WorldWideScience

Sample records for vehicle control eye

  1. Vehicle Controller

    Science.gov (United States)

    1985-01-01

    UNISTICK is an airplane-like joystick being developed by Johnson Engineering under NASA and VA sponsorship. It allows a driver to control a vehicle with one hand, and is based upon technology developed for the Apollo Lunar Landings of the 1970's. It allows severely handicapped drivers to operate an automobile or van easily. The system is expected to be in production by March 1986.

  2. Eye Carduino: A Car Control System using Eye Movements

    Science.gov (United States)

    Kumar, Arjun; Nagaraj, Disha; Louzardo, Joel; Hegde, Rajeshwari

    2011-12-01

    Modern automotive systems are rapidly becoming highly of transportation, but can be a web integrated media centre. This paper explains the implementation of a vehicle control defined and characterized by embedded electronics and software. With new technologies, the vehicle industry is facing new opportunities and also new challenges. Electronics have improved the performance of vehicles and at the same time, new more complex applications are introduced. Examples of high level applications include adaptive cruise control and electronic stability programs (ESP). Further, a modern vehicle does not have to be merely a means using only eye movements. The EyeWriter's native hardware and software work to return the co-ordinates of where the user is looking. These co-ordinates are then used to control the car. A centre-point is defined on the screen. The higher on the screen the user's gaze is, the faster the car will accelerate. Braking is done by looking below centre. Steering is done by looking left and right on the screen.

  3. Supercavitating Vehicle Control

    Science.gov (United States)

    2008-10-10

    401) 832-1511. DISTRIBUTION STATEMENT Approved for Public Release Distribution is unlimited 20081027289 Attorney Docket No. 96674 SUPERCAVITATING ...methods and more specifically to systems and methods for controlling a trajectory of a supercavitating vehicle. (2) Description of the Prior Art [0004...1 [0005) Some investigations into reducing the drag of high-speed, underwater vehicles have focused attention on supercavitating underwater vehicles

  4. Control of Electric Vehicle

    OpenAIRE

    Huang, Qi; Chen, Yong; Li, Jian

    2010-01-01

    In this chapter, the modeling of electric vehicle is discussed in detail. Then, the control of electric vehicle driven by different motors is discussed. Both brushed and brushless DC (Direct Current) motors are discussed. And for AC (Alternative Current) motors, the discussion is focused on induction motor and permanent magnet synchronous motor. The design of controllers for different motor-driven electric vehicle is discussed in-depth, and the tested high-performance control strategies for d...

  5. Optimal vehicle control

    NARCIS (Netherlands)

    Alirezaei, M.; Kanarachos, S.A.; Scheepers, B.T.M.; Maurice, J.P.

    2013-01-01

    The Integrated Vehicle Safety Department of TNO (Dutch Organization for Applied Scientific Research) investigates the application of modern control methods in the Integrated Vehicle Dynamics Control (IVDC) field, as a strategic research topic of the Beyond Safe framework. The aim of IVDC is to

  6. Vehicle Dynamics and Control

    CERN Document Server

    Rajamani, Rajesh

    2012-01-01

    Vehicle Dynamics and Control provides a comprehensive coverage of vehicle control systems and the dynamic models used in the development of these control systems. The control system applications covered in the book include cruise control, adaptive cruise control, ABS, automated lane keeping, automated highway systems, yaw stability control, engine control, passive, active and semi-active suspensions, tire-road friction coefficient estimation, rollover prevention, and hybrid electric vehicle. In developing the dynamic model for each application, an effort is made to both keep the model simple enough for control system design but at the same time rich enough to capture the essential features of the dynamics. A special effort has been made to explain the several different tire models commonly used in literature and to interpret them physically. In the second edition of the book, chapters on roll dynamics, rollover prevention and hybrid electric vehicles have been added, and the chapter on electronic stability co...

  7. HYBRID VEHICLE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2016-06-01

    Full Text Available The hybrid vehicle control system includes a start–stop system for an internal combustion engine. The system works in a hybrid mode and normal vehicle operation. To simplify the start–stop system, there were user new possibilities of a hybrid car, which appeared after the conversion. Results of the circuit design of the proposed system of basic blocks are analyzed.

  8. Supercavitating Vehicle Control

    National Research Council Canada - National Science Library

    Kuklinski, Robert

    2008-01-01

    .... The segmented ring wing is controlled by a ring actuator. The ring actuator may be used to control the angle of attack of the ring wing. Alternately, or in combination the flow over the ring wing may be neutralized by using the cavitator of the vehicle to globally enlarge the cavity and thus limit the flow.

  9. Pattern of Eye Diseases among Commercial Intercity Vehicle Drivers ...

    African Journals Online (AJOL)

    Objective: To determine the pattern of eye diseases among commercial intercity vehicle drivers (CIVDs) in Ilorin, Nigeria. Design: A cross-sectional descriptive study. Methodology: Out of the estimated 450 drivers operating in the five major motor parks for CIVDs in Ilorin, 399 consecutive drivers participated in the study.

  10. Electric vehicle battery charging controller

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention provides an electric vehicle charging controller. The charging controller comprises a first interface connectable to an electric vehicle charge source for receiving a charging current, a second interface connectable to an electric vehicle for providing the charging current...... to a battery management system in the electric vehicle to charge a battery therein, a first communication unit for receiving a charging message via a communication network, and a control unit for controlling a charging current provided from the charge source to the electric vehicle, the controlling at least...... in part being performed in response to a first information associated with a charging message received by the first communication unit...

  11. Hybrid vehicle control

    Science.gov (United States)

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  12. Decentralized Control of Autonomous Vehicles

    Science.gov (United States)

    2003-01-01

    Autonomous Vehicles by John S. Baras, Xiaobo Tan, Pedram Hovareshti CSHCN TR 2003-8 (ISR TR 2003-14) Report Documentation Page Form ApprovedOMB No. 0704...AND SUBTITLE Decentralized Control of Autonomous Vehicles 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Decentralized Control of Autonomous Vehicles ∗ John S. Baras, Xiaobo Tan, and Pedram

  13. Eye mechanics and their implications for eye movement control

    NARCIS (Netherlands)

    Koene, Ansgar Roald

    2002-01-01

    The topic of this thesis is the investigation of the mechanical properties of the oculomotor system and the implications of these properties for eye movement control. The investigation was conducted by means of computer models and simulations. This allowed us to combine data from anatomy, physiology

  14. Electric vehicle speed control

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, W.R.; Mc Auliffe, G.N.; Schlageter, G.A.

    1987-06-23

    This patent describes an electric vehicle driven by a DC motor. The vehicle has a field winding, an electric resistance element in circuit with the field winding, a switch in the circuit operative when closed to place. The element in parallel with the field winding weakens the field and increases potential motor speed. Also are relay means for operating the switch, means to determine motor speed, computer means for determining whether the motor speed is increasing or decreasing, and means for operating the relay means to close the switch at a first speed. If the motor speed is increased, it actuates the switch at a second speed lower than the first speed but only if switch has been closed previously and motor speed is decreasing.

  15. Optimal control of hybrid vehicles

    CERN Document Server

    Jager, Bram; Kessels, John

    2013-01-01

    Optimal Control of Hybrid Vehicles provides a description of power train control for hybrid vehicles. The background, environmental motivation and control challenges associated with hybrid vehicles are introduced. The text includes mathematical models for all relevant components in the hybrid power train. The power split problem in hybrid power trains is formally described and several numerical solutions detailed, including dynamic programming and a novel solution for state-constrained optimal control problems based on Pontryagin’s maximum principle.   Real-time-implementable strategies that can approximate the optimal solution closely are dealt with in depth. Several approaches are discussed and compared, including a state-of-the-art strategy which is adaptive for vehicle conditions like velocity and mass. Two case studies are included in the book: ·        a control strategy for a micro-hybrid power train; and ·        experimental results obtained with a real-time strategy implemented in...

  16. Electric vehicle motors and controllers

    Science.gov (United States)

    Secunde, R. R.

    1981-01-01

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  17. Vehicle following controller design for autonomous intelligent vehicles

    Science.gov (United States)

    Chien, C. C.; Lai, M. C.; Mayr, R.

    1994-01-01

    A new vehicle following controller is proposed for autonomous intelligent vehicles. The proposed vehicle following controller not only provides smooth transient maneuvers for unavoidable nonzero initial conditions but also guarantees the asymptotic platoon stability without the availability of feedforward information. Furthermore, the achieved asymptotic platoon stability is shown to be robust to sensor delays and an upper bound for the allowable sensor delays is also provided in this paper.

  18. State estimation for integrated vehicle dynamics control

    NARCIS (Netherlands)

    Zuurbier, J.; Bremmer, P.

    2002-01-01

    This paper discusses a vehicle controller and a state estimator that was implemented and tested in a vehicle equipped with a combined braking and chassis control system to improve handling. The vehicle dynamics controller consists of a feed forward body roll compensation and a feedback stability

  19. Broadband vehicle-to-vehicle communication using an extended autonomous cruise control sensor

    Science.gov (United States)

    Heddebaut, M.; Rioult, J.; Ghys, J. P.; Gransart, Ch; Ambellouis, S.

    2005-06-01

    For several years road vehicle autonomous cruise control (ACC) systems as well as anti-collision radar have been developed. Several manufacturers currently sell this equipment. The current generation of ACC sensors only track the first preceding vehicle to deduce its speed and position. These data are then used to compute, manage and optimize a safety distance between vehicles, thus providing some assistance to car drivers. However, in real conditions, to elaborate and update a real time driving solution, car drivers use information about speed and position of preceding and following vehicles. This information is essentially perceived using the driver's eyes, binocular stereoscopic vision performed through the windscreens and rear-view mirrors. Furthermore, within a line of vehicles, the frontal road perception of the first vehicle is very particular and highly significant. Currently, all these available data remain strictly on-board the vehicle that has captured the perception information and performed these measurements. To get the maximum effectiveness of all these approaches, we propose that this information be shared in real time with the following vehicles, within the convoy. On the basis of these considerations, this paper technically explores a cost-effective solution to extend the basic ACC sensor function in order to simultaneously provide a vehicle-to-vehicle radio link. This millimetre wave radio link transmits relevant broadband perception data (video, localization...) to following vehicles, along the line of vehicles. The propagation path between the vehicles uses essentially grazing angles of incidence of signals over the road surface including millimetre wave paths beneath the cars.

  20. Launch Vehicle Control Center Architectures

    Science.gov (United States)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Williams, Randall; McLaughlin, Tom

    2014-01-01

    This analysis is a survey of control center architectures of the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures have similarities in basic structure, and differences in functional distribution of responsibilities for the phases of operations: (a) Launch vehicles in the international community vary greatly in configuration and process; (b) Each launch site has a unique processing flow based on the specific configurations; (c) Launch and flight operations are managed through a set of control centers associated with each launch site, however the flight operations may be a different control center than the launch center; and (d) The engineering support centers are primarily located at the design center with a small engineering support team at the launch site.

  1. Design, Sensing and Control of a Robotic Prosthetic Eye for Natural Eye Movement

    OpenAIRE

    J. J. Gu; M. Meng; A. Cook; P. X. Liu

    2006-01-01

    Loss of an eye is a tragedy for a person, who may suffer psychologically and physically. This paper is concerned with the design, sensing and control of a robotic prosthetic eye that moves horizontally in synchronization with the movement of the natural eye. Two generations of robotic prosthetic eye models have been developed. The first generation model uses an external infrared sensor array mounted on the frame of a pair of eyeglasses to detect the natural eye movement and to feed the contro...

  2. Virtual sensors for advanced vehicle stability control

    NARCIS (Netherlands)

    Leenen, R.; Schouten, H.

    2010-01-01

    Advanced vehicle control technologies provide a great potential to further improve vehicle handling, ride and safety. The goal of this research is to demonstrate the added value of the TNO Vehicle State Estimation module to integrated active safety. State-of-the-art Electronic Stability Control

  3. Vehicle electrical system state controller

    Science.gov (United States)

    Bissontz, Jay E.

    2017-10-17

    A motor vehicle electrical power distribution system includes a plurality of distribution sub-systems, an electrical power storage sub-system and a plurality of switching devices for selective connection of elements of and loads on the power distribution system to the electrical power storage sub-system. A state transition initiator provides inputs to control system operation of switching devices to change the states of the power distribution system. The state transition initiator has a plurality of positions selection of which can initiate a state transition. The state transition initiator can emulate a four position rotary ignition switch. Fail safe power cutoff switches provide high voltage switching device protection.

  4. Integrated robust controller for vehicle path following

    Energy Technology Data Exchange (ETDEWEB)

    Mashadi, Behrooz; Ahmadizadeh, Pouyan, E-mail: p-ahmadizadeh@iust.ac.ir; Majidi, Majid, E-mail: m-majidi@iust.ac.ir [Iran University of Science and Technology, School of Automotive Engineering (Iran, Islamic Republic of); Mahmoodi-Kaleybar, Mehdi, E-mail: m-mahmoodi-k@iust.ac.ir [Iran University of Science and Technology, School of Mechanical Engineering (Iran, Islamic Republic of)

    2015-02-15

    The design of an integrated 4WS+DYC control system to guide a vehicle on a desired path is presented. The lateral dynamics of the path follower vehicle is formulated by considering important parameters. To reduce the effect of uncertainties in vehicle parameters, a robust controller is designed based on a μ-synthesis approach. Numerical simulations are performed using a nonlinear vehicle model in MATLAB environment in order to investigate the effectiveness of the designed controller. Results of simulations show that the controller has a profound ability to making the vehicle track the desired path in the presence of uncertainties.

  5. Integrated robust controller for vehicle path following

    International Nuclear Information System (INIS)

    Mashadi, Behrooz; Ahmadizadeh, Pouyan; Majidi, Majid; Mahmoodi-Kaleybar, Mehdi

    2015-01-01

    The design of an integrated 4WS+DYC control system to guide a vehicle on a desired path is presented. The lateral dynamics of the path follower vehicle is formulated by considering important parameters. To reduce the effect of uncertainties in vehicle parameters, a robust controller is designed based on a μ-synthesis approach. Numerical simulations are performed using a nonlinear vehicle model in MATLAB environment in order to investigate the effectiveness of the designed controller. Results of simulations show that the controller has a profound ability to making the vehicle track the desired path in the presence of uncertainties

  6. Different control applications on a vehicle using fuzzy logic control

    Indian Academy of Sciences (India)

    Vehicle vibrations; active suspensions; fuzzy logic control; vehicle model. 1. .... The general expression of the mathematical model is shown below: .... Figure 5a presents the time history of the control force when the controller exists only under.

  7. Pattern of Eye Diseases among Commercial Intercity Vehicle Drivers ...

    African Journals Online (AJOL)

    BOLA

    with a visual acuity (VA) of less than 3/60 in one eye. Cataract and ... to dry. Those found to require further assessment, refraction and surgery were referred to the UITH. The data .... Symptoms of ocular disease among the CIVDs examined.

  8. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Beaty, Kevin D [Kalamazoo, MI; Zou, Zhanijang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-07-21

    A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

  9. Dynamics and Control of a Maglev Vehicle

    Directory of Open Access Journals (Sweden)

    Won ko

    2006-06-01

    Full Text Available In this paper, dynamics of a Maglev vehicle was analyzed and controls utilizing an optimized damping and an LQR algorithms were designed to stabilize the vehicle. The dynamics of magnetically levitated and propelled Maglev vehicle are complex and inherently unstable. Moreover, 6-DOF system dynamics is highly nonlinear and coupled. The proposed control schemes provide the dynamic stability and controllability, which computer simulations confirmed the effectiveness.

  10. Design, Sensing and Control of a Robotic Prosthetic Eye for Natural Eye Movement

    Directory of Open Access Journals (Sweden)

    J. J. Gu

    2006-01-01

    Full Text Available Loss of an eye is a tragedy for a person, who may suffer psychologically and physically. This paper is concerned with the design, sensing and control of a robotic prosthetic eye that moves horizontally in synchronization with the movement of the natural eye. Two generations of robotic prosthetic eye models have been developed. The first generation model uses an external infrared sensor array mounted on the frame of a pair of eyeglasses to detect the natural eye movement and to feed the control system to drive the artificial eye to move with the natural eye. The second generation model removes the impractical usage of the eye glass frame and uses the human brain EOG (electro-ocular-graph signal picked up by electrodes placed on the sides of a person's temple to carry out the same eye movement detection and control tasks as mentioned above. Theoretical issues on sensor failure detection and recovery, and signal processing techniques used in sensor data fusion, are studied using statistical methods and artificial neural network based techniques. In addition, practical control system design and implementation using micro-controllers are studied and implemented to carry out the natural eye movement detection and artificial robotic eye control tasks. Simulation and experimental studies are performed, and the results are included to demonstrate the effectiveness of the research project reported in this paper.

  11. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Hope, Mark E [Marshall, MI; Zou, Zhanjiang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  12. Tactical Vehicle Climate Control Testing

    Science.gov (United States)

    2017-03-31

    1979. b. TOP 02-2-708, Vehicle Personnel Heater Compatibility, 18 July 1980. c. Society of Automotive Engineers (SAE) J381, Surface Vehicle...Total Irradiance Second Class minimum, First Class recommended Engine speed ± 10 revolutions per minute (rpm) Air pressure (as appropriate) ± 1...digital camera is suggest to photograph all instrumentation locations. A tape measure, a graduated cylinder and an electric paint sprayer are required

  13. Contribution to intelligent vehicle platoon control

    OpenAIRE

    Zhao , Jin

    2010-01-01

    This PhD thesis is dedicated to the control strategies for intelligent vehicle platoon in highway with the main aims of alleviating traffic congestion and improving traffic safety. After a review of the different existing automated driving systems, the vehicle longitudinal and lateral dynamic models are derived. Then, the longitudinal control and lateral control strategies are studied respectively. At first, the longitudinal control system is designed to be hierarchical with an upper level co...

  14. Automatic Control of Personal Rapid Transit Vehicles

    Science.gov (United States)

    Smith, P. D.

    1972-01-01

    The requirements for automatic longitudinal control of a string of closely packed personal vehicles are outlined. Optimal control theory is used to design feedback controllers for strings of vehicles. An important modification of the usual optimal control scheme is the inclusion of jerk in the cost functional. While the inclusion of the jerk term was considered, the effect of its inclusion was not sufficiently studied. Adding the jerk term will increase passenger comfort.

  15. Control of Supercavitating Vehicles using Transverse Jets

    Science.gov (United States)

    2016-03-15

    Supercavitating Vehicles using Transverse Jets Sb. GRANT NUMBER N00014-13-1-0747 Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT NUMBER Ayers, Bradley...ANSI Std. Z39.18 CONTROL OF SUPERCAVITATING VEHICLES USING TRANSVERSE JETS Final Technical Report for Office of Naval Research contract N00014-13-1...fully-submerged, supercavitating vehicle model using the thrust of the zero-net-mass-flux device. The experiments were conducted in NUWC Newport’ s

  16. Safety and Efficacy of Cortisol Phosphate in Hyaluronic Acid Vehicle in the Treatment of Dry Eye in Sjogren Syndrome.

    Science.gov (United States)

    Rolando, Maurizio; Vagge, Aldo

    2017-06-01

    Evaluation of 0.3% cortisol phosphate eye drops in hyaluronic acid vehicle in the treatment of dry eye in Sjogren Syndrome. This prospective, single-center, masked (single blind), randomized controlled study included 40 female patients divided into 2 groups, group 1 treated with Idracemi, 0.3% cortisol phosphate eye drops twice a day, and group 2 treated with Cortivis, 0.3% cortisol phosphate in hyaluronic acid vehicle, with the same posology. Screening (day -7), randomization (day 0), follow-up (day 7), and termination (day 28) visits were conducted. Symptoms (VAS) questionnaire, tear film breakup time, corneo-conjunctival stain, intraocular pressure (IOP) measurement, and fundus examination were performed at each visit. Conjunctival impression cytology for human leukocyte antigen-DR (HLA-DR) expression at visit 1 and 4 was also performed. No changes in IOP or fundus examination were observed in either group at each time point. Group 1 showed at day 28 a statistically significant amelioration of symptoms and reduction of HLA-DR expression. Group 2 showed at day 7 statistically significant improvement of corneal and conjunctival stain versus baseline and versus group 1; the symptom score was statistically significantly better than baseline and versus group 1 after 28 days too. The HLA-DR expression and the epithelial cell area were statistically significantly reduced versus baseline and versus group 1 at the same time. Cortisol phosphate proved to be safe and effective in treating dry eye in Sjogren Syndrome patients in both formulations. However, the formula with hyaluronic acid vehicle proved to be more effective. Both formulations were very well tolerated.

  17. OPTIMAL CONTROL FOR ELECTRIC VEHICLE STABILIZATION

    Directory of Open Access Journals (Sweden)

    MARIAN GAICEANU

    2016-01-01

    Full Text Available This main objective of the paper is to stabilize an electric vehicle in optimal manner to a step lane change maneuver. To define the mathematical model of the vehicle, the rigid body moving on a plane is taken into account. An optimal lane keeping controller delivers the adequate angles in order to stabilize the vehicle’s trajectory in an optimal way. Two degree of freedom linear bicycle model is adopted as vehicle model, consisting of lateral and yaw motion equations. The proposed control maintains the lateral stability by taking the feedback information from the vehicle transducers. In this way only the lateral vehicle’s dynamics are enough to considerate. Based on the obtained linear mathematical model the quadratic optimal control is designed in order to maintain the lateral stability of the electric vehicle. The numerical simulation results demonstrate the feasibility of the proposed solution.

  18. Cooperative Control of Multiple Unmanned Autonomous Vehicles

    Science.gov (United States)

    2005-06-03

    I I Final Report 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Cooperative Control of Multiple Unmanned Autonomous Vehicles F49620-01-1-0337 6. AUTHOR(S... Autonomous Vehicles Final Report Kendall E. Nygard Department of Computer Science and Operations Research North Dakota State University Fargo, ND 58105-5164

  19. OPTIMUM PROGRAMMABLE CONTROL OF UNMANNED FLYING VEHICLE

    Directory of Open Access Journals (Sweden)

    A. А. Lobaty

    2012-01-01

    Full Text Available The paper considers an analytical synthesis problem pertaining to programmable control of an unmanned flying vehicle while steering it to the fixed space point. The problem has been solved while applying a maximum principle which takes into account a final control purpose and its integral expenses. The paper presents an optimum law of controlling overload variation of a flying vehicle that has been obtained analytically

  20. Climate control loads prediction of electric vehicles

    International Nuclear Information System (INIS)

    Zhang, Ziqi; Li, Wanyong; Zhang, Chengquan; Chen, Jiangping

    2017-01-01

    Highlights: • A model of vehicle climate control loads is proposed based on experiments. • Main climate control loads of the modeled vehicle are quantitatively analyzed. • Range reductions of the modeled vehicle under different conditions are simulated. - Abstract: A new model of electric vehicle climate control loads is provided in this paper. The mathematical formulations of the major climate control loads are developed, and the coefficients of the formulations are experimentally determined. Then, the detailed climate control loads are analyzed, and the New European Driving Cycle (NEDC) range reductions due to these loads are calculated under different conditions. It is found that in an electric vehicle, the total climate control loads vary with the vehicle speed, HVAC mode and blower level. The ventilation load is the largest climate control load, followed by the solar radiation load. These two add up to more than 80% of total climate control load in summer. The ventilation load accounts for 70.7–83.9% of total heating load under the winter condition. The climate control loads will cause a 17.2–37.1% reduction of NEDC range in summer, and a 17.1–54.1% reduction in winter, compared to the AC off condition. The heat pump system has an advantage in range extension. A heat pump system with an average heating COP of 1.7 will extend the range by 7.6–21.1% based on the simulation conditions.

  1. Optimal sensorimotor control in eye movement sequences.

    Science.gov (United States)

    Munuera, Jérôme; Morel, Pierre; Duhamel, Jean-René; Deneve, Sophie

    2009-03-11

    Fast and accurate motor behavior requires combining noisy and delayed sensory information with knowledge of self-generated body motion; much evidence indicates that humans do this in a near-optimal manner during arm movements. However, it is unclear whether this principle applies to eye movements. We measured the relative contributions of visual sensory feedback and the motor efference copy (and/or proprioceptive feedback) when humans perform two saccades in rapid succession, the first saccade to a visual target and the second to a memorized target. Unbeknownst to the subject, we introduced an artificial motor error by randomly "jumping" the visual target during the first saccade. The correction of the memory-guided saccade allowed us to measure the relative contributions of visual feedback and efferent copy (and/or proprioceptive feedback) to motor-plan updating. In a control experiment, we extinguished the target during the saccade rather than changing its location to measure the relative contribution of motor noise and target localization error to saccade variability without any visual feedback. The motor noise contribution increased with saccade amplitude, but remained <30% of the total variability. Subjects adjusted the gain of their visual feedback for different saccade amplitudes as a function of its reliability. Even during trials where subjects performed a corrective saccade to compensate for the target-jump, the correction by the visual feedback, while stronger, remained far below 100%. In all conditions, an optimal controller predicted the visual feedback gain well, suggesting that humans combine optimally their efferent copy and sensory feedback when performing eye movements.

  2. Distributed Control in Multi-Vehicle Systems

    Directory of Open Access Journals (Sweden)

    Paul A. Avery

    2013-12-01

    Full Text Available The Southwest Research Institute (SwRI Mobile Autonomous Robotics Technology Initiative (MARTI program has enabled the development of fully-autonomous passenger-sized commercial vehicles and military tactical vehicles, as well as the development of cooperative vehicle behaviors, such as cooperative sensor sharing and cooperative convoy operations. The program has also developed behaviors to interface intelligent vehicles with intelligent road-side devices. The development of intelligent vehicle behaviors cannot be approached as stand-alone phenomena; rather, they must be understood within a context of the broader traffic system dynamics. The study of other complex systems has shown that system-level behaviors emerge as a result of the spatio-temporal dynamics within a system's constituent parts. The design of such systems must therefore account for both the system-level emergent behavior, as well as behaviors of individuals within the system. It has also become clear over the past several years, for both of these domains, that human trust in the behavior of individual vehicles is paramount to broader technology adoption. This paper examines the interplay between individual vehicle capabilities, vehicle connectivity, and emergent system behaviors, and presents some considerations for a distributed control paradigm in a multi-vehicle system.

  3. Decentralized fuzzy control of multiple nonholonomic vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Driessen, B.J.; Feddema, J.T.; Kwok, K.S.

    1997-09-01

    This work considers the problem of controlling multiple nonholonomic vehicles so that they converge to a scent source without colliding with each other. Since the control is to be implemented on simple 8-bit microcontrollers, fuzzy control rules are used to simplify a linear quadratic regulator control design. The inputs to the fuzzy controllers for each vehicle are the (noisy) direction to the source, the distance to the closest neighbor vehicle, and the direction to the closest vehicle. These directions are discretized into four values: Forward, Behind, Left, and Right, and the distance into three values: Near, Far, Gone. The values of the control at these discrete values are obtained based on the collision-avoidance repulsive forces and the change of variables that reduces the motion control problem of each nonholonomic vehicle to a nonsingular one with two degrees of freedom, instead of three. A fuzzy inference system is used to obtain control values for inputs between the small number of discrete input values. Simulation results are provided which demonstrate that the fuzzy control law performs well compared to the exact controller. In fact, the fuzzy controller demonstrates improved robustness to noise.

  4. Evaluation of the Tobii EyeX Eye tracking controller and Matlab toolkit for research.

    Science.gov (United States)

    Gibaldi, Agostino; Vanegas, Mauricio; Bex, Peter J; Maiello, Guido

    2017-06-01

    The Tobii Eyex Controller is a new low-cost binocular eye tracker marketed for integration in gaming and consumer applications. The manufacturers claim that the system was conceived for natural eye gaze interaction, does not require continuous recalibration, and allows moderate head movements. The Controller is provided with a SDK to foster the development of new eye tracking applications. We review the characteristics of the device for its possible use in scientific research. We develop and evaluate an open source Matlab Toolkit that can be employed to interface with the EyeX device for gaze recording in behavioral experiments. The Toolkit provides calibration procedures tailored to both binocular and monocular experiments, as well as procedures to evaluate other eye tracking devices. The observed performance of the EyeX (i.e. accuracy < 0.6°, precision < 0.25°, latency < 50 ms and sampling frequency ≈55 Hz), is sufficient for some classes of research application. The device can be successfully employed to measure fixation parameters, saccadic, smooth pursuit and vergence eye movements. However, the relatively low sampling rate and moderate precision limit the suitability of the EyeX for monitoring micro-saccadic eye movements or for real-time gaze-contingent stimulus control. For these applications, research grade, high-cost eye tracking technology may still be necessary. Therefore, despite its limitations with respect to high-end devices, the EyeX has the potential to further the dissemination of eye tracking technology to a broad audience, and could be a valuable asset in consumer and gaming applications as well as a subset of basic and clinical research settings.

  5. EYE CONTROLLED SWITCHING USING CIRCULAR HOUGH TRANSFORM

    OpenAIRE

    Sagar Lakhmani

    2014-01-01

    The paper presents hands free interface between electrical appliances or devices. This technology is intended to replace conventional switching devices for the use of disabled. It is a new way to interact with the electrical or electronic devices that we use in our daily life. The paper illustrates how the movement of eye cornea and blinking can be used for switching the devices. The basic Circle Detection algorithm is used to determine the position of eye. Eye blinking is used...

  6. Innovative control systems for tracked vehicle platforms

    CERN Document Server

    2014-01-01

     This book has been motivated by an urgent need for designing and implementation of innovative control algorithms and systems for tracked vehicles. Nowadays the unmanned vehicles are becoming more and more common. Therefore there is a need for innovative mechanical constructions capable of adapting to various applications regardless the ground, air or water/underwater environment. There are multiple various activities connected with tracked vehicles. They can be distributed among three main groups: design and control algorithms, sensoric and vision based in-formation, construction and testing mechanical parts of unmanned vehicles. Scientists and researchers involved in mechanics, control algorithms, image processing, computer vision, data fusion, or IC will find this book useful.

  7. Component Control System for a Vehicle

    Science.gov (United States)

    Fraser-Chanpong, Nathan (Inventor); Spain, Ivan (Inventor); Dawson, Andrew D. (Inventor); Bluethmann, William J. (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Guo, Raymond (Inventor); Waligora, Thomas M. (Inventor); Akinyode, Akinjide Akinniyi (Inventor); Reed, Ryan M. (Inventor)

    2016-01-01

    A vehicle includes a chassis, a modular component, and a central operating system. The modular component is supported by the chassis. The central operating system includes a component control system, a primary master controller, and a secondary master controller. The component control system is configured for controlling the modular component. The primary and secondary master controllers are in operative communication with the component control system. The primary and secondary master controllers are configured to simultaneously transmit commands to the component control system. The component control system is configured to accept commands from the secondary master controller only when a fault occurs in the primary master controller.

  8. Slip control for LIM propelled transit vehicles

    Science.gov (United States)

    Wallace, A. K.; Parker, J. H.; Dawson, G. E.

    1980-09-01

    Short stator linear induction motors, with an iron-backed aluminum sheet reaction rail and powered by a controlled inverter, have been selected as the propulsion system for transit vehicles in an intermediate capacity system (12-20,000 pphpd). The linear induction motor is capable of adhesion independent braking and acceleration levels which permit safe, close headways. In addition, simple control is possible allowing moving block automatic train control. This paper presents a slip frequency control scheme for the LIM. Experimental results for motoring and braking obtained from a test vehicle are also presented. These values are compared with theoretical predictions.

  9. Advanced control architecture for autonomous vehicles

    Science.gov (United States)

    Maurer, Markus; Dickmanns, Ernst D.

    1997-06-01

    An advanced control architecture for autonomous vehicles is presented. The hierarchical architecture consists of four levels: a vehicle level, a control level, a rule-based level and a knowledge-based level. A special focus is on forms of internal representation, which have to be chosen adequately for each level. The control scheme is applied to VaMP, a Mercedes passenger car which autonomously performs missions on German freeways. VaMP perceives the environment with its sense of vision and conventional sensors. It controls its actuators for locomotion and attention focusing. Modules for perception, cognition and action are discussed.

  10. Velocity Controller for a Class of Vehicles

    Directory of Open Access Journals (Sweden)

    Herman Przemyslaw

    2017-02-01

    Full Text Available This paper addresses the problem of velocity tracking control for various fully-actuated robotic vehicles. The presented method, which is based on transformation of equations of motion allows one to use, in the control gain matrix, the dynamical couplings existing in the system. Consequently, the dynamics of the vehicle is incorporated into the control process what leads to fast velocity error convergence. The stability of the system under the controller is derived based on Lyapunov argument. Moreover, the robustness of the proposed controller is shown too. The general approach is valid for 6 DOF models as well as other reduced models of vehicles. Simulation results on a 6 DOF indoor airship validate the described velocity tracking methodology.

  11. Multilayer Controller for Outdoor Vehicle

    DEFF Research Database (Denmark)

    Reske-Nielsen, Anders; Mejnertsen, Asbjørn; Andersen, Nils Axel

    2006-01-01

    A full software and hardware solution has been designed, implemented and tested for control of a small agricultural automatic tractor. The objective was to realise a user-friendly, multi-layer controller architecture for an outdoor platform. The collaborative research work was done as a part of a...

  12. Contour Tracking Control for the REMUS Autonomous Underwater Vehicle

    National Research Council Canada - National Science Library

    Van Reet, Alan R

    2005-01-01

    In the interest of enhancing the capabilities of autonomous underwater vehicles used in US Naval Operations, controlling vehicle position to follow depth contours presents exciting potential for navigation...

  13. Coordinated Control of Vehicle Groups

    National Research Council Canada - National Science Library

    Kumar, Vijay

    2004-01-01

    .... There are three main objectives: (1) to develop a theoretical paradigm for formalizing the concepts of a group, a team, and control of groups, with specified tasks such as exploring, mapping, searching, and transporting objects; (2...

  14. Automated mixed traffic transit vehicle microprocessor controller

    Science.gov (United States)

    Marks, R. A.; Cassell, P.; Johnston, A. R.

    1981-01-01

    An improved Automated Mixed Traffic Vehicle (AMTV) speed control system employing a microprocessor and transistor chopper motor current controller is described and its performance is presented in terms of velocity versus time curves. The on board computer hardware and software systems are described as is the software development system. All of the programming used in this controller was implemented using FORTRAN. This microprocessor controller made possible a number of safety features and improved the comfort associated with starting and shopping. In addition, most of the vehicle's performance characteristics can be altered by simple program parameter changes. A failure analysis of the microprocessor controller was generated and the results are included. Flow diagrams for the speed control algorithms and complete FORTRAN code listings are also included.

  15. Different Control Algorithms for a Platoon of Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Zoran Gacovski

    2014-05-01

    Full Text Available This paper presents a concept of platoon movement of autonomous vehicles (smart cars. These vehicles have Adaptive or Advanced cruise control (ACC system also called Intelligent cruise control (ICC or Adaptive Intelligent cruise control (AICC system. The vehicles are suitable to follow other vehicles on desired distance and to be organized in platoons. To perform a research on the control and stability of an AGV (Automated Guided Vehicles string, we have developed a car-following model. To do this, first a single vehicle is modeled and since all cars in the platoon have the same dynamics, the single vehicle model is copied ten times to form model of platoon (string with ten vehicles. To control this string, we have applied equal PID controllers to all vehicles, except the leading vehicle. These controllers try to keep the headway distance as constant as possible and the velocity error between subsequent vehicles - small. For control of vehicle with nonlinear dynamics combi­nation of feedforward control and feedback control approach is used. Feedforward control is based on the inverse model of nominal dynamics of the vehicle, and feedback PID control is designed based on the linearized model of the vehicle. For simulation and analysis of vehicle and platoon of vehicles – we have developed Matlab/Simulink models. Simulation results, discussions and conclusions are given at the end of the paper.

  16. Design and analysis of control strategies for vehicle platooning

    NARCIS (Netherlands)

    Saxena, A.; Li, Hong; Goswami, D.; Math, C.B.

    2016-01-01

    This paper presents a novel vehicle platoon control algorithm using Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) wireless communications between platoon members. A platoon forms a chain of vehicles (e.g., trucks) for improved traffic and fuel efficiency. Platooning algorithms aim to

  17. Labview Application For A Vehicle Control

    Directory of Open Access Journals (Sweden)

    Douglas Paladine Vieira

    2002-01-01

    Full Text Available This article deals with the construction of a vehicle driven by electric motors and that is automated, that is, that can move anywhere without human intervention. The control was done using the software Labview, with data acquisition and generation of control signs. The vehicle has an infrared sensors system that indicates the existence of an obstacle ahead the vehicle, informing it that it should stop and bypass the obstacle. The program is the responsible for the engine control, making it possible for the prototype to run and bypass the objects that block its way. The possibility of remote-controlling a vehicle is very important is risky situations for human beings, for example in radioactive places. The main advantage of this system is the total flexibility for making alterations in the control software, without being necessary to touch the physical part of the prototype. The conclusion of this work is that the system is efficient and able to move in a room with objects without touching them.

  18. Vehicle speed control using road bumps

    Directory of Open Access Journals (Sweden)

    T. A. O. Salau

    2004-06-01

    Full Text Available Road bumps play a crucial role in enforcing speed limits, thereby preventing overspeeding of vehicles. It significantly contributes to the overall road safety objective through the prevention of accidents that lead to deaths of pedestrians and damage of vehicles. Despite the importance of road bumps, very little research has been done to investigate into their design. While documentation exists on quantitative descriptions of road bumps, they offer little guidance to decision making. This work presents a unique approach to solving road bumps design problems. The results of our study reveal three important road bumps variables that influence the control of vehicle speeds. The key variables are bump height, bump width, and effective distance between two consecutive road bumps. Since vehicle speed control is the ultimate aim of this study the relationship between vehicle speed and other variables earlier mentioned is established. Vehicle speed is defined as the product of frequency at which a vehicle is moving over road bumps and the sum of effective distance between two consecutive road bumps. In the determination of bump height we assume a conical shaped curve for analysis as a matter of research strategy. Based on this, two stages of motion were analysed. The first concerns the motion over the bump itself while the second relates to the motion between two consecutive road bumps. Fourier series was then used to formulate a holistic equation that combines these two stages. We used trigonometric functions to model the behaviour of the first stage while with the second stage giving a functional value of zero since no changes in height are observed. We carried out vibration analysis to determine the effect of road bumps on a vehicular system. Arising from this a model component is referred to as an isolation factor. This offers guidance to the safe frequency at which vehicles could travel over road bumps. The work appears to contribute to knowledge

  19. Hybrid vehicle energy management: singular optimal control

    NARCIS (Netherlands)

    Delprat, S.; Hofman, T.; Paganelli, S.

    2017-01-01

    Hybrid vehicle energymanagement is often studied in simulation as an optimal control problem. Under strict convexity assumptions, a solution can be developed using Pontryagin’s minimum principle. In practice, however, many engineers do not formally check these assumptions resulting in the possible

  20. Gaze-Based Controlling a Vehicle

    DEFF Research Database (Denmark)

    Mardanbeigi, Diako; Witzner Hansen, Dan

    ) as an example of a complex gaze-based task in environment. This paper discusses the possibilities and limitations of how gaze interaction can be performed for controlling vehicles not only using a remote gaze tracker but also in general challenging situations where the user and robot are mobile...... modality if gaze trackers are embedded into the head- mounted devices. The domain of gaze-based interactive applications increases dramatically as interaction is no longer constrained to 2D displays. This paper proposes a general framework for gaze-based controlling a non- stationary robot (vehicle...... and the movements may be governed by several degrees of freedom (e.g. flying). A case study is also introduced where the mobile gaze tracker is used for controlling a Roomba vacuum cleaner....

  1. Longitudinal Control for Mengshi Autonomous Vehicle via Gauss Cloud Model

    Directory of Open Access Journals (Sweden)

    Hongbo Gao

    2017-12-01

    Full Text Available Dynamic robustness and stability control is a requirement for self-driving of autonomous vehicle. Longitudinal control technique of autonomous vehicle is basic theory and one key complex technique which must have the reliability and precision of vehicle controller. The longitudinal control technique is one of the foundations of the safety and stability of autonomous vehicle control. In our paper, we present a longitudinal control algorithm based on cloud model for Mengshi autonomous vehicle to ensure the dynamic stability and tracking performance of Mengshi autonomous vehicle. The longitudinal control algorithm mainly uses cloud model generator to control the acceleration of the autonomous vehicle to achieve the goal that controls the speed of Mengshi autonomous vehicle. The proposed longitudinal control algorithm based on cloud model is verified by real experiments on Highway driving scene. The experiments results of the acceleration and speed show that the algorithm is validity and stability.

  2. Computer controlled motor vehicle battery circuit

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, W.R.; McAuiliffe, G.N.; Schlageter, G.A.

    1986-04-01

    This patent consists of a motor vehicle having a DC motor, a pedal biased to a released position and depressed by the driver to increase speed. An alternate switching means affects the vehicle speed control, a foot switch is operated by the pedal and operative when the pedal is depressed to close a circuit enabling energization of the alternate switching means. A microprocessor includes a program for controlling operation of the alternate switching means, the foot switch is operative when the pedal is released to open the enabling circuit. The program includes a register which is incremented with each passage of the logic and is responsive to the incremented count in the register to instruct a change in position of the alternate switching means.

  3. Rail Vehicle Vibrations Control Using Parameters Adaptive PID Controller

    Directory of Open Access Journals (Sweden)

    Muzaffer Metin

    2014-01-01

    Full Text Available In this study, vertical rail vehicle vibrations are controlled by the use of conventional PID and parameters which are adaptive to PID controllers. A parameters adaptive PID controller is designed to improve the passenger comfort by intuitional usage of this method that renews the parameters online and sensitively under variable track inputs. Sinusoidal vertical rail misalignment and measured real rail irregularity are considered as two different disruptive effects of the system. Active vibration control is applied to the system through the secondary suspension. The active suspension application of rail vehicle is examined by using 5-DOF quarter-rail vehicle model by using Manchester benchmark dynamic parameters. The new parameters of adaptive controller are optimized by means of genetic algorithm toolbox of MATLAB. Simulations are performed at maximum urban transportation speed (90 km/h of the rail vehicle with ±5% load changes of rail vehicle body to test the robustness of controllers. As a result, superior performance of parameters of adaptive controller is determined in time and frequency domain.

  4. Automation and traction control of articulated vehicles

    OpenAIRE

    Andersson, Ulf

    2013-01-01

    Articulated machines such as load-haul-dump machines, wheel loaders and haulers operate in many different environments and driving conditions. In particular they need to be able to perform well with road conditions and loads that can change drastically, setting hard requirements on performances and robustness. The control challenges for off-road vehicles are hence quite different from standard cars or trucks, which mostly drive on regular roads. An important aspect characterising this is the ...

  5. Fault Tolerant Autonomous Lateral Control for Heavy Vehicles

    OpenAIRE

    Talbot, Craig Matthew; Papadimitriou, Iakovos; Tomizuka, Masayoshi

    2004-01-01

    This report summarizes the research results of TO4233, "Fault Tolerant Autonomous Lateral Control for Heavy Vehicles". This project represents a continuing effort of PATH's research on Automated Highway Systems (AHS) and more specifically in the area of heavy vehicles. Research on the lateral control of heavy vehicles for AHS has been going on at PATH since 1993. MOU129, "Steering and Braking Control of Heavy Duty Vehicles" was the first project and it was followed by MOU242, "Lateral Control...

  6. Autonomous control of a locomotion vehicle

    International Nuclear Information System (INIS)

    Ichikawa, Yoshiaki; Senoh, Makoto; Miyata, Kenji

    1984-01-01

    A path planner and an execution system are proposed for autonomous vehicle control. The planner creates a near shortest path avoiding obstacles that are represented by combinations of circles and line segments on a two dimensional map. For realizing real time execution, path search procedures employ a heuristic pruning strategies in selecting a node to expand and in generating successor nodes. Nodes are selected for expansion in order, according to a cost assigned to each node. The cost is mainly evaluated by approximating a path length from the initial node to the goal node. In order to expand a node and to generate successor nodes, a specific search procedure is activated that finds positions avoiding obstacles in the direction of the goal, and creates successor nodes corresponding to the positions. The execution system, utilizing an ultrasonic range finder equipped to the vehicle performs a plan repair against unknown obstacles when echoes from the obstacles are observed. The plan repair is conducted by a map edition and replanning in such a way that new circles representing the echoes are added to the map. Obstacle avoidance tests with a vehicle controlled by microprocessors demonstrate the utility of heuristics just outlined. (author)

  7. Electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, Susan R.

    1995-01-01

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

  8. Electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, S.R.

    1995-09-12

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

  9. Resonant mode controllers for launch vehicle applications

    Science.gov (United States)

    Schreiner, Ken E.; Roth, Mary Ellen

    1992-01-01

    Electro-mechanical actuator (EMA) systems are currently being investigated for the National Launch System (NLS) as a replacement for hydraulic actuators due to the large amount of manpower and support hardware required to maintain the hydraulic systems. EMA systems in weight sensitive applications, such as launch vehicles, have been limited to around 5 hp due to system size, controller efficiency, thermal management, and battery size. Presented here are design and test data for an EMA system that competes favorably in weight and is superior in maintainability to the hydraulic system. An EMA system uses dc power provided by a high energy density bipolar lithium thionyl chloride battery, with power conversion performed by low loss resonant topologies, and a high efficiency induction motor controlled with a high performance field oriented controller to drive a linear actuator.

  10. Stability Control of Vehicle Emergency Braking with Tire Blowout

    OpenAIRE

    Chen, Qingzhang; Liu, Youhua; Li, Xuezhi

    2014-01-01

    For the stability control and slowing down the vehicle to a safe speed after tire failure, an emergency automatic braking system with independent intellectual property is developed. After the system has received a signal of tire blowout, the automatic braking mode of the vehicle is determined according to the position of the failure tire and the motion state of vehicle, and a control strategy for resisting tire blowout additional yaw torque and deceleration is designed to slow down vehicle to...

  11. Tensegrity Models and Shape Control of Vehicle Formations

    OpenAIRE

    Nabet, Benjamin; Leonard, Naomi Ehrich

    2009-01-01

    Using dynamic models of tensegrity structures, we derive provable, distributed control laws for stabilizing and changing the shape of a formation of vehicles in the plane. Tensegrity models define the desired, controlled, multi-vehicle system dynamics, where each node in the tensegrity structure maps to a vehicle and each interconnecting strut or cable in the structure maps to a virtual interconnection between vehicles. Our method provides a smooth map from any desired planar formation shape ...

  12. Traffic Information Unit, Traffic Information System, Vehicle Management System, Vehicle, and Method of Controlling a Vehicle

    NARCIS (Netherlands)

    Papp, Z.; Doodeman, G.J.N.; Nelisse, M.W.; Sijs, J.; Theeuwes, J.A.C.; Driessen, B.J.F.

    2010-01-01

    A traffic information unit (MD1, MD2, MD3) according to the invention comprises a facility (MI) for tracking vehicle state information of individual vehicles present at a traffic infrastructure and a facility (T) for transmitting said vehicle state information to a vehicle (70B, 70E). A traffic

  13. Automotive Control Systems: For Engine, Driveline, and Vehicle

    Science.gov (United States)

    Kiencke, Uwe; Nielsen, Lars

    Advances in automotive control systems continue to enhance safety and comfort and to reduce fuel consumption and emissions. Reflecting the trend to optimization through integrative approaches for engine, driveline, and vehicle control, this valuable book enables control engineers to understand engine and vehicle models necessary for controller design, and also introduces mechanical engineers to vehicle-specific signal processing and automatic control. The emphasis on measurement, comparisons between performance and modeling, and realistic examples derive from the authors' unique industrial experience

  14. Sensing and control for autonomous vehicles applications to land, water and air vehicles

    CERN Document Server

    Pettersen, Kristin; Nijmeijer, Henk

    2017-01-01

    This edited volume includes thoroughly collected on sensing and control for autonomous vehicles. Guidance, navigation and motion control systems for autonomous vehicles are increasingly important in land-based, marine and aerial operations. Autonomous underwater vehicles may be used for pipeline inspection, light intervention work, underwater survey and collection of oceanographic/biological data. Autonomous unmanned aerial systems can be used in a large number of applications such as inspection, monitoring, data collection, surveillance, etc. At present, vehicles operate with limited autonomy and a minimum of intelligence. There is a growing interest for cooperative and coordinated multi-vehicle systems, real-time re-planning, robust autonomous navigation systems and robust autonomous control of vehicles. Unmanned vehicles with high levels of autonomy may be used for safe and efficient collection of environmental data, for assimilation of climate and environmental models and to complement global satellite sy...

  15. Robust adaptive control for Unmanned Aerial Vehicles

    Science.gov (United States)

    Kahveci, Nazli E.

    The objective of meeting higher endurance requirements remains a challenging task for any type and size of Unmanned Aerial Vehicles (UAVs). According to recent research studies significant energy savings can be realized through utilization of thermal currents. The navigation strategies followed across thermal regions, however, are based on rather intuitive assessments of remote pilots and lack any systematic path planning approaches. Various methods to enhance the autonomy of UAVs in soaring applications are investigated while seeking guarantees for flight performance improvements. The dynamics of the aircraft, small UAVs in particular, are affected by the environmental conditions, whereas unmodeled dynamics possibly become significant during aggressive flight maneuvers. Besides, the demanded control inputs might have a magnitude range beyond the limits dictated by the control surface actuators. The consequences of ignoring these issues can be catastrophic. Supporting this claim NASA Dryden Flight Research Center reports considerable performance degradation and even loss of stability in autonomous soaring flight tests with the subsequent risk of an aircraft crash. The existing control schemes are concluded to suffer from limited performance. Considering the aircraft dynamics and the thermal characteristics we define a vehicle-specific trajectory optimization problem to achieve increased cross-country speed and extended range of flight. In an environment with geographically dispersed set of thermals of possibly limited lifespan, we identify the similarities to the Vehicle Routing Problem (VRP) and provide both exact and approximate guidance algorithms for the navigation of automated UAVs. An additional stochastic approach is used to quantify the performance losses due to incorrect thermal data while dealing with random gust disturbances and onboard sensor measurement inaccuracies. One of the main contributions of this research is a novel adaptive control design with

  16. Hybrid vehicle optimal control : Linear interpolation and singular control

    NARCIS (Netherlands)

    Delprat, S.; Hofman, T.

    2015-01-01

    Hybrid vehicle energy management can be formulated as an optimal control problem. Considering that the fuel consumption is often computed using linear interpolation over lookup table data, a rigorous analysis of the necessary conditions provided by the Pontryagin Minimum Principle is conducted. For

  17. Performance evaluation and design of flight vehicle control systems

    CERN Document Server

    Falangas, Eric T

    2015-01-01

    This book will help students, control engineers and flight dynamics analysts to model and conduct sophisticated and systemic analyses of early flight vehicle designs controlled with multiple types of effectors and to design and evaluate new vehicle concepts in terms of satisfying mission and performance goals. Performance Evaluation and Design of Flight Vehicle Control Systems begins by creating a dynamic model of a generic flight vehicle that includes a range of elements from airplanes and launch vehicles to re-entry vehicles and spacecraft. The models may include dynamic effects dealing with structural flexibility, as well as dynamic coupling between structures and actuators, propellant sloshing, and aeroelasticity, and they are typically used for control analysis and design. The book shows how to efficiently combine different types of effectors together, such as aero-surfaces, TVC, throttling engines and RCS, to operate as a system by developing a mixing logic atrix. Methods of trimming a vehicle controll...

