WorldWideScience

Sample records for vegf189 stimulates endothelial

  1. Vascular Endothelial Growth Factor and Angiopoietin-1 Stimulate Postnatal Hematopoiesis by Recruitment of Vasculogenic and Hematopoietic Stem Cells

    Science.gov (United States)

    Hattori, Koichi; Dias, Sergio; Heissig, Beate; Hackett, Neil R.; Lyden, David; Tateno, Masatoshi; Hicklin, Daniel J.; Zhu, Zhenping; Witte, Larry; Crystal, Ronald G.; Moore, Malcolm A.S.; Rafii, Shahin

    2001-01-01

    Tyrosine kinase receptors for angiogenic factors vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) are expressed not only by endothelial cells but also by subsets of hematopoietic stem cells (HSCs). To further define their role in the regulation of postnatal hematopoiesis and vasculogenesis, VEGF and Ang-1 plasma levels were elevated by injecting recombinant protein or adenoviral vectors expressing soluble VEGF165, matrix-bound VEGF189, or Ang-1 into mice. VEGF165, but not VEGF189, induced a rapid mobilization of HSCs and VEGF receptor (VEGFR)2+ circulating endothelial precursor cells (CEPs). In contrast, Ang-1 induced delayed mobilization of CEPs and HSCs. Combined sustained elevation of Ang-1 and VEGF165 was associated with an induction of hematopoiesis and increased marrow cellularity followed by proliferation of capillaries and expansion of sinusoidal space. Concomitant to this vascular remodeling, there was a transient depletion of hematopoietic activity in the marrow, which was compensated by an increase in mobilization and recruitment of HSCs and CEPs to the spleen resulting in splenomegaly. Neutralizing monoclonal antibody to VEGFR2 completely inhibited VEGF165, but not Ang-1–induced mobilization and splenomegaly. These data suggest that temporal and regional activation of VEGF/VEGFR2 and Ang-1/Tie-2 signaling pathways are critical for mobilization and recruitment of HSCs and CEPs and may play a role in the physiology of postnatal angiogenesis and hematopoiesis. PMID:11342585

  2. Vascular endothelial growth factor A-stimulated signaling from endosomes in primary endothelial cells.

    Science.gov (United States)

    Fearnley, Gareth W; Smith, Gina A; Odell, Adam F; Latham, Antony M; Wheatcroft, Stephen B; Harrison, Michael A; Tomlinson, Darren C; Ponnambalam, Sreenivasan

    2014-01-01

    The vascular endothelial growth factor A (VEGF-A) is a multifunctional cytokine that stimulates blood vessel sprouting, vascular repair, and regeneration. VEGF-A binds to VEGF receptor tyrosine kinases (VEGFRs) and stimulates intracellular signaling leading to changes in vascular physiology. An important aspect of this phenomenon is the spatiotemporal coordination of VEGFR trafficking and intracellular signaling to ensure that VEGFR residence in different organelles is linked to downstream cellular outputs. Here, we describe a series of assays to evaluate the effects of VEGF-A-stimulated intracellular signaling from intracellular compartments such as the endosome-lysosome system. These assays include the initial isolation and characterization of primary human endothelial cells, performing reverse genetics for analyzing protein function; methods used to study receptor trafficking, signaling, and proteolysis; and assays used to measure changes in cell migration, proliferation, and tubulogenesis. Each of these assays has been exemplified with studies performed in our laboratories. In conclusion, we describe necessary techniques for studying the role of VEGF-A in endothelial cell function. © 2014 Elsevier Inc. All rights reserved.

  3. Stimulation of proteoglycans by IGF I and II in microvessel and large vessel endothelial cells

    International Nuclear Information System (INIS)

    Bar, R.S.; Dake, B.L.; Stueck, S.

    1987-01-01

    Endothelial cells were cultured from bovine capillaries and pulmonary arteries, and the effect of insulinlike growth factor (IGF) I and II (multiplication-stimulating activity) and insulin on the synthesis of proteoglycans was determined. IGF I and II stimulated 35 SO 4 incorporation into proteoglycans in a dose-dependent manner in both microvessel and pulmonary artery endothelial cells with maximum threefold increases. In pulmonary artery cells, the IGFs caused a general stimulation of all classes of glycosaminoglycan-containing proteoglycans. In microvessel endothelial cells, the IGFs appeared to preferentially increase heparan sulfate-containing proteoglycans. Insulin, at concentrations up to 10 -6 M, had no effect on the synthesis of proteoglycans in either microvessel or pulmonary arterial endothelial cells. Thus, the IGFs stimulate the synthesis of proteoglycans in both microvessel and large vessel endothelial cells, a property that is not mimicked by insulin. Because vascular endothelial cells are bathed by IGFs in vivo, such IGF-mediated functions are likely to be significant in both the normal physiology of vascular endothelium and in disease states such as diabetes mellitus

  4. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  5. Photodynamic therapy potentiates the paracrine endothelial stimulation by colorectal cancer

    Science.gov (United States)

    Lamberti, María Julia; Florencia Pansa, María; Emanuel Vera, Renzo; Belén Rumie Vittar, Natalia; Rivarola, Viviana Alicia

    2014-11-01

    Colorectal cancer (CRC) is the third most common cancer and the third leading cause of cancer death worldwide. Recurrence is a major problem and is often the ultimate cause of death. In this context, the tumor microenvironment influences tumor progression and is considered as a new essential feature that clearly impacts on treatment outcome, and must therefore be taken into consideration. Photodynamic therapy (PDT), oxygen, light and drug-dependent, is a novel treatment modality when CRC patients are inoperable. Tumor vasculature and parenchyma cells are both potential targets of PDT damage modulating tumor-stroma interactions. In biological activity assessment in photodynamic research, three-dimensional (3D) cultures are essential to integrate biomechanical, biochemical, and biophysical properties that better predict the outcome of oxygen- and drug-dependent medical therapies. Therefore, the objective of this study was to investigate the antitumor effect of methyl 5-aminolevulinic acid-PDT using a light emitting diode for the treatment of CRC cells in a scenario that mimics targeted tissue complexity, providing a potential bridge for the gap between 2D cultures and animal models. Since photodynamic intervention of the tumor microenvironment can effectively modulate the tumor-stroma interaction, it was proposed to characterize the endothelial response to CRC paracrine communication, if one of these two populations is photosensitized. In conclusion, we demonstrated that the dialogue between endothelial and tumor populations when subjected to lethal PDT conditions induces an increase in angiogenic phenotype, and we think that it should be carefully considered for the development of PDT therapeutic protocols.

  6. Lysophosphatidic acid stimulates thrombomodulin lectin-like domain shedding in human endothelial cells

    International Nuclear Information System (INIS)

    Wu Hualin; Lin ChiIou; Huang Yuanli; Chen, Pin-Shern; Kuo, Cheng-Hsiang; Chen, Mei-Shing; Wu, G.C.-C.; Shi, G.-Y.; Yang, H.-Y.; Lee Hsinyu

    2008-01-01

    Thrombomodulin (TM) is an anticoagulant glycoprotein highly expressed on endothelial cell surfaces. Increased levels of soluble TM in circulation have been widely accepted as an indicator of endothelial damage or dysfunction. Previous studies indicated that various proinflammatory factors stimulate TM shedding in various cell types such as smooth muscle cells and epithelial cells. Lysophosphatidic acid (LPA) is a bioactive lipid mediator present in biological fluids during endothelial damage or injury. In the present study, we first observed that LPA triggered TM shedding in human umbilical vein endothelial cells (HUVECs). By Cyflow analysis, we showed that the LPA-induced accessibility of antibodies to the endothelial growth factor (EGF)-like domain of TM is independent of matrix metalloproteinases (MMPs), while LPA-induced TM lectin-like domain shedding is MMP-dependent. Furthermore, a stable cell line expressing TM without its lectin-like domain exhibited a higher cell proliferation rate than a stable cell line expressing full-length TM. These results imply that LPA induces TM lectin-like domain shedding, which might contribute to the exposure of its EGF-like domain for EGF receptor (EGFR) binding, thereby stimulating subsequent cell proliferation. Based on our findings, we propose a novel mechanism for the exposure of TM EGF-like domain, which possibly mediates LPA-induced EGFR transactivation

  7. Norepinephrine stimulates mobilization of endothelial progenitor cells after limb ischemia.

    Directory of Open Access Journals (Sweden)

    Qijun Jiang

    Full Text Available OBJECTIVE: During several pathological processes such as cancer progression, thermal injury, wound healing and hindlimb ischemia, the mobilization of endothelial progenitor cells (EPCs mobilization was enhanced with an increase of sympathetic nerve activity and norepinephrine (NE secretion, yet the cellular and molecular mechanisms involved in the effects of NE on EPCs has less been investigated. METHODS AND RESULTS: EPCs from BMs, peripheral circulation and spleens, the VEGF concentration in BM, skeletal muscle, peripheral circulation and spleen and angiogenesis in ischemic gastrocnemius were quantified in mice with hindlimbs ischemia. Systemic treatment of NE significantly increased EPCs number in BM, peripheral circulation and spleen, VEGF concentration in BM and skeletal muscle and angiogenesis in ischemic gastrocnemius in mice with hind limb ischemia, but did not affair VEGF concentration in peripheral circulation and spleen. EPCs isolated from healthy adults were cultured with NE in vitro to evaluate proliferation potential, migration capacity and phosphorylations of Akt and eNOS signal moleculars. Treatment of NE induced a significant increase in number of EPCs in the S-phase in a dose-dependent manner, as well as migrative activity of EPCs in vitro (p<0.05. The co-treatment of Phentolamine, I127, LY294002 and L-NAME with NE blocked the effects of NE on EPCs proliferation and migration. Treatment with NE significantly increased phosphorylation of Akt and eNOS of EPCs. Addition of phentolamine and I127 attenuated the activation of Akt/eNOS pathway, but metoprolol could not. Pretreatment of mice with either Phentolamine or I127 significantly attenuated the effects of NE on EPCs in vivo, VEGF concentration in BM, skeletal muscle and angiogenesis in ischemic gastrocnemius, but Metoprolol did not. CONCLUSION: These results unravel that sympathetic nervous system regulate EPCs mobilization and their pro-angiogenic capacity via α adrenoceptor

  8. Ghrelin stimulates angiogenesis in human microvascular endothelial cells: Implications beyond GH release

    International Nuclear Information System (INIS)

    Li Aihua; Cheng Guangli; Zhu Genghui; Tarnawski, Andrzej S.

    2007-01-01

    Ghrelin, a peptide hormone isolated from the stomach, releases growth hormone and stimulates appetite. Ghrelin is also expressed in pancreas, kidneys, cardiovascular system and in endothelial cells. The precise role of ghrelin in endothelial cell functions remains unknown. We examined the expression of ghrelin and its receptor (GHSR1) mRNAs and proteins in human microvascular endothelial cells (HMVEC) and determined whether ghrelin affects in these cells proliferation, migration and in vitro angiogenesis; and whether MAPK/ERK2 signaling is important for the latter action. We found that ghrelin and GHSR1 are constitutively expressed in HMVEC. Treatment of HMVEC with exogenous ghrelin significantly increased in these cells proliferation, migration, in vitro angiogenesis and ERK2 phosphorylation. MEK/ERK2 inhibitor, PD 98059 abolished ghrelin-induced in vitro angiogenesis. This is First demonstration that ghrelin and its receptor are expressed in human microvascular endothelial cells and that ghrelin stimulates HMVEC proliferation, migration, and angiogenesis through activation of ERK2 signaling

  9. Sphingosine kinase-1 is a hypoxia-regulated gene that stimulates migration of human endothelial cells

    International Nuclear Information System (INIS)

    Schwalm, Stephanie; Doell, Frauke; Roemer, Isolde; Bubnova, Svetlana; Pfeilschifter, Josef; Huwiler, Andrea

    2008-01-01

    Sphingosine kinases (SK) catalyze the production of sphingosine-1-phosphate which in turn regulates cell responses such as proliferation and migration. Here, we show that exposure of the human endothelial cell line EA.hy 926 to hypoxia stimulates a increased SK-1, but not SK-2, mRNA, protein expression, and activity. This effect was due to stimulated SK-1 promoter activity which contains two putative hypoxia-inducible factor-responsive-elements (HRE). By deletion of one of the two HREs, hypoxia-induced promoter activation was abrogated. Furthermore, hypoxia upregulated the expression of HIF-1α and HIF-2α, and both contributed to SK-1 gene transcription as shown by selective depletion of HIF-1α or HIF-2α by siRNA. The hypoxia-stimulated SK-1 upregulation was functionally coupled to increased migration since the selective depletion of SK-1, but not of SK-2, by siRNAs abolished the migratory response. In summary, these data show that hypoxia upregulates SK-1 activity and results in an accelerated migratory capacity of endothelial cells. SK-1 may thus serve as an attractive therapeutic target to treat diseases associated with increased endothelial migration and angiogenesis such as cancer growth and progression

  10. Lysyl Oxidase Plays a Critical Role in Endothelial Cell Stimulation to Drive Tumor Angiogenesis

    DEFF Research Database (Denmark)

    Baker, Ann-Marie; Bird, Demelza; Welti, Jonathan C

    2013-01-01

    Identification of key molecules that drive angiogenesis is critical for the development of new modalities for the prevention of solid tumor progression. Using multiple models of colorectal cancer, we show that activity of the extracellular matrix-modifying enzyme lysyl oxidase (LOX) is essential...... for stimulating endothelial cells in vitro and angiogenesis in vivo. We show that LOX activates Akt through platelet-derived growth factor receptor ß (PDGFRß) stimulation, resulting in increased VEGF expression. LOX-driven angiogenesis can be abrogated through targeting LOX directly or using inhibitors of PDGFRß...

  11. Epalrestat increases glutathione, thioredoxin, and heme oxygenase-1 by stimulating Nrf2 pathway in endothelial cells

    Directory of Open Access Journals (Sweden)

    Kaori Yama

    2015-04-01

    Full Text Available Epalrestat (EPS is the only aldose reductase inhibitor that is currently available for the treatment of diabetic neuropathy. Recently, we found that EPS at near-plasma concentration increases the intracellular levels of glutathione (GSH in rat Schwann cells. GSH plays a crucial role in protecting endothelial cells from oxidative stress, thereby preventing vascular diseases. Here we show that EPS increases GSH levels in not only Schwann cells but also endothelial cells. Treatment of bovine aortic endothelial cells (BAECs, an in vitro model of the vascular endothelium, with EPS caused a dramatic increase in intracellular GSH levels. This was concomitant with the up-regulation of glutamate cysteine ligase, an enzyme catalyzing the first and rate-limiting step in de novo GSH synthesis. Moreover, EPS stimulated the expression of thioredoxin and heme oxygenase-1, which have important redox regulatory functions in endothelial cells. Nuclear factor erythroid 2-related factor 2 (Nrf2 is a key transcription factor that regulates the expression of antioxidant genes. EPS increased nuclear Nrf2 levels in BAECs. Nrf2 knockdown by siRNA suppressed the EPS-induced glutamate cysteine ligase, thioredoxin-1, and heme oxygenase-1 expression. Interestingly, LY294002, an inhibitor of phosphatidylinositol 3-kinase, abolished the EPS-stimulated GSH synthesis, suggesting that the kinase is associated with Nrf2 activation induced by EPS. Furthermore, EPS reduced the cytotoxicity induced by H2O2 and tert-butylhydroperoxide, indicating that EPS plays a role in protecting cells from oxidative stress. Taken together, the results provide evidence that EPS exerts new beneficial effects on endothelial cells by increasing GSH, thioredoxin, and heme oxygenase-1 levels through the activation of Nrf2. We suggest that EPS has the potential to prevent several vascular diseases caused by oxidative stress.

  12. Thrombin stimulates albumin transcytosis in lung microvascular endothelial cells via activation of acid sphingomyelinase.

    Science.gov (United States)

    Kuebler, Wolfgang M; Wittenberg, Claudia; Lee, Warren L; Reppien, Eike; Goldenberg, Neil M; Lindner, Karsten; Gao, Yizhuo; Winoto-Morbach, Supandi; Drab, Marek; Mühlfeld, Christian; Dombrowsky, Heike; Ochs, Matthias; Schütze, Stefan; Uhlig, Stefan

    2016-04-15

    Transcellular albumin transport occurs via caveolae that are abundant in lung microvascular endothelial cells. Stimulation of albumin transcytosis by proinflammatory mediators may contribute to alveolar protein leak in lung injury, yet the regulation of albumin transport and its underlying molecular mechanisms are so far incompletely understood. Here we tested the hypothesis that thrombin may stimulate transcellular albumin transport across lung microvascular endothelial cells in an acid-sphingomyelinase dependent manner. Thrombin increased the transport of fluorescently labeled albumin across confluent human lung microvascular endothelial cell (HMVEC-L) monolayers to an extent that markedly exceeds the rate of passive diffusion. Thrombin activated acid sphingomyelinase (ASM) and increased ceramide production in HMVEC-L, but not in bovine pulmonary artery cells, which showed little albumin transport in response to thrombin. Thrombin increased total caveolin-1 (cav-1) content in both whole cell lysates and lipid rafts from HMVEC-L, and this effect was blocked by inhibition of ASM or de novo protein biosynthesis. Thrombin-induced uptake of albumin into lung microvascular endothelial cells was confirmed in isolated-perfused lungs by real-time fluorescence imaging and electron microscopy of gold-labeled albumin. Inhibition of ASM attenuated thrombin-induced albumin transport both in confluent HMVEC-L and in intact lungs, whereas HMVEC-L treatment with exogenous ASM increased albumin transport and enriched lipid rafts in cav-1. Our findings indicate that thrombin stimulates transcellular albumin transport in an acid sphingomyelinase-dependent manner by inducing de novo synthesis of cav-1 and its recruitment to membrane lipid rafts. Copyright © 2016 the American Physiological Society.

  13. Quinapril treatment increases insulin-stimulated endothelial function and adiponectin gene expression in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Hermann, Thomas S; Li, Weijie; Dominguez, Helena

    2005-01-01

    OBJECTIVE: Angiotensin-converting enzyme inhibitors reduce cardiovascular mortality and improve endothelial function in type 2 diabetic patients. We hypothesized that 2 months of quinapril treatment would improve insulin-stimulated endothelial function and glucose uptake in type 2 diabetic subjects...... and simultaneously increase the expression of genes that are pertinent for endothelial function and metabolism. METHODS: Twenty-four type 2 diabetic subjects were randomized to receive 2 months of quinapril 20 mg daily or no treatment in an open parallel study. Endothelium-dependent and -independent vasodilation...... occlusion plethysmography. Gene expression was measured by real-time PCR. RESULTS: Quinapril treatment increased insulin-stimulated endothelial function in the type 2 diabetic subjects (P = 0.005), whereas forearm glucose uptake was unchanged. Endothelial function was also increased by quinapril (P = 0...

  14. The effect of chronic heart failure and type 2 diabetes on insulin-stimulated endothelial function is similar and additive

    DEFF Research Database (Denmark)

    Falskov, Britt; Hermann, Thomas Steffen; Rask-Madsen, Christian

    2011-01-01

    AIM: Chronic heart failure is associated with endothelial dysfunction and insulin resistance. The aim of this investigation was to study insulin-stimulated endothelial function and glucose uptake in skeletal muscles in patients with heart failure in comparison to patients with type 2 diabetes. ME...... in similar vascular insulin resistance and reduced muscular insulin-stimulated glucose uptake. The effects of systolic heart failure and type 2 diabetes appear to be additive.......AIM: Chronic heart failure is associated with endothelial dysfunction and insulin resistance. The aim of this investigation was to study insulin-stimulated endothelial function and glucose uptake in skeletal muscles in patients with heart failure in comparison to patients with type 2 diabetes...

  15. Granulocyte colony-stimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease.

    Science.gov (United States)

    Powell, Tiffany M; Paul, Jonathan D; Hill, Jonathan M; Thompson, Michael; Benjamin, Moshe; Rodrigo, Maria; McCoy, J Philip; Read, Elizabeth J; Khuu, Hanh M; Leitman, Susan F; Finkel, Toren; Cannon, Richard O

    2005-02-01

    Endothelial progenitor cells (EPCs) that may repair vascular injury are reduced in patients with coronary artery disease (CAD). We reasoned that EPC number and function may be increased by granulocyte colony-stimulating factor (G-CSF) used to mobilize hematopoietic progenitor cells in healthy donors. Sixteen CAD patients had reduced CD34(+)/CD133(+) (0.0224+/-0.0063% versus 0.121+/-0.038% mononuclear cells [MNCs], P<0.01) and CD133(+)/VEGFR-2(+) cells, consistent with EPC phenotype (0.00033+/-0.00015% versus 0.0017+/-0.0006% MNCs, P<0.01), compared with 7 healthy controls. Patients also had fewer clusters of cells in culture, with out-growth consistent with mature endothelial phenotype (2+/-1/well) compared with 16 healthy subjects at high risk (13+/-4/well, P<0.05) or 14 at low risk (22+/-3/well, P<0.001) for CAD. G-CSF 10 microg/kg per day for 5 days increased CD34(+)/CD133(+) cells from 0.5+/-0.2/microL to 59.5+/-10.6/microL and CD133(+)/ VEGFR-2(+) cells from 0.007+/-0.004/microL to 1.9+/-0.6/microL (both P<0.001). Also increased were CD133(+) cells that coexpressed the homing receptor CXCR4 (30.4+/-8.3/microL, P<0.05). Endothelial cell-forming clusters in 10 patients increased to 27+/-9/well after treatment (P<0.05), with a decline to 9+/-4/well at 2 weeks (P=0.06). Despite reduced EPCs compared with healthy controls, patients with CAD respond to G-CSF with increases in EPC number and homing receptor expression in the circulation and endothelial out-growth in culture. Endothelial progenitor cells (EPCs) are reduced in coronary artery disease. Granulocyte colony-stimulating factor (CSF) administered to patients increased: (1) CD133+/VEGFR-2+ cells consistent with EPC phenotype; (2) CD133+ cells coexpressing the chemokine receptor CXCR4, important for homing of EPCs to ischemic tissue; and (3) endothelial cell-forming clusters in culture. Whether EPCs mobilized into the circulation will be useful for the purpose of initiating vascular growth and myocyte repair

  16. Human trophoblast-derived hydrogen sulfide stimulates placental artery endothelial cell angiogenesis.

    Science.gov (United States)

    Chen, Dong-Bao; Feng, Lin; Hodges, Jennifer K; Lechuga, Thomas J; Zhang, Honghai

    2017-09-01

    Endogenous hydrogen sulfide (H2S), mainly synthesized by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH), has been implicated in regulating placental angiogenesis; however, the underlying mechanisms are unknown. This study was to test a hypothesis that trophoblasts synthesize H2S to promote placental angiogenesis. Human choriocarcinoma-derived BeWo cells expressed both CBS and CTH proteins, while the first trimester villous trophoblast-originated HTR-8/SVneo cells expressed CTH protein only. The H2S producing ability of BeWo cells was significantly inhibited by either inhibitors of CBS (carboxymethyl hydroxylamine hemihydrochloride, CHH) or CTH (β-cyano-L-alanine, BCA) and that in HTR-8/SVneo cells was inhibited by CHH only. H2S donors stimulated cell proliferation, migration, and tube formation in ovine placental artery endothelial cells (oFPAECs) as effectively as vascular endothelial growth factor. Co-culture with BeWo and HTR-8/SVneo cells stimulated oFPAEC migration, which was inhibited by CHH or BCA in BeWo but CHH only in HTR-8/SVneo cells. Primary human villous trophoblasts (HVT) were more potent than trophoblast cell lines in stimulating oFPAEC migration that was inhibited by CHH and CHH/BCA combination in accordance with its H2S synthesizing activity linked to CBS and CTH expression patterns. H2S donors activated endothelial nitric oxide synthase (NOS3), v-AKT murine thymoma viral oncogene homolog 1 (AKT1), and extracellular signal-activated kinase 1/2 (mitogen-activated protein kinase 3/1, MAPK3/1) in oFPAECs. H2S donor-induced NOS3 activation was blocked by AKT1 but not MAPK3/1 inhibition. In keeping with our previous studies showing a crucial role of AKT1, MAPK3/1, and NOS3/NO in placental angiogenesis, these data show that trophoblast-derived endogenous H2S stimulates placental angiogenesis, involving activation of AKT1, NOS3/NO, and MAPK3/1. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study

  17. Metoprolol compared to carvedilol deteriorates insulin-stimulated endothelial function in patients with type 2 diabetes - a randomized study

    Directory of Open Access Journals (Sweden)

    Raunsø Jakob

    2010-05-01

    Full Text Available Abstract Aim Studies of beta blockade in patients with type 2 diabetes have shown inferiority of metoprolol treatment compared to carvedilol on indices of insulin resistance. The aim of this study was to examine the effect of metoprolol versus carvedilol on endothelial function and insulin-stimulated endothelial function in patients with type 2 diabetes. Method 24 patients with type 2 diabetes were randomized to receive either 200 mg metoprolol succinate or 50 mg carvedilol daily. Endothelium-dependent vasodilation was assessed by using venous occlusion plethysmography with increasing doses of intra-arterial infusions of the agonist serotonin. Insulin-stimulated endothelial function was assessed after co-infusion of insulin for sixty minutes. Vaso-reactivity studies were done before and after the two-month treatment period. Results Insulin-stimulated endothelial function was deteriorated after treatment with metoprolol, the percentage change in forearm blood-flow was 60.19% ± 17.89 (at the highest serotonin dosages before treatment and -33.80% ± 23.38 after treatment (p = 0.007. Treatment with carvedilol did not change insulin-stimulated endothelial function. Endothelium-dependent vasodilation without insulin was not changed in either of the two treatment groups. Conclusion This study shows that vascular insulin sensitivity was preserved during treatment with carvedilol while blunted during treatment with metoprolol in patients with type 2 diabetes. Trial registration Current Controlled Trials NCT00497003

  18. Citrus Polyphenol Hesperidin Stimulates Production of Nitric Oxide in Endothelial Cells while Improving Endothelial Function and Reducing Inflammatory Markers in Patients with Metabolic Syndrome

    Science.gov (United States)

    Rizza, Stefano; Muniyappa, Ranganath; Iantorno, Micaela; Kim, Jeong-a; Chen, Hui; Pullikotil, Philomena; Senese, Nicoletta; Tesauro, Manfredi; Lauro, Davide; Cardillo, Carmine

    2011-01-01

    Context: Hesperidin, a citrus flavonoid, and its metabolite hesperetin may have vascular actions relevant to their health benefits. Molecular and physiological mechanisms of hesperetin actions are unknown. Objective: We tested whether hesperetin stimulates production of nitric oxide (NO) from vascular endothelium and evaluated endothelial function in subjects with metabolic syndrome on oral hesperidin therapy. Design, Setting, and Interventions: Cellular mechanisms of action of hesperetin were evaluated in bovine aortic endothelial cells (BAEC) in primary culture. A randomized, placebo-controlled, double-blind, crossover trial examined whether oral hesperidin administration (500 mg once daily for 3 wk) improves endothelial function in individuals with metabolic syndrome (n = 24). Main Outcome Measure: We measured the difference in brachial artery flow-mediated dilation between placebo and hesperidin treatment periods. Results: Treatment of BAEC with hesperetin acutely stimulated phosphorylation of Src, Akt, AMP kinase, and endothelial NO synthase to produce NO; this required generation of H2O2. Increased adhesion of monocytes to BAEC and expression of vascular cell adhesion molecule-1 in response to TNF-α treatment was reduced by pretreatment with hesperetin. In the clinical study, when compared with placebo, hesperidin treatment increased flow-mediated dilation (10.26 ± 1.19 vs. 7.78 ± 0.76%; P = 0.02) and reduced concentrations of circulating inflammatory biomarkers (high-sensitivity C-reactive protein, serum amyloid A protein, soluble E-selectin). Conclusions: Novel mechanisms for hesperetin action in endothelial cells inform effects of oral hesperidin treatment to improve endothelial dysfunction and reduce circulating markers of inflammation in our exploratory clinical trial. Hesperetin has vasculoprotective actions that may explain beneficial cardiovascular effects of citrus consumption. PMID:21346065

  19. S-Nitrosylation of Cofilin-1 Mediates Estradiol-17β-Stimulated Endothelial Cytoskeleton Remodeling

    Science.gov (United States)

    Zhang, Hong-hai; Lechuga, Thomas J.; Tith, Tevy; Wang, Wen; Wing, Deborah A.

    2015-01-01

    Rapid nitric oxide (NO) production via endothelial NO synthase (eNOS) activation represents a major signaling pathway for the cardiovascular protective effects of estrogens; however, the pathways after NO biosynthesis that estrogens use to function remain largely unknown. Covalent adduction of a NO moiety to cysteines, termed S-nitrosylation (SNO), has emerged as a key route for NO to directly regulate protein function. Cofilin-1 (CFL1) is a small actin-binding protein essential for actin dynamics and cytoskeleton remodeling. Despite being identified as a major SNO protein in endothelial cells, whether SNO regulates CFL-1 function is unknown. We hypothesized that estradiol-17β (E2β) stimulates SNO of CFL1 via eNOS-derived NO and that E2β-induced SNO-CFL1 mediates cytoskeleton remodeling in endothelial cells. Point mutation studies determined Cys80 as the primary SNO site among the 4 cysteines (Cys39/80/139/147) in CFL1. Substitutions of Cys80 with Ala or Ser were used to prepare the SNO-mimetic/deficient (C80A/S) CFL1 mutants. Recombinant wild-type (wt) and mutant CFL1 proteins were prepared; their actin-severing activity was determined by real-time fluorescence imaging analysis. The activity of C80A CFL1 was enhanced to that of the constitutively active S3/A CFL1, whereas the other mutants had no effects. C80A/S mutations lowered Ser3 phosphorylation. Treatment with E2β increased filamentous (F)-actin and filopodium formation in endothelial cells, which were significantly reduced in cells overexpressing wt-CFL. Overexpression of C80A, but not C80S, CFL1 decreased basal F-actin and further suppressed E2β-induced F-actin and filopodium formation compared with wt-CFL1 overexpression. Thus, SNOCys80 of cofilin-1 via eNOS-derived NO provides a novel pathway for mediating estrogen-induced endothelial cell cytoskeleton remodeling. PMID:25635941

  20. Protein kinase Cα phosphorylates a novel argininosuccinate synthase site at serine 328 during calcium-dependent stimulation of endothelial nitric-oxide synthase in vascular endothelial cells.

    Science.gov (United States)

    Haines, Ricci J; Corbin, Karen D; Pendleton, Laura C; Eichler, Duane C

    2012-07-27

    Endothelial nitric-oxide synthase (eNOS) utilizes l-arginine as its principal substrate, converting it to l-citrulline and nitric oxide (NO). l-Citrulline is recycled to l-arginine by two enzymes, argininosuccinate synthase (AS) and argininosuccinate lyase, providing the substrate arginine for eNOS and NO production in endothelial cells. Together, these three enzymes, eNOS, AS, and argininosuccinate lyase, make up the citrulline-NO cycle. Although AS catalyzes the rate-limiting step in NO production, little is known about the regulation of AS in endothelial cells beyond the level of transcription. In this study, we showed that AS Ser-328 phosphorylation was coordinately regulated with eNOS Ser-1179 phosphorylation when bovine aortic endothelial cells were stimulated by either a calcium ionophore or thapsigargin to produce NO. Furthermore, using in vitro kinase assay, kinase inhibition studies, as well as protein kinase Cα (PKCα) knockdown experiments, we demonstrate that the calcium-dependent phosphorylation of AS Ser-328 is mediated by PKCα. Collectively, these findings suggest that phosphorylation of AS at Ser-328 is regulated in accordance with the calcium-dependent regulation of eNOS under conditions that promote NO production and are in keeping with the rate-limiting role of AS in the citrulline-NO cycle of vascular endothelial cells.

  1. Atrial Natriuretic Peptide Accelerates Human Endothelial Progenitor Cell-Stimulated Cutaneous Wound Healing and Angiogenesis.

    Science.gov (United States)

    Lee, Tae Wook; Kwon, Yang Woo; Park, Gyu Tae; Do, Eun Kyoung; Yoon, Jung Won; Kim, Seung-Chul; Ko, Hyun-Chang; Kim, Moon-Bum; Kim, Jae Ho

    2018-05-26

    Atrial natriuretic peptide (ANP) is a powerful vasodilating peptide secreted by cardiac muscle cells, and endothelial progenitor cells (EPCs) have been reported to stimulate cutaneous wound healing by mediating angiogenesis. To determine whether ANP can promote the EPC-mediated repair of injured tissues, we examined the effects of ANP on the angiogenic properties of EPCs and on cutaneous wound healing. In vitro, ANP treatment enhanced the migration, proliferation, and endothelial tube-forming abilities of EPCs. Furthermore, small interfering RNA-mediated silencing of natriuretic peptide receptor-1, which is a receptor for ANP, abrogated ANP-induced migration, tube formation, and proliferation of EPCs. In a murine cutaneous wound model, administration of either ANP or EPCs had no significant effect on cutaneous wound healing or angiogenesis in vivo, whereas the co-administration of ANP and EPCs synergistically potentiated wound healing and angiogenesis. In addition, ANP promoted the survival and incorporation of transplanted EPCs into newly formed blood vessels in wounds. These results suggest ANP accelerates EPC-mediated cutaneous wound healing by promoting the angiogenic properties and survival of transplanted EPCs. This article is protected by copyright. All rights reserved. © 2018 by the Wound Healing Society.

  2. Metoprolol compared to carvedilol deteriorates insulin-stimulated endothelial function in patients with type 2 diabetes - a randomized study

    DEFF Research Database (Denmark)

    Kveiborg, Britt; Hermann, Thomas S; Major-Pedersen, Atheline

    2010-01-01

    -stimulated endothelial function in patients with type 2 diabetes. METHOD: 24 patients with type 2 diabetes were randomized to receive either 200 mg metoprolol succinate or 50 mg carvedilol daily. Endothelium-dependent vasodilation was assessed by using venous occlusion plethysmography with increasing doses of intra......AIM: Studies of beta blockade in patients with type 2 diabetes have shown inferiority of metoprolol treatment compared to carvedilol on indices of insulin resistance. The aim of this study was to examine the effect of metoprolol versus carvedilol on endothelial function and insulin...... with metoprolol, the percentage change in forearm blood-flow was 60.19% +/- 17.89 (at the highest serotonin dosages) before treatment and -33.80% +/- 23.38 after treatment (p = 0.007). Treatment with carvedilol did not change insulin-stimulated endothelial function. Endothelium-dependent vasodilation without...

  3. Probing the mechanical properties of TNF-α stimulated endothelial cell with atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Sei-Young Lee

    2011-01-01

    Full Text Available Sei-Young Lee1,2, Ana-Maria Zaske3, Tommaso Novellino1,4*, Delia Danila3, Mauro Ferrari1,5*, Jodie Conyers3, Paolo Decuzzi1,6*1Department of Nanomedicine and Biomedical Engineering, The University of Texas Medical School at Houston, Houston, TX, USA; 2Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA; 3CeTIR – Center for Translational Injury Research, The University of Texas Health Science Center at Houston, Houston, TX, USA; 4Department of Biomedical Engineering, Biomedical Campus University of Rome, Italy; 5MD Anderson Cancer Center, Houston, TX, USA; 6BioNEM – Center of Bio-Nanotechnology and Engineering for Medicine, University of Magna Graecia, Catanzaro, Italy; *Currently at Department of Nanomedicine and Biomedical Engineering, The Methodist Hospital Research Institute, Houston, TX, USAAbstract: TNF-α (tumor necrosis factor-α is a potent pro-inflammatory cytokine that regulates the permeability of blood and lymphatic vessels. The plasma concentration of TNF-α is elevated (> 1 pg/mL in several pathologies, including rheumatoid arthritis, atherosclerosis, cancer, pre-eclampsia; in obese individuals; and in trauma patients. To test whether circulating TNF-α could induce similar alterations in different districts along the vascular system, three endothelial cell lines, namely HUVEC, HPMEC, and HCAEC, were characterized in terms of 1 mechanical properties, employing atomic force microscopy; 2 cytoskeletal organization, through fluorescence microscopy; and 3 membrane overexpression of adhesion molecules, employing ELISA and immunostaining. Upon stimulation with TNF-α (10 ng/mL for 20 h, for all three endothelial cells, the mechanical stiffness increased by about 50% with a mean apparent elastic modulus of E ~5 ± 0.5 kPa (~3.3 ± 0.35 kPa for the control cells; the density of F-actin filaments increased in the apical and median planes; and the ICAM-1 receptors were overexpressed compared with

  4. Src Kinase becomes preferentially associated with the VEGFR, KDR/Flk-1, following VEGF stimulation of vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Wang Jing

    2002-12-01

    Full Text Available Abstract Background The cytoplasmic tyrosine kinase, Src, has been found to play a crucial role in VEGF (vascular endothelial growth factor – dependent vascular permeability involved in angiogenesis. The two main VEGFRs present on vascular endothelial cells are KDR/Flk-1 (kinase insert domain-containing receptor/fetal liver kinase-1 and Flt-1 (Fms-like tyrosine kinase-1. However, to date, it has not been determined which VEGF receptor (VEGFR is involved in binding to and activating Src kinase following VEGF stimulation of the receptors. Results In this report, we demonstrate that Src preferentially associates with KDR/Flk-1 rather than Flt-1 in human umbilical vein endothelial cells (HUVECs, and that VEGF stimulation resulted in an increase of Src activity associated with activated KDR/Flk-1. These findings were determined through immunoprecipitation-kinase experiments and coimmunoprecipitation studies, and were further confirmed by GST-pull-down assays and Far Western studies. However, Fyn and Yes, unlike Src, were found to associate preferentially with Flt-1. Conclusions Thus, Src preferentially associates with KDR/Flk-1, rather than with Flt-1, upon VEGF stimulation in endothelial cells. Our findings further highlight the potential significance of upregulated KDR/Flk-1-associated Src activity in the process of angiogenesis, and help to elucidate more clearly the specific roles and mechanisms involving Src family tyrosine kinase in VEGF-stimulated signal transduction events.

  5. Mast Cell Proteases 6 and 7 Stimulate Angiogenesis by Inducing Endothelial Cells to Release Angiogenic Factors.

    Directory of Open Access Journals (Sweden)

    Devandir Antonio de Souza Junior

    Full Text Available Mast cell proteases are thought to be involved with tumor progression and neo-vascularization. However, their exact role is still unclear. The present study was undertaken to further elucidate the function of specific subtypes of recombinant mouse mast cell proteases (rmMCP-6 and 7 in neo-vascularization. SVEC4-10 cells were cultured on Geltrex® with either rmMCP-6 or 7 and tube formation was analyzed by fluorescence microscopy and scanning electron microscopy. Additionally, the capacity of these proteases to induce the release of angiogenic factors and pro and anti-angiogenic proteins was analyzed. Both rmMCP-6 and 7 were able to stimulate tube formation. Scanning electron microscopy showed that incubation with the proteases induced SVEC4-10 cells to invade the gel matrix. However, the expression and activity of metalloproteases were not altered by incubation with the mast cell proteases. Furthermore, rmMCP-6 and rmMCP-7 were able to induce the differential release of angiogenic factors from the SVEC4-10 cells. rmMCP-7 was more efficient in stimulating tube formation and release of angiogenic factors than rmMCP-6. These results suggest that the subtypes of proteases released by mast cells may influence endothelial cells during in vivo neo-vascularization.

  6. Key endothelial cell angiogenic mechanisms are stimulated by the circulating milieu in sickle cell disease and attenuated by hydroxyurea

    Science.gov (United States)

    Lopes, Flavia C. M.; Traina, Fabiola; Almeida, Camila B.; Leonardo, Flavia C.; Franco-Penteado, Carla F.; Garrido, Vanessa T.; Colella, Marina P.; Soares, Raquel; Olalla-Saad, Sara T.; Costa, Fernando F.; Conran, Nicola

    2015-01-01

    As hypoxia-induced inflammatory angiogenesis may contribute to the manifestations of sickle cell disease, we compared the angiogenic molecular profiles of plasma from sickle cell disease individuals and correlated these with in vitro endothelial cell-mediated angiogenesis-stimulating activity and in vivo neovascularization. Bioplex demonstrated that plasma from patients with steady-state sickle cell anemia contained elevated concentrations of pro-angiogenic factors (angiopoietin-1, basic fibroblast growth factor, vascular endothelial growth factor, vascular endothelial growth factor-D and placental growth factor) and displayed potent pro-angiogenic activity, significantly increasing endothelial cell proliferation, migration and capillary-like structure formation. In vivo neovascularization of Matrigel plugs was significantly greater in sickle cell disease mice than in non-sickle cell disease mice, consistent with an up-regulation of angiogenesis in the disease. In plasma from patients with hemoglobin SC disease without proliferative retinopathy, anti-angiogenic endostatin and thrombospondin-2 were significantly elevated. In contrast, plasma from hemoglobin SC individuals with proliferative retinopathy had a pro-angiogenic profile and more significant effects on endothelial cell proliferation and capillary formation than plasma from patients without retinopathy. Hydroxyurea therapy was associated with significant reductions in plasma angiogenic factors and inhibition of endothelial cell-mediated angiogenic mechanisms and neovascularization. Thus, individuals with sickle cell anemia or hemoglobin SC disease with retinopathy present a highly angiogenic circulating milieu, capable of stimulating key endothelial cell-mediated angiogenic mechanisms. Combination anti-angiogenic therapy to prevent the progression of unregulated neovascularization and associated manifestations in sickle cell disease, such as pulmonary hypertension, may be indicated; furthermore, the

  7. Tissue factor-dependent vascular endothelial growth factor production by human fibroblasts in response to activated factor VII.

    Science.gov (United States)

    Ollivier, V; Bentolila, S; Chabbat, J; Hakim, J; de Prost, D

    1998-04-15

    The transmembrane protein tissue factor (TF) is the cell surface receptor for coagulation factor VII (FVII) and activated factor VII (FVIIa). Recently, TF has been identified as a regulator of angiogenesis, tumor growth, and metastasis. This study was designed to link the binding of FVII(a) to its receptor, TF, with the subsequent triggering of angiogenesis through vascular endothelial growth factor (VEGF) production by human lung fibroblasts. We report that incubation of fibroblasts, which express constitutive surface TF, with FVII(a) induces VEGF synthesis. FVII(a)-induced VEGF secretion, assessed by a specific enzyme-linked immunosorbent assay, was time- and concentration-dependent. VEGF secretion was maximal after 24 hours of incubation of the cells with 100 nmol/L FVII(a) and represented a threefold induction of the basal VEGF level. Reverse transcriptase-polymerase chain reaction analysis of VEGF detected three mRNA species of 180, 312, and 384 bp corresponding, respectively, to VEGF121, VEGF165, and VEGF189. A 2.5- to 3.5-fold increase was observed for the 180- and 312-bp transcripts at 12 and 24 hours, respectively. FVII(a)-dependent VEGF production was inhibited by a pool of antibodies against TF, pointing to the involvement of this receptor. On specific active-site inhibition with dansyl-glutamyl-glycinyl-arginyl chloromethyl ketone, FVIIa lost 70% of its capacity to elicit VEGF production. Consistent with this, the native form (zymogen) of FVII only had a 1.8-fold stimulating effect. Protein tyrosine kinase and protein kinase C are involved in signal transduction leading to VEGF production, as shown by the inhibitory effects of genistein and GF 109203X. The results of this study indicate that TF is essential for VIIa-induced VEGF production by human fibroblasts and that its role is mainly linked to the proteolytic activity of the TF-VIIa complex.

  8. Metoprolol compared to carvedilol deteriorates insulin-stimulated endothelial function in patients with type 2 diabetes - a randomized study

    DEFF Research Database (Denmark)

    Kveiborg, Britt; Hermann, Thomas S; Major-Pedersen, Atheline

    2010-01-01

    Studies of beta blockade in patients with type 2 diabetes have shown inferiority of metoprolol treatment compared to carvedilol on indices of insulin resistance. The aim of this study was to examine the effect of metoprolol versus carvedilol on endothelial function and insulin-stimulated endothel......Studies of beta blockade in patients with type 2 diabetes have shown inferiority of metoprolol treatment compared to carvedilol on indices of insulin resistance. The aim of this study was to examine the effect of metoprolol versus carvedilol on endothelial function and insulin...

  9. Vildagliptin Stimulates Endothelial Cell Network Formation and Ischemia-induced Revascularization via an Endothelial Nitric-oxide Synthase-dependent Mechanism*

    Science.gov (United States)

    Ishii, Masakazu; Shibata, Rei; Kondo, Kazuhisa; Kambara, Takahiro; Shimizu, Yuuki; Tanigawa, Tohru; Bando, Yasuko K.; Nishimura, Masahiro; Ouchi, Noriyuki; Murohara, Toyoaki

    2014-01-01

    Dipeptidyl peptidase-4 inhibitors are known to lower glucose levels and are also beneficial in the management of cardiovascular disease. Here, we investigated whether a dipeptidyl peptidase-4 inhibitor, vildagliptin, modulates endothelial cell network formation and revascularization processes in vitro and in vivo. Treatment with vildagliptin enhanced blood flow recovery and capillary density in the ischemic limbs of wild-type mice, with accompanying increases in phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS). In contrast to wild-type mice, treatment with vildagliptin did not improve blood flow in ischemic muscles of eNOS-deficient mice. Treatment with vildagliptin increased the levels of glucagon-like peptide-1 (GLP-1) and adiponectin, which have protective effects on the vasculature. Both vildagliptin and GLP-1 increased the differentiation of cultured human umbilical vein endothelial cells (HUVECs) into vascular-like structures, although vildagliptin was less effective than GLP-1. GLP-1 and vildagliptin also stimulated the phosphorylation of Akt and eNOS in HUVECs. Pretreatment with a PI3 kinase or NOS inhibitor blocked the stimulatory effects of both vildagliptin and GLP-1 on HUVEC differentiation. Furthermore, treatment with vildagliptin only partially increased the limb flow of ischemic muscle in adiponectin-deficient mice in vivo. GLP-1, but not vildagliptin, significantly increased adiponectin expression in differentiated 3T3-L1 adipocytes in vitro. These data indicate that vildagliptin promotes endothelial cell function via eNOS signaling, an effect that may be mediated by both GLP-1-dependent and GLP-1-independent mechanisms. The beneficial activity of GLP-1 for revascularization may also be partially mediated by its ability to increase adiponectin production. PMID:25100725

  10. Vildagliptin stimulates endothelial cell network formation and ischemia-induced revascularization via an endothelial nitric-oxide synthase-dependent mechanism.

    Science.gov (United States)

    Ishii, Masakazu; Shibata, Rei; Kondo, Kazuhisa; Kambara, Takahiro; Shimizu, Yuuki; Tanigawa, Tohru; Bando, Yasuko K; Nishimura, Masahiro; Ouchi, Noriyuki; Murohara, Toyoaki

    2014-09-26

    Dipeptidyl peptidase-4 inhibitors are known to lower glucose levels and are also beneficial in the management of cardiovascular disease. Here, we investigated whether a dipeptidyl peptidase-4 inhibitor, vildagliptin, modulates endothelial cell network formation and revascularization processes in vitro and in vivo. Treatment with vildagliptin enhanced blood flow recovery and capillary density in the ischemic limbs of wild-type mice, with accompanying increases in phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS). In contrast to wild-type mice, treatment with vildagliptin did not improve blood flow in ischemic muscles of eNOS-deficient mice. Treatment with vildagliptin increased the levels of glucagon-like peptide-1 (GLP-1) and adiponectin, which have protective effects on the vasculature. Both vildagliptin and GLP-1 increased the differentiation of cultured human umbilical vein endothelial cells (HUVECs) into vascular-like structures, although vildagliptin was less effective than GLP-1. GLP-1 and vildagliptin also stimulated the phosphorylation of Akt and eNOS in HUVECs. Pretreatment with a PI3 kinase or NOS inhibitor blocked the stimulatory effects of both vildagliptin and GLP-1 on HUVEC differentiation. Furthermore, treatment with vildagliptin only partially increased the limb flow of ischemic muscle in adiponectin-deficient mice in vivo. GLP-1, but not vildagliptin, significantly increased adiponectin expression in differentiated 3T3-L1 adipocytes in vitro. These data indicate that vildagliptin promotes endothelial cell function via eNOS signaling, an effect that may be mediated by both GLP-1-dependent and GLP-1-independent mechanisms. The beneficial activity of GLP-1 for revascularization may also be partially mediated by its ability to increase adiponectin production. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. A Bilayer Construct Controls Adipose-Derived Stem Cell Differentiation into Endothelial Cells and Pericytes without Growth Factor Stimulation

    Science.gov (United States)

    2011-01-01

    A Bilayer Construct Controls Adipose-Derived Stem Cell Differentiation into Endothelial Cells and Pericytes Without Growth Factor Stimulation...Ph.D.3 This work describes the differentiation of adipose-derived mesenchymal stem cells (ASC) in a composite hy- drogel for use as a vascularized...tissue from a single population of ASC. This work underscores the importance of the extracellular matrix in controlling stem cell phenotype. It is our

  12. Evidence for requirement of tyrosine phosphorylation in endothelial P2Y- and P2U- purinoceptor stimulation of prostacyclin release.

    Science.gov (United States)

    Bowden, A.; Patel, V.; Brown, C.; Boarder, M. R.

    1995-01-01

    1. The release of prostacyclin (PGI2) from vascular endothelial cells is stimulated by ATP acting at G protein-coupled P2-purinoceptors. Here we investigate the hypothesis that tyrosine protein phosphorylations are involved in this response. 2. The use of Western blots with anti-phosphotyrosine antibodies showed that 30 microM 2MeSATP (selective for P2Y-purinoceptors), 300 microM UTP (selective for P2U-purinoceptors) and 300 microM ATP (effective at both these purinoceptors), each stimulate the tyrosine phosphorylation of proteins in bovine cultured aortic endothelial cells. Each of these agonists also stimulates 6-keto PGF1 alpha accumulation in the medium (an index of PGI2 release) in these cells in the same period. 3. The tyrosine kinase inhibitor, genistein, inhibits the 6-keto PGF1 alpha response with the same concentration-dependency (1-100 microM) as the tyrosine phosphorylation response. 4. Tyrphostin, a structurally and functionally distinct tyrosine kinase inhibitor, is also a potent inhibitor (0.1-10 microM) of the 6-keto PGF1 alpha response. 5. Neither tyrphostin nor genistein inhibit the phospholipase C response to P2-purinoceptor stimulation. Furthermore, these inhibitors do not affect the 6-keto PGF1 alpha response to ionomycin. 6. These results show that the regulation of vascular endothelial cells by ATP acting at both P2Y- and P2U-purinoceptors involves the stimulation of tyrosine phosphorylation, and suggest that this is a necessary event for the purinoceptor-mediated stimulation of PGI2 production. Images Figure 1 Figure 5 PMID:8590971

  13. Ethanol stimulates tumor progression and expression of vascular endothelial growth factor in chick embryos.

    Science.gov (United States)

    Gu, Jian-Wei; Bailey, Amelia Purser; Sartin, Amanda; Makey, Ian; Brady, Ann L

    2005-01-15

    The mechanisms by which alcohol consumption causes cancer have not been established due to a lack of experimental studies. A chick embryo chorioallantoic membrane (CAM) model that bore human fibrosarcoma (HT1080) was used to determine whether the administration of physiologically relevant doses of ethanol could stimulate tumor growth, angiogenesis, metastasis, and vascular endothelial growth factor (VEGF) expression in tumors. HT1080 cells were inoculated onto the "upper CAM" on Day 8, saline or ethanol was administrated at a dose of 0.25 g/kg per day on the CAM, and the tumors were harvested on Day 17. VEGF mRNA and protein were determined by Northern blot analysis and enzyme-linked immunosorbent assay. Intratumoral vascular volume density (IVVD) was determined by point counting on periodic acid-Schiff-stained sections. Intravasation of HT1080 cells was determined using human-Alu polymerase chain reaction analysis. The effects of ethanol on VEGF expression and cell proliferation were examined in cultured HT1080 cells. Ethanol treatment for 9 days caused a 2.2-fold increase in tumor volume (867 +/- 138 mm(3) vs. 402 +/- 28 mm(3)), a 2.1-fold increase in IVVD (0.021 +/- 0.004 mm(3)/mm(3) vs. 0.010 mm(3)/mm(3) +/- 0.002 mm(3)/mm(3)), and a significant increase in VEGF mRNA or protein expression in tumors compared with a group of control embryos (n = 6 embryos; P 8-fold in the intravasated HT1080 cells in the CAM group compared with the control group (n = 6 embryos; P < 0.01). Physiologically relevant levels of ethanol (10 mM and 20 mM) caused a dose-related increase in VEGF mRNA and protein expression in cultured HT1080 cells. The ethanol-HT1080-conditioned media increased the proliferation of endothelial cells, but not of HT1080 cells. The findings suggest that the induction of angiogenesis and VEGF expression by ethanol represents an important mechanism of cancer progression associated with alcoholic beverage consumption. (c) 2004 American Cancer Society.

  14. Implications of the Endothelial Cell Response in Glioblastoma to Stimulation by Mesenchymal Stem Cells and Ionizing Radiation

    Science.gov (United States)

    Zhao, Tansy Y.

    Heightened angiogenesis is both the pathophysiologic hallmark and the potential cause of therapy resistance for glioblastoma (GBM), a deadly brain tumor. It is thought that mesenchymal stem cells (MSCs) play important roles in neovascularization and tumor progression. We postulated that MSCs protect ECs against radiotherapy, which subsequently enhances tumor angiogenesis, and promotes GBM tumor recurrence following therapy. We therefore sought to establish the in-vitro endothelial cell response to stimulation by MSC condition media and ionizing radiation (IR) treatment. We established the gene expression profiles of endothelial cells in response to IR, MSCs and the combination of both. Within the same gene profiles, we identified a unique gene signature that was highly predictive of response to Bevacizumab for GBM patients. We also demonstrated that MSC increased the viability of ECs in response to IR. Protein analysis in ECs suggested MSC-mediated cell cycle arrest as a mechanism for radio-resistance in ECs.

  15. Suppression of DHT-induced paracrine stimulation of endothelial cell growth by estrogens via prostate cancer cells.

    Science.gov (United States)

    Wen, Juan; Zhao, Yuan; Li, Jinghe; Weng, Chunyan; Cai, Jingjing; Yang, Kan; Yuan, Hong; Imperato-McGinley, Julianne; Zhu, Yuan-Shan

    2013-07-01

    Androgen modulation of angiogenesis in prostate cancer may be not directly mediated by androgen receptor (AR) as AR is not detected in the prostatic endothelial cells. We examined the paracrine stimulation of cell proliferation by prostate tumor cells and its modulation by androgen and estrogens in a murine endothelial cell line (MEC) that does not express AR. Tumor cell conditioned media (TCM) collected from LAPC-4 or LNCaP prostatic tumor cells produced a time- and concentration-dependent induction of cell growth in MECs, which was parallel to the VEGF concentration in the TCM. This TCM-induced cell growth in MECs was enhanced by the treatment of prostatic tumor cells with dihydrotestosterone (DHT). Both the TCM-stimulation and DHT-enhancement effects in MECs were completely blocked by SU5416, a specific VEGF receptor antagonist. Co-administration of 17α-estradiol or 17β-estradiol with DHT in prostatic tumor cells completely inhibited the DHT-enhancement effect while treatment with DHT, 17α-estradiol or 17β-estradiol did not produce any significant direct effect in MECs. Moreover, administration of 17α-estradiol or 17β-estradiol in xenograft animals with LAPC-4 or LNCaP prostate tumor significantly decreased the microvessel number in the tumor tissues. Our study indicated that prostate tumor cells regulate endothelial cell growth through a paracrine mechanism, which is mainly mediated by VEGF; and DHT is able to modulate endothelial cell growth via tumor cells, which is inhibited by 17α-estradiol and 17β-estradiol. Thus, both17α-estradiol and 17β-estradiol are potential agents for anti-angiogenesis therapy in androgen-responsive prostate cancer. Copyright © 2013 Wiley Periodicals, Inc.

  16. Chemical allergens stimulate human epidermal keratinocytes to produce lymphangiogenic vascular endothelial growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Ok-Nam [College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791 (Korea, Republic of); Ahn, Seyeon; Jin, Sun Hee; Hong, Soo Hyun; Lee, Jinyoung [College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Eun-Sun [College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791 (Korea, Republic of); Jeong, Tae Cheon [College of Pharmacy, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Chun, Young-Jin [College of Pharmacy, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Ai-Young, E-mail: leeay@duih.org [Department of Dermatology, Dongguk University Ilsan Hospital, Goyang 410-773 (Korea, Republic of); Noh, Minsoo, E-mail: minsoo@alum.mit.edu [College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2015-03-01

    Allergic contact dermatitis (ACD) is a cell-mediated immune response that involves skin sensitization in response to contact with various allergens. Angiogenesis and lymphangiogenesis both play roles in the allergic sensitization process. Epidermal keratinocytes can produce vascular endothelial growth factor (VEGF) in response to UV irradiation and during wound healing. However, the effect of haptenic chemical allergens on the VEGF production of human keratinocytes, which is the primary contact site of toxic allergens, has not been thoroughly researched. We systematically investigated whether immune-regulatory cytokines and chemical allergens would lead to the production of VEGF in normal human keratinocytes (NHKs) in culture. VEGF production significantly increased when NHKs were treated with IFNγ, IL-1α, IL-4, IL-6, IL-17A, IL-22 or TNFα. Among the human sensitizers listed in the OECD Test Guideline (TG) 429, we found that CMI/MI, DNCB, 4-phenylenediamine, cobalt chloride, 2-mercaptobenzothiazole, citral, HCA, cinnamic alcohol, imidazolidinyl urea and nickel chloride all significantly upregulated VEGF production in NHKs. In addition, common human haptenic allergens such as avobenzone, formaldehyde and urushiol, also induced the keratinocyte-derived VEGF production. VEGF upregulation by pro-inflammatory stimuli, IFNγ, DNCB or formaldehyde is preceded by the production of IL-8, an acute inflammatory phase cytokine. Lymphangiogenic VEGF-C gene transcription was significantly increased when NHKs were treated with formaldehyde, DNCB or urushiol, while transcription of VEGF-A and VEGF-B did not change. Therefore, the chemical allergen-induced VEGF upregulation is mainly due to the increase in lymphangiogenic VEGF-C transcription in NHKs. These results suggest that keratinocyte-derived VEGF may regulate the lymphangiogenic process during the skin sensitization process of ACD. - Highlights: • Pro-inflammatory cytokines induced VEGF production in normal human

  17. Chemical allergens stimulate human epidermal keratinocytes to produce lymphangiogenic vascular endothelial growth factor

    International Nuclear Information System (INIS)

    Bae, Ok-Nam; Ahn, Seyeon; Jin, Sun Hee; Hong, Soo Hyun; Lee, Jinyoung; Kim, Eun-Sun; Jeong, Tae Cheon; Chun, Young-Jin; Lee, Ai-Young; Noh, Minsoo

    2015-01-01

    Allergic contact dermatitis (ACD) is a cell-mediated immune response that involves skin sensitization in response to contact with various allergens. Angiogenesis and lymphangiogenesis both play roles in the allergic sensitization process. Epidermal keratinocytes can produce vascular endothelial growth factor (VEGF) in response to UV irradiation and during wound healing. However, the effect of haptenic chemical allergens on the VEGF production of human keratinocytes, which is the primary contact site of toxic allergens, has not been thoroughly researched. We systematically investigated whether immune-regulatory cytokines and chemical allergens would lead to the production of VEGF in normal human keratinocytes (NHKs) in culture. VEGF production significantly increased when NHKs were treated with IFNγ, IL-1α, IL-4, IL-6, IL-17A, IL-22 or TNFα. Among the human sensitizers listed in the OECD Test Guideline (TG) 429, we found that CMI/MI, DNCB, 4-phenylenediamine, cobalt chloride, 2-mercaptobenzothiazole, citral, HCA, cinnamic alcohol, imidazolidinyl urea and nickel chloride all significantly upregulated VEGF production in NHKs. In addition, common human haptenic allergens such as avobenzone, formaldehyde and urushiol, also induced the keratinocyte-derived VEGF production. VEGF upregulation by pro-inflammatory stimuli, IFNγ, DNCB or formaldehyde is preceded by the production of IL-8, an acute inflammatory phase cytokine. Lymphangiogenic VEGF-C gene transcription was significantly increased when NHKs were treated with formaldehyde, DNCB or urushiol, while transcription of VEGF-A and VEGF-B did not change. Therefore, the chemical allergen-induced VEGF upregulation is mainly due to the increase in lymphangiogenic VEGF-C transcription in NHKs. These results suggest that keratinocyte-derived VEGF may regulate the lymphangiogenic process during the skin sensitization process of ACD. - Highlights: • Pro-inflammatory cytokines induced VEGF production in normal human

  18. Anti-inflammatory evaluation of the methanolic extract of Taraxacum officinale in LPS-stimulated human umbilical vein endothelial cells.

    Science.gov (United States)

    Jeon, Daun; Kim, Seok Joong; Kim, Hong Seok

    2017-11-29

    Atherosclerosis is a chronic vascular inflammatory disease. Since even low-level endotoxemia constitutes a powerful and independent risk factor for the development of atherosclerosis, it is important to find therapies directed against the vascular effects of endotoxin to prevent atherosclerosis. Taraxacum officinale (TO) is used for medicinal purposes because of its choleretic, diuretic, antioxidative, anti-inflammatory, and anti-carcinogenic properties, but its anti-inflammatory effect on endothelial cells has not been established. We evaluated the anti-inflammatory activity of TO filtered methanol extracts in LPS-stimulated human umbilical vein endothelial cells (HUVECs) by monocyte adhesion and western blot assays. HUVECs were pretreated with 100 μg/ml TO for 1 h and then incubated with 1 μg/ml LPS for 24 h. The mRNA and protein expression levels of the targets (pro-inflammatory cytokines and adhesion molecules) were analyzed by real-time PCR and western blot assays. We also preformed HPLC analysis to identify the components of the TO methanol extract. The TO filtered methanol extracts dramatically inhibited LPS-induced endothelial cell-monocyte interactions by reducing vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1, and pro-inflammatory cytokine expression. TO suppressed the LPS-induced nuclear translocation of NF-κB, whereas it did not affect MAPK activation. Our findings demonstrated that methanol extracts of TO could attenuate LPS-induced endothelial cell activation by inhibiting the NF-κB pathway. These results indicate the potential clinical benefits and applications of TO for the prevention of vascular inflammation and atherosclerosis.

  19. α-Naphthoflavone Increases Lipid Accumulation in Mature Adipocytes and Enhances Adipocyte-Stimulated Endothelial Tube Formation

    Directory of Open Access Journals (Sweden)

    Mei-Lin Wang

    2015-04-01

    Full Text Available The aryl hydrocarbon receptor (AhR is a ligand-activated factor that regulates biological effects associated with obesity. The AhR agonists, such as environmental contaminants 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD and β-naphthoflavone (BNF, inhibit preadipocyte differentiation and interfere with the functions of adipose tissue, whereas the antagonist may have opposite or protective effects in obesity. This study investigated the effects of α-naphthoflavone (α-NF, an AhR antagonist, on adipogenesis- and angiogenesis-associated factors in mature adipocytes and on cross-talk of mature adipocytes with endothelial cells (ECs. Besides, the roles of the AhR on lipid accumulation and on secretion of vascular endothelial growth factor were also determined by introducing siRNA of AhR. Differentiated 3T3-L1 cells were treated with α-naphthoflavone (α-NF (1–5 μM for 16 h. Lipid accumulation and the expressions of AhR-associated factors in the cells were determined. The interaction between adipocytes and ECs was investigated by cultivating ECs with conditioned medium (CM from α-NF-treated mature adipocytes, followed by the determination of endothelial tube formation. The results showed that α-NF significantly increased triglyceride (TG accumulation in mature adipocytes, which was associated with increased expression of hormone-sensitive lipase (HSL, estrogen receptor (ER, as well as decreased expression of AhR, AhR nuclear translocator (ARNT, cytochrome P4501B1 (CYP1B1, and nuclear factor erythroid-2-related factor (NRF-2 proteins. In addition, CM stimulated formation of tube-like structures in ECs, and α-NF further enhanced such stimulation in association with modulated the secretions of various angiogenic mediators by mature adipocytes. Similarly, increased TG accumulation and vascular endothelial growth factor (VEGF secretion were observed in AhR-knockout cells. In conclusion, α-NF increased TG accumulation in mature adipocytes and

  20. Pregnancy Augments VEGF-Stimulated In Vitro Angiogenesis and Vasodilator (NO and H2S) Production in Human Uterine Artery Endothelial Cells.

    Science.gov (United States)

    Zhang, Hong-Hai; Chen, Jennifer C; Sheibani, Lili; Lechuga, Thomas J; Chen, Dong-Bao

    2017-07-01

    Augmented uterine artery (UA) production of vasodilators, including nitric oxide (NO) and hydrogen sulfide (H2S), has been implicated in pregnancy-associated and agonist-stimulated rise in uterine blood flow that is rate-limiting to pregnancy health. Developing a human UA endothelial cell (hUAEC) culture model from main UAs of nonpregnant (NP) and pregnant (P) women for testing a hypothesis that pregnancy augments endothelial NO and H2S production and endothelial reactivity to vascular endothelial growth factor (VEGF). Main UAs from NP and P women were used for developing hUAEC culture models. Comparisons were made between NP- and P-hUAECs in in vitro angiogenesis, activation of cell signaling, expression of endothelial NO synthase (eNOS) and H2S-producing enzymes cystathionine β-synthase (CBS) and cystathionine γ-lyase, and NO/H2S production upon VEGF stimulation. NP- and P-hUAECs displayed a typical cobblestone-like shape in culture and acetylated low-density lipoprotein uptake, stained positively for endothelial and negatively for smooth muscle markers, maintained key signaling proteins during passage, and had statistically significant greater eNOS and CBS proteins in P- vs NP-hUAECs. Treatment with VEGF stimulated in vitro angiogenesis and eNOS protein and NO production only in P-hUEACs and more robust cell signaling in P- vs NP-hUAECs. VEGF stimulated CBS protein expression, accounting for VEGF-stimulated H2S production in hUAECs. Comparisons between NP- and P-hUAECs reveal that pregnancy augments VEGF-stimulated in vitro angiogenesis and NO/H2S production in hUAECs, showing that the newly established hUAEC model provides a critical in vitro tool for understanding human uterine hemodynamics. Copyright © 2017 Endocrine Society

  1. Stimulation of phospholipase C in cultured microvascular endothelial cells from human frontal lobe by histamine, endothelin and purinoceptor agonists.

    Science.gov (United States)

    Purkiss, J. R.; West, D.; Wilkes, L. C.; Scott, C.; Yarrow, P.; Wilkinson, G. F.; Boarder, M. R.

    1994-01-01

    1. Cultures of endothelial cells derived from the microvasculature of human frontal lobe have been investigated for phospholipase C (PLC) responses to histamine, endothelins and purinoceptor agonists. 2. Using cells prelabelled with [3H]-inositol and measuring total [3H]-inositol (poly)phosphates, histamine acting at H1 receptors stimulated a substantial response with an EC50 of about 10 microM. 3. Endothelin-1 also gave a clear stimulation of phosphoinositide-specific phospholipase C. Both concentration-response curves and binding curves showed effective responses and binding in the rank order of endothelin-1 > sarafotoxin S6b > endothelin-3, suggesting an ETA receptor. 4. Assay of total [3H]-inositol (poly)phosphates showed no response to the purinoceptor agonists, 2-methylthioadenosine 5'-trisphosphate (2MeSATP), adenosine 5'-O-(3-thiotrisphosphate) (ATP gamma S) or beta,gamma-methylene ATP. Both ATP and UTP gave a small PLC response. 5. Similarly, when formation of [32P]-phosphatidic acid from cells prelabelled with 32Pi was used as an index of both PLC and phospholipase D, a small response to ATP and UTP was seen but there was no response to the other purinoceptor agonists tested. 6. Study by mass assay of stimulation by ATP of inositol (1,4,5) trisphosphate accumulation revealed a transient response in the first few seconds, a decline to basal, followed by a small sustained response. 7. These results show that human brain endothelial cells in culture are responsive to histamine and endothelins in a manner which may regulate brain capillary permeability. Purines exert a lesser influence. PMID:8032588

  2. In vitro study of stimulation effect on endothelialization by a copper bearing cobalt alloy.

    Science.gov (United States)

    Jin, Shujing; Qi, Xun; Wang, Tongmin; Ren, Ling; Yang, Ke; Zhong, Hongshan

    2018-02-01

    Endothelialization is an important process after stenting in coronary artery. Recovery of the injured site timely can reduce the neointima formation and platelet absorbance, leading to a lower risk of in-stent restenosis. Copper is known to be critical in vascular construction. Thus a combination of copper with stent materials is a meaningful attempt. A copper bearing L605-Cu cobalt alloy was prepared and its effect on human umbilical vein endothelial cells (HUVECs) was evaluated in vitro in this study. It was found that HUVECs attached and stretched better on the surface of L605-Cu compared with L605, and the apoptosis of cells was decreased simultaneously. The migration and tube formation of HUVECs were also enhanced by the extract of L605-Cu. Furthermore, L605-Cu increased the mRNA expression of VEGF in HUVECs significantly. However it had no effect on the secretion of NO or mRNA expression of eNOS. The result of blood clotting test indicated that L605-Cu had better blood compatibility. These results above have demonstrated that the L605-Cu alloy is promising to be a new stent material with function of accelerating endothelialization. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 561-569, 2018. © 2017 Wiley Periodicals, Inc.

  3. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response

    Science.gov (United States)

    Sorescu, George P.; Sykes, Michelle; Weiss, Daiana; Platt, Manu O.; Saha, Aniket; Hwang, Jinah; Boyd, Nolan; Boo, Yong C.; Vega, J. David; Taylor, W. Robert; hide

    2003-01-01

    Atherosclerosis is now viewed as an inflammatory disease occurring preferentially in arterial regions exposed to disturbed flow conditions, including oscillatory shear stress (OS), in branched arteries. In contrast, the arterial regions exposed to laminar shear (LS) are relatively lesion-free. The mechanisms underlying the opposite effects of OS and LS on the inflammatory and atherogenic processes are not clearly understood. Here, through DNA microarrays, protein expression, and functional studies, we identify bone morphogenic protein 4 (BMP4) as a mechanosensitive and pro-inflammatory gene product. Exposing endothelial cells to OS increased BMP4 protein expression, whereas LS decreased it. In addition, we found BMP4 expression only in the selective patches of endothelial cells overlying foam cell lesions in human coronary arteries. The same endothelial patches also expressed higher levels of intercellular cell adhesion molecule-1 (ICAM-1) protein compared with those of non-diseased areas. Functionally, we show that OS and BMP4 induced ICAM-1 expression and monocyte adhesion by a NFkappaB-dependent mechanism. We suggest that BMP4 is a mechanosensitive, inflammatory factor playing a critical role in early steps of atherogenesis in the lesion-prone areas.

  4. Enhanced adhesion and proliferation of human umbilical vein endothelial cells on conductive PANI-PCL fiber scaffold by electrical stimulation

    International Nuclear Information System (INIS)

    Li, Yumei; Li, Xiang; Zhao, Rui; Wang, Chuying; Qiu, Fangping; Sun, Bolun; Ji, He; Qiu, Ju; Wang, Ce

    2017-01-01

    Recently, electrically conductive biomaterial scaffolds have shown great potential in tissue regeneration. Herein, we reported an electrically conductive polyaniline (PANI) coated poly(ε-caprolactone) (PCL) electrospun micron-fiber scaffold for the enhanced attachment and proliferation of human umbilical vein endothelial cells (HUVECs) under electrical stimulation conditions. After the O 2 plasma treatment toward PCL electrospun fiber, PANI could be polymerized onto their surfaces successfully. The obtained PANI-PCL fibers were characterized by SEM observations, FT-IR spectra, XPS analysis, and water contact angle measurement. The mechanical tests indicated that the fibers could satisfy the practical vascular scaffold requirements. The conductivity of the PANI-PCL fibers was 6.71 × 10 −3 S/cm which could provide a conductive in-vitro platform to study the effect of electrical stimulation on HUVECs proliferation. When PANI-coated PCL fibers were compared with PCL fibers, HUVECs exhibited highly enhanced adhesion and viability, especially under electrical stimulation (ES) of 200, 300, and 400 mV/cm. Proliferation of HUVECs on PANI-PCL fibers was strongly dependent on electrical stimulation intensity. The results showed new insights into conductive scaffolds for vascular tissue engineering. - Highlights: • Electrospun PCL fibers were subjected to an O 2 plasma treatment to improve the hydrophilicity. • PANI was coated onto the surface of PCL fibers successfully after the plasma treatment. • HUVECs could attach, spread, and survive better on PANI-PCL fibers than on pure PCL fibers. • Electrical stimulation benefited proliferation of HUVECs on conductive PANI-PCL scaffold.

  5. Enhanced adhesion and proliferation of human umbilical vein endothelial cells on conductive PANI-PCL fiber scaffold by electrical stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yumei [Alan G. MacDiarmid Institute, Jilin University, Changchun 130012 (China); Department of Clinical Pharmacy and Traditional Chinese Medicine Pharmacology, School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117 (China); Li, Xiang; Zhao, Rui [Alan G. MacDiarmid Institute, Jilin University, Changchun 130012 (China); Wang, Chuying [Department of Clinical Pharmacy and Traditional Chinese Medicine Pharmacology, School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117 (China); Qiu, Fangping, E-mail: qfp2004@126.com [Chemistry and Biology Science College, Changchun University of Technology, Changchun 130012 (China); Sun, Bolun; Ji, He; Qiu, Ju [Alan G. MacDiarmid Institute, Jilin University, Changchun 130012 (China); Wang, Ce, E-mail: cwang@jlu.edu.cn [Alan G. MacDiarmid Institute, Jilin University, Changchun 130012 (China)

    2017-03-01

    Recently, electrically conductive biomaterial scaffolds have shown great potential in tissue regeneration. Herein, we reported an electrically conductive polyaniline (PANI) coated poly(ε-caprolactone) (PCL) electrospun micron-fiber scaffold for the enhanced attachment and proliferation of human umbilical vein endothelial cells (HUVECs) under electrical stimulation conditions. After the O{sub 2} plasma treatment toward PCL electrospun fiber, PANI could be polymerized onto their surfaces successfully. The obtained PANI-PCL fibers were characterized by SEM observations, FT-IR spectra, XPS analysis, and water contact angle measurement. The mechanical tests indicated that the fibers could satisfy the practical vascular scaffold requirements. The conductivity of the PANI-PCL fibers was 6.71 × 10{sup −3} S/cm which could provide a conductive in-vitro platform to study the effect of electrical stimulation on HUVECs proliferation. When PANI-coated PCL fibers were compared with PCL fibers, HUVECs exhibited highly enhanced adhesion and viability, especially under electrical stimulation (ES) of 200, 300, and 400 mV/cm. Proliferation of HUVECs on PANI-PCL fibers was strongly dependent on electrical stimulation intensity. The results showed new insights into conductive scaffolds for vascular tissue engineering. - Highlights: • Electrospun PCL fibers were subjected to an O{sub 2} plasma treatment to improve the hydrophilicity. • PANI was coated onto the surface of PCL fibers successfully after the plasma treatment. • HUVECs could attach, spread, and survive better on PANI-PCL fibers than on pure PCL fibers. • Electrical stimulation benefited proliferation of HUVECs on conductive PANI-PCL scaffold.

  6. Tissue expander stimulated lengthening of arteries (TESLA) induces early endothelial cell proliferation in a novel rodent model.

    Science.gov (United States)

    Potanos, Kristina; Fullington, Nora; Cauley, Ryan; Purcell, Patricia; Zurakowski, David; Fishman, Steven; Vakili, Khashayar; Kim, Heung Bae

    2016-04-01

    We examine the mechanism of aortic lengthening in a novel rodent model of tissue expander stimulated lengthening of arteries (TESLA). A rat model of TESLA was examined with a single stretch stimulus applied at the time of tissue expander insertion with evaluation of the aorta at 2, 4 and 7day time points. Measurements as well as histology and proliferation assays were performed and compared to sham controls. The aortic length was increased at all time points without histologic signs of tissue injury. Nuclear density remained unchanged despite the increase in length suggesting cellular hyperplasia. Cellular proliferation was confirmed in endothelial cell layer by Ki-67 stain. Aortic lengthening may be achieved using TESLA. The increase in aortic length can be achieved without tissue injury and results at least partially from cellular hyperplasia. Further studies are required to define the mechanisms involved in the growth of arteries under increased longitudinal stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. iTRAQ quantitative proteomics-based identification of cell adhesion as a dominant phenotypic modulation in thrombin-stimulated human aortic endothelial cells.

    Science.gov (United States)

    Wang, Huang-Joe; Chen, Sung-Fang; Lo, Wan-Yu

    2015-05-01

    The phenotypic changes in thrombin-stimulated endothelial cells include alterations in permeability, cell shape, vasomotor tone, leukocyte trafficking, migration, proliferation, and angiogenesis. Previous studies regarding the pleotropic effects of thrombin on the endothelium used human umbilical vein endothelial cells (HUVECs)-cells derived from fetal tissue that does not exist in adults. Only a few groups have used screening approaches such as microarrays to profile the global effects of thrombin on endothelial cells. Moreover, the proteomic changes of thrombin-stimulated human aortic endothelial cells (HAECs) have not been elucidated. HAECs were stimulated with 2 units/mL thrombin for 5h and their proteome was investigated using isobaric tags for the relative and absolute quantification (iTRAQ) and the MetaCore(TM) software. A total of 627 (experiment A) and 622 proteins (experiment B) were quantified in the duplicated iTRAQ analyses. MetaCore(TM) pathway analysis identified cell adhesion as a dominant phenotype in thrombin-stimulated HAECs. Replicated iTRAQ data revealed that "Cell adhesion_Chemokines and adhesion," "Cell adhesion_Histamine H1 receptor signaling in the interruption of cell barrier integrity," and "Cell adhesion_Integrin-mediated cell adhesion and migration" were among the top 10 statistically significant pathways. The cell adhesion phenotype was verified by increased THP-1 adhesion to thrombin-stimulated HAECs. In addition, the expression of ICAM-1, VCAM-1, and SELE was significantly upregulated in thrombin-stimulated HAECs. Several regulatory pathways are altered in thrombin-stimulated HAECs, with cell adhesion being the dominant altered phenotype. Our findings show the feasibility of the iTRAQ technique for evaluating cellular responses to acute stimulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Alteration of protein expression pattern of vascular endothelial growth factor (VEGF) from soluble to cell-associated isoform during tumourigenesis

    International Nuclear Information System (INIS)

    Cressey, Ratchada; Wattananupong, Onusa; Lertprasertsuke, Nirush; Vinitketkumnuen, Usanee

    2005-01-01

    Vascular endothelial growth factor (VEGF) is a potent mitogen for endothelial cells, and its expression has been correlated with increased tumour angiogenesis. Although numerous publications dealing with the measurement of circulating VEGF for diagnostic and therapeutic monitoring have been published, the relationship between the production of tissue VEGF and its concentration in blood is still unclear. The aims of this study were to determine: 1) The expression pattern of VEGF isoforms at the protein level in colorectal and lung adenocarcinoma in comparison to the pattern in corresponding adjacent normal tissues 2) The relationship between the expression pattern of VEGF and total level of circulating VEGF in the blood to clarify whether the results of measuring circulating VEGF can be used to predict VEGF expression in tumour tissues. Ninety-four tissue samples were obtained from patients, 76 colorectal tumour tissues and 18 lung tumour tissues. VEGF protein expression pattern and total circulating VEGF were examined using western blot and capture ELISA, respectively. Three major protein bands were predominately detected in tumour samples with an apparent molecular mass under reducing conditions of 18, 23 and 26 kDa. The 18 kDa VEGF protein was expressed equally in both normal and colorectal tumour tissues and predominately expressed in normal tissues of lung, whereas the 23 and 26 kDa protein was only detected at higher levels in tumour tissues. The 18, 23 and 26 kDa proteins are believed to represent the VEGF 121 , the VEGF 165 and the VEGF 189 , respectively. There was a significant correlation of the expression of VEGF 165 with a smaller tumour size maximum diameter <5 cm (p < 0.05), and there was a significant correlation of VEGF 189 with advanced clinical stage of colorectal tumours. The measurement of total circulating VEGF in serum revealed that cancer patients significantly (p < 0.001) possessed a higher level of circulating VEGF (1081 ± 652 pg/ml in

  9. Platelet lysate gel and endothelial progenitors stimulate microvascular network formation in vitro: tissue engineering implications.

