vehicle is circulating. This early road detection is intended to allow vehicle control systems to act faster and more suitably, thus obtaining a substantial advantage. In this work, we try to detect the road condition the vehicle is being driven on, using the standard sensors installed in commercial vehicles. Vehicle models were programmed in on-board systems to perform real-time estimations of the forces of contact between the wheel and road and the speed of the vehicle. Subsequently, a fuzzy logic block is used to obtain an index representing the road condition. Finally, an artificial neural network was used to provide the optimal slip for each surface. Simulations and experiments verified the proposed method.

  5. Interval-parameter chance-constraint programming model for end-of-life vehicles management under rigorous environmental regulations.

    Science.gov (United States)

    Simic, Vladimir

    2016-06-01

    As the number of end-of-life vehicles (ELVs) is estimated to increase to 79.3 million units per year by 2020 (e.g., 40 million units were generated in 2010), there is strong motivation to effectively manage this fast-growing waste flow. Intensive work on management of ELVs is necessary in order to more successfully tackle this important environmental challenge. This paper proposes an interval-parameter chance-constraint programming model for end-of-life vehicles management under rigorous environmental regulations. The proposed model can incorporate various uncertainty information in the modeling process. The complex relationships between different ELV management sub-systems are successfully addressed. Particularly, the formulated model can help identify optimal patterns of procurement from multiple sources of ELV supply, production and inventory planning in multiple vehicle recycling factories, and allocation of sorted material flows to multiple final destinations under rigorous environmental regulations. A case study is conducted in order to demonstrate the potentials and applicability of the proposed model. Various constraint-violation probability levels are examined in detail. Influences of parameter uncertainty on model solutions are thoroughly investigated. Useful solutions for the management of ELVs are obtained under different probabilities of violating system constraints. The formulated model is able to tackle a hard, uncertainty existing ELV management problem. The presented model has advantages in providing bases for determining long-term ELV management plans with desired compromises between economic efficiency of vehicle recycling system and system-reliability considerations. The results are helpful for supporting generation and improvement of ELV management plans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Trajectory Planning and Optimized Adaptive Control for a Class of Wheeled Inverted Pendulum Vehicle Models.

    Science.gov (United States)

    Yang, Chenguang; Li, Zhijun; Li, Jing

    2013-02-01

    In this paper, we investigate optimized adaptive control and trajectory generation for a class of wheeled inverted pendulum (WIP) models of vehicle systems. Aiming at shaping the controlled vehicle dynamics to be of minimized motion tracking errors as well as angular accelerations, we employ the linear quadratic regulation optimization technique to obtain an optimal reference model. Adaptive control has then been developed using variable structure method to ensure the reference model to be exactly matched in a finite-time horizon, even in the presence of various internal and external uncertainties. The minimized yaw and tilt angular accelerations help to enhance the vehicle rider's comfort. In addition, due to the underactuated mechanism of WIP, the vehicle forward velocity dynamics cannot be controlled separately from the pendulum tilt angle dynamics. Inspired by the control strategy of human drivers, who usually manipulate the tilt angle to control the forward velocity, we design a neural-network-based adaptive generator of implicit control trajectory (AGICT) of the tilt angle which indirectly "controls" the forward velocity such that it tracks the desired velocity asymptotically. The stability and optimal tracking performance have been rigorously established by theoretic analysis. In addition, simulation studies have been carried out to demonstrate the efficiency of the developed AGICT and optimized adaptive controller.

  7. Comparison of model reference and map based control method for vehicle stability enhancement

    NARCIS (Netherlands)

    Baek, S.; Son, M.; Song, J.; Boo, K.; Kim, H.

    2012-01-01

    A map based controller method to improve a vehicle lateral stability is proposed in this study and compared with the conventional method, a model referenced controller. A model referenced controller to determine compensated yaw moment uses the sliding mode method, but the proposed map based

  8. Hardware-in-the-loop vehicle system including dynamic fuel cell model

    Energy Technology Data Exchange (ETDEWEB)

    Lemes, Z.; Lenhart, T.; Braun, M.; Maencher, H. [MAGNUM Automatisierungstechnik GmbH, Darmstadt (Germany)

    2005-07-01

    In order to reduce costs and accelerate the development of fuel cells and systems the usage of hardware-in-the-loop (HIL) testing and dynamic modelling opens new possibilities. The dynamic model of a proton exchange membrane fuel cell (PEMFC) together with a vehicle model is used to carry out a comprehensive system investigation, which allows designing and optimising the behaviour of the components and the entire fuel cell system. The set-up of a HIL system enables real time interaction between the selected hardware and the model. (orig.)

  9. A numerical simulation of wheel spray for simplified vehicle model based on discrete phase method

    Directory of Open Access Journals (Sweden)

    Xingjun Hu

    2015-07-01

    Full Text Available Road spray greatly affects vehicle body soiling and driving safety. The study of road spray has attracted increasing attention. In this article, computational fluid dynamics software with widely used finite volume method code was employed to investigate the numerical simulation of spray induced by a simplified wheel model and a modified square-back model proposed by the Motor Industry Research Association. Shear stress transport k-omega turbulence model, discrete phase model, and Eulerian wall-film model were selected. In the simulation process, the phenomenon of breakup and coalescence of drops were considered, and the continuous and discrete phases were treated as two-way coupled in momentum and turbulent motion. The relationship between the vehicle external flow structure and body soiling was also discussed.

  10. A MARKED POINT PROCESS MODEL FOR VEHICLE DETECTION IN AERIAL LIDAR POINT CLOUDS

    Directory of Open Access Journals (Sweden)

    A. Börcs

    2012-07-01

    Full Text Available In this paper we present an automated method for vehicle detection in LiDAR point clouds of crowded urban areas collected from an aerial platform. We assume that the input cloud is unordered, but it contains additional intensity and return number information which are jointly exploited by the proposed solution. Firstly, the 3-D point set is segmented into ground, vehicle, building roof, vegetation and clutter classes. Then the points with the corresponding class labels and intensity values are projected to the ground plane, where the optimal vehicle configuration is described by a Marked Point Process (MPP model of 2-D rectangles. Finally, the Multiple Birth and Death algorithm is utilized to find the configuration with the highest confidence.

  11. Influence of World and Gravity Model Selection on Surface Interacting Vehicle Simulations

    Science.gov (United States)

    Madden, Michael M.

    2007-01-01

    A vehicle simulation is surface-interacting if the state of the vehicle (position, velocity, and acceleration) relative to the surface is important. Surface-interacting simulations perform ascent, entry, descent, landing, surface travel, or atmospheric flight. Modeling of gravity is an influential environmental factor for surface-interacting simulations. Gravity is the free-fall acceleration observed from a world-fixed frame that rotates with the world. Thus, gravity is the sum of gravitation and the centrifugal acceleration due to the world s rotation. In surface-interacting simulations, the fidelity of gravity at heights above the surface is more significant than gravity fidelity at locations in inertial space. A surface-interacting simulation cannot treat the gravity model separately from the world model, which simulates the motion and shape of the world. The world model's simulation of the world's rotation, or lack thereof, produces the centrifugal acceleration component of gravity. The world model s reproduction of the world's shape will produce different positions relative to the world center for a given height above the surface. These differences produce variations in the gravitation component of gravity. This paper examines the actual performance of world and gravity/gravitation pairs in a simulation using the Earth.

  12. Modeling and control of a hybrid-electric vehicle for drivability and fuel economy improvements

    Science.gov (United States)

    Koprubasi, Kerem

    The gradual decline of oil reserves and the increasing demand for energy over the past decades has resulted in automotive manufacturers seeking alternative solutions to reduce the dependency on fossil-based fuels for transportation. A viable technology that enables significant improvements in the overall tank-to-wheel vehicle energy conversion efficiencies is the hybridization of electrical and conventional drive systems. Sophisticated hybrid powertrain configurations require careful coordination of the actuators and the onboard energy sources for optimum use of the energy saving benefits. The term optimality is often associated with fuel economy, although other measures such as drivability and exhaust emissions are also equally important. This dissertation focuses on the design of hybrid-electric vehicle (HEV) control strategies that aim to minimize fuel consumption while maintaining good vehicle drivability. In order to facilitate the design of controllers based on mathematical models of the HEV system, a dynamic model that is capable of predicting longitudinal vehicle responses in the low-to-mid frequency region (up to 10 Hz) is developed for a parallel HEV configuration. The model is validated using experimental data from various driving modes including electric only, engine only and hybrid. The high fidelity of the model makes it possible to accurately identify critical drivability issues such as time lags, shunt, shuffle, torque holes and hesitation. Using the information derived from the vehicle model, an energy management strategy is developed and implemented on a test vehicle. The resulting control strategy has a hybrid structure in the sense that the main mode of operation (the hybrid mode) is occasionally interrupted by event-based rules to enable the use of the engine start-stop function. The changes in the driveline dynamics during this transition further contribute to the hybrid nature of the system. To address the unique characteristics of the HEV

  13. Modeling and Closed Loop Flight Testing of a Fixed Wing Micro Air Vehicle

    Directory of Open Access Journals (Sweden)

    Harikumar Kandath

    2018-03-01

    Full Text Available This paper presents the nonlinear six degrees of freedom dynamic modeling of a fixed wing micro air vehicle. The static derivatives of the micro air vehicle are obtained through the wind tunnel testing. The propeller effects on the lift, drag, pitching moment and side force are quantified through wind tunnel testing. The dynamic derivatives are obtained through empirical relations available in the literature. The trim conditions are computed for a straight and constant altitude flight condition. The linearized longitudinal and lateral state space models are obtained about trim conditions. The variations in short period mode, phugoid mode, Dutch roll mode, roll subsidence mode and spiral mode with respect to different trim operating conditions is presented. A stabilizing static output feedback controller is designed using the obtained model. Successful closed loop flight trials are conducted with the static output feedback controller.

  14. Ground Vehicle System Integration (GVSI) and Design Optimization Model.

    Science.gov (United States)

    1996-07-30

    number of stowed kills Same basic load lasts longer range Gun/ammo parameters impact system weight, under - armor volume requirements Round volume...internal volume is reduced, the model assumes that the crew’s ability to operate while under armor will be impaired. If the size of a vehicle crew is...changing swept volume will alter under armor volume requirements for the total system; if system volume is fixed, changing swept volume will

  15. Multi-sources model and control algorithm of an energy management system for light electric vehicles

    International Nuclear Information System (INIS)

    Hannan, M.A.; Azidin, F.A.; Mohamed, A.

    2012-01-01

    Highlights: ► An energy management system (EMS) is developed for a scooter under normal and heavy power load conditions. ► The battery, FC, SC, EMS, DC machine and vehicle dynamics are modeled and designed for the system. ► State-based logic control algorithms provide an efficient and feasible multi-source EMS for light electric vehicles. ► Vehicle’s speed and power are closely matched with the ECE-47 driving cycle under normal and heavy load conditions. ► Sources of energy changeover occurred at 50% of the battery state of charge level in heavy load conditions. - Abstract: This paper presents the multi-sources energy models and ruled based feedback control algorithm of an energy management system (EMS) for light electric vehicle (LEV), i.e., scooters. The multiple sources of energy, such as a battery, fuel cell (FC) and super-capacitor (SC), EMS and power controller, DC machine and vehicle dynamics are designed and modeled using MATLAB/SIMULINK. The developed control strategies continuously support the EMS of the multiple sources of energy for a scooter under normal and heavy power load conditions. The performance of the proposed system is analyzed and compared with that of the ECE-47 test drive cycle in terms of vehicle speed and load power. The results show that the designed vehicle’s speed and load power closely match those of the ECE-47 test driving cycle under normal and heavy load conditions. This study’s results suggest that the proposed control algorithm provides an efficient and feasible EMS for LEV.

  16. Lane-Level Vehicle Trajectory Reckoning for Cooperative Vehicle-Infrastructure System

    Directory of Open Access Journals (Sweden)

    Yinsong Wang

    2012-01-01

    Full Text Available This paper presents a lane-level positioning method by trajectory reckoning without Global Positioning System (GPS equipment in the environment of Cooperative Vehicle-Infrastructure System (CVIS. Firstly, the accuracy requirements of vehicle position in CVIS applications and the applicability of GPS positioning methods were analyzed. Then, a trajectory reckoning method based on speed and steering data from vehicle’s Control Area Network (CAN and roadside calibration facilities was proposed, which consists of three critical models, including real-time estimation of steering angle and vehicle direction, vehicle movement reckoning, and wireless calibration. Finally, the proposed method was validated through simulation and field tests under a variety of traffic conditions. Results show that the accuracy of the reckoned vehicle position can reach the lane level and match the requirements of common CVIS applications.

  17. MRV - Modular Robotic Vehicle

    Science.gov (United States)

    Ridley, Justin; Bluethmann, Bill

    2015-01-01

    The Modular Robotic Vehicle, or MRV, completed in 2013, was developed at the Johnson Space Center in order to advance technologies which have applications for future vehicles both in space and on Earth. With seating for two people, MRV is a fully electric vehicle modeled as a "city car", suited for busy urban environments.

  18. A Hybrid Soft Soil Tire Model (HSSTM) For Vehicle Mobility And Deterministic Performance Analysis In Terramechanics Applications

    OpenAIRE

    Taheri, Shahyar

    2015-01-01

    Accurate and efficient tire models for deformable terrain operations are essential for performing vehicle simulations. Assessment of the forces and moments that occur at the tire-terrain interface, and the effect of the tire motion on properties of the terrain are crucial in understanding the performance of a vehicle. In order to model the dynamic behavior of the tire on different terrains, a lumped mass discretized tire model using Kelvin-Voigt elements is developed. To optimize the computat...

  19. Development of an end-of-life vehicle recovery model using system dynamics and future research needs

    Science.gov (United States)

    Mohamad-Ali, N.; Ghazilla, R. A. R.; Abdul-Rashid, S. H.; Sakundarini, N.; Ahmad-Yazid, A.; Stephenie, L.

    2017-06-01

    The implementation of end-of-life vehicle (ELV) recovery policy in Malaysia has led vehicle manufacturers to look at different ways to improve design and development of vehicles. Nowadays, it is crucial to incorporate end-of-life (EOL) design strategies into the vehicle design in order to enhance the effectiveness of the ELV recovery network. Although recent studies have shown that product design has a significant effect on the product recovery rate, there is a lack of studies on how EOL design strategies affects the effectiveness of ELV recovery, particularly when there are dynamic changes in the behaviour of the product recovery network. Thus, in this study, we developed a preliminary model based on the system dynamics approach in order to predict the effectiveness of ELV recovery in response to dynamic changes of various factors (including EOL design strategies) in the business environment. We developed this model based on preliminary data that we had gathered from unstructured interviews with the key stakeholders of ELV management in Malaysia. We believe that our model will greatly benefit product designers in incorporating the appropriate EOL design strategies in order to boost ELV recovery effectiveness in Malaysia.