  18. Eye Movements Affect Postural Control in Young and Older Females.

    Science.gov (United States)

    Thomas, Neil M; Bampouras, Theodoros M; Donovan, Tim; Dewhurst, Susan

    2016-01-01

    Visual information is used for postural stabilization in humans. However, little is known about how eye movements prevalent in everyday life interact with the postural control system in older individuals. Therefore, the present study assessed the effects of stationary gaze fixations, smooth pursuits, and saccadic eye movements, with combinations of absent, fixed and oscillating large-field visual backgrounds to generate different forms of retinal flow, on postural control in healthy young and older females. Participants were presented with computer generated visual stimuli, whilst postural sway and gaze fixations were simultaneously assessed with a force platform and eye tracking equipment, respectively. The results showed that fixed backgrounds and stationary gaze fixations attenuated postural sway. In contrast, oscillating backgrounds and smooth pursuits increased postural sway. There were no differences regarding saccades. There were also no differences in postural sway or gaze errors between age groups in any visual condition. The stabilizing effect of the fixed visual stimuli show how retinal flow and extraocular factors guide postural adjustments. The destabilizing effect of oscillating visual backgrounds and smooth pursuits may be related to more challenging conditions for determining body shifts from retinal flow, and more complex extraocular signals, respectively. Because the older participants matched the young group's performance in all conditions, decreases of posture and gaze control during stance may not be a direct consequence of healthy aging. Further research examining extraocular and retinal mechanisms of balance control and the effects of eye movements, during locomotion, is needed to better inform fall prevention interventions.

  19. Dynamic Surface Control and Its Application to Lateral Vehicle Control

    Directory of Open Access Journals (Sweden)

    Bongsob Song

    2014-01-01

    Full Text Available This paper extends the design and analysis methodology of dynamic surface control (DSC in Song and Hedrick, 2011, for a more general class of nonlinear systems. When rotational mechanical systems such as lateral vehicle control and robot control are considered for applications, sinusoidal functions are easily included in the equation of motions. If such a sinusoidal function is used as a forcing term for DSC, the stability analysis faces the difficulty due to highly nonlinear functions resulting from the low-pass filter dynamics. With modification of input variables to the filter dynamics, the burden of mathematical analysis can be reduced and stability conditions in linear matrix inequality form to guarantee the quadratic stability via DSC are derived for the given class of nonlinear systems. Finally, the proposed design and analysis approach are applied to lateral vehicle control for forward automated driving and backward parallel parking at a low speed as well as an illustrative example.

  20. Longitudinal Control for Mengshi Autonomous Vehicle via Cloud Model

    Science.gov (United States)

    Gao, H. B.; Zhang, X. Y.; Li, D. Y.; Liu, Y. C.

    2018-03-01

    Dynamic robustness and stability control is a requirement for self-driving of autonomous vehicle. Longitudinal control method of autonomous is a key technique which has drawn the attention of industry and academe. In this paper, we present a longitudinal control algorithm based on cloud model for Mengshi autonomous vehicle to ensure the dynamic stability and tracking performance of Mengshi autonomous vehicle. An experiments is applied to test the implementation of the longitudinal control algorithm. Empirical results show that if the longitudinal control algorithm based Gauss cloud model are applied to calculate the acceleration, and the vehicles drive at different speeds, a stable longitudinal control effect is achieved.

  1. Controlling Unmanned Vehicles : the Human Factors Solution

    NARCIS (Netherlands)

    Erp, J.B.F. van

    2000-01-01

    Recent developments and experiences have proven the usefulness and potential of Unmanned Vehicles (UVs). Emerging technologies enable new missions, broadening the applicability of UVs from simple remote spies towards unmanned combat vehicles carrying lethal weapons. However, despite the emerging

  2. Predictive cruise control in hybrid electric vehicles

    NARCIS (Netherlands)

    Keulen, T. van; Naus, M.J.G.; Jager, B. de; Molengraft, G.J.L. van de; Steinbuch, M.; Aneke, N.P.I.

    2009-01-01

    Deceleration rates have considerable influence on the fuel economy of hybrid electric vehicles. Given the vehicle characteristics and actual/measured operating conditions, as well as upcoming route information, optimal velocity trajectories can be constructed that maximize energy recovery. To

  3. Obstacle Avoidance Control Design: An Experimental Evaluation in Vehicle Platooning

    NARCIS (Netherlands)

    Goos, J.; Alirezaei, M.; Semsar-Kazerooni, E.; Ploeg, J.

    2016-01-01

    In this paper, an obstacle avoidance controller (OA) based on the impedance control method is developed. The main goal of the OA controller is to guarantee robust gap making for a merging vehicle within a platoon of vehicles which are longitudinally automated. The proposed OA controller is developed

  4. Evolving intelligent vehicle control using multi-objective NEAT

    NARCIS (Netherlands)

    Willigen, W.H. van; Haasdijk, E.; Kester, L.J.H.M.

    2013-01-01

    The research in this paper is inspired by a vision of intelligent vehicles that autonomously move along motorways: they join and leave trains of vehicles (platoons), overtake other vehicles, etc. We propose a multi-objective algorithm based on NEAT and SPEA2 that evolves controllers for such

  5. Control of Multiple Robotic Sentry Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Feddema, J.; Klarer, P.; Lewis, C.

    1999-04-01

    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories is developing and testing the feasibility of using of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform surround and diversion tasks. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight ''Roving All Terrain Lunar Explorer Rover'' (RATLER{trademark}) vehicles, a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. We have also demonstrated the ability to drive multiple vehicles in formation via tele-operation or by waypoint GPS navigation. This is currently being extended to include mission planning capabilities. At the base-station, the operator can draw on an aerial map the goal regions to be surrounded and the repulsive regions to be avoided. A potential field path planner automatically generates a path from the vehicles' current position to the goal regions while avoiding the repulsive regions and the other vehicles. This path is previewed to the operator before the regions are downloaded to the vehicles. The same potential field path planner resides on the vehicle, except additional repulsive forces from on-board proximity sensors guide the vehicle away from unplanned obstacles.

  6. The adaptive cruise control vehicles in the cellular automata model

    International Nuclear Information System (INIS)

    Jiang Rui; Wu Qingsong

    2006-01-01

    This Letter presented a cellular automata model where the adaptive cruise control vehicles are modelled. In this model, the constant time headway policy is adopted. The fundamental diagram is presented. The simulation results are in good agreement with the analytical ones. The mixture of ACC vehicles with manually driven vehicles is investigated. It is shown that with the introduction of ACC vehicles, the jam can be suppressed

  7. Fractional Control of An Active Four-wheel-steering Vehicle

    Science.gov (United States)

    Wang, Tianting; Tong, Jun; Chen, Ning; Tian, Jie

    2018-03-01

    A four-wheel-steering (4WS) vehicle model and reference model with a drop filter are constructed. The decoupling of 4WS vehicle model is carried out. And a fractional PIλDμ controller is introduced into the decoupling strategy to reduce the effects of the uncertainty of the vehicle parameters as well as the unmodelled dynamics on the system performance. Based on optimization techniques, the design of fractional controller are obtained to ensure the robustness of 4WS vehicle during the special range of frequencies through proper choice of the constraints. In order to compare with fractional robust controller, an optimal controller for the same vehicle is also designed. The simulations of the two control systems are carried out and it reveals that the decoupling and fractional robust controller is able to make vehicle model trace the reference model very well with better robustness.

  8. Automated mixed traffic vehicle control and scheduling study

    Science.gov (United States)

    Peng, T. K. C.; Chon, K.

    1976-01-01

    The operation and the expected performance of a proposed automatic guideway transit system which uses low speed automated mixed traffic vehicles (AMTVs) were analyzed. Vehicle scheduling and headway control policies were evaluated with a transit system simulation model. The effect of mixed traffic interference on the average vehicle speed was examined with a vehicle pedestrian interface model. Control parameters regulating vehicle speed were evaluated for safe stopping and passenger comfort. Some preliminary data on the cost and operation of an experimental AMTV system are included. These data were the result of a separate task conducted at JPL, and were included as background information.

  9. Adaptive Control Allocation for Fault Tolerant Overactuated Autonomous Vehicles

    Science.gov (United States)

    2007-11-01

    Tolerant Overactuated Autonomous Vehicles Casavola, A.; Garone, E. (2007) Adaptive Control Allocation for Fault Tolerant Overactuated Autonomous ...Adaptive Control Allocation for Fault Tolerant Overactuated Autonomous Vehicles 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Tolerant Overactuated Autonomous Vehicles 3.2 - 2 RTO-MP-AVT-145 UNCLASSIFIED/UNLIMITED Control allocation problem (CAP) - Given a virtual input v(t

  10. A Queueing Model for Supervisory Control of Unmanned Autonomous Vehicles

    Science.gov (United States)

    2013-09-01

    Autonomous Vehicles Joseph DiVita, PhD Robert L. Morris Maria Olinda Rodas SSC Pacific Approved...298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 09–2013 Final A Queueing Model for Supervisory Control of Unmanned Autonomous Vehicles Joseph...Mission Area: Command and Control, Queueing Model; Supervisory Control; Unmanned Autonomous Vehicles M. O. Rodas U U U U 38 (619)

  11. Multiple-Vehicle Longitudinal Collision Mitigation by Coordinated Brake Control

    Directory of Open Access Journals (Sweden)

    Xiao-Yun Lu

    2014-01-01

    Full Text Available Rear-end collision often leads to serious casualties and traffic congestion. The consequences are even worse for multiple-vehicle collision. Many previous works focused on collision warning and avoidance strategies of two consecutive vehicles based on onboard sensor detection only. This paper proposes a centralized control strategy for multiple vehicles to minimize the impact of multiple-vehicle collision based on vehicle-to-vehicle communication technique. The system is defined as a coupled group of vehicles with wireless communication capability and short following distances. The safety relationship can be represented as lower bound limit on deceleration of the first vehicle and upper bound on maximum deceleration of the last vehicle. The objective is to determine the desired deceleration for each vehicle such that the total impact energy is minimized at each time step. The impact energy is defined as the relative kinetic energy between a consecutive pair of vehicles (approaching only. Model predictive control (MPC framework is used to formulate the problem to be constrained quadratic programming. Simulations show its effectiveness on collision mitigation. The developed algorithm has the potential to be used for progressive market penetration of connected vehicles in practice.

  12. Fuzzy logic control of vehicle suspensions with dry friction nonlinearity

    Indian Academy of Sciences (India)

    Fuzzy logic control; active vehicle suspension; suspension space. 1. ... surface unevenness, stability and directional control during handling ..... Burton A W, Truscott A J, Wellstead P E 1995 Analysis, modeling and control of an advanced.

  13. Piecewise affine control for fast unmanned ground vehicles

    OpenAIRE

    Benine Neto , André; Grand , Christophe

    2012-01-01

    International audience; Unmanned ground vehicles (UGV) may experience skidding when moving at high speeds, and therefore have its safety jeopardized. For this reason the nonlinear dynamics of lateral tire forces must be taken into account into the design of steering controllers for autonomous vehicles. This paper presents the design of a state feedback piecewise affine controller applied to an UGV to coordinate the steering and torque distribution inputs in order to reduce vehicle skidding on...

  14. Cooperative Control of Distributed Autonomous Vehicles in Adversarial Environments

    Science.gov (United States)

    2006-08-14

    COOPERATIVE CONTROL OF DISTRIBUTED AUTONOMOUS VEHICLES IN ADVERSARIAL ENVIRONMENTS Grant #F49620–01–1–0361 Final Report Jeff Shamma Department of...CONTRACT NUMBER F49620-01-1-0361 5b. GRANT NUMBER 4. TITLE AND SUBTITLE COOPERATIVE CONTROL OF DISTRIBUTED AUTONOMOUS VEHICLES IN...single dominant language or a distribution of languages. A relation to multivehicle systems is understanding how highly autonomous vehicles on extended

  15. Tasking and control of a squad of robotic vehicles

    Science.gov (United States)

    Lewis, Christopher L.; Feddema, John T.; Klarer, Paul

    2001-09-01

    Sandia National Laboratories have developed a squad of robotic vehicles as a test-bed for investigating cooperative control strategies. The squad consists of eight RATLER vehicles and a command station. The RATLERs are medium-sized all-electric vehicles containing a PC104 stack for computation, control, and sensing. Three separate RF channels are used for communications; one for video, one for command and control, and one for differential GPS corrections. Using DGPS and IR proximity sensors, the vehicles are capable of autonomously traversing fairly rough terrain. The control station is a PC running Windows NT. A GUI has been developed that allows a single operator to task and monitor all eight vehicles. To date, the following mission capabilities have been demonstrated: 1. Way-Point Navigation, 2. Formation Following, 3. Perimeter Surveillance, 4. Surround and Diversion, and 5. DGPS Leap Frog. This paper describes the system and briefly outlines each mission capability. The DGPS Leap Frog capability is discussed in more detail. This capability is unique in that it demonstrates how cooperation allows the vehicles to accurately navigate beyond the RF communication range. One vehicle stops and uses its corrected GPS position to re-initialize its receiver to become the DGPS correction station for the other vehicles. Error in position accumulates each time a new vehicle takes over the DGPS duties. The accumulation in error is accurately modeled as a random walk phenomenon. This paper demonstrates how useful accuracy can be maintained beyond the vehicle's range.

  16. Controlling active cabin suspensions in commercial vehicles

    NARCIS (Netherlands)

    Evers, W.J.E.; Besselink, I.J.M.; Teerhuis, A.P.; Knaap, van der A.C.M.; Nijmeijer, H.

    2009-01-01

    The field of automotive suspensions is changing. Semi-active and active suspensions are starting to become viable options for vehicle designers. Suspension design for commercial vehicles is especially interesting given its potential. An active cabin suspension for a heavy-duty truck is considered,

  17. AUTOMATED COMPUTER SYSTEM OF VEHICLE VOICE CONTROL

    Directory of Open Access Journals (Sweden)

    A. Kravchenko

    2009-01-01

    Full Text Available Domestic cars and foreign analogues are considered. Failings are marked related to absence of the auxiliary electronic system which serves for the increase of safety and comfort of vehicle management. Innovative development of the complex system of vocal management which provides reliability, comfort and simplicity of movement in a vehicle is offered.

  18. Acupuncture for dry eye: a randomised controlled trial protocol

    Directory of Open Access Journals (Sweden)

    Kim Ae-Ran

    2009-12-01

    Full Text Available Abstract Background Dry eye is usually managed by conventional medical interventions such as artificial tears, anti-inflammatory drugs and surgical treatment. However, since dry eye is one of the most frequent ophthalmologic disorders, safer and more effective methods for its treatment are necessary, especially for vulnerable patients. Acupuncture has been widely used to treat patients with dry eye. Our aim is to evaluate the effectiveness and safety of acupuncture for this condition. Methods/Design A randomised, patient-assessor blinded, sham (non-acupuncture point, shallow acupuncture controlled study was established. Participants allocated to verum acupuncture and sham acupuncture groups will be treated three times weekly for three weeks for a total of nine sessions per participant. Seventeen points (GV23; bilateral BL2, GB4, TE23, Ex1 (Taiyang, ST1 and GB20; and left SP3, LU9, LU10 and HT8 for men, right for women have been selected for the verum acupuncture; for the sham acupuncture, points have been selected that do not coincide with a classical acupuncture point and that are located close to the verum points, except in the case of the rim of the eye. Ocular surface disease index, tear film breakup time, the Schirmer I test, medication quantification scale and general assessment of improvement will be used as outcome variables for evaluating the effectiveness of acupuncture. Safety will also be assessed at every visit. Primary and secondary outcomes will be assessed four weeks after screening. All statistical analyses will be performed using analysis of covariance. Discussion The results of this trial will be used as a basis for clarifying the efficacy of acupuncture for dry eye. Trial registration ClinicalTrials.gov NCT00969280.

  19. Intelligent Control Of An Electric Vehicle ICEV

    Directory of Open Access Journals (Sweden)

    Taoufik Chaouachi

    2017-01-01

    Full Text Available The electric vehicle allows fast gentle quiet and environmentally friendly movements in industrial and urban environments. The automotive industry has seen the opportunity to revive its production by replacing existing vehicles due to the reluctance of oil reserves around the world. In order to greatly reduce countries dependence on oil strategic sectors such as transport must increasingly integrate technologies based primarily on clean and renewable energy. Governments must implement large-scale measures to equip themselves with electric vehicles and build large recharge networks. The traditional system for conversions of conventional vehicles into electric vehicles consists of replacing the internal combustion engine and the gearbox with electrical components engine and gearbox or engine and gearbox retaining the rest of the elements Transmission transmission shafts etc..

  20. Decentralized Receding Horizon Control and Coordination of Autonomous Vehicle Formations

    NARCIS (Netherlands)

    Keviczky, T.; Borelli, F.; Fregene, K.; Godbole, D.; Bals, G.J.

    2008-01-01

    This paper describes the application of a novel methodology for high-level control and coordination of autonomous vehicle teams and its demonstration on high-fidelity models of the organic air vehicle developed at Honeywell Laboratories. The scheme employs decentralized receding horizon controllers

  1. Safety problems in vehicles with adaptive cruise control system

    Directory of Open Access Journals (Sweden)

    Yadav Arun K.

    2017-06-01

    Full Text Available In today’s world automotive industries are still putting efforts towards more autonomous vehicles (AVs. The main concern of introducing the autonomous technology is safety of driver. According to a survey 90% of accidents happen due to mistake of driver. The adaptive cruise control system (ACC is a system which combines cruise control with a collision avoidance system. The ACC system is based on laser and radar technologies. This system is capable of controlling the velocity of vehicle automatically to match the velocity of car, bus or truck in front of vehicle. If the lead vehicle gets slow down or accelerate, than ACC system automatically matches that velocity. The proposed paper is focusing on more accurate methods of detecting the preceding vehicle by using a radar and lidar sensors by considering the vehicle side slip and by controlling the distance between two vehicles. By using this approach i.e. logic for calculation of former vehicle distance and controlling the throttle valve of ACC equipped vehicle, an improvement in driving stability was achieved. The own contribution results with fuel efficient driving and with more safer and reliable driving system, but still some improvements are going on to make it more safe and reliable.

  2. Preview control of vehicle suspension system featuring MR shock absorber

    Energy Technology Data Exchange (ETDEWEB)

    Seong, M S; Choi, S B [Smart Structures and Systems Laboratory, Department of Mechanical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Cho, M W [Precision Manufacturing and Inspection Laboratory, Department of Mechanical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Lee, H G [Department of Automotive Engineering, Daeduk College, Daejeon, 305-715 (Korea, Republic of)], E-mail: seungbok@inha.ac.kr

    2009-02-01

    This paper presents control performance evaluation of optimal preview control algorithm for vehicle suspension featuring MR shock absorber. The optimal preview control algorithm has several advantages such as high control performance over that which is best for a non-preview system. In order to achieve this goal, a commercial MR shock absorber, Delphi MganerideTM, which is applicable to high class passenger vehicle, is adopted and its field-dependent damping force and dynamic responses are experimentally evaluated. Then the governing equation of motion for the full-vehicle model is established and integrated with the MR shock absorber. Subsequently, optimal controller with preview control algorithm is formulated and implemented for vibration suppression of the car body. Control performance of the preview controller is evaluated for the full-vehicle model under random road condition. In addition, the control performances depending on preview distances are evaluated.

  3. Preview control of vehicle suspension system featuring MR shock absorber

    International Nuclear Information System (INIS)

    Seong, M S; Choi, S B; Cho, M W; Lee, H G

    2009-01-01

    This paper presents control performance evaluation of optimal preview control algorithm for vehicle suspension featuring MR shock absorber. The optimal preview control algorithm has several advantages such as high control performance over that which is best for a non-preview system. In order to achieve this goal, a commercial MR shock absorber, Delphi MganerideTM, which is applicable to high class passenger vehicle, is adopted and its field-dependent damping force and dynamic responses are experimentally evaluated. Then the governing equation of motion for the full-vehicle model is established and integrated with the MR shock absorber. Subsequently, optimal controller with preview control algorithm is formulated and implemented for vibration suppression of the car body. Control performance of the preview controller is evaluated for the full-vehicle model under random road condition. In addition, the control performances depending on preview distances are evaluated.

  4. The Human Eye Position Control System in a Rehabilitation Setting

    Directory of Open Access Journals (Sweden)

    Yvonne Nolan

    2005-01-01

    Full Text Available Our work at Ireland’s National Rehabilitation Hospital involves designing communication systems for people suffering from profound physical disabilities. One such system uses the electro-oculogram, which is an (x,y system of voltages picked up by pairs of electrodes placed, respectively, above and below and on either side of the eyes. The eyeball has a dc polarisation between cornea and back, arising from the photoreceptor rods and cones in the retina. As the eye rotates, the varying voltages projected onto the electrodes drive a cursor over a mimic keyboard on a computer screen. Symbols are selected with a switching action derived, for example, from a blink. Experience in using this mode of communication has given us limited facilities to study the eye position control system. We present here a resulting new feedback model for rotation in either the vertical or the horizontal plane, which involves the eyeball controlled by an agonist-antagonist muscle pair, modelled by a single equivalent bidirectional muscle with torque falling off linearly with angular velocity. We have incorporated muscle spindles and have tuned them by pole assignment associated with an optimum stability criterion.

  5. Dual motor drive vehicle speed synchronization and coordination control strategy

    Science.gov (United States)

    Huang, Hao; Tu, Qunzhang; Jiang, Chenming; Ma, Limin; Li, Pei; Zhang, Hongxing

    2018-04-01

    Multi-motor driven systems are more and more widely used in the field of electric engineering vehicles, as a result of the road conditions and the variable load of engineering vehicles, makes multi-motors synchronization coordinated control system as a key point of the development of the electric vehicle drive system. This paper based on electrical machinery transmission speed in the process of engineering vehicles headed for coordinated control problem, summarized control strategies at home and abroad in recent years, made analysis and comparison of the characteristics, finally discussed the trend of development of the multi-motor coordination control, provided a reference for synchronized control system research of electric drive engineering vehicles.

  6. Design of Launch Vehicle Flight Control Systems Using Ascent Vehicle Stability Analysis Tool

    Science.gov (United States)

    Jang, Jiann-Woei; Alaniz, Abran; Hall, Robert; Bedossian, Nazareth; Hall, Charles; Jackson, Mark

    2011-01-01

    A launch vehicle represents a complicated flex-body structural environment for flight control system design. The Ascent-vehicle Stability Analysis Tool (ASAT) is developed to address the complicity in design and analysis of a launch vehicle. The design objective for the flight control system of a launch vehicle is to best follow guidance commands while robustly maintaining system stability. A constrained optimization approach takes the advantage of modern computational control techniques to simultaneously design multiple control systems in compliance with required design specs. "Tower Clearance" and "Load Relief" designs have been achieved for liftoff and max dynamic pressure flight regions, respectively, in the presence of large wind disturbances. The robustness of the flight control system designs has been verified in the frequency domain Monte Carlo analysis using ASAT.

  7. Comparison of three control methods for an autonomous vehicle

    Science.gov (United States)

    Deshpande, Anup; Mathur, Kovid; Hall, Ernest

    2010-01-01

    The desirability and challenge of developing a completely autonomous vehicle and the rising need for more efficient use of energy by automobiles motivate this research- a study for an optimum solution to computer control of energy efficient vehicles. The purpose of this paper is to compare three control methods - mechanical, hydraulic and electric that have been used to convert an experimental all terrain vehicle to drive by wire which would eventually act as a test bed for conducting research on various technologies for autonomous operation. Computer control of basic operations in a vehicle namely steering, braking and speed control have been implemented and will be described in this paper. The output from a 3 axis motion controller is used for this purpose. The motion controller is interfaced with a software program using WSDK (Windows Servo Design Kit) as an intermediate tuning layer for tuning and parameter settings in autonomous operation. The software program is developed in C++. The voltage signal sent to the motion controller can be varied through the control program for desired results in controlling the steering motor, activating the hydraulic brakes and varying the vehicle's speed. The vehicle has been tested for its basic functionality which includes testing of street legal operations and also a 1000 mile test while running in a hybrid mode. The vehicle has also been tested for control when it is interfaced with devices such as a keyboard, joystick and sensors under full autonomous operation. The vehicle is currently being tested in various safety studies and is being used as a test bed for experiments in control courses and research studies. The significance of this research is in providing a greater understanding of conventional driving controls and the possibility of improving automobile safety by removing human error in control of a motor vehicle.

  8. Emissions control techniques applied to industrial vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Martin, B.

    2004-12-15

    As emission standards for industrial vehicles become increasingly stringent, many research projects are seeking to develop after-treatment systems. These systems will have to combine efficiency, durability and low operating cost.

  9. Automatic control of a robotic vehicle

    Science.gov (United States)

    Mcreynolds, S. R.

    1976-01-01

    Over the last several years Jet Propulsion Laboratory has been engaged in a project to develop some of the technology required to build a robotic vehicle for exploring planetary surfaces. An overview of hardware and software being developed for this project is given. Particular emphasis is placed on the description of the current design for the Vehicle System required for locomotion and the path planning algorithm.

  10. Control system and method for a hybrid electric vehicle

    Science.gov (United States)

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2001-01-01

    A vehicle system controller (20) is presented for a LSR parallel hybrid electric vehicle having an engine (10), a motor (12), wheels (14), a transmission (16) and a battery (18). The vehicle system controller (20) has a state machine having a plurality of predefined states (22-32) that represent operating modes for the vehicle. A set of rules is defined for controlling the transition between any two states in the state machine. The states (22-32) are prioritized according to driver demands, energy management concerns and system fault occurrences. The vehicle system controller (20) controls the transitions from a lower priority state to a higher priority state based on the set of rules. In addition, the vehicle system controller (20) will control a transition to a lower state from a higher state when the conditions no longer warrant staying in the current state. A unique set of output commands is defined for each state for the purpose of controlling lower level subsystem controllers. These commands serve to achieve the desire vehicle functionality within each state and insure smooth transitions between states.

  11. Marine vehicle path following using inner-outer loop control.

    Digital Repository Service at National Institute of Oceanography (India)

    Maurya, P.K.; Agular, A.P.; Pascoal, A.M.

    constraints are imposed on the motion of the vehicle. This is in striking contrast with trajectory tracking, where the reference for the vehicle motion is given explicitly in terms of ”space versus time” coordinates. This strategy is seldom pursued in practice... that its output variables can be tracked infinitely fast by the inner dynamic loop. In practice, this does not hold true. Furthermore, many vehicle suppliers equip their platforms with inner dynamic control loops for which only a general characterization...

  12. Motion modelling and control strategies of over-actuated vehicles

    OpenAIRE

    Edrén, Johannes

    2014-01-01

    With the growing concern for environmental change and uncertain oil resources, the development of new vehicle concepts will in many cases include full or partial electric propulsion. The introduction of more advanced powertrains enables vehicles that can be controlled with a variety of electric actuators, such as wheel hub motors and individual steering. With these actuators, the chassis can be enabled to adjust its properties depending on the driving situation. Manoeuvring of the vehicle, us...

  13. Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles

    OpenAIRE

    Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

    1993-01-01

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquified petroleum gas, compressed natural gas, and electricity. Vehicle emission es...

  14. Conversion of Diesel Vehicles to Electric Vehicles and Controlled by PID Controller

    OpenAIRE

    Mengi, Onur Özdal

    2017-01-01

    Internal combustion engine vehicles are the most producedand sold vehicles on the market. In recent years, interest in electric vehicleshas begun to increase, especially due to the environmental problems. In thenear future, it is estimated that gasoline and diesel vehicles will becompletely electric vehicles. For this reason, many studies have been conductedon electric vehicles. Particularly the change of the engine parts, the turningof the internal combustion part to the electric motor, and ...

  15. Connected variable speed limits control and vehicle acceleration control to resolve moving jams

    NARCIS (Netherlands)

    Wang, M.; Daamen, W.; Hoogendoorn, S.P.; Van Arem, B.

    2015-01-01

    The vision of intelligent vehicles traveling in road networks has prompted numerous concepts to control future traffic flow, one of which is the in-vehicle actuation of traffic control signals. The key of this concept is using intelligent vehicles as actuators for traffic control systems, replacing

  16. Method of controlling innovative articulation for articulated vehicle

    Directory of Open Access Journals (Sweden)

    Szumilas Mateusz

    2018-01-01

    Full Text Available Operation of an articulated vehicle is dependent on an appropriate damping action taking place in its rotary articulation. In order to analyse an impact of the control of the articulation on the motion of the vehicle a model of the vehicle with a controllable hydraulic damping system has been developed. A 90 degree turn and lane change manoeuvres were simulated using LabVIEW software. Modification of the damping parameters of the articulation, according to the velocity and articulation angle of the vehicle, proved to have a significant impact on the vehicle motion stability. Moreover, the sensor layer necessary for the control algorithm as well as the diagnostic system is described.

  17. Design of a stable fuzzy controller for an articulated vehicle.

    Science.gov (United States)

    Tanaka, K; Kosaki, T

    1997-01-01

    This paper presents a backward movement control of an articulated vehicle via a model-based fuzzy control technique. A nonlinear dynamic model of the articulated vehicle is represented by a Takagi-Sugeno fuzzy model. The concept of parallel distributed compensation is employed to design a fuzzy controller from the Takagi-Sugeno fuzzy model of the articulated vehicle. Stability of the designed fuzzy control system is guaranteed via Lyapunov approach. The stability conditions are characterized in terms of linear matrix inequalities since the stability analysis is reduced to a problem of finding a common Lyapunov function for a set of Lyapunov inequalities. Simulation results and experimental results show that the designed fuzzy controller effectively achieves the backward movement control of the articulated vehicle.

  18. Vehicle health management for guidance, navigation and control systems

    Science.gov (United States)

    Radke, Kathleen; Frazzini, Ron; Bursch, Paul; Wald, Jerry; Brown, Don

    1993-01-01

    The objective of the program was to architect a vehicle health management (VHM) system for space systems avionics that assures system readiness for launch vehicles and for space-based dormant vehicles. The platforms which were studied and considered for application of VHM for guidance, navigation and control (GN&C) included the Advanced Manned Launch System (AMLS), the Horizontal Landing-20/Personnel Launch System (HL-20/PLS), the Assured Crew Return Vehicle (ACRV) and the Extended Duration Orbiter (EDO). This set was selected because dormancy and/or availability requirements are driving the designs of these future systems.

  19. Optimal Charge control of Electric Vehicles in Electricity Markets

    DEFF Research Database (Denmark)

    Lan, Tian; Hu, Junjie; Wu, Guang

    2011-01-01

    Environment constraints, petroleum scarcity, high price on fuel resources and recent advancements in battery technology have led to emergence of Electric Vehicles (EVs). As increasing numbers of EVs enter the electricity market, these extra loads may cause peak load and need to be properly...... controlled. In this paper, an algorithm is presented for every individual vehicles to minimize the charging cost while satisfying the vehicle owner’s requirements. The algorithm is based on a given future electricity prices and uses dynamic programming. Optimization aims to find the economically optimal...... solution for each vehicle....

  20. Case control study of dry eye and related ocular surface abnormalities in Ibadan, Nigeria.

    Science.gov (United States)

    Bekibele, C O; Baiyeroju, A M; Ajaiyeoba, A; Akang, E E U; Ajayi, B G K

    2010-02-01

    Tear instability is associated with symptoms of ocular discomfort and irritation. Many patients with dry eyes remain untreated due to improper diagnoses. To identify symptoms and surface abnormalities associated with dry eyes. One hundred and fifty-six eyes of 78 subjects attending the Eye Clinic of the University College Hospital Ibadan were screened for dry eyes/tear instability using rose Bengal stain (graded 0-9), tear break-up time (TBUT), Schirmer's 1 tests, tear meniscus height and a standardised symptoms questionnaire. Grades 4-9 rose Bengal staining were considered as positive dry eye and were compared with grades 0-3 staining eyes as negative controls. Mean tear meniscus height, Schirmer's test and TBUT were lower among cases than their corresponding control eyes. The difference between the mean Schirmer's test values of cases and their controls were statistically significant (P = 0.00 for right eyes and P = 0.002 for left eyes). Rose Bengal grades were inversely correlated with the mean Schirmer's values (Pearson correlation -0.429, P = 0.05 for right eyes and -0.335, P = 0.03 for left eyes) and TBUT (Pearson correlation -0.316, P = 0.05 for right eyes and -0.212, P = 0.06 for left eyes). About 95.8% of the cases were symptomatic, as opposed to 70.4% of the controls (P = 0.01, Fisher's exact test) and 95.8% of dry right eyes compared to 61.1% of their controls had ocular surface abnormalities (P = 0.001), while 89.5% of dry left eyes compared to 62.7% of controls had surface abnormalities (P = 0.07). A close relationship exists between ocular irritation symptoms, surface abnormalities and functional evidence of tear instability. Such patients should be treated empirically or screened for dry eyes.

  1. Network Constrained Transactive Control for Electric Vehicles Integration

    DEFF Research Database (Denmark)

    Hu, Junjie; Yang, Guangya; Bindner, Henrik W.

    2015-01-01

    . This paper applies the transactive control concept to integrate electric vehicles into the power distribution system with the purpose of minimizing the charging cost of electric vehicles as well as preventing grid congestions and voltage violations. A hierarchical EV management system is proposed where three...

  2. A Fuzzy Rule-based Controller For Automotive Vehicle Guidance

    OpenAIRE

    Hessburg, Thomas; Tomizuka, Masayoshi

    1991-01-01

    A fuzzy rule-based controller is applied to lateral guidance of a vehicle for an automated highway system. The fuzzy rules, based on human drivers' experiences, are developed to track the center of a lane in the presence of external disturbances and over a range of vehicle operating conditions.

  3. Port-based Modeling and Control of Underactuated Aerial Vehicles

    NARCIS (Netherlands)

    Mersha, A.Y.; Carloni, Raffaella; Stramigioli, Stefano

    2011-01-01

    In this paper, we propose a generic model and a controller design for a class of underactuated aerial vehicles, namely for unmanned aerial vehicles whose primary support against gravity is thrust. The approach followed is based on energetic consideration and uses the formalisms of port-Hamiltonian

  4. Comparison of novel lipid-based eye drops with aqueous eye drops for dry eye: a multicenter, randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Simmons PA

    2015-04-01

    Full Text Available Peter A Simmons, Cindy Carlisle-Wilcox, Joseph G Vehige Ophthalmology Research and Development, Allergan, Inc., Irvine, CA, USA Background: Dry eye may be caused or exacerbated by deficient lipid secretion. Recently, lipid-containing artificial tears have been developed to alleviate this deficiency. Our study compared the efficacy, safety, and acceptability of lipid-containing eye drops with that of aqueous eye drops.Methods: A non-inferiority, randomized, parallel-group, investigator-masked multicenter trial was conducted. Subjects with signs and symptoms of dry eye were randomized to use one of two lipid-containing artificial tears, or one of two aqueous artificial tears. Subjects instilled assigned drops in each eye at least twice daily for 30 days. The primary efficacy analysis tested non-inferiority of a preservative-free lipid tear formulation (LT UD to a preservative-free aqueous tear formulation (AqT UD for change in Ocular Surface Disease Index (OSDI score from baseline at day 30. Secondary measures included OSDI at day 7, tear break-up time (TBUT, corneal and conjunctival staining, Schirmer’s test, acceptability and usage questionnaires, and safety assessments.Results: A total of 315 subjects were randomized and included in the analyses. Subjects reported instilling a median of three doses of study eye drops per day in all groups. At days 7 and 30, all groups showed statistically significant improvements from baseline in OSDI (P<0.001 and TBUT (P≤0.005. LT UD was non-inferior to AqT UD for mean change from baseline in OSDI score at day 30. No consistent or clinically relevant differences for the other efficacy variables were observed. Acceptability was generally similar across the groups and there was a low incidence of adverse events.Conclusion: In this heterogeneous population of dry eye subjects, there were no clinically significant differences in safety, effectiveness, and acceptability between lipid-containing artificial tears

  5. Control system and method for a hybrid electric vehicle

    Science.gov (United States)

    Tamor, Michael Alan

    2001-03-06

    Several control methods are presented for application in a hybrid electric vehicle powertrain including in various embodiments an engine, a motor/generator, a transmission coupled at an input thereof to receive torque from the engine and the motor generator coupled to augment torque provided by the engine, an energy storage device coupled to receive energy from and provide energy to the motor/generator, an engine controller (EEC) coupled to control the engine, a transmission controller (TCM) coupled to control the transmission and a vehicle system controller (VSC) adapted to control the powertrain.

  6. Wireless Control of Miniaturized Mobile Vehicle for Indoor Surveillance

    International Nuclear Information System (INIS)

    Saquib, Syed M Taha; Hameed, Sarmad; Jafri, Raza; Usman Ali, Syed M; Amin, Imran

    2013-01-01

    This work is based upon electronic automation and Smart Control techniques, which constitute the basis of Control Area Network (CAN) and Personal Area Network (PAN). Bluetooth technology has been interfaced with a programmable controller to provide multi-dimensional vehicle control. A network is proposed which contains a remote, mobile host controller and an android operating system based mobile set (Client). The client communicates with a host controller through a Bluetooth device. The system incorporates duplex communication after successful confirmation between the host and the client; the android based mobile unit controls the vehicle through the Bluetooth module

  7. Terminal Sliding Mode Tracking Controller Design for Automatic Guided Vehicle

    Science.gov (United States)

    Chen, Hongbin

    2018-03-01

    Based on sliding mode variable structure control theory, the path tracking problem of automatic guided vehicle is studied, proposed a controller design method based on the terminal sliding mode. First of all, through analyzing the characteristics of the automatic guided vehicle movement, the kinematics model is presented. Then to improve the traditional expression of terminal sliding mode, design a nonlinear sliding mode which the convergence speed is faster than the former, verified by theoretical analysis, the design of sliding mode is steady and fast convergence in the limited time. Finally combining Lyapunov method to design the tracking control law of automatic guided vehicle, the controller can make the automatic guided vehicle track the desired trajectory in the global sense as well as in finite time. The simulation results verify the correctness and effectiveness of the control law.

  8. A PEMFC hybrid electric vehicle real time control system

    Science.gov (United States)

    Sun, Hongqiao

    In recent years, environmental friendly technologies and alternative energy solutions have drawn a lot of public attentions due to global energy crisis and pollution issues. Fuel cell (FC), a technology invented almost at the same time as the internal combustion (IC) engine, is now the focus of the automotive industry again. The fuel cell vehicle (FCV) has zero emission and its efficiency is significantly higher than the conventional IC engine power vehicles. Among a variety of FCV technologies, proton exchange membrane (PEM) FC vehicle appears to be far more attractive and mature. The prototype PEMFC vehicle has been developed and demonstrated to the public by nearly all the major automotive manufacturers in recent years. However, to the interest of the public research, publications and documentations on the PEMFC vehicle technology are rarely available due to its proprietary nature, which essentially makes it a secured technology. This dissertation demonstrates a real world application of a PEMFC hybrid electric vehicle. Through presenting the vehicle design concept, developing the real time control system and generating generic operation principles, this dissertation targets at establishing the public knowledge base on this new technology. A complete PEMFC hybrid electric vehicle design, including vehicle components layout, process flow diagram, real time control system architecture, subsystem structures and control algorithms, is presented in order to help understand the whole vehicle system. The design concept is validated through the vehicle demonstration. Generic operating principles are established along with the validation process, which helps populate this emerging technology. Thereafter, further improvements and future research directions are discussed.

  9. Experiments in teleoperator and autonomous control of space robotic vehicles

    Science.gov (United States)

    Alexander, Harold L.

    1991-01-01

    A program of research embracing teleoperator and automatic navigational control of freely flying satellite robots is presented. Current research goals include: (1) developing visual operator interfaces for improved vehicle teleoperation; (2) determining the effects of different visual interface system designs on operator performance; and (3) achieving autonomous vision-based vehicle navigation and control. This research program combines virtual-environment teleoperation studies and neutral-buoyancy experiments using a space-robot simulator vehicle currently under development. Visual-interface design options under investigation include monoscopic versus stereoscopic displays and cameras, helmet-mounted versus panel-mounted display monitors, head-tracking versus fixed or manually steerable remote cameras, and the provision of vehicle-fixed visual cues, or markers, in the remote scene for improved sensing of vehicle position, orientation, and motion.

  10. Evolutional development of controlling software for agricultural vehicles and robots

    DEFF Research Database (Denmark)

    Nakanishi, Tsuneo; Jæger-Hansen, Claes Lund; Griepentrog, Hans-Werner

    Agricultural vehicles and robots expand their controlling software in size and complexity for their increasing functions. Due to repeated, ad hoc addition and modification, software gets structurally corrupted and becomes low performing, resource consuming and unreliable. This paper presents...

  11. Advanced Control System Design for Hypersonic Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Guidance and control system design for hypersonic vehicles is more challenging than their subsonic and supersonic counterparts. Some of these challenges are (i)...

  12. Vehicle-to-infrastructure program cooperative adaptive cruise control.

    Science.gov (United States)

    2015-03-01

    This report documents the work completed by the Crash Avoidance Metrics Partners LLC (CAMP) Vehicle to Infrastructure (V2I) Consortium during the project titled Cooperative Adaptive Cruise Control (CACC). Participating companies in the V2I Cons...

  13. Controller synthesis for string stability of vehicle platoons

    NARCIS (Netherlands)

    Ploeg, J.; Shukla, D.P.; Wouw, N. van de; Nijmeijer, H.

    2014-01-01

    Cooperative adaptive cruise control (CACC) allows for short-distance automatic vehicle following using intervehicle wireless communication in addition to onboard sensors, thereby potentially improving road throughput. In order to fulfill performance, safety, and comfort requirements, a CACC-equipped

  14. Traction control of an electric vehicle based on nonlinear observers

    Directory of Open Access Journals (Sweden)

    Diego A. Aligia

    2017-12-01

    Full Text Available A traction control strategy for a four-wheel electric vehicle is proposed in this paper. The strategy is based on nonlinear observers which allows estimating the maximum force that can be transmitted to the road. Knowledge of the maximum force allows controlling the slip of the driving wheels, preventing the wheel’s slippage in low-grip surfaces. The proposed strategy also allows to avoid the undesired yaw moment in the vehicle which occurs when road conditions on either side of it are dierent. This improves the eciency and the control of the vehicle, avoiding possible losses of stability that can result in risks for its occupants. Both the proposed observer and the control strategy are designed based on a dynamic rotational model of the wheel and a brush force model. Simulation results are obtained based on a complete vehicle model on the Simulink/CarSim platform.

  15. An Entry Flight Controls Analysis for a Reusable Launch Vehicle

    Science.gov (United States)

    Calhoun, Philip

    2000-01-01

    The NASA Langley Research Center has been performing studies to address the feasibility of various single-stage to orbit concepts for use by NASA and the commercial launch industry to provide a lower cost access to space. Some work on the conceptual design of a typical lifting body concept vehicle, designated VentureStar(sup TM) has been conducted in cooperation with the Lockheed Martin Skunk Works. This paper will address the results of a preliminary flight controls assessment of this vehicle concept during the atmospheric entry phase of flight. The work includes control analysis from hypersonic flight at the atmospheric entry through supersonic speeds to final approach and landing at subsonic conditions. The requirements of the flight control effectors are determined over the full range of entry vehicle Mach number conditions. The analysis was performed for a typical maximum crossrange entry trajectory utilizing angle of attack to limit entry heating and providing for energy management, and bank angle to modulation of the lift vector to provide downrange and crossrange capability to fly the vehicle to a specified landing site. Sensitivity of the vehicle open and closed loop characteristics to CG location, control surface mixing strategy and wind gusts are included in the results. An alternative control surface mixing strategy utilizing a reverse aileron technique demonstrated a significant reduction in RCS torque and fuel required to perform bank maneuvers during entry. The results of the control analysis revealed challenges for an early vehicle configuration in the areas of hypersonic pitch trim and subsonic longitudinal controllability.

  16. Improving the Lane Reference Detection for Autonomous Road Vehicle Control

    Directory of Open Access Journals (Sweden)

    Felipe Jiménez

    2016-01-01

    Full Text Available Autonomous road vehicles are increasingly becoming more important and there are several techniques and sensors that are being applied for vehicle control. This paper presents an alternative system for maintaining the position of autonomous vehicles without adding additional elements to the standard sensor architecture, by using a 3D laser scanner for continuously detecting a reference element in situations in which the GNSS receiver fails or provides accuracy below the required level. Considering that the guidance variables are more accurately estimated when dealing with reference points in front of and behind the vehicle, an algorithm based on vehicle dynamics mathematical model is proposed to extend the detected points in cases where the sensor is placed at the front of the vehicle. The algorithm has been tested when driving along a lane delimited by New Jersey barriers at both sides and the results show a correct behaviour. The system is capable of estimating the reference element behind the vehicle with sufficient accuracy when the laser scanner is placed at the front of it, so the robustness of the control input variables (lateral and angular errors estimation is improved making it unnecessary to place the sensor on the vehicle roof or to introduce additional sensors.

  17. Uranium solubility and solubility controls in selected Needle's Eye groundwaters

    International Nuclear Information System (INIS)

    Falck, W.E.; Hooker, P.J.

    1991-01-01

    The solubility control of uranium in selected groundwater samples from the cliff and sediments at the Needle's Eye natural analogue site is investigated using the speciation code PHREEQE and the CHEMVAL thermodynamic database (release 3). Alkali-earth bearing uranyl carbonate secondary minerals are likely to exert influence on the solubility . Other candidates are UO 2 and arsenates, depending on the prevailing redox conditions. In the absence of literature data, solubility products for important arsenates have been estimated from analogy with other arsenates and phosphates. Phosphates themselves are unlikely to exert control owing to their comparatively high solubilities. The influence of seawater flooding into the sediments is also discussed. The importance of uranyl arsenates in the retardation of uranium in shallow sediments has been demonstrated in theory, but there are some significant gaps in the thermodynamic databases used. (author)

  18. Flight Vehicle Control and Aerobiological Sampling Applications

    OpenAIRE

    Techy, Laszlo

    2009-01-01

    Aerobiological sampling using unmanned aerial vehicles (UAVs) is an exciting research field blending various scientific and engineering disciplines. The biological data collected using UAVs helps to better understand the atmospheric transport of microorganisms. Autopilot-equipped UAVs can accurately sample along pre-defined flight plans and precisely regulated altitudes. They can provide even greater utility when they are networked together in coordinated sampling missions: such measurements ...

  19. Adaptive powertrain control for plugin hybrid electric vehicles

    Science.gov (United States)

    Kedar-Dongarkar, Gurunath; Weslati, Feisel

    2013-10-15

    A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.

  20. Comparison for aphasic and control subjects of eye movements hypothesized in neurolinguistic programming.

    Science.gov (United States)

    Dooley, K O; Farmer, A

    1988-08-01

    Neurolinguistic programming's hypothesized eye movements were measured independently using videotapes of 10 nonfluent aphasic and 10 control subjects matched for age and sex. Chi-squared analysis indicated that eye-position responses were significantly different for the groups. Although earlier research has not supported the hypothesized eye positions for normal subjects, the present findings support the contention that eye-position responses may differ between neurologically normal and aphasic individuals.

  1. Realistic control considerations for electromagnetically levitated urban transit vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Billing, J R

    1976-04-01

    A discussion is given of realistic control considerations of suspension dynamics and vehicle/guideway interaction for electromagnetically-levitated urban transit vehicles in the context of revenue applications. The emphasis is on safety, reliability, and maintainability rather than performance. An example urban transit system is described, and the following considerations of dynamics and control are examined: stability, magnet force requirements, magnet airgap requirements, vehicle ride, and component failures. It is shown that it is a formidable problem to ensure suspension stability under all conditions; that operation on curves is a critical magnet and control system design case; that operation of the magnets in the non-linear regime is unavoidable and that component failures will be a major problem. However, good vehicle ride is to be expected. It is concluded that magnetic levitation suspension technology requires substantial development effort before it can be considered suitable for revenue operation.

  2. Signal processing and control challenges for smart vehicles

    Science.gov (United States)

    Zhang, Hui; Braun, Simon G.

    2017-03-01

    Smart phones have changed not only the mobile phone market but also our society during the past few years. Could the next potential intelligent device may be the vehicle? Judging by the visibility, in all media, of the numerous attempts to develop autonomous vehicles, this is certainly one of the logical outcomes. Smart vehicles would be equipped with an advanced operating system such that the vehicles could communicate with others, optimize the operation to reduce fuel consumption and emissions, enhance safety, or even become self-driving. These combined new features of vehicles require instrumentation and hardware developments, fast signal processing/fusion, decision making and online optimization. Meanwhile, the inevitable increasing system complexity would certainly challenges the control unit design.

  3. Nonlinear Analysis and Intelligent Control of Integrated Vehicle Dynamics

    Directory of Open Access Journals (Sweden)

    C. Huang

    2014-01-01

    Full Text Available With increasing and more stringent requirements for advanced vehicle integration, including vehicle dynamics and control, traditional control and optimization strategies may not qualify for many applications. This is because, among other factors, they do not consider the nonlinear characteristics of practical systems. Moreover, the vehicle wheel model has some inadequacies regarding the sideslip angle, road adhesion coefficient, vertical load, and velocity. In this paper, an adaptive neural wheel network is introduced, and the interaction between the lateral and vertical dynamics of the vehicle is analyzed. By means of nonlinear analyses such as the use of a bifurcation diagram and the Lyapunov exponent, the vehicle is shown to exhibit complicated motions with increasing forward speed. Furthermore, electric power steering (EPS and active suspension system (ASS, which are based on intelligent control, are used to reduce the nonlinear effect, and a negotiation algorithm is designed to manage the interdependences and conflicts among handling stability, driving smoothness, and safety. Further, a rapid control prototype was built using the hardware-in-the-loop simulation platform dSPACE and used to conduct a real vehicle test. The results of the test were consistent with those of the simulation, thereby validating the proposed control.

  4. Vehicle rollover risk and electronic stability control systems.

    Science.gov (United States)

    MacLennan, P A; Marshall, T; Griffin, R; Purcell, M; McGwin, G; Rue, L W

    2008-06-01

    Electronic stability control (ESC) systems were developed to reduce motor vehicle collisions (MVCs) caused by loss of control. Introduced in Europe in 1995 and in the USA in 1996, ESC is designed to improve vehicle lateral stability by electronically detecting and automatically assisting drivers in unfavorable situations. To examine the relationship between vehicle rollover risk and presence of ESC using a large national database of MVCs. A retrospective cohort study for the period 1995 through 2006 was carried out using data obtained from the National Automotive Sampling System General Estimates System. All passenger cars and sport utility vehicles (SUVs)/vans of model year 1996 and later were eligible. Vehicle ESC (unavailable, optional, standard) was determined on the basis of make, model, and model year. Risk ratios (RRs) and 95% CIs were calculated to compare rollover risk by vehicle ESC group. For all crashes, vehicles equipped with standard ESC had decreased risk of rollover (RR = 0.62, 95% CI 0.50 to 0.77) compared with vehicles with ESC unavailable. The association was consistent for single-vehicle MVCs (RR = 0.61, 95% CI 0.46 to 0.82); passenger cars had decreased rollover risk (RR = 0.77, 95% CI 0.52 to 1.12), but SUVs/vans had a more dramatically decreased risk (RR = 0.40, 95% CI 0.26 to 0.61). This study supports previous results showing ESC to be effective in reducing the risk of rollover. ESC is more effective in SUVs/vans for rollovers related to single-vehicle MVCs.