    Science.gov (United States)

    Fortunato, Tiago M; Beltrami, Cristina; Emanueli, Costanza; De Bank, Paul A; Pula, Giordano

    2016-05-04

    Revascularisation is a key step for tissue regeneration and complete organ engineering. We describe the generation of human platelet lysate gel (hPLG), an extracellular matrix preparation from human platelets able to support the proliferation of endothelial colony forming cells (ECFCs) in 2D cultures and the formation of a complete microvascular network in vitro in 3D cultures. Existing extracellular matrix preparations require addition of high concentrations of recombinant growth factors and allow only limited formation of capillary-like structures. Additional advantages of our approach over existing extracellular matrices are the absence of any animal product in the composition hPLG and the possibility of obtaining hPLG from patients to generate homologous scaffolds for re-implantation. This discovery has the potential to accelerate the development of regenerative medicine applications based on implantation of microvascular networks expanded ex vivo or the generation of fully vascularised organs.

  10. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions

    International Nuclear Information System (INIS)

    Chen, Sisi; Yang, Qingbo; Brow, Richard K.; Liu, Kun; Brow, Katherine A.; Ma, Yinfa

    2017-01-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. - Highlights: • Novel dynamic flow cell culture modules were designed. • Bioactive glass fibers were evaluated for their effects on VEGF secretion. • Borate-based glass fibers stimulate VEGF secretion under dynamic condition. • CuO and ZnO doped borate-based glass fibers stimulate the greatest VEGF release.

  11. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Sisi [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Yang, Qingbo [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Brow, Richard K. [Department of Material Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Liu, Kun [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Brow, Katherine A. [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Ma, Yinfa [Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring, Missouri University of Science and Technology, Rolla, MO 65409 (United States); and others

    2017-04-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. - Highlights: • Novel dynamic flow cell culture modules were designed. • Bioactive glass fibers were evaluated for their effects on VEGF secretion. • Borate-based glass fibers stimulate VEGF secretion under dynamic condition. • CuO and ZnO doped borate-based glass fibers stimulate the greatest VEGF release.

  12. Lymphocyte adhesion to endothelial cell (EC) is stimulated by phorbol esters

    International Nuclear Information System (INIS)

    Haskard, D.; Cavender, D.; Ziff, M.

    1986-01-01

    The effect of phorbol esters on T cell adhesion to EC has been studied. The phorbol esters 12-0-tetradecanoyl-phorbol-13-acetate and 4-beta-phorbol-12-13-dibutyrate, but not the biologically inert 4-0-methyl-phorbol-12-13-didecanoate strongly increased the binding of 51 Cr-labeled T cells to human umbilical vein EC monolayers in microtiter wells. Increase in binding was observed at 0.3 ng/ml with maximal enhancement at 50 ng/ml. Both unstimulated and phorbol ester activated T cells displayed a substantially greater binding affinity for EC than for fibroblasts or plastic. Binding enhancement occurred within one minute, with maximal increase after 15 min. Preincubation studies showed that binding enhancement was entirely attributable to an effect on T cells, with no action on EC. Additive binding enhancement was seen when phorbol esters and reagents that increase adhesion by actions on EC (LPS, IL-1 and IFN-γ) were used together. Increase in adhesion of activated T lymphocytes to EC may explain the greater emigration of activated T cells than small resting T cells into inflammatory foci in vivo. The rapid onset of the phorbol effect suggests that this may be an important mechanism for immediate localization of circulating T cells in the cellular immune response, activated, perhaps, at the endothelial blood-tissue interface

  13. Vascular endothelial cells mediate mechanical stimulation-induced enhancement of endothelin hyperalgesia via activation of P2X2/3 receptors on nociceptors.

    Science.gov (United States)

    Joseph, Elizabeth K; Green, Paul G; Bogen, Oliver; Alvarez, Pedro; Levine, Jon D

    2013-02-13

    Endothelin-1 (ET-1) is unique among a broad range of hyperalgesic agents in that it induces hyperalgesia in rats that is markedly enhanced by repeated mechanical stimulation at the site of administration. Antagonists to the ET-1 receptors, ET(A) and ET(B), attenuated both initial as well as stimulation-induced enhancement of hyperalgesia (SIEH) by endothelin. However, administering antisense oligodeoxynucleotide to attenuate ET(A) receptor expression on nociceptors attenuated ET-1 hyperalgesia but had no effect on SIEH, suggesting that this is mediated via a non-neuronal cell. Because vascular endothelial cells are both stretch sensitive and express ET(A) and ET(B) receptors, we tested the hypothesis that SIEH is dependent on endothelial cells by impairing vascular endothelial function with octoxynol-9 administration; this procedure eliminated SIEH without attenuating ET-1 hyperalgesia. A role for protein kinase Cε (PKCε), a second messenger implicated in the induction and maintenance of chronic pain, was explored. Intrathecal antisense for PKCε did not inhibit either ET-1 hyperalgesia or SIEH, suggesting no role for neuronal PKCε; however, administration of a PKCε inhibitor at the site of testing selectively attenuated SIEH. Compatible with endothelial cells releasing ATP in response to mechanical stimulation, P2X(2/3) receptor antagonists eliminated SIEH. The endothelium also appears to contribute to hyperalgesia in two ergonomic pain models (eccentric exercise and hindlimb vibration) and in a model of endometriosis. We propose that SIEH is produced by an effect of ET-1 on vascular endothelial cells, sensitizing its release of ATP in response to mechanical stimulation; ATP in turn acts at the nociceptor P2X(2/3) receptor.

  14. Vascular Endothelial Growth Factor from Embryonic Status to Cardiovascular Pathology

    Directory of Open Access Journals (Sweden)

    Mohsen Azimi-Nezhad

    2014-05-01

    Full Text Available Vascular endothelial growth factor (VEGF is a multifunctional cytokine with distinct functions in angiogenesis, lymphangiogenesis, vascular permeability, and hematopoiesis. VEGF is a highly conserved, disulfide-bonded dimeric glycoprotein of 34 to 45 kDa produced by several cell types including fibroblasts, neutrophils, endothelial cells, and peripheral blood mononuclear cells, particularly T lymphocytes and macrophages. Six VEGF isoforms are generated as a result of alternative splicing from a single VEGF gene, consisting of 121, 145, 165, 183, 189, or 206 amino acids. VEGF121, VEGF145, and VEGF165 are secreted whereas VEGF183, VEGF189, and VEGF206 are cell membrane-bound. VEGF145 has a key role during the vascularization of the human ovarian follicle and corpus luteum, in the placentation and embryonic periods, and in bone and wound healing, while VEGF165 is the most abundant and biologically active isoform. VEGF has been linked with a number of vascular pathologies including cardiovascular diseases such ischemic heart disease, heart failure, stroke, and diabetes and its related complications. In this review we aimed to present some important roles of VEGF in a number of clinical issues and indicate its involvement in several phenomena from the initial steps of the embryonic period to cardiovascular diseases.

  15. Chemical allergens stimulate human epidermal keratinocytes to produce lymphangiogenic vascular endothelial growth factor.

    Science.gov (United States)

    Bae, Ok-Nam; Ahn, Seyeon; Jin, Sun Hee; Hong, Soo Hyun; Lee, Jinyoung; Kim, Eun-Sun; Jeong, Tae Cheon; Chun, Young-Jin; Lee, Ai-Young; Noh, Minsoo

    2015-03-01

    Allergic contact dermatitis (ACD) is a cell-mediated immune response that involves skin sensitization in response to contact with various allergens. Angiogenesis and lymphangiogenesis both play roles in the allergic sensitization process. Epidermal keratinocytes can produce vascular endothelial growth factor (VEGF) in response to UV irradiation and during wound healing. However, the effect of haptenic chemical allergens on the VEGF production of human keratinocytes, which is the primary contact site of toxic allergens, has not been thoroughly researched. We systematically investigated whether immune-regulatory cytokines and chemical allergens would lead to the production of VEGF in normal human keratinocytes (NHKs) in culture. VEGF production significantly increased when NHKs were treated with IFNγ, IL-1α, IL-4, IL-6, IL-17A, IL-22 or TNFα. Among the human sensitizers listed in the OECD Test Guideline (TG) 429, we found that CMI/MI, DNCB, 4-phenylenediamine, cobalt chloride, 2-mercaptobenzothiazole, citral, HCA, cinnamic alcohol, imidazolidinyl urea and nickel chloride all significantly upregulated VEGF production in NHKs. In addition, common human haptenic allergens such as avobenzone, formaldehyde and urushiol, also induced the keratinocyte-derived VEGF production. VEGF upregulation by pro-inflammatory stimuli, IFNγ, DNCB or formaldehyde is preceded by the production of IL-8, an acute inflammatory phase cytokine. Lymphangiogenic VEGF-C gene transcription was significantly increased when NHKs were treated with formaldehyde, DNCB or urushiol, while transcription of VEGF-A and VEGF-B did not change. Therefore, the chemical allergen-induced VEGF upregulation is mainly due to the increase in lymphangiogenic VEGF-C transcription in NHKs. These results suggest that keratinocyte-derived VEGF may regulate the lymphangiogenic process during the skin sensitization process of ACD. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Influence of vascular endothelial growth factor stimulation and serum deprivation on gene activation patterns of human adipose tissue-derived stromal cells

    DEFF Research Database (Denmark)

    Tratwal, Josefine; Mathiasen, Anders Bruun; Juhl, Morten

    2015-01-01

    INTRODUCTION: Stimulation of mesenchymal stromal cells and adipose tissue-derived stromal cells (ASCs) with vascular endothelial growth factor (VEGF) has been used in multiple animal studies and clinical trials for regenerative purposes. VEGF stimulation is believed to promote angiogenesis and VEGF...... stimulation is usually performed under serum deprivation. Potential regenerative molecular mechanisms are numerous and the role of contributing factors is uncertain. The aim of the current study was to investigate the effect of in vitro serum deprivation and VEGF stimulation on gene expression patterns...... of ASCs. METHODS: Gene expressions of ASCs cultured in complete medium, ASCs cultured in serum-deprived medium and ASCs stimulated with VEGF in serum-deprived medium were compared. ASC characteristics according to criteria set by the International Society of Cellular Therapy were confirmed by flow...

  17. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions.

    Science.gov (United States)

    Chen, Sisi; Yang, Qingbo; Brow, Richard K; Liu, Kun; Brow, Katherine A; Ma, Yinfa; Shi, Honglan

    2017-04-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Putative outer membrane proteins of Leptospira interrogans stimulate human umbilical vein endothelial cells (HUVECS) and express during infection.

    Science.gov (United States)

    Gómez, Ricardo M; Vieira, Monica L; Schattner, Mirta; Malaver, Elisa; Watanabe, Monica M; Barbosa, Angela S; Abreu, Patricia A E; de Morais, Zenaide M; Cifuente, Javier O; Atzingen, Marina V; Oliveira, Tatiane R; Vasconcellos, Silvio A; Nascimento, Ana L T O

    2008-01-01

    Cell adhesion molecules (CAMs) are surface receptors present in eukaryotic cells that mediate cell-cell or cell-extracellular matrix interactions. Vascular endothelium stimulation in vitro that lead to the upregulation of CAMs was reported for the pathogenic spirochaetes, including rLIC10365 of Leptospira interrogans. In this study, we report the cloning of LIC10507, LIC10508, LIC10509 genes of L. interrogans using Escherichia coli as a host system. The rational for selecting these sequences is due to their location in L. interrogans serovar Copenhageni genome that has a potential involvement in pathogenesis. The genes encode for predicted lipoproteins with no assigned functions. The purified recombinant proteins were capable to promote the upregulation of intercellular adhesion molecule 1 (ICAM-1) and E-selectin on monolayers of human umbilical vein endothelial cells (HUVECS). In addition, the coding sequences are expressed in the renal tubules of animal during bacterial experimental infection. The proteins are probably located at the outer membrane of the bacteria since they are detected in detergent-phase of L. interrogans Triton X-114 extract. Altogether our data suggest a possible involvement of these proteins during bacterial infection and provide new insights into the role of this region in the pathogenesis of Leptospira.

  19. Proinflammatory Stimulation of Toll-Like Receptor 9 with High Dose CpG ODN 1826 Impairs Endothelial Regeneration and Promotes Atherosclerosis in Mice.

    Directory of Open Access Journals (Sweden)

    Alexander O Krogmann

    Full Text Available Toll-like receptors (TLR of the innate immune system have been closely linked with the development of atherosclerotic lesions. TLR9 is activated by unmethylated CpG motifs within ssDNA, but also by CpG motifs in nucleic acids released during vascular apoptosis and necrosis. The role of TLR9 in vascular disease remains controversial and we sought to investigate the effects of a proinflammatory TLR9 stimulation in mice.TLR9-stimulation with high dose CpG ODN at concentrations between 6.25 nM to 30 nM induced a significant proinflammatory cytokine response in mice. This was associated with impaired reendothelialization upon acute denudation of the carotid and increased numbers of circulating endothelial microparticles, as a marker for amplified endothelial damage. Chronic TLR9 agonism in apolipoprotein E-deficient (ApoE-/- mice fed a cholesterol-rich diet increased aortic production of reactive oxygen species, the number of circulating endothelial microparticles, circulating sca-1/flk-1 positive cells, and most importantly augmented atherosclerotic plaque formation when compared to vehicle treated animals. Importantly, high concentrations of CpG ODN are required for these proatherogenic effects.Systemic stimulation of TLR9 with high dose CpG ODN impaired reendothelialization upon acute vascular injury and increased atherosclerotic plaque development in ApoE-/- mice. Further studies are necessary to fully decipher the contradictory finding of TLR9 agonism in vascular biology.

  20. Extracellular S100A4(mts1) stimulates invasive growth of mouse endothelial cells and modulates MMP-13 matrix metalloproteinase activity

    DEFF Research Database (Denmark)

    Schmidt-Hansen, Birgitte; Ornås, Dorte; Grigorian, Mariam

    2004-01-01

    with the transcriptional modulation of genes involved in the proteolytic degradation of extracellular matrix (ECM). Treatment of SVEC 4-10 with the S100A4 protein leads to the transcriptional activation of collagenase 3 (MMP-13) mRNA followed by subsequent release of the protein from the cells. Beta-casein zymography...... demonstrates enhancement of proteolytic activity associated with MMP-13. This observation indicates that extracellular S100A4 stimulates the production of ECM degrading enzymes from endothelial cells, thereby stimulating the remodeling of ECM. This could explain the angiogenic and metastasis...

  1. Phosphorylation and activation of p42 and p44 mitogen-activated protein kinase are required for the P2 purinoceptor stimulation of endothelial prostacyclin production.

    Science.gov (United States)

    Patel, V; Brown, C; Goodwin, A; Wilkie, N; Boarder, M R

    1996-11-15

    Extracellular ATP and ADP, released from platelets and other sites stimulate the endothelial production of prostacyclin (PGI2) by acting on G-protein-coupled P2Y2 and P2Y2 purinoceptors, contributing to the maintenance of a non-thrombogenic surface. The mechanism, widely described as being dependent on elevated cytosolic [Ca2+], also requires protein tyrosine phosphorylation. Here we show that activation of both these P2 receptor types leads to the tyrosine phosphorylation and activation of both the p42 and p44 forms of mitogen-activated protein kinase (MAPK). 2-Methylthio-ATP and UTP, selectively activating P2Y1 and P2Y2 purinoceptors respectively, and ATP, a non-selective agonist at these two receptors, stimulate the tyrosine phosphorylation of both p42mapk and p44mapk, as revealed by Western blots with an antiserum specific for the tyrosine-phosphorylated forms of the enzymes. By using separation on Resource Q columns, peptide kinase activity associated with the phosphorylated MAPK enzymes distributes into two peaks, one mainly p42mapk and one mainly p44mapk, both of which are stimulated by ATP with respect to kinase activity and phospho-MAPK immunoreactivity. Stimulation of P2Y1 or P2Y2 purinoceptors leads to a severalfold increase in PGI2 efflux; this was blocked in a dose-dependent manner by the selective MAPK kinase inhibitor PD98059. This drug also blocked the agonist-stimulated increase in phospho-MAPK immunoreactivity for both p42mapk and p44mapk but left the phospholipase C response to P2 agonists essentially unchanged. Olomoucine has been reported to inhibit p44mapk activity. Here we show that in the same concentration range olomoucine inhibits activity in both peaks from the Resource Q column and also the agonist stimulation of 6-keto-PGF1, but has no effect on agonist-stimulated phospho-MAPK immunoreactivity. These results provide direct evidence for the involvement of p42 and p44 MAPK in the PGI2 response of intact endothelial cells: we have shown

  2. Defibrotide Stimulates Angiogenesis and Protects Endothelial Cells from Calcineurin Inhibitor-Induced Apoptosis via Upregulation of AKT/Bcl-xL.

    Science.gov (United States)

    Wang, Xiangmin; Pan, Bin; Hashimoto, Yuko; Ohkawara, Hiroshi; Xu, Kailin; Zeng, Lingyu; Ikezoe, Takayuki

    2018-01-01

    Sinusoidal obstruction syndrome is a life-threatening complication that can occur after haematopoietic stem cell transplantation. Defibrotide (DF) has been approved for the treatment of individuals with severe sinusoidal obstruction syndrome following haematopoietic stem cell transplantation in the European Union and the United States. However, the precise mechanisms by which DF protects endothelial cells remain to be elucidated. In this study, we found that DF stimulated angiogenesis in vitro and in vivo as assessed by vascular tube formation, scratch-wound repair and Matrigel plug assays. These effects were associated with an activation of pro-survival signalling pathways, including AKT (protein kinase B), ERK (extracellular signal-regulated kinases) and p38. More importantly, DF alleviated calcineurin inhibitor-induced growth inhibition and apoptosis of human umbilical vein endothelial cells and human hepatic sinusoidal endothelial cells in parallel with upregulation of anti-apoptotic protein B-cell lymphoma-extra-large (Bcl-xL), which was mediated by AKT (protein kinase B). Notably, these effects were abrogated when Bcl-xL was depleted by small interfering RNA (ribonucleic acid). In addition, DF counteracted calcineurin inhibitor-induced activation of nuclear factor-κB and Janus kinase 2 (JAK2)/Signal Transducer and Activator of Transcription 3 (STAT3) signalling and production of cytokines in vascular endothelial cell-derived EA.hy926 cells. Taken together, DF has pro-angiogenic, anti-apoptotic and anti-inflammatory effects on endothelial cells. DF is a potentially useful agent to prevent the development of, and treat individuals with, endothelial cell injury-related complications after haematopoietic stem cell transplantation. Schattauer GmbH Stuttgart.

  3. M3 receptor is involved in the effect of penehyclidine hydrochloride reduced endothelial injury in LPS-stimulated human pulmonary microvascular endothelial cell.

    Science.gov (United States)

    Yuan, Qinghong; Xiao, Fei; Liu, Qiangsheng; Zheng, Fei; Shen, Shiwen; He, Qianwen; Chen, Kai; Wang, Yanlin; Zhang, Zongze; Zhan, Jia

    2018-02-01

    LPS has been recently shown to induce muscarinic acetylcholine 3 receptor (M 3 receptor) expression and penehyclidine hydrochloride (PHC) is an anticholinergic drug which could block the expression of M 3 receptor. PHC has been demonstrated to perform protective effect on cell injury. This study is to investigate whether the effect of PHC on microvascular endothelial injury is related to its inhibition of M 3 receptor or not. HPMVECs were treated with specific M 3 receptor shRNA or PBS, and randomly divided into LPS group (A group), LPS+PHC group (B group), LPS + M 3 shRNA group (C group) and LPS + PHC + M 3 shRNA group (D group). Cells were collected at 60 min after LPS treatment to measure levels of LDH, endothelial permeability, TNF-α and IL-6 levels, NF-κB p65 activation, I-κB protein expression, p38MAPK, and ERK1/2 activations as well as M 3 mRNA expression. PHC could decrease LDH levels, cell permeability, TNF-α and IL-6 levels, p38 MAPK, ERK1/2, NF-κB p65 activations and M 3 mRNA expressions compared with LPS group. When M 3 receptor was silence, the changes of these indices were much more obvious. These findings suggest that M 3 receptor plays an important role in LPS-induced pulmonary microvascular endothelial injury, which is regulated through NF-κB p65 and MAPK activation. And knockout of M 3 receptor could attenuate LPS-induced pulmonary microvascular endothelial injury. Regulative effects of PHC on pulmonary microvascular permeability and NF-κB p65 as well as MAPK activations are including but not limited to inhibition of M 3 receptor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Allergen-stimulated T lymphocytes from allergic patients induce vascular cell adhesion molecule-1 (VCAM-1) expression and IL-6 production by endothelial cells.

    Science.gov (United States)

    Delneste, Y; Jeannin, P; Gosset, P; Lassalle, P; Cardot, E; Tillie-Leblond, I; Joseph, M; Pestel, J; Tonnel, A B

    1995-01-01

    Adhesion of inflammatory cells to endothelium is a critical step for their transvascular migration to inflammatory sites. To evaluate the relationship between T lymphocytes (TL) and vascular endothelium, supernatants from allergen-stimulated TL obtained from patients sensitive to Dermatophagoides pteronyssinus (Dpt) versus healthy subjects were added to endothelial cell (EC) cultures. TL were stimulated by autologous-activated antigen-presenting cells (APC) previously fixed in paraformaldehyde to prevent monokine secretion. Two parameters were measured: the expression of adhesion molecule and the production of IL-6. Related allergen-stimulated TL supernatants from allergic patients induced an increase of VCAM-1 and intercellular adhesion molecule-1 (ICAM-1) expression when supernatants of the control groups (TL exposed to an unrelated allergen or not stimulated or TL obtained from healthy subjects) did not. E-selectin expression was not modulated whatever the supernatant added to EC culture. IL-6 production by EC was significantly enhanced after activation with related allergen-stimulated TL supernatants from allergics compared with control supernatants. Induction of VCAM-1 expression was inhibited by adding neutralizing antibodies against IL-4, whereas IL-6 production and ICAM-1 expression were inhibited by anti-interferon-gamma (IFN-gamma) antibodies. Enhanced production of IL-4 and IFN-gamma was detected in related allergen-stimulated TL supernatants from allergic subjects compared with the different supernatants. These data suggest that allergen-specific TL present in the peripheral blood of allergic patients are of Th1 and Th2 subtypes. Their stimulation in allergic patients may lead to the activation of endothelial cells and thereby participate in leucocyte recruitment towards the inflammatory site. PMID:7542574

  5. Combination of nitric oxide stimulation with high-dose 18F-FDG promotes apoptosis and enhances radiation therapy of endothelial cells

    International Nuclear Information System (INIS)

    Paik, Jin-Young; Park, Jin-Won; Jung, Kyung-Ho; Lee, Eun Jeong; Lee, Kyung-Han

    2012-01-01

    Introduction: High-dose 18 F-FDG can provide targeted nuclear therapy of cancer. Endothelial cell injury is a key determinant of tumor response to radiotherapy. Here, we tested the hypothesis that activation of endothelial cell glycolytic metabolism with nitric oxide can enhance the therapeutic effect of high-dose 18 F-FDG. Methods: Calf pulmonary artery endothelial (CPAE) cells were treated with graded doses of 18 F-FDG. Glycolysis was stimulated by 24 h of exposure to the nitric oxide donor, sodium nitroprusside (SNP). Cell viability was assessed by MTT and clonogenic assays. Apoptosis was evaluated by ELISA of cytosolic DNA fragments and Western blots of cleaved caspase-3. Results: SNP stimulation (0.1 and 1 mM) augmented CPAE cell 18 F-FDG uptake to 2.6- and 4.6-fold of controls without adverse effects. Treatment with 333 μCi/ml 18 F-FDG alone reduced viable cell number to 35.4% of controls by Day 3. Combining 0.1 mM SNP stimulation significantly enhanced the killing effect, reducing cell numbers to 19.2% and 39.2% of controls by 333 and 167 μCi/ml of 18 F-FDG, respectively. 18 F-FDG also suppressed clonogenic survival to 80.8% and 43.2% of controls by 83 and 167 μCi/ml, which was again intensified by SNP to 59.7% and 21.1% of controls. The cytotoxic effect of 18 F-FDG was attributed to induction of apoptosis as shown by increased cytosolic fragmented DNA and cleaved caspase-3 levels (26.4% and 30.7% increases by 167 μCi/ml). Combining SNP stimulation significantly increased both of these levels to 1.8-fold of control cells. Conclusion: High-dose 18 F-FDG combined with nitric oxide-stimulated glycolysis is an effective method to inhibit endothelial cell survival and promote apoptosis. These results suggest a potential role of this strategy for targeted radiotherapy of angiogenic vasculature.

  6. Icariin stimulates angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways in human endothelial cells

    International Nuclear Information System (INIS)

    Chung, Byung-Hee; Kim, Jong-Dai; Kim, Chun-Ki; Kim, Jung Huan; Won, Moo-Ho; Lee, Han-Soo; Dong, Mi-Sook; Ha, Kwon-Soo; Kwon, Young-Geun; Kim, Young-Myeong

    2008-01-01

    We investigated the molecular effect and signal pathway of icariin, a major flavonoid of Epimedium koreanum Nakai, on angiogenesis. Icariin stimulated in vitro endothelial cell proliferation, migration, and tubulogenesis, which are typical phenomena of angiogenesis, as well as increased in vivo angiogenesis. Icariin activated the angiogenic signal modulators, ERK, phosphatidylinositol 3-kinase (PI3K), Akt, and endothelial nitric oxide synthase (eNOS), and increased NO production, without affecting VEGF expression, indicating that icariin may directly stimulate angiogenesis. Icariin-induced ERK activation and angiogenic events were significantly inhibited by the MEK inhibitor PD98059, without affecting Akt and eNOS phosphorylation. The PI3K inhibitor Wortmannin suppressed icariin-mediated angiogenesis and Akt and eNOS activation without affecting ERK phosphorylation. Moreover, the NOS inhibitor NMA partially reduced the angiogenic activity of icariin. These results suggest that icariin stimulated angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways and may be a useful drug for angiogenic therapy

  7. Nicotine stimulates urokinase-type plasminogen activator receptor expression and cell invasiveness through mitogen-activated protein kinase and reactive oxygen species signaling in ECV304 endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Khoi, Pham Ngoc; Park, Jung Sun; Kim, Nam Ho; Jung, Young Do, E-mail: ydjung@chonnam.ac.kr

    2012-03-01

    Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation, tissue remodeling and in many human cancers. This study investigated the effect of nicotine, a major alkaloid in tobacco, on uPAR expression and cell invasiveness in ECV304 endothelial cells. Nicotine stimulated uPAR expression in a dose-dependent manner and activated extracellular signal-regulated kinases-1/2 (Erk-1/2), c-Jun amino-terminal kinase (JNK) and p38 mitogen activated protein kinase (MAPK). Specific inhibitors of MEK-1 (PD98059) and JNK (SP600125) inhibited the nicotine-induced uPAR expression, while the p38 MAPK inhibitor SB203580 did not. Expression vectors encoding dominant negative MEK-1 (pMCL-K97M) and JNK (TAM67) also prevented nicotine-induced uPAR promoter activity. The intracellular hydrogen peroxide (H{sub 2}O{sub 2}) content was increased by nicotine treatment. The antioxidant N-acetylcysteine prevented nicotine-activated production of reactive oxygen species (ROS) and uPAR expression. Furthermore, exogenous H{sub 2}O{sub 2} increased uPAR mRNA expression. Deleted and site-directed mutagenesis demonstrated the involvement of the binding sites of transcription factor nuclear factor-kappaB (NF-κB) and activator protein (AP)-1 in the nicotine-induced uPAR expression. Studies with expression vectors encoding mutated NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the nicotine-stimulated uPAR expression. MAPK (Erk-1/2 and JNK) and ROS functioned as upstream signaling molecules in the activation of AP-1 and NF-κB, respectively. In addition, ECV304 endothelial cells treated with nicotine displayed markedly enhanced invasiveness, which was partially abrogated by uPAR neutralizing antibodies. The data indicate that nicotine induces uPAR expression via the MAPK/AP-1 and ROS/NF-κB signaling pathways and, in turn, stimulates invasiveness in human ECV304 endothelial cells. -- Highlights: ► Endothelial cells

  8. Nicotine stimulates urokinase-type plasminogen activator receptor expression and cell invasiveness through mitogen-activated protein kinase and reactive oxygen species signaling in ECV304 endothelial cells

    International Nuclear Information System (INIS)

    Khoi, Pham Ngoc; Park, Jung Sun; Kim, Nam Ho; Jung, Young Do

    2012-01-01

    Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation, tissue remodeling and in many human cancers. This study investigated the effect of nicotine, a major alkaloid in tobacco, on uPAR expression and cell invasiveness in ECV304 endothelial cells. Nicotine stimulated uPAR expression in a dose-dependent manner and activated extracellular signal-regulated kinases-1/2 (Erk-1/2), c-Jun amino-terminal kinase (JNK) and p38 mitogen activated protein kinase (MAPK). Specific inhibitors of MEK-1 (PD98059) and JNK (SP600125) inhibited the nicotine-induced uPAR expression, while the p38 MAPK inhibitor SB203580 did not. Expression vectors encoding dominant negative MEK-1 (pMCL-K97M) and JNK (TAM67) also prevented nicotine-induced uPAR promoter activity. The intracellular hydrogen peroxide (H 2 O 2 ) content was increased by nicotine treatment. The antioxidant N-acetylcysteine prevented nicotine-activated production of reactive oxygen species (ROS) and uPAR expression. Furthermore, exogenous H 2 O 2 increased uPAR mRNA expression. Deleted and site-directed mutagenesis demonstrated the involvement of the binding sites of transcription factor nuclear factor-kappaB (NF-κB) and activator protein (AP)-1 in the nicotine-induced uPAR expression. Studies with expression vectors encoding mutated NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the nicotine-stimulated uPAR expression. MAPK (Erk-1/2 and JNK) and ROS functioned as upstream signaling molecules in the activation of AP-1 and NF-κB, respectively. In addition, ECV304 endothelial cells treated with nicotine displayed markedly enhanced invasiveness, which was partially abrogated by uPAR neutralizing antibodies. The data indicate that nicotine induces uPAR expression via the MAPK/AP-1 and ROS/NF-κB signaling pathways and, in turn, stimulates invasiveness in human ECV304 endothelial cells. -- Highlights: ► Endothelial cells treated with nicotine

  9. Gamma Low-Dose-Rate Ionizing Radiation Stimulates Adaptive Functional and Molecular Response in Human Aortic Endothelial Cells in a Threshold-, Dose-, and Dose Rate-Dependent Manner.

    Science.gov (United States)

    Vieira Dias, Juliana; Gloaguen, Celine; Kereselidze, Dimitri; Manens, Line; Tack, Karine; Ebrahimian, Teni G

    2018-01-01

    A central question in radiation protection research is whether low-dose and low-dose-rate (LDR) exposures to ionizing radiation play a role in progression of cardiovascular disease. The response of endothelial cells to different LDR exposures may help estimate risk of cardiovascular disease by providing the biological mechanism involved. We investigated the effect of chronic LDR radiation on functional and molecular responses of human aorta endothelial cells (HAoECs). Human aorta endothelial cells were continuously irradiated at LDR (6 mGy/h) for 15 days and analyzed at time points when the cumulative dose reached 0.05, 0.5, 1.0, and 2.0 Gy. The same doses were administered acutely at high-dose rate (HDR; 1 Gy/min). The threshold for the loss of angiogenic capacity for both LDR and HDR radiations was between 0.5 and 1.0 Gy. At 2.0 Gy, angiogenic capacity returned to normal only for HAoEC exposed to LDR radiation, associated with increased expression of antioxidant and anti-inflammatory genes. Pre-LDR, but not pre-HDR, radiation, followed by a single acute 2.0 Gy challenge dose sustained the expression of antioxidant and anti-inflammatory genes and stimulated angiogenesis. Our results suggest that dose rate is important in cellular response and that a radioadaptive response is involved for a 2.0 Gy dose at LDR.

  10. Gamma Low-Dose-Rate Ionizing Radiation Stimulates Adaptive Functional and Molecular Response in Human Aortic Endothelial Cells in a Threshold-, Dose-, and Dose Rate–Dependent Manner

    Science.gov (United States)

    Vieira Dias, Juliana; Gloaguen, Celine; Kereselidze, Dimitri; Manens, Line; Tack, Karine; Ebrahimian, Teni G

    2018-01-01

    A central question in radiation protection research is whether low-dose and low-dose-rate (LDR) exposures to ionizing radiation play a role in progression of cardiovascular disease. The response of endothelial cells to different LDR exposures may help estimate risk of cardiovascular disease by providing the biological mechanism involved. We investigated the effect of chronic LDR radiation on functional and molecular responses of human aorta endothelial cells (HAoECs). Human aorta endothelial cells were continuously irradiated at LDR (6 mGy/h) for 15 days and analyzed at time points when the cumulative dose reached 0.05, 0.5, 1.0, and 2.0 Gy. The same doses were administered acutely at high-dose rate (HDR; 1 Gy/min). The threshold for the loss of angiogenic capacity for both LDR and HDR radiations was between 0.5 and 1.0 Gy. At 2.0 Gy, angiogenic capacity returned to normal only for HAoEC exposed to LDR radiation, associated with increased expression of antioxidant and anti-inflammatory genes. Pre-LDR, but not pre-HDR, radiation, followed by a single acute 2.0 Gy challenge dose sustained the expression of antioxidant and anti-inflammatory genes and stimulated angiogenesis. Our results suggest that dose rate is important in cellular response and that a radioadaptive response is involved for a 2.0 Gy dose at LDR. PMID:29531508

  11. Reduction of Monocyte Chemoattractant Protein-1 and Interleukin-8 Levels by Ticlopidine in TNF-α Stimulated Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Chaur-Jong Hu

    2009-01-01

    Full Text Available Atherosclerosis and its associated complications represent major causes of morbidity and mortality in the industrialized or Western countries. Monocyte chemoattractant protein-1 (MCP-1 is critical for the initiating and developing of atherosclerotic lesions. Interleukin-8 (IL-8, a CXC chemokine, stimulates neutrophil chemotaxis. Ticlopidine is one of the antiplatelet drugs used to prevent thrombus formation relevant to the pathophysiology of atherothrombosis. In this study, we found that ticlopidine dose-dependently decreased the mRNA and protein levels of TNF-α-stimulated MCP-1, IL-8, and vascular cell adhesion molecule-1 (VCAM-1 in human umbilical vein endothelial cells (HUVECs. Ticlopidine declined U937 cells adhesion and chemotaxis as compared to TNF-α stimulated alone. Furthermore, the inhibitory effects were neither due to decreased HUVEC viability, nor through NF-kB inhibition. These results suggest that ticlopidine decreased TNF-α induced MCP-1, IL-8, and VCAM-1 levels in HUVECs, and monocyte adhesion. Therefore, the data provide additional therapeutic machinery of ticlopidine in treatment and prevention of atherosclerosis.

  12. Protein kinase C isoforms in bovine aortic endothelial cells: role in regulation of P2Y- and P2U-purinoceptor-stimulated prostacyclin release.

    Science.gov (United States)

    Patel, V; Brown, C; Boarder, M R

    1996-05-01

    1. Enhanced synthesis of prostacyclin (PGI2) and inositol polyphosphates in bovine aortic endothelial cells in response to ATP and ADP is mediated by co-existing P2Y- and P2U-purinoceptors. Here we examine the regulation of these responses by isoforms of protein kinase C (PKC). 2. Immunoblots with antisera specific for 8 different PKC isoforms revealed the presence of alpha, epsilon and zeta, while no immunoreactivity was found for beta, gamma, delta, eta and theta isoforms. PKC-alpha was largely cytosolic in unstimulated cells and almost all translocated to the membrane (Triton X-100 soluble) after a 1 min treatment with the PKC activating phorbol myristate acetate (PMA); PKC-epsilon was always in a Triton X-100 insoluble membrane fraction, while PKC-zeta was found in both soluble and membrane bound (Triton X-100 soluble) forms in the unstimulated cells and was unaffected by PMA. 3. Treatment with PMA for 6 h led to a 90% downregulation of PKC-alpha, while the immunoreactivity to the epsilon and zeta isoforms remained largely unchanged. 4. After either 10 min or 6 h exposure to PMA the PGI2 response to activation of both receptors was enhanced, while the inositol 1,4,5-trisphosphate response to P2Y-purinoceptor activation was substantially attenuated and the P2U-purinoceptor response was unchanged. Thus the PGI2 response to PMA under conditions when 90% of the PKC-alpha was lost resembles that seen on acute stimulation of PKC by PMA, and the PGI2 response does not correlate with phospholipase C response. 5. Inhibition of PKC with the isoform non-selective inhibitors, Ro 31-8220 and Go 6850 abolished the PGI2 response to both P2U- and P2Y-purinoceptor stimulation. However, Go 6976, which preferentially inhibits Ca2+ sensitive isoforms (such as PKC-alpha) and not Ca2+ insensitive isoforms (such as PKC-epsilon), had no effect on the PGI2 response. 6. The results show that there is a requirement for PKC in the stimulation of PGI2 production by endothelial P2Y- and P2U

  13. Impact of obesity control on circulating level of endothelial progenitor cells and angiogenesis in response to ischemic stimulation

    Directory of Open Access Journals (Sweden)

    Chen Yung-Lung

    2012-07-01

    Full Text Available Abstract Background and aim We tested the hypothesis that obesity reduced circulating number of endothelial progenitor cells (EPCs, angiogenic ability, and blood flow in ischemic tissue that could be reversed after obesity control. Methods 8-week-old C57BL/6J mice (n = 27 were equally divided into group 1 (fed with 22-week control diet, group 2 (22-week high fat diet, and group 3 (14-week high fat diet, followed by 8-week control diet. Critical limb ischemia (CLI was induced at week 20 in groups 2 and 3. The animals were sacrificed at the end of 22 weeks. Results Heart weight, body weight, abdominal fat weight, serum total cholesterol level, and fasting blood sugar were highest in group 2 (all p  Conclusion Obesity suppressed abilities of angiogenesis and recovery from CLI that were reversed by obesity control.

  14. Kaempferol stimulates large conductance Ca2+-activated K+ (BKCa) channels in human umbilical vein endothelial cells via a cAMP/PKA-dependent pathway

    Science.gov (United States)

    Xu, Y C; Leung, G P H; Wong, P Y D; Vanhoutte, P M; Man, R Y K

    2008-01-01

    Background and purpose: Kaempferol has been shown to possess a vasodilator effect but its mechanism of action remains unclear. In this study, experiments were carried out to study the effect of kaempferol on K+ channels in endothelial cells. Experimental approach: K+ channel activities in human umbilical vein endothelial cells (HUVECs) were studied by conventional whole cell and cell-attached patch-clamp electrophysiology. Key results: Kaempferol stimulated an outward-rectifying current in HUVECs in a dose-dependent manner with an EC50 value of 2.5±0.02 μM. This kaempferol-induced current was abolished by large conductance Ca2+-activated K+ (BKCa) channel blockers, such as iberiotoxin (IbTX) and charybdotoxin (ChTX), whereas the small conductance Ca2+-activated K+ (SKCa) channel blocker, apamin, and the voltage-dependent K+ (KV) channel blocker, 4-aminopyridine, had no effect. Cell-attached patches demonstrated that kaempferol increased the open probability of BkCa channels in HUVECs. Clamping intracellular Ca2+ did not prevent kaempferol-induced increases in outward current. In addition, the kaempferol-induced current was diminished by the adenylyl cyclase inhibitor SQ22536, the cAMP antagonist Rp-8-Br-cAMP and the PKA inhibitor KT5720, but was not affected by the guanylyl cyclase inhibitor ODQ, the cGMP antagonist Rp-8-Br-cGMP and the PKG inhibitor KT5823. The activation of BKCa channels by kaempferol caused membrane hyperpolarization of HUVECs. Conclusion and implications: These results demonstrate that kaempferol activates the opening of BKCa channels in HUVECs via a cAMP/PKA-dependent pathway, resulting in membrane hyperpolarization. This mechanism may partly account for the vasodilator effects of kaempferol. PMID:18493242

  15. Stimulated mast cells promote maturation of myocardial microvascular endothelial cell neovessels by modulating the angiopoietin-Tie-2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.H. [Division of Cardiology, Shanghai Sixth People' s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Division of Cardiology, Shanghai Sixth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai (China); Yancheng People' s First Hospital, Division of Cardiology, Yancheng, Jiangsu, China, Division of Cardiology, Yancheng People’s First Hospital, Yancheng, Jiangsu (China); Zhu, W.; Tao, J.P.; Zhang, Q.Y.; Wei, M. [Division of Cardiology, Shanghai Sixth People' s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Division of Cardiology, Shanghai Sixth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai (China)

    2013-10-22

    Angiopoietin (Ang)-1 and Ang-2 interact in angiogenesis to activate the Tie-2 receptor, which may be involved in new vessel maturation and regression. Mast cells (MCs) are also involved in formation of new blood vessels and angiogenesis. The present study was designed to test whether MCs can mediate angiogenesis in myocardial microvascular endothelial cells (MMVECs). Using a rat MMVEC and MC co-culture system, we observed that Ang-1 protein levels were very low even though its mRNA levels were increased by MCs. Interestingly, MCs were able to enhance migration, proliferation, and capillary-like tube formation, which were associated with suppressed Ang-2 protein expression, but not Tie-2 expression levels. These MCs induced effects that could be reversed by either tryptase inhibitor [N-tosyl-L-lysine chloromethyl ketone (TLCK)] or chymase inhibitor (N-tosyl-L-phenylalanyl chloromethyl ketone), with TLCK showing greater effects. In conclusion, our data indicated that MCs can interrupt neovessel maturation via suppression of the Ang-2/Tie-2 signaling pathway.

  16. Normal insulin-stimulated endothelial function and impaired insulin-stimulated muscle glucose uptake in young adults with low birth weight

    DEFF Research Database (Denmark)

    Hermann, T S; Rask-Madsen, C; Ihlemann, N

    2003-01-01

    of acetylcholine and sodium nitroprusside in the forearm of fourteen 21-yr-old men with low birth weight and 16 controls of normal birth weight. Glucose uptake was measured during intraarterial insulin infusion. Dose-response studies were repeated during insulin infusion. The maximal blood flow during......Low birth weight has been linked to insulin resistance and cardiovascular disease. We hypothesized that insulin sensitivity of both muscle and vascular tissues were impaired in young men with low birth weight. Blood flow was measured by venous occlusion plethysmography during dose-response studies...... acetylcholine infusion was 14.1 +/- 2.7 and 14.4 +/- 2.1 [ml x (100 ml forearm)(-1) x min(-1)] in low and normal birth weight subjects, respectively. Insulin coinfusion increased acetylcholine-stimulated flow in both groups: 18.0 +/- 3.1 vs. 17.9 +/- 3.1 [ml x (100 ml forearm)(-1) x min(-1)], NS. Insulin...

  17. Effects of acute and chronic attenuation of postprandial hyperglycemia on postglucose-load endothelial function in insulin resistant individuals: is stimulation of first phase insulin secretion beneficial for the endothelial function?

    DEFF Research Database (Denmark)

    Major-Pedersen, A; Ihlemann, N; Hermann, T S

    2008-01-01

    The aim of the study is to determine if attenuation of postprandial hyperglycemia, by acutely and chronically enhancing postprandial insulin secretion in insulin-resistant individuals, improves the endothelial dysfunction. We assessed postoral glucose-load endothelial function in 56 insulin....... We found no relationship between postprandial hyperglycemia and post-OGL FMD....

  18. Enhanced glycosylation of factor VIII:C in capillary endothelial cells following β-adrenoreceptor stimulation is not due to increased sugar transport

    International Nuclear Information System (INIS)

    Tavarez-Pagan, J.J.; Oliveira, C.M.; Banerjee, D.K.

    1990-01-01

    Factor VIII:C (Antihemophilia Factor A) in capillary endothelial cells from bovine adrenal medulla found to contain M r 200,000 and M r 46,000 dalton protein species when analyzed by SDS-PAGE under reduced condition. But the secretory FVIII:C under non-reduced condition gave rise to a protein of M r 270,000 dalton indicating that the heavy and light chains are held together by S-S bridge. Upon stimulation of these cells with β-agonist, isoproterenol (10 -7 M), a 2-fold increase in the ratio of [ 3 H]-mannose to [ 35 S]-methionine incorporation in immunoprecipitated FVIII:C was observed. In order to understand the molecular mechanism of this increase, a detail study of sugar transport was carried out. The transport of 2-deoxy-D-[ 3 H]-glucose in these cells was time and temperature dependent. Furthermore, inhibition of 2-deoxy-D-[ 3 H]-glucose uptake by cytochalasin B strongly supported for a carrier mediated process. However, when the transport studies were conducted in the presence of isoproterenol at 10 -5 M or 10 -7 M or 8 Br-cAMP (2 mM) no increase was observed. The kinetic studies indicated that the K m and V max for 2 deoxy-D-[ 3 H]-glucose were 0.24 mM and 0.88 nmol/mg protein/minute, respectively under normal conditions but these values were changed to 0.37 mM and 0.69 nmol/mg protein/minute when stimulated with isoproterenol (10 -7 M)

  19. Diagnostic Power of Vascular Endothelial Growth Factor and Macrophage Colony-Stimulating Factor in Breast Cancer Patients Based on ROC Analysis

    Directory of Open Access Journals (Sweden)

    Monika Zajkowska

    2016-01-01

    Full Text Available Breast cancer (BC is the most common malignancy in women. Vascular endothelial growth factor (VEGF has been described as an important regulator of angiogenesis which plays a vital role in the progression of tumor. Macrophage colony-stimulating factor (M-CSF is a cytokine whose functions include regulation of hematopoietic lineages cells growth, proliferation, and differentiation. We investigated the diagnostic significance of these parameters in comparison to CA15-3 in BC patients and in relation to the control group (benign breast tumor and healthy women. Plasma levels of the tested parameters were determined by ELISA and CA15-3 was determined by CMIA. VEGF was shown to be comparable to CA15-3 values of sensitivity in BC group and, what is more important, higher values in early stages of BC. VEGF was also the only parameter which has statistically significant AUC in all stages of cancer. M-CSF has been shown to be comparable to CA15-3 and VEGF, specificity, and AUC values only in stages III and IV of BC. These results indicate the usefulness and high diagnostic power of VEGF in the detection of BC. Also, it occurred to be the best candidate for cancer diagnostics in stages I and II of BC and in the differentiation between BC and benign cases.

  20. Endothelial RIG-I activation impairs endothelial function

    Energy Technology Data Exchange (ETDEWEB)

    Asdonk, Tobias, E-mail: tobias.asdonk@ukb.uni-bonn.de [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Motz, Inga; Werner, Nikos [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Coch, Christoph; Barchet, Winfried; Hartmann, Gunther [Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Nickenig, Georg; Zimmer, Sebastian [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer RIG-I activation impairs endothelial function in vivo. Black-Right-Pointing-Pointer RIG-I activation alters HCAEC biology in vitro. Black-Right-Pointing-Pointer EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 {mu}g of the RIG-ligand 3pRNA (RNA with triphosphate at the 5 Prime end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  1. Endothelial RIG-I activation impairs endothelial function

    International Nuclear Information System (INIS)

    Asdonk, Tobias; Motz, Inga; Werner, Nikos; Coch, Christoph; Barchet, Winfried; Hartmann, Gunther; Nickenig, Georg; Zimmer, Sebastian

    2012-01-01

    Highlights: ► RIG-I activation impairs endothelial function in vivo. ► RIG-I activation alters HCAEC biology in vitro. ► EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 μg of the RIG-ligand 3pRNA (RNA with triphosphate at the 5′end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  2. Kaempferol inhibits angiogenic ability by targeting VEGF receptor-2 and downregulating the PI3K/AKT, MEK and ERK pathways in VEGF-stimulated human umbilical vein endothelial cells.

    Science.gov (United States)

    Chin, Hsien-Kuo; Horng, Chi-Ting; Liu, Yi-Shan; Lu, Chi-Cheng; Su, Chen-Ying; Chen, Pei-Syuan; Chiu, Hong-Yi; Tsai, Fuu-Jen; Shieh, Po-Chuen; Yang, Jai-Sing

    2018-05-01

    Anti-angiogenesis is one of the most general clinical obstacles in cancer chemotherapy. Kaempferol is a flavonoid phytochemical found in many fruits and vegetables. Our previous study revealed that kaempferol triggered apoptosis in human umbilical vein endothelial cells (HUVECs) by ROS‑mediated p53/ATM/death receptor signaling. However, the anti‑angiogenic potential of kaempferol remains unclear and its underlying mechanism warranted further exploration in VEGF‑stimulated HUVECs. In the present study, kaempferol significantly reduced VEGF‑stimulated HUVEC viability. Kaempferol treatment also inhibited cell migration, invasion, and tube formation in VEGF‑stimulated HUVECs. VEGF receptor‑2 (VEGFR‑2), and its downstream signaling cascades (such as AKT, mTOR and MEK1/2‑ERK1/2) were reduced as determined by western blotting and kinase activity assay in VEGF‑stimulated HUVECs after treatment with kaempferol. The present study revealed that kaempferol may possess angiogenic inhibition through regulation of VEGF/VEGFR‑2 and its downstream signaling cascades (PI3K/AKT, MEK and ERK) in VEGF-stimulated endothelial cells.

  3. Protein tyrosine phosphatase-1B (PTP1B) helps regulate EGF-induced stimulation of S-phase entry in human corneal endothelial cells

    Science.gov (United States)

    Ishino, Yutaka; Zhu, Cheng; Harris, Deshea L.

    2008-01-01

    Purpose Human corneal endothelial cells (HCEC), particularly from older donors, only proliferate weakly in response to EGF. The protein tyrosine phosphatase, PTP1B, is known to negatively regulate EGF-induced signaling in several cell types by dephosphorylating the epidermal growth factor receptor (EGFR). The current studies were conducted to determine whether PTP1B plays a role in regulating cell cycle entry in HCEC in response to EGF stimulation. Methods Donor corneas were obtained from the National Disease Research Interchange and accepted for study based on established exclusion criteria. PTP1B was localized in the endothelium of ex vivo corneas and in cultured cells by immunocytochemistry. Western blot analysis verified PTP1B protein expression in HCEC and then compared the relative expression of EGFR and PTP1B in HCEC from young (60 years old). The effect of inhibiting the activity of PTP1B on S-phase entry was tested by comparing time-dependent BrdU incorporation in subconfluent HCEC incubated in the presence or absence of the PTP1B inhibitor, CinnGEL 2Me, before EGF stimulation. Results PTP1B was localized in a punctate pattern mainly within the cytoplasm of HCEC in ex vivo corneas and cultured cells. Western blots revealed the presence of three PTP1B-positive bands in HCEC and the control. Further western blot analysis showed no significant age-related difference in expression of EGFR (p=0.444>0.05); however, PTP1B expression was significantly higher in HCEC from older donors (p=0.024<0.05). Pre-incubation of HCEC with the PTP1B inhibitor significantly increased (p=0.019<0.05) the number of BrdU positive cells by 48 h after EGF stimulation. Conclusions Both immunolocalization and western blot studies confirmed that PTP1B is expressed in HCEC. Staining patterns strongly suggest that at least a subset of PTP1B is localized to the cytoplasm and most likely to the endoplasmic reticulum, the known site of EGFR/PTP1B interaction following EGF stimulation. PTP1B

  4. Vasoinhibins Prevent Bradykinin-Stimulated Endothelial Cell Proliferation by Inactivating eNOS via Reduction of both Intracellular Ca2+ Levels and eNOS Phosphorylation at Ser1179

    Directory of Open Access Journals (Sweden)

    Carmen Clapp

    2011-07-01

    Full Text Available Vasoinhibins, a family of antiangiogenic peptides derived from prolactin proteolysis, inhibit the vascular effects of several proangiogenic factors, including bradykinin (BK. Here, we report that vasoinhibins block the BK-induced proliferation of bovine umbilical vein endothelial cells. This effect is mediated by the inactivation of endothelial nitric oxide synthase (eNOS, as the NO donor DETA-NONOate reverted vasoinhibin action. It is an experimentally proven fact that the elevation of intracellular Ca2+ levels ([Ca2+]i upon BK stimulation activates eNOS, and vasoinhibins blocked the BK-mediated activation of phospholipase C and the formation of inositol 1,4,5-triphosphate leading to a reduced release of Ca2+ from intracellular stores. The [Ca2+]i rise evoked by BK also involves the influx of extracellular Ca2+ via canonical transient receptor potential (TRPC channels. Vasoinhibins likely interfere with TRPC-mediated Ca2+ entry since La3+, which is an enhancer of TRPC4 and TRPC5 channel activity, prevented vasoinhibins from blocking the stimulation by BK of endothelial cell NO production and proliferation, and vasoinhibins reduced the BK-induced increase of TRPC5 mRNA expression. Finally, vasoinhibins prevented the BK-induced phosphorylation of eNOS at Ser1179, a post-translational modification that facilitates Ca2+-calmodulin activation of eNOS. Together, our data show that vasoinhibins, by lowering NO production through the inhibition of both [Ca2+]i mobilization and eNOS phosphorylation, prevent the BK-induced stimulation of endothelial cell proliferation. Thus, vasoinhibins help to regulate BK effects on angiogenesis and vascular homeostasis.

  5. Increased expression of C-reactive protein gene in inflamed gingival tissues could be derived from endothelial cells stimulated with interleukin-6.

    Science.gov (United States)

    Maekawa, Tomoki; Tabeta, Koichi; Kajita-Okui, Keiko; Nakajima, Takako; Yamazaki, Kazuhisa

    2011-11-01

    Epidemiological studies have suggested periodontitis as a risk factor for ischemic heart disease. High sensitive C-reactive protein (hs-CRP), a predictor of cardiovascular risk, is elevated in periodontitis patients. Therefore, local infection-induced elevation of systemic CRP could account for the relationship between the 2 diseases. However, the underlying mechanism of CRP production in the periodontal tissues has not been fully elucidated. Therefore, the aim of the present study was to clarify the mechanism of CRP production in periodontal tissues. Gene expression of CRP in gingival biopsies was analysed by quantitative PCR. Human gingival epithelial cells (HGECs), human gingival fibroblasts (HGFBs), and human coronary artery endothelial cells (HCAECs) were characterized for CRP-producing ability by incubating with interleukin (IL)-1β, IL-6, soluble IL-6 receptor (sIL-6R), and Porphyromonas gingivalis strain W83. Gene expression of CRP is significantly elevated in periodontitis lesions compared with gingivitis lesions. HCAECs, but not HGECs and HGFBs, produced CRP in response to IL-6 and IL-1β in the presence of sIL-6R. In contrast to IL-6, the effect of IL-1β on CRP production was indirect via induction of IL-6. IL-1β was produced by HGECs and HGFBs with stimulation of P. gingivalis antigens. These results suggest that CRP induced locally by periodontal infection may play another role in the pathogenesis of periodontal disease, and to a much lesser extent, has the potential to modulate systemic CRP level by extra-hepatic CRP production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Hypoxic stress simultaneously stimulates vascular endothelial growth factor via hypoxia-inducible factor-1α and inhibits stromal cell-derived factor-1 in human endometrial stromal cells.

    Science.gov (United States)

    Tsuzuki, Tomoko; Okada, Hidetaka; Cho, Hisayuu; Tsuji, Shoko; Nishigaki, Akemi; Yasuda, Katsuhiko; Kanzaki, Hideharu

    2012-02-01

    Hypoxia of the human endometrium is a physiologic event occurring during the perimenstrual period and the local stimulus for angiogenesis. The aim of this study was to investigate the effects of hypoxic stress on the regulation of vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1 (SDF-1/CXCL12), and the potential role of hypoxia-inducible factor-1α (HIF-1α) in the endometrium. Human endometrial stromal cells (ESCs, n= 22 samples) were studied in vitro. ESCs were cultured under hypoxic and normoxic conditions and treated with cobalt chloride (CoCl₂; a hypoxia-mimicking agent) and/or echinomycin, a small-molecule inhibitor of HIF-1α activity. The mRNA levels and production of VEGF and SDF-1 were assessed by real-time PCR and ELISA, respectively. The HIF-1α protein levels were measured using western blot analysis. Hypoxia simultaneously induced the expression of mRNA and production of VEGF and attenuated the expression and production of SDF-1 from ESCs in a time-dependent manner. Similar changes were observed in the ESCs after stimulation with CoCl₂ in a dose-dependent manner. CoCl₂ significantly induced the expression of HIF-1α protein, and its highest expression was observed at 6 h. Echinomycin inhibited hypoxia-induced VEGF production without affecting the HIF-1α protein level and cell toxicity and had no effect on SDF-1 secretion (P hypoxic conditions that could influence angiogenesis in the human endometrium.

  7. The Glycogen Synthase Kinase 3α and β Isoforms Differentially Regulates Interleukin-12p40 Expression in Endothelial Cells Stimulated with Peptidoglycan from Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Ricarda Cortés-Vieyra

    Full Text Available Glycogen synthase kinase 3 (GSK3 is a constitutively active regulatory enzyme that is important in cancer, diabetes, and cardiovascular, neurodegenerative, and psychiatric diseases. While GSK3α is usually important in neurodegenerative and psychiatric diseases GSK3β is fundamental in the inflammatory response caused by bacterial components. Peptidoglycan (PGN, one of the most abundant cell-wall structures of Gram-positive bacteria, is an important inducer of inflammation. To evaluate whether inhibition of GSK3α and GSK3β activity in bovine endothelial cells (BEC regulates the expression of the pro-inflammatory cytokine IL-12p40, we treated BEC with SDS-purified PGN from Staphylococcus aureus. We found that PGN triggered a TLR2/PI3K/Akt-dependent phosphorylation of GSK3α at Ser21, GSK3β at Ser9, and NF-κB p65 subunit (p65 at Ser536, and the phosphorylation of GSK3α was consistently higher than that of GSK3β. The expression of IL-12p40 was inhibited in BEC stimulated with PGN and pre-treated with a specific neutralizing anti-TLR2 antibody that targets the extracellular domain of TLR2 or by the addition of Akt-i IV (an Akt inhibitor. Inhibition of GSK3α and GSK3β with LiCl or SB216763 induced an increase in IL-12p40 mRNA and protein. The effect of each isoform on IL-12p40 expression was evaluated by siRNA-gene expression silencing of GSK3α and GSK3β. GSK3α gene silencing resulted in a marked increase in IL-12p40 mRNA and protein while GSK3β gene silencing had the opposite effect on IL-12p40 expression. These results indicate that the TLR2/PI3K/Akt-dependent inhibition of GSK3α activity also plays an important role in the inflammatory response caused by stimulation of BEC with PGN from S. aureus.

  8. A hot water extract of Curcuma longa inhibits adhesion molecule protein expression and monocyte adhesion to TNF-α-stimulated human endothelial cells.

    Science.gov (United States)

    Kawasaki, Kengo; Muroyama, Koutarou; Yamamoto, Norio; Murosaki, Shinji

    2015-01-01

    The recruitment of arterial leukocytes to endothelial cells is an important step in the progression of various inflammatory diseases. Therefore, its modulation is thought to be a prospective target for the prevention or treatment of such diseases. Adhesion molecules on endothelial cells are induced by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and contribute to the recruitment of leukocytes. In the present study, we investigated the effect of hot water extract of Curcuma longa (WEC) on the protein expression of adhesion molecules, monocyte adhesion induced by TNF-α in human umbilical vascular endothelial cells (HUVECs). Treatment of HUVECs with WEC significantly suppressed both TNF-α-induced protein expression of adhesion molecules and monocyte adhesion. WEC also suppressed phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) induced by TNF-α in HUVECs, suggesting that WEC inhibits the NF-κB signaling pathway.

  9. Receptor for advanced glycation end products - membrane type1 matrix metalloproteinase axis regulates tissue factor expression via RhoA and Rac1 activation in high-mobility group box-1 stimulated endothelial cells.

    Directory of Open Access Journals (Sweden)

    Koichi Sugimoto

    Full Text Available BACKGROUND: Atherosclerosis is understood to be a blood vessel inflammation. High-mobility group box-1 (HMGB-1 plays a key role in the systemic inflammation. Tissue factor (TF is known to lead to inflammation which promotes thrombus formation. Membrane type1 matrix metalloprotease (MT1-MMP associates with advanced glycation endproducts (AGE triggered-TF protein expression and phosphorylation of NF-κB. However, it is still unclear about the correlation of MT1-MMP and HMBG-1-mediated TF expression. In this study, we investigated the molecular mechanisms of TF expression in response to HMGB-1 stimulation and the involvement of MT1-MMP in endothelial cells. METHODS AND RESULTS: Pull-down assays and Western blotting revealed that HMGB-1 induced RhoA/Rac1 activation and NF-kB phosphorylation in cultured human aortic endothelial cells. HMGB-1 increased the activity of MT1-MMP, and inhibition of RAGE or MT1-MMP by siRNA suppressed HMGB-1-induced TF upregulation as well as HMGB-1-triggered RhoA/Rac1 activation and NF-kB phosphorylation. CONCLUSIONS: The present study showed that RAGE/MT1-MMP axis modified HMBG-1-mediated TF expression through RhoA and Rac1 activation and NF-κB phosphorylation in endothelial cells. These results suggested that MT1-MMP was involved in vascular inflammation and might be a good target for treating atherosclerosis.

  10. Positive Feedback Regulation of Agonist-Stimulated Endothelial Ca2+ Dynamics by KCa3.1 Channels in Mouse Mesenteric Arteries

    DEFF Research Database (Denmark)

    Qian, Xun; Francis, Michael; Köhler, Ralf

    2014-01-01

    Intermediate and small conductance KCa channels IK1 (KCa3.1) and SK3 (KCa2.3) are primary targets of endothelial Ca(2+) signals in the arterial vasculature, and their ablation results in increased arterial tone and hypertension. Activation of IK1 channels by local Ca(2+) transients from internal ...... stores or plasma membrane channels promotes arterial hyperpolarization and vasodilation. Here, we assess arteries from genetically altered IK1 knockout mice (IK1(-/-)) to determine whether IK1 channels exert a positive feedback influence on endothelial Ca(2+) dynamics....

  11. Resveratrol: A Multifunctional Compound Improving Endothelial Function

    OpenAIRE

    Li, Huige; F?rstermann, Ulrich

    2009-01-01

    The red wine polyphenol resveratrol boosts endothelium-dependent and -independent vasorelaxations. The improvement of endothelial function by resveratrol is largely attributable to nitric oxide (NO) derived from endothelial NO synthase (eNOS). By stimulating eNOS expression, eNOS phosphorylation and eNOS deacetylation, resveratrol enhances endothelial NO production. By upregulating antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) and suppressing the expression a...

  12. Wine and endothelial function.

    Science.gov (United States)

    Caimi, G; Carollo, C; Lo Presti, R

    2003-01-01

    In recent years many studies have focused on the well-known relationship between wine consumption and cardiovascular risk. Wine exerts its protective effects through various changes in lipoprotein profile, coagulation and fibrinolytic cascades, platelet aggregation, oxidative mechanisms and endothelial function. The last has earned more attention for its implications in atherogenesis. Endothelium regulates vascular tone by a delicate balancing among vasorelaxing (nitric oxide [NO]) and vasoconstrincting (endothelins) factors produced by endothelium in response to various stimuli. In rat models, wine and other grape derivatives exerted an endothelium-dependent vasorelaxing capacity especially associated with the NO-stimulating activity of their polyphenol components. In experimental conditions, reservatrol (a stilbene polyphenol) protected hearts and kidneys from ischemia-reperfusion injury through antioxidant activity and upregulation of NO production. Wine polyphenols are also able to induce the expression of genes involved in the NO pathway within the arterial wall. The effects of wine on endothelial function in humans are not yet clearly understood. A favorable action of red wine or dealcoholized wine extract or purple grape juice on endothelial function has been observed by several authors, but discrimination between ethanol and polyphenol effects is controversial. It is, however likely that regular and prolonged moderate wine drinking positively affects endothelial function. The beneficial effects of wine on cardiovascular health are greater if wine is associated with a healthy diet. The most recent nutritional and epidemiologic studies show that the ideal diet closely resembles the Mediterranean diet.

  13. Oxidative stress induced pulmonary endothelial cell proliferation is ...

    African Journals Online (AJOL)

    Cellular hyper-proliferation, endothelial dysfunction and oxidative stress are hallmarks of the pathobiology of pulmonary hypertension. Indeed, pulmonary endothelial cells proliferation is susceptible to redox state modulation. Some studies suggest that superoxide stimulates endothelial cell proliferation while others have ...

  14. Stimulation of Transforming Growth Factor-β1-Induced Endothelial-To-Mesenchymal Transition and Tissue Fibrosis by Endothelin-1 (ET-1): A Novel Profibrotic Effect of ET-1.

    Science.gov (United States)

    Wermuth, Peter J; Li, Zhaodong; Mendoza, Fabian A; Jimenez, Sergio A

    2016-01-01

    TGF-β-induced endothelial-to-mesenchymal transition (EndoMT) is a newly recognized source of profibrotic activated myofibroblasts and has been suggested to play a role in the pathogenesis of various fibrotic processes. Endothelin-1 (ET-1) has been implicated in the development of tissue fibrosis but its participation in TGF-β-induced EndoMT has not been studied. Here we evaluated the role of ET-1 on TGF-β1-induced EndoMT in immunopurified CD31+/CD102+ murine lung microvascular endothelial cells. The expression levels of α-smooth muscle actin (α-SMA), of relevant profibrotic genes, and of various transcription factors involved in the EndoMT process were assessed employing quantitative RT-PCR, immunofluorescence histology and Western blot analysis. TGF-β1 caused potent induction of EndoMT whereas ET-1 alone had a minimal effect. However, ET-1 potentiated TGF-β1-induced EndoMT and TGF-β1-stimulated expression of mesenchymal cell specific and profibrotic genes and proteins. ET-1 also induced expression of the TGF-β receptor 1 and 2 genes, suggesting a plausible autocrine mechanism to potentiate TGF-β-mediated EndoMT and fibrosis. Stimulation of TGF-β1-induced skin and lung fibrosis by ET-1 was confirmed in vivo in an animal model of TGF-β1-induced tissue fibrosis. These results suggest a novel role for ET-1 in the establishment and progression of tissue fibrosis.

  15. The synergistic effect on osteogenic differentiation of human mesenchymal stem cells by diode laser-treated stimulating human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Kao, Chia-Tze; Huang, Tsui-Hsien; Wu, Yu-Tin; Hsu, Tuan-Ti; Chen, Yi-Wen; Shie, Ming-You

    2016-01-01

    Angiogenesis plays an important role in determining the biostimulation of bone regeneration, in either new bone or blood vessel formation. Human umbilical cord cells (HUVECs) are important effector cells in angiogenesis and are indispensable for osteogenesis and for their heterogeneity and plasticity. However, there are very few studies about the effects of HUVECs on diode laser-stimulated/regulated osteogenesis. In this study, we used diode laser as a model biostimulation to examine the role of HUVECs on laser-stimulated osteogenesis. Several bone formation-related proteins were also significantly up-regulated by the diode laser stimulation, indicating that HUVECs may participate in diode laser-stimulated osteogenesis. Interestingly, when human mesenchymal stem cells (hMSCs) cultured with HUVECs were diode laser-treated, the osteogenesis differentiation of the hMSCs was significantly promoted, indicating the important role of HUVECs in diode laser-enhanced osteogenesis. Adequately activated HUVECs are vital for the success of diode laser-stimulated hard-tissue regeneration. These findings provided valuable insights into the mechanism of diode laser-stimulated osteogenic differentiation, and a strategy to optimize the evaluation system for the in vitro osteogenesis capacity of laser treatment in periodontal repair. (letter)

  16. The synergistic effect on osteogenic differentiation of human mesenchymal stem cells by diode laser-treated stimulating human umbilical vein endothelial cells

    Science.gov (United States)

    Kao, Chia-Tze; Hsu, Tuan-Ti; Huang, Tsui-Hsien; Wu, Yu-Tin; Chen, Yi-Wen; Shie, Ming-You

    2016-02-01

    Angiogenesis plays an important role in determining the biostimulation of bone regeneration, in either new bone or blood vessel formation. Human umbilical cord cells (HUVECs) are important effector cells in angiogenesis and are indispensable for osteogenesis and for their heterogeneity and plasticity. However, there are very few studies about the effects of HUVECs on diode laser-stimulated/regulated osteogenesis. In this study, we used diode laser as a model biostimulation to examine the role of HUVECs on laser-stimulated osteogenesis. Several bone formation-related proteins were also significantly up-regulated by the diode laser stimulation, indicating that HUVECs may participate in diode laser-stimulated osteogenesis. Interestingly, when human mesenchymal stem cells (hMSCs) cultured with HUVECs were diode laser-treated, the osteogenesis differentiation of the hMSCs was significantly promoted, indicating the important role of HUVECs in diode laser-enhanced osteogenesis. Adequately activated HUVECs are vital for the success of diode laser-stimulated hard-tissue regeneration. These findings provided valuable insights into the mechanism of diode laser-stimulated osteogenic differentiation, and a strategy to optimize the evaluation system for the in vitro osteogenesis capacity of laser treatment in periodontal repair.

  17. miR-214-Dependent Increase of PHLPP2 Levels Mediates the Impairment of Insulin-Stimulated Akt Activation in Mouse Aortic Endothelial Cells Exposed to Methylglyoxal

    Directory of Open Access Journals (Sweden)

    Cecilia Nigro

    2018-02-01

    Full Text Available Evidence has been provided linking microRNAs (miRNAs and diabetic complications, by the regulation of molecular pathways, including insulin-signaling, involved in the pathophysiology of vascular dysfunction. Methylglyoxal (MGO accumulates in diabetes and is associated with cardiovascular complications. This study aims to analyze the contribution of miRNAs in the MGO-induced damaging effect on insulin responsiveness in mouse aortic endothelial cells (MAECs. miRNA modulation was performed by transfection of specific miRNA mimics and inhibitors in MAECs, treated or not with MGO. miRNA-target protein levels were evaluated by Western blot. PH domain leucine-rich repeat protein phosphatase 2 (PHLPP2 regulation by miR-214 was tested by luciferase assays and by the use of a target protector specific for miR-214 on PHLPP2-3′UTR. This study reveals a 4-fold increase of PHLPP2 in MGO-treated MAECs. PHLPP2 levels inversely correlate with miR-214 modulation. Moreover, miR-214 overexpression is able to reduce PHLPP2 levels in MGO-treated MAECs. Interestingly, a direct regulation of PHLPP2 is proved to be dependent by miR-214. Finally, the inhibition of miR-214 impairs the insulin-dependent Akt activation, while its overexpression rescues the insulin effect on Akt activation in MGO-treated MAECs. In conclusion, this study shows that PHLPP2 is a target of miR-214 in MAECs, and identifies miR-214 downregulation as a contributing factor to MGO-induced endothelial insulin-resistance.

  18. The effects of TYB-2285 and its metabolites on eosinophil adhesion to tumor necrosis factor α-stimulated human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Takanari Tominaga

    1996-01-01

    The results of the present study demonstrate that TYB-2285 and its metabolites selectively inhibit the adhesion of eosinophils to HUVECs stimulated with TNF-α and also suggest that TYB-2285, TC-286 and TC-326 might block the VLA-4/VCAM-1 pathway selectively.

  19. MAC-1 Glycoprotein Family mediates adherence of neutrophils to endothelial cells stimulated by leukotriene B/sub 4/ and platelet activating factor

    Energy Technology Data Exchange (ETDEWEB)

    Tonnesen, M.G.; Anderson, D.C.; Springer, T.A.; Knedler, A.; Avdi, N.; Henson, P.M.

    1986-03-01

    The process of neutrophil (N) adhesion to and migration through endothelium (EC), an early event in the induction of the acute inflammatory response, has been attributed to the generation of extravascular chemoattractant peptides and lipids. Although both leukotriene B/sub 4/ (LTB/sub 4/) and platelet activating factor (PAF) enhance N adherence to EC, the mechanisms involved in this interaction are still not completely understood. Since the MAC-1 Glycoprotein (GP) Family has recently been shown to be required for a variety of adherence-dependent functions of stimulated N, the authors questioned whether these adherence-associated GP might be involved in N adherence to EC stimulated by LTB/sub 4/ or PAF. Using a microtiter adherence assay with /sup 111/In labeled N, they assessed the ability of N from patients with MAC-1, LFA-1 Deficiency to adhere to monolayers of human omental microvascular or umbilical vein EC as well as to serum-coated plastic. Patient N exhibited markedly diminished adherence in response to LTB/sub 4/ or PAF compared to normal controls. LTB/sub 4/ and PAF enhanced expression of the MAC-1 GP Family on the surface of normal N as determined by flow cytofluorimetry using a monoclonal antibody (TS1/18) to the GP common beta subunit. In addition TS1/18 (20 ..mu..g/ml) completely inhibited N adherence stimulated by either LTB/sub 4/ (10/sup -8/M) or PAF(10/sup -11/M). Thus, the MAC-1 GP Family appears to be important in chemotactic factor regulation of N adherence to EC.

  20. Hematopoietic stem cell cytokines and fibroblast growth factor-2 stimulate human endothelial cell-pericyte tube co-assembly in 3D fibrin matrices under serum-free defined conditions.

    Directory of Open Access Journals (Sweden)

    Annie O Smith

    Full Text Available We describe a novel 3D fibrin matrix model using recombinant hematopoietic stem cell cytokines under serum-free defined conditions which promotes the assembly of human endothelial cell (EC tubes with co-associated pericytes. Individual ECs and pericytes are randomly mixed together and EC tubes form that is accompanied by pericyte recruitment to the EC tube abluminal surface over a 3-5 day period. These morphogenic processes are stimulated by a combination of the hematopoietic stem cell cytokines, stem cell factor, interleukin-3, stromal derived factor-1α, and Flt-3 ligand which are added in conjunction with fibroblast growth factor (FGF-2 into the fibrin matrix. In contrast, this tube morphogenic response does not occur under serum-free defined conditions when VEGF and FGF-2 are added together in the fibrin matrices. We recently demonstrated that VEGF and FGF-2 are able to prime EC tube morphogenic responses (i.e. added overnight prior to the morphogenic assay to hematopoietic stem cell cytokines in collagen matrices and, interestingly, they also prime EC tube morphogenesis in 3D fibrin matrices. EC-pericyte interactions in 3D fibrin matrices leads to marked vascular basement membrane assembly as demonstrated using immunofluorescence and transmission electron microscopy. Furthermore, we show that hematopoietic stem cell cytokines and pericytes stimulate EC sprouting in fibrin matrices in a manner dependent on the α5β1 integrin. This novel co-culture system, under serum-free defined conditions, allows for a molecular analysis of EC tube assembly, pericyte recruitment and maturation events in a critical ECM environment (i.e. fibrin matrices that regulates angiogenic events in postnatal life.

  1. Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells

    Science.gov (United States)

    Ding, Bi-Sen; Gomi, Kazunori; Rafii, Shahin; Crystal, Ronald G.; Walters, Matthew S.

    2015-01-01

    ABSTRACT Human airway basal cells are the stem (or progenitor) population of the airway epithelium, and play a central role in anchoring the epithelium to the basement membrane. The anatomic position of basal cells allows for potential paracrine signaling between them and the underlying non-epithelial stromal cells. In support of this, we have previously demonstrated that endothelial cells support growth of basal cells during co-culture through vascular endothelial growth factor A (VEGFA)-mediated signaling. Building on these findings, we found, by RNA sequencing analysis, that basal cells expressed multiple fibroblast growth factor (FGF) ligands (FGF2, FGF5, FGF11 and FGF13) and that only FGF2 and FGF5 were capable of functioning in a paracrine manner to activate classical FGF receptor (FGFR) signaling. Antibody-mediated blocking of FGFR1 during basal-cell–endothelial-cell co-culture significantly reduced the endothelial-cell-dependent basal cell growth. Stimulation of endothelial cells with basal-cell-derived growth factors induced endothelial cell expression of matrix metallopeptidase 14 (MMP14), and short hairpin RNA (shRNA)-mediated knockdown of endothelial cell MMP14 significantly reduced the endothelial-cell-dependent growth of basal cells. Overall, these data characterize a new growth-factor-mediated reciprocal ‘crosstalk’ between human airway basal cells and endothelial cells that regulates proliferation of basal cells. PMID:26116571

  2. Identification of derlin-1 as a novel growth factor-responsive endothelial antigen by suppression subtractive hybridization

    International Nuclear Information System (INIS)

    Ran Yuliang; Jiang Yangfu; Zhong Xing; Zhou Zhuan; Liu Haiyan; Hu Hai; Lou Jinning; Yang Zhihua

    2006-01-01

    Endothelial cells play an important regulatory role in embryonic development, reproductive functions, tumor growth and progression. In the present study, the suppression subtractive hybridization (SSH) method was employed to identify differentially expressed genes between non-stimulated endothelial cells and activated endothelial cells. Following mRNA isolation of non-stimulated and hepatocellular carcinoma homogenate-stimulated cells, cDNAs of both populations were prepared and subtracted by suppressive PCR. Sequencing of the enriched cDNAs identified a couple of genes differentially expressed, including derlin-1. Derlin-1 was significantly up-regulated by tumor homogenates, VEGF, and endothelial growth supplements in a dose-dependent manner. Knock-down of derlin-1 triggered endothelial cell apoptosis, inhibited endothelial cell proliferation, and blocked the formation of a network of tubular-like structures. Our data reveal that derlin-1 is a novel growth factor-responsive endothelial antigen that promotes endothelial cell survival and growth

  3. Endothelial remodelling and intracellular calcium machinery.

    Science.gov (United States)

    Moccia, F; Tanzi, F; Munaron, L

    2014-05-01

    Rather being an inert barrier between vessel lumen and surrounding tissues, vascular endothelium plays a key role in the maintenance of cardiovascular homeostasis. The de-endothelialization of blood vessels is regarded as the early event that results in the onset of severe vascular disorders, including atherosclerosis, acute myocardial infarction, brain stroke, and aortic aneurysm. Restoration of the endothelial lining may be accomplished by the activation of neighbouring endothelial cells (ECs) freed by contact inhibition and by circulating endothelial progenitor cells (EPCs). Intracellular Ca(2+) signalling is essential to promote wound healing: however, the molecular underpinnings of the Ca(2+) response to injury are yet to be fully elucidated. Similarly, the components of the Ca(2+) toolkit that drive EPC incorporation into denuded vessels are far from being fully elucidated. The present review will survey the current knowledge on the role of Ca(2+) signalling in endothelial repair and in EPC activation. We propose that endothelial regeneration might be boosted by intraluminal release of specific Ca(2+) channel agonists or by gene transfer strategies aiming to enhance the expression of the most suitable Ca(2+) channels at the wound site. In this view, connexin (Cx) channels/hemichannels and store-operated Ca(2+) entry (SOCE) stand amid the most proper routes to therapeutically induce the regrowth of denuded vessels. Cx stimulation might trigger the proliferative and migratory behaviour of ECs facing the lesion site, whereas activation of SOCE is likely to favour EPC homing to the wounded vessel.