  20. Full vehicle ABS braking using the SWIFT rigid ring tyre model

    NARCIS (Netherlands)

    Pauwelussen, J.P.; Gootjes, L.; Schröder, C.; Köhne, K.-U.; Jansen, S.T.H.; Schmeitz, A.J.C.

    2003-01-01

    In recent years, at the Delft University of Technology and TNO-Automotive and in conjunction with an industrial consortium, a pragmatic tyre model has been developed going by the name SWIFT, which is geared to the analysis of tyre oscillations and its effects on vehicle behaviour. The SWIFT tyre

  1. NASA 3D Models: Vehicle Assembly Building (VAB)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Vehicle Assembly Building (VAB) is one of the largest buildings in the world. It was originally built for assembly of Apollo/Saturn vehicles and was later...

  2. A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles.

    Science.gov (United States)

    Hwang, Jenn-Jiang; Hu, Jia-Sheng; Lin, Chih-Hong

    2015-01-01

    The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2 emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the battery's state of charge (SOC). This approach improves the quick loss problem of the system's SOC and thus can achieve an extended driving range. Smooth steering experience and range extension are the main indexes for development of fuzzy rules, which are mainly based on the energy management in the urban driving model. Evaluation of the entire control system is performed by simulation, which demonstrates its effectiveness and feasibility.

  3. A Study of Torque Vectoring and Traction Control for an All-Wheel Drive Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Maharun Mui’nuddin

    2014-07-01

    Full Text Available Common vehicle always experience energy loss during cornering manoeuver. Thus, to ensure it did not happened especially at high speed, a study of torque vectoring and traction control need to be made since it can increase the traction control of tyres during cornering at high speed. The study of torque vectoring and traction control for an all-wheel drive electric vehicle was conducted by modelling an all-wheel drive electric vehicle (EV in ADAMS/Car software. In addition, an optimal control algorithm will be developed for best performance to minimize energy losses using MATLAB/Simulink software. Furthermore, to prove the effectiveness of the all-wheel drive electric, the torque and traction control simulation of the all-wheel drive electric vehicle will be compared with uncontrolled electric vehicle model. According to the result, torque vectoring and traction control of in-wheel motor in all wheel drive EV can help to increase the performance of the electric vehicle during cornering manoeuver. In conclusion, this study of torque vectoring and traction control for an all-wheel drive electric vehicle will help researchers to improve the design of the future electric vehicle in term of the vehicle performance during cornering manoeuvre.

  4. Prediction Model of Battery State of Charge and Control Parameter Optimization for Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2015-07-01

    Full Text Available This paper presents the construction of a battery state of charge (SOC prediction model and the optimization method of the said model to appropriately control the number of parameters in compliance with the SOC as the battery output objectives. Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences has tested its electric vehicle research prototype on the road, monitoring its voltage, current, temperature, time, vehicle velocity, motor speed, and SOC during the operation. Using this experimental data, the prediction model of battery SOC was built. Stepwise method considering multicollinearity was able to efficiently develops the battery prediction model that describes the multiple control parameters in relation to the characteristic values such as SOC. It was demonstrated that particle swarm optimization (PSO succesfully and efficiently calculated optimal control parameters to optimize evaluation item such as SOC based on the model.

  5. Prediction of dynamics of bellows in exhaust system of vehicle using equivalent beam modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jin Ho; Kim, Yong Dae; Lee, Nam Young; Lee, Sang Woo [Noise and vibration CAE Team, Hyundai Motor Company, Ulsan (Korea, Republic of)

    2015-11-15

    The exhaust system is one of the major sources of vibrations, along with the suspension system and engine. When the exhaust system is connected directly to the engine, it transfers vibrations to the vehicle body through the body mounts. Therefore, in order to reduce the vibrations transmitted from the exhaust system, the vibration characteristics of the exhaust system should be predicted. Thus, the dynamic characteristics of the bellows, which form a key component of the exhaust system, must be modeled accurately. However, it is difficult to model the bellows because of the complicated geometry. Though the equivalent beam modeling technique has been applied in the design stage, it is not sufficiently accurate in the case of the bellows which have complicated geometries. In this paper, we present an improved technique for modeling the bellows in a vehicle. The accuracy of the modeling method is verified by comparison with the experimental results.

  6. Constraint Embedding for Vehicle Suspension Dynamics

    OpenAIRE

    Jain Abhinandan; Kuo Calvin; Jayakumar Paramsothy; Cameron Jonathan

    2016-01-01

    The goal of this research is to achieve close to real-time dynamics performance for allowing auto-pilot in-the-loop testing of unmanned ground vehicles (UGV) for urban as well as off-road scenarios. The overall vehicle dynamics performance is governed by the multibody dynamics model for the vehicle, the wheel/terrain interaction dynamics and the onboard control system. The topic of this paper is the development of computationally efficient and accurate dynamics model for ground vehicles with ...

  7. Wastewater Treatment Model in Washing Stations for Vehicles Transporting Dangerous Goods

    Directory of Open Access Journals (Sweden)

    Robert Muha

    2004-09-01

    Full Text Available Car washing is a task performed by every passenger carowner more or less frequently, mainly to achieve a finer appearanceof the vehicle rather than for the need for cleanness.In the transport business, the owner's concern is to presentclean and orderly vehicles on the road as a relevant external elementof order, implying good corporate image to customers. Onthe other hand, in dangerous goods transportation there areother reasons requiring special technology of washing, applicableto the transport means used, depending on the change oftype of goods in carriage, the preliminary preparation of a vehicleto load the cargo, or to undergo maintenance.Water applied in the technology of washing collects the residueof goods carried in the vehicle and is polluted to such an extentthat it cannot be discharged into sewers - nor directly into awatercourse - without previous treatment.The paper presents a solution model and a sequence oftechnological procedures involved in an efficient treatment ofthe polluted wastewater in tank wash stations, in which mostlyvehicles carrying ADR goods are washed.

  8. Trajectory planning and tracking for autonomous vehicles navigation

    OpenAIRE

    Chebly , Alia

    2017-01-01

    In this thesis, the trajectory planning and the control of autonomous vehicles are addressed. As a first step, a multi-body modeling technique is used to develop a four wheeled vehicle planar model. This technique considers the vehicle as a robot consisting of articulated bodies. The geometric description of the vehicle system is derived using the modified Denavit Hartenberg parameterization and then the dynamic model of the vehicle is computed by applying a recursive method used in robotics,...

  9. Modelling and modal properties of the railway vehicle bogie with two individual wheelset drives

    Directory of Open Access Journals (Sweden)

    Zeman V.

    2007-10-01

    Full Text Available The paper deals with mathematical modelling of vibration and modal analysis of two-axled bogie of a railway vehicle. In comparison with recent publications introducing mathematical models of an individual wheelset drive, this paper is focused on modelling of complex bogie vibration. The bogie frame is linked by primary suspension to the two wheelset drives with hollow shafts and by secondary suspension to the car body. The method is based on the system decomposition into three subsystems – two individual wheelset drives including the mass of the rail and the bogie frame coupled with a half of the car body – and on modelling of couplings among subsystems. The eigenvalues of a linearized autonomous model and stability conditions are investigated in dependence on longitudinal creepage and forward velocity of the railway vehicle. The nonlinear model will be used for investigating the dynamic loading of bogie components caused by different types of excitation.

  10. The General-Use Nodal Network Solver (GUNNS) Modeling Package for Space Vehicle Flow System Simulation

    Science.gov (United States)

    Harvey, Jason; Moore, Michael

    2013-01-01

    The General-Use Nodal Network Solver (GUNNS) is a modeling software package that combines nodal analysis and the hydraulic-electric analogy to simulate fluid, electrical, and thermal flow systems. GUNNS is developed by L-3 Communications under the TS21 (Training Systems for the 21st Century) project for NASA Johnson Space Center (JSC), primarily for use in space vehicle training simulators at JSC. It has sufficient compactness and fidelity to model the fluid, electrical, and thermal aspects of space vehicles in real-time simulations running on commodity workstations, for vehicle crew and flight controller training. It has a reusable and flexible component and system design, and a Graphical User Interface (GUI), providing capability for rapid GUI-based simulator development, ease of maintenance, and associated cost savings. GUNNS is optimized for NASA's Trick simulation environment, but can be run independently of Trick.

  11. Robust stabilization control based on guardian maps theory for a longitudinal model of hypersonic vehicle.

    Science.gov (United States)

    Liu, Yanbin; Liu, Mengying; Sun, Peihua

    2014-01-01

    A typical model of hypersonic vehicle has the complicated dynamics such as the unstable states, the nonminimum phases, and the strong coupling input-output relations. As a result, designing a robust stabilization controller is essential to implement the anticipated tasks. This paper presents a robust stabilization controller based on the guardian maps theory for hypersonic vehicle. First, the guardian maps theories are provided to explain the constraint relations between the open subsets of complex plane and the eigenvalues of the state matrix of closed-loop control system. Then, a general control structure in relation to the guardian maps theories is proposed to achieve the respected design demands. Furthermore, the robust stabilization control law depending on the given general control structure is designed for the longitudinal model of hypersonic vehicle. Finally, a simulation example is provided to verify the effectiveness of the proposed methods.

  12. Economic Dispatch for Microgrid Containing Electric Vehicles via Probabilistic Modeling: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yin; Gao, Wenzhong; Momoh, James; Muljadi, Eduard

    2016-02-11

    In this paper, an economic dispatch model with probabilistic modeling is developed for a microgrid. The electric power supply in a microgrid consists of conventional power plants and renewable energy power plants, such as wind and solar power plants. Because of the fluctuation in the output of solar and wind power plants, an empirical probabilistic model is developed to predict their hourly output. According to different characteristics of wind and solar power plants, the parameters for probabilistic distribution are further adjusted individually for both. On the other hand, with the growing trend in plug-in electric vehicles (PHEVs), an integrated microgrid system must also consider the impact of PHEVs. The charging loads from PHEVs as well as the discharging output via the vehicle-to-grid (V2G) method can greatly affect the economic dispatch for all of the micro energy sources in a microgrid. This paper presents an optimization method for economic dispatch in a microgrid considering conventional power plants, renewable power plants, and PHEVs. The simulation results reveal that PHEVs with V2G capability can be an indispensable supplement in a modern microgrid.

  13. OPTIMAL CONTROL FOR ELECTRIC VEHICLE STABILIZATION

    Directory of Open Access Journals (Sweden)

    MARIAN GAICEANU

    2016-01-01

    Full Text Available This main objective of the paper is to stabilize an electric vehicle in optimal manner to a step lane change maneuver. To define the mathematical model of the vehicle, the rigid body moving on a plane is taken into account. An optimal lane keeping controller delivers the adequate angles in order to stabilize the vehicle’s trajectory in an optimal way. Two degree of freedom linear bicycle model is adopted as vehicle model, consisting of lateral and yaw motion equations. The proposed control maintains the lateral stability by taking the feedback information from the vehicle transducers. In this way only the lateral vehicle’s dynamics are enough to considerate. Based on the obtained linear mathematical model the quadratic optimal control is designed in order to maintain the lateral stability of the electric vehicle. The numerical simulation results demonstrate the feasibility of the proposed solution.

  14. A Low-Cost Vehicle Anti-Theft System Using Obsolete Smartphone

    Directory of Open Access Journals (Sweden)

    Bang Liu

    2018-01-01

    Full Text Available In modern society, vehicle theft has become an increasing problem to the general public. Deploying onboard anti-theft systems could relieve this problem, but it often requires extra investment for vehicle owners. In this paper, we propose the idea of PhoneInside, which does not need a special device but leverages an obsolete smartphone to build a low-cost vehicle anti-theft system. After being fixed in the vehicle body with a car charger, the smartphone can detect vehicle movement and adaptively use GPS, cellular/WiFi localization, and dead reckoning to locate the vehicle during driving. Especially, a novel Velocity-Aware Dead Reckoning (VA-DR method is presented, which utilizes map knowledge and vehicle’s turns at road curves and intersections to estimate velocity for trajectory computation. Compared to traditional dead reckoning, it reduces accumulated errors and achieves great improvement in localization accuracy. Furthermore, based on the learning of the driving history, our system can establish individual mobility model for a vehicle and distinguish abnormal driving behaviors by a Long Short Term Memory (LSTM network. With the help of ad hoc authentication, the system can identify vehicle theft and send out timely alarming and tracking messages for rapid recovery. The realistic experiments running on Android smartphones prove that our system can detect vehicle theft effectively and locate a stolen vehicle accurately, with average errors less than the sight range.

  15. Wheel Slip Control for Improving Traction-Ability and Energy Efficiency of a Personal Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Kanghyun Nam

    2015-07-01

    Full Text Available In this paper, a robust wheel slip control system based on a sliding mode controller is proposed for improving traction-ability and reducing energy consumption during sudden acceleration for a personal electric vehicle. Sliding mode control techniques have been employed widely in the development of a robust wheel slip controller of conventional internal combustion engine vehicles due to their application effectiveness in nonlinear systems and robustness against model uncertainties and disturbances. A practical slip control system which takes advantage of the features of electric motors is proposed and an algorithm for vehicle velocity estimation is also introduced. The vehicle velocity estimator was designed based on rotational wheel dynamics, measurable motor torque, and wheel velocity as well as rule-based logic. The simulations and experiments were carried out using both CarSim software and an experimental electric vehicle equipped with in-wheel-motors. Through field tests, traction performance and effectiveness in terms of energy saving were all verified. Comparative experiments with variations of control variables proved the effectiveness and practicality of the proposed control design.

  16. Shore-based Path Planning for Marine Vehicles Using a Model of Ocean Currents

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop path planning methods that incorporate an approximate model of ocean currents in path planning for a range of autonomous marine vehicles such as surface...

  17. Sustainable Mobility: Using a Global Energy Model to Inform Vehicle Technology Choices in a Decarbonized Economy

    Directory of Open Access Journals (Sweden)

    Timothy Wallington

    2013-04-01

    Full Text Available The reduction of CO2 emissions associated with vehicle use is an important element of a global transition to sustainable mobility and is a major long-term challenge for society. Vehicle and fuel technologies are part of a global energy system, and assessing the impact of the availability of clean energy technologies and advanced vehicle technologies on sustainable mobility is a complex task. The global energy transition (GET model accounts for interactions between the different energy sectors, and we illustrate its use to inform vehicle technology choices in a decarbonizing economy. The aim of this study is to assess how uncertainties in future vehicle technology cost, as well as how developments in other energy sectors, affect cost-effective fuel and vehicle technology choices. Given the uncertainties in future costs and efficiencies for light-duty vehicle and fuel technologies, there is no clear fuel/vehicle technology winner that can be discerned at the present time. We conclude that a portfolio approach with research and development of multiple fuel and vehicle technology pathways is the best way forward to achieve the desired result of affordable and sustainable personal mobility. The practical ramifications of this analysis are illustrated in the portfolio approach to providing sustainable mobility adopted by the Ford Motor Company.