  5. H∞ control of a remotely operated underwater vehicle

    International Nuclear Information System (INIS)

    Conte, G.; Serrani, A.

    1994-01-01

    The paper discusses the application of H∞ control techniques to the design of a control system for a remotely operated underwater vehicle. As the main problem in defining a control strategy for such vehicles is the nonlinear and uncertain nature of the modeled dynamics, the robustness properties of H∞ controllers can in principle be used to provide stability and nominal performances for the closed loop system. Therefore, a control strategy based on a scheduling of such controllers has been proposed, and the overall performance of the closed loop system have been evaluated by means of nonlinear simulation in a broad range of working conditions, with particular attention to the effects of the underwater current that acts on the vehicle

  6. Method of Controlling Steering of a Ground Vehicle

    Science.gov (United States)

    Dawson, Andrew D. (Inventor); Bluethmann, William J. (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Guo, Raymond (Inventor); Atluri, Venkata Prasad (Inventor)

    2016-01-01

    A method of controlling steering of a vehicle through setting wheel angles of a plurality of modular electronic corner assemblies (eModules) is provided. The method includes receiving a driving mode selected from a mode selection menu. A position of a steering input device is determined in a master controller. A velocity of the vehicle is determined, in the master controller, when the determined position of the steering input device is near center. A drive mode request corresponding to the selected driving mode to the plurality of steering controllers is transmitted to the master controller. A required steering angle of each of the plurality of eModules is determined, in the master controller, as a function of the determined position of the steering input device, the determined velocity of the vehicle, and the selected first driving mode. The eModules are set to the respective determined steering angles.

  7. H∞ control for path tracking of autonomous underwater vehicle motion

    Directory of Open Access Journals (Sweden)

    Lin-Lin Wang

    2015-05-01

    Full Text Available In order to simplify the design of path tracking controller and solve the problem relating to nonlinear dynamic model of autonomous underwater vehicle motion planning, feedback linearization method is first adopted to transform the nonlinear dynamic model into an equivalent pseudo-linear dynamic model in horizontal coordinates. Then considering wave disturbance effect, mixed-sensitivity method of H∞ robust control is applied to design state-feedback controller for this equivalent dynamic model. Finally, control law of pseudo-linear dynamic model is transformed into state (surge velocity and yaw angular rate tracking control law of nonlinear dynamic model through inverse coordinate transformation. Simulation indicates that autonomous underwater vehicle path tracking is successfully implemented with this proposed method, and the influence of parameter variation in autonomous underwater vehicle dynamic model on its tracking performance is reduced by H∞ controller. All the results show that the method proposed in this article is effective and feasible.

  8. 78 FR 32223 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards

    Science.gov (United States)

    2013-05-29

    ...-OAR-2011-0135; FRL-9818-5] RIN 2060-A0 Control of Air Pollution From Motor Vehicles: Tier 3 Motor... extension of the public comment period for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards'' (the proposed rule is hereinafter referred to as...

  9. Electric and hybrid vehicle environmental control subsystem study

    Science.gov (United States)

    Heitner, K. L.

    1980-01-01

    An environmental control subsystem (ECS) in electric and hybrid vehicles is studied. A combination of a combustion heater and gasoline engine (Otto cycle) driven vapor compression air conditioner is selected. The combustion heater, the small gasoline engine, and the vapor compression air conditioner are commercially available. These technologies have good cost and performance characteristics. The cost for this ECS is relatively close to the cost of current ECS's. Its effect on the vehicle's propulsion battery is minimal and the ECS size and weight do not have significant impact on the vehicle's range.

  10. Vibrations control of light rail transportation vehicle via PID type fuzzy controller using parameters adaptive method

    OpenAIRE

    METİN, Muzaffer; GÜÇLÜ, Rahmi

    2014-01-01

    In this study, a conventional PID type fuzzy controller and parameter adaptive fuzzy controller are designed to control vibrations actively of a light rail transport vehicle which modeled as 6 degree-of-freedom system and compared performances of these two controllers. Rail vehicle model consists of a passenger seat and its suspension system, vehicle body, bogie, primary and secondary suspensions and wheels. The similarity between mathematical model and real system is shown by compar...

  11. Optimization of an Intelligent Controller for an Unmanned Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    M. Fauzi Nor Shah

    2011-08-01

    Full Text Available Underwater environment poses a difficult challenge for autonomous underwater navigation. A standard problem of underwater vehicles is to maintain it position at a certain depth in order to perform desired operations. An effective controller is required for this purpose and hence the design of a depth controller for an unmanned underwater vehicle is described in this paper. The control algorithm is simulated by using the marine guidance navigation and control simulator. The project shows a radial basis function metamodel can be used to tune the scaling factors of a fuzzy logic controller. By using offline optimization approach, a comparison between genetic algorithm and metamodeling has been done to minimize the integral square error between the set point and the measured depth of the underwater vehicle. The results showed that it is possible to obtain a reasonably good error using metamodeling approach in much a shorter time compared to the genetic algorithm approach.

  12. A new controller for battery-powered electric vehicles

    Science.gov (United States)

    Belsterling, C. A.; Stone, J.

    1980-01-01

    This paper describes the development, under a NASA/DOE contract, of a new concept for efficient and reliable control of battery-powered vehicles. It avoids the detrimental effects of pulsed-power controllers like the SCR 'chopper' by using rotating machines to meter continuous currents to the traction motor. The concept is validated in a proof-of-principle demonstration system and a complete vehicle is simulated on an analog computer. Test results show exceptional promise for a full-scale system. Optimum control strategies to minimize controller weight are developed by means of the simulated vehicle. The design for an Engineering Model is then prepared in the form of a practical, compact two-bearing package with forced air cooling. Predicted performance is outstanding, with controller efficiency of over 90% at high speed.

  13. Vehicle Dynamics Control of In-wheel Electric Motor Drive Vehicles Based on Averaging of Tire Force Usage

    Science.gov (United States)

    Masaki, Nobuo; Iwano, Haruo; Kamada, Takayoshi; Nagai, Masao

    For in-wheel electric motor drive vehicles, a new vehicle dynamics control which is based on the tire force usage rate is proposed. The new controller adopts non-linear optimal control could manage the interference between direct yaw-moment control and the tire force usage rate. The new control is considered total longitudinal and transverse tire force. Therefore the controller can prevent tire force saturation near tire force limit during cornering. Simulations and test runs by the custom made four wheel drive in-wheel motor electric vehicle show that higher driving stability performance compared to the performance of the same vehicle without control.

  14. The Control of Switched Reluctance Motor in Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    2014-05-01

    Full Text Available The control of SRM was discussed: current chopping control, angle position control. This paper presents an inverter circuit and a fuzzy sliding mode control method to minimize the torque fluctuation and noise of the SRM. Based on the experimental results, Using the inverter circuit and fuzzy sliding mode control method can effectively minimize the torque fluctuation and noise of the SRM, For the switched reluctance motor applications in electric vehicles to provide a theoretical basis.

  15. A new electronic control system for unmanned underwater vehicles

    OpenAIRE

    Molina Molina, J.C.; Guerrero González, A.; Gilabert, J.

    2015-01-01

    In this paper a new electronic control system for unmanned underwater vehicles is presented. This control system is characterized by a distribution in control over two network of type CANBus and Ethernet. This new electronic control system integrates functionalities of AUVs, as the automatic execution of preprogrammed trajectories. The control system also integrates an acoustic positioning system based on USBL. The information of relative positioning is sent through specific...

  16. Intelligent Traffic Control System Implementation for Traffic Violation Control, Congestion Control and Stolen Vehicle Detection

    Directory of Open Access Journals (Sweden)

    Swarup Suresh Kulkarni

    2017-07-01

    Full Text Available Traffic is significant issue in our nation, particularly in urban ranges. Aftereffect of this, activity clog issue happens. Crisis vehicle like rescue vehicle, fire unit, squad cars confront bunches of issue to achieve their goal on account of congested driving conditions, coming about loss of human lives. To minimize this issue we approach new idea name as ”Traffic control framework for blockage control and stolen Vehicle location”. In this framework activity freedom done by transforming Red flag into Green flag. We demonstrate idea of what is called ”Green wave”. Alongside this, we distinguish stolen vehicle by utilizing extremely advantageous RFID innovation. In the event that stolen vehicle is been distinguished, the framework gives ready sign through ringer. Framework sends Message with the assistance of GSM to Police station. In this framework we Use diverse RFID labels for recognizing rescue vehicle, stolen Vehicles. On the off chance that Red flag is on and IR sensor is initiated, then framework gives ringer alarm to movement police. This is novel framework which encourage great answer for comprehend traffic clog.

  17. Military Hybrid Vehicle Optimization and Control

    Science.gov (United States)

    2012-08-14

    Iep S 2 lep K R 2 ) T ( S 2 K R2 ) We + + lgp (R+S) + lvp (R+S) = e Igp (R+S) + Ivp (R+S) - CR STg KRTm ---+ (2) Ivp... Iep = Ic + Ie B = 4Rbatt Cbatt C = T + 1\\1! R. . f + 0.5 Cd Rtire3 apw/ fb t1re r 9 K 2 and the vehicle constants are defined as: Unclass·ified...3_ + lvpRWr + 2IvpSwr +. IvpS2 wr + IvpS2 w,.] lep K Iep K Iep I< R lgp K R Iep K Iep I< Iep K R Igp I< R b = R W + S W + C R + Iep S 2 we + Iep K

  18. Dynamic tensegrity based cooperative control of uninhabited vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Sook Yen; Naeem, Wasif [Queen' s Univ., Belfast (United Kingdom). School of Electronics, Electrical Engineering and Computer Science

    2013-07-01

    A new formation control methodology is presented in this paper. The proposed technique is modelled by using the concept of cross-tensegrity structures. The main task is to regulate the desired formation of a group of vehicles and to perform point-to-point manoeuvring in the plane. The position of the controlled vehicles in the formation changes with respect to the admissible tendon forces by varying the lengths of bars in the dynamic tensegrity structure modelling. This change of bars' dimensions for geometric transformation is not possible in the application of tensegrity concept in the physical structural engineering. It has been demonstrated that this control method allows more flexibility over a wide range of different shape switching tasks using the predictable tendon control forces under the limited communication's range. The proposed approach is also scalable to any number of pairs of autonomous vehicles in the formation.

  19. Robust on-off pulse control of flexible space vehicles

    Science.gov (United States)

    Wie, Bong; Sinha, Ravi

    1993-01-01

    The on-off reaction jet control system is often used for attitude and orbital maneuvering of various spacecraft. Future space vehicles such as the orbital transfer vehicles, orbital maneuvering vehicles, and space station will extensively use reaction jets for orbital maneuvering and attitude stabilization. The proposed robust fuel- and time-optimal control algorithm is used for a three-mass spacing model of flexible spacecraft. A fuel-efficient on-off control logic is developed for robust rest-to-rest maneuver of a flexible vehicle with minimum excitation of structural modes. The first part of this report is concerned with the problem of selecting a proper pair of jets for practical trade-offs among the maneuvering time, fuel consumption, structural mode excitation, and performance robustness. A time-optimal control problem subject to parameter robustness constraints is formulated and solved. The second part of this report deals with obtaining parameter insensitive fuel- and time- optimal control inputs by solving a constrained optimization problem subject to robustness constraints. It is shown that sensitivity to modeling errors can be significantly reduced by the proposed, robustified open-loop control approach. The final part of this report deals with sliding mode control design for uncertain flexible structures. The benchmark problem of a flexible structure is used as an example for the feedback sliding mode controller design with bounded control inputs and robustness to parameter variations is investigated.

  20. A trajectory tracking controller for an underwater hexapod vehicle.

    Science.gov (United States)

    Plamondon, N; Nahon, M

    2009-09-01

    This paper describes work done in the modeling and control of a low speed underwater vehicle that uses paddles instead of thrusters to move in the water. A review of previously modeled vehicles and of controller designs for underwater applications is presented. Then, a method to accurately predict the thrust produced by an oscillating flexible paddle is developed and validated. This is followed by the development of a method to determine the ideal paddle motion to produce a desired thrust. Several controllers are then developed and tested using a numerical simulation of the vehicle. We found that some model-based controllers could improve the performance of the system while others showed no benefit. Finally, we report results from experimental trials performed in an open water environment comparing the performance of the controllers. The experimental results showed that all the model-based controllers outperform the simple proportional-derivative controller. The controller giving the best performance was the model-based nonlinear controller. We also found that the vehicle was able to follow a change of a roll angle of 90 degrees in 0.7 s and to precisely follow a sinusoidal trajectory with a period of 6.28 s and an amplitude of 5 degrees.

  1. A trajectory tracking controller for an underwater hexapod vehicle

    International Nuclear Information System (INIS)

    Plamondon, N; Nahon, M

    2009-01-01

    This paper describes work done in the modeling and control of a low speed underwater vehicle that uses paddles instead of thrusters to move in the water. A review of previously modeled vehicles and of controller designs for underwater applications is presented. Then, a method to accurately predict the thrust produced by an oscillating flexible paddle is developed and validated. This is followed by the development of a method to determine the ideal paddle motion to produce a desired thrust. Several controllers are then developed and tested using a numerical simulation of the vehicle. We found that some model-based controllers could improve the performance of the system while others showed no benefit. Finally, we report results from experimental trials performed in an open water environment comparing the performance of the controllers. The experimental results showed that all the model-based controllers outperform the simple proportional-derivative controller. The controller giving the best performance was the model-based nonlinear controller. We also found that the vehicle was able to follow a change of a roll angle of 90 deg. in 0.7 s and to precisely follow a sinusoidal trajectory with a period of 6.28 s and an amplitude of 5 deg.

  2. Eagle i-Bot: An Eye-controlled System

    Directory of Open Access Journals (Sweden)

    Onindita Afrin

    2013-01-01

    Full Text Available Hundreds of millions of people in the world are hand impaired in some way, and for many, there is no absolute solution. Operation of computers by physically disabled people; especially with hand impairment was quite impossible till now because use of hands plays a vital role in the use of mouse, touch pad and keyboard. We proposed a new system named as “Eagle i-Bot - An eye-controlled system” which has come with a feasible solution for this scenario. With this system, computers and robots can be controlled by the pair of eyes’ movement or iris movement and voice commands control all the mouse events. This system works with image processing system based on Voila-Jones algorithm and modified Ada-boost algorithms along with java robot class and sphinx-4 frameworks. In this paper, this system is described including software and hardware aspects, algorithms that are used and scopes where Eagle i-Bot can be used.

  3. Reduced Attitude Control of a Robotic Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Bláha Lukáš

    2017-01-01

    Full Text Available This paper deals with stabilization and reduced attitude control of a robotic underwater vehicle. The vehicle is assumed to be able to perform a full stable rotations around all axes in underwater space, that is why the standard bottom-heavy structure is not used. The system preferably uses a vectored-thrust arrangement and is built as an overactuated system, which enables to gain a better robustness and guarantees a stable controlled motion even if some thruster suddenly stop working. Because the heading angle cannot be measured, the reduced attitude control strategy is designed and the stability of reduced state of the system is proved using perturbation method.

  4. Route-Based Control of Hybrid Electric Vehicles: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J. D.

    2008-01-01

    Today's hybrid electric vehicle controls cannot always provide maximum fuel savings over all drive cycles. Route-based controls could improve HEV fuel efficiency by 2%-4% and help save nearly 6.5 million gallons of fuel annually.

  5. Learning feedforward controller for a mobile robot vehicle

    NARCIS (Netherlands)

    Starrenburg, J.G.; Starrenburg, J.G.; van Luenen, W.T.C.; van Luenen, W.T.C.; Oelen, W.; Oelen, W.; van Amerongen, J.

    1996-01-01

    This paper describes the design and realisation of an on-line learning posetracking controller for a three-wheeled mobile robot vehicle. The controller consists of two components. The first is a constant-gain feedback component, designed on the basis of a second-order model. The second is a learning

  6. Optimal Vibration Control for Tracked Vehicle Suspension Systems

    Directory of Open Access Journals (Sweden)

    Yan-Jun Liang

    2013-01-01

    Full Text Available Technique of optimal vibration control with exponential decay rate and simulation for vehicle active suspension systems is developed. Mechanical model and dynamic system for a class of tracked vehicle suspension vibration control is established and the corresponding system of state space form is described. In order to prolong the working life of suspension system and improve ride comfort, based on the active suspension vibration control devices and using optimal control approach, an optimal vibration controller with exponential decay rate is designed. Numerical simulations are carried out, and the control effects of the ordinary optimal controller and the proposed controller are compared. Numerical simulation results illustrate the effectiveness of the proposed technique.

  7. Relating Eye Activity Measures to Human Controller Remnant Characteristics

    NARCIS (Netherlands)

    Popovici, A; Zaal, P.M.T.; Pool, D.M.; Mulder, M.; Sawaragi, T

    2016-01-01

    This study attempts to partially explain the characteristics of the human perceptual remnant, following Levison’s representation of the remnant as an equivalent observation noise. Eye activity parameters are recorded using an eye tracker in two compensatory tracking tasks in which the visual

  8. Gain Scheduling for the Orion Launch Abort Vehicle Controller

    Science.gov (United States)

    McNamara, Sara J.; Restrepo, Carolina I.; Madsen, Jennifer M.; Medina, Edgar A.; Proud, Ryan W.; Whitley, Ryan J.

    2011-01-01

    One of NASAs challenges for the Orion vehicle is the control system design for the Launch Abort Vehicle (LAV), which is required to abort safely at any time during the atmospheric ascent portion of ight. The focus of this paper is the gain design and scheduling process for a controller that covers the wide range of vehicle configurations and flight conditions experienced during the full envelope of potential abort trajectories from the pad to exo-atmospheric flight. Several factors are taken into account in the automation process for tuning the gains including the abort effectors, the environmental changes and the autopilot modes. Gain scheduling is accomplished using a linear quadratic regulator (LQR) approach for the decoupled, simplified linear model throughout the operational envelope in time, altitude and Mach number. The derived gains are then implemented into the full linear model for controller requirement validation. Finally, the gains are tested and evaluated in a non-linear simulation using the vehicles ight software to ensure performance requirements are met. An overview of the LAV controller design and a description of the linear plant models are presented. Examples of the most significant challenges with the automation of the gain tuning process are then discussed. In conclusion, the paper will consider the lessons learned through out the process, especially in regards to automation, and examine the usefulness of the gain scheduling tool and process developed as applicable to non-Orion vehicles.

  9. Model Predictive Control for Connected Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Kaijiang Yu

    2015-01-01

    Full Text Available This paper presents a new model predictive control system for connected hybrid electric vehicles to improve fuel economy. The new features of this study are as follows. First, the battery charge and discharge profile and the driving velocity profile are simultaneously optimized. One is energy management for HEV for Pbatt; the other is for the energy consumption minimizing problem of acc control of two vehicles. Second, a system for connected hybrid electric vehicles has been developed considering varying drag coefficients and the road gradients. Third, the fuel model of a typical hybrid electric vehicle is developed using the maps of the engine efficiency characteristics. Fourth, simulations and analysis (under different parameters, i.e., road conditions, vehicle state of charge, etc. are conducted to verify the effectiveness of the method to achieve higher fuel efficiency. The model predictive control problem is solved using numerical computation method: continuation and generalized minimum residual method. Computer simulation results reveal improvements in fuel economy using the proposed control method.

  10. Feedback control for a train-like vehicle

    International Nuclear Information System (INIS)

    Micaelli, A.

    1994-01-01

    This paper presents a feedback nonlinear control law for a train-like vehicle (TLV) used in nuclear power-station maintenance. The front cart is either manual or automated guided. The rear carts are feedback controlled. The control objective is to ensure that the rear carts track the path produced (on-line) by the front cart. This controller was experimentally tested on the TLV-prototype. (authors). 4 figs., 4 refs

  11. Effectiveness of electronic stability control on single-vehicle accidents

    DEFF Research Database (Denmark)

    Lyckegaard, Allan; Hels, Tove; Bernhoft, Inger Marie

    2015-01-01

    the injury severity categories (slight, severe, and fatal). Conclusions: In line with previous results, this study concludes that ESC reduces the risk for single-vehicle injury accidents by 31% when controlling for various confounding factors related to the driver, the car, and the accident surroundings......Objective: This study aims at evaluating the effectiveness of electronic stability control (ESC) on single-vehicle injury accidents while controlling for a number of confounders influencing the accident risk. Methods: Using police-registered injury accidents from 2004 to 2011 in Denmark with cars...... the following were significant. For the driver: Age, gender, driving experience, valid driving license, and seat belt use. For the vehicle: Year of registration, weight, and ESC. For the accident surroundings: Visibility, light, and location. Finally, for the road: Speed limit, surface, and section...

  12. A Review Of Design And Control Of Automated Guided Vehicle Systems

    OpenAIRE

    Le-Anh, Tuan; Koster, René

    2004-01-01

    textabstractThis paper presents a review on design and control of automated guided vehicle systems. We address most key related issues including guide-path design, estimating the number of vehicles, vehicle scheduling, idle-vehicle positioning, battery management, vehicle routing, and conflict resolution. We discuss and classify important models and results from key publications in literature on automated guided vehicle systems, including often-neglected areas, such as idle-vehicle positionin...

  13. Influence of Vehicle Speed on the Characteristics of Driver's Eye Movement at a Highway Tunnel Entrance during Day and Night Conditions: A Pilot Study.

    Science.gov (United States)

    Qin, Li; Dong, Li-Li; Xu, Wen-Hai; Zhang, Li-Dong; Leon, Arturo S

    2018-04-02

    The aim of this study was to investigate how vehicle speed influences the characteristics of driver's eye movement at highway tunnel entrances during day and night. In this study, six drivers' eye movement data (from 200 m before tunnel entrance to 200 m inside tunnel entrance) under five predetermined vehicle speeds (40, 50, 60, 70 and 80 km/h) in the daytime and three predetermined vehicle speeds (40, 60 and 80 km/h) in the nighttime were recorded using the non-intrusive Dikablis Professional eye-tracking system. Pupil size, the average fixation duration time and the average number of fixation were analyzed and then the influence of the vehicle speed on these parameters was evaluated by means of IBM SPSS Statistics 20.0. The results for pupil size in daytime increased when approaching the tunnel entrance, while as for nighttime, pupil size decreased when approaching the tunnel entrance and then increased after entering the tunnel. The pupil size in daytime has a significant negative correlation with vehicle speed, while the pupil size in nighttime did not show a significant association with vehicle speed. Furthermore, the average fixation duration in daytime increased when entering the tunnel, and had a significant negative correlation with vehicle speed. Also, the average number of fixations in daytime decreased when entering the tunnel and has a significant negative correlation with vehicle speed. However, the average fixation duration and the average number of fixations in nighttime did not show any significant association with vehicle speed. Moreover, limitations and future directions of the study are discussed for the further investigation.

  14. Cooperative Control for Multiple Autonomous Vehicles Using Descriptor Functions

    Directory of Open Access Journals (Sweden)

    Marta Niccolini

    2014-01-01

    Full Text Available The paper presents a novel methodology for the control management of a swarm of autonomous vehicles. The vehicles, or agents, may have different skills, and be employed for different missions. The methodology is based on the definition of descriptor functions that model the capabilities of the single agent and each task or mission. The swarm motion is controlled by minimizing a suitable norm of the error between agents’ descriptor functions and other descriptor functions which models the entire mission. The validity of the proposed technique is tested via numerical simulation, using different task assignment scenarios.

  15. Analysis and Design of Launch Vehicle Flight Control Systems

    Science.gov (United States)

    Wie, Bong; Du, Wei; Whorton, Mark

    2008-01-01

    This paper describes the fundamental principles of launch vehicle flight control analysis and design. In particular, the classical concept of "drift-minimum" and "load-minimum" control principles is re-examined and its performance and stability robustness with respect to modeling uncertainties and a gimbal angle constraint is discussed. It is shown that an additional feedback of angle-of-attack or lateral acceleration can significantly improve the overall performance and robustness, especially in the presence of unexpected large wind disturbance. Non-minimum-phase structural filtering of "unstably interacting" bending modes of large flexible launch vehicles is also shown to be effective and robust.

  16. Considering Variable Road Geometry in Adaptive Vehicle Speed Control

    Directory of Open Access Journals (Sweden)

    Xinping Yan

    2013-01-01

    Full Text Available Adaptive vehicle speed control is critical for developing Advanced Driver Assistance Systems (ADAS. Vehicle speed control considering variable road geometry has become a hotspot in ADAS research. In this paper, first, an exploration of intrinsic relationship between vehicle operation and road geometry is made. Secondly, a collaborative vehicle coupling model, a road geometry model, and an AVSC, which can respond to variable road geometry in advance, are developed. Then, based on H∞ control method and the minimum energy principle, a performance index is specified by a cost function for the proposed AVSC, which can explicitly consider variable road geometry in its optimization process. The proposed AVSC is designed by the Hamilton-Jacobi Inequality (HJI. Finally, simulations are carried out by combining the vehicle model with the road geometry model, in an aim of minimizing the performance index of the AVSC. Analyses of the simulation results indicate that the proposed AVSC can automatically and effectively regulate speed according to variable road geometry. It is believed that the proposed AVSC can be used to improve the economy, comfort, and safety effects of current ADAS.

  17. Advanced Control Method for Hypersonic Vehicles

    Data.gov (United States)

    National Aeronautics and Space Administration — This research effort aims to develop software control algorithms that will correct for roll reversal before it happens. Roll reversal occurs when an aircraft is...

  18. Advanced Control Method for Hypersonic Vehicles

    Data.gov (United States)

    National Aeronautics and Space Administration — This research effort aims to develop software control algorithms that will correct for roll reversal before it happens. Roll reversal occurs when an aircraft is...

  19. Determination of an Optimal Control Strategy for a Generic Surface Vehicle

    Science.gov (United States)

    2014-06-18

    TERMS Autonomous Vehicles Boundary Value Problem Dynamic Programming Surface Vehicles Optimal Control Path Planning 16...to follow prescribed motion trajectories. In particular, for autonomous vehicles , this motion trajectory is given by the determination of the

  20. Design of a Tele-Control Electrical Vehicle System Using a Fuzzy Logic Control

    Directory of Open Access Journals (Sweden)

    M. Boukhnifer

    2012-11-01

    Full Text Available This paper presents a fuzzy logic design of a tele-control electrical vehicle system. We showed that the application of fuzzy logic control allows the stability of tele-vehicle system in spite of communication delays between the operator and the vehicle. A robust bilateral controller design using fuzzy logic frameworks was proposed. This approach allows a convenient means to trade off robustness and stability for a pre-specified time-delay margin. Both the performance and robustness of the proposed method were demonstrated by simulation results for a constant time delay between the operator and the electrical vehicle system.

  1. 75 FR 43975 - California State Motor Vehicle and Nonroad Engine Pollution Control Standards; Truck Idling...

    Science.gov (United States)

    2010-07-27

    ... standards) for the control of emissions from new motor vehicles or new motor vehicle engines prior to March... approval relating to the control of emissions from any new motor vehicle or new motor vehicle engine as... relating to the control of emissions from new nonroad spark-ignition engines smaller than 50 horsepower...

  2. A Review Of Design And Control Of Automated Guided Vehicle Systems

    NARCIS (Netherlands)

    T. Le-Anh (Tuan); M.B.M. de Koster (René)

    2004-01-01

    textabstractThis paper presents a review on design and control of automated guided vehicle systems. We address most key related issues including guide-path design, estimating the number of vehicles, vehicle scheduling, idle-vehicle positioning, battery management, vehicle routing, and conflict

  3. Human Engineering of Space Vehicle Displays and Controls

    Science.gov (United States)

    Whitmore, Mihriban; Holden, Kritina L.; Boyer, Jennifer; Stephens, John-Paul; Ezer, Neta; Sandor, Aniko

    2010-01-01

    Proper attention to the integration of the human needs in the vehicle displays and controls design process creates a safe and productive environment for crew. Although this integration is critical for all phases of flight, for crew interfaces that are used during dynamic phases (e.g., ascent and entry), the integration is particularly important because of demanding environmental conditions. This panel addresses the process of how human engineering involvement ensures that human-system integration occurs early in the design and development process and continues throughout the lifecycle of a vehicle. This process includes the development of requirements and quantitative metrics to measure design success, research on fundamental design questions, human-in-the-loop evaluations, and iterative design. Processes and results from research on displays and controls; the creation and validation of usability, workload, and consistency metrics; and the design and evaluation of crew interfaces for NASA's Crew Exploration Vehicle are used as case studies.

  4. Vehicle-manipulator systems modeling for simulation, analysis, and control

    CERN Document Server

    From, Pal Johan; Pettersen, Kristin Ytterstad

    2014-01-01

    Furthering the aim of reducing human exposure to hazardous environments, this monograph presents a detailed study of the modeling and control of vehicle-manipulator systems. The text shows how complex interactions can be performed at remote locations using systems that combine the manipulability of robotic manipulators with the ability of mobile robots to locomote over large areas.  The first part studies the kinematics and dynamics of rigid bodies and standard robotic manipulators and can be used as an introduction to robotics focussing on robust mathematical modeling. The monograph then moves on to study vehicle-manipulator systems in great detail with emphasis on combining two different configuration spaces in a mathematically sound way. Robustness of these systems is extremely important and Modeling and Control of Vehicle-manipulator Systems effectively represents the dynamic equations using a mathematically robust framework. Several tools from Lie theory and differential geometry are used to obtain glob...

  5. Navigation control of a multi-functional eye robot

    International Nuclear Information System (INIS)

    Ali, F.A.M.; Hashmi, B.; Younas, A.; Abid, B.

    2016-01-01

    The advancement in robotic field is enhanced rigorously in the past Few decades. Robots are being used in different fields of science as well as warfare. The research shows that in the near future, robots would be able to serve in fighting wars. Different countries and their armies have already deployed several military robots. However, there exist some drawbacks of robots like their inefficiency and inability to work under abnormal conditions. Ascent of artificial intelligence may resolve this issue in the coming future. The main focus of this paper is to provide a low cost and long range most efficient mechanical as well as software design of an Eye Robot. Using a blend of robotics and image processing with an addition of artificial intelligence path navigation techniques, this project is designed and implemented by controlling the robot (including robotic arm and camera) through a 2.4 GHz RF module manually. Autonomous function of the robot includes navigation based on the path assigned to the robot. The path is drawn on a VB based application and then transferred to the robot wirelessly or through serial port. A Wi-Fi based Optical Character Recognition (OCR) implemented video streaming can also be observed at remote devices like laptops. (author)

  6. Attitude control of an orbiting space vehicle.

    Science.gov (United States)

    Sutherlin, D. W.; Boland, J. S. , III; Borelli, M. T.

    1971-01-01

    Study of the normal and clamped modes of operation and dynamic response characteristics of the gimbaled control moment gyro (CMG) designed to fulfill the stringent pointing requirements of the Skylab telescope mount when the spacecraft is under the influence of both external and internal torques. The results indicate that the clamped mode of operation provides a feasible approach for significantly improving the system characteristics.

  7. Safe Control for Spiral Recovery of Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Chang-Jian Ru

    2014-01-01

    Full Text Available With unmanned aerial vehicles (UAVs widely used in both military and civilian fields, many events affecting their safe flying have emerged. That UAV’s entering into the spiral is such a typical safety issue. To solve this safety problem, a novel recovery control approach is proposed. First, the factors of spiral are analyzed. Then, based on control scheduling of state variables and nonlinear dynamic inversion control laws, the spiral recovery controller is designed to accomplish guidance and control of spiral recovery. Finally, the simulation results have illustrated that the proposed control method can ensure the UAV autonomous recovery from spiral effectively.

  8. Systematic review of randomized controlled trials in the treatment of dry eye disease in Sjogren syndrome

    OpenAIRE

    Shih, Kendrick Co; Lun, Christie Nicole; Jhanji, Vishal; Thong, Bernard Yu-Hor; Tong, Louis

    2017-01-01

    Abstract Primary Sjögren’s syndrome is an autoimmune disease characterized by dry eye and dry mouth. We systematically reviewed all the randomized controlled clinical trials published in the last 15 years that included ocular outcomes. We found 22 trials involving 9 topical, 10 oral, 2 intravenous and 1 subcutaneous modalities of treatment. Fluoromethalone eye drops over 8 weeks were more effective than topical cyclosporine in the treatment of dry eye symptoms and signs; similarly, indomethac...

  9. Nonlinear Cascade Strategy for Longitudinal Control of Electric Vehicle.

    Science.gov (United States)

    El Majdoub, K; Giri, F; Ouadi, H; Chaoui, F Z

    2014-01-01

    The problem of controlling the longitudinal motion of front-wheels electric vehicle (EV) is considered making the focus on the case where a single dc motor is used for both front wheels. Chassis dynamics are modelled applying relevant fundamental laws taking into account the aerodynamic effects and the road slope variation. The longitudinal slip, resulting from tire deformation, is captured through Kiencke's model. Despite its highly nonlinear nature the complete model proves to be utilizable in longitudinal control design. The control objective is to achieve a satisfactory vehicle speed regulation in acceleration/deceleration stages, despite wind speed and other parameters uncertainty. An adaptive controller is developed using the backstepping design technique. The obtained adaptive controller is shown to meet its objectives in presence of the changing aerodynamics efforts and road slope.

  10. Cooperative control of a squad of mobile vehicles

    International Nuclear Information System (INIS)

    Lewis, C.; Feddema, J.; Klarer, P.

    1998-01-01

    Tasks such as the localization of chemical sources, demining, perimeter control, surveillance and search and rescue missions are usually performed by teams of people. At least conceptually, large groups of relatively cheap mobile vehicles outfitted with sensors should be able to automatically accomplish some of these tasks. Sandia National Labs is currently developing a swarm of semi-autonomous all terrain vehicles for remote cooperative sensing applications. This paper will describe the capabilities of this system and outline some of its possible applications. Cooperative control and sensing strategies will also be described. Eight Roving All Terrain Lunar Explorer Rovers (RATLERs) have been built at Sandia as a test platform for cooperative control and sensing applications. This paper will first describe the hardware capabilities of the RATLER system. Then it will describe the basic control algorithm for GPS based navigation and obstacle avoidance. A higher level cooperative control task will then be described

  11. Online Traffic Signal Control for Reducing Vehicle Carbon Dioxide Emissions

    Science.gov (United States)

    Oda, Toshihiko; Otokita, Tohru; Niikura, Satoshi

    In Japan, carbon dioxide (CO2) emissions caused by vehicles have been increasing year by year and it is well known that CO2 causes a serious global warming problem. For urban traffic control systems, there is a great demand for realization of signal control measures as soon as possible due to the urgency of the recent environmental situation. This paper describes a new traffic signal control for reducing vehicle CO2 emissions on an arterial road. First, we develop a model for estimating the emissions using the traffic delay and the number of stops a driver makes. Second, to find the optimal control parameters, we introduce a random search method with rapid convergence suitable for an online traffic control. We conduct experiments in Kawasaki to verify the effectiveness of our method. The experiments show that our approach decreases not only the emissions but also congestion and travel time significantly, compared to the method implemented in the real system.

  12. NOISE CONTROL OF VEHICLE DRIVE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Ulrich Gabbert

    2017-08-01

    Full Text Available The paper presents an overall simulation approach to control the noise emission of car engines at a very early stage of the design process where no real prototypes are available. The suggested approach combines different physical models and couples different software tools such as multi-body analysis, fluid dynamics, structural mechanics, magneto-electrodynamics, thermodynamics, acoustics and control as well. The general overall simulation methodology is presented first. Then, this methodology is applied to a combustion engine in order to improve its acoustical behavior by passive means, such as changing the stiffness and the use of damping materials to build acoustic and thermal encapsulations. The active control by applying piezoelectric patch actuators at the oil sump as the noisiest part of the engine is discussed as well. The sound emission is evaluated by hearing tests and a mathematical prediction model of the human perception. Finally, it is shown that the presented approach can be extended to electric engines, which is demonstrated at a newly developed electric wheel hub motor.

  13. Fuzzy logic control of vehicle suspensions with dry friction nonlinearity

    Indian Academy of Sciences (India)

    We design and investigate the performance of fuzzy logic-controlled (FLC) active suspensions on a nonlinear vehicle model with four degrees of freedom, without causing any degeneration in suspension working limits. Force actuators were mounted parallel to the suspensions. In this new approach, linear combinations of ...

  14. Integrated vehicle dynamics control using State Dependent Riccati Equations

    NARCIS (Netherlands)

    Bonsen, B.; Mansvelders, R.; Vermeer, E.

    2010-01-01

    In this paper we discuss a State Dependent Riccati Equations (SDRE) solution for Integrated Vehicle Dynamics Control (IVDC). The SDRE approach is a nonlinear variant of the well known Linear Quadratic Regulator (LQR) and implements a quadratic cost function optimization. A modified version of this

  15. Impact of lifestyle intervention on dry eye disease in office workers: a randomized controlled trial.

    Science.gov (United States)

    Kawashima, Motoko; Sano, Kokoro; Takechi, Sayuri; Tsubota, Kazuo

    2018-04-04

    To evaluate the effects of a 2-month lifestyle intervention for dry eye disease in office workers. Prospective interventional study (randomized controlled study). Forty-one middle-aged Japanese office workers (men, 22; women, 19; 39.2 ± 8.0 years) with definite and probable dry eye disease were enrolled and randomized to an intervention group (n = 22) and a control group (n = 19). The intervention aimed at modifying diet, increasing physical activity, and encouraging positive thinking. The primary outcome was change in dry eye disease diagnoses. Secondary outcome was change in disease parameters, including dry eye symptoms, as assessed using the Dry Eye-Related Quality of Life Score, corneal and conjunctival staining scores, tear break-up time, and Schirmer test results. A total of 36 participants (intervention group, 17; control group, 19) completed the study. The number of definite dry eye disease diagnoses decreased from four to none (p =.05), and the dry eye symptom score showed a significant decrease in the intervention group (p =.03). In contrast, the corneal and conjunctival staining scores, tear break-up time, and Schirmer test results did not differ significantly between groups. The 2-month lifestyle intervention employed in this study improved dry eye disease status among office workers, with a considerable decrease in subjective symptoms. Lifestyle intervention may be a promising management option for dry eye disease, although further investigation of long-term effects are required.

  16. Manifestation of meibomian gland dysfunction in patients with Sjögren's syndrome, non-Sjögren's dry eye, and non-dry eye controls.

    Science.gov (United States)

    Kang, Yeon Soo; Lee, Hyo Seok; Li, Ying; Choi, Won; Yoon, Kyung Chul

    2018-06-01

    To evaluate the manifestation of meibomian gland dysfunction in patients with Sjögren's syndrome (SS), non-Sjögren's syndrome dry eye (non-SS) patients, and non-dry eye controls. We recruited 31 participants with SS dry eye, 30 participants with non-SS dry eye, and 35 healthy controls without dry eye symptoms. Noninvasive tear breakup time (NITBUT) and meibomian gland dropout score (meiboscore) were measured using the Oculus Keratograph 5 M. Meibomian gland expressibility and secretion quality were evaluated via slit lamp biomicroscopy. The correlation between measurements was analyzed. NITBUT was lower, and the meiboscore, meibomian gland expressibility, and secretion quality scores were significantly higher in the SS and non-SS groups than in the control group (p dry eye controls. SS patients had more severe meibomian gland dysfunction with poorer mean meiboscore and meibomian gland expressibility than non-SS patients.

  17. A CASE OF SELF-INDUCED ACUTE HYDROPS IN A PATIENT WITH IMPULSE CONTROL DISORDER ASSOCIATED WITH COMPULSIVE EYE TRAUMA

    OpenAIRE

    Bindu Madhavi; Soumya

    2016-01-01

    PURPOSE To describe acute hydrops in a patient with impulse control disorder (not otherwise specified) secondary to self-induced repetitive eye trauma. METHODS A 22-year-old male patient was referred from a psychiatrist with a diagnosis of impulse control disorder not otherwise specified (compulsive impulse self-mutilating behaviour) for opacity and watering of both eyes (left eye more than right eye). Left eye showed features of acute hydrops with Descemet’s tear and rig...

  18. A Case-Control Study on the Oxidative Balance of 50% Autologous Serum Eye Drops

    Directory of Open Access Journals (Sweden)

    Patrícia Ioschpe Gus

    2016-01-01

    Full Text Available Importance. Autologous serum (AS eye drops are recommended for severe dry eye in patients with ocular surface disease. No description of the antioxidant balance of AS eye drops has been reported in the literature. Objective. This study sought to evaluate the total reactive antioxidant potential (TRAP and concentration of reactive oxygen species (ROS in samples of 50% AS eye drops and their correlations with the demographic characteristics and lifestyle habits of patients with ocular surface disease and healthy controls. Design. This was a case-control study with a 3-month follow-up period. Participants. 16 patients with severe dry eye disease of different etiologies and 17 healthy controls matched by age, gender, and race were included. Results. TRAP and ROS were detected at all evaluated times. There were no differences in the mean ROS (p=0.429 or TRAP (p=0.475 levels between cases and controls. No statistically significant differences in the concentrations of ROS or TRAPs were found at 0, 15, or 30 days (p for ROS = 0.087 and p for TRAP = 0.93. Neither the demographic characteristics nor the lifestyle habits were correlated with the oxidative balance of the 50% AS eye drops. Conclusions and Relevance. Both fresh and frozen 50% AS eye drops present antioxidant capacities and ROS in an apparently stable balance. Moreover, patients with ocular surface disease and normal controls produce equivalent AS eye drops in terms of oxidative properties.

  19. Development of SPIES (Space Intelligent Eyeing System) for smart vehicle tracing and tracking

    Science.gov (United States)

    Abdullah, Suzanah; Ariffin Osoman, Muhammad; Guan Liyong, Chua; Zulfadhli Mohd Noor, Mohd; Mohamed, Ikhwan

    2016-06-01

    SPIES or Space-based Intelligent Eyeing System is an intelligent technology which can be utilized for various applications such as gathering spatial information of features on Earth, tracking system for the movement of an object, tracing system to trace the history information, monitoring driving behavior, security and alarm system as an observer in real time and many more. SPIES as will be developed and supplied modularly will encourage the usage based on needs and affordability of users. SPIES are a complete system with camera, GSM, GPS/GNSS and G-Sensor modules with intelligent function and capabilities. Mainly the camera is used to capture pictures and video and sometimes with audio of an event. Its usage is not limited to normal use for nostalgic purpose but can be used as a reference for security and material of evidence when an undesirable event such as crime occurs. When integrated with space based technology of the Global Navigational Satellite System (GNSS), photos and videos can be recorded together with positioning information. A product of the integration of these technologies when integrated with Information, Communication and Technology (ICT) and Geographic Information System (GIS) will produce innovation in the form of information gathering methods in still picture or video with positioning information that can be conveyed in real time via the web to display location on the map hence creating an intelligent eyeing system based on space technology. The importance of providing global positioning information is a challenge but overcome by SPIES even in areas without GNSS signal reception for the purpose of continuous tracking and tracing capability

  20. MAINTAINING VEHICLE SPEED USING A MECHANICAL CRUISE CONTROL

    Directory of Open Access Journals (Sweden)

    Peter GIROVSKÝ

    2017-06-01

    Full Text Available In this article we would like to present cruise control realization. This cruise control is presented as mechanical device for vehicle speed maintenance and has been proposed as a low cost solution. Principle of function in mechanical cruise control is based on a position control of throttle. For the right action of mechanical cruise control it was need to solve some particular tasks related with speed sensing, construct of device for control of throttle position and design of control system of whole mechanical cruise control. Information about car velocity we have gained using Hall sensor attached on a magnetic ring of car tachometer. For control of the throttle was used a small servo drive and as the control unit was used Arduino. The designed solution of mechanical cruise control have been realized for car Škoda Felicia.

  1. Reentry Vehicle Flight Controls Design Guidelines: Dynamic Inversion

    Science.gov (United States)

    Ito, Daigoro; Georgie, Jennifer; Valasek, John; Ward, Donald T.

    2002-01-01

    This report addresses issues in developing a flight control design for vehicles operating across a broad flight regime and with highly nonlinear physical descriptions of motion. Specifically it addresses the need for reentry vehicles that could operate through reentry from space to controlled touchdown on Earth. The latter part of controlled descent is achieved by parachute or paraglider - or by all automatic or a human-controlled landing similar to that of the Orbiter. Since this report addresses the specific needs of human-carrying (not necessarily piloted) reentry vehicles, it deals with highly nonlinear equations of motion, and then-generated control systems must be robust across a very wide range of physics. Thus, this report deals almost exclusively with some form of dynamic inversion (DI). Two vital aspects of control theory - noninteracting control laws and the transformation of nonlinear systems into equivalent linear systems - are embodied in DI. Though there is no doubt that the mathematical tools and underlying theory are widely available, there are open issues as to the practicality of using DI as the only or primary design approach for reentry articles. This report provides a set of guidelines that can be used to determine the practical usefulness of the technique.

  2. Slip Ratio Estimation and Regenerative Brake Control for Decelerating Electric Vehicles without Detection of Vehicle Velocity and Acceleration

    Science.gov (United States)

    Suzuki, Toru; Fujimoto, Hiroshi

    In slip ratio control systems, it is necessary to detect the vehicle velocity in order to obtain the slip ratio. However, it is very difficult to measure this velocity directly. We have proposed slip ratio estimation and control methods that do not require the vehicle velocity with acceleration. In this paper, the slip ratio estimation and control methods are proposed without detecting the vehicle velocity and acceleration when it is decelerating. We carried out simulations and experiments by using an electric vehicle to verify the effectiveness of the proposed method.

  3. The influence of vehicle aerodynamic and control response characteristics on driver-vehicle performance

    Science.gov (United States)

    Alexandridis, A. A.; Repa, B. S.; Wierwille, W. W.

    1978-01-01

    The effects of changes in understeer, control sensitivity, and location of the lateral aerodynamic center of pressure (c.p.) of a typical passenger car on the driver's opinion and on the performance of the driver-vehicle system were studied in a moving-base driving simulator. Twelve subjects with no prior experience on the simulator and no special driving skills performed regulation tasks in the presence of both random and step wind gusts.

  4. Combined Optimal Sizing and Control for a Hybrid Tracked Vehicle

    Directory of Open Access Journals (Sweden)

    Huei Peng

    2012-11-01

    Full Text Available The optimal sizing and control of a hybrid tracked vehicle is presented and solved in this paper. A driving schedule obtained from field tests is used to represent typical tracked vehicle operations. Dynamics of the diesel engine-permanent magnetic AC synchronous generator set, the lithium-ion battery pack, and the power split between them are modeled and validated through experiments. Two coupled optimizations, one for the plant parameters, forming the outer optimization loop and one for the control strategy, forming the inner optimization loop, are used to achieve minimum fuel consumption under the selected driving schedule. The dynamic programming technique is applied to find the optimal controller in the inner loop while the component parameters are optimized iteratively in the outer loop. The results are analyzed, and the relationship between the key parameters is observed to keep the optimal sizing and control simultaneously.

  5. Complex Formation Control of Large-Scale Intelligent Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Ming Lei

    2012-01-01

    Full Text Available A new formation framework of large-scale intelligent autonomous vehicles is developed, which can realize complex formations while reducing data exchange. Using the proposed hierarchy formation method and the automatic dividing algorithm, vehicles are automatically divided into leaders and followers by exchanging information via wireless network at initial time. Then, leaders form formation geometric shape by global formation information and followers track their own virtual leaders to form line formation by local information. The formation control laws of leaders and followers are designed based on consensus algorithms. Moreover, collision-avoiding problems are considered and solved using artificial potential functions. Finally, a simulation example that consists of 25 vehicles shows the effectiveness of theory.

  6. Continuous Auditory Feedback of Eye Movements: An Exploratory Study toward Improving Oculomotor Control

    Directory of Open Access Journals (Sweden)

    Eric O. Boyer

    2017-04-01

    Full Text Available As eye movements are mostly automatic and overtly generated to attain visual goals, individuals have a poor metacognitive knowledge of their own eye movements. We present an exploratory study on the effects of real-time continuous auditory feedback generated by eye movements. We considered both a tracking task and a production task where smooth pursuit eye movements (SPEM can be endogenously generated. In particular, we used a visual paradigm which enables to generate and control SPEM in the absence of a moving visual target. We investigated whether real-time auditory feedback of eye movement dynamics might improve learning in both tasks, through a training protocol over 8 days. The results indicate that real-time sonification of eye movements can actually modify the oculomotor behavior, and reinforce intrinsic oculomotor perception. Nevertheless, large inter-individual differences were observed preventing us from reaching a strong conclusion on sensorimotor learning improvements.

  7. 76 FR 61095 - California State Motor Vehicle Pollution Control Standards; Within the Scope Determination and...

    Science.gov (United States)

    2011-10-03

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9474-5] California State Motor Vehicle Pollution Control... longer expected to produce fuel-cell vehicles to meet part of its gold vehicle credit requirements for... motor vehicle pollution control program. Because EPA has not received adverse public comment challenging...

  8. A single gene (yes controls pigmentation of eyes and scales in Heliothis virescens

    Directory of Open Access Journals (Sweden)

    Thomas M. Brown

    2001-02-01

    Full Text Available A yellow-eyed mutant was discovered in a strain of Heliothis virescens, the tobacco budworm, that already exhibited a mutation for yellow scale, y. We investigated the inheritance of these visible mutations as candidate markers for transgenesis. Yellow eye was controlled by a single, recessive, autosomal factor, the same type of inheritance previously known for y. Presence of the recombinant mutants with yellow scales with wild type eyes in test crosses indicated independent segregation of genes for these traits. The recombinant class with wild type scales and yellow eyes was completely absent and there was a corresponding increase of the double mutant parental class having yellow scales and yellow eyes. These results indicated that a single factor for yellow eye also controls yellow scales independently of y. This gene was named yes, for yellow eye and scale. We hypothesize that yes controls both eye and scale color through a deficiency in transport of pigment precursors in both the ommochrome and melanin pathways. The unlinked gene y likely controls an enzyme affecting the melanin pathway only. Both y and yes segregated independently of AceIn, acetylcholinesterase insensitivity, and sodium channel hscp, which are genes related to insecticide resistance.

  9. Controlled delivery of antiangiogenic drug to human eye tissue using a MEMS device

    KAUST Repository

    Pirmoradi, Fatemeh Nazly; Ou, Kevin; Jackson, John K.; Letchford, Kevin; Cui, Jing; Wolf, Ki Tae; Graber, Florian; Zhao, Tom; Matsubara, Joanne A.; Burt, Helen; Chiao, Mu; Lin, Liwei

    2013-01-01

    We demonstrate an implantable MEMS drug delivery device to conduct controlled and on-demand, ex vivo drug transport to human eye tissue. Remotely operated drug delivery to human post-mortem eyes was performed via a MEMS device. The developed curved

  10. Neuro-fuzzy controller to navigate an unmanned vehicle.

    Science.gov (United States)

    Selma, Boumediene; Chouraqui, Samira

    2013-12-01

    A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN).