  4. Vascular endothelial growth factor 121 and 165 in the subacromial bursa are involved in shoulder joint contracture in type II diabetics with rotator cuff disease.

    Science.gov (United States)

    Handa, Akiyoshi; Gotoh, Masafumi; Hamada, Kazutoshi; Yanagisawa, Kazuhiro; Yamazaki, Hitoshi; Nakamura, Masato; Ueyama, Yoshito; Mochida, Joji; Fukuda, Hiroaki

    2003-11-01

    Vascular endothelial growth factor (VEGF) is a glycoprotein that plays an important role in neovascularization and increases vascular permeability. We reported that VEGF is involved in motion pain of patients with rotator cuff disease by causing synovial proliferation in the subacromial bursa (SAB). The present study investigates whether VEGF is also involved in the development of shoulder contracture in diabetics with rotator cuff disease. We examined 67 patients with rotator cuff disease, including 36 with complete cuff tears, 20 with incomplete tears, and 11 without apparent tears (subacromial bursitis). The patients were into groups according to the presence or absence of diabetes (14 type II diabetics and 53 non-diabetics). Specimens of the synovium of the SAB were obtained from all patients during surgery. Expression of the VEGF gene in the synovium of the subacromial bursa was evaluated by using the reverse transcriptase polymerase chain reaction. The VEGF protein was localized by immunohistochemistry, and the number of vessels was evaluated based on CD34 immunoreactivity. The results showed that VEGF mRNA was expressed in significantly more diabetics (100%, 14/14) than in non-diabetics (70%, 37/53) (P=0.0159, Fisher's test). Investigation of VEGF isoform expression revealed VEGF121 in all 14 diabetics and in 37 of the 53 non-diabetics, VEGF165 in 12 of the 14 diabetics and in 21 of the 53 non-diabetics, and VEGF189 in 1 of the 14 diabetics and in 2 of the 53 non-diabetics. No VEGF206 was expressed in either group. VEGF protein was localized in both vascular endothelial cells and synovial lining cells. The mean number of VEGF-positive vessels and the vessel area were also significantly greater in the diabetics (pshoulder joint contracture were more common in the diabetics (P=0.0329 and P=0.073, respectively; Fisher's test). The mean preoperative range of shoulder motion significantly differed in terms of elevation between two groups: 103.8 degrees in

  5. Resveratrol and Endothelial Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Ning Xia

    2014-10-01

    Full Text Available Nitric oxide (NO derived from the endothelial NO synthase (eNOS has antihypertensive, antithrombotic, anti-atherosclerotic and antiobesogenic properties. Resveratrol is a polyphenol phytoalexin with multiple cardiovascular and metabolic effects. Part of the beneficial effects of resveratrol are mediated by eNOS. Resveratrol stimulates NO production from eNOS by a number of mechanisms, including upregulation of eNOS expression, stimulation of eNOS enzymatic activity and reversal of eNOS uncoupling. In addition, by reducing oxidative stress, resveratrol prevents oxidative NO inactivation by superoxide thereby enhancing NO bioavailability. Molecular pathways underlying these effects of resveratrol involve SIRT1, AMPK, Nrf2 and estrogen receptors.

  6. Endothelial dysfunction: a comprehensive appraisal

    Directory of Open Access Journals (Sweden)

    Vilariño Jorge O

    2006-02-01

    Full Text Available Abstract The endothelium is a thin monocelular layer that covers all the inner surface of the blood vessels, separating the circulating blood from the tissues. It is not an inactive organ, quite the opposite. It works as a receptor-efector organ and responds to each physical or chemical stimulus with the release of the correct substance with which it may maintain vasomotor balance and vascular-tissue homeostasis. It has the property of producing, independently, both agonistic and antagonistic substances that help to keep homeostasis and its function is not only autocrine, but also paracrine and endocrine. In this way it modulates the vascular smooth muscle cells producing relaxation or contraction, and therefore vasodilatation or vasoconstriction. The endothelium regulating homeostasis by controlling the production of prothrombotic and antithrombotic components, and fibrynolitics and antifibrynolitics. Also intervenes in cell proliferation and migration, in leukocyte adhesion and activation and in immunological and inflammatory processes. Cardiovascular risk factors cause oxidative stress that alters the endothelial cells capacity and leads to the so called endothelial "dysfunction" reducing its capacity to maintain homeostasis and leads to the development of pathological inflammatory processes and vascular disease. There are different techniques to evaluate the endothelium functional capacity, that depend on the amount of NO produced and the vasodilatation effect. The percentage of vasodilatation with respect to the basal value represents the endothelial functional capacity. Taking into account that shear stress is one of the most important stimulants for the synthesis and release of NO, the non-invasive technique most often used is the transient flow-modulate "endothelium-dependent" post-ischemic vasodilatation, performed on conductance arteries such as the brachial, radial or femoral arteries. This vasodilatation is compared with the

  7. Chronic exposure to high glucose impairs bradykinin-stimulated nitric oxide production by interfering with the phospholipase-C-implicated signalling pathway in endothelial cells: evidence for the involvement of protein kinase C.

    Science.gov (United States)

    Tang, Y; Li, G D

    2004-12-01

    Overwhelming evidence indicates that endothelial cell dysfunction in diabetes is characterised by diminished endothelium-dependent relaxation, but the matter of the underlying molecular mechanism remains unclear. As nitric oxide (NO) production from the endothelium is the major player in endothelium-mediated vascular relaxation, we investigated the effects of high glucose on NO production, and the possible alterations of signalling pathways implicated in this scenario. NO production and intracellular Ca(2+) levels ([Ca(2+)](i)) were assessed using the fluorescent probes 4,5-diaminofluorescein diacetate and fura-2 respectively. Exposure of cultured bovine aortic endothelial cells to high glucose for 5 or 10 days significantly reduced NO production induced by bradykinin (but not by Ca(2+) ionophore) in a time- and dose-dependent manner. This was probably due to an attenuation in bradykinin-induced elevations of [Ca(2+)](i) under these conditions, since a close correlation between [Ca(2+)](i) increases and NO generation was observed in intact bovine aortic endothelial cells. Both bradykinin-promoted intracellular Ca(2+) mobilisation and extracellular Ca(2+) entry were affected. Moreover, bradykinin-induced formation of Ins(1,4,5)P(3), a phospholipase C product leading to increases in [Ca(2+)](i), was also inhibited following high glucose culture. This abnormality was not attributable to a decrease in inositol phospholipids, but possibly to a reduction in the number of bradykinin receptors. The alterations in NO production, the increases in [Ca(2+)](i), and the bradykinin receptor number due to high glucose could be largely reversed by protein kinase C inhibitors and D: -alpha-tocopherol (antioxidant). Chronic exposure to high glucose reduces NO generation in endothelial cells, probably by impairing phospholipase-C-mediated Ca(2+) signalling due to excess protein kinase C activation. This defect in NO release may contribute to the diminished endothelium

  8. Sickle erythrocytes inhibit human endothelial cell DNA synthesis

    International Nuclear Information System (INIS)

    Weinstein, R.; Zhou, M.A.; Bartlett-Pandite, A.; Wenc, K.

    1990-01-01

    Patients with sickle cell anemia experience severe vascular occlusive phenomena including acute pain crisis and cerebral infarction. Obstruction occurs at both the microvascular and the arterial level, and the clinical presentation of vascular events is heterogeneous, suggesting a complex etiology. Interaction between sickle erythrocytes and the endothelium may contribute to vascular occlusion due to alteration of endothelial function. To investigate this hypothesis, human vascular endothelial cells were overlaid with sickle or normal erythrocytes and stimulated to synthesize DNA. The erythrocytes were sedimented onto replicate monolayers by centrifugation for 10 minutes at 17 g to insure contact with the endothelial cells. Incorporation of 3H-thymidine into endothelial cell DNA was markedly inhibited during contact with sickle erythrocytes. This inhibitory effect was enhanced more than twofold when autologous sickle plasma was present during endothelial cell labeling. Normal erythrocytes, with or without autologous plasma, had a modest effect on endothelial cell DNA synthesis. When sickle erythrocytes in autologous sickle plasma were applied to endothelial monolayers for 1 minute, 10 minutes, or 1 hour and then removed, subsequent DNA synthesis by the endothelial cells was inhibited by 30% to 40%. Although adherence of sickle erythrocytes to the endothelial monolayers was observed under these experimental conditions, the effect of sickle erythrocytes on endothelial DNA synthesis occurred in the absence of significant adherence. Hence, human endothelial cell DNA synthesis is partially inhibited by contact with sickle erythrocytes. The inhibitory effect of sickle erythrocytes occurs during a brief (1 minute) contact with the endothelial monolayers, and persists for at least 6 hours of 3H-thymidine labeling

  9. STUDIES ON ENDOTHELIAL REACTIONS

    Science.gov (United States)

    Foot, Nathan Chandler

    1923-01-01

    of this experiment strengthen the foregoing conclusions materially. It was found that there were many polymorphonuclear amphophils in the pulmonary capillaries of the splenectomized animals and that there were numerous focal necroses in the livers. The controls showed much fewer polymorphonuclear cells in the lungs and no focal necroses in the livers, while the spleens were actively congested and inflamed. Otherwise the experiment was not of sufficient importance to warrant a separate report. The question as to why the endothelium of the pulmonary capillaries shows no stimulation similar to that observed in the carbon experiment, but rather less activity than that of the controls, must be answered hypothetically for the present. With the carbon, comparatively huge amounts of foreign matter were injected repeatedly; here but one injection of a much smaller amount of suspended tubercle bacilli was administered. The resulting stimulus to the pulmonary endothelium would, therefore, differ materially in the two instances. In one there would be succeeding waves of stimulation following each injection of irritating foreign substance. In the other an entirely different sort of stimulus would result; the bacteria would be withdrawn from the circulation within an hour or two, judging by past experience, and would then multiply, to be cast off into the circulation in driblets, as the lesions containing them broke down. At least it can be said that there is a good theoretical reason for the difference in the endothelial reaction in the lungs of the two groups of animals. PMID:19868788

  10. Endothelial cells in the eyes of an immunologist.

    Science.gov (United States)

    Young, M Rita

    2012-10-01

    Endothelial cell activation in the process of tumor angiogenesis and in various aspects of vascular biology has been extensively studied. However, endothelial cells also function in other capacities, including in immune regulation. Compared to the more traditional immune regulatory populations (Th1, Th2, Treg, etc.), endothelial cells have received far less credit as being immune regulators. Their regulatory capacity is multifaceted. They are critical in both limiting and facilitating the trafficking of various immune cell populations, including T cells and dendritic cells, out of the vasculature and into tissue. They also can be induced to stimulate immune reactivity or to be immune inhibitory. In each of these parameters (trafficking, immune stimulation and immune inhibition), their role can be physiological, whereby they have an active role in maintaining health. Alternatively, their role can be pathological, whereby they contribute to disease. In theory, endothelial cells are in an ideal location to recruit cells that can mediate immune reactivity to tumor tissue. Furthermore, they can activate the immune cells as they transmigrate across the endothelium into the tumor. However, what is seen is the absence of these protective effects of endothelial cells and, instead, the endothelial cells succumb to the defense mechanisms of the tumor, resulting in their acquisition of a tumor-protective role. To understand the immune regulatory potential of endothelial cells in protecting the host versus the tumor, it is useful to better understand the other circumstances in which endothelial cells modulate immune reactivities. Which of the multitude of immune regulatory roles that endothelial cells can take on seems to rely on the type of stimulus that they are encountering. It also depends on the extent to which they can be manipulated by potential dangers to succumb and contribute toward attack on the host. This review will explore the physiological and pathological roles

  11. Mesenchymal Stem/Multipotent Stromal Cells from Human Decidua Basalis Reduce Endothelial Cell Activation.

    Science.gov (United States)

    Alshabibi, Manal A; Al Huqail, Al Joharah; Khatlani, Tanvir; Abomaray, Fawaz M; Alaskar, Ahmed S; Alawad, Abdullah O; Kalionis, Bill; Abumaree, Mohamed Hassan

    2017-09-15

    Recently, we reported the isolation and characterization of mesenchymal stem cells from the decidua basalis of human placenta (DBMSCs). These cells express a unique combination of molecules involved in many important cellular functions, which make them good candidates for cell-based therapies. The endothelium is a highly specialized, metabolically active interface between blood and the underlying tissues. Inflammatory factors stimulate the endothelium to undergo a change to a proinflammatory and procoagulant state (ie, endothelial cell activation). An initial response to endothelial cell activation is monocyte adhesion. Activation typically involves increased proliferation and enhanced expression of adhesion and inflammatory markers by endothelial cells. Sustained endothelial cell activation leads to a type of damage to the body associated with inflammatory diseases, such as atherosclerosis. In this study, we examined the ability of DBMSCs to protect endothelial cells from activation through monocyte adhesion, by modulating endothelial proliferation, migration, adhesion, and inflammatory marker expression. Endothelial cells were cocultured with DBMSCs, monocytes, monocyte-pretreated with DBMSCs and DBMSC-pretreated with monocytes were also evaluated. Monocyte adhesion to endothelial cells was examined following treatment with DBMSCs. Expression of endothelial cell adhesion and inflammatory markers was also analyzed. The interaction between DBMSCs and monocytes reduced endothelial cell proliferation and monocyte adhesion to endothelial cells. In contrast, endothelial cell migration increased in response to DBMSCs and monocytes. Endothelial cell expression of adhesion and inflammatory molecules was reduced by DBMSCs and DBMSC-pretreated with monocytes. The mechanism of reduced endothelial proliferation involved enhanced phosphorylation of the tumor suppressor protein p53. Our study shows for the first time that DBMSCs protect endothelial cells from activation by

  12. Endothelial cell oxidative stress and signal transduction

    Directory of Open Access Journals (Sweden)

    ROCIO FONCEA

    2000-01-01

    Full Text Available Endothelial dysfunction (ED is an early event in atherosclerotic disease, preceding clinical manifestations and complications. Increased reactive oxygen species (ROS have been implicated as important mechanisms that contribute to ED, and ROS’s may function as intracellular messengers that modulate signaling pathways. Several intracellular signal events stimulated by ROS have been defined, including the identification of two members of the mitogen activated protein kinase family (ERK1/2 and big MAP kinase, BMK1, tyrosine kinases (Src and Syk and different isoenzymes of PKC as redox-sensitive kinases. ROS regulation of signal transduction components include the modification in the activity of transcriptional factors such as NFkB and others that result in changes in gene expression and modifications in cellular responses. In order to understand the intracellular mechanisms induced by ROS in endothelial cells (EC, we are studying the response of human umbilical cord vein endothelial cells to increased ROS generation by different pro-atherogenic stimuli. Our results show that Homocysteine (Hcy and oxidized LDL (oxLDL enhance the activity and expression of oxidative stress markers, such as NFkB and heme oxygenase 1. These results suggest that these pro-atherogenic stimuli increase oxidative stress in EC, and thus explain the loss of endothelial function associated with the atherogenic process

  13. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells

    OpenAIRE

    Kim, Ji-Seok; Kim, Boa; Lee, Hojun; Thakkar, Sunny; Babbitt, Dianne M.; Eguchi, Satoru; Brown, Michael D.; Park, Joon-Young

    2015-01-01

    This study assesses effects of aerobic exercise training on the release of microparticles from endothelial cells and corroborates these findings using an in vitro experimental exercise stimulant, laminar shear stress. Furthermore, this study demonstrated that shear stress-induced mitochondrial biogenesis mediates these effects against endothelial cell activation and injury.

  14. Functional activities of receptors for tumor necrosis factor-alpha on human vascular endothelial cells.

    NARCIS (Netherlands)

    Paleolog, E.M.; Delasalle, S.A.; Buurman, W.A.; Feldmann, M.

    1994-01-01

    Tumor necrosis factor-alpha (TNF-alpha) plays a critical role in the control of endothelial cell function and hence in regulating traffic of circulating cells into tissues in vivo. Stimulation of endothelial cells in vitro by TNF-alpha increases the surface expression of leukocyte adhesion

  15. Activation of Endothelial Nitric Oxide (eNOS Occurs through Different Membrane Domains in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Jason Tran

    Full Text Available Endothelial cells respond to a large range of stimuli including circulating lipoproteins, growth factors and changes in haemodynamic mechanical forces to regulate the activity of endothelial nitric oxide synthase (eNOS and maintain blood pressure. While many signalling pathways have been mapped, the identities of membrane domains through which these signals are transmitted are less well characterized. Here, we manipulated bovine aortic endothelial cells (BAEC with cholesterol and the oxysterol 7-ketocholesterol (7KC. Using a range of microscopy techniques including confocal, 2-photon, super-resolution and electron microscopy, we found that sterol enrichment had differential effects on eNOS and caveolin-1 (Cav1 colocalisation, membrane order of the plasma membrane, caveolae numbers and Cav1 clustering. We found a correlation between cholesterol-induced condensation of the plasma membrane and enhanced high density lipoprotein (HDL-induced eNOS activity and phosphorylation suggesting that cholesterol domains, but not individual caveolae, mediate HDL stimulation of eNOS. Vascular endothelial growth factor (VEGF-induced and shear stress-induced eNOS activity was relatively independent of membrane order and may be predominantly controlled by the number of caveolae on the cell surface. Taken together, our data suggest that signals that activate and phosphorylate eNOS are transmitted through distinct membrane domains in endothelial cells.

  16. Endothelial adhesion molecules and leukocyte integrins in preeclamptic patients.

    Science.gov (United States)

    Haller, H; Ziegler, E M; Homuth, V; Drab, M; Eichhorn, J; Nagy, Z; Busjahn, A; Vetter, K; Luft, F C

    1997-01-01

    Endothelial cell activation is important in the pathogenesis of preeclampsia; however, the nature of the activation is unknown. We investigated 22 patients with preeclampsia. 29 normotensive pregnancies, and 18 nonpregnant women to test the hypothesis that serum from preeclamptic patients induces expression of intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-1) and stimulates intracellular free calcium concentrations [Ca2+]i in cultured endothelial cells. We then asked whether the corresponding integrin adhesive counter receptors lymphocyte function-associated antigen-1 (CD11a/CD18), macrophage-1 antigen (CD11b/CD18), p150,95 (CD11c/CD18), and very late activation antigen-4 (CD49/CD29) are increased in patients with preeclampsia. In the pregnant women, the measurements were conducted both before and after delivery. Integrin expression was measured by fluorescent antibody cell sorting analysis using monoclonal antibodies. ICAM-1 and VCAM-1 were analyzed on endothelial cells by enzyme-linked immunosorbent assay. [Ca2+]i was measured with fura 2. Serum from preeclamptic patients increased endothelial cell ICAM-1 expression but not VCAM-1 expression. Preeclamptic patients' serum also increased [Ca2+]i in endothelial cells compared with serum from normal nonpregnant or normal pregnant women. Endothelial cell [Ca2+]i concentrations were correlated with the ICAM-1 expression in preeclamptic patients (r = .80, P preclampsia and normal pregnancy compared with the nonpregnant state. The expression decreased significantly after delivery in both groups. Our results demonstrate that serum from preeclamptic women induces increased ICAM-1 surface expression on endothelial cells, while the expression of the integrin counterreceptors was not different. The effect on endothelial cells may be related to an increase in [Ca2+]i. The effect on cultured endothelial cells and the rapid decrease after delivery suggests the presence of a circulating serum

  17. Endothelial actions of atrial and B-type natriuretic peptides.

    Science.gov (United States)

    Kuhn, Michaela

    2012-05-01

    The cardiac hormone atrial natriuretic peptide (ANP) is critically involved in the maintenance of arterial blood pressure and intravascular volume homeostasis. Its cGMP-producing GC-A receptor is densely expressed in the microvascular endothelium of the lung and systemic circulation, but the functional relevance is controversial. Some studies reported that ANP stimulates endothelial cell permeability, whereas others described that the peptide attenuates endothelial barrier dysfunction provoked by inflammatory agents such as thrombin or histamine. Many studies in vitro addressed the effects of ANP on endothelial proliferation and migration. Again, both pro- and anti-angiogenic properties were described. To unravel the role of the endothelial actions of ANP in vivo, we inactivated the murine GC-A gene selectively in endothelial cells by homologous loxP/Cre-mediated recombination. Our studies in these mice indicate that ANP, via endothelial GC-A, increases endothelial albumin permeability in the microcirculation of the skin and skeletal muscle. This effect is critically involved in the endocrine hypovolaemic, hypotensive actions of the cardiac hormone. On the other hand the homologous GC-A-activating B-type NP (BNP), which is produced by cardiac myocytes and many other cell types in response to stressors such as hypoxia, possibly exerts more paracrine than endocrine actions. For instance, within the ischaemic skeletal muscle BNP released from activated satellite cells can improve the regeneration of neighbouring endothelia. This review will focus on recent advancements in our understanding of endothelial NP/GC-A signalling in the pulmonary versus systemic circulation. It will discuss possible mechanisms accounting for the discrepant observations made for the endothelial actions of this hormone-receptor system and distinguish between (patho)physiological and pharmacological actions. Lastly it will emphasize the potential therapeutical implications derived from the

  18. Evolution of endothelial keratoplasty.

    Science.gov (United States)

    Price, Francis W; Price, Marianne O

    2013-11-01

    Endothelial keratoplasty has evolved into a popular alternative to penetrating keratoplasty (PK) for the treatment of endothelial dysfunction. Although the earliest iterations were challenging and were not widely adopted, the iteration known as Descemet stripping endothelial keratoplasty (DSEK) has gained widespread acceptance. DSEK combines a simplified technique for stripping dysfunctional endothelium from the host cornea and microkeratome dissection of the donor tissue, a step now commonly completed in advance by eye bank technicians. Studies show that a newer endothelial keratoplasty iteration, known as Descemet membrane endothelial keratoplasty (DMEK), provides an even faster and better visual recovery than DSEK does. In addition, DMEK significantly reduces the risk of immunologic graft rejection episodes compared with that in DSEK or in PK. Although the DMEK donor tissue, consisting of the bare endothelium and Descemet membrane without any stroma, is more challenging to prepare and position in the recipient eye, recent improvements in instrumentation and surgical techniques are increasing the ease and the reliability of the procedure. DSEK successfully mitigates 2 of the main liabilities of PK: ocular surface complications and structural problems (including induced astigmatism and perpetually weak wounds), whereas DMEK further mitigates the 2 principal remaining liabilities of PK: immunologic graft reactions and secondary glaucoma from prolonged topical corticosteroid use.

  19. Trifluoperazine: corneal endothelial phototoxicity

    International Nuclear Information System (INIS)

    Hull, D.S.; Csukas, S.; Green, K.

    1983-01-01

    Trifluoperazine is used for the treatment of psychiatric disorders. Perfusion of corneal endothelial cells with trifluoperazine-HC1 concurrent with exposure to long wavelength ultraviolet light resulted in a corneal swelling rate greater than that found in perfused corneas not exposed to ultraviolet light. Exposure of endothelial cells to 25 W incandescent light during perfusion with trifluoperazine-HC1 did not result in a higher corneal swelling rate compared to those perfused in the dark. The increased corneal swelling rate could be produced by pre-exposure of the trifluoperazine-HC1 perfusing solution to ultraviolet light suggesting the production of toxic photoproducts during exposure of trifluoperazine-HC1 to ultraviolet light. Perfusion of corneal endothelial cells with non-ultraviolet illuminated trifluoperazine-HC1 had no effect on endothelial cell membranes or ultrastructure. This is in contrast to cells perfused with trifluoperazine-HC1 that had been exposed to ultraviolet light in which there was an alteration of mitochondria and a loss of cytoplasmic homogeneity. The data imply that the trifluoperazine-HC1 photoproduct had an adverse effect on cellular transport mechanisms. The study also further demonstrates the value of the corneal endothelial cell model for identifying the physiological and anatomical changes occuring in photo-induced toxic reactions. (author)

  20. Mitochondria and Endothelial Function

    Science.gov (United States)

    Kluge, Matthew A.; Fetterman, Jessica L.; Vita, Joseph A.

    2013-01-01

    In contrast to their role in other cell types with higher energy demands, mitochondria in endothelial cells primarily function in signaling cellular responses to environmental cues. This article provides an overview of key aspects of mitochondrial biology in endothelial cells, including subcellular location, biogenesis, dynamics, autophagy, ROS production and signaling, calcium homeostasis, regulated cell death, and heme biosynthesis. In each section, we introduce key concepts and then review studies showing the importance of that mechanism to endothelial control of vasomotor tone, angiogenesis, and inflammatory activation. We particularly highlight the small number of clinical and translational studies that have investigated each mechanism in human subjects. Finally, we review interventions that target different aspects of mitochondrial function and their effects on endothelial function. The ultimate goal of such research is the identification of new approaches for therapy. The reviewed studies make it clear that mitochondria are important in endothelial physiology and pathophysiology. A great deal of work will be needed, however, before mitochondria-directed therapies are available for the prevention and treatment of cardiovascular disease. PMID:23580773

  1. Role of glutathione biosynthesis in endothelial dysfunction and fibrosis

    Directory of Open Access Journals (Sweden)

    Cristina Espinosa-Díez

    2018-04-01

    Full Text Available Glutathione (GSH biosynthesis is essential for cellular redox homeostasis and antioxidant defense. The rate-limiting step requires glutamate-cysteine ligase (GCL, which is composed of the catalytic (GCLc and the modulatory (GCLm subunits. To evaluate the contribution of GCLc to endothelial function we generated an endothelial-specific Gclc haplo-insufficient mouse model (Gclc e/+ mice. In murine lung endothelial cells (MLEC derived from these mice we observed a 50% reduction in GCLc levels compared to lung fibroblasts from the same mice. MLEC obtained from haplo-insufficient mice showed significant reduction in GSH levels as well as increased basal and stimulated ROS levels, reduced phosphorylation of eNOS (Ser 1177 and increased eNOS S-glutathionylation, compared to MLEC from wild type (WT mice. Studies in mesenteric arteries demonstrated impaired endothelium-dependent vasodilation in Gclc(e/+ male mice, which was corrected by pre-incubation with GSH-ethyl-ester and BH4. To study the contribution of endothelial GSH synthesis to renal fibrosis we employed the unilateral ureteral obstruction model in WT and Gclc(e/+ mice. We observed that obstructed kidneys from Gclc(e/+ mice exhibited increased deposition of fibrotic markers and reduced Nrf2 levels. We conclude that the preservation of endothelial GSH biosynthesis is not only critical for endothelial function but also in anti-fibrotic responses. Keywords: Glutamate-cysteine ligase, ROS, Glutathione, Endothelial dysfunction, Kidney Fibrosis

  2. Endothelial function is unaffected by changing between carvedilol and metoprolol in patients with heart failure-a randomized study

    DEFF Research Database (Denmark)

    Falskov, Britt; Hermann, Thomas Steffen; Raunsø, Jakob

    2011-01-01

    Carvedilol has been shown to be superior to metoprolol tartrate to improve clinical outcomes in patients with heart failure (HF), yet the mechanisms responsible for these differences remain unclear. We examined if there were differences in endothelial function, insulin stimulated endothelial func...... function, 24 hour ambulatory blood pressure and heart rate during treatment with carvedilol, metoprolol tartrate and metoprolol succinate in patients with HF.......Carvedilol has been shown to be superior to metoprolol tartrate to improve clinical outcomes in patients with heart failure (HF), yet the mechanisms responsible for these differences remain unclear. We examined if there were differences in endothelial function, insulin stimulated endothelial...

  3. Effects of blood products on inflammatory response in endothelial cells in vitro.

    Directory of Open Access Journals (Sweden)

    Martin Urner

    Full Text Available BACKGROUND: Transfusing blood products may induce inflammatory reactions within the vascular compartment potentially leading to a systemic inflammatory response. Experiments were designed to assess the inflammatory potential of different blood products in an endothelial cell-based in vitro model and to compare baseline levels of potentially activating substances in transfusion products. METHODS: The inflammatory response from pre-activated (endotoxin-stimulated and non-activated endothelial cells as well as neutrophil endothelial transmigration in response to packed red blood cells (PRBC, platelet concentrates (PC and fresh frozen plasma (FFP was determined. Baseline inflammatory mediator and lipid concentrations in blood products were evaluated. RESULTS: Following incubation with all blood products, an increased inflammatory mediator release from endothelial cells was observed. Platelet concentrates, and to a lesser extent also FFP, caused the most pronounced response, which was accentuated in already pre-stimulated endothelial cells. Inflammatory response of endothelial cells as well as blood product-induced migration of neutrophils through the endothelium was in good agreement with the lipid content of the according blood product. CONCLUSION: Within the group of different blood transfusion products both PC and FFP have a high inflammatory potential with regard to activation of endothelial cells. Inflammation upon blood product exposure is strongly accentuated when endothelial cells are pre-injured. High lipid contents in the respective blood products goes along with an accentuated inflammatory reaction from endothelial cells.

  4. Infections and endothelial cells

    NARCIS (Netherlands)

    Keller, Tymen T.; Mairuhu, Albert T. A.; de Kruif, Martijn D.; Klein, Saskia K.; Gerdes, Victor E. A.; ten Cate, Hugo; Brandjes, Dees P. M.; Levi, Marcel; van Gorp, Eric C. M.

    2003-01-01

    Systemic infection by various pathogens interacts with the endothelium and may result in altered coagulation, vasculitis and atherosclerosis. Endothelium plays a role in the initiation and regulation of both coagulation and fibrinolysis. Exposure of endothelial cells may lead to rapid activation of

  5. Andrographolide stimulates p38 mitogen-activated protein kinase-nuclear factor erythroid-2-related factor 2-heme oxygenase 1 signaling in primary cerebral endothelial cells for definite protection against ischemic stroke in rats.

    Science.gov (United States)

    Yen, Ting-Lin; Chen, Ray-Jade; Jayakumar, Thanasekaran; Lu, Wan-Jung; Hsieh, Cheng-Ying; Hsu, Ming-Jen; Yang, Chih-Hao; Chang, Chao-Chien; Lin, Yen-Kuang; Lin, Kuan-Hung; Sheu, Joen-Rong

    2016-04-01

    Stroke pathogenesis involves complex oxidative stress-related pathways. The nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) pathways have been considered molecular targets in pharmacologic intervention for ischemic diseases. Andrographolide, a labdane diterpene, has received increasing attention in recent years because of its various pharmacologic activities. We determined that andrographolide modulates the mitogen-activated protein kinase (MAPK)-Nrf2-HO-1 signaling cascade in primary cerebral endothelial cells (CECs) to provide positive protection against middle cerebral artery occlusion (MCAO)-induced ischemic stroke in rats. In the present study, andrographolide (10 μM) increased HO-1 protein and messenger RNA expressions, Nrf2 phosphorylation, and nuclear translocation in CECs, and these activities were disrupted by a p38 MAPK inhibitor, SB203580, but not by the extracellular signal-regulated kinase inhibitor PD98059 or c-Jun amino-terminal kinase inhibitor SP600125. Similar results were observed in confocal microscopy analysis. Moreover, andrographolide-induced Nrf2 and HO-1 protein expressions were significantly inhibited by Nrf2 small interfering RNA. Moreover, HO-1 knockdown attenuated the protective effect of andrographolide against oxygen-glucose deprivation-induced CEC death. Andrographolide (0.1 mg/kg) significantly suppressed free radical formation, blood-brain barrier disruption, and brain infarction in MCAO-insulted rats, and these effects were reversed by the HO-1 inhibitor zinc protoporphyrin IX. The mechanism is attributable to HO-1 activation, as directly evidenced by andrographolide-induced pronounced HO-1 expression in brain tissues, which was highly localized in the cerebral capillary. In conclusion, andrographolide increased Nrf2-HO-1 expression through p38 MAPK regulation, confirming that it provides protection against MCAO-induced brain injury. These findings provide strong evidence that andrographolide could

  6. Exercise training improves in vivo endothelial repair capacity of early endothelial progenitor cells in subjects with metabolic syndrome.

    Science.gov (United States)

    Sonnenschein, Kristina; Horváth, Tibor; Mueller, Maja; Markowski, Andrea; Siegmund, Tina; Jacob, Christian; Drexler, Helmut; Landmesser, Ulf

    2011-06-01

    Endothelial dysfunction and injury are considered to contribute considerably to the development and progression of atherosclerosis. It has been suggested that intense exercise training can increase the number and angiogenic properties of early endothelial progenitor cells (EPCs). However, whether exercise training stimulates the capacity of early EPCs to promote repair of endothelial damage and potential underlying mechanisms remain to be determined. The present study was designed to evaluate the effects of moderate exercise training on in vivo endothelial repair capacity of early EPCs, and their nitric oxide and superoxide production as characterized by electron spin resonance spectroscopy analysis in subjects with metabolic syndrome. Twenty-four subjects with metabolic syndrome were randomized to an 8 weeks exercise training or a control group. Superoxide production and nitric oxide (NO) availability of early EPCs were characterized by using electron spin resonance (ESR) spectroscopy analysis. In vivo endothelial repair capacity of EPCs was examined by transplantation into nude mice with defined carotid endothelial injury. Endothelium-dependent, flow-mediated vasodilation was analysed using high-resolution ultrasound. Importantly, exercise training resulted in a substantially improved in vivo endothelial repair capacity of early EPCs (24.0 vs 12.7%; p exercise training, but not in the control group. Moreover, exercise training reduced superoxide production of EPCs, which was not observed in the control group. The present study suggests for the first time that moderate exercise training increases nitric oxide production of early endothelial progenitor cells and reduces their superoxide production. Importantly, this is associated with a marked beneficial effect on the in vivo endothelial repair capacity of early EPCs in subjects with metabolic syndrome.

  7. A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A

    International Nuclear Information System (INIS)

    Latham, Antony M.; Odell, Adam F.; Mughal, Nadeem A.; Issitt, Theo; Ulyatt, Clare; Walker, John H.; Homer-Vanniasinkam, Shervanthi; Ponnambalam, Sreenivasan

    2012-01-01

    Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a high VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: ► Endothelial cells mount a stress response under conditions of low serum. ► Endothelial VEGFR levels are

  8. Polystyrene-Divinylbenzene-Based Adsorbents Reduce Endothelial Activation and Monocyte Adhesion Under Septic Conditions in a Pore Size-Dependent Manner

    OpenAIRE

    Eichhorn, Tanja; Rauscher, Sabine; Hammer, Caroline; Gr?ger, Marion; Fischer, Michael B.; Weber, Viktoria

    2016-01-01

    Endothelial activation with excessive recruitment and adhesion of immune cells plays a central role in the progression of sepsis. We established a microfluidic system to study the activation of human umbilical vein endothelial cells by conditioned medium containing plasma from lipopolysaccharide-stimulated whole blood or from septic blood and to investigate the effect of adsorption of inflammatory mediators on endothelial activation. Treatment of stimulated whole blood with polystyrene-diviny...

  9. Mechanisms of Endothelial Dysfunction in Hypertensive Pregnancy and Preeclampsia

    Science.gov (United States)

    Possomato-Vieira, José S.; Khalil, Raouf A.

    2016-01-01

    Preeclampsia is a pregnancy-related disorder characterized by hypertension, and could lead to maternal and fetal morbidity and mortality. Although the causative factors and pathophysiological mechanisms are unclear, endothelial dysfunction is a major hallmark of preeclampsia. Clinical tests and experimental research have suggested that generalized endotheliosis in the systemic, renal, cerebral and hepatic circulation could decrease endothelium-derived vasodilators such as nitric oxide, prostacyclin and hyperpolarization factor and increase vasoconstrictors such as endothelin-1 and thromboxane A2, leading to increased vasoconstriction, hypertension and other manifestation of preeclampsia. In search for the upstream mechanisms that could cause endothelial dysfunction, certain genetic, demographic and environmental risk factors have been suggested to cause abnormal expression of uteroplacental integrins, cytokines and matrix metalloproteinases, leading to decreased maternal tolerance, apoptosis of invasive trophoblast cells, inadequate spiral arteries remodeling, reduced uterine perfusion pressure (RUPP), and placental ischemia/hypoxia. RUPP may cause imbalance between the anti-angiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the pro-angiogenic factors vascular endothelial growth factor and placental growth factor, or stimulate the release of other circulating bioactive factors such as inflammatory cytokines, hypoxia-inducible factor-1, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors could then target endothelial cells and cause generalized endothelial dysfunction. Therapeutic options are currently limited, but understanding the factors involved in endothelial dysfunction could help design new approaches for prediction and management of preeclampsia. PMID:27451103

  10. Role of glutathione biosynthesis in endothelial dysfunction and fibrosis.

    Science.gov (United States)

    Espinosa-Díez, Cristina; Miguel, Verónica; Vallejo, Susana; Sánchez, Francisco J; Sandoval, Elena; Blanco, Eva; Cannata, Pablo; Peiró, Concepción; Sánchez-Ferrer, Carlos F; Lamas, Santiago

    2018-04-01

    Glutathione (GSH) biosynthesis is essential for cellular redox homeostasis and antioxidant defense. The rate-limiting step requires glutamate-cysteine ligase (GCL), which is composed of the catalytic (GCLc) and the modulatory (GCLm) subunits. To evaluate the contribution of GCLc to endothelial function we generated an endothelial-specific Gclc haplo-insufficient mouse model (Gclc e/+ mice). In murine lung endothelial cells (MLEC) derived from these mice we observed a 50% reduction in GCLc levels compared to lung fibroblasts from the same mice. MLEC obtained from haplo-insufficient mice showed significant reduction in GSH levels as well as increased basal and stimulated ROS levels, reduced phosphorylation of eNOS (Ser 1177) and increased eNOS S-glutathionylation, compared to MLEC from wild type (WT) mice. Studies in mesenteric arteries demonstrated impaired endothelium-dependent vasodilation in Gclc(e/+) male mice, which was corrected by pre-incubation with GSH-ethyl-ester and BH 4 . To study the contribution of endothelial GSH synthesis to renal fibrosis we employed the unilateral ureteral obstruction model in WT and Gclc(e/+) mice. We observed that obstructed kidneys from Gclc(e/+) mice exhibited increased deposition of fibrotic markers and reduced Nrf2 levels. We conclude that the preservation of endothelial GSH biosynthesis is not only critical for endothelial function but also in anti-fibrotic responses. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Infection of endothelial cells by common human viruses.

    Science.gov (United States)

    Friedman, H M

    1989-01-01

    Common human viruses were evaluated for their ability to replicate in the endothelial cells of human umbilical vein and bovine thoracic aorta in vitro. Infection occurred with most viruses. The susceptibilities of endothelial cells derived from bovine aorta, pulmonary artery, and vena cava were compared. Among the viruses studied, no differences were noted in the ability to grow in endothelial cells from these three large vessels. One virus, herpes simplex virus type 1, was evaluated for its ability to produce persistent infection of endothelial cells. Infection developed and persisted for up to 3 months. After the first week, productive infection was found in less than 1% of cells. Nevertheless, the infection markedly affected the growth and morphology of the endothelial monolayer. Infection with any of several different viruses was noted to alter endothelial cell functions, including adherence of granulocytes, production of colony-stimulating factor, and synthesis of matrix protein. In addition, herpes simplex virus type 1 induced receptors for the Fc portion of IgG and for complement component C3b. These findings indicate that common human viruses can profoundly affect the biology of the endothelium.

  12. Construction of extracellular microenvironment to improve surface endothelialization of NiTi alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peng, E-mail: liupeng79@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Zhao, Yongchun; Yan, Ying; Hu, Yan; Yang, Weihu [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Cai, Kaiyong, E-mail: kaiyong_cai@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China)

    2015-10-01

    To mimic extracellular microenvironment of endothelial cell, a bioactive multilayered structure of gelatin/chitosan pair, embedding with vascular endothelial growth factor (VEGF), was constructed onto NiTi alloy substrate surface via a layer-by-layer assembly technique. The successful fabrication of the multilayered structure was demonstrated by scanning electron microscopy, atomic force microscopy, contact angle measurement, attenuated total reflection-fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, respectively. The growth behaviors of endothelial cells on various NiTi alloy substrates were investigated in vitro. Cytoskeleton observation, MTT assay, and wound healing assay proved that the VEGF-embedded multilayer structure positively stimulated adhesion, proliferation and motogenic responses of endothelial cells. More importantly, the present system promoted the nitric oxide production of endothelial cells. The approach affords an alternative to construct extracellular microenvironment for improving surface endothelialization of a cardiovascular implant. - Highlights: • Biofunctional multilayer films mimicking extracellular microenvironment were successfully fabricated. • Multilayered structure stimulated the biological responses of endothelial cells. • The approach affords an efficient approach for surface endothelialization of stent implant.

  13. Endothelial network formed with human dermal microvascular endothelial cells in autologous multicellular skin substitutes.

    Science.gov (United States)

    Ponec, Maria; El Ghalbzouri, Abdoelwaheb; Dijkman, Remco; Kempenaar, Johanna; van der Pluijm, Gabri; Koolwijk, Pieter

    2004-01-01

    A human skin equivalent from a single skin biopsy harboring keratinocytes and melanocytes in the epidermal compartment, and fibroblasts and microvascular dermal endothelial cells in the dermal compartment was developed. The results of the study revealed that the nature of the extracellular matrix of the dermal compartments plays an important role in establishment of endothelial network in vitro. With rat-tail type I collagen matrices only lateral but not vertical expansion of endothelial networks was observed. In contrast, the presence of extracellular matrix of entirely human origin facilitated proper spatial organization of the endothelial network. Namely, when human dermal fibroblasts and microvascular endothelial cells were seeded on the bottom of an inert filter and subsequently epidermal cells were seeded on top of it, fibroblasts produced extracellular matrix throughout which numerous branched tubes were spreading three-dimensionally. Fibroblasts also facilitated the formation of basement membrane at the epidermal/matrix interface. Under all culture conditions, fully differentiated epidermis was formed with numerous melanocytes present in the basal epidermal cell layer. The results of the competitive RT-PCR revealed that both keratinocytes and fibroblasts expressed VEGF-A, -B, -C, aFGF and bFGF mRNA, whereas fibroblasts also expressed VEGF-D mRNA. At protein level, keratinocytes produced 10 times higher amounts of VEGF-A than fibroblasts did. The generation of multicellular skin equivalent from a single human skin biopsy will stimulate further developments for its application in the treatment of full-thickness skin defects. The potential development of biodegradable, biocompatible material suitable for these purposes is a great challenge for future research.

  14. Protective properties of artichoke (Cynara scolymus) against oxidative stress induced in cultured endothelial cells and monocytes.

    Science.gov (United States)

    Zapolska-Downar, Danuta; Zapolski-Downar, Andrzej; Naruszewicz, Marek; Siennicka, Aldona; Krasnodebska, Barbara; Kołdziej, Blanka

    2002-11-01

    It is currently believed that oxidative stress and inflammation play a significant role in atherogenesis. Artichoke extract exhibits hypolipemic properties and contains numerous active substances with antioxidant properties in vitro. We have studied the influence of aqueous and ethanolic extracts from artichoke on intracellular oxidative stress stimulated by inflammatory mediators (TNFalpha and LPS) and ox-LDL in endothelial cells and monocytes. Oxidative stress which reflects the intracellular production of reactive oxygen species (ROS) was followed by measuring the oxidation of 2', 7'-dichlorofluorescin (DCFH) to 2', 7'-dichlorofluorescein (DCF). Agueous and ethanolic extracts from artichoke were found to inhibit basal and stimulated ROS production in endothelial cells and monocytes in dose dependent manner. In endothelial cells, the ethanolic extract (50 microg/ml) reduced ox-LDL-induced intracellular ROS production by 60% (partichoke extracts have marked protective properties against oxidative stress induced by inflammatory mediators and ox-LDL in cultured endothelial cells and monocytes.

  15. Infection with Porphyromonas gingivalis exacerbates endothelial injury in obese mice.

    Directory of Open Access Journals (Sweden)

    Min Ao

    Full Text Available BACKGROUND: A number of studies have revealed a link between chronic periodontitis and cardiovascular disease in obese patients. However, there is little information about the influence of periodontitis-associated bacteria, Porphyromonas gingivalis (Pg, on pathogenesis of atherosclerosis in obesity. METHODS: In vivo experiment: C57BL/6J mice were fed with a high-fat diet (HFD or normal chow diet (CD, as a control. Pg was infected from the pulp chamber. At 6 weeks post-infection, histological and immunohistochemical analysis of aortal tissues was performed. In vitro experiment: hTERT-immortalized human umbilical vein endothelial cells (HuhT1 were used to assess the effect of Pg/Pg-LPS on free fatty acid (FFA induced endothelial cells apoptosis and regulation of cytokine gene expression. RESULTS: Weaker staining of CD31 and increased numbers of TUNEL positive cells in aortal tissue of HFD mice indicated endothelial injury. Pg infection exacerbated the endothelial injury. Immunohistochemically, Pg was detected deep in the smooth muscle of the aorta, and the number of Pg cells in the aortal wall was higher in HFD mice than in CD mice. Moreover, in vitro, FFA treatment induced apoptosis in HuhT1 cells and exposure to Pg-LPS increased this effect. In addition, Pg and Pg-LPS both attenuated cytokine production in HuhT1 cells stimulated by palmitate. CONCLUSIONS: Dental infection of Pg may contribute to pathogenesis of atherosclerosis by accelerating FFA-induced endothelial injury.

  16. Endothelial lipase is a major determinant of HDL level

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Tatsuro; Choi, Sungshin; Kundu, Ramendra K.; Hirata, Ken-Ichi; Rubin, Edward M.; Cooper, Allen D.; Quertermous, Thomas

    2003-01-30

    For the past three decades, epidemiologic studies have consistently demonstrated an inverse relationship between plasma HDL cholesterol (HDL-C) concentrations and coronary heart disease (CHD). Population-based studies have provided compelling evidence that low HDL-C levels are a risk factor for CHD, and several clinical interventions that increased plasma levels of HDL-C were associated with a reduction in CHD risk. These findings have stimulated extensive investigation into the determinants of plasma HDL-C levels. Turnover studies using radiolabeled apolipoprotein A-I, the major protein component of HDL, suggest that plasma HDL-C concentrations are highly correlated with the rate of clearance of apolipoprotein AI. However, the metabolic mechanisms by which HDL are catabolized have not been fully defined. Previous studies in humans with genetic deficiency of cholesteryl ester transfer protein, and in mice lacking the scavenger receptor BI (SR-BI), have demonstrated that these proteins participate in the removal of cholesterol from HDL, while observations in individuals with mutations in hepatic lipase indicate that this enzyme hydrolyzes HDL triglycerides. In this issue of the JCI, reports from laboratories of Tom Quertermous and Dan Rader now indicate that endothelial lipase (LIPG), a newly identified member of the lipase family, catalyzes the hydrolysis of HDL phospholipids and facilitates the clearance of HDL from the circulation. Endothelial lipase was initially cloned by both of these laboratories using entirely different strategies. Quertermous and his colleagues identified endothelial lipase as a transcript that was upregulated in cultured human umbilical vein endothelial cells undergoing tube formation, whereas the Rader group cloned endothelial lipase as a transcript that was upregulated in the human macrophage-like cell line THP-1 exposed to oxidized LDL. Database searches revealed that endothelial lipase shows strong sequence similarity to lipoprotein

  17. Interaction of human endothelial cells and nickel-titanium materials modified with silicon ions

    Energy Technology Data Exchange (ETDEWEB)

    Lotkov, Aleksandr I., E-mail: lotkov@ispms.tsc.ru; Kashin, Oleg A., E-mail: okashin@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Kudryavtseva, Yuliya A., E-mail: yulia-k1970@mail.ru; Antonova, Larisa V., E-mail: antonova.la@mail.ru; Matveeva, Vera G., E-mail: matveeva-vg@mail.ru; Sergeeva, Evgeniya A., E-mail: sergeewa.ew@yandex.ru [Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, 650002 (Russian Federation); Kudryashov, Andrey N., E-mail: kudryashov@angioline.ru [Angioline Interventional Device Ltd, Novosibirsk, 630090 (Russian Federation)

    2015-10-27

    The paper studies the influence of chemical and phase compositions of NiTi surface layers modified with Si ions by plasma immersion implantation on their interaction with endothelial cells. It is shown that certain technological modes of Si ion implantation enhance the adhesion, proliferation, and viability of endothelial cells. It is found that the Si-modified NiTi surface is capable of stimulating the formation of capillary-like structures in the cell culture.

  18. Proinflammatory mediators stimulate neutrophil-directed angiogenesis.

    LENUS (Irish Health Repository)

    McCourt, M

    2012-02-03

    BACKGROUND: Vascular endothelial growth factor (VEGF; vascular permeability factor) is one of the most potent proangiogenic cytokines, and it plays a central role in mediating the process of angiogenesis or new blood vessel formation. Neutrophils (PMNs) recently have been shown to produce VEGF. HYPOTHESIS: The acute inflammatory response is a potent stimulus for PMN-directed angiogenesis. METHODS: Neutrophils were isolated from healthy volunteers and stimulated with lipopolysaccharide (LPS), tumor necrosis factor alpha (TNF-alpha), interleukin 6 (IL-6), and anti-human Fas monoclonal antibody. Culture supernatants were assayed for VEGF using enzyme-linked immunosorbent assays. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs were then added to human umbilical vein endothelial cells and human microvessel endothelial cells and assessed for endothelial cell proliferation using 5-bromodeoxyuridine labeling. Tubule formation was also assessed on MATRIGEL basement membrane matrix. Neutrophils were lysed to measure total VEGF release, and VEGF expression was detected using Western blot analysis. RESULTS: Lipopolysaccharide and TNF-alpha stimulation resulted in significantly increased release of PMN VEGF (532+\\/-49 and 484+\\/-80 pg\\/mL, respectively; for all, presented as mean +\\/- SEM) compared with control experiments (32+\\/-4 pg\\/mL). Interleukin 6 and Fas had no effect. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs also resulted in significant increases (P<.005) in macrovascular and microvascular endothelial cell proliferation and tubule formation. Adding anti-human VEGF-neutralizing polyclonal antibody to stimulated PMN supernatant inhibited these effects. Total VEGF release following cell lysis and Western blot analysis suggests that the VEGF is released from an intracellular store. CONCLUSION: Activated human PMNs are directly angiogenic by releasing VEGF, and this has important implications for inflammation, capillary leak syndrome

  19. Arachidonic acid metabolites and endothelial dysfunction of portal hypertension.

    Science.gov (United States)

    Sacerdoti, David; Pesce, Paola; Di Pascoli, Marco; Brocco, Silvia; Cecchetto, Lara; Bolognesi, Massimo

    2015-07-01

    Increased resistance to portal flow and increased portal inflow due to mesenteric vasodilatation represent the main factors causing portal hypertension in cirrhosis. Endothelial cell dysfunction, defined as an imbalance between the synthesis, release, and effect of endothelial mediators of vascular tone, inflammation, thrombosis, and angiogenesis, plays a major role in the increase of resistance in portal circulation, in the decrease in the mesenteric one, in the development of collateral circulation. Reduced response to vasodilators in liver sinusoids and increased response in the mesenteric arterioles, and, viceversa, increased response to vasoconstrictors in the portal-sinusoidal circulation and decreased response in the mesenteric arterioles are also relevant to the pathophysiology of portal hypertension. Arachidonic acid (AA) metabolites through the three pathways, cyclooxygenase (COX), lipoxygenase, and cytochrome P450 monooxygenase and epoxygenase, are involved in endothelial dysfunction of portal hypertension. Increased thromboxane-A2 production by liver sinusoidal endothelial cells (LSECs) via increased COX-1 activity/expression, increased leukotriens, increased epoxyeicosatrienoic acids (EETs) (dilators of the peripheral arterial circulation, but vasoconstrictors of the portal-sinusoidal circulation), represent a major component in the increased portal resistance, in the decreased portal response to vasodilators and in the hyper-response to vasoconstrictors. Increased prostacyclin (PGI2) via COX-1 and COX-2 overexpression, and increased EETs/heme-oxygenase-1/K channels/gap junctions (endothelial derived hyperpolarizing factor system) play a major role in mesenteric vasodilatation, hyporeactivity to vasoconstrictors, and hyper-response to vasodilators. EETs, mediators of liver regeneration after hepatectomy and of angiogenesis, may play a role in the development of regenerative nodules and collateral circulation, through stimulation of vascular endothelial

  20. Papillary endothelial hyperplasia in angiokeratoma.

    Science.gov (United States)

    Mehta, Anurag; Sayal, Satish Kumar; Raman, Deep Kumar; Sood, Aradhana

    2003-01-01

    Papillary endothelial hyperplasia (Masson's tumour) is a reactive proliferation of endothelium producing papillary structures with fibrovascular cores. Dilatation, stasis and accompanying inflammation have been incriminated as the inciting events, evident by the presence of this lesion in haemorrhoids, urethral caruncles and laryngeal polyps. We present here a case of papillary endothelial hyperplasia in angiokeratoma hitherto undescribed despite sharing common etiopathogenetic features of dilatation and stasis with other aforementioned lesions.

  1. Systemic administration of thrombin peptide TP508 enhances VEGF-stimulated angiogenesis and attenuates effects of chronic hypoxia

    Science.gov (United States)

    Olszewska-Pazdrak, Barbara; Carney, Darrell H.

    2015-01-01

    Revascularization of chronic wounds and ischemic tissue is attenuated by endothelial dysfunction and the inability of angiogenic factors to stimulate angiogenesis. We recently showed that TP508, a nonproteolytic thrombin peptide, increases perfusion and NO-dependent vasodilation in hearts with chronic ischemia and stimulates NO production by endothelial cells. In this study, we investigated systemic in vivo effects of TP508 on VEGF-stimulated angiogenesis in vitro using aortic explants in normoxic and hypoxic conditions. Mice were injected with saline or TP508 and 24h later aortas were removed and cultured to quantify endothelial sprouting. TP508 injection increased endothelial sprouting and potentiated the in vitro response to VEGF. Exposure of control explants to hypoxia inhibited basal and VEGF-stimulated endothelial cell sprouting. This effect of hypoxia was significantly prevented by TP508 injection. Thus, TP508 systemic administration increases responsiveness of aortic endothelial cells to VEGF and diminishes the effect of chronic hypoxia on endothelial cell sprouting. Studies using human endothelial cells in culture suggest that protective effects of TP508 during hypoxia may involve stimulation of endothelial cell NO production. These data suggest potential clinical benefit of using a combination of systemic TP508 and local VEGF as a therapy for revascularization of ischemic tissue. PMID:23594718

  2. XIAP reverses various functional activities of FRNK in endothelial cells

    International Nuclear Information System (INIS)

    Ahn, Sunyoung; Kim, Hyun Jeong; Chi, Sung-Gil; Park, Heonyong

    2012-01-01

    Highlights: ► FRNK domain is recruited into focal adhesion (FA), controlling endothelial cell adhesion. ► XIAP binds the FRNK domain of FAK. ► XIAP inhibits recruitment of FRNK into Fas and FRNK-promoted cell adhesion. ► XIAP plays a key role in vascular functions of FRNK or FRNK domain-mediated vascular functions of FAK. -- Abstract: In endothelial cells, focal adhesion kinase (FAK) regulates cell proliferation, migration, adhesion, and shear-stimulated activation of MAPK. We recently found that FAK is recruited into focal adhesion (FA) sites through interactions with XIAP (X-chromosome linked inhibitor of apoptosis protein) and activated by Src kinase in response to shear stress. In this study, we examined which domain(s) of FAK is(are) important for various vascular functions such as FA recruiting, XIAP-binding and shear stress-stimulated ERK activation. Through a series of experiments, we determined that the FRNK domain is recruited into FA sites and promotes endothelial cell adhesion. Interestingly, XIAP knockdown was shown to reduce FA recruitment of FRNK and the cell adhesive effect of FRNK. In addition, we found that XIAP interacts with FRNK, suggesting cross-talk between XIAP and FRNK. We also demonstrated that FRNK inhibits endothelial cell migration and shear-stimulated ERK activation. These inhibitory effects of FRNK were reversed by XIAP knockdown. Taken together, we can conclude that XIAP plays a key role in vascular functions of FRNK or FRNK domain-mediated vascular functions of FAK.

  3. Apelin is a novel angiogenic factor in retinal endothelial cells

    International Nuclear Information System (INIS)

    Kasai, Atsushi; Shintani, Norihito; Oda, Maki; Kakuda, Michiya; Hashimoto, Hitoshi; Matsuda, Toshio; Hinuma, Shuji; Baba, Akemichi

    2004-01-01

    There has been much focus recently on the possible functions of apelin, an endogenous ligand for the orphan G-protein-coupled receptor APJ, in cardiovascular and central nervous systems. We report a new function of apelin as a novel angiogenic factor in retinal endothelial cells. The retinal endothelial cell line RF/6A highly expressed both apelin and APJ transcripts, while human umbilical venous endothelial cells (HUVECs) only expressed apelin mRNA. In accordance with these observations, apelin at concentrations of 1 pM-1 μM significantly enhanced migration, proliferation, and capillary-like tube formation of RF/6A cells, but not those of HUVECs, whereas VEGF stimulates those parameters of both cell types. In vivo Matrigel plug assay for angiogenesis, the inclusion of 1 nM apelin in the Matrigel resulted in clear capillary-like formations with an increase of hemoglobin content in the plug. This is the first report showing that apelin is an angiogenic factor in retinal endothelial cells

  4. Endothelial-regenerating cells: an expanding universe.

    Science.gov (United States)

    Steinmetz, Martin; Nickenig, Georg; Werner, Nikos

    2010-03-01

    Atherosclerosis is the most common cause for cardiovascular diseases and is based on endothelial dysfunction. A growing body of evidence suggests the contribution of bone marrow-derived endothelial progenitor cells, monocytic cells, and mature endothelial cells to vessel formation and endothelial rejuvenation. To this day, various subsets of these endothelial-regenerating cells have been identified according to cellular origin, phenotype, and properties in vivo and in vitro. However, the definition and biology, especially of endothelial progenitor cells, is complex and under heavy debate. In this review, we focus on current definitions of endothelial progenitor cells, highlight the clinical relevance of endothelial-regenerating cells, and provide new insights into cell-cell interactions involved in endothelial cell rejuvenation.

  5. Sustained apnea induces endothelial activation.

    Science.gov (United States)

    Eichhorn, Lars; Dolscheid-Pommerich, Ramona; Erdfelder, Felix; Ayub, Muhammad Ajmal; Schmitz, Theresa; Werner, Nikos; Jansen, Felix

    2017-09-01

    Apnea diving has gained worldwide popularity, even though the pathophysiological consequences of this challenging sport on the human body are poorly investigated and understood. This study aims to assess the influence of sustained apnea in healthy volunteers on circulating microparticles (MPs) and microRNAs (miRs), which are established biomarkers reflecting vascular function. Short intermittent hypoxia due to voluntary breath-holding affects circulating levels of endothelial cell-derived MPs (EMPs) and endothelial cell-derived miRs. Under dry laboratory conditions, 10 trained apneic divers performed maximal breath-hold. Venous blood samples were taken, once before and at 4 defined points in time after apnea. Samples were analyzed for circulating EMPs and endothelial miRs. Average apnea time was 329 seconds (±103), and SpO 2 at the end of apnea was 79% (±12). Apnea was associated with a time-dependent increase of circulating endothelial cell-derived EMPs and endothelial miRs. Levels of circulating EMPs in the bloodstream reached a peak 4 hours after the apnea period and returned to baseline levels after 24 hours. Circulating miR-126 levels were elevated at all time points after a single voluntary maximal apnea, whereas miR-26 levels were elevated significantly only after 30 minutes and 4 hours. Also miR-21 and miR-92 levels increased, but did not reach the level of significance. Even a single maximal breath-hold induces acute endothelial activation and should be performed with great caution by subjects with preexisting vascular diseases. Voluntary apnea might be used as a model to simulate changes in endothelial function caused by hypoxia in humans. © 2017 Wiley Periodicals, Inc.

  6. Flow shear stress differentially regulates endothelial uptake of nanocarriers targeted to distinct epitopes of PECAM-1.

    Science.gov (United States)

    Han, Jingyan; Shuvaev, Vladimir V; Davies, Peter F; Eckmann, David M; Muro, Silvia; Muzykantov, Vladimir R

    2015-07-28

    Targeting nanocarriers (NC) to endothelial cell adhesion molecules including Platelet-Endothelial Cell Adhesion Molecule-1 (PECAM-1 or CD31) improves drug delivery and pharmacotherapy of inflammation, oxidative stress, thrombosis and ischemia in animal models. Recent studies unveiled that hydrodynamic conditions modulate endothelial endocytosis of NC targeted to PECAM-1, but the specificity and mechanism of effects of flow remain unknown. Here we studied the effect of flow on endocytosis by human endothelial cells of NC targeted by monoclonal antibodies Ab62 and Ab37 to distinct epitopes on the distal extracellular domain of PECAM. Flow in the range of 1-8dyn/cm(2), typical for venous vasculature, stimulated the uptake of spherical Ab/NC (~180nm diameter) carrying ~50 vs 200 Ab62 and Ab37 per NC, respectively. Effect of flow was inhibited by disruption of cholesterol-rich plasmalemma domains and deletion of PECAM-1 cytosolic tail. Flow stimulated endocytosis of Ab62/NC and Ab37/NC via eliciting distinct signaling pathways mediated by RhoA/ROCK and Src Family Kinases, respectively. Therefore, flow stimulates endothelial endocytosis of Ab/NC in a PECAM-1 epitope specific manner. Using ligands of binding to distinct epitopes on the same target molecule may enable fine-tuning of intracellular delivery based on the hemodynamic conditions in the vascular area of interest. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Ubiquitination of basal VEGFR2 regulates signal transduction and endothelial function

    Directory of Open Access Journals (Sweden)

    Gina A. Smith

    2017-10-01

    Full Text Available Cell surface receptors can undergo recycling or proteolysis but the cellular decision-making events that sort between these pathways remain poorly defined. Vascular endothelial growth factor A (VEGF-A and vascular endothelial growth factor receptor 2 (VEGFR2 regulate signal transduction and angiogenesis, but how signaling and proteolysis is regulated is not well understood. Here, we provide evidence that a pathway requiring the E1 ubiquitin-activating enzyme UBA1 controls basal VEGFR2 levels, hence metering plasma membrane receptor availability for the VEGF-A-regulated endothelial cell response. VEGFR2 undergoes VEGF-A-independent constitutive degradation via a UBA1-dependent ubiquitin-linked pathway. Depletion of UBA1 increased VEGFR2 recycling from endosome-to-plasma membrane and decreased proteolysis. Increased membrane receptor availability after UBA1 depletion elevated VEGF-A-stimulated activation of key signaling enzymes such as PLCγ1 and ERK1/2. Although UBA1 depletion caused an overall decrease in endothelial cell proliferation, surviving cells showed greater VEGF-A-stimulated responses such as cell migration and tubulogenesis. Our study now suggests that a ubiquitin-linked pathway regulates the balance between receptor recycling and degradation which in turn impacts on the intensity and duration of VEGF-A-stimulated signal transduction and the endothelial response.

  8. Ubiquitination of basal VEGFR2 regulates signal transduction and endothelial function.

    Science.gov (United States)

    Smith, Gina A; Fearnley, Gareth W; Abdul-Zani, Izma; Wheatcroft, Stephen B; Tomlinson, Darren C; Harrison, Michael A; Ponnambalam, Sreenivasan

    2017-10-15

    Cell surface receptors can undergo recycling or proteolysis but the cellular decision-making events that sort between these pathways remain poorly defined. Vascular endothelial growth factor A (VEGF-A) and vascular endothelial growth factor receptor 2 (VEGFR2) regulate signal transduction and angiogenesis, but how signaling and proteolysis is regulated is not well understood. Here, we provide evidence that a pathway requiring the E1 ubiquitin-activating enzyme UBA1 controls basal VEGFR2 levels, hence metering plasma membrane receptor availability for the VEGF-A-regulated endothelial cell response. VEGFR2 undergoes VEGF-A-independent constitutive degradation via a UBA1-dependent ubiquitin-linked pathway. Depletion of UBA1 increased VEGFR2 recycling from endosome-to-plasma membrane and decreased proteolysis. Increased membrane receptor availability after UBA1 depletion elevated VEGF-A-stimulated activation of key signaling enzymes such as PLCγ1 and ERK1/2. Although UBA1 depletion caused an overall decrease in endothelial cell proliferation, surviving cells showed greater VEGF-A-stimulated responses such as cell migration and tubulogenesis. Our study now suggests that a ubiquitin-linked pathway regulates the balance between receptor recycling and degradation which in turn impacts on the intensity and duration of VEGF-A-stimulated signal transduction and the endothelial response. © 2017. Published by The Company of Biologists Ltd.

  9. growth stimulant

    African Journals Online (AJOL)

    Effects of timing and duration of supplementation of LIVFIT VET ® (growth stimulant) as substitute for fish meal on the growth performance, haematology and clinical enzymes concentration of growing pigs.

  10. Loss of 51chromium, lactate dehydrogenase, and 111indium as indicators of endothelial cell injury

    International Nuclear Information System (INIS)

    Chopra, J.; Joist, J.H.; Webster, R.O.

    1987-01-01

    Injury to endothelial cells appears to be an important initial event in the pathogenesis of many diseases such as acute lung injury, venous and arterial thromboembolism, and atherosclerosis. Different methods for detecting damage to cultured endothelial cells have been described. However, their relative sensitivity as markers of endothelial cell damage has not been adequately determined. We compared the loss of 51 Chromium ( 51 Cr), the cytoplasmic enzyme lactate dehydrogenase (LDH), and 111 Indium ( 111 In) from endothelial cells upon exposure to several injurious agents. Cultured bovine pulmonary artery endothelial cells in confluent monolayers were labeled with 51 Cr or 111 Inoxine and exposed to increasing concentrations of the nonionic detergent, Triton X-100 (0.2 to 1%), hydrogen peroxide (1 to 500 microM), or neutrophils stimulated with phorbol myristate acetate. With all forms of injury, loss of 51 Cr occurred earlier and to a greater extent than LDH loss which in turn was greater than loss of 111 In. Substantial loss of 51 Cr was observed in the absence of appreciable ultrastructural damage to endothelial cell external membranes. The findings may reflect the relative ease with which small molecules such as adenine nucleotides ( 51 Cr-labeled) escape whereas larger molecules such as LDH and proteins binding 111 In are retained intracellularly. Thus, 51 Cr loss appears to be a more sensitive indicator of sublytic endothelial cell injury than either 111 In or LDH release

  11. Drug-induced in vitro inhibition of neutrophil-endothelial cell adhesion.

    Science.gov (United States)

    Pellegatta, F.; Lu, Y.; Radaelli, A.; Zocchi, M. R.; Ferrero, E.; Chierchia, S.; Gaja, G.; Ferrero, M. E.

    1996-01-01

    1. Leukocyte-endothelial cell interactions play an important role during ischaemia-reperfusion events. Adhesion molecules are specifically implicated in this interaction process. 2. Since defibrotide has been shown to be an efficient drug in reducing damage due to ischaemia-reperfusion in many experimental models, we analysed the effect of defibrotide in vitro on leukocyte adhesion to endothelial cells in basal conditions and after their stimulation. 3. In basal conditions, defibrotide (1000 micrograms ml-1) partially inhibited leukocyte adhesion to endothelial cells by 17.3% +/- 3.6 (P defibrotide. 5. This result was confirmed in NIH/3T3-ICAM-1 transfected cells. 6. We conclude that defibrotide is able to interfere with leukocyte adhesion to endothelial cells mainly in activated conditions and that the ICAM-1/LFA-1 adhesion system is involved in the defibrotide mechanism of action. PMID:8762067

  12. An ibuprofen-antagonized plasmin inhibitor released by human endothelial cells.

    Science.gov (United States)

    Rockwell, W B; Ehrlich, H P

    1991-02-01

    Serum-free culture medium harvested from endothelial cell monolayer cultures derived from human scars and dermis was examined for inhibition of fibrinolysis using a fibrin plate assay. Human cultured fibroblasts and smooth muscle cells did not produce any detectable inhibitory activity. The inhibitor is spontaneously released from the cultured endothelial cells over time. In the fibrin plate assay of plasmin-induced fibrinolysis, one nonsteroidal antiinflammatory (NSAI) drug, ibuprofen, was demonstrated to antagonize the inhibition of fibrinolysis. The antagonistic activity of ibuprofen appears unrelated to its NSAI drug activity because other NSAI drugs such as indomethacin and tolmetin have minimal antagonistic activity. Heating the cultured endothelial cells to 42 degrees C stimulates greater release of the inhibitor in a shorter period of time. This plasmin inhibitor, which is produced by endothelial cells, may contribute to postburn vascular occlusion, leading to secondary progressive necrosis in burn-traumatized patients.

  13. The endothelial border to health

    DEFF Research Database (Denmark)

    Hansen, Nina Wærling; Hansen, Anker Jon; Sams, Anette

    2017-01-01

    player for maintenance of health and for development of a number of diseases. Endothelial dysfunction is known to be an important component of type 2 diabetes, but is also assumed to be involved in many other diseases, for example, rheumatoid arthritis, inflammatory bowel disease, asthma...... extracellular proteins form epitopes for potential specific antibody formation upon interactions with reducing sugars. This paper reviews the endothelial metabolism, biology, inflammatory processes, physical barrier functions, and summarizes evidence that although stochastic in nature, endothelial responses...... to hyperglycemia are major contributors to disease pathophysiology. We present molecular and mechanistic evidence that both biological and physical barriers, protein function, specific immunity, and inflammatory processes are compromised by hyperglycemic events and thus, hyperglycemic events alone should...

  14. Apolipoprotein A-1 mimetic peptide 4F promotes endothelial repairing and compromises reendothelialization impaired by oxidized HDL through SR-B1

    Directory of Open Access Journals (Sweden)

    Dan He

    2018-05-01

    Full Text Available Disruption of endothelial monolayer integrity is the primary instigating factor for many cardiovascular diseases. High density lipoprotein (HDL oxidized by heme enzyme myeloperoxidase (MPO is dysfunctional in promoting endothelial repair. Apolipoprotein A-1 mimetic 4F with its pleiotropic benefits has been proven effective in many in vivo models. In this study we investigated whether 4F promotes endothelial repair and restores the impaired function of oxidized HDL (Cl/NO2-HDL in promoting re-endothelialization. We demonstrate that 4F and Cl/NO2-HDL act on scavenger receptor type I (SR-B1 using human aorta endothelial cells (HAEC and SR-B1 (-/- mouse aortic endothelial cells. Wound healing, transwell migration, lamellipodia formation and single cell migration assay experiments show that 4F treatment is associated with a recovery of endothelial cell migration and associated with significantly increased endothelial nitric oxide synthase (eNOS activity, Akt phosphorylation and SR-B1 expression. 4F increases NO generation and diminishes oxidative stress. In vivo, 4F can stimulate cell proliferation and re-endothelialization in the carotid artery after treatment with Cl/NO2-HDL in a carotid artery electric injury model but fails to do so in SR-B1(-/- mice. These findings demonstrate that 4F promotes endothelial cell migration and has a potential therapeutic benefit against early endothelial injury in cardiovascular diseases.

  15. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease

    DEFF Research Database (Denmark)

    Nyström, Thomas; Gutniak, Mark K; Zhang, Qimin

    2004-01-01

    GLP-1 stimulates insulin secretion, suppresses glucagon secretion, delays gastric emptying, and inhibits small bowel motility, all actions contributing to the anti-diabetogenic peptide effect. Endothelial dysfunction is strongly associated with insulin resistance and type 2 diabetes mellitus...... and may cause the angiopathy typifying this debilitating disease. Therefore, interventions affecting both endothelial dysfunction and insulin resistance may prove useful in improving survival in type 2 diabetes patients. We investigated GLP-1's effect on endothelial function and insulin sensitivity (S......(I)) in two groups: 1) 12 type 2 diabetes patients with stable coronary artery disease and 2) 10 healthy subjects with normal endothelial function and S(I). Subjects underwent infusion of recombinant GLP-1 or saline in a random crossover study. Endothelial function was measured by postischemic FMD of brachial...

  16. IL-20 activates human lymphatic endothelial cells causing cell signalling and tube formation

    DEFF Research Database (Denmark)

    Hammer, Troels; Tritsaris, Katerina; Hübschmann, Martin V

    2009-01-01

    IL-20 is an arteriogenic cytokine that remodels collateral networks in vivo, and plays a role in cellular organization. Here, we investigate its role in lymphangiogenesis using a lymphatic endothelial cell line, hTERT-HDLEC, which expresses the lymphatic markers LYVE-1 and podoplanin. Upon stimul...

  17. Endothelial atheroprotective and anti-inflammatory mechanisms.

    Science.gov (United States)

    Berk, B C; Abe, J I; Min, W; Surapisitchat, J; Yan, C

    2001-12-01

    Atherosclerosis preferentially occurs in areas of turbulent flow and low fluid shear stress, whereas laminar flow and high shear stress are atheroprotective. Inflammatory cytokines, such as tumor necrosis factor-alpha (TNF), have been shown to stimulate expression of endothelial cell (EC) genes that may promote atherosclerosis. Recent data suggest that steady laminar flow decreases EC apoptosis and blocks TNF-mediated EC activation. EC apoptosis is likely important in the process termed "plaque erosion" that leads to platelet aggregation. Steady laminar flow inhibits EC apoptosis by preventing cell cycle entry, by increasing antioxidant mechanisms (e.g., superoxide dismutase), and by stimulating nitric oxide-dependent protective pathways that involve enzymes PI3-kinase and Akt. Conversely, our laboratory has identified nitric oxide-independent mechanisms that limit TNF signal transduction. TNF regulates gene expression in EC, in part, by stimulating mitogen-activated protein kinases (MAPK) which phosphorylate transcription factors. We hypothesized that fluid shear stress modulates TNF effects on EC by inhibiting TNF-mediated activation of MAP kinases. To test this hypothesis, we determined the effects of steady laminar flow (shear stress = 12 dynes/cm2) on TNF-stimulated activity of two MAP kinases: extracellular signal regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK). Flow alone stimulated ERK1/2 activity, but decreased JNK activity compared to static controls. TNF (10 ng/ml) alone activated both ERK1/2 and JNK maximally at 15 minutes in human umbilical vein EC (HUVEC). Pre-exposing HUVEC for 10 minutes to flow inhibited TNF activation of JNK by 46%, but it had no significant effect on ERK1/2 activation. Incubation of EC with PD98059, a specific mitogen-activated protein kinase kinase inhibitor, blocked the flow-mediated inhibition of TNF activation of JNK. Flow-mediated inhibition of JNK was unaffected by 0.1 mM L-nitroarginine, 100 pM 8-bromo

  18. Endothelial Progenitor Cells as Shuttle of Anticancer Agents.

    Science.gov (United States)

    Laurenzana, Anna; Margheri, Francesca; Chillà, Anastasia; Biagioni, Alessio; Margheri, Giancarlo; Calorini, Lido; Fibbi, Gabriella; Del Rosso, Mario

    2016-10-01

    Cell therapies are treatments in which stem or progenitor cells are stimulated to differentiate into specialized cells able to home to and repair damaged tissues. After their discovery, endothelial progenitor cells (EPCs) stimulated worldwide interest as possible vehicles to perform autologous cell therapy of tumors. Taking into account the tumor-homing properties of EPCs, two different approaches to control cancer progression have been pursued by combining cell-based therapy with gene therapy or with nanomedicine. The first approach is based on the possibility of engineering EPCs to express different transgenes, and the second is based on the capacity of EPCs to take up nanomaterials. Here we review the most important progress covering the following issues: the characterization of bona fide endothelial progenitor cells, their role in tumor vascularization and metastasis, and preclinical data about their use in cell-based tumor therapy, considering antiangiogenic, suicide, immune-stimulating, and oncolytic virus gene therapy. The mixed approach of EPC cell therapy and nanomedicine is discussed in terms of plasmonic-dependent thermoablation and molecular imaging.

  19. Angiogenesis stimulated by novel nanoscale bioactive glasses

    International Nuclear Information System (INIS)

    Mao, Cong; Chen, Xiaofeng; Miao, Guohou; Lin, Cai

    2015-01-01

    The ability of biomaterials to induce rapid vascular formation is critical in tissue regeneration. Combining recombinant angiogenic growth factors with bioengineered constructs have proven to be difficult due to several issues, including the instability of recombinant proteins, the need for sustained delivery and the dosage of factors. New formulations of bioactive glass, 58S nanosized bioactive glass (58S-NBG), have been reported to enhance wound healing in animal models better than the first generation of 45S5 Bioglass. Therefore, we investigated the effects of extracts of 58S-NBG and 80S-NBG on cultures of human umbilical vein endothelial cells (HUVECs). Cell viability was assessed by MTS assay. In vitro angiogenesis was measured using an ECM gel tube formation assay, and levels of mRNAs for five angiogenic related genes were measured by qRT-PCR. Extracts of 58S-NBG and 80S-NBG stimulated the proliferation of HUVECs, accelerated cell migration, up-regulated expression of the vascular endothelial growth factor, basic fibroblast growth factor, their receptors, and endothelial nitric oxide synthase, resulting in enhanced tube formation in vitro. The enhanced angiogenic response correlated with increased levels of Ca and Si in the extracts of 58S-NBG and 80S-NBG. The ability of 58S-NBG and 80S-NBG to stimulate angiogenesis in vitro provides alternative approaches for stimulating neovascularization of tissue-engineered constructs. (paper)

  20. The targeting expression of the vascular endothelial growth factor gene in endothelial cells regulated by HRE.ppET-1.

    Science.gov (United States)

    Zheng, Xiangrong; Zhang, Shangshang; Yang, Yujia; Wang, Xia; Zhong, Le; Yu, Xiaohe

    2008-11-01

    The success of gene therapy depends largely on the efficacy of gene delivery vector systems that can deliver genes to target organs or cells selectively and efficiently with minimal toxicity. Here, we show that by using the HRE.ppET-1 regulatory element, we were able to restrict expression of the transgene of vascular endothelial growth factor (VEGF) to endothelial cells exclusively in hypoxic conditions. Eukaryotic expression vectors such as pEGFP-HRE.ppET-1, pcDNA3.1-VEGF+Pa, pcDNA3.1-ppET-1+ EGF+Pa, and pcDNA3.1-HRE.ppET-1+VEGF+Pa were constructed by using a series of nuclear molecule handling methods like PCR, enzyme digestion. The recombinant vectors were transfected into HUVEC cells and HL7702 cells by the lipofectin method. GFP expression was observed with a fluorescence microscope to validate the specificity of expression in endothelial cells under the regulation of HRE.ppET-1 element. Cobalt chloride (final concentration 100 mumol/L) was added to the medium to mimic hypoxia in vitro. After transfection of vectors, the expression of VEGF mRNA was detected by RT-PCR, and the expression of VEGF was detected by Western blotting and ELISA methods under normoxia and hypoxia, respectively. The cell proliferation rate was detected by the MTT test. The expression of GFP revealed that the exterior gene was transcripted effectively in endothelial cells regulated by the HRE.ppET-1 element, while the expression of GFP was very weak in nonendothelial cells. The results of RT-PCR, Western blotting and ELISA showed that VEGF gene expression in the pcDNA3.1-HRE.ppET-1+VEGF+Pa group and in the pcDNA3.1-ppET-1+VEGF+Pa group was higher in hypoxia than it was in normoxia (PHRE.ppET-1 element was expressed specifically in endothelial cells, and can increase the expression of VEGF in hypoxia and stimulate proliferation of endothelial cells. Taking advantage of these facts could greatly improve the efficiency of gene therapy. The vector would be valuable for various gene transfer

  1. Endothelial dysfunction after non-cardiac surgery

    DEFF Research Database (Denmark)

    Søndergaard, E S; Fonnes, S; Gögenur, I

    2015-01-01

    was to systematically review the literature to evaluate the association between non-cardiac surgery and non-invasive markers of endothelial function. METHODS: A systematic search was conducted in MEDLINE, EMBASE and Cochrane Library Database according to the PRISMA guidelines. Endothelial dysfunction was described only...... transplantation and vascular surgery respectively) had an improvement in endothelial dysfunction 1 month after surgery. CONCLUSION: Endothelial function changes in relation to surgery. Assessment of endothelial function by non-invasive measures has the potential to guide clinicians in the prevention or treatment...

