WorldWideScience

Sample records for vegetative cover types

  1. Surrounding land cover types as predictors of palustrine wetland vegetation quality in conterminous USA

    Science.gov (United States)

    Stapanian, Martin A.; Gara, Brian; Schumacher, William

    2018-01-01

    The loss of wetland habitats and their often-unique biological communities is a major environmental concern. We examined vegetation data obtained from 380 wetlands sampled in a statistical survey of wetlands in the USA. Our goal was to identify which surrounding land cover types best predict two indices of vegetation quality in wetlands at the regional scale. We considered palustrine wetlands in four regions (Coastal Plains, North Central East, Interior Plains, and West) in which the dominant vegetation was emergent, forested, or scrub-shrub. For each wetland, we calculated weighted proportions of eight land cover types surrounding the area in which vegetation was assessed, in four zones radiating from the edge of the assessment area to 2 km. Using Akaike's Information Criterion, we determined the best 1-, 2- and 3-predictor models of the two indices, using the weighted proportions of the land cover types as potential predictors. Mean values of the two indices were generally higher in the North Central East and Coastal Plains than the other regions for forested and emergent wetlands. In nearly all cases, the best predictors of the indices were not the dominant surrounding land cover types. Overall, proportions of forest (positive effect) and agriculture (negative effect) surrounding the assessment area were the best predictors of the two indices. One or both of these variables were included as predictors in 65 of the 72 models supported by the data. Wetlands surrounding the assessment area had a positive effect on the indices, and ranked third (33%) among the predictors included in supported models. Development had a negative effect on the indices and was included in only 28% of supported models. These results can be used to develop regional management plans for wetlands, such as creating forest buffers around wetlands, or to conserve zones between wetlands to increase habitat connectivity.

  2. Land Use and Land Cover - LAND_COVER_PRESETTLEMENT_IDNR_IN: Generalized Presettlement Vegetation Types of Indiana, Circa 1820 (Indiana Department of Natural Resources, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — LAND_COVER_PRESETTLEMENT_IDNR_IN.SHP is a polygon shapefile showing generalized presettlement vegetation types of Indiana, circa 1820. The work was based on original...

  3. Special study on vegetative covers

    International Nuclear Information System (INIS)

    1988-11-01

    This report describes the findings of a special study on the use of vegetative covers to stabilize tailings piles for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The principal rationale for using plants would be to establish a dynamic system for controlling water balance. Specifically, vegetation would be used to intercept and transpire precipitation to the atmosphere, rather than allowing water to drain into the tailings and mobilize contaminants. This would facilitate compliance with groundwater standards proposed for the UMTRA Project by the Environmental Protection Agency. The goals of the study were to evaluate the feasibility of using vegetative covers on UMTRA Project piles, define the advantages and disadvantages of vegetative covers, and develop general guidelines for their use when such use seems reasonable. The principal method for the study was to analyze and apply to the UMTRA Project the results of research programs on vegetative covers at other US Department of Energy (DOE) waste management facilities. The study also relied upon observations made of existing stabilized piles at UMTRA Project sites where natural vegetation is growing on the rock-covered surfaces. Water balance and erosion models were also used to quantify the long-term performance of vegetative covers planned for the topslopes of stabilized piles at Grand Junction and Durango, Colorado, two UMTRA Project sites where the decision was made during the course of this special study to use vegetative covers. Elements in the design and construction of the vegetative covers at these two sites are discussed in the report, with explanations of the differing features that reflect differing environmental conditions. 28 refs., 18 figs., 9 tabs

  4. ISLSCP II Potential Natural Vegetation Cover

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set was developed to describe the state of the global land cover in terms of 15 major vegetation types, plus water, before alteration by humans....

  5. Normalized difference vegetation index (ndvi) analysis for land cover types using landsat 8 oli in besitang watershed, Indonesia

    Science.gov (United States)

    Zaitunah, A.; Samsuri; Ahmad, A. G.; Safitri, R. A.

    2018-03-01

    Watershed is an ecosystem area confined by topography and has function as a catcher, storage, and supplier of water, sediments, pollutants and nutrients in the river system and exit through a single outlet. Various activities around watershed areas of Besitang have changed the land cover and vegetation index (NDVI) that exist in the region. In order to detect changes in land cover and NDVI quickly and accurately, we used remote sensing technology and geographic information systems (GIS). The study aimed to assess changes in land cover and vegetation density (NDVI) between 2005 and 2015, as well as obtaining the density of vegetation (NDVI) on each of the land cover of 2005 and 2015. The research showed the extensive of forest area of 949.65 Ha and a decline of mangrove forest area covering an area of 2,884.06 Ha. The highest vegetation density reduced 39,714.58 Ha, and rather dense increased 24,410.72 Ha between 2005 and 2015. The land cover that have the highest NDVI value range with very dense vegetation density class is the primary dry forest (0.804 to 0.876), followed by secondary dry forest (0.737 to 0.804) for 2015. In 2015 the land cover has NDVI value range the primary dry forest (0.513 to 0.57), then secondary dry forest (0.456 to 0.513) with dense vegetation density class

  6. Contrasting Convective Flux Gradients in the U.S. Corn Belt as a Result of Vegetation Land Cover Type

    Science.gov (United States)

    Hiestand, M.

    2017-12-01

    Phenological differences between extensive croplands and remnant forests in the U.S. Corn Belt have been suggested as enhancing spatial gradients of latent and sensible heat fluxes that contribute to the distribution and amounts of convective rainfall on mesoscales. However, the exact magnitude of the intra-seasonal variability in convective fluxes between these two land-cover types has yet to be quantified. Previous work suggesting that non-classical mesoscale circulations operate within the Corn Belt has not involved direct flux observations obtained using the eddy flux covariance technique. This study compares five day running means of daily heat fluxes between two Ameriflux towers (US-Bo1 in Illinois and US-MMS in Indiana) representing rain-fed cropland and remnant forest, respectively for the growing seasons of 1999-2008. Latent heat values normalized to the net radiation show higher rates of evapotranspiration at the forested site than over the cropland during the start of the growing season. However, toward the end of the growing season, latent heat fluxes from the forest decrease and the cropland becomes the dominate source of evapotranspiration. Conversely, croplands dominate sensible heat fluxes at the start of the growing season whereas the remnant forests are associated with strong sensible heat fluxes in late summer. These intra-seasonal spatial differences of latent and sensible heat fluxes across the Corn Belt imply differences in moisture pooling that are suggested as enhancing atmospheric convection during favorable synoptic conditions, especially near the boundaries of these two land cover types. Understanding the physical mechanisms by which the spatial distribution of vegetated land cover can generate contrasting latent and sensible heat fluxes will lay the groundwork for improving mesoscale precipitation forecasts in the Corn Belt, and determining the possible impacts of ongoing land-cover and climate changes there.

  7. Final vegetative cover for closed waste sites

    International Nuclear Information System (INIS)

    Cook, J.R.; Salvo, S.K.

    1993-01-01

    Low-level, hazardous, and mixed waste disposal sites normally require some form of plant material to prevent erosion of the final closure cap. Waste disposal sites are closed and capped in a complex scientific manner to minimize water infiltration and percolation into and through the waste material. Turf type grasses are currently being used as an interim vegetative cover for most sites. This coverage allows for required monitoring of the closure cap for settlement and maintenance activities. The purpose of this five year study was to evaluate plant materials for use on wastes sites after the post-closure care period that are quickly and easily established and economically maintained, retard water infiltration, provide maximum year-round evapotranspiration, are ecologically acceptable and do not harm the closure cap. The results of the study suggest that two species of bamboo (Phyllostachys (P.) bissetii and P. rubromarginata) can be utilized to provide long lived, low maintenance, climax vegetation for the waste sites after surveillance and maintenance requirements have ceased

  8. Central American Vegetation/Land Cover Classification and Conservation Status

    Data.gov (United States)

    National Aeronautics and Space Administration — The Central American Vegetation/Land Cover Classification and Conservation Status data set consists of GIS coverages of vegetation classes (forests, woodlands,...

  9. METHANE PHYTOREMEDIATION BY VEGETATIVE LANDFILL COVER SYSTEMS

    Science.gov (United States)

    Landfill gas, consisting of methane and other gases, is produced from organic compounds degrading in landfills, contributes to global climate change, is toxic to various types of vegetation, and may pose a combustion hazard at higher concentrations. New landfills are required to ...

  10. Vegetation Cover Changes in Selected Pastoral Villages in Mkata ...

    African Journals Online (AJOL)

    Arid and semi-arid savannah ecosystems of Tanzania are subjected to increasing pressure from pastoral land-use systems. A spatial temporal study involving analysis of satellite imageries and range surveys was carried out to determine the effects of high stocking levels on savannah vegetation cover types in Mkata plains.

  11. Assessment of human impacts on landuse and vegetation cover ...

    African Journals Online (AJOL)

    This paper is an assessment of the impact of man's activities on the landuse and vegetation cover of Mubi region. Landsat MSS Landuse/vegetation image of 1978 and Spot XS landuse/vegetation image of 1995 were used to study the landuse/vegetation cover changes of the region between 1978 and 1995 – a period of 17 ...

  12. Texture classification of vegetation cover in high altitude wetlands zone

    International Nuclear Information System (INIS)

    Wentao, Zou; Bingfang, Wu; Hongbo, Ju; Hua, Liu

    2014-01-01

    The aim of this study was to investigate the utility of datasets composed of texture measures and other features for the classification of vegetation cover, specifically wetlands. QUEST decision tree classifier was applied to a SPOT-5 image sub-scene covering the typical wetlands area in Three River Sources region in Qinghai province, China. The dataset used for the classification comprised of: (1) spectral data and the components of principal component analysis; (2) texture measures derived from pixel basis; (3) DEM and other ancillary data covering the research area. Image textures is an important characteristic of remote sensing images; it can represent spatial variations with spectral brightness in digital numbers. When the spectral information is not enough to separate the different land covers, the texture information can be used to increase the classification accuracy. The texture measures used in this study were calculated from GLCM (Gray level Co-occurrence Matrix); eight frequently used measures were chosen to conduct the classification procedure. The results showed that variance, mean and entropy calculated by GLCM with a 9*9 size window were effective in distinguishing different vegetation types in wetlands zone. The overall accuracy of this method was 84.19% and the Kappa coefficient was 0.8261. The result indicated that the introduction of texture measures can improve the overall accuracy by 12.05% and the overall kappa coefficient by 0.1407 compared with the result using spectral and ancillary data

  13. Assessment of human impacts on landuse and vegetation cover ...

    African Journals Online (AJOL)

    Assessment of human impacts on landuse and vegetation cover changes in Mubi region, Adamawa state, Nigeria; remote sensing and GIS approach. ... Global Journal of Environmental Sciences. Journal Home · ABOUT THIS JOURNAL ...

  14. Estimation of vegetation cover resilience from satellite time series

    Directory of Open Access Journals (Sweden)

    T. Simoniello

    2008-07-01

    Full Text Available Resilience is a fundamental concept for understanding vegetation as a dynamic component of the climate system. It expresses the ability of ecosystems to tolerate disturbances and to recover their initial state. Recovery times are basic parameters of the vegetation's response to forcing and, therefore, are essential for describing realistic vegetation within dynamical models. Healthy vegetation tends to rapidly recover from shock and to persist in growth and expansion. On the contrary, climatic and anthropic stress can reduce resilience thus favouring persistent decrease in vegetation activity.

    In order to characterize resilience, we analyzed the time series 1982–2003 of 8 km GIMMS AVHRR-NDVI maps of the Italian territory. Persistence probability of negative and positive trends was estimated according to the vegetation cover class, altitude, and climate. Generally, mean recovery times from negative trends were shorter than those estimated for positive trends, as expected for vegetation of healthy status. Some signatures of inefficient resilience were found in high-level mountainous areas and in the Mediterranean sub-tropical ones. This analysis was refined by aggregating pixels according to phenology. This multitemporal clustering synthesized information on vegetation cover, climate, and orography rather well. The consequent persistence estimations confirmed and detailed hints obtained from the previous analyses. Under the same climatic regime, different vegetation resilience levels were found. In particular, within the Mediterranean sub-tropical climate, clustering was able to identify features with different persistence levels in areas that are liable to different levels of anthropic pressure. Moreover, it was capable of enhancing reduced vegetation resilience also in the southern areas under Warm Temperate sub-continental climate. The general consistency of the obtained results showed that, with the help of suited analysis

  15. Response of alpine vegetation growth dynamics to snow cover phenology on the Tibetan Plateau

    Science.gov (United States)

    Wang, X.; Wu, C.

    2017-12-01

    Alpine vegetation plays a crucial role in global energy cycles with snow cover, an essential component of alpine land cover showing high sensitivity to climate change. The Tibetan Plateau (TP) has a typical alpine vegetation ecosystem and is rich of snow resources. With global warming, the snow of the TP has undergone significant changes that will inevitably affect the growth of alpine vegetation, but observed evidence of such interaction is limited. In particular, a comprehensive understanding of the responses of alpine vegetation growth to snow cover variability is still not well characterized on TP region. To investigate this, we calculated three indicators, the start (SOS) and length (LOS) of growing season, and the maximum of normalized difference vegetation index (NDVImax) as proxies of vegetation growth dynamics from the Moderate Resolution Imaging Spectroradiometer (MODIS) data for 2000-2015. Snow cover duration (SCD) and melt (SCM) dates were also extracted during the same time frame from the combination of MODIS and the Interactive Multi-sensor Snow and Ice Mapping System (IMS) data. We found that the snow cover phenology had a strong control on alpine vegetation growth dynamics. Furthermore, the responses of SOS, LOS and NDVImax to snow cover phenology varied among plant functional types, eco-geographical zones, and temperature and precipitation gradients. The alpine steppes showed a much stronger negative correlation between SOS and SCD, and also a more evidently positive relationship between LOS and SCD than other types, indicating a longer SCD would lead to an earlier SOS and longer LOS. Most areas showed positive correlation between SOS and SCM, while a contrary response was also found in the warm but drier areas. Both SCD and SCM showed positive correlations with NDVImax, but the relationship became weaker with the increase of precipitation. Our findings provided strong evidences between vegetation growth and snow cover phenology, and changes in

  16. Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method

    Science.gov (United States)

    Song, Wanjuan; Mu, Xihan; Ruan, Gaiyan; Gao, Zhan; Li, Linyuan; Yan, Guangjian

    2017-06-01

    Normalized difference vegetation index (NDVI) of highly dense vegetation (NDVIv) and bare soil (NDVIs), identified as the key parameters for Fractional Vegetation Cover (FVC) estimation, are usually obtained with empirical statistical methods However, it is often difficult to obtain reasonable values of NDVIv and NDVIs at a coarse resolution (e.g., 1 km), or in arid, semiarid, and evergreen areas. The uncertainty of estimated NDVIs and NDVIv can cause substantial errors in FVC estimations when a simple linear mixture model is used. To address this problem, this paper proposes a physically based method. The leaf area index (LAI) and directional NDVI are introduced in a gap fraction model and a linear mixture model for FVC estimation to calculate NDVIv and NDVIs. The model incorporates the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) model parameters product (MCD43B1) and LAI product, which are convenient to acquire. Two types of evaluation experiments are designed 1) with data simulated by a canopy radiative transfer model and 2) with satellite observations. The root-mean-square deviation (RMSD) for simulated data is less than 0.117, depending on the type of noise added on the data. In the real data experiment, the RMSD for cropland is 0.127, for grassland is 0.075, and for forest is 0.107. The experimental areas respectively lack fully vegetated and non-vegetated pixels at 1 km resolution. Consequently, a relatively large uncertainty is found while using the statistical methods and the RMSD ranges from 0.110 to 0.363 based on the real data. The proposed method is convenient to produce NDVIv and NDVIs maps for FVC estimation on regional and global scales.

  17. EFFECT OF VEGETATIVE COVER AND SLOPE ON SOIL LOSS BY ...

    African Journals Online (AJOL)

    Toshiba

    and 9.7 % were 1.045, 1.070, 1.100, 2.266 and 3.121 kg, respectively. Vegetative cover soil with grasses reduced the runoff volume and soil loss. Runoff volume and soil loss increased as slope of the land increases. Keywords: erodibility, erosion, erosivity, rainfall simulator, soil loss,. INTRODUCTION. Erosion is a serious ...

  18. assessment of human impacts on landuse and vegetation cover ...

    African Journals Online (AJOL)

    Ada

    ADAMAWA STATE, NIGERIA; REMOTE SENSING AND GIS. APPROACH ... image of 1995 were used to study the landuse/vegetation cover changes of the region between 1978 and 1995 – a ... deteriorating environmental quality, loss of important wetlands, ... GIS to the land use of the River Glen catchments in England by ...

  19. A change detection strategy for monitoring vegetative and land-use cover types using remotely-sensed, satellite-based data

    International Nuclear Information System (INIS)

    Hallum, C.

    1993-01-01

    Changes to the environment are of critical concern in the world today; consequently, monitoring such changes and assessing their impacts are tasks demanding considerably higher priority. The ecological impacts of the natural global cycles of gases and particulates in the earth's atmosphere are highly influenced by the extent of changes to vegetative canopy characteristics which dictates the need for capability to detect and assess the magnitude of such changes. The primary emphasis of this paper is on the determination of the size and configuration of the sampling unit that maximizes the probability of its intersection with a 'change' area. Assessment of the significance of the 'change' in a given locality is also addressed and relies on a statistical approach that compares the number of elemental units exceeding a reflectance threshold when compared to a previous point in time. Consideration is also given to a technical framework that supports quantifying the magnitude of the 'change' over large areas (i.e., the estimated area changing from forest to agricultural land-use). The latter entails a multistage approach which utilizes satellite-based and other related data sources

  20. Using Unmanned Aerial Vehicles to Assess Vegetative Cover in Sagebrush Steppe Ecosytstems

    Energy Technology Data Exchange (ETDEWEB)

    Robert P. Breckenridge

    2005-09-01

    The Idaho National Laboratory (INL), in conjunction with the University of Idaho, is evaluating novel approaches for using unmanned aerial vehicles (UAVs) as a quicker and safer method for monitoring biotic resources. Evaluating vegetative cover is an important factor in understanding the sustainability of many ecosystems. In assessing vegetative cover, methods that improve accuracy and cost efficiency could revolutionize how biotic resources are monitored on western federal lands. Sagebrush steppe ecosystems provide important habitat for a variety of species, some of which are important indicator species (e.g., sage grouse). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluation of these ecosystems. In this project, two types of UAV platforms (fixed wing and helicopter) were used to collect still-frame imagery to assess cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate total percent cover, (2) estimate percent cover for six different types of vegetation, and (3) locate sage grouse based on representative decoys. The field plots were located on the INL site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetative cover. A software program called SamplePoint developed by the U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS) was used to evaluate the imagery for percent cover for the six vegetation types (bare ground, litter, shrubs, dead shrubs, grasses, and forbs). Results were compared against standard field measurements to assess accuracy.

  1. Long-term monitoring of stream bank stability under different vegetation cover

    Science.gov (United States)

    Krzeminska, Dominika; Skaalsveen, Kamilla; Kerkhof, Tjibbe

    2017-04-01

    Vegetated buffer zones are common environmental measures in many countries, including Norway. The presence of riparian vegetation on stream banks not only provides ecological benefits but also influence bank slope stability, through several complex interactions between riparian vegetation and hydro - mechanical processes. The hydrological processes associated with slope stability are complex and yet difficult to quantify, especially because their transient effects (e.g. changes throughout the vegetation life cycle). Additionally, there is very limited amount of field scale research focusing on investigation of coupled hydrological and mechanical influence of vegetation on stream bank behavior, accounting for both seasonal time scale and different vegetation type, and none dedicated to marine clay soils (typically soil for Norway). In order to fill this gap we established continues, long term hydrogeological monitoring o selected cross - section within stream bank, covered with different types of vegetation, typical for Norwegian agriculture areas (grass, shrubs, and trees). The monitoring involves methods such as spatial and temporal monitoring of soil moisture conditions, ground water level and fluctuation of water level in the stream. Herein we will present first 10 months of monitoring data: observed hydrological trends and differences between three cross - sections. Moreover, we will present first modelling exercises that aims to estimate stream banks stability with accounting on presence of different vegetation types using BSTEM and HYDRUS models. With this presentation, we would like to stimulate the discussion and get feedback that could help us to improve both, our experimental set up and analysis approach.

  2. Estimation of Soil Moisture Under Vegetation Cover at Multiple Frequencies

    Science.gov (United States)

    Jadghuber, Thomas; Hajnsek, Irena; Weiß, Thomas; Papathanassiou, Konstantinos P.

    2015-04-01

    Soil moisture under vegetation cover was estimated by a polarimetric, iterative, generalized, hybrid decomposition and inversion approach at multiple frequencies (X-, C- and L-band). Therefore the algorithm, originally designed for longer wavelength (L-band), was adapted to deal with the short wavelength scattering scenarios of X- and C-band. The Integral Equation Method (IEM) was incorporated together with a pedo-transfer function of Dobson et al. to account for the peculiarities of short wavelength scattering at X- and C-band. DLR's F-SAR system acquired fully polarimetric SAR data in X-, C- and L-band over the Wallerfing test site in Lower Bavaria, Germany in 2014. Simultaneously, soil and vegetation measurements were conducted on different agricultural test fields. The results indicate a spatially continuous inversion of soil moisture in all three frequencies (inversion rates >92%), mainly due to the careful adaption of the vegetation volume removal including a physical constraining of the decomposition algorithm. However, for X- and C-band the inversion results reveal moisture pattern inconsistencies and in some cases an incorrectly high inversion of soil moisture at X-band. The validation with in situ measurements states a stable performance of 2.1- 7.6vol.% at L-band for the entire growing period. At C- and X-band a reliable performance of 3.7-13.4vol.% in RMSE can only be achieved after distinct filtering (X- band) leading to a loss of almost 60% in spatial inversion rate. Hence, a robust inversion for soil moisture estimation under vegetation cover can only be conducted at L-band due to a constant availability of the soil signal in contrast to higher frequencies (X- and C-band).

  3. Evaluation of vegetation cover using the normalized difference vegetation index (NDVI

    Directory of Open Access Journals (Sweden)

    Gabriela Camargos Lima

    2013-08-01

    Full Text Available Soil loss by water erosion is the main cause of soil degradation in Brazil. However, erosion can be reduced by the presence of vegetation. The Normalized Difference Vegetation Index (NDVI makes it possible to identify the vegetative vigor of crops or natural vegetation which facilities the identification of areas with vegetation covers. This information is very important in identifying the phenomena which might be occurring in a particular area, especially those related to soil degradation by water erosion. Thus, the aim of this work was to assess the canopy cover by using NDVI, checking the image accuracy using the Coverage Index (CI based on the Stocking method, in the Sub-basin of Posses, which belongs to the Cantareira System, located in the Extrema municipality, Minas Gerais, Brazil. Landsat-5 TM images were used. The sub-basin of Posses was very altered in comparison to the surrounding areas. The NDVI technique proved to be a suitable tool to assess the uses that occur in the sub-basin of Posses, as validated by the Stocking methodology. The map derived from NDVI allowed the geographic distribution of different land uses to be observed and allowed for the identification of critical areas in relation to vegetation cover as well. This finding can be used to optimize efforts to recover and protect soil in areas with bare soil and degraded pasture, in order to reduce environmental degradation. The CI has not exceeded 40% for land use classes that occur in the majority of the sub-basin (91%, except in areas of woody vegetation.

  4. 488-D Ash Basin Vegetative Cover Treatibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Christopher; Marx, Don; Blake, John; Adriano, Domy; Koo, Bon-Jun; Czapka, Stephen

    2003-01-01

    The 488-D Ash Basin is an unlined containment basin that received ash and coal reject material from the operation of a powerhouse at the USDOE's Savannah River Site, SC. They pyretic nature of the coal rejects has resulted in the formation of acidic drainage (AD), which has contributed to groundwater deterioration and threatens biota in down gradient wetlands. Establishment of a vegetative cover was examined as a remedial alternative for reducing AD generation within this system by enhanced utilization of rainwater and subsequent non-point source water pollution control. The low nutrient content, high acidity, and high salinity of the basin material, however, was deleterious to plant survivability. As such, studies to identify suitable plant species and potential adaptations, and pretreatment techniques in the form of amendments, tilling, and/or chemical stabilization were needed. A randomized block design consisting of three subsurface treatments (blocks) and five duplicated surface amendments (treatments) was developed. One hundred inoculated pine trees were planted on each plot. Herbaceous species were also planted on half of the plots in duplicated 1-m2 beds. After two growing seasons, deep ripping, subsurface amendments and surface covers were shown to be essential for the successful establishment of vegetation on the basin. This is the final report of the study.

  5. Soil parameter retrieval under vegetation cover using SAR polarimetery

    Energy Technology Data Exchange (ETDEWEB)

    Jagdhuber, Thomas

    2012-07-01

    Soil conditions under vegetation cover and their spatial and temporal variations from point to catchment scale are crucial for understanding hydrological processes within the vadose zone, for managing irrigation and consequently maximizing yield by precision farming. Soil moisture and soil roughness are the key parameters that characterize the soil status. In order to monitor their spatial and temporal variability on large scales, remote sensing techniques are required. Therefore the determination of soil parameters under vegetation cover was approached in this thesis by means of (multi-angular) polarimetric SAR acquisitions at a longer wavelength (L-band, {lambda}{sub c}=23cm). In this thesis, the penetration capabilities of L-band are combined with newly developed (multi-angular) polarimetric decomposition techniques to separate the different scattering contributions, which are occurring in vegetation and on ground. Subsequently the ground components are inverted to estimate the soil characteristics. The novel (multi-angular) polarimetric decomposition techniques for soil parameter retrieval are physically-based, computationally inexpensive and can be solved analytically without any a priori knowledge. Therefore they can be applied without test site calibration directly to agricultural areas. The developed algorithms are validated with fully polarimetric SAR data acquired by the airborne E-SAR sensor of the German Aerospace Center (DLR) for three different study areas in Germany. The achieved results reveal inversion rates up to 99% for the soil moisture and soil roughness retrieval in agricultural areas. However, in forested areas the inversion rate drops significantly for most of the algorithms, because the inversion in forests is invalid for the applied scattering models at L-band. The validation against simultaneously acquired field measurements indicates an estimation accuracy (root mean square error) of 5-10vol.% for the soil moisture (range of in situ

  6. Effect of vegetation on rock and soil type discrimination

    Science.gov (United States)

    Siegal, B. S.; Goetz, A. F. H.

    1977-01-01

    The effect of naturally occurring vegetation on the spectral reflectance of earth materials in the wavelength region of 0.45 to 2.4 microns is determined by computer averaging of in situ acquired spectral data. The amount and type of vegetation and the spectral reflectance of the ground are considered. Low albedo materials may be altered beyond recognition with only ten per cent green vegetation cover. Dead or dry vegetation does not greatly alter the shape of the spectral reflectance curve and only changes the albedo with minimum wavelength dependency. With increasing amounts of vegetation the Landsat MSS band ratios 4/6, 4/7, 5/6, and 5/7 are significantly decreased whereas MSS ratios 4/5 and 6/7 remain entirely constant.

  7. EnviroAtlas - Cleveland, OH - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees & Forest,...

  8. Multi-scale associations between vegetation cover and woodland bird communities across a large agricultural region.

    Directory of Open Access Journals (Sweden)

    Karen Ikin

    Full Text Available Improving biodiversity conservation in fragmented agricultural landscapes has become an important global issue. Vegetation at the patch and landscape-scale is important for species occupancy and diversity, yet few previous studies have explored multi-scale associations between vegetation and community assemblages. Here, we investigated how patch and landscape-scale vegetation cover structure woodland bird communities. We asked: (1 How is the bird community associated with the vegetation structure of woodland patches and the amount of vegetation cover in the surrounding landscape? (2 Do species of conservation concern respond to woodland vegetation structure and surrounding vegetation cover differently to other species in the community? And (3 Can the relationships between the bird community and the woodland vegetation structure and surrounding vegetation cover be explained by the ecological traits of the species comprising the bird community? We studied 103 woodland patches (0.5 - 53.8 ha over two time periods across a large (6,800 km(2 agricultural region in southeastern Australia. We found that both patch vegetation and surrounding woody vegetation cover were important for structuring the bird community, and that these relationships were consistent over time. In particular, the occurrence of mistletoe within the patches and high values of woody vegetation cover within 1,000 ha and 10,000 ha were important, especially for bird species of conservation concern. We found that the majority of these species displayed similar, positive responses to patch and landscape vegetation attributes. We also found that these relationships were related to the foraging and nesting traits of the bird community. Our findings suggest that management strategies to increase both remnant vegetation quality and the cover of surrounding woody vegetation in fragmented agricultural landscapes may lead to improved conservation of bird communities.

  9. Non supervised classification of vegetable covers on digital images of remote sensors: Landsat - ETM+

    International Nuclear Information System (INIS)

    Arango Gutierrez, Mauricio; Branch Bedoya, John William; Botero Fernandez, Veronica

    2005-01-01

    The plant species diversity in Colombia and the lack of inventory of them suggests the need for a process that facilitates the work of investigators in these disciplines. Remote satellite sensors such as landsat ETM+ and non-supervised artificial intelligence techniques, such as self-organizing maps - SOM, could provide viable alternatives for advancing in the rapid obtaining of information related to zones with different vegetative covers in the national geography. The zone proposed for the study case was classified in a supervised form by the method of maximum likelihood by another investigation in forest sciences and eight types of vegetative covers were discriminated. This information served as a base line to evaluate the performance of the non-supervised sort keys isodata and SOM. However, the information that the images provided had to first be purified according to the criteria of use and data quality, so that adequate information for these non-supervised methods were used. For this, several concepts were used; such as, image statistics, spectral behavior of the vegetative communities, sensor characteristics and the average divergence that allowed to define the best bands and their combinations. Principal component analysis was applied to these to reduce to the number of data while conserving a large percentage of the information. The non-supervised techniques were applied to these purified data, modifying some parameters that could yield a better convergence of the methods. The results obtained were compared with the supervised classification via confusion matrices and it was concluded that there was not a good convergence of non-supervised classification methods with this process for the case of vegetative covers

  10. A dataset mapping the potential biophysical effects of vegetation cover change

    Science.gov (United States)

    Duveiller, Gregory; Hooker, Josh; Cescatti, Alessandro

    2018-02-01

    Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes.

  11. Using Unmanned Aerial Vehicles to Assess Vegetative Cover and Identify Biotic Resources in Sagebrush Steppe Ecosystems: Preliminary Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robert P. Breckenridge

    2006-04-01

    The Idaho National Laboratory (INL), in conjunction with the University of Idaho, is evaluating novel approaches for using unmanned aerial vehicles (UAVs) as a quicker and safer method for monitoring biotic resources. Evaluating vegetative cover is an important factor in understanding the sustainability of many ecosystems. In assessing vegetative cover, methods that improve accuracy and cost efficiency could revolutionize how biotic resources are monitored on western federal lands. Sagebrush steppe ecosystems provide important habitat for a variety of species, some of which are important indicator species (e.g., sage grouse). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluation of these ecosystems. In this project, two types of UAV platforms (fixed wing and helicopter) were used to collect still-frame imagery to assess cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate total percent cover, (2) estimate percent cover for six different types of vegetation, and (3) locate sage grouse based on representative decoys. The field plots were located on the INL site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetative cover. A software program called SamplePoint developed by the U.S. Department of Agriculture, Agricultural Research Service was used to evaluate the imagery for percent cover for the six vegetation types (bare ground, litter, shrubs, dead shrubs, grasses, and forbs). Results were compared against standard field measurements to assess accuracy.

  12. A simulation model for methane emissions from landfills with interaction of vegetation and cover soil.

    Science.gov (United States)

    Bian, Rongxing; Xin, Danhui; Chai, Xiaoli

    2018-01-01

    Global climate change and ecological problems brought about by greenhouse gas effect have become a severe threat to humanity in the 21st century. Vegetation plays an important role in methane (CH 4 ) transport, oxidation and emissions from municipal solid waste (MSW) landfills as it modifies the physical and chemical properties of the cover soil, and transports CH 4 to the atmosphere directly via their conduits, which are mainly aerenchymatous structures. In this study, a novel 2-D simulation CH 4 emission model was established, based on an interactive mechanism of cover soil and vegetation, to model CH 4 transport, oxidation and emissions in landfill cover soil. Results of the simulation model showed that the distribution of CH 4 concentration and emission fluxes displayed a significant difference between vegetated and non-vegetated areas. CH 4 emission flux was 1-2 orders of magnitude higher than bare areas in simulation conditions. Vegetation play a negative role in CH 4 emissions from landfill cover soil due to the strong CH 4 transport capacity even though vegetation also promotes CH 4 oxidation via changing properties of cover soil and emitting O 2 via root system. The model will be proposed to allow decision makers to reconsider the actual CH 4 emission from vegetated and non-vegetated covered landfills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Examination of the semi-automatic calculation technique of vegetation cover rate by digital camera images.

    Science.gov (United States)

    Takemine, S.; Rikimaru, A.; Takahashi, K.

    The rice is one of the staple foods in the world High quality rice production requires periodically collecting rice growth data to control the growth of rice The height of plant the number of stem the color of leaf is well known parameters to indicate rice growth Rice growth diagnosis method based on these parameters is used operationally in Japan although collecting these parameters by field survey needs a lot of labor and time Recently a laborsaving method for rice growth diagnosis is proposed which is based on vegetation cover rate of rice Vegetation cover rate of rice is calculated based on discriminating rice plant areas in a digital camera image which is photographed in nadir direction Discrimination of rice plant areas in the image was done by the automatic binarization processing However in the case of vegetation cover rate calculation method depending on the automatic binarization process there is a possibility to decrease vegetation cover rate against growth of rice In this paper a calculation method of vegetation cover rate was proposed which based on the automatic binarization process and referred to the growth hysteresis information For several images obtained by field survey during rice growing season vegetation cover rate was calculated by the conventional automatic binarization processing and the proposed method respectively And vegetation cover rate of both methods was compared with reference value obtained by visual interpretation As a result of comparison the accuracy of discriminating rice plant areas was increased by the proposed

  14. Vegetation study in support of the design and optimization of vegetative soil covers, Sandia National Laboratories, Albuquerque, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Peace, Gerald (Jerry) L.; Goering, Timothy James (GRAM inc., Albuquerque, NM); Knight, Paul J. (Marron and Associates, Albuquerque, NM); Ashton, Thomas S. (Marron and Associates, Albuquerque, NM)

    2004-11-01

    A vegetation study was conducted in Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico in 2003 to assist in the design and optimization of vegetative soil covers for hazardous, radioactive, and mixed waste landfills at Sandia National Laboratories/New Mexico and Kirtland Air Force Base. The objective of the study was to obtain site-specific, vegetative input parameters for the one-dimensional code UNSAT-H and to identify suitable, diverse native plant species for use on vegetative soil covers that will persist indefinitely as a climax ecological community with little or no maintenance. The identification and selection of appropriate native plant species is critical to the proper design and long-term performance of vegetative soil covers. Major emphasis was placed on the acquisition of representative, site-specific vegetation data. Vegetative input parameters measured in the field during this study include root depth, root length density, and percent bare area. Site-specific leaf area index was not obtained in the area because there was no suitable platform to measure leaf area during the 2003 growing season due to severe drought that has persisted in New Mexico since 1999. Regional LAI data was obtained from two unique desert biomes in New Mexico, Sevilletta Wildlife Refuge and Jornada Research Station.

  15. Vegetation Cover and Furrow Erosion due to Extreme Rain Events in Semiarid Environments

    Directory of Open Access Journals (Sweden)

    Belén Cárceles-Rodríguez

    2017-05-01

    Full Text Available The conservation of the soil resource in semi-arid environments is one of the major challenges of agricultural systems, particularly in the Mediterranean region. In the present study, two types of soil management were compared: minimum tillage (ML and minimum tillage with spontaneous vegetation cover (MLVE. The comparison was conducted in a rainfed almond plantation at slope (35%, under an extraordinary event in 2015 (91.3 mm and EI30 of 2,719.89 mm ha-1 h-1. In this situation in MLVE plots, the development of furrows in contrast to ML were not recorded; the total soil loss was more than 12 times lower than that recorded in the latter. This fact demonstrated the effectiveness of the vegetal cover in the protection of the agricultural soil against the erosion during extreme events. Also, for ML management, furrow erosion represented more than 60% of the total soil loss, demonstrating the dominance of this type of erosion. Finally, it should be noted that this event represents the almost total loss of soil recorded in the experimental plots during the period 2012-2015; and this consequently shows the significant impact of extreme events on erosion rates in the Mediterranean region.

  16. REPEATABILITY OF THE FRENCH HIGHER VEGETATION TYPES ACCORDING

    Directory of Open Access Journals (Sweden)

    H. BRISSE

    1998-04-01

    Full Text Available Higher vegetation types are generally determined by successive approximations and defined by a common consent. Instead, they might be statistically determined and repeated, according to a numerical method called ‘socio-ecology’. This method deals only with floristical data, but gives them an ecological meaning by a previous calibration of the relations between plants, computed as ecological indices. It is applied to a pair of two homologous samples, each having 2.000 relevés and coming from the 60.000 relevés stored in the French data bank ‘Sophy’. Each sample covers the main ecological gradients of the bank, it defines a hierarchy of vegetation types and it explains half the peculiarity of a type with only 10 to 30 discriminant plants, out of the 5.000 plants observed in the relevés. Results : 1 The discriminant plants may characterize the vegetation types, including the higher ones, in a coherent and readable form. 2 In the two independent classifications, having different structures, the same vegetation types are repeated. They are the reciprocal nearest types, in the socio-ecological space. Though the two classifications have no one relevé in common, the repeated types have nearly the same discriminant plants. 3 At the highest level, two clear-cut main types show the difference between light and shadow. The same herbaceous discriminant plants, for a type, and the ligneous or sciaphilous ones, for the other, have similar fidelities and constancies in the two classifications. 4 Such a numerical agreement, instead of common consent, appears again in the sub-types, which remind the classical ones, but which are repeatable.

  17. Cover crop frequency and compost effects on a legume-rye cover crop during 8 years of organic vegetables

    Science.gov (United States)

    Organic matter inputs from compost or cover crops (CC) are important to maintain or improve soil quality, but their impact in high-value vegetable production systems are not well understood. Therefore, we evaluated the effects of CC frequency (every winter versus every 4th winter) and yard-waste co...

  18. Risk elements in selected types of vegetables

    Directory of Open Access Journals (Sweden)

    Ľuboš Harangozo

    2016-12-01

    in selected types of vegetables analyzed element was not exceeded the limit values established by Codex Alimentarius of Slovak Republic. From the results, also can be concluded that higher contents of heavy metals (Cu, Mn, Ni, Cd, Pb were mostly in samples from home gardeners than in samples came from local market. 

  19. [Application of biotope mapping model integrated with vegetation cover continuity attributes in urban biodiversity conservation].

    Science.gov (United States)

    Gao, Tian; Qiu, Ling; Chen, Cun-gen

    2010-09-01

    Based on the biotope classification system with vegetation structure as the framework, a modified biotope mapping model integrated with vegetation cover continuity attributes was developed, and applied to the study of the greenbelts in Helsingborg in southern Sweden. An evaluation of the vegetation cover continuity in the greenbelts was carried out by the comparisons of the vascular plant species richness in long- and short-continuity forests, based on the identification of woodland continuity by using ancient woodland indicator species (AWIS). In the test greenbelts, long-continuity woodlands had more AWIS. Among the forests where the dominant trees were more than 30-year-old, the long-continuity ones had a higher biodiversity of vascular plants, compared with the short-continuity ones with the similar vegetation structure. The modified biotope mapping model integrated with the continuity features of vegetation cover could be an important tool in investigating urban biodiversity, and provide corresponding strategies for future urban biodiversity conservation.

  20. Mapping and characterizing the vegetation types of the Democratic Republic of Congo using SPOT VEGETATION time series

    Science.gov (United States)

    Vancutsem, C.; Pekel, J.-F.; Evrard, C.; Malaisse, F.; Defourny, P.