  11. Vision-based control in driving assistance of agricultural vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Khadraoui, D.; Martinet, P.; Bonton, P.; Gallice, J. [Univ. Blaise Pascal, Aubiere (France). Lab. des Sciences et Materiaux pour l`Electronique et d`Automatique; Debain, C. [Inst. de Recherche pour l`Ingenierie de l`Agriculture et de l`Environment, Montoldre (France). Div. Techniques du Machinisme Agricole; Rouveure, R. [Inst. de Recherche pour l`Ingenierie de l`Agriculture et de l`Environment, Antony (France). Div. Electronique et Intelligence Artificielle

    1998-10-01

    This article presents a real-time control system for an agricultural mobile machine (vehicle) based on an on-board vision system using a single camera. This system has been designed to help humans in repetitive and difficult tasks in the agricultural domain. The aim of the robotics application concerns the control of the vehicle with regard to the reap limit detected in image space. The perception aspect in relation to the application has been described in previous work, and here the authors deal with the control aspect. They integrate image features issues from the modeling of the scene in the control loop to perform an image-based servoing technique. The vehicle behavior described here concerns bicycle and neural models, and three control laws are then synthesized. The first and the second are modeling approaches and use an interaction between the scene and the image space. They are based on the regulation of a task function. The third is a black-box modeling technique, and is based on a neural network. Finally, experimental results obtained with these different control laws in different conditions are presented and discussed.

  12. An Improved Car-Following Model in Vehicle Networking Based on Network Control

    Directory of Open Access Journals (Sweden)

    D. Y. Kong

    2014-01-01

    Full Text Available Vehicle networking is a system to realize information interoperability between vehicles and people, vehicles and roads, vehicles and vehicles, and cars and transport facilities, through the network information exchange, in order to achieve the effective monitoring of the vehicle and traffic flow. Realizing information interoperability between vehicles and vehicles, which can affect the traffic flow, is an important application of network control system (NCS. In this paper, a car-following model using vehicle networking theory is established, based on network control principle. The car-following model, which is an improvement of the traditional traffic model, describes the traffic in vehicle networking condition. The impact that vehicle networking has on the traffic flow is quantitatively assessed in a particular scene of one-way, no lane changing highway. The examples show that the capacity of the road is effectively enhanced by using vehicle networking.

  13. Optimal charging control of electric vehicles in smart grids

    CERN Document Server

    Tang, Wanrong

    2017-01-01

    This book introduces the optimal online charging control of electric vehicles (EVs) and battery energy storage systems (BESSs) in smart grids. The ultimate goal is to minimize the total energy cost as well as reduce the fluctuation of the total power flow caused by the integration of the EVs and renewable energy generators. Using both theoretic analysis and data-driven numerical results, the authors reveal the effectiveness and efficiency of the proposed control techniques. A major benefit of these control techniques is their practicality, since they do not rely on any non-causal knowledge of future information. Researchers, operators of power grids, and EV users will find this to be an exceptional resource. It is also suitable for advanced-level students of computer science interested in networks, electric vehicles, and energy systems.

  14. Ground control station software design for micro aerial vehicles

    Science.gov (United States)

    Walendziuk, Wojciech; Oldziej, Daniel; Binczyk, Dawid Przemyslaw; Slowik, Maciej

    2017-08-01

    This article describes the process of designing the equipment part and the software of a ground control station used for configuring and operating micro unmanned aerial vehicles (UAV). All the works were conducted on a quadrocopter model being a commonly accessible commercial construction. This article contains a characteristics of the research object, the basics of operating the micro aerial vehicles (MAV) and presents components of the ground control station model. It also describes the communication standards for the purpose of building a model of the station. Further part of the work concerns the software of the product - the GIMSO application (Generally Interactive Station for Mobile Objects), which enables the user to manage the actions and communication and control processes from the UAV. The process of creating the software and the field tests of a station model are also presented in the article.

  15. Autonomous aerial vehicles : guidance, control, signal and image processing platform

    International Nuclear Information System (INIS)

    Al-Jarrah, M.; Adiansyah, S.; Marji, Z. M.; Chowdhury, M. S.

    2011-01-01

    The use of unmanned systems is gaining momentum in civil applications after successful use by the armed forces around the globe. Autonomous aerial vehicles are important for providing assistance in monitoring highways, power grid lines, borders, and surveillance of critical infrastructures. It is envisioned that cargo shipping will be completely handled by UAVs by the 2025. Civil use of unmanned autonomous systems brings serious challenges. The need for cost effectiveness, reliability, operation simplicity, safety, and cooperation with human and with other agents are among these challenges. Aerial vehicles operating in the civilian aerospace is the ultimate goal which requires these systems to achieve the reliability of manned aircraft while maintaining their cost effectiveness. In this presentation the development of an autonomous fixed and rotary wing aerial vehicle will be discussed. The architecture of the system from the mission requirements to low level auto pilot control laws will be discussed. Trajectory tracking and path following guidance and control algorithms commonly used and their implementation using of the shelf low cost components will be presented. Autonomous takeo? landing is a key feature that was implemented onboard the vehicle to complete its degree of autonomy. This is implemented based on accurate air-data system designed and fused with sonar measurements, INS/GPS measurements, and vector field method guidance laws. The outcomes of the proposed research is that the AUS-UAV platform named MAZARI is capable of autonomous takeoff and landing based on a pre scheduled flight path using way point navigation and sensor fusion of the inertial navigation system (INS) and global positioning system (GPS). Several technologies need to be mastered when developing a UAV. The navigation task and the need to fuse sensory information to estimate the location of the vehicle is critical to successful autonomous vehicle. Currently extended Kalman filtering is

  16. Measuring Human Performance in Simulated Nuclear Power Plant Control Rooms Using Eye Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Kovesdi, Casey Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rice, Brandon Charles [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bower, Gordon Ross [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spielman, Zachary Alexander [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hill, Rachael Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States); LeBlanc, Katya Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    Control room modernization will be an important part of life extension for the existing light water reactor fleet. As part of modernization efforts, personnel will need to gain a full understanding of how control room technologies affect performance of human operators. Recent advances in technology enables the use of eye tracking technology to continuously measure an operator’s eye movement, which correlates with a variety of human performance constructs such as situation awareness and workload. This report describes eye tracking metrics in the context of how they will be used in nuclear power plant control room simulator studies.

  17. Measuring Human Performance in Simulated Nuclear Power Plant Control Rooms Using Eye Tracking

    International Nuclear Information System (INIS)

    Kovesdi, Casey Robert; Rice, Brandon Charles; Bower, Gordon Ross; Spielman, Zachary Alexander; Hill, Rachael Ann; LeBlanc, Katya Lee

    2015-01-01

    Control room modernization will be an important part of life extension for the existing light water reactor fleet. As part of modernization efforts, personnel will need to gain a full understanding of how control room technologies affect performance of human operators. Recent advances in technology enables the use of eye tracking technology to continuously measure an operator's eye movement, which correlates with a variety of human performance constructs such as situation awareness and workload. This report describes eye tracking metrics in the context of how they will be used in nuclear power plant control room simulator studies.

  18. Control of maglev vehicles with aerodynamic and guideway disturbances

    Science.gov (United States)

    Flueckiger, Karl; Mark, Steve; Caswell, Ruth; Mccallum, Duncan

    1994-01-01

    A modeling, analysis, and control design methodology is presented for maglev vehicle ride quality performance improvement as measured by the Pepler Index. Ride quality enhancement is considered through active control of secondary suspension elements and active aerodynamic surfaces mounted on the train. To analyze and quantify the benefits of active control, the authors have developed a five degree-of-freedom lumped parameter model suitable for describing a large class of maglev vehicles, including both channel and box-beam guideway configurations. Elements of this modeling capability have been recently employed in studies sponsored by the U.S. Department of Transportation (DOT). A perturbation analysis about an operating point, defined by vehicle and average crosswind velocities, yields a suitable linearized state space model for multivariable control system analysis and synthesis. Neglecting passenger compartment noise, the ride quality as quantified by the Pepler Index is readily computed from the system states. A statistical analysis is performed by modeling the crosswind disturbances and guideway variations as filtered white noise, whereby the Pepler Index is established in closed form through the solution to a matrix Lyapunov equation. Data is presented which indicates the anticipated ride quality achieved through various closed-loop control arrangements.

  19. A model predictive control approach combined unscented Kalman filter vehicle state estimation in intelligent vehicle trajectory tracking

    Directory of Open Access Journals (Sweden)

    Hongxiao Yu

    2015-05-01

    Full Text Available Trajectory tracking and state estimation are significant in the motion planning and intelligent vehicle control. This article focuses on the model predictive control approach for the trajectory tracking of the intelligent vehicles and state estimation of the nonlinear vehicle system. The constraints of the system states are considered when applying the model predictive control method to the practical problem, while 4-degree-of-freedom vehicle model and unscented Kalman filter are proposed to estimate the vehicle states. The estimated states of the vehicle are used to provide model predictive control with real-time control and judge vehicle stability. Furthermore, in order to decrease the cost of solving the nonlinear optimization, the linear time-varying model predictive control is used at each time step. The effectiveness of the proposed vehicle state estimation and model predictive control method is tested by driving simulator. The results of simulations and experiments show that great and robust performance is achieved for trajectory tracking and state estimation in different scenarios.

  20. Electronic eye occluder with time-counting and reflection control

    Science.gov (United States)

    Karitans, V.; Ozolinsh, M.; Kuprisha, G.

    2008-09-01

    In pediatric ophthalmology 2 - 3 % of all the children are impacted by a visual pathology - amblyopia. It develops if a clear image isn't presented to the retina during an early stage of the development of the visual system. A common way of treating this pathology is to cover the better-seeing eye to force the "lazy" eye to learn seeing. However, children are often reluctant to wear such an occluder because they are ashamed or simply because they find it inconvenient. This fact requires to find a way how to track the regime of occlusion because results of occlusion is a hint that the actual regime of occlusion isn't that what the optometrist has recommended. We design an electronic eye occluder that allows to track the regime of eye occlusion. We employ real-time clock DS1302 providing time information from seconds to years. Data is stored in the internal memory of the CPU (EEPROM). The MCU (PIC16F676) switches on only if a mechanical switch is closed and temperature has reached a satisfactory level. The occlusion is registered between time moments when the infrared signal appeared and disappeared.

  1. Nonlinear analysis of vehicle control actuations based on controlled invariant sets

    Directory of Open Access Journals (Sweden)

    Németh Balázs

    2016-03-01

    Full Text Available In the paper, an analysis method is applied to the lateral stabilization problem of vehicle systems. The aim is to find the largest state-space region in which the lateral stability of the vehicle can be guaranteed by the peak-bounded control input. In the analysis, the nonlinear polynomial sum-of-squares programming method is applied. A practical computation technique is developed to calculate the maximum controlled invariant set of the system. The method calculates the maximum controlled invariant sets of the steering and braking control systems at various velocities and road conditions. Illustration examples show that, depending on the environments, different vehicle dynamic regions can be reached and stabilized by these controllers. The results can be applied to the theoretical basis of their interventions into the vehicle control system.

  2. Exposure of eyes to perfume: a double-blind, placebo-controlled experiment.

    Science.gov (United States)

    Elberling, J; Duus Johansen, J; Dirksen, A; Mosbech, H

    2006-08-01

    Environmental perfume exposure can elicit bothersome respiratory symptoms. Symptoms are induced at exposure levels which most people find tolerable, and the mechanisms are unclear. The aim of the study was to investigate patients with eye and respiratory symptoms related to environmental perfume, by exposing the eyes to perfume in a double-blind, placebo-controlled study.Twenty-one eczema patients with respiratory symptoms elicited by perfume were compared with 21 healthy volunteers in a sex- and age-matched case-control study. The participants completed a symptom questionnaire, and underwent a double-blind, placebo-controlled exposure to perfume. Of the 42 individuals tested, 10 had more eye symptoms (irritation, itching, and tears) during perfume exposure than during placebo exposures, and eight of these individuals (P = 0.07, Fisher's exact test) belonged to the patient group. A true positive eye reaction to perfume was significantly associated with identification of perfume as an active exposure (P perfume elicited irritation in the eyes independently of olfaction, but the relative importance of ocular chemoperception in relation to elicitation of respiratory symptoms from common environmental exposures to perfume remains unclear. We investigated the hypothesis of an association between respiratory symptoms related to perfume and ocular perfume sensitivity by exposing the eyes to perfume in a double blind, placebo-controlled experiment. Vapors of perfume provoked symptoms in the relevant eye in some patients and healthy control persons, but under our exposure conditions, ocular chemesthesis failed to elicit respiratory symptoms.

  3. Hybrid adaptive ascent flight control for a flexible launch vehicle

    Science.gov (United States)

    Lefevre, Brian D.

    For the purpose of maintaining dynamic stability and improving guidance command tracking performance under off-nominal flight conditions, a hybrid adaptive control scheme is selected and modified for use as a launch vehicle flight controller. This architecture merges a model reference adaptive approach, which utilizes both direct and indirect adaptive elements, with a classical dynamic inversion controller. This structure is chosen for a number of reasons: the properties of the reference model can be easily adjusted to tune the desired handling qualities of the spacecraft, the indirect adaptive element (which consists of an online parameter identification algorithm) continually refines the estimates of the evolving characteristic parameters utilized in the dynamic inversion, and the direct adaptive element (which consists of a neural network) augments the linear feedback signal to compensate for any nonlinearities in the vehicle dynamics. The combination of these elements enables the control system to retain the nonlinear capabilities of an adaptive network while relying heavily on the linear portion of the feedback signal to dictate the dynamic response under most operating conditions. To begin the analysis, the ascent dynamics of a launch vehicle with a single 1st stage rocket motor (typical of the Ares 1 spacecraft) are characterized. The dynamics are then linearized with assumptions that are appropriate for a launch vehicle, so that the resulting equations may be inverted by the flight controller in order to compute the control signals necessary to generate the desired response from the vehicle. Next, the development of the hybrid adaptive launch vehicle ascent flight control architecture is discussed in detail. Alterations of the generic hybrid adaptive control architecture include the incorporation of a command conversion operation which transforms guidance input from quaternion form (as provided by NASA) to the body-fixed angular rate commands needed by the

  4. Effectiveness of electronic stability control on single-vehicle accidents.

    Science.gov (United States)

    Lyckegaard, Allan; Hels, Tove; Bernhoft, Inger Marie

    2015-01-01

    This study aims at evaluating the effectiveness of electronic stability control (ESC) on single-vehicle injury accidents while controlling for a number of confounders influencing the accident risk. Using police-registered injury accidents from 2004 to 2011 in Denmark with cars manufactured in the period 1998 to 2011 and the principle of induced exposure, 2 measures of the effectiveness of ESC were calculated: The crude odds ratio and the adjusted odds ratio, the latter by means of logistic regression. The logistic regression controlled for a number of confounding factors, of which the following were significant. For the driver: Age, gender, driving experience, valid driving license, and seat belt use. For the vehicle: Year of registration, weight, and ESC. For the accident surroundings: Visibility, light, and location. Finally, for the road: Speed limit, surface, and section characteristics. The present study calculated the crude odds ratio for ESC-equipped cars of getting in a single-vehicle injury accident as 0.40 (95% confidence interval [CI], 0.34-0.47) and the adjusted odds ratio as 0.69 (95% CI, 0.54-0.88). No difference was found in the effectiveness of ESC across the injury severity categories (slight, severe, and fatal). In line with previous results, this study concludes that ESC reduces the risk for single-vehicle injury accidents by 31% when controlling for various confounding factors related to the driver, the car, and the accident surroundings. Furthermore, it is concluded that it is important to control for human factors (at a minimum age and gender) in analyses where evaluations of this type are performed.

  5. Modelling and Simulation of Cooperative Control for Bus Rapid Transit Vehicle Platoon in a Connected Vehicle Environment

    Directory of Open Access Journals (Sweden)

    Jiahui Liu

    2017-02-01

    Full Text Available The aim of this paper is to develop a cooperative control model for improving the operational efficiency of Bus Rapid Transit (BRT vehicles. The model takes advantage of the emerging connected vehicle technology. A connected vehicle centre is established to assign a specific reservation time interval and transmit the corresponding dynamic speed guidance to each BRT vehicle. Furthermore, a set of constraints have been set up to avoid bus queuing and waiting phenomena in downstream BRT stations. Therefore, many BRT vehicles are strategically guided to form a platoon, which can pass through an intersection with no impedance. An actual signalized intersection along the Guangzhou BRT corridor is employed to verify and assess the cooperative control model in various traffic conditions. The simulation-based evaluation results demonstrate that the proposed approach can reduce delays, decrease the number of stops, and improve the sustainability of the BRT vehicles.

  6. Optimal Control of Engine Warmup in Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    van Reeven Vital

    2016-01-01

    Full Text Available An Internal Combustion Engine (ICE under cold conditions experiences increased friction losses due to a high viscosity of the lubricant. With the additional control freedom present in hybrid electric vehicles, the losses during warmup can be minimized and fuel can be saved. In this paper, firstly, a control-oriented model of the ICE, describing the warmup behavior, is developed and validated on measured vehicle data. Secondly, the two-state, non-autonomous fuel optimization, for a parallel hybrid electric vehicle with stop-start functionality, is solved using optimal control theory. The principal behavior of the Lagrange multipliers is explicitly derived, including the discontinuities (jumps that are caused by the constraints on the lubricant temperature and the energy in the battery system. The minimization of the Hamiltonian for this two-state problem is also explicitly solved, resulting in a computationally efficient algorithm. The optimal controller shows the fuel benefit, as a function of the initial temperature, for a long-haul truck simulated on the FTP-75.

  7. Development of Fuzzy Logic Control for Vehicle Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Henry Nasution

    2008-08-01

    Full Text Available A vehicle air conditioning system is experimentally investigated. Measurements were taken during the experimental period at a time interval of one minute for a set point temperature of 22, 23 and 24oC with internal heat loads of 0, 1 and 2 kW. The cabin temperature and the speed of the compressor were varied and the performance of the system, energy consumption and energy saving ware analyzed. The main objective of the experimental work is to evaluate the energy saving obtained when the fuzzy logic control (FLC algorithm, through an inverter, continuously regulates the compressor speed. It demonstrates better control of the compressor operation in terms of energy consumption as compared to the control by using a thermostat imposing On/Off cycles on the compressor at the nominal frequency of 50 Hz. The experimental set-up consists of original components from the air conditioning system of a compact passenger vehicle. The experimental results indicate that the proposed technique can save energy and improve indoor comfort significantly for vehicle air conditioning systems compared to the conventional (On/Off control technique.

  8. Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

    2013-04-01

    The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

  9. Development of wireless vehicle remote control for fuel lid operation

    Science.gov (United States)

    Sulaiman, N.; Jadin, M. S.; Najib, M. S.; Mustafa, M.; Azmi, S. N. F.

    2018-04-01

    Nowadays, the evolution of the vehicle technology had made the vehicle especially car to be equipped with a remote control to control the operation of the locking and unlocking system of the car’s door and rear’s bonnet. However, for the fuel or petrol lid, it merely can be opened from inside the car’s cabin by handling the fuel level inside the car’s cabin to open the fuel lid. The petrol lid can be closed by pushing the lid by hand. Due to the high usage of using fuel lever to open the fuel lid when refilling the fuel, the car driver might encounter the malfunction of fuel lid (fail to open) when pushing or pulling the fuel lever. Thus, the main aim of the research is to enhance the operation of an existing car remote control where the car fuel lid can be controlled using two techniques; remote control-based and smartphone-based. The remote control is constructed using Arduino microcontroller, wireless sensors and XCTU software to set the transmitting and receiving parameters. Meanwhile, the smartphone can control the operation of the fuel lid by communicating with Arduino microcontroller which is attached to the fuel lid using Bluetooth sensor to open the petrol lid. In order to avoid the conflict of instruction between wireless systems with the existing mechanical-based system, the servo motor will be employed to release the fuel lid merely after receiving the instruction from Arduino microcontroller and smartphone. As a conclusion, the prototype of the multipurpose vehicle remote control is successfully invented, constructed and tested. The car fuel lid can be opened either using remote control or smartphone in a sequential manner. Therefore, the outcome of the project can be used to serve as an alternative solution to solve the car fuel lid problem even though the problem rarely occurred.

  10. Method and system for control of upstream flowfields of vehicle in supersonic or hypersonic atmospheric flight

    Science.gov (United States)

    Daso, Endwell O. (Inventor); Pritchett, II, Victor E. (Inventor); Wang, Ten-See (Inventor); Farr, Rebecca Ann (Inventor)

    2012-01-01

    The upstream flowfield of a vehicle traveling in supersonic or hypersonic atmospheric flight is actively controlled using attribute(s) experienced by the vehicle. Sensed attribute(s) include pressure along the vehicle's outer mold line, temperature along the vehicle's outer mold line, heat flux along the vehicle's outer mold line, and/or local acceleration response of the vehicle. A non-heated, non-plasma-producing gas is injected into an upstream flowfield of the vehicle from at least one surface location along the vehicle's outer mold line. The pressure of the gas so-injected is adjusted based on the attribute(s) so-sensed.

  11. Control techniques for an automated mixed traffic vehicle

    Science.gov (United States)

    Meisenholder, G. W.; Johnston, A. R.

    1977-01-01

    The paper describes an automated mixed traffic vehicle (AMTV), a driverless low-speed tram designed to operate in mixed pedestrian and vehicular traffic. The vehicle is a six-passenger electric tram equipped with sensing and control which permit it to function on existing streets in an automatic mode. The design includes established wire-following techniques for steering and near-IR headway sensors. A 7-mph cruise speed is reduced to 2 mph or a complete stop in response to sensor (or passenger) inputs. The AMTV performance is evaluated by operation on a loop route and by simulation. Some necessary improvements involving sensors, sensor pattern, use of an audible signal, and control lag are discussed. It is suggested that appropriate modifications will eliminate collision incidents.

  12. Synthesis of the unmanned aerial vehicle remote control augmentation system

    International Nuclear Information System (INIS)

    Tomczyk, Andrzej

    2014-01-01

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system

  13. Synthesis of the unmanned aerial vehicle remote control augmentation system

    Energy Technology Data Exchange (ETDEWEB)

    Tomczyk, Andrzej, E-mail: A.Tomczyk@prz.edu.pl [Department of Avionics and Control Systems, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Al. Powstañców Warszawy 12, 35-959 Rzeszów (Poland)

    2014-12-10

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.

  14. A common control signal and a ballistic stage can explain the control of coordinated eye-hand movements.

    Science.gov (United States)

    Gopal, Atul; Murthy, Aditya

    2016-06-01

    Voluntary control has been extensively studied in the context of eye and hand movements made in isolation, yet little is known about the nature of control during eye-hand coordination. We probed this with a redirect task. Here subjects had to make reaching/pointing movements accompanied by coordinated eye movements but had to change their plans when the target occasionally changed its position during some trials. Using a race model framework, we found that separate effector-specific mechanisms may be recruited to control eye and hand movements when executed in isolation but when the same effectors are coordinated a unitary mechanism to control coordinated eye-hand movements is employed. Specifically, we found that performance curves were distinct for the eye and hand when these movements were executed in isolation but were comparable when they were executed together. Second, the time to switch motor plans, called the target step reaction time, was different in the eye-alone and hand-alone conditions but was similar in the coordinated condition under assumption of a ballistic stage of ∼40 ms, on average. Interestingly, the existence of this ballistic stage could predict the extent of eye-hand dissociations seen in individual subjects. Finally, when subjects were explicitly instructed to control specifically a single effector (eye or hand), redirecting one effector had a strong effect on the performance of the other effector. Taken together, these results suggest that a common control signal and a ballistic stage are recruited when coordinated eye-hand movement plans require alteration. Copyright © 2016 the American Physiological Society.

  15. Route-Based Signal Preemption Control of Emergency Vehicle

    Directory of Open Access Journals (Sweden)

    Haibo Mu

    2018-01-01

    Full Text Available This paper focuses on the signal preemption control of emergency vehicles (EV. A signal preemption control method based on route is proposed to reduce time delay of EV at intersections. According to the time at which EV is detected and the current phase of each intersection on the travelling route of EV, the calculation methods of the earliest start time and the latest start time of green light at each intersection are given. Consequently, the effective time range of green light at each intersection is determined in theory. A multiobjective programming model, whose objectives are the minimal residence time of EV at all intersections and the maximal passing numbers of general society vehicles, is presented. Finally, a simulation calculation is carried out. Calculation results indicate that, by adopting the signal preemption method based on route, the delay of EV is reduced and the number of society vehicles passing through the whole system is increased. The signal preemption control method of EV based on route can reduce the time delay of EV and improve the evacuation efficiency of the system.

  16. Uranium solubility and solubility controls in selected Needle's Eye groundwaters

    International Nuclear Information System (INIS)

    Falck, W.E.; Hooker, P.J.

    1992-01-01

    The British Geological Survey (BGS) has been co-ordinating a research programme centred on the Needle's Eye natural analogue site in Dumfries and Galloway District, southwest Scotland. This study of a natural radioactive geochemical system has been carried out with the aim of improving confidence in using geochemical and predictive models of radionuclide (uranium) migration in the geosphere. The Needle's Eye site is located on the Solway Coat within the Southwick Coast Reserve of the Scottish Wildlife Trust who gave permission to sample for soils, sediments and waters for analysis. This report is one of a series and covers the period from June 1989 to June 1990. It presents the results of applying the PHREEQE code to the hydrochemistry of the site using the CHEMVAL thermodynamic database. (author)

  17. Robust Design of H-infinity Controller for a Launch Vehicle Autopilot against Disturbances

    OpenAIRE

    Graells, Antonio; Carrabina, Francisco

    2016-01-01

    Atmospheric flight phase of a launch vehicle is utilized to evaluate the performance of an H-infinity controller in the presence of disturbances. Dynamics of the vehicle is linearly modeled using time-varying parameters. An operating point was found to design a robust command tracker using H-infinity control theory that guarantees a stable maneuver. At the end, the controller was employed on the launch vehicle to assess the capability of control design on the linearized aerospace vehicle. Exp...

  18. Piezoelectric composite morphing control surfaces for unmanned aerial vehicles

    Science.gov (United States)

    Ohanian, Osgar J., III; Karni, Etan D.; Olien, Chris C.; Gustafson, Eric A.; Kochersberger, Kevin B.; Gelhausen, Paul A.; Brown, Bridget L.

    2011-04-01

    The authors have explored the use of morphing control surfaces to replace traditional servo-actuated control surfaces in UAV applications. The morphing actuation is accomplished using Macro Fiber Composite (MFC) piezoelectric actuators in a bimorph configuration to deflect the aft section of a control surface cross section. The resulting camber change produces forces and moments for vehicle control. The flexible piezoelectric actuators are damage tolerant and provide excellent bandwidth. The large amplitude morphing deflections attained in bench-top experiments demonstrate the potential for excellent control authority. Aerodynamic performance calculations using experimentally measured morphed geometries indicate changes in sectional lift coefficients that are superior to a servo-actuated hinged flap airfoil. This morphing flight control actuation technology could eliminate the need for servos and mechanical linkages in small UAVs and thereby increase reliability and reduce drag.

  19. Control concepts for vehicle drive line to reduce fuel consumption

    Energy Technology Data Exchange (ETDEWEB)

    Ossyra, J.C.

    2005-07-01

    In this work advanced drive line control concepts for off-road vehicles have been developed and investigated to reduce the power losses and finally the fuel consumption of the entire drive system by use of on-line optimization procedure. Two separate closed loop speed controls have been developed for the use on a microcontroller onboard the vehicle: one to control the hydrostatic transmission and the other to control the engine speed. Considering the loss characteristics of the displacement machines in the hydrostatic transmission and the steady state characteristics of the combustion engine by use of pure mathematical approximations of measured curves, a direct optimization strategy is used, which works on-line on a microcontroller. A laboratory hardware-in-the loop test rig has been used to investigate the proposed control concepts. For different typical and desired work cycles of an off-road machine on level ground and uphill a slope the effectiveness of the proposed control concepts have been proven. (orig.)

  20. The problem of the driverless vehicle specified path stability control

    Science.gov (United States)

    Buznikov, S. E.; Endachev, D. V.; Elkin, D. S.; Strukov, V. O.

    2018-02-01

    Currently the effort of many leading foreign companies is focused on creation of driverless transport for transportation of cargo and passengers. Among many practical problems arising while creating driverless vehicles, the problem of the specified path stability control occupies a central place. The purpose of this paper is formalization of the problem in question in terms of the quadratic functional of the control quality, the comparative analysis of the possible solutions and justification of the choice of the optimum technical solution. As square value of the integral of the deviation from the specified path is proposed as the quadratic functional of the control quality. For generation of the set of software and hardware solution variants the Zwicky “morphological box” method is used within the hardware and software environments. The heading control algorithms use the wheel steering angle data and the deviation from the lane centerline (specified path) calculated based on the navigation data and the data from the video system. Where the video system does not detect the road marking, the control is carried out based on the wheel navigation system data and where recognizable road marking exits - based on to the video system data. The analysis of the test results allows making the conclusion that the application of the combined navigation system algorithms that provide quasi-optimum solution of the problem while meeting the strict functional limits for the technical and economic indicators of the driverless vehicle control system under development is effective.

  1. Optimization and Control of Cyber-Physical Vehicle Systems

    Directory of Open Access Journals (Sweden)

    Justin M. Bradley

    2015-09-01

    Full Text Available A cyber-physical system (CPS is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined.

  2. Optimization and Control of Cyber-Physical Vehicle Systems.

    Science.gov (United States)

    Bradley, Justin M; Atkins, Ella M

    2015-09-11

    A cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined.

  3. Electric and hybrid vehicles environmental control subsystem study

    Science.gov (United States)

    1981-01-01

    An environmental control subsystem (ECS) in the passenger compartment of electric and hybrid vehicles is studied. Various methods of obtaining the desired temperature control for the battery pack is also studied. The functional requirements of ECS equipment is defined. Following categorization by methodology, technology availability and risk, all viable ECS concepts are evaluated. Each is assessed independently for benefits versus risk, as well as for its feasibility to short, intermediate and long term product development. Selection of the preferred concept is made against these requirements, as well as the study's major goal of providing safe, highly efficient and thermally confortable ECS equipment.

  4. Converted vehicle for battery electric drive. Aspects on the design of the software-driven vehicle control unit

    Energy Technology Data Exchange (ETDEWEB)

    Giessler, Martin; Paul, Jens; Gauterin, Frank [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Fahrzeugsystemtechnik (FAST); Fritz, Alexander; Sander, Oliver; Mueller-Glaser, Klaus D. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Technik der Informationsverarbeitung (ITIV)

    2012-11-01

    At the Karlsruher Institute of Technology (KIT) a vehicle was converted for full battery electric drive within a cooperation of several faculties under the direction of the chair of vehicle technology. Within this paper the developed software to control the main functions of the vehicle will be presented and potentials to increase the energy efficiency will be discussed. The software based vehicle control unit is the central control unit to realize drivers command with respect to the system parameters, which are important for safety, dynamics, range and comfort of the vehicle. The structure of the software architecture, the interaction with the main electric vehicle specific control units and components and the main implemented functions will be described within this paper. The converted vehicle consists mainly of one electric motor with water cooled power electronics that drives the front axle, 21 battery modules controlled and managed by the battery management system, one on board charging device and an universal control unit. Not only strategies for power recovery while braking, but also strategies for driving and operation can help increase the energy efficiency. Select measures to recover and safe energy are also shown. (orig.)

  5. Design of driving control strategy of torque distribution for two - wheel independent drive electric vehicle

    Science.gov (United States)

    Zhang, Chuanwei; Zhang, Dongsheng; Wen, Jianping

    2018-02-01

    In order to coordinately control the torque distribution of existing two-wheel independent drive electric vehicle, and improve the energy efficiency and control stability of the whole vehicle, the control strategies based on fuzzy control were designed which adopt the direct yaw moment control as the main line. For realizing the torque coordination simulation of the two-wheel independent drive vehicle, the vehicle model, motor model and tire model were built, including the vehicle 7 - DOF dynamics model, motion equation, torque equation. Finally, in the Carsim - Simulink joint simulation platform, the feasibility of the drive control strategy was verified.

  6. Optimal Energy Control Strategy Design for a Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Yuan Zou

    2013-01-01

    Full Text Available A heavy-duty parallel hybrid electric truck is modeled, and its optimal energy control is studied in this paper. The fundamental architecture of the parallel hybrid electric truck is modeled feed-forwardly, together with necessary dynamic features of subsystem or components. Dynamic programming (DP technique is adopted to find the optimal control strategy including the gear-shifting sequence and the power split between the engine and the motor subject to a battery SOC-sustaining constraint. Improved control rules are extracted from the DP-based control solution, forming near-optimal control strategies. Simulation results demonstrate that a significant improvement on the fuel economy can be achieved in the heavy-duty vehicle cycle from the natural driving statistics.

  7. A new robust control for minirotorcraft unmanned aerial vehicles.

    Science.gov (United States)

    Mokhtari, M Rida; Cherki, Brahim

    2015-05-01

    This paper presents a new robust control based on finite-time Lyapunov stability controller and proved with backstepping method for the position and the attitude of a small rotorcraft unmanned aerial vehicle subjected to bounded uncertainties and disturbances. The dynamical motion equations are obtained by the Newton-Euler formalism. The proposed controller combines the advantage of the backstepping approach with finite-time convergence techniques to generate a control laws to guarantee the faster convergence of the state variables to their desired values in short time and compensate for the bounded disturbances. A formal proof of the closed-loop stability and finite-time convergence of tracking errors is derived using the Lyapunov function technique. Simulation results are presented to corroborate the effectiveness and the robustness of the proposed control method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  8. PWM Inverter control and the application thereof within electric vehicles

    Science.gov (United States)

    Geppert, Steven

    1982-01-01

    An inverter (34) which provides power to an A.C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A.C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A.C. machine is optimized. The control circuit includes a micro-computer and memory element which receive various parametric inputs and calculate optimized machine control data signals therefrom. The control data is asynchronously loaded into the inverter through an intermediate buffer (38). In its preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack (32) and a three-phase induction motor (18).

  9. Aggregation of Single-phase Electric Vehicles for Frequency Control Provision Based on Unidirectional Charging

    DEFF Research Database (Denmark)

    Sæmundsson, Valgeir Thor; Rezkalla, Michel M.N.; Zecchino, Antonio

    2017-01-01

    As the use of electric vehicles grows there is a greater possibility of using aggregated sets of electric vehicles as a large flexible unit to assist with the control of the power system. In this paper, the possibility of using electric vehicles as a flexible load for frequency control...... is investigated. The investigations are performed in a Pan-European interconnected grid with varying wind power penetration and different operational scenarios. Within this grid, the paper focuses on primary frequency control provision from electric vehicles and how the system behaves as the vehicles are being...... controlled within their respective areas. The investigations show that electric vehicles can be used for primary frequency control with different wind power penetration. By controlling the vehicles, the steady state frequency is improved and, since the vehicles react fast enough to the frequency changes...

  10. Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Non-Conformance Penalties for 2004 and later Model Year Emission Standards for Heavy-Duty Diesel Engines and Heavy-Duty Diesel Vehicles

    Science.gov (United States)

    Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Non-Conformance Penalties for 2004 and later Model Year Emission Standards for Heavy-Duty Diesel Engines and Heavy-Duty Diesel Vehicles

  11. On Electrohydraulic Pressure Control for Power Steering Applications : Active Steering for Road Vehicles

    OpenAIRE

    Dell'Amico, Alessandro

    2016-01-01

    This thesis deals with the Electrohydraulic Power Steering system for road vehicles, using electronic pressure control valves. With an ever increasing demand for safer vehicles and fewer traffic accidents, steering-related active safety functions are becoming more common in modern vehicles. Future road vehicles will also evolve towards autonomous vehicles, with several safety, environmental and financial benefits. A key component in realising such solutions is active steering. The power steer...

  12. Dynamics and Control of Non-Smooth Systems with Applications to Supercavitating Vehicles

    Science.gov (United States)

    2011-01-01

    ABSTRACT Title of dissertation: Dynamics and Control of Non-Smooth Systems with Applications to Supercavitating Vehicles Vincent Nguyen, Doctor of...relates to the dynamics of non-smooth vehicle systems, and in particular, supercavitating vehicles. These high-speed under- water vehicles are...Applications to Supercavitating Vehicles 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK

  13. Longitudinal Control of a Platoon of Road Vehicles Equipped with Adaptive Cruise Control System

    Directory of Open Access Journals (Sweden)

    Zeeshan Ali Memon

    2012-07-01

    Full Text Available Automotive vehicle following systems are essential for the design of automated highway system. The problem associated with the automatic vehicle following system is the string stability of the platoon of vehicles, i.e. the problem of uniform velocity and spacing errors propagation. Different control algorithm for the longitudinal control of a platoon are discussed based on different spacing policies, communication link among the vehicles of a platoon, and the performance of a platoon have been analysed in the presence of disturbance (noise and parametric uncertainties. This paper presented the PID (Proportional Integral Derivative feedback control algorithm for the longitudinal control of a platoon in the presence of noise signal and investigates the performance of platoon under the influence of sudden acceleration and braking in severe conditions. This model has been applied on 6 vehicles moving in a platoon. The platoon has been analysed to retain the uniform velocity and safe spacing among the vehicles. The limitations of PID control algorithm have been discussed and the alternate methods have been suggested. Model simulations, in comparison with the literature, are also presented.

  14. Cooperative vehicle control, feature tracking and ocean sampling

    Science.gov (United States)

    Fiorelli, Edward A.

    This dissertation concerns the development of a feedback control framework for coordinating multiple, sensor-equipped, autonomous vehicles into mobile sensing arrays to perform adaptive sampling of observed fields. The use of feedback is central; it maintains the array, i.e. regulates formation position, orientation, and shape, and directs the array to perform its sampling mission in response to measurements taken by each vehicle. Specifically, we address how to perform autonomous gradient tracking and feature detection in an unknown field such as temperature or salinity in the ocean. Artificial potentials and virtual bodies are used to coordinate the autonomous vehicles, modelled as point masses (with unit mass). The virtual bodies consist of linked, moving reference points called virtual leaders. Artificial potentials couple the dynamics of the vehicles and the virtual bodies. The dynamics of the virtual body are then prescribed allowing the virtual body, and thus the vehicle group, to perform maneuvers that include translation, rotation and contraction/expansion, while ensuring that the formation error remains bounded. This methodology is called the Virtual Body and Artificial Potential (VBAP) methodology. We then propose how to utilize these arrays to perform autonomous gradient climbing and front tracking in the presence of both correlated and uncorrelated noise. We implement various techniques for estimation of gradients (first-order and higher), including finite differencing, least squares error minimization, averaging, and Kalman filtering. Furthermore, we illustrate how the estimation error can be used to optimally choose the formation size. To complement our theoretical work, we present an account of sea trials performed with a fleet of autonomous underwater gliders in Monterey Bay during the Autonomous Ocean Sampling Network (AOSN) II project in August 2003. During these trials, Slocum autonomous underwater gliders were coordinated into triangle

  15. Vehicle handling and stability control by the cooperative control of 4WS and DYC

    Science.gov (United States)

    Shen, Huan; Tan, Yun-Sheng

    2017-07-01

    This paper proposes an integrated control system that cooperates with the four-wheel steering (4WS) and direct yaw moment control (DYC) to improve the vehicle handling and stability. The design works of the four-wheel steering and DYC control are based on sliding mode control. The integration control system produces the suitable 4WS angle and corrective yaw moment so that the vehicle tracks the desired yaw rate and sideslip angle. Considering the change of the vehicle longitudinal velocity that means the comfort of driving conditions, both the driving torque and braking torque are used to generate the corrective yaw moment. Simulation results show the effectiveness of the proposed control algorithm.

  16. Study of Model Predictive Control for Path-Following Autonomous Ground Vehicle Control under Crosswind Effect

    Directory of Open Access Journals (Sweden)

    Fitri Yakub

    2016-01-01

    Full Text Available We present a comparative study of model predictive control approaches of two-wheel steering, four-wheel steering, and a combination of two-wheel steering with direct yaw moment control manoeuvres for path-following control in autonomous car vehicle dynamics systems. Single-track mode, based on a linearized vehicle and tire model, is used. Based on a given trajectory, we drove the vehicle at low and high forward speeds and on low and high road friction surfaces for a double-lane change scenario in order to follow the desired trajectory as close as possible while rejecting the effects of wind gusts. We compared the controller based on both simple and complex bicycle models without and with the roll vehicle dynamics for different types of model predictive control manoeuvres. The simulation result showed that the model predictive control gave a better performance in terms of robustness for both forward speeds and road surface variation in autonomous path-following control. It also demonstrated that model predictive control is useful to maintain vehicle stability along the desired path and has an ability to eliminate the crosswind effect.

  17. Fuzzy Traffic Control with Vehicle-to-Everything Communication.

    Science.gov (United States)

    Salman, Muntaser A; Ozdemir, Suat; Celebi, Fatih V

    2018-01-27

    Traffic signal control (TSC) with vehicle-to everything (V2X) communication can be a very efficient solution to traffic congestion problem. Ratio of vehicles equipped with V2X communication capability in the traffic to the total number of vehicles (called penetration rate PR) is still low, thus V2X based TSC systems need to be supported by some other mechanisms. PR is the major factor that affects the quality of TSC process along with the evaluation interval. Quality of the TSC in each direction is a function of overall TSC quality of an intersection. Hence, quality evaluation of each direction should follow the evaluation of the overall intersection. Computational intelligence, more specifically swarm algorithm, has been recently used in this field in a European Framework Program FP7 supported project called COLOMBO. In this paper, using COLOMBO framework, further investigations have been done and two new methodologies using simple and fuzzy logic have been proposed. To evaluate the performance of our proposed methods, a comparison with COLOMBOs approach has been realized. The results reveal that TSC problem can be solved as a logical problem rather than an optimization problem. Performance of the proposed approaches is good enough to be suggested for future work under realistic scenarios even under low PR.

  18. Adaptive Augmenting Control and Launch Vehicle Adaptive Control Flight Experiments

    Data.gov (United States)

    National Aeronautics and Space Administration — Researchers at NASA Armstrong are working to further the development of an adaptive augmenting control algorithm (AAC). The AAC was developed to improve the...

  19. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, Susan R.

    1994-01-01

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.

  20. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, S.R.

    1994-10-25

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.

  1. Evaluation of head-free eye tracking as an input device for air traffic control.

    Science.gov (United States)

    Alonso, Roland; Causse, Mickaël; Vachon, François; Parise, Robert; Dehais, Frédéric; Terrier, Patrice

    2013-01-01

    The purpose of this study was to investigate the possibility to integrate a free head motion eye-tracking system as input device in air traffic control (ATC) activity. Sixteen participants used an eye tracker to select targets displayed on a screen as quickly and accurately as possible. We assessed the impact of the presence of visual feedback about gaze position and the method of target selection on selection performance under different difficulty levels induced by variations in target size and target-to-target separation. We tend to consider that the combined use of gaze dwell-time selection and continuous eye-gaze feedback was the best condition as it suits naturally with gaze displacement over the ATC display and free the hands of the controller, despite a small cost in terms of selection speed. In addition, target size had a greater impact on accuracy and selection time than target distance. These findings provide guidelines on possible further implementation of eye tracking in ATC everyday activity. We investigated the possibility to integrate a free head motion eye-tracking system as input device in air traffic control (ATC). We found that the combined use of gaze dwell-time selection and continuous eye-gaze feedback allowed the best performance and that target size had a greater impact on performance than target distance.

  2. Monocular tool control, eye dominance, and laterality in New Caledonian crows.

    Science.gov (United States)

    Martinho, Antone; Burns, Zackory T; von Bayern, Auguste M P; Kacelnik, Alex

    2014-12-15

    Tool use, though rare, is taxonomically widespread, but morphological adaptations for tool use are virtually unknown. We focus on the New Caledonian crow (NCC, Corvus moneduloides), which displays some of the most innovative tool-related behavior among nonhumans. One of their major food sources is larvae extracted from burrows with sticks held diagonally in the bill, oriented with individual, but not species-wide, laterality. Among possible behavioral and anatomical adaptations for tool use, NCCs possess unusually wide binocular visual fields (up to 60°), suggesting that extreme binocular vision may facilitate tool use. Here, we establish that during natural extractions, tool tips can only be viewed by the contralateral eye. Thus, maintaining binocular view of tool tips is unlikely to have selected for wide binocular fields; the selective factor is more likely to have been to allow each eye to see far enough across the midsagittal line to view the tool's tip monocularly. Consequently, we tested the hypothesis that tool side preference follows eye preference and found that eye dominance does predict tool laterality across individuals. This contrasts with humans' species-wide motor laterality and uncorrelated motor-visual laterality, possibly because bill-held tools are viewed monocularly and move in concert with eyes, whereas hand-held tools are visible to both eyes and allow independent combinations of eye preference and handedness. This difference may affect other models of coordination between vision and mechanical control, not necessarily involving tools. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. dlx and sp6-9 Control optic cup regeneration in a prototypic eye.

    Directory of Open Access Journals (Sweden)

    Sylvain W Lapan

    2011-08-01

    Full Text Available Optic cups are a structural feature of diverse eyes, from simple pit eyes to camera eyes of vertebrates and cephalopods. We used the planarian prototypic eye as a model to study the genetic control of optic cup formation and regeneration. We identified two genes encoding transcription factors, sp6-9 and dlx, that were expressed in the eye specifically in the optic cup and not the photoreceptor neurons. RNAi of these genes prevented formation of visible optic cups during regeneration. Planarian regeneration requires an adult proliferative cell population with stem cell-like properties called the neoblasts. We found that optic cup formation occurred only after migration of progressively differentiating progenitor cells from the neoblast population. The eye regeneration defect caused by dlx and sp6-9 RNAi can be explained by a failure to generate these early optic cup progenitors. Dlx and Sp6-9 genes function as a module during the development of diverse animal appendages, including vertebrate and insect limbs. Our work reveals a novel function for this gene pair in the development of a fundamental eye component, and it utilizes these genes to demonstrate a mechanism for total organ regeneration in which extensive cell movement separates new cell specification from organ morphogenesis.

  4. Inter-vehicle gap statistics on signal-controlled crossroads

    International Nuclear Information System (INIS)

    Krbalek, Milan

    2008-01-01

    We investigate a microscopical structure in a chain of cars waiting at a red signal on signal-controlled crossroads. A one-dimensional space-continuous thermodynamical model leading to an excellent agreement with the data measured is presented. Moreover, we demonstrate that an inter-vehicle spacing distribution disclosed in relevant traffic data agrees with the thermal-balance distribution of particles in the thermodynamical traffic gas (discussed in [1]) with a high inverse temperature (corresponding to a strong traffic congestion). Therefore, as we affirm, such a system of stationary cars can be understood as a specific state of the traffic sample operating inside a congested traffic stream

  5. Subjective and objective assessment of manual, supported, and automated vehicle control

    NARCIS (Netherlands)

    Vos, A.P. de; Godthelp, J.; Käppler, W.D.

    1998-01-01

    In this paper subjective and objective assessments of vehicle control are illustrated by means of ex-periments concerning manipulation of vehicle dynamics, driver support, and automated driving. Subjective ratings are discussed in relation to objective performance measures.

  6. Learning Mobility: Adaptive Control Algorithms for the Novel Unmanned Ground Vehicle (NUGV)

    National Research Council Canada - National Science Library

    Blackburn, Mike

    2003-01-01

    Mobility is a serious limiting factor in the usefulness of unmanned ground vehicles, This paper contains a description of our approach to develop control algorithms for the Novel Unmanned Ground Vehicle (NUGV...

  7. Single Operator Control of Multiple Uninhabited Air Vehicles: Situational Awareness Requirement

    National Research Council Canada - National Science Library

    Sebalj, Derek

    2008-01-01

    ... > 1. The ultimate goal, and the object of much research, is the technology to lower, or even invert the control ratio from many people to one vehicle to one operator of several vehicles, e.g., 1...

  8. Hybrid Electric Vehicle Control Strategy Based on Power Loss Calculations

    OpenAIRE

    Boyd, Steven J

    2006-01-01

    Defining an operation strategy for a Split Parallel Architecture (SPA) Hybrid Electric Vehicle (HEV) is accomplished through calculating powertrain component losses. The results of these calculations define how the vehicle can decrease fuel consumption while maintaining low vehicle emissions. For a HEV, simply operating the vehicle's engine in its regions of high efficiency does not guarantee the most efficient vehicle operation. The results presented are meant only to define a literal str...

  9. Electric vehicle charge planning using Economic Model Predictive Control

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Poulsen, Niels K.; Madsen, Henrik

    2012-01-01

    Economic Model Predictive Control (MPC) is very well suited for controlling smart energy systems since electricity price and demand forecasts are easily integrated in the controller. Electric vehicles (EVs) are expected to play a large role in the future Smart Grid. They are expected to provide...... grid services, both for peak reduction and for ancillary services, by absorbing short term variations in the electricity production. In this paper the Economic MPC minimizes the cost of electricity consumption for a single EV. Simulations show savings of 50–60% of the electricity costs compared...... to uncontrolled charging from load shifting based on driving pattern predictions. The future energy system in Denmark will most likely be based on renewable energy sources e.g. wind and solar power. These green energy sources introduce stochastic fluctuations in the electricity production. Therefore, energy...

  10. Concept development of control system for perspective unmanned aerial vehicles

    Directory of Open Access Journals (Sweden)

    Koryanov Vsevolod V.

    2018-01-01

    Full Text Available Presented actual aspects of the development of the control system of unmanned aerial vehicles (UAVs in the example of perspective. Because the current and future UAV oriented to implementation of a wide range of tasks, taking into account the use of several types of payload, in this paper discusses the general principles of construction of onboard control complex, in turn, a hardware implementation of the automatic control system has been implemented in the microcontroller Arduino platform and the Raspberry Pi. In addition, in the paper presents the most common and promising way to ensure the smooth and reliable communication of the command post with the UAV as well as to the ways of parry considered and abnormal situations.

  11. Advanced underground Vehicle Power and Control: The locomotive Research Platform

    Energy Technology Data Exchange (ETDEWEB)

    Vehicle Projects LLC

    2003-01-28

    Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entire vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost

  12. Nonlinear reset integrator control design: Application to the active suspension control of vehicles

    OpenAIRE

    Acho Zuppa, Leonardo

    2014-01-01

    We present an unexampled reset integrator control design based on the Clegg integrator system. Using an appropriate mathematical model of our Clegg integrator controller, stability proof of the closed-loop system applied to the vibration control problem of a second-order system is shown without invoking hybrid system theory. Furthermore, we illustrate the pplicability of our controller, from the numerical experiment point of view, to the suspension vibration control of vehicles.

  13. Traffic Control Models Based on Cellular Automata for At-Grade Intersections in Autonomous Vehicle Environment

    OpenAIRE

    Wei Wu; Yang Liu; Yue Xu; Quanlun Wei; Yi Zhang

    2017-01-01

    Autonomous vehicle is able to facilitate road safety and traffic efficiency and has become a promising trend of future development. With a focus on highways, existing literatures studied the feasibility of autonomous vehicle in continuous traffic flows and the controllability of cooperative driving. However, rare efforts have been made to investigate the traffic control strategies in autonomous vehicle environment on urban roads, especially in urban intersections. In autonomous vehicle enviro...