  2. Brain Stimulation Therapies

    Science.gov (United States)

    ... Magnetic Seizure Therapy Deep Brain Stimulation Additional Resources Brain Stimulation Therapies Overview Brain stimulation therapies can play ... for a shorter recovery time than ECT Deep Brain Stimulation Deep brain stimulation (DBS) was first developed ...

  3. Endotoxin-induced monocytic microparticles have contrasting effects on endothelial inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Beryl Wen

    Full Text Available Septic shock is a severe disease state characterised by the body's life threatening response to infection. Complex interactions between endothelial cells and circulating monocytes are responsible for microvasculature dysfunction contributing to the pathogenesis of this syndrome. Here, we intended to determine whether microparticles derived from activated monocytes contribute towards inflammatory processes and notably vascular permeability. We found that endotoxin stimulation of human monocytes enhances the release of microparticles of varying phenotypes and mRNA contents. Elevated numbers of LPS-induced monocytic microparticles (mMP expressed CD54 and contained higher levels of transcripts for pro-inflammatory cytokines such as TNF, IL-6 and IL-8. Using a prothrombin time assay, a greater reduction in plasma coagulation time was observed with LPS-induced mMP than with non-stimulated mMP. Co-incubation of mMP with the human brain endothelial cell line hCMEC/D3 triggered their time-dependent uptake and significantly enhanced endothelial microparticle release. Unexpectedly, mMP also modified signalling pathways by diminishing pSrc (tyr416 expression and promoted endothelial monolayer tightness, as demonstrated by endothelial impedance and permeability assays. Altogether, these data strongly suggest that LPS-induced mMP have contrasting effects on the intercellular communication network and display a dual potential: enhanced pro-inflammatory and procoagulant properties, together with protective function of the endothelium.

  4. Biocompatibility of Poly-ε-caprolactone-hydroxyapatite composite on mouse bone marrow-derived osteoblasts and endothelial cells

    Directory of Open Access Journals (Sweden)

    Wooley Paul H

    2009-02-01

    Full Text Available Abstract Background Tissue-engineered bone may be developed by seeding the cells capable of both osteogenesis and vascularization on biocompatible composite scaffolds. The current study investigated the performance of mice bone marrow-derived osteogenic cells and endothelial cells as seeded on hydroxyapatite (HA and poly-ε-caprolactone (PCL composite scaffolds. Methods Mononuclear cells were induced to osteoblasts and endothelial cells respectively, which were defined by the expression of osteocalcin, alkaline phosphatase (ALP, and deposits of calcium-containing crystal for osteoblasts, or by the expression of vascular endothelial growth factor receptor-2 (VEGFR-2 and von Willebrand factor (vWF, and the formation of a capillary network in Matrigel™ for endothelial cells. Both types of cell were seeded respectively on PCL-HA scaffolds at HA to PCL weight ratio of 1:1, 1:4, or 0:1 and were evaluated using scanning electron microscopy, ALP activity (of osteoblasts and nitric oxide production (of endothelial cells plus the assessment of cell viability. Results The results indicated that HA led to a positive stimulation of osteoblasts viability and ALP activity, while HA showed less influence on endothelial cells viability. An elevated nitric oxide production of endothelial cells was observed in HA-containing group. Conclusion Supplement of HA into PCL improved biocompatible for bone marrow-derived osteoblasts and endothelial cells. The PCL-HA composite integrating with two types of cells may provide a useful system for tissue-engineered bone grafts with vascularization.

  5. Endothelial Dll4 overexpression reduces vascular response and inhibits tumor growth and metastasization in vivo.

    Science.gov (United States)

    Trindade, Alexandre; Djokovic, Dusan; Gigante, Joana; Mendonça, Liliana; Duarte, António

    2017-03-14

    The inhibition of Delta-like 4 (Dll4)/Notch signaling has been shown to result in excessive, nonfunctional vessel proliferation and significant tumor growth suppression. However, safety concerns emerged with the identification of side effects resulting from chronic Dll4/Notch blockade. Alternatively, we explored the endothelial Dll4 overexpression using different mouse tumor models. We used a transgenic mouse model of endothelial-specific Dll4 overexpression, previously produced. Growth kinetics and vascular histopathology of several types of solid tumors was evaluated, namely Lewis Lung Carcinoma xenografts, chemically-induced skin papillomas and RIP1-Tag2 insulinomas. We found that increased Dll4/Notch signaling reduces tumor growth by reducing vascular endothelial growth factor (VEGF)-induced endothelial proliferation, tumor vessel density and overall tumor blood supply. In addition, Dll4 overexpression consistently improved tumor vascular maturation and functionality, as indicated by increased vessel calibers, enhanced mural cell recruitment and increased network perfusion. Importantly, the tumor vessel normalization is not more effective than restricted vessel proliferation, but was found to prevent metastasis formation and allow for increased delivery to the tumor of concomitant chemotherapy, improving its efficacy. By reducing endothelial sensitivity to VEGF, these results imply that Dll4/Notch stimulation in tumor microenvironment could be beneficial to solid cancer patient treatment by reducing primary tumor size, improving tumor drug delivery and reducing metastization. Endothelial specific Dll4 overexpression thus appears as a promising anti-angiogenic modality that might improve cancer control.

  6. Hypoxia-induced mitogenic factor enhances angiogenesis by promoting proliferation and migration of endothelial cells

    International Nuclear Information System (INIS)

    Tong Qiangsong; Zheng Liduan; Li Bo; Wang Danming; Huang Chuanshu; Matuschak, George M.; Li Dechun

    2006-01-01

    Our previous studies have indicated that hypoxia-induced mitogenic factor (HIMF) has angiogenic properties in an in vivo matrigel plug model and HIMF upregulates expression of vascular endothelial growth factor (VEGF) in mouse lungs and cultured lung epithelial cells. However, whether HIMF exerts angiogenic effects through modulating endothelial cell function remains unknown. In this study, mouse aortic rings cultured with recombinant HIMF protein resulted in enhanced vascular sprouting and increased endothelial cell spreading as confirmed by Dil-Ac-LDL uptake, von Willebrand factor and CD31 staining. In cultured mouse endothelial cell line SVEC 4-10, HIMF dose-dependently enhanced cell proliferation, in vitro migration and tubulogenesis, which was not attenuated by SU1498, a VEGFR2/Flk-1 receptor tyrosine kinase inhibitor. Moreover, HIMF stimulation resulted in phosphorylation of Akt, p38 and ERK1/2 kinases in SVEC 4-10 cells. Treatment of mouse aortic rings and SVEC 4-10 cells with LY294002, but not SB203580, PD098059 or U0126, abolished HIMF-induced vascular sprouting and angiogenic responses. In addition, transfection of a dominant-negative mutant of phosphatidylinositol 3-kinase (PI-3K), Δp85, blocked HIMF-induced phosphorylation of Akt, endothelial activation and tubulogenesis. These results indicate that HIMF enhances angiogenesis by promoting proliferation and migration of endothelial cells via activation of the PI-3K/Akt pathways

  7. Effects of lead and mercury on histamine uptake by glial and endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Huszti, Z. [Semmelweis Univ. of Medicine, Dept. of Pharmacodynamics, Budapest (Hungary); Balogh, I. [Semmelweis Univ. of Medicine, Forensic Medicine, Budapest (Hungary)

    1995-06-01

    The effects of lead and mercury on [{sup 3}H]-histamine uptake by cultured astroglial and endothelial cells of rat brain were studied. Experimental data showed that both metal ions inhibited the uptake in both cell types of concentrations as low as 1-10 {mu}M. The effects were consistent with non/competitive inhibitions. With either lead or mercury exposure, the inhibition of the uptake was greater in astroglial than in cerebral endothelial cells. Contrary to the above finding, 100 {mu}M of mercuric chloride produced stimulation of histamine uptake and this stimulation was much more pronounced in cultured cerebral endothelial cells than in astroglial cells. Inhibition of [{sup 3}H]-histamine uptake by lead acetate and mercuric chloride was considered to be association with a loss of the transmembrane Na{sup +} and/or K{sup +} gradient while stimulation of the uptake by high concentration of mercury might be related to a direct effect on histamine transporter. It is note-worthy, that cultured astroglial cells, derived from neonatal rat brain, are much more sensitive to the toxic effects of these heavy metal ions than cultured endothelial cells derived from the brain capillaries often same species of animals. (au) 18 refs.

  8. Challenges in pediatric endothelial keratoplasty

    Directory of Open Access Journals (Sweden)

    Vikas Mittal

    2014-01-01

    Full Text Available We performed endothelial keratoplasty (EK in three eyes of two siblings (2.5 years, male and 3.5 years, female with congenital hereditary endothelial dystrophy (CHED and report the intraoperative and postoperative difficulties. Repeated iris prolapse, apprehension of crystalline lens touch due to positive vitreous pressure, and need for frequent air injections to attach the graft were intraoperative challenges in all three eyes. These were addressed by use of Sheet′s glide instead of Busin′s glide during graft insertion and suturing of main and side ports before air injection. One eye had graft dislocation on second postoperative day due to eye rubbing by the child. Graft was repositioned with air and a venting incision was created. Postoperative examination required repeated general anesthesia. Corneal edema resolved completely in all three eyes. Present case series highlights the possible intraoperative and postoperative challenges and their solutions in pediatric EK for CHED.

  9. Salt-induced Na+/K+-ATPase-α/β expression involves soluble adenylyl cyclase in endothelial cells.

    Science.gov (United States)

    Mewes, Mirja; Nedele, Johanna; Schelleckes, Katrin; Bondareva, Olga; Lenders, Malte; Kusche-Vihrog, Kristina; Schnittler, Hans-Joachim; Brand, Stefan-Martin; Schmitz, Boris; Brand, Eva

    2017-10-01

    High dietary salt intake may lead to vascular stiffness, which predicts cardiovascular diseases such as heart failure, and myocardial and cerebral infarctions as well as renal impairment. The vascular endothelium is a primary target for deleterious salt effects leading to dysfunction and endothelial stiffness. We hypothesize that the Ca 2+ - and bicarbonate-activated soluble adenylyl cyclase (sAC) contributes to Na + /K + -ATPase expression regulation in vascular endothelial cells and is an important regulator of endothelial stiffness. In vitro stimulation of vascular endothelial cells with high sodium (150 mM Na + )-induced Na + /K + -ATPase-α and Na + /K + -ATPase-β protein expression determined by western blot. Promoter analyses revealed increased cAMP response element (CRE)-mediated Na + /K + -ATPase-α transcriptional activity under high sodium concentrations. Inhibition of sAC by the specific inhibitor KH7 or siRNA reduced the sodium effects. Flame photometry revealed increased intracellular sodium concentrations in response to high sodium stimulations, which were paralleled by elevated ATP levels. Using atomic force microscopy, a nano-technique that measures cellular stiffness and deformability, we detected significant endothelial stiffening under increased sodium concentrations, which was prevented by inhibition of sAC using KH7 and Na + /K + -ATPase using ouabain. Furthermore, analysis of primary aortic endothelial cells in an in vitro aging model revealed an impaired Na + /K + -ATPase-α sodium response and elevated intracellular sodium levels with cellular aging. We conclude that sAC mediates sodium-induced Na + /K + -ATPase expression in vascular endothelium and is an important regulator of endothelial stiffness. The reactivity of Na + /K + -ATPase-α expression regulation in response to high sodium seems to be impaired in aging endothelial cells and might be a component of endothelial dysfunction.

  10. Abl family kinases regulate endothelial barrier function in vitro and in mice.

    Directory of Open Access Journals (Sweden)

    Elizabeth M Chislock

    Full Text Available The maintenance of endothelial barrier function is essential for normal physiology, and increased vascular permeability is a feature of a wide variety of pathological conditions, leading to complications including edema and tissue damage. Use of the pharmacological inhibitor imatinib, which targets the Abl family of non-receptor tyrosine kinases (Abl and Arg, as well as other tyrosine kinases including the platelet-derived growth factor receptor (PDGFR, Kit, colony stimulating factor 1 receptor (CSF1R, and discoidin domain receptors, has shown protective effects in animal models of inflammation, sepsis, and other pathologies characterized by enhanced vascular permeability. However, the imatinib targets involved in modulation of vascular permeability have not been well-characterized, as imatinib inhibits multiple tyrosine kinases not only in endothelial cells and pericytes but also immune cells important for disorders associated with pathological inflammation and abnormal vascular permeability. In this work we employ endothelial Abl knockout mice to show for the first time a direct role for Abl in the regulation of vascular permeability in vivo. Using both Abl/Arg-specific pharmacological inhibition and endothelial Abl knockout mice, we demonstrate a requirement for Abl kinase activity in the induction of endothelial permeability by vascular endothelial growth factor both in vitro and in vivo. Notably, Abl kinase inhibition also impaired endothelial permeability in response to the inflammatory mediators thrombin and histamine. Mechanistically, we show that loss of Abl kinase activity was accompanied by activation of the barrier-stabilizing GTPases Rac1 and Rap1, as well as inhibition of agonist-induced Ca(2+ mobilization and generation of acto-myosin contractility. In all, these findings suggest that pharmacological targeting of the Abl kinases may be capable of inhibiting endothelial permeability induced by a broad range of agonists and that use

  11. Inhibition of TGF-β Signaling in SHED Enhances Endothelial Differentiation.

    Science.gov (United States)

    Xu, J G; Gong, T; Wang, Y Y; Zou, T; Heng, B C; Yang, Y Q; Zhang, C F

    2018-02-01

    Low efficiency of deriving endothelial cells (ECs) from adult stem cells hampers their utilization in tissue engineering studies. The purpose of this study was to investigate whether suppression of transforming growth factor beta (TGF-β) signaling could enhance the differentiation efficiency of dental pulp-derived stem cells into ECs. We initially used vascular endothelial growth factor A (VEGF-A) to stimulate 2 dental pulp-derived stem cells (dental pulp stem cells and stem cells from human exfoliated deciduous teeth [SHED]) and compared their differentiation capacity into ECs. We further evaluated whether the vascular endothelial growth factor receptor I (VEGF-RI)-specific ligand placental growth factor-1 (PlGF-1) could mediate endothelial differentiation. Finally, we investigated whether the TGF-β signaling inhibitor SB-431542 could enhance the inductive effect of VEGF-A on endothelial differentiation, as well as the underlying mechanisms involved. ECs differentiated from dental pulp-derived stem cells exhibited the typical phenotypes of primary ECs, with SHED possessing a higher endothelial differentiation potential than dental pulp stem cells. VEGFR1-specific ligand-PLGF exerted a negligible effect on SHED-ECs differentiation. Compared with VEGF-A alone, the combination of VEGF-A and SB-431542 significantly enhanced the endothelial differentiation of SHED. The presence of SB-431542 inhibited the phosphorylation of Suppressor of Mothers Against Decapentaplegic 2/3 (SMAD2/3), allowing for VEGF-A-dependent phosphorylation and upregulation of VEGFR2. Our results indicate that the combination of VEGF-A and SB-431542 could enhance the differentiation of dental pulp-derived stem cells into endothelial cells, and this process is mediated through enhancement of VEGF-A-VEGFR2 signaling and concomitant inhibition of TGF-β-SMAD2/3 signaling.

  12. Targeting Tumor Necrosis Factor-α with Adalimumab: Effects on Endothelial Activation and Monocyte Adhesion.

    Directory of Open Access Journals (Sweden)

    Raghav Oberoi

    Full Text Available It is well known that atherosclerotic inflammatory vascular disease is critically driven by oxidized lipids and cytokines. In this regard, tumor necrosis factor (TNF-α is known as a crucial mediator of early pro-atherosclerotic events. Epidemiologic data suggest that blockade of TNF-α has beneficial effects on vascular outcomes in patients with rheumatoid arthritis, however, detailed mechanistic studies are still lacking. This study aims to elucidate effects of TNF-α blockade by adalimumab-which is approved for several inflammatory disorders-on endothelial activation and monocyte adhesion under pro-atherosclerotic conditions.Phorbol myristate acetate (PMA differentiated THP-1 macrophages were stimulated with oxidized low density lipoprotein and subsequent analysis of this conditioned media (oxLDL CM revealed a strong release of TNF-α. The TNF-α rich supernatant led to activation of human umbilical vein endothelial cells (HUVEC as shown by enhanced expression of major adhesion molecules, such as vascular cell adhesion molecule-1 (VCAM-1, intercellular adhesion molecule-1 (ICAM-1 and E-selectin which was suppressed by the TNF-α inhibitor adalimumab. Accordingly, adalimumab effectively prevented THP-1 monocyte adhesion to endothelial cells under static as well as under flow conditions. Furthermore, adalimumab suppressed endothelial leakage as shown by Evan's blue diffusion across a confluent endothelial monolayer. Of note, after intraperitoneal injection we detected abundant deposition of fluorophore-labelled adalimumab in atherosclerotic plaques of hypercholesterolemic mice.Our results show that adalimumab prevents major inflammatory effects of TNF-α on endothelial activation, endothelial monocyte adhesion, endothelial leakage and therefore extends the therapeutic options of adalimumab to limit vascular inflammation.

  13. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells.

    Science.gov (United States)

    Kim, Ji-Seok; Kim, Boa; Lee, Hojun; Thakkar, Sunny; Babbitt, Dianne M; Eguchi, Satoru; Brown, Michael D; Park, Joon-Young

    2015-08-01

    The concept of enhancing structural integrity of mitochondria has emerged as a novel therapeutic option for cardiovascular disease. Flow-induced increase in laminar shear stress is a potent physiological stimulant associated with exercise, which exerts atheroprotective effects in the vasculature. However, the effect of laminar shear stress on mitochondrial remodeling within the vascular endothelium and its related functional consequences remain largely unknown. Using in vitro and in vivo complementary studies, here, we report that aerobic exercise alleviates the release of endothelial microparticles in prehypertensive individuals and that these salutary effects are, in part, mediated by shear stress-induced mitochondrial biogenesis. Circulating levels of total (CD31(+)/CD42a(-)) and activated (CD62E(+)) microparticles released by endothelial cells were significantly decreased (∼40% for both) after a 6-mo supervised aerobic exercise training program in individuals with prehypertension. In cultured human endothelial cells, laminar shear stress reduced the release of endothelial microparticles, which was accompanied by an increase in mitochondrial biogenesis through a sirtuin 1 (SIRT1)-dependent mechanism. Resveratrol, a SIRT1 activator, treatment showed similar effects. SIRT1 knockdown using small-interfering RNA completely abolished the protective effect of shear stress. Disruption of mitochondrial integrity by either antimycin A or peroxisome proliferator-activated receptor-γ coactivator-1α small-interfering RNA significantly increased the number of total, and activated, released endothelial microparticles, and shear stress restored these back to basal levels. Collectively, these data demonstrate a critical role of endothelial mitochondrial integrity in preserving endothelial homeostasis. Moreover, prolonged laminar shear stress, which is systemically elevated during aerobic exercise in the vessel wall, mitigates endothelial dysfunction by promoting

  14. Protein Kinase-C Beta Contributes to Impaired Endothelial Insulin Signaling in Humans with Diabetes Mellitus

    Science.gov (United States)

    Tabit, Corey E; Shenouda, Sherene M; Holbrook, Monica; Fetterman, Jessica L; Kiani, Soroosh; Frame, Alissa A; Kluge, Matthew A; Held, Aaron; Dohadwala, Mustali; Gokce, Noyan; Farb, Melissa; Rosenzweig, James; Ruderman, Neil; Vita, Joseph A; Hamburg, Naomi M

    2013-01-01

    Background Abnormal endothelial function promotes atherosclerotic vascular disease in diabetes. Experimental studies indicate that disruption of endothelial insulin signaling through the activity of protein kinase C-β (PKCβ) and nuclear factor κB (NFκB) reduces nitric oxide availability. We sought to establish whether similar mechanisms operate in the endothelium in human diabetes mellitus. Methods and Results We measured protein expression and insulin response in freshly isolated endothelial cells from patients with Type 2 diabetes mellitus (n=40) and non-diabetic controls (n=36). Unexpectedly, we observed 1.7-fold higher basal endothelial nitric oxide synthase (eNOS) phosphorylation at serine 1177 in patients with diabetes (P=0.007) without a difference in total eNOS expression. Insulin stimulation increased eNOS phosphorylation in non-diabetic subjects but not in diabetic patients (P=0.003) consistent with endothelial insulin resistance. Nitrotyrosine levels were higher in diabetic patients indicating endothelial oxidative stress. PKCβ expression was higher in diabetic patients and was associated with lower flow-mediated dilation (r=−0.541, P=0.02) Inhibition of PKCβ with LY379196 reduced basal eNOS phosphorylation and improved insulin-mediated eNOS activation in patients with diabetes. Endothelial NFκB activation was higher in diabetes and was reduced with PKCβ inhibition. Conclusions We provide evidence for the presence of altered eNOS activation, reduced insulin action and inflammatory activation in the endothelium of patients with diabetes. Our findings implicate PKCβ activity in endothelial insulin resistance. PMID:23204109

  15. Polyphenols in preventing endothelial dysfunction

    Directory of Open Access Journals (Sweden)

    Sylwia Biegańska-Hensoldt

    2017-03-01

    Full Text Available One of the main causes of mortality in developed countries is atherosclerosis. The pathogenesis of atherosclerosis is associated with endothelial dysfunction. Consumption of food rich in natural antioxidants including polyphenols significantly improves endothelial cells functions.Polyphenols have a beneficial effect on the human body and play an important part in protecting the cardiovascular system. Polyphenols present in food have antioxidant, anti-inflammatory, antihypertensive, antithrombotic and antiproliferative properties. Catechins cause an increase in the activity of endothelial nitric oxide synthase (eNOS and increased production of nitric oxide (NO and decrease in blood pressure. Catechins also reduce platelet adhesion, lower the concentration of C-reactive protein and tumor necrosis factor alpha and interleukin-6. Resveratrol inhibits NADPH oxidase expression, increases the expression of eNOS and NO production as well as decreases the expression of proinflammatory cytokines, and also lowers the concentration of the soluble forms of adhesion molecules – sICAM-1 and sVCAM-1 in blood. Quercetin reduces the blood level of low density lipoprotein cholesterol, lowers blood pressure, reduces the concentration of C-reactive protein and F2-isoprostane level. Curcumin has antagonistic activity to homocysteine. Curcumin increases the expression of eNOS and reduces oxidative DNA damage in rat cardiomyocytes. Numerous attempts are taken for improving the bioavailability of polyphenols in order to increase their use in the body.

  16. VEGF-A isoforms differentially regulate ATF-2-dependent VCAM-1 gene expression and endothelial-leukocyte interactions.

    Science.gov (United States)

    Fearnley, Gareth W; Odell, Adam F; Latham, Antony M; Mughal, Nadeem A; Bruns, Alexander F; Burgoyne, Nicholas J; Homer-Vanniasinkam, Shervanthi; Zachary, Ian C; Hollstein, Monica C; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2014-08-15

    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology. VEGF-A stimulates signal transduction pathways that modulate endothelial outputs such as cell migration, proliferation, tubulogenesis, and cell-cell interactions. Multiple VEGF-A isoforms exist, but the biological significance of this is unclear. Here we analyzed VEGF-A isoform-specific stimulation of VCAM-1 gene expression, which controls endothelial-leukocyte interactions, and show that this is dependent on both ERK1/2 and activating transcription factor-2 (ATF-2). VEGF-A isoforms showed differential ERK1/2 and p38 MAPK phosphorylation kinetics. A key feature of VEGF-A isoform-specific ERK1/2 activation and nuclear translocation was increased phosphorylation of ATF-2 on threonine residue 71 (T71). Using reverse genetics, we showed ATF-2 to be functionally required for VEGF-A-stimulated endothelial VCAM-1 gene expression. ATF-2 knockdown blocked VEGF-A-stimulated VCAM-1 expression and endothelial-leukocyte interactions. ATF-2 was also required for other endothelial cell outputs, such as cell migration and tubulogenesis. In contrast, VCAM-1 was essential only for promoting endothelial-leukocyte interactions. This work presents a new paradigm for understanding how soluble growth factor isoforms program complex cellular outputs and responses by modulating signal transduction pathways. © 2014 Fearnley et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. Preconditioning with endoplasmic reticulum stress ameliorates endothelial cell inflammation.

    Science.gov (United States)

    Leonard, Antony; Paton, Adrienne W; El-Quadi, Monaliza; Paton, James C; Fazal, Fabeha

    2014-01-01

    Endoplasmic Reticulum (ER) stress, caused by disturbance in ER homeostasis, has been implicated in several pathological conditions such as ischemic injury, neurodegenerative disorders, metabolic diseases and more recently in inflammatory conditions. Our present study aims at understanding the role of ER stress in endothelial cell (EC) inflammation, a critical event in the pathogenesis of acute lung injury (ALI). We found that preconditioning human pulmonary artery endothelial cells (HPAEC) to ER stress either by depleting ER chaperone and signaling regulator BiP using siRNA, or specifically cleaving (inactivating) BiP using subtilase cytotoxin (SubAB), alleviates EC inflammation. The two approaches adopted to abrogate BiP function induced ATF4 protein expression and the phosphorylation of eIF2α, both markers of ER stress, which in turn resulted in blunting the activation of NF-κB, and restoring endothelial barrier integrity. Pretreatment of HPAEC with BiP siRNA inhibited thrombin-induced IκBα degradation and its resulting downstream signaling pathway involving NF-κB nuclear translocation, DNA binding, phosphorylation at serine536, transcriptional activation and subsequent expression of adhesion molecules. However, TNFα-mediated NF-κB signaling was unaffected upon BiP knockdown. In an alternative approach, SubAB-mediated inactivation of NF-κB was independent of IκBα degradation. Mechanistic analysis revealed that pretreatment of EC with SubAB interfered with the binding of the liberated NF-κB to the DNA, thereby resulting in reduced expression of adhesion molecules, cytokines and chemokines. In addition, both knockdown and inactivation of BiP stimulated actin cytoskeletal reorganization resulting in restoration of endothelial permeability. Together our studies indicate that BiP plays a central role in EC inflammation and injury via its action on NF-κB activation and regulation of vascular permeability.

  18. Polystyrene-Divinylbenzene-Based Adsorbents Reduce Endothelial Activation and Monocyte Adhesion Under Septic Conditions in a Pore Size-Dependent Manner.

    Science.gov (United States)

    Eichhorn, Tanja; Rauscher, Sabine; Hammer, Caroline; Gröger, Marion; Fischer, Michael B; Weber, Viktoria

    2016-10-01

    Endothelial activation with excessive recruitment and adhesion of immune cells plays a central role in the progression of sepsis. We established a microfluidic system to study the activation of human umbilical vein endothelial cells by conditioned medium containing plasma from lipopolysaccharide-stimulated whole blood or from septic blood and to investigate the effect of adsorption of inflammatory mediators on endothelial activation. Treatment of stimulated whole blood with polystyrene-divinylbenzene-based cytokine adsorbents (average pore sizes 15 or 30 nm) prior to passage over the endothelial layer resulted in significantly reduced endothelial cytokine and chemokine release, plasminogen activator inhibitor-1 secretion, adhesion molecule expression, and in diminished monocyte adhesion. Plasma samples from sepsis patients differed substantially in their potential to induce endothelial activation and monocyte adhesion despite their almost identical interleukin-6 and tumor necrosis factor-alpha levels. Pre-incubation of the plasma samples with a polystyrene-divinylbenzene-based adsorbent (30 nm average pore size) reduced endothelial intercellular adhesion molecule-1 expression to baseline levels, resulting in significantly diminished monocyte adhesion. Our data support the potential of porous polystyrene-divinylbenzene-based adsorbents to reduce endothelial activation under septic conditions by depletion of a broad range of inflammatory mediators.

  19. Urokinase receptor expression on human microvascular endothelial cells is increased by hypoxia: Implications for capillary-like tube formation in a fibrin matrix

    NARCIS (Netherlands)

    Kroon, M.E.; Koolwijk, P.; Vecht, B. van der; Hinsbergh, V.W.M. van

    2000-01-01

    Hypoxia stimulates angiogenesis, the formation of new blood vessels. This study evaluates the direct effect of hypoxia (1% oxygen) on the angiogenic response of human microvascular endothelial cells (hMVECs) seeded on top of a 3-dimensional fibrin matrix, hMVECs stimulated with fibroblast growth

  20. Dynamics of circulating endothelial cells and endothelial progenitor cells in breast cancer patients receiving cytotoxic chemotherapy

    Directory of Open Access Journals (Sweden)

    Kuo Yu-Hsuan

    2012-12-01

    Full Text Available Abstract Background The abundance of circulating endothelial cells (CECs and circulating endothelial progenitor cells (CEPs, which serve as surrogate markers for angiogenesis, may be affected by chemotherapy. We studied their dynamic change during consecutive cycles of chemotherapy. Methods We collected blood samples from 15 breast cancer patients, who received a total of 56 courses of systemic chemotherapy, and measured the CECs, viable CECs (V-CECs, and CEPs by six-color flow cytometry within the seven days prior to chemotherapy, twice a week during the first and second cycles of chemotherapy, and then once a week during the subsequent cycles. Results The CEC, V-CEC, and CEP levels all significantly decreased from day 1 of treatment to the first week of chemotherapy. After one week of chemotherapy, the CEC and V-CEC levels returned to a level similar to day 1. The CEP level remained significantly reduced after the first week of chemotherapy, but gradually rebounded until the next course of chemotherapy. After six cycles of chemotherapy, the total number of CEC and V-CEC cells trended toward a decrease and the CEP cells toward an increase. Clinical factors, including the existence of a tumor, chemotherapy regimens, and the use of granulocyte colony stimulating factor, did not significantly affect these results. Conclusions The CEC and CEP counts change dynamically during each course of chemotherapy and after the chemotherapy cycles, providing background data for any future study planning to use CECs and CEPs as surrogate markers of angiogenesis in antiangiogenesis treatments combined with chemotherapy.

  1. Signaling hierarchy regulating human endothelial cell development.

    Science.gov (United States)

    Kelly, Melissa A; Hirschi, Karen K

    2009-05-01

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these studies. Using human embryonic stem cells as a model system, we were able to reproducibly and robustly generate differentiated endothelial cells via coculture on OP9 marrow stromal cells. We found that, in contrast to studies in the mouse, bFGF and VEGF had no specific effects on the initiation of human vasculogenesis. However, exogenous Ihh promoted endothelial cell differentiation, as evidenced by increased production of cells with cobblestone morphology that coexpress multiple endothelial-specific genes and proteins, form lumens, and exhibit DiI-AcLDL uptake. Inhibition of BMP signaling using Noggin or BMP4, specifically, using neutralizing antibodies suppressed endothelial cell formation; whereas, addition of rhBMP4 to cells treated with the hedgehog inhibitor cyclopamine rescued endothelial cell development. Our studies revealed that Ihh promoted human endothelial cell differentiation from pluripotent hES cells via BMP signaling, providing novel insights applicable to modulating human endothelial cell formation and vascular regeneration for human clinical therapies.

  2. Nitride coating enhances endothelialization on biomedical NiTi shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ion, Raluca [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Luculescu, Catalin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, P.O. Box MG-36, 077125 Magurele-Bucharest (Romania); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Marx, Philippe [AMF Company, Route de Quincy, 18120 Lury-sur-Arnon (France); Gordin, Doina-Margareta; Gloriant, Thierry [INSA Rennes, UMR CNRS 6226 ISCR, 20 Avenue des Buttes de Coësmes, 35708 Rennes Cedex 7 (France)

    2016-05-01

    Surface nitriding was demonstrated to be an effective process for improving the biocompatibility of implantable devices. In this study, we investigated the benefits of nitriding the NiTi shape memory alloy for vascular stent applications. Results from cell experiments indicated that, compared to untreated NiTi, a superficial gas nitriding treatment enhanced the adhesion of human umbilical vein endothelial cells (HUVECs), cell spreading and proliferation. This investigation provides data to demonstrate the possibility of improving the rate of endothelialization on NiTi by means of nitride coating. - Highlights: • Gas nitriding process of NiTi is competent to promote cell spreading. • Surface nitriding of NiTi is able to stimulate focal adhesion formation and cell proliferation. • Similar expression pattern of vWf and eNOS was exhibited by bare and nitrided NiTi. • Gas nitriding treatment of NiTi shows promise for better in vivo endothelialization.

  3. ALTERED EXPRESSION OF SURFACE RECEPTORS AT EA.HY926 ENDOTHELIAL CELL LINE INDUCED WITH PLACENTAL SECRETORY FACTORS

    Directory of Open Access Journals (Sweden)

    O. I. Stepanova

    2012-01-01

    Full Text Available Abstract. Placental cell populations produce a great variety of angiogenic factors and cytokines than control angiogenesis in placenta. Functional regulation of endothelial cells proceeds via modulation of endothelial cell receptors for endogenous angiogenic and apoptotic signals. Endothelial phenotype alteration during normal pregnancy and in cases of preclampsia is not well understood. The goal of this investigation was to evaluate altered expression of angiogenic and cytokine receptors at EA.hy926 endothelial cells under the influence of placental tissue supernatants. Normal placental tissue supernatants from 1st and 3rd trimesters, and pre-eclamptic placental tissue supernatants (3rd trimester stimulated angiogenic and cytokine receptors expression by the cultured endothelial cells, as compared with their background expression. Tissue supernatants from placental samples of 3rd trimester caused a decreased expression of angiogenic and cytokine receptors by endothelial cells, thus reflecting maturation of placental vascular system at these terms. Supernatants from preeclamptic placental tissue induced an increase of CD119 expression, in comparison with normal placental supernatants from the 3rd trimester. This finding suggests that IFNγ may be a factor of endothelial activation in pre-eclampsia. The study was supported by grants ГК №02.740.11.0711, НШ-3594.2010.7., and МД-150.2011.7.

  4. RCAN1.4 regulates VEGFR-2 internalisation, cell polarity and migration in human microvascular endothelial cells.

    Science.gov (United States)

    Alghanem, Ahmad F; Wilkinson, Emma L; Emmett, Maxine S; Aljasir, Mohammad A; Holmes, Katherine; Rothermel, Beverley A; Simms, Victoria A; Heath, Victoria L; Cross, Michael J

    2017-08-01

    Regulator of calcineurin 1 (RCAN1) is an endogenous inhibitor of the calcineurin pathway in cells. It is expressed as two isoforms in vertebrates: RCAN1.1 is constitutively expressed in most tissues, whereas transcription of RCAN1.4 is induced by several stimuli that activate the calcineurin-NFAT pathway. RCAN1.4 is highly upregulated in response to VEGF in human endothelial cells in contrast to RCAN1.1 and is essential for efficient endothelial cell migration and tubular morphogenesis. Here, we show that RCAN1.4 has a role in the regulation of agonist-stimulated VEGFR-2 internalisation and establishment of endothelial cell polarity. siRNA-mediated gene silencing revealed that RCAN1 plays a vital role in regulating VEGF-mediated cytoskeletal reorganisation and directed cell migration and sprouting angiogenesis. Adenoviral-mediated overexpression of RCAN1.4 resulted in increased endothelial cell migration. Antisense-mediated morpholino silencing of the zebrafish RCAN1.4 orthologue revealed a disrupted vascular development further confirming a role for the RCAN1.4 isoform in regulating vascular endothelial cell physiology. Our data suggest that RCAN1.4 plays a novel role in regulating endothelial cell migration by establishing endothelial cell polarity in response to VEGF.

  5. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells

    Science.gov (United States)

    Kobayashi, Hideki; Butler, Jason M.; O'Donnell, Rebekah; Kobayashi, Mariko; Ding, Bi-Sen; Bonner, Bryant; Chiu, Vi K.; Nolan, Daniel J.; Shido, Koji; Benjamin, Laura; Rafii, Shahin

    2010-01-01

    Endothelial cells establish an instructive vascular niche that reconstitutes haematopoietic stem and progenitor cells (HSPCs) through release of specific paracrine growth factors, known as angiocrine factors. However, the mechanism by which endothelial cells balance the rate of proliferation and lineage-specific differentiation of HSPCs is unknown. Here, we demonstrate that Akt activation in endothelial cells, through recruitment of mTOR, but not the FoxO pathway, upregulates specific angiocrine factors that support expansion of CD34−Flt3− KLS HSPCs with long-term haematopoietic stem cell (LT-HSC) repopulation capacity. Conversely, co-activation of Akt-stimulated endothelial cells with p42/44 MAPK shifts the balance towards maintenance and differentiation of the HSPCs. Selective activation of Akt1 in the endothelial cells of adult mice increased the number of colony forming units in the spleen and CD34−Flt3− KLS HSPCs with LT-HSC activity in the bone marrow, accelerating haematopoietic recovery. Therefore, the activation state of endothelial cells modulates reconstitution of HSPCs through the upregulation of angiocrine factors, with Akt–mTOR-activated endothelial cells supporting the self-renewal of LT-HSCs and expansion of HSPCs, whereas MAPK co-activation favours maintenance and lineage-specific differentiation of HSPCs. PMID:20972423

  6. The coffee diterpene kahweol inhibits tumor necrosis factor-α-induced expression of cell adhesion molecules in human endothelial cells

    International Nuclear Information System (INIS)

    Kim, Hyung Gyun; Kim, Ji Young; Hwang, Yong Pil; Lee, Kyung Jin; Lee, Kwang Youl; Kim, Dong Hee; Kim, Dong Hyun; Jeong, Hye Gwang

    2006-01-01

    Endothelial cells produce adhesion molecules after being stimulated with various inflammatory cytokines. These adhesion molecules play an important role in the development of atherogenesis. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of kahweol, a coffee-specific diterpene. This study examined the effects of kahweol on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. Kahweol inhibited the adhesion of TNFα-induced monocytes to endothelial cells and suppressed the TNFα-induced protein and mRNA expression of the cell adhesion molecules, VCAM-1 and ICAM-1. Furthermore, kahweol inhibited the TNFα-induced JAK2-PI3K/Akt-NF-κB activation pathway in these cells. Overall, kahweol has anti-inflammatory and anti-atherosclerotic activities, which occurs partly by down-regulating the pathway that affects the expression and interaction of the cell adhesion molecules on endothelial cells

  7. Endothelial Function in Migraine With Aura – A Systematic Review

    DEFF Research Database (Denmark)

    Butt, Jawad H; Franzmann, Ulriche; Kruuse, Christina

    2015-01-01

    in migraineurs, and several studies on endothelial markers in the areas of inflammation, oxidative stress, and coagulation found increased endothelial activation in migraineurs, particularly in MA. One study, assessing cerebral endothelial function using transcranial Doppler sonography, reported lower...

  8. HIF-2α Expression Regulates Sprout Formation into 3D Fibrin Matrices in Prolonged Hypoxia in Human Microvascular Endothelial Cells.

    Science.gov (United States)

    Nauta, Tessa D; Duyndam, Monique C A; Weijers, Ester M; van Hinsbergh, Victor M W; Koolwijk, Pieter

    2016-01-01

    During short-term hypoxia, Hypoxia Inducible Factors (particular their subunits HIF-1α and HIF-2α) regulate the expression of many genes including the potent angiogenesis stimulator VEGF. However, in some pathological conditions chronic hypoxia occurs and is accompanied by reduced angiogenesis. We investigated the effect of prolonged hypoxia on the proliferation and sprouting ability of human microvascular endothelial cells and the involvement of the HIFs and Dll4/Notch signaling. Human microvascular endothelial cells (hMVECs), cultured at 20% oxygen for 14 days and seeded on top of 3D fibrin matrices, formed sprouts when stimulated with VEGF-A/TNFα. In contrast, hMVECs precultured at 1% oxygen for 14 days were viable and proliferative, but did not form sprouts into fibrin upon VEGF-A/TNFα stimulation at 1% oxygen. Silencing of HIF-2α with si-RNA partially restored the inhibition of endothelial sprouting, whereas HIF-1α or HIF-3α by si-RNA had no effect. No involvement of Dll4/Notch pathway in the inhibitory effect on endothelial sprouting by prolonged hypoxia was found. In addition, hypoxia decreased the production of urokinase-type plasminogen activator (uPA), needed for migration and invasion, without a significant effect on its inhibitor PAI-1. This was independent of HIF-2α, as si-HIF-2α did not counteract uPA reduction. Prolonged culturing of hMVECs at 1% oxygen inhibited endothelial sprouting into fibrin. Two independent mechanisms contribute. Silencing of HIF-2α with si-RNA partially restored the inhibition of endothelial sprouting pointing to a HIF-2α-dependent mechanism. In addition, reduction of uPA contributed to reduced endothelial tube formation in a fibrin matrix during prolonged hypoxia.

  9. The regulatory mechanism of Hsp90α secretion from endothelial cells and its role in angiogenesis during wound healing

    International Nuclear Information System (INIS)

    Song, Xiaomin; Luo, Yongzhang

    2010-01-01

    Research highlights: → Growth factors such as bFGF, VEGF, PDGF and SDF-1 stimulate Hsp90α secretion from endothelial cells. → Secreted Hsp90α localizes on the leading edge of activated endothelial cells. → Secreted Hsp90α promotes angiogenesis in wound healing. -- Abstract: Heat shock protein 90α (Hsp90α) is a ubiquitously expressed molecular chaperone, which is essential for the maintenance of eukaryote homeostasis. Hsp90α can also be secreted extracellularly and is associated with several physiological and pathological processes including wound healing, cancer, infectious diseases and diabetes. Angiogenesis, defined as the sprouting of new blood vessels from pre-existing capillaries via endothelial cell proliferation and migration, commonly occurs in and contributes to the above mentioned processes. However, the secretion of Hsp90α from endothelial cells and also its function in angiogenesis are still unclear. Here we investigated the role of extracellular Hsp90α in angiogenesis using dermal endothelial cells in vitro and a wound healing model in vivo. We find that the secretion of Hsp90α but not Hsp90β is increased in activated endothelial cells with the induction of angiogenic factors and matrix proteins. Secreted Hsp90α localizes on the leading edge of endothelial cells and promotes their angiogenic activities, whereas Hsp90α neutralizing antibodies reverse the effect. Furthermore, using a mouse skin wound healing model in vivo, we demonstrate that extracellular Hsp90α localizes on blood vessels in granulation tissues of wounded skin and promotes angiogenesis during wound healing. Taken together, our study reveals that Hsp90α can be secreted by activated endothelial cells and is a positive regulator of angiogenesis, suggesting the potential application of Hsp90α as a stimulator for wound repair.

  10. The regulatory mechanism of Hsp90{alpha} secretion from endothelial cells and its role in angiogenesis during wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiaomin [National Engineering Laboratory for Anti-tumor Protein Therapeutics, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084 (China); Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084 (China); Luo, Yongzhang, E-mail: yluo@tsinghua.edu.cn [National Engineering Laboratory for Anti-tumor Protein Therapeutics, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084 (China); Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084 (China)

    2010-07-16

    Research highlights: {yields} Growth factors such as bFGF, VEGF, PDGF and SDF-1 stimulate Hsp90{alpha} secretion from endothelial cells. {yields} Secreted Hsp90{alpha} localizes on the leading edge of activated endothelial cells. {yields} Secreted Hsp90{alpha} promotes angiogenesis in wound healing. -- Abstract: Heat shock protein 90{alpha} (Hsp90{alpha}) is a ubiquitously expressed molecular chaperone, which is essential for the maintenance of eukaryote homeostasis. Hsp90{alpha} can also be secreted extracellularly and is associated with several physiological and pathological processes including wound healing, cancer, infectious diseases and diabetes. Angiogenesis, defined as the sprouting of new blood vessels from pre-existing capillaries via endothelial cell proliferation and migration, commonly occurs in and contributes to the above mentioned processes. However, the secretion of Hsp90{alpha} from endothelial cells and also its function in angiogenesis are still unclear. Here we investigated the role of extracellular Hsp90{alpha} in angiogenesis using dermal endothelial cells in vitro and a wound healing model in vivo. We find that the secretion of Hsp90{alpha} but not Hsp90{beta} is increased in activated endothelial cells with the induction of angiogenic factors and matrix proteins. Secreted Hsp90{alpha} localizes on the leading edge of endothelial cells and promotes their angiogenic activities, whereas Hsp90{alpha} neutralizing antibodies reverse the effect. Furthermore, using a mouse skin wound healing model in vivo, we demonstrate that extracellular Hsp90{alpha} localizes on blood vessels in granulation tissues of wounded skin and promotes angiogenesis during wound healing. Taken together, our study reveals that Hsp90{alpha} can be secreted by activated endothelial cells and is a positive regulator of angiogenesis, suggesting the potential application of Hsp90{alpha} as a stimulator for wound repair.

  11. Signaling hierarchy regulating human endothelial cell development

    Science.gov (United States)

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these stud...

  12. Endothelial dysfunction in metabolic and vascular disorders.

    Science.gov (United States)

    Polovina, Marija M; Potpara, Tatjana S

    2014-03-01

    Vascular endothelium has important regulatory functions in the cardiovascular system and a pivotal role in the maintenance of vascular health and metabolic homeostasis. It has long been recognized that endothelial dysfunction participates in the pathogenesis of atherosclerosis from early, preclinical lesions to advanced, thrombotic complications. In addition, endothelial dysfunction has been recently implicated in the development of insulin resistance and type 2 diabetes mellitus (T2DM). Considering that states of insulin resistance (eg, metabolic syndrome, impaired fasting glucose, impaired glucose tolerance, and T2DM) represent the most prevalent metabolic disorders and risk factors for atherosclerosis, it is of considerable scientific and clinical interest that both metabolic and vascular disorders have endothelial dysfunction as a common background. Importantly, endothelial dysfunction has been associated with adverse outcomes in patients with established cardiovascular disease, and a growing body of evidence indicates that endothelial dysfunction also imparts adverse prognosis in states of insulin resistance. In this review, we discuss the association of insulin resistance and T2DM with endothelial dysfunction and vascular disease, with a focus on the underlying mechanisms and prognostic implications of the endothelial dysfunction in metabolic and vascular disorders. We also address current therapeutic strategies for the improvement of endothelial dysfunction.

  13. Endothelial Semaphorin 7A promotes inflammation in seawater aspiration-induced acute lung injury.

    Science.gov (United States)

    Zhang, Minlong; Wang, Li; Dong, Mingqing; Li, Zhichao; Jin, Faguang

    2014-10-28

    Inflammation is involved in the pathogenesis of seawater aspiration-induced acute lung injury (ALI). Although several studies have shown that Semaphorin 7A (SEMA7A) promotes inflammation, there are limited reports regarding immunological function of SEMA7A in seawater aspiration-induced ALI. Therefore, we investigated the role of SEMA7A during seawater aspiration-induced ALI. Male Sprague-Dawley rats were underwent seawater instillation. Then, lung samples were collected at an indicated time for analysis. In addition, rat pulmonary microvascular endothelial cells (RPMVECs) were cultured and then stimulated with 25% seawater for indicated time point. After these treatments, cells samples were collected for analysis. In vivo, seawater instillation induced lung histopathologic changes, pro-inflammation cytokines release and increased expression of SEMA7A. In vitro, seawater stimulation led to pro-inflammation cytokine release, cytoskeleton remodeling and increased monolayer permeability in pulmonary microvascular endothelial cells. In addition, knockdown of hypoxia-inducible factor (HIF)-1α inhibited the seawater induced increase expression of SEMA7A. Meanwhile, knockdown of SEMA7A by specific siRNA inhibited the seawater induced aberrant inflammation, endothelial cytoskeleton remodeling and endothelial permeability. These results suggest that SEMA7A is critical in the development of lung inflammation and pulmonary edema in seawater aspiration-induced ALI, and may be a therapeutic target for this disease.

  14. Contact-mediated and humoral communication between vascular endothelial and smooth muscle cells in vitro

    International Nuclear Information System (INIS)

    Davies, P.F.

    1986-01-01

    Vascular endothelial cells (EC) and smooth muscle cells (SMC) co-exist in close apposition to each other in all blood vessels except capillaries. Investigations of the metabolic interactions that may occur between these cells are essential to an understanding of vascular homeostasis and the pathogenesis of atherosclerosis. The authors have developed two in vitro models of co-temporal vascular cell communication. The first facilitates reversible microcarrier-mediated gap junctional communication between EC and SMC monolayers. When either EC or SMC were prelabelled with 3 H-uridine, intracellular nucleotide rapidly transferred across the region of heterocellular attachment to the complementary cell population. Cytoplasmic continuity between EC and SMC allowed metabolic cooperation via ions and small molecules (<1.5 KD). Thus, vascular reactivity, particularly in the microcirculation where myoendothelial gap junctions have been observed, may involve cytoplasmic second messengers transported from EC to SMC. In the second model, humoral communication was established between separated cultures of EC and SMC which shared the same culture medium. Endothelial-specific stimulation of SMC growth and lipoprotein metabolism via soluble factors was demonstrated. Two mechanisms of stimulation of SMC lipoprotein metabolism were identified; one endothelial derived mitogen-dependent, the other mitogen-independent which was mediated via low molecular weight endothelial cell products

  15. Sex Differences Influencing Micro- and Macrovascular Endothelial Phenotype In Vitro.

    Science.gov (United States)

    Huxley, Virginia H; Kemp, Scott S; Schramm, Christine; Sieveking, Steve; Bingaman, Susan; Yu, Yang; Zaniletti, Isabella; Stockard, Kevin; Wang, Jianjie

    2018-06-09

    Endothelial dysfunction is an early hallmark of multiple disease states that also display sex differences with respect to age of onset, frequency, and severity. Results of in vivo studies of basal and stimulated microvascular barrier function revealed sex differences difficult to ascribe to specific cells or environmental factors. The present study evaluated endothelial cells (EC) isolated from macro- and/or microvessels of reproductively mature rats under the controlled conditions of low-passage culture to test the assumption that EC phenotype would be sex-independent. The primary finding was that EC, regardless of where they are derived, retain a sex-bias in low-passage culture, independent of varying levels of reproductive hormones. Implications of the work include the fallacy of expecting a universal set of mechanisms derived from study of EC from one sex and/or one vascular origin to apply uniformly to all EC under unstimulated conditions no less in the disease state. Vascular endothelial cells (EC) are heterogeneous with respect to phenotype reflecting at least organ of origin, location within the vascular network, and physical forces. Sex, as an independent influence on EC functions in health or etiology, susceptibility, and progression of dysfunction in numerous disease states, has been largely ignored. The current study focussed on EC isolated from aorta (macrovascular) and skeletal muscle vessels (microvascular) of age-matched male and female rats under identical conditions of short term (passage 4) culture. We tested the hypothesis that genomic sex would not influence endothelial growth, wound healing, morphology, lactate production, or messenger RNA and protein expression of key proteins (sex hormone receptors for androgen (AR) and oestrogen (ERα and ERβ); PECAM-1 and VE-CAD mediating barrier function; α v β 3 and N-Cadherin influencing matrix interactions; ICAM-1 and VCAM-1 mediating EC/white cell adhesion). The hypothesis was rejected as EC origin

  16. Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis.

    Science.gov (United States)

    Mahabeleshwar, Ganapati H; Feng, Weiyi; Reddy, Kumar; Plow, Edward F; Byzova, Tatiana V

    2007-09-14

    The functional responses of endothelial cells are dependent on signaling from peptide growth factors and the cellular adhesion receptors, integrins. These include cell adhesion, migration, and proliferation, which, in turn, are essential for more complex processes such as formation of the endothelial tube network during angiogenesis. This study identifies the molecular requirements for the cross-activation between beta3 integrin and tyrosine kinase receptor 2 for vascular endothelial growth factor (VEGF) receptor (VEGFR-2) on endothelium. The relationship between VEGFR-2 and beta3 integrin appears to be synergistic, because VEGFR-2 activation induces beta3 integrin tyrosine phosphorylation, which, in turn, is crucial for VEGF-induced tyrosine phosphorylation of VEGFR-2. We demonstrate here that adhesion- and growth factor-induced beta3 integrin tyrosine phosphorylation are directly mediated by c-Src. VEGF-stimulated recruitment and activation of c-Src and subsequent beta3 integrin tyrosine phosphorylation are critical for interaction between VEGFR-2 and beta3 integrin. Moreover, c-Src mediates growth factor-induced beta3 integrin activation, ligand binding, beta3 integrin-dependent cell adhesion, directional migration of endothelial cells, and initiation of angiogenic programming in endothelial cells. Thus, the present study determines the molecular mechanisms and consequences of the synergism between 2 cell surface receptor systems, growth factor receptor and integrins, and opens new avenues for the development of pro- and antiangiogenic strategies.

  17. Mononuclear Phagocyte-Derived Microparticulate Caspase-1 Induces Pulmonary Vascular Endothelial Cell Injury.

    Directory of Open Access Journals (Sweden)

    Srabani Mitra

    Full Text Available Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS and impacts disease progression. Lung endothelial injury has traditionally been focused on the role of neutrophil trafficking to lung vascular integrin receptors induced by proinflammatory cytokine expression. Although much is known about the pathogenesis of cell injury and death in ALI/ARDS, gaps remain in our knowledge; as a result of which there is currently no effective pharmacologic therapy. Enzymes known as caspases are essential for completion of the apoptotic program and secretion of pro-inflammatory cytokines. We hypothesized that caspase-1 may serve as a key regulator of human pulmonary microvascular endothelial cell (HPMVEC apoptosis in ALI/ARDS. Our recent experiments confirm that microparticles released from stimulated monocytic cells (THP1 induce lung endothelial cell apoptosis. Microparticles pretreated with the caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, were unable to induce cell death of HPMVEC, suggesting the role of caspase-1 or its substrate in the induction of HPMVEC cell death. Neither un-induced microparticles (control nor direct treatment with LPS induced apoptosis of HPMVEC. Further experiments showed that caspase-1 uptake into HPMVEC and the induction of HPMVEC apoptosis was facilitated by caspase-1 interactions with microparticulate vesicles. Altering vesicle integrity completely abrogated apoptosis of HPMVEC suggesting an encapsulation requirement for target cell uptake of active caspase-1. Taken together, we confirm that microparticle centered caspase-1 can play a regulator role in endothelial cell injury.

  18. Indirect induction of endothelial cell injury by PU- or PTFE-mediated activation of monocytes.

    Science.gov (United States)

    Liu, Xin; Xue, Yang; Sun, Jiao

    2010-01-01

    Polyurethanes (PUs) and polytetrafluoroethylene (PTFE) are widely used for making cardiovascular devices, but thrombus formation on the surfaces of these devices is inevitable. Since endothelial injury can lead to thrombosis, most of the studies on PUs or PTFE focused on their damage to endothelial cells. However, few studies have attempted to clarify whether the use of foreign objects as biomaterials can cause endothelial injury by activating the innate immune system. In this study, we aimed to investigate the roles of PU- or PTFE-stimulated immune cells in endothelial-cell injury. First, monocytes (THP-1 cells) were stimulated with PU or PTFE for 24 h and, subsequently, human umbilical vein endothelial cells (HUVECs) were treated with the supernatants of the stimulated cells for 24 h. We measured the generation of intracellular reactive oxygen species (ROS) from THP-1 cells treated with PU and PTFE for 24 h, meanwhile hydrogen dioxide (H(2)O(2)), tumor necrosis factor (TNF)-α and interleukin (IL)-1β in the supernatants were also detected. Then, we assessed the apoptosis rate of the HUVECs and determined the expression of NO, inducible nitric oxide synthase (iNOS), and apoptosis-related proteins (p53, Bax, Bcl-2) in the HUVECs. The results showed that large amounts of ROS and low levels of pro-inflammatory cytokines (TNF-α and IL-1β) were produced by the stimulated THP-1 cells. After culturing with the supernatants of the PU- or PTFE-stimulated THP-1 cells, the apoptosis rate, NO production and expression of iNOS, p53 and Bax in the HUVECs were up-regulated, while Bcl-2 expression was down-regulated. In conclusion, the release of ROS by PU- or PTFE-treated THP-1 cells may induce iNOS expression and cause apoptosis in HUVECs via the p53, Bax and Bcl-2 proteins. These data provide the interesting finding that endothelial injury in the process of biomaterial-induced thrombosis can be initiated through the release of soluble mediators by monocytes.

  19. Femtosecond laser cutting of endothelial grafts: comparison of endothelial and epithelial applanation.

    Science.gov (United States)

    Bernard, Aurélien; He, Zhiguo; Gauthier, Anne Sophie; Trone, Marie Caroline; Baubeau, Emmanuel; Forest, Fabien; Dumollard, Jean Marc; Peocʼh, Michel; Thuret, Gilles; Gain, Philippe

    2015-02-01

    Stromal surface quality of endothelial lamellae cut for endothelial keratoplasty with a femtosecond laser (FSL) with epithelial applanation remains disappointing. Applanation of the endothelial side of the cornea, mounted inverted on an artificial chamber, has therefore been proposed to improve cut quality. We compared lamellar quality after FSL cutting using epithelial versus endothelial applanation. Lamellae were cut with an FSL from organ-cultured corneas. After randomization, 7 were cut with epithelial applanation and 7 with endothelial applanation. Lamellae of 50-, 75-, and 100-μm thickness were targeted. Thickness was measured by optical coherence tomography before and immediately after cutting. Viable endothelial cell density was quantified immediately after cutting using triple labeling with Hoechst/ethidium/calcein-AM coupled with image analysis with ImageJ. The stromal surface was evaluated by 9 masked observers using semiquantitative scoring of scanning electronic microscopy images. Histology of 2 samples was also analyzed before lamellar detachment. Precision (difference in target/actual thickness) and thickness regularity [coefficient of variation (CV) of 10 measurements] were significantly better with endothelial applanation (precision: 18 μm; range, 10-30; CV: 11%; range, 8-12) than with epithelial applanation (precision: 84 μm; range, 54-107; P = 0.002; CV: 24%; range, 13-47; P = 0.001). Endothelial applanation provided thinner lamellae. However, viable endothelial cell density was significantly lower after endothelial applanation (1183 cells/mm2; range, 787-1725 versus 1688 cells/mm2; range, 1288-2025; P = 0.018). FSL cutting of endothelial lamellae using endothelial applanation provides thinner more regular grafts with more predictable thickness than with conventional epithelial applanation but strongly reduces the pool of viable endothelial cells.

  20. Angiogenesis interactome and time course microarray data reveal the distinct activation patterns in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Liang-Hui Chu

    Full Text Available Angiogenesis involves stimulation of endothelial cells (EC by various cytokines and growth factors, but the signaling mechanisms are not completely understood. Combining dynamic gene expression time-course data for stimulated EC with protein-protein interactions associated with angiogenesis (the "angiome" could reveal how different stimuli result in different patterns of network activation and could implicate signaling intermediates as points for control or intervention. We constructed the protein-protein interaction networks of positive and negative regulation of angiogenesis comprising 367 and 245 proteins, respectively. We used five published gene expression datasets derived from in vitro assays using different types of blood endothelial cells stimulated by VEGFA (vascular endothelial growth factor A. We used the Short Time-series Expression Miner (STEM to identify significant temporal gene expression profiles. The statistically significant patterns between 2D fibronectin and 3D type I collagen substrates for telomerase-immortalized EC (TIME show that different substrates could influence the temporal gene activation patterns in the same cell line. We investigated the different activation patterns among 18 transmembrane tyrosine kinase receptors, and experimentally measured the protein level of the tyrosine-kinase receptors VEGFR1, VEGFR2 and VEGFR3 in human umbilical vein EC (HUVEC and human microvascular EC (MEC. The results show that VEGFR1-VEGFR2 levels are more closely coupled than VEGFR1-VEGFR3 or VEGFR2-VEGFR3 in HUVEC and MEC. This computational methodology can be extended to investigate other molecules or biological processes such as cell cycle.

  1. Hypothyroidism Is Associated With Coronary Endothelial Dysfunction in Women

    Science.gov (United States)

    Sara, Jaskanwal D; Zhang, Ming; Gharib, Hossein; Lerman, Lilach O; Lerman, Amir

    2015-01-01

    Background Hypothyroidism is associated with an increased risk of coronary artery disease, beyond that which can be explained by its association with conventional cardiovascular risk factors. Coronary endothelial dysfunction precedes atherosclerosis, has been linked to adverse cardiovascular events, and may account for some of the increased risk in patients with hypothyroidism. The aim of this study was to determine whether there is an association between epicardial and microvascular coronary endothelial dysfunction and hypothyroidism. Methods and Results In 1388 patients (mean age 50.5 [12.3] years, 34% male) presenting with stable chest pain to Mayo Clinic, Rochester, MN for diagnostic coronary angiography, and who were found to have nonobstructive coronary artery disease (hypothyroidism, defined as a documented history of hypothyroidism or a thyroid-stimulating hormone (TSH) >10.0 mU/mL, n=188, and euthyroidism, defined as an absence of a history of hypothyroidism in the clinical record and/or 0.3hypothyroidism had a significantly lower % Δ CBF Ach (48.26 [80.66] versus 64.58 [128.30]) compared to patients with euthyroidism, while the % Δ CAD Ach did not vary significantly between groups. After adjusting for covariates, females with hypothyroidism still had a significantly lower % Δ CBF Ach (estimated difference in % Δ CBF Ach [SE]: −16.79 [8.18]). Conclusions Hypothyroidism in women is associated with microvascular endothelial dysfunction, even after adjusting for confounders, and may explain some of the increased risk of cardiovascular disease in these patients. PMID:26224049

  2. VEGF-A isoform-specific regulation of calcium ion flux, transcriptional activation and endothelial cell migration.

    Science.gov (United States)

    Fearnley, Gareth W; Bruns, Alexander F; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2015-04-24

    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology such as cell migration, proliferation, tubulogenesis and cell-cell interactions. Numerous isoforms of VEGF-A exist but their physiological significance is unclear. Here we evaluated two different VEGF-A isoforms and discovered differential regulation of cytosolic calcium ion flux, transcription factor localisation and endothelial cell response. Analysis of VEGF-A isoform-specific stimulation of VEGFR2-dependent signal transduction revealed differential capabilities for isoform activation of multiple signal transduction pathways. VEGF-A165 treatment promoted increased phospholipase Cγ1 phosphorylation, which was proportional to the subsequent rise in cytosolic calcium ions, in comparison to cells treated with VEGF-A121. A major consequence of this VEGF-A isoform-specific calcium ion flux in endothelial cells is differential dephosphorylation and subsequent nuclear translocation of the transcription factor NFATc2. Using reverse genetics, we discovered that NFATc2 is functionally required for VEGF-A-stimulated endothelial cell migration but not tubulogenesis. This work presents a new mechanism for understanding how VEGF-A isoforms program complex cellular outputs by converting signal transduction pathways into transcription factor redistribution to the nucleus, as well as defining a novel role for NFATc2 in regulating the endothelial cell response. © 2015. Published by The Company of Biologists Ltd.

  3. VEGF-A isoform-specific regulation of calcium ion flux, transcriptional activation and endothelial cell migration

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2015-07-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A regulates many aspects of vascular physiology such as cell migration, proliferation, tubulogenesis and cell-cell interactions. Numerous isoforms of VEGF-A exist but their physiological significance is unclear. Here we evaluated two different VEGF-A isoforms and discovered differential regulation of cytosolic calcium ion flux, transcription factor localisation and endothelial cell response. Analysis of VEGF-A isoform-specific stimulation of VEGFR2-dependent signal transduction revealed differential capabilities for isoform activation of multiple signal transduction pathways. VEGF-A165 treatment promoted increased phospholipase Cγ1 phosphorylation, which was proportional to the subsequent rise in cytosolic calcium ions, in comparison to cells treated with VEGF-A121. A major consequence of this VEGF-A isoform-specific calcium ion flux in endothelial cells is differential dephosphorylation and subsequent nuclear translocation of the transcription factor NFATc2. Using reverse genetics, we discovered that NFATc2 is functionally required for VEGF-A-stimulated endothelial cell migration but not tubulogenesis. This work presents a new mechanism for understanding how VEGF-A isoforms program complex cellular outputs by converting signal transduction pathways into transcription factor redistribution to the nucleus, as well as defining a novel role for NFATc2 in regulating the endothelial cell response.

  4. Time-course gene expression data on the transcriptional effects of Aminaphtone on ECV304 endothelial cells

    Directory of Open Access Journals (Sweden)

    Giulia Salazar

    2016-09-01

    Full Text Available We previously showed that Aminaphtone, a drug used in the treatment of chronic venous insufficiency, modulates several vasoactive factors, such as endothelin-1 and adhesion molecules. Here, we provide data of time-course experiments about the effects of Aminaphtone on gene expression at the genome-wide level in human endothelial cells undergoing cytokine stimulation in vitro. ECV-304 endothelial cells were incubated with interleukin-1β (IL-1β in the presence or absence of Aminaphtone for 1, 3, and 6 h. Gene expression profiles were analyzed by microarray. This article contains complete data on the genes significantly modulated by the drug over time. The data are supplemental to our original research article reporting detailed analysis of the actions of Aminaphtone on IL-1β stimulated endothelial cells at the molecular level, ''Gene expression profiling reveals novel protective effects of Aminaphtone on ECV304 endothelial cells'' (Salazar et al., 2016 [1]. Chemical compound studied in this article: Aminaphtone (PubChem CID: 84621, Keywords: Endothelial cells, Transcriptome, Inflammation, Vasoactive drug

  5. Endothelial microparticle formation by angiotensin II is mediated via Ang II receptor type I/NADPH oxidase/ Rho kinase pathways targeted to lipid rafts.

    Science.gov (United States)

    Burger, Dylan; Montezano, Augusto C; Nishigaki, Nobuhiro; He, Ying; Carter, Anthony; Touyz, Rhian M

    2011-08-01

    Circulating microparticles are increased in cardiovascular disease and may themselves promote oxidative stress and inflammation. Molecular mechanisms underlying their formation and signaling are unclear. We investigated the role of reactive oxygen species (ROS), Rho kinase, and lipid rafts in microparticle formation and examined their functional significance in endothelial cells (ECs). Microparticle formation from angiotensin II (Ang II)-stimulated ECs and apolipoprotein E(-/-) mice was assessed by annexin V or by CD144 staining and electron microscopy. Ang II promoted microparticle formation and increased EC O(2)(-) generation and Rho kinase activity. Ang II-stimulated effects were inhibited by irbesartan (Ang II receptor type I blocker) and fasudil (Rho kinase inhibitor). Methyl-β-cyclodextrin and nystatin, which disrupt lipid rafts/caveolae, blocked microparticle release. Functional responses, assessed in microparticle-stimulated ECs, revealed increased O(2)(-) production, enhanced vascular cell adhesion molecule/platelet-EC adhesion molecule expression, and augmented macrophage adhesion. Inhibition of epidermal growth factor receptor blocked the prooxidative and proinflammatory effects of microparticles. In vitro observations were confirmed in apolipoprotein E(-/-) mice, which displayed vascular inflammation and high levels of circulating endothelial microparticles, effects that were reduced by apocynin. We demonstrated direct actions of Ang II on endothelial microparticle release, mediated through NADPH oxidase, ROS, and Rho kinase targeted to lipid rafts. Microparticles themselves stimulated endothelial ROS formation and inflammatory responses. Our findings suggest a feedforward system whereby Ang II promotes EC injury through its own endothelial-derived microparticles.

  6. Cigarette smoke extract counteracts atheroprotective effects of high laminar flow on endothelial function

    Directory of Open Access Journals (Sweden)

    Sindy Giebe

    2017-08-01

    Full Text Available Tobacco smoking and hemodynamic forces are key stimuli in the development of endothelial dysfunction and atherosclerosis. High laminar flow has an atheroprotective effect on the endothelium and leads to a reduced response of endothelial cells to cardiovascular risk factors compared to regions with disturbed or low laminar flow. We hypothesize that the atheroprotective effect of high laminar flow could delay the development of endothelial dysfunction caused by cigarette smoking. Primary human endothelial cells were stimulated with increasing dosages of aqueous cigarette smoke extract (CSEaq. CSEaq reduced cell viability in a dose-dependent manner. The main mediator of cellular adaption to oxidative stress, nuclear factor erythroid 2-related factor 2 (NRF2 and its target genes heme oxygenase (decycling 1 (HMOX1 or NAD(PH quinone dehydrogenase 1 (NQO1 were strongly increased by CSEaq in a dose-dependent manner. High laminar flow induced elongation of endothelial cells in the direction of flow, activated the AKT/eNOS pathway, increased eNOS expression, phosphorylation and NO release. These increases were inhibited by CSEaq. Pro-inflammatory adhesion molecules intercellular adhesion molecule-1 (ICAM1, vascular cell adhesion molecule-1 (VCAM1, selectin E (SELE and chemokine (C-C motif ligand 2 (CCL2/MCP-1 were increased by CSEaq. Low laminar flow induced VCAM1 and SELE compared to high laminar flow. High laminar flow improved endothelial wound healing. This protective effect was inhibited by CSEaq in a dose-dependent manner through the AKT/eNOS pathway. Low as well as high laminar flow decreased adhesion of monocytes to endothelial cells. Whereas, monocyte adhesion was increased by CSEaq under low laminar flow, this was not evident under high laminar flow.This study shows the activation of major atherosclerotic key parameters by CSEaq. Within this process, high laminar flow is likely to reduce the harmful effects of CSEaq to a certain degree. The

  7. The endothelial αENaC contributes to vascular endothelial function in vivo

    DEFF Research Database (Denmark)

    Tarjus, Antoine; Maase, Martina; Jeggle, Pia

    2017-01-01

    The Epithelial Sodium Channel (ENaC) is a key player in renal sodium homeostasis. The expression of α β γ ENaC subunits has also been described in the endothelium and vascular smooth muscle, suggesting a role in vascular function. We recently demonstrated that endothelial ENaC is involved in aldo......-mediated dilation. Our data suggest that endothelial αENaC contributes to vascular endothelial function in vivo....

  8. Sphingosine-1-phosphate induces human endothelial VEGF and MMP-2 production via transcription factor ZNF580: Novel insights into angiogenesis

    International Nuclear Information System (INIS)

    Sun, Hui-Yan; Wei, Shu-Ping; Xu, Rui-Cheng; Xu, Peng-Xiao; Zhang, Wen-Cheng

    2010-01-01

    Sphingosine-1-phosphate (S1P)-induced migration and proliferation of endothelial cells are critical for angiogenesis. C2H2-zinc finger (ZNF) proteins usually play an essential role in altering gene expression and regulating the angiogenesis. The aim of this study is to investigate whether a novel human C2H2-zinc finger gene ZNF580 (Gene ID: 51157) is involved in the migration and proliferation of endothelial cells stimulated by S1P. Our study shows that EAhy926 endothelial cells express S1P1, S1P3 and S1P5 receptors. Furthermore, S1P upregulates both ZNF580 mRNA and protein levels in a concentration- and time-dependent manner. SB203580, the specific inhibitor of the p38 mitogen-activated protein kinase (p38 MAPK) pathway, blocks the S1P-induced upregulation of ZNF580. Moreover, overexpression/downexpression of ZNF580 in EAhy926 cells leads to the enhancement/decrease of matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) expression as well as the migration and proliferation of EAhy926 endothelial cells. These results elucidate the important role that ZNF580 plays in the process of migration and proliferation of endothelial cells, which provides a foundation for a novel approach to regulate angiogenesis.

  9. Sphingosine-1-phosphate induces human endothelial VEGF and MMP-2 production via transcription factor ZNF580: Novel insights into angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hui-Yan, E-mail: shy35309@sohu.com [Department of Physiology and Pathophysiology, Medical College of Chinese People' s Armed Police Forces, Tianjin 300162 (China); Wei, Shu-Ping, E-mail: weishuping_83@163.com [Department of Physiology and Pathophysiology, Medical College of Chinese People' s Armed Police Forces, Tianjin 300162 (China); Xu, Rui-Cheng, E-mail: xu_rc@sohu.com [Department of Physiology and Pathophysiology, Medical College of Chinese People' s Armed Police Forces, Tianjin 300162 (China); Xu, Peng-Xiao, E-mail: xupengxiao1228@sina.com [Department of Physiology and Pathophysiology, Medical College of Chinese People' s Armed Police Forces, Tianjin 300162 (China); Zhang, Wen-Cheng, E-mail: wenchengzhang@yahoo.com [Department of Physiology and Pathophysiology, Medical College of Chinese People' s Armed Police Forces, Tianjin 300162 (China)

    2010-05-07

    Sphingosine-1-phosphate (S1P)-induced migration and proliferation of endothelial cells are critical for angiogenesis. C2H2-zinc finger (ZNF) proteins usually play an essential role in altering gene expression and regulating the angiogenesis. The aim of this study is to investigate whether a novel human C2H2-zinc finger gene ZNF580 (Gene ID: 51157) is involved in the migration and proliferation of endothelial cells stimulated by S1P. Our study shows that EAhy926 endothelial cells express S1P1, S1P3 and S1P5 receptors. Furthermore, S1P upregulates both ZNF580 mRNA and protein levels in a concentration- and time-dependent manner. SB203580, the specific inhibitor of the p38 mitogen-activated protein kinase (p38 MAPK) pathway, blocks the S1P-induced upregulation of ZNF580. Moreover, overexpression/downexpression of ZNF580 in EAhy926 cells leads to the enhancement/decrease of matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) expression as well as the migration and proliferation of EAhy926 endothelial cells. These results elucidate the important role that ZNF580 plays in the process of migration and proliferation of endothelial cells, which provides a foundation for a novel approach to regulate angiogenesis.

  10. Modulation of cGMP by human HO-1 retrovirus gene transfer in pulmonary microvessel endothelial cells.

    Science.gov (United States)

    Abraham, Nader G; Quan, Shuo; Mieyal, Paul A; Yang, Liming; Burke-Wolin, Theresa; Mingone, Christopher J; Goodman, Alvin I; Nasjletti, Alberto; Wolin, Michael S

    2002-11-01

    Carbon monoxide (CO) stimulates guanylate cyclase (GC) and increases guanosine 3',5'-cyclic monophosphate (cGMP) levels. We transfected rat-lung pulmonary endothelial cells with a retrovirus-mediated human heme oxygenase (hHO)-1 gene. Pulmonary cells that expressed hHO-1 exhibited a fourfold increase in HO activity associated with decreases in the steady-state levels of heme and cGMP without changes in soluble GC (sGC) and endothelial nitric oxide synthase (NOS) proteins or basal nitrite production. Heme elicited significant increases in CO production and intracellular cGMP levels in both pulmonary endothelial and pulmonary hHO-1-expressing cells. N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NOS, significantly decreased cGMP levels in heme-treated pulmonary endothelial cells but not heme-treated hHO-1-expressing cells. In the presence of exogenous heme, CO and cGMP levels in hHO-1-expressing cells exceeded the corresponding levels in pulmonary endothelial cells. Acute exposure of endothelial cells to SnCl2, which is an inducer of HO-1, increased cGMP levels, whereas chronic exposure decreased heme and cGMP levels. These results indicate that prolonged overexpression of HO-1 ultimately decreases sGC activity by limiting the availability of cellular heme. Heme activates sGC and enhances cGMP levels via a mechanism that is largely insensitive to NOS inhibition.

  11. Mechanism study of endothelial protection and inhibits platelet activation of low molecular weight fucoidan from Laminaria japonica

    Science.gov (United States)

    Chen, Anjin; Zhang, Fang; Shi, Jie; Zhao, Xue; Yan, Meixing

    2016-10-01

    Several studies have indicated that fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica could inhibit the activation of platelets directly by reducing the platelet aggregation. To explore the direct effect of LMW fucoidan on the platelet system furthermore and examine the possible mechanism, the endothelial protection and inhibits platelet activation effects of two LMW fucoidan were investigated. In the present study, Endothelial injury model of rats was made by injection of adrenaline (0.4 mg kg-1) and human umbilical vein endothelial cells were cultured. vWF level was be investigated in vivo and in vitro as an important index of endothelial injury. LMW fucoidan could significantly reduce vWF level in vascular endothelial injury rats and also significantly reduce vWF level in vitro. The number of EMPs was be detected as another important index of endothelial injury. The results showed that LMW fucoidan reduced EMPs stimulated by tumor necrosis factor. In this study, it was found that by inhibiting platelet adhesion, LMW fucoidan played a role in anti-thrombosis and the specific mechanism of action is to inhibit the flow of extracellular Ca2+. All in a word, LMW fucoidan could inhibit the activation of platelets indirectly by reducing the concentration of EMPs and vWF, at the same time; LMW fucoidan inhibited the activation of platelets directly by inhibiting the flow of extracellular Ca2+.

  12. Reactive oxygen species-driven HIF1α triggers accelerated glycolysis in endothelial cells exposed to low oxygen tension

    International Nuclear Information System (INIS)

    Paik, Jin-Young; Jung, Kyung-Ho; Lee, Jin-Hee; Park, Jin-Won; Lee, Kyung-Han

    2017-01-01

    Endothelial cells and their metabolic state regulate glucose transport into underlying tissues. Here, we show that low oxygen tension stimulates human umbilical vein endothelial cell 18 F–fluorodeoxyglucose ( 18 F–FDG) uptake and lactate production. This was accompanied by augmented hexokinase activity and membrane Glut-1, and increased accumulation of hypoxia-inducible factor-1α (HIF1α). Restoration of oxygen reversed the metabolic effect, but this was blocked by HIF1α stabilization. Hypoxia-stimulated 18 F–FDG uptake was completely abrogated by silencing of HIF1α expression or by a specific inhibitor. There was a rapid and marked increase of reactive oxygen species (ROS) by hypoxia, and ROS scavenging or NADPH oxidase inhibition completely abolished hypoxia-stimulated HIF1α and 18 F–FDG accumulation, placing ROS production upstream of HIF1α signaling. Hypoxia-stimulated HIF1α and 18 F–FDG accumulation was blocked by the protein kinase C (PKC) inhibitor, staurosporine. The phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin, blocked hypoxia-stimulated 18 F–FDG uptake and attenuated hypoxia-responsive element binding of HIF1α without influencing its accumulation. Thus, ROS-driven HIF1α accumulation, along with PKC and PI3K signaling, play a key role in triggering accelerated glycolysis in endothelial cells under hypoxia, thereby contributing to 18 F–FDG transport.