    2009-02-01

    The need for quantitative and accurate information to characterize the state and evolution of vegetation types at a national scale is widely recognized. This type of information is crucial for the Democratic Republic of Congo, which contains the majority of the tropical forest cover of Central Africa and a large diversity of habitats. In spite of recent progress in earth observation capabilities, vegetation mapping and seasonality analysis in equatorial areas still represent an outstanding challenge owing to high cloud coverage and the extent and limited accessibility of the territory. On one hand, the use of coarse-resolution optical data is constrained by performance in the presence of cloud screening and by noise arising from the compositing process, which limits the spatial consistency of the composite and the temporal resolution. On the other hand, the use of high-resolution data suffers from heterogeneity of acquisition dates, images and interpretation from one scene to another. The objective of the present study was to propose and demonstrate a semi-automatic processing method for vegetation mapping and seasonality characterization based on temporal and spectral information from SPOT VEGETATION time series. A land cover map with 18 vegetation classes was produced using the proposed method that was fed by ecological knowledge gathered from botanists and reference documents. The floristic composition and physiognomy of each vegetation type are described using the Land Cover Classification System developed by the FAO. Moreover, the seasonality of each class is characterized on a monthly basis and the variation in different vegetation indicators is discussed from a phenological point of view. This mapping exercise delivers the first area estimates of seven different forest types, five different savannas characterized by specific seasonality behavior and two aquatic vegetation types. Finally, the result is compared to two recent land cover maps derived from

  1. Examination of the relationship between vegetation cover indices ...

    African Journals Online (AJOL)

    Therefore it is recommended that agroforestry and land scaping should be embraced in the area with emphasis on short economic trees with moderate crown cover that will allow crops or grasses to grow under it as well as avoid the negative impact of rain water drops from very tall tree that can cause soil erosion.

  2. Vegetation Cover based on Eagleson's Ecohydrological Optimality in Northeast China Transect (NECT)

    Science.gov (United States)

    Cong, Z.; Mo, K.; Qinshu, L.; Zhang, L.

    2016-12-01

    Vegetation is considered as the indicator of climate, thus the study of vegetation growth and distribution is of great importance to cognize the ecosystem construction and functions. Vegetation cover is used as an important index to describe vegetation conditions. In Eagleson's ecohydrological optimality, the theoretical optimal vegetation cover M* can be estimated by solving water balance equations. In this study, the theory is applied in the Northeast China Transect (NECT), one of International Geosphere-Biosphere Programs (IGBP) terrestrial transects. The spatial distribution of actual vegetation cover M, which is derived from Normalized Vegetation Index (NDVI) from Moderate-resolution Imaging Spectroradiometer (MODIS), shows that there is a significant gradient ranging from 1 in the east forests to 0 in the west desert. The result indicates that the theoretical M* fits the actual M well (for forest, M* = 0.822 while M = 0.826; for grassland, M* = 0.353 while M = 0.352; the correlation coefficient between M and M* is 0.81). The reasonable calculated proportion of water balance components further demonstrates the applicability of the ecohydrological optimality theory. M* increases with the increase of LAI, leaf angle, stem fraction and temperature, and decreases with the increase of precipitation amount. This method offers the possibility to analyze the impacts of climate change to vegetation cover quantitatively, thus providing advices for eco-restoration projects.

  3. Impact of Vegetative Cover on Runoff and Soil Erosion at Hillslope Scale in Lanjaron, Spain

    NARCIS (Netherlands)

    Duran Zuazo, V.H.; Francia-Martinez, J.R.; Martinez-Raya, A.

    2004-01-01

    Soil loss and surface runoff patterns over a four-year period (1997¿2000) were studied in erosion plots from three hillslopes under different vegetative covers (Rosmarinus officinalis, Triticum aestivum and natural-spontaneous vegetation) in Lanjaron (Alpujarras) on the south flank of the Sierra

  4. River flow response to changes in vegetation cover in a South ...

    African Journals Online (AJOL)

    It was hypothesised in this study that annual river yield (river flow as a fraction of rainfall) in the Molenaars catchment near Paarl, South Africa co-varies with an index of green vegetation cover derived from satellite data (the normalised difference vegetation index, NDVI). The catchment was partitioned into 'upland' and ...

  5. Solar radiation measurements and Leaf Area Index (LAI) from vegetal covers

    International Nuclear Information System (INIS)

    Wandelli, E.V.; Marques Filho, A. de O.

    1999-01-01

    A method by which a physical model of the solar radiation transfer in a vegetal medium is inverted to estimate the leaf area index (LAI) for different types of vegetation is presented here, as an alternative to the destructive experiments, which are a hard task to implement on the vegetation covers. Radiation data were obtained during the dry season — 1996, at the Embrapa Experimental Station, (BR 174 - km 54, 2° 31' S, 60° 01' W), Manaus, Brazil. The method yielded convergent values for the LAI between different adopted radiation classes with more stable estimates at time when there is a predominant diffuse radiation. The application of the inversion algorithm yields the following values for the leaf area index and respective annual foliage increments: 3.5 (0.35 yr. -1 ) for the intact secondary forest; 2.0 (0.5 yr -1 ) for the palm agroforestry system; and 1.6 (0.4 yr -1 ) for the multi-layer ones [pt

  6. [Advance in researches on vegetation cover and management factor in the soil erosion prediction model].

    Science.gov (United States)

    Zhang, Yan; Yuan, Jianping; Liu, Baoyuan

    2002-08-01

    Vegetation cover and land management are the main limiting factors of soil erosion, and quantitative evaluation on the effect of different vegetation on soil erosion is essential to land use and soil conservation planning. The vegetation cover and management factor (C) in the universal soil loss equation (USLE) is an index to evaluate this effect, which has been studied deeply and used widely. However, the C factor study is insufficient in China. In order to strengthen the research of C factor, this paper reviewed the developing progress of C factor, and compared the methods of estimating C value in different USLE versions. The relative studies in China were also summarized from the aspects of vegetation canopy coverage, soil surface cover, and root density. Three problems in C factor study were pointed out. The authors suggested that cropland C factor research should be furthered, and its methodology should be unified in China to represent reliable C values for soil loss prediction and conservation planning.

  7. [Effects of road construction on regional vegetation types].

    Science.gov (United States)

    Liu, Shi-Liang; Liu, Qi; Wang, Cong; Yang, Jue-Jie; Deng, Li

    2013-05-01

    As a regional artificial disturbance component, road exerts great effects on vegetation types, and plays a substantial role in defining vegetation distribution to a certain extent. Aiming at the tropical rainforest degradation and artificial forest expansion in Yunnan Province of Southwest China, this paper analyzed the effects of road network extension on regional vegetation types. In the Province, different classes of roads had different effects on the vegetation types, but no obvious regularity was observed in the effects on the patch areas of different vegetation types due to the great variations of road length and affected distance. However, the vegetation patch number was more affected by lower class roads because of their wide distribution. As for different vegetation types, the vegetations on cultivated land were most affected by roads, followed by Castanopsis hystrix and Schima wallichii forests. Road network formation contributed most to the vegetation fragmentation, and there existed significant correlations between the human disturbance factors including village- and road distributions.

  8. Simulating vegetation dynamics in Chile from 21ka BP to present: Effects of climate change on vegetation functions and cover

    Science.gov (United States)

    Werner, Christian; Liakka, Johan; Schmid, Manuel; Fuentes, Juan-Pablo; Ehlers, Todd A.; Hickler, Thomas

    2017-04-01

    Vegetation composition and establishment is strongly dependent on climate conditions but also a result of vegetation dynamics (competition for light, water and nutrients). In addition, vegetation exerts control over the development of landscapes as it mediates the climatic and hydrological forces shaping the terrain via hillslope and fluvial processes. At the same time, topography as well as soil texture and soil depth affect the microclimate, soil water storage and rooting space that is defining the environmental envelope for vegetation development. Within the EarthShape research program (www.earthshape.net) we evaluate these interactions by simulating the co-evolution of landscape and vegetation with a dynamic vegetation model (LPJ-GUESS) and a landscape evolution model (LandLab). LPJ-GUESS is a mechanistic model driven by daily or monthly weather data and explicitly simulates vegetation physiology, succession, competition and water and nutrient cycling. Here we present the results of first transient vegetation simulations from 21kyr BP to present-day using the TraCE-21ka climate dataset for four focus sites along the coastal cordillera of Chile that are exposed to a substantial meridional climate gradient (ranging from hyper-arid to humid-temperate conditions). We show that the warming occurring in the region from LGM to present, in addition to the increase of atmospheric CO2 concentrations, led to a shift in vegetation composition and surface cover. Future work will show how these changes resonate in the dynamics of hillslope and fluvial erosion and ultimately bi-directional feedback mechanisms of vegetation development and landscape evolution/ soil formation (see also companion presentation by Schmid et al., this session).

  9. Deforestation and benthic indicators: how much vegetation cover is needed to sustain healthy Andean streams?

    Science.gov (United States)

    Iñiguez-Armijos, Carlos; Leiva, Adrián; Frede, Hans-Georg; Hampel, Henrietta; Breuer, Lutz

    2014-01-01

    Deforestation in the tropical Andes is affecting ecological conditions of streams, and determination of how much forest should be retained is a pressing task for conservation, restoration and management strategies. We calculated and analyzed eight benthic metrics (structural, compositional and water quality indices) and a physical-chemical composite index with gradients of vegetation cover to assess the effects of deforestation on macroinvertebrate communities and water quality of 23 streams in southern Ecuadorian Andes. Using a geographical information system (GIS), we quantified vegetation cover at three spatial scales: the entire catchment, the riparian buffer of 30 m width extending the entire stream length, and the local scale defined for a stream reach of 100 m in length and similar buffer width. Macroinvertebrate and water quality metrics had the strongest relationships with vegetation cover at catchment and riparian scales, while vegetation cover did not show any association with the macroinvertebrate metrics at local scale. At catchment scale, the water quality metrics indicate that ecological condition of Andean streams is good when vegetation cover is over 70%. Further, macroinvertebrate community assemblages were more diverse and related in catchments largely covered by native vegetation (>70%). Our results suggest that retaining an important quantity of native vegetation cover within the catchments and a linkage between headwater and riparian forests help to maintain and improve stream biodiversity and water quality in Andean streams affected by deforestation. This research proposes that a strong regulation focused to the management of riparian buffers can be successful when decision making is addressed to conservation/restoration of Andean catchments.

  10. EVALUATION OF DATA APPLICABILITY FOR D-INSAR IN AREAS COVERED BY ABUNDANT VEGETATION

    Directory of Open Access Journals (Sweden)

    P. Zhang

    2018-04-01

    Full Text Available In the past few years, the frequent geological disasters have caused enormous casualties and economic losses. Therefore, D-InSAR (differential interferometry synthetic aperture radar has been widely used in early-warning and post disaster assessment. However, large area of decorrelation often occurs in the areas covered with abundant vegetation, which seriously affects the accuracy of surface deformation monitoring. In this paper, we analysed the effect of sensor parameters and external environment parameters on special decorrelation. Then Synthetic Aperture Radar (SAR datasets acquired by X-band TerraSAR-X, Phased Array type L-band Synthetic Aperture Satellite-2 (ALOS-2, and C-band Sentinel-1 in Guizhou province were collected and analysed to generate the maps of coherence, which were used to evaluating the applicability of datasets of different wavelengths for D-InSAR in forest area. Finally, we found that datasets acquired by ALOS-2 had the best monitoring effect.

  11. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing

    Directory of Open Access Journals (Sweden)

    Mike Serrato

    2012-01-01

    Full Text Available This study investigated the usability of hyperspectral remote sensing for characterizing vegetation at hazardous waste sites. The specific objectives of this study were to: (1 estimate leaf-area-index (LAI of the vegetation using three different methods (i.e., vegetation indices, red-edge positioning (REP, and machine learning regression trees, and (2 map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF-derived metrics and vegetation indices. HyMap airborne data (126 bands at 2.3 × 2.3 m spatial resolution, collected over the U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona, were used. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. Regression trees resulted in the best calibration performance of LAI estimation (R2 > 0.80. The use of REPs failed to accurately predict LAI (R2 < 0.2. The use of the MTMF-derived metrics (matched filter scores and infeasibility and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches ( < 1 m found on the sites.

  12. Vegetation Cover Analysis Of Hazardous Waste Sites In Utah And Arizona Using Hyperspectral Remote Sensing

    International Nuclear Information System (INIS)

    Serrato, M.; Jungho, I.; Jensen, J.; Jensen, R.; Gladden, J.; Waugh, J.

    2012-01-01

    Remote sensing technology can provide a cost-effective tool for monitoring hazardous waste sites. This study investigated the usability of HyMap airborne hyperspectral remote sensing data (126 bands at 2.3 x 2.3 m spatial resolution) to characterize the vegetation at U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. The specific objectives of this study were to: (1) estimate leaf-area-index (LAI) of the vegetation using three different methods (i.e., vegetation indices, red-edge positioning (REP), and machine learning regression trees), and (2) map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF)-derived metrics and vegetation indices. Regression trees resulted in the best calibration performance of LAI estimation (R 2 > 0.80). The use of REPs failed to accurately predict LAI (R 2 < 0.2). The use of the MTMF-derived metrics (matched filter scores and infeasibility) and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI) and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of 1 higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches (< 1m) found on the sites.

  13. VEGETATION COVER ANALYSIS OF HAZARDOUS WASTE SITES IN UTAH AND ARIZONA USING HYPERSPECTRAL REMOTE SENSING

    Energy Technology Data Exchange (ETDEWEB)

    Serrato, M.; Jungho, I.; Jensen, J.; Jensen, R.; Gladden, J.; Waugh, J.

    2012-01-17

    Remote sensing technology can provide a cost-effective tool for monitoring hazardous waste sites. This study investigated the usability of HyMap airborne hyperspectral remote sensing data (126 bands at 2.3 x 2.3 m spatial resolution) to characterize the vegetation at U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. The specific objectives of this study were to: (1) estimate leaf-area-index (LAI) of the vegetation using three different methods (i.e., vegetation indices, red-edge positioning (REP), and machine learning regression trees), and (2) map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF)-derived metrics and vegetation indices. Regression trees resulted in the best calibration performance of LAI estimation (R{sup 2} > 0.80). The use of REPs failed to accurately predict LAI (R{sup 2} < 0.2). The use of the MTMF-derived metrics (matched filter scores and infeasibility) and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI) and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of 1 higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches (< 1m) found on the sites.

  14. [Process study on hysteresis of vegetation cover influencing sand-dust events].

    Science.gov (United States)

    Xu, Xing-Kui; Wang, Xiao-Tao; Zhang, Feng

    2009-02-15

    Data analysis from satellite and weather stations during 1982-2000 shows nonlinear relationship between vegetation cover and sand-dust events is present in most part of China. Vegetation cover ratio in summer can impact significantly on the frequency of sand-dust storms from winter to spring in the source regions of sand-dust events. It is not quite clear about the hysteresis that vegetation cover in summer influence sand-dust events during winter and spring. A quasi-geostrophic barotropic model is used under the condition of 3 magnitude of frictional coefficient to investigate the cause of the hysteresis. Wind velocity shows a greatest decline at 90% during 72 h as initial wind velocity is 10 m/s for magnitude of frictional coefficient between atmosphere and water surface, greatest decline at 100% during 18 h for magnitude of frictional coefficient between atmosphere and bare soil and a 100% reduction of wind speed during 1 h for magnitude of frictional coefficient between atmosphere and vegetation cover. Observation and simulation prove that residual root and stem from summervegetation are one of factors to influence sand-dust events happened during winter and spring. Air inhibition from residual root and stem is a most important reason for hysteresis that vegetation cover influence sand-dust events.

  15. Assessing the impact of climate variability on catchment water balance and vegetation cover

    Directory of Open Access Journals (Sweden)

    X. Xu

    2012-01-01

    Full Text Available Understanding the interactions among climate, vegetation cover and the water cycle lies at the heart of the study of watershed ecohydrology. Recently, considerable attention is being paid to the effect of climate variability on catchment water balance and also associated vegetation cover. In this paper, we investigate the general pattern of long-term water balance and vegetation cover (as reflected by fPAR among 193 study catchments in Australia through statistical analysis. We then employ the elasticity analysis approach for quantifying the effects of climate variability on hydrologic partitioning (including total, surface and subsurface runoff and on vegetation cover (including total, woody and non-woody vegetation cover. Based on the results of statistical analysis, we conclude that annual runoff (R, evapotranspiration (E and runoff coefficient (R/P increase with vegetation cover for catchments in which woody vegetation is dominant and annual precipitation is relatively high. Control of water available on annual evapotranspiration in non-woody dominated catchments is relatively stronger compared to woody dominated ones. The ratio of subsurface runoff to total runoff (Rg/R also increases with woody vegetation cover. Through the elasticity analysis of catchment runoff, it is shown that precipitation (P in current year is the most important factor affecting the change in annual total runoff (R, surface runoff (Rs and subsurface runoff (Rg. The significance of other controlling factors is in the order of annual precipitation in previous years (P−1 and P−2, which represents the net effect of soil moisture and annual mean temperature (T in current year. Change of P by +1% causes a +3.35% change of R, a +3.47% change of Rs and a +2.89% change of

  16. Nonlinear vegetation cover changes in the North Ethiopian Highlands: Evidence from the Lake Ashenge closed basin

    Energy Technology Data Exchange (ETDEWEB)

    Lanckriet, Sil, E-mail: sil.lanckriet@ugent.be [Department of Geography, Ghent University, Krijgslaan 281 (S8), B-9000 Ghent (Belgium); Rucina, Stephen [National Museum of Kenya, Earth Science Department, Palynology Section, P.O. Box 40658 00100, Nairobi (Kenya); Frankl, Amaury [Department of Geography, Ghent University, Krijgslaan 281 (S8), B-9000 Ghent (Belgium); Ritler, Alfons [Centre for Development and Environment, University of Bern, Hallerstrasse 10, CH-3012 Bern (Switzerland); Gelorini, Vanessa [Department of Geology and Soil Science, Ghent University, Krijgslaan 281 (S8), B-9000 Ghent (Belgium); Nyssen, Jan [Department of Geography, Ghent University, Krijgslaan 281 (S8), B-9000 Ghent (Belgium)

    2015-12-01

    Vegetation cover changes in African drylands are often thought to result from population growth, social factors and aridification. Here we show that long-term vegetation proxy records can help disentangling these main driving factors. Taking the case of North Ethiopia, we performed an integrated investigation of land cover changes over the last four centuries around the endorheic Lake Ashenge, as derived from pollen analysis and repeat photography complemented with information from historical sources. Pollen and sediment analysis of radiocarbon-dated lake deposits shows a phase of environmental destabilization during the 18th century, after a more stable previous period. This is evidenced by decreases of tree pollen (Juniperus, Olea, Celtis, Podocarpus < 5%), increases in Poaceae (> 40%) and deposition of coarser silt lake sediments (> 70%). Quantitative analysis of 30 repeated landscape photographs around the lake indicates a gradual decline of the vegetation cover since a relative maximum during the mid-19th Century. Vegetation cover declined sharply between the 1950s and the 1980s, but has since begun to recover. Overall, the data from around Lake Ashenge reveal a nonlinear pattern of deforestation and forest regrowth with several periods of vegetation cover change over the past four centuries. While there is forcing of regional drought and the regional land tenure system, the cyclic changes do not support a simplified focus on aridification or population growth. - Highlights: • Vegetation cover changes are often related with population growth or climate • We investigated land cover changes over the last four centuries near Lake Ashenge • Overall, the data reveal a nonlinear pattern of deforestation and forest regrowth.

  17. Nonlinear vegetation cover changes in the North Ethiopian Highlands: Evidence from the Lake Ashenge closed basin

    International Nuclear Information System (INIS)

    Lanckriet, Sil; Rucina, Stephen; Frankl, Amaury; Ritler, Alfons; Gelorini, Vanessa; Nyssen, Jan

    2015-01-01

    Vegetation cover changes in African drylands are often thought to result from population growth, social factors and aridification. Here we show that long-term vegetation proxy records can help disentangling these main driving factors. Taking the case of North Ethiopia, we performed an integrated investigation of land cover changes over the last four centuries around the endorheic Lake Ashenge, as derived from pollen analysis and repeat photography complemented with information from historical sources. Pollen and sediment analysis of radiocarbon-dated lake deposits shows a phase of environmental destabilization during the 18th century, after a more stable previous period. This is evidenced by decreases of tree pollen (Juniperus, Olea, Celtis, Podocarpus < 5%), increases in Poaceae (> 40%) and deposition of coarser silt lake sediments (> 70%). Quantitative analysis of 30 repeated landscape photographs around the lake indicates a gradual decline of the vegetation cover since a relative maximum during the mid-19th Century. Vegetation cover declined sharply between the 1950s and the 1980s, but has since begun to recover. Overall, the data from around Lake Ashenge reveal a nonlinear pattern of deforestation and forest regrowth with several periods of vegetation cover change over the past four centuries. While there is forcing of regional drought and the regional land tenure system, the cyclic changes do not support a simplified focus on aridification or population growth. - Highlights: • Vegetation cover changes are often related with population growth or climate • We investigated land cover changes over the last four centuries near Lake Ashenge • Overall, the data reveal a nonlinear pattern of deforestation and forest regrowth

  18. Comparison of Methods for Estimating Fractional Cover of Photosynthetic and Non-Photosynthetic Vegetation in the Otindag Sandy Land Using GF-1 Wide-Field View Data

    OpenAIRE

    Xiaosong Li; Guoxiong Zheng; Jinying Wang; Cuicui Ji; Bin Sun; Zhihai Gao

    2016-01-01

    Photosynthetic vegetation (PV) and non-photosynthetic vegetation (NPV) are important ground cover types for desertification monitoring and land management. Hyperspectral remote sensing has been proven effective for separating NPV from bare soil, but few studies determined fractional cover of PV (fpv) and NPV (fnpv) using multispectral information. The purpose of this study is to evaluate several spectral unmixing approaches for retrieval of fpv and fnpv in the Otindag Sandy Land using GF-1 wi...

  19. Estimating the Fractional Vegetation Cover from GLASS Leaf Area Index Product

    Directory of Open Access Journals (Sweden)

    Zhiqiang Xiao

    2016-04-01

    Full Text Available The fractional vegetation cover (FCover is an essential biophysical variable and plays a critical role in the carbon cycle studies. Existing FCover products from satellite observations are spatially incomplete and temporally discontinuous, and also inaccurate for some vegetation types to meet the requirements of various applications. In this study, an operational method is proposed to calculate high-quality, accurate FCover from the Global LAnd Surface Satellite (GLASS leaf area index (LAI product to ensure physical consistency between LAI and FCover retrievals. As a result, a global FCover product (denoted by TRAGL were generated from the GLASS LAI product from 2000 to present. With no missing values, the TRAGL FCover product is spatially complete. A comparison of the TRAGL FCover product with the Geoland2/BioPar version 1 (GEOV1 FCover product indicates that these FCover products exhibit similar spatial distribution pattern. However, there were relatively large discrepancies between these FCover products over equatorial rainforests, broadleaf crops in East-central United States, and needleleaf forests in Europe and Siberia. Temporal consistency analysis indicates that TRAGL FCover product has continuous trajectories. Direct validation with ground-based FCover estimates demonstrated that TRAGL FCover values were more accurate (RMSE = 0.0865, and R2 = 0.8848 than GEOV1 (RMSE = 0.1541, and R2 = 0.7621.

  20. Evaluating rapid ground sampling and scaling estimated plant cover using UAV imagery up to Landsat for mapping arctic vegetation

    Science.gov (United States)

    Nelson, P.; Paradis, D. P.

    2017-12-01

    The small stature and spectral diversity of arctic plant taxa presents challenges in mapping arctic vegetation. Mapping vegetation at the appropriate scale is needed to visualize effects of disturbance, directional vegetation change or mapping of specific plant groups for other applications (eg. habitat mapping). Fine spatial grain of remotely sensed data (ca. 10 cm pixels) is often necessary to resolve patches of many arctic plant groups, such as bryophytes and lichens. These groups are also spectrally different from mineral, litter and vascular plants. We sought to explore method to generate high-resolution spatial and spectral data to explore better mapping methods for arctic vegetation. We sampled ground vegetation at seven sites north or west of tree-line in Alaska, four north of Fairbanks and three northwest of Bethel, respectively. At each site, we estimated cover of plant functional types in 1m2 quadrats spaced approximately every 10 m along a 100 m long transect. Each quadrat was also scanned using a field spectroradiometer (PSR+ Spectral Evolution, 400-2500 nm range) and photographed from multiple perspectives. We then flew our small UAV with a RGB camera over the transect and at least 50 m on either side collecting on imagery of the plot, which were used to generate a image mosaic and digital surface model of the plot. We compare plant functional group cover ocular estimated in situ to post-hoc estimation, either automated or using a human observer, using the quadrat photos. We also compare interpolated lichen cover from UAV scenes to estimated lichen cover using a statistical models using Landsat data, with focus on lichens. Light and yellow lichens are discernable in the UAV imagery but certain lichens, especially dark colored lichens or those with spectral signatures similar to graminoid litter, present challenges. Future efforts will focus on integrating UAV-upscaled ground cover estimates to hyperspectral sensors (eg. AVIRIS ng) for better combined

  1. Recovery of Vegetation Cover and Soil after the Removal of Sheep in Socorro Island, Mexico

    Directory of Open Access Journals (Sweden)

    Antonio Ortíz-Alcaraz

    2016-04-01

    Full Text Available For over 140 years, the habitat of Socorro Island in the Mexican Pacific has been altered by the presence of exotic sheep. Overgrazing, jointly with tropical storms, has caused soil erosion, and more than 2000 hectares of native vegetation have been lost. Sheep eradication was conducted from 2009 to 2012. Since then, the vegetation has begun to recover passively, modifying soil properties. The objective of our study was to verify that this island was resilient enough to be recovered and in a relatively short time scale. To confirm our hypothesis, we analyzed changes in the physical-chemical properties of the soil and vegetation cover, the last one in different times and habitats after sheep eradication. The change in vegetation cover was estimated by comparing the normalized difference vegetation index (NDVI between 2008 and 2013. In sites altered by feral sheep, soil compaction was assessed, and soil samples were taken, analyzing pH, electrical conductivity, organic carbon, total nitrogen, phosphorus, calcium, and magnesium. After a year of total sheep eradication, clear indications in the recovery of vegetation cover and improvement of soil quality parameters were observed and confirmed, specifically compaction and nitrogen, organic carbon, phosphorus, and calcium. The results seem to support our hypothesis.

  2. Responses of Vegetation Cover to Environmental Change in Large Cities of China

    Directory of Open Access Journals (Sweden)

    Kai Jin

    2018-01-01

    Full Text Available Vegetation cover is crucial for the sustainability of urban ecosystems; however, this cover has been undergoing substantial changes in cities. Based on climate data, city statistical data, nighttime light data and the Normalized Difference Vegetation Index (NDVI dataset, we investigate the spatiotemporal variations of climate factors, urban lands and vegetation cover in 71 large cities of China during 1998–2012, and explore their correlations. A regression model between growing-season NDVI (G-NDVI and urban land proportion (PU is built to quantify the impact of urbanization on vegetation cover change. The results indicate that the spatiotemporal variations of temperature, precipitation, PU and G-NDVI are greatly different among the 71 cities which experienced rapid urbanization. The spatial difference of G-NDVI is closely related to diverse climate conditions, while the inter-annual variations of G-NDVI are less sensitive to climate changes. In addition, there is a negative correlation between G-NDVI trend and PU change, indicating vegetation cover in cities have been negatively impacted by urbanization. For most of the inland cities, the urbanization impacts on vegetation cover in urban areas are more severe than in suburban areas. But the opposite occurs in 17 cities mainly located in the coastal areas which have been undergoing the most rapid urbanization. Overall, the impacts of urbanization on G-NDVI change are estimated to be −0.026 per decade in urban areas and −0.015 per decade in suburban areas during 1998–2012. The long-term developments of cities would persist and continue to impact on the environmental change and sustainability. We use a 15-year window here as a case study, which implies the millennia of human effects on the natural biotas and warns us to manage landscapes and preserve ecological environments properly.

  3. Tropical climate and vegetation cover during Heinrich event 1: Simulations with coupled climate vegetation models

    OpenAIRE

    Handiani, Dian Noor

    2012-01-01

    This study focuses on the climate and vegetation responses to abrupt climate change in the Northern Hemisphere during the last glacial period. Two abrupt climate events are explored: the abrupt cooling of the Heinrich event 1 (HE1), followed by the abrupt warming of the Bølling-Allerød interstadial (BA). These two events are simulated by perturbing the freshwater balance of the Atlantic Ocean, with the intention of altering the Atlantic Meridional Overturning Circulation (AMOC) and also of in...

  4. Covering soils and vegetations during decommissioning disposal of a uranium mine

    International Nuclear Information System (INIS)

    Feng Weihua

    2010-01-01

    The disposals of waste ore dumps and tailings are an important part in the decommissioning disposal of uranium mines. Important indexes of the disposal include stabilization, harmlessness, rehabilitation and improvement of the ecological environment. These are closely related with vegetations. Taking example of decommissioning disposal of a uranium mine in Guizhou province, the selection of grasses and effects after covering soils and planting grasses are introduced. It is pointed out that covering soils and vegetations play an important role in decommissioning disposal of uranium mines. (authors)

  5. Feasibility Study of Land Cover Classification Based on Normalized Difference Vegetation Index for Landslide Risk Assessment

    Directory of Open Access Journals (Sweden)

    Thilanki Dahigamuwa

    2016-10-01

    Full Text Available Unfavorable land cover leads to excessive damage from landslides and other natural hazards, whereas the presence of vegetation is expected to mitigate rainfall-induced landslide potential. Hence, unexpected and rapid changes in land cover due to deforestation would be detrimental in landslide-prone areas. Also, vegetation cover is subject to phenological variations and therefore, timely classification of land cover is an essential step in effective evaluation of landslide hazard potential. The work presented here investigates methods that can be used for land cover classification based on the Normalized Difference Vegetation Index (NDVI, derived from up-to-date satellite images, and the feasibility of application in landslide risk prediction. A major benefit of this method would be the eventual ability to employ NDVI as a stand-alone parameter for accurate assessment of the impact of land cover in landslide hazard evaluation. An added benefit would be the timely detection of undesirable practices such as deforestation using satellite imagery. A landslide-prone region in Oregon, USA is used as a model for the application of the classification method. Five selected classification techniques—k-nearest neighbor, Gaussian support vector machine (GSVM, artificial neural network, decision tree and quadratic discriminant analysis support the viability of the NDVI-based land cover classification. Finally, its application in landslide risk evaluation is demonstrated.

  6. Phenological characteristics of the main vegetation types on the Tibetan Plateau based on vegetation and water indices

    International Nuclear Information System (INIS)

    Peng, D L; Huang, W J; Zhou, B; Li, C J; Wu, Y P; Yang, X H

    2014-01-01

    Plant phenology is considered one of the most sensitive and easily observable natural indicators of climate change, though few studies have focused on the heterogeneities of phenology across the different vegetation types. In this study, we tried to find the phenological characteristics of the main vegetation types on the Tibetan Plateau. MCD12Q1 images over the Tibetan Plateau from 2001 to 2010 were used to extract the main vegetation types. The Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Water Index (LSWI) were calculated using surface reflectance values from the blue, red, near-infrared, short-wave infrared (SWIR) 6 (for LSIW6), and SWIR7 (for LSIW7) bands derived from MOD09A1 and used to explore the phenological characteristics of the main vegetation types on the Tibetan Plateau. The results showed that there were eight constant vegetation types on the Tibetan Plateau from 2001 to 2010 demonstrating multiple phenological characteristics. Evergreen needleleaf forest, evergreen broadleaf forest, and permanent wetland had the minimum NDVI values during the summer season, while open shrubland and grassland had the maximum NDVI/EVI values during this period. NDVI and EVI of cropland/natural vegetation had two peaks for their seasonal variations. EVI showed a more significant correlation with LSWI6/LSWI7 than NDVI. Compared to LSWI7, larger EVI values occurred in evergreen needleleaf forest, evergreen broadleaf forest, mixed forest, and permanent wetland, while smaller values occurred in shrubland and barren or sparsely vegetated cover, and nearly equal values occurred in grassland and cropland

  7. Vegetative cover and PAHs accumulation in soils of urban green space

    International Nuclear Information System (INIS)

    Peng Chi; Ouyang Zhiyun; Wang Meie; Chen Weiping; Jiao Wentao

    2012-01-01

    We investigated how urban land uses influence soil accumulation of polycyclic aromatic hydrocarbons (PAHs) in the urban green spaces composed of different vegetative cover. How did soil properties, urbanization history, and population density affect the outcomes were also considered. Soils examined were obtained at 97 green spaces inside the Beijing metropolis. PAH contents of the soils were influenced most significantly by their proximity to point source of industries such as the coal combustion installations. Beyond the influence circle of industrial emissions, land use classifications had no significant effect on the extent of PAH accumulation in soils. Instead, the nature of vegetative covers affected PAH contents of the soils. Tree–shrub–herb and woodland settings trapped more airborne PAH and soils under these vegetative patterns accumulated more PAHs than those of the grassland. Urbanization history, population density and soil properties had no apparent impact on PAHs accumulations in soils of urban green space. - Highlights: ► Land use did not affect PAHs in soils except for areas adjacent to industrial sources. ► Tree–shrub–herb and woodland cover amass more PAHs in soils than grassland cover. ► Urban development and soil property factors had little effect on PAHs in soils. - Industrial emissions aside, vegetative cover is the dominant factor controlling accumulation of PAHs in urban green space soils.

  8. Spatial Variation of Temperature and Precipitation in Bhutan and Links to Vegetation and Land Cover

    Directory of Open Access Journals (Sweden)

    Ugyen Dorji

    2016-02-01

    Full Text Available Bhutan, located in the Himalayas in the South Asian monsoon region, has extremely high variation in elevation, climatic conditions, and land cover despite its small geographical area, as well as great biodiversity. This paper provides the first comprehensive description of climatic conditions in Bhutan. It assesses the spatial variation of temperature and precipitation across the country and evaluates the causes for this variation based on daily data from 70 meteorological stations that have been recording data for time spans ranging from 3 to 21 years. Temperature and precipitation show contrasting spatial variation, with temperature primarily affected by elevation and precipitation by latitude. Models were developed using mixed linear regression models to predict seasonal and annual mean temperature and precipitation based on geographical location. Using linear regression we found that temperatures changed by about 0.5°C for every 100 m of change in elevation, with lapse rates being highest in February, March, and November and lowest from June to August. The lapse rate was highest for minimum temperatures and lowest for maximum temperatures, with the greatest difference during winter. The spatial distribution of precipitation was mainly controlled by latitude, having a quadratic relationship, with the highest rates in the southern foothills of the Himalayan range and the lowest at midlatitudes. The land cover is affected by topography and local climate, with variations in temperature being a main deciding factor for vegetation types; most human settlements and associated land uses are concentrated at lower elevations.

  9. Diurnal and Seasonal Variations of Eddy-Covariance Carbon Dioxide Fluxes Above an Urban Wetland, Partitioned by Vegetation Cover

    Science.gov (United States)

    Schafer, K. V.; Duman, T.

    2017-12-01

    The New Jersey Meadowlands are an urban brackish marsh with a long history of human activity causing disturbances and alterations. Carbon emissions were measured from two sites in the Meadowlands, a natural site and a restored site, using eddy-covariance (EC) from 2014 to 2016. At each site, the EC towers were placed at the interface of two vegetation covers, allowing capturing this aspect of the wetland's heterogeneity. Using footprint modeling and light response curves we were able to partition measured fluxes between vegetation cover types and compare CO2 fluxes from patches of invasive versus native wetland vegetation communities. We show that further separating the data into seasonal and diurnal fluxes reveals patterns in CO2 fluxes that allow determining the nature of each vegetation cover as a source or sink for CO2. Our results also show that CO2 emissions from the restored wetland are significantly higher than the natural wetland. Areas of invasive Phragmites australis at the natural site had the lowest CO2 release rates during winter. These were consistently lower in magnitude than summer daytime uptake, therefore making this part of the wetland a CO2 sink. Areas planted with native Spartina alterniflora at the restored site had the largest uptake during daytime, therefore seemingly justifying restoration activities. However, they also had the highest emission rates during summer nighttime, and therefore the daily summer net uptake was not the highest compared with other vegetation covers. Furthermore, emissions from the restored site during winter were larger compared to the natural site, indicating that restoration activities might have led to a significant increase of carbon release from the wetland. Thus, during the study period the restored wetland acted as a carbon source.

  10. Vegetation growth patterns on six rock-covered UMTRA Project disposal cells

    International Nuclear Information System (INIS)

    1992-02-01

    This study assessed vegetation growth patterns, the potential impacts of vegetation growth on disposal cell cover integrity, and possible measures that could be taken to monitor and/or control plant growth, where necessary, on six Uranium Mill Tailings Remedial Action (UMTRA) Project rock-covered disposal cells. A large-scale invasion of volunteer plants was observed on the Shiprock and Burrell disposal cells. Plant growth at the South Clive, Green River, and Tuba City disposal cells was sparse except for the south rock apron and south slope of the Tuba City disposal cell, where windblown sand had filled up part of the rock cover and plant growth was observed. The rock-covered topslope of the Collins Ranch disposal cell was intentionally covered with topsoil and vegetated. Plant roots growing on the disposal cells are changing the characteristics of the cover by drying out the radon barrier, encouraging the establishment of soil-building processes in the bedding and radon barrier layers, creating channels in the radon barrier, and facilitating ecological succession, which could lead to the establishment of additional deep-rooted plants on the disposal cells. If left unchecked, plant roots would reach the tailings at the Burrell and Collins Ranch disposal cells within a few years, likely resulting in the transport of contaminants out of the cells

  11. Photopolarimetric properties of leaf and vegetation covers over a wide range of measurement directions

    Science.gov (United States)

    Sun, Zhongqiu; Peng, Zhiyan; Wu, Di; Lv, Yunfeng

    2018-02-01

    The optical scattering property of the target is the essential signal for passive remote sensing applications. To deepen our understanding of the light reflected from vegetation, we present results of photopolarimetric laboratory measurements from single leaf and two vegetation covers (planophile and erectophile) over a wide range of viewing directions. The bidirectional polarized reflectance factor (BPRF) was used to characterize the polarization property of our samples. We observed positive and negative polarization (-BPRFQ) of all samples in the forward scattering and backward scattering directions, respectively. Based on the comparison of the BPRF among single leaf, planophile vegetation and erectophile vegetation, our measurements demonstrate that the orientation of the leaf is a key factor in describing the amount of polarization in the forward scattering direction. Our measurements also validated certain model results stating that (1) specular reflection generates a portion of polarization in the forward scattering direction and diffuses scattering of polarized light in all hemisphere directions, (2) BPRFU is anti-symmetric in the principal plane from a recent study in which the authors simulated the polarized reflectance of vegetation cover using the vector radiative transfer theory. These photopolarimetric measurement results, which can be completely explained by the theoretical results, are useful in remote sensing applications to vegetation.

  12. Development of canopy cover and woody vegetation biomass on reclaimed and unreclaimed post-mining sites

    Czech Academy of Sciences Publication Activity Database

    Frouz, Jan; Dvorščík, P.; Vávrová, A.; Doušová, O.; Kadochová, Štěpánka; Matějíček, L.

    2015-01-01

    Roč. 84, November (2015), s. 233-239 ISSN 0925-8574 Grant - others:GA ČR(CZ) GAP504/12/1288 Program:GA Institutional support: RVO:60077344 Keywords : aerial photographs * reclaimed sites * succession * tree biomass * woody vegetation cover Subject RIV: EH - Ecology, Behaviour Impact factor: 2.740, year: 2015

  13. Land Use and Land Cover Change, and Woody Vegetation Diversity in Human Driven Landscape of Gilgel Tekeze Catchment, Northern Ethiopia

    Directory of Open Access Journals (Sweden)

    Samuale Tesfaye

    2014-01-01

    Full Text Available Land use and land cover (LULC change through inappropriate agricultural practices and high human and livestock population pressure have led to severe land degradation in the Ethiopian highlands. This has led to further degradation such as biodiversity loss, deforestation, and soil erosion. The study examined woody vegetation diversity status and the impact of drivers of change across different LULC types and agroecological zones in Gilgel Tekeze catchment, northern Ethiopian highlands. LULC dynamics were assessed using GIS techniques on 1976, 1986, and 2008 satellite images. Vegetation data were collected from 135 sample plots (20 m × 20 m from five LULC types, namely, forest, shrub-bush, grazing, settlement, and cultivated land, in the three agroecological zones; Kolla, Weyna-Dega, and Dega. Differences in vegetation structure and composition and their relationship to agroecological zones were tested using two-way ANOVA and PCA technique. The results show that vegetation structure and composition significantly differed across all LULC types in different agroecological zones particularly in sapling density, tree height, and shrub height and in each agroecological zone between forest land, shrub-bush land, and settlement area. Overall, Weyna-Dega agroecological zone and the shrub-bush land had more structural and compositional diversity than the other agroecological zones and LULC types.