  14. The efficiency of direct torque control for electric vehicle behavior improvement

    Directory of Open Access Journals (Sweden)

    Gasbaoui Brahim

    2011-01-01

    Full Text Available Nowadays the electric vehicle motorization control takes a great interest of industrials for commercialized electric vehicles. This paper is one example of the proposed control methods that ensure both safety and stability the electric vehicle by the means of Direct Torque Control (DTC. For motion of the vehicle the electric drive consists of four wheels: two front ones for steering and two rear ones for propulsion equipped with two induction motors, due to their lightweight simplicity and high performance. Acceleration and steering are ensured by the electronic differential, permitting safe and reliable steering at any curve. The direct torque control ensures efficiently controlled vehicle. Electric vehicle direct torque control is simulated in MATLAB SIMULINK environment. Electric vehicle (EV demonstrated satisfactory results in all type of roads constraints: straight, ramp, downhill and bends.

  15. Launch vehicle flight control augmentation using smart materials and advanced composites (CDDF Project 93-05)

    Science.gov (United States)

    Barret, C.

    1995-01-01

    The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 sq ft of aerodynamic surfaces on the Saturn V. Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces.

  16. Excimer Laser Surgery: Biometrical Iris Eye Recognition with Cyclorotational Control Eye Tracker System.

    Science.gov (United States)

    Pajic, Bojan; Cvejic, Zeljka; Mijatovic, Zoran; Indjin, Dragan; Mueller, Joerg

    2017-05-25

    A prospective comparative study assessing the importance of the intra-operative dynamic rotational tracking-especially in the treatment of astigmatisms in corneal refractive Excimer laser correction-concerning clinical outcomes is presented. The cyclotorsion from upright to supine position was measured using iris image comparison. The Group 1 of patients was additionally treated with cyclorotational control and Group 2 only with X-Y control. Significant differences were observed between the groups regarding the mean postoperative cylinder refraction ( p < 0.05). The mean cyclotorsion can be calculated to 3.75° with a standard deviation of 3.1°. The total range of torsion was from -14.9° to +12.6°. Re-treatment rate was 2.2% in Group 1 and 8.2% in Group 2, which is highly significant ( p < 0.01). The investigation confirms that the dynamic rotational tracking system used for LASIK results in highly predictable refraction quality with significantly less postoperative re-treatments.

  17. Autonomous Reconfigurable Control Allocation (ARCA) for Reusable Launch Vehicles

    Science.gov (United States)

    Hodel, A. S.; Callahan, Ronnie; Jackson, Scott (Technical Monitor)

    2002-01-01

    The role of control allocation (CA) in modern aerospace vehicles is to compute a command vector delta(sub c) is a member of IR(sup n(sub a)) that corresponding to commanded or desired body-frame torques (moments) tou(sub c) = [L M N](sup T) to the vehicle, compensating for and/or responding to inaccuracies in off-line nominal control allocation calculations, actuator failures and/or degradations (reduced effectiveness), or actuator limitations (rate/position saturation). The command vector delta(sub c) may govern the behavior of, e.g., acrosurfaces, reaction thrusters, engine gimbals and/or thrust vectoring. Typically, the individual moments generated in response to each of the n(sub a) commands does not lie strictly in the roll, pitch, or yaw axes, and so a common practice is to group or gang actuators so that a one-to-one mapping from torque commands tau(sub c) actuator commands delta(sub c) may be achieved in an off-line computed CA function.

  18. Velocity and Motion Control of a Self-Balancing Vehicle Based on a Cascade Control Strategy

    Directory of Open Access Journals (Sweden)

    Miguel Velazquez

    2016-06-01

    Full Text Available This paper presents balancing, velocity and motion control of a self-balancing vehicle. A cascade controller is implemented for both balancing control and angular velocity control. This controller is tested in simulations using a proposed mathematical model of the system. Motion control is achieved based on the kinematics of the robot. Control hardware is designed and integrated to implement the proposed controllers. Pitch is kept under 1° from the equilibrium position with no external disturbances. The linear cascade control is able to handle slight changes in the system dynamics, such as in the centre of mass and the slope on an inclined surface.

  19. Flight Control Laws for NASA's Hyper-X Research Vehicle

    Science.gov (United States)

    Davidson, J.; Lallman, F.; McMinn, J. D.; Martin, J.; Pahle, J.; Stephenson, M.; Selmon, J.; Bose, D.

    1999-01-01

    The goal of the Hyper-X program is to demonstrate and validate technology for design and performance predictions of hypersonic aircraft with an airframe-integrated supersonic-combustion ramjet propulsion system. Accomplishing this goal requires flight demonstration of a hydrogen-fueled scramjet powered hypersonic aircraft. A key enabling technology for this flight demonstration is flight controls. Closed-loop flight control is required to enable a successful stage separation, to achieve and maintain the design condition during the engine test, and to provide a controlled descent. Before the contract award, NASA developed preliminary flight control laws for the Hyper-X to evaluate the feasibility of the proposed scramjet test sequence and descent trajectory. After the contract award, a Boeing/NASA partnership worked to develop the current control laws. This paper presents a description of the Hyper-X Research Vehicle control law architectures with performance and robustness analyses. Assessments of simulated flight trajectories and stability margin analyses demonstrate that these control laws meet the flight test requirements.

  20. Real-Time Control of a Video Game Using Eye Movements and Two Temporal EEG Sensors

    Directory of Open Access Journals (Sweden)

    Abdelkader Nasreddine Belkacem

    2015-01-01

    Full Text Available EEG-controlled gaming applications range widely from strictly medical to completely nonmedical applications. Games can provide not only entertainment but also strong motivation for practicing, thereby achieving better control with rehabilitation system. In this paper we present real-time control of video game with eye movements for asynchronous and noninvasive communication system using two temporal EEG sensors. We used wavelets to detect the instance of eye movement and time-series characteristics to distinguish between six classes of eye movement. A control interface was developed to test the proposed algorithm in real-time experiments with opened and closed eyes. Using visual feedback, a mean classification accuracy of 77.3% was obtained for control with six commands. And a mean classification accuracy of 80.2% was obtained using auditory feedback for control with five commands. The algorithm was then applied for controlling direction and speed of character movement in two-dimensional video game. Results showed that the proposed algorithm had an efficient response speed and timing with a bit rate of 30 bits/min, demonstrating its efficacy and robustness in real-time control.

  1. Real-Time Control of a Video Game Using Eye Movements and Two Temporal EEG Sensors.

    Science.gov (United States)

    Belkacem, Abdelkader Nasreddine; Saetia, Supat; Zintus-art, Kalanyu; Shin, Duk; Kambara, Hiroyuki; Yoshimura, Natsue; Berrached, Nasreddine; Koike, Yasuharu

    2015-01-01

    EEG-controlled gaming applications range widely from strictly medical to completely nonmedical applications. Games can provide not only entertainment but also strong motivation for practicing, thereby achieving better control with rehabilitation system. In this paper we present real-time control of video game with eye movements for asynchronous and noninvasive communication system using two temporal EEG sensors. We used wavelets to detect the instance of eye movement and time-series characteristics to distinguish between six classes of eye movement. A control interface was developed to test the proposed algorithm in real-time experiments with opened and closed eyes. Using visual feedback, a mean classification accuracy of 77.3% was obtained for control with six commands. And a mean classification accuracy of 80.2% was obtained using auditory feedback for control with five commands. The algorithm was then applied for controlling direction and speed of character movement in two-dimensional video game. Results showed that the proposed algorithm had an efficient response speed and timing with a bit rate of 30 bits/min, demonstrating its efficacy and robustness in real-time control.

  2. A Microcontroller Based Car-Safety System Implementing Drowsiness Detection And Vehicle-Vehicle Distance Detection In Parallel.

    Directory of Open Access Journals (Sweden)

    Pragyaditya Das.

    2015-08-01

    Full Text Available Abstract Accidents due to drowsiness can be controlled and prevented with the help of eye blink sensor using IR rays. It consists of IR transmitter and an IR receiver. The transmitter transmits IR rays into the eye. If the eye is shut then the output is high. If the eye is open then the output is low. This output is interfaced with an alarm inside and outside the vehicle. This module can be connected to the braking system of the vehicle and can be used to reduce the speed of the vehicle. The alarm inside the vehicle will go on for a period of time until the driver is back to his senses. If the driver is unable to take control of the vehicle after that stipulated amount of time then the alarm outside the vehicle will go on to warn and tell others to help the driver.

  3. Automated space vehicle control for rendezvous proximity operations

    Science.gov (United States)

    Lea, Robert N.

    1988-01-01

    Rendezvous during the unmanned space exploration missions, such as a Mars Rover/Sample Return will require a completely automatic system from liftoff to docking. A conceptual design of an automated rendezvous, proximity operations, and docking system is being implemented and validated at the Johnson Space Center (JSC). The emphasis is on the progress of the development and testing of a prototype system for control of the rendezvous vehicle during proximity operations that is currently being developed at JSC. Fuzzy sets are used to model the human capability of common sense reasoning in decision making tasks and such models are integrated with the expert systems and engineering control system technology to create a system that performs comparably to a manned system.

  4. Motion Control of Four-Wheel Independently Actuated Electric Ground Vehicles considering Tire Force Saturations

    Directory of Open Access Journals (Sweden)

    Rongrong Wang

    2013-01-01

    Full Text Available A vehicle stability control approach for four-wheel independently actuated (FWIA electric vehicles is presented. The proposed control method consists of a higher-level controller and a lower-level controller. An adaptive control-based higher-level controller is designed to yield the vehicle virtual control efforts to track the desired vehicle motions due to the possible modeling inaccuracies and parametric uncertainties. The lower-level controller considering tire force saturation is given to allocate the required control efforts to the four in-wheel motors for providing the desired tire forces. An analytic method is given to distribute the high-level control efforts, without using the numerical-optimization-based control allocation algorithms. Simulations based on a high-fidelity, CarSim, and full-vehicle model show the effectiveness of the control approach.

  5. Semi-autonomous unmanned ground vehicle control system

    Science.gov (United States)

    Anderson, Jonathan; Lee, Dah-Jye; Schoenberger, Robert; Wei, Zhaoyi; Archibald, James

    2006-05-01

    Unmanned Ground Vehicles (UGVs) have advantages over people in a number of different applications, ranging from sentry duty, scouting hazardous areas, convoying goods and supplies over long distances, and exploring caves and tunnels. Despite recent advances in electronics, vision, artificial intelligence, and control technologies, fully autonomous UGVs are still far from being a reality. Currently, most UGVs are fielded using tele-operation with a human in the control loop. Using tele-operations, a user controls the UGV from the relative safety and comfort of a control station and sends commands to the UGV remotely. It is difficult for the user to issue higher level commands such as patrol this corridor or move to this position while avoiding obstacles. As computer vision algorithms are implemented in hardware, the UGV can easily become partially autonomous. As Field Programmable Gate Arrays (FPGAs) become larger and more powerful, vision algorithms can run at frame rate. With the rapid development of CMOS imagers for consumer electronics, frame rate can reach as high as 200 frames per second with a small size of the region of interest. This increase in the speed of vision algorithm processing allows the UGVs to become more autonomous, as they are able to recognize and avoid obstacles in their path, track targets, or move to a recognized area. The user is able to focus on giving broad supervisory commands and goals to the UGVs, allowing the user to control multiple UGVs at once while still maintaining the convenience of working from a central base station. In this paper, we will describe a novel control system for the control of semi-autonomous UGVs. This control system combines a user interface similar to a simple tele-operation station along with a control package, including the FPGA and multiple cameras. The control package interfaces with the UGV and provides the necessary control to guide the UGV.

  6. Cerebellar Codings for Control of Compensatory Eye Movements

    NARCIS (Netherlands)

    M. Schonewille (Martijn)

    2008-01-01

    textabstractThis thesis focuses on the control of the cerebellum on motor behaviour, and more specifically on the role of the cerebellar Purkinje cells in exerting this control. As the cerebellum is an online control system, we look at both motor performance and learning, trying to identify

  7. Developing operator capacity estimates for supervisory control of autonomous vehicles.

    Science.gov (United States)

    Cummings, M L; Guerlain, Stephanie

    2007-02-01

    This study examined operators' capacity to successfully reallocate highly autonomous in-flight missiles to time-sensitive targets while performing secondary tasks of varying complexity. Regardless of the level of autonomy for unmanned systems, humans will be necessarily involved in the mission planning, higher level operation, and contingency interventions, otherwise known as human supervisory control. As a result, more research is needed that addresses the impact of dynamic decision support systems that support rapid planning and replanning in time-pressured scenarios, particularly on operator workload. A dual screen simulation that allows a single operator the ability to monitor and control 8, 12, or 16 missiles through high level replanning was tested on 42 U.S. Navy personnel. The most significant finding was that when attempting to control 16 missiles, participants' performance on three separate objective performance metrics and their situation awareness were significantly degraded. These results mirror studies of air traffic control that demonstrate a similar decline in performance for controllers managing 17 aircraft as compared with those managing only 10 to 11 aircraft. Moreover, the results suggest that a 70% utilization (percentage busy time) score is a valid threshold for predicting significant performance decay and could be a generalizable metric that can aid in manning predictions. This research is relevant to human supervisory control of networked military and commercial unmanned vehicles in the air, on the ground, and on and under the water.

  8. 78 FR 20881 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards...

    Science.gov (United States)

    2013-04-08

    ...The EPA is announcing two public hearings to be held for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards'' (the proposed rule is hereinafter referred to as ``Tier 3''), which will be published separately in the Federal Register. The hearings will be held in Philadelphia, PA on April 24, 2013 and in Chicago, IL on April 29, 2013. The comment period for the proposed rulemaking will end on June 13, 2013.

  9. A Fully-Distributed Heuristic Algorithm for Control of Autonomous Vehicle Movements at Isolated Intersections

    OpenAIRE

    Abdallah A. Hassan; Hesham A. Rakha

    2014-01-01

    Optimizing autonomous vehicle movements through roadway intersections is a challenging problem. It has been demonstrated in the literature that traditional traffic control, such as traffic signal and stop sign control are not optimal especially for heavy traffic demand levels. Alternatively, centralized autonomous vehicle control strategies are costly and not scalable given that the ability of a central controller to track and schedule the movement of hundreds of vehicles in real-time is ques...

  10. Adaptive Sliding Mode Control Method Based on Nonlinear Integral Sliding Surface for Agricultural Vehicle Steering Control

    Directory of Open Access Journals (Sweden)

    Taochang Li

    2014-01-01

    Full Text Available Automatic steering control is the key factor and essential condition in the realization of the automatic navigation control of agricultural vehicles. In order to get satisfactory steering control performance, an adaptive sliding mode control method based on a nonlinear integral sliding surface is proposed in this paper for agricultural vehicle steering control. First, the vehicle steering system is modeled as a second-order mathematic model; the system uncertainties and unmodeled dynamics as well as the external disturbances are regarded as the equivalent disturbances satisfying a certain boundary. Second, a transient process of the desired system response is constructed in each navigation control period. Based on the transient process, a nonlinear integral sliding surface is designed. Then the corresponding sliding mode control law is proposed to guarantee the fast response characteristics with no overshoot in the closed-loop steering control system. Meanwhile, the switching gain of sliding mode control is adaptively adjusted to alleviate the control input chattering by using the fuzzy control method. Finally, the effectiveness and the superiority of the proposed method are verified by a series of simulation and actual steering control experiments.

  11. Systematic review of randomized controlled trials in the treatment of dry eye disease in Sjogren syndrome.

    Science.gov (United States)

    Shih, Kendrick Co; Lun, Christie Nicole; Jhanji, Vishal; Thong, Bernard Yu-Hor; Tong, Louis

    2017-01-01

    Primary Sjögren's syndrome is an autoimmune disease characterized by dry eye and dry mouth. We systematically reviewed all the randomized controlled clinical trials published in the last 15 years that included ocular outcomes. We found 22 trials involving 9 topical, 10 oral, 2 intravenous and 1 subcutaneous modalities of treatment. Fluoromethalone eye drops over 8 weeks were more effective than topical cyclosporine in the treatment of dry eye symptoms and signs; similarly, indomethacin eye drops over 1 month were more efficacious than diclofenac eye drops. Oral pilocarpine 5 mg twice daily over 3 months was superior to use of lubricants or punctal plugs for treating dry eye, but 5% of participants had gastrointestinal adverse effects from pilocarpine, though none discontinued treatment. In contrast, etanercept, a TNF-alpha blocking antibody, administered as subcutaneous injections twice weekly, did not improve dry eye significantly compared to placebo injections. In conclusion, topical corticosteroids have been shown to be effective in dry eye associated with Sjögren's syndrome. As some topical non-steroidal anti-inflammatory drugs may be more effective than others, these should be further evaluated. Systemic secretagogues like pilocarpine have a role in Sjögren's syndrome but the adverse effects may limit their clinical use. It is disappointing that systemic cytokine therapy did not produce encouraging ocular outcomes but participants should have assessment of cytokine levels in such trials, as those with higher baseline cytokine levels may respond better. (229 words).

  12. Systematic review of randomized controlled trials in the treatment of dry eye disease in Sjogren syndrome

    Directory of Open Access Journals (Sweden)

    Kendrick Co Shih

    2017-11-01

    Full Text Available Abstract Primary Sjögren’s syndrome is an autoimmune disease characterized by dry eye and dry mouth. We systematically reviewed all the randomized controlled clinical trials published in the last 15 years that included ocular outcomes. We found 22 trials involving 9 topical, 10 oral, 2 intravenous and 1 subcutaneous modalities of treatment. Fluoromethalone eye drops over 8 weeks were more effective than topical cyclosporine in the treatment of dry eye symptoms and signs; similarly, indomethacin eye drops over 1 month were more efficacious than diclofenac eye drops. Oral pilocarpine 5 mg twice daily over 3 months was superior to use of lubricants or punctal plugs for treating dry eye, but 5% of participants had gastrointestinal adverse effects from pilocarpine, though none discontinued treatment. In contrast, etanercept, a TNF-alpha blocking antibody, administered as subcutaneous injections twice weekly, did not improve dry eye significantly compared to placebo injections. In conclusion, topical corticosteroids have been shown to be effective in dry eye associated with Sjögren’s syndrome. As some topical non-steroidal anti-inflammatory drugs may be more effective than others, these should be further evaluated. Systemic secretagogues like pilocarpine have a role in Sjögren’s syndrome but the adverse effects may limit their clinical use. It is disappointing that systemic cytokine therapy did not produce encouraging ocular outcomes but participants should have assessment of cytokine levels in such trials, as those with higher baseline cytokine levels may respond better. (229 words

  13. Predictive control strategies for energy saving of hybrid electric vehicles based on traffic light information

    Directory of Open Access Journals (Sweden)

    Kaijiang YU

    2015-10-01

    Full Text Available As the conventional control method for hybrid electric vehicle doesn’t consider the effect of known traffic light information on the vehicle energy management, this paper proposes a model predictive control intelligent optimization strategies based on traffic light information for hybrid electric vehicles. By building the simplified model of the hybrid electric vehicle and adopting the continuation/generalized minimum residual method, the model prediction problem is solved. The simulation is conducted by using MATLAB/Simulink platform. The simulation results show the effectiveness of the proposed model of the traffic light information, and that the proposed model predictive control method can improve fuel economy and the real-time control performance significantly. The research conclusions show that the proposed control strategy can achieve optimal control of the vehicle trajectory, significantly improving fuel economy of the vehicle, and meet the system requirements for the real-time optimal control.

  14. Neural Adaptive Sliding-Mode Control of a Vehicle Platoon Using Output Feedback

    Directory of Open Access Journals (Sweden)

    Maode Yan

    2017-11-01

    Full Text Available This paper investigates the output feedback control problem of a vehicle platoon with a constant time headway (CTH policy, where each vehicle can communicate with its consecutive vehicles. Firstly, based on the integrated-sliding-mode (ISM technique, a neural adaptive sliding-mode control algorithm is developed to ensure that the vehicle platoon is moving with the CTH policy and full state measurement. Then, to further decrease the measurement complexity and reduce the communication load, an output feedback control protocol is proposed with only position information, in which a higher order sliding-mode observer is designed to estimate the other required information (velocities and accelerations. In order to avoid collisions among the vehicles, the string stability of the whole vehicle platoon is proven through the stability theorem. Finally, numerical simulation results are provided to verify its effectiveness and advantages over the traditional sliding-mode control method in vehicle platoons.

  15. Control and state estimation for energy recuperation in fully electric vehicles

    NARCIS (Netherlands)

    Falcone, P.; Lidberg, M.; Ólafsdóttir, J.M.; Jansen, S.T.H.; Iersel, S. van

    2011-01-01

    Energy recuperation in fully electric vehicles is mainly limited by the requirement to preserve vehicle stability but it is also dependent on the brake system design and the ability of the control system. The boundaries of vehicle stability are difficult to assess, and must be approached with care,

  16. On distributed model predictive control for vehicle platooning with a recursive feasibility guarantee

    NARCIS (Netherlands)

    Shi, Shengling; Lazar, Mircea

    2017-01-01

    This paper proposes a distributed model predictive control algorithm for vehicle platooning and more generally networked systems in a chain structure. The distributed models of the vehicle platoon are coupled through the input of the preceding vehicles. Using the principles of robust model

  17. Pressure tracking control of vehicle ABS using piezo valve modulator

    Science.gov (United States)

    Jeon, Juncheol; Choi, Seung-Bok

    2011-03-01

    This paper presents a wheel slip control for the ABS(anti-lock brake system) of a passenger vehicle using a controllable piezo valve modulator. The ABS is designed to optimize for braking effectiveness and good steerability. As a first step, the principal design parameters of the piezo valve and pressure modulator are appropriately determined by considering the braking pressure variation during the ABS operation. The proposed piezo valve consists of a flapper, pneumatic circuit and a piezostack actuator. In order to get wide control range of the pressure, the pressure modulator is desired. The modulator consists of a dual-type cylinder filled with different substances (fluid and gas) and a piston rod moving vertical axis to transmit the force. Subsequently, a quarter car wheel slip model is formulated and integrated with the governing equation of the piezo valve modulator. A sliding mode controller to achieve the desired slip rate is then designed and implemented. Braking control performances such as brake pressure and slip rate are evaluated via computer simulations.

  18. Intelligent energy management control of vehicle air conditioning system coupled with engine

    International Nuclear Information System (INIS)

    Khayyam, Hamid; Abawajy, Jemal; Jazar, Reza N.

    2012-01-01

    Vehicle Air Conditioning (AC) systems consist of an engine powered compressor activated by an electrical clutch. The AC system imposes an extra load to the vehicle's engine increasing the vehicle fuel consumption and emissions. Energy management control of the vehicle air conditioning is a nonlinear dynamic system, influenced by uncertain disturbances. In addition, the vehicle energy management control system interacts with different complex systems, such as engine, air conditioning system, environment, and driver, to deliver fuel consumption improvements. In this paper, we describe the energy management control of vehicle AC system coupled with vehicle engine through an intelligent control design. The Intelligent Energy Management Control (IEMC) system presented in this paper includes an intelligent algorithm which uses five exterior units and three integrated fuzzy controllers to produce desirable internal temperature and air quality, improved fuel consumption, low emission, and smooth driving. The three fuzzy controllers include: (i) a fuzzy cruise controller to adapt vehicle cruise speed via prediction of the road ahead using a Look-Ahead system, (ii) a fuzzy air conditioning controller to produce desirable temperature and air quality inside vehicle cabin room via a road information system, and (iii) a fuzzy engine controller to generate the required engine torque to move the vehicle smoothly on the road. We optimised the integrated operation of the air conditioning and the engine under various driving patterns and performed three simulations. Results show that the proposed IEMC system developed based on Fuzzy Air Conditioning Controller with Look-Ahead (FAC-LA) method is a more efficient controller for vehicle air conditioning system than the previously developed Coordinated Energy Management Systems (CEMS). - Highlights: ► AC interacts: vehicle, environment, driver components, and the interrelationships between them. ► Intelligent AC algorithm which uses

  19. Designing a Fuzzy Logic Controller to Enhance Directional Stability of Vehicles under Difficult Maneuvers

    OpenAIRE

    Mehrdad N. Khajavi; Golamhassan Paygane; Ali Hakima

    2009-01-01

    Vehicle which are turning or maneuvering at high speeds are susceptible to sliding and subsequently deviate from desired path. In this paper the dynamics governing the Yaw/Roll behavior of a vehicle has been simulated. Two different simulations have been used one for the real vehicle, for which a fuzzy controller is designed to increase its directional stability property. The other simulation is for a hypothetical vehicle with much higher tire cornering stiffness which is ca...

  20. Eye Tracking Based Control System for Natural Human-Computer Interaction

    Directory of Open Access Journals (Sweden)

    Xuebai Zhang

    2017-01-01

    Full Text Available Eye movement can be regarded as a pivotal real-time input medium for human-computer communication, which is especially important for people with physical disability. In order to improve the reliability, mobility, and usability of eye tracking technique in user-computer dialogue, a novel eye control system with integrating both mouse and keyboard functions is proposed in this paper. The proposed system focuses on providing a simple and convenient interactive mode by only using user’s eye. The usage flow of the proposed system is designed to perfectly follow human natural habits. Additionally, a magnifier module is proposed to allow the accurate operation. In the experiment, two interactive tasks with different difficulty (searching article and browsing multimedia web were done to compare the proposed eye control tool with an existing system. The Technology Acceptance Model (TAM measures are used to evaluate the perceived effectiveness of our system. It is demonstrated that the proposed system is very effective with regard to usability and interface design.

  1. Eye Tracking Based Control System for Natural Human-Computer Interaction.

    Science.gov (United States)

    Zhang, Xuebai; Liu, Xiaolong; Yuan, Shyan-Ming; Lin, Shu-Fan

    2017-01-01

    Eye movement can be regarded as a pivotal real-time input medium for human-computer communication, which is especially important for people with physical disability. In order to improve the reliability, mobility, and usability of eye tracking technique in user-computer dialogue, a novel eye control system with integrating both mouse and keyboard functions is proposed in this paper. The proposed system focuses on providing a simple and convenient interactive mode by only using user's eye. The usage flow of the proposed system is designed to perfectly follow human natural habits. Additionally, a magnifier module is proposed to allow the accurate operation. In the experiment, two interactive tasks with different difficulty (searching article and browsing multimedia web) were done to compare the proposed eye control tool with an existing system. The Technology Acceptance Model (TAM) measures are used to evaluate the perceived effectiveness of our system. It is demonstrated that the proposed system is very effective with regard to usability and interface design.

  2. Research on charging and discharging control strategy for electric vehicles as distributed energy storage devices

    Science.gov (United States)

    Zhang, Min; Yang, Feng; Zhang, Dongqing; Tang, Pengcheng

    2018-02-01

    A large number of electric vehicles are connected to the family micro grid will affect the operation safety of the power grid and the quality of power. Considering the factors of family micro grid price and electric vehicle as a distributed energy storage device, a two stage optimization model is established, and the improved discrete binary particle swarm optimization algorithm is used to optimize the parameters in the model. The proposed control strategy of electric vehicle charging and discharging is of practical significance for the rational control of electric vehicle as a distributed energy storage device and electric vehicle participating in the peak load regulation of power consumption.

  3. Mission control of multiple unmanned aerial vehicles: a workload analysis.

    Science.gov (United States)

    Dixon, Stephen R; Wickens, Christopher D; Chang, Dervon

    2005-01-01

    With unmanned aerial vehicles (UAVs), 36 licensed pilots flew both single-UAV and dual-UAV simulated military missions. Pilots were required to navigate each UAV through a series of mission legs in one of the following three conditions: a baseline condition, an auditory autoalert condition, and an autopilot condition. Pilots were responsible for (a) mission completion, (b) target search, and (c) systems monitoring. Results revealed that both the autoalert and the autopilot automation improved overall performance by reducing task interference and alleviating workload. The autoalert system benefited performance both in the automated task and mission completion task, whereas the autopilot system benefited performance in the automated task, the mission completion task, and the target search task. Practical implications for the study include the suggestion that reliable automation can help alleviate task interference and reduce workload, thereby allowing pilots to better handle concurrent tasks during single- and multiple-UAV flight control.

  4. A Novel Extreme Learning Control Framework of Unmanned Surface Vehicles.

    Science.gov (United States)

    Wang, Ning; Sun, Jing-Chao; Er, Meng Joo; Liu, Yan-Cheng

    2016-05-01

    In this paper, an extreme learning control (ELC) framework using the single-hidden-layer feedforward network (SLFN) with random hidden nodes for tracking an unmanned surface vehicle suffering from unknown dynamics and external disturbances is proposed. By combining tracking errors with derivatives, an error surface and transformed states are defined to encapsulate unknown dynamics and disturbances into a lumped vector field of transformed states. The lumped nonlinearity is further identified accurately by an extreme-learning-machine-based SLFN approximator which does not require a priori system knowledge nor tuning input weights. Only output weights of the SLFN need to be updated by adaptive projection-based laws derived from the Lyapunov approach. Moreover, an error compensator is incorporated to suppress approximation residuals, and thereby contributing to the robustness and global asymptotic stability of the closed-loop ELC system. Simulation studies and comprehensive comparisons demonstrate that the ELC framework achieves high accuracy in both tracking and approximation.

  5. An Adaptive Traffic Signal Control in a Connected Vehicle Environment: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Peng Jing

    2017-08-01

    Full Text Available In the last few years, traffic congestion has become a growing concern due to increasing vehicle ownerships in urban areas. Intersections are one of the major bottlenecks that contribute to urban traffic congestion. Traditional traffic signal control systems cannot adjust the timing pattern depending on road traffic demand. This results in excessive delays for road users. Adaptive traffic signal control in a connected vehicle environment has shown a powerful ability to effectively alleviate urban traffic congestions to achieve desirable objectives (e.g., delay minimization. Connected vehicle technology, as an emerging technology, is a mobile data platform that enables the real-time data exchange among vehicles and between vehicles and infrastructure. Although several reviews about traffic signal control or connected vehicles have been written, a systemic review of adaptive traffic signal control in a connected vehicle environment has not been made. Twenty-six eligible studies searched from six databases constitute the review. A quality evaluation was established based on previous research instruments and applied to the current review. The purpose of this paper is to critically review the existing methods of adaptive traffic signal control in a connected vehicle environment and to compare the advantages or disadvantages of those methods. Further, a systematic framework on connected vehicle based adaptive traffic signal control is summarized to support the future research. Future research is needed to develop more efficient and generic adaptive traffic signal control methods in a connected vehicle environment.

  6. Air-Sea Interaction Measurements from the Controlled Towed Vehicle

    Science.gov (United States)

    Khelif, D.; Bluth, R. T.; Jonsson, H.; Barge, J.

    2014-12-01

    The Controlled Towed Vehicle (CTV) uses improved towed drone technology to actively maintain via a radar altimeter and controllable wing a user-set height that can be as low as the canonical reference height of 10 m above the sea surface. After take-off, the drone is released from the tow aircraft on a ~700-m stainless steel cable. We have instrumented the 0.23 m diameter and 2.13 m long drone with high fidelity instruments to measure the means and turbulent fluctuations of 3-D wind vector, temperature, humidity, pressure, CO2 and IR sea surface temperature. Data are recorded internally at 40 Hz and simultaneously transmitted to the tow aircraft via dedicated wireless Ethernet link. The CTV accommodates 40 kg of instrument payload and provides it with 250 W of continuous power through a ram air propeller-driven generator. Therefore its endurance is only limited by that of the tow aircraft.We will discuss the CTV development, the engineering challenges and solutions that have been successfully implemented to overcome them. We present results from recent flights as low as 9 m over the coastal ocean and comparisons of profiles and turbulent fluxes from the CTV and the tow aircraft. Manned aircraft operation at low-level boundary-layer flights is very limited. Dropsondes and UAS (Unmanned Aerial Systems) and UAS are alternates for measurements near the ocean surface. However, dropsondes have limited sensor capability and do not measure fluxes, and most present UAS vehicles do not have the payload and power capacity nor the low-flying ability in high winds over the oceans. The CTV therefore, fills a needed gap between the dropsondes, in situ aircraft, and UAS. The payload, capacity and power of the CTV makes it suitable for a variety of atmospheric research measurements. Other sensors to measure aerosol, chemistry, radiation, etc., could be readily accommodated in the CTV.

  7. A Vehicle Active Safety Model: Vehicle Speed Control Based on Driver Vigilance Detection Using Wearable EEG and Sparse Representation.

    Science.gov (United States)

    Zhang, Zutao; Luo, Dianyuan; Rasim, Yagubov; Li, Yanjun; Meng, Guanjun; Xu, Jian; Wang, Chunbai

    2016-02-19

    In this paper, we present a vehicle active safety model for vehicle speed control based on driver vigilance detection using low-cost, comfortable, wearable electroencephalographic (EEG) sensors and sparse representation. The proposed system consists of three main steps, namely wireless wearable EEG collection, driver vigilance detection, and vehicle speed control strategy. First of all, a homemade low-cost comfortable wearable brain-computer interface (BCI) system with eight channels is designed for collecting the driver's EEG signal. Second, wavelet de-noising and down-sample algorithms are utilized to enhance the quality of EEG data, and Fast Fourier Transformation (FFT) is adopted to extract the EEG power spectrum density (PSD). In this step, sparse representation classification combined with k-singular value decomposition (KSVD) is firstly introduced in PSD to estimate the driver's vigilance level. Finally, a novel safety strategy of vehicle speed control, which controls the electronic throttle opening and automatic braking after driver fatigue detection using the above method, is presented to avoid serious collisions and traffic accidents. The simulation and practical testing results demonstrate the feasibility of the vehicle active safety model.

  8. A Vehicle Active Safety Model: Vehicle Speed Control Based on Driver Vigilance Detection Using Wearable EEG and Sparse Representation

    Directory of Open Access Journals (Sweden)

    Zutao Zhang

    2016-02-01

    Full Text Available In this paper, we present a vehicle active safety model for vehicle speed control based on driver vigilance detection using low-cost, comfortable, wearable electroencephalographic (EEG sensors and sparse representation. The proposed system consists of three main steps, namely wireless wearable EEG collection, driver vigilance detection, and vehicle speed control strategy. First of all, a homemade low-cost comfortable wearable brain-computer interface (BCI system with eight channels is designed for collecting the driver’s EEG signal. Second, wavelet de-noising and down-sample algorithms are utilized to enhance the quality of EEG data, and Fast Fourier Transformation (FFT is adopted to extract the EEG power spectrum density (PSD. In this step, sparse representation classification combined with k-singular value decomposition (KSVD is firstly introduced in PSD to estimate the driver’s vigilance level. Finally, a novel safety strategy of vehicle speed control, which controls the electronic throttle opening and automatic braking after driver fatigue detection using the above method, is presented to avoid serious collisions and traffic accidents. The simulation and practical testing results demonstrate the feasibility of the vehicle active safety model.

  9. Computational Modeling of Flow Control Systems for Aerospace Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. proposes to develop computational methods for designing active flow control systems on aerospace vehicles with the primary objective of...

  10. Control of an Autonomous Vehicle for Registration of Weed and Crop in Precision Agriculture

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Andersen, Palle; Pedersen, Tom Søndergaard

    2002-01-01

    The paper describes the development of an autonomous electrical vehicle to be used for weed mapping in precision agriculture with special focus on the conceptual framework of the control system. The lowest layer of the control system is the propulsion and steering control, the second layer...... coordinates the movements of the wheel units, the third layer is path execution and perception and the upper layer performs planning and reasoning. The control system is implemented on an autonomous vehicle. The vehicle has been tested for path following and position accuracy. Based on the results a new...... vehicle is under construction....

  11. Design of Autonomous Navigation Controllers for Unmanned Aerial Vehicles Using Multi-Objective Genetic Programming

    National Research Council Canada - National Science Library

    Barlow, Gregory J

    2004-01-01

    Unmanned aerial vehicles (UAVs) have become increasingly popular for many applications, including search and rescue, surveillance, and electronic warfare, but almost all UAVs are controlled remotely by humans...

  12. Eye Movement Control in Scene Viewing and Reading: Evidence from the Stimulus Onset Delay Paradigm

    Science.gov (United States)

    Luke, Steven G.; Nuthmann, Antje; Henderson, John M.

    2013-01-01

    The present study used the stimulus onset delay paradigm to investigate eye movement control in reading and in scene viewing in a within-participants design. Short onset delays (0, 25, 50, 200, and 350 ms) were chosen to simulate the type of natural processing difficulty encountered in reading and scene viewing. Fixation duration increased…

  13. Self-directed learning skills in air-traffic control training; An eye-tracking approach

    NARCIS (Netherlands)

    Van Meeuwen, Ludo; Brand-Gruwel, Saskia; Van Merriënboer, Jeroen; Bock, Jeano; Kirschner, Paul A.

    2011-01-01

    Van Meeuwen, L. W., Brand-Gruwel, S., De Bock, J. J. P. R., Kirschner, P. A., & Van Merriënboer, J. J. G. (2010, September). Self-directed Learning Skills in Air-traffic Control Training; An Eye-tracking Approach. Paper presented at the European Association for Aviation Psychology, Budapest.

  14. Expertise differences in air traffic control: An eye-tracking study

    NARCIS (Netherlands)

    Van Meeuwen, Ludo; Jarodzka, Halszka; Brand-Gruwel, Saskia; Kirschner, Paul A.; De Bock, Jeano; Van Merriënboer, Jeroen

    2012-01-01

    Van Meeuwen, L. W., Jarodzka, H., Brand-Gruwel, S., Kirschner, P. A., De Bock, J. J. P. R., & Van Merriënboer, J. J. G. (2012, April). Expertise differences in air traffic control: An eye-tracking study. Paper presented at the American Educational Research Association Annual Meeting 2012, Vancouver,

  15. The Neural Correlates of Self-Regulatory Fatigability During Inhibitory Control of Eye Blinking.

    Science.gov (United States)

    Abi-Jaoude, Elia; Segura, Barbara; Cho, Sang Soo; Crawley, Adrian; Sandor, Paul

    2018-05-30

    The capacity to regulate urges is an important human characteristic associated with a range of social and health outcomes. Self-regulatory capacity has been postulated to have a limited reserve, which when depleted leads to failure. The authors aimed to investigate the neural correlates of self-regulatory fatigability. Functional MRI was used to detect brain activations in 19 right-handed healthy subjects during inhibition of eye blinking, in a block design. The increase in number of blinks during blink inhibition from the first to the last block was used as covariate of interest. There was an increase in the number of eye blinks escaping inhibitory control across blink inhibition blocks, whereas there was no change in the number of eye blinks occurring during rest blocks. Inhibition of blinking activated a wide network bilaterally, including the inferior frontal gyrus, dorsolateral prefrontal cortex, dorsal anterior cingulate cortex, supplementary motor area, and caudate. Deteriorating performance was associated with activity in orbitofrontal cortex, ventromedial prefrontal cortex, rostroventral anterior cingulate cortex, precuneus, somatosensory, and parietal areas. As anticipated, effortful eye-blink control resulted in activation of prefrontal control areas and regions involved in urge and interoceptive processing. Worsening performance was associated with activations in brain areas involved in urge, as well as regions involved in motivational evaluation. These findings suggest that self-regulatory fatigability is associated with relatively less recruitment of prefrontal cortical regions involved in executive control.

  16. 76 FR 49532 - Federal Motor Vehicle Safety Standards; Electronic Stability Control; Technical Report on the...

    Science.gov (United States)

    2011-08-10

    ...-0112] Federal Motor Vehicle Safety Standards; Electronic Stability Control; Technical Report on the Effectiveness of Electronic Stability Control Systems for Cars and LTVs AGENCY: National Highway Traffic Safety..., Electronic Stability Control Systems. The report's title is: Crash Prevention Effectiveness in Light-Vehicle...

  17. Solving Algebraic Riccati Equation Real Time for Integrated Vehicle Dynamics Control

    NARCIS (Netherlands)

    Kunnappillil Madhusudhanan, A; Corno, M.; Bonsen, B.; Holweg, E.

    2012-01-01

    In this paper we present a comparison study of different computational methods to implement State Dependent Riccati Equation (SDRE) based control in real time for a vehicle dynamics control application. Vehicles are mechatronic systems with nonlinear dynamics. One of the promising nonlinear control

  18. Regardless-of-Speed Superconducting LSM Controlled-Repulsive MAGLEV Vehicle

    Science.gov (United States)

    Yoshida, Kinjiro; Egashira, Tatsuya; Hirai, Ryuichi

    1996-01-01

    This paper proposes a new repulsive Maglev vehicle which a superconducting linear synchronous motor (LSM) can levitate and propel simultaneously, independently of the vehicle speeds. The combined levitation and propulsion control is carried out by controlling mechanical-load angle and armature-current. Dynamic simulations show successful operations with good ride-quality by using a compact control method proposed here.

  19. 76 FR 24872 - California State Nonroad Engine and Vehicle Pollution Control Standards; Authorization of Tier II...

    Science.gov (United States)

    2011-05-03

    ... Pollution Control Standards; Authorization of Tier II Marine Inboard/Sterndrive Spark Ignition Engine... requirement relating to the control of emissions for certain new nonroad engines or vehicles.\\1\\ Section 209(e... control of emissions from either of the following new nonroad engines or nonroad vehicles subject to...

  20. 78 FR 724 - California State Nonroad Engine Pollution Control Standards; Off-Highway Recreational Vehicles...

    Science.gov (United States)

    2013-01-04

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9766-2] California State Nonroad Engine Pollution Control...\\ California State Nonroad Engine and Vehicle Pollution Control Standards; Authorization of State Standards... standards and other requirements relating to the control of emissions from such vehicles or engines if...

  1. Experimental evaluation of optimal Vehicle Dynamic Control based on the State Dependent Riccati Equation technique

    NARCIS (Netherlands)

    Alirezaei, M.; Kanarachos, S.A.; Scheepers, B.T.M.; Maurice, J.P.

    2013-01-01

    Development and experimentally evaluation of an optimal Vehicle Dynamic Control (VDC) strategy based on the State Dependent Riccati Equation (SDRE) control technique is presented. The proposed nonlinear controller is based on a nonlinear vehicle model with nonlinear tire characteristics. A novel

  2. Controlled delivery of antiangiogenic drug to human eye tissue using a MEMS device

    KAUST Repository

    Pirmoradi, Fatemeh Nazly

    2013-01-01

    We demonstrate an implantable MEMS drug delivery device to conduct controlled and on-demand, ex vivo drug transport to human eye tissue. Remotely operated drug delivery to human post-mortem eyes was performed via a MEMS device. The developed curved packaging cover conforms to the eyeball thereby preventing the eye tissue from contacting the actuating membrane. By pulsed operation of the device, using an externally applied magnetic field, the drug released from the device accumulates in a cavity adjacent to the tissue. As such, docetaxel (DTX), an antiangiogenic drug, diffuses through the eye tissue, from sclera and choroid to retina. DTX uptake by sclera and choroid were measured to be 1.93±0.66 and 7.24±0.37 μg/g tissue, respectively, after two hours in pulsed operation mode (10s on/off cycles) at 23°C. During this period, a total amount of 192 ng DTX diffused into the exposed tissue. This MEMS device shows great potential for the treatment of ocular posterior segment diseases such as diabetic retinopathy by introducing a novel way of drug administration to the eye. © 2013 IEEE.

  3. The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network.

    Science.gov (United States)

    Han, Gaining; Fu, Weiping; Wang, Wen; Wu, Zongsheng

    2017-05-30

    The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function) is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average) model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS), the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative) controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control.

  4. The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network

    Directory of Open Access Journals (Sweden)

    Gaining Han

    2017-05-01

    Full Text Available The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS, the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control.

  5. Determining the frequency of dry eye in computer users and comparing with control group

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Davari

    2017-08-01

    Full Text Available AIM: To determine the frequency of dry eye in computer users and to compare them with control group. METHODS: This study was a case control research conducted in 2015 in the city of Birjand. Sample size of study was estimated to be 304 subjects(152 subjects in each group, computer user group and control group. Non-randomized method of sampling was used in both groups. Schirmer test was used to evaluate dry eye of subjects. Then, subjects completed questionnaire. This questionnaire was developed based on objectives and reviewing the literature. After collecting the data, they were entered to SPSS Software and they were analyzed using Chi-square test or Fisher's test at the alpha level of 0.05.RESULTS: In total, 304 subjects(152 subjects in each groupwere included in the study. Frequency of dry eyes in the control group was 3.3%(5 subjectsand it was 61.8% in computer users group(94 subjects. Significant difference was observed between two groups in this regard(Pn=12, and it was 34.2% in computer users group(n=52, which significant difference was observed between two groups in this regard(PP=0.8. The mean working hour with computer per day in patients with dry eye was 6.65±3.52h, while it was 1.62±2.54h in healthy group(T=13.25, PCONCLUSION: This study showed a significant relationship between using computer and dry eye and ocular symptoms. Thus, it is necessary that officials need to pay particular attention to working hours with computer by employees. They should also develop appropriate plans to divide the working hours with computer among computer users. However, due to various confounding factors, it is recommended that these factors to be controlled in future studies.

  6. Eye Movement Training and Suggested Gaze Strategies in Tunnel Vision - A Randomized and Controlled Pilot Study.

    Science.gov (United States)

    Ivanov, Iliya V; Mackeben, Manfred; Vollmer, Annika; Martus, Peter; Nguyen, Nhung X; Trauzettel-Klosinski, Susanne

    2016-01-01

    Degenerative retinal diseases, especially retinitis pigmentosa (RP), lead to severe peripheral visual field loss (tunnel vision), which impairs mobility. The lack of peripheral information leads to fewer horizontal eye movements and, thus, diminished scanning in RP patients in a natural environment walking task. This randomized controlled study aimed to improve mobility and the dynamic visual field by applying a compensatory Exploratory Saccadic Training (EST). Oculomotor responses during walking and avoiding obstacles in a controlled environment were studied before and after saccade or reading training in 25 RP patients. Eye movements were recorded using a mobile infrared eye tracker (Tobii glasses) that measured a range of spatial and temporal variables. Patients were randomly assigned to two training conditions: Saccade (experimental) and reading (control) training. All subjects who first performed reading training underwent experimental training later (waiting list control group). To assess the effect of training on subjects, we measured performance in the training task and the following outcome variables related to daily life: Response Time (RT) during exploratory saccade training, Percent Preferred Walking Speed (PPWS), the number of collisions with obstacles, eye position variability, fixation duration, and the total number of fixations including the ones in the subjects' blind area of the visual field. In the saccade training group, RTs on average decreased, while the PPWS significantly increased. The improvement persisted, as tested 6 weeks after the end of the training. On average, the eye movement range of RP patients before and after training was similar to that of healthy observers. In both, the experimental and reading training groups, we found many fixations outside the subjects' seeing visual field before and after training. The average fixation duration was significantly shorter after the training, but only in the experimental training condition

  7. Effect of Oral Lactoferrin on Cataract Surgery Induced Dry Eye: A Randomised Controlled Trial.

    Science.gov (United States)

    Devendra, Jaya; Singh, Sneha

    2015-10-01

    Cataract surgery is one of the most frequently performed intra-ocular surgeries, of these manual Small Incision Cataract Surgery (SICS) is a time tested technique of cataract removal. Any corneal incisional surgery, including cataract surgery, can induce dry eye postoperatively. Various factors have been implicated, of which oneis the inflammation induced by the surgery. Lactoferrin, a glycoprotein present in tears is said to have anti-inflammatory effects, and promotes cell growth. It has been used orally in patients of immune mediated dry eye to alleviate symptoms. This study was aimed to evaluate the dry eyes induced by manual Small Incision Cataract Surgery, and the effect if any, of oral lactoferrin on the dry eyes. A single centre, prospective randomised controlled trial with a concurrent parallel design. The study was carried out on patients presenting in the OPD of Rohilkhand Medical College hospital for cataract surgery. Sixty four patients of cataract surgery were included in the study. Patients with pre-existing dry eyes, ocular disease or systemic disease predisposing to dry eyes were excluded from the study. The selected patients were assigned into two groups by simple randomisation-Control Group A-32 patients that did not receive oral lactoferrin postoperatively. Group B-32 patients that received oral lactoferrin 350 gm postoperatively from day 1 after SICS. All patients were operated for cataract and their pre and postoperative (on days 7, 14, 30 and 60) dry eye status was assessed using the mean tear film break-up time (tBUT) and Schirmer test 1 (ST 1) as the evaluating parameters. Subjective evaluation of dry eye was done using Ocular Surface Disease Index (OSDI) scoring. Data was analysed for 58 patients, as 6 did not complete the follow up. Unpaired t-test was used to calculate the p-values. There was a statistically significant difference between the tBUT values of the Control and Lactoferrin group from day 14 onwards. The tBUT of control group

  8. A Fully-Distributed Heuristic Algorithm for Control of Autonomous Vehicle Movements at Isolated Intersections

    Directory of Open Access Journals (Sweden)

    Abdallah A. Hassan

    2014-12-01

    Full Text Available Optimizing autonomous vehicle movements through roadway intersections is a challenging problem. It has been demonstrated in the literature that traditional traffic control, such as traffic signal and stop sign control are not optimal especially for heavy traffic demand levels. Alternatively, centralized autonomous vehicle control strategies are costly and not scalable given that the ability of a central controller to track and schedule the movement of hundreds of vehicles in real-time is questionable. Consequently, in this paper a fully distributed algorithm is proposed where vehicles in the vicinity of an intersection continuously cooperate with each other to develop a schedule that allows them to safely proceed through the intersection while incurring minimum delay. Unlike other distributed approaches described in the literature, the wireless communication constraints are considered in the design of the control algorithm. Specifically, the proposed algorithm requires vehicles heading to an intersection to communicate only with neighboring vehicles, while the lead vehicles on each approach lane share information to develop a complete intersection utilization schedule. The scheduling rotates between vehicles to identify higher traffic volumes and favor vehicles coming from heavier lanes to minimize the overall intersection delay. The simulated experiments show significant reductions in the average delay using the proposed approach compared to other methods reported in the literature and reduction in the maximum delay experienced by a vehicle especially in cases of heavy traffic demand levels.

  9. Calculation of vehicle delay at signal-controlled intersections with adaptive traffic control algorithm

    Directory of Open Access Journals (Sweden)

    Andronov Roman

    2018-01-01

    Full Text Available By widely introducing information technology tools in the field of traffic control, it is possible to increase the capacity of hubs and reduce vehicle delays. Adaptive traffic light control is one of such tools. Its effectiveness can be assessed through traffic flow simulation. The aim of this study is to create a simulation model of a signal-controlled intersection that can be used to assess the effectiveness of adaptive control in various traffic situations, including the presence or absence of pedestrian traffic through an intersection. The model is based on a numerical experiment conducted using the Monte Carlo method. As a result of the study, vehicle delays, queue length and duration of traffic light cycles are calculated subject to different intensities of incoming traffic flows, and the presence or absence of pedestrian traffic.

  10. Fuzzy-Skyhook Control for Active Suspension Systems Applied to a Full Vehicle Model

    Directory of Open Access Journals (Sweden)

    Aref M.A. Soliman

    2012-04-01

    Full Text Available Nowadays, most modern vehicles are equipped with controlled suspension systems for improving the vehicle ride comfort. Therefore, this paper is concerned with a theoretical study for the ride comfort performance of the vehicle. The theoretical investigation includes a suggestion of an active suspension system controller using fuzzy-skyhook control theory, which offers new opportunities for the improvement of vehicle ride performance. The ride comfort of the active suspension system has been evaluated using a 7 degree of freedom full vehicle mathematical model. The simulation results are presented in the time and frequency domain, also in terms of RMS values, and it’s shown that the proposed active suspension system with fuzzy-skyhook control improved the vehicle ride quality in terms of body acceleration, suspension working space and dynamic tyre load in comparison with the passive and skyhook suspension systems.