  18. Rail vehicle dynamics

    CERN Document Server

    Knothe, Klaus

    2017-01-01

    This book on the dynamics of rail vehicles is developed from the manuscripts for a class with the same name at TU Berlin. It is directed mainly to master students with pre-knowledge in mathematics and mechanics and engineers that want to learn more. The important phenomena of the running behaviour of rail vehicles are derived and explained. Also recent research results and experience from the operation of rail vehicles are included. One focus is the description of the complex wheel-rail contact phenomena that are essential to understand the concept of running stability and curving. A reader should in the end be able to understand the background of simulation tools that are used by the railway industry and universities today.

  19. Hybrid CNG propulsion for fleet vehicles: emission reduction potential and operating experience

    Energy Technology Data Exchange (ETDEWEB)

    Drozdz, P. [BC Research Institute, BC (Canada)

    1997-12-31

    A project (1) to build an experimental hybrid electric vehicle to be used as a test bed for the development of EZEV-oriented technologies, (2) to develop a control system to manage the energy use in a series hybrid vehicle, (3) to evaluate the suitability of valve regulated lead acid batteries for hybrid propulsion, and (4) to investigate the feasibility of using hybrid propulsion for medium duty fleet vehicles was discussed. In this context, the electric G-Van, the BCRI hybrid G-Van battery, the hybrid power unit, and the electronic control unit were described. The concept of hybrid vehicle control, and the control system software were explained, and a summary of the hybrid system efficiency test was provided.

  20. Application of Novel Lateral Tire Force Sensors to Vehicle Parameter Estimation of Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Kanghyun Nam

    2015-11-01

    Full Text Available This article presents methods for estimating lateral vehicle velocity and tire cornering stiffness, which are key parameters in vehicle dynamics control, using lateral tire force measurements. Lateral tire forces acting on each tire are directly measured by load-sensing hub bearings that were invented and further developed by NSK Ltd. For estimating the lateral vehicle velocity, tire force models considering lateral load transfer effects are used, and a recursive least square algorithm is adapted to identify the lateral vehicle velocity as an unknown parameter. Using the estimated lateral vehicle velocity, tire cornering stiffness, which is an important tire parameter dominating the vehicle’s cornering responses, is estimated. For the practical implementation, the cornering stiffness estimation algorithm based on a simple bicycle model is developed and discussed. Finally, proposed estimation algorithms were evaluated using experimental test data.

  1. Highway three-dimensional modeling based on Vehicle-borne laser data

    International Nuclear Information System (INIS)

    Weili, Sun; Ruofei, Zhong; Jiangxia, Wei; Fanyang, Zeng

    2014-01-01

    The of Vehicle-borne LiDAR (Light Detection And Ranging) scanning technology is an efficiently practical approach on the acquisition and application of 3D information and its geographic elements of highway(including road surface, rails, attached facilities, slopes, ditches, etc.). The acquired information is significant on many aspects such as road maintenance, reconstruction, survey, landscape design, visualized modelling and highway hazard supervision and prevention. The initial laser data cannot be directly used to construct highway 3D model, operations of pre-processing are necessary. This paper presented a set of procedure about pre-processing laser data and constructing TIN (Triangle Irregular Net) model of highway

  2. Workload Model Based Dynamic Adaptation of Social Internet of Vehicles

    Directory of Open Access Journals (Sweden)

    Kazi Masudul Alam

    2015-09-01

    Full Text Available Social Internet of Things (SIoT has gained much interest among different research groups in recent times. As a key member of a smart city, the vehicular domain of SIoT (SIoV is also undergoing steep development. In the SIoV, vehicles work as sensor-hub to capture surrounding information using the in-vehicle and Smartphone sensors and later publish them for the consumers. A cloud centric cyber-physical system better describes the SIoV model where physical sensing-actuation process affects the cloud based service sharing or computation in a feedback loop or vice versa. The cyber based social relationship abstraction enables distributed, easily navigable and scalable peer-to-peer communication among the SIoV subsystems. These cyber-physical interactions involve a huge amount of data and it is difficult to form a real instance of the system to test the feasibility of SIoV applications. In this paper, we propose an analytical model to measure the workloads of various subsystems involved in the SIoV process. We present the basic model which is further extended to incorporate complex scenarios. We provide extensive simulation results for different parameter settings of the SIoV system. The findings of the analyses are further used to design example adaptation strategies for the SIoV subsystems which would foster deployment of intelligent transport systems.

  3. Workload Model Based Dynamic Adaptation of Social Internet of Vehicles

    Science.gov (United States)

    Alam, Kazi Masudul; Saini, Mukesh; El Saddik, Abdulmotaleb

    2015-01-01

    Social Internet of Things (SIoT) has gained much interest among different research groups in recent times. As a key member of a smart city, the vehicular domain of SIoT (SIoV) is also undergoing steep development. In the SIoV, vehicles work as sensor-hub to capture surrounding information using the in-vehicle and Smartphone sensors and later publish them for the consumers. A cloud centric cyber-physical system better describes the SIoV model where physical sensing-actuation process affects the cloud based service sharing or computation in a feedback loop or vice versa. The cyber based social relationship abstraction enables distributed, easily navigable and scalable peer-to-peer communication among the SIoV subsystems. These cyber-physical interactions involve a huge amount of data and it is difficult to form a real instance of the system to test the feasibility of SIoV applications. In this paper, we propose an analytical model to measure the workloads of various subsystems involved in the SIoV process. We present the basic model which is further extended to incorporate complex scenarios. We provide extensive simulation results for different parameter settings of the SIoV system. The findings of the analyses are further used to design example adaptation strategies for the SIoV subsystems which would foster deployment of intelligent transport systems. PMID:26389905

  4. A Mixed Logical Dynamical-Model Predictive Control (MLD-MPC Energy Management Control Strategy for Plug-in Hybrid Electric Vehicles (PHEVs

    Directory of Open Access Journals (Sweden)

    Jing Lian

    2017-01-01

    Full Text Available Plug-in hybrid electric vehicles (PHEVs can be considered as a hybrid system (HS which includes the continuous state variable, discrete event, and operation constraint. Thus, a model predictive control (MPC strategy for PHEVs based on the mixed logical dynamical (MLD model and short-term vehicle speed prediction is proposed in this paper. Firstly, the mathematical model of the controlled PHEV is set-up to evaluate the energy consumption using the linearized models of core power components. Then, based on the recognition of driving intention and the past vehicle speed data, a nonlinear auto-regressive (NAR neural network structure is designed to predict the vehicle speed for known driving profiles of city buses and the predicted vehicle speed is used to calculate the total required torque. Next, a MLD model is established with appropriate constraints for six possible driving modes. By solving the objective function with the Mixed Integer Linear Programming (MILP algorithm, the optimal motor torque and the corresponding driving mode sequence within the speed prediction horizon can be obtained. Finally, the proposed energy control strategy shows substantial improvement in fuel economy in the simulation results.

  5. Robust Vehicle Detection in Aerial Images Based on Cascaded Convolutional Neural Networks.

    Science.gov (United States)

    Zhong, Jiandan; Lei, Tao; Yao, Guangle

    2017-11-24

    Vehicle detection in aerial images is an important and challenging task. Traditionally, many target detection models based on sliding-window fashion were developed and achieved acceptable performance, but these models are time-consuming in the detection phase. Recently, with the great success of convolutional neural networks (CNNs) in computer vision, many state-of-the-art detectors have been designed based on deep CNNs. However, these CNN-based detectors are inefficient when applied in aerial image data due to the fact that the existing CNN-based models struggle with small-size object detection and precise localization. To improve the detection accuracy without decreasing speed, we propose a CNN-based detection model combining two independent convolutional neural networks, where the first network is applied to generate a set of vehicle-like regions from multi-feature maps of different hierarchies and scales. Because the multi-feature maps combine the advantage of the deep and shallow convolutional layer, the first network performs well on locating the small targets in aerial image data. Then, the generated candidate regions are fed into the second network for feature extraction and decision making. Comprehensive experiments are conducted on the Vehicle Detection in Aerial Imagery (VEDAI) dataset and Munich vehicle dataset. The proposed cascaded detection model yields high performance, not only in detection accuracy but also in detection speed.

  6. Study on Impact of Electric Vehicles Charging Models on Power Load

    Science.gov (United States)

    Cheng, Chen; Hui-mei, Yuan

    2017-05-01

    With the rapid increase in the number of electric vehicles, which will lead the power load on grid increased and have an adversely affect. This paper gives a detailed analysis of the following factors, such as scale of the electric cars, charging mode, initial charging time, initial state of charge, charging power and other factors. Monte Carlo simulation method is used to compare the two charging modes, which are conventional charging and fast charging, and MATLAB is used to model and simulate the electric vehicle charging load. The results show that compared with the conventional charging mode, fast charging mode can meet the requirements of fast charging, but also bring great load to the distribution network which will affect the reliability of power grid.

  7. Assessing the impact of policy interventions on the adoption of plug-in electric vehicles: An agent-based model

    International Nuclear Information System (INIS)

    Silvia, Chris; Krause, Rachel M.

    2016-01-01

    Heightened concern regarding climate change and energy independence has increased interest in plug-in electric vehicles as one means to address these challenges and governments at all levels have considered policy interventions to encourage their adoption. This paper develops an agent-based model that simulates the introduction of four policy scenarios aimed at promoting electric vehicle adoption in an urban community and compares them against a baseline. These scenarios include reducing vehicle purchase price via subsidies, expanding the local public charging network, increasing the number and visibility of fully battery electric vehicles (BEVs) on the roadway through government fleet purchases, and a hybrid mix of these three approaches. The results point to the effectiveness of policy options that increased awareness of BEV technology. Specifically, the hybrid policy alternative was the most successful in encouraging BEV adoption. This policy increases the visibility and familiarity of BEV technology in the community and may help counter the idea that BEVs are not a viable alternative to gasoline-powered vehicles. - Highlights: •Various policy interventions to encourage electric vehicle adoption are examined. •An agent based model is used to simulate individual adoption decisions. •Policies that increase the familiarity of electric vehicles are most effective.

  8. Acquisition of Long-Duration, Low-Gravity Slosh Data Utilizing Existing ISS Equipment (SPHERES) for Calibration of CFD Models of Coupled Fluid-Vehicle Behavior

    Science.gov (United States)

    Schallhorn, Paul; Roth, Jacob; Marsell, Brandon; Kirk, Daniel; Gutierrez, Hector; Saenz-Otero, Alvar; Dorney, Daniel; Moder, Jeffrey

    2013-01-01

    Accurate prediction of coupled fluid slosh and launch vehicle or spacecraft dynamics (e.g., nutation/precessional movement about various axes, attitude changes, ect.) requires Computational Fluid Dynamics (CFD) models calibrated with low-gravity, long duration slosh data. Recently completed investigations of reduced gravity slosh behavior have demonstrated the limitations of utilizing parabolic flights on specialized aircraft with respect to the specific objectives of the experiments. Although valuable data was collected, the benefits of longer duration low-gravity environments were clearly established. The proposed research provides the first data set from long duration tests in zero gravity that can be directly used to benchmark CFD models, including the interaction between the sloshing fluid and the tank/vehicle dynamics. To explore the coupling of liquid slosh with the motion of an unconstrained tank in microgravity, NASA's Kennedy Space Center, Launch Services Program has teamed up with the Florida Institute of Technology (FIT), Massachusetts Institute of Technology (MIT) and the NASA Game Changing Development Program (GCD) to perform a series of slosh dynamics experiments on the International Space Station using the SPHERES platform. The Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) testbed provides a unique, free-floating instrumented platform on ISS that can be utilized in a manner that would solve many of the limitations of the current knowledge related to propellant slosh dynamics on launch vehicle and spacecraft fuel tanks. The six degree of freedom (6-DOF) motion of the SPHERES free-flyer is controlled by an array of cold-flow C02 thrusters, supplied from a built-in liquid C02 tank. These SPHERES can independently navigate and re-orient themselves within the ISS. The intent of this project is to design an externally mounted tank to be driven inside the ISS by a set of two SPHERES devices (Figure 1). The tank geometry

  9. Acquisition of Long-Duration, Low-Gravity Slosh Data Utilizing Existing ISS Equipment (SPHERES) for Calibration of CFD Models of Coupled Fluid-Vehicle Behavior

    Science.gov (United States)

    Schallhorn, Paul; Roth, Jacob; Marsell, Brandon; Kirk, Daniel; Gutierrez, Hector; Saenz-Otero, Alvar; Dorney, Daniel; Moder, Jeffrey

    2012-01-01

    Accurate prediction of coupled fluid slosh and launch vehicle or spacecraft dynamics (e.g., nutation/precessional movement about various axes, attitude changes, ect.) requires Computational Fluid Dynamics (CFD) models calibrated with low-gravity, long duration slosh data. Recently completed investigations of reduced gravity slosh behavior have demonstrated the limitations of utilizing parabolic flights on specialized aircraft with respect to the specific objectives of the experiments. Although valuable data was collected, the benefits of longer duration low-gravity environments were clearly established. The proposed research provides the first data set from long duration tests in zero gravity that can be directly used to benchmark CFD models, including the interaction between the sloshing fluid and the tank/vehicle dynamics. To explore the coupling of liquid slosh with the motion of an unconstrained tank in microgravity, NASA's Kennedy Space Center, Launch Services Program has teamed up with the Florida Institute of Technology (FIT), Massachusetts Institute of Technology (MIT) and the Office of the Chief Technologist (OCT) to perform a series of slosh dynamics experiments on the International Space Station using the SPHERES platform. The Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) testbed provides a unique, free-floating instrumented platform on ISS that can be utilized in a manner that would solve many of the limitations of the current knowledge related to propellant slosh dynamics on launch vehicle and spacecraft fuel tanks. The six degree of freedom (6-DOF) motion of the SPHERES free-flyer is controlled by an array of cold-flow C02 thrusters, supplied from a built-in liquid C02 tank. These SPHERES can independently navigate and re-orient themselves within the ISS. The intent of this project is to design an externally mounted tank to be driven inside the ISS by a set of two SPHERES devices (Figure 1 ). The tank geometry simulates

  10. In-vehicle exposures to particulate air pollution in Canadian metropolitan areas: the urban transportation exposure study.