  14. Complex responses of spring alpine vegetation phenology to snow cover dynamics over the Tibetan Plateau, China.

    Science.gov (United States)

    Wang, Siyuan; Wang, Xiaoyue; Chen, Guangsheng; Yang, Qichun; Wang, Bin; Ma, Yuanxu; Shen, Ming

    2017-09-01

    Snow cover dynamics are considered to play a key role on spring phenological shifts in the high-latitude, so investigating responses of spring phenology to snow cover dynamics is becoming an increasingly important way to identify and predict global ecosystem dynamics. In this study, we quantified the temporal trends and spatial variations of spring phenology and snow cover across the Tibetan Plateau by calibrating and analyzing time series of the NOAA AVHRR-derived normalized difference vegetation index (NDVI) during 1983-2012. We also examined how snow cover dynamics affect the spatio-temporal pattern of spring alpine vegetation phenology over the plateau. Our results indicated that 52.21% of the plateau experienced a significant advancing trend in the beginning of vegetation growing season (BGS) and 34.30% exhibited a delaying trend. Accordingly, the snow cover duration days (SCD) and snow cover melt date (SCM) showed similar patterns with a decreasing trend in the west and an increasing trend in the southeast, but the start date of snow cover (SCS) showed an opposite pattern. Meanwhile, the spatial patterns of the BGS, SCD, SCS and SCM varied in accordance with the gradients of temperature, precipitation and topography across the plateau. The response relationship of spring phenology to snow cover dynamics varied within different climate, terrain and alpine plant community zones, and the spatio-temporal response patterns were primarily controlled by the long-term local heat-water conditions and topographic conditions. Moreover, temperature and precipitation played a profound impact on diverse responses of spring phenology to snow cover dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Testing the Potential of Vegetation Indices for Land Use/cover Classification Using High Resolution Data

    Science.gov (United States)

    Karakacan Kuzucu, A.; Bektas Balcik, F.

    2017-11-01

    Accurate and reliable land use/land cover (LULC) information obtained by remote sensing technology is necessary in many applications such as environmental monitoring, agricultural management, urban planning, hydrological applications, soil management, vegetation condition study and suitability analysis. But this information still remains a challenge especially in heterogeneous landscapes covering urban and rural areas due to spectrally similar LULC features. In parallel with technological developments, supplementary data such as satellite-derived spectral indices have begun to be used as additional bands in classification to produce data with high accuracy. The aim of this research is to test the potential of spectral vegetation indices combination with supervised classification methods and to extract reliable LULC information from SPOT 7 multispectral imagery. The Normalized Difference Vegetation Index (NDVI), the Ratio Vegetation Index (RATIO), the Soil Adjusted Vegetation Index (SAVI) were the three vegetation indices used in this study. The classical maximum likelihood classifier (MLC) and support vector machine (SVM) algorithm were applied to classify SPOT 7 image. Catalca is selected region located in the north west of the Istanbul in Turkey, which has complex landscape covering artificial surface, forest and natural area, agricultural field, quarry/mining area, pasture/scrubland and water body. Accuracy assessment of all classified images was performed through overall accuracy and kappa coefficient. The results indicated that the incorporation of these three different vegetation indices decrease the classification accuracy for the MLC and SVM classification. In addition, the maximum likelihood classification slightly outperformed the support vector machine classification approach in both overall accuracy and kappa statistics.

  16. Effects of aquatic vegetation type on denitrification

    NARCIS (Netherlands)

    Veraart, A.J.; Bruijne, de W.J.J.; Peeters, E.T.H.M.; Klein, de J.J.M.; Scheffer, M.

    2011-01-01

    In a microcosm 15N enrichment experiment we tested the effect of floating vegetation (Lemna sp.) and submerged vegetation (Elodea nuttallii) on denitrification rates, and compared it to systems without macrophytes. Oxygen concentration, and thus photosynthesis, plays an important role in regulating

  17. The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Blok, Daan; Heijmans, Monique M P D; Berendse, Frank [Nature Conservation and Plant Ecology Group, Wageningen University, PO Box 47, 6700 AA, Wageningen (Netherlands); Schaepman-Strub, Gabriela [Institute of Evolutionary Biology and Environmental Studies, University of Zuerich, Winterthurerstrasse 190, 8057 Zuerich (Switzerland); Bartholomeus, Harm [Centre for Geo-Information, Wageningen University, PO Box 47, 6700 AA, Wageningen (Netherlands); Maximov, Trofim C, E-mail: daan.blok@wur.nl [Biological Problems of the Cryolithozone, Russian Academy of Sciences, Siberian Division, 41, Lenin Prospekt, Yakutsk, The Republic of Sakha, Yakutia 677980 (Russian Federation)

    2011-07-15

    Recently observed Arctic greening trends from normalized difference vegetation index (NDVI) data suggest that shrub growth is increasing in response to increasing summer temperature. An increase in shrub cover is expected to decrease summer albedo and thus positively feed back to climate warming. However, it is unknown how albedo and NDVI are affected by shrub cover and inter-annual variations in the summer climate. Here, we examine the relationship between deciduous shrub fractional cover, NDVI and albedo using field data collected at a tundra site in NE Siberia. Field data showed that NDVI increased and albedo decreased with increasing deciduous shrub cover. We then selected four Arctic tundra study areas and compiled annual growing season maximum NDVI and minimum albedo maps from MODIS satellite data (2000-10) and related these satellite products to tundra vegetation types (shrub, graminoid, barren and wetland tundra) and regional summer temperature. We observed that maximum NDVI was greatest in shrub tundra and that inter-annual variation was negatively related to summer minimum albedo but showed no consistent relationship with summer temperature. Shrub tundra showed higher albedo than wetland and barren tundra in all four study areas. These results suggest that a northwards shift of shrub tundra might not lead to a decrease in summer minimum albedo during the snow-free season when replacing wetland tundra. A fully integrative study is however needed to link results from satellite data with in situ observations across the Arctic to test the effect of increasing shrub cover on summer albedo in different tundra vegetation types.

  18. The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature

    International Nuclear Information System (INIS)

    Blok, Daan; Heijmans, Monique M P D; Berendse, Frank; Schaepman-Strub, Gabriela; Bartholomeus, Harm; Maximov, Trofim C

    2011-01-01

    Recently observed Arctic greening trends from normalized difference vegetation index (NDVI) data suggest that shrub growth is increasing in response to increasing summer temperature. An increase in shrub cover is expected to decrease summer albedo and thus positively feed back to climate warming. However, it is unknown how albedo and NDVI are affected by shrub cover and inter-annual variations in the summer climate. Here, we examine the relationship between deciduous shrub fractional cover, NDVI and albedo using field data collected at a tundra site in NE Siberia. Field data showed that NDVI increased and albedo decreased with increasing deciduous shrub cover. We then selected four Arctic tundra study areas and compiled annual growing season maximum NDVI and minimum albedo maps from MODIS satellite data (2000-10) and related these satellite products to tundra vegetation types (shrub, graminoid, barren and wetland tundra) and regional summer temperature. We observed that maximum NDVI was greatest in shrub tundra and that inter-annual variation was negatively related to summer minimum albedo but showed no consistent relationship with summer temperature. Shrub tundra showed higher albedo than wetland and barren tundra in all four study areas. These results suggest that a northwards shift of shrub tundra might not lead to a decrease in summer minimum albedo during the snow-free season when replacing wetland tundra. A fully integrative study is however needed to link results from satellite data with in situ observations across the Arctic to test the effect of increasing shrub cover on summer albedo in different tundra vegetation types.

  19. Monitoring vegetation cover in the postfire in Tavira - São Brás de Alportel (southern Portugal)

    Science.gov (United States)

    Ramos-Simões, Nuno A.; Granja-Martins, Fernando M.; Neto-Paixão, Helena M.; Jordán, Antonio; Zavala, Lorena M.

    2014-05-01

    infrastructures. In recent years, migration processes have further aggravated the economic situation in this region. Landsat 7 and Landsat 8 images were used for this study (April 2012, December 2012, March 2013 and November 2013). Images were corrected for the scattering effect by extraction of black objects for near infrared bands and correction by linear regression for the red bands. Several vegetation indexes were used, such as, vegetation ratio, NDVI, the perpendicular vegetation index with assessment of distance to soil, PVI, WDVI, PVI3, and vegetation indexes based on orthogonal transformation of bands (Tasselled Cap) and principal component analysis (PCA). After studying the correlations between indexes by PCA, the Tasselled Cap-green index was selected as the most accurate one. Presence/absence of vegetation and land use were monitored to select the best parameter to study the evolution of vegetation. The evolution of the vegetation was compared with the CORINE Land Cover map (2006) and validated in field visits in January 2014. 3. RESULTS For the study area, results show a positive evolution of vegetation in the burned area during the months following to burning. Recovery of natural-native vegetation is more intense than anthropic vegetation types, with sclerophyllous vegetation showing the most intense evolution after burning.

  20. INTER-SEASONAL DYNAMICS OF VEGETATION COVER AND SURFACE TEMPERATURE DISTRIBUTION: A CASE STUDY OF ONDO STATE, NIGERIA

    Directory of Open Access Journals (Sweden)

    H. A. Ibitolu

    2016-06-01

    Full Text Available This study employs Landsat ETM+ satellite imagery to access the inter-seasonal variations of Surface Temperature and Vegetation cover in Ondo State in 2013. Also, air temperature data for year 2013 acquired from 3 synoptic meteorological stations across the state were analyzed. The Single-channel Algorithm was used to extract the surface temperature maps from the digital number embedded within the individual pixel. To understand the spatio-temporal distribution of LST and vegetation across the various landuse types, 200 sample points were randomly chosen, so that each land-use covers 40 points. Imagery for the raining season where unavailable because of the intense cloud cover. Result showed that the lowest air temperature of 20.9°C was in January, while the highest air temperature of 34°C occurred in January and March. There was a significant shift in the vegetation greenness over Ondo State, as average NDVI tend to increase from a weak positive value (0.189 to a moderate value (0.419. The LULC map revealed that vegetation cover occupied the largest area (65% followed by Built-up (26%, Swampy land (4%, Rock outcrop (3% and water bodies (2%. The surface temperature maps revealed that January has the lowest temperature of 10°C experienced in the coastal riverine areas of Ilaje and Igbokoda, while the highest temperature of 39°C observed in September is experienced on the rocky grounds. The study also showed the existence of pockets of Urban Heat Islands (UHI that are well scattered all over the state. This finding proves the capability and reliability of Satellite remote sensing for environmental studies.

  1. Changes in climatic conditions, vegetation cover and erosion during the Holocene in southeast Spain

    Energy Technology Data Exchange (ETDEWEB)

    Bellin, N.; Vanacker, V.

    2009-07-01

    The present-day landscape in Southeast Spain is the result of a long occupation history. To have a better understanding of the impact of human societies on soil degradation, we analysed the main shifts in vegetation cover, climate and human occupation for the last 12000 years. Our analyses use recently published information from continental and marine pollen series. The data suggest that climatic factors appear to be important driving factors of vegetation degradation induced by an increased aridity that is already recorded at about 5000 years ago. (Author) 19 refs.

  2. Changes in climatic conditions, vegetation cover and erosion during the Holocene in southeast Spain

    International Nuclear Information System (INIS)

    Bellin, N.; Vanacker, V.

    2009-01-01

    The present-day landscape in Southeast Spain is the result of a long occupation history. To have a better understanding of the impact of human societies on soil degradation, we analysed the main shifts in vegetation cover, climate and human occupation for the last 12000 years. Our analyses use recently published information from continental and marine pollen series. The data suggest that climatic factors appear to be important driving factors of vegetation degradation induced by an increased aridity that is already recorded at about 5000 years ago. (Author) 19 refs.

  3. Calculation set for design and optimization of vegetative soil covers Sandia National Laboratories, Albuquerque, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Peace, Gerald L.; Goering, Timothy James (GRAM, Inc., Albuquerque, NM)

    2005-02-01

    This study demonstrates that containment of municipal and hazardous waste in arid and semiarid environments can be accomplished effectively without traditional, synthetic materials and complex, multi-layer systems. This research demonstrates that closure covers combining layers of natural soil, native plant species, and climatic conditions to form a sustainable, functioning ecosystem will meet the technical equivalency criteria prescribed by the U. S. Environmental Protection Agency. In this study, percolation through a natural analogue and an engineered cover is simulated using the one-dimensional, numerical code UNSAT-H. UNSAT-H is a Richards. equation-based model that simulates soil water infiltration, unsaturated flow, redistribution, evaporation, plant transpiration, and deep percolation. This study incorporates conservative, site-specific soil hydraulic and vegetation parameters. Historical meteorological data are used to simulate percolation through the natural analogue and an engineered cover, with and without vegetation. This study indicates that a 3-foot (ft) cover in arid and semiarid environments is the minimum design thickness necessary to meet the U. S. Environmental Protection Agency-prescribed technical equivalency criteria of 31.5 millimeters/year and 1 x 10{sup -7} centimeters/second for net annual percolation and average flux, respectively. Increasing cover thickness to 4 or 5 ft results in limited additional improvement in cover performance.

  4. Automated Land Cover Change Detection and Mapping from Hidden Parameter Estimates of Normalized Difference Vegetation Index (NDVI) Time-Series

    Science.gov (United States)

    Chakraborty, S.; Banerjee, A.; Gupta, S. K. S.; Christensen, P. R.; Papandreou-Suppappola, A.

    2017-12-01

    Multitemporal observations acquired frequently by satellites with short revisit periods such as the Moderate Resolution Imaging Spectroradiometer (MODIS), is an important source for modeling land cover. Due to the inherent seasonality of the land cover, harmonic modeling reveals hidden state parameters characteristic to it, which is used in classifying different land cover types and in detecting changes due to natural or anthropogenic factors. In this work, we use an eight day MODIS composite to create a Normalized Difference Vegetation Index (NDVI) time-series of ten years. Improved hidden parameter estimates of the nonlinear harmonic NDVI model are obtained using the Particle Filter (PF), a sequential Monte Carlo estimator. The nonlinear estimation based on PF is shown to improve parameter estimation for different land cover types compared to existing techniques that use the Extended Kalman Filter (EKF), due to linearization of the harmonic model. As these parameters are representative of a given land cover, its applicability in near real-time detection of land cover change is also studied by formulating a metric that captures parameter deviation due to change. The detection methodology is evaluated by considering change as a rare class problem. This approach is shown to detect change with minimum delay. Additionally, the degree of change within the change perimeter is non-uniform. By clustering the deviation in parameters due to change, this spatial variation in change severity is effectively mapped and validated with high spatial resolution change maps of the given regions.

  5. Computer-aided classification of forest cover types from small scale aerial photography

    Science.gov (United States)

    Bliss, John C.; Bonnicksen, Thomas M.; Mace, Thomas H.

    1980-11-01

    The US National Park Service must map forest cover types over extensive areas in order to fulfill its goal of maintaining or reconstructing presettlement vegetation within national parks and monuments. Furthermore, such cover type maps must be updated on a regular basis to document vegetation changes. Computer-aided classification of small scale aerial photography is a promising technique for generating forest cover type maps efficiently and inexpensively. In this study, seven cover types were classified with an overall accuracy of 62 percent from a reproduction of a 1∶120,000 color infrared transparency of a conifer-hardwood forest. The results were encouraging, given the degraded quality of the photograph and the fact that features were not centered, as well as the lack of information on lens vignetting characteristics to make corrections. Suggestions are made for resolving these problems in future research and applications. In addition, it is hypothesized that the overall accuracy is artificially low because the computer-aided classification more accurately portrayed the intermixing of cover types than the hand-drawn maps to which it was compared.

  6. Field performance of alternative landfill covers vegetated with cottonwood and eucalyptus trees.

    Science.gov (United States)

    Abichou, Tarek; Musagasa, Jubily; Yuan, Lei; Chanton, Jeff; Tawfiq, Kamal; Rockwood, Donald; Licht, Louis

    2012-01-01

    A field study was conducted to assess the ability of landfill covers to control percolation into the waste. Performance of one conventional cover was compared to that of two evapotranspiration (ET) tree covers, using large (7 x 14 m) lined lysimeters at the Leon County Solid Waste management facility in Tallahassee, Florida. Additional unlined test sections were also constructed and monitored in order to compare soil water storage, soil temperature, and tree growth inside lysimeters and in unlined test sections. The unlined test sections were in direct contact with landfill gas. Surface runoff on the ET covers was a small proportion of the water balance (1% of precipitation) as compared to 13% in the conventional cover. Percolation in the ET covers averaged 17% and 24% of precipitation as compared to 33% in the conventional cover. On average, soil water storage was higher in the lined lysimeters (429 mm) compared to unlined test sections (408 mm). The average soil temperature in the lysimeters was lower than in the unlined test sections. The average tree height inside the lysimeters was not significantly lower (8.04 mfor eucalyptus and 7.11 mfor cottonwood) than outside (8.82 m for eucalyptus and 8.01 m for cottonwood). ET tree covers vegetated with cottonwood or eucalyptus are feasible for North Florida climate as an alternative to GCL covers.

  7. Consequences of changes in vegetation and snow cover for climate feedbacks in Alaska and northwest Canada

    Science.gov (United States)

    Euskirchen, Eugénie S.; Bennett, A. P.; Breen, Amy L.; Genet, Helene; Lindgren, Michael A.; Kurkowski, Tom; McGuire, A. David; Rupp, T. Scott

    2016-01-01

    Changes in vegetation and snow cover may lead to feedbacks to climate through changes in surface albedo and energy fluxes between the land and atmosphere. In addition to these biogeophysical feedbacks, biogeochemical feedbacks associated with changes in carbon (C) storage in the vegetation and soils may also influence climate. Here, using a transient biogeographic model (ALFRESCO) and an ecosystem model (DOS-TEM), we quantified the biogeophysical feedbacks due to changes in vegetation and snow cover across continuous permafrost to non-permafrost ecosystems in Alaska and northwest Canada. We also computed the changes in carbon storage in this region to provide a general assessment of the direction of the biogeochemical feedback. We considered four ecoregions, or Landscape Conservations Cooperatives (LCCs; including the Arctic, North Pacific, Western Alaska, and Northwest Boreal). We examined the 90 year period from 2010 to 2099 using one future emission scenario (A1B), under outputs from two general circulation models (MPI-ECHAM5 and CCCMA-CGCM3.1). We found that changes in snow cover duration, including both the timing of snowmelt in the spring and snow return in the fall, provided the dominant positive biogeophysical feedback to climate across all LCCs, and was greater for the ECHAM (+3.1 W m−2 decade−1regionally) compared to the CCCMA (+1.3 W m−2 decade−1 regionally) scenario due to an increase in loss of snow cover in the ECHAM scenario. The greatest overall negative feedback to climate from changes in vegetation cover was due to fire in spruce forests in the Northwest Boreal LCC and fire in shrub tundra in the Western LCC (−0.2 to −0.3 W m−2 decade−1). With the larger positive feedbacks associated with reductions in snow cover compared to the smaller negative feedbacks associated with shifts in vegetation, the feedback to climate warming was positive (total feedback of +2.7 W m−2decade regionally in the ECHAM scenario compared to +0.76 W

  8. Status of vegetation cover after 25 years since the last wildfire (Río Verde, Spain)

    Science.gov (United States)

    Martinez-Murillo, Juan F.; Remond, Ricardo; Ruiz-Sinoga, José D.

    2016-04-01

    Climatic conditions play an important role in the post-fire vegetation recovery as well as other factors like topography, soil, and pre and post-fire land use (Shakesby, 2011; Robichaud et al., 2013). This study deals with the characterization of the vegetation cover status in an area affected by a wildfire 25 years ago. Namely, the objectives are to: i) compare the current and previous vegetation cover to wildfire; and ii) evaluate whether the current vegetation has recovered the previous cover to wildfire. The study area is mainly located in the Rio Verde watershed (Sierra de las Nieves, South of Spain). It corresponds to an area affected by a wildfire in August 8th, 1991. The burned area was equal to 8,156 ha. The burn severity was spatially very high. The main geographic features of the burned area are: mountainous topography (altitudes ranging from 250 m to 1700 m; slope gradient >25%; exposure mainly southfacing); igneous (peridotites), metamorphic (gneiss) and calcareous rocks (limestones); and predominant forest land use (Pinus pinaster sp. woodlands, 10%; pinus opened forest + shrubland, 40%; shrubland, 35%; and bare soil + grassland, 15%). Remote sensing techniques and GIS analysis has been applied to achieve the objectives. Landsat 5 and Landsat 8 images were used: July 13th, 1991 and July 1st, 2013, for the previous wildfire situation and 22-years after, respectively. The 1990 CORINE land cover was also considered to map 1991 land uses prior the wildfire. The Andalucía Regional Government wildfire historic records were used to select the burned area and its geographical limit. 1991 and 2013 land cover maps were obtained by means of object-oriented classifications. Also, NDVI index were calculated and mapped for both years in order to compare the status of vegetation cover. According to the results, the combination of remote sensing and GIS analysis let map the most recovered areas affected by the wildfire in 1991. The vegetation indexes indicated that

  9. Artichoke (Cynara scolymus L. as cash-cover crop in an organic vegetable system

    Directory of Open Access Journals (Sweden)

    Anna LENZI

    2015-11-01

    Full Text Available In organic vegetable systems green manure crops play an important role as a nitrogen source, but they cover the soil for several months without producing a direct income. Globe artichoke (Cynara scolymus L. provides both heads to be harvested and particularly abundant plant residues to be possibly incorporated into the soil, so it may play a double role of cash and cover crop. This paper describes an on-farm study in which seed-propagated artichoke, cultivated as an annual crop, preceded zucchini squash and lettuce cultivated in sequence within a vegetable organic system. Artichoke produced about 7 t ha-1 of saleable heads and left, after harvest, 50.3 t ha-1 of fresh biomass usable as green manure. Zucchini squash and lettuce following artichoke showed a significant increase in yield when artichoke residues were incorporated into the soil. Furthermore, a residual positive effect of green manure on soil fertility was detected after lettuce harvest. 

  10. Vegetation cover and land use of a protected coastal area and its surroundings, southeast Brazil

    OpenAIRE

    Caris,Elisa Araujo Penna; Kurtz,Bruno Coutinho; Cruz,Carla Bernadete Madureira; Scarano,Fabio Rubio

    2013-01-01

    We applied remote sensing techniques on a TM Landsat 5 image (1:50,000) to map land use and vegetation cover of the Restinga de Jurubatiba National Park and surroundings. The thematic map generated from the digital classification of the image allowed us to spatially characterize and quantify the different land uses and soil covers of the area. Thirteen classes were identified. The most representative classes in the park were the Clusia (31.99%) and Ericaceae formations (29.14%). More than 90%...

  11. Vegetation geographical patterns as a key to the past, with emphasis on the dry vegetation types of South Africa

    Directory of Open Access Journals (Sweden)

    M. J. A. Werger

    1983-11-01

    Full Text Available Southern Africa is characterized by a highly diversified vegetational cover with extremes as contrasting as desert, tropical forest, alpine grassland, or mediterranean type scrub, and many other types in between. This vegetational pattern is strongly correlated to the climatological pattern. It is therefore likely that past changes in climate can still be partly traced in the vegetational pattern, particularly in geographical anomalies, and that study of these patterns provides complementary evidence to palynological research. The following anomalies in the vegetational pattern are briefly discussed: 1. island-wise occurrence of Afro-montane vegetation on mesic, sheltered sites in the southern Sudano- Zambezian Region, in particular in the Highveld grassland/False Karoo transition area; 2. similar westward occurrence of Sudano-Zambezian scrub patches in the Karoo-Namib Region near the Orange/Vaal confluence; 3. scattered occurrence of Sudano-Zambezian woody species in a matrix of Karoo-Namib vegetation in the marginal Karoo-Namib Region; 4. island-wise occurrence of frost-tolerant, dry, karroid dwarf shrub vegetation of predominantly C,-plants on isolated peaks in the winter rainfall area of Namaqualand; 5. peculiar patchy distribution of some succulents in wide areas of climatically rather homogeneous, succulent dwarf shrub vegetation of predominantly CAM-plants in the escarpment area of Namaqualand. a pattern reminiscent of that in many Cape fynbos species. Interpretation of these patterns logically leads to the conclusion that these result from a previously wetter, a previously cooler, or a previously wetter and cooler climate, respectively, over the parts of southern Africa under discussion. This conclusion is compared with published palynological views.

  12. Streptomyces odonnellii sp. nov., a proteolytic streptomycete isolated from soil under cerrado (savanna) vegetation cover.

    Science.gov (United States)

    Pereira, Pedro Henrique Freitas; Macrae, Andrew; Reinert, Fernanda; de Souza, Rodrigo Fonseca; Coelho, Rosalie Reed Rodrigues; Pötter, Gabrielle; Klenk, Hans-Peter; Labeda, David P

    2017-12-01

    A novel streptomycete, strain 594 T , isolated from Brazilian soil collected under cerrado (savanna) vegetation cover is described. Strain 594 T produced thermophilic chitinolytic proteases in assays containing feather meal and corn steep liquor as sole sources of carbon and nitrogen. The strain produced white to grey aerial mycelium and spiral chains of spiny-surfaced spores on the aerial mycelium and did not produce diffusible pigments. The ll-isomer of diaminopimelic acid was present in the cell wall and menaquinones were predominantly MK-9(H6) (52 %) and MK-9(H8) (30 %) with 6 % MK-9(H4) and slightly less than 1 % MK-9(H2). Polar lipids present were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and an unknown phospholipid. The major fatty acids were anteiso-C15 : 0, anteiso-C16 : 0, anteiso-C14 : 0 and anteiso-C17 : 0. The G+C content of the genomic DNA was 70.4 mol%. Phylogenetic analysis of the nearly complete 16S rRNA gene sequence indicated that it differed from described Streptomyces species. Multilocus sequence analysis (MLSA) using five housekeeping genes (atpD, gyrB, rpoB, recA and trpB) comparing Streptomyces type strains showed that the MLSA distance of strain 594 T to the most closely related species was greater than the 0.007 threshold. The in silico DNA-DNA relatedness between the genome sequence of strain 594 T and that of the phylogenetically nearest species was well below the species level recommendation. There was thus multiple evidence justifying the description of this strain as representing a novel species, for which the name Streptomyces odonnellii sp. nov. is proposed. The type strain is 594 T (=IMPPG 594 T =DSM 41949 T =NRRL B-24891 T ).

  13. Monitoring riparian-vegetation composition and cover along the Colorado River downstream of Glen Canyon Dam, Arizona

    Science.gov (United States)

    Palmquist, Emily C.; Ralston, Barbara E.; Sarr, Daniel A.; Johnson, Taylor C.

    2018-06-05

    Vegetation in the riparian zone (the area immediately adjacent to streams, such as stream banks) along the Colorado River downstream of Glen Canyon Dam, Arizona, supports many ecosystem and societal functions. In both Glen Canyon and Grand Canyon, this ecosystem has changed over time in response to flow alterations, invasive species, and recreational use. Riparian-vegetation cover and composition are likely to continue to change as these pressures persist and new ones emerge. Because this system is a valuable resource that is known to change in response to flow regime and other disturbances, a long-term monitoring protocol has been designed with three primary objectives:Annually measure and summarize the status (composition and cover) of native and non-native vascular-plant species within the riparian zone of the Colorado River between Glen Canyon Dam and Lake Mead.At 5-year intervals, assess change in vegetation composition and cover in the riparian zone, as related to geomorphic setting and dam operations, particularly flow regime.Collect data in a manner that can be used by multiple stakeholders, particularly the basinwide monitoring program overseen by the National Park Service’s Northern Colorado Plateau Network Inventory and Monitoring program.A protocol for the long-term monitoring of riparian vegetation is described in detail and standard operating procedures are included herein for all tasks. Visual estimates of foliar and ground covers are collected in conjunction with environmental measurements to assess correlations of foliar cover with abiotic and flow variables. Sample quadrats are stratified by frequency of inundation, geomorphic feature, and by river segment to account for differences in vegetation type. Photographs of sites are also taken to illustrate qualitative characteristics of the site at the time of sampling. Procedures for field preparation, generating random samples, data collection, data management, collecting and managing unknown

  14. A land-cover map for South and Southeast Asia derived from SPOT-VEGETATION data

    Science.gov (United States)

    Stibig, H.-J.; Belward, A.S.; Roy, P.S.; Rosalina-Wasrin, U.; Agrawal, S.; Joshi, P.K.; ,; Beuchle, R.; Fritz, S.; Mubareka, S.; Giri, C.

    2007-01-01

    Aim  Our aim was to produce a uniform ‘regional’ land-cover map of South and Southeast Asia based on ‘sub-regional’ mapping results generated in the context of the Global Land Cover 2000 project.Location  The ‘region’ of tropical and sub-tropical South and Southeast Asia stretches from the Himalayas and the southern border of China in the north, to Sri Lanka and Indonesia in the south, and from Pakistan in the west to the islands of New Guinea in the far east.Methods  The regional land-cover map is based on sub-regional digital mapping results derived from SPOT-VEGETATION satellite data for the years 1998–2000. Image processing, digital classification and thematic mapping were performed separately for the three sub-regions of South Asia, continental Southeast Asia, and insular Southeast Asia. Landsat TM images, field data and existing national maps served as references. We used the FAO (Food and Agriculture Organization) Land Cover Classification System (LCCS) for coding the sub-regional land-cover classes and for aggregating the latter to a uniform regional legend. A validation was performed based on a systematic grid of sample points, referring to visual interpretation from high-resolution Landsat imagery. Regional land-cover area estimates were obtained and compared with FAO statistics for the categories ‘forest’ and ‘cropland’.Results  The regional map displays 26 land-cover classes. The LCCS coding provided a standardized class description, independent from local class names; it also allowed us to maintain the link to the detailed sub-regional land-cover classes. The validation of the map displayed a mapping accuracy of 72% for the dominant classes of ‘forest’ and ‘cropland’; regional area estimates for these classes correspond reasonably well to existing regional statistics.Main conclusions  The land-cover map of South and Southeast Asia provides a synoptic view of the distribution of land cover of tropical and sub

  15. Analysis of vegetation and land cover dynamics in north-western Morocco during the last decade using MODIS NDVI time series data

    Directory of Open Access Journals (Sweden)

    C. Höpfner

    2011-11-01

    Full Text Available Vegetation phenology as well as the current variability and dynamics of vegetation and land cover, including its climatic and human drivers, are examined in a region in north-western Morocco that is nearly 22 700 km2 big. A gapless time series of Normalized Differenced Vegetation Index (NDVI composite raster data from 29 September 2000 to 29 September 2009 is utilised. The data have a spatial resolution of 250 m and were acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS sensor.

    The presented approach allows to compose and to analyse yearly land cover maps in a widely unknown region with scarce validated ground truth data by deriving phenological parameters. Results show that the high temporal resolution of 16 d is sufficient for (a determining local land cover better than global land cover classifications of Plant Functional Types (PFT and Global Land Cover 2000 (GLC2000 and (b for drawing conclusions on vegetation dynamics and its drivers. Areas of stably classified land cover types (i.e. areas that did not change their land cover type show climatically driven inter- and intra-annual variability with indicated influence of droughts. The presented approach to determine human-driven influence on vegetation dynamics caused by agriculture results in a more than ten times larger area compared with stably classified areas. Change detection based on yearly land cover maps shows a gain of high-productive vegetation (cropland of about 259.3 km2. Statistically significant inter-annual trends in vegetation dynamics during the last decade could however not be discovered. A sequence of correlations was respectively carried out to extract the most important periods of rainfall responsible for the production of green biomass and for the extent of land cover types. Results show that mean daily precipitation from 1 October to 15 December has high correlation results (max. r2=0.85 on an intra

  16. Effect of management systems and cover crops on organic matter dynamics of soil under vegetables

    Directory of Open Access Journals (Sweden)

    Rodrigo Fernandes de Souza

    2014-06-01

    Full Text Available Vegetable production in conservation tillage has increased in Brazil, with positive effects on the soil quality. Since management systems alter the quantity and quality of organic matter, this study evaluated the influence of different management systems and cover crops on the organic matter dynamics of a dystrophic Red Latosol under vegetables. The treatments consisted of the combination of three soil tillage systems: no-tillage (NT, reduced tillage (RT and conventional tillage (CT and of two cover crops: maize monoculture and maize-mucuna intercrop. Vegetables were grown in the winter and the cover crops in the summer for straw production. The experiment was arranged in a randomized block design with four replications. Soil samples were collected between the crop rows in three layers (0.0-0.05, 0.05-0.10, and 0.10-0.30 m twice: in October, before planting cover crops for straw, and in July, during vegetable cultivation. The total organic carbon (TOC, microbial biomass carbon (MBC, oxidizable fractions, and the carbon fractions fulvic acid (C FA, humic acid (C HA and humin (C HUM were determined. The main changes in these properties occurred in the upper layers (0.0-0.05 and 0.05-0.10 m where, in general, TOC levels were highest in NT with maize straw. The MBC levels were lowest in CT systems, indicating sensitivity to soil disturbance. Under mucuna, the levels of C HA were lower in RT than NT systems, while the C FA levels were lower in RT than CT. For vegetable production, the C HUM values were lowest in the 0.05-0.10 m layer under CT. With regard to the oxidizable fractions, the tillage systems differed only in the most labile C fractions, with higher levels in NT than CT in the 0.0-0.05 m layer in both summer and winter, with no differences between these systems in the other layers. The cabbage yield was not influenced by the soil management system, but benefited from the mulch production of the preceding maize-mucuna intercrop as cover

  17. Impacts of changes in vegetation cover on soil water heat coupling in an alpine meadow of the Qinghai-Tibet Plateau, China

    Directory of Open Access Journals (Sweden)

    W. Genxu

    2009-03-01

    Full Text Available Alpine meadow is one of the most widespread grassland types in the permafrost regions of the Qinghai-Tibet Plateau, and the transmission of coupled soil water heat is one of the most crucial processes influencing cyclic variations in the hydrology of frozen soil regions, especially under different vegetation covers. The present study assesses the impact of changes in vegetation cover on the coupling of soil water and heat in a permafrost region. Soil moisture (θv, soil temperature (Ts, soil heat content, and differences in θvTs coupling were monitored on a seasonal and daily basis under three different vegetation covers (30, 65, and 93% on both thawed and frozen soils. Regression analysis of θv vs. Ts plots under different levels of vegetation cover indicates that soil freeze-thaw processes were significantly affected by the changes in vegetation cover. The decrease in vegetation cover of an alpine meadow reduced the difference between air temperature and ground temperature (ΔTa−s, and it also resulted in a decrease in Ts at which soil froze, and an increase in the temperature at which it thawed. This was reflected in a greater response of soil temperature to changes in air temperature (Ta. For ΔTa−s outside the range of −0.1 to 1.0°C, root zone soil-water temperatures showed a significant increase with increasing ΔTa−s; however, the magnitude of this relationship was dampened with increasing vegetation cover. At the time of maximum water content in the thawing season, the soil temperature decreased with increasing vegetation. Changes in vegetation cover also led to variations in θvTs coupling. With the increase in vegetation cover, the surface heat flux decreased. Soil heat storage at 20 cm in

  18. The Application of Remote Sensing Data to GIS Studies of Land Use, Land Cover, and Vegetation Mapping in the State of Hawaii

    Science.gov (United States)

    Hogan, Christine A.

    1996-01-01

    A land cover-vegetation map with a base classification system for remote sensing use in a tropical island environment was produced of the island of Hawaii for the State of Hawaii to evaluate whether or not useful land cover information can be derived from Landsat TM data. In addition, an island-wide change detection mosaic combining a previously created 1977 MSS land classification with the TM-based classification was produced. In order to reach the goal of transferring remote sensing technology to State of Hawaii personnel, a pilot project was conducted while training State of Hawaii personnel in remote sensing technology and classification systems. Spectral characteristics of young island land cover types were compared to determine if there are differences in vegetation types on lava, vegetation types on soils, and barren lava from soils, and if they can be detected remotely, based on differences in pigments detecting plant physiognomic type, health, stress at senescence, heat, moisture level, and biomass. Geographic information systems (GIS) and global positioning systems (GPS) were used to assist in image rectification and classification. GIS was also used to produce large-format color output maps. An interactive GIS program was written to provide on-line access to scanned photos taken at field sites. The pilot project found Landsat TM to be a credible source of land cover information for geologically young islands, and TM data bands are effective in detecting spectral characteristics of different land cover types through remote sensing. Large agriculture field patterns were resolved and mapped successfully from wildland vegetation, but small agriculture field patterns were not. Additional processing was required to work with the four TM scenes from two separate orbits which span three years, including El Nino and drought dates. Results of the project emphasized the need for further land cover and land use processing and research. Change in vegetation

  19. Vegetation cover, avoided erosion and water quality in high Andean wetlands, Yeso River Basin

    Science.gov (United States)

    León, Alejandro; Soto, Jorge; Seguel, Oscar; Pérez, Javier; Osses, Daniela; Leiva, Nicolás; Zerega, Linka

    2017-04-01

    Wetlands on the high Andes mountains near Santiago de Chile have been impacted by overgrazing and off-road tourists. We studied wetlands in El Yeso River basin. In February 2015 we established 36 exclusions and measured vegetation cover and height, biomass production in and out the exclusions starting in October. Water and undisturbed soil samples were collected. Data were analyzed statistically to estimate i) the recovery of vegetation, and ii) the influence of grazing and vehicle traffic on vegetation loss, and iii) impacts on soil and water quality. In areas with less intense traffic, the difference in vegetation coverage in and out the exclusions is 22% (± 11.4%); in areas with more intense traffic this difference is 16% (± 16%). Height of vegetation, in the less intense traffic areas, ranges from 6.25 cm (± 2.8) to 13.32 cm (± 6.3). With higher traffic it varies between 6.9 cm (± 3.1) and 13.6 cm (± 5.4). Biomass varies between 0.06 kg DM/m2 to 0.57 kg DM/m2 depending on botanical composition and date. After water circulates through the wetlands its content of nitrogen increases 37.33% to 0.37 mg N/l and the fecal coliforms 66.67% to 0.67 MPN/100 ml, because of cattle. On the contrary, turbidity decreases 20.67% to 0.21 UNT because sediments are captured by vegetation. We also estimated an avoided erosion rate, ranging between 1.23% and 31.87% (depending on the slope) due to the increase in coverage within the exclusions.

  20. NDVI indicated characteristics of vegetation cover change in China's metropolises over the last three decades.

    Science.gov (United States)

    Sun, Jinyu; Wang, Xuhui; Chen, Anping; Ma, Yuecun; Cui, Mengdi; Piao, Shilong

    2011-08-01

    How urban vegetation was influenced by three decades of intensive urbanization in China is of great interest but rarely studied. In this paper, we used satellite derived Normalized Difference Vegetation Index (NDVI) and socioeconomic data to evaluate effects of urbanization on vegetation cover in China's 117 metropolises over the last three decades. Our results suggest that current urbanization has caused deterioration of urban vegetation across most cities in China, particularly in East China. At the national scale, average urban area NDVI (NDVI(u)) significantly decreased during the last three decades (P NDVI(u) did not show statistically significant trend before 1990 but decrease remarkably after 1990 (P NDVI(u) turning point. The year when NDVI(u) started to decline significantly for Central China and East China was 1987 and 1990, respectively, while NDVI(u) in West China remained relatively constant until 1998. NDVI(u) changes in the Yangtze River Delta and the Pearl River Delta, two regions which has been undergoing the most rapid urbanization in China, also show different characteristics. The Pearl River Delta experienced a rapid decline in NDVI(u) from the early 1980s to the mid-1990s; while in the Yangtze River Delta, NDVI(u) did not decline significantly until the early 1990s. Such different patterns of NDVI(u) changes are closely linked with policy-oriented difference in urbanization dynamics of these regions, which highlights the importance of implementing a sustainable urban development policy.