  11. Sliding mode-based lateral vehicle dynamics control using tyre force measurements

    Science.gov (United States)

    Kunnappillil Madhusudhanan, Anil; Corno, Matteo; Holweg, Edward

    2015-11-01

    In this work, a lateral vehicle dynamics control based on tyre force measurements is proposed. Most of the lateral vehicle dynamics control schemes are based on yaw rate whereas tyre forces are the most important variables in vehicle dynamics as tyres are the only contact points between the vehicle and road. In the proposed method, active front steering is employed to uniformly distribute the required lateral force among the front left and right tyres. The force distribution is quantified through the tyre utilisation coefficients. In order to address the nonlinearities and uncertainties of the vehicle model, a gain scheduling sliding-mode control technique is used. In addition to stabilising the lateral dynamics, the proposed controller is able to maintain maximum lateral acceleration. The proposed method is tested and validated on a multi-body vehicle simulator.

  12. Electronic differential control of 2WD electric vehicle considering steering stability

    Science.gov (United States)

    Hua, Yiding; Jiang, Haobin; Geng, Guoqing

    2017-03-01

    Aiming at the steering wheel differential steering control technology of rear wheel independent driving electric wheel, considering the assisting effect of electronic differential control on vehicle steering, based on the high speed steering characteristic of electric wheel car, the electronic differential speed of auxiliary wheel steering is also studied. A yaw moment control strategy is applied to the vehicle at high speed. Based on the vehicle stability reference value, yaw rate is used to design the fuzzy controller to distribute the driving wheel torque. The simulation results show that the basic electronic differential speed function is realized based on the yaw moment control strategy, while the vehicle stability control is improved and the driving safety is enhanced. On the other hand, the torque control strategy can also assist steering of vehicle.

  13. A Study of Torque Vectoring and Traction Control for an All-Wheel Drive Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Maharun Mui’nuddin

    2014-07-01

    Full Text Available Common vehicle always experience energy loss during cornering manoeuver. Thus, to ensure it did not happened especially at high speed, a study of torque vectoring and traction control need to be made since it can increase the traction control of tyres during cornering at high speed. The study of torque vectoring and traction control for an all-wheel drive electric vehicle was conducted by modelling an all-wheel drive electric vehicle (EV in ADAMS/Car software. In addition, an optimal control algorithm will be developed for best performance to minimize energy losses using MATLAB/Simulink software. Furthermore, to prove the effectiveness of the all-wheel drive electric, the torque and traction control simulation of the all-wheel drive electric vehicle will be compared with uncontrolled electric vehicle model. According to the result, torque vectoring and traction control of in-wheel motor in all wheel drive EV can help to increase the performance of the electric vehicle during cornering manoeuver. In conclusion, this study of torque vectoring and traction control for an all-wheel drive electric vehicle will help researchers to improve the design of the future electric vehicle in term of the vehicle performance during cornering manoeuvre.

  14. LMI-Based H¥ Anti-Rollover Control Algorithm of Vehicle Active Suspension

    Directory of Open Access Journals (Sweden)

    LIAO Cong

    2014-10-01

    Full Text Available In order to improve the anti-rollover ability for vehicles, a 4 DOF vehicle rollover dynamics model is established, base on which we have designed an active suspension anti-rollover controller and proposed the H¥ control strategy. Simulations were carried out using Matlab/Simulink, and results show that the proposed control scheme can not only reduce the roll angle and roll angular velocity, but also improve the rollover stability of the vehicle and reduce the probability of vehicle rollover accidents.

  15. Inter-Vehicle Communication System Utilizing Autonomous Distributed Transmit Power Control

    Science.gov (United States)

    Hamada, Yuji; Sawa, Yoshitsugu; Goto, Yukio; Kumazawa, Hiroyuki

    In ad-hoc network such as inter-vehicle communication (IVC) system, safety applications that vehicles broadcast the information such as car velocity, position and so on periodically are considered. In these applications, if there are many vehicles broadcast data in a communication area, congestion incurs a problem decreasing communication reliability. We propose autonomous distributed transmit power control method to keep high communication reliability. In this method, each vehicle controls its transmit power using feed back control. Furthermore, we design a communication protocol to realize the proposed method, and we evaluate the effectiveness of proposed method using computer simulation.

  16. Dynamic flow control strategies of vehicle SCR Urea Dosing System

    Science.gov (United States)

    Lin, Wei; Zhang, Youtong; Asif, Malik

    2015-03-01

    Selective Catalyst Reduction(SCR) Urea Dosing System(UDS) directly affects the system accuracy and the dynamic response performance of a vehicle. However, the UDS dynamic response is hard to keep up with the changes of the engine's operating conditions. That will lead to low NO X conversion efficiency or NH3 slip. In order to optimize the injection accuracy and the response speed of the UDS in dynamic conditions, an advanced control strategy based on an air-assisted volumetric UDS is presented. It covers the methods of flow compensation and switching working conditions. The strategy is authenticated on an UDS and tested in different dynamic conditions. The result shows that the control strategy discussed results in higher dynamic accuracy and faster dynamic response speed of UDS. The inject deviation range is improved from being between -8% and 10% to -4% and 2% and became more stable than before, and the dynamic response time was shortened from 200 ms to 150 ms. The ETC cycle result shows that after using the new strategy the NH3 emission is reduced by 60%, and the NO X emission remains almost unchanged. The trade-off between NO X conversion efficiency and NH3 slip is mitigated. The studied flow compensation and switching working conditions can improve the dynamic performance of the UDS significantly and make the UDS dynamic response keep up with the changes of the engine's operating conditions quickly.

  17. Robust two degree of freedom vehicle steering control satisfying mixed sensitivity constraint

    OpenAIRE

    Aksun-Güvenc, B.; Güvenc, L.; Odenthal, D.; Bünte, T.

    2001-01-01

    Robust steering control is used here for improving the yaw dynamics of a passenger car. A specific two degree of freedom control structure is adapted to the vehicle yaw dynamics problem and shown to robustly improve performance. The design study is based on six operating conditions for vehicle speed and the coefficient of friction between the tires and the road representing the operating domain of the vehicle. The relevant design specifications are formulated as attaining Hurwitz stability a...

  18. Modelling and control of an electric vehicle; Modelisation et controle d`un vehicule electrique

    Energy Technology Data Exchange (ETDEWEB)

    Kwartnik, J

    1995-11-28

    The work described in this report provides to engineers or researchers a tool for electric vehicle simulation. The different components included in the system are described with in particular the choppers, the pedal accelerator and the vehicle dynamic represented by the different constraints applied to the vehicle (efforts of drag, of lift, of rolling and slope resistance). This study has been realized by considering nonlinear phenomenons such as the armature magnetic reaction or the resistance change due to temperature increasing. The complexity of the system leads to use several of control. The theory of linear systems made possible the synthesis of PID controllers after few hypothesis. An on line adaptation technique completed this synthesis by considering nonlinear effects. For the cruise control we have used a control based on fuzzy set theory. We showed through two examples, the cruise control and the motor control using a strategy which minimize the Joule effect looses, the interest and the possibilities of the model evolution. (author) 21 refs.

  19. Heterogeneous Teams of Autonomous Vehicles: Advanced Sensing & Control

    Science.gov (United States)

    2009-03-01

    Final Technical 3. DATES COVERED (From To) 7/1/05-12/31708 4. TITLE AND SUBTITLE Heterogeneous Teams of Autonomous Vehicles Advanced Sensing...assimilating data from underwater and surface autonomous vehicles in addition to the usual sources of Eulerian and Lagrangian systems into a small scale

  20. Climate Control Load Reduction Strategies for Electric Drive Vehicles in Warm Weather

    Energy Technology Data Exchange (ETDEWEB)

    Jeffers, M. A.; Chaney, L.; Rugh, J. P.

    2015-04-30

    Passenger compartment climate control is one of the largest auxiliary loads on a vehicle. Like conventional vehicles, electric vehicles (EVs) require climate control to maintain occupant comfort and safety, but cabin heating and air conditioning have a negative impact on driving range for all electric vehicles. Range reduction caused by climate control and other factors is a barrier to widespread adoption of EVs. Reducing the thermal loads on the climate control system will extend driving range, thereby reducing consumer range anxiety and increasing the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have investigated strategies for vehicle climate control load reduction, with special attention toward EVs. Outdoor vehicle thermal testing was conducted on two 2012 Ford Focus Electric vehicles to evaluate thermal management strategies for warm weather, including solar load reduction and cabin pre-ventilation. An advanced thermal test manikin was used to assess a zonal approach to climate control. In addition, vehicle thermal analysis was used to support testing by exploring thermal load reduction strategies, evaluating occupant thermal comfort, and calculating EV range impacts. Through stationary cooling tests and vehicle simulations, a zonal cooling configuration demonstrated range improvement of 6%-15%, depending on the drive cycle. A combined cooling configuration that incorporated thermal load reduction and zonal cooling strategies showed up to 33% improvement in EV range.

  1. Two wheel speed robust sliding mode control for electric vehicle drive

    Directory of Open Access Journals (Sweden)

    Abdelfatah Nasri

    2008-01-01

    Full Text Available Nowadays the uses of electrical power resources are integrated in the modern vehicle motion traction chain so new technologies allow the development of electric vehicles (EV by means of static converters-related electric motors. All mechanical transmission devices are eliminated and vehicle wheel motion can be controlled by means of power electronics. The proposed propulsing system consists of two induction motors (IM that ensure the drive of the two back driving wheels. The proposed control structure-called independent machines- for speed control permit the achievement of an electronic differential. The electronic differential system ensures the robust control of the vehicle behavior on the road. It also allows controlling independently, every driving wheel to turn at different speeds in any curve. This paper presents the study and the sliding mode control strategy of the electric vehicle driving wheels.

  2. H∞ control of railway vehicle suspension with MR damper using scaled roller rig

    International Nuclear Information System (INIS)

    Shin, Yu-Jeong; You, Won-Hee; Hur, Hyun-Moo; Park, Joon-Hyuk

    2014-01-01

    In this paper, a magneto-rheological (MR) damper was applied to the secondary suspension to reduce the vibration of a car body. The control performance of the MR damper was verified by numerical analysis with a 1/5 scale railway vehicle model in accordance with the similarity law. The analysis results were then validated in tests. In particular, the objective of the study was to understand how the control performance affected the dynamic characteristics of a railway vehicle and to systematically analyze the relationship between control performance and dynamic characteristics depending on various running speeds. To achieve this, experimental results for the dynamic characteristics of the scaled MR damper designed for the 1/5 scale railway vehicle model were applied to the railway vehicle model. The H ∞ control method was applied to the controller. The means of designing the railway vehicle body vibration controller and the effectiveness of its results were studied. (paper)

  3. Genetic algorithm with small population size for search feasible control parameters for parallel hybrid electric vehicles

    Directory of Open Access Journals (Sweden)

    Yu-Huei Cheng

    2017-11-01

    Full Text Available The control strategy is a major unit in hybrid electric vehicles (HEVs. In order to provide suitable control parameters for reducing fuel consumptions and engine emissions while maintaining vehicle performance requirements, the genetic algorithm (GA with small population size is applied to search for feasible control parameters in parallel HEVs. The electric assist control strategy (EACS is used as the fundamental control strategy of parallel HEVs. The dynamic performance requirements stipulated in the Partnership for a New Generation of Vehicles (PNGV is considered to maintain the vehicle performance. The known ADvanced VehIcle SimulatOR (ADVISOR is used to simulate a specific parallel HEV with urban dynamometer driving schedule (UDDS. Five population sets with size 5, 10, 15, 20, and 25 are used in the GA. The experimental results show that the GA with population size of 25 is the best for selecting feasible control parameters in parallel HEVs.

  4. Research on Adaptive Dual-Mode Switch Control Strategy for Vehicle Maglev Flywheel Battery

    Directory of Open Access Journals (Sweden)

    Hui Gao

    2015-01-01

    Full Text Available Because of the jamming signal is real-time changeable and control algorithm cannot timely tracking control flywheel rotor, this paper takes vehicle maglev flywheel battery as the research object. One kind of dual-model control strategy is developed based on the analysis of the vibration response impact of the flywheel battery control system. In view of the complex foundation vibration problems of electric vehicles, the nonlinear dynamic simulation model of vehicle maglev flywheel battery is solved. Through analyzing the nonlinear vibration response characteristics, one kind of dual-mode adaptive hybrid control strategy based on H∞ control and unbalance displacement feed-forward compensation control is presented and a real-time switch controller is designed. The reliable hybrid control is implemented, and the stability in the process of real-time switch is solved. The results of this project can provide important basic theory support for the research of vehicle maglev flywheel battery control system.

  5. The EyeHarp: A Gaze-Controlled Digital Musical Instrument.

    Science.gov (United States)

    Vamvakousis, Zacharias; Ramirez, Rafael

    2016-01-01

    We present and evaluate the EyeHarp, a new gaze-controlled Digital Musical Instrument, which aims to enable people with severe motor disabilities to learn, perform, and compose music using only their gaze as control mechanism. It consists of (1) a step-sequencer layer, which serves for constructing chords/arpeggios, and (2) a melody layer, for playing melodies and changing the chords/arpeggios. We have conducted a pilot evaluation of the EyeHarp involving 39 participants with no disabilities from both a performer and an audience perspective. In the first case, eight people with normal vision and no motor disability participated in a music-playing session in which both quantitative and qualitative data were collected. In the second case 31 people qualitatively evaluated the EyeHarp in a concert setting consisting of two parts: a solo performance part, and an ensemble (EyeHarp, two guitars, and flute) performance part. The obtained results indicate that, similarly to traditional music instruments, the proposed digital musical instrument has a steep learning curve, and allows to produce expressive performances both from the performer and audience perspective.

  6. A comprehensive overview of hybrid electric vehicle: Powertrain configurations, powertrain control techniques and electronic control units

    Energy Technology Data Exchange (ETDEWEB)

    Cagatay Bayindir, Kamil; Goezuekuecuek, Mehmet Ali; Teke, Ahmet [Cukurova University, Department of Electrical and Electronics Engineering, Balcali, Saricam, Adana (Turkey)

    2011-02-15

    The studies for hybrid electrical vehicle (HEV) have attracted considerable attention because of the necessity of developing alternative methods to generate energy for vehicles due to limited fuel based energy, global warming and exhaust emission limits in the last century. HEV incorporates internal composition engine, electric machines and power electronic equipments. In this study, overview of HEVs with a focus on hybrid configurations, energy management strategies and electronic control units are presented. Advantages and disadvantages of each configuration are clearly emphasized. The existing powertrain control techniques for HEVs are classified and comprehensively described. Electronic control units used in HEV configuration are also elaborated. The latest trends and technological challenges in the near future for HEVs are discussed. (author)

  7. APPLICATION OF EYE TRACKING FOR MEASUREMENT AND EVALUATION IN HUMAN FACTORS STUDIES IN CONTROL ROOM MODERNIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Kovesdi, C.; Spielman, Z.; LeBlanc, K.; Rice, B.

    2017-05-01

    An important element of human factors engineering (HFE) pertains to measurement and evaluation (M&E). The role of HFE-M&E should be integrated throughout the entire control room modernization (CRM) process and be used for human-system performance evaluation and diagnostic purposes with resolving potential human engineering deficiencies (HEDs) and other human machine interface (HMI) design issues. NUREG-0711 describes how HFE in CRM should employ a hierarchical set of measures, particularly during integrated system validation (ISV), including plant performance, personnel task performance, situation awareness, cognitive workload, and anthropometric/ physiological factors. Historically, subjective measures have been primarily used since they are easier to collect and do not require specialized equipment. However, there are pitfalls with relying solely on subjective measures in M&E such that negatively impact reliability, sensitivity, and objectivity. As part of comprehensively capturing a diverse set of measures that strengthen findings and inferences made of the benefits from emerging technologies like advanced displays, this paper discusses the value of using eye tracking as an objective method that can be used in M&E. A brief description of eye tracking technology and relevant eye tracking measures is provided. Additionally, technical considerations and the unique challenges with using eye tracking in full-scaled simulations are addressed. Finally, this paper shares preliminary findings regarding the use of a wearable eye tracking system in a full-scale simulator study. These findings should help guide future full-scale simulator studies using eye tracking as a methodology to evaluate human-system performance.

  8. Changes to online control and eye-hand coordination with healthy ageing.

    Science.gov (United States)

    O'Rielly, Jessica L; Ma-Wyatt, Anna

    2018-06-01

    Goal directed movements are typically accompanied by a saccade to the target location. Online control plays an important part in correction of a reach, especially if the target or goal of the reach moves during the reach. While there are notable changes to visual processing and motor control with healthy ageing, there is limited evidence about how eye-hand coordination during online updating changes with healthy ageing. We sought to quantify differences between older and younger people for eye-hand coordination during online updating. Participants completed a double step reaching task implemented under time pressure. The target perturbation could occur 200, 400 and 600 ms into a reach. We measured eye position and hand position throughout the trials to investigate changes to saccade latency, movement latency, movement time, reach characteristics and eye-hand latency and accuracy. Both groups were able to update their reach in response to a target perturbation that occurred at 200 or 400 ms into the reach. All participants demonstrated incomplete online updating for the 600 ms perturbation time. Saccade latencies, measured from the first target presentation, were generally longer for older participants. Older participants had significantly increased movement times but there was no significant difference between groups for touch accuracy. We speculate that the longer movement times enable the use of new visual information about the target location for online updating towards the end of the movement. Interestingly, older participants also produced a greater proportion of secondary saccades within the target perturbation condition and had generally shorter eye-hand latencies. This is perhaps a compensatory mechanism as there was no significant group effect on final saccade accuracy. Overall, the pattern of results suggests that online control of movements may be qualitatively different in older participants. Crown Copyright © 2018. Published by Elsevier B.V. All

  9. Eye Gaze and Aging: Selective and Combined Effects of Working Memory and Inhibitory Control

    Directory of Open Access Journals (Sweden)

    Trevor J. Crawford

    2017-11-01

    Full Text Available Eye-tracking is increasingly studied as a cognitive and biological marker for the early signs of neuropsychological and psychiatric disorders. However, in order to make further progress, a more comprehensive understanding of the age-related effects on eye-tracking is essential. The antisaccade task requires participants to make saccadic eye movements away from a prepotent stimulus. Speculation on the cause of the observed age-related differences in the antisaccade task largely centers around two sources of cognitive dysfunction: inhibitory control (IC and working memory (WM. The IC account views cognitive slowing and task errors as a direct result of the decline of inhibitory cognitive mechanisms. An alternative theory considers that a deterioration of WM is the cause of these age-related effects on behavior. The current study assessed IC and WM processes underpinning saccadic eye movements in young and older participants. This was achieved with three experimental conditions that systematically varied the extent to which WM and IC were taxed in the antisaccade task: a memory-guided task was used to explore the effect of increasing the WM load; a Go/No-Go task was used to explore the effect of increasing the inhibitory load; a ‘standard’ antisaccade task retained the standard WM and inhibitory loads. Saccadic eye movements were also examined in a control condition: the standard prosaccade task where the load of WM and IC were minimal or absent. Saccade latencies, error rates and the spatial accuracy of saccades of older participants were compared to the same measures in healthy young controls across the conditions. The results revealed that aging is associated with changes in both IC and WM. Increasing the inhibitory load was associated with increased reaction times in the older group, while the increased WM load and the inhibitory load contributed to an increase in the antisaccade errors. These results reveal that aging is associated with

  10. Eye Gaze and Aging: Selective and Combined Effects of Working Memory and Inhibitory Control.

    Science.gov (United States)

    Crawford, Trevor J; Smith, Eleanor S; Berry, Donna M

    2017-01-01

    Eye-tracking is increasingly studied as a cognitive and biological marker for the early signs of neuropsychological and psychiatric disorders. However, in order to make further progress, a more comprehensive understanding of the age-related effects on eye-tracking is essential. The antisaccade task requires participants to make saccadic eye movements away from a prepotent stimulus. Speculation on the cause of the observed age-related differences in the antisaccade task largely centers around two sources of cognitive dysfunction: inhibitory control (IC) and working memory (WM). The IC account views cognitive slowing and task errors as a direct result of the decline of inhibitory cognitive mechanisms. An alternative theory considers that a deterioration of WM is the cause of these age-related effects on behavior. The current study assessed IC and WM processes underpinning saccadic eye movements in young and older participants. This was achieved with three experimental conditions that systematically varied the extent to which WM and IC were taxed in the antisaccade task: a memory-guided task was used to explore the effect of increasing the WM load; a Go/No-Go task was used to explore the effect of increasing the inhibitory load; a 'standard' antisaccade task retained the standard WM and inhibitory loads. Saccadic eye movements were also examined in a control condition: the standard prosaccade task where the load of WM and IC were minimal or absent. Saccade latencies, error rates and the spatial accuracy of saccades of older participants were compared to the same measures in healthy young controls across the conditions. The results revealed that aging is associated with changes in both IC and WM. Increasing the inhibitory load was associated with increased reaction times in the older group, while the increased WM load and the inhibitory load contributed to an increase in the antisaccade errors. These results reveal that aging is associated with changes in both IC and

  11. Battery- and aging-aware embedded control systems for electric vehicles

    NARCIS (Netherlands)

    Chang, W.; Probstl, A.; Goswami, D.; Zamani, M.; Chakraborty, S.

    2014-01-01

    In this paper, for the first time, we propose a battery- and aging-aware optimization framework for embedded control systems design in electric vehicles (EVs). Performance and reliability of an EV are influenced by feedback control loops implemented into in-vehicle electrical/electronic (E/E)

  12. Design, Modeling And Control Of Steering And Braking For An Urban Electric Vehicle

    OpenAIRE

    Maciua, Dragos

    1996-01-01

    This report describes research which involved the design modification, modeling and control of automatic steering and braking systems for an urban electric vehicle. The vehicle is equipped with four-wheel independent drive, four-wheel independent braking and four-wheel steering. Control algorithms were developed for steering and braking. Simulation results show the feasibility of the algorithms.

  13. Eye Gaze Controlled Projected Display in Automotive and Military Aviation Environments

    Directory of Open Access Journals (Sweden)

    Gowdham Prabhakar

    2018-01-01

    Full Text Available This paper presents an eye gaze controlled projected display that can be used in aviation and automotive environment as a head up display. We have presented details of the hardware and software used in developing the display and an algorithm to improve performance of point and selection tasks in eye gaze controlled graphical user interface. The algorithm does not require changing layout of an interface; it rather puts a set of hotspots on clickable targets using a Simulated Annealing algorithm. Four user studies involving driving and flight simulators have found that the proposed projected display can improve driving and flying performance and significantly reduce pointing and selection times for secondary mission control tasks compared to existing interaction systems.

  14. Electric Vehicle Longitudinal Stability Control Based on a New Multimachine Nonlinear Model Predictive Direct Torque Control

    Directory of Open Access Journals (Sweden)

    M’hamed Sekour

    2017-01-01

    Full Text Available In order to improve the driving performance and the stability of electric vehicles (EVs, a new multimachine robust control, which realizes the acceleration slip regulation (ASR and antilock braking system (ABS functions, based on nonlinear model predictive (NMP direct torque control (DTC, is proposed for four permanent magnet synchronous in-wheel motors. The in-wheel motor provides more possibilities of wheel control. One of its advantages is that it has low response time and almost instantaneous torque generation. Moreover, it can be independently controlled, enhancing the limits of vehicular control. For an EV equipped with four in-wheel electric motors, an advanced control may be envisaged. Taking advantage of the fast and accurate torque of in-wheel electric motors which is directly transmitted to the wheels, a new approach for longitudinal control realized by ASR and ABS is presented in this paper. In order to achieve a high-performance torque control for EVs, the NMP-DTC strategy is proposed. It uses the fuzzy logic control technique that determines online the accurate values of the weighting factors and generates the optimal switching states that optimize the EV drives’ decision. The simulation results built in Matlab/Simulink indicate that the EV can achieve high-performance vehicle longitudinal stability control.

  15. The Role of Guidance, Navigation, and Control in Hypersonic Vehicle Multidisciplinary Design and Optimization

    Science.gov (United States)

    Ouzts, Peter J.; Soloway, Donald I.; Moerder, Daniel D.; Wolpert, David H.; Benavides, Jose Victor

    2009-01-01

    Airbreathing hypersonic systems offer distinct performance advantages over rocket-based systems for space access vehicles. However, these performance advantages are dependent upon advances in current state-of-the-art technologies in many areas such as ram/scramjet propulsion integration, high temperature materials, aero-elastic structures, thermal protection systems, transition to hypersonics and hypersonic control elements within the framework of complex physics and new design methods. The complex interactions between elements of an airbreathing hypersonic vehicle represent a new paradigm in vehicle design to achieve the optimal performance necessary to meet space access mission objectives. In the past, guidance, navigation, and control (GNC) analysis often follows completion of the vehicle conceptual design process. Individual component groups design subsystems which are then integrated into a vehicle configuration. GNC is presented the task of developing control approaches to meet vehicle performance objectives given that configuration. This approach may be sufficient for vehicles where significant performance margins exist. However, for higher performance vehicles engaging the GNC discipline too late in the design cycle has been costly. For example, the X-29 experimental flight vehicle was built as a technology demonstrator. One of the many technologies to be demonstrated was the use of light-weight material composites for structural components. The use of light-weight materials increased the flexibility of the X- 29 beyond that of conventional metal alloy constructed aircraft. This effect was not considered when the vehicle control system was designed and built. The impact of this is that the control system did not have enough control authority to compensate for the effects of the first fundamental structural mode of the vehicle. As a result, the resulting pitch rate response of the vehicle was below specification and no post-design changes could recover the

  16. Integrated vehicle control and guidance systems in unmanned ground vehicles for commercial applications

    Science.gov (United States)

    Kenyon, Chase H.

    1995-01-01

    While there is a lot of recent development in the entire IVHS field, very few have had the opportunity to combine the many areas of development into a single integrated `intelligent' unmanned vehicle. One of our systems was developed specifically to serve a major automobile manufacturer's need for an automated vehicle chassis durability test facility. Due to the severity of the road surface human drivers could not be used. A totally automated robotic vehicle driver and guidance system was necessary. In order to deliver fixed price commercial projects now, it was apparent system and component costs were of paramount importance. Cyplex has developed a robust, cost effective single wire guidance system. This system has inherent advantages in system simplicity. Multi-signal (per vehicle lane) systems complicate path planning and layout when multiple lanes and lane changes are required, as on actual highways. The system has demonstrated high enough immunity to rain and light snow cover that normal safety reductions in speed are adequate to stay within the required system performance envelope. This system and it's antenna interface have shown the ability to guide the vehicle at slow speeds (10 MPH) with a tracking repeatability of plus or minus 1/8 of an inch. The basic guide and antenna system has been tested at speeds up to 80 mph. The system has inherently superior abilities for lane changes and precision vehicle placement. The operation of this system will be described and the impact of a system that is commercially viable now for highway and off road use will be discussed.

  17. Method for controlling exhaust gas heat recovery systems in vehicles

    Science.gov (United States)

    Spohn, Brian L.; Claypole, George M.; Starr, Richard D

    2013-06-11

    A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

  18. Hypersonic vehicle control law development using H(infinity) and micron-synthesis

    Science.gov (United States)

    Gregory, Irene M.; Mcminn, John D.; Shaughnessy, John D.; Chowdhry, Rajiv S.

    1993-01-01

    Hypersonic vehicle control law development using H(infinity) and mu-synthesis is discussed. Airbreathing SSTO vehicles has a mutli-faceted mission that includes orbital operations, as well as re-entry and descent culminating in horizontal landing. However, the most challenging part of the operations is the ascent to orbit. The airbreathing propulsion requires lengthy atmospheric flight that may last as long as 30 minutes and take the vehicle half way around the globe. The vehicles's ascent is characterized by tight payload to orbit margins which translate into minimum fuel orbit as the performance criteria. Issues discussed include: SSTO airbreathing vehicle issues; control system performance requirements; robust control law framework; H(infinity) controller frequency analysis; and mu controller frequency analysis.

  19. Research on Acceleration Compensation Strategy of Electric Vehicle Based on Fuzzy Control Theory

    Science.gov (United States)

    Zhu, Tianjun; Li, Bin; Zong, Changfu; Wei, Zhicheng

    2017-09-01

    Nowadays, the driving technology of electric vehicle is developing rapidly. There are many kinds of methods in driving performance control technology. The paper studies the acceleration performance of electric vehicle. Under the premise of energy management, an acceleration power compensation method by fuzzy control theory based on driver intention recognition is proposed, which can meet the driver’s subjective feelings better. It avoids the problem that the pedal opening and power output are single correspondence when the traditional vehicle accelerates. Through the simulation test, this method can significantly improve the performance of acceleration and output torque smoothly in non-emergency acceleration to ensure vehicle comfortable and stable.

  20. Response of lead-acid batteries to chopper-controlled discharge. [for electric vehicles

    Science.gov (United States)

    Cataldo, R. L.

    1978-01-01

    The results of tests on an electric vehicle battery, using a simulated electric vehicle chopper-speed controller, show energy output losses up to 25 percent compared to constant current discharges at the same average current of 100 A. However, an energy output increase of 22 percent is noticed at the 200 A average level and 44 percent increase at the 300 A level using pulse discharging. Because of these complex results, electric vehicle battery/speed controller interactions must be considered in vehicle design.

  1. Modular space vehicle boards, control software, reprogramming, and failure recovery

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; McCabe, Kevin; Delapp, Jerry; Prichard, Dean; Proicou, Michael; Seitz, Daniel; Stein, Paul; Michel, John; Tripp, Justin; Palmer, Joseph; Storms, Steven

    2017-09-12

    A space vehicle may have a modular board configuration that commonly uses some or all components and a common operating system for at least some of the boards. Each modular board may have its own dedicated processing, and processing loads may be distributed. The space vehicle may be reprogrammable, and may be launched without code that enables all functionality and/or components. Code errors may be detected and the space vehicle may be reset to a working code version to prevent system failure.

  2. COMPLETE VEHICLE PROTECTION USING AT MEGA MICRO CONTROLLER

    OpenAIRE

    S. Satheeshkumar; S. Vimalnath; G. Nandhakumar

    2017-01-01

    The Primary aim of this Project is to design the project for a Complete Vehicle Protection with Embedded Technology. In this project there are two sections, one is a vehicle unit another one is a monitoring unit. In a vehicle unit Accident is measured with the help of vibration sensor. Temperature is measured with the help of temperature sensor. Fuel Level measurement using Float. Those sensor’s output is given to the amplifier unit. After the amplification this output is given to the ATMEGA ...

  3. Insect-Inspired Flight Control for Unmanned Aerial Vehicles

    Science.gov (United States)

    Thakoor, Sarita; Stange, G.; Srinivasan, M.; Chahl, Javaan; Hine, Butler; Zornetzer, Steven

    2005-01-01

    Flight-control and navigation systems inspired by the structure and function of the visual system and brain of insects have been proposed for a class of developmental miniature robotic aircraft called "biomorphic flyers" described earlier in "Development of Biomorphic Flyers" (NPO-30554), NASA Tech Briefs, Vol. 28, No. 11 (November 2004), page 54. These form a subset of biomorphic explorers, which, as reported in several articles in past issues of NASA Tech Briefs ["Biomorphic Explorers" (NPO-20142), Vol. 22, No. 9 (September 1998), page 71; "Bio-Inspired Engineering of Exploration Systems" (NPO-21142), Vol. 27, No. 5 (May 2003), page 54; and "Cooperative Lander-Surface/Aerial Microflyer Missions for Mars Exploration" (NPO-30286), Vol. 28, No. 5 (May 2004), page 36], are proposed small robots, equipped with microsensors and communication systems, that would incorporate crucial functions of mobility, adaptability, and even cooperative behavior. These functions are inherent to biological organisms but are challenging frontiers for technical systems. Biomorphic flyers could be used on Earth or remote planets to explore otherwise difficult or impossible to reach sites. An example of an exploratory task of search/surveillance functions currently being tested is to obtain high-resolution aerial imagery, using a variety of miniaturized electronic cameras. The control functions to be implemented by the systems in development include holding altitude, avoiding hazards, following terrain, navigation by reference to recognizable terrain features, stabilization of flight, and smooth landing. Flying insects perform these and other functions remarkably well, even though insect brains contains fewer than 10(exp -4) as many neurons as does the human brain. Although most insects have immobile, fixed-focus eyes and lack stereoscopy (and hence cannot perceive depth directly), they utilize a number of ingenious strategies for perceiving, and navigating in, three dimensions. Despite

  4. Comprehensive analysis of the carbon impacts of vehicle intelligent speed control

    Science.gov (United States)

    Carslaw, David C.; Goodman, Paul S.; Lai, Frank C. H.; Carsten, Oliver M. J.

    2010-07-01

    In recent years sophisticated technologies have been developed to control vehicle speed based on the type of road the vehicle is driven on using Global Positioning Systems and in-car technology that can alter the speed of the vehicle. While reducing the speed of road vehicles is primarily of interest from a safety perspective, vehicle speed is also an important determinant of vehicle emissions and thus these technologies can be expected to have impacts on a range of exhaust emissions. This work analyses the results from a very large, comprehensive field trial that used 20 instrumented vehicles with and without speed control driven almost 500,000 km measuring vehicle speed at 10 Hz. We develop individual vehicle modal emissions models for CO 2 for 30 Euro III and Euro IV cars at a 1-Hz time resolution. Generalized Additive Models were used to describe how emissions from individual vehicles vary depending on their driving conditions, taking account of variable interactions and time-lag effects. We quantify the impact that vehicle speed control has on-vehicle emissions of CO 2 by road type, fuel type and driver behaviour. Savings in CO 2 of ≈6% were found on average for motorway-type roads when mandatory speed control was used compared with base case conditions. For most other types of road, speed control has very little effect on emissions of CO 2 and in some cases can result in increased emissions for low-speed limit urban roads. We also find that there is on average a 20% difference in CO 2 emission between the lowest and highest emitting driver, which highlights the importance of driver behaviour in general as a means of reducing emissions of CO 2.

  5. On-road vehicle emission control in Beijing: past, present, and future.

    Science.gov (United States)

    Wu, Ye; Wang, Renjie; Zhou, Yu; Lin, Bohong; Fu, Lixin; He, Kebin; Hao, Jiming

    2011-01-01

    Beijing, the capital of China, has experienced rapid motorization since 1990; a trend that is likely to continue. The growth in vehicles and the corresponding emissions create challenges to improving the urban air quality. In an effort to reduce the impact of vehicle emissions on urban air quality, Beijing has adopted a number of vehicle emission control strategies and policies since the mid 1990 s. These are classified into seven categories: (1) emission control on new vehicles; (2) emission control on in-use vehicles; (3) fuel quality improvements; (4) alternative-fuel and advanced vehicles; (5) economic policies; (6) public transport; and (7) temporal traffic control measures. Many have proven to be successful, such as the Euro emission standards, unleaded gasoline and low sulfur fuel, temporal traffic control measures during the Beijing Olympic Games, etc. Some, however, have been failures, such as the gasoline-to-LPG taxi retrofit program. Thanks to the emission standards for new vehicles as well as other controls, the fleet-average emission rates of CO, HC, NO(X), and PM(10) by each major vehicle category are decreasing over time. For example, gasoline cars decreased fleet-average emission factors by 12.5% for CO, 10.0% for HC, 5.8% for NO(X), and 13.0% for PM(10) annually since 1995, and such a trend is likely to continue. Total emissions for Beijing's vehicle fleet increased from 1995 to 1998. However, they show a clear and steady decrease between 1999 and 2009. In 2009, total emissions of CO, HC, NO(X), and PM(10) were 845,000 t, 121,000 t, 84,000 t, and 3700 t, respectively; with reductions of 47%, 49%, 47%, and 42%, relative to 1998. Beijing has been considered a pioneer in controlling vehicle emissions within China, similar to the role of California to the U.S. The continued rapid growth of vehicles, however, is challenging Beijing's policy-makers.

  6. Anti-Windup Control for an Air-Breathing Hypersonic Vehicle Model

    National Research Council Canada - National Science Library

    Groves, Kevin P; Serrani, Andrea; Yurkovich, Stephen; Bolender, Michael A; Doman, David B

    2005-01-01

    .... Anti-windup control allows the input constraints to be considered explicitly in the design of linear controllers to track a reference trajectory for the vehicle velocity, altitude, and angle of attack...

  7. Frequency-Control Reserves and Voltage Support from Electric Vehicles

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2013-01-01

    The increasing penetration of variable wind power generation units and electricity consumption in power systems demands additional ancillary services for its reliable operation. The battery storages of electric vehicles are one of the substitute solutions for replacing conventional fossil......-fuelled generators to supply future grid support functions. The quick start and fast response characteristics of battery storages enable the electric vehicles to provide most of the power system auxiliary tasks. This chapter discusses key ancillary services that could be supplied by electric vehicles to maintain...... the system balance in power systems with high volumes of wind power generation. To analyse the applications and performance of electric vehicles in supplying active power balancing services, the case studies simulated in wind-power-dominated Danish power systems are also presented....

  8. Perception, Planning, Control, and Coordination for Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Scott Drew Pendleton

    2017-02-01

    Full Text Available Autonomous vehicles are expected to play a key role in the future of urban transportation systems, as they offer potential for additional safety, increased productivity, greater accessibility, better road efficiency, and positive impact on the environment. Research in autonomous systems has seen dramatic advances in recent years, due to the increases in available computing power and reduced cost in sensing and computing technologies, resulting in maturing technological readiness level of fully autonomous vehicles. The objective of this paper is to provide a general overview of the recent developments in the realm of autonomous vehicle software systems. Fundamental components of autonomous vehicle software are reviewed, and recent developments in each area are discussed.

  9. Optimal Control of Connected and Automated Vehicles at Roundabouts

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Liuhui [University of Delaware; Malikopoulos, Andreas [ORNL; Rios-Torres, Jackeline [ORNL

    2018-01-01

    Connectivity and automation in vehicles provide the most intriguing opportunity for enabling users to better monitor transportation network conditions and make better operating decisions to improve safety and reduce pollution, energy consumption, and travel delays. This study investigates the implications of optimally coordinating vehicles that are wirelessly connected to each other and to an infrastructure in roundabouts to achieve a smooth traffic flow without stop-and-go driving. We apply an optimization framework and an analytical solution that allows optimal coordination of vehicles for merging in such traffic scenario. The effectiveness of the efficiency of the proposed approach is validated through simulation and it is shown that coordination of vehicles can reduce total travel time by 3~49% and fuel consumption by 2~27% with respect to different traffic levels. In addition, network throughput is improved by up to 25% due to elimination of stop-and-go driving behavior.

  10. Control of autonomous ground vehicles: a brief technical review

    Science.gov (United States)

    Babak, Shahian-Jahromi; Hussain, Syed A.; Karakas, Burak; Cetin, Sabri

    2017-07-01

    This paper presents a brief review of the developments achieved in autonomous vehicle systems technology. A concise history of autonomous driver assistance systems is presented, followed by a review of current state of the art sensor technology used in autonomous vehicles. Standard sensor fusion method that has been recently explored is discussed. Finally, advances in embedded software methodologies that define the logic between sensory information and actuation decisions are reviewed.

  11. A path-following driver/vehicle model with optimized lateral dynamic controller

    Directory of Open Access Journals (Sweden)

    Behrooz Mashadi

    Full Text Available Reduction in traffic congestion and overall number of accidents, especially within the last decade, can be attributed to the enormous progress in active safety. Vehicle path following control with the presence of driver commands can be regarded as one of the important issues in vehicle active safety systems development and more realistic explanation of vehicle path tracking problem. In this paper, an integrated driver/DYC control system is presented that regulates the steering angle and yaw moment, considering driver previewed path. Thus, the driver previewed distance, the heading error and the lateral deviation between the vehicle and desired path are used as inputs. Then, the controller determines and applies a corrective steering angle and a direct yaw moment to make the vehicle follow the desired path. A PID controller with optimized gains is used for the control of integrated driver/DYC system. Genetic Algorithm as an intelligent optimization method is utilized to adapt PID controller gains for various working situations. Proposed integrated driver/DYC controller is examined on lane change manuvers andthe sensitivity of the control system is investigated through the changes in the driver model and vehicle parameters. Simulation results show the pronounced effectiveness of the controller in vehicle path following and stability.

  12. Vehicle Lateral Control under Fault in Front and/or Rear Sensors

    OpenAIRE

    Huang, Jihua; Lu, Guang; Tomizuka, Masayoshi

    2000-01-01

    This report documents the findings of research performed under TO4204, "Vehicle Lateral Control under Fault in Front and/or Rear Sensors" during the year 2000- 2001. The research goal of TO4204 is to develop vehicle lateral control strategies under faulty operation of the magnetometers. The main objectives of the project are: (1) to design controllers that use the output from only one set of magnetometers, and (2) to develop an autonomous lateral control scheme that uses no magnetometers. New...

  13. Stability control for high speed tracked unmanned vehicles

    Science.gov (United States)

    Pape, Olivier; Morillon, Joel G.; Houbloup, Philippe; Leveque, Stephane; Fialaire, Cecile; Gauthier, Thierry; Ropars, Patrice

    2005-05-01

    The French Military Robotic Study Program (introduced in Aerosense 2003), sponsored by the French Defense Procurement Agency and managed by Thales as the prime contractor, focuses on about 15 robotic themes which can provide an immediate "operational add-on value". The paper details the "automatic speed adjustment" behavior (named SYR4), developed by Giat Industries Company, which main goal is to secure the teleoperated mobility of high speed tracked vehicles on rough grounds; more precisely, the validated low level behavior continuously adjusts the vehicle speed taking into account the teleperator wish AND the maximum speed that the vehicle can manage safely according to the commanded radius of curvature. The algorithm is based on a realistic physical model of the ground-tracks relation, taking into account many vehicle and ground parameters (such as ground adherence and dynamic specificities of tracked vehicles). It also deals with the teleoperator-machine interface, providing a balanced strategy between both extreme behaviors: a) maximum speed reduction before initiating the commanded curve; b) executing the minimum possible radius without decreasing the commanded speed. The paper presents the results got from the military acceptance tests performed on tracked SYRANO vehicle (French Operational Demonstrator).

  14. Direct Yaw Control of Vehicle using State Dependent Riccati Equation with Integral Terms

    Directory of Open Access Journals (Sweden)

    SANDHU, F.

    2016-05-01

    Full Text Available Direct yaw control of four-wheel vehicles using optimal controllers such as the linear quadratic regulator (LQR and the sliding mode controller (SMC either considers only certain parameters constant in the nonlinear equations of vehicle model or totally neglect their effects to obtain simplified models, resulting in loss of states for the system. In this paper, a modified state-dependent Ricatti equation method obtained by the simplification of the vehicle model is proposed. This method overcomes the problem of the lost states by including state integrals. The results of the proposed system are compared with the sliding mode slip controller and state-dependent Ricatti equation method using high fidelity vehicle model in the vehicle simulation software package, Carsim. Results show 38% reduction in the lateral velocity, 34% reduction in roll and 16% reduction in excessive yaw by only increasing the fuel consumption by 6.07%.

  15. Design and Implementation of a Control System for Testing an Experimental Electrical Vehicle

    OpenAIRE

    Miranda Bermejo, Jorge

    2010-01-01

    The Research Institute of Vehicle Engines and Automotive Engineering (IVK) at the University of Stuttgart is developing an experimental electric vehicle. With that vehicle different research topics in the scope of e-mobility will be investigated. Some of these topics are range prediction and optimization issues, adapted control of inverter and electric motor, as well as, different battery charging techniques. The aim of this master thesis is to design and to implement the contr...

  16. A Feedforward Control Approach to the Local Navigation Problem for Autonomous Vehicles

    Science.gov (United States)

    1994-05-02

    AD-A282 787 " A Feedforward Control Approach to the Local Navigation Problem for Autonomous Vehicles Alonzo Kelly CMU-RI-TR-94-17 The Robotics...follow, or a direction to prefer, it cannot generate its own strategic goals. Therefore, it solves the local planning problem for autonomous vehicles . The... autonomous vehicles . It is intelligent because it uses range images that are generated from either a laser rangefinder or a stereo triangulation

  17. Parking Space Detection and Trajectory Tracking Control for Vehicle Auto-Parking

    OpenAIRE

    Shiuh-Jer Huang; Yu-Sheng Hsu

    2017-01-01

    On-board available parking space detecting system, parking trajectory planning and tracking control mechanism are the key components of vehicle backward auto-parking system. Firstly, pair of ultrasonic sensors is installed on each side of vehicle body surface to detect the relative distance between ego-car and surrounding obstacle. The dimension of a found empty space can be calculated based on vehicle speed and the time history of ultrasonic sensor detecting information. This result can be u...

  18. Falls and Postural Control in Older Adults With Eye Refractive Errors

    Directory of Open Access Journals (Sweden)

    Afsun Nodehi-Moghadam

    2016-04-01

    Conclusion: Vision impairment of older adults due to refractive error is not associated with an increase in falls. Furthermore, TUG test results did not show balance disorders in these groups. Further research, such as assessment of postural control with advanced devices and considering other falling risk factors is also needed to identify the predictors of falls in older adults with eye refractive errors.

  19. Results of a Multicenter, Randomized, Double-Masked, Placebo-Controlled Clinical Study of the Efficacy and Safety of Visomitin Eye Drops in Patients with Dry Eye Syndrome.

    Science.gov (United States)

    Brzheskiy, Vladimir V; Efimova, Elena L; Vorontsova, Tatiana N; Alekseev, Vladimir N; Gusarevich, Olga G; Shaidurova, Ksenia N; Ryabtseva, Alla A; Andryukhina, Olga M; Kamenskikh, Tatiana G; Sumarokova, Elena S; Miljudin, Eugeny S; Egorov, Eugeny A; Lebedev, Oleg I; Surov, Alexander V; Korol, Andrii R; Nasinnyk, Illia O; Bezditko, Pavel A; Muzhychuk, Olena P; Vygodin, Vladimir A; Yani, Elena V; Savchenko, Alla Y; Karger, Elena M; Fedorkin, Oleg N; Mironov, Alexander N; Ostapenko, Victoria; Popeko, Natalia A; Skulachev, Vladimir P; Skulachev, Maxim V

    2015-12-01

    This article presents the results of an international, multicenter, randomized, double-masked, placebo-controlled clinical study of Visomitin (Mitotech LLC, Moscow, Russian Federation) eye drops in patients with dry eye syndrome (DES). Visomitin is the first registered (in Russia) drug with a mitochondria-targeted antioxidant (SkQ1) as the active ingredient. In this multicenter (10 sites) study of 240 subjects with DES, study drug (Visomitin or placebo) was self-administered three times daily (TID) for 6 weeks, followed by a 6-week follow-up period. Seven in-office study visits occurred every 2 weeks during both the treatment and follow-up periods. Efficacy measures included Schirmer's test, tear break-up time, fluorescein staining, meniscus height, and visual acuity. Safety measures included adverse events, slit lamp biomicroscopy, tonometry, blood pressure, and heart rate. Tolerability was also evaluated. This clinical study showed the effectiveness of Visomitin eye drops in the treatment of signs and symptoms of DES compared with placebo. The study showed that a 6-week course of TID topical instillation of Visomitin significantly improved the functional state of the cornea; Visomitin increased tear film stability and reduced corneal damage. Significant reduction of dry eye symptoms (such as dryness, burning, grittiness, and blurred vision) was also observed. Based on the results of this study, Visomitin is effective and safe for use in eye patients with DES for protection from corneal damage. Mitotech LLC.

  20. Nonlinear Output Feedback Control of Underwater Vehicle Propellers using Advance Speed Feedback

    DEFF Research Database (Denmark)

    Fossen, T.I.; Blanke, M.

    1999-01-01

    More accurate propeller shaft speed controllers can be designed by using nonlinear control theory. In this paper, an output feedback controller reconstructing the advance speed (speed of water going into the propeller) from vehicle speed measurements is derived. For this purpose a three-state model...... minimizes thruster losses due to variations in propeller axial inlet flow which is a major problem when applying conventional vehicle-propeller control systems. The proposed controller is simulated for an underwater vehicle equipped with a single propeller. From the simulations it can be concluded...... of propeller shaft speed, forward (surge) speed of the vehicle and axial inlet flow of the propeller is applied. A nonlinear observer in combination with an output feedback integral controller are derived by applying Lyapunov stability theory and exponential stability is proven. The output feedback controller...

  1. Nonlinear output feedback control of underwater vehicle propellers using feedback form estimated axial flow velocity

    DEFF Research Database (Denmark)

    Fossen, T. I.; Blanke, Mogens

    2000-01-01

    Accurate propeller shaft speed controllers can be designed by using nonlinear control theory and feedback from the axial water velocity in the propeller disc. In this paper, an output feedback controller is derived, reconstructing the axial flow velocity from vehicle speed measurements, using...... a three-state model of propeller shaft speed, forward (surge) speed of the vehicle, and the axial flow velocity. Lyapunov stability theory is used to prove that a nonlinear observer combined with an output feedback integral controller provide exponential stability. The output feedback controller...... compensates for variations in thrust due to time variations in advance speed. This is a major problem when applying conventional vehicle-propeller control systems, The proposed controller is simulated for an underwater vehicle equipped with a single propeller. The simulations demonstrate that the axial water...

  2. Stability Assessment and Tuning of an Adaptively Augmented Classical Controller for Launch Vehicle Flight Control

    Science.gov (United States)

    VanZwieten, Tannen; Zhu, J. Jim; Adami, Tony; Berry, Kyle; Grammar, Alex; Orr, Jeb S.; Best, Eric A.

    2014-01-01

    Recently, a robust and practical adaptive control scheme for launch vehicles [ [1] has been introduced. It augments a classical controller with a real-time loop-gain adaptation, and it is therefore called Adaptive Augmentation Control (AAC). The loop-gain will be increased from the nominal design when the tracking error between the (filtered) output and the (filtered) command trajectory is large; whereas it will be decreased when excitation of flex or sloshing modes are detected. There is a need to determine the range and rate of the loop-gain adaptation in order to retain (exponential) stability, which is critical in vehicle operation, and to develop some theoretically based heuristic tuning methods for the adaptive law gain parameters. The classical launch vehicle flight controller design technics are based on gain-scheduling, whereby the launch vehicle dynamics model is linearized at selected operating points along the nominal tracking command trajectory, and Linear Time-Invariant (LTI) controller design techniques are employed to ensure asymptotic stability of the tracking error dynamics, typically by meeting some prescribed Gain Margin (GM) and Phase Margin (PM) specifications. The controller gains at the design points are then scheduled, tuned and sometimes interpolated to achieve good performance and stability robustness under external disturbances (e.g. winds) and structural perturbations (e.g. vehicle modeling errors). While the GM does give a bound for loop-gain variation without losing stability, it is for constant dispersions of the loop-gain because the GM is based on frequency-domain analysis, which is applicable only for LTI systems. The real-time adaptive loop-gain variation of the AAC effectively renders the closed-loop system a time-varying system, for which it is well-known that the LTI system stability criterion is neither necessary nor sufficient when applying to a Linear Time-Varying (LTV) system in a frozen-time fashion. Therefore, a

  3. Eye-gaze control of the computer interface: Discrimination of zoom intent

    International Nuclear Information System (INIS)

    Goldberg, J.H.