  13. TGF-β2 inhibits AKT activation and FGF-2-induced corneal endothelial cell proliferation

    International Nuclear Information System (INIS)

    Lu Jiawei; Lu Zhenyu; Reinach, Peter

    2006-01-01

    The corneal endothelial cells form a boundary layer between anterior chamber and cornea. This single cell layer is important to maintain cornea transparency by eliciting net fluid transport into the anterior chamber. Injuries of the corneal endothelial layer in humans lead to corneal swelling and translucence. This hindrance is thought to be due to limited proliferative capacity of the endothelial layer. Fibroblast growth factor 2 (FGF-2) and transforming growth factor-beta 2 (TGF-β2) are both found in aqueous humor, and these two cytokines promote and inhibit cell growth, respectively. The intracellular signaling mechanisms by which TGF-β2 suppresses the mitogenic response to FGF-2, however, remain unclear. We have addressed this question by investigating potential crosstalk between FGF-2-induced and TGF-β2-regulated intracellular signaling events in cultured bovine corneal endothelial (BCE) cells. We found that TGF-β2 and FGF-2 oppositely affect BCE cell proliferation and TGF-β2 can override the stimulating effects of FGF-2 by increasing COX-2 expression in these cells. Consistent with these findings, overexpression of COX-2 significantly reduced FGF-2-induced cell proliferation whereas a COX-2 specific inhibitor NS398 reversed the effect of TGF-β2 on FGF-2-induced cell proliferation. The COX-2 product prostaglandin E2 (PGE-2) blocks FGF-2-induced cell proliferation. Whereas FGF-2 stimulates cell proliferation by activating the AKT pathway, TGF-β2 and PGE-2 both inhibit this pathway. In accordance with the effect of PGE-2, cAMP also inhibits FGF-2-induced AKT activation. These findings suggest that the mitogenic response to FGF-2 in vivo in the corneal endothelial layer may be inhibited by TGF-β2-induced suppression of the PI3-kinase/AKT signaling pathway

  14. Microfluidically supported biochip design for culture of endothelial cell layers with improved perfusion conditions.

    Science.gov (United States)

    Raasch, Martin; Rennert, Knut; Jahn, Tobias; Peters, Sven; Henkel, Thomas; Huber, Otmar; Schulz, Ingo; Becker, Holger; Lorkowski, Stefan; Funke, Harald; Mosig, Alexander

    2015-03-02

    Hemodynamic forces generated by the blood flow are of central importance for the function of endothelial cells (ECs), which form a biologically active cellular monolayer in blood vessels and serve as a selective barrier for macromolecular permeability. Mechanical stimulation of the endothelial monolayer induces morphological remodeling in its cytoskeleton. For in vitro studies on EC biology culture devices are desirable that simulate conditions of flow in blood vessels and allow flow-based adhesion/permeability assays under optimal perfusion conditions. With this aim we designed a biochip comprising a perfusable membrane that serves as cell culture platform multi-organ-tissue-flow (MOTiF biochip). This biochip allows an effective supply with nutrition medium, discharge of catabolic cell metabolites and defined application of shear stress to ECs under laminar flow conditions. To characterize EC layers cultured in the MOTiF biochip we investigated cell viability, expression of EC marker proteins and cell adhesion molecules of ECs dynamically cultured under low and high shear stress, and compared them with an endothelial culture in established two-dimensionally perfused flow chambers and under static conditions. We show that ECs cultured in the MOTiF biochip form a tight EC monolayer with increased cellular density, enhanced cell layer thickness, presumably as the result of a rapid and effective adaption to shear stress by remodeling of the cytoskeleton. Moreover, endothelial layers in the MOTiF biochip express higher amounts of EC marker proteins von-Willebrand-factor and PECAM-1. EC layers were highly responsive to stimulation with TNFα as detected at the level of ICAM-1, VCAM-1 and E-selectin expression and modulation of endothelial permeability in response to TNFα/IFNγ treatment under flow conditions. Compared to static and two-dimensionally perfused cell culture condition we consider MOTiF biochips as a valuable tool for studying EC biology in vitro under

  15. Domain-Specific Partitioning of Uterine Artery Endothelial Connexin43 and Caveolin-1.

    Science.gov (United States)

    Ampey, Bryan C; Morschauser, Timothy J; Ramadoss, Jayanth; Magness, Ronald R

    2016-10-01

    Uterine vascular adaptations facilitate rises in uterine blood flow during pregnancy, which are associated with gap junction connexin (Cx) proteins and endothelial nitric oxide synthase. In uterine artery endothelial cells (UAECs), ATP activates endothelial nitric oxide synthase in a pregnancy (P)-specific manner that is dependent on Cx43 function. Caveolar subcellular domain partitioning plays key roles in ATP-induced endothelial nitric oxide synthase activation and nitric oxide production. Little is known regarding the partitioning of Cx proteins to caveolar domains or their dynamics with ATP treatment. We observed that Cx43-mediated gap junction function with ATP stimulation is associated with Cx43 repartitioning between the noncaveolar and caveolar domains. Compared with UAECs from nonpregnant (NP) ewes, levels of ATP, PGI2, cAMP, NOx, and cGMP were 2-fold higher (PLucifer yellow dye transfer, a response abrogated by Gap27, but not Gap 26, indicating involvement of Cx43, but not Cx37. Confocal microscopy revealed domain partitioning of Cx43 and caveolin-1. In pregnant UAECs, LC/MS/MS analysis revealed only Cx43 in the caveolar domain. In contrast, Cx37 was located only in the noncaveolar pool. Western analysis revealed that ATP increased Cx43 distribution (1.7-fold; P=0.013) to the caveolar domain, but had no effect on Cx37. These data demonstrate rapid ATP-stimulated repartitioning of Cx43 to the caveolae, where endothelial nitric oxide synthase resides and plays an important role in nitric oxide-mediated increasing uterine blood flow during pregnancy. © 2016 American Heart Association, Inc.

  16. Endothelial nitric oxide synthase gene polymorphisms associated ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-24

    May 24, 2010 ... chronic periodontitis (CP), 31 with gingivitis (G) and 50 healthy controls. Probing depth ..... Periodontal disease in pregnancy I. Prevalence and severity. ... endothelial nitric oxide synthase gene in premenopausal women with.

  17. Identification of intracellular proteins and signaling pathways in human endothelial cells regulated by angiotensin-(1-7).

    Science.gov (United States)

    Meinert, Christian; Gembardt, Florian; Böhme, Ilka; Tetzner, Anja; Wieland, Thomas; Greenberg, Barry; Walther, Thomas

    2016-01-01

    The study aimed to identify proteins regulated by the cardiovascular protective peptide angiotensin-(1-7) and to determine potential intracellular signaling cascades. Human endothelial cells were stimulated with Ang-(1-7) for 1 h, 3 h, 6 h, and 9 h. Peptide effects on intracellular signaling were assessed via antibody microarray, containing antibodies against 725 proteins. Bioinformatics software was used to identify affected intracellular signaling pathways. Microarray data was verified exemplarily by Western blot, Real-Time RT-PCR, and immunohistochemical studies. The microarray identified 110 regulated proteins after 1 h, 119 after 3 h, 31 after 6 h, and 86 after 9 h Ang-(1-7) stimulation. Regulated proteins were associated with high significance to several metabolic pathways like “Molecular Mechanism of Cancer” and “p53 signaling” in a time dependent manner. Exemplarily, Western blots for the E3-type small ubiquitin-like modifier ligase PIAS2 confirmed the microarray data and displayed a decrease by more than 50% after Ang-(1-7) stimulation at 1 h and 3 h without affecting its mRNA. Immunohistochemical studies with PIAS2 in human endothelial cells showed a decrease in cytoplasmic PIAS2 after Ang-(1-7) treatment. The Ang-(1-7) mediated decrease of PIAS2 was reproduced in other endothelial cell types. The results suggest that angiotensin-(1-7) plays a role in metabolic pathways related to cell death and cell survival in human endothelial cells.

  18. Sustained release of growth hormone and sodium nitrite from biomimetic collagen coating immobilized on silicone tubes improves endothelialization.

    Science.gov (United States)

    Salehi-Nik, Nasim; Malaie-Balasi, Zahra; Amoabediny, Ghassem; Banikarimi, Seyedeh Parnian; Zandieh-Doulabi, Behrouz; Klein-Nulend, Jenneke

    2017-08-01

    Biocompatibility of biomedical devices can be improved by endothelialization of blood-contacting parts mimicking the vascular endothelium's function. Improved endothelialization might be obtained by using biomimetic coatings that allow local sustained release of biologically active molecules, e.g. anti-thrombotic and growth-inducing agents, from nanoliposomes. We aimed to test whether incorporation of growth-inducing nanoliposomal growth hormone (nGH) and anti-thrombotic nanoliposomal sodium nitrite (nNitrite) into collagen coating of silicone tubes enhances endothelialization by stimulating endothelial cell proliferation and inhibiting platelet adhesion. Collagen coating stably immobilized on acrylic acid-grafted silicone tubes decreased the water contact angle from 102° to 56°. Incorporation of 50 or 500nmol/ml nNitrite and 100 or 1000ng/ml nGH into collagen coating decreased the water contact angle further to 48°. After 120h incubation, 58% nitrite and 22% GH of the initial amount of sodium nitrite and GH in nanoliposomes were gradually released from the nNitrite-nGH-collagen coating. Endothelial cell number was increased after surface coating of silicone tubes with collagen by 1.6-fold, and with nNitrite-nGH-collagen conjugate by 1.8-3.9-fold after 2days. After 6days, endothelial cell confluency in the absence of surface coating was 22%, with collagen coating 74%, and with nNitrite-nGH-collagen conjugate coating 83-119%. In the absence of endothelial cells, platelet adhesion was stimulated after collagen coating by 1.3-fold, but inhibited after nNitrite-nGH-collagen conjugate coating by 1.6-3.7-fold. The release of anti-thrombotic prostaglandin I 2 from endothelial cells was stimulated after nNitrite-nGH-collagen conjugate coating by 1.7-2.2-fold compared with collagen coating. Our data shows improved endothelialization and blood compatibility using nNitrite-nGH-collagen conjugate coating on silicone tubes suggesting that these coatings are highly suitable

  19. Dynamical Systems Approach to Endothelial Heterogeneity

    Science.gov (United States)

    Regan, Erzsébet Ravasz; Aird, William C.

    2012-01-01

    Rationale Objective Here we reexamine our current understanding of the molecular basis of endothelial heterogeneity. We introduce multistability as a new explanatory framework in vascular biology. Methods We draw on the field of non-linear dynamics to propose a dynamical systems framework for modeling multistability and its derivative properties, including robustness, memory, and plasticity. Conclusions Our perspective allows for both a conceptual and quantitative description of system-level features of endothelial regulation. PMID:22723222

  20. An ?All-laser? Endothelial Transplant

    OpenAIRE

    Rossi, Francesca; Canovetti, Annalisa; Malandrini, Alex; Lenzetti, Ivo; Pini, Roberto; Menabuoni, Luca

    2015-01-01

    The ?all laser? assisted endothelial keratoplasty is a procedure that is performed with a femtosecond laser used to cut the donor tissue at an intended depth, and a near infrared diode laser to weld the corneal tissue. The proposed technique enables to reach the three main goals in endothelial keratoplasty: a precise control in the thickness of the donor tissue; its easy insertion in the recipient bed and a reduced risk of donor lenticule dislocation. The donor cornea thickness is measured in...

  1. Endothelial microparticles: Sophisticated vesicles modulating vascular function

    Science.gov (United States)

    Curtis, Anne M; Edelberg, Jay; Jonas, Rebecca; Rogers, Wade T; Moore, Jonni S; Syed, Wajihuddin; Mohler, Emile R

    2015-01-01

    Endothelial microparticles (EMPs) belong to a family of extracellular vesicles that are dynamic, mobile, biological effectors capable of mediating vascular physiology and function. The release of EMPs can impart autocrine and paracrine effects on target cells through surface interaction, cellular fusion, and, possibly, the delivery of intra-vesicular cargo. A greater understanding of the formation, composition, and function of EMPs will broaden our understanding of endothelial communication and may expose new pathways amenable for therapeutic manipulation. PMID:23892447

  2. Resveratrol induces mitochondrial biogenesis in endothelial cells.

    Science.gov (United States)

    Csiszar, Anna; Labinskyy, Nazar; Pinto, John T; Ballabh, Praveen; Zhang, Hanrui; Losonczy, Gyorgy; Pearson, Kevin; de Cabo, Rafael; Pacher, Pal; Zhang, Cuihua; Ungvari, Zoltan

    2009-07-01

    Pathways that regulate mitochondrial biogenesis are potential therapeutic targets for the amelioration of endothelial dysfunction and vascular disease. Resveratrol was shown to impact mitochondrial function in skeletal muscle and the liver, but its role in mitochondrial biogenesis in endothelial cells remains poorly defined. The present study determined whether resveratrol induces mitochondrial biogenesis in cultured human coronary arterial endothelial cells (CAECs). In CAECs resveratrol increased mitochondrial mass and mitochondrial DNA content, upregulated protein expression of electron transport chain constituents, and induced mitochondrial biogenesis factors (proliferator-activated receptor-coactivator-1alpha, nuclear respiratory factor-1, mitochondrial transcription factor A). Sirtuin 1 (SIRT1) was induced, and endothelial nitric oxide (NO) synthase (eNOS) was upregulated in a SIRT1-dependent manner. Knockdown of SIRT1 (small interfering RNA) or inhibition of NO synthesis prevented resveratrol-induced mitochondrial biogenesis. In aortas of type 2 diabetic (db/db) mice impaired mitochondrial biogenesis was normalized by chronic resveratrol treatment, showing the in vivo relevance of our findings. Resveratrol increases mitochondrial content in endothelial cells via activating SIRT1. We propose that SIRT1, via a pathway that involves the upregulation of eNOS, induces mitochondrial biogenesis. Resveratrol induced mitochondrial biogenesis in the aortas of type 2 diabetic mice, suggesting the potential for new treatment approaches targeting endothelial mitochondria in metabolic diseases.

  3. Proteomic identification of S-nitrosylated Golgi proteins: new insights into endothelial cell regulation by eNOS-derived NO.

    Directory of Open Access Journals (Sweden)

    Panjamaporn Sangwung

    Full Text Available Endothelial nitric oxide synthase (eNOS is primarily localized on the Golgi apparatus and plasma membrane caveolae in endothelial cells. Previously, we demonstrated that protein S-nitrosylation occurs preferentially where eNOS is localized. Thus, in endothelial cells, Golgi proteins are likely to be targets for S-nitrosylation. The aim of this study was to identify S-nitrosylated Golgi proteins and attribute their S-nitrosylation to eNOS-derived nitric oxide in endothelial cells.Golgi membranes were isolated from rat livers. S-nitrosylated Golgi proteins were determined by a modified biotin-switch assay coupled with mass spectrometry that allows the identification of the S-nitrosylated cysteine residue. The biotin switch assay followed by Western blot or immunoprecipitation using an S-nitrosocysteine antibody was also employed to validate S-nitrosylated proteins in endothelial cell lysates.Seventy-eight potential S-nitrosylated proteins and their target cysteine residues for S-nitrosylation were identified; 9 of them were Golgi-resident or Golgi/endoplasmic reticulum (ER-associated proteins. Among these 9 proteins, S-nitrosylation of EMMPRIN and Golgi phosphoprotein 3 (GOLPH3 was verified in endothelial cells. Furthermore, S-nitrosylation of these proteins was found at the basal levels and increased in response to eNOS stimulation by the calcium ionophore A23187. Immunofluorescence microscopy and immunoprecipitation showed that EMMPRIN and GOLPH3 are co-localized with eNOS at the Golgi apparatus in endothelial cells. S-nitrosylation of EMMPRIN was notably increased in the aorta of cirrhotic rats.Our data suggest that the selective S-nitrosylation of EMMPRIN and GOLPH3 at the Golgi apparatus in endothelial cells results from the physical proximity to eNOS-derived nitric oxide.

  4. A novel adipocytokine, chemerin exerts anti-inflammatory roles in human vascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamawaki, Hideyuki, E-mail: yamawaki@vmas.kitasato-u.ac.jp [Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori 034-8628 (Japan); Kameshima, Satoshi; Usui, Tatsuya; Okada, Muneyoshi; Hara, Yukio [Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori 034-8628 (Japan)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Chemerin is a novel adipocytokine with almost unknown function in vasculature. Black-Right-Pointing-Pointer Chemerin activates Akt/eNOS/NO pathways in endothelial cells. Black-Right-Pointing-Pointer Chemerin inhibits TNF-{alpha}-induced monocyte adhesion to endothelial cells. Black-Right-Pointing-Pointer Chemerin inhibits TNF-induced VCAM-1 via suppressing NF-{kappa}B and p38 signal. Black-Right-Pointing-Pointer Chemerin is anti-inflammatory through producing NO in vascular endothelium. -- Abstract: Chemerin is a recently identified adipocytokine which plays a role on inflammation and adipocytes metabolism. However, its function in vasculature is largely unknown. We examined the effects of chemerin on vascular endothelial inflammatory states. Treatment of human umbilical vein endothelial cells with chemerin (300 ng/ml, 20 min) induced phosphorylation of Akt (Ser473) and endothelial nitric oxide (NO) synthase (eNOS) (Ser1177). Consistently, chemerin increased intracellular cyclic GMP content. Pretreatment with chemerin (1-300 ng/ml, 24 h) significantly inhibited phosphorylation of nuclear factor (NF)-{kappa}B p65 (Ser536) and p38 as well as vascular cell adhesion molecule (VCAM)-1 expression induced by tumor necrosis factor (TNF)-{alpha} (5 ng/ml, 20 min-6 h). Inhibitor of NF-{kappa}B or p38 significantly inhibited the TNF-{alpha}-induced VCAM-1 expression. Chemerin also inhibited TNF-{alpha}-induced VCAM-1 expression in rat isolated aorta. Moreover, chemerin significantly inhibited monocytes adhesion to TNF-{alpha}-stimulated endothelial cells. The inhibitory effect of chemerin on TNF-{alpha}-induced VCAM-1 was reversed by a NOS inhibitor. Conversely, an NO donor, sodium nitroprusside significantly inhibited TNF-{alpha}-induced VCAM-1. The present results for the first time demonstrate that chemerin plays anti-inflammatory roles by preventing TNF-{alpha}-induced VCAM-1 expression and monocytes adhesion in vascular

  5. Time-series observation of the spreading out of microvessel endothelial cells with atomic force microscopy

    International Nuclear Information System (INIS)

    Han Dong; Ma Wanyun; Liao Fulong; Yeh Meiling; Ouyang Zhigang; Sun Yunxu

    2003-01-01

    The spreading out of microvessel endothelial cells plays a key role in angiogenesis and the post-injury healing of endothelial cells. In our study, a physical force applied with an atomic force microscopic (AFM) cantilever tip in contact mode partly broke the peripheral adhesion that just-confluent cultured rat cerebral microvessel endothelial cells had formed with basal structures and resulted in the cells actively withdrawing from the stimulated area. Time-series changes in cell extension were imaged using tapping mode AFM, in conjunction with total internal reflection fluorescence microscopy, intensified charge-coupled device and field emission scanning electron microscopy. We also interpreted phase images of living endothelial cells. The results showed that formation of a fibronectin molecule monolayer is key to the spreading out of the cells. Lamellipods as well as filopods would spread out in temporal and spatial distribution following the formation of fibronectin layer. In addition, a lattice-like meshwork of filopods formed in the regions leading lamellipods, which would possibly provide a fulcrum for the filaments of the cytoskeleton within the leading cell body periphery

  6. Nicorandil prevents sirolimus-induced production of reactive oxygen species, endothelial dysfunction, and thrombus formation

    Directory of Open Access Journals (Sweden)

    Ken Aizawa

    2015-03-01

    Full Text Available Sirolimus (SRL is widely used to prevent restenosis after percutaneous coronary intervention. However, its beneficial effect is hampered by complications of thrombosis. Several studies imply that reactive oxygen species (ROS play a critical role in endothelial dysfunction and thrombus formation. The present study investigated the protective effect of nicorandil (NIC, an anti-angina agent, on SRL-associated thrombosis. In human coronary artery endothelial cells (HCAECs, SRL stimulated ROS production, which was prevented by co-treatment with NIC. The preventive effect of NIC on ROS was abolished by 5-hydroxydecanoate but not by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. NIC also inhibited SRL-induced up-regulation of NADPH oxidase subunit p22phox mRNA. Co-treatment with NIC and SRL significantly up-regulated superoxide dismutase 2. NIC treatment significantly improved SRL-induced decrease in viability of HCAECs. The functional relevance of the preventive effects of NIC on SRL-induced ROS production and impairment of endothelial viability was investigated in a mouse model of thrombosis. Pretreatment with NIC inhibited the SRL-induced acceleration of FeCl3-initiated thrombus formation and ROS production in the testicular arteries of mice. In conclusion, NIC prevented SRL-induced thrombus formation, presumably due to the reduction of ROS and to endothelial protection. The therapeutic efficacy of NIC could represent an additional option in the prevention of SRL-related thrombosis.

  7. Dengue Virus Infection Differentially Regulates Endothelial Barrier Function over Time through Type I Interferon Effects

    Science.gov (United States)

    Liu, Ping; Woda, Marcia; Ennis, Francis A.; Libraty, Daniel H.

    2013-01-01

    Background The morbidity and mortality resulting from dengue hemorrhagic fever (DHF) are largely caused by endothelial barrier dysfunction and a unique vascular leakage syndrome. The mechanisms that lead to the location and timing of vascular leakage in DHF are poorly understood. We hypothesized that direct viral effects on endothelial responsiveness to inflammatory and angiogenesis mediators can explain the DHF vascular leakage syndrome. Methods We used an in vitro model of human endothelium to study the combined effects of dengue virus (DENV) type 2 (DENV2) infection and inflammatory mediators on paracellular macromolecule permeability over time. Results Over the initial 72 h after infection, DENV2 suppressed tumor necrosis factor (TNF)–α–mediated hyperpermeability in human umbilical vein endothelial cell (HUVEC) monolayers. This suppressive effect was mediated by type I interferon (IFN). By 1 week, TNF-α stimulation of DENV2-infected HUVECs synergistically increased cell cycling, angiogenic changes, and macromolecule permeability. This late effect could be prevented by the addition of exogenous type I IFN. Conclusions DENV infection of primary human endothelial cells differentially modulates TNF-α–driven angiogenesis and hyperpermeability over time. Type I IFN plays a central role in this process. Our findings suggest a rational model for the DHF vascular leakage syndrome. PMID:19530939

  8. Reduced Ang2 expression in aging endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Hohensinner, P.J., E-mail: philipp.hohensinner@meduniwien.ac.at [Department of Internal Medicine II, Medical University of Vienna, Vienna (Austria); Ebenbauer, B. [Department of Internal Medicine II, Medical University of Vienna, Vienna (Austria); Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna (Austria); Kaun, C.; Maurer, G. [Department of Internal Medicine II, Medical University of Vienna, Vienna (Austria); Huber, K. [Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna (Austria); 3rd Medical Department, Wilhelminenhospital, Vienna (Austria); Sigmund Freud University, Medical Faculty, Vienna (Austria); Wojta, J. [Department of Internal Medicine II, Medical University of Vienna, Vienna (Austria); Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna (Austria); Core Facilities, Medical University of Vienna, Vienna (Austria)

    2016-06-03

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. -- Highlights: •Endothelial cells display signs of aging before reaching proliferative senescence. •Aging endothelial cells express more angiopoietin 1 and less angiopoietin 2 than young endothelial cells. •Migratory capacity is reduced in aging endothelial cells.

  9. Reduced Ang2 expression in aging endothelial cells

    International Nuclear Information System (INIS)

    Hohensinner, P.J.; Ebenbauer, B.; Kaun, C.; Maurer, G.; Huber, K.; Wojta, J.

    2016-01-01

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. -- Highlights: •Endothelial cells display signs of aging before reaching proliferative senescence. •Aging endothelial cells express more angiopoietin 1 and less angiopoietin 2 than young endothelial cells. •Migratory capacity is reduced in aging endothelial cells.

  10. [The role of endothelial cells and endothelial precursor cells in angiogenesis].

    Science.gov (United States)

    Poreba, Małgorzata; Usnarska-Zubkiewicz, Lidia; Kuliczkowski, Kazimierz

    2006-01-01

    Endothelium plays a key role in maintenance of vascular homeostasis in human organism. According to new data endothelial cells and hematopoietic cells have a common precursor in prenatal life--a hemangioblast, which explains the fact of sharing the same determinants on the surface of both type of cells. Circulating endothelial precursors were identified in adults and this suggests that hemangioblasts may be present not only during embriogenesis. In some clinical situations the increased numbers of endothelial cells and endothelial precursors were noted, and especially in patients with neoplastic diseases, which is probably the result of increased angiogenesis. Endothelial precursors are thought to be the promice for therapeutic purposes in future--to increase local angiogenesis.

  11. Estrogen-induced DNA synthesis in vascular endothelial cells is mediated by ROS signaling

    Directory of Open Access Journals (Sweden)

    Felty Quentin

    2006-04-01

    to be dose dependent. Conclusion We have shown that estrogen exposure stimulates the rapid production of intracellular ROS and they are involved in growth signaling of endothelial cells. It appears that the early estrogen signaling does not require estrogen receptor genomic signaling because we can inhibit estrogen-induced DNA synthesis by antioxidants. Findings of this study may further expand research defining the underlying mechanism of how estrogen may promote vascular lesions. It also provides important information for the design of new antioxidant-based drugs or new antioxidant gene therapy to protect the cardiovascular health of individuals sensitive to estrogen.

  12. PTP1B inhibitor promotes endothelial cell motility by activating the DOCK180/Rac1 pathway.

    Science.gov (United States)

    Wang, Yuan; Yan, Feng; Ye, Qing; Wu, Xiao; Jiang, Fan

    2016-04-07

    Promoting endothelial cell (EC) migration is important not only for therapeutic angiogenesis, but also for accelerating re-endothelialization after vessel injury. Several recent studies have shown that inhibition of protein tyrosine phosphatase 1B (PTP1B) may promote EC migration and angiogenesis by enhancing the vascular endothelial growth factor receptor-2 (VEGFR2) signalling. In the present study, we demonstrated that PTP1B inhibitor could promote EC adhesion, spreading and migration, which were abolished by the inhibitor of Rac1 but not RhoA GTPase. PTP1B inhibitor significantly increased phosphorylation of p130Cas, and the interactions among p130Cas, Crk and DOCK180; whereas the phosphorylation levels of focal adhesion kinase, Src, paxillin, or Vav2 were unchanged. Gene silencing of DOCK180, but not Vav2, abrogated the effects of PTP1B inhibitor on EC motility. The effects of PTP1B inhibitor on EC motility and p130Cas/DOCK180 activation persisted in the presence of the VEGFR2 antagonist. In conclusion, we suggest that stimulation of the DOCK180 pathway represents an alternative mechanism of PTP1B inhibitor-stimulated EC motility, which does not require concomitant VEGFR2 activation as a prerequisite. Therefore, PTP1B inhibitor may be a useful therapeutic strategy for promoting EC migration in cardiovascular patients in which the VEGF/VEGFR functions are compromised.

  13. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity.

    Science.gov (United States)

    Schäfer, Nicola; Lohmann, Christine; Winnik, Stephan; van Tits, Lambertus J; Miranda, Melroy X; Vergopoulos, Athanasios; Ruschitzka, Frank; Nussberger, Jürg; Berger, Stefan; Lüscher, Thomas F; Verrey, François; Matter, Christian M

    2013-12-01

    Aldosterone plays a crucial role in cardiovascular disease. 'Systemic' inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the 'endothelial' MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high 'endogenous' aldosterone) and in 'exogenous' aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. Obesity-induced endothelial dysfunction depends on the 'endothelial' MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complications.

  14. Dietary phosphorus acutely impairs endothelial function.

    Science.gov (United States)

    Shuto, Emi; Taketani, Yutaka; Tanaka, Rieko; Harada, Nagakatsu; Isshiki, Masashi; Sato, Minako; Nashiki, Kunitaka; Amo, Kikuko; Yamamoto, Hironori; Higashi, Yukihito; Nakaya, Yutaka; Takeda, Eiji

    2009-07-01

    Excessive dietary phosphorus may increase cardiovascular risk in healthy individuals as well as in patients with chronic kidney disease, but the mechanisms underlying this risk are not completely understood. To determine whether postprandial hyperphosphatemia may promote endothelial dysfunction, we investigated the acute effect of phosphorus loading on endothelial function in vitro and in vivo. Exposing bovine aortic endothelial cells to a phosphorus load increased production of reactive oxygen species, which depended on phosphorus influx via sodium-dependent phosphate transporters, and decreased nitric oxide production via inhibitory phosphorylation of endothelial nitric oxide synthase. Phosphorus loading inhibited endothelium-dependent vasodilation of rat aortic rings. In 11 healthy men, we alternately served meals containing 400 mg or 1200 mg of phosphorus in a double-blind crossover study and measured flow-mediated dilation of the brachial artery before and 2 h after the meals. The high dietary phosphorus load increased serum phosphorus at 2 h and significantly decreased flow-mediated dilation. Flow-mediated dilation correlated inversely with serum phosphorus. Taken together, these findings suggest that endothelial dysfunction mediated by acute postprandial hyperphosphatemia may contribute to the relationship between serum phosphorus level and the risk for cardiovascular morbidity and mortality.

  15. Transport of lipoprotein lipase across endothelial cells

    International Nuclear Information System (INIS)

    Saxena, U.; Klein, M.G.; Goldberg, I.J.

    1991-01-01

    Lipoprotein lipase (LPL), synthesized in muscle and fat, hydrolyzes plasma triglycerides primarily while bound to luminal endothelial cell surfaces. To obtain information about the movement of LPL from the basal to the luminal endothelial cell surface, the authors studied the transport of purified bovine milk LPL across bovine aortic endothelial cell monolayers. 125 I-labeled LPL ( 125 I-LPL) added to the basal surface of the monolayers was detected on the apical side of the cells in two compartments: (1) in the medium of the upper chamber, and (2) bound to the apical cell surface. The amount of 125 I-LPL on the cell surface, but not in the medium, reached saturation with time and LPL dose. Catalytically active LPL was transported to the apical surface but very little LPL activity appeared in the medium. Heparinase treatment of the basal cell surface and addition of dextran sulfate to the lower chamber decreased the amount of 125 I-LPL appearing on the apical surface. Similarly, the presence of increasing molar ratios of oleic acid/bovine serum albumin at the basal surface decreased the transport of active LPL across the monolayer. Thus, a saturable transport system, which requires haparan sulfate proteoglycans and is inhibited by high concentrations of free fatty acids on the basal side of the cells, appears to exist for passage of enzymatically active LPL across endothelial cells. They postulate that regulation of LPL transport to the endothelial luminal surface modulates the physiologically active pool of LPL in vivo

  16. Factors Released from Endothelial Cells Exposed to Flow Impact Adhesion, Proliferation, and Fate Choice in the Adult Neural Stem Cell Lineage.

    Science.gov (United States)

    Dumont, Courtney M; Piselli, Jennifer M; Kazi, Nadeem; Bowman, Evan; Li, Guoyun; Linhardt, Robert J; Temple, Sally; Dai, Guohao; Thompson, Deanna M

    2017-08-15

    The microvasculature within the neural stem cell (NSC) niche promotes self-renewal and regulates lineage progression. Previous work identified endothelial-produced soluble factors as key regulators of neural progenitor cell (NPC) fate and proliferation; however, endothelial cells (ECs) are sensitive to local hemodynamics, and the effect of this key physiological process has not been defined. In this study, we evaluated adult mouse NPC response to soluble factors isolated from static or dynamic (flow) EC cultures. Endothelial factors generated under dynamic conditions significantly increased neuronal differentiation, while those released under static conditions stimulated oligodendrocyte differentiation. Flow increases EC release of neurogenic factors and of heparin sulfate glycosaminoglycans that increase their bioactivity, likely underlying the enhanced neuronal differentiation. Additionally, endothelial factors, especially from static conditions, promoted adherent growth. Together, our data suggest that blood flow may impact proliferation, adhesion, and the neuron-glial fate choice of adult NPCs, with implications for diseases and aging that reduce flow.

  17. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema

    Science.gov (United States)

    Tracy, Russell P.; Parikh, Megha A.; Hoffman, Eric A.; Shimbo, Daichi; Austin, John H. M.; Smith, Benjamin M.; Hueper, Katja; Vogel-Claussen, Jens; Lima, Joao; Gomes, Antoinette; Watson, Karol; Kawut, Steven; Barr, R. Graham

    2017-01-01

    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50–79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema. PMID:28291826

  18. Retinal expression, regulation, and functional bioactivity of prostacyclin-stimulating factor

    OpenAIRE

    Hata, Yasuaki; Clermont, Allen Charles; Yamauchi, Teruaki; Pierce, Eric Adam; Suzuma, Izumi; Kagokawa, Hiroyuki; Yoshikawa, Hiroshi; Robinson, Gregory S.; Ishibashi, Tatsuro; Hashimoto, Toshihiko; Umeda, Fumio; Bursell, Sven E.; Aiello, Lloyd Paul

    2000-01-01

    Prostacyclin-stimulating factor (PSF) acts on vascular endothelial cells to stimulate the synthesis of the vasodilatory molecule prostacyclin (PGI2). We have examined the expression, regulation, and hemodynamic bioactivity of PSF both in whole retina and in cultured cells derived from this tissue. PSF was expressed in all retinal cell types examined in vitro, but immunohistochemical analysis revealed PSF mainly associated with retinal vessels. PSF expression was constitutive in retinal pericy...

  19. Curcumin modulates endothelial permeability and monocyte transendothelial migration by affecting endothelial cell dynamics.

    Science.gov (United States)

    Monfoulet, Laurent-Emmanuel; Mercier, Sylvie; Bayle, Dominique; Tamaian, Radu; Barber-Chamoux, Nicolas; Morand, Christine; Milenkovic, Dragan

    2017-11-01

    Curcumin is a phenolic compound that exhibits beneficial properties for cardiometabolic health. We previously showed that curcumin reduced the infiltration of immune cells into the vascular wall and prevented atherosclerosis development in mice. This study aimed to investigate the effect of curcumin on monocyte adhesion and transendothelial migration (TEM) and to decipher the underlying mechanisms of these actions. Human umbilical vein endothelial cells (HUVECs) were exposed to curcumin (0.5-1μM) for 3h prior to their activation by Tumor Necrosis Factor alpha (TNF-α). Endothelial permeability, monocyte adhesion and transendothelial migration assays were conducted under static condition and shear stress that mimics blood flow. We further investigated the impact of curcumin on signaling pathways and on the expression of genes using macroarrays. Pre-exposure of endothelial cells to curcumin reduced monocyte adhesion and their transendothelial migration in both static and shear stress conditions. Curcumin also prevented changes in both endothelial permeability and the area of HUVECs when induced by TNF-α. We showed that curcumin modulated the expression of 15 genes involved in the control of cytoskeleton and endothelial junction dynamic. Finally, we showed that curcumin inhibited NF-κB signaling likely through an antagonist interplay with several kinases as suggested by molecular docking analysis. Our findings demonstrate the ability of curcumin to reduce monocyte TEM through a multimodal regulation of the endothelial cell dynamics with a potential benefit on the vascular endothelial function barrier. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Apoptosis of Endothelial Cells by 13-HPODE Contributes to Impairment of Endothelial Barrier Integrity

    Directory of Open Access Journals (Sweden)

    Valerie E. Ryman

    2016-01-01

    Full Text Available Inflammation is an essential host response during bacterial infections such as bovine mastitis. Endothelial cells are critical for an appropriate inflammatory response and loss of vascular barrier integrity is implicated in the pathogenesis of Streptococcus uberis-induced mastitis. Previous studies suggested that accumulation of linoleic acid (LA oxygenation products derived from 15-lipoxygenase-1 (15-LOX-1 metabolism could regulate vascular functions. The initial LA derivative from the 15-LOX-1 pathway, 13-hydroperoxyoctadecadienoic acid (HPODE, can induce endothelial death, whereas the reduced hydroxyl product, 13-hydroxyoctadecadienoic acid (HODE, is abundantly produced during vascular activation. However, the relative contribution of specific LA-derived metabolites on impairment of mammary endothelial integrity is unknown. Our hypothesis was that S. uberis-induced LA-derived 15-LOX-1 oxygenation products impair mammary endothelial barrier integrity by apoptosis. Exposure of bovine mammary endothelial cells (BMEC to S. uberis did not increase 15-LOX-1 LA metabolism. However, S. uberis challenge of bovine monocytes demonstrated that monocytes may be a significant source of both 13-HPODE and 13-HODE during mastitis. Exposure of BMEC to 13-HPODE, but not 13-HODE, significantly reduced endothelial barrier integrity and increased apoptosis. Changing oxidant status by coexposure to an antioxidant during 13-HPODE treatment prevented adverse effects of 13-HPODE, including amelioration of apoptosis. A better understanding of how the oxidant status of the vascular microenvironment impacts endothelial barrier properties could lead to more efficacious treatments for S. uberis mastitis.

  1. Multiple anti-inflammatory and anti-atherosclerotic properties of red wine polyphenolic extracts: differential role of hydroxycinnamic acids, flavonols and stilbenes on endothelial inflammatory gene expression.

    Science.gov (United States)

    Calabriso, Nadia; Scoditti, Egeria; Massaro, Marika; Pellegrino, Mariangela; Storelli, Carlo; Ingrosso, Ilaria; Giovinazzo, Giovanna; Carluccio, Maria Annunziata

    2016-03-01

    The aim of the study was to evaluate the vascular anti-inflammatory effects of polyphenolic extracts from two typical South Italy red wines, the specific contribution of individual polyphenols and the underlying mechanisms of action. Human endothelial cells were incubated with increasing concentrations (1-50 μg/mL) of Primitivo and Negroamaro polyphenolic extracts (PWPE and NWPE, respectively) or pure polyphenols (1-25 μmol/L), including hydroxycinnamic acids (p-coumaric, caffeic and caftaric acids), flavonols (kaempferol, quercetin, myricetin) or stilbenes (trans-resveratrol, trans-piceid) before stimulation with lipopolysaccharide. Through multiple assays, we analyzed the endothelial-monocyte adhesion, the endothelial expression of adhesion molecules (ICAM-1, VCAM-1 and E-Selectin), monocyte chemoattractant protein-1 (MCP-1) and macrophage colony-stimulating factor (M-CSF), as well as ROS intracellular levels and the activation of NF-κB and AP-1. Both PWPE and NWPE, already at 1 μg/mL, inhibited monocyte adhesion to stimulated endothelial cells, a key event in triggering vascular inflammation. They down-regulated the expression of adhesion molecules, ICAM-1, VCAM-1, E-Selectin, as well as MCP-1 and M-CSF, at mRNA and protein levels. All polyphenols reduced intracellular ROS, and everything, except caftaric acid, inhibited the endothelial expression of adhesion molecules and MCP-1, although with different potency. Flavonols and resveratrol significantly reduced also the endothelial expression and release of M-CSF. The decrease in endothelial inflammatory gene expression was related to the inhibition of NF-κB and AP-1 activation but not to intracellular oxidative stress. This study showed multiple anti-inflammatory and anti-atherosclerotic properties of red wine polyphenolic extracts and indentified specific bioactive polyphenols which could counteract inflammatory diseases including atherosclerosis.

  2. Complement-Mediated Enhancement of Monocyte Adhesion to Endothelial Cells by HLA Antibodies, and Blockade by a Specific Inhibitor of the Classical Complement Cascade, TNT003

    Science.gov (United States)

    Valenzuela, Nicole M.; Thomas, Kimberly A.; Mulder, Arend; Parry, Graham C.; Panicker, Sandip; Reed, Elaine F.

    2017-01-01

    Background Antibody-mediated rejection (AMR) of most solid organs is characterized by evidence of complement activation and/or intragraft macrophages (C4d + and CD68+ biopsies). We previously demonstrated that crosslinking of HLA I by antibodies triggered endothelial activation and monocyte adhesion. We hypothesized that activation of the classical complement pathway at the endothelial cell surface by HLA antibodies would enhance monocyte adhesion through soluble split product generation, in parallel with direct endothelial activation downstream of HLA signaling. Methods Primary human aortic endothelial cells (HAEC) were stimulated with HLA class I antibodies in the presence of intact human serum complement. C3a and C5a generation, endothelial P-selectin expression, and adhesion of human primary and immortalized monocytes (Mono Mac 6) were measured. Alternatively, HAEC or monocytes were directly stimulated with purified C3a or C5a. Classical complement activation was inhibited by pretreatment of complement with an anti-C1s antibody (TNT003). Results Treatment of HAEC with HLA antibody and human complement increased the formation of C3a and C5a. Monocyte recruitment by human HLA antibodies was enhanced in the presence of intact human serum complement or purified C3a or C5a. Specific inhibition of the classical complement pathway using TNT003 or C1q-depleted serum significantly reduced adhesion of monocytes in the presence of human complement. Conclusions Despite persistent endothelial viability in the presence of HLA antibodies and complement, upstream complement anaphylatoxin production exacerbates endothelial exocytosis and leukocyte recruitment. Upstream inhibition of classical complement may be therapeutic to dampen mononuclear cell recruitment and endothelial activation characteristic of microvascular inflammation during AMR. PMID:28640789

  3. Helicobacter pylori Type IV Secretion System and Its Adhesin Subunit, CagL, Mediate Potent Inflammatory Responses in Primary Human Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Mona Tafreshi

    2018-02-01

    Full Text Available The Gram-negative bacterium, Helicobacter pylori, causes chronic gastritis, peptic ulcers, and gastric cancer in humans. Although the gastric epithelium is the primary site of H. pylori colonization, H. pylori can gain access to deeper tissues. Concurring with this notion, H. pylori has been found in the vicinity of endothelial cells in gastric submucosa. Endothelial cells play crucial roles in innate immune response, wound healing and tumorigenesis. This study examines the molecular mechanisms by which H. pylori interacts with and triggers inflammatory responses in endothelial cells. We observed that H. pylori infection of primary human endothelial cells stimulated secretion of the key inflammatory cytokines, interleukin-6 (IL-6 and interleukin-8 (IL-8. In particular, IL-8, a potent chemokine and angiogenic factor, was secreted by H. pylori-infected endothelial cells to levels ~10- to 20-fold higher than that typically observed in H. pylori-infected gastric epithelial cells. These inflammatory responses were triggered by the H. pylori type IV secretion system (T4SS and the T4SS-associated adhesin CagL, but not the translocation substrate CagA. Moreover, in contrast to integrin α5β1 playing an essential role in IL-8 induction by H. pylori upon infection of gastric epithelial cells, both integrin α5β1 and integrin αvβ3 were dispensable for IL-8 induction in H. pylori-infected endothelial cells. However, epidermal growth factor receptor (EGFR is crucial for mediating the potent H. pylori-induced IL-8 response in endothelial cells. This study reveals a novel mechanism by which the H. pylori T4SS and its adhesin subunit, CagL, may contribute to H. pylori pathogenesis by stimulating the endothelial innate immune responses, while highlighting EGFR as a potential therapeutic target for controlling H. pylori-induced inflammation.

  4. Qidantongmai Protects Endothelial Cells Against Hypoxia-Induced ...

    African Journals Online (AJOL)

    induced damage. The ability of QDTM to modulate the serum VEGF-A level may play an important role in its effects on endothelial cells. Key words: Traditional Chinese Medicine, human umbilical vein endothelial cells, hypoxia, VEGF ...

  5. α-Klotho expression determines nitric oxide synthesis in response to FGF-23 in human aortic endothelial cells.

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chung

    Full Text Available Endothelial cells (ECs express fibroblast growth factor (FGF receptors and are metabolically active after treatment with FGF-23. It is not known if this effect is α-Klotho independent or mediated by humoral or endogenous endothelial α-Klotho. In the present study, we aimed to characterize EC α-Klotho expression within the human vascular tree and to investigate the potential role of α-Klotho in determining FGF-23 mediated EC regulation. Human tissue and ECs from various organs were used for immunohistochemistry and Western blot. Primary cultures of human aortic endothelial cells (HAECs and human brain microvascular endothelial cells (HBMECs were used to generate in vitro cell models. We found endogenous α-Klotho expression in ECs from various organs except in microvascular ECs from human brain. Furthermore, FGF-23 stimulated endothelial nitric oxide synthase (eNOS expression, nitric oxide (NO production, and cell proliferation in HAECs. Interestingly, these effects were not observed in our HBMEC model in vitro. High phosphate treatment and endothelial α-Klotho knockdown mitigated FGF-23 mediated eNOS induction, NO production, and cell proliferation in HAECs. Rescue treatment with soluble α-Klotho did not reverse endothelial FGF-23 resistance caused by reduced or absent α-Klotho expression in HAECs. These novel observations provide evidence for differential α-Klotho functional expression in the human endothelium and its presence may play a role in determining the response to FGF-23 in the vascular tree. α-Klotho was not detected in cerebral microvascular ECs and its absence may render these cells nonresponsive to FGF-23.

  6. Spinal cord stimulation

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007560.htm Spinal cord stimulation To use the sharing features on this page, please enable JavaScript. Spinal cord stimulation is a treatment for pain that uses ...

  7. Feldspar, Infrared Stimulated Luminescence

    DEFF Research Database (Denmark)

    Jain, Mayank

    2014-01-01

    This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars.......This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars....

  8. Growth hormone stimulation test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003377.htm Growth hormone stimulation test To use the sharing features on this page, please enable JavaScript. The growth hormone (GH) stimulation test measures the ability of ...

  9. Inhibitory Effects of Red Wine Extracts on Endothelial-Dependent Adhesive Interactions with Monocytes Induced by Oxysterols

    Directory of Open Access Journals (Sweden)

    Yuji Naito

    2004-01-01

    Full Text Available Red wine polyphenolic compounds have been demonstrated to possess antioxidant properties, and several studies have suggested that they might constitute a relevant dietary factor in the protection from coronary heart disease. The aim of the present study is to examine whether red wine extracts (RWE can ameliorate oxysterol-induced endothelial response, and whether inhibition of adhesion molecule expression is involved in monocyte adhesion to endothelial cells. Surface expression and mRNA levels of adhesion molecules (intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 were determined by ELISA and RT-PCR performed on human aortic endothelial cells (HAEC monolayers stimulated with 7b-hydroxycholesterol or 25-hydroxycholesterol. Incubation of HAEC with oxysterols (10 muM increased expression of adhesion molecules in a time-dependent manner. Pretreatment of HAEC with RWE at final concentrations of 1, 10, and 100 ng/ml significantly inhibited the increase of surface protein expression and mRNA levels. Adherence of monocytes to oxysterol-stimulated HAEC was increased compared to that of unstimulated cells. Treatment of HAEC with RWE significantly inhibited adherence of monocytes. These results suggest that RWE works as an anti-atherogenic agent through the inhibition of endothelial-dependent adhesive interactions with monocytes induced by oxysterols

  10. Hormonal regulation of Na+/K+-dependent ATPase activity and pump function in corneal endothelial cells.

    Science.gov (United States)

    Hatou, Shin

    2011-10-01

    Na- and K-dependent ATPase (Na,K-ATPase) in the basolateral membrane of corneal endothelial cells plays an important role in the pump function of the corneal endothelium. We investigated the role of dexamethasone in the regulation of Na,K-ATPase activity and pump function in these cells. Mouse corneal endothelial cells were exposed to dexamethasone or insulin. ATPase activity was evaluated by spectrophotometric measurement, and pump function was measured using an Ussing chamber. Western blotting and immunocytochemistry were performed to measure the expression of the Na,K-ATPase α1-subunit. Dexamethasone increased Na,K-ATPase activity and the pump function of endothelial cells. Western blot analysis indicated that dexamethasone increased the expression of the Na,K-ATPase α1-subunit but decreased the ratio of active to inactive Na,K-ATPase α1-subunit. Insulin increased Na,K-ATPase activity and pump function of cultured corneal endothelial cells. These effects were transient and blocked by protein kinase C inhibitors and inhibitors of protein phosphatases 1 (PP1) and 2A (PP2A). Western blot analysis indicated that insulin decreased the amount of inactive Na,K-ATPase α1-subunit, but the expression of total Na,K-ATPase α1-subunit was unchanged. Immunocytochemistry showed that insulin increased cell surface expression of the Na,K-ATPase α1-subunit. Our results suggest that dexamethasone and insulin stimulate Na,K-ATPase activity in mouse corneal endothelial cells. The effect of dexamethasone activation in these cells was mediated by Na,K-ATPase synthesis and an increased enzymatic activity because of dephosphorylation of Na,K-ATPase α1-subunits. The effect of insulin is mediated by the protein kinase C, PP1, and/or PP2A pathways.

  11. Asymmetric Dimethylarginine Plasma Levels and Endothelial Function in Newly Diagnosed Type 2 Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Francesco Perticone

    2012-10-01

    Full Text Available It is now well established that major risk factors for cardiovascular diseases (CVD impact upon endothelial function by decreasing nitric oxide (NO bioavailability. Asymmetric dimethylarginine (ADMA, an endogenous analog of l-arginine, is able to inhibit the activity of endothelial-NO synthase, promoting endothelial dysfunction. Type 2 diabetes (T2D is characterized by a reduced endothelium-dependent vasodilation and increased ADMA levels and ADMA is strongly associated with micro- and macrovascular diabetic complications. However, there are not a lot of data about the role of ADMA on endothelial function in newly diagnosed T2D patients without cardiovascular (CV complications. For this aim, we have enrolled forty-five newly diagnosed T2D patients, evaluated by a oral glucose tolerance test, and thirty normal subjects. Endothelium-dependent and -independent vasodilatation was investigated by intra-arterial infusion of increasing doses of acetylcholine (ACh and sodium nitroprusside. ADMA was measured by high-performance liquid chromatography and insulin resistance (IR by HOMA. Newly diagnosed T2D patients showed higher ADMA and l-arginine mean values in comparison with normal subjects and a significantly reduced ACh-stimulated forearm blood flow (FBF. In T2D patients FBF was significantly and inversely correlated with ADMA (r = −0.524, p < 0.0001 and in a multivariate regression analysis, ADMA resulted the stronger predictor of FBF, explaining the 27.5% of variability (p < 0.0001. In conclusion, ADMA was strongly related to endothelial dysfunction also in patients with newly diagnosed T2D, without clinically manifest vascular complications. This field is of great interest for understanding the mechanisms underlying the pathogenesis of diabetic disease and its CV complications.

  12. Acrolein decreases endothelial cell migration and insulin sensitivity through induction of let-7a.

    Science.gov (United States)

    O'Toole, Timothy E; Abplanalp, Wesley; Li, Xiaohong; Cooper, Nigel; Conklin, Daniel J; Haberzettl, Petra; Bhatnagar, Aruni

    2014-08-01

    Acrolein is a major reactive component of vehicle exhaust, and cigarette and wood smoke. It is also present in several food substances and is generated endogenously during inflammation and lipid peroxidation. Although previous studies have shown that dietary or inhalation exposure to acrolein results in endothelial activation, platelet activation, and accelerated atherogenesis, the basis for these effects is unknown. Moreover, the effects of acrolein on microRNA (miRNA) have not been studied. Using AGILENT miRNA microarray high-throughput technology, we found that treatment of cultured human umbilical vein endothelial cells with acrolein led to a significant (>1.5-fold) upregulation of 12, and downregulation of 15, miRNAs. Among the miRNAs upregulated were members of the let-7 family and this upregulation was associated with decreased expression of their protein targets, β3 integrin, Cdc34, and K-Ras. Exposure to acrolein attenuated β3 integrin-dependent migration and reduced Akt phosphorylation in response to insulin. These effects of acrolein on endothelial cell migration and insulin signaling were reversed by expression of a let-7a inhibitor. Also, inhalation exposure of mice to acrolein (1 ppm x 6 h/day x 4 days) upregulated let-7a and led to a decrease in insulin-stimulated Akt phosphorylation in the aorta. These results suggest that acrolein exposure has broad effects on endothelial miRNA repertoire and that attenuation of endothelial cell migration and insulin signaling by acrolein is mediated in part by the upregulation of let-7a. This mechanism may be a significant feature of vascular injury caused by inflammation, oxidized lipids, and exposure to environmental pollutants. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Microvascular Endothelial Dysfunction in Sedentary, Obese Humans is mediated by NADPH Oxidase; Influence of Exercise Training

    Science.gov (United States)

    La Favor, Justin D.; Dubis, Gabriel S.; Yan, Huimin; White, Joseph D.; Nelson, Margaret A.M.; Anderson, Ethan J.; Hickner, Robert C.

    2016-01-01

    Objective The objectives of this study were to determine the impact of in vivo reactive oxygen species (ROS) on microvascular endothelial function in obese human subjects and to determine the efficacy of an aerobic exercise intervention on alleviating obesity-associated dysfunctionality. Approach and Results Young, sedentary men and women were divided into lean (BMI 18–25; n=14), intermediate (BMI 28–32.5; n=13), and obese (BMI 33–40; n=15) groups. A novel microdialysis technique was utilized to detect elevated interstitial hydrogen peroxide (H2O2) and superoxide levels in the vastus lateralis of obese compared to both lean and intermediate subjects. Nutritive blood flow was monitored in the vastus lateralis via the microdialysis-ethanol technique. A decrement in acetylcholine-stimulated blood flow revealed impaired microvascular endothelial function in the obese subjects. Perfusion of apocynin, an NADPH oxidase (Nox) inhibitor, lowered (normalized) H2O2 and superoxide levels and reversed microvascular endothelial dysfunction in obese subjects. Following 8-weeks of exercise, H2O2 levels were decreased in the obese subjects and microvascular endothelial function in these subjects was restored to levels similar to lean subjects. Skeletal muscle protein expression of the Nox subunits p22phox, p47phox, and p67phox were increased in obese relative to lean subjects, where p22phox and p67phox expression was attenuated by exercise training in obese subjects. Conclusions This study implicates Nox as a source of excessive ROS production in skeletal muscle of obese individuals, and links excessive Nox derived ROS to microvascular endothelial dysfunction in obesity. Furthermore, aerobic exercise training proved to be an effective strategy for alleviating these maladies. PMID:27765769

  14. Endothelial dysfunction – A predictor of atherosclerosis | Chhabra ...

    African Journals Online (AJOL)

    Endothelial dysfunction is a systemic disorder and a critical element in the pathogenesis of atherosclerotic diseases and its complications. Growing evidences suggest that the individual burden of currently known cardiovascular risk factors is not the only determinant of endothelial function; rather endothelial integrity ...

  15. Acidic pH reduces VEGF-mediated endothelial cell responses by downregulation of VEGFR-2; relevance for anti-angiogenic therapies.

    Science.gov (United States)

    Faes, Seraina; Uldry, Emilie; Planche, Anne; Santoro, Tania; Pythoud, Catherine; Demartines, Nicolas; Dormond, Olivier

    2016-12-27

    Anti-angiogenic treatments targeting the vascular endothelial growth factor or its receptors have shown clinical benefits. However, impact on long-term survival remains limited. Solid tumors display an acidic microenvironment that profoundly influences their biology. Consequences of acidity on endothelial cells and anti-angiogenic therapies remain poorly characterized and hence are the focus of this study. We found that exposing endothelial cells to acidic extracellular pH resulted in reduced cell proliferation and migration. Also, whereas VEGF increased endothelial cell proliferation and survival at pH 7.4, it had no effect at pH 6.4. Furthermore, in acidic conditions, stimulation of endothelial cells with VEGF did not result in activation of downstream signaling pathways such as AKT. At a molecular level, acidity significantly decreased the expression of VEGFR-2 by endothelial cells. Consequently, anti-angiogenic therapies that target VEGFR-2 such as sunitinib and sorafenib failed to block endothelial cell proliferation in acidic conditions. In vivo, neutralizing tumor acidity with sodium bicarbonate increased the percentage of endothelial cells expressing VEGFR-2 in tumor xenografts. Furthermore, combining sodium bicarbonate with sunitinib provided stronger anti-cancer activity than either treatment alone. Histological analysis showed that sunitinib had a stronger anti-angiogenic effect when combined with sodium bicarbonate. Overall, our results show that endothelial cells prosper independently of VEGF in acidic conditions partly as a consequence of decreased VEGFR-2 expression. They further suggest that strategies aiming to raise intratumoral pH can improve the efficacy of anti-VEGF treatments.

  16. Human recombinant interleukin-1 beta- and tumor necrosis factor alpha-mediated suppression of heparin-like compounds on cultured porcine aortic endothelial cells

    International Nuclear Information System (INIS)

    Kobayashi, M.; Shimada, K.; Ozawa, T.

    1990-01-01

    Cytokines are known to tip the balance of the coagulant-anticoagulant molecules on the endothelial cell surface toward intravascular coagulation. Their effects on endothelial cell surface-associated heparin-like compounds have not been examined yet. Incorporation of [35S]sulfate into heparan sulfate on cultured porcine aortic endothelial cells was suppressed by human recombinant interleukin-1 beta (rIL-1 beta) or tumor necrosis factor alpha (rTNF alpha) in a dose- and time-dependent manner with little effect on cell number, protein content, and [3H]leucine incorporation of cells. Maximal inhibition was achieved by incubation of cells with 100 ng/ml of rIL-1 beta or 5 ng/ml of rTNF alpha for 12-24 hours, resulting in a reduction of the synthesis of heparan sulfate on the cell surface by approximately 50%. The dose dependency was consistent with that seen in the stimulation of endothelial cell procoagulant activity by each cytokine. The suppression of heparan sulfate synthesis was sustained for at least 48 hours after pretreatment of cells with cytokines and was unchanged after the addition of indomethacin or polymyxin B. The rate of degradation of prelabeled 35S-heparan sulfate on the cell surface was not altered by cytokine treatments. Neither the size, the net negative charge, nor the proportion of the molecule with high affinity for antithrombin III of endothelial cell heparan sulfate was changed by cytokines. Furthermore, specific binding of 125I-labeled antithrombin III to the endothelial cell surface was reduced to 40-60% of control by cytokines. In parallel with reduction in binding, antithrombin III cofactor activity was partially diminished in cytokine-treated endothelial cells. Thus, cytokine-mediated suppression of heparin-like substance on endothelial cells appears to be another cytokine-inducible endothelial effects affecting coagulation

  17. Endothelial cell seeding on crosslinked collagen : Effects of crosslinking on endothelial cell proliferation and functional parameters

    NARCIS (Netherlands)

    Wissink, MJB; van Luyn, MJA; Dijk, F; Poot, AA; Engbers, GHM; Beugeling, T; van Aken, WG; Feijen, J

    Endothelial cell seeding, a promising method to improve the performance of small-diameter vascular grafts, requires a suitable substrate, such as crosslinked collagen. Commonly used crosslinking agents such as glutaraldehyde and formaldehyde cause, however, cytotoxic reactions and thereby hamper

  18. Lipoprotein receptors in cultured bovine endothelial cells

    International Nuclear Information System (INIS)

    Struempfer, A.E.M.

    1983-07-01

    In this study, receptors that may be involved in the uptake of low density lipoproteins (LDL) and low density lipoproteins which have been modified by acetylation (AcLDL), were characterized. Aortic epithelial cells were used and a cell culture system which closely resembled the in vivo monolayer was established. Endothelial cell and lipoprotein interactions were examined by incubating the cells with 125 l-labelled lipoproteins under various conditions. The receptor affinity of bovine aortic endothelial cells was higher for AcLDL than that for LDL. Competition studies demonstrated that there were two distinct receptors for LDL and AcLDL on the endothelial cells. AcLDL did not compete with LDL for the LDL receptor, and conversely LDL did not compete with AcLDL for the AcLDL receptor. The receptor activities for LDL and AcLDL were examined as a function of culture age. Whereas the LDL receptor could be regulated, the AcLDL receptor was not as susceptible to regulation. Upon exposing endothelial cells for 72 h to either LDL or AcLDL, it was found that the total amount of cellular cholesterol increased by about 50%. However, the increase of total cholesterol was largely in the form of free cholesterol. This is in contrast to macrophages, where the increase in total cholesterol upon exposure to AcLDL is largely in the form cholesteryl esters

  19. ORIGINAL ARTICLE Relationship between endothelial nitric oxide ...

    African Journals Online (AJOL)

    salah

    The haplotype analysis confirmed ... hand, no consistent association was shown between the two SNPs and SBP or. DBP. ... Endothelial nitric oxide synthase gene polymorphisms and risk of MI .... type (-786T*+894G), the haplotypes ... Tests adjusted for age, BMI, diabetes, current smoking and alcohol consumption.

  20. Endothelial nitric oxide synthase gene polymorphisms associated ...

    African Journals Online (AJOL)

    Endothelial nitric oxide synthase (NOS3) is involved in key steps of immune response. Genetic factors predispose individuals to periodontal disease. This study's aim was to explore the association between NOS3 gene polymorphisms and clinical parameters in patients with periodontal disease. Genomic DNA was obtained ...

  1. Jagged gives endothelial tip cells an edge.

    Science.gov (United States)

    Suchting, Steven; Eichmann, Anne

    2009-06-12

    Sprouting blood vessels have tip cells that lead and stalk cells that follow. Benedito et al. (2009) now show that competition between endothelial cells for the tip position is regulated by glycosylation of Notch receptors and by the opposing actions of the Notch ligands Jagged1 and Delta-like 4.

  2. Animal study on transplantation of human umbilical vein endothelial cells for corneal endothelial decompensation

    Directory of Open Access Journals (Sweden)

    Li Cui

    2014-06-01

    Full Text Available AIM: To explore the feasibility of culturing human umbilical vein endothelial cells(HUVECon acellular corneal stroma and performing the posterior lamellar endothelial keratoplasty(PLEKtreating corneal endothelial decompensation.METHODS: Thirty New-Zealand rabbits were divided into three groups randomly, 10 rabbits for experimental group, 10 for stroma group and 10 for control group. Corneal endothelial cells were removed to establish animal model of corneal endothelial failure. PLEK was performed on the rabbits of experimental group and stroma group, and nothing was transplantated onto the rabbits of control group with the deep layer excised only. Postoperative observation was taken for 3mo. The degree of corneal edema and central corneal thickness were recorded for statistical analysis.RESULTS: Corneas in experimental group were relieved in edema obviously compared with that in stroma group and the control group, and showed increased transparency 7d after the operation. The average density of endothelial cells was 2 026.4±129.3cells/mm2, and average central corneal thickness was 505.2±25.4μm in experimental group, while 1 535.6±114.5μm in stroma group and 1 493.5±70.2μm in control group 3mo after operation.CONCLUSION:We achieved preliminary success in our study that culturing HUVEC on acellular corneal stroma and performing PLEK for corneal endothelial decompensation. HUVEC transplanted could survive in vivo, and have normal biological function of keeping cornea transparent. This study provides a new idea and a new way clinically for the treatment of corneal endothelial diseases.

  3. Neutrophil-endothelial cell interactions on endothelial monolayers grown on micropore filters.

    Science.gov (United States)

    Taylor, R F; Price, T H; Schwartz, S M; Dale, D C

    1981-01-01

    We have developed a technique for growing endothelial monolayers on micropore filters. These monolayers demonstrate confluence by phase and electron microscopy and provide a functional barrier to passage of radiolabeled albumin. Neutrophils readily penetrate the monolayer in response to chemotaxin, whereas there is little movement in the absence of chemotaxin. This system offers unique advantages over available chemotaxis assays and may have wider applications in the study of endothelial function. Images PMID:7007441

  4. Human endothelial precursor cells express tumor endothelial marker 1/endosialin/CD248.

    Science.gov (United States)

    Bagley, Rebecca G; Rouleau, Cecile; St Martin, Thia; Boutin, Paula; Weber, William; Ruzek, Melanie; Honma, Nakayuki; Nacht, Mariana; Shankara, Srinivas; Kataoka, Shiro; Ishida, Isao; Roberts, Bruce L; Teicher, Beverly A

    2008-08-01

    Angiogenesis occurs during normal physiologic processes as well as under pathologic conditions such as tumor growth. Serial analysis of gene expression profiling revealed genes [tumor endothelial markers (TEM)] that are overexpressed in tumor endothelial cells compared with normal adult endothelial cells. Because blood vessel development of malignant tumors under certain conditions may include endothelial precursor cells (EPC) recruited from bone marrow, we investigated TEM expression in EPC. The expression of TEM1 or endosialin (CD248) and other TEM has been discovered in a population of vascular endothelial growth factor receptor 2+/CD31+/CD45-/VE-cadherin+ EPC derived from human CD133+/CD34+ cells. EPC share some properties with fully differentiated endothelial cells from normal tissue, yet reverse transcription-PCR and flow cytometry reveal that EPC express higher levels of endosialin at the molecular and protein levels. The elevated expression of endosialin in EPC versus mature endothelial cells suggests that endosialin is involved in the earlier stages of tumor angiogenesis. Anti-endosialin antibodies inhibited EPC migration and tube formation in vitro. In vivo, immunohistochemistry indicated that human EPC continued to express endosialin protein in a Matrigel plug angiogenesis assay established in nude mice. Anti-endosialin antibodies delivered systemically at 25 mg/kg were also able to inhibit circulating murine EPC in nude mice bearing s.c. SKNAS tumors. EPC and bone marrow-derived cells have been shown previously to incorporate into malignant blood vessels in some instances, yet they remain controversial in the field. The data presented here on endothelial genes that are up-regulated in tumor vasculature and in EPC support the hypothesis that the angiogenesis process in cancer can involve EPC.

  5. Anesthetic propofol overdose causes endothelial cytotoxicity in vitro and endothelial barrier dysfunction in vivo

    International Nuclear Information System (INIS)

    Lin, Ming-Chung; Chen, Chia-Ling; Yang, Tsan-Tzu; Choi, Pui-Ching; Hsing, Chung-Hsi; Lin, Chiou-Feng

    2012-01-01

    An overdose and a prolonged treatment of propofol may cause cellular cytotoxicity in multiple organs and tissues such as brain, heart, kidney, skeletal muscle, and immune cells; however, the underlying mechanism remains undocumented, particularly in vascular endothelial cells. Our previous studies showed that the activation of glycogen synthase kinase (GSK)-3 is pro-apoptotic in phagocytes during overdose of propofol treatment. Regarding the intravascular administration of propofol, we therefore hypothesized that propofol overdose also induces endothelial cytotoxicity via GSK-3. Propofol overdose (100 μg/ml) inhibited growth in human arterial and microvascular endothelial cells. After treatment, most of the endothelial cells experienced caspase-independent necrosis-like cell death. The activation of cathepsin D following lysosomal membrane permeabilization (LMP) determined necrosis-like cell death. Furthermore, propofol overdose also induced caspase-dependent apoptosis, at least in part. Caspase-3 was activated and acted downstream of mitochondrial transmembrane potential (MTP) loss; however, lysosomal cathepsins were not required for endothelial cell apoptosis. Notably, activation of GSK-3 was essential for propofol overdose-induced mitochondrial damage and apoptosis, but not necrosis-like cell death. Intraperitoneal administration of a propofol overdose in BALB/c mice caused an increase in peritoneal vascular permeability. These results demonstrate the cytotoxic effects of propofol overdose, including cathepsin D-regulated necrosis-like cell death and GSK-3-regulated mitochondrial apoptosis, on endothelial cells in vitro and the endothelial barrier dysfunction by propofol in vivo. Highlights: ► Propofol overdose causes apoptosis and necrosis in endothelial cells. ► Propofol overdose triggers lysosomal dysfunction independent of autophagy. ► Glycogen synthase kinase-3 facilitates propofol overdose-induced apoptosis. ► Propofol overdose causes an increase

  6. Anesthetic propofol overdose causes endothelial cytotoxicity in vitro and endothelial barrier dysfunction in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ming-Chung [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan, Taiwan (China); Chen, Chia-Ling [Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Yang, Tsan-Tzu; Choi, Pui-Ching [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Hsing, Chung-Hsi [Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan (China); Department of Anesthesiology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Lin, Chiou-Feng, E-mail: cflin@mail.ncku.edu.tw [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China)

    2012-12-01

    An overdose and a prolonged treatment of propofol may cause cellular cytotoxicity in multiple organs and tissues such as brain, heart, kidney, skeletal muscle, and immune cells; however, the underlying mechanism remains undocumented, particularly in vascular endothelial cells. Our previous studies showed that the activation of glycogen synthase kinase (GSK)-3 is pro-apoptotic in phagocytes during overdose of propofol treatment. Regarding the intravascular administration of propofol, we therefore hypothesized that propofol overdose also induces endothelial cytotoxicity via GSK-3. Propofol overdose (100 μg/ml) inhibited growth in human arterial and microvascular endothelial cells. After treatment, most of the endothelial cells experienced caspase-independent necrosis-like cell death. The activation of cathepsin D following lysosomal membrane permeabilization (LMP) determined necrosis-like cell death. Furthermore, propofol overdose also induced caspase-dependent apoptosis, at least in part. Caspase-3 was activated and acted downstream of mitochondrial transmembrane potential (MTP) loss; however, lysosomal cathepsins were not required for endothelial cell apoptosis. Notably, activation of GSK-3 was essential for propofol overdose-induced mitochondrial damage and apoptosis, but not necrosis-like cell death. Intraperitoneal administration of a propofol overdose in BALB/c mice caused an increase in peritoneal vascular permeability. These results demonstrate the cytotoxic effects of propofol overdose, including cathepsin D-regulated necrosis-like cell death and GSK-3-regulated mitochondrial apoptosis, on endothelial cells in vitro and the endothelial barrier dysfunction by propofol in vivo. Highlights: ► Propofol overdose causes apoptosis and necrosis in endothelial cells. ► Propofol overdose triggers lysosomal dysfunction independent of autophagy. ► Glycogen synthase kinase-3 facilitates propofol overdose-induced apoptosis. ► Propofol overdose causes an increase

  7. Granulocyte colony-stimulating factor induces in vitro lymphangiogenesis

    International Nuclear Information System (INIS)

    Lee, Ae Sin; Kim, Dal; Wagle, Susbin Raj; Lee, Jung Eun; Jung, Yu Jin; Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang; Kim, Won

    2013-01-01

    Highlights: •G-CSF induces tube formation, migration and proliferation of lymphatic cells. •G-CSF increases phosphorylation of MAPK and Akt in lymphatic endothelial cells. •MAPK and Akt pathways are linked to G-CSF-induced in vitro lymphangiogenesis. •G-CSF increases sprouting of a lymphatic ring. •G-CSF produces peritoneal lymphangiogenesis. -- Abstract: Granulocyte-colony stimulating factor (G-CSF) is reported to induce differentiation in cells of the monocyte lineage and angiogenesis in vascular endothelial cells, but its effects on lymphangiogenesis is uncertain. Here we examined the effects and the mechanisms of G-CSF-induced lymphangiogenesis using human lymphatic endothelial cells (hLECs). Our results showed that G-CSF induced capillary-like tube formation, migration and proliferation of hLECs in a dose- and time-dependent manner and enhanced sprouting of thoracic duct. G-CSF increased phosphorylation of Akt and ERK1/2 in hLECs. Supporting the observations, specific inhibitors of phosphatidylinositol 3′-kinase and MAPK suppressed the G-CSF-induced in vitro lymphangiogenesis and sprouting. Intraperitoneal administration of G-CSF to mice also stimulated peritoneal lymphangiogenesis. These findings suggest that G-CSF is a lymphangiogenic factor

  8. Evodiamine attenuates TGF-β1-induced fibroblast activation and endothelial to mesenchymal transition.

    Science.gov (United States)

    Wu, Qing-Qing; Xiao, Yang; Jiang, Xiao-Han; Yuan, Yuan; Yang, Zheng; Chang, Wei; Bian, Zhou-Yan; Tang, Qi-Zhu

    2017-06-01

    The aim of this study is to investigate the effect of evodiamine on fibroblast activation in cardiac fibroblasts and endothelial to mesenchymal transition (EndMT) in human umbilical vein endothelial cells (HUVECs). Neonatal rat cardiac fibroblasts were stimulated with transforming growth factor beta 1 (TGF-β1) to induce fibroblast activation. After co-cultured with evodiamine (5, 10 μM), the proliferation and pro-fibrotic proteins expression of cardiac fibroblasts were evaluated. HUVECs were also stimulated with TGF-β1 to induce EndMT and treated with evodiamine (5, 10 μM) at the same time. The EndMT response in the HUVECs was evaluated as well as the capacity of the transitioned endothelial cells migrating to surrounding tissue. As a result, Evodiamine-blunted TGF-β1 induced activation of cardiac fibroblast into myofibroblast as assessed by the decreased expressions of α-SMA. Furthermore, evodiamine reduced the increased protein expression of fibrosis markers in neonatal and adult rat cardiac fibroblasts induced by TGF-β1. HUVECs stimulated with TGF-β1 exhibited lower expression levels of CD31, CD34, and higher levels of α-SMA, vimentin than the control cells. This phenotype was eliminated in the HUVECs treated with both 5 and 10 μM evodiamine. Evodiamine significantly reduced the increase in migration ability that occurred in response to TGF-β1 in HUVECs. In addition, the activation of Smad2, Smad3, ERK1/2, and Akt, and the nuclear translocation of Smad4 in both cardiac fibroblasts and HUVEC were blocked by evodiamine treatment. Thus, evodiamine could prevent cardiac fibroblasts from activation into myofibroblast and protect HUVEC against EndMT. These effects may be mediated by inhibition of the TGFβ pathway in both cardiac fibroblasts and HUVECs.

  9. Endothelial microparticles: Pathogenic or passive players in endothelial dysfunction in autoimmune rheumatic diseases?

    Science.gov (United States)

    McCarthy, E M; Wilkinson, F L; Parker, B; Alexander, M Y

    2016-11-01

    Autoimmune rheumatic diseases are characterised by systemic inflammation and complex immunopathology, with an increased risk of cardiovascular disease, initiated by endothelial dysfunction in a chronic inflammatory environment. Endothelial microparticles (EMPs) are released into the circulation from activated endothelial cells and may therefore, reflect disease severity, vascular and endothelial dysfunction, that could influence disease pathogenesis via autocrine/paracrine signalling. The exact function of EMPs in rheumatic disease remains unknown, and this has initiated research to elucidate EMP composition and function, which may be determined by the mode of endothelial activation and the micro environment. To date, EMPs are thought to play a role in angiogenesis, thrombosis and inflammation by transferring specific proteins and microRNAs (miRs) to target cells. Here, we review the mechanisms underlying the generation and composition of EMPs and the clinical and experimental studies describing the involvement of EMPs in rheumatic diseases, since we have previously shown endothelial dysfunction and an elevated risk of cardiovascular disease are characteristics in systemic lupus erythematosus. We will also discuss the potential of EMPs as future biomarkers of cardiovascular risk in these diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Crocin Improves the Endothelial Function Regulated by Kca3.1 Through ERK and Akt Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Huike Yang

    2018-03-01

    Full Text Available Background/Aims: Based on the protective effect of crocin against cardiovascular diseases, we hypothesize that crocin could improve endothelial function through activating the eNOS(endothelial nitric oxide synthase /NO pathway and/or the intermediate-conductance Ca2+-activated K+ channels (KCa3.1. Methods: In this study, rat aortic rings were used to assess the regulatory effect of crocin on vascular tone and nitric oxide, prostacyclin, and KCa3.1, all endothelial vasodilators, were analyzed for effects by crocin. The expression profiles of p-eNOS, total-eNOS, p-ERK, total-ERK, p-Akt, total-Akt, KCa3.1, CD31, thrombomodulin, ICAM-1 and VCAM-1 were tested by western blotting. KCa3.1 was also analyzed by qPCR and immunofluorescence staining. Fluorescence and confocal microscopy were used to determine NO generation and intracellular Ca2+. Both EdU and MTT assays were used to evaluate cell viability. Cellular migration was assessed using transwell assay. Results: Crocin relaxed pre-contracted artery rings through either NO or KCa3.1, but not PGI, in an endothelium-dependent manner. Furthermore, crocin increased p-eNOS, total-eNOS expression and NO production as well as intracellular Ca2+ in both HUVECs and HUAECs (Human Umbilical Artery Endothelial cells. Crocin also stimulated the expression of CD31, thrombomodulin and vascular cell adhesion molecule 1 (VCAM-1, as well as increased cellular proliferation and migration in vitro. Interestingly, we determined for the first time that by blocking or silencing KCa3.1 there was inhibition of crocin induced upregulation of p-eNOS and total-eNOS. Correspondingly, the KCa3.1 inhibitor TRAM-34 also reduced the expression of CD31, thrombomodulin and VCAM-1, as well as diminished intracellular Ca2+, cellular proliferation and migration. Finally, crocin stimulated the expression of p-ERK, total-ERK, p-Akt and total-Akt, however suppression of MEK and Akt inhibited this expression profile in endothelial cells

  11. Effect and possible mechanism of monocyte-derived VEGF on monocyte-endothelial cellular adhesion after electrical burns.

    Science.gov (United States)

    Ruan, Qiongfang; Zhao, Chaoli; Ye, Ziqing; Ruan, Jingjing; Xie, Qionghui; Xie, Weiguo

    2015-06-01

    One of the major obstacles in the treatment of severe electrical burns is properly handling the resulting uncontrolled inflammation. Such inflammation often causes secondary injury and necrosis, thus complicating patient outcomes. Vascular endothelial grow factor (VEGF) has emerged as an important mediator for the recruitment of monocytes to the site inflammation. This study was designed to explore the effects and possible mechanism of VEGF on monocyte-endothelial cellular adhesion. To do so, we used a cultured human monocytic cell line (THP-1) that was stimulated with serum derived from rats that had received electrical burns. Serum was obtained from rats that had received electrical burns. Both the VEGF and soluble flt-1 (sflt-1) concentrations of the serum were determined by double-antibody sandwich ELISA. The concentrations of VEGF, sflt-1, and TNF-α obtained from the cell-free cultured supernatant of THP-1 cells that had been exposed to the serum were then determined by double-antibody sandwich ELISA. Serum-stimulated THP-1 cells were added to wells with a monolayer of endothelial cells to detect the level of monocyte-endothelial cells adhesion. Finally, the state of phosphorylation of AKT was determined by Western blotting. Both in vivo and in vitro studies showed that compared to controls, the levels of VEGF were significantly increased after electrical burns. This increased was accompanied by a reduction of sflt-1 levels. Furthermore, the serum of rats that had received electrical burns was able to both activate monocytes to secrete TNF-α and enhance monocyte-endothelial cell adhesion. Treatment with the serum also resulted in an up-regulation of the phosphorylation of AKT, but had no effect on the total levels of AKT. Phosphatidylinositide 3-kinases (PI3K) inhibition decreased the number of THP-1 cells that were adhered to endothelial cells. Finally, sequestering VEGF with sflt-1 was able to reduce the effect on monocyte-endothelial cells adhesion by

  12. Reduced Ang2 expression in aging endothelial cells.

    Science.gov (United States)

    Hohensinner, P J; Ebenbauer, B; Kaun, C; Maurer, G; Huber, K; Wojta, J

    2016-06-03

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Inhibition of prostaglandin synthesis after metabolism of menadione by cultured porcine endothelial cells.

    OpenAIRE

    Barchowsky, A; Tabrizi, K; Kent, R S; Whorton, A R

    1989-01-01

    We have examined the effects of menadione on porcine aortic endothelial cell prostaglandin synthesis. Addition of 1-20 microM menadione caused a dose- and time-dependent inhibition of stimulated prostaglandin synthesis with an IC50 of 5 microM at 15 min. Concentrations greater than 100 microM menadione were necessary to increase 51Cr release from prelabeled cells. Recovery of enzyme inactivated by menadione required a 6-h incubation in 1% serum. In a microsomal preparation, menadione was show...

  14. The innate defense antimicrobial peptides hBD3 and RNase7 are induced in human umbilical vein endothelial cells by classical inflammatory cytokines but not Th17 cytokines.