  1. Analyses of changes in vegetation cover in the South and Sub-Taiga of Western Siberia using Landsat data

    Science.gov (United States)

    Dyukarev, Egor; Pologova, Nina; Golovatskaya, Eugenia

    2010-05-01

    Understanding human impact on vegetation composition and structure, at scales from the patch to the globe, and capacity to monitor change over time is fundamental research problem to address Global Change and ensure sustainable development. Natural ecosystems at the South and Sob-Taiga zone of Western Siberia are characterized by development of an early successional states, given the projected increase in disturbance, or will be converted into human-dominated terrestrial production systems. Disturbances (e.g., fire, dieback due to insect attacks) appear to be increasing in some regions, leading to fragmentation of natural ecosystems and to a generally "weedier," structurally simpler biosphere with fewer systems in a more ecologically complex old-growth state. The analysis of structure of vegetation cover at two test sites located at the south-west part of the West-Siberian Plain in the South and Sub-Taiga zone was made using LANDSAT space images and ground data. The studied area of the first test site ("Bakchar") is occupied by bogs, paludificated forests and cultivated lands. Test site "Tomsk" covered by cultivated lands in the south, dark coniferous forest complexes an early and old-growth state in the north part. Mire types at the test sites are presented by open fens, ridge-hollow / ridge-lake complexes and pine-shrub-sphagnum communities with different tree height and layer density. During the XX century the vegetation cover was exposed to natural and anthropogenic changes. Comparison of space images from different years (1990, 1999 and 2007) allowed revealing dynamics in vegetation cover. Forest change was calculated using the Disturbance Index (Healey, 2006). Decrease of forest area in 1990-1999 are primary occurs due to intense forest cutting for timber industry and local use. A strong wind have damaged forests between 1990 and 1999 in stripes oriented from south-west to north -east in the prevailing wind direction. Strong winds were registered in 2003

  2. Future vegetation types and related main processes for Olkiluoto site

    International Nuclear Information System (INIS)

    Haapanen, R.

    2007-07-01

    This working report summarizes current knowledge of the land up-lift induced vegetation succession and future vegetation types on Olkiluoto Island and its surroundings. The report is based on generic literature and site-specific studies concerning Olkiluoto Island. Current vegetation on Olkiluoto Island and typical succession lines on different soil types are described, as well as main factors affecting the succession. Most relevant materials on hand are listed. Some problems and possible areas to be emphasized before using the data in modelling work are pointed out. (orig.)

  3. Analysing land and vegetation cover dynamics during last three decades in Katerniaghat wildlife sanctuary, India

    Science.gov (United States)

    Chitale, V. S.; Behera, M. D.

    2014-10-01

    The change in the tropical forests could be clearly linked to the expansion of the human population and economies. An understanding of the anthropogenic forcing plays an important role in analyzing the impacts of climate change and the fate of tropical forests in the present and future scenario. In the present study, we analyze the impact of natural and anthropogenic factors in forest dynamics in Katerniaghat wildlife sanctuary situated along the Indo-Nepal border in Uttar Pradesh state, India. The study site is under tremendous pressure due to anthropogenic factors from surrounding areas since last three decades. The vegetation cover of the sanctuary primarily comprised of Shorea robusta forests, Tectona grandis plantation, and mixed deciduous forest; while the land cover comprised of agriculture, barren land, and water bodies. The classification accuracy was 83.5%, 91.5%, and 95.2% with MSS, IKONOS, and Quickbird datasets, respectively. Shorea robusta forests showed an increase of 16 km2; while Tectona grandis increased by 63.01 km2 during 1975-2010. The spatial heterogeneity in these tropical vegetation classes surrounded by the human dominated agricultural lands could not be addressed using Landsat MSS data due to coarse spatial resolution; whereas the IKONOS and Quickbird satellite datasets proved to advantageous, thus being able to precisely address the variations within the vegetation classes as well as in the land cover classes and along the edge areas. Massive deforestation during 1970s along the adjoining international boundary with Nepal has led to destruction of the wildlife corridor and has exposed the wildlife sanctuary to human interference like grazing and poaching. Higher rates of forest dynamics during the 25-year period indicate the vulnerability of the ecosystem to the natural and anthropogenic disturbances in the proximity of the sanctuary.

  4. Vegetation cover, tidal amplitude and land area predict short-term marsh vulnerability in Coastal Louisiana

    Science.gov (United States)

    Schoolmaster, Donald; Stagg, Camille L.; Sharp, Leigh Anne; McGinnis, Tommy S.; Wood, Bernard; Piazza, Sarai

    2018-01-01

    The loss of coastal marshes is a topic of great concern, because these habitats provide tangible ecosystem services and are at risk from sea-level rise and human activities. In recent years, significant effort has gone into understanding and modeling the relationships between the biological and physical factors that contribute to marsh stability. Simulation-based process models suggest that marsh stability is the product of a complex feedback between sediment supply, flooding regime and vegetation response, resulting in elevation gains sufficient to match the combination of relative sea-level rise and losses from erosion. However, there have been few direct, empirical tests of these models, because long-term datasets that have captured sufficient numbers of marsh loss events in the context of a rigorous monitoring program are rare. We use a multi-year data set collected by the Coastwide Reference Monitoring System (CRMS) that includes transitions of monitored vegetation plots to open water to build and test a predictive model of near-term marsh vulnerability. We found that despite the conclusions of previous process models, elevation change had no ability to predict the transition of vegetated marsh to open water. However, we found that the processes that drive elevation change were significant predictors of transitions. Specifically, vegetation cover in prior year, land area in the surrounding 1 km2 (an estimate of marsh fragmentation), and the interaction of tidal amplitude and position in tidal frame were all significant factors predicting marsh loss. This suggests that 1) elevation change is likely better a predictor of marsh loss at time scales longer than we consider in this study and 2) the significant predictive factors affect marsh vulnerability through pathways other than elevation change, such as resistance to erosion. In addition, we found that, while sensitivity of marsh vulnerability to the predictive factors varied spatially across coastal Louisiana

  5. Present-day vegetation helps quantifying past land cover in selected regions of the Czech Republic.

    Directory of Open Access Journals (Sweden)

    Vojtěch Abraham

    Full Text Available The REVEALS model is a tool for recalculating pollen data into vegetation abundances on a regional scale. We explored the general effect of selected parameters by performing simulations and ascertained the best model setting for the Czech Republic using the shallowest samples from 120 fossil sites and data on actual regional vegetation (60 km radius. Vegetation proportions of 17 taxa were obtained by combining the CORINE Land Cover map with forest inventories, agricultural statistics and habitat mapping data. Our simulation shows that changing the site radius for all taxa substantially affects REVEALS estimates of taxa with heavy or light pollen grains. Decreasing the site radius has a similar effect as increasing the wind speed parameter. However, adjusting the site radius to 1 m for local taxa only (even taxa with light pollen yields lower, more correct estimates despite their high pollen signal. Increasing the background radius does not affect the estimates significantly. Our comparison of estimates with actual vegetation in seven regions shows that the most accurate relative pollen productivity estimates (PPEs come from Central Europe and Southern Sweden. The initial simulation and pollen data yielded unrealistic estimates for Abies under the default setting of the wind speed parameter (3 m/s. We therefore propose the setting of 4 m/s, which corresponds to the spring average in most regions of the Czech Republic studied. Ad hoc adjustment of PPEs with this setting improves the match 3-4-fold. We consider these values (apart from four exceptions to be appropriate, because they are within the ranges of standard errors, so they are related to original PPEs. Setting a 1 m radius for local taxa (Alnus, Salix, Poaceae significantly improves the match between estimates and actual vegetation. However, further adjustments to PPEs exceed the ranges of original values, so their relevance is uncertain.

  6. Influence of vegetable cover on propagation of electromagnetic waves with wavelength longer than 100 m

    Science.gov (United States)

    Egorov, V. A.; Makarov, G. I.

    2006-12-01

    [1] The influence of vegetable cover on propagation ofelectromagnetic waves in the Earth-ionosphere wave channel isstudied in the scope of the model of a homogeneous isotropic``forest layer'' with effective value of the dielectric permeabilityɛf=1.2 and electric conductivityσf (t oC)depending on theenvironmental temperature according to the results obtained in thispaper. It is shown that the character of the electromagnetic fieldbehavior in the presence of large forests is of a well-pronouncedseasonal character additionally complicated by the diurnalvariations of the field depending on the environmental temperaturevariations.

  7. Improvement in remote sensing of low vegetation cover in arid regions by correcting vegetation indices for soil ''noise''

    International Nuclear Information System (INIS)

    Escadafal, R.; Huete, A.

    1991-01-01

    The variations of near-infrared red reflectance ratios of ten aridic soil samples were correlated with a ''redness index'' computed from red and green spectral bands. These variations have been shown to limit the performances of vegetation indices (NDVI and SAVI) in discriminating low vegetation covers. The redness index is used to adjust for this ''soil noise''. Dala simulated for vegetation densities of 5 to 15% cover showed that the sensitivity of the corrected vegetation indices was significantly improved. Specifically, the ''noise-corrected'' SAVI was able to assess vegetation amounts with an error four times smaller than the uncorrected NDVI. These promising results should lead to a significant improvement in assessing biomass in arid lands from remotely sensed data. (author) [fr

  8. Effect of litter, leaf cover and cover of basal internodes of the dominant species Molinia caerulea on seedling recruitment and established vegetation

    Science.gov (United States)

    Janeček, Štěpán; Lepš, Jan

    2005-09-01

    The effects of litter removal, leaf cover of established plants and cover of basal internodes of a dominant species Molinia caerulea on seedling germination and the dynamics of established plants were studied in a field experiment in an oligotrophic wet meadow. Although the negative influence of litter on total seedling number and seedling species composition was non-significant, litter significantly affected the dynamics of the established vegetation and caused inhibition of total leaf cover development. The effects of total leaf cover of established plants on seedling establishment changed during the vegetation season. Whereas the effect of total leaf cover was positive at the start and in the middle of the vegetation season, at the end the total leaf cover negatively affected seedling establishment. Both total leaf cover and cover of basal internodes affected seedling composition. Effects of these two variables were statistically separable suggesting that they are based on different mechanisms. The response of seedling establishment to these factors was species specific and, consequently, our data support the hypothesis that that biotically generated spatial heterogeneity can promote species co-existence through the differentiation of species regeneration niches.

  9. Evaluation of soil resources for sustained vegetative cover of cut-slopes along I-70 near Straight Creek.

    Science.gov (United States)

    2013-07-01

    Revegetation of high elevation decomposed granite cut-slopes often requires repeated applications of soil : amendments to attain sustained vegetative cover. Plant transects from slopes west of the Eisenhower Tunnel from : 2007 to 2012 showed that cov...

  10. Integrating Remote Sensing and Field Data to Monitor Changes in Vegetative Cover on a Multipurpose Range Complex and Adjacent Training Lands at Camp Grayling, Michigan

    National Research Council Canada - National Science Library

    Tweddale, Scott

    2001-01-01

    .... Remote sensing and field surveys were used to determine vegetative cover. In the field, vegetative cover data were collected on systematically allocated plots during the peak of the growing season in 1997...

  11. Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties

    Science.gov (United States)

    Huemmrich, Karl Fred; Gamon, John A.; Tweedie, Craig E.; Campbell, Petya K. Entcheva; Landis, David R.; Middleton, Elizabeth M.

    2013-01-01

    Non-vascular plants (lichens and mosses) are significant components of tundra landscapes and may respond to climate change differently from vascular plants affecting ecosystem carbon balance. Remote sensing provides critical tools for monitoring plant cover types, as optical signals provide a way to scale from plot measurements to regional estimates of biophysical properties, for which spatial-temporal patterns may be analyzed. Gas exchange measurements were collected for pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow, AK. These functional types were found to have three significantly different values of light use efficiency (LUE) with values of 0.013 plus or minus 0.0002, 0.0018 plus or minus 0.0002, and 0.0012 plus or minus 0.0001 mol C mol (exp -1) absorbed quanta for vascular plants, mosses and lichens, respectively. Discriminant analysis of the spectra reflectance of these patches identified five spectral bands that separated each of these vegetation functional types as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals. Along the transect, area-averaged canopy LUE estimated from coverage fractions of the three functional types varied widely, even over short distances. The patch-level statistical discriminant functions applied to in situ hyperspectral reflectance data collected along the transect successfully unmixed cover fractions of the vegetation functional types. The unmixing functions, developed from the transect data, were applied to 30 m spatial resolution Earth Observing-1 Hyperion imaging spectrometer data to examine variability in distribution of the vegetation functional types for an area near Barrow, AK. Spatial variability of LUE was derived from the observed functional type distributions. Across this landscape, a

  12. Rapid responses of permafrost and vegetation to experimentally increased snow cover in sub-arctic Sweden

    International Nuclear Information System (INIS)

    Johansson, Margareta; Bosiö, Julia; Akerman, H Jonas; Jackowicz-Korczynski, Marcin; Christensen, Torben R; Callaghan, Terry V

    2013-01-01

    Increased snow depth already observed, and that predicted for the future are of critical importance to many geophysical and biological processes as well as human activities. The future characteristics of sub-arctic landscapes where permafrost is particularly vulnerable will depend on complex interactions between snow cover, vegetation and permafrost. An experimental manipulation was, therefore, set up on a lowland peat plateau with permafrost, in northernmost Sweden, to simulate projected future increases in winter precipitation and to study their effects on permafrost and vegetation. After seven years of treatment, statistically significant differences between manipulated and control plots were found in mean winter ground temperatures, which were 1.5 ° C higher in manipulated plots. During the winter, a difference in minimum temperatures of up to 9 ° C higher could be found in individual manipulated plots compared with control plots. Active layer thicknesses increased at the manipulated plots by almost 20% compared with the control plots and a mean surface subsidence of 24 cm was recorded in the manipulated plots compared to 5 cm in the control plots. The graminoid Eriophorum vaginatum has expanded in the manipulated plots and the vegetation remained green longer in the season. (letter)

  13. EnviroAtlas - Austin, TX - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. Vegetated cover is defined as Trees & Forest and Grass & Herbaceous. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  14. EnviroAtlas - Cleveland, OH - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees & Forest, Grass & Herbaceous, Woody Wetlands, and Emergent Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  15. EnviroAtlas - New York, NY - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees & Forest and Grass & Herbaceous. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  16. EnviroAtlas - Des Moines, IA - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. Vegetated cover is defined as Trees & Forest and Grass & Herbaceous. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  17. EnviroAtlas - Minneapolis/St. Paul, MN - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees and Forest, Grass and Herbaceous, Woody Wetlands, and Emergent Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  18. Impact of Vegetation Cover Fraction Parameterization schemes on Land Surface Temperature Simulation in the Tibetan Plateau

    Science.gov (United States)

    Lv, M.; Li, C.; Lu, H.; Yang, K.; Chen, Y.

    2017-12-01

    The parameterization of vegetation cover fraction (VCF) is an important component of land surface models. This paper investigates the impacts of three VCF parameterization schemes on land surface temperature (LST) simulation by the Common Land Model (CoLM) in the Tibetan Plateau (TP). The first scheme is a simple land cover (LC) based method; the second one is based on remote sensing observation (hereafter named as RNVCF) , in which multi-year climatology VCFs is derived from Moderate-resolution Imaging Spectroradiometer (MODIS) NDVI (Normalized Difference Vegetation Index); the third VCF parameterization scheme derives VCF from the LAI simulated by LSM and clump index at every model time step (hereafter named as SMVCF). Simulated land surface temperature(LST) and soil temperature by CoLM with three VCF parameterization schemes were evaluated by using satellite LST observation and in situ soil temperature observation, respectively, during the period of 2010 to 2013. The comparison against MODIS Aqua LST indicates that (1) CTL produces large biases for both four seasons in early afternoon (about 13:30, local solar time), while the mean bias in spring reach to 12.14K; (2) RNVCF and SMVCF reduce the mean bias significantly, especially in spring as such reduce is about 6.5K. Surface soil temperature observed at 5 cm depth from three soil moisture and temperature monitoring networks is also employed to assess the skill of three VCF schemes. The three networks, crossing TP from West to East, have different climate and vegetation conditions. In the Ngari network, located in the Western TP with an arid climate, there are not obvious differences among three schemes. In Naqu network, located in central TP with a semi-arid climate condition, CTL shows a severe overestimates (12.1 K), but such overestimations can be reduced by 79% by RNVCF and 87% by SMVCF. In the third humid network (Maqu in eastern TP), CoLM performs similar to Naqu. However, at both Naqu and Maqu networks

  19. Influence of shrub cover vegetal and slope length on soil bulk density

    International Nuclear Information System (INIS)

    Bienes, R.; Jimenez, R.; Ruiz, M.; Garcia-Estringana, P.; Marques, M. J.

    2009-01-01

    In arid and semiarid environments of the Mediterranean climate, the shrub species play an important role in the revegetation of abandoned lands, which enables to control the soil losses, organic material and water. In this article are compared the results obtained under different revegetation in abandoned lands in the central area of Spain. In these revegetation has been used two native shrubs: A triplex halimus (Ah) and Retama sphaerocarpa (Rs), and were analyzed the influence of these revegetation in the contents of organic material of soil and apparent density in 5 years time after planting. As control, have been considered the pieces of ground with spontaneous vegetation abandoned in the same date that the shrubs revegetation. Atriplex halimus gives to the soil a covering capable to intercept a big amount of water drops absorbing a great amount part of the kinetic energy of the rain, while provides a microclimates as a result of be able to soften the wind, the temperature and the evaporation-transpiration, which makes it efficient to control the erosion and the desertification (Le Houerou, 2000). Retama sphaerocarpa was chosen because it is a native shrub very characteristic, and, due to its symbiosis with the Bradyrhizobium, enriches the soil in nitrogen, which is taken by the nitrophilous species enhancing the spontaneous vegetal covering. (Author) 9 refs.

  20. Simulating the effect of vegetation cover on the sediment yield of mediterranean catchments using SHETRAN

    Science.gov (United States)

    Lukey, B. T.; Sheffield, J.; Bathurst, J. C.; Lavabre, J.; Mathys, N.; Martin, C.

    1995-08-01

    The sediment yield of two catchments in southern France was modelled using the newly developed sediment code of SHETRAN. A fire in August 1990 denuded the Rimbaud catchment, providing an opportunity to study the effect of vegetation cover on sediment yield by running the model for both pre-and post-fire cases. Model output is in the form of upper and lower bounds on sediment discharge, reflecting the uncertainty in the erodibility of the soil. The results are encouraging since measured sediment discharge falls largely between the predicted bounds, and simulated sediment yield is dramatically lower for the catchment before the fire which matches observation. SHETRAN is also applied to the Laval catchment, which is subject to Badlands gulley erosion. Again using the principle of generating upper and lower bounds on sediment discharge, the model is shown to be capable of predicting the bulk sediment discharge over periods of months. To simulate the effect of reforestation, the model is run with vegetation cover equivalent to a neighbouring fully forested basin. The results obtained indicate that SHETRAN provides a powerful tool for predicting the impact of environmental change and land management on sediment yield.

  1. Landfill cover soil, soil solution, and vegetation responses to municipal landfill leachate applications.

    Science.gov (United States)

    Macdonald, Neil W; Rediske, Richard R; Scull, Brian T; Wierzbicki, David

    2008-01-01

    Municipal solid waste landfill leachate must be removed and treated to maintain landfill cover integrity and to prevent contamination of surface and ground waters. From 2003 to 2007, we studied an onsite disposal system in Ottawa County, Michigan, where leachate was spray irrigated on the vegetated landfill cover. We established six 20-m-diameter circular experimental plots on the landfill; three were spray irrigated as part of the operational system, and three remained as untreated control plots. We quantified the effects of leachate application on soil properties, soil solution chemistry, vegetative growth, and estimated solute leaching. The leachate had high mean levels of electrical conductivity (0.6-0.7 S m(-1)), Cl (760-900 mg L(-1)), and NH(4)-N (290-390 mg L(-1)) but was low in metals and volatile organic compounds. High rates of leachate application in 2003 (32 cm) increased soil electrical conductivity and NO(3)-N leaching, so a sequential rotation of spray areas was implemented to limit total leachate application to <9.6 cm yr(-1) per spray area. Concentrations of NO(3)-N and leaching losses remained higher on irrigated plots in subsequent years but were substantially reduced by spray area rotation. Leachate irrigation increased plant biomass but did not significantly affect soil metal concentrations, and plant metal concentrations remained within normal ranges. Rotating spray areas and timing irrigation to conform to seasonal capacities for evapotranspiration reduced the localized impacts of leachate application observed in 2003. Careful monitoring of undiluted leachate applications is required to avoid adverse impacts to vegetation or soils and elevated solute leaching losses.

  2. Landslides and vegetation cover in the 2005 North Pakistan earthquake: a GIS and statistical quantitative approach

    Directory of Open Access Journals (Sweden)

    P. Peduzzi

    2010-04-01

    Full Text Available The growing concern for loss of services once provided by natural ecosystems is getting increasing attention. However, the accelerating rate of natural resources destruction calls for rapid and global action. With often very limited budgets, environmental agencies and NGOs need cost-efficient ways to quickly convince decision-makers that sound management of natural resources can help to protect human lives and their welfare. The methodology described in this paper, is based on geospatial and statistical analysis, involving simple Geographical Information System (GIS and remote sensing algorithms. It is based on free or very low-cost data. It aims to scientifically assess the potential role of vegetation in mitigating landslides triggered by earthquakes by normalising for other factors such as slopes and distance from active fault. The methodology was applied to the 2005 North Pakistan/India earthquake which generated a large number of victims and hundreds of landslides. The study shows that if slopes and proximity from active fault are the main susceptibility factors for post landslides triggered by earthquakes in this area, the results clearly revealed that areas covered by denser vegetation suffered less and smaller landslides than areas with thinner (or devoid of vegetation cover. Short distance from roads/trails and rivers also proved to be pertinent factors in increasing landslides susceptibility. This project is a component of a wider initiative involving the Global Resource Information Database Europe from the United Nations Environment Programme, the International Union for Conservation of Nature, the Institute of Geomatics and Risk Analysis from the University of Lausanne and the "institut universitaire d'études du développement" from the University of Geneva.

  3. Vegetation-climate feedback causes reduced precipitation and tropical rainforest cover in CMIP5 regional Earth system model simulation over Africa

    Science.gov (United States)

    Wu, M.; Smith, B.; Samuelsson, P.; Rummukainen, M.; Schurgers, G.

    2012-12-01

    We applied a coupled regional climate-vegetation model, RCA-GUESS (Smith et al. 2011), over the CORDEX Africa domain, forced by boundary conditions from a CanESM2 CMIP5 simulation under the RCP8.5 future climate scenario. The simulations were from 1961 to 2100 and covered the African continent at a horizontal grid spacing of 0.44°. RCA-GUESS simulates changes in the phenology, productivity, relative cover and population structure of up to eight plant function types (PFTs) in response to forcing from the climate part of the model. These vegetation changes feed back to simulated climate through dynamic adjustments in surface energy fluxes and surface properties. Changes in the net ecosystem-atmosphere carbon flux and its components net primary production (NPP), heterotrophic respiration and emissions from biomass burning were also simulated but do not feed back to climate in our model. Constant land cover was assumed. We compared simulations with and without vegetation feedback switched "on" to assess the influence of vegetation-climate feedback on simulated climate, vegetation and ecosystem carbon cycling. Both positive and negative warming feedbacks were identified in different parts of Africa. In the Sahel savannah zone near 15°N, reduced vegetation cover and productivity, and mortality caused by a deterioration of soil water conditions led to a positive warming feedback mediated by decreased evapotranspiration and increased sensible heat flux between vegetation and the atmosphere. In the equatorial rainforest stronghold region of central Africa, a feedback syndrome characterised by reduced plant production and LAI, a dominance shift from tropical trees to grasses, reduced soil water and reduced rainfall was identified. The likely underlying mechanism was a decline in evaporative water recycling associated with sparser vegetation cover, reminiscent of Earth system model studies in which a similar feedback mechanism was simulated to force dieback of tropical

  4. Divergent Impacts of Two Cattle Types on Vegetation in Coastal Meadows: Implications for Management

    Science.gov (United States)

    Laurila, Marika; Huuskonen, Arto; Pesonen, Maiju; Kaseva, Janne; Joki-Tokola, Erkki; Hyvärinen, Marko

    2015-11-01

    The proportion of beef cattle in relation to the total number of cattle has increased in Europe, which has led to a higher contribution of beef cattle in the management of semi-natural grasslands. Changes in vegetation caused by this change in grazers are virtually unexplored so far. In the present study, the impacts of beef and dairy cattle on vegetation structure and composition were compared on Bothnian Bay coastal meadows. Vegetation parameters were measured in seven beef cattle, six dairy heifer pastures, and in six unmanaged meadows. Compared to unmanaged meadows, vegetation in grazed meadows was significantly lower in height and more frequently colonized by low-growth species. As expected, vegetation grazed by beef cattle was more open than that on dairy heifer pastures where litter cover and proportion of bare ground were in the same level as in the unmanaged meadows. However, the observed differences may have in part arisen from the higher cattle densities in coastal meadows grazed by beef cattle than by dairy heifers. The frequencies of different species groups and the species richness values of vegetation did not differ between the coastal meadows grazed by the two cattle types. One reason for this may be the relatively short management history of the studied pastures. The potential differences in grazing impacts of the two cattle types on vegetation structure can be utilized in the management of coastal meadows for species with divergent habitat requirements.

  5. A Two-Year Study on Mercury Fluxes from the Soil under Different Vegetation Cover in a Subtropical Region, South China

    Directory of Open Access Journals (Sweden)

    Ming Ma

    2018-01-01

    Full Text Available In order to reveal the mercury (Hg emission and exchange characteristics at the soil–air interface under different vegetation cover types, the evergreen broad-leaf forest, shrub forest, grass, and bare lands of Simian Mountain National Nature Reserve were selected as the sampling sites. The gaseous elementary mercury (GEM fluxes at the soil–air interface under the four vegetation covers were continuously monitored for two years, and the effect of temperature and solar radiation on GEM fluxes were also investigated. Results showed that the GEM fluxes at the soil–air interface under different vegetation cover types had significant difference (p < 0.05. The bare land had the maximum GEM flux (15.32 ± 10.44 ng·m−2·h−1, followed by grass land (14.73 ± 18.84 ng·m−2·h−1, and shrub forest (12.83 ± 10.22 ng·m−2·h−1, and the evergreen broad-leaf forest had the lowest value (11.23 ± 11.13 ng·m−2·h−1. The GEM fluxes at the soil–air interface under different vegetation cover types showed similar regularity in seasonal variation, which mean that the GEM fluxes in summer were higher than that in winter. In addition, the GEM fluxes at the soil–air interface under the four vegetation covers in Mt. Simian had obvious diurnal variations.

  6. Accuracy assessment of the vegetation continuous field tree cover product using 3954 ground plots in the southwestern USA

    Science.gov (United States)

    M. A. White; J. D. Shaw; R. D. Ramsey

    2005-01-01

    An accuracy assessment of the Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation continuous field (VCF) tree cover product using two independent ground-based tree cover databases was conducted. Ground data included 1176 Forest Inventory and Analysis (FIA) plots for Arizona and 2778 Southwest Regional GAP (SWReGAP) plots for Utah and western Colorado....

  7. Evaluation of the data of vegetable covering using fraction images and multitemporal vegetation index, derived of orbital data of moderate resolution of the sensor MODIS

    International Nuclear Information System (INIS)

    Murillo Mejia, Mario Humberto

    2006-01-01

    The objective was to evaluate the data obtained by sensor MODIS onboard the EOS terra satellite land cover units. The study area is the republic of Colombia in South America. The methodology consisted of analyzing the multitemporal (vegetation, soil and shade-water) fraction images and vegetation indices (NDVI) apply the lineal spectral mixture model to products derived from derived images by sensor MODIS data obtained in years 2001 and 2003. The mosaics of the original and the transformed vegetation (soil and shade-water) bands were generated for the whole study area using SPRING 4. 0 software, developed by INPE then these mosaics were segmented, classified, mapped, and edited to obtain a moderate resolution land cover map. The results derived from MODIS analysis were compared with Landsat ETM+ data acquire for a single test site. The results of the project showed the usefulness of MODIS images for large-scale land cover mapping and monitoring studies

  8. Vegetation cover in relation to socioeconomic factors in a tropical city assessed from sub-meter resolution imagery.

    Science.gov (United States)

    Martinuzzi, Sebastián; Ramos-González, Olga M; Muñoz-Erickson, Tischa A; Locke, Dexter H; Lugo, Ariel E; Radeloff, Volker C

    2018-04-01

    Fine-scale information about urban vegetation and social-ecological relationships is crucial to inform both urban planning and ecological research, and high spatial resolution imagery is a valuable tool for assessing urban areas. However, urban ecology and remote sensing have largely focused on cities in temperate zones. Our goal was to characterize urban vegetation cover with sub-meter (urban vegetation patterns in a tropical city, the San Juan Metropolitan Area, Puerto Rico. Our specific objectives were to (1) map vegetation cover using sub-meter spatial resolution (0.3-m) imagery, (2) quantify the amount of residential and non-residential vegetation, and (3) investigate the relationship between patterns of urban vegetation vs. socioeconomic and environmental factors. We found that 61% of the San Juan Metropolitan Area was green and that our combination of high spatial resolution imagery and object-based classification was highly successful for extracting vegetation cover in a moist tropical city (97% accuracy). In addition, simple spatial pattern analysis allowed us to separate residential from non-residential vegetation with 76% accuracy, and patterns of residential and non-residential vegetation varied greatly across the city. Both socioeconomic (e.g., population density, building age, detached homes) and environmental variables (e.g., topography) were important in explaining variations in vegetation cover in our spatial regression models. However, important socioeconomic drivers found in cities in temperate zones, such as income and home value, were not important in San Juan. Climatic and cultural differences between tropical and temperate cities may result in different social-ecological relationships. Our study provides novel information for local land use planners, highlights the value of high spatial resolution remote sensing data to advance ecological research and urban planning in tropical cities, and emphasizes the need for more studies in tropical

  9. Stylus type MEMS texture sensor covered with corrugated diaphragm

    Science.gov (United States)

    Tsukamoto, Takashiro; Asao, Hideaki; Tanaka, Shuji

    2017-09-01

    In this paper, a stylus type MEMS texture sensor covered with a corrugated palylene diaphragm, which prevent debris from jamming into the sensor without significant degradation of sensitivity and bandwidth, was reported. A new fabrication process using a lost-foil method to make the corrugated diaphragm on a 3-axis piezoresistive force sensor at wafer level has been developed. The texture sensor could detect the surface microstructure as small as about 10 \

  10. [Retrieval of Copper Pollution Information from Hyperspectral Satellite Data in a Vegetation Cover Mining Area].

    Science.gov (United States)

    Qu, Yong-hua; Jiao, Si-hong; Liu, Su-hong; Zhu, Ye-qing

    2015-11-01

    level, using stepwise multiple linear regression and cross validation on the dataset which is consisting of 44 groups of copper ion content information in the polluted vegetation leaves from Dexing Copper Mine in Jiangxi Province to build up a statistical model by also incorporating the HJ-1 satellite images. This model was then used to estimate the copper content distribution over the whole research area at Dexing Copper Mine. The result has shown that there is strong statistical significance of the model which revealed the most sensitive waveband to copper ion is located at 516 nm. The distribution map illustrated that the copper ion content is generally in the range of 0-130 mg · kg⁻¹ in the vegetation covering area at Dexing Copper Mine and the most seriously polluted area is located at the South-east corner of Dexing City as well as the mining spots with a higher value between 80 and 100 mg · kg⁻¹. This result is consistent with the ground observation experiment data. The distribution map can certainly provide some important basic data on the copper pollution monitoring and treatment.

  11. Evaluation of Spatiotemporal Variations of Global Fractional Vegetation Cover Based on GIMMS NDVI Data from 1982 to 2011

    Directory of Open Access Journals (Sweden)

    Donghai Wu

    2014-05-01

    Full Text Available Fractional vegetation cover (FVC is an important biophysical parameter of terrestrial ecosystems. Variation of FVC is a major problem in research fields related to remote sensing applications. In this study, the global FVC from 1982 to 2011 was estimated by GIMMS NDVI data, USGS global land cover characteristics data and HWSD soil type data with a modified dimidiate pixel model, which considered vegetation and soil types and mixed pixels decomposition. The evaluation of the robustness and accuracy of the GIMMS FVC with MODIS FVC and Validation of Land European Remote sensing Instruments (VALERI FVC show high reliability. Trends of the annual FVCmax and FVCmean datasets in the last 30 years were reported by the Mann–Kendall method and Sen’s slope estimator. The results indicated that global FVC change was 0.20 and 0.60 in a year with obvious seasonal variability. All of the continents in the world experience a change in the annual FVCmax and FVCmean, which represents biomass production, except for Oceania, which exhibited a significant increase based on a significance level of p = 0.001 with the Student’s t-test. Global annual maximum and mean FVC growth rates are 0.14%/y and 0.12%/y, respectively. The trends of the annual FVCmax and FVCmean based on pixels also illustrated that the global vegetation had turned green in the last 30 years. A significant trend on the p = 0.05 level was found for 15.36% of the GIMMS FVCmax pixels on a global scale (excluding permanent snow and ice, in which 1.8% exhibited negative trends and 13.56% exhibited positive trends. The GIMMS FVCmean similarly produced a total of 16.64% significant pixels with 2.28% with a negative trend and 14.36% with a positive trend. The North Frigid Zone represented the highest annual FVCmax significant increase (p = 0.05 of 25.17%, which may be caused mainly by global warming, Arctic sea-ice loss and an advance in growing seasons. Better FVC predictions at large regional scales

  12. Use of LANDSAT images of vegetation cover to estimate effective hydraulic properties of soils

    Science.gov (United States)

    Eagleson, Peter S.; Jasinski, Michael F.

    1988-01-01

    The estimation of the spatially variable surface moisture and heat fluxes of natural, semivegetated landscapes is difficult due to the highly random nature of the vegetation (e.g., plant species, density, and stress) and the soil (e.g., moisture content, and soil hydraulic conductivity). The solution to that problem lies, in part, in the use of satellite remotely sensed data, and in the preparation of those data in terms of the physical properties of the plant and soil. The work was focused on the development and testing of a stochastic geometric canopy-soil reflectance model, which can be applied to the physically-based interpretation of LANDSAT images. The model conceptualizes the landscape as a stochastic surface with bulk plant and soil reflective properties. The model is particularly suited for regional scale investigations where the quantification of the bulk landscape properties, such as fractional vegetation cover, is important on a pixel by pixel basis. A summary of the theoretical analysis and the preliminary testing of the model with actual aerial radiometric data is provided.

  13. EnviroAtlas - Memphis, TN - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. Vegetated cover is defined as Trees & Forest, Grass & Herbaceous, Woody Wetlands, and Emergent Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  14. Using high-resolution radar images to determine vegetation cover for soil erosion assessments.

    Science.gov (United States)

    Bargiel, D; Herrmann, S; Jadczyszyn, J

    2013-07-30

    Healthy soils are crucial for human well-being. Because soils are threatened worldwide, politicians recognize the need for soil protection. For example, the European Commission has launched the Thematic Strategy for Soil Protection, which requests the European member states to identify high risk areas for soil degradation. Most states use the Universal Soil Loss Equation (USLE) to assess soil erosion risk at the national scale. The USLE includes different factors, one of them is the vegetation cover and management factor (C factor). Modern satellite-based radar sensors now provide highly accurate vegetation cover data, enabling opportunities to improve the accuracy of the C factor. The presented study proves the suitability for C factor determination based on a multi-temporal classification of high-resolution radar images. Further USLE factors were derived from existing data sources (meteorological data, soil maps, digital elevation model) to conduct an USLE-based soil erosion assessment. The resulting map illustrates a qualitative assessment for soil erosion risk within a plot of about 7*12 km in an agricultural region in Poland that is very susceptible to soil erosion processes. A high erosion risk of more than 10 tonnes per ha and year was assessed to occur on 13.6% (646 ha) of the agricultural areas within the investigated plot. Further 7.8% (372 ha) of agricultural land is threaten by a medium risk of 5-10 tonnes per ha and year. Such a spatial information about areas of high or medium soil erosion risk are crucial for the development of strategies for the protection of soils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Alternatives to sowing vegetable type soybeans

    Directory of Open Access Journals (Sweden)

    Edcarlos Mannfredini

    1998-08-01

    Full Text Available Today, soybean crops of the Tamba Kurodaisu cultivar are sown in beds prior to transplantation to the field. This planting system has caused crop failure due to damage to the root system. An experiment to test different sowing alternatives to obtain plantlets for cropping of food type big seeded soybean was set up with the following treatments: sowing in beds; sowing in 130 cm³ newspaper cups; sowing in test tubes of volumes of 30 cm³, 60 cm³ and 70 cm³; sowing in 70 cm³ disposable plastic cups; sowing on 90 cm³ styrofoam trays. A randomized complete block design was used, and the following traits were assessed: germination percentage; number of days to flowering; plant height at flowering; number of days to maturity; plant height at maturity; number of seeds per plant; individual plant yield; weight of a hundred seeds. Results should that three methods could be used to set up Tamba Kurodaisu cultivar crops: sowing in disposable plastic cups, sowing in beds with later transplant, or direct sowing in the field.Atualmente, as lavouras com o cultivar Tamba Kurodaisu são semeadas em canteiros, para posterior transplante no campo. Este sistema tem causado falhas na lavoura, por ocorrer danificação no sistema radicular. Com o objetivo de testar diferentes alternativas de semeadura para obtenção de mudas visando a implantação de lavouras de soja tipo alimento, com sementes graúdas, instalou-se um experimento com os seguintes tratamentos: Semeadura em canteiros; Semeadura em copos de jornal, com volume (V igual a 130 cm³; Semeadura em tubetes, com V = 30 cm³; V = 60 cm³; V = 70 cm³; Semeadura em copos plásticos descartáveis, com V = 70 cm³; Semeadura em bandejas de isopor, com V = 90cm³. O delineamento utilizado foi blocos casualizados, tendo sido avaliados os seguintes caracteres: Porcentagem de germinação; Número de plantas por parcela; Número de dias para o florescimento; Altura da planta no florescimento; Número de dias

  16. [Quantitative estimation of vegetation cover and management factor in USLE and RUSLE models by using remote sensing data: a review].

    Science.gov (United States)

    Wu, Chang-Guang; Li, Sheng; Ren, Hua-Dong; Yao, Xiao-Hua; Huang, Zi-Jie

    2012-06-01

    Soil loss prediction models such as universal soil loss equation (USLE) and its revised universal soil loss equation (RUSLE) are the useful tools for risk assessment of soil erosion and planning of soil conservation at regional scale. To make a rational estimation of vegetation cover and management factor, the most important parameters in USLE or RUSLE, is particularly important for the accurate prediction of soil erosion. The traditional estimation based on field survey and measurement is time-consuming, laborious, and costly, and cannot rapidly extract the vegetation cover and management factor at macro-scale. In recent years, the development of remote sensing technology has provided both data and methods for the estimation of vegetation cover and management factor over broad geographic areas. This paper summarized the research findings on the quantitative estimation of vegetation cover and management factor by using remote sensing data, and analyzed the advantages and the disadvantages of various methods, aimed to provide reference for the further research and quantitative estimation of vegetation cover and management factor at large scale.

  17. Effect of land use and land cover changes on carbon sequestration in vegetation and soils between 1956 and 2007 (southern Spain)

    Science.gov (United States)

    Muñoz-Rojas, M.; Jordán, A.; Zavala, L. M.; de la Rosa, D.; Abd-Elmabod, S. K.; Anaya-Romero, M.

    2012-04-01

    Land use has significantly changed during the last decades at global and local scale, while the importance of ecosystems as sources/sinks of C has been highlighted, emphasizing the global impact of land use changes. The aim of this research was to improve and test methodologies to assess land use and land cover change dynamics and temporal and spatial variability in C stored in soils and vegetation at a wide scale. A Mediterranean region (Andalusia, Southern Spain) was selected for this pilot study in the period 1956-2007. Land use changes were detected by comparison of data layers, and soil information was gathered from available spatial databases. Data from land use and land cover change were reclassified according to CORINE Land Cover legend, according to land cover flows reported in Europe. Carbon vegetation stocks for 1956 and 2007 were calculated by multiplying C density for each land cover class and area. Soil carbon stocks were determined for each combination of soil and land use type at different standard depths (0-25, 25-50 and 50-75 cm). Total current carbon stocks (2007) are 156.1 Tg in vegetation and 415 Tg in soils (in the first 75 cm). Southern Spain has supported intense land cover changes affecting more than one third of the study area, with significant consequences for C stocks. Vegetation carbon increased 17.24 Mt since 1956 after afforestation practices and intensification of agriculture. Soil C stock decreased mainly in Cambisols and Regosols (above 80%) after forest areas were transformed into agricultural areas. The methodologies and information generated in this project constitute a basis for modelling of C sequestration and analysis of potential scenarios, as a new component of MicroLEIS DSS. This study highlights the importance of land cover changes for C sequestration in Mediterranean areas, highlighting possible trends for management policies in Europe in order to mitigate climate change.