    1993-01-01

    An analysis methodology and associated experiment were developed to assess whether definable and repeatable signatures of eye-gaze characteristics are evident, preceding a decision to zoom-in, zoom-out, or not to zoom at a computer interface. This user intent discrimination procedure can have broad application in disability aids and telerobotic control. Eye-gaze was collected from 10 subjects in a controlled experiment, requiring zoom decisions. The eye-gaze data were clustered, then fed into a multiple discriminant analysis (MDA) for optimal definition of heuristics separating the zoom-in, zoom-out, and no-zoom conditions. Confusion matrix analyses showed that a number of variable combinations classified at a statistically significant level, but practical significance was more difficult to establish. Composite contour plots demonstrated the regions in parameter space consistently assigned by the MDA to unique zoom conditions. Peak classification occurred at about 1200--1600 msec. Improvements in the methodology to achieve practical real-time zoom control are considered

  4. Bird's-Eye View of Sampling Sites: Using Unmanned Aerial Vehicles to Make Chemistry Fieldwork Videos

    Science.gov (United States)

    Fung, Fun Man; Watts, Simon Francis

    2017-01-01

    Drones, unmanned aerial vehicles (UAVs), usually helicopters or airplanes, are commonly used for warfare, aerial surveillance, and recreation. In recent years, drones have become more accessible to the public as a platform for photography. In this report, we explore the use of drones as a new technological filming tool to enhance student learning…

  5. Flight Control of Biomimetic Air Vehicles Using Vibrational Control and Averaging

    Science.gov (United States)

    Tahmasian, Sevak; Woolsey, Craig A.

    2017-08-01

    A combination of vibrational inputs and state feedback is applied to control the flight of a biomimetic air vehicle. First, a control strategy is developed for longitudinal flight, using a quasi-steady aerodynamic model and neglecting wing inertial effects. Vertical and forward motion is controlled by modulating the wings' stroke and feather angles, respectively. Stabilizing control parameter values are determined using the time-averaged dynamic model. Simulations of a system resembling a hawkmoth show that the proposed controller can overcome modeling error associated with the wing inertia and small parameter uncertainties when following a prescribed trajectory. After introducing the approach through an application to longitudinal flight, the control strategy is extended to address flight in three-dimensional space.

  6. Intelligent Hybrid Vehicle Power Control - Part 1: Machine Learning of Optimal Vehicle Power

    Science.gov (United States)

    2012-06-30

    the motor or both can provide the traction power to the drivetrain. During vehicle deceleration, the regenerative braking power is captured to charge...and Amax is the maximum acceleration. The 11 drive cycles are divided into four categories of roadway types and traffic congestion levels, freeway...freeway ramp, arterial, and local. Two of the categories , freeway and arterial, are further divided into subcategories based on a qualitative measure

  7. A Path Tracking Algorithm Using Future Prediction Control with Spike Detection for an Autonomous Vehicle Robot

    Directory of Open Access Journals (Sweden)

    Muhammad Aizzat Zakaria

    2013-08-01

    Full Text Available Trajectory tracking is an important aspect of autonomous vehicles. The idea behind trajectory tracking is the ability of the vehicle to follow a predefined path with zero steady state error. The difficulty arises due to the nonlinearity of vehicle dynamics. Therefore, this paper proposes a stable tracking control for an autonomous vehicle. An approach that consists of steering wheel control and lateral control is introduced. This control algorithm is used for a non-holonomic navigation problem, namely tracking a reference trajectory in a closed loop form. A proposed future prediction point control algorithm is used to calculate the vehicle's lateral error in order to improve the performance of the trajectory tracking. A feedback sensor signal from the steering wheel angle and yaw rate sensor is used as feedback information for the controller. The controller consists of a relationship between the future point lateral error, the linear velocity, the heading error and the reference yaw rate. This paper also introduces a spike detection algorithm to track the spike error that occurs during GPS reading. The proposed idea is to take the advantage of the derivative of the steering rate. This paper aims to tackle the lateral error problem by applying the steering control law to the vehicle, and proposes a new path tracking control method by considering the future coordinate of the vehicle and the future estimated lateral error. The effectiveness of the proposed controller is demonstrated by a simulation and a GPS experiment with noisy data. The approach used in this paper is not limited to autonomous vehicles alone since the concept of autonomous vehicle tracking can be used in mobile robot platforms, as the kinematic model of these two platforms is similar.

  8. A CASE OF SELF-INDUCED ACUTE HYDROPS IN A PATIENT WITH IMPULSE CONTROL DISORDER ASSOCIATED WITH COMPULSIVE EYE TRAUMA

    Directory of Open Access Journals (Sweden)

    Bindu Madhavi

    2016-03-01

    Full Text Available PURPOSE To describe acute hydrops in a patient with impulse control disorder (not otherwise specified secondary to self-induced repetitive eye trauma. METHODS A 22-year-old male patient was referred from a psychiatrist with a diagnosis of impulse control disorder not otherwise specified (compulsive impulse self-mutilating behaviour for opacity and watering of both eyes (left eye more than right eye. Left eye showed features of acute hydrops with Descemet’s tear and right eye showed corneal opacity with Descemet’s tear (status post hydrops. RESULT The patient was prescribed cycloplegics, hypertonic saline for left eye and was advised against scratching the eye and was given protective goggles and was told for close followup in conjunction with psychiatric management. CONCLUSION Impulse control disorders are relatively common psychiatric conditions, yet are poorly understood by clinicians, patients suffering from the disorder and public. And hence identification of this disorder and close observation of patient allows for avoiding complications such as progression of hydrops, perforation and infection.

  9. Control-oriented modeling and adaptive backstepping control for a nonminimum phase hypersonic vehicle.

    Science.gov (United States)

    Ye, Linqi; Zong, Qun; Tian, Bailing; Zhang, Xiuyun; Wang, Fang

    2017-09-01

    In this paper, the nonminimum phase problem of a flexible hypersonic vehicle is investigated. The main challenge of nonminimum phase is the prevention of dynamic inversion methods to nonlinear control design. To solve this problem, we make research on the relationship between nonminimum phase and backstepping control, finding that a stable nonlinear controller can be obtained by changing the control loop on the basis of backstepping control. By extending the control loop to cover the internal dynamics in it, the internal states are directly controlled by the inputs and simultaneously serve as virtual control for the external states, making it possible to guarantee output tracking as well as internal stability. Then, based on the extended control loop, a simplified control-oriented model is developed to enable the applicability of adaptive backstepping method. It simplifies the design process and releases some limitations caused by direct use of the no simplified control-oriented model. Next, under proper assumptions, asymptotic stability is proved for constant commands, while bounded stability is proved for varying commands. The proposed method is compared with approximate backstepping control and dynamic surface control and is shown to have superior tracking accuracy as well as robustness from the simulation results. This paper may also provide a beneficial guidance for control design of other complex systems. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Control strategy of hydraulic/electric synergy system in heavy hybrid vehicles

    International Nuclear Information System (INIS)

    Sun Hui; Yang Lifu; Jing Junqing; Luo Yanling

    2011-01-01

    Energy consumption and exhaust emissions of hybrid vehicles strongly depend on the energy storage source and the applied control strategy. Heavy vehicles have the characteristics of frequent starts/stops and significant amounts of braking energy, which needs to find a more efficient way to store and use the high power flow. A novel parallel hybrid vehicles configuration consisting of hydraulic/electric synergy system is proposed to overcome the existing drawbacks of single energy storage source in heavy hybrid vehicles. A control strategy combining a logic threshold approach and key parameters optimization algorithm is developed to achieve acceptable vehicle performance while simultaneously maximizing engine fuel economy and maintaining the battery state of charge in its rational operation range at all times. The experimental and simulation results illustrate the potential of the proposed control strategy in terms of fuel economy and in keeping the deviations of SOC at high efficiency range.

  11. A guidance and control algorithm for scent tracking micro-robotic vehicle swarms

    International Nuclear Information System (INIS)

    Dohner, J.L.

    1998-03-01

    Cooperative micro-robotic scent tracking vehicles are designed to collectively sniff out locations of high scent concentrations in unknown, geometrically complex environments. These vehicles are programmed with guidance and control algorithms that allow inter cooperation among vehicles. In this paper a cooperative guidance and control algorithm for scent tracking micro-robotic vehicles is presented. This algorithm is comprised of a sensory compensation sub-algorithm using point source cancellation, a guidance sub-algorithm using gradient descent tracking, and a control sub-algorithm using proportional feedback. The concepts of social rank and point source cancellation are new concepts introduced within. Simulation results for cooperative vehicles swarms are given. Limitations are discussed

  12. Control strategy of hydraulic/electric synergy system in heavy hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Sun Hui; Yang Lifu; Junqing Jing; Yanling Luo [Jiangsu Xuzhou Construction Machinery Research Institute, Jiangsu (China)

    2011-01-15

    Energy consumption and exhaust emissions of hybrid vehicles strongly depend on the energy storage source and the applied control strategy. Heavy vehicles have the characteristics of frequent starts/stops and significant amounts of braking energy, which needs to find a more efficient way to store and use the high power flow. A novel parallel hybrid vehicles configuration consisting of hydraulic/electric synergy system is proposed to overcome the existing drawbacks of single energy storage source in heavy hybrid vehicles. A control strategy combining a logic threshold approach and key parameters optimization algorithm is developed to achieve acceptable vehicle performance while simultaneously maximizing engine fuel economy and maintaining the battery state of charge in its rational operation range at all times. The experimental and simulation results illustrate the potential of the proposed control strategy in terms of fuel economy and in keeping the deviations of SOC at high efficiency range. (author)

  13. A guidance and control algorithm for scent tracking micro-robotic vehicle swarms

    Energy Technology Data Exchange (ETDEWEB)

    Dohner, J.L. [Sandia National Labs., Albuquerque, NM (United States). Structural Dynamics Dept.

    1998-03-01

    Cooperative micro-robotic scent tracking vehicles are designed to collectively sniff out locations of high scent concentrations in unknown, geometrically complex environments. These vehicles are programmed with guidance and control algorithms that allow inter cooperation among vehicles. In this paper a cooperative guidance and control algorithm for scent tracking micro-robotic vehicles is presented. This algorithm is comprised of a sensory compensation sub-algorithm using point source cancellation, a guidance sub-algorithm using gradient descent tracking, and a control sub-algorithm using proportional feedback. The concepts of social rank and point source cancellation are new concepts introduced within. Simulation results for cooperative vehicles swarms are given. Limitations are discussed.

  14. Decoupling control of steering and driving system for in-wheel-motor-drive electric vehicle

    Science.gov (United States)

    Zhang, Han; Zhao, Wanzhong

    2018-02-01

    To improve the maneuverability and stability of in-wheel-motor-drive electric vehicle, a control strategy based on nonlinear decoupling control method is proposed in this paper, realizing the coordinated control of the steering and driving system. At first, the nonlinear models of the in-wheel-motor-drive electric vehicle and its sub-system are constructed. Then the inverse system decoupling theory is applied to decompose the nonlinear system into several independent subsystems, which makes it possible to realize the coordinated control of each subsystem. Next, the μ-Synthesis theory is applied to eliminate the influence of model uncertainty, improving the stability, robustness and tracking performance of in-wheel-motor-drive electric vehicle. Simulation and experiment results and numerical analyses, based on the electric vehicle actuated by in-wheel-motors, prove that the proposed control method is effective to accomplish the decoupling control of the steering and driving system in both simulation and real practice.

  15. Slip Control of Electric Vehicle Based on Tire-Road Friction Coefficient Estimation

    Directory of Open Access Journals (Sweden)

    Gaojian Cui

    2017-01-01

    Full Text Available The real-time change of tire-road friction coefficient is one of the important factors that influence vehicle safety performance. Besides, the vehicle wheels’ locking up has become an important issue. In order to solve these problems, this paper comes up with a novel slip control of electric vehicle (EV based on tire-road friction coefficient estimation. First and foremost, a novel method is proposed to estimate the tire-road friction coefficient, and then the reference slip ratio is determined based on the estimation results. Finally, with the reference slip ratio, a slip control based on model predictive control (MPC is designed to prevent the vehicle wheels from locking up. In this regard, the proposed controller guarantees the optimal braking torque on each wheel by individually controlling the slip ratio of each tire within the stable zone. Theoretical analyses and simulation show that the proposed controller is effective for better braking performance.

  16. Eye Movement Training and Suggested Gaze Strategies in Tunnel Vision - A Randomized and Controlled Pilot Study.

    Directory of Open Access Journals (Sweden)

    Iliya V Ivanov

    Full Text Available Degenerative retinal diseases, especially retinitis pigmentosa (RP, lead to severe peripheral visual field loss (tunnel vision, which impairs mobility. The lack of peripheral information leads to fewer horizontal eye movements and, thus, diminished scanning in RP patients in a natural environment walking task. This randomized controlled study aimed to improve mobility and the dynamic visual field by applying a compensatory Exploratory Saccadic Training (EST.Oculomotor responses during walking and avoiding obstacles in a controlled environment were studied before and after saccade or reading training in 25 RP patients. Eye movements were recorded using a mobile infrared eye tracker (Tobii glasses that measured a range of spatial and temporal variables. Patients were randomly assigned to two training conditions: Saccade (experimental and reading (control training. All subjects who first performed reading training underwent experimental training later (waiting list control group. To assess the effect of training on subjects, we measured performance in the training task and the following outcome variables related to daily life: Response Time (RT during exploratory saccade training, Percent Preferred Walking Speed (PPWS, the number of collisions with obstacles, eye position variability, fixation duration, and the total number of fixations including the ones in the subjects' blind area of the visual field.In the saccade training group, RTs on average decreased, while the PPWS significantly increased. The improvement persisted, as tested 6 weeks after the end of the training. On average, the eye movement range of RP patients before and after training was similar to that of healthy observers. In both, the experimental and reading training groups, we found many fixations outside the subjects' seeing visual field before and after training. The average fixation duration was significantly shorter after the training, but only in the experimental training

  17. Low-cost teleoperator-controlled vehicle for damage assessment and radiation dose measurement

    International Nuclear Information System (INIS)

    Tyree, W.H.

    1991-01-01

    A low-cost, disposable, radio-controlled, remote-reading, ionizing radiation and surveillance teleoperator re-entry vehicle has been built. The vehicle carries equipment, measures radiation levels, and evaluates building conditions. The basic vehicle, radio control with amplifiers, telemetry, elevator, and video camera with monitor cost less than $2500. Velcro-mounted alpha, beta-gamma, and neutron sensing equipment is used in the present system. Many types of health physics radiation measuring equipment may be substituted on the vehicle. The system includes a black-and-white video camera to observe the environment surrounding the vehicle. The camera is mounted on a vertical elevator extendible to 11 feet above the floor. The present vehicle uses a video camera with an umbilical cord between the vehicle and the operators. Preferred operation would eliminate the umbilical. Video monitoring equipment is part of the operator control system. Power for the vehicle equipment is carried on board and supplied by sealed lead-acid batteries. Radios are powered by 9-V alkaline batteries. The radio control receiver, servo drivers, high-power amplifier and 49-MHz FM transceivers were irradiated at moderate rates with neutron and gamma doses to 3000 Rem and 300 Rem, respectively, to ensure system operation

  18. Vehicle Lateral Control Under Fault in Front and/or Rear Sensors: Final Report

    OpenAIRE

    Lu, Guang; Huang, Jihua; Tomizuka, Masayoshi

    2004-01-01

    This report presents the research results of Task Order 4204(TO4204), "Vehicle Lateral Control under Fault in Front and/or Rear Sensors". This project is a continuing effort of the Partners for Advanced Transit and Highways (PATH) on the research of passenger vehicles for Automated Highway Systems (AHS).

  19. Nonlinear model predictive control of a passenger vehicle for automated lane changes

    NARCIS (Netherlands)

    Acosta, A.F.; Marquez-Ruiz, A.; Espinosa, J.J.

    2017-01-01

    This article presents a nonlinear Model Predictive Control (MPC) for lane changes, based on a simplified Single Track Model (STM) of the vehicle. The STM includes the position of the vehicle in global coordinates as a state so that the position of the target lane can be specified to the MPC for

  20. 77 FR 53199 - California State Motor Vehicle Pollution Control Standards; Advanced Clean Car Program; Request...

    Science.gov (United States)

    2012-08-31

    ... cars, light-duty trucks and medium-duty passenger vehicles (and limited requirements related to heavy... ENVIRONMENTAL PROTECTION AGENCY [AMS-FRL-9724-4] California State Motor Vehicle Pollution Control Standards; Advanced Clean Car Program; Request for Waiver of Preemption; Opportunity for Public Hearing and...

  1. Aggregation of Plug-in Electric Vehicles in Power Systems for Primary Frequency Control

    NARCIS (Netherlands)

    Izadkhast, S.

    2017-01-01

    The number of plug-in electric vehicles (PEVs) is likely to increase in the near future and these vehicles will probably be connected to the electric grid most of the day time. PEVs are interesting options to provide a wide variety of services such as primary frequency control (PFC), because they

  2. An optimal control-based algorithm for hybrid electric vehicle using preview route information

    NARCIS (Netherlands)

    Ngo, D.V.; Hofman, T.; Steinbuch, M.; Serrarens, A.F.A.

    2010-01-01

    Control strategies for Hybrid Electric Vehicles (HEVs) are generally aimed at optimally choosing the power distribution between the internal combustion engine and the electric motor in order to minimize the fuel consumption and/or emissions. Using vehicle navigation systems in combination with

  3. A control strategy for steering an autonomous surface sailing vehicle in a tacking maneuver

    DEFF Research Database (Denmark)

    Jouffroy, Jerome

    2009-01-01

    Sailing vessels such as sailboats but also landyachts are vehicles representing a real challenge for automation. However, the control aspects of such vehicles were hitherto very little studied. This paper presents a simplied dynamic model of a so-called landyacht allowing to capture the main...

  4. Attitudes and Perception Towards Eye Donation in Patients with Corneal Disease: A Case-controlled Population-based Study.

    Science.gov (United States)

    Noopur, Gupta; Praveen, Vashist; Radhika, Tandon; Sanjeev K, Gupta; Mani, Kalaivani; Deepak, Kumar

    2018-06-01

    To assess awareness, barriers, and misconceptions related to eye donation in people with corneal disease as compared to controls in a population setting. A population-based study was conducted in 25 randomly selected clusters of Rural Gurgaon, Haryana, India, as part of the CORE (Cornea Opacity Rural Epidemiological) study. In addition to ophthalmic examination, knowledge and perceptions regarding eye donation were assessed through a validated questionnaire. The questionnaire captured the sociodemographic factors influencing awareness regarding eye donation in participants with corneal disease and twice the number of age- and gender-matched controls recruited from the same study clusters. Descriptive statistics were computed along with multivariable logistic regression analysis to determine associated factors for awareness of eye donation. In the CORE study, 452 participants had corneal opacities on ocular examination. Of these, 442 were assessed for eye donation awareness. Additionally, 884 age- and gender-matched controls were recruited. The mean age of cases and controls was 60.9 ± 15.5 and 59.6 ± 14.3 years, respectively. Awareness of eye donation in cases and controls was 46.4% (n = 205 of 442) and 52.3% (n = 462 of 884), respectively (P = 0.044). Educational status was an important factor determining knowledge about eye donation in both cases and controls (P = donated before death or even after 24 h of death and that any type of blindness could be treated with corneal transplantation were prevalent. The study demonstrated that although there is substantial awareness about eye donation, there are numerous barriers in this population that need to be resolved to improve donation rates. Additional efforts are needed to translate this awareness into actual eye donation in both cases with corneal disease and controls.

  5. Load calculation and system evaluation for electric vehicle climate control

    International Nuclear Information System (INIS)

    Aceves-Saborio, S.; Comfort, W.J.

    1994-01-01

    Providing air conditioning for electric vehicles (EV's) represents an important challenge, because vapor-compression air conditioners, which are common in gasoline-powered vehicles, may consume a substantial part of the total energy stored in the EV battery. The authors' work has two major parts: a cooling and heating load calculation for EV's, and an evaluation of several systems that can be used to provide the desired cooling and heating in EV's. Four cases are studied: short-range and full-range EV's are each analyzed twice, first with the regular vehicle equipment, and then with a fan and heat-reflecting windows, to reduce hot soak. Results indicate that for the batteries currently available for EV propulsion, an ice storage system has the minimum weight of all the systems considered. Vapor-compression air conditioners have the minimum for battery storage capacities above 270 kJ/kg

  6. Active flywheel control for hybrid vehicle; Compensation active des pulsations de couple dans un vehicule hybride

    Energy Technology Data Exchange (ETDEWEB)

    Tnani, S.; Coirault, P.; Champenois, G. [Ecole Superieure d' Ingenieurs, Lab. d' Automatique et d' Informatique Industrielle, 86 - Poitiers (France)

    2005-01-01

    In the paper, the authors propose a novel control strategy of torque ripple on hybrid vehicle. The combustion engine ripple's are reduced by using an active filter and an AC machine which is mounted on the crank-shaft to generate on inverse torque sequence. The control strategy is based on a multi-objectives state feedback synthesis. A complete modelling of the hybrid propulsion of the vehicle is achieved. Simulation results highlight the interest of the control scheme. (authors)

  7. Hybrid Electric Vehicle Experimental Model with CAN Network Real Time Control

    Directory of Open Access Journals (Sweden)

    RATOI, M.

    2010-05-01

    Full Text Available In this paper an experimental model with a distributed control system of a hybrid electrical vehicle is presented. A communication CAN network of high speed (1 Mbps assures a distributed control of the all components. The modeling and the control of different operating regimes are realized on an experimental test-bench of a hybrid electrical vehicle. The experimental results concerning the variations of the mains variables (currents, torques, speeds are presented.

  8. A Traction Control Strategy with an Efficiency Model in a Distributed Driving Electric Vehicle

    OpenAIRE

    Lin, Cheng; Cheng, Xingqun

    2014-01-01

    Both active safety and fuel economy are important issues for vehicles. This paper focuses on a traction control strategy with an efficiency model in a distributed driving electric vehicle. In emergency situation, a sliding mode control algorithm was employed to achieve antislip control through keeping the wheels' slip ratios below 20%. For general longitudinal driving cases, an efficiency model aiming at improving the fuel economy was built through an offline optimization stream within the tw...

  9. Dynamics control of autonomous vehicle at driving limits and experiment on an autonomous formula racing car

    Science.gov (United States)

    Ni, Jun; Hu, Jibin

    2017-06-01

    In this paper, a novel dynamics controller for autonomous vehicle to simultaneously control it to the driving limits and follow the desired path is proposed. The dynamics controller consists of longitudinal and lateral controllers. In longitudinal controller, the G-G diagram is utilized to describe the driving and handling limits of the vehicle. The accurate G-G diagram is obtained based on phase plane approach and a nonlinear vehicle dynamic model with accurate tyre model. In lateral controller, the tyre cornering stiffness is estimated to improve the robustness of the controller. The stability analysis of the closed-looped error dynamics shows that the controller remains stable against parameters uncertainties in extreme condition such as tyre saturation. Finally, an electric autonomous Formula race car developed by the authors is used to validate the proposed controller. The autonomous driving experiment on an oval race track shows the efficiency and robustness of the proposed controller.

  10. Power control apparatus and methods for electric vehicles

    Science.gov (United States)

    Gadh, Rajit; Chung, Ching-Yen; Chu, Chi-Cheng; Qiu, Li

    2016-03-22

    Electric vehicle (EV) charging apparatus and methods are described which allow the sharing of charge current between multiple vehicles connected to a single source of charging energy. In addition, this charge sharing can be performed in a grid-friendly manner by lowering current supplied to EVs when necessary in order to satisfy the needs of the grid, or building operator. The apparatus and methods can be integrated into charging stations or can be implemented with a middle-man approach in which a multiple EV charging box, which includes an EV emulator and multiple pilot signal generation circuits, is coupled to a single EV charge station.

  11. On-road vehicle emissions and their control in China: A review and outlook.

    Science.gov (United States)

    Wu, Ye; Zhang, Shaojun; Hao, Jiming; Liu, Huan; Wu, Xiaomeng; Hu, Jingnan; Walsh, Michael P; Wallington, Timothy J; Zhang, K Max; Stevanovic, Svetlana

    2017-01-01

    The large (26-fold over the past 25years) increase in the on-road vehicle fleet in China has raised sustainability concerns regarding air pollution prevention, energy conservation, and climate change mitigation. China has established integrated emission control policies and measures since the 1990s, including implementation of emission standards for new vehicles, inspection and maintenance programs for in-use vehicles, improvement in fuel quality, promotion of sustainable transportation and alternative fuel vehicles, and traffic management programs. As a result, emissions of major air pollutants from on-road vehicles in China have peaked and are now declining despite increasing vehicle population. As might be expected, progress in addressing vehicle emissions has not always been smooth and challenges such as the lack of low sulfur fuels, frauds over production conformity and in-use inspection tests, and unreliable retrofit programs have been encountered. Considering the high emission density from vehicles in East China, enhanced vehicle, fuel and transportation strategies will be required to address vehicle emissions in China. We project the total vehicle population in China to reach 400-500 million by 2030. Serious air pollution problems in many cities of China, in particular high ambient PM 2.5 concentration, have led to pressure to accelerate the progress on vehicle emission reduction. A notable example is the draft China 6 emission standard released in May 2016, which contains more stringent emission limits than those in the Euro 6 regulations, and adds a real world emission testing protocol and a 48-h evaporation testing procedure including diurnal and hot soak emissions. A scenario (PC[1]) considered in this study suggests that increasingly stringent standards for vehicle emissions could mitigate total vehicle emissions of HC, CO, NO X and PM 2.5 in 2030 by approximately 39%, 57%, 59% and 79%, respectively, compared with 2013 levels. With additional actions

  12. Besifloxacin ophthalmic suspension 0.6% in patients with bacterial conjunctivitis: A multicenter, prospective, randomized, double-masked, vehicle-controlled, 5-day efficacy and safety study.

    Science.gov (United States)

    Karpecki, Paul; Depaolis, Michael; Hunter, Judy A; White, Eric M; Rigel, Lee; Brunner, Lynne S; Usner, Dale W; Paterno, Michael R; Comstock, Timothy L

    2009-03-01

    Besifloxacin ophthalmic suspension 0.6% is a new topical fluoroquinolone for the treatment of bacterial conjunctivitis. Besifloxacin has potent in vitro activity against a broad spectrum of ocular pathogens, including drug-resistant strains. The primary objective of this study was to compare the clinical and microbiologic efficacy of besifloxacin ophthalmic suspension 0.6% with that of vehicle (the formulation without besifloxacin) in the treatment of bacterial conjunctivitis. This was a multicenter, prospective, randomized, double-masked, vehicle-controlled, parallel-group study in patients with acute bacterial conjunctivitis. Patients received either topical besifloxacin ophthalmic suspension or vehicle administered 3 times daily for 5 days. At study entry and on days 4 and 8 (visits 2 and 3), a clinical assessment of ocular signs and symptoms was performed in both eyes, as well as pinhole visual acuity testing, biomicroscopy, and culture of the infected eye(s). An ophthalmoscopic examination was performed at study entry and on day 8. The primary efficacy outcome measures were clinical resolution and eradication of the baseline bacterial infection on day 8 in culture-confirmed patients. The safety evaluation included adverse events, changes in visual acuity, and biomicroscopy and ophthalmoscopy findings in all patients who received at least 1 dose of active treatment or vehicle. The safety population consisted of 269 patients (mean [SD] age, 34.2 [22.3] years; 60.2% female; 82.5% white) with acute bacterial conjunctivitis. The culture-confirmed intent-to-treat population consisted of 118 patients (60 besifloxacin ophthalmic suspension, 58 vehicle). Significantly more patients receiving besifloxacin ophthalmic suspension than vehicle had clinical resolution of the baseline infection at visit 3 (44/60 [73.3%] vs 25/58 [43.1%], respectively; P suspension compared with vehicle at visit 3 (53/60 [88.3%] vs35/58 [60.3%]; P suspension 0.6% given 3 times daily for 5 days

  13. Simulation Research on Vehicle Active Suspension Controller Based on G1 Method

    Science.gov (United States)

    Li, Gen; Li, Hang; Zhang, Shuaiyang; Luo, Qiuhui

    2017-09-01

    Based on the order relation analysis method (G1 method), the optimal linear controller of vehicle active suspension is designed. The system of the main and passive suspension of the single wheel vehicle is modeled and the system input signal model is determined. Secondly, the system motion state space equation is established by the kinetic knowledge and the optimal linear controller design is completed with the optimal control theory. The weighting coefficient of the performance index coefficients of the main passive suspension is determined by the relational analysis method. Finally, the model is simulated in Simulink. The simulation results show that: the optimal weight value is determined by using the sequence relation analysis method under the condition of given road conditions, and the vehicle acceleration, suspension stroke and tire motion displacement are optimized to improve the comprehensive performance of the vehicle, and the active control is controlled within the requirements.

  14. Motion coordination for VTOL unmanned aerial vehicles attitude synchronisation and formation control

    CERN Document Server

    Abdessameud, Abdelkader

    2013-01-01

    Motion Coordination for VTOL Unmanned Aerial Vehicles develops new control design techniques for the distributed coordination of a team of autonomous unmanned aerial vehicles. In particular, it provides new control design approaches for the attitude synchronization of a formation of rigid body systems. In addition, by integrating new control design techniques with some concepts from nonlinear control theory and multi-agent systems, it presents  a new theoretical framework for the formation control of a class of under-actuated aerial vehicles capable of vertical take-off and landing. Several practical problems related to the systems’ inputs, states measurements, and  restrictions on the interconnection  topology  between the aerial vehicles in the team  are addressed. Worked examples with sufficient details and simulation results are provided to illustrate the applicability and effectiveness of the theoretical results discussed in the book. The material presented is primarily intended for researchers an...

  15. Preview based control of suspension systems for commercial vehicles

    NARCIS (Netherlands)

    Muijderman, J.H.E.A.; Kok, J.J.; Huisman, R.G.M.; Veldpaus, F.E.; van Heck, J.G.A.M.

    1999-01-01

    An active suspension with preview is developed for the rear axle of a commercial vehicle. The obtained improvements are promising and justify further investigation of the more feasible semi-active suspensions with preview. The inherent non-linearity of semi-active suspensions with switching shock

  16. Energy management control concepts with preview for hybrid commercial vehicles

    NARCIS (Netherlands)

    Reeven, van V.; Huisman, R.G.M.; Pesgens, M.F.M.; Koffrie, R.

    2010-01-01

    In a Hybrid Electric Vehicle (HEV), the main task of an Energy Management Strategy (EMS) is to determine the power-split of the total power demand into a power requests to the internal combustion engine and the electro motor. In this work, real-time implementable previewing strategies (utilizing

  17. Road-Following Formation Control of Autonomous Ground Vehicles

    Science.gov (United States)

    Ono, Masahiro; Droge, Greg; Grip, Havard; Toupet, Olivier; Scrapper, Chris; Rahmani, Amir

    2015-01-01

    This work presents a novel cooperative path planning for formation keeping robots traversing along a road with obstacles and possible narrow passages. A unique challenge in this problem is a requirement for spatial and temporal coordination between vehicles while ensuring collision and obstacle avoidance.

  18. Motor vehicle fuel economy, the forgotten HC control stragegy?

    Energy Technology Data Exchange (ETDEWEB)

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  19. Port-based Telemanipulation Control of Underactuated Flying Vehicles

    NARCIS (Netherlands)

    Mersha, A.Y.; Carloni, Raffaella; Stramigioli, Stefano

    2011-01-01

    Recently, the interest in the field of unmanned aerial vehicles (UAVs) is increasing due to the existence of diverse potential applications in civilian sector. These applications often require high level reasoning, which, in some cases, need specialist in the led. The step forward towards achieving

  20. Traffic control and intelligent vehicle highway systems: a survey

    NARCIS (Netherlands)

    Baskar, L.D.; Schutter, B. de; Hellendoorn, J.; Papp, Z.

    2011-01-01

    Traffic congestion in highway networks is one of the main issues to be addressed by today's traffic management schemes. Automation combined with the increasing market penetration of on-line communication, navigation and advanced driver assistance systems will ultimately result in intelligent vehicle

  1. Control Relevant Modeling and Design of Scramjet-Powered Hypersonic Vehicles

    Science.gov (United States)

    Dickeson, Jeffrey James

    This report provides an overview of scramjet-powered hypersonic vehicle modeling and control challenges. Such vehicles are characterized by unstable non-minimum phase dynamics with significant coupling and low thrust margins. Recent trends in hypersonic vehicle research are summarized. To illustrate control relevant design issues and tradeoffs, a generic nonlinear 3DOF longitudinal dynamics model capturing aero-elastic-propulsive interactions for wedge-shaped vehicle is used. Limitations of the model are discussed and numerous modifications have been made to address control relevant needs. Two different baseline configurations are examined over a two-stage to orbit ascent trajectory. The report highlights how vehicle level-flight static (trim) and dynamic properties change over the trajectory. Thermal choking constraints are imposed on control system design as a direct consequence of having a finite FER margin. The implication of this state-dependent nonlinear FER margin constraint, the right half plane (RHP) zero, and lightly damped flexible modes, on control system bandwidth (BW) and FPA tracking has been discussed. A control methodology has been proposed that addresses the above dynamics while providing some robustness to modeling uncertainty. Vehicle closure (the ability to fly a trajectory segment subject to constraints) is provided through a proposed vehicle design methodology. The design method attempts to use open loop metrics whenever possible to design the vehicle. The design method is applied to a vehicle/control law closed loop nonlinear simulation for validation. The 3DOF longitudinal modeling results are validated against a newly released NASA 6DOF code.

  2. Worsening anatomic outcomes following aflibercept for neovascular age-related macular degeneration in eyes previously well controlled with ranibizumab

    Directory of Open Access Journals (Sweden)

    Nudleman E

    2016-06-01

    Full Text Available Eric Nudleman,1 Jeremy D Wolfe,2,3 Maria A Woodward,4 Yoshihiro Yonekawa,2,3 George A Williams,2,3 Tarek S Hassan2,3 1Department of Ophthalmology, Shiley Eye Center, University of California, San Diego, La Jolla, CA, 2Beaumont Eye Institute, Oakland University William Beaumont School of Medicine, 3Associated Retinal Consultants, Royal Oak, 4Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA Purpose: Antivascular endothelial growth factor injection is the mainstay of treating neovascular age-related macular degeneration (AMD. Previous studies have shown that switching treatment from ranibizumab to aflibercept led to an improvement in eyes with recalcitrant activity. Herein, we identify a unique subset of patients whose eyes with neovascular AMD were previously well controlled with ranibizumab injections were then worsened after being switched to aflibercept. Methods: This is a retrospective interventional case series. Eyes with neovascular AMD, previously well controlled with monthly injections of ranibizumab, which then developed worsening of subretinal fluid after being switched to aflibercept were included. Results: A total of 17 eyes were included. All eyes developed increased subretinal fluid when switched from ranibizumab to aflibercept. Fourteen patients were switched back to ranibizumab after a single injection of aflibercept and had subsequent rapid resolution of subretinal fluid. Three patients continued with monthly aflibercept injections for two subsequent months and demonstrated the persistence of the increased subretinal fluid until they were switched back to treatment with ranibizumab at which time the fluid resolved. No eye had persistent decline in visual acuity. Conclusion: Switching from intravitreal ranibizumab to aflibercept in eyes with well-controlled neovascular AMD may result in worsening in a subset of patients and resolves when therapy is switched back to ranibizumab. Keywords: anti

  3. Integration of virtual control units in the total vehicle simulation; Integration virtueller Steuergeraete in die Gesamtfahrzeugsimulation

    Energy Technology Data Exchange (ETDEWEB)

    Soppa, Andreas; Lund, Christoph [Volkswagen AG, Wolfsburg (Germany)

    2012-11-01

    In this article the simulation of information and energetics of vehicles with model-integration of electronic control units (ECU) in a simulation, based on the coupling of physical and control components of the total vehicle are investigated. For that simplified models of ECU's, simulating the functionally of the real ECU's, were used. The integration of virtual EUC's in models of full vehicles makes it possible to simulate the energetics for different driving cycles in a realistic way. By better simulation results an evaluation of physical components and the amount of functions are possible. In the area of the thermal management of vehicles by this analyses and optimizations of functions become possible. This article shows the advantages of embedding virtual ECU's in simulations of full vehicles. (orig.)

  4. The systems of automatic weight control of vehicles in the road and rail transport in Poland

    Directory of Open Access Journals (Sweden)

    2011-09-01

    Full Text Available . Condition of roads in Poland, despite the on-going modernisation works is still unsatisfactory. One reason is the excessive wear caused by overloaded vehicles. This problem also applies to rail transport, although to a much lesser extent. One solution may be the system of automatic weight control of road and rail vehicles. The article describes the legal and organizational conditions of oversize vehicles inspection in Poland. Characterized current practices weighing road vehicles, based on measurements of static technology. The article includes the description of the existing applications of the automatic dynamic weighing technology, known as systems WIM (Weigh in Motion. Additionally, the weighing technology and construction of weighing stands in road and rail are characterized. The article ends with authors' conclusions indicating the direction and ways of improving the weighing control systems for vehicles.

  5. Dexamethasone Drug Eluting Nanowafers Control Inflammation in Alkali-Burned Corneas Associated With Dry Eye

    Science.gov (United States)

    Bian, Fang; Shin, Crystal S.; Wang, Changjun; Pflugfelder, Stephen C.; Acharya, Ghanashyam; De Paiva, Cintia S.

    2016-01-01

    Purpose To evaluate the efficacy of a controlled release dexamethasone delivery system for suppressing inflammation in an ocular burn + desiccating stress (OB+DS) model. Methods Nanowafers (NW) loaded with Dexamethasone (Dex, 10 μg) or vehicles (2.5% Methylcellulose; MC) were fabricated using hydrogel template strategy. C57BL/6 mice were subjected to unilateral alkali ocular burn with concomitant desiccating stress for 2 or 5 days and topically treated either with 2 μL of 0.1% Dex or vehicle four times per day and compared with mice that had MC-NW or Dex-NW placed on their corneas. Clinical parameters were evaluated daily. Mice were euthanized after 2 or 5 days. Quantitative PCR evaluated the expression of inflammatory cytokines IL-1β and IL-6 and matrix metalloproteinases (MMP) in whole cornea lysates. Myeloperoxidase activity (MPO) was measured using a commercial kit in cornea lysates. Results Both Dex drop and Dex-NW groups had significantly lower corneal opacity scores compared with their vehicles. Both Dex drops and Dex-NW significantly decreased expression of IL-1β, IL-6, and MMP-9 RNA transcripts compared with vehicle drops or wafers 2 and 5 days after the initial lesion. A significant lower number of neutrophils was found in both Dex treatment groups and this was accompanied by decreased MPO activity compared with vehicle controls. Conclusions Dex-NW has efficacy equal to Dex drops in preserving corneal clarity and decreasing expression of MMPs and inflammatory cytokines of the corneas of mice subjected to an OB+DS model. PMID:27327581

  6. Unified Brake Service by a Hierarchical Controller for Active Deceleration Control in an Electric and Automated Vehicle

    Directory of Open Access Journals (Sweden)

    Yuliang Nie

    2017-12-01

    Full Text Available Unified brake service is a universal service for generating certain brake force to meet the demand deceleration and is essential for an automated driving system. However, it is rather difficult to control the pressure in the wheel cylinders to reach the target deceleration of the automated vehicle, which is the key issue of the active deceleration control system (ADC. This paper proposes a hierarchical control method to actively control vehicle deceleration with active-brake actuators. In the upper hierarchical, the target pressure of wheel cylinders is obtained by dynamic equations of a pure electric vehicle. In the lower hierarchical, the solenoid valve instructions and the pump speed of hydraulic control unit (HCU are determined to satisfy the desired pressure with the feedback of measured wheel cylinder pressure by pressure sensors. Results of road experiments of a pure electric and automated vehicle indicate that the proposed method realizes the target deceleration accurately and efficiently.

  7. Study on Active Suppression Control of Drivetrain Oscillations in an Electric Vehicle

    Science.gov (United States)

    Huang, Lei; Cui, Ying

    2017-07-01

    Due to the low damping in a central driven electric vehicle and lack of passive damping mechanisms as compared with a conventional vehicle, the vehicle may endure torsional vibrations which may deteriorates the vehicle’s drivability. Thus active damping control strategy is required to reduce the undesirable oscillations in an EV. In this paper, the origin of the vibration and the design of a damping control method to suppress such oscillations to improve the drivability of an EV are studied. The traction motor torque that is given by the vehicle controller is adjusted according to the acceleration rate of the motor speed to attenuate the resonant frequency. Simulations and experiments are performed to validate the system. The results show that the proposed control system can effectively suppress oscillations and hence improve drivability.

  8. Initial Stage Reference Search : Driver Simulators to Test Shared Controls, Limited Autonomy Vehicle Systems

    Science.gov (United States)

    2015-09-01

    This literature review and reference scanning focuses on the use of driver simulators for semiautonomous (or shared control) vehicle systems (2012present), including related research from other modes of transportation (e.g., rail or aviation). Foc...

  9. Seamless Mode Switching for Shared Control of Semiautonomous Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Whether it be a crew station, the Shuttle Remote Manipulator System (SRMS), an unmanned ground rover (UGV) or air vehicle (UAV), or teams thereof, the controllers...

  10. PREDICTION OF DISTURBANCES IN VEHICLE CONTROL SYSTEMS BASED ON THE METHODS OF COMPUTATIONAL INTELLIGENCE

    Directory of Open Access Journals (Sweden)

    L. Lyubchik

    2009-01-01

    Full Text Available The problem of disturbances forecasting in vehicles control systems is considered in the given article. On the basis of nuclear campaign recurrence there have been obtained algorithms of identification and prediction of disturbances time series.

  11. Improvement in vehicle agility and stability by G-Vectoring control

    Science.gov (United States)

    Yamakado, Makoto; Takahashi, Jyunya; Saito, Shinjiro; Yokoyama, Atsushi; Abe, Masato

    2010-12-01

    We extracted a trade-off strategy between longitudinal traction/braking force and cornering force by using jerk information through observing an expert driver's voluntary braking and turning action. Using the expert driver's strategy, we developed a new control concept, called 'G-Vectoring control', which is an automatic longitudinal acceleration control (No DYC) in accordance with the vehicle's lateral jerk caused by the driver's steering manoeuvres. With the control, the direction of synthetic acceleration (G) changes seamlessly (i.e. vectoring). The improvements in vehicle agility and stability were evaluated by theoretical analysis and through computer simulation. We then introduced a 'G-Vectoring' equipped test vehicle realised by brake-by-wire technology and executed a detailed examination on a test track. We have confirmed that the vehicle motion in view of both handling and ride quality has improved dramatically.

  12. Simulation Research on an Electric Vehicle Chassis System Based on a Collaborative Control System

    Directory of Open Access Journals (Sweden)

    Nenglian Feng

    2013-01-01

    Full Text Available This paper presents a collaborative control system for an electric vehicle chassis based on a centralized and hierarchical control architecture. The centralized controller was designed for the suspension and steering system, which is used for improving ride comfort and handling stability; the hierarchical controller was designed for the braking system, which is used for distributing the proportion of hydraulic braking and regenerative braking to improve braking performance. These two sub-controllers function at the same level of the vehicle chassis control system. In order to reduce the potential conflict between the two sub-controllers and realize a coordination optimization of electric vehicle performance, a collaborative controller was built, which serves as the upper controller to carry out an overall coordination analysis according to vehicle signals and revises the decisions of sub-controllers. A simulation experiment was carried out with the MATLAB/Simulink software. The simulation results show that the proposed collaborative control system can achieve an optimized vehicle handling stability and braking safety.

  13. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    Science.gov (United States)

    Murty, Balarama Vempaty

    2000-01-01

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  14. On Optimizing Steering Performance of Multi-axle Vehicle Based on Driving Force Control

    Directory of Open Access Journals (Sweden)

    Wu Zhicheng

    2017-01-01

    Full Text Available The steering performance of multi-axle vehicle with independent driving system is affected by the distribution of the wheel driving force. A nonlinear vehicle dynamics model including magic formula tire model for describing 11 DoF four-axle vehicle with dual-front-axle-steering (DFAS system was presented. The influence of different driving force distribution scheme on the steering performance of the vehicle was analyzed. A control strategy for improving the steady response and transient response of the vehicle steering is proposed. The results show: For the steady response, setting different drive force for internal and external wheels according to the actual steering characteristics of the vehicle can effectively improve its steering characteristics; For the transient response, adopting the zero sideslip angle control strategy and using the PID control algorithm to control the driving force of the outside wheel of tear-two-axle, under angle step input, the vehicle sideslip angle can quickly stabilize to 0 and yaw rate also significantly decreases.

  15. Modular Estimation Strategy of Vehicle Dynamic Parameters for Motion Control Applications

    Directory of Open Access Journals (Sweden)

    Rawash Mustafa

    2018-01-01

    Full Text Available The presence of motion control or active safety systems in vehicles have become increasingly important for improving vehicle performance and handling and negotiating dangerous driving situations. The performance of such systems would be improved if combined with knowledge of vehicle dynamic parameters. Since some of these parameters are difficult to measure, due to technical or economic reasons, estimation of those parameters might be the only practical alternative. In this paper, an estimation strategy of important vehicle dynamic parameters, pertaining to motion control applications, is presented. The estimation strategy is of a modular structure such that each module is concerned with estimating a single vehicle parameter. Parameters estimated include: longitudinal, lateral, and vertical tire forces – longitudinal velocity – vehicle mass. The advantage of this strategy is its independence of tire parameters or wear, road surface condition, and vehicle mass variation. Also, because of its modular structure, each module could be later updated or exchanged for a more effective one. Results from simulations on a 14-DOF vehicle model are provided here to validate the strategy and show its robustness and accuracy.

  16. Climate Control Load Reduction Strategies for Electric Drive Vehicles in Cold Weather: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jeffers, Matthew; Chaney, Lawrence; Rugh, John

    2016-03-31

    When operated, the climate control system is the largest auxiliary load on a vehicle. This load has significant impact on fuel economy for conventional and hybrid vehicles, and it drastically reduces the driving range of all electric vehicles (EVs). Heating is even more detrimental to EV range than cooling because no engine waste heat is available. Reducing the thermal loads on the heating, ventilating, and air conditioning system will extend driving range and increase the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have evaluated strategies for vehicle climate control load reduction with special attention toward grid connected electric vehicles. Outdoor vehicle thermal testing and computational modeling were used to assess potential strategies for improved thermal management and to evaluate the effectiveness of thermal load reduction technologies. A human physiology model was also used to evaluate the impact on occupant thermal comfort. Experimental evaluations of zonal heating strategies demonstrated a 5.5% to 28.5% reduction in cabin heating energy over a 20-minute warm-up. Vehicle simulations over various drive cycles show a 6.9% to 18.7% improvement in EV range over baseline heating using the most promising zonal heating strategy investigated. A national-level analysis was conducted to determine the overall national impact. If all vehicles used the best zonal strategy, the range would be improved by 7.1% over the baseline heating range. This is a 33% reduction in the range penalty for heating.

  17. Development of an Intelligent Tire Based Tire - Vehicle State Estimator for Application to Global Chassis Control

    OpenAIRE

    Singh, Kanwar Bharat

    2012-01-01

    The contact between the tire and the road is the key enabler of vehicle acceleration, deceleration and steering. However, under the circumstances of sudden changes to the road conditions, the driver`s ability to maintain control of the vehicle maybe at risk. In many cases, this requires intervention from the chassis control systems onboard the vehicle. Although these systems perform well in a variety of situations, their performance can be improved if a real-time estimate of the tire-road c...

  18. Cooperative Control of Regenerative Braking and Antilock Braking for a Hybrid Electric Vehicle

    OpenAIRE

    Yin, Guodong; Jin, XianJian

    2013-01-01

    A new cooperative braking control strategy (CBCS) is proposed for a parallel hybrid electric vehicle (HEV) with both a regenerative braking system and an antilock braking system (ABS) to achieve improved braking performance and energy regeneration. The braking system of the vehicle is based on a new method of HEV braking torque distribution that makes the antilock braking system work together with the regenerative braking system harmoniously. In the cooperative braking control strategy, a sli...

  19. An Adaptive Traffic Signal Control in a Connected Vehicle Environment: A Systematic Review

    OpenAIRE

    Peng Jing; Hao Huang; Long Chen

    2017-01-01

    In the last few years, traffic congestion has become a growing concern due to increasing vehicle ownerships in urban areas. Intersections are one of the major bottlenecks that contribute to urban traffic congestion. Traditional traffic signal control systems cannot adjust the timing pattern depending on road traffic demand. This results in excessive delays for road users. Adaptive traffic signal control in a connected vehicle environment has shown a powerful ability to effectively alleviate u...

  20. Torque Coordination Control during Braking Mode Switch for a Plug-in Hybrid Electric Vehicle

    OpenAIRE

    Yang Yang; Chao Wang; Quanrang Zhang; Xiaolong He

    2017-01-01

    Hybrid vehicles usually have several braking systems, and braking mode switches are significant events during braking. It is difficult to coordinate torque fluctuations caused by mode switches because the dynamic characteristics of braking systems are different. In this study, a new type of plug-in hybrid vehicle is taken as the research object, and braking mode switches are divided into two types. The control strategy of type one is achieved by controlling the change rates of clutch hold-dow...

  1. An automotive vehicle dynamics prototyping platform based on a remote control model car

    OpenAIRE

    SOLMAZ, Selim; COŞKUN, Türker

    2013-01-01

    The use of a modified remote control (RC) model car as a vehicle dynamics testing and development platform is detailed. Vehicle dynamics testing is an important aspect of automotive engineering and it plays a key role during the design and tuning of active safety control systems. Considering the fact that such tests are conductedi at great expense, scaled model cars can potentially be used to help with the process to reduce the costs. With this view, we instrument and develop a stand...

  2. Central Vehicle Dynamics Control of the Robotic Research Platform ROboMObil

    OpenAIRE

    Bünte, Tilman; Ho, Lok Man; Satzger, Clemens; Brembeck, Jonathan

    2014-01-01

    The ROboMObil is DLR’s space-robotics driven by-wire electro-mobile research platform for mechatronic actuators, vehicle dynamics control, human machine interfaces, and autonomous driving (DLR = German Aerospace Center). Due to its four highly integrated identical Wheel Robots it exhibits an extraordinary manoeuvrability even allowing for driving sideward or rotating on the spot. Topics related to vehicle dynamics control are addressed in this article.