    Science.gov (United States)

    Burgey, Christine; Kern, Winfried V; Römer, Winfried; Sakinc, Türkan; Rieg, Siegbert

    2015-05-01

    Antimicrobial peptides are multifunctional effector molecules of innate immunity. In this study we investigated whether endothelial cells actively contribute to innate defense mechanisms by expression of antimicrobial peptides. We therefore stimulated human umbilical vein endothelial cells (HUVEC) with inflammatory cytokines, Th17 cytokines, heat-inactivated bacteria, bacterial conditioned medium (BCM) of Staphylococcus aureus and Streptococcus sanguinis, and lipoteichoic acid (LTA). Stimulation with single cytokines induced discrete expression of human β-defensin 3 (hBD3) by IFN-γ or IL-1β and of ribonuclease 7 (RNase7) by TNF-α without any effects on LL-37 gene expression. Stronger hBD3 and RNase7 induction was observed after combined stimulation with IL-1β, TNF-α and IFN-γ and was confirmed by high hBD3 and RNase7 peptide levels in cell culture supernatants. In contrast, Th17 cytokines or stimulation with LTA did not result in AMP production. Moreover, only BCM of an invasive S. aureus bacteremia isolate induced hBD3 in HUVEC. We conclude that endothelial cells actively contribute to prevent dissemination of pathogens at the blood-tissue-barrier by production of AMPs that exhibit microbicidal and immunomodulatory functions. Further investigations should focus on tissue-specific AMP induction in different endothelial cell types, on pathogen-specific induction patterns and potentially involved pattern-recognition receptors of endothelial cells. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  15. Chronic deficiency of nitric oxide affects hypoxia inducible factor-1α (HIF-1α stability and migration in human endothelial cells.

    Directory of Open Access Journals (Sweden)

    Maria Grazia Cattaneo

    Full Text Available BACKGROUND: Endothelial dysfunction in widely diffuse disorders, such as atherosclerosis, hypertension, diabetes and senescence, is associated with nitric oxide (NO deficiency. Here, the behavioural and molecular consequences deriving from NO deficiency in human umbilical vein endothelial cells (HUVECs were investigated. RESULTS: Endothelial nitric oxide synthase (eNOS was chronically inhibited either by N(G-Nitro-L-arginine methyl ester (L-NAME treatment or its expression was down-regulated by RNA interference. After long-term L-NAME treatment, HUVECs displayed a higher migratory capability accompanied by an increased Vascular Endothelial Growth Factor (VEGF and VEGF receptor-2 (kinase insert domain receptor, KDR expression. Moreover, both pharmacological and genetic inhibition of eNOS induced a state of pseudohypoxia, revealed by the stabilization of hypoxia-inducible factor-1α (HIF-1α. Furthermore, NO loss induced a significant decrease in mitochondrial mass and energy production accompanied by a lower O(2 consumption. Notably, very low doses of chronically administered DETA/NO reverted the HIF-1α accumulation, the increased VEGF expression and the stimulated migratory behaviour detected in NO deficient cells. CONCLUSION: Based on our results, we propose that basal release of NO may act as a negative controller of HIF-1α levels with important consequences for endothelial cell physiology. Moreover, we suggest that our experimental model where eNOS activity was impaired by pharmacological and genetic inhibition may represent a good in vitro system to study endothelial dysfunction.

  16. Inhibition of tumor necrosis factor-α-induced expression of adhesion molecules in human endothelial cells by the saponins derived from roots of Platycodon grandiflorum

    International Nuclear Information System (INIS)

    Kim, Ji Young; Kim, Dong Hee; Kim, Hyung Gyun; Song, Gyu-Yong; Chung, Young Chul; Roh, Seong Hwan; Jeong, Hye Gwang

    2006-01-01

    Adhesion molecules play an important role in the development of atherogenesis and are produced by endothelial cells after being stimulated with various inflammatory cytokines. This study examined the effect of saponins that were isolated from the roots of Platycodon grandiflorum A. DC (Campanulaceae), Changkil saponins (CKS), on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. CKS significantly inhibited the TNFα-induced increase in monocyte adhesion to endothelial cells as well as decreased the protein and mRNA expression levels of vascular adhesion molecule-1 and intercellular cell adhesion molecule-1 on endothelial cells. Furthermore, CKS significantly inhibited the TNFα-induced production of intracellular reactive oxygen species (ROS) and activation of NF-κB by preventing IκB degradation and inhibiting IκB kinase activity. Overall, CKS has anti-atherosclerotic and anti-inflammatory activity, which is least in part the result of it reducing the cytokine-induced endothelial adhesion to monocytes by inhibiting intracellular ROS production, NF-κB activation, and cell adhesion molecule expression in endothelial cells

  17. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets

    Science.gov (United States)

    Möhle, Robert; Green, David; Moore, Malcolm A. S.; Nachman, Ralph L.; Rafii, Shahin

    1997-01-01

    We have shown that coculture of bone marrow microvascular endothelial cells with hematopoietic progenitor cells results in proliferation and differentiation of megakaryocytes. In these long-term cultures, bone marrow microvascular endothelial cell monolayers maintain their cellular integrity in the absence of exogenous endothelial growth factors. Because this interaction may involve paracrine secretion of cytokines, we evaluated megakaryocytic cells for secretion of vascular endothelial growth factor (VEGF). Megakaryocytes (CD41a+) were generated by ex vivo expansion of hematopoietic progenitor cells with kit-ligand and thrombopoietin for 10 days and further purified with immunomagnetic microbeads. Using reverse transcription–PCR, we showed that megakaryocytic cell lines (Dami, HEL) and purified megakaryocytes expressed mRNA of the three VEGF isoforms (121, 165, and 189 amino acids). Large quantities of VEGF (>1 ng/106 cells/3 days) were detected in the supernatant of Dami cells, ex vivo-generated megakaryocytes, and CD41a+ cells isolated from bone marrow. The constitutive secretion of VEGF by CD41a+ cells was stimulated by growth factors of the megakaryocytic lineage (interleukin 3, thrombopoietin). Western blotting of heparin–Sepharose-enriched supernatant mainly detected the isoform VEGF165. In addition, immunohistochemistry showed intracytoplasmic VEGF in polyploid megakaryocytes. Thrombin stimulation of megakaryocytes and platelets resulted in rapid release of VEGF within 30 min. We conclude that human megakaryocytes produce and secrete VEGF in an inducible manner. Within the bone marrow microenvironment, VEGF secreted by megakaryocytes may contribute to the proliferation of endothelial cells. VEGF delivered to sites of vascular injury by activated platelets may initiate angiogenesis. PMID:9012841

  18. MicroRNA-210 Modulates Endothelial Cell Response to Hypoxia and Inhibits the Receptor Tyrosine Kinase Ligand Ephrin-A3*S⃞

    Science.gov (United States)

    Fasanaro, Pasquale; D'Alessandra, Yuri; Di Stefano, Valeria; Melchionna, Roberta; Romani, Sveva; Pompilio, Giulio; Capogrossi, Maurizio C.; Martelli, Fabio

    2008-01-01

    MicroRNAs (miRNAs) are small non-protein-coding RNAs that function as negative gene expression regulators. In the present study, we investigated miRNAs role in endothelial cell response to hypoxia. We found that the expression of miR-210 progressively increased upon exposure to hypoxia. miR-210 overexpression in normoxic endothelial cells stimulated the formation of capillary-like structures on Matrigel and vascular endothelial growth factor-driven cell migration. Conversely, miR-210 blockade via anti-miRNA transfection inhibited the formation of capillary-like structures stimulated by hypoxia and decreased cell migration in response to vascular endothelial growth factor. miR-210 overexpression did not affect endothelial cell growth in both normoxia and hypoxia. However, anti-miR-210 transfection inhibited cell growth and induced apoptosis, in both normoxia and hypoxia. We determined that one relevant target of miR-210 in hypoxia was Ephrin-A3 since miR-210 was necessary and sufficient to down-modulate its expression. Moreover, luciferase reporter assays showed that Ephrin-A3 was a direct target of miR-210. Ephrin-A3 modulation by miR-210 had significant functional consequences; indeed, the expression of an Ephrin-A3 allele that is not targeted by miR-210 prevented miR-210-mediated stimulation of both tubulogenesis and chemotaxis. We conclude that miR-210 up-regulation is a crucial element of endothelial cell response to hypoxia, affecting cell survival, migration, and differentiation. PMID:18417479

  19. Hydrogen sulfide increases nitric oxide production from endothelial cells by an Akt-dependent mechanism

    Directory of Open Access Journals (Sweden)

    Arturo J Cardounel

    2011-12-01

    Full Text Available Hydrogen sulfide (H2S and nitric oxide (NO are both gasotransmitters that can elicit synergistic vasodilatory responses in the in the cardiovascular system, but the mechanisms behind this synergy are unclear. In the current study we investigated the molecular mechanisms through which H2S regulates endothelial NO production. Initial studies were performed to establish the temporal and dose-dependent effects of H2S on NO generation using EPR spin trapping techniques. H2S stimulated a two-fold increase in NO production from endothelial nitric oxide synthase (eNOS, which was maximal 30 min after exposure to 25-150 µM H2S. Following 30 min H2S exposure, eNOS phosphorylation at Ser 1177 was significantly increased compared to control, consistent with eNOS activation. Pharmacological inhibition of Akt, the kinase responsible for Ser 1177 phosphorylation, attenuated the stimulatory effect of H2S on NO production. Taken together, these data demonstrate that H2S up-regulates NO production from eNOS through an Akt-dependent mechanism. These results implicate H2S in the regulation of NO in endothelial cells, and suggest that deficiencies in H2S signaling can directly impact processes regulated by NO.

  20. VEGF and VEGFR-2 (KDR) internalization is required for endothelial recovery during wound healing

    International Nuclear Information System (INIS)

    Constantino Rosa Santos, Susana; Miguel, Claudia; Domingues, Ines; Calado, Angelo; Zhu Zhenping; Wu Yan; Dias, Sergio

    2007-01-01

    Vascular endothelial growth factor (VEGF) receptor activation regulates endothelial cell (EC) survival, migration and proliferation. Recently, it was suggested the cross-talk between the VEGF receptors-1 (FLT-1) and -2 (KDR) modulated several of these functions, but the detailed molecular basis for such interactions remained unexplained. Here we demonstrate for the first time that VEGF stimulation of EC monolayers induced a rapid FLT-1-mediated internalization of KDR to the nucleus, via microtubules and the endocytic pathway, internalization which required the activation of PI 3-kinase/AKT. KDR deletion mutants were generated in several tyrosine residues; in these, VEGF-induced KDR internalization was impaired, demonstrating this process required activation (phosphorylation) of the receptor. Furthermore, we demonstrate that in vitro wounding of EC monolayers leads to a rapid and transient internalization of VEGF + KDR to the nucleus, which is essential for monolayer recovery. Notably, FLT-1 blockade impedes VEGF and KDR activation and internalization, blocking endothelial monolayer recovery. Our data reveal a previously unrecognized mechanism induced by VEGF on EC, which regulates EC recovery following wounding, and as such indicate novel targets for therapeutic intervention

  1. Synthesis of novel (-)-epicatechin derivatives as potential endothelial GPER agonists: Evaluation of biological effects.

    Science.gov (United States)

    Sarmiento, Viviana; Ramirez-Sanchez, Israel; Moreno-Ulloa, Aldo; Romero-Perez, Diego; Chávez, Daniel; Ortiz, Miguel; Najera, Nayelli; Correa-Basurto, Jose; Villarreal, Francisco; Ceballos, Guillermo

    2018-02-15

    To potentially identify proteins that interact (i.e. bind) and may contribute to mediate (-)-epicatechin (Epi) responses in endothelial cells we implemented the following strategy: 1) synthesis of novel Epi derivatives amenable to affinity column use, 2) in silico molecular docking studies of the novel derivatives on G protein-coupled estrogen receptor (GPER), 3) biological assessment of the derivatives on NO production, 4) implementation of an immobilized Epi derivative affinity column and, 5) affinity column based isolation of Epi interacting proteins from endothelial cell protein extracts. For these purposes, the Epi phenol and C3 hydroxyl groups were chemically modified with propargyl or mesyl groups. Docking studies of the novel Epi derivatives on GPER conformers at 14 ns and 70 ns demostrated favorable thermodynamic interactions reaching the binding site. Cultures of bovine coronary artery endothelial cells (BCAEC) treated with Epi derivatives stimulated NO production via Ser1179 phosphorylation of eNOS, effects that were attenuated by the use of the GPER blocker, G15. Epi derivative affinity columns yielded multiple proteins from BCAEC. Proteins were electrophoretically separated and inmmunoblotting analysis revealed GPER as an Epi derivative binding protein. Altogether, these results validate the proposed strategy to potentially isolate and identify novel Epi receptors that may account for its biological activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Inhibition of endothelial cell expression of plasminogen activator inhibitor type-1 by gemfibrozil.

    Science.gov (United States)

    Fujii, S; Sawa, H; Sobel, B E

    1993-10-18

    Increased concentrations of plasminogen activator inhibitor type-1 (PAI-1) in plasma are associated with impaired fibrinolysis and venous and arterial thrombo-embolic disease. In pilot studies designed to identify pharmacologic approaches capable of diminishing such increases, we found that gemfibrozil attenuated the stimulation of synthesis of PAI-1 in a human, immortal, hepatoma cell line (Hep G2) induced by platelets. The present study was performed to determine whether it exerts analogous effects in non-immortal endothelial cells and whether it may therefore facilitate fibrinolysis locally in vivo. Human umbilical vein endothelial cells were incubated with pharmacologic concentrations of gemfibrozil. Gemfibrozil, 100 microM, suppressed basal PAI-1 production by 15% and attenuated the augmentation of synthesis of PAI-1 induced by lysates from platelets (4 x 10(7)/ml) by 36% over 24 h without inhibiting overall protein synthesis. In addition, the increases in PAI-1 mRNA otherwise induced by platelet lysates over 6 h were suppressed by 49% (Northern blots) without any demonstrable change in the intracellular half-life of PAI-1 mRNA. Pulse-chase experiments demonstrated diminution of PAI-1 protein synthesis in parallel with the changes observed in PAI-1 mRNA. To determine whether these effects of gemfibrozil on endothelial cells in vitro were paralleled by consistent changes in the concentrations of PAI-1 in plasma in vivo, we studied rabbits with induced carotid artery thrombosis and thrombolysis.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Arterial endothelial function measurement method and apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Jonathan S; Budinger, Thomas F

    2014-03-04

    A "relaxoscope" (100) detects the degree of arterial endothelial function. Impairment of arterial endothelial function is an early event in atherosclerosis and correlates with the major risk factors for cardiovascular disease. An artery (115), such as the brachial artery (BA) is measured for diameter before and after several minutes of either vasoconstriction or vasorelaxation. The change in arterial diameter is a measure of flow-mediated vasomodification (FMVM). The relaxoscope induces an artificial pulse (128) at a superficial radial artery (115) via a linear actuator (120). An ultrasonic Doppler stethoscope (130) detects this pulse 10-20 cm proximal to the point of pulse induction (125). The delay between pulse application and detection provides the pulse transit time (PTT). By measuring PTT before (160) and after arterial diameter change (170), FMVM may be measured based on the changes in PTT caused by changes in vessel caliber, smooth muscle tone and wall thickness.

  4. The effects of hydroxychloroquine on endothelial dysfunction.

    Science.gov (United States)

    Rahman, Rahana; Murthi, Padma; Singh, Harmeet; Gurusinghe, Seshini; Mockler, Joanne C; Lim, Rebecca; Wallace, Euan M

    2016-10-01

    Hydroxychloroquine is an anti-malarial drug which, due to its anti-inflammatory and immunomodulatory effects, is widely used for the treatment of autoimmune diseases. In a model of systemic lupus erythematosus hydroxychloroquine has been shown to exert protective endothelial effects. In this study, we aimed to investigate whether hydroxychloroquine was endothelial protective in an in vitro model of TNF-α and preeclamptic serum induced dysfunction. We showed that hydroxychloroquine significantly reduced the production of TNF-α and preeclamptic serum induced endothelin-1 (ET-1). Hydroxychloroquine also significantly mitigated TNF-α induced impairment of angiogenesis. These findings support the further assessment of hydroxychloroquine as an adjuvant therapy in preeclampsia. Copyright © 2016 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.

  5. Young endothelial cells revive aging blood.

    Science.gov (United States)

    Chang, Vivian Y; Termini, Christina M; Chute, John P

    2017-11-01

    The hematopoietic system declines with age, resulting in decreased hematopoietic stem cell (HSC) self-renewal capacity, myeloid skewing, and immune cell depletion. Aging of the hematopoietic system is associated with an increased incidence of myeloid malignancies and a decline in adaptive immunity. Therefore, strategies to rejuvenate the hematopoietic system have important clinical implications. In this issue of the JCI, Poulos and colleagues demonstrate that infusions of bone marrow (BM) endothelial cells (ECs) from young mice promoted HSC self-renewal and restored immune cell content in aged mice. Additionally, delivery of young BM ECs along with HSCs following total body irradiation improved HSC engraftment and enhanced survival. These results suggest an important role for BM endothelial cells (ECs) in regulating hematopoietic aging and support further research to identify the rejuvenating factors elaborated by BM ECs that restore HSC function and the immune repertoire in aged mice.

  6. Microalbuminuria, endothelial dysfunction and cardiovascular risk

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, B

    2000-01-01

    Microalbuminuria was originally considered to be an important new risk factor for diabetic nephropathy. More recently, it has been convincingly shown that microalbuminuria is also an independent risk factor for cardiovascular morbidity and mortality in Type 1 and Type 2 diabetic patients. Even...... in the non-diabetic background population, microalbuminuria is a risk factor for cardiovascular mortality. What is the link between increased loss of albumin in urine and cardiovascular disease and mortality? As microalbuminuria is apparently associated with increased universal vascular sieving of albumin...... evidence of endothelial dysfunction in patients with microalbuminuria, which may be the common link accounting for the associations mentioned above. In this context, a number of markers of endothelial cell dysfunction have been found to be increased in patients with microalbuminuria. In addition, a number...

  7. Ionizing radiation activates vascular endothelial growth factor-A transcription in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyounji; Kim, Kwang Seok; Jeong, Jae Hoon; Lim, Young Bin [Radiation Cancer Biology Team, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2016-12-15

    Vascular endothelial growth factor (VEGF) is an essential paracrine factor for developmental and pathological angiogenesis. VEGF also exerts its effects in an autocrine manner in VEGF-producing cells. For instance, autocrine VEGF signaling occurs in tumor cells and contributes to key aspects of tumorigenesis, such as in the function of cancer stem cells and tumor initiation, which are independent of angiogenesis. In addition to tumors cells, non-transformed cells also express VEGF. For example, a VEGF dependent intracellular autocrine mechanism is crucial for the survival of hematopoietic stem cells and hematopoiesis. Stereotactic body radiation therapy (SBRT) is a novel treatment modality for early primary cancer and oligometastatic disease. SBRT delivers high-dose hypofractionated radiation, such as 20-60 Gy, to tumors in a single fraction or 2-5 fractions. As VEGF is a critical regulator of functional integrity and viability of vascular endothelial cells, we examined whether high-dose irradiation alters VEGF signaling by measuring the expression levels of VEGFA transcript. It is generally believed that endothelial cells do not produce VEGF in response to radiation. In present study, however, we provide the first demonstration of transcriptional regulation of VEGFA in human vascular endothelial cells by IR treatment. Irradiation with doses higher than 10 Gy in a single exposure triggers up-regulation of VEGFA transcription within 2 hours in HUVECs, whereas irradiation with 10 Gy does not alter VEGFA levels. Our data have shown that high-dose irradiation triggers immediate transactivation of VEGFA in human vascular endothelial cells.

  8. Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation

    Directory of Open Access Journals (Sweden)

    Carolina M. Medeiros Da Cunha

    2017-11-01

    Full Text Available Autologous chondrocyte transplantation for cartilage repair still has unsatisfactory clinical outcomes because of inter-donor variability and poor cartilage quality formation. Re-differentiation of monolayer-expanded human chondrocytes is not easy in the absence of potent morphogens. The Vascular Endothelial Growth Factor (VEGF plays a master role in angiogenesis and in negatively regulating cartilage growth by stimulating vascular invasion and ossification. Therefore, we hypothesized that its sole microenvironmental blockade by either VEGF sequestration by soluble VEGF receptor-2 (Flk-1 or by antiangiogenic hyperbranched peptides could improve chondrogenesis of expanded human nasal chondrocytes (NC freshly seeded on collagen scaffolds. Chondrogenesis of several NC donors was assessed either in vitro or ectopically in nude mice. VEGF blockade appeared not to affect NC in vitro differentiation, whereas it efficiently inhibited blood vessel ingrowth in vivo. After 8 weeks, in vivo glycosaminoglycan deposition was approximately two-fold higher when antiangiogenic approaches were used, as compared to the control group. Our data indicates that the inhibition of VEGF signaling, independently of the specific implementation mode, has profound effects on in vivo NC chondrogenesis, even in the absence of chondroinductive signals during prior culture or at the implantation site.

  9. Effects of TNF-alpha on Endothelial Cell Collective Migration

    Science.gov (United States)

    Chen, Desu; Wu, Di; Helim Aranda-Espinoza, Jose; Losert, Wolfgang

    2013-03-01

    Tumor necrosis factor (TNF-alpha) is a small cell-signaling protein usually released by monocytes and macrophages during an inflammatory response. Previous work had shown the effects of TNF-alpha on single cell morphology, migration, and biomechanical properties. However, the effect on collective migrations remains unexplored. In this work, we have created scratches on monolayers of human umbilical endothelial cells (HUVECs) treated with 25ng/mL TNF-alpha on glass substrates. The wound healing like processes were imaged with phase contrast microscopy. Quantitative analysis of the collective migration of cells treated with TNF-alpha indicates that these cells maintain their persistent motion and alignment better than untreated cells. In addition, the collective migration was characterized by measuring the amount of non-affine deformations of the wound healing monolayer. We found a lower mean non-affinity and narrower distribution of non-affinities upon TNF-alpha stimulation. These results suggest that TNF-alpha introduces a higher degree of organized cell collective migration.

  10. Endothelial microparticles (EMP in physiology and pathology

    Directory of Open Access Journals (Sweden)

    Ewa Sierko

    2015-08-01

    Full Text Available Endothelial microparticles (EMP are released from endothelial cells (ECs in the process of activation and/or apoptosis. They harbor adhesive molecules, enzymes, receptors and cytoplasmic structures and express a wide range of various constitutive antigens, typical for ECs, at their surface. Under physiological conditions the concentration of EMP in the blood is clinically insignificant. However, it was reported that under pathological conditions EMP concentration in the blood might slightly increase and contribute to blood coagulation, angiogenesis and inflammation. It has been shown that EMP directly and indirectly contribute to the activation of blood coagulation. Endothelial microparticles directly participate in blood coagulation through their surface tissue factor (TF – a major initiator of blood coagulation. Furthermore, EMP exhibit procoagulant potential via expression of negatively charged phospholipids at their surface, which may promote assembly of coagulation enzymes (TF/VII, tenases and prothrombinase complexes, leading to thrombus formation. In addition, they provide a binding surface for coagulation factors: IXa, VIII, Va and IIa. Moreover, it is possible that EMP transfer TF from TF-bearing EMP to activated platelets and monocytes by binding them through adhesion molecules. Also, EMP express von Willebrand factor, which may facilitate platelet aggregation. Apart from their procoagulant properties, it was demonstrated that EMP may express adhesive molecules and metalloproteinases (MMP-2, MMP-9 at their surface and release growth factors, which may contribute to angiogenesis. Additionally, surface presence of C3 and C4 – components of the classical pathway – suggests pro-inflammatory properties of these structures. This article contains a summary of available data on the biology and pathophysiology of endothelial microparticles and their potential role in blood coagulation, angiogenesis and inflammation.

  11. Brain endothelial dysfunction in cerebral adrenoleukodystrophy.

    Science.gov (United States)

    Musolino, Patricia L; Gong, Yi; Snyder, Juliet M T; Jimenez, Sandra; Lok, Josephine; Lo, Eng H; Moser, Ann B; Grabowski, Eric F; Frosch, Matthew P; Eichler, Florian S

    2015-11-01

    See Aubourg (doi:10.1093/awv271) for a scientific commentary on this article.X-linked adrenoleukodystrophy is caused by mutations in the ABCD1 gene leading to accumulation of very long chain fatty acids. Its most severe neurological manifestation is cerebral adrenoleukodystrophy. Here we demonstrate that progressive inflammatory demyelination in cerebral adrenoleukodystrophy coincides with blood-brain barrier dysfunction, increased MMP9 expression, and changes in endothelial tight junction proteins as well as adhesion molecules. ABCD1, but not its closest homologue ABCD2, is highly expressed in human brain microvascular endothelial cells, far exceeding its expression in the systemic vasculature. Silencing of ABCD1 in human brain microvascular endothelial cells causes accumulation of very long chain fatty acids, but much later than the immediate upregulation of adhesion molecules and decrease in tight junction proteins. This results in greater adhesion and transmigration of monocytes across the endothelium. PCR-array screening of human brain microvascular endothelial cells after ABCD1 silencing revealed downregulation of both mRNA and protein levels of the transcription factor c-MYC (encoded by MYC). Interestingly, MYC silencing mimicked the effects of ABCD1 silencing on CLDN5 and ICAM1 without decreasing the levels of ABCD1 protein itself. Together, these data demonstrate that ABCD1 deficiency induces significant alterations in brain endothelium via c-MYC and may thereby contribute to the increased trafficking of leucocytes across the blood-brain barrier as seen in cerebral adrenouleukodystrophy. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Targeted endothelial nanomedicine for common acute pathological conditions.

    Science.gov (United States)

    Shuvaev, Vladimir V; Brenner, Jacob S; Muzykantov, Vladimir R

    2015-12-10

    Endothelium, a thin monolayer of specialized cells lining the lumen of blood vessels is the key regulatory interface between blood and tissues. Endothelial abnormalities are implicated in many diseases, including common acute conditions with high morbidity and mortality lacking therapy, in part because drugs and drug carriers have no natural endothelial affinity. Precise endothelial drug delivery may improve management of these conditions. Using ligands of molecules exposed to the bloodstream on the endothelial surface enables design of diverse targeted endothelial nanomedicine agents. Target molecules and binding epitopes must be accessible to drug carriers, carriers must be free of harmful effects, and targeting should provide desirable sub-cellular addressing of the drug cargo. The roster of current candidate target molecules for endothelial nanomedicine includes peptidases and other enzymes, cell adhesion molecules and integrins, localized in different domains of the endothelial plasmalemma and differentially distributed throughout the vasculature. Endowing carriers with an affinity to specific endothelial epitopes enables an unprecedented level of precision of control of drug delivery: binding to selected endothelial cell phenotypes, cellular addressing and duration of therapeutic effects. Features of nanocarrier design such as choice of epitope and ligand control delivery and effect of targeted endothelial nanomedicine agents. Pathological factors modulate endothelial targeting and uptake of nanocarriers. Selection of optimal binding sites and design features of nanocarriers are key controllable factors that can be iteratively engineered based on their performance from in vitro to pre-clinical in vivo experimental models. Targeted endothelial nanomedicine agents provide antioxidant, anti-inflammatory and other therapeutic effects unattainable by non-targeted counterparts in animal models of common acute severe human disease conditions. The results of animal

  13. Tumor necrosis factor-α enhanced fusions between oral squamous cell carcinoma cells and endothelial cells via VCAM-1/VLA-4 pathway

    International Nuclear Information System (INIS)

    Song, Kai; Zhu, Fei; Zhang, Han-zhong; Shang, Zheng-jun

    2012-01-01

    Fusion between cancer cells and host cells, including endothelial cells, may strongly modulate the biological behavior of tumors. However, no one is sure about the driving factors and underlying mechanism involved in such fusion. We hypothesized in this study that inflammation, one of the main characteristics in tumor microenvironment, serves as a prominent catalyst for fusion events. Our results showed that oral cancer cells can fuse spontaneously with endothelial cells in co-culture and inflammatory cytokine tumor necrosis factor-α (TNF-α) increased fusion of human umbilical vein endothelium cells and oral cancer cells by up to 3-fold in vitro. Additionally, human oral squamous cell carcinoma cell lines and 35 out of 50 (70%) oral squamous carcinoma specimens express VLA-4, an integrin, previously implicated in fusions between human peripheral blood CD34-positive cells and murine cardiomyocytes. Expression of VCAM-1, a ligand for VLA-4, was evident on vascular endothelium of oral squamous cell carcinoma. Moreover, immunocytochemistry and flow cytometry analysis revealed that expression of VCAM-1 increased obviously in TNF-α-stimulated endothelial cells. Anti-VLA-4 or anti-VCAM-1 treatment can decrease significantly cancer–endothelial adhesion and block such fusion. Collectively, our results suggested that TNF-α could enhance cancer–endothelial cell adhesion and fusion through VCAM-1/VLA-4 pathway. This study provides insights into regulatory mechanism of cancer–endothelial cell fusion, and has important implications for the development of novel therapeutic strategies for prevention of metastasis. -- Highlights: ► Spontaneous oral cancer–endothelial cell fusion. ► TNF-α enhanced cell fusions. ► VCAM-1/VLA-4 expressed in oral cancer. ► TNF-α increased expression of VCAM-1 on endothelial cells. ► VCAM-1/VLA-4 mediated TNF-α-enhanced cell fusions.

  14. Tumor necrosis factor-{alpha} enhanced fusions between oral squamous cell carcinoma cells and endothelial cells via VCAM-1/VLA-4 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kai; Zhu, Fei; Zhang, Han-zhong [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Shang, Zheng-jun, E-mail: shangzhengjun@hotmail.com [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); First Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan (China)

    2012-08-15

    Fusion between cancer cells and host cells, including endothelial cells, may strongly modulate the biological behavior of tumors. However, no one is sure about the driving factors and underlying mechanism involved in such fusion. We hypothesized in this study that inflammation, one of the main characteristics in tumor microenvironment, serves as a prominent catalyst for fusion events. Our results showed that oral cancer cells can fuse spontaneously with endothelial cells in co-culture and inflammatory cytokine tumor necrosis factor-{alpha} (TNF-{alpha}) increased fusion of human umbilical vein endothelium cells and oral cancer cells by up to 3-fold in vitro. Additionally, human oral squamous cell carcinoma cell lines and 35 out of 50 (70%) oral squamous carcinoma specimens express VLA-4, an integrin, previously implicated in fusions between human peripheral blood CD34-positive cells and murine cardiomyocytes. Expression of VCAM-1, a ligand for VLA-4, was evident on vascular endothelium of oral squamous cell carcinoma. Moreover, immunocytochemistry and flow cytometry analysis revealed that expression of VCAM-1 increased obviously in TNF-{alpha}-stimulated endothelial cells. Anti-VLA-4 or anti-VCAM-1 treatment can decrease significantly cancer-endothelial adhesion and block such fusion. Collectively, our results suggested that TNF-{alpha} could enhance cancer-endothelial cell adhesion and fusion through VCAM-1/VLA-4 pathway. This study provides insights into regulatory mechanism of cancer-endothelial cell fusion, and has important implications for the development of novel therapeutic strategies for prevention of metastasis. -- Highlights: Black-Right-Pointing-Pointer Spontaneous oral cancer-endothelial cell fusion. Black-Right-Pointing-Pointer TNF-{alpha} enhanced cell fusions. Black-Right-Pointing-Pointer VCAM-1/VLA-4 expressed in oral cancer. Black-Right-Pointing-Pointer TNF-{alpha} increased expression of VCAM-1 on endothelial cells. Black

  15. Endothelial cell adhesion to ion implanted polymers

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y; Kusakabe, M [SONY Corp., Tokyo (Japan); Lee, J S; Kaibara, M; Iwaki, M; Sasabe, H [RIKEN (Inst. of Physical and Chemical Research), Saitama (Japan)

    1992-03-01

    The biocompatibility of ion implanted polymers has been studied by means of adhesion measurements of bovine aorta endothelial cells in vitro. The specimens used were polystyrene (PS) and segmented polyurethane (SPU). Na{sup +}, N{sub 2}{sup +}, O{sub 2}{sup +} and Kr{sup +} ion implantations were performed at an energy of 150 keV with fluences ranging from 1x10{sup 15} to 3x10{sup 17} ions/cm{sup 2} at room temperature. The chemical and physical structures of ion-implanted polymers have been investigated in order to analyze their tissue compatibility such as improvement of endothelial cell adhesion. The ion implanted SPU have been found to exhibit remarkably higher adhesion and spreading of endothelial cells than unimplanted specimens. By contrast, ion implanted PS demonstrated a little improvement of adhesion of cells in this assay. Results of FT-IR-ATR showed that ion implantation broke the original chemical bond to form new radicals such as OH, ....C=O, SiH and condensed rings. The results of Raman spectroscopy showed that ion implantation always produced a peak near 1500 cm{sup -1}, which indicated that these ion implanted PS and SPU had the same carbon structure. This structure is considered to bring the dramatic increase in the extent of cell adhesion and spreading to these ion implanted PS and SPU. (orig.).

  16. Extraembryonic origin of circulating endothelial cells.

    Directory of Open Access Journals (Sweden)

    Luc Pardanaud

    Full Text Available Circulating endothelial cells (CEC are contained in the bone marrow and peripheral blood of adult humans and participate to the revascularization of ischemic tissues. These cells represent attractive targets for cell or gene therapy aimed at improving ischemic revascularization or inhibition of tumor angiogenesis. The embryonic origin of CEC has not been addressed previously. Here we use quail-chick chimeras to study CEC origin and participation to the developing vasculature. CEC are traced with different markers, in particular the QH1 antibody recognizing only quail endothelial cells. Using yolk-sac chimeras, where quail embryos are grafted onto chick yolk sacs and vice-versa, we show that CEC are generated in the yolk sac. These cells are mobilized during wound healing, demonstrating their participation to angiogenic repair processes. Furthermore, we found that the allantois is also able to give rise to CEC in situ. In contrast to the yolk sac and allantois, the embryo proper does not produce CEC. Our results show that CEC exclusively originate from extra-embryonic territories made with splanchnopleural mesoderm and endoderm, while definitive hematopoietic stem cells and endothelial cells are of intra-embryonic origin.

  17. Extraembryonic origin of circulating endothelial cells.

    Science.gov (United States)

    Pardanaud, Luc; Eichmann, Anne

    2011-01-01

    Circulating endothelial cells (CEC) are contained in the bone marrow and peripheral blood of adult humans and participate to the revascularization of ischemic tissues. These cells represent attractive targets for cell or gene therapy aimed at improving ischemic revascularization or inhibition of tumor angiogenesis. The embryonic origin of CEC has not been addressed previously. Here we use quail-chick chimeras to study CEC origin and participation to the developing vasculature. CEC are traced with different markers, in particular the QH1 antibody recognizing only quail endothelial cells. Using yolk-sac chimeras, where quail embryos are grafted onto chick yolk sacs and vice-versa, we show that CEC are generated in the yolk sac. These cells are mobilized during wound healing, demonstrating their participation to angiogenic repair processes. Furthermore, we found that the allantois is also able to give rise to CEC in situ. In contrast to the yolk sac and allantois, the embryo proper does not produce CEC. Our results show that CEC exclusively originate from extra-embryonic territories made with splanchnopleural mesoderm and endoderm, while definitive hematopoietic stem cells and endothelial cells are of intra-embryonic origin.

  18. Chlorpromazine-induced corneal endothelial phototoxicity

    International Nuclear Information System (INIS)

    Hull, D.S.; Csukas, S.; Green, K.

    1982-01-01

    Chlorpromazine, which has been used extensively for the treatment of psychiatric disorders, is known to accumulate in the posterior corneal stroma, lens, and uveal tract. Because it is a phototoxic compound, the potential exists for it to cause cellular damage after light exposure. Specular microscopic perfusion of corneal endothelial cells in darkness with 0.5 mM chlorpromazine HCl resulted in a swelling rate of 18 +/- 2 micrometer/hr, whereas corneas exposed to long-wavelength ultraviolet light for 3 min in the presence of 0.5 mM chlorpromazine swelled at 37 +/- 9 micrometer/hr (p less than 0.01). Preirradiation of 0.5 mM chlorpromazine solution with ultraviolet light for 30 min and subsequent corneal perfusion with the solution resulted in a corneal swelling rate of 45 +/- 19 micrometer/hr. Cornea endothelial cells perfused with 0.5 mM chlorpromazine that was preirradiated with ultraviolet light showed marked swelling on scanning electron microscopic examination, whereas those perfused with nonirradiated chlorpromazine were flat and showed a normal mosaic pattern. Combining either 500 U/ml catalase or 290 U/ml superoxide dismutase with chlorpromazine did not alter photoinduction of corneal swelling. The data suggest that corneal endothelial chlorpromazine phototoxicity is secondary to cytotoxic products resulting from the photodynamically induced decomposition of chlorpromazine and is not caused by hydrogen peroxide or superoxide anion generated during the phototoxic reaction

  19. Viscoelastic response of a model endothelial glycocalyx

    International Nuclear Information System (INIS)

    Nijenhuis, Nadja; Spaan, Jos A E; Mizuno, Daisuke; Schmidt, Christoph F

    2009-01-01

    Many cells cover themselves with a multifunctional polymer coat, the pericellular matrix (PCM), to mediate mechanical interactions with the environment. A particular PCM, the endothelial glycocalyx (EG), is formed by vascular endothelial cells at their luminal side, forming a mechanical interface between the flowing blood and the endothelial cell layer. The glycosaminoglycan (GAG) hyaluronan (HA) is involved in the main functions of the EG, mechanotransduction of fluid shear stress and molecular sieving. HA, due to its length, is the only GAG in the EG or any other PCM able to form an entangled network. The mechanical functions of the EG are, however, impaired when any one of its components is removed. We here used microrheology to measure the effect of the EG constituents heparan sulfate, chondroitin sulfate, whole blood plasma and albumin on the high-bandwidth mechanical properties of a HA solution. Furthermore, we probed the effect of the hyaldherin aggrecan, a constituent of the PCM of chondrocytes, and very similar to versican (present in the PCM of various cells, and possibly in the EG). We show that components directly interacting with HA (chondroitin sulfate and aggrecan) can increase the viscoelastic shear modulus of the polymer composite

  20. Corneal Endothelial Alterations in Chronic Renal Failure.

    Science.gov (United States)

    Sati, Alok; Jha, Ashok; Moulick, P S; Shankar, Sandeep; Gupta, Sandeep; Khan, M A; Dogra, Manu; Sangwan, Virender S

    2016-10-01

    To evaluate the corneal endothelial changes in patients with chronic renal failure. A total of 128 corneas of 128 subjects were studied, and 3 groups were formed. The first, the dialyzed group, composed of 32 corneas of 32 patients; the second, the nondialyzed group, composed of 34 corneas of 34 patients; and the third, the age-matched control group, composed of 64 corneas of 64 healthy subjects were examined by a specular microscope and the endothelial parameters were compared. The dialyzed group (enhanced level of toxins in the blood) was further analyzed to assess the influence of blood urea, serum creatinine, serum calcium, and serum phosphorus including the duration of dialysis on corneal endothelium. On comparing the 3 groups using analysis of variance and posthoc tests, a significant difference was found in the central corneal thickness (CCT) and endothelial cell density (CD) between the control (CCT: 506 ± 29 μm, CD: 2760 ± 304 cells/mm) and dialyzed groups (CCT: 549 ± 30 μm, CD: 2337 ± 324 cells/mm) [P chronic renal failure, more marked in patients undergoing hemodialysis and with raised blood urea level.

  1. Anthocyanin increases adiponectin secretion and protects against diabetes-related endothelial dysfunction.

    Science.gov (United States)

    Liu, Yan; Li, Dan; Zhang, Yuhua; Sun, Ruifang; Xia, Min

    2014-04-15

    Adiponectin is an adipose tissue-secreted adipokine with beneficial effects on the cardiovascular system. In this study, we evaluated a potential role for adiponectin in the protective effects of anthocyanin on diabetes-related endothelial dysfunction. We treated db/db mice on a normal diet with anthocyanin cyanidin-3-O-β-glucoside (C3G; 2 g/kg diet) for 8 wk. Endothelium-dependent and -independent relaxations of the aorta were then evaluated. Adiponectin expression and secretion were also measured. C3G treatment restores endothelium-dependent relaxation of the aorta in db/db mice, whereas diabetic mice treated with an anti-adiponectin antibody do not respond. C3G treatment induces adiponectin expression and secretion in cultured 3T3 adipocytes through transcription factor forkhead box O1 (Foxo1). Silencing Foxo1 expression prevented C3G-stimulated induction of adiponectin expression. In contrast, overexpression of Foxo1-ADA promoted adiponectin expression in adipocytes. C3G activates Foxo1 by increasing its deacetylation via silent mating type information regulation 2 homolog 1 (Sirt1). Furthermore, purified anthocyanin supplementation significantly improved flow-mediated dilation (FMD) and increased serum adiponectin concentrations in patients with type 2 diabetes. Changes in adiponectin concentrations positively correlated with FMD in the anthocyanin group. Mechanistically, adiponectin activates cAMP-PKA-eNOS signaling pathways in human aortic endothelial cells, increasing endothelial nitric oxide bioavailability. These results demonstrate that adipocyte-derived adiponectin is required for anthocyanin C3G-mediated improvement of endothelial function in diabetes.

  2. Fabrication of endothelial progenitor cell capture surface via DNA aptamer modifying dopamine/polyethyleneimine copolymer film

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin; Deng, Jinchuan; Yuan, Shuheng; Wang, Juan; Luo, Rifang; Chen, Si [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Wang, Jin, E-mail: jinxxwang@263.net [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); Huang, Nan [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-11-15

    Highlights: • The dopamine/PEI film with controlled amine density was successfully prepared. • The DNA aptamer was assembled onto the film via electrostatic incorporation. • The A@DPfilmscanspecificallyandeffectivelycaptureEPCs. • The A@DP film can support the survival of ECs, control the hyperplasia of SMCs. • The dynamic/co-culture models are useful for studying cells competitive adhesion. - Abstract: Endothelial progenitor cells (EPCs) are mainly located in bone marrow and circulate, and play a crucial role in repairmen of injury endothelium. One of the most promising strategies of stents designs were considered to make in-situ endothelialization in vivo via EPC-capture biomolecules on a vascular graft to capture EPCs directly from circulatory blood. In this work, an EPC specific aptamer with a 34 bases single strand DNA sequence was conjugated onto the stent surface via dopamine/polyethyleneimine copolymer film as a platform and linker. The assembled density of DNA aptamer could be regulated by controlling dopamine percentage in this copolymer film. X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) and fluorescence test confirmed the successful immobilization of DNA aptamer. To confirm its biofunctionality and cytocompatibility, the capturing cells ability of the aptamer modified surface and the effects on the growth behavior of human umbilical vein endothelial cells (HUVECs), smooth muscle cells (SMCs) were investigated. The aptamer functionalized sample revealed a good EPC-capture ability, and had a cellular friendly feature for both EPC and EC growth, while not stimulated the hyperplasia of SMCs. And, the co-culture experiment of three types of cells confirmed the specificity capturing of EPCs to aptamer modified surface, rather than ECs and SMCs. These data suggested that this aptamer functionalized surface may have a large potentiality for the application of vascular grafts with targeted endothelialization.

  3. Mechanisms of endothelial dysfunction in resistance arteries from patients with end-stage renal disease.

    Directory of Open Access Journals (Sweden)

    Leanid Luksha

    Full Text Available The study focuses on the mechanisms of endothelial dysfunction in the uremic milieu. Subcutaneous resistance arteries from 35 end-stage renal disease (ESRD patients and 28 matched controls were studied ex-vivo. Basal and receptor-dependent effects of endothelium-derived factors, expression of endothelial NO synthase (eNOS, prerequisites for myoendothelial gap junctions (MEGJ, and associations between endothelium-dependent responses and plasma levels of endothelial dysfunction markers were assessed. The contribution of endothelium-derived hyperpolarizing factor (EDHF to endothelium-dependent relaxation was impaired in uremic arteries after stimulation with bradykinin, but not acetylcholine, reflecting the agonist-specific differences. Diminished vasodilator influences of the endothelium on basal tone and enhanced plasma levels of asymmetrical dimethyl L-arginine (ADMA suggest impairment in NO-mediated regulation of uremic arteries. eNOS expression and contribution of MEGJs to EDHF type responses were unaltered. Plasma levels of ADMA were negatively associated with endothelium-dependent responses in uremic arteries. Preserved responses of smooth muscle to pinacidil and NO-donor indicate alterations within the endothelium and tolerance of vasodilator mechanisms to the uremic retention products at the level of smooth muscle. We conclude that both EDHF and NO pathways that control resistance artery tone are impaired in the uremic milieu. For the first time, we validate the alterations in EDHF type responses linked to kinin receptors in ESRD patients. The association between plasma ADMA concentrations and endothelial function in uremic resistance vasculature may have diagnostic and future therapeutic implications.

  4. Fabrication of endothelial progenitor cell capture surface via DNA aptamer modifying dopamine/polyethyleneimine copolymer film

    International Nuclear Information System (INIS)

    Li, Xin; Deng, Jinchuan; Yuan, Shuheng; Wang, Juan; Luo, Rifang; Chen, Si; Wang, Jin; Huang, Nan

    2016-01-01

    Highlights: • The dopamine/PEI film with controlled amine density was successfully prepared. • The DNA aptamer was assembled onto the film via electrostatic incorporation. • The A@DPfilmscanspecificallyandeffectivelycaptureEPCs. • The A@DP film can support the survival of ECs, control the hyperplasia of SMCs. • The dynamic/co-culture models are useful for studying cells competitive adhesion. - Abstract: Endothelial progenitor cells (EPCs) are mainly located in bone marrow and circulate, and play a crucial role in repairmen of injury endothelium. One of the most promising strategies of stents designs were considered to make in-situ endothelialization in vivo via EPC-capture biomolecules on a vascular graft to capture EPCs directly from circulatory blood. In this work, an EPC specific aptamer with a 34 bases single strand DNA sequence was conjugated onto the stent surface via dopamine/polyethyleneimine copolymer film as a platform and linker. The assembled density of DNA aptamer could be regulated by controlling dopamine percentage in this copolymer film. X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) and fluorescence test confirmed the successful immobilization of DNA aptamer. To confirm its biofunctionality and cytocompatibility, the capturing cells ability of the aptamer modified surface and the effects on the growth behavior of human umbilical vein endothelial cells (HUVECs), smooth muscle cells (SMCs) were investigated. The aptamer functionalized sample revealed a good EPC-capture ability, and had a cellular friendly feature for both EPC and EC growth, while not stimulated the hyperplasia of SMCs. And, the co-culture experiment of three types of cells confirmed the specificity capturing of EPCs to aptamer modified surface, rather than ECs and SMCs. These data suggested that this aptamer functionalized surface may have a large potentiality for the application of vascular grafts with targeted endothelialization.

  5. Vascular endothelial growth factor impairs the functional ability of dendritic cells through Id pathways

    International Nuclear Information System (INIS)

    Laxmanan, Sreenivas; Robertson, Stuart W.; Wang Enfeng; Lau, Julie S.; Briscoe, David M.; Mukhopadhyay, Debabrata

    2005-01-01

    Vascular endothelial growth factor (VEGF) is an angiogenic cytokine that plays an important role in tumor growth and progression. Recent evidence suggests an alternate, albeit indirect, role of VEGF on host immune response to tumors. VEGF appears to diminish host immunity by altering the function of major antigen-presenting cells such as dendritic cells (DCs) [D.I. Gabrilovich, T. Ishida, S. Nadaf, J.E. Ohm, D.P. Carbone, Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function, Clin. Cancer Res. 5 (1999) 2963-2970, D. Gabrilovich, T. Ishida, T. Oyama, S. Ran, V. Kravtsov, S. Nadaf, D.P. Carbone, Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo, Blood 92 (1998) 4150-4166, T. Oyama, S. Ran, T. Ishida, S. Nadaf, L. Kerr, D.P. Carbone, D.I. Gabrilovich, Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells, J. Immunol. 160 (1998) 1224-1232.]. DCs are prime initiators of host immunity as they are known to activate both primary as well as secondary immune responses [J. Banchereau, F. Briere, C. Caux, J. Davoust, S. Lebecque, Y.J. Liu, B. Pulendran, K. Palucka, Immunobiology of dendritic cells, Ann. Rev. Immunol. 18 (2000) 767-811.]. However, the exact nature of how VEGF suppresses DC function is not fully clear. In this report, we show that DCs cultured in the presence of VEGF are less potent in stimulating antigen-specific T-cells. Furthermore, by using DCs derived from Id1 -/- mice that are defective in Flt-1 signaling, we demonstrated that the inhibitory function of VEGF on DC function is most likely mediated by Flt-1. Thus, the role of VEGF in downregulating host immunity may highlight a unique role of VEGF in the pathogenesis of cancer

  6. Extracellular histones disarrange vasoactive mediators release through a COX-NOS interaction in human endothelial cells.

    Science.gov (United States)

    Pérez-Cremades, Daniel; Bueno-Betí, Carlos; García-Giménez, José Luis; Ibañez-Cabellos, José Santiago; Hermenegildo, Carlos; Pallardó, Federico V; Novella, Susana

    2017-08-01

    Extracellular histones are mediators of inflammation, tissue injury and organ dysfunction. Interactions between circulating histones and vascular endothelial cells are key events in histone-mediated pathologies. Our aim was to investigate the implication of extracellular histones in the production of the major vasoactive compounds released by human endothelial cells (HUVECs), prostanoids and nitric oxide (NO). HUVEC exposed to increasing concentrations of histones (0.001 to 100 μg/ml) for 4 hrs induced prostacyclin (PGI2) production in a dose-dependent manner and decreased thromboxane A2 (TXA2) release at 100 μg/ml. Extracellular histones raised cyclooxygenase-2 (COX-2) and prostacyclin synthase (PGIS) mRNA and protein expression, decreased COX-1 mRNA levels and did not change thromboxane A2 synthase (TXAS) expression. Moreover, extracellular histones decreased both, eNOS expression and NO production in HUVEC. The impaired NO production was related to COX-2 activity and superoxide production since was reversed after celecoxib (10 μmol/l) and tempol (100 μmol/l) treatments, respectively. In conclusion, our findings suggest that extracellular histones stimulate the release of endothelial-dependent mediators through an up-regulation in COX-2-PGIS-PGI2 pathway which involves a COX-2-dependent superoxide production that decreases the activity of eNOS and the NO production. These effects may contribute to the endothelial cell dysfunction observed in histone-mediated pathologies. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  7. [Transcranial magnetic stimulation].

    Science.gov (United States)

    Tormos, J M; Catalá, M D; Pascual-Leone, A

    Transcranial magnetic stimulation (TMS) permits stimulation of the cerebral cortex in humans without requiring open access to the brain and is one of the newest tools available in neuroscience. There are two main types of application: single-pulse TMS and repetitive TMS. The magnetic stimulator is composed of a series of capacitors that store the voltage necessary to generate a stimulus of the sufficient intensity of generate an electric field in the stimulation coil. The safety of TMS is supported by the considerable experience derived from studies involving electrical stimulation of the cortex in animals and humans, and also specific studies on the safety of TMS in humans. In this article we review historical and technical aspects of TMS, describe its adverse effects and how to avoid them, summarize the applications of TMS in the investigation of different cerebral functions, and discuss the possibility of using TMS for the treatment of neuropsychiatric disorders.

  8. Obstructive sleep apnoea syndrome, endothelial function and markers of endothelialization. Changes after CPAP.

    Science.gov (United States)

    Muñoz-Hernandez, Rocio; Vallejo-Vaz, Antonio J; Sanchez Armengol, Angeles; Moreno-Luna, Rafael; Caballero-Eraso, Candela; Macher, Hada C; Villar, Jose; Merino, Ana M; Castell, Javier; Capote, Francisco; Stiefel, Pablo

    2015-01-01

    This study tries to assess the endothelial function in vivo using flow-mediated dilatation (FMD) and several biomarkers of endothelium formation/restoration and damage in patients with obstructive sleep apnoea (OSA) syndrome at baseline and after three months with CPAP therapy. Observational study, before and after CPAP therapy. We studied 30 patients with apnoea/hypopnoea index (AHI) >15/h that were compared with themselves after three months of CPAP therapy. FMD was assessed non-invasively in vivo using the Laser-Doppler flowmetry. Circulating cell-free DNA (cf-DNA) and microparticles (MPs) were measured as markers of endothelial damage and the vascular endothelial growth factor (VEGF) was determined as a marker of endothelial restoration process. After three month with CPAP, FMD significantly increased (1072.26 ± 483.21 vs. 1604.38 ± 915.69 PU, pDNA and MPs significantly decreased (187.93 ± 115.81 vs. 121.28 ± 78.98 pg/ml, p<0.01, and 69.60 ± 62.60 vs. 39.82 ± 22.14 U/μL, p<0.05, respectively) and VEGF levels increased (585.02 ± 246.06 vs. 641.11 ± 212.69 pg/ml, p<0.05). These changes were higher in patients with more severe disease. There was a relationship between markers of damage (r = -0.53, p<0.005) but not between markers of damage and restoration, thus suggesting that both types of markers should be measured together. CPAP therapy improves FMD. This improvement may be related to an increase of endothelial restoration process and a decrease of endothelial damage.

  9. Obstructive sleep apnoea syndrome, endothelial function and markers of endothelialization. Changes after CPAP.

    Directory of Open Access Journals (Sweden)

    Rocio Muñoz-Hernandez

    Full Text Available This study tries to assess the endothelial function in vivo using flow-mediated dilatation (FMD and several biomarkers of endothelium formation/restoration and damage in patients with obstructive sleep apnoea (OSA syndrome at baseline and after three months with CPAP therapy.Observational study, before and after CPAP therapy.We studied 30 patients with apnoea/hypopnoea index (AHI >15/h that were compared with themselves after three months of CPAP therapy. FMD was assessed non-invasively in vivo using the Laser-Doppler flowmetry. Circulating cell-free DNA (cf-DNA and microparticles (MPs were measured as markers of endothelial damage and the vascular endothelial growth factor (VEGF was determined as a marker of endothelial restoration process.After three month with CPAP, FMD significantly increased (1072.26 ± 483.21 vs. 1604.38 ± 915.69 PU, p< 0.005 cf-DNA and MPs significantly decreased (187.93 ± 115.81 vs. 121.28 ± 78.98 pg/ml, p<0.01, and 69.60 ± 62.60 vs. 39.82 ± 22.14 U/μL, p<0.05, respectively and VEGF levels increased (585.02 ± 246.06 vs. 641.11 ± 212.69 pg/ml, p<0.05. These changes were higher in patients with more severe disease. There was a relationship between markers of damage (r = -0.53, p<0.005 but not between markers of damage and restoration, thus suggesting that both types of markers should be measured together.CPAP therapy improves FMD. This improvement may be related to an increase of endothelial restoration process and a decrease of endothelial damage.

  10. Radiation Effects on the Cytoskeleton of Endothelial Cells and Endothelial Monolayer Permeability

    International Nuclear Information System (INIS)

    Gabrys, Dorota; Greco, Olga; Patel, Gaurang; Prise, Kevin M.; Tozer, Gillian M.; Kanthou, Chryso

    2007-01-01

    Purpose: To investigate the effects of radiation on the endothelial cytoskeleton and endothelial monolayer permeability and to evaluate associated signaling pathways, which could reveal potential mechanisms of known vascular effects of radiation. Methods and Materials: Cultured endothelial cells were X-ray irradiated, and actin filaments, microtubules, intermediate filaments, and vascular endothelial (VE)-cadherin junctions were examined by immunofluorescence. Permeability was determined by the passage of fluorescent dextran through cell monolayers. Signal transduction pathways were analyzed using RhoA, Rho kinase, and stress-activated protein kinase-p38 (SAPK2/p38) inhibitors by guanosine triphosphate-RhoA activation assay and transfection with RhoAT19N. The levels of junction protein expression and phosphorylation of myosin light chain and SAPK2/p38 were assessed by Western blotting. The radiation effects on cell death were verified by clonogenic assays. Results: Radiation induced rapid and persistent actin stress fiber formation and redistribution of VE-cadherin junctions in microvascular, but not umbilical vein endothelial cells, and microtubules and intermediate filaments remained unaffected. Radiation also caused a rapid and persistent increase in microvascular permeability. RhoA-guanosine triphosphatase and Rho kinase were activated by radiation and caused phosphorylation of downstream myosin light chain and the observed cytoskeletal and permeability changes. SAPK2/p38 was activated by radiation but did not influence either the cytoskeleton or permeability. Conclusion: This study is the first to show rapid activation of the RhoA/Rho kinase by radiation in endothelial cells and has demonstrated a link between this pathway and cytoskeletal remodeling and permeability. The results also suggest that the RhoA pathway might be a useful target for modulating the permeability and other effects of radiation for therapeutic gain

  11. Ox-LDL increases OX40L in endothelial cells through a LOX-1-dependent mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Q.; Xiang, R.; Zhang, D.Y.; Qin, S. [Department of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing (China)

    2013-09-19

    Oxidative low-density lipoprotein (Ox-LDL) is a key risk factor for the development of atherosclerosis, and it can stimulate the expression of a variety of inflammatory signals. As a new and highly sensitive inflammation index, OX40L may be a key to understanding the mechanisms that regulate interactions between cells within the vessel wall and inflammatory mediators during the development of atherosclerosis. To investigate whether Ox-LDL regulates OX40L expression through an oxidized LDL-1 receptor (LOX-1)-mediated mechanism, we investigated the effect of different concentrations of Ox-LDL (50, 100, 150 µg/mL) on endothelial cell proliferation and apoptosis. Stimulation with Ox-LDL increased OX40L protein 1.44-fold and mRNA 4.0-fold in endothelial cells, and these effects were inhibited by blocking LOX-1. These results indicate that LOX-1 plays an important role in the chronic inflammatory process in blood vessel walls. Inhibiting LOX-1 may reduce blood vessel inflammation and provide a therapeutic option to limit atherosclerosis progression.

  12. Aspirin Inhibits Platelet-Derived Sphingosine-1-Phosphate Induced Endothelial Cell Migration.

    Science.gov (United States)

    Polzin, Amin; Knoop, Betül; Böhm, Andreas; Dannenberg, Lisa; Zurek, Mark; Zeus, Tobias; Kelm, Malte; Levkau, Bodo; Rauch, Bernhard H

    2018-01-01

    Aspirin plays a crucial role in the prevention of cardiovascular diseases. We previously described that aspirin has effects beyond inhibition of platelet aggregation, as it inhibited thrombin-mediated release of sphingosine-1-phosphate (S1P) from human platelets. S1P is a bioactive lipid with important functions on inflammation and apoptosis. In endothelial cells (EC), S1P is a key regulator of cell migration. In this study, we aimed to analyze the effects of aspirin on platelet-induced EC migration. Human umbilical EC migration was measured by Boyden chamber assay. EC migration was induced by platelet supernatants of thrombin receptor-activating peptide-1 (AP1) stimulated platelets. To investigate the S1P receptor subtype that promotes EC migration, specific inhibitors of S1P receptor subtypes were applied. S1P induced EC migration in a concentration-dependent manner. EC migration induced by AP1-stimulated platelet supernatants was reduced by aspirin. S1P1 receptor inhibition almost completely abolished EC migration induced by activated platelets. The inhibition of S1P2 or S1P3 receptor had no effect. Aspirin inhibits EC migration induced by activated platelets that is in part due to S1P and mediated by the endothelial S1P1 receptor. The clinical significance of this novel mechanism of aspirin action has to be investigated in future studies. © 2017 S. Karger AG, Basel.

  13. Molecular characterization of EG-VEGF-mediated angiogenesis: differential effects on microvascular and macrovascular endothelial cells.

    Science.gov (United States)

    Brouillet, Sophie; Hoffmann, Pascale; Benharouga, Mohamed; Salomon, Aude; Schaal, Jean-Patrick; Feige, Jean-Jacques; Alfaidy, Nadia

    2010-08-15

    Endocrine gland derived vascular endothelial growth factor (EG-VEGF) also called prokineticin (PK1), has been identified and linked to several biological processes including angiogenesis. EG-VEGF is abundantly expressed in the highest vascularized organ, the human placenta. Here we characterized its angiogenic effect using different experimental procedures. Immunohistochemistry was used to localize EG-VEGF receptors (PROKR1 and PROKR2) in placental and umbilical cord tissue. Primary microvascular placental endothelial cell (HPEC) and umbilical vein-derived macrovascular EC (HUVEC) were used to assess its effects on proliferation, migration, cell survival, pseudovascular organization, spheroid sprouting, permeability and paracellular transport. siRNA and neutralizing antibody strategies were used to differentiate PROKR1- from PROKR2-mediated effects. Our results show that 1) HPEC and HUVEC express both types of receptors 2) EG-VEGF stimulates HPEC's proliferation, migration and survival, but increases only survival in HUVECs. and 3) EG-VEGF was more potent than VEGF in stimulating HPEC sprout formation, pseudovascular organization, and it significantly increases HPEC permeability and paracellular transport. More importantly, we demonstrated that PROKR1 mediates EG-VEGF angiogenic effects, whereas PROKR2 mediates cellular permeability. Altogether, these data characterized angiogenic processes mediated by EG-VEGF, depicted a new angiogenic factor in the placenta, and suggest a novel view of the regulation of angiogenesis in placental pathologies.

  14. Ox-LDL increases OX40L in endothelial cells through a LOX-1-dependent mechanism

    International Nuclear Information System (INIS)

    Dong, Q.; Xiang, R.; Zhang, D.Y.; Qin, S.

    2013-01-01

    Oxidative low-density lipoprotein (Ox-LDL) is a key risk factor for the development of atherosclerosis, and it can stimulate the expression of a variety of inflammatory signals. As a new and highly sensitive inflammation index, OX40L may be a key to understanding the mechanisms that regulate interactions between cells within the vessel wall and inflammatory mediators during the development of atherosclerosis. To investigate whether Ox-LDL regulates OX40L expression through an oxidized LDL-1 receptor (LOX-1)-mediated mechanism, we investigated the effect of different concentrations of Ox-LDL (50, 100, 150 µg/mL) on endothelial cell proliferation and apoptosis. Stimulation with Ox-LDL increased OX40L protein 1.44-fold and mRNA 4.0-fold in endothelial cells, and these effects were inhibited by blocking LOX-1. These results indicate that LOX-1 plays an important role in the chronic inflammatory process in blood vessel walls. Inhibiting LOX-1 may reduce blood vessel inflammation and provide a therapeutic option to limit atherosclerosis progression

  15. Distinct patterns of autophagy evoked by two benzoxazine derivatives in vascular endothelial cells.

    Science.gov (United States)

    Wang, Li; Dong, ZhiWu; Huang, Bin; Zhao, BaoXiang; Wang, Hua; Zhao, Jing; Kung, HsiangFu; Zhang, ShangLi; Miao, JunYing

    2010-11-01

    Macroautophagy (referred to as autophagy) is an evolutionarily conserved, bulk-destruction process in eukaryotes. During this process, the cytoplasm containing long-lived proteins and organelles is engulfed into double-membrane autophagosomes, and ultimately undergoes enzymatic degradation within lysosomes. Autophagy serves as a prosurvival machinery, or it may contribute to cell death. Accumulating evidence indicates that autophagy is involved in the pathogenesis and intervention of various human diseases. Pharmacological autophagy modulators are arousing interest from biologists and clinical physicians in light of their potential for disease therapy and increasing our understanding of the mechanism of autophagy. In this study, we identified two autophagy enhancers, 6-amino-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine (ABO) and 6,8-dichloro-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine (DBO), in human umbilical vein endothelial cells (HUVEC s) by autophagy assays, and demonstrate that ABO and DBO could stimulate autophagy in an mtor-independent and mtor-dependent manner, respectively; ABO-stimulated autophagy was attributed to the elevation of the Ca2+ channel annexin A7 (ANXA7), whereas DBO's effect was due to the level of intracellular reactive oxygen species (ROS). Importantly, we found that ANXA7 was essential for autophagy induction via modulating the intracellular calcium concentration ([Ca2+]i) in HUVEC s. In summary, our work introduced two distinct autophagy enhancers and highlighted the critical role of ANXA7 in endothelial autophagy.

  16. Interaction of Leptospira interrogans with Human Proteolytic Systems Enhances Dissemination through Endothelial Cells and Protease Levels

    Science.gov (United States)

    Vieira, Monica L.; Alvarez-Flores, Miryam P.; Kirchgatter, Karin; Romero, Eliete C.; Alves, Ivy J.; de Morais, Zenaide M.; Vasconcellos, Silvio A.; Chudzinski-Tavassi, Ana M.

    2013-01-01

    We have recently reported the ability of Leptospira to capture plasminogen (PLG) and generate plasmin (PLA) bound on the microbial surface in the presence of exogenous activators. In this work, we examined the effects of leptospiral PLG binding for active penetration through the endothelial cell barrier and activation. The results indicate that leptospires with PLG association or PLA activation have enhanced migration activity through human umbilical vein endothelial cell (HUVEC) monolayers compared with untreated bacteria. Leptospira cells coated with PLG were capable of stimulating the expression of PLG activators by HUVECs. Moreover, leptospires endowed with PLG or PLA promoted transcriptional upregulation matrix metalloprotease 9 (MMP-9). Serum samples from patients with confirmed leptospirosis showed higher levels of PLG activators and total MMP-9 than serum samples from normal (healthy) subjects. The highest level of PLG activators and total MMP-9 was detected with microscopic agglutination test (MAT)-negative serum samples, suggesting that this proteolytic activity stimulation occurs at the early stage of the disease. Furthermore, a gelatin zymography profile obtained for MMPs with serum samples from patients with leptospirosis appears to be specific to leptospiral infection because serum samples from patients with unrelated infectious diseases produced no similar degradation bands. Altogether, the data suggest that the Leptospira-associated PLG or PLA might represent a mechanism that contributes to bacterial penetration of endothelial cells through an activation cascade of events that enhances the proteolytic capability of the organism. To our knowledge, this is the first proteolytic activity associated with leptospiral pathogenesis described to date. PMID:23478319

  17. Effect of a rosmarinic acid supplemented hemodialysis fluid on inflammation of human vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    W-J. Wang

    2017-10-01

    Full Text Available Chronic systemic inflammation and repetitive damage of vascular endothelia by incompatible dialysis system are probable causes of cardiovascular disease in patients on dialysis. The present study aimed to assess in vitro biocompatibility and anti-inflammatory effect of hemodialysis fluid supplemented with rosmarinic acid (RA using human umbilical vein endothelial cells (HUVEC. HUVECs (5×106 cells/mL were pre-exposed to 1 μg/mL of lipopolysaccharides (LPS and incubated with RA-supplemented hemodialysis fluid (HDF. Cytotoxicity was assessed qualitatively by morphologic assessment and quantitatively by MTT assay. Expressions of proinflammatory mediators were assessed using quantitative real-time PCR and production of NO was quantified. Phosphorylation of AKT and nuclear localization of nuclear factor kappa B (NF-κB were examined using western blotting. Exposure of HUVECs to RA-supplemented HDF had no influence on morphology and viability. Inhibition of proinflammatory mediator production in HUVECs by RA supplementation to HDF was significant in a dose-dependent manner. Exposure to RA-supplemented HDF resulted in a decrease in nitric oxide synthase expression and reduction of NO production in LPS-stimulated HUVECs. RA supplementation of HDF suppressed Akt activation in LPS-stimulated HUVECs. In addition, the level of cellular IκB was increased in parallel to a reduced nuclear translocation of NF-κB in LPS-induced endothelial cells. Our results suggest that RA-supplemented HDF is biocompatible and significantly suppressed inflammation induced in endothelial cells. In this respect, the use of HDF supplemented with RA could alleviate inflammation and improve long-term treatment of patients with renal failure on dialysis. Further clinical studies are required to confirm the effects.

  18. Glial cell ceruloplasmin and hepcidin differentially regulate iron efflux from brain microvascular endothelial cells.

    Science.gov (United States)

    McCarthy, Ryan C; Kosman, Daniel J

    2014-01-01

    We have used an in vitro model system to probe the iron transport pathway across the brain microvascular endothelial cells (BMVEC) of the blood-brain barrier (BBB). This model consists of human BMVEC (hBMVEC) and C6 glioma cells (as an astrocytic cell line) grown in a transwell, a cell culture system commonly used to quantify metabolite flux across a cell-derived barrier. We found that iron efflux from hBMVEC through the ferrous iron permease ferroportin (Fpn) was stimulated by secretion of the soluble form of the multi-copper ferroxidase, ceruloplasmin (sCp) from the co-cultured C6 cells. Reciprocally, expression of sCp mRNA in the C6 cells was increased by neighboring hBMVEC. In addition, data indicate that C6 cell-secreted hepcidin stimulates internalization of hBMVEC Fpn but only when the end-feet projections characteristic of this glia-derived cell line are proximal to the endothelial cells. This hepcidin-dependent loss of Fpn correlated with knock-down of iron efflux from the hBMVEC; this result was consistent with the mechanism by which hepcidin regulates iron efflux in mammalian cells. In summary, the data support a model of iron trafficking across the BBB in which the capillary endothelium induce the underlying astrocytes to produce the ferroxidase activity needed to support Fpn-mediated iron efflux. Reciprocally, astrocyte proximity modulates the effective concentration of hepcidin at the endothelial cell membrane and thus the surface expression of hBMVEC Fpn. These results are independent of the source of hBMVEC iron (transferrin or non-transferrin bound) indicating that the model developed here is broadly applicable to brain iron homeostasis.

  19. Endothelial glycocalyx on brain endothelial cells is lost in experimental cerebral malaria

    DEFF Research Database (Denmark)

    Hempel, Casper; Hyttel, Poul; Kurtzhals, Jørgen Al

    2014-01-01

    We hypothesized that the glycocalyx, which is important for endothelial integrity, is lost in severe malaria. C57BL/6 mice were infected with Plasmodium berghei ANKA, resulting in cerebral malaria, or P. chabaudi AS, resulting in uncomplicated malaria. We visualized the glycocalyx with transmission...... electron microscopy and measured circulating glycosaminoglycans by dot blot and ELISA. The glycocalyx was degraded in brain vasculature in cerebral and to a lesser degree uncomplicated malaria. It was affected on both intact and apoptotic endothelial cells. Circulating glycosaminoglycan levels suggested...

  20. Technical Advance: New in vitro method for assaying the migration of primary B cells using an endothelial monolayer as substrate.

    Science.gov (United States)

    Stewart-Hutchinson, Phillip J; Szasz, Taylor P; Jaeger, Emily R; Onken, Michael D; Cooper, John A; Morley, Sharon Celeste

    2017-09-01

    Migration of B cells supports their development and recruitment into functional niches. Therefore, defining factors that control B cell migration will lead to a better understanding of adaptive immunity. In vitro cell migration assays with B cells have been limited by poor adhesion of cells to glass coated with adhesion molecules. We have developed a technique using monolayers of endothelial cells as the substrate for B cell migration and used this technique to establish a robust in vitro assay for B cell migration. We use TNF-α to up-regulate surface expression of the adhesion molecule VCAM-1 on endothelial cells. The ligand VLA-4 is expressed on B cells, allowing them to interact with the endothelial monolayer and migrate on its surface. We tested our new method by examining the role of L-plastin (LPL), an F-actin-bundling protein, in B cell migration. LPL-deficient (LPL -/- ) B cells displayed decreased speed and increased arrest coefficient compared with wild-type (WT) B cells, following chemokine stimulation. However, the confinement ratios for WT and LPL -/- B cells were similar. Thus, we demonstrate how the use of endothelial monolayers as a substrate will support future interrogation of molecular pathways essential to B cell migration. © Society for Leukocyte Biology.

  1. Anti-Inflammatory Activity of Marine Ovothiol A in an In Vitro Model of Endothelial Dysfunction Induced by Hyperglycemia

    Directory of Open Access Journals (Sweden)

    Immacolata Castellano

    2018-01-01

    Full Text Available Chronic hyperglycemia is associated with oxidative stress and vascular inflammation, both leading to endothelial dysfunction and cardiovascular disease that can be weakened by antioxidant/anti-inflammatory molecules in both healthy and diabetic subjects. Among natural molecules, ovothiol A, produced in sea urchin eggs to protect eggs/embryos from the oxidative burst at fertilization and during development, has been receiving increasing interest for its use as an antioxidant. Here, we evaluated the potential antioxidative/anti-inflammatory effect of purified ovothiol A in an in vitro cellular model of hyperglycemia-induced endothelial dysfunction employing human umbilical vein endothelial cells (HUVECs from women affected by gestational diabetes (GD and from healthy mothers. Ovothiol A was rapidly taken up by both cellular systems, resulting in increased glutathione values in GD-HUVECs, likely due to the formation of reduced ovothiol A. In tumor necrosis factor-α-stimulated cells, ovothiol A induced a downregulation of adhesion molecule expression and decrease in monocyte-HUVEC interaction. This was associated with a reduction in reactive oxygen and nitrogen species and an increase in nitric oxide bioavailability. These results point to the potential antiatherogenic properties of the natural antioxidant ovothiol A and support its therapeutic potential in pathologies related to cardiovascular diseases associated with oxidative/inflammatory stress and endothelial dysfunction.

  2. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles.

    Science.gov (United States)

    Jansen, Felix; Yang, Xiaoyan; Hoelscher, Marion; Cattelan, Arianna; Schmitz, Theresa; Proebsting, Sebastian; Wenzel, Daniela; Vosen, Sarah; Franklin, Bernardo S; Fleischmann, Bernd K; Nickenig, Georg; Werner, Nikos

    2013-10-29

    Repair of the endothelium after vascular injury is crucial for preserving endothelial integrity and preventing the development of vascular disease. The underlying mechanisms of endothelial cell repair are largely unknown. We sought to investigate whether endothelial microparticles (EMPs), released from apoptotic endothelial cells (ECs), influence EC repair. Systemic treatment of mice with EMPs after electric denudation of the endothelium accelerated reendothelialization in vivo. In vitro experiments revealed that EMP uptake in ECs promotes EC migration and proliferation, both critical steps in endothelial repair. To dissect the underlying mechanisms, Taqman microRNA array was performed, and microRNA (miR)-126 was identified as the predominantly expressed miR in EMPs. The following experiments demonstrated that miR-126 was transported into recipient human coronary artery endothelial cells by EMPs and functionally regulated the target protein sprouty-related, EVH1 domain-containing protein 1 (SPRED1). Knockdown of miR-126 in EMPs abrogated EMP-mediated effects on human coronary artery endothelial cell migration and proliferation in vitro and reendothelialization in vivo. Interestingly, after simulating diabetic conditions, EMPs derived from glucose-treated ECs contained significantly lower amounts of miR-126 and showed reduced endothelial repair capacity in vitro and in vivo. Finally, expression analysis of miR-126 in circulating microparticles from 176 patients with stable coronary artery disease with and without diabetes mellitus revealed a significantly reduced miR-126 expression in circulating microparticles from diabetic patients. Endothelial microparticles promote vascular endothelial repair by delivering functional miR-126 into recipient cells. In pathological hyperglycemic conditions, EMP-mediated miR-126-induced EC repair is altered.

  3. Music acupuncture stimulation method.

    Science.gov (United States)

    Brătilă, F; Moldovan, C

    2007-01-01

    Harmonic Medicine is the model using the theory that the body rhythms synchronize to an outer rhythm applied for therapeutic purpose, can restores the energy balance in acupuncture channels and organs and the condition of well-being. The purpose of this scientific work was to demonstrate the role played by harmonic sounds in the stimulation of the Lung (LU) Meridian (Shoutaiyin Feijing) and of the Kidney (KI) Meridian (Zushaoyin Shenjing). It was used an original method that included: measurement and electronic sound stimulation of the Meridian Entry Point, measurement of Meridian Exit Point, computer data processing, bio feed-back adjustment of the music stimulation parameters. After data processing, it was found that the sound stimulation of the Lung Meridian Frequency is optimal between 122 Hz and 128 Hz, with an average of 124 Hz (87% of the subjects) and for Kidney Meridian from 118 Hz to 121 Hz, with an average of 120 Hz (67% of the subjects). The acupuncture stimulation was more intense for female subjects (> 7%) than for the male ones. We preliminarily consider that an informational resonance phenomenon can be developed between the acupuncture music stimulation frequency and the cellular dipole frequency, being a really "resonant frequency signature" of an acupoint. The harmonic generation and the electronic excitation or low-excitation status of an acupuncture point may be considered as a resonance mechanism. By this kind of acupunctural stimulation, a symphony may act and play a healer role.

  4. Insulin resistance in vascular endothelial cells promotes intestinal tumour formation

    DEFF Research Database (Denmark)

    Wang, X; Häring, M-F; Rathjen, Thomas

    2017-01-01

    in vascular endothelial cells. Strikingly, these mice had 42% more intestinal tumours than controls, no change in tumour angiogenesis, but increased expression of vascular cell adhesion molecule-1 (VCAM-1) in primary culture of tumour endothelial cells. Insulin decreased VCAM-1 expression and leukocyte...... adhesion in quiescent tumour endothelial cells with intact insulin receptors and partly prevented increases in VCAM-1 and leukocyte adhesion after treatment with tumour necrosis factor-α. Knockout of insulin receptors in endothelial cells also increased leukocyte adhesion in mesenteric venules...

  5. STK35L1 associates with nuclear actin and regulates cell cycle and migration of endothelial cells.

    Directory of Open Access Journals (Sweden)

    Pankaj Goyal

    Full Text Available BACKGROUND: Migration and proliferation of vascular endothelial cells are essential for repair of injured endothelium and angiogenesis. Cyclins, cyclin-dependent kinases (CDKs, and cyclin-dependent kinase inhibitors play an important role in vascular tissue injury and wound healing. Previous studies suggest a link between the cell cycle and cell migration: cells present in the G(1 phase have the highest potential to migrate. The molecular mechanism linking these two processes is not understood. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we explored the function of STK35L1, a novel Ser/Thr kinase, localized in the nucleus and nucleolus of endothelial cells. Molecular biological analysis identified a bipartite nuclear localization signal, and nucleolar localization sequences in the N-terminal part of STK35L1. Nuclear actin was identified as a novel binding partner of STK35L1. A class III PDZ binding domains motif was identified in STK35L1 that mediated its interaction with actin. Depletion of STK35L1 by siRNA lead to an accelerated G(1 to S phase transition after serum-stimulation of endothelial cells indicating an inhibitory role of the kinase in G(1 to S phase progression. Cell cycle specific genes array analysis revealed that one gene was prominently downregulated (8.8 fold in STK35L1 silenced cells: CDKN2A alpha transcript, which codes for p16(INK4a leading to G(1 arrest by inhibition of CDK4/6. Moreover in endothelial cells seeded on Matrigel, STK35L1 expression was rapidly upregulated, and silencing of STK35L1 drastically inhibited endothelial sprouting that is required for angiogenesis. Furthermore, STK35L1 depletion profoundly impaired endothelial cell migration in two wound healing assays. CONCLUSION/SIGNIFICANCE: The results indicate that by regulating CDKN2A and inhibiting G1- to S-phase transition STK35L1 may act as a central kinase linking the cell cycle and migration of endothelial cells. The interaction of STK35L1 with nuclear

  6. The cAMP effectors PKA and Epac activate endothelial NO synthase through PI3K/Akt pathway in human endothelial cells.

    Science.gov (United States)

    García-Morales, Verónica; Luaces-Regueira, María; Campos-Toimil, Manuel

    2017-12-01

    3',5'-Cyclic adenosine monophosphate (cAMP) exerts an endothelium-dependent vasorelaxant action by stimulating endothelial NO synthase (eNOS) activity, and the subsequent NO release, through cAMP protein kinase (PKA) and exchange protein directly activated by cAMP (Epac) activation in endothelial cells. Here, we have investigated the mechanism by which the cAMP-Epac/PKA pathway activates eNOS. cAMP-elevating agents (forskolin and dibutyryl-cAMP) and the joint activation of PKA (6-Bnz-cAMP) and Epac (8-pCPT-2'-O-Me-cAMP) increased cytoplasmic Ca 2+ concentration ([Ca 2+ ] c ) in ≤30% of fura-2-loaded isolated human umbilical vein endothelial cells (HUVEC). However, these drugs did not modify [Ca 2+ ] c in fluo-4-loaded HUVEC monolayers. In DAF-2-loaded HUVEC monolayers, forskolin, PKA and Epac activators significantly increased NO release, and the forskolin effect was reduced by inhibition of PKA (Rp-cAMPs), Epac (ESI-09), eNOS (L-NAME) or phosphoinositide 3-kinase (PI3K; LY-294,002). On the other hand, inhibition of CaMKII (KN-93), AMPK (Compound C), or total absence of Ca 2+ , was without effect. In Western blot experiments, Serine 1177 phosphorylated-eNOS was significantly increased in HUVEC by cAMP-elevating agents and PKA or Epac activators. In isolated rat aortic rings LY-294,002, but not KN-93 or Compound C, significantly reduced the vasorelaxant effects of forskolin in the presence of endothelium. Our results suggest that Epac and PKA activate eNOS via Ser 1177 phosphorylation by activating the PI3K/Akt pathway, and independently of AMPK or CaMKII activation or [Ca 2+ ] c increase. This action explains, in part, the endothelium-dependent vasorelaxant effect of cAMP. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Endothelial Protein C–Targeting Liposomes Show Enhanced Uptake and Improved Therapeutic Efficacy in Human Retinal Endothelial Cells

    DEFF Research Database (Denmark)

    Arta, Anthoula; Eriksen, Anne Z.; Melander, Fredrik

    2018-01-01

    PURPOSE. To determine whether human retinal endothelial cells (HRECs) express the endothelial cell protein C receptor (EPCR) and to realize its potential as a targeting moiety by developing novel single and dual corticosteroid–loaded functionalized liposomes that exhibit both enhanced uptake by H...... of cell tube formations in contrast to nontargeting liposomes. CONCLUSIONS. We show that HRECs express EPCR and this receptor could be a promising nanomedicine target in ocular diseases where the endothelial barrier of the retina is compromised....