    Science.gov (United States)

    Weichenthal, Scott; Van Ryswyk, Keith; Kulka, Ryan; Sun, Liu; Wallace, Lance; Joseph, Lawrence

    2015-01-06

    Commuters may be exposed to increased levels of traffic-related air pollution owing to close proximity to traffic-emissions. We collected in-vehicle and roof-top air pollution measurements over 238 commutes in Montreal, Toronto, and Vancouver, Canada between 2010 and 2013. Voice recordings were used to collect real-time information on traffic density and the presence of diesel vehicles and multivariable linear regression models were used to estimate the impact of these factors on in-vehicle pollutant concentrations (and indoor/outdoor ratios) along with parameters for road type, land use, and meteorology. In-vehicle PM2.5 and NO2 concentrations consistently exceeded regional outdoor levels and each unit increase in the rate of encountering diesel vehicles (count/min) was associated with substantial increases (>100%) in in-vehicle concentrations of ultrafine particles (UFPs), black carbon, and PM2.5 as well as strong increases (>15%) in indoor/outdoor ratios. A model based on meteorology and the length of highway roads within a 500 m buffer explained 53% of the variation in in-vehicle UFPs; however, models for PM2.5 (R(2) = 0.24) and black carbon (R(2) = 0.30) did not perform as well. Our findings suggest that vehicle commuters experience increased exposure to air pollutants and that traffic characteristics, land use, road types, and meteorology are important determinants of these exposures.

  11. Exploring the use of automated vehicles as last mile connection of train trips through an agent-based simulation model: An application to Delft, Netherlands

    Directory of Open Access Journals (Sweden)

    Arthur Scheltes

    2017-06-01

    Full Text Available The last mile in a public transport trip is known to bring a large disutility for passengers, because the conventional transport modes for this stage of the trip can, in many cases, be rather slow, inflexible and not provide a seamless experience to passengers. Fully automated vehicles (AVs, that is, those which do not need a driver, could act as a first mile/last mile connection to mass public transport modes. In this paper, we study a system that we call Automated Last-Mile Transport (ALMT, which consists of a fleet of small, fully automated, electric vehicles to improve the last mile performance of a trip done in a train. An agent-based simulation model was proposed for the ALMT whereby a dispatching algorithm distributes travel requests amongst the available vehicles using a FIFO sequence and selects a vehicle based on a set of specified control conditions (e.g. travel time to reach a requesting passenger. The model was applied to the case-study of the connection between the train station Delft Zuid and the Technological Innovation Campus (Delft, The Netherlands in order to test the methodology and understand the performance of the system in function of several operational parameters and demand scenarios. The most important conclusion from the baseline scenario was that the ALMT system was only able to compete with the walking mode and that additional measures were needed to increase the performance of the ALMT system in order to be competitive with cycling. Relocating empty vehicles or allowing pre-booking of vehicles led to a significant reduction in average waiting time, whilst allowing passengers to drive at a higher speed led to a large reduction in average travel time, whilst simultaneously reducing system capacity as energy use is increased.

  12. A Practical Circuit-based Model for State of Health Estimation of Li-ion Battery Cells in Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Long

    2011-08-23

    In this thesis the development of the state of health of Li-ion battery cells under possible real-life operating conditions in electric cars has been characterised. Furthermore, a practical circuit-based model for Li-ion cells has been developed that is capable of modelling the cell voltage behaviour under various operating conditions. The Li-ion cell model can be implemented in simulation programs and be directly connected to a model of the rest of the electronic system in electric vehicles. Most existing battery models are impractical for electric vehicle system designers and require extensive background knowledge of electrochemistry to be implemented. Furthermore, many models do not take the effect of regenerative braking into account and are obtained from testing fully charged cells. However, in real-life applications electric vehicles are not always fully charged and utilise regenerative braking to save energy. To obtain a practical circuit model based on real operating conditions and to model the state of health of electric vehicle cells, numerous 18650 size LiFePO4 cells have been tested under possible operating conditions. Capacity fading was chosen as the state of health parameter, and the capacity fading of different cells was compared with the charge processed instead of cycles. Tests have shown that the capacity fading rate is dependent on temperature, charging C-rate, state of charge and depth of discharge. The obtained circuit model is capable of simulating the voltage behaviour under various temperatures and C-rates with a maximum error of 14mV. However, modelling the effect of different temperatures and C-rates increases the complexity of the model. The model is easily adjustable and the choice is given to the electric vehicle system designer to decide which operating conditions to take into account. By combining the test results for the capacity fading and the proposed circuit model, recommendations to optimise the battery lifetime are proposed.

  13. Optimal Control of Engine Warmup in Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    van Reeven Vital

    2016-01-01

    Full Text Available An Internal Combustion Engine (ICE under cold conditions experiences increased friction losses due to a high viscosity of the lubricant. With the additional control freedom present in hybrid electric vehicles, the losses during warmup can be minimized and fuel can be saved. In this paper, firstly, a control-oriented model of the ICE, describing the warmup behavior, is developed and validated on measured vehicle data. Secondly, the two-state, non-autonomous fuel optimization, for a parallel hybrid electric vehicle with stop-start functionality, is solved using optimal control theory. The principal behavior of the Lagrange multipliers is explicitly derived, including the discontinuities (jumps that are caused by the constraints on the lubricant temperature and the energy in the battery system. The minimization of the Hamiltonian for this two-state problem is also explicitly solved, resulting in a computationally efficient algorithm. The optimal controller shows the fuel benefit, as a function of the initial temperature, for a long-haul truck simulated on the FTP-75.

  14. Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles

    International Nuclear Information System (INIS)

    He, Hongwen; Zhang, Xiaowei; Xiong, Rui; Xu, Yongli; Guo, Hongqiang

    2012-01-01

    This paper presents a method to estimate the state-of-charge (SOC) of a lithium-ion battery, based on an online identification of its open-circuit voltage (OCV), according to the battery’s intrinsic relationship between the SOC and the OCV for application in electric vehicles. Firstly an equivalent circuit model with n RC networks is employed modeling the polarization characteristic and the dynamic behavior of the lithium-ion battery, the corresponding equations are built to describe its electric behavior and a recursive function is deduced for the online identification of the OCV, which is implemented by a recursive least squares (RLS) algorithm with an optimal forgetting factor. The models with different RC networks are evaluated based on the terminal voltage comparisons between the model-based simulation and the experiment. Then the OCV-SOC lookup table is built based on the experimental data performed by a linear interpolation of the battery voltages at the same SOC during two consecutive discharge and charge cycles. Finally a verifying experiment is carried out based on nine Urban Dynamometer Driving Schedules. It indicates that the proposed method can ensure an acceptable accuracy of SOC estimation for online application with a maximum error being less than 5.0%. -- Highlights: ► An equivalent circuit model with n RC networks is built for lithium-ion batteries. ► A recursive function is deduced for the online estimation of the model parameters like OCV and R O . ► The relationship between SOC and OCV is built with a linear interpolation method by experiments. ► The experiments show the online model-based SOC estimation is reasonable with enough accuracy.

  15. A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jenn-Jiang Hwang

    2015-01-01

    Full Text Available The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2 emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the battery’s state of charge (SOC. This approach improves the quick loss problem of the system’s SOC and thus can achieve an extended driving range. Smooth steering experience and range extension are the main indexes for development of fuzzy rules, which are mainly based on the energy management in the urban driving model. Evaluation of the entire control system is performed by simulation, which demonstrates its effectiveness and feasibility.

  16. Modelling the Effect of Driving Events on Electrical Vehicle Energy Consumption Using Inertial Sensors in Smartphones

    Directory of Open Access Journals (Sweden)

    David Jiménez

    2018-02-01

    Full Text Available Air pollution and climate change are some of the main problems that humankind is currently facing. The electrification of the transport sector will help to reduce these problems, but one of the major barriers for the massive adoption of electric vehicles is their limited range. The energy consumption in these vehicles is affected, among other variables, by the driving behavior, making range a value that must be personalized to each driver and each type of electric vehicle. In this paper we offer a way to estimate a personalized energy consumption model by the use of the vehicle dynamics and the driving events detected by the use of the smartphone inertial sensors, allowing an easy and non-intrusive manner to predict the correct range for each user. This paper proposes, for the classification of events, a deep neural network (Long-Short Time Memory which has been trained with more than 22,000 car trips, and the application to improve the consumption model taking into account the driver behavior captured across different trips, allowing a personalized prediction. Results and validation in real cases show that errors in the predicted consumption values are halved when abrupt events are considered in the model.

  17. Application of adaptive Kalman filter in vehicle laser Doppler velocimetry

    Science.gov (United States)

    Fan, Zhe; Sun, Qiao; Du, Lei; Bai, Jie; Liu, Jingyun

    2018-03-01

    Due to the variation of road conditions and motor characteristics of vehicle, great root-mean-square (rms) error and outliers would be caused. Application of Kalman filter in laser Doppler velocimetry(LDV) is important to improve the velocity measurement accuracy. In this paper, the state-space model is built by using current statistical model. A strategy containing two steps is adopted to make the filter adaptive and robust. First, the acceleration variance is adaptively adjusted by using the difference of predictive observation and measured observation. Second, the outliers would be identified and the measured noise variance would be adjusted according to the orthogonal property of innovation to reduce the impaction of outliers. The laboratory rotating table experiments show that adaptive Kalman filter greatly reduces the rms error from 0.59 cm/s to 0.22 cm/s and has eliminated all the outliers. Road experiments compared with a microwave radar show that the rms error of LDV is 0.0218 m/s, and it proves that the adaptive Kalman filtering is suitable for vehicle speed signal processing.

  18. Vehicle speed detection based on gaussian mixture model using sequential of images

    Science.gov (United States)

    Setiyono, Budi; Ratna Sulistyaningrum, Dwi; Soetrisno; Fajriyah, Farah; Wahyu Wicaksono, Danang

    2017-09-01

    Intelligent Transportation System is one of the important components in the development of smart cities. Detection of vehicle speed on the highway is supporting the management of traffic engineering. The purpose of this study is to detect the speed of the moving vehicles using digital image processing. Our approach is as follows: The inputs are a sequence of frames, frame rate (fps) and ROI. The steps are following: First we separate foreground and background using Gaussian Mixture Model (GMM) in each frames. Then in each frame, we calculate the location of object and its centroid. Next we determine the speed by computing the movement of centroid in sequence of frames. In the calculation of speed, we only consider frames when the centroid is inside the predefined region of interest (ROI). Finally we transform the pixel displacement into a time unit of km/hour. Validation of the system is done by comparing the speed calculated manually and obtained by the system. The results of software testing can detect the speed of vehicles with the highest accuracy is 97.52% and the lowest accuracy is 77.41%. And the detection results of testing by using real video footage on the road is included with real speed of the vehicle.

  19. Design and optimization for the occupant restraint system of vehicle based on a single freedom model

    Science.gov (United States)

    Zhang, Junyuan; Ma, Yue; Chen, Chao; Zhang, Yan

    2013-05-01

    Throughout the vehicle crash event, the interactions between vehicle, occupant, restraint system (VOR) are complicated and highly non-linear. CAE and physical tests are the most widely used in vehicle passive safety development, but they can only be done with the detailed 3D model or physical samples. Often some design errors and imperfections are difficult to correct at that time, and a large amount of time will be needed. A restraint system concept design approach which based on single-degree-of-freedom occupant-vehicle model (SDOF) is proposed in this paper. The interactions between the restraint system parameters and the occupant responses in a crash are studied from the view of mechanics and energy. The discrete input and the iterative algorithm method are applied to the SDOF model to get the occupant responses quickly for arbitrary excitations (impact pulse) by MATLAB. By studying the relationships between the ridedown efficiency, the restraint stiffness, and the occupant response, the design principle of the restraint stiffness aiming to reduce occupant injury level during conceptual design is represented. Higher ridedown efficiency means more occupant energy absorbed by the vehicle, but the research result shows that higher ridedown efficiency does not mean lower occupant injury level. A proper restraint system design principle depends on two aspects. On one hand, the restraint system should lead to as high ridedown efficiency as possible, and at the same time, the restraint system should maximize use of the survival space to reduce the occupant deceleration level. As an example, an optimization of a passenger vehicle restraint system is designed by the concept design method above, and the final results are validated by MADYMO, which is the most widely used software in restraint system design, and the sled test. Consequently, a guideline and method for the occupant restraint system concept design is established in this paper.

  20. Fuzzy risk explicit interval linear programming model for end-of-life vehicle recycling planning in the EU.

    Science.gov (United States)

    Simic, Vladimir

    2015-01-01

    End-of-life vehicles (ELVs) are vehicles that have reached the end of their useful lives and are no longer registered or licensed for use. The ELV recycling problem has become very serious in the last decade and more and more efforts are made in order to reduce the impact of ELVs on the environment. This paper proposes the fuzzy risk explicit interval linear programming model for ELV recycling planning in the EU. It has advantages in reflecting uncertainties presented in terms of intervals in the ELV recycling systems and fuzziness in decision makers' preferences. The formulated model has been applied to a numerical study in which different decision maker types and several ELV types under two EU ELV Directive legislative cases were examined. This study is conducted in order to examine the influences of the decision maker type, the α-cut level, the EU ELV Directive and the ELV type on decisions about vehicle hulks procuring, storing unprocessed hulks, sorting generated material fractions, allocating sorted waste flows and allocating sorted metals. Decision maker type can influence quantity of vehicle hulks kept in storages. The EU ELV Directive and decision maker type have no influence on which vehicle hulk type is kept in the storage. Vehicle hulk type, the EU ELV Directive and decision maker type do not influence the creation of metal allocation plans, since each isolated metal has its regular destination. The valid EU ELV Directive eco-efficiency quotas can be reached even when advanced thermal treatment plants are excluded from the ELV recycling process. The introduction of the stringent eco-efficiency quotas will significantly reduce the quantities of land-filled waste fractions regardless of the type of decision makers who will manage vehicle recycling system. In order to reach these stringent quotas, significant quantities of sorted waste need to be processed in advanced thermal treatment plants. Proposed model can serve as the support for the European

  1. Drag reduction of a rapid vehicle in supercavitating flow

    Directory of Open Access Journals (Sweden)

    D. Yang

    2017-01-01

    Full Text Available Supercavitation is one of the most attractive technologies to achieve high speed for underwater vehicles. However, the multiphase flow with high-speed around the supercavitating vehicle (SCV is difficult to simulate accurately. In this paper, we use modified the turbulent viscosity formula in the Standard K-Epsilon (SKE turbulent model to simulate the supercavitating flow. The numerical results of flow over several typical cavitators are in agreement with the experimental data and theoretical prediction. In the last part, a flying SCV was studied by unsteady numerical simulation. The selected computation setup corresponds to an outdoor supercavitating experiment. Only very limited experimental data was recorded due to the difficulties under the circumstance of high-speed underwater condition. However, the numerical simulation recovers the whole scenario, the results are qualitatively reasonable by comparing to the experimental observations. The drag reduction capacity of supercavitation is evaluated by comparing with a moving vehicle launching at the same speed but without supercavitation. The results show that the supercavitation reduces the drag of the vehicle dramatically.