  18. Simultaneous colour visualizations of multiple ALS point cloud attributes for land cover and vegetation analysis

    Science.gov (United States)

    Zlinszky, András; Schroiff, Anke; Otepka, Johannes; Mandlburger, Gottfried; Pfeifer, Norbert

    2014-05-01

    LIDAR point clouds hold valuable information for land cover and vegetation analysis, not only in the spatial distribution of the points but also in their various attributes. However, LIDAR point clouds are rarely used for visual interpretation, since for most users, the point cloud is difficult to interpret compared to passive optical imagery. Meanwhile, point cloud viewing software is available allowing interactive 3D interpretation, but typically only one attribute at a time. This results in a large number of points with the same colour, crowding the scene and often obscuring detail. We developed a scheme for mapping information from multiple LIDAR point attributes to the Red, Green, and Blue channels of a widely used LIDAR data format, which are otherwise mostly used to add information from imagery to create "photorealistic" point clouds. The possible combinations of parameters are therefore represented in a wide range of colours, but relative differences in individual parameter values of points can be well understood. The visualization was implemented in OPALS software, using a simple and robust batch script, and is viewer independent since the information is stored in the point cloud data file itself. In our case, the following colour channel assignment delivered best results: Echo amplitude in the Red, echo width in the Green and normalized height above a Digital Terrain Model in the Blue channel. With correct parameter scaling (but completely without point classification), points belonging to asphalt and bare soil are dark red, low grassland and crop vegetation are bright red to yellow, shrubs and low trees are green and high trees are blue. Depending on roof material and DTM quality, buildings are shown from red through purple to dark blue. Erroneously high or low points, or points with incorrect amplitude or echo width usually have colours contrasting from terrain or vegetation. This allows efficient visual interpretation of the point cloud in planar

  19. Vegetation cover analysis using a low budget hyperspectral proximal sensing system

    Directory of Open Access Journals (Sweden)

    C. Daquino

    2006-06-01

    Full Text Available This report describes the implementation of a hyperspectral proximal sensing low-budget acquisition system and its application to the detection of terrestrian vegetation cover anomalies in sites of high environmental quality. Anomalies can be due to stress for lack of water and/or pollution phenomena and weed presence in agricultural fields. The hyperspectral cube (90-bands ranging from 450 to 900 nm was acquired from the hill near Segni (RM, approximately 500 m far from the target, by means of electronically tunable filters and 8 bit CCD cameras. Spectral libraries were built using both endmember identification method and extraction of centroids of the clusters obtained from a k-means analysis of the image itself. Two classification methods were applied on the hyperspectral cube: Spectral Angle Mapper (hard and Mixed Tuned Matching Filters (MTMF. Results show the good capability of the system in detecting areas with an arboreal, shrub or leafage cover, distinguishing between zones with different spectral response. Better results were obtained using spectral library originated by the k-means method. The detected anomalies not correlated to seasonal phenomena suggest a ground true analysis to identify their origin.

  20. Environmental impact of almond crop in strong slope with two vegetable covers: bush and leguminous

    International Nuclear Information System (INIS)

    Carceles Rodriguez, B.; Francia Martinez, J. R.; Martinez Raya, A.

    2009-01-01

    Soil erosion is one of the main physical processes of land degradation in Spain. Several studies in the Mediterranean environment have demonstrated the positive effect of vegetation covers on the reduction of water erosion and their indirect improvement of the soil physical and chemical properties, essentially by the incorporation of organic matter. Sol loss and surface runoff patterns over a four-year period were monitors in erosion plots from hill slope with two different cover-crop strips: (1) non-tillage with leguminous (Lens esculenta Moench) and (2) non-tillage with and a mixture of autochthonous thymes (Thymus baeticus Boiss. ex Lacaita, Thymus capitatus (L) Hoffmanns and Link., Thymus vulgaris L.) of 3 m with, in Lanjaron (Granada) on the south flank of the Sierra Nevada of southeast Spain. The erosion plots were located on the hill slope at 35% incline, at 580 m in altitude and with 144 m 2 (24 m x 6 m) in area. the area selected for the experiment is the part of the rainfed orchard given entirely with almond (Prunus amygdalus Basch cv. Desmayo Largueta) trees, the planting gird were 6 x 7 m. (Author) 10 refs.

  1. Assessment of Land Use-Cover Changes and Successional Stages of Vegetation in the Natural Protected Area Altas Cumbres, Northeastern Mexico, Using Landsat Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Uriel Jeshua Sánchez-Reyes

    2017-07-01

    Full Text Available Loss of vegetation cover is a major factor that endangers biodiversity. Therefore, the use of geographic information systems and the analysis of satellite images are important for monitoring these changes in Natural Protected Areas (NPAs. In northeastern Mexico, the Natural Protected Area Altas Cumbres (NPAAC represents a relevant floristic and faunistic patch on which the impact of loss of vegetation cover has not been assessed. This work aimed to analyze changes of land use and coverage (LULCC over the last 42 years on the interior and around the exterior of the area, and also to propose the time of succession for the most important types of vegetation. For the analysis, LANDSAT satellite images from 1973, 1986, 2000, 2005 and 2015 were used, they were classified in seven categories through a segmentation and maximum likelihood analysis. A cross-tabulation analysis was performed to determine the succession gradient. Towards the interior of the area, a significant reduction of tropical vegetation and, to a lesser extent, temperate forests was found, as well as an increase in scrub cover from 1973 to 2015. In addition, urban and vegetation-free areas, as well as modified vegetation, increased to the exterior. Towards the interior of the NPA, the processes of perturbation and recovery were mostly not linear, while in the exterior adjacent area, the presence of secondary vegetation with distinct definite time of succession was evident. The analysis carried out is the first contribution that evaluates LULCC in this important NPA of northeastern Mexico. Results suggest the need to evaluate the effects of these modifications on species.

  2. Measurement and modelling of evapotranspiration in three fynbos vegetation types

    CSIR Research Space (South Africa)

    Dzikiti, Sebinasi

    2014-04-01

    Full Text Available sites. In this study we determined water use by 3 fynbos vegetation types growing at 4 different sites, namely: (i) lowland Atlantis Sand Plain fynbos growing on deep sandy soils, (ii) Kogelberg Sandstone fynbos growing in a riparian zone on deep...

  3. Vegetation Cover Analysis in Shaanxi Province of China Based on Grid Pixel Ternd Analysis and Stability Evaluation

    Science.gov (United States)

    Yue, H.; Liu, Y.

    2018-04-01

    As a key factor affecting the biogeochemical cycle of human existence, terrestrial vegetation is vulnerable to natural environment and human activities, with obvious temporal and spatial characteristics. The change of vegetation cover will affect the ecological balance and environmental quality to a great extent. Therefore, the research on the causes and influencing factors of vegetation cover has become the focus of attention of scholars at home and abroad. In the evolution of human activities and natural environment, the vegetation coverage in Shaanxi has changed accordingly. Using MODIS/NDVI 2000-2014 time series data, using the method of raster pixel trend analysis, stability evaluation, rescaled range analysis and correlation analysis, the climatic factors in Shaanxi province were studied in the near 15 years vegetation spatial and temporal variation and influence of vegetation NDVI changes. The results show that NDVI in Shaanxi province in the near 15 years increased by 0.081, the increase of NDVI in Northern Shaanxi was obvious, and negative growth was found in some areas of Guanzhong, southern Shaanxi NDVI overall still maintained at a high level; the trend of vegetation change in Shaanxi province has obvious spatial differences, most of the province is a slight tendency to improve vegetation, there are many obvious improvement areas in Northern Shaanxi Province. Guanzhong area vegetation area decreased, the small range of variation of vegetation in Shaanxi province; the most stable areas are mainly concentrated in the southern, southern Yanan, Yulin, Xi'an area of Weinan changed greatly; Shaanxi Province in recent 15 a, the temperature and precipitation have shown an increasing trend, and the vegetation NDVI is more closely related to the average annual rainfall, with increase of 0.48 °C/10 years and 69.5 mm per year.

  4. Selection and cultivation of final vegetative cover for closed waste sites at the Savannah River Site, SC

    International Nuclear Information System (INIS)

    Cook, J.R.; Salvo, S.K.

    1992-01-01

    Low-level, hazardous, and mixed waste disposal sites normally require some form of plant material to prevent erosion of the final closure cap. Waste disposal sites are closed and capped in a complex scientific manner to minimize water infiltration and percolation into and through the waste material. Turf type grasses are currently being used as a vegetative cover for most sites. Consequently, the sites require periodic mowing and other expensive annual maintenance practices. The purpose of this five year study was to evaluate alternative plant material for use on wastes sites that is quickly and easily established and economically maintained, retards water infiltration, provides maximum year-round evapotranspiration, is ecologically acceptable and does not harm the closure cap. The results of the study are described in this report and suggest that two species of bamboo (Phyllostachys bissetii and P. rubromarainata) can be utilized to provide long lived, low maintenance, climax vegetation for the waste sites. These large species of bamboo will also reduce the probability of intrusion by humans, animals and deeply rooted plant species

  5. Changes in the Vegetation Cover in a Constructed Wetland at Argonne National Laboratory, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, C.L.; LaGory, K.

    2004-01-01

    Wetlands are valuable resources that are disappearing at an alarming rate. Land development has resulted in the destruction of wetlands for approximately 200 years. To combat this destruction, the federal government passed legislation that requires no net loss of wetlands. The United States Army Corps of Engineers (USACE) is responsible for regulating wetland disturbances. In 1991, the USACE determined that the construction of the Advanced Photon Source at Argonne National Laboratory would damage three wetlands that had a total area of one acre. Argonne was required to create a wetland of equal acreage to replace the damaged wetlands. For the first five years after this wetland was created (1992-1996), the frequency of plant species, relative cover, and water depth was closely monitored. The wetland was not monitored again until 2002. In 2003, the vegetation cover data were again collected with a similar methodology to previous years. The plant species were sampled using quadrats at randomly selected locations along transects throughout the wetland. The fifty sampling locations were monitored once in June and percent cover of each of the plant species was determined for each plot. Furthermore, the extent of standing water in the wetland was measured. In 2003, 21 species of plants were found and identified. Eleven species dominated the wetland, among which were reed canary grass (Phalaris arundinacea), crown vetch (Coronilla varia), and Canada thistle (Cirsium arvense). These species are all non-native, invasive species. In the previous year, 30 species were found in the same wetland. The common species varied from the 2002 study but still had these non-native species in common. Reed canary grass and Canada thistle both increased by more than 100% from 2002. Unfortunately, the non-native species may be contributing to the loss of biodiversity in the wetland. In the future, control measures should be taken to ensure the establishment of more desired native species.

  6. Use of lodgepole pine cover types by Yellowstone grizzly bears

    Science.gov (United States)

    Mattson, D.J.

    1997-01-01

    Lodgepole pine (Pinus contorta) forests are a large and dynamic part of grizzly bear (Ursus arctos) habitat in the Yellowstone ecosystem. Research in other areas suggests that grizzly bears select for young open forest stands, especially for grazing and feeding on berries. Management guidelines accordingly recommend timber harvest as a technique for improving habitat in areas potentially dominated by lodgepole pine. In this paper I examine grizzly bear use of lodgepole pine forests in the Yellowstone area, and test several hypotheses with relevance to a new generation of management guidelines. Differences in grizzly bear selection of lodgepole pine cover types (defined on the basis of stand age and structure) were not pronounced. Selection furthermore varied among years, areas, and individuals. Positive selection for any lodgepole pine type was uncommon. Estimates of selection took 5-11 years or 4-12 adult females to stabilize, depending upon the cover type. The variances of selection estimates tended to stabilize after 3-5 sample years, and were more-or-less stable to slightly increasing with progressively increased sample area. There was no conclusive evidence that Yellowstone's grizzlies favored young (<40 yr) stands in general or for their infrequent use of berries. On the other hand, these results corroborated previous observations that grizzlies favored open and/or young stands on wet and fertile sites for grazing. These results also supported the proposition that temporally and spatially robust inferences require extensive, long-duration studies, especially for wide-ranging vertebrates like grizzly bears.

  7. Comparison and Validation of Long Time Serial Global GEOV1 and Regional Australian MODIS Fractional Vegetation Cover Products Over the Australian Continent

    Directory of Open Access Journals (Sweden)

    Yanling Ding

    2015-05-01

    Full Text Available Fractional vegetation cover (FVC is one of the most critical parameters in monitoring vegetation status. Comprehensive assessment of the FVC products is critical for their improvement and use in land surface models. This study investigates the performances of two major long time serial FVC products: GEOV1 and Australian MODIS. The spatial and temporal consistencies of these products were compared during the 2000–2012 period over the main biome types across the Australian continent. Their accuracies were validated by 443 FVC in-situ measurements during the 2011–2012 period. Our results show that there are strong correlations between the GEOV1 and Australian MODIS FVC products over the main Australian continent while they exhibit large differences and uncertainties in the coastal regions covered by dense forests. GEOV1 and Australian MODIS describe similar seasonal variations over the main biome types with differences in magnitude, while Australian MODIS exhibit unstable temporal variations over grasslands and shifted seasonal variations over evergreen broadleaf forests. The GEOV1 and Australian MODIS products overestimate FVC values over the biome types with high vegetation density and underestimate FVC in sparsely vegetated areas and grasslands. Overall, the GEOV1 and Australian MODIS FVC products agree with in-situ FVC values with a RMSE around 0.10 over the Australian continent.

  8. Unravelling long-term vegetation change patterns in a binational watershed using multitemporal land cover data and historical photography

    Science.gov (United States)

    Villarreal, Miguel L.; Norman, Laura M.; Webb, Robert H.; Boyer, Diane E.; Turner, Raymond M.

    2011-01-01

    A significant amount of research conducted in the Sonoran Desert of North America has documented, both anecdotally and empirically, major vegetation changes over the past century due to human land use activities. However, many studies lack coincidental landscape-scale data characterizing the spatial and temporal manifestation of these changes. Vegetation changes in a binational (USA and Mexico) watershed were documented using a series of four land cover maps (1979-2009) derived from multispectral satellite imagery. Cover changes are compared to georeferenced, repeat oblique photographs dating from the late 19th century to present. Results indicate the expansion of grassland over the past 20 years following nearly a century of decline. Historical repeat photography documents early-mid 20th century mesquite invasions, but recent land cover data and rephotography demonstrate declines in xeroriparian/riparian mesquite communities in recent decades. These vegetation changes are variable over the landscape and influenced by topography and land management.

  9. The managed clearing: An overlooked land-cover type in urbanizing regions?

    Science.gov (United States)

    Madden, Marguerite; Gray, Josh; Meentemeyer, Ross K.

    2018-01-01

    Urban ecosystem assessments increasingly rely on widely available map products, such as the U.S. Geological Service (USGS) National Land Cover Database (NLCD), and datasets that use generic classification schemes to detect and model large-scale impacts of land-cover change. However, utilizing existing map products or schemes without identifying relevant urban class types such as semi-natural, yet managed land areas that account for differences in ecological functions due to their pervious surfaces may severely constrain assessments. To address this gap, we introduce the managed clearings land-cover type–semi-natural, vegetated land surfaces with varying degrees of management practices–for urbanizing landscapes. We explore the extent to which managed clearings are common and spatially distributed in three rapidly urbanizing areas of the Charlanta megaregion, USA. We visually interpreted and mapped fine-scale land cover with special attention to managed clearings using 2012 U.S. Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) images within 150 randomly selected 1-km2 blocks in the cities of Atlanta, Charlotte, and Raleigh, and compared our maps with National Land Cover Database (NLCD) data. We estimated the abundance of managed clearings relative to other land use and land cover types, and the proportion of land-cover types in the NLCD that are similar to managed clearings. Our study reveals that managed clearings are the most common land cover type in these cities, covering 28% of the total sampled land area– 6.2% higher than the total area of impervious surfaces. Managed clearings, when combined with forest cover, constitutes 69% of pervious surfaces in the sampled region. We observed variability in area estimates of managed clearings between the NAIP-derived and NLCD data. This suggests using high-resolution remote sensing imagery (e.g., NAIP) instead of modifying NLCD data for improved representation of spatial heterogeneity and

  10. Evaluation of Polarimetric SAR Decomposition for Classifying Wetland Vegetation Types

    Directory of Open Access Journals (Sweden)

    Sang-Hoon Hong

    2015-07-01

    Full Text Available The Florida Everglades is the largest subtropical wetland system in the United States and, as with subtropical and tropical wetlands elsewhere, has been threatened by severe environmental stresses. It is very important to monitor such wetlands to inform management on the status of these fragile ecosystems. This study aims to examine the applicability of TerraSAR-X quadruple polarimetric (quad-pol synthetic aperture radar (PolSAR data for classifying wetland vegetation in the Everglades. We processed quad-pol data using the Hong & Wdowinski four-component decomposition, which accounts for double bounce scattering in the cross-polarization signal. The calculated decomposition images consist of four scattering mechanisms (single, co- and cross-pol double, and volume scattering. We applied an object-oriented image analysis approach to classify vegetation types with the decomposition results. We also used a high-resolution multispectral optical RapidEye image to compare statistics and classification results with Synthetic Aperture Radar (SAR observations. The calculated classification accuracy was higher than 85%, suggesting that the TerraSAR-X quad-pol SAR signal had a high potential for distinguishing different vegetation types. Scattering components from SAR acquisition were particularly advantageous for classifying mangroves along tidal channels. We conclude that the typical scattering behaviors from model-based decomposition are useful for discriminating among different wetland vegetation types.

  11. Quantifying BRDF Effects in Comparing Landsat-7 and AVIRIS Near-Simultaneous Acquisitions for Studies of High Plains Vegetation Cover

    Science.gov (United States)

    Goetz, A. F. H.; Heidebrecht, K. B.; Gutmann, E. D.; Warner, A. S.; Johnson, E. L.; Lestak, L. R.

    1999-01-01

    Approximately 100,000 sq. km of the High Plains of the central United States are covered by sand dunes and sand sheets deposited during the Holocene. Soil-dating evidence shows that there were at least four periods of dune reactivation during major droughts in the last 10,000 years. The dunes in this region are anchored by vegetation. We have undertaken a study of land-use change in the High Plains from 1985 to the present using Landsat 5 TM and Landsat 7 ETM+ images to map variation in vegetation cover during wet and dry years. Mapping vegetation cover of less than 20% is important in modeling potential surface reactivation since at this level the vegetation no longer sufficiently shields sandy surfaces from movement by wind. Landsat TM data have both the spatial resolution and temporal coverage to facilitate vegetation cover analysis for model development and verification. However, there is still the question of how accurate TM data are for the measurement of both growing and senescent vegetation in and and semi-arid regions. AVIRIS provides both high spectral resolution as well as high signal-to-noise ratio and can be used to test the accuracy of Landsat TM and ETM+ data. We have analyzed data from AVIRIS flown nearly concurrently with a Landsat 7 overpass. The comparison between an AVIRIS image swath of 11 km width subtending a 30 deg. angle and the same area covered by a 0.8 deg. angle from Landsat required accounting for the BRDF. A normalization technique using the ratio of the reflectances from registered AVIRIS and Landsat data proved superior to the techniques of column averaging on AVIRIS data alone published previously by Kennedy et al. This technique can be applied to aircraft data covering a wider swath angle than AVIRIS to develop BRDF responses for a wide variety of surfaces more efficiently than from ground measurements.

  12. Development and Interpretation of New Sediment Rating Curve Considering the Effect of Vegetation Cover for Asian Basins

    Directory of Open Access Journals (Sweden)

    Jie Wang

    2013-01-01

    Full Text Available Suspended sediment concentration of a river can provide very important perspective on erosion or soil loss of one river basin ecosystem. The changes of land use and land cover, such as deforestation or afforestation, affect sediment yield process of a catchment through changing the hydrological cycle of the area. A sediment rating curve can describe the average relation between discharge and suspended sediment concentration for a certain location. However, the sediment load of a river is likely to be undersimulated from water discharge using least squares regression of log-transformed variables and the sediment rating curve does not consider temporal changes of vegetation cover. The Normalized Difference Vegetation Index (NDVI can well be used to analyze the status of the vegetation cover well. Thus long time monthly NDVI data was used to detect vegetation change in the past 19 years in this study. Then monthly suspended sediment concentration and discharge from 1988 to 2006 in Laichau station were used to develop one new sediment rating curve and were validated in other Asian basins. The new sediment model can describe the relationship among sediment yield, streamflow, and vegetation cover, which can be the basis for soil conservation and sustainable ecosystem management.

  13. Differentiation in native as well as introduced ranges: germination reflects mean and variance in cover of surrounding vegetation.

    Science.gov (United States)

    Heger, Tina; Nikles, Gabriele; Jacobs, Brooke S

    2018-02-01

    Germination, a crucial phase in the life cycle of a plant, can be significantly influenced by competition and facilitation. The aim of this study was to test whether differences in cover of surrounding vegetation can lead to population differentiation in germination behaviour of an annual grassland species, and if so, whether such a differentiation can be found in the native as well as in the introduced range. We used maternal progeny of Erodium cicutarium previously propagated under uniform conditions that had been collected in multiple populations in the native and two introduced ranges, in populations representing extremes in terms of mean and variability of the cover of surrounding vegetation. In the first experiment, we tested the effect of germination temperature and mean cover at the source site on germination, and found interlinked effects of these factors. In seeds from one of the introduced ranges (California), we found indication for a 2-fold dormancy, hindering germination at high temperatures even if physical dormancy was broken and water was available. This behaviour was less strong in high cover populations, indicating cross-generational facilitating effects of dense vegetation. In the second experiment, we tested whether spatial variation in cover of surrounding vegetation has an effect on the proportion of dormant seeds. Contrary to our expectations, we found that across source regions, high variance in cover was associated with higher proportions of seeds germinating directly after storage. In all three regions, germination seemed to match the local environment in terms of climate and vegetation cover. We suggest that this is due to a combined effect of introduction of preadapted genotypes and local evolutionary processes.

  14. Vegetation height and cover fraction between 60° S and 60° N from ICESat GLAS data

    Directory of Open Access Journals (Sweden)

    S. O. Los

    2012-03-01

    Full Text Available We present new coarse resolution (0.5° × 0.5° vegetation height and vegetation-cover fraction data sets between 60° S and 60° N for use in climate models and ecological models. The data sets are derived from 2003–2009 measurements collected by the Geoscience Laser Altimeter System (GLAS on the Ice, Cloud and land Elevation Satellite (ICESat, the only LiDAR instrument that provides close to global coverage. Initial vegetation height is calculated from GLAS data using a development of the model of Rosette et al. (2008 with with further calibration on desert sites. Filters are developed to identify and eliminate spurious observations in the GLAS data, e.g. data that are affected by clouds, atmosphere and terrain and as such result in erroneous estimates of vegetation height or vegetation cover. Filtered GLAS vegetation height estimates are aggregated in histograms from 0 to 70 m in 0.5 m intervals for each 0.5° × 0.5°. The GLAS vegetation height product is evaluated in four ways. Firstly, the Vegetation height data and data filters are evaluated using aircraft LiDAR measurements of the same for ten sites in the Americas, Europe, and Australia. Application of filters to the GLAS vegetation height estimates increases the correlation with aircraft data from r = 0.33 to r = 0.78, decreases the root-mean-square error by a factor 3 to about 6 m (RMSE or 4.5 m (68% error distribution and decreases the bias from 5.7 m to −1.3 m. Secondly, the global aggregated GLAS vegetation height product is tested for sensitivity towards the choice of data quality filters; areas with frequent cloud cover and areas with steep terrain are the most sensitive to the choice of thresholds for the filters. The changes in height estimates by applying different filters are, for the main part, smaller than the overall uncertainty of 4.5–6 m established from the site measurements. Thirdly, the GLAS global vegetation height product is compared with a

  15. Use of satellite imagery to identify vegetation cover changes following the Waldo Canyon Fire event, Colorado, 2012-2013

    Science.gov (United States)

    Cole, Christopher J.; Friesen, Beverly A.; Wilson, Earl M.

    2014-01-01

    The Waldo Canyon Fire of 2012 was one of the most destructive wildfire events in Colorado history. The fire burned a total of 18,247 acres, claimed 2 lives, and destroyed 347 homes. The Waldo Canyon Fire continues to pose challenges to nearby communities. In a preliminary emergency assessment conducted in 2012, the U.S. Geological Survey (USGS) concluded that drainage basins within and near the area affected by the Waldo Canyon Fire pose a risk for future debris flow events. Rainfall over burned, formerly vegetated surfaces resulted in multiple flood and debris flow events that affected the cities of Colorado Springs and Manitou Springs in 2013. One fatality resulted from a mudslide near Manitou Springs in August 2013. Federal, State, and local governments continue to monitor these hazards and other post-fire effects, along with the region’s ecological recovery. At the request of the Colorado Springs Office of Emergency Management, the USGS Special Applications Science Center developed a geospatial product to identify vegetation cover changes following the 2012 Waldo Canyon Fire event. Vegetation cover was derived from July 2012 WorldView-2 and September 2013 QuickBird multispectral imagery at a spatial resolution of two meters. The 2012 image was collected after the fire had reached its maximum extent. Per-pixel increases and decreases in vegetation cover were identified by measuring spectral changes that occurred between the 2012 and 2013 image dates. A Normalized Difference Vegetation Index (NDVI), and Green-Near Infrared Index (GRNIR) were computed from each image. These spectral indices are commonly used to characterize vegetation cover and health condition, due to their sensitivity to detect foliar chlorophyll content. Vector polygons identifying surface-cover feature boundaries were derived from the 2013 imagery using image segmentation software. This geographic software groups similar image pixels into vector objects based upon their spatial and spectral

  16. Large-scale assessment of soil erosion in Africa: satellites help to jointly account for dynamic rainfall and vegetation cover

    Science.gov (United States)

    Vrieling, Anton; Hoedjes, Joost C. B.; van der Velde, Marijn

    2015-04-01

    Efforts to map and monitor soil erosion need to account for the erratic nature of the soil erosion process. Soil erosion by water occurs on sloped terrain when erosive rainfall and consequent surface runoff impact soils that are not well-protected by vegetation or other soil protective measures. Both rainfall erosivity and vegetation cover are highly variable through space and time. Due to data paucity and the relative ease of spatially overlaying geographical data layers into existing models like USLE (Universal Soil Loss Equation), many studies and mapping efforts merely use average annual values for erosivity and vegetation cover as input. We first show that rainfall erosivity can be estimated from satellite precipitation data. We obtained average annual erosivity estimates from 15 yr of 3-hourly TRMM Multi-satellite Precipitation Analysis (TMPA) data (1998-2012) using intensity-erosivity relationships. Our estimates showed a positive correlation (r = 0.84) with long-term annual erosivity values of 37 stations obtained from literature. Using these TMPA erosivity retrievals, we demonstrate the large interannual variability, with maximum annual erosivity often exceeding two to three times the mean value, especially in semi-arid areas. We then calculate erosivity at a 10-daily time-step and combine this with vegetation cover development for selected locations in Africa using NDVI - normalized difference vegetation index - time series from SPOT VEGETATION. Although we do not integrate the data at this point, the joint analysis of both variables stresses the need for joint accounting for erosivity and vegetation cover for large-scale erosion assessment and monitoring.

  17. ASSESSMENT OF VEGETATION COVER ON SODA WASTE DISPOSAL SITE AT JANIKOWO, FOLLOWING 13-YEAR-LONG RECLAMATION

    Directory of Open Access Journals (Sweden)

    Kazimierz Henryk Dyguś

    2014-10-01

    Full Text Available The results are presented of vegetation survey on the alkaline and saline soda waste disposal site at Janikowo Soda Plant near Toruń (central Poland. The site was subject to reclamation using diverse techniques including sewage sludge and ash, starting from the year 2000 onwards. The survey was made to evaluate the status of plant succession as well as stability and diversity of vegetation cover. The vegetation was inventoried using the cover-frequency method, on a 10 x 10 m quadrat samples randomly distributed over the reclaimed area. Communities were classified using the Central-European approach by Braun-Blanquet (1964. In 2013, the vegetation was well established and provided a dense cover of the substrate. 108 plant species were found compared to some 5–8 plants which arrived spontaneously until the year 2000. Species richness increased 15 fold since the year when reclamation started. Species of graminoid and Asteraceae families prevailed in most patches of local vegetation. The vegetation cover on sites treated with a mixt of power plant ash and sewage sludge was less stable and less diverse than that on sites where sewage sludge only was applied. Annuals and biennials dominated in the vegetation on ash grounds while more competitive perennials prevailed on sewage sludge substrates. On the latter substrates there develop plant communities classified as an association of smooth meadow grass and common yarrow Poa pratensis-Achillea millefolium, whose species combination closely resembles that of seminatural fresh meadows. On the ash grounds, a variety of associations of ruderal plants were found with dominating Loesel mustard and common mugwort Sisymbrium loeselii-Artemisia vulgaris. Phytoindicatory methods using Ellenberg values have shown that waste substrates contained increased salt concentrations, however, there was no indication of increased heavy metal contents, as no plants tolerating excessive amounts of heavy metals were

  18. Influence of Vegetation Structure on Lidar-derived Canopy Height and Fractional Cover in Forested Riparian Buffers During Leaf-Off and Leaf-On Conditions

    Science.gov (United States)

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available. PMID:23382966

  19. Developing digital vegetation for central hardwood forest types: A case study from Leslie County, KY

    Science.gov (United States)

    Bo Song; Wei-lun Tsai; Chiao-ying Chou; Thomas M. Williams; William Conner; Brian J. Williams

    2011-01-01

    Digital vegetation is the computerized representation, with either virtual images or animations, of vegetation types and conditions based on current measurements or ecological models. Digital vegetation can be useful in evaluating past, present, or future land use; changes in vegetation linked to climate change; or restoration efforts. Digital vegetation can be...

  20. Vegetative, productive and qualitative performance of grapevine "Cabernet Sauvignon" according to the use of winter cover crops

    OpenAIRE

    Bettoni, Jean Carlos; Feldberg, Nelson Pires; Nava, Gilberto; Veiga, Milton da; Wildner, Leandro do Prado

    2016-01-01

    ABSTRACT To study the effect of winter cover crops on the vegetative, productive and qualitative behavior of "Cabernet Sauvignon" grapevines, an experiment was conducted in two wine harvests by sowing different species of winter cover crops and additional treatments with manual weeding and mechanical mowing in an experimental vineyard located at the Experimental Station of Epagri in Videira, state of Santa Catarina, Brazil. Plant attributes of the grapevine, such as number of rods and weight ...

  1. Reconstructing Historical Land Cover Type and Complexity by Synergistic Use of Landsat Multispectral Scanner and CORONA

    Directory of Open Access Journals (Sweden)

    Amir Reza Shahtahmassebi

    2017-07-01

    Full Text Available Survey data describing land cover information such as type and diversity over several decades are scarce. Therefore, our capacity to reconstruct historical land cover using field data and archived remotely sensed data over large areas and long periods of time is somewhat limited. This study explores the relationship between CORONA texture—a surrogate for actual land cover type and complexity—with spectral vegetation indices and texture variables derived from Landsat MSS under the Spectral Variation Hypothesis (SVH such as to reconstruct historical continuous land cover type and complexity. Image texture of CORONA was calculated using a mean occurrence measure while image textures of Landsat MSS were calculated by occurrence and co-occurrence measures. The relationship between these variables was evaluated using correlation and regression techniques. The reconstruction procedure was undertaken through regression kriging. The results showed that, as expected, texture based on the visible bands and corresponding indices indicated larger correlation with CORONA texture, a surrogate of land cover (correlation >0.65. In terms of prediction, the combination of the first-order mean of band green, second-order measure of tasseled cap brightness, second-order mean of Normalized Visible Index (NVI and second-order entropy of NIR yielded the best model with respect to Akaike’s Information Criterion (AIC, r-square, and variance inflation factors (VIF. The regression model was then used in regression kriging to map historical continuous land cover. The resultant maps indicated the type and degree of complexity in land cover. Moreover, the proposed methodology minimized the impacts of topographic shadow in the region. The performance of this approach was compared with two conventional classification methods: hard classifiers and continuous classifiers. In contrast to conventional techniques, the technique could clearly quantify land cover complexity and

  2. Modeled Impacts of Cover Crops and Vegetative Barriers on Corn Stover Availability and Soil Quality

    Energy Technology Data Exchange (ETDEWEB)

    Ian J. Bonner; David J. Muth Jr.; Joshua B. Koch; Douglas L. Karlen

    2014-06-01

    Environmentally benign, economically viable, and socially acceptable agronomic strategies are needed to launch a sustainable lignocellulosic biofuel industry. Our objective was to demonstrate a landscape planning process that can ensure adequate supplies of corn (Zea mays L.) stover feedstock while protecting and improving soil quality. The Landscape Environmental Assessment Framework (LEAF) was used to develop land use strategies that were then scaled up for five U.S. Corn Belt states (Nebraska, Iowa, Illinois, Indiana, and Minnesota) to illustrate the impact that could be achieved. Our results show an annual sustainable stover supply of 194 million Mg without exceeding soil erosion T values or depleting soil organic carbon [i.e., soil conditioning index (SCI)?>?0] when no-till, winter cover crop, and vegetative barriers were incorporated into the landscape. A second, more rigorous conservation target was set to enhance soil quality while sustainably harvesting stover. By requiring erosion to be <1/2 T and the SCI-organic matter (OM) subfactor to be >?0, the annual sustainable quantity of harvestable stover dropped to148 million Mg. Examining removal rates by state and soil resource showed that soil capability class and slope generally determined the effectiveness of the three conservation practices and the resulting sustainable harvest rate. This emphasizes that sustainable biomass harvest must be based on subfield management decisions to ensure soil resources are conserved or enhanced, while providing sufficient biomass feedstock to support the economic growth of bioenergy enterprises.

  3. SPOT-Based Sub-Field Level Monitoring of Vegetation Cover Dynamics: A Case of Irrigated Croplands

    Directory of Open Access Journals (Sweden)

    Olena Dubovyk

    2015-05-01

    Full Text Available Acquiring multi-temporal spatial information on vegetation condition at scales appropriate for site-specific agricultural management is often complicated by the need for meticulous field measurements. Understanding spatial/temporal crop cover heterogeneity within irrigated croplands may support sustainable land use, specifically in areas affected by land degradation due to secondary soil salinization. This study demonstrates the use of multi-temporal, high spatial resolution (10 m SPOT-4/5 image data in an integrated change vector analysis and spectral mixture analysis (CVA-SMA procedure. This procedure was implemented with the principal objective of mapping sub-field vegetation cover dynamics in irrigated lowland areas within the lowerlands of the Amu Darya River. CVA intensity and direction were calculated separately for the periods of 1998–2006 and 2006–2010. Cumulative change intensity and the overall directional trend were also derived for the entire observation period of 1998–2010. Results show that most of the vector changes were observed between 1998 and 2006; persistent conditions were seen within the study region during the 2006–2010 period. A decreasing vegetation cover trend was identified within 38% of arable land. Areas of decreasing vegetation cover were located principally in the irrigation system periphery where deficient water supply and low soil quality lead to substandard crop development. During the 2006–2010 timeframe, degraded crop cover conditions persisted in 37% of arable land. Vegetation cover increased in 25% of the arable land where irrigation water supply was adequate. This high sub-field crop performance spatial heterogeneity clearly indicates that current land management practices are inefficient. Such information can provide the basis for implementing and adapting irrigation applications and salt leaching techniques to site-specific conditions and thereby make a significant contribution to sustainable

  4. Regional Quantitative Cover Mapping of Tundra Plant Functional Types in Arctic Alaska

    Directory of Open Access Journals (Sweden)

    Matthew J. Macander

    2017-10-01

    Full Text Available Ecosystem maps are foundational tools that support multi-disciplinary study design and applications including wildlife habitat assessment, monitoring and Earth-system modeling. Here, we present continuous-field cover maps for tundra plant functional types (PFTs across ~125,000 km2 of Alaska’s North Slope at 30-m resolution. To develop maps, we collected a field-based training dataset using a point-intercept sampling method at 225 plots spanning bioclimatic and geomorphic gradients. We stratified vegetation by nine PFTs (e.g., low deciduous shrub, dwarf evergreen shrub, sedge, lichen and summarized measurements of the PFTs, open water, bare ground and litter using the cover metrics total cover (areal cover including the understory and top cover (uppermost canopy or ground cover. We then developed 73 spectral predictors derived from Landsat satellite observations (surface reflectance composites for ~15-day periods from May–August and five gridded environmental predictors (e.g., summer temperature, climatological snow-free date to model cover of PFTs using the random forest data-mining algorithm. Model performance tended to be best for canopy-forming PFTs, particularly deciduous shrubs. Our assessment of predictor importance indicated that models for low-statured PFTs were improved through the use of seasonal composites from early and late in the growing season, particularly when similar PFTs were aggregated together (e.g., total deciduous shrub, herbaceous. Continuous-field maps have many advantages over traditional thematic maps, and the methods described here are well-suited to support periodic map updates in tandem with future field and Landsat observations.

  5. Chapter 3: Status and trends of vegetation

    Science.gov (United States)

    James M. Guldin; Frank R. Thompson; Lynda L. Richards; Kyra C. Harper

    1999-01-01

    This chapter provides information about the vegetation cover of the Assessment area. The types and areal extent of vegetation in the Highlands are of interest for many reasons. Vegetation cover largely determines the availability of habitat for terrestrial animals, plants, and other organisms. Vegetation cover strongly influences what uses {e.g., timber, forage,...

  6. Vegetation

    DEFF Research Database (Denmark)

    Epstein, H.E.; Walker, D.A.; Bhatt, U.S.

    2012-01-01

    increased 20-26%. • Increasing shrub growth and range extension throughout the Low Arctic are related to winter and early growing season temperature increases. Growth of other tundra plant types, including graminoids and forbs, is increasing, while growth of mosses and lichens is decreasing. • Increases...... in vegetation (including shrub tundra expansion) and thunderstorm activity, each a result of Arctic warming, have created conditions that favor a more active Arctic fire regime....

  7. Climate change impacts detection in dry forested ecosystem as indicated by vegetation cover change in -Laikipia, of Kenya.

    Science.gov (United States)

    M'mboroki, Kiambi Gilbert; Wandiga, Shem; Oriaso, Silas Odongo

    2018-03-29

    The objective of the study was to detect and identify land cover changes in Laikipia County of Kenya that have occurred during the last three decades. The land use types of study area are six, of which three are the main and the other three are the minor. The main three, forest, shrub or bush land and grassland, changed during the period, of which grasslands reduced by 5864 ha (40%), forest by 3071 ha (24%) and shrub and bush land increased by 8912 ha (43%). The other three minor land use types were bare land which had reduced by 238 ha (45%), river bed vegetation increased by 209 ha (72%) and agriculture increased by 52 ha (600%) over the period decades. Differences in spatiotemporal variations of vegetation could be largely attributed to the effects of climate factors, anthropogenic activities and their interactions. Precipitation and temperature have been demonstrated to be the key climate factors for plant growth and vegetation development where rainfall decreased by 200 mm and temperatures increased by 1.5 °C over the period. Also, the opinion of the community on the change of land use and management was attributed to climate change and also adaptation strategies applied by the community over time. For example unlike the common understanding that forest resources utilisation increases with increasing human population, Mukogodo dry forested ecosystem case is different in that the majority of the respondents (78.9%) reported that the forest resource use was more in that period than now and also a similar majority (74.2%) had the same opinion that forest resource utilisation was low compared to last 30 years. In Yaaku community, change impacts were evidenced and thus mitigation measures suggested to address the impacts which included the following: controlled bush management and indigenous grass reseeding programme were advocated to restore original grasslands, and agricultural (crop farming) activities are carried out in designated areas outside the

  8. The Effect of Different Type of Herbivores, Grazing Types and Grazing Intensities on Alpine Basiphillous Vegetation of the Romanian Carpathians

    Science.gov (United States)

    Ballová, Zuzana; Pekárik, Ladislav; Šibík, Jozef

    2017-04-01

    The major purpose of the present study was to test the hypothesis that there are significant differences in vegetation structure, plant species composition, and soil chemical properties in relation to type of grazing animals, various levels of grazing intensity and grazing type, and if potential differences alter with ecosystem productivity (increase in more productive ecosystems). The study was conducted in three mountain ranges of the Romanian Carpathians with a predominance of alkaline substrates (the Bucegi Mts, the Little Retezat Mts and the Ceahlău Massif). Statistical analyses were performed in R statistical software environment. The effects of grazing animals (cattle, horses and sheep), grazing types (fence, regular, irregular) and grazing intensity (low, medium, high) on the community structure were tested using ordination methods. In the case of soil properties, General Linear Mixed Model was applied. Special statistical approach eliminated the differences between the examined mountains and sites. Type of grazing animal does not significantly influence species cover but it is related to specific species occurrence. According to our results, grazing horses had similar effects as cattle compared to sheep. Grazing in restricted areas (surrounded by fence) and regular unrestricted grazing were more similar if compared to irregular grazing. When comparing the intensity of grazing, high and medium intensity were more similar to each other than to the low intensity grazing. Cattle grazed sites had significantly higher lichens cover, while the sheep patches were covered with increased overall herb layer (forbs, graminoids and low shrubs together). Medium grazing intensity decreased the lichens cover, cover of overall herb layer, and total vegetation cover compared to high and low grazing intensity. Grazing type had important impact on the lichens cover and cover of overall herb layer. The lichens cover appeared to decrease while the cover of overall herb layer

  9. Snowmelt in a High Latitude Mountain Catchment: Effect of Vegetation Cover and Elevation

    Science.gov (United States)

    Pomeroy, J. W.; Essery, R. L.; Ellis, C. R.; Hedstrom, N. R.; Janowicz, R.; Granger, R. J.