  8. Laminin Peptide-Immobilized Hydrogels Modulate Valve Endothelial Cell Hemostatic Regulation.

    Directory of Open Access Journals (Sweden)

    Liezl Rae Balaoing

    Full Text Available Valve endothelial cells (VEC have unique phenotypic responses relative to other types of vascular endothelial cells and have highly sensitive hemostatic functions affected by changes in valve tissues. Furthermore, effects of environmental factors on VEC hemostatic function has not been characterized. This work used a poly(ethylene glycol diacrylate (PEGDA hydrogel platform to evaluate the effects of substrate stiffness and cell adhesive ligands on VEC phenotype and expression of hemostatic genes. Hydrogels of molecular weights (MWs 3.4, 8, and 20 kDa were polymerized into platforms of different rigidities and thiol-modified cell adhesive peptides were covalently bound to acrylate groups on the hydrogel surfaces. The peptide RKRLQVQLSIRT (RKR is a syndecan-1 binding ligand derived from laminin, a trimeric protein and a basement membrane matrix component. Conversely, RGDS is an integrin binding peptide found in many extracellular matrix (ECM proteins including fibronectin, fibrinogen, and von Willebrand factor (VWF. VECs adhered to and formed a stable monolayer on all RKR-coated hydrogel-MW combinations. RGDS-coated platforms supported VEC adhesion and growth on RGDS-3.4 kDa and RGDS-8 kDa hydrogels. VECs cultured on the softer RKR-8 kDa and RKR-20 kDa hydrogel platforms had significantly higher gene expression for all anti-thrombotic (ADAMTS-13, tissue factor pathway inhibitor, and tissue plasminogen activator and thrombotic (VWF, tissue factor, and P-selectin proteins than VECs cultured on RGDS-coated hydrogels and tissue culture polystyrene controls. Stimulated VECs promoted greater platelet adhesion than non-stimulated VECs on their respective culture condition; yet stimulated VECs on RGDS-3.4 kDa gels were not as responsive to stimulation relative to the RKR-gel groups. Thus, the syndecan binding, laminin-derived peptide promoted stable VEC adhesion on the softer hydrogels and maintained VEC phenotype and natural hemostatic function. In

  9. Triazole RGD antagonist reverts TGFβ1-induced endothelial-to-mesenchymal transition in endothelial precursor cells.

    Science.gov (United States)

    Bianchini, Francesca; Peppicelli, Silvia; Fabbrizzi, Pierangelo; Biagioni, Alessio; Mazzanti, Benedetta; Menchi, Gloria; Calorini, Lido; Pupi, Alberto; Trabocchi, Andrea

    2017-01-01

    Fibrosis is the dramatic consequence of a dysregulated reparative process in which activated fibroblasts (myofibroblasts) and Transforming Growth Factor β1 (TGFβ1) play a central role. When exposed to TGFβ1, fibroblast and epithelial cells differentiate in myofibroblasts; in addition, endothelial cells may undergo endothelial-to-mesenchymal transition (EndoMT) and actively participate to the progression of fibrosis. Recently, the role of αv integrins, which recognize the Arg-Gly-Asp (RGD) tripeptide, in the release and signal transduction activation of TGFβ1 became evident. In this study, we present a class of triazole-derived RGD antagonists that interact with αvβ3 integrin. Above different compounds, the RGD-2 specifically interferes with integrin-dependent TGFβ1 EndoMT in Endothelial Colony-Forming Cells (ECPCs) derived from circulating Endothelial Precursor Cells (ECPCs). The RGD-2 decreases the amount of membrane-associated TGFβ1, and reduces both ALK5/TGFβ1 type I receptor expression and Smad2 phosphorylation in ECPCs. We found that RGD-2 antagonist reverts EndoMT, reducing α-smooth muscle actin (α-SMA) and vimentin expression in differentiated ECPCs. Our results outline the critical role of integrin in fibrosis progression and account for the opportunity of using integrins as target for anti-fibrotic therapeutic treatment.

  10. Quality of vision in patients with fuchs endothelial dystrophy and after descemet stripping endothelial keratoplasty

    NARCIS (Netherlands)

    van der Meulen, Ivanka J. E.; Patel, Sanjay V.; Lapid-Gortzak, Ruth; Nieuwendaal, Carla P.; McLaren, Jay W.; van den Berg, Thomas J. T. P.

    2011-01-01

    To evaluate the quality of vision (visual acuity and straylight) in patients with Fuchs dystrophy and the improvement in visual quality after Descemet stripping endothelial keratoplasty (DSEK). There was an observational case series (Amsterdam group) and a prospective interventional case series

  11. The effect of uric acid on homocysteine-induced endothelial dysfunction in bovine aortic endothelial cells

    Czech Academy of Sciences Publication Activity Database

    Papežíková, Ivana; Pekarová, Michaela; Lojek, Antonín; Kubala, Lukáš

    2009-01-01

    Roč. 30, č. 1 (2009), s. 112-115 ISSN 0172-780X R&D Projects: GA ČR(CZ) GP204/07/P539 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : uric acid * homocysteine * endothelial dysfunction Subject RIV: BO - Biophysics Impact factor: 1.047, year: 2009

  12. Nitro-oleic acid inhibits vascular endothelial inflammatory responses and the endothelial-mesenchymal transition

    Czech Academy of Sciences Publication Activity Database

    Ambrožová, Gabriela; Fidlerová, Táňa; Vereščáková, Hana; Koudelka, Adolf; Rudolph, T.K.; Woodcock, S.R.; Freeman, B.A.; Kubala, Lukáš; Pekarová, Michaela

    2016-01-01

    Roč. 1860, č. 11 (2016), s. 2428-2437 ISSN 0304-4165 R&D Projects: GA ČR(CZ) GP13-40824P Institutional support: RVO:68081707 Keywords : Nitro-oleic acid * Endothelial cells * Macrophages Subject RIV: BO - Biophysics Impact factor: 4.702, year: 2016

  13. Circulating endothelial cells as marker of endothelial damage in male hypogonadism.

    Science.gov (United States)

    Milardi, Domenico; Grande, Giuseppe; Giampietro, Antonella; Vendittelli, Francesca; Palumbo, Sara; Tartaglione, Linda; Marana, Riccardo; Pontecorvi, Alfredo; de Marinis, Laura; Zuppi, Cecilia; Capoluongo, Ettore

    2012-01-01

    Testosterone deficiency has become a frequently diagnosed condition in today's society affected by epidemic obesity, and is associated with cardiovascular risk. Recent studies have established the importance of altered vascular endothelium function in cardiovascular disease. The damage to the endothelium might also cause endothelial cell detachment, resulting in increased numbers of circulating endothelial cells (CEC) within the bloodstream. To evaluate whether hypogonadism could modify CEC count in peripheral bloodstream, we investigated peripheral blood CEC count using the CellSearch System, a semiautomatic method to accurately and reliably enumerate CECs, which are sorted based on a CD146(+), CD105(+), DAPI(+), CD45(-) phenotype, in a population of 20 patients with hypogonadism. The control group comprised 10 age- and sex-matched healthy participants. CEC count per milliliter was significantly increased in patients with hypogonadism vs the control group. In the group with hypogonadism, an inverse exponential correlation was present between testosterone levels and CEC count per milliliter. A direct linear correlation was present between waist circumference and CECs and between body mass index and CECs. The regression analysis showed that testosterone was the significant independent determinant of CECs. Our results underline that male hypogonadism is associated with endothelial dysfunction. The correlation between CEC and waist circumference underlines that visceral obesity may be synergically implicated in this regulation. Future studies are required to unveil the mechanisms involved in the pathogenesis of testosterone-induced endothelial disfunction, which may provide novel therapeutic targets to be incorporated in the management of hypogonadism.

  14. Enhancement of proinflammatory and procoagulant responses to silica particles by monocyte-endothelial cell interactions

    Directory of Open Access Journals (Sweden)

    Liu Xin

    2012-09-01

    Full Text Available Abstract Background Inorganic particles, such as drug carriers or contrast agents, are often introduced into the vascular system. Many key components of the in vivo vascular environment include monocyte-endothelial cell interactions, which are important in the initiation of cardiovascular disease. To better understand the effect of particles on vascular function, the present study explored the direct biological effects of particles on human umbilical vein endothelial cells (HUVECs and monocytes (THP-1 cells. In addition, the integrated effects and possible mechanism of particle-mediated monocyte-endothelial cell interactions were investigated using a coculture model of HUVECs and THP-1 cells. Fe3O4 and SiO2 particles were chosen as the test materials in the present study. Results The cell viability data from an MTS assay showed that exposure to Fe3O4 or SiO2 particles at concentrations of 200 μg/mL and above significantly decreased the cell viability of HUVECs, but no significant loss in viability was observed in the THP-1 cells. TEM images indicated that with the accumulation of SiO2 particles in the cells, the size, structure and morphology of the lysosomes significantly changed in HUVECs, whereas the lysosomes of THP-1 cells were not altered. Our results showed that reactive oxygen species (ROS generation; the production of interleukin (IL-6, IL-8, monocyte chemoattractant protein 1 (MCP-1, tumor necrosis factor (TNF-α and IL-1β; and the expression of CD106, CD62E and tissue factor in HUVECs and monocytes were significantly enhanced to a greater degree in the SiO2-particle-activated cocultures compared with the individual cell types alone. In contrast, exposure to Fe3O4 particles had no impact on the activation of monocytes or endothelial cells in monoculture or coculture. Moreover, using treatment with the supernatants of SiO2-particle-stimulated monocytes or HUVECs, we found that the enhancement of proinflammatory response by SiO2

  15. The endothelial surface layer: a new target of research in kidney failure and peritoneal dialysis

    NARCIS (Netherlands)

    Vlahu, C.A.

    2016-01-01

    The endothelial glycocalyx is an important regulator of vascular homeostasis, and damage to this complex structure results in increased vascular vulnerability. Together with associated plasma molecules it forms the endothelial surface layer. Because of its vasculoprotective effects, the endothelial

  16. Endothelial cell preservation at hypothermic to normothermic conditions using clinical and experimental organ preservation solutions

    NARCIS (Netherlands)

    Post, Ivo C. J. H.; de Boon, Wadim M. I.; Heger, Michal; van Wijk, Albert C. W. A.; Kroon, Jeffrey; van Buul, Jaap D.; van Gulik, Thomas M.

    2013-01-01

    Endothelial barrier function is pivotal for the outcome of organ transplantation. Since hypothermic preservation (gold standard) is associated with cold-induced endothelial damage, endothelial barrier function may benefit from organ preservation at warmer temperatures. We therefore assessed

  17. Production of soluble Neprilysin by endothelial cells

    International Nuclear Information System (INIS)

    Kuruppu, Sanjaya; Rajapakse, Niwanthi W.; Minond, Dmitriy; Smith, A. Ian

    2014-01-01

    Highlights: • A soluble full-length form of Neprilysin exists in media of endothelial cells. • Exosomal release is the key mechanism for the production of soluble Neprilysin. • Inhibition of ADAM-17 by specific inhibitors reduce Neprilysin release. • Exosome mediated release of Neprilysin is dependent on ADAM-17 activity. - Abstract: A non-membrane bound form of Neprilysin (NEP) with catalytic activity has the potential to cleave substrates throughout the circulation, thus leading to systemic effects of NEP. We used the endothelial cell line Ea.hy926 to identify the possible role of exosomes and A Disintegrin and Metalloprotease 17 (ADAM-17) in the production of non-membrane bound NEP. Using a bradykinin based quenched fluorescent substrate (40 μM) assay, we determined the activity of recombinant human NEP (rhNEP; 12 ng), and NEP in the media of endothelial cells (10% v/v; after 24 h incubation with cells) to be 9.35 ± 0.70 and 6.54 ± 0.41 μmols of substrate cleaved over 3 h, respectively. The presence of NEP in the media was also confirmed by Western blotting. At present there are no commercially available inhibitors specific for ADAM-17. We therefore synthesised two inhibitors TPI2155-14 and TPI2155-17, specific for ADAM-17 with IC 50 values of 5.36 and 4.32 μM, respectively. Treatment of cells with TPI2155-14 (15 μM) and TPI2155-17 (4.3 μM) resulted in a significant decrease in NEP activity in media (62.37 ± 1.43 and 38.30 ± 4.70, respectively as a % of control; P < 0.0001), implicating a possible role for ADAM-17 in NEP release. However, centrifuging media (100,000g for 1 h at 4 °C) removed all NEP activity from the supernatant indicating the likely role of exosomes in the release of NEP. Our data therefore indicated for the first time that NEP is released from endothelial cells via exosomes, and that this process is dependent on ADAM-17

  18. Do endothelial cells dream of eclectic shape?

    Science.gov (United States)

    Bentley, Katie; Philippides, Andrew; Ravasz Regan, Erzsébet

    2014-04-28

    Endothelial cells (ECs) exhibit dramatic plasticity of form at the single- and collective-cell level during new vessel growth, adult vascular homeostasis, and pathology. Understanding how, when, and why individual ECs coordinate decisions to change shape, in relation to the myriad of dynamic environmental signals, is key to understanding normal and pathological blood vessel behavior. However, this is a complex spatial and temporal problem. In this review we show that the multidisciplinary field of Adaptive Systems offers a refreshing perspective, common biological language, and straightforward toolkit that cell biologists can use to untangle the complexity of dynamic, morphogenetic systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Obstructive sleep apnea and endothelial progenitor cells

    Directory of Open Access Journals (Sweden)

    Wang Q

    2013-10-01

    Full Text Available Qing Wang,1,* Qi Wu,2,* Jing Feng,3,4 Xin Sun5 1The Second Respiratory Department of the First People's Hospital of Kunming, Yunnan, People's Republic of China; 2Tianjin Haihe Hospital, Tianjin, People's Republic of China; 3Respiratory Department of Tianjin Medical University General Hospital, Tianjin, People's Republic of China; 4Division of Pulmonary and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA; 5Respiratory Department of Tianjin Haihe Hospital, Tianjin, People's Republic of China *These authors contributed equally to this work Background: Obstructive sleep apnea (OSA occurs in 4% of middle-aged men and 2% of middle-aged women in the general population, and the prevalence is even higher in specific patient groups. OSA is an independent risk factor for a variety of cardiovascular diseases. Endothelial injury could be the pivotal determinant in the development of cardiovascular pathology in OSA. Endothelial damage ultimately represents a dynamic balance between the magnitude of injury and the capacity for repair. Bone marrow–derived endothelial progenitor cells (EPCs within adult peripheral blood present a possible means of vascular maintenance that could home to sites of injury and restore endothelial integrity and normal function. Methods: We summarized pathogenetic mechanisms of OSA and searched for available studies on numbers and functions of EPCs in patients with OSA to explore the potential links between the numbers and functions of EPCs and OSA. In particular, we tried to elucidate the molecular mechanisms of the effects of OSA on EPCs. Conclusion: Intermittent hypoxia cycles and sleep fragmentation are major pathophysiologic characters of OSA. Intermittent hypoxia acts as a trigger of oxidative stress, systemic inflammation, and sympathetic activation. Sleep fragmentation is associated with a burst of sympathetic activation and systemic inflammation. In most studies, a reduction in circulating EPCs has

  20. Thrombin has biphasic effects on the nitric oxide-cGMP pathway in endothelial cells and contributes to experimental pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Katrin F Nickel

    Full Text Available BACKGROUND: A potential role for coagulation factors in pulmonary arterial hypertension has been recently described, but the mechanism of action is currently not known. Here, we investigated the interactions between thrombin and the nitric oxide-cGMP pathway in pulmonary endothelial cells and experimental pulmonary hypertension. PRINCIPAL FINDINGS: Chronic treatment with the selective thrombin inhibitor melagatran (0.9 mg/kg daily via implanted minipumps reduced right ventricular hypertrophy in the rat monocrotaline model of experimental pulmonary hypertension. In vitro, thrombin was found to have biphasic effects on key regulators of the nitric oxide-cGMP pathway in endothelial cells (HUVECs. Acute thrombin stimulation led to increased expression of the cGMP-elevating factors endothelial nitric oxide synthase (eNOS and soluble guanylate cyclase (sGC subunits, leading to increased cGMP levels. By contrast, prolonged exposition of pulmonary endothelial cells to thrombin revealed a characteristic pattern of differential expression of the key regulators of the nitric oxide-cGMP pathway, in which specifically the factors contributing to cGMP elevation (eNOS and sGC were reduced and the cGMP-hydrolyzing PDE5 was elevated (qPCR and Western blot. In line with the differential expression of key regulators of the nitric oxide-cGMP pathway, a reduction of cGMP by prolonged thrombin stimulation was found. The effects of prolonged thrombin exposure were confirmed in endothelial cells of pulmonary origin (HPAECs and HPMECs. Similar effects could be induced by activation of protease-activated receptor-1 (PAR-1. CONCLUSION: These findings suggest a link between thrombin generation and cGMP depletion in lung endothelial cells through negative regulation of the nitric oxide-cGMP pathway, possibly mediated via PAR-1, which could be of relevance in pulmonary arterial hypertension.

  1. Radioprotection of mouse CNS endothelial cells in vivo

    International Nuclear Information System (INIS)

    Lyubimova, N.; Coultas, P.; Martin, R.

    1996-01-01

    Full text: Radioprotection using the minor groove binding DNA ligand Hoechst 33342 has been demonstrated in vitro, and more recently in vivo, in mouse lung. Intravenous administration was used for the lung studies, and both endothelial and alveolar epithelial cells-showed good up-take. Radiation damage to the endothelial cell population has also been postulated as important in late developing radionecrosis of spinal cord and brain. Endothelial cell density in brain can be readily determined by a fluorescent-histochemical technique. Treatment with a monoamine oxidase inhibitor and subsequent injection with L-DOPA results in an accumulation of dopamine (DA) in CNS endothelial cells. DA is converted to a fluorophore by exposure to paraformaldehyde, and cell numbers assayed by fluorescence microscopy. Earlier studies used this technique to monitor post-irradiation changes in endothelial cell density in rodent brain and showed the loss, within 24 hours, of a sensitive subpopulation comprising about 15% of the endothelial cells. Ten minutes after intravenous injection of Hoechst 33342 (80mg/kg) the ligand is confined by its limited penetration to the endothelial cells in mouse brain. When we irradiated at this time, there was protection against early endothelial cell loss. Ablation of the sensitive subpopulation in unprotected mice takes place over a dose range of 1 to 3 Gy γ-rays, but doses between 12 to 20 Gy are required in the presence of ligand. This protection equates to a very high dose modification factor of about 7 and possibly reflects a suppression of apoptosis in the sensitive endothelial subpopulation. The extent to which there is enhanced survival in the endothelial population as a whole and how the observed protection affects late CNS necrosis development has yet to be determined. However present results clearly show potential for the use of DNA-binding radioprotectors with limited penetration for investigations into the relative significance of

  2. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability.

    Science.gov (United States)

    Salmon, Andrew H J; Satchell, Simon C

    2012-03-01

    Appreciation of the glomerular microcirculation as a specialized microcirculatory bed, rather than as an entirely separate entity, affords important insights into both glomerular and systemic microvascular pathophysiology. In this review we compare regulation of permeability in systemic and glomerular microcirculations, focusing particularly on the role of the endothelial glycocalyx, and consider the implications for disease processes. The luminal surface of vascular endothelium throughout the body is covered with endothelial glycocalyx, comprising surface-anchored proteoglycans, supplemented with adsorbed soluble proteoglycans, glycosaminoglycans and plasma constituents. In both continuous and fenestrated microvessels, this endothelial glycocalyx provides resistance to the transcapillary escape of water and macromolecules, acting as an integral component of the multilayered barrier provided by the walls of these microvessels (ie acting in concert with clefts or fenestrae across endothelial cell layers, basement membranes and pericytes). Dysfunction of any of these capillary wall components, including the endothelial glycocalyx, can disrupt normal microvascular permeability. Because of its ubiquitous nature, damage to the endothelial glycocalyx alters the permeability of multiple capillary beds: in the glomerulus this is clinically apparent as albuminuria. Generalized damage to the endothelial glycocalyx can therefore manifest as both albuminuria and increased systemic microvascular permeability. This triad of altered endothelial glycocalyx, albuminuria and increased systemic microvascular permeability occurs in a number of important diseases, such as diabetes, with accumulating evidence for a similar phenomenon in ischaemia-reperfusion injury and infectious disease. The detection of albuminuria therefore has implications for the function of the microcirculation as a whole. The importance of the endothelial glycocalyx for other aspects of vascular function

  3. Endothelial juxtaposition of distinct adult stem cells activates angiogenesis signaling molecules in endothelial cells.

    Science.gov (United States)

    Mohammadi, Elham; Nassiri, Seyed Mahdi; Rahbarghazi, Reza; Siavashi, Vahid; Araghi, Atefeh

    2015-12-01

    Efficacy of therapeutic angiogenesis needs a comprehensive understanding of endothelial cell (EC) function and biological factors and cells that interplay with ECs. Stem cells are considered the key components of pro- and anti-angiogenic milieu in a wide variety of physiopathological states, and interactions of EC-stem cells have been the subject of controversy in recent years. In this study, the potential effects of three tissue-specific adult stem cells, namely rat marrow-derived mesenchymal stem cells (rBMSCs), rat adipose-derived stem cells (rADSCs) and rat muscle-derived satellite cells (rSCs), on the endothelial activation of key angiogenic signaling molecules, including VEGF, Ang-2, VEGFR-2, Tie-2, and Tie2-pho, were investigated. Human umbilical vein endothelial cells (HUVECs) and rat lung microvascular endothelial cells (RLMECs) were cocultured with the stem cells or incubated with the stem cell-derived conditioned media on Matrigel. Following HUVEC-stem cell coculture, CD31-positive ECs were flow sorted and subjected to western blotting to analyze potential changes in the expression of the pro-angiogenic signaling molecules. Elongation and co-alignment of the stem cells were seen along the EC tubes in the EC-stem cell cocultures on Matrigel, with cell-to-cell dye communication in the EC-rBMSC cocultures. Moreover, rBMSCs and rADSCs significantly improved endothelial tubulogenesis in both juxtacrine and paracrine manners. These two latter stem cells dynamically up-regulated VEGF, Ang-2, VREGR-2, and Tie-2 but down-regulated Tie2-pho and the Tie2-pho/Tie-2 ratio in HUVECs. Induction of pro-angiogenic signaling in ECs by marrow- and adipose-derived MSCs further indicates the significance of stem cell milieu in angiogenesis dynamics.

  4. The Probiotic Mixture VSL#3 Accelerates Gastric Ulcer Healing by Stimulating Vascular Endothelial Growth Factor

    Science.gov (United States)

    Dharmani, Poonam; De Simone, Claudio; Chadee, Kris

    2013-01-01

    Studies assessing the effect and mechanism of probiotics on diseases of the upper gastrointestinal tract (GI) including gastric ulcers are limited despite extensive work and promising results of this therapeutic option for other GI diseases. In this study, we investigated the mechanisms by which the probiotic mixture VSL#3 (a mixture of eight probiotic bacteria including Lactobacilli, Bifidobacteria and Streptococcus species) heals acetic acid induced gastric ulcer in rats. VSL#3 was administered orally at low (6×109 bacteria) or high (1.2×1010 bacteria) dosages from day 3 after ulcer induction for 14 consecutive days. VSL#3 treatments significantly enhanced gastric ulcer healing in a dose-dependent manner. To assess the mechanism(s) whereby VSL#3 exerted its protective effects, we quantified the gene expression of several pro-inflammatory cytokines, protein and expression of stomach mucin-Muc5ac, regulatory cytokine-IL-10, COX-2 and various growth factors. Of all the components examined, only expression and protein production of VEGF was increased 332-fold on day 7 in the ulcerated tissues of animals treated with VSL#3. Predictably, animals treated with VEGF neutralizing antibody significantly delayed gastric ulcer healing in VSL#3 treated animals. This is the first report to demonstrate high efficacy of the probiotic mixture VSL#3 in enhancing gastric ulcer healing. Probiotic efficacy was effective at higher concentrations of VSL#3 by specifically increasing the expression and production of angiogenesis promoting growth factors, primarily VEGF. PMID:23484048

  5. Increased endothelial cell-leukocyte interaction in murine schistosomiasis: possible priming of endothelial cells by the disease.

    Directory of Open Access Journals (Sweden)

    Suellen D S Oliveira

    Full Text Available BACKGROUND AND AIMS: Schistosomiasis is an intravascular parasitic disease associated with inflammation. Endothelial cells control leukocyte transmigration and vascular permeability being modulated by pro-inflammatory mediators. Recent data have shown that endothelial cells primed in vivo in the course of a disease keep the information in culture. Herein, we evaluated the impact of schistosomiasis on endothelial cell-regulated events in vivo and in vitro. METHODOLOGY AND PRINCIPAL FINDINGS: The experimental groups consisted of Schistosoma mansoni-infected and age-matched control mice. In vivo infection caused a marked influx of leukocytes and an increased protein leakage in the peritoneal cavity, characterizing an inflamed vascular and cellular profile. In vitro leukocyte-mesenteric endothelial cell adhesion was higher in cultured cells from infected mice as compared to controls, either in the basal condition or after treatment with the pro-inflammatory cytokine tumor necrosis factor (TNF. Nitric oxide (NO donation reduced leukocyte adhesion to endothelial cells from control and infected groups; however, in the later group the effect was more pronounced, probably due to a reduced NO production. Inhibition of control endothelial NO synthase (eNOS increased leukocyte adhesion to a level similar to the one observed in the infected group. Besides, the adhesion of control leukocytes to endothelial cells from infected animals is similar to the result of infected animals, confirming that schistosomiasis alters endothelial cells function. Furthermore, NO production as well as the expression of eNOS were reduced in cultured endothelial cells from infected animals. On the other hand, the expression of its repressor protein, namely caveolin-1, was similar in both control and infected groups. CONCLUSION/SIGNIFICANCE: Schistosomiasis increases vascular permeability and endothelial cell-leukocyte interaction in vivo and in vitro. These effects are partially

  6. Complement activation, endothelial dysfunction, insulin resistance and chronic heart failure

    DEFF Research Database (Denmark)

    Bjerre, M.; Kistorp, C.; Hansen, T.K.

    2010-01-01

    CRP), endothelial activation (soluble E-selectin, sEsel)), endothelial damage/dysfunction (von Willebrand factor, vWf) and insulin resistance (IR) and prognosis in CHF remains unknown. Design. We investigated the association(s) between plasma sMAC, hsCRP, sEsel, vWf and IR (assessed by homeostatic model assessment...

  7. Injuries to the vascular endothelium: vascular wall and endothelial dysfunction.

    Science.gov (United States)

    Fisher, Mark

    2008-01-01

    Vascular endothelial injury has multiple elements, and this article focuses on ischemia-related processes that have particular relevance to ischemic stroke. Distinctions between necrotic and apoptotic cell death provide a basic science context in which to better understand the significance of classical core and penumbra concepts of acute stroke, with apoptotic processes particularly prominent in the penumbra. The mitochondria are understood to serve as a reservoir of proteins that mediate apoptosis. Oxidative stress pathways generating reactive oxygen species (ROS) are prominent in endothelial injury, both ischemic and nonischemic, with prominent roles of enzyme- and nonenzymemediated pathways; mitochondria once again have a critical role, particularly in the nonenzymatic pathways generating ROS. Inflammation also contributes to vascular endothelial injury, and endothelial cells have the capacity to rapidly increase expression of inflammatory mediators following ischemic challenge; this leads to enhanced leukocyte-endothelial interactions mediated by selectins and adhesion molecules. Preconditioning consists of a minor version of an injurious event, which in turn may protect vascular endothelium from injury following a more substantial event. Presence of the blood-brain barrier creates unique responses to endothelial injury, with permeability changes due to impairment of endothelial-matrix interactions compounding altered vasomotor tone and tissue perfusion mediated by nitric oxide. Pharmacological protection against vascular endothelial injury can be provided by several of the phosphodiesterases (cilostazol and dipyridamole), along with statins. Optimal clinical responses for protection of brain vascular endothelium may use preconditioning as a model, and will likely require combined protection against apoptosis, ROS, and inflammation.

  8. Weight loss improves biomarkers endothelial function and systemic ...

    African Journals Online (AJOL)

    Background: Although postmenopausal associated disorders are important public health problems worldwide, to date limited studies evaluated the endothelial function and systemic inflammation response to weight loss in obese postmenopausal women. Objective: This study was done to evaluate the endothelial function ...

  9. Strategies to reverse endothelial progenitor cell dysfunction in diabetes.

    Science.gov (United States)

    Petrelli, Alessandra; Di Fenza, Raffaele; Carvello, Michele; Gatti, Francesca; Secchi, Antonio; Fiorina, Paolo

    2012-01-01

    Bone-marrow-derived cells-mediated postnatal vasculogenesis has been reported as the main responsible for the regulation of vascular homeostasis in adults. Since their discovery, endothelial progenitor cells have been depicted as mediators of postnatal vasculogenesis for their peculiar phenotype (partially staminal and partially endothelial), their ability to differentiate in endothelial cell line and to be incorporated into the vessels wall during ischemia/damage. Diabetes mellitus, a condition characterized by cardiovascular disease, nephropathy, and micro- and macroangiopathy, showed a dysfunction of endothelial progenitor cells. Herein, we review the mechanisms involved in diabetes-related dysfunction of endothelial progenitor cells, highlighting how hyperglycemia affects the different steps of endothelial progenitor cells lifetime (i.e., bone marrow mobilization, trafficking into the bloodstream, differentiation in endothelial cells, and homing in damaged tissues/organs). Finally, we review preclinical and clinical strategies that aim to revert diabetes-induced dysfunction of endothelial progenitor cells as a means of finding new strategies to prevent diabetic complications.

  10. Strategies to Reverse Endothelial Progenitor Cell Dysfunction in Diabetes

    Directory of Open Access Journals (Sweden)

    Alessandra Petrelli

    2012-01-01

    Full Text Available Bone-marrow-derived cells-mediated postnatal vasculogenesis has been reported as the main responsible for the regulation of vascular homeostasis in adults. Since their discovery, endothelial progenitor cells have been depicted as mediators of postnatal vasculogenesis for their peculiar phenotype (partially staminal and partially endothelial, their ability to differentiate in endothelial cell line and to be incorporated into the vessels wall during ischemia/damage. Diabetes mellitus, a condition characterized by cardiovascular disease, nephropathy, and micro- and macroangiopathy, showed a dysfunction of endothelial progenitor cells. Herein, we review the mechanisms involved in diabetes-related dysfunction of endothelial progenitor cells, highlighting how hyperglycemia affects the different steps of endothelial progenitor cells lifetime (i.e., bone marrow mobilization, trafficking into the bloodstream, differentiation in endothelial cells, and homing in damaged tissues/organs. Finally, we review preclinical and clinical strategies that aim to revert diabetes-induced dysfunction of endothelial progenitor cells as a means of finding new strategies to prevent diabetic complications.

  11. Emerging Role of Endothelial and Inflammatory Markers in Preeclampsia

    Directory of Open Access Journals (Sweden)

    Menha Swellam

    2009-01-01

    Full Text Available Objectives: Endothelial disturbance and excess inflammatory response are pathogenic mechanisms in pre-eclampsia (PE. Authors determine the clinical diagnostic role for thrombomodulin (TM, plasminogen activator inhibitor-1 (PAI-1 as endothelial markers and C-reactive protein (CRP, and interlukin-6 (IL-6 as inflammatory markers when tested independently or in combinations.

  12. Endothelial cell cultures as a tool in biomaterial research

    NARCIS (Netherlands)

    Kirkpatrick, CJ; Otto, M; van Kooten, T; Krump, [No Value; Kriegsmann, J; Bittinger, F

    1999-01-01

    Progress in biocompatibility and tissue engineering would today be inconceivable without the aid of in vitro techniques. Endothelial cell cultures represent a valuable tool not just in haemocompatibility testing, but also in the concept of designing hybrid organs. In the past endothelial cells (EC)

  13. Tumor and Endothelial Cell Hybrids Participate in Glioblastoma Vasculature

    Directory of Open Access Journals (Sweden)

    Soufiane El Hallani

    2014-01-01

    Full Text Available Background. Recently antiangiogenic therapy with bevacizumab has shown a high but transient efficacy in glioblastoma (GBM. Indeed, GBM is one of the most angiogenic human tumors and endothelial proliferation is a hallmark of the disease. We therefore hypothesized that tumor cells may participate in endothelial proliferation of GBM. Materials and Methods. We used EGFR FISH Probe to detect EGFR amplification and anti-CD31, CD105, VE-cadherin, and vWF to identify endothelial cells. Endothelial and GBM cells were grown separately, labeled with GFP and DsRed lentiviruses, and then cocultured with or without contact. Results. In a subset of GBM tissues, we found that several tumor endothelial cells carry EGFR amplification, characteristic of GBM tumor cells. This observation was reproduced in vitro: when tumor stem cells derived from GBM were grown in the presence of human endothelial cells, a fraction of them acquired endothelial markers (CD31, CD105, VE-cadherin, and vWF. By transduction with GFP and DsRed expressing lentiviral vectors, we demonstrate that this phenomenon is due to cell fusion and not transdifferentiation. Conclusion. A fraction of GBM stem cells thus has the capacity to fuse with endothelial cells and the resulting hybrids may participate in tumor microvascular proliferation and in treatment resistance.

  14. Inhibition of microparticle release triggers endothelial cell apoptosis and detachment

    NARCIS (Netherlands)

    Abid Hussein, Mohammed N.; Böing, Anita N.; Sturk, Augueste; Hau, Chi M.; Nieuwland, Rienk

    2007-01-01

    Endothelial cell cultures contain caspase 3-containing microparticles (EMP), which are reported to form during or after cell detachment. We hypothesize that also adherent endothelial cells release EMP, thus protecting these cells from caspase 3 accumulation, detachment and apoptosis. Human umbilical

  15. Activation of RhoA, but Not Rac1, Mediates Early Stages of S1P-Induced Endothelial Barrier Enhancement.

    Science.gov (United States)

    Zhang, Xun E; Adderley, Shaquria P; Breslin, Jerome W

    2016-01-01

    Compromised endothelial barrier function is a hallmark of inflammation. Rho family GTPases are critical in regulating endothelial barrier function, yet their precise roles, particularly in sphingosine-1-phosphate (S1P)-induced endothelial barrier enhancement, remain elusive. Confluent cultures of human umbilical vein endothelial cells (HUVEC) or human dermal microvascular endothelial cells (HDMEC) were used to model the endothelial barrier. Barrier function was assessed by determining the transendothelial electrical resistance (TER) using an electrical cell-substrate impedance sensor (ECIS). The roles of Rac1 and RhoA were tested in S1P-induced barrier enhancement. The results show that pharmacologic inhibition of Rac1 with Z62954982 failed to block S1P-induced barrier enhancement. Likewise, expression of a dominant negative form of Rac1, or knockdown of native Rac1 with siRNA, failed to block S1P-induced elevations in TER. In contrast, blockade of RhoA with the combination of the inhibitors Rhosin and Y16 significantly reduced S1P-induced increases in TER. Assessment of RhoA activation in real time using a fluorescence resonance energy transfer (FRET) biosensor showed that S1P increased RhoA activation primarily at the edges of cells, near junctions. This was complemented by myosin light chain-2 phosphorylation at cell edges, and increased F-actin and vinculin near intercellular junctions, which could all be blocked with pharmacologic inhibition of RhoA. The results suggest that S1P causes activation of RhoA at the cell periphery, stimulating local activation of the actin cytoskeleton and focal adhesions, and resulting in endothelial barrier enhancement. S1P-induced Rac1 activation, however, does not appear to have a significant role in this process.

  16. Activation of RhoA, but Not Rac1, Mediates Early Stages of S1P-Induced Endothelial Barrier Enhancement.

    Directory of Open Access Journals (Sweden)

    Xun E Zhang

    Full Text Available Compromised endothelial barrier function is a hallmark of inflammation. Rho family GTPases are critical in regulating endothelial barrier function, yet their precise roles, particularly in sphingosine-1-phosphate (S1P-induced endothelial barrier enhancement, remain elusive. Confluent cultures of human umbilical vein endothelial cells (HUVEC or human dermal microvascular endothelial cells (HDMEC were used to model the endothelial barrier. Barrier function was assessed by determining the transendothelial electrical resistance (TER using an electrical cell-substrate impedance sensor (ECIS. The roles of Rac1 and RhoA were tested in S1P-induced barrier enhancement. The results show that pharmacologic inhibition of Rac1 with Z62954982 failed to block S1P-induced barrier enhancement. Likewise, expression of a dominant negative form of Rac1, or knockdown of native Rac1 with siRNA, failed to block S1P-induced elevations in TER. In contrast, blockade of RhoA with the combination of the inhibitors Rhosin and Y16 significantly reduced S1P-induced increases in TER. Assessment of RhoA activation in real time using a fluorescence resonance energy transfer (FRET biosensor showed that S1P increased RhoA activation primarily at the edges of cells, near junctions. This was complemented by myosin light chain-2 phosphorylation at cell edges, and increased F-actin and vinculin near intercellular junctions, which could all be blocked with pharmacologic inhibition of RhoA. The results suggest that S1P causes activation of RhoA at the cell periphery, stimulating local activation of the actin cytoskeleton and focal adhesions, and resulting in endothelial barrier enhancement. S1P-induced Rac1 activation, however, does not appear to have a significant role in this process.

  17. An “All-laser” Endothelial Transplant

    Science.gov (United States)

    Rossi, Francesca; Canovetti, Annalisa; Malandrini, Alex; Lenzetti, Ivo; Pini, Roberto; Menabuoni, Luca

    2015-01-01

    The “all laser” assisted endothelial keratoplasty is a procedure that is performed with a femtosecond laser used to cut the donor tissue at an intended depth, and a near infrared diode laser to weld the corneal tissue. The proposed technique enables to reach the three main goals in endothelial keratoplasty: a precise control in the thickness of the donor tissue; its easy insertion in the recipient bed and a reduced risk of donor lenticule dislocation. The donor cornea thickness is measured in the surgery room with optical coherence tomography (OCT), in order to correctly design the donor tissue dimensions. A femtosecond laser is used to cut the donor cornea. The recipient eye is prepared by manual stripping of the descemetic membrane. The donor endothelium is inserted into a Busin-injector, the peripheral inner side is stained with a proper chromophore (a water solution of Indocyanine Green) and then it is pulled in the anterior chamber. The transplanted tissue is placed in the final and correct location and then diode laser welding is induced from outside the eyeball. The procedure has been performed on more than 15 patients evidencing an improvement in surgery performances, with a good recovery of visual acuity and a reduced donor lenticule dislocation event. PMID:26167711

  18. An "All-laser" Endothelial Transplant.

    Science.gov (United States)

    Rossi, Francesca; Canovetti, Annalisa; Malandrini, Alex; Lenzetti, Ivo; Pini, Roberto; Menabuoni, Luca

    2015-07-06

    The "all laser" assisted endothelial keratoplasty is a procedure that is performed with a femtosecond laser used to cut the donor tissue at an intended depth, and a near infrared diode laser to weld the corneal tissue. The proposed technique enables to reach the three main goals in endothelial keratoplasty: a precise control in the thickness of the donor tissue; its easy insertion in the recipient bed and a reduced risk of donor lenticule dislocation. The donor cornea thickness is measured in the surgery room with optical coherence tomography (OCT), in order to correctly design the donor tissue dimensions. A femtosecond laser is used to cut the donor cornea. The recipient eye is prepared by manual stripping of the descemetic membrane. The donor endothelium is inserted into a Busin-injector, the peripheral inner side is stained with a proper chromophore (a water solution of Indocyanine Green) and then it is pulled in the anterior chamber. The transplanted tissue is placed in the final and correct location and then diode laser welding is induced from outside the eyeball. The procedure has been performed on more than 15 patients evidencing an improvement in surgery performances, with a good recovery of visual acuity and a reduced donor lenticule dislocation event.

  19. Diagnosis and Management of Iridocorneal Endothelial Syndrome

    Science.gov (United States)

    Sacchetti, Marta; Mantelli, Flavio; Macchi, Ilaria; Ambrosio, Oriella; Rama, Paolo

    2015-01-01

    The iridocorneal endothelial (ICE) syndrome is a rare ocular disorder that includes a group of conditions characterized by structural and proliferative abnormalities of the corneal endothelium, the anterior chamber angle, and the iris. Common clinical features include corneal edema, secondary glaucoma, iris atrophy, and pupillary anomalies, ranging from distortion to polycoria. The main subtypes of this syndrome are the progressive iris atrophy, the Cogan-Reese syndrome, and the Chandler syndrome. ICE syndrome is usually diagnosed in women in the adult age. Clinical history and complete eye examination including tonometry and gonioscopy are necessary to reach a diagnosis. Imaging techniques, such as in vivo confocal microscopy and ultrasound biomicroscopy, are used to confirm the diagnosis by revealing the presence of “ICE-cells” on the corneal endothelium and the structural changes of the anterior chamber angle. An early diagnosis is helpful to better manage the most challenging complications such as secondary glaucoma and corneal edema. Treatment of ICE-related glaucoma often requires glaucoma filtering surgery with antifibrotic agents and the use of glaucoma drainage implants should be considered early in the management of these patients. Visual impairment and pain associated with corneal edema can be successfully managed with endothelial keratoplasty. PMID:26451377

  20. The barrier within: endothelial transport of hormones.

    Science.gov (United States)

    Kolka, Cathryn M; Bergman, Richard N

    2012-08-01

    Hormones are involved in a plethora of processes including development and growth, metabolism, mood, and immune responses. These essential functions are dependent on the ability of the hormone to access its target tissue. In the case of endocrine hormones that are transported through the blood, this often means that the endothelium must be crossed. Many studies have shown that the concentrations of hormones and nutrients in blood can be very different from those surrounding the cells on the tissue side of the blood vessel endothelium, suggesting that transport across this barrier can be rate limiting for hormone action. This transport can be regulated by altering the surface area of the blood vessel available for diffusion through to the underlying tissue or by the permeability of the endothelium. Many hormones are known to directly or indirectly affect the endothelial barrier, thus affecting their own distribution to their target tissues. Dysfunction of the endothelial barrier is found in many diseases, particularly those associated with the metabolic syndrome. The interrelatedness of hormones may help to explain why the cluster of diseases in the metabolic syndrome occur together so frequently and suggests that treating the endothelium may ameliorate defects in more than one disease. Here, we review the structure and function of the endothelium, its contribution to the function of hormones, and its involvement in disease.

  1. Endothelial cell permeability to water and antipyrine

    International Nuclear Information System (INIS)

    Garrick, R.A.

    1986-01-01

    The endothelium provides a structural barrier between plasma constituents and the tissues. The permeability characteristics of the the endothelial cells regulate the transcellular movement of materials across this barrier while other movement is paracellular. In this study the permeability of the endothelial cells to tritiated water ( 3 HHO) and 14 C-labeled antipyrine (AP) was investigated. The cells were isolated non-enzymatically from calf pulmonary artery and were maintained in culture and used between the seventh and fifteenth passage. The cells were removed from the T-flasks with a rubber policeman, titurated with a 22g needle and centrifuged. The cells were mixed with an extracellular marker, drawn into polyethylene tubing and packed by centrifugation for use in the linear diffusion technique. All measurements were made at 37 C. The diffusion coefficients for 3 HHO through the packed cells (D), the intracellular material (D 2 ), and the extracellular material (D 1 ) were 0.682, 0.932 and 2.45 x 10 -5 cm 2 s -1 and for AP were 0.273, 0.355 and 1.13 x 10 -5 cm 2 s -1 respectively. The permeability coefficient calculated by the series-parallel pathway model for 3 HHO was higher than that for AP and for both 3 HHO and AP were lower than those calculated for isolated lung cells and erythrocytes

  2. Endothelial ERK signaling controls lymphatic fate specification

    Science.gov (United States)

    Deng, Yong; Atri, Deepak; Eichmann, Anne; Simons, Michael

    2013-01-01

    Lymphatic vessels are thought to arise from PROX1-positive endothelial cells (ECs) in the cardinal vein in response to induction of SOX18 expression; however, the molecular event responsible for increased SOX18 expression has not been established. We generated mice with endothelial-specific, inducible expression of an RAF1 gene with a gain-of-function mutation (RAF1S259A) that is associated with Noonan syndrome. Expression of mutant RAF1S259A in ECs activated ERK and induced SOX18 and PROX1 expression, leading to increased commitment of venous ECs to the lymphatic fate. Excessive production of lymphatic ECs resulted in lymphangiectasia that was highly reminiscent of abnormal lymphatics seen in Noonan syndrome and similar “RASopathies.” Inhibition of ERK signaling during development abrogated the lymphatic differentiation program and rescued the lymphatic phenotypes induced by expression of RAF1S259A. These data suggest that ERK activation plays a key role in lymphatic EC fate specification and that excessive ERK activation is the basis of lymphatic abnormalities seen in Noonan syndrome and related diseases. PMID:23391722

  3. Papillary endothelial hyperplasia (Masson's tumor) in children.

    Science.gov (United States)

    Liné, A; Sanchez, J; Jayyosi, L; Birembaut, P; Ohl, X; Poli-Mérol, M-L; François, C

    2017-06-01

    The intravascular papillary endothelial hyperplasia (IPEH/Masson's tumor) is a rare benign tumor of the skin and subcutaneous vessels. We report, in four pediatric cases, clinical presentation, care (diagnostic and surgical) of Masson's tumor in children. Two boys (two years) and two girls (four and six years) showed a pain subcutaneous tumor (one to five centimeters). They were in the transverse abdominal muscle, between two metatarsals, at the front of thigh and in the axilla. Imaging performed (MRI, Doppler ultrasound) evoked either a hematoma, a lymphangioma or hemangioma. The indication for removal was selected from pain and/or parental concern. The diagnosis was histologically. A lesion persisted in residual form (incomplete initial resection), and is currently not scalable for eleven years. This tumor is characterized by excessive proliferation and papillary endothelial cells in the vessels, following a thrombotic event. It is found mainly in adults (no specific age), and preferentially localizes in the face and limbs. The clinical differential diagnosis of this tumor is angiosarcoma. The imagery has not allowed in our series to diagnose but still essential to eliminate differential diagnoses. Only surgical excision with histological examination can differentiate. Our study emphasizes the possibility of pediatric cases with two cases of unusual locations (abdominal and axilla). Clinical presentations we met, now lead us to direct our histologist looking for a Masson tumor in any child with a subcutaneous tumor and/or intramuscular pain, sudden onset, and vascular appearance (after excluding an arteriovenous malformation). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. The involvement of endothelial mediators in leprosy.

    Science.gov (United States)

    Nogueira, Maria Renata Sales; Latini, Ana Carla Pereira; Nogueira, Maria Esther Salles

    2016-10-01

    Leprosy is a chronic infectious disease that requires better understanding since it continues to be a significant health problem in many parts of the world. Leprosy reactions are acute inflammatory episodes regarded as the central etiology of nerve damage in the disease. The activation of endothelium is a relevant phenomenon to be investigated in leprosy reactions. The present study evaluated the expression of endothelial factors in skin lesions and serum samples of leprosy patients. Immunohistochemical analysis of skin samples and serum measurements of VCAM-1, VEGF, tissue factor and thrombomodulin were performed in 77 leprosy patients and 12 controls. We observed significant increase of VCAM-1 circulating levels in non-reactional leprosy (p = 0.0009). The immunostaining of VEGF and tissue factor was higher in endothelium of non-reactional leprosy (p = 0.02 for both) than healthy controls. Patients with type 1 reaction presented increased thrombomodulin serum levels, compared with non-reactional leprosy (p = 0.02). In type 2 reaction, no significant modifications were observed for the endothelial factors investigated. The anti-inflammatory and antimicrobial activities of the endotfhelial factors may play key-roles in the pathogenesis of leprosy and should be enrolled in studies focusing on alternative targets to improve the management of leprosy and its reactions.

  5. Whey protein hydrolysate and branched-chain amino acids downregulate inflammation-related genes in vascular endothelial cells.

    Science.gov (United States)

    Da Silva, Marine S; Bigo, Cyril; Barbier, Olivier; Rudkowska, Iwona

    2017-02-01

    A recent review of clinical studies reports that dairy products may improve inflammation, a key etiologic cardiovascular disease risk factor. Yet the impact of dairy proteins on inflammatory markers is controversial and could be mediated by a differential impact of whey proteins and caseins. In this study, we hypothesized that whey proteins may have a greater anti-inflammatory effect than caseins. A model of human umbilical vein endothelial cells, with or without TNF-α stimulation, was used to investigate the effect of several dairy protein compounds on inflammation. Specifically, the impact of whey proteins either isolate or hydrolysate, caseins, and their amino acids on expression of TNF, VCAM-1, SOD2, and eNOS was examined. After a 24-hour incubation period, whey protein hydrolysate, leucine, isoleucine, and valine attenuated the TNF-α-induced endothelial inflammation by normalizing TNF and eNOS gene expression. This effect was not observed in unstimulated cells. Oppositely, caseins, a whey protein/casein mixture (1:4 w/w), and glutamine aggravated the TNF-α-induced TNF and SOD2 gene expression. Yet caseins and whey protein/casein mixture decreased VCAM-1 expression in both unstimulated and stimulated human umbilical vein endothelial cells. Measurement of TNF-α in cell supernatants by immunoassay substantiates gene expression data without reaching statistical significance. Taken together, this study showed that whey proteins and their major amino acids normalize TNF-α-induced proinflammatory gene expression in endothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The proangiogenic phenotype of tumor-derived endothelial cells is reverted by the overexpression of platelet-activating factor acetylhydrolase.

    Science.gov (United States)

    Doublier, Sophie; Ceretto, Monica; Lupia, Enrico; Bravo, Stefania; Bussolati, Benedetta; Camussi, Giovanni

    2007-10-01

    We previously reported that human tumor-derived endothelial cells (TEC) have an angiogenic phenotype related to the autocrine production of several angiogenic factors. The purpose of the present study was to evaluate whether an enhanced synthesis of platelet-activating factor (PAF) might contribute to the proangiogenic characteristics of TEC and whether its inactivation might inhibit angiogenesis. To address the potential role of PAF in the proangiogenic characteristics of TEC, we engineered TEC to stably overexpress human plasma PAF-acetylhydrolase (PAF-AH), the major PAF-inactivating enzyme, and we evaluated in vitro and in vivo angiogenesis. TECs were able to synthesize a significantly enhanced amount of PAF compared with normal human microvascular endothelial cells when stimulated with thrombin, vascular endothelial growth factor, or soluble CD154. Transfection of TEC with PAF-AH (TEC-PAF-AH) significantly inhibited apoptosis resistance and spontaneous motility of TEC. In addition, PAF and vascular endothelial growth factor stimulation enhanced the motility and adhesion of TEC but not of TEC-PAF-AH. In vitro, TEC-PAF-AH lost the characteristic ability of TEC to form vessel-like structures when plated on Matrigel. Finally, when cells were injected s.c. within Matrigel in severe combined immunodeficiency mice or coimplanted with a renal carcinoma cell line, the overexpression of PAF-AH induced a significant reduction of functional vessel formation. These results suggest that inactivation of PAF, produced by TEC, by the overexpression of plasma PAF-AH affects survival, migration, and the angiogenic response of TEC both in vitro and in vivo.

  7. Mature and progenitor endothelial cells perform angiogenesis also under protease inhibition: the amoeboid angiogenesis.

    Science.gov (United States)

    Chillà, Anastasia; Margheri, Francesca; Biagioni, Alessio; Del Rosso, Mario; Fibbi, Gabriella; Laurenzana, Anna

    2018-04-03

    Controlling vascular growth is a challenging aim for the inhibition of tumor growth and metastasis. The amoeboid and mesenchymal types of invasiveness are two modes of migration interchangeable in cancer cells: the Rac-dependent mesenchymal migration requires the activity of proteases; the Rho-ROCK-dependent amoeboid motility is protease-independent and has never been described in endothelial cells. A cocktail of physiologic inhibitors (Ph-C) of serine-proteases, metallo-proteases and cysteine-proteases, mimicking the physiological environment that cells encounter during their migration within the angiogenesis sites was used to induce amoeboid style migration of Endothelial colony forming cells (ECFCs) and mature endothelial cells (ECs). To evaluate the mesenchymal-ameboid transition RhoA and Rac1 activation assays were performed along with immunofluorescence analysis of proteins involved in cytoskeleton organization. Cell invasion was studied in Boyden chambers and Matrigel plug assay for the in vivo angiogenesis. In the present study we showed in both ECFCs and ECs, a decrease of activated Rac1 and an increase of activated RhoA upon shifting of cells to the amoeboid conditions. In presence of Ph-C inhibitors both cell lines acquired a round morphology and Matrigel invasion was greatly enhanced with respect to that observed in the absence of protease inhibition. We also observed that the urokinase-plasminogen-activator (uPAR) receptor silencing and uPAR-integrin uncoupling with the M25 peptide abolished both mesenchymal and amoeboid angiogenesis of ECFCs and ECs in vitro and in vivo, indicating a role of the uPAR-integrin-actin axis in the regulation of amoeboid angiogenesis. Furthermore, under amoeboid conditions endothelial cells seem to be indifferent to VEGF stimulation, which induces an amoeboid signaling pattern also in mesenchymal conditions. Here we first provide a data set disclosing that endothelial cells can move and differentiate into vascular

  8. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    Energy Technology Data Exchange (ETDEWEB)

    Pagan, Jonathan, E-mail: jdpagan@uams.edu; Przybyla, Beata; Jamshidi-Parsian, Azemat [Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States); Gupta, Kalpna [Vascular Biology Center and Division of Hematology-Oncology Transplantation, Department of Medicine, University of Minnesota Medical School, MN 72223 (United States); Griffin, Robert J. [Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States)

    2013-02-18

    Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm{sup 3}) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the

  9. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    International Nuclear Information System (INIS)

    Pagan, Jonathan; Przybyla, Beata; Jamshidi-Parsian, Azemat; Gupta, Kalpna; Griffin, Robert J.

    2013-01-01

    Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm 3 ) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the

  10. Akita spontaneously type 1 diabetic mice exhibit elevated vascular arginase and impaired vascular endothelial and nitrergic function.

    Science.gov (United States)

    Toque, Haroldo A; Nunes, Kenia P; Yao, Lin; Xu, Zhimin; Kondrikov, Dmitry; Su, Yunchao; Webb, R Clinton; Caldwell, Ruth B; Caldwell, R William

    2013-01-01

    Elevated arginase (Arg) activity is reported to be involved in diabetes-induced vascular endothelial dysfunction. It can reduce L-arginine availability to nitric oxide (NO) synthase (NOS) and NO production. Akita mice, a genetic non-obese type 1 diabetes model, recapitulate human diabetes. We determined the role of Arg in a time-course of diabetes-associated endothelial dysfunction in aorta and corpora cavernosa (CC) from Akita mice. Endothelium-dependent relaxation, Arg and NOS activity, and protein expression levels of Arg and constitutive NOS were assessed in aortas and CC from Akita and non-diabetic wild type (WT) mice at 4, 12 and 24 wks of age. Systolic blood pressure (SBP) was assessed by tail cuff. In aorta and CC, Akita mice exhibited a progressive impairment of vascular endothelial and nitrergic function increased Arg activity and expression (Arg1 in aorta and both Arg1 and Arg2 in CC) compared with that of age-matched WT mice. Treatment of aorta and CC from Akita mice with an Arg inhibitor (BEC or ABH) reduced diabetes-induced elevation of Arg activity and restored endothelial and nitrergic function. Reduced levels of phospho-eNOS at Ser(1177) (in aorta and CC) and nNOS expression (in CC) were observed in Akita mice at 12 and 24 wks. Akita mice also had decreased NOS activity in aorta and CC at 12 and 24 wks that was restored by BEC treatment. Further, Akita mice exhibited moderately increased SBP at 24 wks and increased sensitivity to PE-induced contractions in aorta and sympathetic nerve stimulation in CC at 12 and 24 wks. Over 24 wks of diabetes in Akita mice, both aortic and cavernosal tissues exhibited increased Arg activity/expression, contributing to impaired endothelial and nitrergic function and reduced NO production. Our findings demonstrate involvement of Arg activity in diabetes-induced impairment of vascular function in Akita mouse.

  11. Akita spontaneously type 1 diabetic mice exhibit elevated vascular arginase and impaired vascular endothelial and nitrergic function.

    Directory of Open Access Journals (Sweden)

    Haroldo A Toque

    Full Text Available Elevated arginase (Arg activity is reported to be involved in diabetes-induced vascular endothelial dysfunction. It can reduce L-arginine availability to nitric oxide (NO synthase (NOS and NO production. Akita mice, a genetic non-obese type 1 diabetes model, recapitulate human diabetes. We determined the role of Arg in a time-course of diabetes-associated endothelial dysfunction in aorta and corpora cavernosa (CC from Akita mice.Endothelium-dependent relaxation, Arg and NOS activity, and protein expression levels of Arg and constitutive NOS were assessed in aortas and CC from Akita and non-diabetic wild type (WT mice at 4, 12 and 24 wks of age. Systolic blood pressure (SBP was assessed by tail cuff. In aorta and CC, Akita mice exhibited a progressive impairment of vascular endothelial and nitrergic function increased Arg activity and expression (Arg1 in aorta and both Arg1 and Arg2 in CC compared with that of age-matched WT mice. Treatment of aorta and CC from Akita mice with an Arg inhibitor (BEC or ABH reduced diabetes-induced elevation of Arg activity and restored endothelial and nitrergic function. Reduced levels of phospho-eNOS at Ser(1177 (in aorta and CC and nNOS expression (in CC were observed in Akita mice at 12 and 24 wks. Akita mice also had decreased NOS activity in aorta and CC at 12 and 24 wks that was restored by BEC treatment. Further, Akita mice exhibited moderately increased SBP at 24 wks and increased sensitivity to PE-induced contractions in aorta and sympathetic nerve stimulation in CC at 12 and 24 wks.Over 24 wks of diabetes in Akita mice, both aortic and cavernosal tissues exhibited increased Arg activity/expression, contributing to impaired endothelial and nitrergic function and reduced NO production. Our findings demonstrate involvement of Arg activity in diabetes-induced impairment of vascular function in Akita mouse.

  12. Manufacture of endothelial colony-forming progenitor cells from steady-state peripheral blood leukapheresis using pooled human platelet lysate.

    Science.gov (United States)

    Siegel, Georg; Fleck, Erika; Elser, Stefanie; Hermanutz-Klein, Ursula; Waidmann, Marc; Northoff, Hinnak; Seifried, Erhard; Schäfer, Richard

    2018-05-01

    Endothelial colony-forming progenitor cells (ECFCs) are promising candidates for cell therapies. However, ECFC translation to the clinic requires optimized isolation and manufacture technologies according to good manufacturing practice (GMP). ECFCs were manufactured from steady-state peripheral blood (PB) leukapheresis (11 donors), using GMP-compliant technologies including pooled human platelet (PLT) lysate, and compared to human umbilical cord endothelial cells, human aortic endothelial cells, and human cerebral microvascular endothelial cells. Specific variables assessed were growth kinetics, phenotype, trophic factors production, stimulation of tube formation, and Dil-AcLDL uptake. ECFCs could be isolated from PB leukapheresis units with mean processed volume of 5411 mL and mean white blood cell (WBC) concentration factor of 8.74. The mean frequency was 1.44 × 10 -8 ECFCs per WBC, corresponding to a mean of 177.8 ECFCs per apheresis unit. Expandable for up to 12 cumulative population doublings, calculated projection showed that approximately 730 × 10 3 ECFCs could be manufactured from 1 apheresis unit. ECFCs produced epidermal growth factor, hepatocyte growth factor, vascular endothelial growth factor (VEGF)-A, PLT-derived growth factor-B, interleukin-8, and monocyte chemoattractant protein-1, featured high potential for capillary-like tubes formation, and showed no telomerase activity. They were characterized by CD29, CD31, CD44, CD105, CD117, CD133, CD144, CD146, and VEGF-R2 expression, with the most common subpopulation CD34+CD117-CD133-. Compared to controls, ECFCs featured greater Dil-AcLDL uptake and higher expression of CD29, CD31, CD34, CD44, CD144, and VEGF-R2. Here we show that isolation of ECFCs with proangiogenic profile from steady-state PB leukapheresis is feasible, marking a first step toward ECFC product manufacture according to GMP. © 2018 AABB.

  13. NADPH oxidase and lipid raft-associated redox signaling are required for PCB153-induced upregulation of cell adhesion molecules in human brain endothelial cells

    International Nuclear Information System (INIS)

    Eum, Sung Yong; Andras, Ibolya; Hennig, Bernhard; Toborek, Michal

    2009-01-01

    Exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), can lead to chronic inflammation and the development of vascular diseases. Because cell adhesion molecules (CAMs) of the cerebrovascular endothelium regulate infiltration of inflammatory cells into the brain, we have explored the molecular mechanisms by which ortho-substituted polychlorinated biphenyls (PCBs), such as PCB153, can upregulate CAMs in brain endothelial cells. Exposure to PCB153 increased expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as elevated adhesion of leukocytes to brain endothelial cells. These effects were impeded by inhibitors of EGFR, JAKs, or Src activity. In addition, pharmacological inhibition of NADPH oxidase or disruption of lipid rafts by cholesterol depleting agents blocked PCB153-induced phosphorylation of JAK and Src kinases and upregulation of CAMs. In contrast, silencing of caveolin-1 by siRNA interference did not affect upregulation of ICAM-1 and VCAM-1 in brain endothelial cells stimulated by PCB153. Results of the present study indicate that lipid raft-dependent NADPH oxidase/JAK/EGFR signaling mechanisms regulate the expression of CAMs in brain endothelial cells and adhesion of leukocytes to endothelial monolayers. Due to its role in leukocyte infiltration, induction of CAMs may contribute to PCB-induced cerebrovascular disorders and neurotoxic effects in the CNS.

  14. Polyphenol fraction of extra virgin olive oil protects against endothelial dysfunction induced by high glucose and free fatty acids through modulation of nitric oxide and endothelin-1

    Directory of Open Access Journals (Sweden)

    Carolina Emilia Storniolo

    2014-01-01

    Full Text Available Epidemiological and clinical studies have reported that olive oil reduces the incidence of cardiovascular disease. However, the mechanisms involved in this beneficial effect have not been delineated. The endothelium plays an important role in blood pressure regulation through the release of potent vasodilator and vasoconstrictor agents such as nitric oxide (NO and endothelin-1 (ET-1, respectively, events that are disrupted in type 2 diabetes. Extra virgin olive oil contains polyphenols, compounds that exert a biological action on endothelial function. This study analyzes the effects of olive oil polyphenols on endothelial dysfunction using an in vitro model that simulates the conditions of type 2 diabetes. Our findings show that high glucose and linoleic and oleic acids decrease endothelial NO synthase phosphorylation, and consequently intracellular NO levels, and increase ET-1 synthesis by ECV304 cells. These effects may be related to the stimulation of reactive oxygen species production in these experimental conditions. Hydroxytyrosol and the polyphenol extract from extra virgin olive oil partially reversed the above events. Moreover, we observed that high glucose and free fatty acids reduced NO and increased ET-1 levels induced by acetylcholine through the modulation of intracellular calcium concentrations and endothelial NO synthase phosphorylation, events also reverted by hydroxytyrosol and polyphenol extract. Thus, our results suggest a protective effect of olive oil polyphenols on endothelial dysfunction induced by hyperglycemia and free fatty acids.

  15. Sphingosine 1 Phosphate at the Blood Brain Barrier: Can the Modulation of S1P Receptor 1 Influence the Response of Endothelial Cells and Astrocytes to Inflammatory Stimuli?

    Directory of Open Access Journals (Sweden)

    Simona F Spampinato

    Full Text Available The ability of the Blood Brain Barrier (BBB to maintain proper barrier functions, keeping an optimal environment for central nervous system (CNS activity and regulating leukocytes' access, can be affected in CNS diseases. Endothelial cells and astrocytes are the principal BBB cellular constituents and their interaction is essential to maintain its function. Both endothelial cells and astrocytes express the receptors for the bioactive sphingolipid S1P. Fingolimod, an immune modulatory drug whose structure is similar to S1P, has been approved for treatment in multiple sclerosis (MS: fingolimod reduces the rate of MS relapses by preventing leukocyte egress from the lymph nodes. Here, we examined the ability of S1P and fingolimod to act on the BBB, using an in vitro co-culture model that allowed us to investigate the effects of S1P on endothelial cells, astrocytes, and interactions between the two. Acting selectively on endothelial cells, S1P receptor signaling reduced cell death induced by inflammatory cytokines. When acting on astrocytes, fingolimod treatment induced the release of a factor, granulocyte macrophage colony-stimulating factor (GM-CSF that reduced the effects of cytokines on endothelium. In an in vitro BBB model incorporating shear stress, S1P receptor modulation reduced leukocyte migration across the endothelial barrier, indicating a novel mechanism that might contribute to fingolimod efficacy in MS treatment.

  16. Role of Heat Shock Protein 70 in Induction of Stress Fiber Formation in Rat Arterial Endothelial Cells in Response to Stretch Stress

    International Nuclear Information System (INIS)

    Luo, Shan-Shun; Sugimoto, Keiji; Fujii, Sachiko; Takemasa, Tohru; Fu, Song-Bin; Yamashita, Kazuo

    2007-01-01

    We investigated the mechanism by which endothelial cells (ECs) resist various forms of physical stress using an experimental system consisting of rat arterial EC sheets. Formation of actin stress fibers (SFs) and expression of endothelial heat-shock stress proteins (HSPs) in response to mechanical stretch stress were assessed by immunofluorescence microscopy. Stretch stimulation increased expression of HSPs 25 and 70, but not that of HSP 90. Treatment with SB203580, a p38 MAP kinase inhibitor that acts upstream of the HSP 25 activation cascade, or with geldanamycin, an inhibitor of HSP 90, had no effect on the SF formation response to mechanical stretch stress. In contrast, treatment with quercetin, an HSP 70 inhibitor, inhibited both upregulation of endothelial HSP 70 and formation of SFs in response to tensile stress. In addition, treatment of stretched ECs with cytochalasin D, which disrupts SF formation, did not adversely affect stretch-induced upregulation of endothelial HSP 70. Our data suggest that endothelial HSP 70 plays an important role in inducing SF formation in response to tensile stress

  17. Hemostasis and endothelial damage during sepsis.

    Science.gov (United States)

    Johansen, Maria Egede

    2015-08-01

    The sepsis syndrome represents a disease continuum, including severe sepsis and septic shock associated with high mortality. One of the main problems in severe sepsis and septic shock, resulting in organ failure and death, are disturbances in the hemostasis due to sepsis-related coagulopathy. Sepsis-related coagulopathy affects not only traditional coagulation factors, but also the platelets and endothelium. Functional testing of the hemostatic system has found application in critical illness. Thrombelastography (TEG) provides an overview of the hemostatic system allowing for an evaluation of interactions between coagulation factors and platelets. Additionally, the role of the endothelium during sepsis can be explored through testing of biomarkers of endothelial damage. The three studies comprising this PhD thesis all investigate important aspects of the disturbed hemostasis during sepsis, including endothelial damage. Together, the specific findings from the three studies improve the existing understanding of sepsis-related coagulopathy, and the possible influences of some of the treatments offered these patients. The first study investigates the occurrence of antimicrobial-induced thrombocytopenia among critically ill patients. In sepsis, thrombocytopenia is a predictor of poor outcome, and reports, of mainly casuistic nature, have previously hypothesized that specific antimicrobial agents could induce in sepsis-related thrombocytopenia. This hypothesis was tested using a randomized designed set-up, encompassing 1147 critically ill patients, and no significant difference in risk of thrombocytopenia was observed among patients receiving large amounts of antimicrobials vs. patients receiving standard-of-care. As a consequence, the risk of antimicrobial-induced thrombocytopenia in the general population of critically ill patients seemingly does not represent a substantial problem and thrombocytopenia during critical illness is most likely due to other factors such

  18. Cell-type specific DNA-protein interactions at the tissue-type plasminogen activator promoter in human endothelial and HeLa cells in vivo and in vitro

    NARCIS (Netherlands)

    Arts, J.; Herr, I.; Lansink, M.; Angel, P.; Kooistra, T.

    1997-01-01

    Tissue-type plasminogen activator (t-PA) gene expression in human endothelial cells and HeLa cells is stimulated by the protein kinase C activator phorbol 12-myristate 13-acetate (PMA) at the level of transcription. To study the mechanism of transcriptional regulation, we have characterized a

  19. Syncytin is involved in breast cancer-endothelial cell fusions

    DEFF Research Database (Denmark)

    Bjerregaard, Bolette; Holck, S.; Christensen, I.J.

    2006-01-01

    Cancer cells can fuse spontaneously with normal host cells, including endothelial cells, and such fusions may strongly modulate the biological behaviour of tumors. However, the underlying mechanisms are unknown. We now show that human breast cancer cell lines and 63 out of 165 (38%) breast cancer...... specimens express syncytin, an endogenous retroviral envelope protein, previously implicated in fusions between placental trophoblast cells. Additionally, endothelial and cancer cells are shown to express ASCT-2, a receptor for syncytin. Syncytin antisense treatment decreases syncytin expression...... and inhibits fusions between breast cancer cells and endothelial cells. Moreover, a syncytin inhibitory peptide also inhibits fusions between cancer and endothelial cells. These results are the first to show that syncytin is expressed by human cancer cells and is involved in cancer-endothelial cell fusions....

  20. New York Canyon Stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Raemy, Bernard

    2012-06-21

    The New York Canyon Stimulation Project was to demonstrate the commercial application of Enhanced Geothermal System techniques in Buena Vista Valley area of Pershing County, Nevada. From October 2009 to early 2012, TGP Development Company aggressively implemented Phase I of Pre-Stimulation and Site/Wellbore readiness. This included: geological studies; water studies and analyses and procurement of initial permits for drilling. Oversubscription of water rights and lack of water needed for implementation of EGS were identified and remained primary obstacles. Despite extended efforts to find alternative solutions, the water supply circumstances could not be overcome and led TGP to determine a "No Go" decision and initiate project termination in April 2012.

  1. Proteomic analysis of endothelial cold-adaptation

    Directory of Open Access Journals (Sweden)

    Zieger Michael AJ

    2011-12-01

    Full Text Available Abstract Background Understanding how human cells in tissue culture adapt to hypothermia may aid in developing new clinical procedures for improved ischemic and hypothermic protection. Human coronary artery endothelial cells grown to confluence at 37°C and then transferred to 25°C become resistant over time to oxidative stress and injury induced by 0°C storage and rewarming. This protection correlates with an increase in intracellular glutathione at 25°C. To help understand the molecular basis of endothelial cold-adaptation, isolated proteins from cold-adapted (25°C/72 h and pre-adapted cells were analyzed by quantitative proteomic methods and differentially expressed proteins were categorized using the DAVID Bioinformatics Resource. Results Cells adapted to 25°C expressed changes in the abundance of 219 unique proteins representing a broad range of categories such as translation, glycolysis, biosynthetic (anabolic processes, NAD, cytoskeletal organization, RNA processing, oxidoreductase activity, response-to-stress and cell redox homeostasis. The number of proteins that decreased significantly with cold-adaptation exceeded the number that increased by 2:1. Almost half of the decreases were associated with protein metabolic processes and a third were related to anabolic processes including protein, DNA and fatty acid synthesis. Changes consistent with the suppression of cytoskeletal dynamics provided further evidence that cold-adapted cells are in an energy conserving state. Among the specific changes were increases in the abundance and activity of redox proteins glutathione S-transferase, thioredoxin and thioredoxin reductase, which correlated with a decrease in oxidative stress, an increase in protein glutathionylation, and a recovery of reduced protein thiols during rewarming from 0°C. Increases in S-adenosylhomocysteine hydrolase and nicotinamide phosphoribosyltransferase implicate a central role for the methionine

  2. Inhibitory effects of Kaempferia parviflora extract on monocyte adhesion and cellular reactive oxygen species production in human umbilical vein endothelial cells.

    Science.gov (United States)

    Horigome, Satoru; Yoshida, Izumi; Ito, Shihomi; Inohana, Shuichi; Fushimi, Kei; Nagai, Takeshi; Yamaguchi, Akihiro; Fujita, Kazuhiro; Satoyama, Toshiya; Katsuda, Shin-Ichi; Suzuki, Shinobu; Watai, Masatoshi; Hirose, Naoto; Mitsue, Takahiro; Shirakawa, Hitoshi; Komai, Michio

    2017-04-01

    The rhizome of Kaempferia parviflora (KP) is used in traditional Thai medicine. In this study, we investigated the effects of an ethanol KP extract and two of its components [5,7-dimethoxyflavone (DMF) and 5-hydroxy-3,7,3',4'-tetramethoxyflavone (TMF)] on monocyte adhesion and cellular reactive oxygen species (ROS) production in human umbilical vein endothelial cells (HUVECs), which provide an in vitro model of events relevant to the development and progression of atherosclerosis. RAW264.7 mouse macrophage-like cells were incubated with various concentrations of KP extract or polymethoxyflavonoids and stimulated with lipopolysaccharide prior to measuring nitrite levels in the culture media. Monocyte adhesion was evaluated by measuring the fluorescently labeled human monocytic leukemia THP-1 cells that is attached to tumor necrosis factor-α (TNF-α)-stimulated HUVECs. Cellular ROS production was assessed by measuring cellular antioxidant activity using pyocyanin-stimulated HUVECs. KP extract and DMF reduced nitrite levels (as indicator of nitric oxide production) in LPS-stimulated RAW264.7 cells and also inhibited THP-1 cell adhesion to HUVECs. These treatments induced mRNA expression of endothelial nitric oxide synthase in TNF-α-stimulated HUVECs and downregulated that of various cell adhesion molecules, inflammatory mediators, and endothelial function-related genes. Angiotensin-converting enzyme activity was inhibited by KP extract in vitro. Furthermore, KP extract, DMF, and TMF inhibited the production of cellular ROS in pyocyanin-stimulated HUVECs. KP extract, DMF, and TMF showed potential anti-inflammatory and antioxidant effects in these in vitro models, properties that would inhibit the development and progression of atherosclerosis.

  3. COPD as an endothelial disorder: endothelial injury linking lesions in the lungs and other organs? (2017 Grover Conference Series)

    Science.gov (United States)

    Polverino, Francesca; Celli, Bartolome R.

    2018-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by chronic expiratory airflow obstruction that is not fully reversible. COPD patients develop varying degrees of emphysema, small and large airway disease, and various co-morbidities. It has not been clear whether these co-morbidities share common underlying pathogenic processes with the pulmonary lesions. Early research into the pathogenesis of COPD focused on the contributions of injury to the extracellular matrix and pulmonary epithelial cells. More recently, cigarette smoke-induced endothelial dysfunction/injury have been linked to the pulmonary lesions in COPD (especially emphysema) and systemic co-morbidities including atherosclerosis, pulmonary hypertension, and chronic renal injury. Herein, we review the evidence linking endothelial injury to COPD, and the pathways underlying endothelial injury and the “vascular COPD phenotype” including: (1) direct toxic effects of cigarette smoke on endothelial cells; (2) generation of auto-antibodies directed against endothelial cells; (3) vascular inflammation; (4) increased oxidative stress levels in vessels inducing increases in lipid peroxidation and increased activation of the receptor for advanced glycation end-products (RAGE); (5) reduced activation of the anti-oxidant pathways in endothelial cells; (6) increased endothelial cell release of mediators with vasoconstrictor, pro-inflammatory, and remodeling activities (endothelin-1) and reduced endothelial cell expression of mediators that promote vasodilation and homeostasis of endothelial cells (nitric oxide synthase and prostacyclin); and (7) increased endoplasmic reticular stress and the unfolded protein response in endothelial cells. We also review the literature on studies of drugs that inhibit RAGE signaling in other diseases (angiotensin-converting enzyme inhibitors and angiotensin receptor blockers), or vasodilators developed for idiopathic pulmonary arterial hypertension that have been tested

  4. Detection and Quantification of Vascular Endothelial Growth Factor Receptor Tyrosine Kinases in Primary Human Endothelial Cells.

    Science.gov (United States)

    Fearnley, Gareth W; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2015-01-01

    Proteins differ widely in their pattern of expression depending on organism, tissue, and regulation in response to changing conditions. In the mammalian vasculature, the endothelium responds to vascular endothelial growth factors (VEGFs) via membrane-bound receptor tyrosine kinases (VEGFRs) to modulate many aspects of vascular physiology including vasculogenesis, angiogenesis, and blood pressure. Studies on VEGFR biology are thus dependent on detecting expression levels in different cell types and evaluating how changes in protein levels correlate with changing conditions including circulating VEGF levels. Here, we present a robust immunoblot-based protocol for detecting and quantifying VEGFRs in human endothelial cells. Using internal and external standards, we can rapidly evaluate receptor copy number and assess how this is altered in response to the cellular environment.

  5. Topographic characteristics after Descemet's membrane endothelial keratoplasty and Descemet's stripping automated endothelial keratoplasty.