  2. Coupled radiative gasdynamic interaction and non-equilibrium dissociation for large-scale returned space vehicles

    International Nuclear Information System (INIS)

    Surzhikov, S.

    2012-01-01

    Graphical abstract: It has been shown that different coupled vibrational dissociation models, being applied for solving coupled radiative gasdynamic problems for large size space vehicles, exert noticeable effect on radiative heating of its surface at orbital entry on high altitudes (h ⩾ 70 km). This influence decreases with decreasing the space vehicles sizes. Figure shows translational (solid lines) and vibrational (dashed lines) temperatures in shock layer with (circle markers) and without (triangles markers) radiative-gasdynamic interaction for one trajectory point of entering space vehicle. Highlights: ► Nonequilibrium dissociation processes exert effect on radiation heating of space vehicles (SV). ► The radiation gas dynamic interaction enhances this influence. ► This influence increases with increasing the SV sizes. - Abstract: Radiative aerothermodynamics of large-scale space vehicles is considered for Earth orbital entry at zero angle of attack. Brief description of used radiative gasdynamic model of physically and chemically nonequilibrium, viscous, heat conductive and radiative gas of complex chemical composition is presented. Radiation gasdynamic (RadGD) interaction in high temperature shock layer is studied by means of numerical experiment. It is shown that radiation–gasdynamic coupling for orbital space vehicles of large size is important for high altitude part of entering trajectory. It is demonstrated that the use of different models of coupled vibrational dissociation (CVD) in conditions of RadGD interaction gives rise temperature variation in shock layer and, as a result, leads to significant variation of radiative heating of space vehicle.

  3. Comparison between vertical acceleration data from acquired signals and multibody model for an off-road vehicle

    Directory of Open Access Journals (Sweden)

    Cristian Padilha Fontoura

    2018-02-01

    Full Text Available SAE Mini Baja competitions require efforts in developing a reliable vehicle project that enables their teams to manage time and resources wisely. Vehicle simulations are one the best ways to deal with these conditions and prevent failure during a test. This work outlines the methodology that was carried out for validating the multibody dynamics model of a Mini Baja vehicle through vertical acceleration data acquisition. The data was acquired with the vehicle in different sets of obstacles, based on those seen in previously held competitions. Simulation was done through ADAMS/Car, with the vehicle’s multibody model being simulated in different three-dimensional roads, counterpart to those where data acquisition took place. Simulation data, when compared to acquired acceleration signals for most of the obstacles, exhibited equivalence. Additional data computation revealed that the spectra in the frequency domain presented most severe loads concentrated between 0 and 20 Hz, incoming mostly from road unevenness. Gathering such data, by the presented approach can assist future analyses and guide the Baja Team in defining an improved project by predicting its dynamic behavior.

  4. Testing the Logistics Model of Supplying Military Vehicles with Spare Parts

    Directory of Open Access Journals (Sweden)

    Robert Spudić

    2007-07-01

    Full Text Available The use of advanced transport means understands alsotheir supply by spare and consumable parts. In order to solvethe problem of the required quantities, costs of purchase andstorage of the parts, it is necessary to solve the problem of stocksmanagement. The wear of tyres for military vehicles in extremeexploitation conditions is of random character. How fast thetyres will wear on the all-ten·ain and heavy motor vehicle dependson the driver's skill and the external conditions (weather,terrain. All the conditions are of random character and in orderto determine as accurately as possible the wear of tyres it isnecessary to monitor the wear of tyres within a certain time period,and to find the approximate probability of tyre wear in thefuture period of time. When the probability of tyre wear is determined,stochastic supply management model is used to calculatethe value of the stocks which allows optimal planning ofstocks of spare parts at minimal costs. The stochastic model allowsoptimal calculation for the purchase of consumable partsof transport means whose consumption depends on the randomconditions and events.

  5. Real-time distributed economic model predictive control for complete vehicle energy management

    NARCIS (Netherlands)

    Romijn, Constantijn; Donkers, Tijs; Kessels, John; Weiland, Siep

    2017-01-01

    In this paper, a real-time distributed economic model predictive control approach for complete vehicle energy management (CVEM) is presented using a receding control horizon in combination with a dual decomposition. The dual decomposition allows the CVEM optimization problem to be solved by solving

  6. Decoupling control of steering and driving system for in-wheel-motor-drive electric vehicle

    Science.gov (United States)

    Zhang, Han; Zhao, Wanzhong

    2018-02-01

    To improve the maneuverability and stability of in-wheel-motor-drive electric vehicle, a control strategy based on nonlinear decoupling control method is proposed in this paper, realizing the coordinated control of the steering and driving system. At first, the nonlinear models of the in-wheel-motor-drive electric vehicle and its sub-system are constructed. Then the inverse system decoupling theory is applied to decompose the nonlinear system into several independent subsystems, which makes it possible to realize the coordinated control of each subsystem. Next, the μ-Synthesis theory is applied to eliminate the influence of model uncertainty, improving the stability, robustness and tracking performance of in-wheel-motor-drive electric vehicle. Simulation and experiment results and numerical analyses, based on the electric vehicle actuated by in-wheel-motors, prove that the proposed control method is effective to accomplish the decoupling control of the steering and driving system in both simulation and real practice.

  7. Intelligent design of mechanical parameters of the joint in vehicle body concept design model

    Science.gov (United States)

    Hou, Wen-bin; Zhang, Hong-zhe; Hou, Da-jun; Hu, Ping

    2013-05-01

    In order to estimate the mechanical properties of the overall structure of the body accurately and quickly in conceptual design phase of the body, the beam and shell mixing elements was used to build simplified finite element model of the body. Through the BP neural network algorithm, the parameters of the mechanical property of joints element which had more affection on calculation accuracy were calculated and the joint finite element model based on the parameters was also constructed. The case shown that the method can improve the accuracy of the vehicle simulation results, while not too many design details were needed, which was fit to the demand in the vehicle body conceptual design phase.

  8. Sky-Hook Control and Kalman Filtering in Nonlinear Model of Tracked Vehicle Suspension System

    Directory of Open Access Journals (Sweden)

    Jurkiewicz Andrzej

    2017-09-01

    Full Text Available The essence of the undertaken topic is application of the continuous sky-hook control strategy and the Extended Kalman Filter as the state observer in the 2S1 tracked vehicle suspension system. The half-car model of this suspension system consists of seven logarithmic spiral springs and two magnetorheological dampers which has been described by the Bingham model. The applied continuous sky-hook control strategy considers nonlinear stiffness characteristic of the logarithmic spiral springs. The control is determined on estimates generated by the Extended Kalman Filter. Improve of ride comfort is verified by comparing simulation results, under the same driving conditions, of controlled and passive vehicle suspension systems.

  9. Market penetration scenarios for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  10. Sensing and control for autonomous vehicles applications to land, water and air vehicles

    CERN Document Server

    Pettersen, Kristin; Nijmeijer, Henk

    2017-01-01

    This edited volume includes thoroughly collected on sensing and control for autonomous vehicles. Guidance, navigation and motion control systems for autonomous vehicles are increasingly important in land-based, marine and aerial operations. Autonomous underwater vehicles may be used for pipeline inspection, light intervention work, underwater survey and collection of oceanographic/biological data. Autonomous unmanned aerial systems can be used in a large number of applications such as inspection, monitoring, data collection, surveillance, etc. At present, vehicles operate with limited autonomy and a minimum of intelligence. There is a growing interest for cooperative and coordinated multi-vehicle systems, real-time re-planning, robust autonomous navigation systems and robust autonomous control of vehicles. Unmanned vehicles with high levels of autonomy may be used for safe and efficient collection of environmental data, for assimilation of climate and environmental models and to complement global satellite sy...

  11. Hybrid neural network bushing model for vehicle dynamics simulation

    International Nuclear Information System (INIS)

    Sohn, Jeong Hyun; Lee, Seung Kyu; Yoo, Wan Suk

    2008-01-01

    Although the linear model was widely used for the bushing model in vehicle suspension systems, it could not express the nonlinear characteristics of bushing in terms of the amplitude and the frequency. An artificial neural network model was suggested to consider the hysteretic responses of bushings. This model, however, often diverges due to the uncertainties of the neural network under the unexpected excitation inputs. In this paper, a hybrid neural network bushing model combining linear and neural network is suggested. A linear model was employed to represent linear stiffness and damping effects, and the artificial neural network algorithm was adopted to take into account the hysteretic responses. A rubber test was performed to capture bushing characteristics, where sine excitation with different frequencies and amplitudes is applied. Random test results were used to update the weighting factors of the neural network model. It is proven that the proposed model has more robust characteristics than a simple neural network model under step excitation input. A full car simulation was carried out to verify the proposed bushing models. It was shown that the hybrid model results are almost identical to the linear model under several maneuvers

  12. Design optimisation of a flywheel hybrid vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Kok, D.B.

    1999-11-04

    This thesis describes the design optimisation of a flywheel hybrid vehicle with respect to fuel consumption and exhaust gas emissions. The driveline of this passenger car uses two power sources: a small spark ignition internal combustion engine with three-way catalyst, and a highspeed flywheel system for kinetic energy storage. A custom-made continuously variable transmission (CVT) with so-called i{sup 2} control transports energy between these power sources and the vehicle wheels. The driveline includes auxiliary systems for hydraulic, vacuum and electric purposes. In this fully mechanical driveline, parasitic energy losses determine the vehicle's fuel saving potential to a large extent. Practicable energy loss models have been derived to quantify friction losses in bearings, gearwheels, the CVT, clutches and dynamic seals. In addition, the aerodynamic drag in the flywheel system and power consumption of auxiliaries are charted. With the energy loss models available, a calculation procedure is introduced to optimise the flywheel as a subsystem in which the rotor geometry, the safety containment, and the vacuum system are designed for minimum energy use within the context of automotive applications. A first prototype of the flywheel system was tested experimentally and subsequently redesigned to improve rotordynamics and safety aspects. Coast-down experiments with the improved version show that the energy losses have been lowered significantly. The use of a kinetic energy storage device enables the uncoupling of vehicle wheel power and engine power. Therefore, the engine can be smaller and it can be chosen to operate in its region of best efficiency in start-stop mode. On a test-rig, the measured engine fuel consumption was reduced with more than 30 percent when the engine is intermittently restarted with the aid of the flywheel system. Although the start-stop mode proves to be advantageous for fuel consumption, exhaust gas emissions increase temporarily

  13. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO{sub 2}-emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market

  14. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    International Nuclear Information System (INIS)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO 2 -emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market. The

  15. Controlling Unmanned Vehicles : the Human Factors Solution

    NARCIS (Netherlands)

    Erp, J.B.F. van

    2000-01-01

    Recent developments and experiences have proven the usefulness and potential of Unmanned Vehicles (UVs). Emerging technologies enable new missions, broadening the applicability of UVs from simple remote spies towards unmanned combat vehicles carrying lethal weapons. However, despite the emerging

  16. Slip Ratio Estimation and Regenerative Brake Control for Decelerating Electric Vehicles without Detection of Vehicle Velocity and Acceleration

    Science.gov (United States)

    Suzuki, Toru; Fujimoto, Hiroshi

    In slip ratio control systems, it is necessary to detect the vehicle velocity in order to obtain the slip ratio. However, it is very difficult to measure this velocity directly. We have proposed slip ratio estimation and control methods that do not require the vehicle velocity with acceleration. In this paper, the slip ratio estimation and control methods are proposed without detecting the vehicle velocity and acceleration when it is decelerating. We carried out simulations and experiments by using an electric vehicle to verify the effectiveness of the proposed method.

  17. Modeling Driving Performance Using In-Vehicle Speech Data From a Naturalistic Driving Study.

    Science.gov (United States)

    Kuo, Jonny; Charlton, Judith L; Koppel, Sjaan; Rudin-Brown, Christina M; Cross, Suzanne

    2016-09-01

    We aimed to (a) describe the development and application of an automated approach for processing in-vehicle speech data from a naturalistic driving study (NDS), (b) examine the influence of child passenger presence on driving performance, and (c) model this relationship using in-vehicle speech data. Parent drivers frequently engage in child-related secondary behaviors, but the impact on driving performance is unknown. Applying automated speech-processing techniques to NDS audio data would facilitate the analysis of in-vehicle driver-child interactions and their influence on driving performance. Speech activity detection and speaker diarization algorithms were applied to audio data from a Melbourne-based NDS involving 42 families. Multilevel models were developed to evaluate the effect of speech activity and the presence of child passengers on driving performance. Speech activity was significantly associated with velocity and steering angle variability. Child passenger presence alone was not associated with changes in driving performance. However, speech activity in the presence of two child passengers was associated with the most variability in driving performance. The effects of in-vehicle speech on driving performance in the presence of child passengers appear to be heterogeneous, and multiple factors may need to be considered in evaluating their impact. This goal can potentially be achieved within large-scale NDS through the automated processing of observational data, including speech. Speech-processing algorithms enable new perspectives on driving performance to be gained from existing NDS data, and variables that were once labor-intensive to process can be readily utilized in future research. © 2016, Human Factors and Ergonomics Society.

  18. A COOPERATIVE ASSISTANCE SYSTEM BETWEEN VEHICLES FOR ELDERLY DRIVERS

    Directory of Open Access Journals (Sweden)

    Naohisa HASHIMOTO

    2009-01-01

    Full Text Available This paper proposes a new concept of elderly driver assistance systems, which performs the assistance by cooperative driving between two vehicles, and describes some experiments with elderly drivers. The assistance consists of one vehicle driven by an elderly driver called a guest vehicle and the other driven by a assisting driver called a host vehicle, and the host vehicle assists or escorts the guest vehicle through the inter-vehicle communications. The functions of the systems installed on a single-seat electric vehicle are highly evaluated by subjects of elderly drivers in virtual streets on a test track.

  19. Hybrid three-dimensional and support vector machine approach for automatic vehicle tracking and classification using a single camera

    Science.gov (United States)

    Kachach, Redouane; Cañas, José María

    2016-05-01

    Using video in traffic monitoring is one of the most active research domains in the computer vision community. TrafficMonitor, a system that employs a hybrid approach for automatic vehicle tracking and classification on highways using a simple stationary calibrated camera, is presented. The proposed system consists of three modules: vehicle detection, vehicle tracking, and vehicle classification. Moving vehicles are detected by an enhanced Gaussian mixture model background estimation algorithm. The design includes a technique to resolve the occlusion problem by using a combination of two-dimensional proximity tracking algorithm and the Kanade-Lucas-Tomasi feature tracking algorithm. The last module classifies the shapes identified into five vehicle categories: motorcycle, car, van, bus, and truck by using three-dimensional templates and an algorithm based on histogram of oriented gradients and the support vector machine classifier. Several experiments have been performed using both real and simulated traffic in order to validate the system. The experiments were conducted on GRAM-RTM dataset and a proper real video dataset which is made publicly available as part of this work.