    2004-12-01

    The energetics and mass balance of snowpacks in the premelt and melt period were compared from three elevation bands in a high latitude mountain catchment, Wolf Creek Research Basin, Yukon. Elevation is strongly correlated with vegetation cover and in this case the three elevation bands (low, middle, high) correspond to mature spruce forest, dense shrub tundra and sparse tundra (alpine). Measurements of radiation, ground heat flux, snow depth, snowfall, air temperature, wind speed were made on a half-hourly basis at the three elevations for a 10 year period. Sondes provided vertical gradients of air temperature, humidity, wind speed and air pressure. Snow depth and density surveys were conducted monthly. Comparisons of wind speed, air temperature and humidity at three elevations show that the expected elevational gradients in the free atmosphere were slightly enhanced just above the surface canopies, but that the climate at the snow surface was further influenced by complex canopy effects. Premelt snow accumulation was strongly affected by intercepted snow in the forest and blowing snow sublimation in the sparse tundra but not by the small elevational gradients in snowfall. As a result the maximum premelt SWE was found in the mid-elevation shrub tundra and was roughly double that of the sparse tundra or forest. Minimum variability of SWE was observed in the forest and shrub tundra (CV=0.25) while in the sparse tundra variability doubled (CV=0.5). Snowmelt was influenced by differences in premelt accumulation as well as differences in the net energy fluxes to snow. Elevation had a strong effect on the initiation of melt with the forest melt starting on average 16 days before the shrub tundra and 19 days before the sparse tundra. Mean melt rates showed a maximum in middle elevations and increased from 860 kJ/day in the forest to 1460 kJ/day in the sparse tundra and 2730 kJ/day in the shrub tundra. The forest canopy reduced melt while the shrub canopy enhanced it

  10. Estimating vegetation biomass and cover across large plots in shrub and grass dominated drylands using terrestrial lidar and machine learning

    Science.gov (United States)

    Anderson, Kyle E.; Glenn, Nancy F.; Spaete, Lucas P.; Shinneman, Douglas; Pilliod, David S.; Arkle, Robert; McIlroy, Susan; Derryberry, DeWayne R.

    2018-01-01

    Terrestrial laser scanning (TLS) has been shown to enable an efficient, precise, and non-destructive inventory of vegetation structure at ranges up to hundreds of meters. We developed a method that leverages TLS collections with machine learning techniques to model and map canopy cover and biomass of several classes of short-stature vegetation across large plots. We collected high-definition TLS scans of 26 1-ha plots in desert grasslands and big sagebrush shrublands in southwest Idaho, USA. We used the Random Forests machine learning algorithm to develop decision tree models predicting the biomass and canopy cover of several vegetation classes from statistical descriptors of the aboveground heights of TLS points. Manual measurements of vegetation characteristics collected within each plot served as training and validation data. Models based on five or fewer TLS descriptors of vegetation heights were developed to predict the canopy cover fraction of shrubs (R2 = 0.77, RMSE = 7%), annual grasses (R2 = 0.70, RMSE = 21%), perennial grasses (R2 = 0.36, RMSE = 12%), forbs (R2 = 0.52, RMSE = 6%), bare earth or litter (R2 = 0.49, RMSE = 19%), and the biomass of shrubs (R2 = 0.71, RMSE = 175 g) and herbaceous vegetation (R2 = 0.61, RMSE = 99 g) (all values reported are out-of-bag). Our models explained much of the variability between predictions and manual measurements, and yet we expect that future applications could produce even better results by reducing some of the methodological sources of error that we encountered. Our work demonstrates how TLS can be used efficiently to extend manual measurement of vegetation characteristics from small to large plots in grasslands and shrublands, with potential application to other similarly structured ecosystems. Our method shows that vegetation structural characteristics can be modeled without classifying and delineating individual plants, a challenging and time-consuming step common in previous

  11. A non-parametric, supervised classification of vegetation types on the Kaibab National Forest using decision trees

    Science.gov (United States)

    Suzanne M. Joy; R. M. Reich; Richard T. Reynolds

    2003-01-01

    Traditional land classification techniques for large areas that use Landsat Thematic Mapper (TM) imagery are typically limited to the fixed spatial resolution of the sensors (30m). However, the study of some ecological processes requires land cover classifications at finer spatial resolutions. We model forest vegetation types on the Kaibab National Forest (KNF) in...

  12. Assessing Vegetation Cover Dynamics Induced by Policy-Driven Ecological Restoration and Implication to Soil Erosion in Southern China.

    Directory of Open Access Journals (Sweden)

    Jien Zhang

    Full Text Available In the aftermath of the severe droughts and floods at the end of the 20th century, the Chinese government launched several ecological restoration projects, including the Natural Forest Protection Program in 1998 and the Grain-for-Green Program in 1999, to promote afforestation and reforestation to reduce surface runoff and consequent soil erosion nationwide. However, it is still unclear how vegetation has changed in southern China since the launch of these programs. In this study, we used the MODIS Enhanced Vegetation Index (EVI to analyze the vegetation cover dynamics in southern China from 2000 to 2009 and evaluate the resulting effects of controlling soil erosion. Our observations indicate that 5.3% of the study area significantly increased and 0.98% significantly decreased in EVI value (p < 0.05. The spring EVI had largest increase in space. The conversions of croplands on steep slopes to forests resulting from national policies led to significant increases in EVI. The increase in EVI was not driven by annual average temperature and annual precipitation. By referencing ecological restoration statistical data and field observations, we showed that ecological restoration programs significantly improved vegetation cover in southern China. Increase in the area of farmland-converted forestlands has reduced soil erosion based upon monitoring sediment yields at hydrologic stations in the Yangtze River. This study displays the spatial patterns of trend in vegetation growth since the beginning of the 21st century in southern China and highlights the important role of China's afforestation program.

  13. Alterations in fruit and vegetable beta-carotene and vitamin C content caused by open-sun drying, visqueen-covered and polyethylene-covered solar-dryers.

    Science.gov (United States)

    Ndawula, J; Kabasa, J D; Byaruhanga, Y B

    2004-08-01

    This study investigated the effects of three drying methods (open sun drying, visqueen-covered solar dryer and polyethylene-covered solar dryer) on b-carotene and vitamin C content of edible portions of mango fruit (Mangifera indica) and cowpea leaves (Vigna unguiculata). Commercial samples were analysed for vitamin C by titrimetry and b-carotene by spectrophotometry at 450 nm. Differences in vitamin retention and loss associated with the three drying methods were assessed by analysis of variance and least significant difference (LSD) at (pdrying. Open sun drying method caused the greatest b-carotene and vitamin C loss (58% and 84% respectively), while the visqueen-covered solar dryer caused the least loss (34.5% and 71% respectively). Blanching cowpea leaves improved b-carotene and vitamin C retention by 15% and 7.5% respectively. The b-carotene and vitamin C content of fresh ripe mango fruit was 5.9 and 164.3 mg/100g DM respectively. Similar to effects on cowpea leaves, the mango micronutrient content decreased (pdrying. The open sun drying method caused the greatest b-carotene (94.2%) and vitamin C (84.5%) loss, while the visqueen-covered solar dryer caused the least (73 and 53% respectively). These results show that the three solar drying methods cause significant loss of pro-vitamin A and vitamin C in dried fruits and vegetables. However, open sun drying causes the most loss and the visqueen-covered solar dryer the least, making the later a probable better drying technology for fruit and vegetable preservation. The drying technologies should be improved to enhance vitamin retention.

  14. Rescuing and Sharing Historical Vegetation Data for Ecological Analysis: The California Vegetation Type Mapping Project

    Directory of Open Access Journals (Sweden)

    Maggi Kelly

    2016-10-01

    Full Text Available Research efforts that synthesize historical and contemporary ecological data with modeling approaches improve our understanding of the complex response of species, communities, and landscapes to changing biophysical conditions through time and in space. Historical ecological data are particularly important in this respect. There are remaining barriers that limit such data synthesis, and technological improvements that make multiple diverse datasets more readily available for integration and synthesis are needed. This paper presents one case study of the Wieslander Vegetation Type Mapping project in California and highlights the importance of rescuing, digitizing and sharing historical datasets. We review the varied ecological uses of the historical collection: the vegetation maps have been used to understand legacies of land use change and plan for the future; the plot data have been used to examine changes to chaparral and forest communities around the state and to predict community structure and shifts under a changing climate; the photographs have been used to understand changing vegetation structure; and the voucher specimens in combination with other specimen collections have been used for large scale distribution modeling efforts. The digitization and sharing of the data via the web has broadened the scope and scale of the types of analysis performed. Yet, additional research avenues can be pursued using multiple types of VTM data, and by linking VTM data with contemporary data. The digital VTM collection is an example of a data infrastructure that expands the potential of large scale research through the integration and synthesis of data drawn from numerous data sources; its journey from analog to digital is a cautionary tale of the importance of finding historical data, digitizing it with best practices, linking it with other datasets, and sharing it with the research community.

  15. Chemical composition of overland flow produced on soils covered with vegetative ash

    Directory of Open Access Journals (Sweden)

    M.B. Bodí

    2013-05-01

    Full Text Available The objective of this study was to ascertain the differences between the soluble elements of ash obtained under laboratory conditions and the dissolved in overland flow from soils covered with a layer of ash. The overland flow was obtained during series of rainfall simulations over soils covered with two different types of ash. This study indicates that the soluble elements released from ash can modify water quality increasing its pH, electrical conductivity and especially cation content. The nutrients solubilised are not necessarily the same as the elemental composition of ash itself. Runoff composition depends on the volume of water produced, on the solubility of the ash components and on the chemical interactions with water from rainfall and soil. After the first intense rain event, most of the elements are solubilised and lixiviated or washed out, however, some of them may increase in the runoff or soil water some weeks later due to chemical interactions with water from rainfall and soil nutrients.

  16. Assessing the ability of MODIS EVI to estimate terrestrial ecosystem gross primary production of multiple land cover types

    Czech Academy of Sciences Publication Activity Database

    Shi, H.; Li, L.; Eamus, D.; Huete, A.; Cleverly, J.; Tian, X.; Yu, Q.; Wang, S.; Montagnani, L.; Magliulo, V.; Rotenberg, E.; Pavelka, Marian; Carrara, A.

    2017-01-01

    Roč. 72, Jan (2017), s. 153-164 ISSN 1470-160X R&D Projects: GA MŠk(CZ) LM2015061 Institutional support: RVO:67179843 Keywords : Enhanced vegetation index * Gross primary production * Land cover types * Leaf area index * MODIS * Remote sensing Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 3.898, year: 2016

  17. Overland Transport of Rotavirus and the Effect of Soil Type and Vegetation

    Directory of Open Access Journals (Sweden)

    Paul C. Davidson

    2016-03-01

    Full Text Available Soil and vegetation are two critical factors for controlling the overland transport kinetics of pathogens in a natural environment. With livestock operations moving more towards concentrated animal operations, the need to dispose of a very large amount of manure in a localized area is becoming increasingly important. Animal manure contains a substantial amount of microbial pathogens, including rotavirus, which may pose a threat of contamination of water resources. This study examined the kinetics of rotavirus in overland transport, with an overall objective of optimizing the design of best management practices, especially vegetative filter strips. The overland transport of rotavirus was studied using three soil types (Catlin silt-loam, Darwin silty-clay, Alvin fine sandy-loam, spanning the entire spectrum of typical Illinois soil textures. A 20-min rainfall event was produced using a small-scale (1.07 m × 0.66 m laboratory rainfall simulator over a soil box measuring 0.610 m × 0.305 m. Each soil type was tested for rotavirus transport kinetics with bare surface conditions, as well as with Smooth Brome and Fescue vegetative covers. Surface runoff, near-surface runoff, soil cores, and vegetation were each analyzed for infective rotavirus particles using cell-culture infectivity assays. Results show that vegetation reduces the recovery of infective rotavirus particles in surface runoff by an average of 73%, in addition to delaying the time to peak recovery. The vegetation, in general, appeared to decrease the recovery of infective rotavirus particles in surface runoff by impeding surface flow and increasing the potential for infiltration into the soil profile.

  18. Effect of vegetal cover on runoff and soil erosion under light intensity events. Rainfall simulation over USLE plots.

    Science.gov (United States)

    Marques, María José; Bienes, Ramón; Jiménez, Luis; Pérez-Rodríguez, Raquel

    2007-05-25

    The erosive power of frequent light rainfalls is studied in this paper. Field experiments of simulated rainfall (Intensity, 21 mm h(-1) and kinetic energy, 13.5 J m(-2) mm(-1)) were conducted over 8 bounded USLE plots (80 m(2) each) with a slope of 10%. In 4 plots the soil was almost bare (<4% vegetation cover); the other 4 plots had almost full cover with natural vegetation in one year. Runoff and sediment yield was recorded. The results revealed the efficiency of vegetation cover reducing runoff and sediments. Runoff and sediments were negligible in covered plots. Therefore, in bare plots, although sediment yield was generally low, averaging 74+/-43 kg ha(-1), the mean of runoff achieved a coefficient of 35%, this magnitude has to be taken into consideration in this region verging on aridity. Rains around 13.5 J m(-2) mm(-1) of kinetic energy are quite frequent in the study area (34% of recorded rains en 12 years). If we would consider the usual lower limits from the literature, we would be ignoring an important percent of natural rainfall episodes.

  19. Effect of land-use practice on soil moisture variability for soils covered with dense forest vegetation of Puerto Rico

    Science.gov (United States)

    Tsegaye, T.; Coleman, T.; Senwo, Z.; Shaffer, D.; Zou, X.

    1998-01-01

    Little is known about the landuse management effect on soil moisture and soil pH distribution on a landscape covered with dense tropical forest vegetation. This study was conducted at three locations where the history of the landuse management is different. Soil moisture was measured using a 6-cm three-rod Time Domain Reflectometery (TDR) probe. Disturbed soil samples were taken from the top 5-cm at the up, mid, and foothill landscape position from the same spots where soil moisture was measured. The results showed that soil moisture varies with landscape position and depth at all three locations. Soil pH and moisture variability were found to be affected by the change in landuse management and landscape position. Soil moisture distribution usually expected to be relatively higher in the foothill (P3) area of these forests than the uphill (P1) position. However, our results indicated that in the Luquillo and Guanica site the surface soil moisture was significantly higher for P1 than P3 position. These suggest that the surface and subsurface drainage in these two sites may have been poor due to the nature of soil formation and type.

  20. Vegetation Analysis and Land Use Land Cover Classification of Forest in Uttara Kannada District India Using Remote Sensign and GIS Techniques

    Science.gov (United States)

    Koppad, A. G.; Janagoudar, B. S.

    2017-10-01

    The study was conducted in Uttara Kannada districts during the year 2012-2014. The study area lies between 13.92° N to 15.52° N latitude and 74.08° E to 75.09° E longitude with an area of 10,215 km2. The Indian satellite IRS P6 LISS-III imageries were used to classify the land use land cover classes with ground truth data collected with GPS through supervised classification in ERDAS software. The land use and land cover classes identified were dense forest, horticulture plantation, sparse forest, forest plantation, open land and agriculture land. The dense forest covered an area of 63.32 % (6468.70 sq km) followed by agriculture 12.88 % (1315.31 sq. km), sparse forest 10.59 % (1081.37 sq. km), open land 6.09 % (622.37 sq. km), horticulture plantation and least was forest plantation (1.07 %). Settlement, stony land and water body together cover about 4.26 percent of the area. The study indicated that the aspect and altitude influenced the forest types and vegetation pattern. The NDVI map was prepared which indicated that healthy vegetation is represented by high NDVI values between 0.1 and 1. The non- vegetated features such as water bodies, settlement, and stony land indicated less than 0.1 values. The decrease in forest area in some places was due to anthropogenic activities. The thematic map of land use land cover classes was prepared using Arc GIS Software.

  1. VEGETATION ANALYSIS AND LAND USE LAND COVER CLASSIFICATION OF FOREST IN UTTARA KANNADA DISTRICT INDIA USING REMOTE SENSIGN AND GIS TECHNIQUES

    Directory of Open Access Journals (Sweden)

    A. G. Koppad

    2017-10-01

    Full Text Available The study was conducted in Uttara Kannada districts during the year 2012–2014. The study area lies between 13.92° N to 15.52° N latitude and 74.08° E to 75.09° E longitude with an area of 10,215 km2. The Indian satellite IRS P6 LISS-III imageries were used to classify the land use land cover classes with ground truth data collected with GPS through supervised classification in ERDAS software. The land use and land cover classes identified were dense forest, horticulture plantation, sparse forest, forest plantation, open land and agriculture land. The dense forest covered an area of 63.32 % (6468.70 sq km followed by agriculture 12.88 % (1315.31 sq. km, sparse forest 10.59 % (1081.37 sq. km, open land 6.09 % (622.37 sq. km, horticulture plantation and least was forest plantation (1.07 %. Settlement, stony land and water body together cover about 4.26 percent of the area. The study indicated that the aspect and altitude influenced the forest types and vegetation pattern. The NDVI map was prepared which indicated that healthy vegetation is represented by high NDVI values between 0.1 and 1. The non- vegetated features such as water bodies, settlement, and stony land indicated less than 0.1 values. The decrease in forest area in some places was due to anthropogenic activities. The thematic map of land use land cover classes was prepared using Arc GIS Software.

  2. ANALYSING THE EFFECTS OF DIFFERENT LAND COVER TYPES ON LAND SURFACE TEMPERATURE USING SATELLITE DATA

    Directory of Open Access Journals (Sweden)

    A. Şekertekin

    2015-12-01

    Full Text Available Monitoring Land Surface Temperature (LST via remote sensing images is one of the most important contributions to climatology. LST is an important parameter governing the energy balance on the Earth and it also helps us to understand the behavior of urban heat islands. There are lots of algorithms to obtain LST by remote sensing techniques. The most commonly used algorithms are split-window algorithm, temperature/emissivity separation method, mono-window algorithm and single channel method. In this research, mono window algorithm was implemented to Landsat 5 TM image acquired on 28.08.2011. Besides, meteorological data such as humidity and temperature are used in the algorithm. Moreover, high resolution Geoeye-1 and Worldview-2 images acquired on 29.08.2011 and 12.07.2013 respectively were used to investigate the relationships between LST and land cover type. As a result of the analyses, area with vegetation cover has approximately 5 ºC lower temperatures than the city center and arid land., LST values change about 10 ºC in the city center because of different surface properties such as reinforced concrete construction, green zones and sandbank. The temperature around some places in thermal power plant region (ÇATES and ZETES Çatalağzı, is about 5 ºC higher than city center. Sandbank and agricultural areas have highest temperature due to the land cover structure.

  3. Analysing the Effects of Different Land Cover Types on Land Surface Temperature Using Satellite Data

    Science.gov (United States)

    Şekertekin, A.; Kutoglu, Ş. H.; Kaya, S.; Marangoz, A. M.

    2015-12-01

    Monitoring Land Surface Temperature (LST) via remote sensing images is one of the most important contributions to climatology. LST is an important parameter governing the energy balance on the Earth and it also helps us to understand the behavior of urban heat islands. There are lots of algorithms to obtain LST by remote sensing techniques. The most commonly used algorithms are split-window algorithm, temperature/emissivity separation method, mono-window algorithm and single channel method. In this research, mono window algorithm was implemented to Landsat 5 TM image acquired on 28.08.2011. Besides, meteorological data such as humidity and temperature are used in the algorithm. Moreover, high resolution Geoeye-1 and Worldview-2 images acquired on 29.08.2011 and 12.07.2013 respectively were used to investigate the relationships between LST and land cover type. As a result of the analyses, area with vegetation cover has approximately 5 ºC lower temperatures than the city center and arid land., LST values change about 10 ºC in the city center because of different surface properties such as reinforced concrete construction, green zones and sandbank. The temperature around some places in thermal power plant region (ÇATES and ZETES) Çatalağzı, is about 5 ºC higher than city center. Sandbank and agricultural areas have highest temperature due to the land cover structure.

  4. Comparative study of oxidation in canned foods with a combination of vegetables and covering oils

    Directory of Open Access Journals (Sweden)

    E. Bravi

    2015-06-01

    Full Text Available The effects of sunflower (SFO, extra-virgin olive (EVO, and soybean oils (SBO, in combination with canned aubergins and dried tomatoes were studied during an accelerated shelf-life trial. Hydrolytic and oxidative quality parameters was determined and a sensorial test was run. For both canned vegetables, the SBO showed greater resistance to the oxidation at the end of the shelflife trial. The SBO in both vegetables yielded similar results for peroxide formation, whereas a reduced formation of secondary oxidation products was observed in aubergins. The results highlighted a higher oxidation stability of canned vegetables in SBO and EVO than those in SFO. The sensorial test underlined differences between the oils, in aubergins and dried tomatoes, after 30 days of accelerated storage (corresponding to the sell-by date. Flavour and texture were judged better for vegetables in SBO.

  5. EnviroAtlas - Portland, ME - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  6. EnviroAtlas - Portland, OR - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  7. EnviroAtlas - Phoenix, AZ - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  8. EnviroAtlas - Durham, NC - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  9. EnviroAtlas - Woodbine, IA - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  10. Comparative study of oxidation in canned foods with a combination of vegetables and covering oils

    OpenAIRE

    E. Bravi; A. Mangione; O. Marconi; G. Perretti

    2015-01-01

    The effects of sunflower (SFO), extra-virgin olive (EVO), and soybean oils (SBO), in combination with canned aubergins and dried tomatoes were studied during an accelerated shelf-life trial. Hydrolytic and oxidative quality parameters was determined and a sensorial test was run. For both canned vegetables, the SBO showed greater resistance to the oxidation at the end of the shelflife trial. The SBO in both vegetables yielded similar results for peroxide formation, whereas a reduced formation ...

  11. Comparing the impacts of hiking, skiing and horse riding on trail and vegetation in different types of forest.

    Science.gov (United States)

    Törn, A; Tolvanen, A; Norokorpi, Y; Tervo, R; Siikamäki, P

    2009-03-01

    Nature-based tourism in protected areas has increased and diversified dramatically during the last decades. Different recreational activities have a range of impacts on natural environments. This paper reports results from a comparison of the impacts of hiking, cross-country skiing and horse riding on trail characteristics and vegetation in northern Finland. Widths and depths of existing trails, and vegetation on trails and in the neighbouring forests were monitored in two research sites during 2001 and 2002. Trail characteristics and vegetation were clearly related to the recreational activity, research site and forest type. Horse trails were as deep as hiking trails, even though the annual number of users was 150-fold higher on the hiking trails. Simultaneously, cross-country skiing had the least effect on trails due to the protective snow cover during winter. Hiking trail plots had little or no vegetation cover, horse riding trail plots had lower vegetation cover than forest plots, while skiing had no impact on total vegetation cover. On the other hand, on horse riding trails there were more forbs and grasses, many of which did not grow naturally in the forest. These species that were limited to riding trails may change the structure of adjacent plant communities in the long run. Therefore, the type of activities undertaken and the sensitivity of habitats to these activities should be a major consideration in the planning and management of nature-based tourism. Establishment of artificial structures, such as stairs, duckboards and trail cover, or complete closure of the site, may be the only way to protect the most sensitive or deteriorated sites.

  12. Tree Plantation Will not Compensate Natural Woody Vegetation Cover Loss in the Atlantic Department of Southern Benin

    Directory of Open Access Journals (Sweden)

    Toyi, MS.

    2013-01-01

    Full Text Available This study deals with land use and land cover changes for a 33 years period. We assessed these changes for eight land cover classes in the south of Benin by using an integrated multi-temporal analysis using three Landsat images (1972 Landsat MSS, 1986 Landsat TM and 2005 Landsat ETM+. Three scenarios for the future were simulated using a first-order Markovian model based on annual probability matrices. The contribution of tree plantations to compensate forest loss was assessed. The results show a strong loss of forest and savanna, mainly due to increased agricultural land. Natural woody vegetation ("forest", "wooded savanna" and "tree and shrub savanna" will seriously decrease by 2025 due to the expansion of agricultural activities and the increase of settlements. Tree plantations are expected to double by 2025, but they will not compensate for the loss of natural woody vegetation cover. Consequently, we assist to a continuing woody vegetation area decrease. Policies regarding reforestation and forest conservation must be initiated to reverse the currently projected tendencies.

  13. Effects of seagulls on ecosystem respiration, soil nitrogen and vegetation cover on a pristine volcanic island, Surtsey, Iceland

    Science.gov (United States)

    Sigurdsson, B. D.; Magnusson, B.

    2010-03-01

    When Surtsey rose from the North Atlantic Ocean south of Iceland in 1963, it became a unique natural laboratory on how organisms colonize volcanic islands and form ecosystems with contrasting structures and functions. In July, 2004, ecosystem respiration rate (Re), soil properties and surface cover of vascular plants were measured in 21 permanent research plots distributed among the juvenile communities of the island. The plots were divided into two main groups, inside and outside a seagull (Larus spp.) colony established on the island. Vegetation cover of the plots was strongly related to the density of gull nests. Occurrence of nests and increased vegetation cover also coincided with significant increases in Re, soil carbon, nitrogen and C:N ratio, and with significant reductions in soil pH and soil temperatures. Temperature sensitivity (Q10 value) of Re was determined as 5.3. When compared at constant temperature the Re was found to be 59 times higher within the seagull colony, similar to the highest fluxes measured in drained wetlands or agricultural fields in Iceland. The amount of soil nitrogen, mainly brought onto the island by the seagulls, was the critical factor that most influenced ecosystem fluxes and vegetation development on Surtsey. The present study shows how ecosystem activity can be enhanced by colonization of animals that transfer resources from a nearby ecosystem.

  14. Effects of seagulls on ecosystem respiration, soil nitrogen and vegetation cover on a pristine volcanic island, Surtsey, Iceland

    Directory of Open Access Journals (Sweden)

    B. D. Sigurdsson

    2010-03-01

    Full Text Available When Surtsey rose from the North Atlantic Ocean south of Iceland in 1963, it became a unique natural laboratory on how organisms colonize volcanic islands and form ecosystems with contrasting structures and functions. In July, 2004, ecosystem respiration rate (Re, soil properties and surface cover of vascular plants were measured in 21 permanent research plots distributed among the juvenile communities of the island. The plots were divided into two main groups, inside and outside a seagull (Larus spp. colony established on the island. Vegetation cover of the plots was strongly related to the density of gull nests. Occurrence of nests and increased vegetation cover also coincided with significant increases in Re, soil carbon, nitrogen and C:N ratio, and with significant reductions in soil pH and soil temperatures. Temperature sensitivity (Q10 value of Re was determined as 5.3. When compared at constant temperature the Re was found to be 59 times higher within the seagull colony, similar to the highest fluxes measured in drained wetlands or agricultural fields in Iceland. The amount of soil nitrogen, mainly brought onto the island by the seagulls, was the critical factor that most influenced ecosystem fluxes and vegetation development on Surtsey. The present study shows how ecosystem activity can be enhanced by colonization of animals that transfer resources from a nearby ecosystem.

  15. High spatial resolution mapping of land cover types in a priority area for conservation in the Brazilian savanna

    Science.gov (United States)

    Ribeiro, F.; Roberts, D. A.; Hess, L. L.; Davis, F. W.; Caylor, K. K.; Nackoney, J.; Antunes Daldegan, G.

    2017-12-01

    Savannas are heterogeneous landscapes consisting of highly mixed land cover types that lack clear distinct boundaries. The Brazilian Cerrado is a Neotropical savanna considered a biodiversity hotspot for conservation due to its biodiversity richness and rapid transformation of its landscape by crop and pasture activities. The Cerrado is one of the most threatened Brazilian biomes and only 2.2% of its original extent is strictly protected. Accurate mapping and monitoring of its ecosystems and adjacent land use are important to select areas for conservation and to improve our understanding of the dynamics in this biome. Land cover mapping of savannas is difficult due to spectral similarity between land cover types resulting from similar vegetation structure, floristically similar components, generalization of land cover classes, and heterogeneity usually expressed as small patch sizes within the natural landscape. These factors are the major contributor to misclassification and low map accuracies among remote sensing studies in savannas. Specific challenges to map the Cerrado's land cover types are related to the spectral similarity between classes of land use and natural vegetation, such as natural grassland vs. cultivated pasture, and forest ecosystem vs. crops. This study seeks to classify and evaluate the land cover patterns across an area ranked as having extremely high priority for future conservation in the Cerrado. The main objective of this study is to identify the representativeness of each vegetation type across the landscape using high to moderate spatial resolution imagery using an automated scheme. A combination of pixel-based and object-based approaches were tested using RapidEye 3A imagery (5m spatial resolution) to classify the Cerrado's major land cover types. The random forest classifier was used to map the major ecosystems present across the area, and demonstrated to have an effective result with 68% of overall accuracy. Post

  16. Human Activity Influences on Vegetation Cover Changes in Beijing, China, from 2000 to 2015

    Directory of Open Access Journals (Sweden)

    Meichen Jiang

    2017-03-01

    Full Text Available For centuries, the rapid development of human society has already made human activity the dominant factor in the terrestrial ecosystem. As the city of greatest importance in China, the capital Beijing has experienced eco-environmental changes with unprecedented economic and population growth during the past few decades. To better understand the ecological transition and its correlations in Beijing, Landsat Thematic Mapper (TM and Operational Land Imager (OLI images were used to investigate vegetation coverage changes using a dimidiate pixel model. Piecewise linear regression, bivariate-partial correlation analysis, and factor analysis were applied to the probing of the relationship between vegetation coverage changes and climatic/human-induced factors. The results showed that from 2000 to 2005, 2005 to 2010, and 2010 to 2015, Beijing experienced both restoration (6.33%, 10.08%, and 12.81%, respectively and degradation (13.62%, 9.35%, and 9.49%, respectively. The correlation analysis results between climate and vegetation changes demonstrated that from 2000 to 2015, both the multi-year annual mean temperature (r = −0.819, p < 0.01 and the multi-year annual mean precipitation (r = 0.653, p < 0.05 had a significantly correlated relationship with vegetation change. The Beijing-Tianjin Sandstorm Source Control Project (BTSSCP has shown beneficial spatial effects on vegetation restoration; the total effectiveness in conservation areas (84.94 in 2000–2010 was much better than non-BTSSCP areas (34.34 in 2000–2010. The most contributory socioeconomic factors were the population (contribution = 54.356% and gross domestic product (GDP (contribution = 30.677%. The population showed a significantly negative correlation with the overall vegetation coverage (r = −0.684, p < 0.05. The GDP was significantly negatively correlated with vegetation in Tongzhou, Daxing, Central city, Fangshan, Shunyi, and Changping (r = −0.601, p < 0.01, while positively

  17. Computer implemented land cover classification using LANDSAT MSS digital data: A cooperative research project between the National Park Service and NASA. 3: Vegetation and other land cover analysis of Shenandoah National Park

    Science.gov (United States)

    Cibula, W. G.

    1981-01-01

    Four LANDSAT frames, each corresponding to one of the four seasons were spectrally classified and processed using NASA-developed computer programs. One data set was selected or two or more data sets were marged to improve surface cover classifications. Selected areas representing each spectral class were chosen and transferred to USGS 1:62,500 topographic maps for field use. Ground truth data were gathered to verify the accuracy of the classifications. Acreages were computed for each of the land cover types. The application of elevational data to seasonal LANDSAT frames resulted in the separation of high elevation meadows (both with and without recently emergent perennial vegetation) as well as areas in oak forests which have an evergreen understory as opposed to other areas which do not.

  18. Relation of MODIS EVI and LAI across time, vegetation types and hydrological regimes

    Science.gov (United States)

    Alexandridis, Thomas; Ovakoglou, George

    2015-04-01

    Estimation of the Leaf Area Index (LAI) of a landscape is considered important to describe the ecosystems activity and is used as an important input parameter in hydrological and biogeochemical models related to water and carbon cycle, desertification risk, etc. The measurement of LAI in the field is a laborious and costly process and is mainly done by indirect methods, such as hemispherical photographs that are processed by specialized software. For this reason there have been several attempts to estimate LAI with multispectral satellite images, using theoretical biomass development models, or empirical equations using vegetation indices and land cover maps. The aim of this work is to study the relation of MODIS EVI and LAI across time, vegetation type, and hydrological regime. This was achieved by studying 120 maps of EVI and LAI which cover a hydrological year and five hydrologically diverse areas: river Nestos in Greece, Queimados catchment in Brazil, Rijnland catchment in The Netherlands, river Tamega in Portugal, and river Umbeluzi in Mozambique. The following Terra MODIS composite datasets were downloaded for the hydrological year 2012-2013: MOD13A2 "Vegetation Indices" and MCD15A2 "LAI and FPAR", as well as the equivalent quality information layers (QA). All the pixels that fall in a vegetation land cover (according to the MERIS GLOBCOVER map) were sampled for the analysis, with the exception of those that fell at the border between two vegetation or other land cover categories, to avoid the influence of mixed pixels. Using linear regression analysis, the relationship between EVI and LAI was identified per date, vegetation type and study area. Results show that vegetation type has the highest influence in the variation of the relationship between EVI and LAI in each study area. The coefficient of determination (R2) is high and statistically significant (ranging from 0.41 to 0.83 in 90% of the cases). When plotting the EVI factor from the regression equation

  19. Using repeat electrical resistivity surveys to assess heterogeneity in soil moisture dynamics under contrasting vegetation types

    Science.gov (United States)

    Dick, Jonathan; Tetzlaff, Doerthe; Bradford, John; Soulsby, Chris

    2018-04-01

    As the relationship between vegetation and soil moisture is complex and reciprocal, there is a need to understand how spatial patterns in soil moisture influence the distribution of vegetation, and how the structure of vegetation canopies and root networks regulates the partitioning of precipitation. Spatial patterns of soil moisture are often difficult to visualise as usually, soil moisture is measured at point scales, and often difficult to extrapolate. Here, we address the difficulties in collecting large amounts of spatial soil moisture data through a study combining plot- and transect-scale electrical resistivity tomography (ERT) surveys to estimate soil moisture in a 3.2 km2 upland catchment in the Scottish Highlands. The aim was to assess the spatio-temporal variability in soil moisture under Scots pine forest (Pinus sylvestris) and heather moorland shrubs (Calluna vulgaris); the two dominant vegetation types in the Scottish Highlands. The study focussed on one year of fortnightly ERT surveys. The surveyed resistivity data was inverted and Archie's law was used to calculate volumetric soil moisture by estimating parameters and comparing against field measured data. Results showed that spatial soil moisture patterns were more heterogeneous in the forest site, as were patterns of wetting and drying, which can be linked to vegetation distribution and canopy structure. The heather site showed a less heterogeneous response to wetting and drying, reflecting the more uniform vegetation cover of the shrubs. Comparing soil moisture temporal variability during growing and non-growing seasons revealed further contrasts: under the heather there was little change in soil moisture during the growing season. Greatest changes in the forest were in areas where the trees were concentrated reflecting water uptake and canopy partitioning. Such differences have implications for climate and land use changes; increased forest cover can lead to greater spatial variability, greater

  20. Vegetative, productive and qualitative performance of grapevine "Cabernet Sauvignon" according to the use of winter cover crops

    Directory of Open Access Journals (Sweden)

    Jean Carlos Bettoni

    Full Text Available ABSTRACT To study the effect of winter cover crops on the vegetative, productive and qualitative behavior of "Cabernet Sauvignon" grapevines, an experiment was conducted in two wine harvests by sowing different species of winter cover crops and additional treatments with manual weeding and mechanical mowing in an experimental vineyard located at the Experimental Station of Epagri in Videira, state of Santa Catarina, Brazil. Plant attributes of the grapevine, such as number of rods and weight of pruned material and number of branches per plant. At the time of skin color change, petioles of recently matured leaves were collected for analysis of the levels of N, P, K, Ca, Mg, Fe, Mn, Zn and B. Moments before harvest, 100 grape berries were collected randomly to determine the total soluble solids, titratable acidity and pH. At harvest, the number of bunches per branch, the number and mass of clusters per plant and the average mass of clusters per plot were determined. Fresh and dry matter yields of the cover crop and weed plants were also determined when coverage reached full bloom. The winter cover crops did not alter the yield and quality of "Cabernet Sauvignon" grapes and showed no differences from each other for the management of spontaneous vegetation by hand weeding or mechanical mowing. Rye and ryegrass are effective alternatives for weed control alternatives. The species of white and red clover present difficulty in initial establishment, producing a small amount of biomass.

  1. Soil erosion and sediment yield and their relationships with vegetation cover in upper stream of the Yellow River.

    Science.gov (United States)

    Ouyang, Wei; Hao, Fanghua; Skidmore, Andrew K; Toxopeus, A G

    2010-12-15

    Soil erosion is a significant concern when considering regional environmental protection, especially in the Yellow River Basin in China. This study evaluated the temporal-spatial interaction of land cover status with soil erosion characteristics in the Longliu Catchment of China, using the Soil and Water Assessment Tool (SWAT) model. SWAT is a physical hydrological model which uses the RUSLE equation as a sediment algorithm. Considering the spatial and temporal scale of the relationship between soil erosion and sediment yield, simulations were undertaken at monthly and annual temporal scales and basin and sub-basin spatial scales. The corresponding temporal and spatial Normalized Difference Vegetation Index (NDVI) information was summarized from MODIS data, which can integrate regional land cover and climatic features. The SWAT simulation revealed that the annual soil erosion and sediment yield showed similar spatial distribution patterns, but the monthly variation fluctuated significantly. The monthly basin soil erosion varied from almost no erosion load to 3.92 t/ha and the maximum monthly sediment yield was 47,540 tones. The inter-annual simulation focused on the spatial difference and relationship with the corresponding vegetation NDVI value for every sub-basin. It is concluded that, for this continental monsoon climate basin, the higher NDVI vegetation zones prevented sediment transport, but at the same time they also contributed considerable soil erosion. The monthly basin soil erosion and sediment yield both correlated with NDVI, and the determination coefficients of their exponential correlation model were 0.446 and 0.426, respectively. The relationships between soil erosion and sediment yield with vegetation NDVI indicated that the vegetation status has a significant impact on sediment formation and transport. The findings can be used to develop soil erosion conservation programs for the study area. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Detecting land-cover change using mappable vegetation related indices: A case study from Sinharaja Man and the Biosphere Reserve

    Directory of Open Access Journals (Sweden)

    BD Madurapperuma

    2014-06-01

    Full Text Available This study evaluates multi-year changes of vegetation in the Sinharaja Man and the Biosphere (MAB reserve using mappable vegetation related indices viz., Normalized Difference Vegetation Index (NDVI and Burn Index (BI. Land-cover changes in the Sinharaja MAB reserve were detected using Landsat 7 ETM+ images for 1993, 2001, and 2005. Seven individual bands of each image were converted to new multiband files by layer stacking using ENVI® 4.5. Then the multiband files were re-projected to UTM Zone 44 North, WGS-84 Datum. Each data set was exported to ENVI® EX software package to detect the changes between time steps based on NDVI and BI using an image difference tool. Land-cover data, which were obtained from the DIVA GIS web portal, were compared with Landsat image data. Results of BI showed that the Sinharaja MAB reserve fringe was vulnerable to forest fire. For example, from 1993- 2001, 160 ha identified as burned area. In contrast, from 2001-2005, 79 ha burned, and for the entire period of 1993-2005, 10 ha burned. NDVI resulted in a 962 ha increase of vegetation prime at the western Sinharaja from 2001-2005. In addition, there was a 15 ha decrease in vegetation from 1993-2005. The results were visualized using an embedded 3D render window of Google Earth and 2D view of ArcGIS explorer online. In conclusion, in-situ ground truthing data is needed for the fire-influenced area for implementing sustainable forest resource management at the Sinharaja MAB reserve. Normal 0 false false false EN-GB X-NONE X-NONE

  3. 28 CFR 55.10 - Types of elections covered.

    Science.gov (United States)

    2010-07-01

    ... of election, whether it is a primary, general or special election. Section 14(c)(1). This includes... and referendums. Federal, State and local elections are covered as are elections of special districts, such as school districts and water districts. (b) Elections for statewide office. If an election...