  3. Geometry Modeling and Adaptive Control of Air-Breathing Hypersonic Vehicles

    Science.gov (United States)

    Vick, Tyler Joseph

    Air-breathing hypersonic vehicles have the potential to provide global reach and affordable access to space. Recent technological advancements have made scramjet-powered flight achievable, as evidenced by the successes of the X-43A and X-51A flight test programs over the last decade. Air-breathing hypersonic vehicles present unique modeling and control challenges in large part due to the fact that scramjet propulsion systems are highly integrated into the airframe, resulting in strongly coupled and often unstable dynamics. Additionally, the extreme flight conditions and inability to test fully integrated vehicle systems larger than X-51 before flight leads to inherent uncertainty in hypersonic flight. This thesis presents a means to design vehicle geometries, simulate vehicle dynamics, and develop and analyze control systems for hypersonic vehicles. First, a software tool for generating three-dimensional watertight vehicle surface meshes from simple design parameters is developed. These surface meshes are compatible with existing vehicle analysis tools, with which databases of aerodynamic and propulsive forces and moments can be constructed. A six-degree-of-freedom nonlinear dynamics simulation model which incorporates this data is presented. Inner-loop longitudinal and lateral control systems are designed and analyzed utilizing the simulation model. The first is an output feedback proportional-integral linear controller designed using linear quadratic regulator techniques. The second is a model reference adaptive controller (MRAC) which augments this baseline linear controller with an adaptive element. The performance and robustness of each controller are analyzed through simulated time responses to angle-of-attack and bank angle commands, while various uncertainties are introduced. The MRAC architecture enables the controller to adapt in a nonlinear fashion to deviations from the desired response, allowing for improved tracking performance, stability, and

  4. A Saturation Balancing Control Method for Enhancing Dynamic Vehicle Stability (PREPRINT)

    Science.gov (United States)

    2011-03-01

    braking torques (with regenerative braking ) at the individual wheels or axles of the vehicle with independent drive or torque-biasing systems ...VSC (also referred to as vehicle dynamics control (VDC)) systems available on the market today are brake -based systems which extend the functionality...of mature hardware technology available for anti-lock braking (ABS) and traction control systems . These systems Report Documentation Page Form

  5. Research prototype of remote controlled engineering vehicle system for CBRN threat. Phase 2

    International Nuclear Information System (INIS)

    Uemura, Keisuke; Naruse, Masahiro; Shigematsu, Kosuke; Morishita, Masahiro

    2015-01-01

    This research was triggered by the nuclear accident that successively happened after the Great East Japan Earthquake. The project focuses on the Remote Controlled Engineering Vehicle System that can be used for multi purposes such as debris/obstacle clearing operation, various reconnaissance operation, under CBRN threat. In this report, we describe research prototype of remote controlled engineering vehicle system for CBRN threat (phase 2). (author)

  6. Dry Eye

    Science.gov (United States)

    ... Eye » Facts About Dry Eye Listen Facts About Dry Eye Fact Sheet Blurb The National Eye Institute (NEI) ... and their families search for general information about dry eye. An eye care professional who has examined the ...

  7. Stochastic Optimal Control of Parallel Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Feiyan Qin

    2017-02-01

    Full Text Available Energy management strategies (EMSs in hybrid electric vehicles (HEVs are highly related to the fuel economy and emission performances. However, EMS constitutes a challenging problem due to the complex structure of a HEV and the unknown or partially known driving cycles. To meet this problem, this paper adopts a stochastic dynamic programming (SDP method for the EMS of a specially designed vehicle, a pre-transmission single-shaft torque-coupling parallel HEV. In this parallel HEV, the auto clutch output is connected to the transmission input through an electric motor, which benefits an efficient motor assist operation. In this EMS, demanded torque of driver is modeled as a one-state Markov process to represent the uncertainty of future driving situations. The obtained EMS has been evaluated with ADVISOR2002 over two standard government drive cycles and a self-defined one, and compared with a dynamic programming (DP one and a rule-based one. Simulation results have shown the real-time performance of the proposed approach, and potential vehicle performance improvement relative to the rule-based one.

  8. Management of linear quadratic regulator optimal control with full-vehicle control case study

    Directory of Open Access Journals (Sweden)

    Rodrigue Tchamna

    2016-09-01

    Full Text Available Linear quadratic regulator is a powerful technique for dealing with the control design of any linear and nonlinear system after linearization of the system around an operating point. For small systems, which have fewer state variables, the transformation of the performance index from scalar to matrix form can be straightforward. On the other hand, as the system becomes large with many state variables and controllers, appropriate design and notations should be defined to make it easy to automatically implement the technique for any large system without the need to redesign from scratch every time one requires a new system. The main aim of this article was to deal with this issue. This article shows how to automatically obtain the matrix form of the performance index matrices from the scalar version of the performance index. Control of a full-vehicle in cornering was taken as a case study in this article.

  9. Torque Coordination Control during Braking Mode Switch for a Plug-in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2017-10-01

    Full Text Available Hybrid vehicles usually have several braking systems, and braking mode switches are significant events during braking. It is difficult to coordinate torque fluctuations caused by mode switches because the dynamic characteristics of braking systems are different. In this study, a new type of plug-in hybrid vehicle is taken as the research object, and braking mode switches are divided into two types. The control strategy of type one is achieved by controlling the change rates of clutch hold-down and motor braking forces. The control strategy of type two is achieved by simultaneously changing the target braking torque during different mode switch stages and controlling the motor to participate in active coordination control. Finally, the torque coordination control strategy is modeled in MATLAB/Simulink, and the results show that the proposed control strategy has a good effect in reducing the braking torque fluctuation and vehicle shocks during braking mode switches.

  10. Nonlinear control of marine vehicles using only position and attitude measurements

    Energy Technology Data Exchange (ETDEWEB)

    Paulsen, Marit Johanne

    1996-12-31

    This thesis presents new results on the design and analysis of nonlinear output feedback controllers for auto pilots and dynamic positioning systems for ships and underwater vehicles. Only position and attitude measurements of the vehicle are used in the control design. The underlying idea of the work is to use certain structural properties of the equations of motion in the controller design and analysis. New controllers for regulation and tracking have been developed and the stability of the resulting closed-loop systems has been rigorously established. The results are supported by simulations. The following problems have been investigated covering design of passive controller for regulation, comparison of two auto pilots, nonlinear damping compensation for tracking, tracking control for nonlinear ships, and output tracking control with wave filtering for multivariable models of possibly unstable vehicles. 97 refs., 32 figs.

  11. Design and Implementation of a Control Strategy for Microgrid Containing Renewable Energy Generations and Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Mingchao Xia

    2013-01-01

    Full Text Available Large amount of such renewable energy generations as wind/photovoltaic generations directly connected to grid acting as distributed generations will cause control, protection, security, and safety problems. Microgrid, which has advantages in usage and control of distributed generations, is a promising approach to coordinate the conflict between distributed generations and the grid. Regarded as mobile power storages, batteries of electric vehicles can depress the fluctuation of power through the point of common coupling of microgrid. This paper presents a control strategy for microgrid containing renewable energy generations and electric vehicles. The control strategy uses current control for renewable energy generations under parallel-to-grid mode, and uses master-slave control under islanding mode. Simulations and laboratory experiments prove that the control strategy works well for microgrid containing renewable energy generations and electric vehicles and provides maximum power output of renewable energy and a stable and sustainable running under islanding mode.

  12. Self-tuning control algorithm design for vehicle adaptive cruise control system through real-time estimation of vehicle parameters and road grade

    Science.gov (United States)

    Marzbanrad, Javad; Tahbaz-zadeh Moghaddam, Iman

    2016-09-01

    The main purpose of this paper is to design a self-tuning control algorithm for an adaptive cruise control (ACC) system that can adapt its behaviour to variations of vehicle dynamics and uncertain road grade. To this aim, short-time linear quadratic form (STLQF) estimation technique is developed so as to track simultaneously the trend of the time-varying parameters of vehicle longitudinal dynamics with a small delay. These parameters are vehicle mass, road grade and aerodynamic drag-area coefficient. Next, the values of estimated parameters are used to tune the throttle and brake control inputs and to regulate the throttle/brake switching logic that governs the throttle and brake switching. The performance of the designed STLQF-based self-tuning control (STLQF-STC) algorithm for ACC system is compared with the conventional method based on fixed control structure regarding the speed/distance tracking control modes. Simulation results show that the proposed control algorithm improves the performance of throttle and brake controllers, providing more comfort while travelling, enhancing driving safety and giving a satisfactory performance in the presence of different payloads and road grade variations.

  13. Semi-active control of tracked vehicle suspension incorporating magnetorheological dampers

    Science.gov (United States)

    Ata, W. G.; Salem, A. M.

    2017-05-01

    In past years, the application of magnetorheological (MR) and electrorheological dampers in vehicle suspension has been widely studied, mainly for the purpose of vibration control. This paper presents theoretical study to identify an appropriate semi-active control method for MR-tracked vehicle suspension. Three representative control algorithms are simulated including the skyhook, hybrid and fuzzy-hybrid controllers. A seven degrees-of-freedom tracked vehicle suspension model incorporating MR dampers has been adopted for comparison between the performance of the three controllers. The model differential equations are derived based on Newton's second law of motion and the proposed control methods are developed. The performance of each control method under bump and sinusoidal road profiles for different vehicle speeds is simulated and compared with the performance of the conventional suspension system in time and frequency domains. The results show that the performance of tracked vehicle suspension with MR dampers is substantially improved. Moreover, the fuzzy-hybrid controller offers an excellent integrated performance in reducing the body accelerations as well as wheel bounce responses compared with the classical skyhook and hybrid controllers.

  14. Review on dynamics control of 4WID-4WIS electric vehicle

    Directory of Open Access Journals (Sweden)

    Xin LAI

    2016-08-01

    Full Text Available The four-wheel independent drive and four-wheel independent steering (4WID-4WIS vehicle has the advantages of short transmission chain, high efficiency, compact structure, and high maneuverability. The kinematics and dynamic control of the 4WID-4WIS vehicle are discussed, then key and difficult problems are refined. The distributed network control system is widely used in the vehicle control system, so that real-time and reliable control under non-ideal network is the research challenges, and hierarchical control method is a hot research topic. For the vehicle dynamics control method, the main research focuses on torque distribution method under one or more optimization objectives, and integrated control which harmonizes multi control subjects has become an important research direction. In order to solve the problem of steering mode static switching of the 4WID-4WIS vehicle, the study on the dynamic switching method based on redundant control degree of freedom is a new research direction.

  15. Tire-road friction estimation and traction control strategy for motorized electric vehicle

    Science.gov (United States)

    Jin, Li-Qiang; Yue, Weiqiang

    2017-01-01

    In this paper, an optimal longitudinal slip ratio system for real-time identification of electric vehicle (EV) with motored wheels is proposed based on the adhesion between tire and road surface. First and foremost, the optimal longitudinal slip rate torque control can be identified in real time by calculating the derivative and slip rate of the adhesion coefficient. Secondly, the vehicle speed estimation method is also brought. Thirdly, an ideal vehicle simulation model is proposed to verify the algorithm with simulation, and we find that the slip ratio corresponds to the detection of the adhesion limit in real time. Finally, the proposed strategy is applied to traction control system (TCS). The results showed that the method can effectively identify the state of wheel and calculate the optimal slip ratio without wheel speed sensor; in the meantime, it can improve the accelerated stability of electric vehicle with traction control system (TCS). PMID:28662053

  16. Hybrid Control of Long-Endurance Aerial Robotic Vehicles for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Deok-Jin Lee

    2011-06-01

    Full Text Available This paper presents an effective hybrid control approach for building stable wireless sensor networks between heterogeneous unmanned vehicles using long‐ endurance aerial robotic vehicles. For optimal deployment of the aerial vehicles in communication networks, a gradient climbing based self‐estimating control algorithm is utilized to locate the aerial platforms to maintain maximum communication throughputs between distributed multiple nodes. The autonomous aerial robots, which function as communication relay nodes, extract and harvest thermal energy from the atmospheric environment to improve their flight endurance within specified communication coverage areas. The rapidly‐deployable sensor networks with the high‐endurance aerial vehicles can be used for various application areas including environment monitoring, surveillance, tracking, and decision‐making support. Flight test and simulation studies are conducted to evaluate the effectiveness of the proposed hybrid control technique for robust communication networks.

  17. Redundant manipulator techniques for partially decentralized path planning and control of a platoon of autonomous vehicles.

    Science.gov (United States)

    Stilwell, Daniel J; Bishop, Bradley E; Sylvester, Caleb A

    2005-08-01

    An approach to real-time trajectory generation for platoons of autonomous vehicles is developed from well-known control techniques for redundant robotic manipulators. The partially decentralized structure of this approach permits each vehicle to independently compute its trajectory in real-time using only locally generated information and low-bandwidth feedback generated by a system exogenous to the platoon. Our work is motivated by applications for which communications bandwidth is severely limited, such for platoons of autonomous underwater vehicles. The communication requirements for our trajectory generation approach are independent of the number of vehicles in the platoon, enabling platoons composed of a large number of vehicles to be coordinated despite limited communication bandwidth.

  18. 77 FR 73459 - California State Motor Vehicle Pollution Control Standards; Notice of Waiver of Clean Air Act...

    Science.gov (United States)

    2012-12-10

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9759-4] California State Motor Vehicle Pollution Control Standards; Notice of Waiver of Clean Air Act Preemption; California's 2010 Model Year Heavy-Duty Vehicle and... for CARB's own motor vehicle pollution control program based on lack of compelling and extraordinary...

  19. Connected variable speed limits control and car-following control with vehicle-infrastructure communication to resolve stop-and-go waves

    NARCIS (Netherlands)

    Wang, M.; Daamen, W.; Hoogendoorn, S.P.; van Arem, B.

    2016-01-01

    The vision of intelligent vehicles traveling in road networks has prompted numerous concepts to control future traffic flow, one of which is the in-vehicle actuation of traffic control commands. The key of this concept is using intelligent vehicles as actuators for traffic control systems. Under

  20. Presentation of electric motor and motor control technology for electric vehicles and hybrid vehicles; Denki jidosha hybrid sha yo motor oyobi motor seigyo gijutsu no shokai

    Energy Technology Data Exchange (ETDEWEB)

    Matsudaira, N.; Masakik, R.; Tajima, F. [Hitachi, Ltd., Tokyo (Japan)

    1999-02-01

    The authors have developed a motor drive system for electric vehicles and hybrid vehicles. This system consists of a permanent magnet type synchronous motor, an inverter using insulated gate bipolar transistors (IGBTs) and a controller based on a single-chip microcomputer. To achieve a compact and light weight synchronous motor, an internal permanent magnet type rotor structure was designed. This paper presents motor control technology for electric vehicles, such as an optimization method of field weakening control and a new current control method. (author)

  1. An RFID-Based Intelligent Vehicle Speed Controller Using Active Traffic Signals

    Science.gov (United States)

    Pérez, Joshué; Seco, Fernando; Milanés, Vicente; Jiménez, Antonio; Díaz, Julio C.; de Pedro, Teresa

    2010-01-01

    These days, mass-produced vehicles benefit from research on Intelligent Transportation System (ITS). One prime example of ITS is vehicle Cruise Control (CC), which allows it to maintain a pre-defined reference speed, to economize on fuel or energy consumption, to avoid speeding fines, or to focus all of the driver’s attention on the steering of the vehicle. However, achieving efficient Cruise Control is not easy in roads or urban streets where sudden changes of the speed limit can happen, due to the presence of unexpected obstacles or maintenance work, causing, in inattentive drivers, traffic accidents. In this communication we present a new Infrastructure to Vehicles (I2V) communication and control system for intelligent speed control, which is based upon Radio Frequency Identification (RFID) technology for identification of traffic signals on the road, and high accuracy vehicle speed measurement with a Hall effect-based sensor. A fuzzy logic controller, based on sensor fusion of the information provided by the I2V infrastructure, allows the efficient adaptation of the speed of the vehicle to the circumstances of the road. The performance of the system is checked empirically, with promising results. PMID:22219692

  2. An RFID-based intelligent vehicle speed controller using active traffic signals.

    Science.gov (United States)

    Pérez, Joshué; Seco, Fernando; Milanés, Vicente; Jiménez, Antonio; Díaz, Julio C; de Pedro, Teresa

    2010-01-01

    These days, mass-produced vehicles benefit from research on Intelligent Transportation System (ITS). One prime example of ITS is vehicle Cruise Control (CC), which allows it to maintain a pre-defined reference speed, to economize on fuel or energy consumption, to avoid speeding fines, or to focus all of the driver's attention on the steering of the vehicle. However, achieving efficient Cruise Control is not easy in roads or urban streets where sudden changes of the speed limit can happen, due to the presence of unexpected obstacles or maintenance work, causing, in inattentive drivers, traffic accidents. In this communication we present a new Infrastructure to Vehicles (I2V) communication and control system for intelligent speed control, which is based upon Radio Frequency Identification (RFID) technology for identification of traffic signals on the road, and high accuracy vehicle speed measurement with a Hall effect-based sensor. A fuzzy logic controller, based on sensor fusion of the information provided by the I2V infrastructure, allows the efficient adaptation of the speed of the vehicle to the circumstances of the road. The performance of the system is checked empirically, with promising results.

  3. An RFID-Based Intelligent Vehicle Speed Controller Using Active Traffic Signals

    Directory of Open Access Journals (Sweden)

    Joshué Pérez

    2010-06-01

    Full Text Available These days, mass-produced vehicles benefit from research on Intelligent Transportation System (ITS. One prime example of ITS is vehicle Cruise Control (CC, which allows it to maintain a pre-defined reference speed, to economize on fuel or energy consumption, to avoid speeding fines, or to focus all of the driver’s attention on the steering of the vehicle. However, achieving efficient Cruise Control is not easy in roads or urban streets where sudden changes of the speed limit can happen, due to the presence of unexpected obstacles or maintenance work, causing, in inattentive drivers, traffic accidents. In this communication we present a new Infrastructure to Vehicles (I2V communication and control system for intelligent speed control, which is based upon Radio Frequency Identification (RFID technology for identification of traffic signals on the road, and high accuracy vehicle speed measurement with a Hall effect-based sensor. A fuzzy logic controller, based on sensor fusion of the information provided by the I2V infrastructure, allows the efficient adaptation of the speed of the vehicle to the circumstances of the road. The performance of the system is checked empirically, with promising results.

  4. Vehicle Sliding Mode Control with Adaptive Upper Bounds: Static versus Dynamic Allocation to Saturated Tire Forces

    Directory of Open Access Journals (Sweden)

    Ali Tavasoli

    2012-01-01

    Full Text Available Nonlinear vehicle control allocation is achieved through distributing the task of vehicle control among individual tire forces, which are constrained to nonlinear saturation conditions. A high-level sliding mode control with adaptive upper bounds is considered to assess the body yaw moment and lateral force for the vehicle motion. The proposed controller only requires the online adaptation of control gains without acquiring the knowledge of upper bounds on system uncertainties. Static and dynamic control allocation approaches have been formulated to distribute high-level control objectives among the system inputs. For static control allocation, the interior-point method is applied to solve the formulated nonlinear optimization problem. Based on the dynamic control allocation method, a dynamic update law is derived to allocate vehicle control to tire forces. The allocated tire forces are fed into a low-level control module, where the applied torque and active steering angle at each wheel are determined through a slip-ratio controller and an inverse tire model. Computer simulations are used to prove the significant effects of the proposed control allocation methods on improving the stability and handling performance. The advantages and limitations of each method have been discussed, and conclusions have been derived.

  5. Binocular eye movement control and motion perception: what is being tracked?

    Science.gov (United States)

    van der Steen, Johannes; Dits, Joyce

    2012-10-19

    We investigated under what conditions humans can make independent slow phase eye movements. The ability to make independent movements of the two eyes generally is attributed to few specialized lateral eyed animal species, for example chameleons. In our study, we showed that humans also can move the eyes in different directions. To maintain binocular retinal correspondence independent slow phase movements of each eye are produced. We used the scleral search coil method to measure binocular eye movements in response to dichoptically viewed visual stimuli oscillating in orthogonal direction. Correlated stimuli led to orthogonal slow eye movements, while the binocularly perceived motion was the vector sum of the motion presented to each eye. The importance of binocular fusion on independency of the movements of the two eyes was investigated with anti-correlated stimuli. The perceived global motion pattern of anti-correlated dichoptic stimuli was perceived as an oblique oscillatory motion, as well as resulted in a conjugate oblique motion of the eyes. We propose that the ability to make independent slow phase eye movements in humans is used to maintain binocular retinal correspondence. Eye-of-origin and binocular information are used during the processing of binocular visual information, and it is decided at an early stage whether binocular or monocular motion information and independent slow phase eye movements of each eye are produced during binocular tracking.

  6. Robust stabilization control based on guardian maps theory for a longitudinal model of hypersonic vehicle.

    Science.gov (United States)

    Liu, Yanbin; Liu, Mengying; Sun, Peihua

    2014-01-01

    A typical model of hypersonic vehicle has the complicated dynamics such as the unstable states, the nonminimum phases, and the strong coupling input-output relations. As a result, designing a robust stabilization controller is essential to implement the anticipated tasks. This paper presents a robust stabilization controller based on the guardian maps theory for hypersonic vehicle. First, the guardian maps theories are provided to explain the constraint relations between the open subsets of complex plane and the eigenvalues of the state matrix of closed-loop control system. Then, a general control structure in relation to the guardian maps theories is proposed to achieve the respected design demands. Furthermore, the robust stabilization control law depending on the given general control structure is designed for the longitudinal model of hypersonic vehicle. Finally, a simulation example is provided to verify the effectiveness of the proposed methods.

  7. A Neural Network Combined Inverse Controller for a Two-Rear-Wheel Independently Driven Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Duo Zhang

    2014-07-01

    Full Text Available Vehicle active safety control is attracting ever increasing attention in the attempt to improve the stability and the maneuverability of electric vehicles. In this paper, a neural network combined inverse (NNCI controller is proposed, incorporating the merits of left-inversion and right-inversion. As the left-inversion soft-sensor can estimate the sideslip angle, while the right-inversion is utilized to decouple control. Then, the proposed NNCI controller not only linearizes and decouples the original nonlinear system, but also directly obtains immeasurable state feedback in constructing the right-inversion. Hence, the proposed controller is very practical in engineering applications. The proposed system is co-simulated based on the vehicle simulation package CarSim in connection with Matlab/Simulink. The results verify the effectiveness of the proposed control strategy.

  8. Demonstration of a Concurrently Programmed Tactical Level Control Software for Autonomous Vehicles and the Interface to the Execution Level Code

    National Research Council Canada - National Science Library

    Carroll, William

    2000-01-01

    .... One of the greatest challenges to the successful development of truly autonomous vehicles is the ability to link logically based high-level mission planning with low-level vehicle control software...

  9. Position and force control of a vehicle with two or more steerable drive wheels

    Energy Technology Data Exchange (ETDEWEB)

    Reister, D.B.; Unseren, M.A.

    1992-10-01

    When a vehicle with two or more steerable drive wheels is traveling in a circle, the motion of the wheels is constrained. The wheel translational velocity divided by the radius to the center of rotation must be the same for all wheels. When the drive wheels are controlled independently using position control, the motion of the wheels may violate the constraints and the wheels may slip. Consequently, substantial errors can occur in the orientation of the vehicle. A vehicle with N drive wheels has (N - 1) constraints and one degree of freedom. We have developed a new approach to the control of a vehicle with N steerable drive wheels. The novel aspect of our approach is the use of force control. To control the vehicle, we have one degree of freedom for the position on the circle and (N - 1) forces that can be used to reduce errors. Recently, Kankaanranta and Koivo developed a control architecture that allows the force and position degrees of freedom to be decoupled. In the work of Kankaanranta and Koivo the force is an exogenous input. We have made the force endogenous by defining the force in terms of the errors in satisfying the rigid body kinematic constraints. We have applied the control architecture to the HERMIES-III robot and have measured a dramatic reduction in error (more than a factor of 20) compared to motions without force control.

  10. Hierarchical Control Strategy for the Cooperative Braking System of Electric Vehicle

    OpenAIRE

    Peng, Jiankun; He, Hongwen; Liu, Wei; Guo, Hongqiang

    2015-01-01

    This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking s...

  11. 77 FR 22637 - Federal Motor Vehicle Safety Standards; Accelerator Control Systems

    Science.gov (United States)

    2012-04-16

    ... revise the Federal Motor Vehicle Safety Standard for accelerator control systems (ACS) in two ways. First... Standard (FMVSS) No. 124, Accelerator Control Systems,\\2\\ in two ways. First, we are proposing to update... February 2011 final report ``Technical Assessment of Toyota Electronic Throttle Control Systems,'' the...

  12. Real time control of the flexible dynamics of orbital launch vehicles

    NARCIS (Netherlands)

    Bos, van den J.; Steinbuch, M.; Gutierrez, H.M.

    2011-01-01

    During this traineeship the flexible dynamics of orbital launch vehicles are estimated and controlled in real time, using distributed fiber-Bragg sensor arrays for motion estimation and cold gas thrusters for control. The use of these cold-gas thrusters to actively control flexible modes is the main

  13. 76 FR 78 - Federal Motor Vehicle Safety Standard; Engine Control Module Speed Limiter Device

    Science.gov (United States)

    2011-01-03

    ... [Docket No. NHTSA-2007-26851] Federal Motor Vehicle Safety Standard; Engine Control Module Speed Limiter... occupants. IIHS stated that on-board electronic engine control modules (ECM) will maintain the desired speed... be equipped with an electronic control module (ECM) that is capable of limiting the maximum speed of...

  14. Comparison of model reference and map based control method for vehicle stability enhancement

    NARCIS (Netherlands)

    Baek, S.; Son, M.; Song, J.; Boo, K.; Kim, H.

    2012-01-01

    A map based controller method to improve a vehicle lateral stability is proposed in this study and compared with the conventional method, a model referenced controller. A model referenced controller to determine compensated yaw moment uses the sliding mode method, but the proposed map based

  15. Development of Degree-of-Priority Based Control Strategy for Emergency Vehicle Preemption Operation

    Directory of Open Access Journals (Sweden)

    Jiawen Wang

    2013-01-01

    Full Text Available This paper proposes a degree-of-priority based control strategy for emergency vehicle preemption operation to decrease the impacts of emergency vehicles on normal traffic. The proposed model features its effectiveness to the following three aspects: (1 a multilayer fuzzy model was established to determine the degree-of-priority based on emergency vehicle preemption demand intensity and preemption influence intensity; (2 for emergency vehicles with proper classification, a travel time estimation model for emergency traffic was formulated, an optimal emergency route determines model based on the level of priority of emergency events, and the emergency vehicle travel time was developed to minimize evacuation time as well as minimize the adverse impacts of preemption on normal traffic; and (3 a conditional traffic signals priority control method at each intersection of the evacuation route was built, so that traffic queue at each intersection can be cleared before the arrival of emergency vehicles. A simulation model based on field data was developed, and the performance of the proposed strategy was compared with the conventional local detection based method under the microscopic simulation model. The results validated the efficiency of the proposed strategy in terms of minimizing the delay of emergency vehicles and reducing adverse impacts on normal traffic.

  16. Consensus seeking, formation keeping, and trajectory tracking in multiple vehicle cooperative control

    Science.gov (United States)

    Ren, Wei

    Cooperative control problems for multiple vehicle systems can be categorized as either formation control problems with applications to mobile robots, unmanned air vehicles, autonomous underwater vehicles, satellites, aircraft, spacecraft, and automated highway systems, or non-formation control problems such as task assignment, cooperative transport, cooperative role assignment, air traffic control, cooperative timing, and cooperative search. The cooperative control of multiple vehicle systems poses significant theoretical and practical challenges. For cooperative control strategies to be successful, numerous issues must be addressed. We consider three important and correlated issues: consensus seeking, formation keeping, and trajectory tracking. For consensus seeking, we investigate algorithms and protocols so that a team of vehicles can reach consensus on the values of the coordination data in the presence of imperfect sensors, communication dropout, sparse communication topologies, and noisy and unreliable communication links. The main contribution of this dissertation in this area is that we show necessary and/or sufficient conditions for consensus seeking with limited, unidirectional, and unreliable information exchange under fixed and switching interaction topologies (through either communication or sensing). For formation keeping, we apply a so-called "virtual structure" approach to spacecraft formation flying and multi-vehicle formation maneuvers. As a result, single vehicle path planning and trajectory generation techniques can be employed for the virtual structure while trajectory tracking strategies can be employed for each vehicle. The main contribution of this dissertation in this area is that we propose a decentralized architecture for multiple spacecraft formation flying in deep space with formation feedback introduced. This architecture ensures the necessary precision in the presence of actuator saturation, internal and external disturbances, and

  17. A Multi-Vehicles, Wireless Testbed for Networked Control, Communications and Computing

    Science.gov (United States)

    Murray, Richard; Doyle, John; Effros, Michelle; Hickey, Jason; Low, Steven

    2002-03-01

    We have constructed a testbed consisting of 4 mobile vehicles (with 4 additional vehicles being completed), each with embedded computing and communications capability for use in testing new approaches for command and control across dynamic networks. The system is being used or is planned to be used for testing of a variety of communications-related technologies, including distributed command and control algorithms, dynamically reconfigurable network topologies, source coding for real-time transmission of data in lossy environments, and multi-network communications. A unique feature of the testbed is the use of vehicles that have second order dynamics. Requiring real-time feedback algorithms to stabilize the system while performing cooperative tasks. The testbed was constructed in the Caltech Vehicles Laboratory and consists of individual vehicles with PC-based computation and controls, and multiple communications devices (802.11 wireless Ethernet, Bluetooth, and infrared). The vehicles are freely moving, wheeled platforms propelled by high performance dotted fairs. The room contains an access points for an 802.11 network, overhead visual sensing (to allow emulation of CI'S signal processing), a centralized computer for emulating certain distributed computations, and network gateways to control and manipulate communications traffic.

  18. Direct lexical control of eye movements in reading: Evidence from a survival analysis of fixation durations

    Science.gov (United States)

    Reingold, Eyal M.; Reichle, Erik D.; Glaholt, Mackenzie G.; Sheridan, Heather

    2013-01-01

    Participants’ eye movements were monitored in an experiment that manipulated the frequency of target words (high vs. low) as well as their availability for parafoveal processing during fixations on the pre-target word (valid vs. invalid preview). The influence of the word-frequency by preview validity manipulation on the distributions of first fixation duration was examined by using ex-Gaussian fitting as well as a novel survival analysis technique which provided precise estimates of the timing of the first discernible influence of word frequency on first fixation duration. Using this technique, we found a significant influence of word frequency on fixation duration in normal reading (valid preview) as early as 145 ms from the start of fixation. We also demonstrated an equally rapid non-lexical influence on first fixation duration as a function of initial landing position (location) on target words. The time-course of frequency effects, but not location effects was strongly influenced by preview validity, demonstrating the crucial role of parafoveal processing in enabling direct lexical control of reading fixation times. Implications for models of eye-movement control are discussed. PMID:22542804

  19. Wheel Slip Control for Improving Traction-Ability and Energy Efficiency of a Personal Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Kanghyun Nam

    2015-07-01

    Full Text Available In this paper, a robust wheel slip control system based on a sliding mode controller is proposed for improving traction-ability and reducing energy consumption during sudden acceleration for a personal electric vehicle. Sliding mode control techniques have been employed widely in the development of a robust wheel slip controller of conventional internal combustion engine vehicles due to their application effectiveness in nonlinear systems and robustness against model uncertainties and disturbances. A practical slip control system which takes advantage of the features of electric motors is proposed and an algorithm for vehicle velocity estimation is also introduced. The vehicle velocity estimator was designed based on rotational wheel dynamics, measurable motor torque, and wheel velocity as well as rule-based logic. The simulations and experiments were carried out using both CarSim software and an experimental electric vehicle equipped with in-wheel-motors. Through field tests, traction performance and effectiveness in terms of energy saving were all verified. Comparative experiments with variations of control variables proved the effectiveness and practicality of the proposed control design.

  20. Reusable Launch Vehicle Attitude Control Using a Time-Varying Sliding Mode Control Technique

    Science.gov (United States)

    Shtessel, Yuri B.; Zhu, J. Jim; Daniels, Dan; Jackson, Scott (Technical Monitor)

    2002-01-01

    In this paper we present a time-varying sliding mode control (TVSMC) technique for reusable launch vehicle (RLV) attitude control in ascent and entry flight phases. In ascent flight the guidance commands Euler roll, pitch and yaw angles, and in entry flight it commands the aerodynamic angles of bank, attack and sideslip. The controller employs a body rate inner loop and the attitude outer loop, which are separated in time-scale by the singular perturbation principle. The novelty of the TVSMC is that both the sliding surface and the boundary layer dynamics can be varied in real time using the PD-eigenvalue assignment technique. This salient feature is used to cope with control command saturation and integrator windup in the presence of severe disturbance or control effector failure, which enhances the robustness and fault tolerance of the controller. The TV-SMC ascent and descent designs are currently being tested with high fidelity, 6-DOF dispersion simulations. The test results will be presented in the final version of this paper.

  1. EVALUATION OF A CONCEPTUAL VEHICLE STEERING SYSTEM FOR INDEPENDENT WHEEL CONTROL

    Directory of Open Access Journals (Sweden)

    Ryszard BUCHALIK

    2017-03-01

    Full Text Available This paper presents a brief description of an unconventional steering system involving electronic stability control and its influence on vehicle motion. The proposed configuration enables individual changes in steering angle for each single wheel, in contrast to the mechanical linkage solution. An analysis of vehicle behaviour during emergency braking on a heterogeneous surface is conducted, especially with regard to the undesirable rotation of the vehicle body. The benefits of using this active steering system, implemented in the steer-by-wire mode, are characterized, while the problems for further consideration and the potential benefits of such a solution are described.

  2. Strategy and Evaluation of Vehicle Collision Avoidance Control via Hardware-in-the-Loop Platform

    Directory of Open Access Journals (Sweden)

    Sin-Li Chen

    2016-11-01

    Full Text Available This paper proposes a novel control approach for vehicle collision avoidance of urban vehicles. For safe driving in urban environments, this paper presents both one-dimensional and two-dimensional solutions, which can be applied to the collision avoidance via steering assistance, automatic braking, and warning of collision. Strategies are verified under the software CarSim, and the experimental evaluations are carried out under the combination of CarSim with a hardware-in-the-loop platform. The results show the feasibility and effectiveness of the proposed algorithm on vehicle collision avoidance.

  3. Machine & electrical double control air dryer for vehicle air braking system

    Science.gov (United States)

    Zhang, Xuan; Yang, Liu; Wang, Xian Yan; Tan, Xiao Yan; Wang, Wei

    2017-09-01

    As is known to all, a vehicle air brake system, in which usually contains moisture. To solve the problem, it is common to use air dryer to dry compressed air effectively and completely remove the moisture and oil of braking system. However, the existing air dryer is not suitable for all commercial vehicles. According to the operational status of the new energy vehicles in the initial operating period, the structure design principle of the machine & electric control air dryer is expounded from the aspects of the structure and operating principle, research & development process.

  4. An investigation of the effects of pneumatic actuator design on slip control for heavy vehicles

    Science.gov (United States)

    Miller, Jonathan I.; Cebon, David

    2013-01-01

    Progress in reducing actuator delays in pneumatic brake systems is opening the door for advanced anti-lock braking algorithms to be used on heavy goods vehicles. However, little has been published on slip controllers for air-braked heavy vehicles, or the effects of slow pneumatic actuation on their design and performance. This paper introduces a sliding mode slip controller for air-braked heavy vehicles. The effects of pneumatic actuator delays and flow rates on stopping performance and air (energy) consumption are presented through vehicle simulations. Finally, the simulations are validated with experiments using a hardware-in-the-loop rig. It is shown that for each wheel, pneumatic valves with delays smaller than 3 ms and orifice diameters around 8 mm provide the best performance.

  5. A traction control strategy with an efficiency model in a distributed driving electric vehicle.

    Science.gov (United States)

    Lin, Cheng; Cheng, Xingqun

    2014-01-01

    Both active safety and fuel economy are important issues for vehicles. This paper focuses on a traction control strategy with an efficiency model in a distributed driving electric vehicle. In emergency situation, a sliding mode control algorithm was employed to achieve antislip control through keeping the wheels' slip ratios below 20%. For general longitudinal driving cases, an efficiency model aiming at improving the fuel economy was built through an offline optimization stream within the two-dimensional design space composed of the acceleration pedal signal and the vehicle speed. The sliding mode control strategy for the joint roads and the efficiency model for the typical drive cycles were simulated. Simulation results show that the proposed driving control approach has the potential to apply to different road surfaces. It keeps the wheels' slip ratios within the stable zone and improves the fuel economy on the premise of tracking the driver's intention.

  6. Crew exploration vehicle (CEV) attitude control using a neural-immunology/memory network

    Science.gov (United States)

    Weng, Liguo; Xia, Min; Wang, Wei; Liu, Qingshan

    2015-01-01

    This paper addresses the problem of the crew exploration vehicle (CEV) attitude control. CEVs are NASA's next-generation human spaceflight vehicles, and they use reaction control system (RCS) jet engines for attitude adjustment, which calls for control algorithms for firing the small propulsion engines mounted on vehicles. In this work, the resultant CEV dynamics combines both actuation and attitude dynamics. Therefore, it is highly nonlinear and even coupled with significant uncertainties. To cope with this situation, a neural-immunology/memory network is proposed. It is inspired by the human memory and immune systems. The control network does not rely on precise system dynamics information. Furthermore, the overall control scheme has a simple structure and demands much less computation as compared with most existing methods, making it attractive for real-time implementation. The effectiveness of this approach is also verified via simulation.

  7. Fault-Tolerant Region-Based Control of an Underwater Vehicle with Kinematically Redundant Thrusters

    Directory of Open Access Journals (Sweden)

    Zool H. Ismail

    2014-01-01

    Full Text Available This paper presents a new control approach for an underwater vehicle with a kinematically redundant thruster system. This control scheme is derived based on a fault-tolerant decomposition for thruster force allocation and a region control scheme for the tracking objective. Given a redundant thruster system, that is, six or more pairs of thrusters are used, the proposed redundancy resolution and region control scheme determine the number of thruster faults, as well as providing the reference thruster forces in order to keep the underwater vehicle within the desired region. The stability of the presented control law is proven in the sense of a Lyapunov function. Numerical simulations are performed with an omnidirectional underwater vehicle and the results of the proposed scheme illustrate the effectiveness in terms of optimizing the thruster forces.

  8. Tracking Controller Design for Diving Behavior of an Unmanned Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Yi-Hsiang Tseng

    2013-01-01

    Full Text Available The study has investigated the almost disturbance decoupling problem of nonlinear uncertain control systems via the fuzzy feedback linearization approach. The significant dedication of this paper is to organize a control algorithm such that the closed-loop system is active for given initial condition and bounded tracking trajectory with the input-to-state stability and almost disturbance decoupling performance. This study presents a feedback linearization controller for diving control of an unmanned underwater vehicle. Unmanned underwater vehicle proposes difficult control subject due to its nonlinear dynamics, uncertain models, and the existence of disturbances that are difficult to measure. In general, while investigating the diving dynamics of an unmanned underwater vehicle, the pitch angle is always assumed to be small. This assumption is a strong restricting constraint in many interesting practical applications and will be relaxed in this study.

  9. A Traction Control Strategy with an Efficiency Model in a Distributed Driving Electric Vehicle

    Science.gov (United States)

    Lin, Cheng

    2014-01-01

    Both active safety and fuel economy are important issues for vehicles. This paper focuses on a traction control strategy with an efficiency model in a distributed driving electric vehicle. In emergency situation, a sliding mode control algorithm was employed to achieve antislip control through keeping the wheels' slip ratios below 20%. For general longitudinal driving cases, an efficiency model aiming at improving the fuel economy was built through an offline optimization stream within the two-dimensional design space composed of the acceleration pedal signal and the vehicle speed. The sliding mode control strategy for the joint roads and the efficiency model for the typical drive cycles were simulated. Simulation results show that the proposed driving control approach has the potential to apply to different road surfaces. It keeps the wheels' slip ratios within the stable zone and improves the fuel economy on the premise of tracking the driver's intention. PMID:25197697

  10. A model predictive speed tracking control approach for autonomous ground vehicles

    Science.gov (United States)

    Zhu, Min; Chen, Huiyan; Xiong, Guangming

    2017-03-01

    This paper presents a novel speed tracking control approach based on a model predictive control (MPC) framework for autonomous ground vehicles. A switching algorithm without calibration is proposed to determine the drive or brake control. Combined with a simple inverse longitudinal vehicle model and adaptive regulation of MPC, this algorithm can make use of the engine brake torque for various driving conditions and avoid high frequency oscillations automatically. A simplified quadratic program (QP) solving algorithm is used to reduce the computational time, and the approach has been applied in a 16-bit microcontroller. The performance of the proposed approach is evaluated via simulations and vehicle tests, which were carried out in a range of speed-profile tracking tasks. With a well-designed system structure, high-precision speed control is achieved. The system can robustly model uncertainty and external disturbances, and yields a faster response with less overshoot than a PI controller.

  11. A Novel SHLNN Based Robust Control and Tracking Method for Hypersonic Vehicle under Parameter Uncertainty

    Directory of Open Access Journals (Sweden)

    Chuanfeng Li

    2017-01-01

    Full Text Available Hypersonic vehicle is a typical parameter uncertain system with significant characteristics of strong coupling, nonlinearity, and external disturbance. In this paper, a combined system modeling approach is proposed to approximate the actual vehicle system. The state feedback control strategy is adopted based on the robust guaranteed cost control (RGCC theory, where the Lyapunov function is applied to get control law for nonlinear system and the problem is transformed into a feasible solution by linear matrix inequalities (LMI method. In addition, a nonfragile guaranteed cost controller solved by LMI optimization approach is employed to the linear error system, where a single hidden layer neural network (SHLNN is employed as an additive gain compensator to reduce excessive performance caused by perturbations and uncertainties. Simulation results show the stability and well tracking performance for the proposed strategy in controlling the vehicle system.

  12. Hypersonic vehicle model and control law development using H(infinity) and micron synthesis

    Science.gov (United States)

    Gregory, Irene M.; Chowdhry, Rajiv S.; Mcminn, John D.; Shaughnessy, John D.

    1994-01-01

    The control system design for a Single Stage To Orbit (SSTO) air breathing vehicle will be central to a successful mission because a precise ascent trajectory will preserve narrow payload margins. The air breathing propulsion system requires the vehicle to fly roughly halfway around the Earth through atmospheric turbulence. The turbulence, the high sensitivity of the propulsion system to inlet flow conditions, the relatively large uncertainty of the parameters characterizing the vehicle, and continuous acceleration make the problem especially challenging. Adequate stability margins must be provided without sacrificing payload mass since payload margins are critical. Therefore, a multivariable control theory capable of explicitly including both uncertainty and performance is needed. The H(infinity) controller in general provides good robustness but can result in conservative solutions for practical problems involving structured uncertainty. Structured singular value mu framework for analysis and synthesis is potentially much less conservative and hence more appropriate for problems with tight margins. An SSTO control system requires: highly accurate tracking of velocity and altitude commands while limiting angle-of-attack oscillations, minimized control power usage, and a stabilized vehicle when atmospheric turbulence and system uncertainty are present. The controller designs using H(infinity) and mu-synthesis procedures were compared. An integrated flight/propulsion dynamic mathematical model of a conical accelerator vehicle was linearized as the vehicle accelerated through Mach 8. Vehicle acceleration through the selected flight condition gives rise to parametric variation that was modeled as a structured uncertainty. The mu-analysis approach was used in the frequency domain to conduct controller analysis and was confirmed by time history plots. Results demonstrate the inherent advantages of the mu framework for this class of problems.

  13. Advanced Emergency Braking Control Based on a Nonlinear Model Predictive Algorithm for Intelligent Vehicles

    Directory of Open Access Journals (Sweden)

    Ronghui Zhang

    2017-05-01

    Full Text Available Focusing on safety, comfort and with an overall aim of the comprehensive improvement of a vision-based intelligent vehicle, a novel Advanced Emergency Braking System (AEBS is proposed based on Nonlinear Model Predictive Algorithm. Considering the nonlinearities of vehicle dynamics, a vision-based longitudinal vehicle dynamics model is established. On account of the nonlinear coupling characteristics of the driver, surroundings, and vehicle itself, a hierarchical control structure is proposed to decouple and coordinate the system. To avoid or reduce the collision risk between the intelligent vehicle and collision objects, a coordinated cost function of tracking safety, comfort, and fuel economy is formulated. Based on the terminal constraints of stable tracking, a multi-objective optimization controller is proposed using the theory of non-linear model predictive control. To quickly and precisely track control target in a finite time, an electronic brake controller for AEBS is designed based on the Nonsingular Fast Terminal Sliding Mode (NFTSM control theory. To validate the performance and advantages of the proposed algorithm, simulations are implemented. According to the simulation results, the proposed algorithm has better integrated performance in reducing the collision risk and improving the driving comfort and fuel economy of the smart car compared with the existing single AEBS.

  14. Research of Ant Colony Optimized Adaptive Control Strategy for Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Linhui Li

    2014-01-01

    Full Text Available Energy management control strategy of hybrid electric vehicle has a great influence on the vehicle fuel consumption with electric motors adding to the traditional vehicle power system. As vehicle real driving cycles seem to be uncertain, the dynamic driving cycles will have an impact on control strategy’s energy-saving effect. In order to better adapt the dynamic driving cycles, control strategy should have the ability to recognize the real-time driving cycle and adaptively adjust to the corresponding off-line optimal control parameters. In this paper, four types of representative driving cycles are constructed based on the actual vehicle operating data, and a fuzzy driving cycle recognition algorithm is proposed for online recognizing the type of actual driving cycle. Then, based on the equivalent fuel consumption minimization strategy, an ant colony optimization algorithm is utilized to search the optimal control parameters “charge and discharge equivalent factors” for each type of representative driving cycle. At last, the simulation experiments are conducted to verify the accuracy of the proposed fuzzy recognition algorithm and the validity of the designed control strategy optimization method.

  15. The control of vehicles used in transport of sensitive nuclear material

    International Nuclear Information System (INIS)

    Loiseau, O.; Larrignon, D.; Autrusson, B.

    2010-01-01

    Most sensitive nuclear materials are usually shipped in specific vehicles with a reinforced protection; such vehicles are generally escorted, tracked and watched over from a distant control centre. Among the various publications made by the IAEA in relation with the CPPNM, the INFCIRC/225 introduces major recommendations for physical protection of nuclear materials in general and particularly during transport. For instance, the text recommends - for the terrestrial shipment of most sensitive material - the use of vehicles specially designed to resist attack and equipped with a vehicle disabling device. Applying such a recommendation at a state level requires the intervention of a competent authority; the competent authority defines the framework of a validation process starting with the design of the vehicle and ending with the vehicle protection approval. The validation process needs articulating responsibilities between the three major actors who are: the operator in charge of the design, a technical support body in charge of technical evaluation, and the competent authority who is responsible for the final approval of the protection. This paper focuses on the approval process of reinforced protection vehicles in France; it aims at showing how such a process may contribute to the security of nuclear material shipments. The paper notably focuses on the responsibilities of the operators, the competent authority and the technical support organization. This approval process of the protection of a vehicle allows the authority to ensure that the protection setup is effective and operational in order to protect the cargo from a malicious threat. In such a process, the authority defines the threat and the objectives of protection; the authority may choose, in certain case, to recommend protection devices or solutions; the need for recommendation versus objective definition mostly depends on the environment of the vehicle and the constraints induced. The authority may

  16. DESIGN AN INTELLIGENT CONTROLLER FOR FULL VEHICLE NONLINEAR ACTIVE SUSPENSION SYSTEMS

    OpenAIRE

    Aldair, A. A.; Wang, W. J.

    2011-01-01

    The main objective of designed the controller for a vehicle suspension system is to reduce the discomfort sensed by passengers which arises from road roughness and to increase the ride handling associated with the pitching and rolling movements. This necessitates a very fast and accurate controller to meet as much control objectives, as possible. Therefore, this paper deals with an artificial intelligence Neuro-Fuzzy (NF) technique to design a robust controller to meet the control objectives....

  17. The processing of raising and nominal control: An eye-tracking study

    Directory of Open Access Journals (Sweden)

    Patrick eSturt

    2015-03-01

    Full Text Available According to some views of sentence processing, the memory retrieval processes involved in dependency formation may differ as a function of the type of dependency involved. For example, using closely matched materials in a single experiment Dillon et al (2013 found evidence for retrieval interference in subject-verb agreement, but not in reflexive-antecedent agreement. We report four eye-tracking experiments that examine examine reflexive-antecedent dependencies, combined with raising (e.g. ``John seemed to Tom to be kind to himself...'', or nominal control (e.g. ``John’s agreement with Tom to be kind to himself...''. We hypothesized that dependencies involving raising would (a be processed more quickly, and (b be less subject to retrieval interference, relative to those involving nominal control. This is due to the fact that the interpretation of raising is structurally constrained, while the interpretation of nominal control depends crucially on lexical properties of the control nominal. The results showed evidence of interference when the reflexive-antecedent dependency was mediated by raising or nominal control, but very little evidence that could be interpreted in terms of interference for direct reflexive-antecedent dependencies that did not involve raising or control. However, there was no evidence either for greater interference, or for quicker dependency formation, for raising than for nominal control.

  18. STABILITY CONTROL OF ELEVATING-TRANSFER VEHICLES IN THE CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    Zhadanovskiy Boris Vasil’evich

    2016-05-01

    Full Text Available The underground space is widely used in the construction in big cities of the Russian Federation. These works need the use of elevating-transfer vehicles. In this case the requirements of norms and regulations on operating safety should be strictly observed, because their breach often leads to emergency situations and injuries. The organizational and technological solutions when developing the design documentation and executing construction and assembly works should be primarily based on the stability of lifting facilities. The author states the requirements to installation of lifting tackles (cranes. The features of their installation in different operation conditions on construction sites are described. The crane stability depends on many different indicators, which are considered by the author. The calculation algorithms of crane stability are offered.

  19. FUZZY-GENETIC CONTROL OF QUADROTOR UNMANNED AERIAL VEHICLES

    Directory of Open Access Journals (Sweden)

    Attila Nemes

    2016-03-01

    Full Text Available This article presents a novel fuzzy identification method for dynamic modelling of quadrotor unmanned aerial vehicles. The method is based on a special parameterization of the antecedent part of fuzzy systems that results in fuzzy-partitions for antecedents. This antecedent parameter representation method of fuzzy rules ensures upholding of predefined linguistic value ordering and ensures that fuzzy-partitions remain intact throughout an unconstrained hybrid evolutionary and gradient descent based optimization process. In the equations of motion the first order derivative component is calculated based on Christoffel symbols, the derivatives of fuzzy systems are used for modelling the Coriolis effects, gyroscopic and centrifugal terms. The non-linear parameters are subjected to an initial global evolutionary optimization scheme and fine tuning with gradient descent based local search. Simulation results of the proposed new quadrotor dynamic model identification method are promising.

  20. Pressure Control In A Tyre Of Moving Vehicle

    Science.gov (United States)

    Gawande, Kshitij P.; Jawanjal, Vaishakh A.

    2012-08-01

    We always try to make everything perfect around us and there is major problem still remaining in our automobiles, a puncture in a tire while running. We have developed tubeless tires but thatís not a perfect solution, so there is a serious need of improvement in this area. In this paper the compressed air is used to maintain the pressure in the tire using pneumatic pipes. This is a very basic concept which uses compressor power to maintain the pressure of a tire, while running using pressure gauges and leak proof connection. This technique allows us to drive a punctured vehicle which increases safety, comfort & saves time. This paper suggests a new technique towards one more improvement in our automobile industry.