  20. Modeling Main Body of Overcrossing Bridge Based on Vehicle-Borne Laser Scanning Data

    Science.gov (United States)

    Chen, X.; Chen, M.; Wei, Z.; Zhong, R.

    2017-09-01

    Vehicle-borne laser scanning (VBLS) is widely used to collect urban data for various mapping and modelling systems. This paper proposes a strategy of feature extraction and 3d model reconstruction for main body of overcrossing bridges based on VBLS point clouds. As the bridges usually have a large span, and the clouds data is often affected by obstacles, we have to use round-trip cloud data to avoid missing part. To begin with, pick out the cloud of the bridge body by an interactive clip-box, and group points by scan-line, then sort the points by scanning angle on each scan line. Since the position under the vehicle have a fixed scan-angle, a virtual path can be obtained. Secondly, extract horizontal line segments perpendicular to the virtual path along adjacent scan-lines, and then cluster line segments into long line-strings, which represent the top and bottom edge. Finally, regularize the line-strings and build 3d surface model of the bridge body. Experimental studies have demonstrated its efficiency and accuracy in case of building bridge model. Modelling the stairs at the both end of the bridge will be the direction of the next step.

  1. Sound quality prediction of vehicle interior noise and mathematical modeling using a back propagation neural network (BPNN) based on particle swarm optimization (PSO)

    International Nuclear Information System (INIS)

    Zhang, Enlai; Hou, Liang; Shen, Chao; Shi, Yingliang; Zhang, Yaxiang

    2016-01-01

    To better solve the complex non-linear problem between the subjective sound quality evaluation results and objective psychoacoustics parameters, a method for the prediction of the sound quality is put forward by using a back propagation neural network (BPNN) based on particle swarm optimization (PSO), which is optimizing the initial weights and thresholds of BP network neurons through the PSO. In order to verify the effectiveness and accuracy of this approach, the noise signals of the B-Class vehicles from the idle speed to 120 km h −1 measured by the artificial head, are taken as a target. In addition, this paper describes a subjective evaluation experiment on the sound quality annoyance inside the vehicles through a grade evaluation method, by which the annoyance of each sample is obtained. With the use of Artemis software, the main objective psychoacoustic parameters of each noise sample are calculated. These parameters include loudness, sharpness, roughness, fluctuation, tonality, articulation index (AI) and A-weighted sound pressure level. Furthermore, three evaluation models with the same artificial neural network (ANN) structure are built: the standard BPNN model, the genetic algorithm-back-propagation neural network (GA-BPNN) model and the PSO-back-propagation neural network (PSO-BPNN) model. After the network training and the evaluation prediction on the three models’ network based on experimental data, it proves that the PSO-BPNN method can achieve convergence more quickly and improve the prediction accuracy of sound quality, which can further lay a foundation for the control of the sound quality inside vehicles. (paper)

  2. Steering redundancy for self-driving vehicles using differential braking

    Science.gov (United States)

    Jonasson, M.; Thor, M.

    2018-05-01

    This paper describes how differential braking can be used to turn a vehicle in the context of providing fail-operational control for self-driving vehicles. Two vehicle models are developed with differential input. The models are used to explain the bounds of curvature that differential braking provides and they are then validated with measurements in a test vehicle. Particular focus is paid on wheel suspension effects that significantly influence the obtained curvature. The vehicle behaviour and its limitations due to wheel suspension effects are, owing to the vehicle models, defined and explained. Finally, a model-based controller is developed to control the vehicle curvature during a fault by differential braking. The controller is designed to compensate for wheel angle disturbance that is likely to occur during the control event.

  3. Estimating Texas motor vehicle operating costs.

    Science.gov (United States)

    2009-10-01

    A specific Vcost model was developed for Texas conditions based on a sophisticated fuel model for light : duty vehicles, several excellent sources of secondary vehicle cost data, and the ability to measure heavy truck fuel : consumption through both ...

  4. Scaling model for a speed-dependent vehicle noise spectrum

    Directory of Open Access Journals (Sweden)

    Giovanni Zambon

    2017-06-01

    Full Text Available Considering the well-known features of the noise emitted by moving sources, a number of vehicle characteristics such as speed, unladen mass, engine size, year of registration, power and fuel were recorded in a dedicated monitoring campaign performed in three different places, each characterized by different number of lanes and the presence of nearby reflective surfaces. A full database of 144 vehicles (cars was used to identify statistically relevant features. In order to compare the vehicle transit noise in different environmental condition, all 1/3-octave band spectra were normalized and analysed. Unsupervised clustering algorithms were employed to group together spectrum levels with similar profiles. Our results corroborate the well-known fact that speed is the most relevant characteristic to discriminate between different vehicle noise spectrum. In keeping with this fact, we present a new approach to predict analytically noise spectra for a given vehicle speed. A set of speed-dependent analytical functions are suggested in order to fit the normalized average spectrum profile at different speeds. This approach can be useful for predicting vehicle speed based purely on its noise spectrum pattern. The present work is complementary to the accurate analysis of noise sources based on the beamforming technique.

  5. Integrated Vehicle Health Management Project-Modeling and Simulation for Wireless Sensor Applications

    Science.gov (United States)

    Wallett, Thomas M.; Mueller, Carl H.; Griner, James H., Jr.

    2009-01-01

    This paper describes the efforts in modeling and simulating electromagnetic transmission and reception as in a wireless sensor network through a realistic wing model for the Integrated Vehicle Health Management project at the Glenn Research Center. A computer model in a standard format for an S-3 Viking aircraft was obtained, converted to a Microwave Studio software format, and scaled to proper dimensions in Microwave Studio. The left wing portion of the model was used with two antenna models, one transmitting and one receiving, to simulate radio frequency transmission through the wing. Transmission and reception results were inconclusive.

  6. Modelling and design optimization of low speed fuel cell - battery hybrid electric vehicles. Paper no. IGEC-1-125

    International Nuclear Information System (INIS)

    Guenther, M.; Dong, Z.

    2005-01-01

    A push for electric vehicles has occurred in the past several decades due to various concerns about air pollution and the contribution of emissions to global climate change. Although electric cars and buses have been the focus of much of electric vehicle development, smaller vehicles are used extensively for transportation and utility purposes in many countries. In order to explore the viability of fuel cell - battery hybrid electric vehicles, empirical fuel cell system data has been incorporated into the NREL's vehicle design and simulation tool, ADVISOR (ADvanced Vehicle SimulatOR), to predict the performance of a low-speed, fuel cell - battery electric vehicle through MATLAB Simulink. The modelling and simulation provide valuable feedback to the design optimization of the fuel cell power system. A sampling based optimization algorithm was used to explore the viability and options of a low cost design for urban use. (author)

  7. 40 CFR 600.207-08 - Calculation and use of vehicle-specific 5-cycle-based fuel economy values for vehicle...

    Science.gov (United States)

    2010-07-01

    ...-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later Model Year... for each vehicle under § 600.114-08 and as approved in § 600.008-08 (c), are used to determine vehicle... fuel economy value exists for an electric vehicle configuration, all values for that vehicle...

  8. Motion modelling and control strategies of over-actuated vehicles

    OpenAIRE

    Edrén, Johannes

    2014-01-01

    With the growing concern for environmental change and uncertain oil resources, the development of new vehicle concepts will in many cases include full or partial electric propulsion. The introduction of more advanced powertrains enables vehicles that can be controlled with a variety of electric actuators, such as wheel hub motors and individual steering. With these actuators, the chassis can be enabled to adjust its properties depending on the driving situation. Manoeuvring of the vehicle, us...

  9. Development of a multi-criteria assessment model for ranking of renewable and non-renewable transportation fuel vehicles

    International Nuclear Information System (INIS)

    Safaei Mohamadabadi, H.; Tichkowsky, G.; Kumar, A.

    2009-01-01

    Several factors, including economical, environmental, and social factors, are involved in selection of the best fuel-based vehicles for road transportation. This leads to a multi-criteria selection problem for multi-alternatives. In this study, a multi-criteria assessment model was developed to rank different road transportation fuel-based vehicles (both renewable and non-renewable) using a method called Preference Ranking Organization Method for Enrichment and Evaluations (PROMETHEE). This method combines qualitative and quantitative criteria to rank various alternatives. In this study, vehicles based on gasoline, gasoline-electric (hybrid), E85 ethanol, diesel, B100 biodiesel, and compressed natural gas (CNG) were considered as alternatives. These alternatives were ranked based on five criteria: vehicle cost, fuel cost, distance between refueling stations, number of vehicle options available to the consumer, and greenhouse gas (GHG) emissions per unit distance traveled. In addition, sensitivity analyses were performed to study the impact of changes in various parameters on final ranking. Two base cases and several alternative scenarios were evaluated. In the base case scenario with higher weight on economical parameters, gasoline-based vehicle was ranked higher than other vehicles. In the base case scenario with higher weight on environmental parameters, hybrid vehicle was ranked first followed by biodiesel-based vehicle

  10. Development of a multi-criteria assessment model for ranking of renewable and non-renewable transportation fuel vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Safaei Mohamadabadi, H.; Tichkowsky, G.; Kumar, A. [Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta (Canada)

    2009-01-15

    Several factors, including economical, environmental, and social factors, are involved in selection of the best fuel-based vehicles for road transportation. This leads to a multi-criteria selection problem for multi-alternatives. In this study, a multi-criteria assessment model was developed to rank different road transportation fuel-based vehicles (both renewable and non-renewable) using a method called Preference Ranking Organization Method for Enrichment and Evaluations (PROMETHEE). This method combines qualitative and quantitative criteria to rank various alternatives. In this study, vehicles based on gasoline, gasoline-electric (hybrid), E85 ethanol, diesel, B100 biodiesel, and compressed natural gas (CNG) were considered as alternatives. These alternatives were ranked based on five criteria: vehicle cost, fuel cost, distance between refueling stations, number of vehicle options available to the consumer, and greenhouse gas (GHG) emissions per unit distance traveled. In addition, sensitivity analyses were performed to study the impact of changes in various parameters on final ranking. Two base cases and several alternative scenarios were evaluated. In the base case scenario with higher weight on economical parameters, gasoline-based vehicle was ranked higher than other vehicles. In the base case scenario with higher weight on environmental parameters, hybrid vehicle was ranked first followed by biodiesel-based vehicle. (author)

  11. Modeling and Nonlinear Control of Electric Power Stage in Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Tahri, A.; El Fadil, H.; Guerrero, Josep M.

    2014-01-01

    This paper deals with the problem of modeling and controlling the electric power stage of hybrid electric vehicle. The controlled system consists of a fuel cell (FC) as a main source, a supercapacitor as an auxiliary source, two DC-DC power converters, an inverter and a traction induction motor...

  12. Safety of tank vehicles. Pt. 1. Goals and findings of upsetting experiments with tank vehicles in the framework of THESEUS; Sicherheit von Tankfahrzeugen. T. 1. Ziele und Ergebnisse der Umsturzversuche mit Gefahrgut-Tankfahrzeugen im Rahmen von THESEUS

    Energy Technology Data Exchange (ETDEWEB)

    Heuser, G. [Abt. Sicherheitsforschung und Entwicklungsservice, TUEV Rheinland Kraftfahrt GmbH, Inst. fuer Verkehrssicherheit, Koeln (Germany); Schmitz, A. [Inst. fuer Verkehrssicherheit, TUEV Rheinland Kraftfahrt GmbH, Koeln (Germany)

    1996-06-01

    About 68 percent of the total emissions of hazardous materials result from turnover accidents of tank trucks. The authors describe the results of turnover experiments: The first three experiments were carried out with a box tank segment without longitudinal velocity in order to test the sensors and measuring systems, to evaluate different impacting conditions and to obtain data for validating the model used for the calculations. Further tests were carried out with moving vehicles, i.e. a tank truck and semitrailers with box tank and cylinder tank. The upsetting experiments were carried out with the aid of a ramp which lifted the right-side wheels of the vehicles until turnover. Six of the turnover experiments were carried out on an asphalt road, two on a road with additional impact on an obstacle, and one with direct impact on an obstacle which was hit by the semitrailer in the center plane of the tank. (orig.) [Deutsch] Bei Umsturzunfaellen von Tankfahrzeugen werden 68% der insgesamt bei Unfaellen ausgetretenen Gefahrgutmenge freigesetzt. Zur Ermittlung der auftretenden Belastungen wurden zunaechst drei Umsturzversuche mit einem Koffertanksegment ohne Laengsgeschwindigkeit durchgefuehrt. Diese dienten dem Test der Sensoren, der Messtechnik, der Bewertung unterschiedlicher Auftreffbedingungen sowie der Ableitung von Daten zur Validierung des verwendeten Rechenmodells. Fuer die Versuche aus der Bewegung wurden ein Tankwagen sowie Auflieger mit Koffer- und Zylindertank verwendet. Zur Einleitung des Umsturzvorganges wurde eine Rampe gebaut, die die rechten Raeder der Fahrzeuge soweit anhob, bis das Fahrzeug umstuerzte. Der Umsturz erfolgte bei sechs Versuchen auf eine Asphaltstrassendecke, bei zwei Versuchen auf die Fahrbahn mit Sekundaeranprall an ein Hindernis und bei einem Versuch unmittelbar auf ein Hindernis, das bestimmungsgemaess vom Auflieger etwa in der Tankmittelebene getroffen wurde. (orig.)

  13. Exploration of the Growing Trend of Electric Vehicles in Beijing with System Dynamics method and Vensim model

    NARCIS (Netherlands)

    Zhang, C.; Qin, C.