  4. Radiative transfer in shrub savanna sites in Niger: preliminary results from HAPEX-Sahel. 3. Optical dynamics and vegetation index sensitivity to biomass and plant cover

    International Nuclear Information System (INIS)

    Leeuwen, W.J.D. van; Huete, A.R.; Duncan, J.; Franklin, J.

    1994-01-01

    A shrub savannah landscape in Niger was optically characterized utilizing blue, green, red and near-infrared wavelengths. Selected vegetation indices were evaluated for their performance and sensitivity to describe the complex Sahelian soil/vegetation canopies. Bidirectional reflectance factors (BRF) of plants and soils were measured at several view angles, and used as input to various vegetation indices. Both soil and vegetation targets had strong anisotropic reflectance properties, rendering all vegetation index (VI) responses to be a direct function of sun and view geometry. Soil background influences were shown to alter the response of most vegetation indices. N-space greenness had the smallest dynamic range in VI response, but the n-space brightness index provided additional useful information. The global environmental monitoring index (GEMI) showed a large VI dynamic range for bare soils, which was undesirable for a vegetation index. The view angle response of the normalized difference vegetation index (NDVI), atmosphere resistant vegetation index (ARVI) and soil atmosphere resistant vegetation index (SARVI) were asymmetric about nadir for multiple view angles, and were, except for the SARVI, altered seriously by soil moisture and/or soil brightness effects. The soil adjusted vegetation index (SAVI) was least affected by surface soil moisture and was symmetric about nadir for grass vegetation covers. Overall the SAVI, SARVI and the n-space vegetation index performed best under all adverse conditions and were recommended to monitor vegetation growth in the sparsely vegetated Sahelian zone. (author)

  5. Comparing Different Approaches for Mapping Urban Vegetation Cover from Landsat ETM+ Data: A Case Study on Brussels

    Directory of Open Access Journals (Sweden)

    Frank Canters

    2008-06-01

    Full Text Available Urban growth and its related environmental problems call for sustainable urban management policies to safeguard the quality of urban environments. Vegetation plays an important part in this as it provides ecological, social, health and economic benefits to a city’s inhabitants. Remotely sensed data are of great value to monitor urban green and despite the clear advantages of contemporary high resolution images, the benefits of medium resolution data should not be discarded. The objective of this research was to estimate fractional vegetation cover from a Landsat ETM+ image with sub-pixel classification, and to compare accuracies obtained with multiple stepwise regression analysis, linear spectral unmixing and multi-layer perceptrons (MLP at the level of meaningful urban spatial entities. Despite the small, but nevertheless statistically significant differences at pixel level between the alternative approaches, the spatial pattern of vegetation cover and estimation errors is clearly distinctive at neighbourhood level. At this spatially aggregated level, a simple regression model appears to attain sufficient accuracy. For mapping at a spatially more detailed level, the MLP seems to be the most appropriate choice. Brightness normalisation only appeared to affect the linear models, especially the linear spectral unmixing.

  6. Protection against productivity versus erosion vineyards. Testing of vegetal covers in slope crops

    International Nuclear Information System (INIS)

    Marques, M. J.; Ruiz-Colmenero, M.; Garcia-Munoz, S.; Cabello, F.; Munoz-Organero, G.; Perez-Jimenez, M. A.; Bienes, R.

    2009-01-01

    Temporary and permanent cover crops were used in three rain fed vineyards in the Center of Spain. They were sown in the middle of the strips to assess their ability to control erosion as well as their influence on grape production. Data from the year 2008 are compared with those obtained with traditional tillage treatment. The permanent cover formed by Brachypodium distachyon showed better ability to control erosion but it produced a decrease in production in young vines. barley and rye treatments were temporary covers, mowed in spring. They also reduced the erosion compared with the tillage however they did not appear to affect the vineyard production. (Author)

  7. Assessing Vegetation Cover Dynamics Induced by Policy-Driven Ecological Restoration and Implication to Soil Erosion in Southern China.

    Science.gov (United States)

    Zhang, Jien; Wang, Tianming; Ge, Jianping

    2015-01-01

    In the aftermath of the severe droughts and floods at the end of the 20th century, the Chinese government launched several ecological restoration projects, including the Natural Forest Protection Program in 1998 and the Grain-for-Green Program in 1999, to promote afforestation and reforestation to reduce surface runoff and consequent soil erosion nationwide. However, it is still unclear how vegetation has changed in southern China since the launch of these programs. In this study, we used the MODIS Enhanced Vegetation Index (EVI) to analyze the vegetation cover dynamics in southern China from 2000 to 2009 and evaluate the resulting effects of controlling soil erosion. Our observations indicate that 5.3% of the study area significantly increased and 0.98% significantly decreased in EVI value (p soil erosion based upon monitoring sediment yields at hydrologic stations in the Yangtze River. This study displays the spatial patterns of trend in vegetation growth since the beginning of the 21st century in southern China and highlights the important role of China's afforestation program.

  8. [Effects of climate and grazing on the vegetation cover change in Xilinguole League of Inner Mongolia, North China].

    Science.gov (United States)

    Wang, Hai-Mei; Li, Zheng-Hai; Wang, Zhen

    2013-01-01

    Based on the monthly temperature and precipitation data of 15 meteorological stations and the statistical data of livestock density in Xilinguole League in 1981-2007, and by using ArcGIS, this paper analyzed the spatial distribution of the climate aridity and livestock density in the League, and in combining with the ten-day data of the normalized difference vegetation index (NDVI) in 1981-2007, the driving factors of the vegetation cover change in the League were discussed. In the study period, there was a satisfactory linear regression relationship between the climate aridity and the vegetation coverage. The NDVI and the livestock density had a favorable binomial regression relationship. With the increase of NDVI, the livestock density increased first and decreased then. The vegetation coverage had a complex linear relationship with livestock density and climate aridity. The NDVI had a positive correlation with climate aridity, but a negative correlation with livestock density. Compared with livestock density, climate aridity had far greater effects on the NDVI.

  9. Distinguishing Bark Beetle-infested Vegetation by Tree Species Types and Stress Levels using Landsat Data

    Science.gov (United States)

    Sivanpillai, R.; Ewers, B. E.; Speckman, H. N.; Miller, S. N.

    2015-12-01

    In the Western United States, more than 3 million hectares of lodgepole pine forests have been impacted by the Mountain pine beetle outbreak, while another 166,000 hectares of spruce-fir forests have been attacked by Spruce beetle. Following the beetle attack, the trees lose their hydraulic conductivity thus altering their carbon and water fluxes. These trees go through various stages of stress until mortality, described by color changes in their needles prior to losing them. Modeling the impact of these vegetation types require thematically precise land cover data that distinguishes lodgepole pine and spruce-fir forests along with the stage of impact since the ecosystem fluxes are different for these two systems. However, the national and regional-scale land cover datasets derived from remotely sensed data do not have this required thematic precision. We evaluated the feasibility of multispectral data collected by Landsat 8 to distinguish lodgepole pine and spruce fir, and subsequently model the different stages of attack using field data collected in Medicine Bow National Forest (Wyoming, USA). Operational Land Imager, onboard Landsat 8 has more spectral bands and higher radiometric resolution (12 bit) in comparison to sensors onboard earlier Landsat missions which could improve the ability to distinguish these vegetation types and their stress conditions. In addition to these characteristics, its repeat coverage, rigorous radiometric calibration, wide swath width, and no-cost data provide unique advantages to Landsat data for mapping large geographic areas. Initial results from this study highlight the importance of SWIR bands for distinguishing different levels of stress, and the need for ancillary data for distinguishing species types. Insights gained from this study could lead to the generation of land cover maps with higher thematic precision, and improve the ability to model various ecosystem processes as a result of these infestations.

  10. Effects of vegetation and soil-surface cover treatments on the hydrologic behavior of low-level waste trench caps

    International Nuclear Information System (INIS)

    Lopez, E.A.; Barnes, F.J.; Antonio, E.J.

    1988-01-01

    Preliminary results are presented on a three-year field study at Los Alamos National Laboratory to evaluate the influence of different low-level radioactive waste trench cap designs on water balance under natural precipitation. Erosion plots having two different vegetative covers (shrubs and grasses) and with either gravel-mulched or unmulched soil surface treatments have been established on three different soil profiles on a decommissioned waste site. Total runoff and soil loss from each plot is measured after each precipitation event. Soil moisture is measured biweekly while plant canopy cover is measured seasonally. Preliminary results from the first year show that the application of a gravel mulch reduced runoff by 73 to 90%. Total soil loss was reduced by 83 to 93% by the mulch treatment. On unmulched plots, grass cover reduced both runoff and soil loss by about 50% compared to the shrub plots. Continued monitoring of the study site will provide data that will be used to analyze complex interactions between independent variables such rainfall amount and intensity, antecedent soil moisture, and soil and vegetation factors, as they influence water balance, and soil erosion. 18 refs., 2 figs., 3 tabs

  11. Mineralization of organic phosphorus in soil size fractions under different vegetation covers in the north of Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Joice Cleide de Oliveira Rita

    2013-10-01

    Full Text Available In unfertilized, highly weathered tropical soils, phosphorus (P availability to plants is dependent on the mineralization of organic P (Po compounds. The objective of this study was to estimate the mineralization of total and labile Po in soil size fractions of > 2.0, 2.0-0.25 and 2.0 and 2.0-0.25 mm fractions, respectively. In contrast, there was an average increase of 90 % of total Po in microaggregates of 2.0 (-50 % and < 0.25 mm (-76 % fractions, but labile Po increased by 35 % in the 2.0-0.25 mm fraction. The Po fraction relative to total extracted P and total labile P within the soil size fractions varied with the vegetation cover and incubation time. Therefore, the distribution of P fractions (Pi and Po in the soil size fraction revealed the distinctive ability of the cover species to recycle soil P. Consequently, the potential of Po mineralization varied with the size fraction and vegetation cover. Because Po accounted for most of the total labile P, the P availability to plants was closely related to the mineralization of this P fraction.

  12. Using NDVI to assess vegetative land cover change in central Puget Sound.

    Science.gov (United States)

    Morawitz, Dana F; Blewett, Tina M; Cohen, Alex; Alberti, Marina

    2006-03-01

    We used the Normalized Difference Vegetation Index (NDVI) in the rapidly growing Puget Sound region over three 5-year time blocks between 1986-1999 at three spatial scales in 42 Watershed Administrative Units (WAUs) to assess changes in the amounts and patterns of green vegetation. On average, approximately 20% of the area in each WAU experienced significant NDVI change over each 5-year time block. Cumulative NDVI change over 15 years (summing change over each 5-year time block) was an average of approximately 60% of each WAU, but was as high as 100% in some. At the regional scale, seasonal weather patterns and green-up from logging were the primary drivers of observed increases in NDVI values. At the WAU scale, anthropogenic factors were important drivers of both positive and negative NDVI change. For example, population density was highly correlated with negative NDVI change over 15 years (r = 0.66, P < 0.01), as was road density (r = 0.71, P < 0.01). At the smallest scale (within 3 case study WAUs) land use differences such as preserving versus harvesting forest lands drove vegetation change. We conclude that large areas within most watersheds are continually and heavily impacted by the high levels of human use and development over short time periods. Our results indicate that varying patterns and processes can be detected at multiple scales using changes in NDVIa values.

  13. EnviroAtlas - Paterson, NJ - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. EnviroAtlas defines vegetated buffer for this community as trees and forest and grass and herbaceous. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  14. Land cover and vegetation data from an ecological survey of "key habitat" landscapes in England, 1992-1993

    Science.gov (United States)

    Wood, Claire M.; Bunce, Robert G. H.; Norton, Lisa R.; Smart, Simon M.; Barr, Colin J.

    2018-05-01

    Since 1978, a series of national surveys (Countryside Survey, CS) have been carried out by the Centre for Ecology and Hydrology (CEH) (formerly the Institute of Terrestrial Ecology, ITE) to gather data on the natural environment in Great Britain (GB). As the sampling framework for these surveys is not optimised to yield data on rarer or more localised habitats, a survey was commissioned by the then Department of the Environment (DOE, now the Department for Environment, Food and Rural Affairs, DEFRA) in the 1990s to carry out additional survey work in English landscapes which contained semi-natural habitats that were perceived to be under threat, or which represented areas of concern to the ministry. The landscapes were lowland heath, chalk and limestone (calcareous) grasslands, coasts and uplands. The information recorded allowed an assessment of the extent and quality of a range of habitats defined during the project, which can now be translated into standard UK broad and priority habitat classes. The survey, known as the "Key Habitat Survey", followed a design which was a series of gridded, stratified, randomly selected 1 km squares taken as representative of each of the four landscape types in England, determined from statistical land classification and geological data ("spatial masks"). The definitions of the landscapes are given in the descriptions of the spatial masks, along with definitions of the surveyed habitats. A total of 213 of the 1 km2 square sample sites were surveyed in the summers of 1992 and 1993, with information being collected on vegetation species, land cover, landscape features and land use, applying standardised repeatable methods. The database contributes additional information and value to the long-term monitoring data gathered by the Countryside Survey and provides a valuable baseline against which future ecological changes may be compared, offering the potential for a repeat survey. The data were analysed and described in a series of

  15. Land cover and vegetation data from an ecological survey of "key habitat" landscapes in England, 1992–1993

    Directory of Open Access Journals (Sweden)

    C. M. Wood

    2018-05-01

    Full Text Available Since 1978, a series of national surveys (Countryside Survey, CS have been carried out by the Centre for Ecology and Hydrology (CEH (formerly the Institute of Terrestrial Ecology, ITE to gather data on the natural environment in Great Britain (GB. As the sampling framework for these surveys is not optimised to yield data on rarer or more localised habitats, a survey was commissioned by the then Department of the Environment (DOE, now the Department for Environment, Food and Rural Affairs, DEFRA in the 1990s to carry out additional survey work in English landscapes which contained semi-natural habitats that were perceived to be under threat, or which represented areas of concern to the ministry. The landscapes were lowland heath, chalk and limestone (calcareous grasslands, coasts and uplands. The information recorded allowed an assessment of the extent and quality of a range of habitats defined during the project, which can now be translated into standard UK broad and priority habitat classes. The survey, known as the "Key Habitat Survey", followed a design which was a series of gridded, stratified, randomly selected 1 km squares taken as representative of each of the four landscape types in England, determined from statistical land classification and geological data ("spatial masks". The definitions of the landscapes are given in the descriptions of the spatial masks, along with definitions of the surveyed habitats. A total of 213 of the 1 km2 square sample sites were surveyed in the summers of 1992 and 1993, with information being collected on vegetation species, land cover, landscape features and land use, applying standardised repeatable methods. The database contributes additional information and value to the long-term monitoring data gathered by the Countryside Survey and provides a valuable baseline against which future ecological changes may be compared, offering the potential for a repeat survey. The data were analysed and described

  16. Monitoring Urbanization-Related Land Cover Change on the U.S. Great Plains and Impacts on Remotely Sensed Vegetation Dynamics

    Science.gov (United States)

    Krehbiel, C. P.; Jackson, T.; Henebry, G. M.

    2014-12-01

    Earth is currently in an era of rapid urban growth with >50% of global population living in urban areas. Urbanization occurs alongside urban population growth, as cities expand to meet the demands of increasing population. Consequently, there is a need for remote sensing research to detect, monitor, and measure urbanization and its impacts on the biosphere. Here we used MODIS and Landsat data products to (1) detect urbanization-related land cover changes, (2) investigate urbanization-related impacts on land surface phenology (LSP) across rural to urban gradients and (3) explore fractional vegetation and impervious surface area regionally across the US Great Plains and within 14 cities in this region. We used the NLCD Percent Impervious Surface Area (%ISA) and Land Cover Type (LCT) products from 2001, 2006, and 2011 for 30m classification of the peri-urban environment. We investigated the impacts of urbanization-related land cover change on urban LSP at 30m resolution using the NDVI product from Web Enabled Landsat Data (http://weld.cr.usgs.gov) with accumulated growing degree-days calculated from first-order weather stations. We fitted convex quadratic LSP models to a decade (2003-2012) of observations to yield these phenometrics: modeled peak NDVI, time (thermal and calendar) to modeled peak, duration of season (DOS), and model fit. We compared our results to NDVI from MODIS NBAR (500m) and we explored the utility of 4 μm radiance (MODIS band 23) at 1 km resolution to characterize fractional vegetation dynamics in and around urbanized areas. Across all 14 cities we found increases in urbanized area (>25 %ISA) exceeding 10% from 2001-2011. Using LSP phenometrics, we were able to detect changes from cropland to suburban LCTs. In general we found negative relationships between DOS and distance from city center. We found a distinct seasonal cycle of MIR radiance over cropland LCTs due to the spectral contrast between bare soils and green vegetation.

  17. The long-term relationship between population growth and vegetation cover: an empirical analysis based on the panel data of 21 cities in Guangdong Province, China.

    Science.gov (United States)

    Li, Chao; Kuang, Yaoqiu; Huang, Ningsheng; Zhang, Chao

    2013-02-07

    It is generally believed that there is an inverse relationship between population growth and vegetation cover. However, reports about vegetation protection and reforestation around the World have been continuously increasing in recent decades, which seems to indicate that this relationship may not be true. In this paper, we have taken 21 cities in Guangdong Province, China as the study area to test the long-term relationship between population growth and vegetation cover, using an AVHRR NDVI data set and the panel cointegrated regression method. The results show that there is a long-term inverted N-shaped curve relationship between population growth and vegetation cover in the region where there are frequent human activities and the influence of climate change on vegetation cover changes is relatively small. The two turning points of the inverted N-shaped curve for the case of Guangdong Province correspond to 2,200 persons · km(-2) and 3,820 persons · km(-2), and they can provide a reference range for similar regions of the World. It also states that the population urbanization may have a negative impact on the vegetation cover at the early stage, but have a positive impact at the later stage. In addition, the Panel Error Correction Model (PECM) is used to investigate the causality direction between population growth and vegetation cover. The results show that not only will the consuming destruction effect and planting construction effect induced by the population growth have a great impact on vegetation cover changes, but vegetation cover changes in turn will also affect the population growth in the long term.

  18. The Long-Term Relationship between Population Growth and Vegetation Cover: An Empirical Analysis Based on the Panel Data of 21 Cities in Guangdong Province, China

    Directory of Open Access Journals (Sweden)

    Chao Li

    2013-02-01

    Full Text Available It is generally believed that there is an inverse relationship between population growth and vegetation cover. However, reports about vegetation protection and reforestation around the World have been continuously increasing in recent decades, which seems to indicate that this relationship may not be true. In this paper, we have taken 21 cities in Guangdong Province, China as the study area to test the long-term relationship between population growth and vegetation cover, using an AVHRR NDVI data set and the panel cointegrated regression method. The results show that there is a long-term inverted N-shaped curve relationship between population growth and vegetation cover in the region where there are frequent human activities and the influence of climate change on vegetation cover changes is relatively small. The two turning points of the inverted N-shaped curve for the case of Guangdong Province correspond to 2,200 persons·km−2 and 3,820 persons·km−2, and they can provide a reference range for similar regions of the World. It also states that the population urbanization may have a negative impact on the vegetation cover at the early stage, but have a positive impact at the later stage. In addition, the Panel Error Correction Model (PECM is used to investigate the causality direction between population growth and vegetation cover. The results show that not only will the consuming destruction effect and planting construction effect induced by the population growth have a great impact on vegetation cover changes, but vegetation cover changes in turn will also affect the population growth in the long term.

  19. VEGETAL COVERING IN CUT SLOPES BY MEANS OF GEOCELLS OF RUBBERIZED SISAL BIOBLANKETS IN BRASILIA/DF, BRAZIL

    Directory of Open Access Journals (Sweden)

    Maurizio Sponga

    2005-05-01

    Full Text Available The strongly wavy relief transposition for implantation of highways has became intensely used in the last decades by means of tunnels, cuts and fillings, causing impacts to the landscape in result of some factors, as decapitation of surfaces, abrupt transformation of land morphology, disequilibrium of superficial and sub superficial water circulation, waste handling sistems, enchainment of erosive processes etc. As an alleviating measure of part of the impacts generated for the excavations for constructing the roadways, procedures of containment and vegetal resetting of surfaces for reduction of the erosive processes and stabilization of mass movements are adopted. The found terrain are very diversified and several occasions the vegetal covering becomes difficult in reason of the physical-chemical characteristics for germination to be inadequate. In areas of high risk to the occupation with stability problems, commonly they use covering with projected concrete for containment of hillsides, that parallelly causes strong environmental and visual impact in the intervention area, and furthermore, possibly, not consisting insolutions duly adequate or definitive for these situations.The search for alternatives is frequent in academic medium as much as in the private initiative for techniques for containment of hillsides and more economic erosion control, looking for lesser ambient impacts and better results. The search of these alternatives gradually becomes technically systemizing itself, aiming at the recovery of the conditions of dynamic balance of the impacted landscapes due to the explosive increase of social and environmental problems intrinsically related.In this direction, it will be presented the description of a work of vegetal covering by grass in plates, antierosive bioblanket and geocells in fibers of rubberized sisal for the confinement of soil in cut slopes of a highway in Brasilia/DF, in Brazil. This technique presented excellent

  20. Vegetation and overburden cover on phosphogypsum: Effects on radon emission, runoff water quality, and plant uptake of fluoride and radium

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, S.G. [Florida Institute of Phosphate Research, Bartow, FL (United States)

    1997-12-31

    Phosphogypsum is a byproduct of phosphate fertilizer production, and more than 700 million metric tons have accumulated on 2,500 ha in Florida. Field research was conducted to compare the benefits of capping phosphogypsum with overburden (up to 15 cm in depth) from mined sites versus treatment of the phosphogypsum with minimal amendments. After four growing seasons, vegetation cover was excellent (no bare ground) on plots amended with dolomitic limestone or capped with overburden. However, more species became established with an overburden cap. Fluoride uptake by bermudagrass (Cynodon dactylon) was high when grown directly on phosphogypsum (895 mg kg{sup -1} in leaf tissue) and was reduced slightly by a 15 cm overburden cap (670 mg kg{sup -1}). Unexpectedly, radium ({sup 226}Ra) uptake in bermudagrass grown directly on phosphogypsum (0.6 pCi g{sup -1}) was less than when grown on the overburden cap (1.8 pCi g{sup -1}). The presence of grass cut the radon ({sup 222}Rn) efflux from phosphogypsum in half (from 24 pCi m{sup -2} s{sup -1} to 11 pCi m{sup -2} s{sup -1}), while 15 cm of overburden, in addition to grass cover, halved it again (down to 5 pCi m{sup -2} s{sup -1}). Vegetation cover on phosphogypsum resulted in a 30-fold decrease in electrical conductivity and a 5-fold decrease in the fluoride concentration of surface runoff water. Runoff water quality from vegetated plots was equally good with or without a 15 cm overburden cap on top of the phosphogypsum.

  1. The Arctic Vegetation Type Change retrieved from Spaceborne Observations and its Influence on the Simulation of Permafrost Thawing

    Science.gov (United States)

    Kim, Y.; Wang, Z.

    2017-12-01

    The vegetation types change in Arctic has been studied using 10 years of MODIS land cover product (MCD12Q1). The shrub expansion is observed in Alaska and Northeast Asia, while shrub fraction decreases in North Canada and Southwest Arctic Eurasia. The total Arctic shrub fraction increases 3% in 10 years. The tundra decreases where the shrub expands, and thrives where the shrub retreats. In order to isolate the influence of the vegetation dynamic on the permafrost thawing, the Arctic terrestrial ecosystem in recent decades will be simulated using the Community Land Model (CLM) with and without the vegetation type changes. The energy and carbon exchange on the land surface will also be simulated and compared. Acknowledgement: This work was supported by the Korea Polar Research Institute (KOPRI, PN17081) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2015R1C1A2A01054800).

  2. Influence of urbanization on the original vegetation cover in urban river basin: case study in Campinas/SP, Brazil

    Science.gov (United States)

    Leite Silva, Alessandra; Márcia Longo, Regina

    2017-04-01

    ABSTRACT: In most Brazilian municipalities, urban development was not based on adequate planning; one of the consequences was the reduction of the original vegetation, limiting the forest formations to scarce and isolated fragments. In Campinas, São Paulo, Brazil, the vegetation fragmentation was mainly related to the expeditions and to the cycles of sugar cane and coffee. In this way, the present study aims to identify, quantify and evaluate the remaining arboreal vegetation spatial distribution in the Anhumas River Basin - Campinas/SP, Brazil. This study was developed with the aid of GIS software and field visits in order to construct a diagnosis of these areas and subsidize future actions required and to discuss the influence of urbanization on the original vegetation cover. The area was initially occupied by the Atlantic Forest (semi-deciduous forest) and drains one of the oldest urban occupation areas in the municipality; according to researchers, based on the water and geomorphological conditions of the basin, it can be subdivided into high, medium and low course. With a total area of 156,514 km2, only 16.74% are classified as green areas; where just 1.07% and 6.17% of total area represents forests and reforestation areas, respectively. The remaining green areas consists of: wetlands close to water bodies, but with no presence of trees and shrubs (area of 0.12% of the basin); urban green space, including parks and squares (2.19%); and natural field, constituted by natural non-arboreous vegetation (7.18%). In a scenario like this, a characteristic situation is the forest fragmentation; this process results in native vegetation remnants, isolated and more susceptible to external interference, coming from, for example, the proximity to agricultural areas or others land uses. The ecological knowledge of the remnants and their correct management can not only make it possible to diagnose current problems and to estimate future influences, but also to point out the

  3. Using cluster analysis and a classification and regression tree model to developed cover types in the Sky Islands of southeastern Arizona [Abstract

    Science.gov (United States)

    Jose M. Iniguez; Joseph L. Ganey; Peter J. Daugherty; John D. Bailey

    2005-01-01

    The objective of this study was to develop a rule based cover type classification system for the forest and woodland vegetation in the Sky Islands of southeastern Arizona. In order to develop such system we qualitatively and quantitatively compared a hierarchical (Ward’s) and a non-hierarchical (k-means) clustering method. Ecologically, unique groups and plots...

  4. Wildfires alter rodent community structure across four vegetation types in southern California, USA

    Science.gov (United States)

    Brehme, Cheryl S.; Clark, Denise R.; Rochester, Carlton J.; Fisher, Robert N.

    2011-01-01

    We surveyed burned and unburned plots across four habitat reserves in San Diego County, California, USA, in 2005 and 2006, to assess the effects of the 2003 wildfires on the community structure and relative abundance of rodent species. The reserves each contained multiple vegetation types (coastal sage scrub, chaparral, woodland, and grassland) and spanned from 250 m to 1078 m in elevation. Multivariate analyses revealed a more simplified rodent community structure in all burned habitats in comparison to unburned habitats. Reduction in shrub and tree cover was highly predictive of changes in post-fire rodent community structure in the burned coastal sage scrub and chaparral habitats. Reduction in cover was not predictive for the less substantially burned woodlands and grasslands, for which we hypothesized that interspecific competition played a greater role in post-fire community structure. Across vegetation types, generalists and open habitat specialists typically increased in relative abundance, whereas closed habitat specialists decreased. We documented significant increases in relative abundance of the deer mouse (Peromyscus maniculatus Wagner) and Dulzura kangaroo rat (Dipodomys simulans Merriam). In contrast, we found significant decreases in relative abundance for the California mouse (Peromyscus californicus Gambel), San Diego pocket mouse (Chaetodipus fallax Merriam), desert woodrat (Neotoma lepida Thomas), and brush mouse (Peromyscus boylii Baird). Currently, our research program involves assessment of whether habitat conservation plans (HCPs) in southern California provide long-term protection to HCP covered species, as well as preserve ecosystem function. The scenario of increased wildfires needs to be incorporated into this assessment. We discuss our results in relation to management and conservation planning under a future scenario of larger and more frequent wildfires in southern California.

  5. Hydraulic Balance, under three contrasting vegetable coverings in the San Cristobal River basin, Bogota

    International Nuclear Information System (INIS)

    De las salas, Gonzalo; Garcia Olmos, Carlos

    2000-01-01

    A hydrological balance fewer than three forest covers in the San Cristobal river watershed was done. Records of precipitation during one year under each canopy were registered along with measurements on the river stream of three micro watersheds adjacent to the forest canopies. The following parameters were evaluated: evapotranspiration, trough fall, interception, infiltration and water storage, which are discussed critically

  6. Increasing the accuracy and automation of fractional vegetation cover estimation from digital photographs

    Science.gov (United States)

    The use of automated methods to estimate canopy cover (CC) from digital photographs has increased in recent years given its potential to produce accurate, fast and inexpensive CC measurements. Wide acceptance has been delayed because of the limitations of these methods. This work introduces a novel ...

  7. EnviroAtlas - Durham, NC - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  8. EnviroAtlas - Portland, ME - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  9. EnviroAtlas - New Bedford, MA - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  10. EnviroAtlas - Milwaukee, WI - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  11. EnviroAtlas - Phoenix, AZ - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  12. EnviroAtlas - Woodbine, IA - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  13. EnviroAtlas - Green Bay, WI - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  14. EnviroAtlas - Portland, OR - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (http:/www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  15. EnviroAtlas - Pittsburgh, PA - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  16. EnviroAtlas - Fresno, CA - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  17. EnviroAtlas - Tampa, FL - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  18. Satellite Leaf Area Index: Global Scale Analysis of the Tendencies Per Vegetation Type Over the Last 17 Years

    Directory of Open Access Journals (Sweden)

    Simon Munier

    2018-03-01

    Full Text Available The main objective of this study is to detect and quantify changes in the vegetation dynamics of each vegetation type at the global scale over the last 17 years. With recent advances in remote sensing techniques, it is now possible to study the Leaf Area Index (LAI seasonal and interannual variability at the global scale and in a consistent way over the last decades. However, the coarse spatial resolution of these satellite-derived products does not permit distinguishing vegetation types within mixed pixels. Considering only the dominant type per pixel has two main drawbacks: the LAI of the dominant vegetation type is contaminated by spurious signal from other vegetation types and at the global scale, significant areas of individual vegetation types are neglected. In this study, we first developed a Kalman Filtering (KF approach to disaggregate the satellite-derived LAI from GEOV1 over nine main vegetation types, including grasslands and crops as well as evergreen, broadleaf and coniferous forests. The KF approach permits the separation of distinct LAI values for individual vegetation types that coexist within a pixel. The disaggregated LAI product, called LAI-MC (Multi-Cover, consists of world-wide LAI maps provided every 10 days for each vegetation type over the 1999–2015 period. A trend analysis of the original GEOV1 LAI product and of the disaggregated LAI time series was conducted using the Mann-Kendall test. Resulting trends of the GEOV1 LAI (which accounts for all vegetation types compare well with previous regional or global studies, showing a greening over a large part of the globe. When considering each vegetation type individually, the largest global trend from LAI-MC is found for coniferous forests (0.0419 m 2 m − 2 yr − 1 followed by summer crops (0.0394 m 2 m − 2 yr − 1 , while winter crops and grasslands show the smallest global trends (0.0261 m 2 m − 2 yr − 1 and 0.0279 m 2 m − 2 yr − 1 , respectively. The LAI

  19. Effect of size and vegetation cover in urban parks in the richness and diversity of bird life in Bogota, Colombia

    International Nuclear Information System (INIS)

    Berget, Carolina

    2006-01-01

    In one section of Bogota city some characteristics of urban recreational areas (size, distance to the east hills, coverage and diversity of vegetation) and their effects over the bird fauna diversity were studied between April and June of 2004. The samplings were made in 18 recreational areas of different sizes (100 m2 1 300000 m2), and at different distances (1.40 km -7.0 km) from two native vegetation patches to the east hills in Bogota, which were thought to be habitat sources. Lineal regression analysis showed that bird fauna diversity is affected by the size of the recreational area and, to a lesser extent, the vegetation cover, but not by other variables. These recreational areas are not considered fragments but human made islands and, therefore, they do not contain many relict forest bird species. I concluded that the east hills are not source habitat of bird species for the urban recreational areas studied. These habitats are suitable for the establishment of species associated to open areas

  20. Effect of removal of hesperis matronalis (Dame's rocket) on species cover of forest understory vegetation in NW indiana

    Science.gov (United States)

    Pavlovic, N.B.; Leicht-Young, S. A.; Frohnapple, K.J.; Grundel, R.

    2009-01-01

    Exotic invasive plant species differ in their effects on indigenous vegetation as evidenced by research evaluating community response to their removal. We used a removal approach to quantify the response of a mesic woodland to the removal versus retention of an invasive plant, Hesperis matronalis (dame's rocket) from paired treatment plots over 3 y. Cover of H. matronalis did not differ between control and treatment plots prior to removal, declined in the removal plots and remained significantly lower in cover compared to the control plots. Removal did not significantly affect species richness and species diversity (evenness, Shannon and Simpson) at the plot scale, but did result in increased species richness overall in the removal plots in the last sampling year when compared to control plots. Non-metric multidimensional scaling ordination analysis indicated a significant compositional change in the spring plant composition of plots over the 3 y, reflecting an increase in exotic woody species. Exotic woody plants, especially Rosa multiflora and Euonymus alatus, increased in cover in response to H. matronalis removal. In the 3 y, neither native nor exotic forbs, nor native woody plants responded to the removal of H. matronalis in a statistically significant manner. The increasing cover of woody invasive plants in response to the removal of H. matronalis has important management implications for restoration of degraded communities.

  1. The effects of size of opening in vegetation and litter cover on seedling establishment of goldenrods (Solidago spp.).

    Science.gov (United States)

    Goldberg, Deborah E; Werner, Patricia A

    1983-11-01

    We investigated the effects of size of opening in the vegetation and litter cover on seedling establishment of two species of goldenrods (Solidago spp.) in an abandoned field in southwestern Michigan, U.S.A. Seeds of S. canadensis and S. juncea were sown into clipped plots, ranging from 0 cm (control, unclipped) to 100 cm in diameter, with and without litter. Seedling emergence, survival and growth were followed for one year. Soil moisture was not significantly different among the opening sizes, but, within a size, tended to be lower when litter was removed. Light intensity at the soil surface was positively related to opening size early in the growing season, but later in the growing season reached a maximum in intermediate-sized openings and then leveled off.Litter strongly inhibited seedling emergence in both species. Emergence of S. canadensis seedlings was lower in 0 and 10 cm openings than in the larger openings, while emergence of S. juncea seedlings was lower in the largest openings (100 cm) than in all the smaller openings. In contrast, seedling growth and probability of survival increased with diameter of opening for both species. Some seedlings of S. juncea did survive in complete vegetation cover (controls, 0 cm openings) while seedlings of S. canadensis survived only in openings of at least 30 cm diameter. Thus, S. juncea had a smaller minimum opening size for seedling establishment than S. canadensis, although both species grew and survived best in the largest openings made in the experiment.

  2. Quantifying Impacts of Land-Use/Cover Change on Urban Vegetation Gross Primary Production: A Case Study of Wuhan, China

    Directory of Open Access Journals (Sweden)

    Shishi Liu

    2018-03-01

    Full Text Available This study quantified the impacts of land-use/cover change (LUCC on gross primary production (GPP during 2000–2013 in a typical densely urbanized Chinese city, Wuhan. GPP was estimated at 30-m spatial resolution using annual land cover maps, meteorological data of the baseline year, and the normalized difference vegetation index (NDVI, which was generated with the spatial and temporal adaptive reflectance fusion model (STARFM based on Landsat and MODIS images. The results showed that approximately 309.95 Gg C was lost over 13 years, which was mainly due to the conversion from cropland to built-up areas. The interannual variation of GPP was affected by the change of vegetation composition, especially the increasing relative fraction of forests. The loss of GPP due to the conversion from forest to cropland fluctuated through the study period, but showed a sharp decrease in 2007 and 2008. The gain of GPP due to the conversion from cropland to forest was low between 2001 and 2009, but increased dramatically between 2009 and 2013. The change rate map showed an increasing trend along the highways, and a decreasing trend around the metropolitan area and lakes. The results indicated that carbon consequences should be considered before land management policies are put forth.

  3. Sensitivity of the normalized difference vegetation index to subpixel canopy cover, soil albedo, and pixel scale

    Science.gov (United States)

    Jasinski, Michael F.

    1990-01-01

    An analytical framework is provided for examining the physically based behavior of the normalized difference vegetation index (NDVI) in terms of the variability in bulk subpixel landscape components and with respect to variations in pixel scales, within the context of the stochastic-geometric canopy reflectance model. Analysis focuses on regional scale variability in horizontal plant density and soil background reflectance distribution. Modeling is generalized to different plant geometries and solar angles through the use of the nondimensional solar-geometric similarity parameter. Results demonstrate that, for Poisson-distributed plants and for one deterministic distribution, NDVI increases with increasing subpixel fractional canopy amount, decreasing soil background reflectance, and increasing shadows, at least within the limitations of the geometric reflectance model. The NDVI of a pecan orchard and a juniper landscape is presented and discussed.

  4. An ecological approach to the assessment of vegetation cover on inactive uranium mill tailings sites

    International Nuclear Information System (INIS)

    Kalin, M.; Caza, C.

    1982-01-01

    Vascular plants have been collected from abandoned or inactive uranium mill tailings in three mining areas in Canada. The collection was evaluated to determine some characteristics of vegetation development and to identify the plants which will persist on the sites. A total of 170 species were identified. Many of the species are widely distributed in North America, none has been reported as rare in any of the locations from which they were collected. Species richness was highest on Bancroft sites and lowest on Uranium City sites, though values were variable between sites. Forty-four per cent of the total number of species were found on only a single site. Only seven species occurred on more than half of the tailings sites and in all three mining areas. There was no difference between amended and unamended sites in terms of either species richness or species composition. There was no apparent relationship between species richness and either site size, site age or amendment history. The results of this survey suggest that the uranium mill tailings sites are at an early stage of colonization where the seed input from surrounding areas and the heterogeneity of the sites are factors determining species composition and species richness. The fate of an individual once it has reached the site will be determined by its ability to establish on the sites. A perennial growth habit and the ability to expand clonally are important characteristics of the species on the tailings. The species on the tailings are commonly found in a variety of habitats. Consistent with the observation that the tailings sites are at a stage of early colonization, we find that the few species widely distributed across sites are all characteristic pioneering species with wide environmental tolerances. These species included Populus tremuloides, P. balsamifera, Scirpus cyperinus, Equisetum arvense, Betula papyrifera, Achillea millefolium and Typha spp. The vegetation on the tailings is likely to be

  5. Radioactive contamination of soil-vegetation cover in some southern areas of Semipalatinsk test site

    International Nuclear Information System (INIS)

    Tuleubaev, B.A.; Zharikov, S.K.