    Directory of Open Access Journals (Sweden)

    Takahiko Hayashi

    Full Text Available To investigate the topographic characteristics of the posterior corneal surface after Descemet's endothelial membrane keratoplasty (DMEK and Descemet's stripping automated endothelial keratoplasty (DSAEK and their effects on postoperative visual acuity.Nineteen eyes of 19 patients after DMEK, 23 eyes of 23 patients after DSAEK, and 18 eyes of 18 control subjects were retrospectively analyzed. Best spectacle-corrected visual acuity (BSCVA, aberration factors (higher-order aberrations [HOAs], spherical aberrations [SAs], and coma aberrations [Comas] at 6.0 mm were evaluated preoperatively and at 1, 3, and 6 months postoperatively. The posterior refractive pattern of the topography map was classified into 5 grades (0-5 (posterior color grade using anterior segment optical coherence tomography. Correlations between BSCVA and some factors (abbreviation factors, posterior color grade were analyzed.BSCVA was significantly better after DMEK than after DSAEK (P < 0.001. Posterior HOAs, SAs, and Comas after each type of endothelial keratoplasty were significantly greater compared to control (P < 0.01. Posterior HOAs, total/anterior/posterior SAs, and posterior color grade were significantly lower in the DMEK group than in the DSAEK group at 3 months (P < 0.024 [posterior HOAs], P = 0.047 [total SA], P < 0.001 [anterior SAs], P = 0.021 [posterior SAs], and P < 0.001 [posterior color grade] and 6 months postoperatively (P = 0.034 [posterior HOAs], P < 0.001 [total SAs], P < 0.001 [anterior SAs], P = 0.013 [posterior SAs], and P = 0.004 [posterior color grade]. BSCVA was significantly correlated with HOAs, SAs, and posterior color grade (P < 0.001 for all except anterior HOAs [P = 0.004].High posterior color grades were associated with larger aberration factors and had a negative effect on visual function after endothelial keratoplasty. Rapid improvement of visual function after DMEK may be attributed to less change at the posterior surface.

  6. In smokers, Sonic hedgehog modulates pulmonary endothelial function through vascular endothelial growth factor.

    Science.gov (United States)

    Henno, Priscilla; Grassin-Delyle, Stanislas; Belle, Emeline; Brollo, Marion; Naline, Emmanuel; Sage, Edouard; Devillier, Philippe; Israël-Biet, Dominique

    2017-05-23

    Tobacco-induced pulmonary vascular disease is partly driven by endothelial dysfunction. The Sonic hedgehog (SHH) pathway is involved in vascular physiology. We sought to establish whether the SHH pathway has a role in pulmonary endothelial dysfunction in smokers. The ex vivo endothelium-dependent relaxation of pulmonary artery rings in response to acetylcholine (Ach) was compared in 34 current or ex-smokers and 8 never-smokers. The results were expressed as a percentage of the contraction with phenylephrine. We tested the effects of SHH inhibitors (GANT61 and cyclopamine), an SHH activator (SAG) and recombinant VEGF on the Ach-induced relaxation. The level of VEGF protein in the pulmonary artery ring was measured in an ELISA. SHH pathway gene expression was quantified in reverse transcriptase-quantitative polymerase chain reactions. Ach-induced relaxation was much less intense in smokers than in never-smokers (respectively 24 ± 6% and 50 ± 7% with 10 -4 M Ach; p = 0.028). All SHH pathway genes were expressed in pulmonary artery rings from smokers. SHH inhibition by GANT61 reduced Ach-induced relaxation and VEGF gene expression in the pulmonary artery ring. Recombinant VEGF restored the ring's endothelial function. VEGF gene and protein expression levels in the pulmonary artery rings were positively correlated with the degree of Ach-induced relaxation and negatively correlated with the number of pack-years. SHH pathway genes and proteins are expressed in pulmonary artery rings from smokers, where they modulate endothelial function through VEGF.

  7. Orphan nuclear receptor Nur77 is a novel negative regulator of endothelin-1 expression in vascular endothelial cells.

    Science.gov (United States)

    Qin, Qing; Chen, Ming; Yi, Bing; You, Xiaohua; Yang, Ping; Sun, Jianxin

    2014-12-01

    Endothelin-1 (ET-1) produced by vascular endothelial cells plays essential roles in the regulation of vascular tone and development of cardiovascular diseases. The objective of this study is to identify novel regulators implicated in the regulation of ET-1 expression in vascular endothelial cells (ECs). By using quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), we show that either ectopic expression of orphan nuclear receptor Nur77 or pharmacological activation of Nur77 by 6-mercaptopurine (6-MP) substantially inhibits ET-1 expression in human umbilical vein endothelial cells (HUVECs), under both basal and thrombin-stimulated conditions. Furthermore, thrombin-stimulated ET expression is significantly augmented in both Nur77 knockdown ECs and aort from Nur77 knockout mice, suggesting that Nur77 is a negative regulator of ET-1 expression. Inhibition of ET-1 expression by Nur77 occurs at gene transcriptional levels, since Nur77 potently inhibits ET-1 promoter activity, without affecting ET-1 mRNA stability. As shown in electrophoretic mobility shift assay (EMSA), Nur77 overexpression markedly inhibits both basal and thrombin-stimulated transcriptional activity of AP-1. Mechanistically, we demonstrate that Nur77 specially interacts with c-Jun and inhibits AP-1 dependent c-Jun promoter activity, which leads to a decreased expression of c-Jun, a critical component involved in both AP-1 transcriptional activity and ET-1 expression in ECs. These findings demonstrate that Nur77 is a novel negative regulator of ET-1 expression in vascular ECs through an inhibitory interaction with the c-Jun/AP-1 pathway. Activation of Nur77 may represent a useful therapeutic strategy for preventing certain cardiovascular diseases, such as atherosclerosis and pulmonary artery hypertension. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Collective cell motion in endothelial monolayers

    International Nuclear Information System (INIS)

    Szabó, A; Ünnep, R; Méhes, E; Czirók, A; Twal, W O; Argraves, W S; Cao, Y

    2010-01-01

    Collective cell motility is an important aspect of several developmental and pathophysiological processes. Despite its importance, the mechanisms that allow cells to be both motile and adhere to one another are poorly understood. In this study we establish statistical properties of the random streaming behavior of endothelial monolayer cultures. To understand the reported empirical findings, we expand the widely used cellular Potts model to include active cell motility. For spontaneous directed motility we assume a positive feedback between cell displacements and cell polarity. The resulting model is studied with computer simulations and is shown to exhibit behavior compatible with experimental findings. In particular, in monolayer cultures both the speed and persistence of cell motion decreases, transient cell chains move together as groups and velocity correlations extend over several cell diameters. As active cell motility is ubiquitous both in vitro and in vivo, our model is expected to be a generally applicable representation of cellular behavior

  9. Endothelial-Mesenchymal Transition in Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Damian Medici

    2016-01-01

    Full Text Available Endothelial-mesenchymal transition (EndMT is a fundamental cellular mechanism that regulates embryonic development and diseases such as cancer and fibrosis. Recent developments in biomedical research have shown remarkable potential to harness the EndMT process for tissue engineering and regeneration. As an alternative to traditional or artificial stem cell therapies, EndMT may represent a safe method for engineering new tissues to treat degenerative diseases by mimicking a process that occurs in nature. This review discusses the signaling mechanisms and therapeutic inhibitors of EndMT, as well as the role of EndMT in development, disease, acquiring stem cell properties and generating connective tissues, and its potential as a novel mechanism for tissue regeneration.

  10. Optical Investigations of Endothelial Cell Motility

    DEFF Research Database (Denmark)

    Rossen, Ninna Struck

    A monolayer of endothelial cells lines the entire circulatory system and create a barrier between the circulatory system and the tissues. To create and maintain an intact barrier, the individual cells have to connect tightly with their neighbors, which causes a highly correlated motion between...... are fascinating from a biophysical point of view. The vasculature also plays a signi cant role in many pathologies. In diabetic blindness or ischemic diseases the ow of blood is insucient to sustain certain tissues or whole limbs. The creation of new blood vessels can relieve or treat such diseases. In other...... pathologies, such as the growth of cancerous tumors and metastasis, the creation of new blood vessels to these tumors worsen the condition and an inhibition of blood vessel creation will relieve the pathology. The thesis is divided into three parts; Part 1 provides some general background knowledge...

  11. Telmisartan activates endothelial nitric oxide synthase via Ser1177 phosphorylation in vascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Masahiro Myojo

    Full Text Available Because endothelial nitric oxide synthase (eNOS has anti-inflammatory and anti-arteriosclerotic functions, it has been recognized as one of the key molecules essential for the homeostatic control of blood vessels other than relaxation of vascular tone. Here, we examined whether telmisartan modulates eNOS function through its pleiotropic effect. Administration of telmisartan to mice significantly increased the phosphorylation level of eNOS (Ser1177 in the aortic endothelium, but administration of valsartan had no effect. Similarly, telmisartan treatment of human umbilical vein endothelial cells significantly increased the phosphorylation levels of AMP-activated protein kinase (Thr172 and eNOS and the concentration of intracellular guanosine 3',5'-cyclic monophosphate (cGMP. Furthermore, pretreatment with a p38 mitogen-activated protein kinase (p38 MAPK inhibitor suppressed the increased phosphorylation level of eNOS and intracellular cGMP concentration. These data show that telmisartan increases eNOS activity through Ser1177 phosphorylation in vascular endothelial cells mainly via p38 MAPK signaling.

  12. Artesunate Exerts a Direct Effect on Endothelial Cell Activation and NF-κB Translocation in a Mechanism Independent of Plasmodium Killing

    Directory of Open Access Journals (Sweden)

    Mariana C. Souza

    2012-01-01

    Full Text Available Artemisinin and its derivates are an important class of antimalarial drug and are described to possess immunomodulatory activities. Few studies have addressed the effect of artesunate in the murine malaria model or its effect on host immune response during malaria infection. Herein, we study the effect of artesunate treatment and describe an auxiliary mechanism of artesunate in modulating the inflammatory response during experimental malaria infection in mice. Treatment with artesunate did not reduce significantly the parasitemia within 12 h, however, reduced BBB breakdown and TNF-α mRNA expression in the brain tissue of artesunate-treated mice. Conversely, mefloquine treatment was not able to alter clinical features. Notably, artesunate pretreatment failed to modulate the expression of LFA-1 in splenocytes stimulated with parasitized red blood cells (pRBCs in vitro; however, it abrogated the expression of ICAM-1 in pRBC-stimulated endothelial cells. Accordingly, a cytoadherence in vitro assay demonstrated that pRBCs did not adhere to artesunate-treated vascular endothelial cells. In addition, NF-κB nuclear translocation in endothelial cells stimulated with pRBCs was impaired by artesunate treatment. Our results suggest that artesunate is able to exert a protective effect against the P. berghei-induced inflammatory response by inhibiting NF-κB nuclear translocation and the subsequent expression of ICAM-1.

  13. Oxidation of cholesterol moiety of low density lipoprotein in the presence of human endothelial cells or Cu+2 ions: identification of major products and their effects.

    Science.gov (United States)

    Bhadra, S; Arshad, M A; Rymaszewski, Z; Norman, E; Wherley, R; Subbiah, M T

    1991-04-15

    Oxidation of lipoproteins is believed to play a key role in atherogenesis. In this study, low density lipoproteins (LDL) was subjected to oxidation in the presence of either human umbilical vein endothelial cells or with Cu+2 ions and the major oxides formed were identified. While cholesterol-alpha-epoxide (C-alpha EP) was the major product of cholesterol peroxidation in the presence of endothelial cells, cholest-3,5-dien-7-one (CD) predominated in the presence of Cu+2 ion. Both steroids were identified by gas chromatography/mass spectrometry. HDL cholesterol was resistant to oxidation. When tested on human skin fibroblasts in culture C-alpha EP (10 micrograms/ml) caused marked stimulation of 14C-oleate incorporation into cholesterol esters, while CD stimulated cholesterol esterification only mildly. These studies show that a) C-alpha EP is the major peroxidation product of LDL cholesterol moiety in the presence of endothelial cells and b) it causes marked stimulation of cholesterol esterification in cells. C-alpha EP may play a key role in increasing cholesterol esterification noted in atherogenesis.

  14. Endothelial cell energy metabolism, proliferation, and apoptosis in pulmonary hypertension.

    Science.gov (United States)

    Xu, Weiling; Erzurum, Serpil C

    2011-01-01

    Pulmonary arterial hypertension (PAH) is a fatal disease characterized by impaired regulation of pulmonary hemodynamics and excessive growth and dysfunction of the endothelial cells that line the arteries in PAH lungs. Establishment of methods for culture of pulmonary artery endothelial cells from PAH lungs has provided the groundwork for mechanistic translational studies that confirm and extend findings from model systems and spontaneous pulmonary hypertension in animals. Endothelial cell hyperproliferation, survival, and alterations of biochemical-metabolic pathways are the unifying endothelial pathobiology of the disease. The hyperproliferative and apoptosis-resistant phenotype of PAH endothelial cells is dependent upon the activation of signal transducer and activator of transcription (STAT) 3, a fundamental regulator of cell survival and angiogenesis. Animal models of PAH, patients with PAH, and human PAH endothelial cells produce low nitric oxide (NO). In association with the low level of NO, endothelial cells have reduced mitochondrial numbers and cellular respiration, which is associated with more than a threefold increase in glycolysis for energy production. The shift to glycolysis is related to low levels of NO and likely to the pathologic expression of the prosurvival and proangiogenic signal transducer, hypoxia-inducible factor (HIF)-1, and the reduced mitochondrial antioxidant manganese superoxide dismutase (MnSOD). In this article, we review the phenotypic changes of the endothelium in PAH and the biochemical mechanisms accounting for the proliferative, glycolytic, and strongly proangiogenic phenotype of these dysfunctional cells, which consequently foster the panvascular progressive pulmonary remodeling in PAH. © 2011 American Physiological Society.

  15. Secondhand smoke exposure and endothelial stress in children and adolescents.

    Science.gov (United States)

    Groner, Judith A; Huang, Hong; Nagaraja, Haikady; Kuck, Jennifer; Bauer, John Anthony

    2015-01-01

    Links between secondhand smoke exposure and cardiovascular disease in adults are well established. Little is known about the impact of this exposure on cardiovascular status during childhood. The purpose of this study was to investigate relationships between secondhand smoke exposure in children and adolescents and cardiovascular disease risk--systemic inflammation, endothelial stress, and endothelial repair. A total of 145 subjects, aged 9 to 18 years, were studied. Tobacco smoke exposure was determined by hair nicotine level. Cardiovascular risk was assessed by markers of systemic inflammation (C-reactive protein [CRP] and adiponectin); by soluble intercellular adhesion molecule 1 (s-ICAM1), which measures endothelial activation after surface vascular injury; and by endothelial repair. This was measured by prevalence of endothelial progenitor cells (EPCs), which are bone marrow-derived cells that home preferentially to sites of vascular damage. Hair nicotine was directly correlated with s-ICAM1 (r = 0.4090, P Secondhand smoke exposure during childhood and adolescence is detrimental to vascular health because s-ICAM1 is a marker for endothelial activation and stress after vascular surface injury, and EPCs contribute to vascular repair. The fact that body mass index is also a factor in the model predicting s-ICAM1 is concerning, in that 2 risk factors may both contribute to endothelial stress. Copyright © 2015 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  16. Insomnia and endothelial function - the HUNT 3 fitness study.

    Directory of Open Access Journals (Sweden)

    Linn B Strand

    Full Text Available BACKGROUND: Insomnia is associated with increased risk of coronary heart disease (CHD, but the underlying mechanisms are not understood. To our knowledge, no previous studies have examined insomnia in relation to endothelial function, an indicator of preclinical atherosclerosis. Our aim was to assess the association of insomnia with endothelial function in a large population based study of healthy individuals. METHODS: A total of 4 739 participants free from known cardiovascular or pulmonary diseases, cancer, and sarcoidosis, and who were not using antihypertensive medication were included in the study. They reported how often they had experienced difficulties falling asleep at night, repeated awakenings during the night, early awakenings without being able to go back to sleep, and daytime sleepiness. Endothelial function was measured by flow mediated dilation (FMD derived from the brachial artery. RESULTS: We found no consistent association between the insomnia symptoms and endothelial function in multiadjusted models, but individual insomnia symptoms may be related to endothelial function. Among women who reported early awakenings, endothelial function may be lower than in women without this symptom (p = 0.03. CONCLUSIONS: This study provided no evidence that endothelial function, an early indicator of atherosclerosis, is an important linking factor between insomnia and CHD. Further studies are needed to explore the complex interrelation between sleep and cardiovascular pathology.

  17. Endothelial function and dysfunction: clinical significance and assessment

    Directory of Open Access Journals (Sweden)

    Shaghayegh Haghjooyejavanmard

    2008-08-01

    Full Text Available

    • Over the past two decades, investigators have increasingly recognized the importance of the endothelium as a centralregulator of vascular and body homeostasis. The endothelial lining represents an organ of 1.5 kg in an adult, which is distributed throughout the body. The endothelium is versatile and multifunctional. In addition to its role as a selective permeability barrier, it has many synthetic and metabolic properties, including modulation of vascular tone and blood flow, regulation of immune and inflammatory responses, and regulation of coagulation, fibrinolysis and thrombosis. Endothelial dysfunction (ED is a frequently used term, which can be referred to abnormalities in various physiological functions of the endothelium, and it is known as a key variable in the pathogenesis of several diseases and their complications. Finding suitable markers for endothelial damage or ED is certainly of interest. Established and emerging techniques to detect ED are divided into three large families of functional, cellular, and biochemical markers. Instead of performing single assessments, it may be much more valuable to determine various biological aspects of endothelium. It seems that there is likely a spectrum between normality, endothelial activation (by inflammatory cytokines, endothelial dysfunction (e.g., impairment of nitric oxide, resulting in loss of regulation of vascular tone and endothelial damage (e.g., atherosclerosis. In this review we review the importance of endothelium and its activation, biomarkers and dysfunction.
    •  KEYWORDS: Endothelial function, endothelium, Disease.

  18. IDEA: Stimulating Oral Production.

    Science.gov (United States)

    Easley, Jacob J.

    1995-01-01

    Presents daily activities that facilitate complete sentence response, promote oral production, and aid the learning of vocabulary in foreign-language classes. Because speech is the primary form of communication in the foreign-language classroom, it is important to stimulate students to converse as soon as possible. (Author/CK)

  19. stimulated BV2 Microglial

    African Journals Online (AJOL)

    2012-03-26

    Mar 26, 2012 ... 2), in LPS-stimulated BV2 microglial cells. The level of NO production was analyzed using Griess reaction. The release of PGE2 was determined using sandwich enzyme-linked immunosorbent assay. The DNA-binding activity of nuclear factor-κB (NF-κB) was measured by electrophoretic mobility shift assay ...

  20. Brain stimulation in migraine.

    Science.gov (United States)

    Brighina, Filippo; Cosentino, Giuseppe; Fierro, Brigida

    2013-01-01

    Migraine is a very prevalent disease with great individual disability and socioeconomic burden. Despite intensive research effort in recent years, the etiopathogenesis of the disease remains to be elucidated. Recently, much importance has been given to mechanisms underlying the cortical excitability that has been suggested to be dysfunctional in migraine. In recent years, noninvasive brain stimulation techniques based on magnetic fields (transcranial magnetic stimulation, TMS) and on direct electrical currents (transcranial direct current stimulation, tDCS) have been shown to be safe and effective tools to explore the issue of cortical excitability, activation, and plasticity in migraine. Moreover, TMS, repetitive TMS (rTMS), and tDCS, thanks to their ability to interfere with and/or modulate cortical activity inducing plastic, persistent effects, have been also explored as potential therapeutic approaches, opening an interesting perspective for noninvasive neurostimulation for both symptomatic and preventive treatment of migraine and other types of headache. In this chapter we critically review evidence regarding the role of noninvasive brain stimulation in the pathophysiology and treatment of migraine, delineating the advantages and limits of these techniques together with potential development and future application. © 2013 Elsevier B.V. All rights reserved.

  1. Hydrogen sulfide regulates intracellular Ca2+ concentration in endothelial cells from excised rat aorta.

    Science.gov (United States)

    Moccia, Francesco; Bertoni, Giuseppe; Pla, Alessandra Florio; Dragoni, Silvia; Pupo, Emanuela; Merlino, Annalisa; Mancardi, Daniele; Munaron, Luca; Tanzi, Franco

    2011-09-01

    Hydrogen sulphide (H2S) is a recently discovered gasotransmitter that may regulate a growing number of endothelial functions, including nitric oxide (NO) release, proliferation, adhesion and migration, which are the key steps of angiogenesis. The mechanism whereby H2S impacts on endothelial physiology is still unclear: however, the aforementioned processes are driven by an increase in intracellular Ca2+ concentration ([Ca2+]i). In the present study, we exploited the excised rat aorta to gain insights into the regulation of [Ca2+]i by H2S within in situ endothelial cells (ECs). Sodium hydrosulphide (NaHS), a H2S donor, caused an elevation in [Ca2+]i, which disappeared in absence of extracellular Ca2+. NaHSinduced Ca2+ inflow was sensitive to high doses of Gd3+, but not BTP-2. Inhibition of the reverse-mode of the Na+-Ca2+ exchanger (NCX), with KB-R7943 or upon removal of extracellular Na+, abrogated the Ca2+ response to NaHS. Moreover, NaHS-elicited Ca2+ entry was significantly reduced by TEA and glybenclamide, which hinted at the involvement of ATP-dependent K+ (KATP) channels. Conversely, NaHS-evoked Ca2+ signal was not affected by the reducing agent, dithiothreitol. Acute addition of NaHS hindered both Ca2+ release and Ca2+ entry induced by ATP, a physiological agonist of ECs. Consistently, inhibition of endogenous H2S synthesis with DL-propargylglycine impaired ATP-induced Ca2+ inflow, whereas it did not affect Ca2+ mobilization. These data provide the first evidence that H2S may stimulate Ca2+ influx into ECs by recruiting the reverse-mode of NCX and KATP channels. In addition, they show that such gasotransmitter may modulate the Ca2+ signals elicited by physiological stimuli in intact endothelium.

  2. Phthalimide neovascular factor 1 (PNF1) modulates MT1-MMP activity in human microvascular endothelial cells.

    Science.gov (United States)

    Wieghaus, Kristen A; Gianchandani, Erwin P; Neal, Rebekah A; Paige, Mikell A; Brown, Milton L; Papin, Jason A; Botchwey, Edward A

    2009-07-01

    We are creating synthetic pharmaceuticals with angiogenic activity and potential to promote vascular invasion. We previously demonstrated that one of these molecules, phthalimide neovascular factor 1 (PNF1), significantly expands microvascular networks in vivo following sustained release from poly(lactic-co-glycolic acid) (PLAGA) films. In addition, to probe PNF1 mode of action, we recently applied a novel pathway-based compendium analysis to a multi-timepoint, controlled microarray data set of PNF1-treated (vs. control) human microvascular endothelial cells (HMVECs), and we identified induction of tumor necrosis factor-alpha (TNF-alpha) and, subsequently, transforming growth factor-beta (TGF-beta) signaling networks by PNF1. Here we validate this microarray data set with quantitative real-time polymerase chain reaction (RT-PCR) analysis. Subsequently, we probe this data set and identify three specific TGF-beta-induced genes with regulation by PNF1 conserved over multiple timepoints-amyloid beta (A4) precursor protein (APP), early growth response 1 (EGR-1), and matrix metalloproteinase 14 (MMP14 or MT1-MMP)-that are also implicated in angiogenesis. We further focus on MMP14 given its unique role in angiogenesis, and we validate MT1-MMP modulation by PNF1 with an in vitro fluorescence assay that demonstrates the direct effects that PNF1 exerts on functional metalloproteinase activity. We also utilize endothelial cord formation in collagen gels to show that PNF1-induced stimulation of endothelial cord network formation in vitro is in some way MT1-MMP-dependent. Ultimately, this new network analysis of our transcriptional footprint characterizing PNF1 activity 1-48 h post-supplementation in HMVECs coupled with corresponding validating experiments suggests a key set of a few specific targets that are involved in PNF1 mode of action and important for successful promotion of the neovascularization that we have observed by the drug in vivo.

  3. Scutellarin promotes in vitro angiogenesis in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhong-Xiu-Zi [Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin (China); Huang, Da-Yong [Department of Oncology, The Second Clinical Hospital, Harbin Medical University, Harbin (China); Li, Hai-Xia; Zhang, Li-Na; Lv, Yan-Hong; Cui, Hai-Dong [Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin (China); Zheng, Jin-Hua, E-mail: jhzhenghrbmu@yahoo.cn [Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin (China)

    2010-09-10

    Research highlights: {yields} It has been shown that scutellarin exhibits a variety of pharmacological actions, including anti-oxidative, anti-inflammatory, vasodilator as well as cardiovascular and cerebrovascular ischemia protective effects, indicating beneficial vascular effects of scutellarin. Therefore, it is speculated that scutellarin may be able to stimulate angiogenesis, which could be beneficial in the treatment of ischemic disease, wound healing and tissue regeneration. {yields} The purpose of the present study was to elucidate the direct angiogenic actions of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. {yields} Our results showed that scutellarin to directly induce in vitro angiogenesis, which is closely correlated with upregulated MMP-2 expression, suggesting a potential for increasing angiogenesis. -- Abstract: Angiogenesis is critical to a wide range of physiological and pathological processes. Scutellarin, a major flavonoid of a Chinese herbal medicine Erigeron breviscapus (Vant.) Hand. Mazz. has been shown to offer beneficial effects on cardiovascular and cerebrovascular functions. However, scutellarin's effects on angiogenesis and underlying mechanisms are not fully elucidated. Here, we studied angiogenic effects of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. Scutellarin was found by MTT assay to induce proliferation of HUVECs. In scutellarin-treated HUVECs, a dramatic increase in migration was measured by wound healing assay; Transwell chamber assay found significantly more invading cells in scutellarin-treated groups. Scutellarin also promoted capillary-like tube formation in HUVECs on Matrigel, and significantly upregulated platelet endothelial cell adhesion molecule-1 at both mRNA and protein levels. Scutellarin's angiogenic mechanism was investigated in vitro by measuring expression of angiogenic factors associated with cell migration and invasion. Scutellarin strongly

  4. Scutellarin promotes in vitro angiogenesis in human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Gao, Zhong-Xiu-Zi; Huang, Da-Yong; Li, Hai-Xia; Zhang, Li-Na; Lv, Yan-Hong; Cui, Hai-Dong; Zheng, Jin-Hua

    2010-01-01

    Research highlights: → It has been shown that scutellarin exhibits a variety of pharmacological actions, including anti-oxidative, anti-inflammatory, vasodilator as well as cardiovascular and cerebrovascular ischemia protective effects, indicating beneficial vascular effects of scutellarin. Therefore, it is speculated that scutellarin may be able to stimulate angiogenesis, which could be beneficial in the treatment of ischemic disease, wound healing and tissue regeneration. → The purpose of the present study was to elucidate the direct angiogenic actions of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. → Our results showed that scutellarin to directly induce in vitro angiogenesis, which is closely correlated with upregulated MMP-2 expression, suggesting a potential for increasing angiogenesis. -- Abstract: Angiogenesis is critical to a wide range of physiological and pathological processes. Scutellarin, a major flavonoid of a Chinese herbal medicine Erigeron breviscapus (Vant.) Hand. Mazz. has been shown to offer beneficial effects on cardiovascular and cerebrovascular functions. However, scutellarin's effects on angiogenesis and underlying mechanisms are not fully elucidated. Here, we studied angiogenic effects of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. Scutellarin was found by MTT assay to induce proliferation of HUVECs. In scutellarin-treated HUVECs, a dramatic increase in migration was measured by wound healing assay; Transwell chamber assay found significantly more invading cells in scutellarin-treated groups. Scutellarin also promoted capillary-like tube formation in HUVECs on Matrigel, and significantly upregulated platelet endothelial cell adhesion molecule-1 at both mRNA and protein levels. Scutellarin's angiogenic mechanism was investigated in vitro by measuring expression of angiogenic factors associated with cell migration and invasion. Scutellarin strongly induced MMP-2 activation and m

  5. Stromal Cells Act as Guardians for Endothelial Progenitors by Reducing Their Immunogenicity After Co-Transplantation.

    Science.gov (United States)

    Souidi, Naima; Stolk, Meaghan; Rudeck, Juliane; Strunk, Dirk; Schallmoser, Katharina; Volk, Hans-Dieter; Seifert, Martina

    2017-05-01

    Regeneration of injured tissues requires effective therapeutic strategies supporting vasculogenesis. The lack of instantly available autologous cell sources and immunogenicity of allogeneic endothelial (progenitor) cells limits clinical progress. Based on the immunosuppressive potency of mesenchymal stem/progenitor cells (MSCs), we investigated whether crosstalk between endothelial colony-forming progenitor cells (ECFCs) and MSCs during vasculogenesis could lower allogeneic T cell responses against ECFCs allowing long-term engraftment in vivo. Immunodeficient mice received subcutaneous grafts containing human ECFCs alone, or pairs of human ECFCs/MSCs from the same umbilical cord (UC) to study vasculogenesis in the presence of human leukocyte antigen (HLA)-mismatched human peripheral blood mononuclear cells (PBMCs). In vitro, cell surface marker changes due to interferon gamma (IFNγ) stimulation during ECFC/MSC coculture were determined and further effects on allostimulated T cell proliferation and cytotoxic lysis were measured. IFNγ-induced HLA-DR expression on ECFCs and MSCs, but both cell types had significantly less HLA-DR in cocultures. ECFC-induced T cell proliferation was abolished after MSC coculture as a result of HLA-DR downregulation and indolamin-2,3-dioxygenase activation. Additionally, allospecific CD8 + T cell-mediated lysis of ECFCs was reduced in cocultures. ECFC/MSC coapplication in immunodeficient mice not only promoted the generation of improved blood vessel architecture after 6 weeks, but also reduced intragraft immune cell infiltration and endothelial HLA-DR expression following PBMC reconstitution. Crosstalk between UC-derived ECFCs and MSCs after combined transplantation can lower the risk of ECFC rejection, thus enabling their coapplication for therapeutic vasculogenesis. Stem Cells 2017;35:1233-1245. © 2017 AlphaMed Press.

  6. Endothelial dysfunction: a unifying hypothesis for the burden of cardiovascular diseases in sub-Saharan Africa.

    Science.gov (United States)

    Sampson, Uchechukwu K A; Engelgau, Michael M; Peprah, Emmanuel K; Mensah, George A

    2015-01-01

    It is well established that the leading causes of death and disability worldwide are cardiovascular diseases (CVD), chief among which is ischaemic heart disease. However, it is also recognised that ischaemic heart disease frequently coexists with other vascular conditions, such as cerebrovascular, renovascular and peripheral vascular disease, thus raising the notion of a common underlying pathobiology, albeit with differing manifestations, dictated by the implicated vascular bed. The understanding that common metabolic and behavioural risk factors as well as social determinants and drivers are convergent in the development of CVD evokes the idea that the dysfunction of a common bio-molecular platform is central to the occurrence of these diseases. The state of endothelial activation, otherwise known as endothelial dysfunction, occurs when reactive oxygen signalling predominates due to an uncoupled state of endothelial nitric oxide synthase (eNOS). This can be a physiological response to stimulation of the innate immune system or a pathophysiological response triggered by cardiovascular disease risk factors. The conventional wisdom is that the endothelium plays an important role in the initiation, progression and development of CVD and other non-communicable diseases. Consequently, the endothelium has remarkable relevance in clinical and public health practice as well as in health education, health promotion, and disease- and risk-factor prevention strategies. It also presents a plausible unifying hypothesis for the burden of CVD seen globally and in sub-Saharan Africa. Importantly, the heterogeneity in individual responses to metabolic, behavioural, and social drivers of CVD may stem from a complex interplay of these drivers with genomic, epigenetic and environmental factors that underpin eNOS uncoupling. Therefore, further biomedical research into the underlying genetic and other mechanisms of eNOS uncoupling may enlighten and shape strategies for addressing the

  7. Fractalkine expression induces endothelial progenitor cell lysis by natural killer cells.

    Directory of Open Access Journals (Sweden)

    Dilyana Todorova

    Full Text Available BACKGROUND: Circulating CD34(+ cells, a population that includes endothelial progenitors, participate in the maintenance of endothelial integrity. Better understanding of the mechanisms that regulate their survival is crucial to improve their regenerative activity in cardiovascular and renal diseases. Chemokine-receptor cross talk is critical in regulating cell homeostasis. We hypothesized that cell surface expression of the chemokine fractalkine (FKN could target progenitor cell injury by Natural Killer (NK cells, thereby limiting their availability for vascular repair. METHODOLOGY/PRINCIPAL FINDINGS: We show that CD34(+-derived Endothelial Colony Forming Cells (ECFC can express FKN in response to TNF-α and IFN-γ inflammatory cytokines and that FKN expression by ECFC stimulates NK cell adhesion, NK cell-mediated ECFC lysis and microparticles release in vitro. The specific involvement of membrane FKN in these processes was demonstrated using FKN-transfected ECFC and anti-FKN blocking antibody. FKN expression was also evidenced on circulating CD34(+ progenitor cells and was detected at higher frequency in kidney transplant recipients, when compared to healthy controls. The proportion of CD34(+ cells expressing FKN was identified as an independent variable inversely correlated to CD34(+ progenitor cell count. We further showed that treatment of CD34(+ circulating cells isolated from adult blood donors with transplant serum or TNF-α/IFN-γ can induce FKN expression. CONCLUSIONS: Our data highlights a novel mechanism by which FKN expression on CD34(+ progenitor cells may target their NK cell mediated killing and participate to their immune depletion in transplant recipients. Considering the numerous diseased contexts shown to promote FKN expression, our data identify FKN as a hallmark of altered progenitor cell homeostasis with potential implications in better evaluation of vascular repair in patients.

  8. Matrix production and organization by endothelial colony forming cells in mechanically strained engineered tissue constructs.

    Directory of Open Access Journals (Sweden)

    Nicky de Jonge

    Full Text Available AIMS: Tissue engineering is an innovative method to restore cardiovascular tissue function by implanting either an in vitro cultured tissue or a degradable, mechanically functional scaffold that gradually transforms into a living neo-tissue by recruiting tissue forming cells at the site of implantation. Circulating endothelial colony forming cells (ECFCs are capable of differentiating into endothelial cells as well as a mesenchymal ECM-producing phenotype, undergoing Endothelial-to-Mesenchymal-transition (EndoMT. We investigated the potential of ECFCs to produce and organize ECM under the influence of static and cyclic mechanical strain, as well as stimulation with transforming growth factor β1 (TGFβ1. METHODS AND RESULTS: A fibrin-based 3D tissue model was used to simulate neo-tissue formation. Extracellular matrix organization was monitored using confocal laser-scanning microscopy. ECFCs produced collagen and also elastin, but did not form an organized matrix, except when cultured with TGFβ1 under static strain. Here, collagen was aligned more parallel to the strain direction, similar to Human Vena Saphena Cell-seeded controls. Priming ECFC with TGFβ1 before exposing them to strain led to more homogenous matrix production. CONCLUSIONS: Biochemical and mechanical cues can induce extracellular matrix formation by ECFCs in tissue models that mimic early tissue formation. Our findings suggest that priming with bioactives may be required to optimize neo-tissue development with ECFCs and has important consequences for the timing of stimuli applied to scaffold designs for both in vitro and in situ cardiovascular tissue engineering. The results obtained with ECFCs differ from those obtained with other cell sources, such as vena saphena-derived myofibroblasts, underlining the need for experimental models like ours to test novel cell sources for cardiovascular tissue engineering.

  9. Chronic hypoxia promotes pulmonary artery endothelial cell proliferation through H2O2-induced 5-lipoxygenase.

    Directory of Open Access Journals (Sweden)

    Kristi M Porter

    Full Text Available Pulmonary Hypertension (PH is a progressive disorder characterized by endothelial dysfunction and proliferation. Hypoxia induces PH by increasing vascular remodeling. A potential mediator in hypoxia-induced PH development is arachidonate 5-Lipoxygenase (ALOX5. While ALOX5 metabolites have been shown to promote pulmonary vasoconstriction and endothelial cell proliferation, the contribution of ALOX5 to hypoxia-induced proliferation remains unknown. We hypothesize that hypoxia exposure stimulates HPAEC proliferation by increasing ALOX5 expression and activity. To test this, human pulmonary artery endothelial cells (HPAEC were cultured under normoxic (21% O2 or hypoxic (1% O2 conditions for 24-, 48-, or 72 hours. In a subset of cells, the ALOX5 inhibitor, zileuton, or the 5-lipoxygenase activating protein inhibitor, MK-886, was administered during hypoxia exposure. ALOX5 expression was measured by qRT-PCR and western blot and HPAEC proliferation was assessed. Our results demonstrate that 24 and 48 hours of hypoxia exposure have no effect on HPAEC proliferation or ALOX5 expression. Seventy two hours of hypoxia significantly increases HPAEC ALOX5 expression, hydrogen peroxide (H2O2 release, and HPAEC proliferation. We also demonstrate that targeted ALOX5 gene silencing or inhibition of the ALOX5 pathway by pharmacological blockade attenuates hypoxia-induced HPAEC proliferation. Furthermore, our findings indicate that hypoxia-induced increases in cell proliferation and ALOX5 expression are dependent on H2O2 production, as administration of the antioxidant PEG-catalase blocks these effects and addition of H2O2 to HPAEC promotes proliferation. Overall, these studies indicate that hypoxia exposure induces HPAEC proliferation by activating the ALOX5 pathway via the generation of H2O2.

  10. Verocytotoxin-induced apoptosis of human microvascular endothelial cells.

    Science.gov (United States)

    Pijpers, A H; van Setten, P A; van den Heuvel, L P; Assmann, K J; Dijkman, H B; Pennings, A H; Monnens, L A; van Hinsbergh, V W

    2001-04-01

    The pathogenesis of the epidemic form of hemolytic uremic syndrome is characterized by endothelial cell damage. In this study, the role of apoptosis in verocytotoxin (VT)-mediated endothelial cell death in human glomerular microvascular endothelial cells (GMVEC), human umbilical vein endothelial cells, and foreskin microvascular endothelial cells (FMVEC) was investigated. VT induced apoptosis in GMVEC and human umbilical vein endothelial cells when the cells were prestimulated with the inflammatory mediator tumor necrosis factor-alpha (TNF-alpha). FMVEC displayed strong binding of VT and high susceptibility to VT under basal conditions, which made them suitable for the study of VT-induced apoptosis without TNF-alpha interference. On the basis of functional (flow cytometry and immunofluorescence microscopy using FITC-conjugated annexin V and propidium iodide), morphologic (transmission electron microscopy), and molecular (agarose gel electrophoresis of cellular DNA fragments) criteria, it was documented that VT induced programmed cell death in microvascular endothelial cells in a dose- and time-dependent manner. Furthermore, whereas partial inhibition of protein synthesis by VT was associated with a considerable number of apoptotic cells, comparable inhibition of protein synthesis by cycloheximide was not. This suggests that additional pathways, independent of protein synthesis inhibition, may be involved in VT-mediated apoptosis in microvascular endothelial cells. Specific inhibition of caspases by Ac-Asp-Glu-Val-Asp-CHO, but not by Ac-Tyr-Val-Ala-Asp-CHO, was accompanied by inhibition of VT-induced apoptosis in FMVEC and TNF-alpha-treated GMVEC. These data indicate that VT can induce apoptosis in human microvascular endothelial cells.

  11. Differentiation state determines neural effects on microvascular endothelial cells

    International Nuclear Information System (INIS)

    Muffley, Lara A.; Pan, Shin-Chen; Smith, Andria N.; Ga, Maricar; Hocking, Anne M.; Gibran, Nicole S.

    2012-01-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: ► Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. ► Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. ► Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. ► Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell production of nitric oxide. ► Neural progenitor cells and dorsal root

  12. Analysis of Drug Effects on Primary Human Coronary Artery Endothelial Cells Activated by Serum Amyloid A

    Directory of Open Access Journals (Sweden)

    K. Lakota

    2018-01-01

    Full Text Available Background. RA patients have a higher incidence of cardiovascular diseases compared to the general population. Serum amyloid A (SAA is an acute-phase protein, upregulated in sera of RA patients. Aim. To determine the effects of medications on SAA-stimulated human coronary artery endothelial cells (HCAEC. Methods. HCAEC were preincubated for 2 h with medications from sterile ampules (dexamethasone, methotrexate, certolizumab pegol, and etanercept, dissolved in medium (captopril or DMSO (etoricoxib, rosiglitazone, meloxicam, fluvastatin, and diclofenac. Human recombinant apo-SAA was used to stimulate HCAEC at a final 1000 nM concentration for 24 hours. IL-6, IL-8, sVCAM-1, and PAI-1 were measured by ELISA. The number of viable cells was determined colorimetrically. Results. SAA-stimulated levels of released IL-6, IL-8, and sVCAM-1 from HCAEC were significantly attenuated by methotrexate, fluvastatin, and etoricoxib. Both certolizumab pegol and etanercept significantly decreased PAI-1 by an average of 43%. Rosiglitazone significantly inhibited sVCAM-1 by 58%. Conclusion. We observed marked influence of fluvastatin on lowering cytokine production in SAA-activated HCAEC. Methotrexate showed strong beneficial effects for lowering released Il-6, IL-8, and sVCAM-1. Interesting duality was observed for NSAIDs, with meloxicam exhibiting opposite-trend effects from diclofenac and etoricoxib. This represents unique insight into specific responsiveness of inflammatory-driven HCAEC relevant to atherosclerosis.

  13. Inhibition of Murine Pulmonary Microvascular Endothelial Cell Apoptosis Promotes Recovery of Barrier Function under Septic Conditions

    Directory of Open Access Journals (Sweden)

    Lefeng Wang

    2017-01-01

    Full Text Available Sepsis is characterized by injury of the pulmonary microvasculature and the pulmonary microvascular endothelial cells (PMVEC, leading to barrier dysfunction and acute respiratory distress syndrome (ARDS. Our recent work identified a strong correlation between PMVEC apoptosis and microvascular leak in septic mice in vivo, but the specific role of apoptosis in septic PMVEC barrier dysfunction remains unclear. Thus, we hypothesize that PMVEC apoptosis is likely required for PMVEC barrier dysfunction under septic conditions in vitro. Septic stimulation (mixture of tumour necrosis factor α, interleukin 1β, and interferon γ [cytomix] of isolated murine PMVEC resulted in a significant loss of barrier function as early as 4 h after stimulation, which persisted until 24 h. PMVEC apoptosis, as reflected by caspase activation, DNA fragmentation, and loss of membrane polarity, was first apparent at 8 h after cytomix. Pretreatment of PMVEC with the pan-caspase inhibitor Q-VD significantly decreased septic PMVEC apoptosis and was associated with reestablishment of PMVEC barrier function at 16 and 24 h after stimulation but had no effect on septic PMVEC barrier dysfunction over the first 8 h. Collectively, our data suggest that early septic murine PMVEC barrier dysfunction driven by proinflammatory cytokines is not mediated through apoptosis, but PMVEC apoptosis contributes to late septic PMVEC barrier dysfunction.

  14. ADAMTS1 inhibits lymphangiogenesis by attenuating phosphorylation of the lymphatic endothelial cell-specific VEGF receptor

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Junko; Takahashi, Katsuyuki; Ogawa, Hiroko; Asano, Keiichi; Faruk Hatipoglu, Omer; Zeynel Cilek, Mehmet; Obika, Masanari; Ohtsuki, Takashi [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); Hofmann, Matthias [Department of Dermatology, Venereology and Allergology, Goethe University, Frankfurt (Germany); Kusachi, Shozo [Department of Medical Technology, Okayama University Graduate School of Health Sciences, Okayama (Japan); Ninomiya, Yoshifumi [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); Hirohata, Satoshi, E-mail: hirohas@cc.okayama-u.ac.jp [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); International Center, Okayama University, Okayama (Japan)

    2014-05-01

    Angiogenesis and lymphangiogenesis play roles in malignant tumor progression, dissemination, and metastasis. ADAMTS1, a member of the matrix metalloproteinase family, is known to inhibit angiogenesis. Recombinant ADAMTS1 was shown to strongly inhibit angiogenesis. We investigated whether ADAMTS1 inhibited lymphangiogenesis in the present study. We examined cell proliferation and cell migration in normal human dermal lymphatic microvascular endothelial cells (HMVEC-dLy) transduced with or without adenoviral human ADAMTS1 gene therapy. We then examined the VEGFC/VEGFR3 signal transduction pathway in ADAMTS1-transduced HMVEC-dLy. Cell proliferation and tube formation in Matrigel were significantly lower with transduced ADAMTS1 than with control (non-transduced HMVEC-dLy). The phosphorylation of VEGFR3 was also attenuated by ADAMTS1 gene therapy in HMVEC-dLy. Immunoprecipitation assays revealed that ADAMTS1 formed a complex with VEGFC. Our results demonstrated that ADAMTS1 inhibited lymphangiogenesis in vitro. The data highlight the new function of ADAMTS1 in the regulation of lymphangiogenesis and the therapeutic potential of ADAMTS1 in cancer therapy. - Highlights: • ADAMTS1 significantly inhibited tube formation and cell proliferation in HMVEC-dLy. • Reduced lymph endothelial cell migration in ADAMTS1 transduced co-culture systems. • VEGFC-stimulated phosphorylation of VEGFR3 is attenuated by ADAMTS1. • Reduced phosphorylation of Akt and ERK1/2 in ADAMTS1 treated HMVEC-dLy. • ADAMTS1 binds directly to VEGFC.

  15. Anthocyanin prevents CD40-activated proinflammatory signaling in endothelial cells by regulating cholesterol distribution.

    Science.gov (United States)

    Xia, Min; Ling, Wenhua; Zhu, Huilian; Wang, Qing; Ma, Jing; Hou, Mengjun; Tang, Zhihong; Li, Lan; Ye, Qinyuan

    2007-03-01

    Intracellular tumor necrosis factor receptor-associated factors (TRAFs) translocation to lipid rafts is a key element in CD40-induced signaling. The purpose of this study was to investigate the influence of anthocyanin on CD40-mediated proinflammatory events in human endothelial cells and the underlying possible molecular mechanism. Treatment of endothelial cells with anthocyanin prevented from CD40-induced proinflammatory status, measured by production of IL-6, IL-8, and monocyte chemoattractant protein-1 through inhibiting CD40-induced nuclear factor-kappaB (NF-kappaB) activation. TRAF-2 played pivotal role in CD40-NF-kappaB pathway as TRAF-2 small interference RNA (siRNA) diminished CD40-induced NF-kappaB activation and inflammation. TRAF-2 overexpression increased CD40-mediated NF-kappaB activation. Moreover, TRAF-2 almost totally recruited to lipid rafts after stimulation by CD40 ligand and depletion of cholesterol diminished CD40-mediated NF-kappaB activation. Exposure to anthocyanin not only interrupted TRAF-2 recruitment to lipid rafts but also decreased cholesterol content in Triton X-100 insoluble lipid rafts. However, anthocyanin did not influence the interaction between CD40 ligand and CD40 receptor. Our findings suggest that anthocyanin protects from CD40-induced proinflammatory signaling by preventing TRAF-2 translocation to lipid rafts through regulation of cholesterol distribution, which thereby may represent a mechanism that would explain the anti-inflammatory response of anthocyanin.

  16. Mobilization of endothelial precursor cells: systemic vascular response to musculoskeletal trauma.

    LENUS (Irish Health Repository)

    Laing, A J

    2012-02-03

    Postnatal vasculogenesis, the process by which vascular committed bone marrow stem cells or endothelial precursor cells (EPC) migrate, differentiate, and incorporate into the nacent endothelium contributing to physiological and pathological neovascularization, has stimulated much interest. Its contribution to tumor nonvascularization, wound healing, and revascularization associated with skeletal and cardiac muscles ischaemia is established. We evaluated the mobilization of EPCs in response to musculoskeletal trauma. Blood from patients (n = 15) following AO type 42a1 closed diaphyseal tibial fractures was analyzed for CD34 and AC133 cell surface marker expression. Immunomagnetically enriched CD34+ mononuclear cell (MNC(CD34+)) populations were cultured and examined for phenotypic and functional vascular endothelial differentiation. Circulating MNC(CD34+) levels increased sevenfold by day 3 postinjury. Circulating MNC(AC133+) increased 2.5-fold. Enriched MNC(CD34+) populations from day 3 samples in culture exhibited cell cluster formation with sprouting spindles. These cells bound UEA-1 and incorporated fluorescent DiI-Ac-LDL intracellularily. Our findings suggest a systemic provascular response is initiated in response to musculoskeletal trauma. Its therapeutic manipulation may have implications for the potential enhancement of fracture healing.

  17. Disappearance of the angiogenic potential of endothelial cells caused by Argonaute2 knockdown

    International Nuclear Information System (INIS)

    Asai, Tomohiro; Suzuki, Yuko; Matsushita, Saori; Yonezawa, Sei; Yokota, Junichi; Katanasaka, Yasufumi; Ishida, Tatsuhiro; Dewa, Takehisa; Kiwada, Hiroshi; Nango, Mamoru; Oku, Naoto

    2008-01-01

    Argonaute2 (Ago2), a component protein of RNA-induced silencing complex, plays a central role in RNA interference. We focused on the involvement of Ago2 in angiogenesis. Human umbilical vein endothelial cells (HUVECs) stimulated with several growth factors such as vascular endothelial growth factor were used for angiogenesis assays. We applied polycation liposomes for transfection of small interfering RNA (siRNA) to determine the biological effects of siRNA for Ago2 (siAgo2) on HUVECs. The proliferation study indicated that siAgo2 significantly suppressed the growth of HUVECs compared with control siRNA. TUNEL staining showed a certain population of HUVECs treated with siAgo2 underwent apoptosis. Furthermore, the treatment with siAgo2 suppressed the tube formation of HUVECs and significantly reduced the length of the tubes. These present data demonstrate that siAgo2 inhibited indispensable events of angiogenesis in vitro. This is the first report suggesting that Ago2 is required for angiogenesis

  18. ADAMTS1 inhibits lymphangiogenesis by attenuating phosphorylation of the lymphatic endothelial cell-specific VEGF receptor

    International Nuclear Information System (INIS)

    Inagaki, Junko; Takahashi, Katsuyuki; Ogawa, Hiroko; Asano, Keiichi; Faruk Hatipoglu, Omer; Zeynel Cilek, Mehmet; Obika, Masanari; Ohtsuki, Takashi; Hofmann, Matthias; Kusachi, Shozo; Ninomiya, Yoshifumi; Hirohata, Satoshi

    2014-01-01

    Angiogenesis and lymphangiogenesis play roles in malignant tumor progression, dissemination, and metastasis. ADAMTS1, a member of the matrix metalloproteinase family, is known to inhibit angiogenesis. Recombinant ADAMTS1 was shown to strongly inhibit angiogenesis. We investigated whether ADAMTS1 inhibited lymphangiogenesis in the present study. We examined cell proliferation and cell migration in normal human dermal lymphatic microvascular endothelial cells (HMVEC-dLy) transduced with or without adenoviral human ADAMTS1 gene therapy. We then examined the VEGFC/VEGFR3 signal transduction pathway in ADAMTS1-transduced HMVEC-dLy. Cell proliferation and tube formation in Matrigel were significantly lower with transduced ADAMTS1 than with control (non-transduced HMVEC-dLy). The phosphorylation of VEGFR3 was also attenuated by ADAMTS1 gene therapy in HMVEC-dLy. Immunoprecipitation assays revealed that ADAMTS1 formed a complex with VEGFC. Our results demonstrated that ADAMTS1 inhibited lymphangiogenesis in vitro. The data highlight the new function of ADAMTS1 in the regulation of lymphangiogenesis and the therapeutic potential of ADAMTS1 in cancer therapy. - Highlights: • ADAMTS1 significantly inhibited tube formation and cell proliferation in HMVEC-dLy. • Reduced lymph endothelial cell migration in ADAMTS1 transduced co-culture systems. • VEGFC-stimulated phosphorylation of VEGFR3 is attenuated by ADAMTS1. • Reduced phosphorylation of Akt and ERK1/2 in ADAMTS1 treated HMVEC-dLy. • ADAMTS1 binds directly to VEGFC

  19. Protein Kinases Possibly Mediate Hypergravity-Induced Changes in F-Actin Expression by Endothelial Cells

    Science.gov (United States)

    Love, Felisha D.; Melhado, Caroline D.; Bosah, Francis N.; Harris-Hooker, Sandra A.; Sanford, Gary L.

    1998-01-01

    Basic cellular functions such as electrolyte concentration, cell growth rate, glucose utilization, bone formation, response to growth stimulation, and exocytosis are modified in microgravity. These studies indicate that microgravity affects a number of physiological systems and included in this are cell signaling mechanisms. Rijken and coworkers performed growth factor studies that showed PKC signaling and actin microfilament organization appears to be sensitive to microgravity, suggesting that the inhibition of signal transduction by microgravity may be related to alterations in actin microfilament organization. However, similar studies have not been done for vascular cells. Vascular endothelial cells play critical roles in providing nutrients to organ and tissues and in wound repair. The major deterrent to ground-based microgravity studies is that it is impossible to achieved true microgravity for longer than a few minutes on earth. Hence, it has not been possible to conduct prolonged microgravity studies except for two models that simulate certain aspects of microgravity. However, hypergravity is quite easily achieved. Several researchers have shown that hypergravity will increase the proliferation of several different cell lines while decreasing cell motility and slowing liver regeneration following partial hepatectomy, These studies indicate the hypergravity also alters the behavior of most cells. Several investigators have shown that hypergravity affects the activation of several protein kinases (PKs) in cells. In this study, we investigated whether hypergravity alters the expression of f-actin by bovine aortic endothelial cells (BAECs) and the role of PK's (calmodulin 11 dependent, PKA and PKC) as mediators of these effects.

  20. Tumor Vesicle—Associated CD147 Modulates the Angiogenic Capability of Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Danilo Millimaggi

    2007-04-01

    Full Text Available Matrix metalloproteinase (MMP degradation of extracellular matrix is thought to play an important role in invasion, angiogenesis, tumor growth, and metastasis. Several studies have demonstrated that CD147/ extracellular MMP inducer, a membrane-spanning molecule highly expressed in tumor cells, may be involved in the progression of malignancies by regulating expression of MMP in peritumoral stromal cells. In the present study we show that CD147 is expressed in microvesicles derived from epithelial ovarian cancer cells and that CD147-positive vesicles may promote an angiogenic phenotype in endothelial cells in vitro. Vesicles shed by human ovarian carcinoma cell lines OVCAR3, SKOV3, and A2780 expressed different levels of CD147 and stimulated proangiogenic activities of human umbilical vein endothelial cells (HUVECs in a CD147-dependent fashion (OVCAR3 > SKOV3 > A2780. Moreover, vesicles shed by ovarian carcinoma cell line CABA I with low CD147 expression had no significant effect on the development of angiogenic phenotype in HUVECs. The treatment of OVCAR3 cells with small interfering RNA against CD147 suppressed the angiogenic potential of OVCAR3-derived microvesicles. However, transfection of CD147 cDNA into the CABA I cell line enabled CABA I-derived vesicles to induce angiogenesis and to promote MMP genes expression in HUVECs. We therefore conclude that vesicles shed by ovarian cancer cells may induce proangiogenic activities of HUVECs by a CD147-mediated mechanism.

  1. Mechanisms of pertussis toxin-induced barrier dysfunction in bovine pulmonary artery endothelial cell monolayers.

    Science.gov (United States)

    Patterson, C E; Stasek, J E; Schaphorst, K L; Davis, H W; Garcia, J G

    1995-06-01

    We have previously characterized several G proteins in endothelial cells (EC) as substrates for the ADP-ribosyltransferase activity of both pertussis (PT) and cholera toxin and described the modulation of key EC physiological responses, including gap formation and barrier function, by these toxins. In this study, we investigated the mechanisms involved in PT-mediated regulation of bovine pulmonary artery endothelial cells barrier function. PT caused a dose-dependent increase in albumin transfer, dependent upon action of the holotoxin, since neither the heat-inactivated PT, the isolated oligomer, nor the protomer induced EC permeability. PT-induced gap formation and barrier dysfunction were additive to either thrombin- or thrombin receptor-activating peptide-induced permeability, suggesting that thrombin and PT utilize distinct mechanisms. PT did not result in Ca2+ mobilization or alter either basal or thrombin-induced myosin light chain phosphorylation. However, PT stimulated protein kinase C (PKC) activation, and both PKC downregulation and PKC inhibition attenuated PT-induced permeability, indicating that PKC activity is involved in PT-induced barrier dysfunction. Like thrombin-induced permeability, the PT effect was blocked by prior increases in adenosine 3',5'-cyclic monophosphate. Thus PT-catalyzed ADP-ribosylation of a G protein (possibly other than Gi) may regulate cytoskeletal protein interactions, leading to EC barrier dysfunction.

  2. LR-90 prevents methylglyoxal-induced oxidative stress and apoptosis in human endothelial cells

    Science.gov (United States)

    Figarola, James L.; Singhal, Jyotsana; Rahbar, Samuel; Awasthi, Sanjay

    2014-01-01

    Methylglyoxal (MGO) is a highly reactive dicarbonyl compound known to induce cellular injury and cytoxicity, including apoptosis in vascular cells. Vascular endothelial cell apoptosis has been implicated in the pathophysiology and progression of atherosclerosis. We investigated whether the advanced glycation end-product inhibitor LR-90 could prevent MGO-induced apoptosis in human umbilical vascular endothelial cells (HUVECs). HUVECs were pre-treated with LR-90 and then stimulated with MGO. Cell morphology, cytotoxicity and apoptosis were evaluated by light microscopy, MTT assay, and Annexin V-FITC and propidium iodide double staining, respectively. Levels of Bax, Bcl-2, cytochrome c, mitogen-activated protein kinases (MAPKs) and caspase activities were assessed by Western blotting. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were measured with fluorescent probes. LR-90 dose-dependently prevented MGO-associated HUVEC cytotoxicity and apoptotic biochemical changes such as loss of MMP, increased Bax/Bcl-2 protein ratio, mitochondrial cytochrome c release and activation of caspase-3 and 9. Additionally, LR-90 blocked intracellular ROS formation and MAPK (p44/p42, p38, JNK) activation, though the latter seem to be not directly involved in MGO-induced HUVEC apoptosis. LR-90 prevents MGO-induced HUVEC apoptosis by inhibiting ROS and associated mitochondrial-dependent apoptotic signaling cascades, suggesting that LR-90 possess cytoprotective ability which could be beneficial in prevention of diabetic related-atherosclerosis. PMID:24615331

  3. Inhibition of prostaglandin synthesis after metabolism of menadione by cultured porcine endothelial cells

    International Nuclear Information System (INIS)

    Barchowsky, A.; Tabrizi, K.; Kent, R.S.; Whorton, A.R.

    1989-01-01

    We have examined the effects of menadione on porcine aortic endothelial cell prostaglandin synthesis. Addition of 1-20 microM menadione caused a dose- and time-dependent inhibition of stimulated prostaglandin synthesis with an IC50 of 5 microM at 15 min. Concentrations greater than 100 microM menadione were necessary to increase 51 Cr release from prelabeled cells. Recovery of enzyme inactivated by menadione required a 6-h incubation in 1% serum. In a microsomal preparation, menadione was shown to have no direct effect on conversion of arachidonic acid to prostaglandins. In intact cells menadione caused only a 40% inhibition of the conversion of PGH2 to prostacyclin. Enzymes involved in the incorporation and the release of arachidonic acid were not affected by menadione (20 microM, 15 min). Menadione undergoes oxidation/reduction reactions in intact cells leading to partial reduction of oxygen-forming, reactive oxygen species. In our cells menadione was found to increase KCN-resistant oxygen consumption. Further, an increased accumulation of H 2 O 2 was observed with a time course consistent with menadione-induced inhibition of prostaglandin synthesis. We conclude that menadione at sublethal doses caused inhibition of prostaglandin synthesis. The mechanism involves inactivation of PGH2 synthase by a reactive species resulting from metabolism of menadione by endothelial cells

  4. Hepatocellular hypoxia-induced vascular endothelial growth factor expression and angiogenesis in experimental biliary cirrhosis.

    Science.gov (United States)

    Rosmorduc, O; Wendum, D; Corpechot, C; Galy, B; Sebbagh, N; Raleigh, J; Housset, C; Poupon, R

    1999-10-01

    We tested the potential role of vascular endothelial growth factor (VEGF) and of fibroblast growth factor-2 (FGF-2) in the angiogenesis associated with experimental liver fibrogenesis induced by common bile duct ligation in Sprague-Dawley rats. In normal rats, VEGF and FGF-2 immunoreactivities were restricted to less than 3% of hepatocytes. One week after bile duct ligation, hypoxia was demonstrated by the immunodetection of pimonidazole adducts unevenly distributed throughout the lobule. After 2 weeks, hypoxia and VEGF expression were detected in >95% of hepatocytes and coexisted with an increase in periportal vascular endothelial cell proliferation, as ascertained by Ki67 immunolabeling. Subsequently, at 3 weeks the density of von Willebrand-labeled vascular section in fibrotic areas significantly increased. Semiquantitative reverse transcription polymerase chain reaction showed that VEGF(120) and VEGF(164) transcripts, that correspond to secreted isoforms, increased within 2 weeks, while VEGF(188) transcripts remained unchanged. FGF-2 mainly consisting of a 22-kd isoform, according to Western blot, was identified by immunohistochemistry in 49% and 100% of hepatocytes at 3 and 7 weeks, respectively. Our data provide evidence that in biliary-type liver fibrogenesis, angiogenesis is stimulated primarily by VEGF in response to hepatocellular hypoxia while FGF-2 likely contributes to the maintenance of angiogenesis at later stages.

  5. Nutraceutical augmentation of circulating endothelial progenitor cells and hematopoietic stem cells in human subjects.

    Science.gov (United States)

    Mikirova, Nina A; Jackson, James A; Hunninghake, Ron; Kenyon, Julian; Chan, Kyle W H; Swindlehurst, Cathy A; Minev, Boris; Patel, Amit N; Murphy, Michael P; Smith, Leonard; Ramos, Famela; Ichim, Thomas E; Riordan, Neil H

    2010-04-08

    The medical significance of circulating endothelial or hematopoietic progenitors is becoming increasing recognized. While therapeutic augmentation of circulating progenitor cells using G-CSF has resulted in promising preclinical and early clinical data for several degenerative conditions, this approach is limited by cost and inability to perform chronic administration. Stem-Kine is a food supplement that was previously reported to augment circulating EPC in a pilot study. Here we report a trial in 18 healthy volunteers administered Stem-Kine twice daily for a 2 week period. Significant increases in circulating CD133 and CD34 cells were observed at days 1, 2, 7, and 14 subsequent to initiation of administration, which correlated with increased hematopoietic progenitors as detected by the HALO assay. Augmentation of EPC numbers in circulation was detected by KDR-1/CD34 staining and colony forming assays. These data suggest Stem-Kine supplementation may be useful as a stimulator of reparative processes associated with mobilization of hematopoietic and endothelial progenitors.

  6. Ornithine decarboxylase and extracellular polyamines regulate microvascular sprouting and actin cytoskeleton dynamics in endothelial cells

    International Nuclear Information System (INIS)

    Kucharzewska, Paulina; Welch, Johanna E.; Svensson, Katrin J.; Belting, Mattias

    2010-01-01

    The polyamines are essential for cancer cell proliferation during tumorigenesis. Targeted inhibition of ornithine decarboxylase (ODC), i.e. a key enzyme of polyamine biosynthesis, by α-difluoromethylornithine (DFMO) has shown anti-neoplastic activity in various experimental models. This activity has mainly been attributed to the anti-proliferative effect of DFMO in cancer cells. Here, we provide evidence that unperturbed ODC activity is a requirement for proper microvessel sprouting ex vivo as well as the migration of primary human endothelial cells. DFMO-mediated ODC inhibition was reversed by extracellular polyamine supplementation, showing that anti-angiogenic effects of DFMO were specifically related to polyamine levels. ODC inhibition was associated with an abnormal morphology of the actin cytoskeleton during cell spreading and migration. Moreover, our data suggest that de-regulated actin cytoskeleton dynamics in DFMO treated endothelial cells may be related to constitutive activation of the small GTPase CDC42, i.e. a well-known regulator of cell motility and actin cytoskeleton remodeling. These insights into the potential role of polyamines in angiogenesis should stimulate further studies testing the combined anti-tumor effect of polyamine inhibition and established anti-angiogenic therapies in vivo.

  7. Nutraceutical augmentation of circulating endothelial progenitor cells and hematopoietic stem cells in human subjects

    Directory of Open Access Journals (Sweden)

    Minev Boris

    2010-04-01

    Full Text Available Abstract The medical significance of circulating endothelial or hematopoietic progenitors is becoming increasing recognized. While therapeutic augmentation of circulating progenitor cells using G-CSF has resulted in promising preclinical and early clinical data for several degenerative conditions, this approach is limited by cost and inability to perform chronic administration. Stem-Kine is a food supplement that was previously reported to augment circulating EPC in a pilot study. Here we report a trial in 18 healthy volunteers administered Stem-Kine twice daily for a 2 week period. Significant increases in circulating CD133 and CD34 cells were observed at days 1, 2, 7, and 14 subsequent to initiation of administration, which correlated with increased hematopoietic progenitors as detected by the HALO assay. Augmentation of EPC numbers in circulation was detected by KDR-1/CD34 staining and colony forming assays. These data suggest Stem-Kine supplementation may be useful as a stimulator of reparative processes associated with mobilization of hematopoietic and endothelial progenitors.

  8. Role of vascular endothelial growth factor and other growth factors in post-stroke recovery

    Directory of Open Access Journals (Sweden)

    Tanu Talwar

    2014-01-01

    Full Text Available Stroke is a major health problem world-wide and its burden has been rising in last few decades. Until now tissue plasminogen activator is only approved treatment for stroke. Angiogenesis plays a vital role for striatal neurogenesis after stroke. Administration of various growth factors in an early post ischemic phase, stimulate both angiogenesis and neurogenesis and lead to improved functional recovery after stroke. However vascular endothelial growth factors (VEGF is the most potent angiogenic factor for neurovascularization and neurogenesis in ischemic injury can be modulated in different ways and thus can be used as therapy in stroke. In response to the ischemic injury VEGF is released by endothelial cells through natural mechanism and leads to angiogenesis and vascularization. This release can also be up regulated by exogenous administration of Mesenchymal stem cells, by various physical therapy regimes and electroacupuncture, which further potentiate the efficacy of VEGF as therapy in post stroke recovery. Recent published literature was searched using PubMed and Google for the article reporting on methods of up regulation of VEGF and therapeutic potential of growth factors in stroke.

  9. Inhibition of endothelial activation: a new way to treat cerebral malaria?

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available BACKGROUND: Malaria is still a major public health problem, partly because the pathogenesis of its major complication, cerebral malaria (CM, remains incompletely understood. However tumor necrosis factor (TNF is thought to play a key role in the development of this neurological syndrome, as well as lymphotoxin alpha (LT. METHODS AND FINDINGS: Using an in vitro model of CM based on human brain-derived endothelial cells (HBEC-5i, we demonstrate the anti-inflammatory effect of LMP-420, a 2-NH2-6-Cl-9-[(5-dihydroxyboryl-pentyl] purine that is a transcriptional inhibitor of TNF. When added before or concomitantly to TNF, LMP-420 inhibits endothelial cell (EC activation, i.e., the up-regulation of both ICAM-1 and VCAM-1 on HBEC-5i surfaces. Subsequently, LMP-420 abolishes the cytoadherence of ICAM-1-specific Plasmodium falciparum-parasitized red blood cells on these EC. Identical but weaker effects are observed when LMP-420 is added with LT. LMP-420 also causes a dramatic reduction of HBEC-5i vesiculation induced by TNF or LT stimulation, as assessed by microparticle release. CONCLUSION: These data provide evidence for a strong in vitro anti-inflammatory effect of LMP-420 and suggest that targeting host cell pathogenic mechanisms might provide a new therapeutic approach to improving the outcome of CM patients.

  10. Descemet Stripping Automated Endothelial Keratoplasty for Endothelial Dysfunction in Xeroderma Pigmentosum: A Clinicopathological Correlation and Review of Literature.

    Science.gov (United States)

    Vira, Divya; Fernandes, Merle; Mittal, Ruchi

    2016-07-01

    Xeroderma pigmentosum (XP) mainly affects the ocular surface; however, endothelial damage may also occur. We would like to report changes in the endothelial-Descemet layer and review the literature on similar findings in patients with XP, including the role of Descemet stripping automated endothelial keratoplasty (DSAEK) in the management of a 21-year-old man who presented with nonresolving corneal edema in the right eye after excision biopsy for conjunctival intraepithelial neoplasia. His best-corrected visual acuity (BCVA) was 20/200 in the right eye and 20/20 in the left eye. On general examination, there was patchy hyperpigmentation of the exposed areas of skin suggestive of XP. On examination of the right eye, there was stromal edema involving the exposed half of cornea. The left eye appeared normal. Pachymetry readings were 860 and 600 μm in the right and left eye, respectively. Descemet stripping automated endothelial keratoplasty was performed for endothelial dysfunction and the stripped endothelium, and Descemet membrane (DM) was sent for histopathologic evaluation. Postoperatively, the donor lenticule was well apposed and the overlying stromal edema resolved. The patient achieved a BCVA of 20/30 in the right eye without progression of corneal scarring at 1-year follow-up. In the meanwhile, however, the left eye developed corneal edema. Histopathology revealed gross attenuation of endothelial cells with uniform thickness of the DM. Corneal endothelial dysfunction in XP is amenable to treatment with DSAEK.

  11. Antiangiogenic properties of cafestol, a coffee diterpene, in human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Wang, Shuaiyu; Yoon, Yeo Cho; Sung, Mi-Jeong; Hur, Haeng-Jeon; Park, Jae-Ho

    2012-01-01

    Highlights: ► Cafestol inhibits tube formation and migration of VEGF-stimulated HUVEC. ► Cafestol inhibits phosphorylation of FAK and Akt. ► Cafestol decreases NO production. -- Abstract: As angiogenesis plays important roles in tumor growth and metastasis, searching for antiangiogenic compounds is a promising tactic for treating cancers. Cafestol, a diterpene found mainly in unfiltered coffee, provides benefit through varied biological activity, including antitumorigenic, antioxidative, and anti-inflammatory effects. This study aimed to investigate the effects of cafestol on angiogenesis and to uncover the associated mechanism. We show that cafestol inhibits angiogenesis of human umbilical vascular endothelial cells. This inhibition affects the following specific steps of the angiogenic process: proliferation, migration, and tube formation. The inhibitory effects of cafestol are accompanied by decreasing phosphorylation of FAK and Akt and by a decrease in nitric oxide production. Overall, cafestol inhibits angiogenesis by affecting the angiogenic signaling pathway.

  12. Heterodimerization with vascular endothelial growth factor receptor-2 (VEGFR-2) is necessary for VEGFR-3 activity

    International Nuclear Information System (INIS)

    Alam, Antoine; Herault, Jean-Pascal; Barron, Pauline; Favier, Benoit; Fons, Pierre; Delesque-Touchard, Nathalie; Senegas, Isabelle; Laboudie, Patricia; Bonnin, Jacques; Cassan, Cecile; Savi, Pierre; Ruggeri, Bruce; Carmeliet, Peter; Bono, Francoise; Herbert, Jean-Marc

    2004-01-01

    VEGFR-3 is essential for vascular development and maintenance of lymphatic vessel's integrity. Little is known about its cooperative effect with other receptors of the same family. Contrary to VEGFR-2, stimulation of VEGFR-3 by VEGF-C and -D failed to enhance its phosphorylation either in HEK293T or in PAE cells. These ligands were unable to induce angiogenesis of PAEC expressing VEGFR-3 alone. In the presence of VEGFR-2, VEGF-C and -D induced heterodimerization of VEGFR-3 with VEGFR-2. This heterodimerization was associated with enhanced VEGFR-3 phosphorylation and subsequent cellular responses as evidenced by the formation of capillary-like structures in PAE cells and proliferation of primary human endothelial cells expressing both receptors. Taken together, these results show for the first time that VEGFR-3 needs to be associated to VEGFR-2 to induce ligand-dependent cellular responses

  13. Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance

    International Nuclear Information System (INIS)

    Beckman, J.S.; Minor, R.L. Jr.; White, C.W.; Repine, J.E.; Rosen, G.M.; Freeman, B.A.

    1988-01-01

    Covalent conjugation of superoxide dismutase and catalase with polyethylene glycol (PEG) increases the circulatory half-lives of these enzymes from 125 I-PEG-catalase or 125 I-PEG-superoxide dismutase produced a linear, concentration-dependent increase in cellular enzyme activity and radioactivity. Fluorescently labeled PEG-superoxide dismutase incubated with endothelial cells showed a vesicular localization. Mechanical injury to cell monolayers, which is known to stimulate endocytosis, further increased the uptake of fluorescent PEG-superoxide dismutase. Addition of PEG and PEG-conjugated enzymes perturbed the spin-label binding environment, indicative of producing an increase in plasma membrane fluidity. Thus, PEG conjugation to superoxide dismutase and catalase enhances cell association of these enzymes in a manner which increases cellular enzyme activities and provides prolonged protection from partially reduced oxygen species

  14. [Transcranial magnetic stimulation and motor cortex stimulation in neuropathic pain].

    Science.gov (United States)

    Mylius, V; Ayache, S S; Teepker, M; Kappus, C; Kolodziej, M; Rosenow, F; Nimsky, C; Oertel, W H; Lefaucheur, J P

    2012-12-01

    Non-invasive and invasive cortical stimulation allows the modulation of therapy-refractory neuropathic pain. High-frequency repetitive transcranial magnetic stimulation (rTMS) of the contralateral motor cortex yields therapeutic effects at short-term and predicts the benefits of epidural motor cortex stimulation (MCS). The present article summarizes the findings on application, mechanisms and therapeutic effects of cortical stimulation in neuropathic pain.

  15. Bradykinin stimulation of nitric oxide production is not sufficient for gamma-globin induction

    Directory of Open Access Journals (Sweden)

    Čokić Vladan P.

    2014-01-01

    Full Text Available Introduction. Hydroxycarbamide, used in therapy of hemoglobinopathies, enhances nitric oxide (NO production both in primary human umbilical vein endothelial cells (HUVECs and human bone marrow endothelial cell line (TrHBMEC. Moreover, NO increases γ-globin and fetal hemoglobin levels in human erythroid progenitors. Objective. In order to find out whether simple physiologic stimulation of NO production by components of hematopoietic microenvironment can increase γ-globin gene expression, the effects of NO-inducer bradykinin were examined in endothelial cells. Methods. The study was performed in co-cultures of human erythroid progenitors, TrHBMEC and HUVECs by ozone-based chemiluminescent determination of NO and real-time quantitative RT-PCR. Results. In accordance with previous reports, the endogenous factor bradykinin increased endothelial cell production of NO in a dose- and time-dependent manner (0.1-0.6 μM up to 30 minutes. This induction of NO in HUVECs and TrHBMEC by bradykinin was blocked by competitive inhibitors of NO synthase (NOS, demonstrating NOS-dependence. It has been shown that bradykinin significantly reduced endothelial NOS (eNOS mRNA level and eNOS/Я-actin ratio in HUVEC (by twofold. In addition, bradykinin failed to increase γ-globin mRNA expression in erythroid progenitors only, as well as in co-culture studies of erythroid progenitors with TrHBMEC and HUVEC after 24 hours of treatment. Furthermore, bradykinin did not induce γ/β globin ratio in erythroid progenitors in co-cultures with HUVEC. Conclusion. Bradykinin mediated eNOS activation leads to short time and low NO production in endothelial cells, insufficient to induce γ-globin gene expression. These results emphasized the significance of elevated and extended NO production in augmentation of γ-globin gene expression. [Projekat Ministarstva nauke Republike Srbije, br. 175053

  16. Vascular endothelial growth factor receptor-1 mediates migration of human colorectal carcinoma cells by activation of Src family kinases

    Science.gov (United States)

    Lesslie, D P; Summy, J M; Parikh, N U; Fan, F; Trevino, J G; Sawyer, T K; Metcalf, C A; Shakespeare, W C; Hicklin, D J; Ellis, L M; Gallick, G E

    2006-01-01

    Vascular endothelial growth factor (VEGF) is the predominant pro-angiogenic cytokine in human malignancy, and its expression correlates with disease recurrence and poor outcomes in patients with colorectal cancer. Recently, expression of vascular endothelial growth factor receptors (VEGFRs) has been observed on tumours of epithelial origin, including those arising in the colon, but the molecular mechanisms governing potential VEGF-driven biologic functioning in these tumours are not well characterised. In this report, we investigated the role of Src family kinases (SFKs) in VEGF-mediated signalling in human colorectal carcinoma (CRC) cell lines. Vascular endothelial growth factor specifically activated SFKs in HT29 and KM12L4 CRC cell lines. Further, VEGF stimulation resulted in enhanced cellular migration, which was effectively blocked by pharmacologic inhibition of VEGFR-1 or Src kinase. Correspondingly, migration studies using siRNA clones with reduced Src expression confirmed the requirement for Src in VEGF-induced migration in these cells. Furthermore, VEGF treatment enhanced VEGFR-1/SFK complex formation and increased tyrosine phosphorylation of focal adhesion kinase, p130 cas and paxillin. Finally, we demonstrate that VEGF-induced migration is not due, at least in part, to VEGF acting as a mitogen. These results suggest that VEGFR-1 promotes migration of tumour cells through a Src-dependent pathway linked to activation of focal adhesion components that regulate this process. PMID:16685275

  17. Downregulation of Endogenous Hydrogen Sulfide Pathway Is Involved in Mitochondrion-Related Endothelial Cell Apoptosis Induced by High Salt

    Directory of Open Access Journals (Sweden)

    Yanfang Zong

    2015-01-01

    Full Text Available Background. The study aimed to investigate whether endogenous H2S pathway was involved in high-salt-stimulated mitochondria-related vascular endothelial cell (VEC apoptosis. Methods. Cultured human umbilical vein endothelial cells (HUVECs were used in the study. H2S content in the supernatant was detected. Western blot was used to detect expression of cystathionine gamma-lyase (CSE, cleaved-caspase-3, and mitochondrial and cytosolic cytochrome c (cytc. Fluorescent probes were used to quantitatively detect superoxide anion generation and measure the in situ superoxide anion generation in HUVEC. Mitochondrial membrane pore opening, mitochondrial membrane potential, and caspase-9 activities were measured. The cell apoptosis was detected by cell death ELISA and TdT-mediated dUTP nick end labeling (TUNEL methods. Results. High-salt treatment downregulated the endogenous VEC H2S/CSE pathway, in association with increased generation of oxygen free radicals, decreased mitochondrial membrane potential, enhanced the opening of mitochondrial membrane permeability transition pore and leakage of mitochondrial cytc, activated cytoplasmic caspase-9 and caspase-3 and subsequently induced VEC apoptosis. However, supplementation of H2S donor markedly inhibited VEC oxidative stress and mitochondria-related VEC apoptosis induced by high salt. Conclusion. H2S/CSE pathway is an important endogenous defensive system in endothelial cells antagonizing high-salt insult. The protective mechanisms for VEC damage might involve inhibiting oxidative stress and protecting mitochondrial injury.

  18. VEGF selectively induces Down syndrome critical region 1 gene expression in endothelial cells: a mechanism for feedback regulation of angiogenesis?

    International Nuclear Information System (INIS)

    Yao, Y.-G; Duh, Elia J.

    2004-01-01

    The Down syndrome critical region 1 (DSCR1) gene (also known as MCIP1, Adapt78) encodes a regulatory protein that binds to calcineurin catalytic A subunit and acts as a regulator of the calcineurin-mediated signaling pathway. We show in this study t