    2014-01-01

    This research is conducted to explore the growing trend of private vehicles in Beijing, China, in the coming 25 years using the system dynamics (SD) method. The vensim software is used to build the SD model and do simulations. First, the paper introduces the background of the private vehicles in

  14. DSRC versus 4G-LTE for Connected Vehicle Applications: A Study on Field Experiments of Vehicular Communication Performance

    Directory of Open Access Journals (Sweden)

    Zhigang Xu

    2017-01-01

    Full Text Available Dedicated short-range communication (DSRC and 4G-LTE are two widely used candidate schemes for Connected Vehicle (CV applications. It is thus of great necessity to compare these two most viable communication standards and clarify which one can meet the requirements of most V2X scenarios with respect to road safety, traffic efficiency, and infotainment. To the best of our knowledge, almost all the existing studies on comparing the feasibility of DRSC or LTE in V2X applications use software-based simulations, which may not represent realistic constraints. In this paper, a Connected Vehicle test-bed is established, which integrates the DSRC roadside units, 4G-LTE cellular communication stations, and vehicular on-board terminals. Three Connected Vehicle application scenarios are set as Collision Avoidance, Traffic Text Message Broadcast, and Multimedia File Download, respectively. A software tool is developed to record GPS positions/velocities of the test vehicles and record certain wireless communication performance indicators. The experiments have been carried out under different conditions. According to our results, 4G-LTE is more preferred for the nonsafety applications, such as traffic information transmission, file download, or Internet accessing, which does not necessarily require the high-speed real-time communication, while for the safety applications, such as Collision Avoidance or electronic traffic sign, DSRC outperforms the 4G-LTE.

  15. Influence of tyre-road contact model on vehicle vibration response

    Science.gov (United States)

    Múčka, Peter; Gagnon, Louis

    2015-09-01

    The influence of the tyre-road contact model on the simulated vertical vibration response was analysed. Three contact models were compared: tyre-road point contact model, moving averaged profile and tyre-enveloping model. In total, 1600 real asphalt concrete and Portland cement concrete longitudinal road profiles were processed. The linear planar model of automobile with 12 degrees of freedom (DOF) was used. Five vibration responses as the measures of ride comfort, ride safety and dynamic load of cargo were investigated. The results were calculated as a function of vibration response, vehicle velocity, road quality and road surface type. The marked differences in the dynamic tyre forces and the negligible differences in the ride comfort quantities were observed among the tyre-road contact models. The seat acceleration response for three contact models and 331 DOF multibody model of the truck semi-trailer was compared with the measured response for a known profile of test section.

  16. Modeling and Simulation of an Unmanned Ground Vehicle Power System

    Science.gov (United States)

    2014-03-28

    Wilhelm, A. N., Surgenor, B. W., and Pharoah, J. G., “Design and evaluation of a micro-fuel-cell-based power system for a mobile robot,” Mechatronics ... Embedded Control Systems ], Control Engineering, 91–116, Birkhuser Boston (2005). [12] Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P.-H...Modeling and Simulation of an Unmanned Ground Vehicle Power System John Brodericka∗, Jack Hartnerb, Dawn Tilburya, and Ella Atkinsa aThe University

  17. Control of Electric Vehicle

    OpenAIRE

    Huang, Qi; Chen, Yong; Li, Jian

    2010-01-01

    In this chapter, the modeling of electric vehicle is discussed in detail. Then, the control of electric vehicle driven by different motors is discussed. Both brushed and brushless DC (Direct Current) motors are discussed. And for AC (Alternative Current) motors, the discussion is focused on induction motor and permanent magnet synchronous motor. The design of controllers for different motor-driven electric vehicle is discussed in-depth, and the tested high-performance control strategies for d...

  18. Performance tests of communal electric-powered vehicles

    International Nuclear Information System (INIS)

    Nagel, J.

    1993-01-01

    The use of electric vehicles within the service industry (such as the town's sanitation, its trash collection and horticultural authority) can lead to a visible environmental relief, particularly in the inner city. The RWE in Essen has been supporting the development and use of electric vehicles for over 20 years and introduced a program in 1990 for the communities(ProKom) which provides 5 million DM for over 5 years for the support of electric vehicles. In this article the communities' requirements for electric vehicles are discussed, the types of vehicles which are mediated by ProKom are introduced and the first practical experiences made are also reported. (BWI) [de

  19. How important is vehicle safety for older consumers in the vehicle purchase process?

    Science.gov (United States)

    Koppel, Sjaan; Clark, Belinda; Hoareau, Effie; Charlton, Judith L; Newstead, Stuart V

    2013-01-01

    This study aimed to investigate the importance of vehicle safety to older consumers in the vehicle purchase process. Older (n = 102), middle-aged (n = 791), and younger (n = 109) participants throughout the eastern Australian states of Victoria, New South Wales, and Queensland who had recently purchased a new or used vehicle completed an online questionnaire about their vehicle purchase process. When asked to list the 3 most important considerations in the vehicle purchase process (in an open-ended format), older consumers were mostly likely to list price as their most important consideration (43%). Similarly, when presented with a list of vehicle factors (such as price, design, Australasian New Car Assessment Program [ANCAP] rating), older consumers were most likely to identify price as the most important vehicle factor (36%). When presented with a list of vehicle features (such as automatic transmission, braking, air bags), older consumers in the current study were most likely to identify an antilock braking system (41%) as the most important vehicle feature, and 50 percent of older consumers identified a safety-related vehicle feature as the highest priority vehicle feature (50%). When asked to list up to 3 factors that make a vehicle safe, older consumers in the current study were most likely to list braking systems (35%), air bags (22%), and the driver's behavior or skill (11%). When asked about the influence of safety in the new vehicle purchase process, one third of older consumers reported that all new vehicles are safe (33%) and almost half of the older consumers rated their vehicle as safer than average (49%). A logistic regression model was developed to predict the profile of older consumers more likely to assign a higher priority to safety features in the vehicle purchasing process. The model predicted that the importance of safety-related features was influenced by several variables, including older consumers' beliefs that they could protect themselves

  20. Wind and water tunnel testing of a morphing aquatic micro air vehicle.

    Science.gov (United States)

    Siddall, Robert; Ortega Ancel, Alejandro; Kovač, Mirko

    2017-02-06

    Aerial robots capable of locomotion in both air and water would enable novel mission profiles in complex environments, such as water sampling after floods or underwater structural inspections. The design of such a vehicle is challenging because it implies significant propulsive and structural design trade-offs for operation in both fluids. In this paper, we present a unique Aquatic Micro Air Vehicle (AquaMAV), which uses a reconfigurable wing to dive into the water from flight, inspired by the plunge diving strategy of water diving birds in the family Sulidae . The vehicle's performance is investigated in wind and water tunnel experiments, from which we develop a planar trajectory model. This model is used to predict the dive behaviour of the AquaMAV, and investigate the efficacy of passive dives initiated by wing folding as a means of water entry. The paper also includes first field tests of the AquaMAV prototype where the folding wings are used to initiate a plunge dive.

  1. Assessing the stationary energy storage equivalency of vehicle-to-grid charging battery electric vehicles

    International Nuclear Information System (INIS)

    Tarroja, Brian; Zhang, Li; Wifvat, Van; Shaffer, Brendan; Samuelsen, Scott

    2016-01-01

    A study has been performed to understand the quantitative impact of key differences between vehicle-to-grid and stationary energy storage systems on renewable utilization, greenhouse gas emissions, and balancing fleet operation, using California as the example. To simulate the combined electricity and light-duty transportation system, a detailed electric grid dispatch model (including stationary energy storage systems) was combined with an electric vehicle charging dispatch model that incorporates conventional smart and vehicle-to-grid capabilities. By subjecting smaller amounts of renewable energy to round-trip efficiency losses and thereby increasing the efficiency of renewable utilization, it was found that vehicle-to-grid energy storage can achieve higher renewable utilization levels and reduced greenhouse gas emissions compared to stationary energy storage systems. Vehicle-to-grid energy storage, however, is not as capable of balancing the power plant fleet compared to stationary energy storage systems due to the constraints of consumer travel patterns. The potential benefits of vehicle-to-grid are strongly dependent on the availability of charging infrastructure at both home and workplaces, with potential benefits being compromised with residential charging availability only. Overall, vehicle-to-grid energy storage can provide benefits over stationary energy storage depending on the system attribute selected for improvement, a finding amenable to managing through policy. - Highlights: • Using vehicle-to-grid-based storage increases the efficiency of renewable energy utilization. • Vehicle-to-grid-based energy storage has less overall flexibility compared to stationary energy storage. • The discharge ability of vehicle-to-grid-based provides a significant benefit over one-way smart charging. • Both workplace and home charging are critical for providing vehicle-to-grid-related benefits. • Increasing charging intelligence reduces stationary energy

  2. State-of-the-art assessment of electric and hybrid vehicles

    Science.gov (United States)

    1978-01-01

    Data are presented that were obtained from the electric and hybrid vehicles tested, information collected from users of electric vehicles, and data and information on electric and hybrid vehicles obtained on a worldwide basis from manufacturers and available literature. The data given include: (1) information and data base (electric and hybrid vehicle systems descriptions, sources of vehicle data and information, and sources of component data); (2) electric vehicles (theoretical background, electric vehicle track tests, user experience, literature data, and summary of electric vehicle status); (3) electric vehicle components (tires, differentials, transmissions, traction motors, controllers, batteries, battery chargers, and component summary); and (4) hybrid vehicles (types of hybrid vehicles, operating modes, hybrid vehicles components, and hybrid vehicles performance characteristics).

  3. Assessing the cost-effectiveness of electric vehicles in European countries using integrated modeling

    International Nuclear Information System (INIS)

    Seixas, J.; Simões, S.; Dias, L.; Kanudia, A.; Fortes, P.; Gargiulo, M.

    2015-01-01

    Electric vehicles (EVs) are considered alternatives to internal combustion engines due to their energy efficiency and contribution to CO 2 mitigation. The adoption of EVs depends on consumer preferences, including cost, social status and driving habits, although it is agreed that current and expected costs play a major role. We use a partial equilibrium model that minimizes total energy system costs to assess whether EVs can be a cost-effective option for the consumers of each EU27 member state up to 2050, focusing on the impact of different vehicle investment costs and CO 2 mitigation targets. We found that for an EU-wide greenhouse gas emission reduction cap of 40% and 70% by 2050 vis-à-vis 1990 emissions, battery electric vehicles (BEVs) are cost-effective in the EU only by 2030 and only if their costs are 30% lower than currently expected. At the EU level, vehicle costs and the capability to deliver both short- and long-distance mobility are the main drivers of BEV deployment. Other drivers include each state’s national mobility patterns and the cost-effectiveness of alternative mitigation options, both in the transport sector, such as plug-in hybrid electric vehicles (PHEVs) or biofuels, and in other sectors, such as renewable electricity. - Highlights: • Electric vehicles were assessed through the minimization of the total energy systems costs. • EU climate policy targets could act as a major driver for PHEV adoption. • Battery EV is an option before 2030 if costs will drop by 30% from expected costs. • EV deployment varies per country depending on each energy system configuration. • Incentives at the country level should consider specific cost-effectiveness factors

  4. Experiences of model year 2011 Dodge and Jeep owners with collision avoidance and related technologies.

    Science.gov (United States)

    Cicchino, Jessica B; McCartt, Anne T

    2015-01-01

    Crash avoidance technologies have the potential to prevent or mitigate many crashes, but their effectiveness depends on drivers' acceptance and proper use. Owners of 2011 Dodge Charger, Dodge Durango, and Jeep Grand Cherokee vehicles were interviewed about their experiences with their vehicles' technologies. Interviews were conducted in April 2013 with 215 owners of Dodge and Jeep vehicles with adaptive cruise control and forward collision warning and 215 owners with blind spot monitoring and rear cross-path detection. Most owners said that they always keep each collision avoidance technology turned on, and more than 90% of owners with each system would want the technology again on their next vehicle. The majority believed that the systems had helped prevent a collision; this ranged from 54% of drivers with forward collision warning to more than three-quarters with blind spot monitoring and rear cross-path detection. Some owners reported behavioral changes with the systems, but over-reliance on them is not prevalent. Reported use of the systems varied by the age and gender of the driver and duration of vehicle ownership to a greater degree than in previous surveys of luxury Volvo and Infiniti vehicles with collision avoidance technologies. Notably, drivers aged 40 and younger were most likely to report that forward collision warning had alerted them multiple times and that it had prevented a collision and that they follow the vehicle ahead less closely with adaptive cruise control. Reports of waiting for the alert from forward collision warning before braking were infrequent but increased with duration of ownership. However, these reports could reflect confusion of the system with adaptive cruise control, which alerts drivers when braking is necessary to maintain a preset speed or following distance but a crash is not imminent. Consistent with previous surveys of luxury vehicle owners with collision avoidance technologies, acceptance and use remains high among

  5. Optimization of vehicle compartment low frequency noise based on Radial Basis Function Neuro-Network Approximation Model

    Directory of Open Access Journals (Sweden)

    HU Qi-guo

    2017-01-01

    Full Text Available For reducing the vehicle compartment low frequency noise, the Optimal Latin hypercube sampling method was applied to perform experimental design for sampling in the factorial design space. The thickness parameters of the panels with larger acoustic contribution was considered as factors, as well as the vehicle mass, seventh rank modal frequency of body, peak sound pressure of test point and sound pressure root-mean-square value as responses. By using the RBF(radial basis function neuro-network method, an approximation model of four responses about six factors was established. Further more, error analysis of established approximation model was performed in this paper. To optimize the panel’s thickness parameter, the adaptive simulated annealing algorithm was im-plemented. Optimization results show that the peak sound pressure of driver’s head was reduced by 4.45dB and 5.47dB at frequency 158HZ and 134Hz respec-tively. The test point pressure were significantly reduced at other frequency as well. The results indicate that through the optimization the vehicle interior cavity noise was reduced effectively, and the acoustical comfort of the vehicle was im-proved significantly.

  6. Detailed modeling of electron emission for transpiration cooling of hypersonic vehicles

    Science.gov (United States)

    Hanquist, Kyle M.; Hara, Kentaro; Boyd, Iain D.

    2017-02-01

    Electron transpiration cooling (ETC) is a recently proposed approach to manage the high heating loads experienced at the sharp leading edges of hypersonic vehicles. Computational fluid dynamics (CFD) can be used to investigate the feasibility of ETC in a hypersonic environment. A modeling approach is presented for ETC, which includes developing the boundary conditions for electron emission from the surface, accounting for the space-charge limit effects of the near-wall plasma sheath. The space-charge limit models are assessed using 1D direct-kinetic plasma sheath simulations, taking into account the thermionically emitted electrons from the surface. The simulations agree well with the space-charge limit theory proposed by Takamura et al. for emitted electrons with a finite temperature, especially at low values of wall bias, which validates the use of the theoretical model for the hypersonic CFD code. The CFD code with the analytical sheath models is then used for a test case typical of a leading edge radius in a hypersonic flight environment. The CFD results show that ETC can lower the surface temperature of sharp leading edges of hypersonic vehicles, especially at higher velocities, due to the increase in ionized species enabling higher electron heat extraction from the surface. The CFD results also show that space-charge limit effects can limit the ETC reduction of surface temperatures, in comparison to thermionic emission assuming no effects of the electric field within the sheath.

  7. Plug-in hybrid vehicle GHG impacts in California: Integrating consumer-informed recharge profiles with an electricity-dispatch model

    International Nuclear Information System (INIS)

    Axsen, Jonn; Kurani, Kenneth S.; McCarthy, Ryan; Yang, Christopher

    2011-01-01

    This paper explores how Plug-in Hybrid Vehicles (PHEVs) may reduce source-to-wheel Greenhouse Gas (GHG) emissions from passenger vehicles. The two primary advances are the incorporation of (1) explicit measures of consumer interest in and potential use of different types of PHEVs and (2) a model of the California electricity grid capable of differentiating hourly and seasonal GHG emissions by generation source. We construct PHEV emissions scenarios to address inherent relationships between vehicle design, driving and recharging behaviors, seasonal and time-of-day variation in GHG-intensity of electricity, and total GHG emissions. A sample of 877 California new vehicle buyers provide data on driving, time of day recharge access, and PHEV design interests. The elicited data differ substantially from the assumptions used in previous analyses. We construct electricity demand profiles scaled to one million PHEVs and input them into an hourly California electricity supply model to simulate GHG emissions. Compared to conventional vehicles, consumer-designed PHEVs cut marginal (incremental) GHG emissions by more than one-third in current California energy scenarios and by one-quarter in future energy scenarios-reductions similar to those simulated for all-electric PHEV designs. Across the emissions scenarios, long-term GHG reductions depends on reducing the carbon intensity of the grid. - Research highlights: → We estimate California Plug-in Hybrid Vehicle (PHEV) GHGs using consumer data and an electricity supply model. → Consumer-designed (mostly 'blended') PHEVs can reduce GHG emissions compared to conventional vehicles. → These PHEVs can also reduce GHG emissions relative to 'all-electric' PHEV designs. → 'All-electric' designs may further reduce GHG emissions as electricity carbon intensity falls. → Ranking of GHG savings from off-peak versus daytime charging scenarios depends on electricity carbon intensity.

  8. Motor vehicle stocks, scrappage, and sales

    OpenAIRE

    Alan Greenspan; Darrel Cohen

    1996-01-01

    This paper offers a framework for forecasting aggregate sales of new motor vehicles; this framework incorporates separate models for the change in the vehicle stock and for the rate of vehicle scrappage. Because this approach requires only a minimal set of assumptions about demographic trends, the state of the economy, consumer ''preferences,'' new vehicle prices and repair costs, and vehicle retirements, it is shown to be especially useful as a macroeconomic forecasting tool. In addition, th...

  9. Instability of a vehicle moving on an elastic structure

    NARCIS (Netherlands)

    Veritchev, S.N.

    2002-01-01

    Vibrations of a vehicle that moves on a long elastic structure can become unstable because of elastic waves that the vehicle generates in the structure. A typical example of the vehicle that can experience such instability is a high-speed train. Moving with a sufficiently high speed, this train

  10. Micro-simulation of vehicle conflicts involving right-turn vehicles at signalized intersections based on cellular automata.

    Science.gov (United States)

    Chai, C; Wong, Y D

    2014-02-01

    At intersection, vehicles coming from different directions conflict with each other. Improper geometric design and signal settings at signalized intersection will increase occurrence of conflicts between road users and results in a reduction of the safety level. This study established a cellular automata (CA) model to simulate vehicular interactions involving right-turn vehicles (as similar to left-turn vehicles in US). Through various simulation scenarios for four case cross-intersections, the relationships between conflict occurrences involving right-turn vehicles with traffic volume and right-turn movement control strategies are analyzed. Impacts of traffic volume, permissive right-turn compared to red-amber-green (RAG) arrow, shared straight-through and right-turn lane as well as signal setting are estimated from simulation results. The simulation model is found to be able to provide reasonable assessment of conflicts through comparison of existed simulation approach and observed accidents. Through the proposed approach, prediction models for occurrences and severity of vehicle conflicts can be developed for various geometric layouts and traffic control strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Application of a Biodegradable Lubricant in a Diesel Vehicle

    DEFF Research Database (Denmark)

    Schramm, Jesper

    2003-01-01

    The IEA Advanced Motor Fuels Agreement has initiated this project concerning the application of biodegradable lubricants to diesel and gasoline type vehicles. Emission measurements on a chassis dynamometer were carried out. The purpose of these measurements was to compare the emissions of CO, CO2......, NOx, THC, PM, lubricant-SOF and PAH from one diesel and one gasoline type vehicle using biodegradable lubricants and conventional lubricants. This paper describes the results of the experiments with the diesel type vehicle only. Lubricant consumption and fuel consumption are other important parameters...... that have been evaluated during the experiments. Both vehicle types were operated on conventional crude oil based fuels and alternative fuels. The diesel vehicle was operated on conventional diesel fuel from a Danish fuel station, low sulfur diesel from Sweden and biodiesel, which was bought at a fuel...

  12. PaTAVTT: A Hardware-in-the-Loop Scaled Platform for Testing Autonomous Vehicle Trajectory Tracking

    Directory of Open Access Journals (Sweden)

    Zhigang Xu

    2017-01-01

    Full Text Available With the advent of autonomous vehicles, in particular its adaptability to harsh conditions, the research and development of autonomous vehicles attract significant attention by not only academia but also practitioners. Due to the high risk, high cost, and difficulty to test autonomous vehicles under harsh conditions, the hardware-in-the-loop (HIL scaled platform has been proposed as it is a safe, inexpensive, and effective test method. This platform system consists of scaled autonomous vehicle, scaled roadway, monitoring center, transmission device, positioning device, and computers. This paper uses a case of the development process of tracking control for high-speed U-turn to build the tracking control function. Further, a simplified vehicle dynamics model and a trajectory tracking algorithm have been considered to build the simulation test. The experiment results demonstrate the effectiveness of the HIL scaled platform.

  13. A mechanical model for deformable and mesh pattern wheel of lunar roving vehicle

    Science.gov (United States)

    Liang, Zhongchao; Wang, Yongfu; Chen, Gang (Sheng); Gao, Haibo

    2015-12-01

    As an indispensable tool for astronauts on lunar surface, the lunar roving vehicle (LRV) is of great significance for manned lunar exploration. An LRV moves on loose and soft lunar soil, so the mechanical property of its wheels directly affects the mobility performance. The wheels used for LRV have deformable and mesh pattern, therefore, the existing mechanical theory of vehicle wheel cannot be used directly for analyzing the property of LRV wheels. In this paper, a new mechanical model for LRV wheel is proposed. At first, a mechanical model for a rigid normal wheel is presented, which involves in multiple conventional parameters such as vertical load, tangential traction force, lateral force, and slip ratio. Secondly, six equivalent coefficients are introduced to amend the rigid normal wheel model to fit for the wheels with deformable and mesh-pattern in LRV application. Thirdly, the values of the six equivalent coefficients are identified by using experimental data obtained in an LRV's single wheel testing. Finally, the identified mechanical model for LRV's wheel with deformable and mesh pattern are further verified and validated by using additional experimental results.

  14. The Application of the NASA Advanced Concepts Office, Launch Vehicle Team Design Process and Tools for Modeling Small Responsive Launch Vehicles

    Science.gov (United States)

    Threet, Grady E.; Waters, Eric D.; Creech, Dennis M.

    2012-01-01

    The Advanced Concepts Office (ACO) Launch Vehicle Team at the NASA Marshall Space Flight Center (MSFC) is recognized throughout NASA for launch vehicle conceptual definition and pre-phase A concept design evaluation. The Launch Vehicle Team has been instrumental in defining the vehicle trade space for many of NASA s high level launch system studies from the Exploration Systems Architecture Study (ESAS) through the Augustine Report, Constellation, and now Space Launch System (SLS). The Launch Vehicle Team s approach to rapid turn-around and comparative analysis of multiple launch vehicle architectures has played a large role in narrowing the design options for future vehicle development. Recently the Launch Vehicle Team has been developing versions of their vetted tools used on large launch vehicles and repackaged the process and capability to apply to smaller more responsive launch vehicles. Along this development path the LV Team has evaluated trajectory tools and assumptions against sounding rocket trajectories and air launch systems, begun altering subsystem mass estimating relationships to handle smaller vehicle components, and as an additional development driver, have begun an in-house small launch vehicle study. With the recent interest in small responsive launch systems and the known capability and response time of the ACO LV Team, ACO s launch vehicle assessment capability can be utilized to rapidly evaluate the vast and opportune trade space that small launch vehicles currently encompass. This would provide a great benefit to the customer in order to reduce that large trade space to a select few alternatives that should best fit the customer s payload needs.

  15. Heavy Duty Vehicle Futures Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Askin, Amanda Christine; Barter, Garrett.; West, Todd H.; Manley, Dawn Kataoka

    2014-05-01

    This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

  16. Vehicle-specific emissions modeling based upon on-road measurements.

    Science.gov (United States)

    Frey, H Christopher; Zhang, Kaishan; Rouphail, Nagui M

    2010-05-01

    Vehicle-specific microscale fuel use and emissions rate models are developed based upon real-world hot-stabilized tailpipe measurements made using a portable emissions measurement system. Consecutive averaging periods of one to three multiples of the response time are used to compare two semiempirical physically based modeling schemes. One scheme is based on internally observable variables (IOVs), such as engine speed and manifold absolute pressure, while the other is based on externally observable variables (EOVs), such as speed, acceleration, and road grade. For NO, HC, and CO emission rates, the average R(2) ranged from 0.41 to 0.66 for the former and from 0.17 to 0.30 for the latter. The EOV models have R(2) for CO(2) of 0.43 to 0.79 versus 0.99 for the IOV models. The models are sensitive to episodic events in driving cycles such as high acceleration. Intervehicle and fleet average modeling approaches are compared; the former account for microscale variations that might be useful for some types of assessments. EOV-based models have practical value for traffic management or simulation applications since IOVs usually are not available or not used for emission estimation.

  17. Biogeography-based combinatorial strategy for efficient autonomous underwater vehicle motion planning and task-time management

    Science.gov (United States)

    Zadeh, S. M.; Powers, D. M. W.; Sammut, K.; Yazdani, A. M.

    2016-12-01

    Autonomous Underwater Vehicles (AUVs) are capable of spending long periods of time for carrying out various underwater missions and marine tasks. In this paper, a novel conflict-free motion planning framework is introduced to enhance underwater vehicle's mission performance by completing maximum number of highest priority tasks in a limited time through a large scale waypoint cluttered operating field, and ensuring safe deployment during the mission. The proposed combinatorial route-path planner model takes the advantages of the Biogeography-Based Optimization (BBO) algorithm toward satisfying objectives of both higher-lower level motion planners and guarantees maximization of the mission productivity for a single vehicle operation. The performance of the model is investigated under different scenarios including the particular cost constraints in time-varying operating fields. To show the reliability of the proposed model, performance of each motion planner assessed separately and then statistical analysis is undertaken to evaluate the total performance of the entire model. The simulation results indicate the stability of the contributed model and its feasible application for real experiments.

  18. Experimental verification of a thermal equivalent circuit dynamic model on an extended range electric vehicle battery pack

    Science.gov (United States)

    Ramotar, Lokendra; Rohrauer, Greg L.; Filion, Ryan; MacDonald, Kathryn

    2017-03-01

    The development of a dynamic thermal battery model for hybrid and electric vehicles is realized. A thermal equivalent circuit model is created which aims to capture and understand the heat propagation from the cells through the entire pack and to the environment using a production vehicle battery pack for model validation. The inclusion of production hardware and the liquid battery thermal management system components into the model considers physical and geometric properties to calculate thermal resistances of components (conduction, convection and radiation) along with their associated heat capacity. Various heat sources/sinks comprise the remaining model elements. Analog equivalent circuit simulations using PSpice are compared to experimental results to validate internal temperature nodes and heat rates measured through various elements, which are then employed to refine the model further. Agreement with experimental results indicates the proposed method allows for a comprehensive real-time battery pack analysis at little computational expense when compared to other types of computer based simulations. Elevated road and ambient conditions in Mesa, Arizona are simulated on a parked vehicle with varying quiescent cooling rates to examine the effect on the diurnal battery temperature for longer term static exposure. A typical daily driving schedule is also simulated and examined.

  19. MODELING MAIN BODY OF OVERCROSSING BRIDGE BASED ON VEHICLE-BORNE LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    X. Chen

    2017-09-01

    Full Text Available Vehicle-borne laser scanning (VBLS is widely used to collect urban data for various mapping and modelling systems. This paper proposes a strategy of feature extraction and 3d model reconstruction for main body of overcrossing bridges based on VBLS point clouds. As the bridges usually have a large span, and the clouds data is often affected by obstacles, we have to use round-trip cloud data to avoid missing part. To begin with, pick out the cloud of the bridge body by an interactive clip-box, and group points by scan-line, then sort the points by scanning angle on each scan line. Since the position under the vehicle have a fixed scan-angle, a virtual path can be obtained. Secondly, extract horizontal line segments perpendicular to the virtual path along adjacent scan-lines, and then cluster line segments into long line-strings, which represent the top and bottom edge. Finally, regularize the line-strings and build 3d surface model of the bridge body. Experimental studies have demonstrated its efficiency and accuracy in case of building bridge model. Modelling the stairs at the both end of the bridge will be the direction of the next step.

  20. Mixed integer programming model for optimizing the layout of an ICU vehicle

    Directory of Open Access Journals (Sweden)

    García-Sánchez Álvaro

    2009-12-01

    Full Text Available Abstract Background This paper presents a Mixed Integer Programming (MIP model for designing the layout of the Intensive Care Units' (ICUs patient care space. In particular, this MIP model was developed for optimizing the layout for materials to be used in interventions. This work was developed within the framework of a joint project between the Madrid Technical Unverstity and the Medical Emergency Services of the Madrid Regional Government (SUMMA 112. Methods The first task was to identify the relevant information to define the characteristics of the new vehicles and, in particular, to obtain a satisfactory interior layout to locate all the necessary materials. This information was gathered from health workers related to ICUs. With that information an optimization model was developed in order to obtain a solution. From the MIP model, a first solution was obtained, consisting of a grid to locate the different materials needed for the ICUs. The outcome from the MIP model was discussed with health workers to tune the solution, and after slightly altering that solution to meet some requirements that had not been included in the mathematical model, the eventual solution was approved by the persons responsible for specifying the characteristics of the new vehicles. According to the opinion stated by the SUMMA 112's medical group responsible for improving the ambulances (the so-called "coaching group", the outcome was highly satisfactory. Indeed, the final design served as a basis to draw up the requirements of a public tender. Results As a result from solving the Optimization model, a grid was obtained to locate the different necessary materials for the ICUs. This grid had to be slightly altered to meet some requirements that had not been included in the mathematical model. The results were discussed with the persons responsible for specifying the characteristics of the new vehicles. Conclusion The outcome was highly satisfactory. Indeed, the final