    2001-01-01

    The nature of radioactive contamination of meadow-pasture lands in the south of the Semipalatinsk test site (STS) has been studied using experimental data. Individual parameters of radionuclide transport from soil into plants depending upon soil type and sub-type, extent of land use for hay-making and pasturing, and other nature-climatic and anthropogenic factors have been determined. (author)

  6. The importance of parameterization when simulating the hydrologic response of vegetative land-cover change

    Science.gov (United States)

    White, Jeremy; Stengel, Victoria; Rendon, Samuel; Banta, John

    2017-08-01

    Computer models of hydrologic systems are frequently used to investigate the hydrologic response of land-cover change. If the modeling results are used to inform resource-management decisions, then providing robust estimates of uncertainty in the simulated response is an important consideration. Here we examine the importance of parameterization, a necessarily subjective process, on uncertainty estimates of the simulated hydrologic response of land-cover change. Specifically, we applied the soil water assessment tool (SWAT) model to a 1.4 km2 watershed in southern Texas to investigate the simulated hydrologic response of brush management (the mechanical removal of woody plants), a discrete land-cover change. The watershed was instrumented before and after brush-management activities were undertaken, and estimates of precipitation, streamflow, and evapotranspiration (ET) are available; these data were used to condition and verify the model. The role of parameterization in brush-management simulation was evaluated by constructing two models, one with 12 adjustable parameters (reduced parameterization) and one with 1305 adjustable parameters (full parameterization). Both models were subjected to global sensitivity analysis as well as Monte Carlo and generalized likelihood uncertainty estimation (GLUE) conditioning to identify important model inputs and to estimate uncertainty in several quantities of interest related to brush management. Many realizations from both parameterizations were identified as behavioral in that they reproduce daily mean streamflow acceptably well according to Nash-Sutcliffe model efficiency coefficient, percent bias, and coefficient of determination. However, the total volumetric ET difference resulting from simulated brush management remains highly uncertain after conditioning to daily mean streamflow, indicating that streamflow data alone are not sufficient to inform the model inputs that influence the simulated outcomes of brush management

  7. Flutuações de temperatura e umidade do solo em resposta à cobertura vegetal Soil temperature and moisture fluctuations in response to vegetation cover

    Directory of Open Access Journals (Sweden)

    Milson L. de Oliveira

    2005-12-01

    Full Text Available Com o objetivo de verificar as flutuações de temperatura e umidade do solo em resposta à cobertura vegetal, realizou-se um experimento com sete diferentes situações de cobertura do solo, constituídas por solo sem cobertura, presença de vegetação espontânea, cultivo de mucuna e plantio de milho a 0, 30, 60 e 90º em relação ao eixo leste-oeste. Dois meses após a semeadura, em janeiro de 1999, por igual período determinou-se o sombreamento nas entrelinhas do milho, às 8:30, 12:30 e 16:30 h, como também, para todos os tratamentos, a temperatura e umidade do solo nas profundidades de 2,5, 5,0 e 7,5 cm; constatou-se diferença no sombreamento entre o cultivo de milho a 0º e os outros ângulos testados nas determinações matutina e vespertina, mas tais diferenças não foram acompanhadas pela temperatura do solo que, neste caso, registrou valores intermediários entre o solo sem cobertura e os tratamentos com vegetação espontânea e mucuna. No tratamento sem cobertura verificou-se a maior amplitude de variação da temperatura ambiente acima da superfície do solo, registrando-se os menores valores de umidade e os maiores de temperatura do solo.An experimental study was carried out to evaluate the fluctuations of temperature and soil moisture in response to vegetation cover, using the following treatments: bare soil, natural weed cover, velvet bean, and maize at 0, 30, 60 and 90º in relation to a east-west axis. Two months after sowing in January 1999, for similar period the shadowed area between the lines at 8:30, 12:30 and 16:30 h, as well as for all treatments, the temperature and soil moisture at 2.5, 5.0 and 7.5 cm depths were measured. Differences in shadowing between maize cultivated at 0º and all other angles were observed in both morning and afternoon measurements. However, these differences were not accompanied by soil temperature, which showed intermediary values between the bare soil and the treatments with natural

  8. Land use and vegetation cover on native symbionts and interactions with cowpea

    Directory of Open Access Journals (Sweden)

    Beatriz C. F. Rocha

    Full Text Available ABSTRACT Arbuscular mycorrhizal fungi and rhizobia are important components of agroecosystems and they respond to human interference. The objective of this study was to investigate native communities of those microorganisms in soil collected under the native forest, four pastures (Brachiaria brizantha, Panicum maximum, Arachis pintoi and Stylosanthes guianensis and a fallow soil after maize cultivation, in interaction with cowpea (Vigna unguculata. The cowpea grew in a greenhouse until flowering. They were randomly distributed depending on soil, in five replications. The lowest mycorrhizal fungi sporulation and mycorrhizal root colonization occurred under the Panicum and forest soil. In the soils under forest and Stylosanthes, the cowpea did not exhibit nodules and grew less. Among the anthropized areas, the effect was variable, with stimulus to the multiplication and symbiosis of these microorganisms, except in areas of Panicum and Stylosanthes. When the native vegetation is substituted by pasture or farming, the mycorrhizal fungi and rhizobia proliferation predominate. However, the effect and its magnitude depends on the grown plant species, with reflects on the plant species in succession, such as the cowpea.

  9. River flow response to changes in vegetation cover in a South ...

    African Journals Online (AJOL)

    2008-07-23

    Jul 23, 2008 ... part of catchment management plans, such as the South Afri- ... Like most Mediterranean-type ecosystems (MTEs), fynbos landscapes are prone to ... stages of post-fire recovery with different transpirational capaci- ties due to ...

  10. Effects of Land Cover / Land Use, Soil Texture, and Vegetation on the Water Balance of Lake Chad Basin

    Science.gov (United States)

    Babamaaji, R. A.; Lee, J.

    2013-12-01

    Lake Chad Basin (LCB) has experienced drastic changes of land cover and poor water management practices during the last 50 years. The successive droughts in the 1970s and 1980s resulted in the shortage of surface water and groundwater resources. This problem of drought has a devastating implication on the natural resources of the Basin with great consequence on food security, poverty reduction and quality of life of the inhabitants in the LCB. Therefore, understanding the effects of land use / land cover must be a first step to find how they disturb cycle especially the groundwater in the LCB. The abundance of groundwater is affected by the climate change through the interaction with surface water, such as lakes and rivers, and disuse recharge through an infiltration process. Quantifying the impact of climate change on the groundwater resource requires reliable forecasting of changes in the major climatic variables and other spatial variations including the land use/land cover, soil texture, topographic slope, and vegetation. In this study, we employed a spatially distributed water balance model WetSpass to simulate a long-term average change of groundwater recharge in the LCB of Africa. WetSpass is a water balance-based model to estimate seasonal and spatial distribution of surface runoff, interception, evapotranspiration, and groundwater recharge. The model is especially suitable for studying the effect of land use/land cover change on the water regime in the LCB. The present study describes the concept of the model and its application to the development of recharge map of the LCB. The study shows that major role in the water balance of LCB. The mean yearly actual evapotranspiration (ET) from the basin range from 60mm - 400 mm, which is 90 % (69mm - 430) of the annual precipitation from 2003 - 2010. It is striking that about 50 - 60 % of the total runoff is produced on build-up (impervious surfaces), while much smaller contributions are obtained from vegetated

  11. Burn Severities, Fire Intensities, and Impacts to Major Vegetation Types from the Cerro Grande Fire

    Energy Technology Data Exchange (ETDEWEB)

    Balice, Randy G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bennett, Kathryn D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wright, Marjorie A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2004-12-15

    The Cerro Grande Fire resulted in major impacts and changes to the ecosystems that were burned. To partially document these effects, we estimated the acreage of major vegetation types that were burned at selected burn severity levels and fire intensity levels. To accomplish this, we adopted independently developed burn severity and fire intensity maps, in combination with a land cover map developed for habitat management purposes, as a basis for the analysis. To provide a measure of confidence in the acreage estimates, the accuracies of these maps were also assessed. In addition, two other maps of comparable quality were assessed for accuracy: one that was developed for mapping fuel risk and a second map that resulted from a preliminary application of an evolutionary computation software system, called GENIE.

  12. Ecosystem and Community Responses to Rainfall Manipulations in Shrublands Depends on Dominant Vegetation Cover

    Science.gov (United States)

    Esch, E. H.; Lipson, D.; Kim, J. B.; Cleland, E. E.

    2014-12-01

    Southern California is predicted to face decreasing precipitation with increased interannual variability in the coming century. Native shrublands in this area are increasingly invaded by exotic annual grasses, though invasion dynamics can vary by rainfall scenario, with wet years generally associated with high invasion pressure. Interplay between rainfall and invasion scenarios can influence carbon stocks and community composition. Here we asked how invasion alters ecosystem and community responses in drought versus high rainfall scenarios, as quantified by community identity, biomass production, and the normalized difference vegetation index (NDVI). To do this, we performed a rainfall manipulation experiment with paired plots dominated either by native shrubs or exotic herbaceous species, subjected to treatments of 50%, 100%, or 150% of ambient rainfall. The study site was located in a coastal sage scrub ecosystem, with patches dominated by native shrubs and exotic grasses located in San Diego County, USA. During two growing seasons, we found that native, herbaceous biomass production was significantly affected by rainfall treatment (p<0.05 for both years), though was not affected by dominant community composition. Photosynthetic biomass production of shrub species also varied by treatment (p=0.035). Exotic biomass production showed a significant interaction between dominant community composition and rainfall treatment, and both individual effects (p<0.001 for all). NDVI showed similar results, but also indicated the importance of rainfall timing on overall biomass production between years. Community composition data showed certain species, of both native and exotic identities, segregating by treatment. These results indicate that exotic species are more sensitive to rainfall, and that increased rainfall may promote greater carbon storage in annual dominated communities when compared to shrub dominated communities in high rainfall years, but with drought, this

  13. Comparison of Methods for Estimating Fractional Cover of Photosynthetic and Non-Photosynthetic Vegetation in the Otindag Sandy Land Using GF-1 Wide-Field View Data

    Directory of Open Access Journals (Sweden)

    Xiaosong Li

    2016-09-01

    Full Text Available Photosynthetic vegetation (PV and non-photosynthetic vegetation (NPV are important ground cover types for desertification monitoring and land management. Hyperspectral remote sensing has been proven effective for separating NPV from bare soil, but few studies determined fractional cover of PV (fpv and NPV (fnpv using multispectral information. The purpose of this study is to evaluate several spectral unmixing approaches for retrieval of fpv and fnpv in the Otindag Sandy Land using GF-1 wide-field view (WFV data. To deal with endmember variability, pixel-invariant (Spectral Mixture Analysis, SMA and pixel-variable (Multi-Endmember Spectral Mixture Analysis, MESMA, and Automated Monte Carlo Unmixing Analysis, AutoMCU endmember selection approaches were applied. Observed fractional cover data from 104 field sites were used for comparison. For fpv, all methods show statistically significant correlations with observed data, among which AutoMCU had the highest performance (R2 = 0.49, RMSE = 0.17, followed by MESMA (R2 = 0.48, RMSE = 0.21, and SMA (R2 = 0.47, RMSE = 0.27. For fnpv, MESMA had the lowest performance (R2 = 0.11, RMSE = 0.24 because of coupling effects of the NPV and bare soil endmembers, SMA overestimates fnpv (R2 = 0.41, RMSE = 0.20, but is significantly correlated with observed data, and AutoMCU provides the most accurate predictions of fnpv (R2 = 0.49, RMSE = 0.09. Thus, the AutoMCU approach is proven to be more effective than SMA and MESMA, and GF-1 WFV data are capable of distinguishing NPV from bare soil in the Otindag Sandy Land.

  14. Vegetation cover and long-term conservation of radioactive waste packages: the case study of the CSM waste disposal facility (Manche District, France).

    Science.gov (United States)

    Petit-Berghem, Yves; Lemperiere, Guy

    2012-03-01

    The CSM is the first French waste disposal facility for radioactive waste. Waste material is buried several meters deep and protected by a multi-layer cover, and equipped with a drainage system. On the surface, the plant cover is a grassland vegetation type. A scientific assessment has been carried out by the Géophen laboratory, University of Caen, in order to better characterize the plant cover (ecological groups and associated soils) and to observe its medium and long term evolution. Field assessments made on 10 plots were complemented by laboratory analyses carried out over a period of 1 year. The results indicate scenarios and alternative solutions which could arise, in order to passively ensure the long-term safety of the waste disposal system. Several proposals for a blanket solution are currently being studied and discussed, under the auspices of international research institutions in order to determine the most appropriate materials for the storage conditions. One proposal is an increased thickness of these materials associated with a geotechnical barrier since it is well adapted to the forest plants which are likely to colonize the site. The current experiments that are carried out will allow to select the best option and could provide feedback for other waste disposal facility sites already being operated in France (CSFMA waste disposal facility, Aube district) or in other countries.

  15. Development of a methodology for monthly forecasting of surface fires of Colombia's vegetation cover, an application to north Andean region

    International Nuclear Information System (INIS)

    Gonzalez Hernandez, Yolanda; Rangel CH, Jesus Orlando

    2004-01-01

    In the present article a methodology is presented for the forecasting of the monthly risk of surface fires of the vegetation cover in Colombia, based on the analysis of meteorological components and variables of climatic and anthropic variability involved in fire risks of the north Andean region. The methodology enables one to regionalize the country, with fire prediction purposes in mind, into ten sub-regions, in each one of which seven height levels are defined to make up separate regions of study. For each of these, a database is built to feed both the logistic regression models and the Poisson models, which identify the variables independent from, and/or associated with the presence or absence of fires

  16. Nitrogen fixation in seedlings of sabia and leucena grown in the caatinga soils under different vegetation covers

    International Nuclear Information System (INIS)

    Santana, Augusto Cesar de Arruda; Nascimento, Luciana Remigio Santos; Silva, Arthur Jorge da; Freitas, Ana Dolores Santiago de

    2013-01-01

    The aim of this study was to evaluate the efficiency differences of populations forming bacteria in legume nodules (BNL) in areas under different vegetation cover in semi-arid Pernambuco state, Brazil, using the methodology of the natural abundance of 15 N to estimate the amount of N fixed symbiotically. The highest levels of nitrogen was found in plants of leucena, and the sabia had levels that did not differ from reference species. The analysis by the technique of 15N showed that in all areas the leucena and the sabia showed signs of 15N different of the average signal of the control plants. The largest nitrogen accumulation was observed for leucena in the Caatinga and Capoeira. The sabia got greater accumulation of N from the Caatinga. The areas of Capoeira and Caatinga has showed the native populations of rhizobia with greater ability to fix nitrogen for the leucena

  17. Vegetation cover and land use impacts on soil water repellency in an Urban Park located in Vilnius, Lithuania

    Science.gov (United States)

    Pereira, Paulo; Cerda, Artemi

    2015-04-01

    It is strongly recognized that vegetation cover, land use have important impacts on the degree of soil water repellency (SWR). Soil water repellency is a natural property of soils, but can be induced by natural and anthropogenic disturbances as fire and soil tillage (Doerr et al., 2000; Urbanek et al., 2007; Mataix-Solera et al., 2014). Urban parks are areas where soils have a strong human impact, with implications on their hydrological properties. The aim of this work is to study the impact of different vegetations cover and urban soils impact on SWR and the relation to other soil variables as pH, Electrical Conductivity (EC) and soil organic matter (SOM) in an urban park. The study area is located in Vilnius city (54°.68' N, 25°.25' E). It was collected 15 soil samples under different vegetation cover as Pine (Pinus Sylvestris), Birch (Alnus glutinosa), Penduculate Oak (Quercus robur), Platanus (Platanus orientalis) and other human disturbed areas as forest trails and soils collected from human planted grass. Soils were taken to the laboratory, air-dried at room temperature and sieved with the 3600 (extremely water repellent). The results showed significant differences among the different vegetation cover (Kruskal-Wallis H=20.64, ppost-fire management scenarios, CGL2013-47862-C2-1-R), funded by the Spanish Ministry of Economy and Competitiveness; Fuegored; RECARE (Preventing and Remediating Degradation of Soils in Europe Through Land Care, FP7-ENV-2013-TWO STAGE), funded by the European Commission; and for the COST action ES1306 (Connecting European connectivity research). References Bisdom, E.B.A., Dekker, L., Schoute, J.F.Th. (1993) Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. Geoderma, 56, 105-118. Doerr, S.H., Shakesby, R.A., Walsh, R.P.D. (2000) Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews, 51, 33-65. Doerr, S.H. (1998

  18. Towards spatial assessment of carbon sequestration in peatlands: spectroscopy based estimation of fractional cover of three plant functional types

    Directory of Open Access Journals (Sweden)

    G. Schaepman-Strub

    2009-02-01

    Full Text Available Peatlands accumulated large carbon (C stocks as peat in historical times. Currently however, many peatlands are on the verge of becoming sources with their C sequestration function becoming sensitive to environmental changes such as increases in temperature, decreasing water table and enhanced nitrogen deposition. Long term changes in vegetation composition are both, a consequence and indicator of future changes in C sequestration. Spatial continuous accurate assessment of the vegetation composition is a current challenge in keeping a close watch on peatland vegetation changes. In this study we quantified the fractional cover of three major plant functional types (PFTs; Sphagnum mosses, graminoids, and ericoid shrubs in peatlands, using field spectroscopy reflectance measurements (400–2400 nm on 25 plots differing in PFT cover. The data was validated using point intercept methodology on the same plots. Our results showed that the detection of open Sphagnum versus Sphagnumcovered by vascular plants (shrubs and graminoids is feasible with an R2 of 0.81. On the other hand, the partitioning of the vascular plant fraction into shrubs and graminoids revealed lower correlations of R2 of 0.54 and 0.57, respectively. This study was based on a dataset where the reflectance of all main PFTs and their pure components within the peatland was measured at local spatial scales. Spectrally measured species or plant community abundances can further be used to bridge scaling gaps up to canopy scale, ultimately allowing upscaling of the C balance of peatlands to the ecosystem level.

  19. The landscape configuration of zoonotic transmission of Ebola virus disease in West and Central Africa: interaction between population density and vegetation cover

    Directory of Open Access Journals (Sweden)

    Michael G. Walsh

    2015-01-01

    Full Text Available Ebola virus disease (EVD is an emerging infectious disease of zoonotic origin that has been responsible for high mortality and significant social disruption in West and Central Africa. Zoonotic transmission of EVD requires contact between susceptible human hosts and the reservoir species for Ebolaviruses, which are believed to be fruit bats. Nevertheless, features of the landscape that may facilitate such points of contact have not yet been adequately identified. Nor have spatial dependencies between zoonotic EVD transmission and landscape structures been delineated. This investigation sought to describe the spatial relationship between zoonotic EVD transmission events, or spillovers, and population density and vegetation cover. An inhomogeneous Poisson process model was fitted to all precisely geolocated zoonotic transmissions of EVD in West and Central Africa. Population density was strongly associated with spillover; however, there was significant interaction between population density and green vegetation cover. In areas of very low population density, increasing vegetation cover was associated with a decrease in risk of zoonotic transmission, but as population density increased in a given area, increasing vegetation cover was associated with increased risk of zoonotic transmission. This study showed that the spatial dependencies of Ebolavirus spillover were associated with the distribution of population density and vegetation cover in the landscape, even after controlling for climate and altitude. While this is an observational study, and thus precludes direct causal inference, the findings do highlight areas that may be at risk for zoonotic EVD transmission based on the spatial configuration of important features of the landscape.

  20. Structural and floristic changes caused by gamma radiation in understory vegetation of two forest types in northern Wisconsin

    International Nuclear Information System (INIS)

    Zavitkovski, J.

    1977-01-01

    Structural and floristic changes of the understory vegetation of gamma-irradiated aspen and maple-aspen-birch (MAB) communities in northern Wisconsin were quantified by comparing the pre- and postirradiation floristic composition and vegetational cover. A size-dependent radiosensitivity was determined among three vegetational strata, the tall shrubs being the most sensitive, low shrubs intermediate, and herbs the most resistant. Corylus cornuta, whose nuclear characteristics indicated that it could be resistant, was very sensitive and was completely eliminated at exposures of 500 r/20-hr day or higher. The cover of Rubus strigosus, minimal before irradiation, increased manifold and accounted for most of the shrub cover 2 years after the conclusion of irradiation. Among herbs, Carex pensylvanica and Luzula acuminata were very resistant, and Trillium grandiflorum, Aralia nudicaulis, Oryzopsis asperifolia, and Clintonia borealis were very sensitive. The herbaceous stratum of the aspen type appeared more resistant than that of the MAB. This difference apparently resulted from differences in floristic composition of the two communities

  1. MODEL RECONSTRUCTION OF THE VEGETATION COVER OF THE SOUTH OF THE WEST SIBERIAN PLAIN FROM THE LATE PALEOLITHIC PERIOD UNTIL THE LATE XIX CENTURY

    Directory of Open Access Journals (Sweden)

    М. А. Kharitonenkov

    2016-06-01

    Full Text Available Model reconstruction of vegetation cover of the south of the West Siberian Plain from the late Pleistocene to the modern era has been carried out on the basis of the associated chronological analysis of paleontological, archaeological and paleoclimate data. We have determined the starting point of active vegetation transformation in the south of the West Siberian Plain as a result of tradition-bound exploitation of natural resources. Periods of maximum anthropogenic load – peak and relative recession – on vegetation cover, acting as a further determinant factor, have been determined in this study for the first time. Comprehensive analysis and new understanding of palynological, paleozoological, archaeological and paleoclimate data in terms of theoretical synecology confirmed the notions on the determinant role of the anthropogenic factor in the transformation of the Pleistocene forest-meadow-steppe vegetation into contemporary communities of the southern taiga, the subtaiga and the forest-steppe of the West Siberian Plain.

  2. Water retention and evapotranspiration of green roofs and possible natural vegetation types

    NARCIS (Netherlands)

    Metselaar, K.

    2012-01-01

    Matching vegetation to growing conditions on green roofs is one of the options to increase biodiversity in cities. A hydrological model has been applied to match the hydrological requirements of natural vegetation types to roof substrate parameters and to simulate moisture stress for specific

  3. Mapping Congo Basin vegetation types from 300 m and 1 km multi-sensor time series for carbon stocks and forest areas estimation

    Directory of Open Access Journals (Sweden)

    A. Verhegghen

    2012-12-01

    Full Text Available This study aims to contribute to the understanding of the Congo Basin forests by delivering a detailed map of vegetation types with an improved spatial discrimination and coherence for the whole Congo Basin region. A total of 20 land cover classes were described with the standardized Land Cover Classification System (LCCS developed by the FAO. Based on a semi-automatic processing chain, the Congo Basin vegetation types map was produced by combining 19 months of observations from the Envisat MERIS full resolution products (300 m and 8 yr of daily SPOT VEGETATION (VGT reflectances (1 km. Four zones (north, south and two central were delineated and processed separately according to their seasonal and cloud cover specificities. The discrimination between different vegetation types (e.g. forest and savannas was significantly improved thanks to the MERIS sharp spatial resolution. A better discrimination was achieved in cloudy areas by taking advantage of the temporal consistency of the SPOT VGT observations. This resulted in a precise delineation of the spatial extent of the rural complex in the countries situated along the Atlantic coast. Based on this new map, more accurate estimates of the surface areas of forest types were produced for each country of the Congo Basin. Carbon stocks of the Basin were evaluated to a total of 49 360 million metric tons. The regional scale of the map was an opportunity to investigate what could be an appropriate tree cover threshold for a forest class definition in the Congo Basin countries. A 30% tree cover threshold was suggested. Furthermore, the phenology of the different vegetation types was illustrated systematically with EVI temporal profiles. This Congo Basin forest types map reached a satisfactory overall accuracy of 71.5% and even 78.9% when some classes are aggregated. The values of the Cohen's kappa coefficient, respectively 0.64 and 0.76 indicates a result significantly better than random.

  4. Utilization of satellite remote sensing data on land surface characteristics in water and heat balance component modeling for vegetation covered territories

    Science.gov (United States)

    Muzylev, Eugene; Uspensky, Alexander; Startseva, Zoya; Volkova, Elena; Kukharsky, Alexander; Uspensky, Sergey

    2010-05-01

    range 2.0-2.6, 2.5-3.7, and 3.5-4.9°C respectively. The dataset of remote sensing products has been compiled on the base of special technology using Internet resources, that includes MODIS-based estimates of land surface temperature (LST) Tsg, E, NDVI, LAI for the region of interest and the same vegetation seasons. Two types of MODIS-based Тsg and E estimates have been extracted from LP DAAC web-site (for separate dates of 2003-2009 time period): LST/E Daily L3 product (MOD11В1) with spatial resolution ~ 4.8 km and LST/E 5-Min L2 product (MOD11_L2) with spatial resolution ~ 1 km. The verification of Tsg estimates has been performed via comparison with analogous and collocated AVHRR-based ones. Along with this the sample of SEVIRI-based Tsg and E estimates has been accumulated for the Kursk area and surrounding territories for the time interval of several days during 2009 vegetation season. To retrieve Тsg and Е from SEVIRI/Meteosat-8, -9 data the new method has been developed. Being designed as the combination of well-known Split Window Technique and Two Temperature Method algorithms it provides the derivation of Тsg from SEVIRI/Meteosat-9 measurements carried out at three successive times (classified as 100% cloud-free) and covering the region under consideration without accurate a priory knowledge of E. Comparison of the SEVIRI-based Tsg retrievals with the independent collocated Tsg estimates gives the values of RMS deviation in the range of 0.9-1.4°C and it proves (indirectly) the efficiency of proposed approach. To assimilate satellite-derived estimates of vegetation characteristics and LST in the SVAT model some procedures have been developed. These procedures have included: 1) the replacement of LAI and B ground and point-wise estimates by their AVHRR- or MODIS-based analogues. The efficiency of such approach has been proved through comparison between satellite-derived and ground-based seasonal time behaviors of LAI and B, between satellite

  5. AVALIAÇÃO E MAPEAMENTO DA COBERTURA VEGETAL DA REGIÃO CENTRAL DA CIDADE DE JUIZ DE FORA – MG - EVALUATION AND MAPPING OF REGION CENTRAL VEGETATION COVER OF JUIZ DE FORA – MG

    Directory of Open Access Journals (Sweden)

    Isabela Fernanda Moraes de Paula

    2017-04-01

    Full Text Available A presença da cobertura vegetal nas cidades tem sido considerada por diversos pesquisadores uma variável importante, devido aos diversos benefícios que proporcionam ao homem e ao equilíbrio ambiental. Nesse contexto este artigo objetiva contribuir para o conhecimento do verde urbano da área central do município de Juiz de Fora, calculando índices de cobertura vegetal e aplicando a metodologia proposta por Jim (1989, na análise da forma e espacialização da cobertura vegetal. Nesse sentido, os resultados alcançados demonstram que grande parte das regiões da área central da cidade de Juiz de Fora encontram-se abaixo do desejável em cobertura vegetal, necessitando de investimentos, principalmente, nos espaços de integração urbana, cujo percentual de áreas cobertas por vegetação em relação à totalidade abrange apenas 2%. Destaca-se que quanto maior a densidade demográfica, menor foi o percentual de cobertura vegetal, pode-se afirmar que a cobertura vegetal da área central da cidade de Juiz de Fora é fragmentada, descontínua e apresenta muitos “espaços vazios”. No mapeamento realizado foi encontrado 15,401% de áreas cobertas por vegetação arbórea, cerca de 1,694% de vegetação arbustiva e 8,59% de vegetação rasteira. As maiores extensões de manchas verdes encontram-se dispersas no meio, espalhadas por toda a área e desconectas uma com as outras. Logo, sua mensuração, classificação e distribuição espacial são de suma importância, pois tornam-se base essenciais para melhorias e planejamentos, no contexto das áreas urbanas. ABSTRACT The presence of vegetation cover in the cities has been considered by many researchers an important variable, due to the many benefits they provide to humans and the environmental balance. In this context, this article aims to contribute to the knowledge of green urban central area of the city of Juiz de Fora, calculating vegetation cover ratios and applying the methodology

  6. Trend Analysis of Soil Salinity in Different Land Cover Types Using Landsat Time Series Data (case Study Bakhtegan Salt Lake)

    Science.gov (United States)

    Taghadosi, M. M.; Hasanlou, M.

    2017-09-01

    Soil salinity is one of the main causes of desertification and land degradation which has negative impacts on soil fertility and crop productivity. Monitoring salt affected areas and assessing land cover changes, which caused by salinization, can be an effective approach to rehabilitate saline soils and prevent further salinization of agricultural fields. Using potential of satellite imagery taken over time along with remote sensing techniques, makes it possible to determine salinity changes at regional scales. This study deals with monitoring salinity changes and trend of the expansion in different land cover types of Bakhtegan Salt Lake district during the last two decades using multi-temporal Landsat images. For this purpose, per-pixel trend analysis of soil salinity during years 2000 to 2016 was performed and slope index maps of the best salinity indicators were generated for each pixel in the scene. The results of this study revealed that vegetation indices (GDVI and EVI) and also salinity indices (SI-1 and SI-3) have great potential to assess soil salinity trends in vegetation and bare soil lands respectively due to more sensitivity to salt features over years of study. In addition, images of May had the best performance to highlight changes in pixels among different months of the year. A comparative analysis of different slope index maps shows that more than 76% of vegetated areas have experienced negative trends during 17 years, of which about 34% are moderately and highly saline. This percent is increased to 92% for bare soil lands and 29% of salt affected soils had severe salinization. It can be concluded that the areas, which are close to the lake, are more affected by salinity and salts from the lake were brought into the soil which will lead to loss of soil productivity ultimately.

  7. Remotely sensed phenology for mapping biomes and vegetation functional types

    CSIR Research Space (South Africa)

    Wessels, Konrad J

    2009-07-01

    Full Text Available clearly captured in Fig. 3. The majority of the pixels in the Savanna have a start of growing season in late October, midposition in February and end in June (Fig. 3). In contrast, the winter rainfall Succulent Karoo have a start of growing season... initially split the biomes based on vegetation production and then by the seasonality of growth IV - 1035 (Fig. 4). The three arid biomes (Desert, Succulent and Nama Figure 3. Frequency histograms of the mean START, midposition (MID) and END date...

  8. Seasonal variations in phosphorus fractions in semiarid sandy soils under different vegetation types

    Science.gov (United States)

    Qiong Zhao; Dehui Zeng; Zhiping Fan; Zhanyuan Yu; Yalin Hu; Jianwei Zhang

    2009-01-01

    We investigated the seasonal patterns of soil phosphorus (P) fractions under five vegetation types – Ulmus macrocarpa savanna, grassland, Pinus sylvestris var. mongolica plantation, Pinus tabulaeformis plantation, and Populus simonii plantation ...

  9. Using Dehydrated Vegetables in Some Brown Bread Types

    Directory of Open Access Journals (Sweden)

    Simona Man

    2013-11-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 Expanding the range of bakery products in terms of producing supplemented or dietetic products has been an increasingly important trend in contemporary baking. Bakery products as basic and popular food, could be used in the prevention of nutritive deficiencies of many important nutrients, by supplementing the products with biologically valuable ingredients. Such ingredients are dehydrated vegetables in the form of powder. For establishing the bread quality, a special importance shows it’s chemical composition, because the substances that enter in it’s constitution serve to obtaining the energy necessary to the human body. Beside the chemical composition, the bread quality and alimentary use, respectively, depends a large measure on a series of signs: flavor and taste, external appearance, crumb porosity and texture, breads’ volume. This paper belongs to a more complex study, which aims are obtaining some bread assortments with high nutritional value, and improving their sensorial and rheological features, by adding dehydrated vegetables at different levels 4% potato flakes, 2% dehydrated onion, 0.5% dehydrated garlic and 2% dehydrated leek.

  10. Changing landscape in the Three Gorges Reservoir Area of Yangtze River from 1977 to 2005: Land use/land cover, vegetation cover changes estimated using multi-source satellite data

    Science.gov (United States)

    Zhang, Jixian; Zhengjun, Liu; Xiaoxia, Sun

    2009-12-01

    The eco-environment in the Three Gorges Reservoir Area (TGRA) in China has received much attention due to the construction of the Three Gorges Hydropower Station. Land use/land cover changes (LUCC) are a major cause of ecological environmental changes. In this paper, the spatial landscape dynamics from 1978 to 2005 in this area are monitored and recent changes are analyzed, using the Landsat TM (MSS) images of 1978, 1988, 1995, 2000 and 2005. Vegetation cover fractions for a vegetation cover analysis are retrieved from MODIS/Terra imagery from 2000 to 2006, being the period before and after the rising water level of the reservoir. Several analytical indices have been used to analyze spatial and temporal changes. Results indicate that cropland, woodland, and grassland areas reduced continuously over the past 30 years, while river and built-up area increased by 2.79% and 4.45% from 2000 to 2005, respectively. The built-up area increased at the cost of decreased cropland, woodland and grassland. The vegetation cover fraction increased slightly. We conclude that significant changes in land use/land cover have occurred in the Three Gorges Reservoir Area. The main cause is a continuous economic and urban/rural development, followed by environmental management policies after construction of the Three Gorges Dam.

  11. Assessment of the vegetation cover in a burned area 22-years ago using remote sensing techniques and GIS analysis (Sierra de las Nieves, South of Spain).

    Science.gov (United States)

    Martínez-Murillo, Juan F.; Remond, Ricardo; Ruiz-Sinoga, José D.

    2015-04-01

    The study aim was to characterize the vegetation cover in a burned area 22-years ago considering the previous situation to wildfire in 1991 and the current one in 2013. The objectives were to: (i) compare the current and previous vegetation cover to widlfire; (ii) evaluate whether the current vegetation has recovered the previous cover to wildfire; and (iii) determine the spatial variability of vegetation recovery after 22-years since the wildfire. The study area is located in Sierra de las Nieves, South of Spain. It corresponds to an area affected by a wildfire in August 8th, 1991. The burned area was equal to 8156 ha. The burn severity was spatially very high. The main geographic features of the burned area are: mountainous topography (altitudes ranging from 250 m to 1500 m; slope gradient >25%; exposure mainly southfacing); igneous (peridotites), metamorphic (gneiss) and calcareous rocks (limestones); and predominant forest land use (Pinus pinaster sp. woodlands, 10%; pinus opened forest + shrubland, 40%; shrubland, 35%; and bare soil + grassland, 15%). Remote sensing techniques and GIS analysis has been applied to achieve the objectives. Landsat 5 and Landsat 8 images were used: July 13th, 1991 and July 1st, 2013, for the previous wildfire situation and 22-years after, respectively. The 1990 CORINE land cover was also considered to map 1991 land uses prior the wildfire. Likewise, the Andalucía Regional Government wildfire historic records were used to select the burned area and its geographical limit. 1991 and 2013 land cover map were obtained by means of object-oriented classifications. Also, NDVI and PVI1 vegetation indexes were calculated and mapped for both years. Finally, some images transformations and kernel density images were applied to determine the most recovered areas and to map the spatial concentration of bare soil and pine cover areas in 1991 and 2013, respectively. According to the results, the combination of remote sensing and GIS analysis let

  12. Organization of vegetation cover of aquatic ecosystems at Borodinskiy opencast coal mine dumps (Kansk forest-steppe, Eastern Siberia

    Directory of Open Access Journals (Sweden)

    D. Yu. Efimov

    2016-04-01

    Full Text Available The paper present the results of study of the floristic composition and importance of species of aquatic ecosystems on different types of technogenic surfaces of the Borodino coal mine and assessment of the impact of local factors on the structure and the dynamics of vegetation. The list of plant taxa containing 91 species of higher plants and 3 cha-rophytes. The largest amount of macrophytes species are Elodea canadensis Michx., Eleocharis palustris (L. Roem. & Schult., Hydrocharis morsus-ranae L., Potamogeton alpinus Balb., P. perfoliatus L., Sparganium emersum Rehm., Spirodela polyrhiza (L. Schleid., Typha latifolia L., Warnstorfia fluitans (Hedw. Loeske, Chara contraria A. Braun ex Kutz., the basis (up to 67.6‒70.9 % of vegetation mosaic of aquatic systems and differentiate its structure post-technogenic landscape. Sorensen index (QS = 0.63‒0.71 and Spearman rank correlation coefficient (rs = 0.29‒0.62, p < 0.01 values showed the greatest similarity between the species composition of the aquatic complexes arising on mineral surfaces planned dumps. The low level of similarity (QS = 0.13‒0.45; rs = 0.25‒0.34, p < 0.05 in spe-cies composition is typical fir ponds and wetlands formed around the perimeter of the heaps along the erosion of slopes. Non-parametric analysis of variance showed a statistically significant (p < 0.001 differentiation of the species composition of the variables values of the analyzed environmental factors: the direction of reclamation, type and age of geomorphic surfaces dumps. Aquatic complexes significantly complement and enrich the mosaic of man-made landscape of the Borodino coal mine, the potential of their diversity should be taken into account when developing plans and strategies for reclamation of disturbed areas.

  13. Productive vegetation: relationships between net primary productivity, vegetation types and climate change in the Wet Tropics bioregion

    International Nuclear Information System (INIS)

    Ramirez, Vanessa Valdez; Williams, Stephen E.; VanDerWal, Jeremy

    2007-01-01

    Full text: Full text: There is now ample evidence demonstrating the impacts of climate change on biodiversity and human society (Walther ef a/. 2002). Numerous studies have shown climate change is one of the most significant threats to tropical forests, such as the Wet Tropics Heritage Area, due to their high biodiversity and endemism (Pounds ef al. 1999; Hughes 2000; Parmesan and Yohe 2003). Williams ef al. (2003) suggested that small shifts in net primary productivity (NPP) as a result of climate change could lead to potentially massive follow-on effects for the extremely diverse and vulnerable rainforest flora and fauna. It is therefore crucial to explore the relationships between NPP and local biodiversity, especially to create models for different climate change scenarios. Nevertheless, NPP in the Wet Tropics has yet to be estimated. This is the first study to provide a general NPP estimate for the Wet Tropics bioregion using climate surrogates (Schuur 2003). This technique estimates NPP in an accurate, repeatable, and cost-effective way. NPP values were linked to vegetation types and examined under various climatic and environmental conditions. Results show a significant difference in productivity according to vegetation types and climatic variables, with temperature and rainfall seasonality as the most important determining variables. Additionally, lowland and upland vegetations showed a significant difference in productivity patterns throughout the year. Vegetation types located above 1000 metres in altitude had the lowest values of mean annual productivity due to their high rainfall and low temperatures; vegetation types located below 600 metres showed increased productivity values during the wet season (December-March). Net primary productivity will certainly be impacted by changes in temperature and rainfall, due to climate change. Although an increase in NPP values can be predicted for upland areas, the more widely distributed lowlands will drastically

  14. Approaching to a model for evaluating of the vulnerability of the vegetable covers of Colombia in a possible climatic change using SIG

    International Nuclear Information System (INIS)

    Gutierrez Rey, Hilda Jeanneth

    2002-01-01

    This technical paper summarizes the gradual thesis Approach to a model for evaluating of the vulnerability of the vegetation covers in Colombia in face of a possible global climate change (Gutierrez, 2001). It present the methodologies and results of the construction of a prospective model using GIS (Geographical Information Systems) for evaluating the vulnerability of the vegetation covers of Colombia, in face of a possible global climate chance. The analysis of the vulnerability of the possible impact on vegetation and for identification of its vulnerability as a consequence of climate change was carried out by application of the method of direct function establishing, recommended by IPCC, Intergovernmental Panel on Climate Change (1999). An analysis of the displacement of Life Zones of Holdridge was made under a scenario with duplication of the CO 2 concentration in the atmosphere and identified vegetation affected by displacement. These results were adjusted to the bioclimatic and biogeographic conditions of the country. The Model of Vulnerability of the Vegetation Covers of Colombia was developed in Spatial Modeler Language, of Arc/lnfo and Erdas Imagine. This model is able to generate the spatial distribution of the climatic variables and Bioclimatic Units, under past, present and future climate scenarios, as well as to evaluate the degree of vulnerability of the vegetation covers of Colombia in face a climatic change. For the improvement of the model of Vulnerability, specially the intermediate products, it was subdivided in three Phases or Subsystems: In the First Phase or Present Subsystem, the sub models generate a Bioclimatic Zonification of the Life Zones of Holdridge, under a currently scenario of Climatic Line Base 1961-1990. In the Second Phase or Subsystem of Climate Change, the sub models develop a Bioclimatic Zonification of the Life Zones of Holdridge, under a future climate Scenario with duplication of the contained of the CO 2 in the atmosphere

  15. Studies of land-cover, land-use, and biophysical properties of vegetation in the Large Scale Biosphere Atmosphere experiment in Amazonia.

    Science.gov (United States)

    Dar A. Robertsa; Michael Keller; Joao Vianei Soares

    2003-01-01

    We summarize early research on land-cover, land-use, and biophysical properties of vegetation from the Large Scale Biosphere Atmosphere (LBA) experiment in Amazoˆnia. LBA is an international research program developed to evaluate regional function and to determine how land-use and climate modify biological, chemical and physical processes there. Remote sensing has...

  16. Strontium-90 and plutonium-239/240 accumulation and distribution in soil-vegetative cover of some Semipalatinsk test site areas

    International Nuclear Information System (INIS)

    Tuleubaev, B.A.; Artem'ev, O.I.; Luk'yanova, Yu.A.; Sidorovich, T.V.; Silkina, G.P.; Kurmanbaeva, D.S.

    2001-01-01

    This paper presents results of field and laboratory studies of soil-vegetative cover contamination by 90 Sr and 239/240 Pu. Certain parameters of radionuclide migration in the environment of some former Semipalatinsk Test Site areas were determined. (author)

  17. LANDFIRE 2015 Remap – Utilization of Remotely Sensed Data to Classify Existing Vegetation Type and Structure to Support Strategic Planning and Tactical Response

    Science.gov (United States)

    Picotte, Joshua J.; Long, Jordan; Peterson, Birgit; Nelson, Kurtis

    2017-01-01

    The LANDFIRE Program produces national scale vegetation, fuels, fire regimes, and landscape disturbance data for the entire U.S. These data products have been used to model the potential impacts of fire on the landscape [1], the wildfire risks associated with land and resource management [2, 3], and those near population centers and accompanying Wildland Urban Interface zones [4], as well as many other applications. The initial LANDFIRE National Existing Vegetation Type (EVT) and vegetation structure layers, including vegetation percent cover and height, were mapped circa 2001 and released in 2009 [5]. Each EVT is representative of the dominant plant community within a given area. The EVT layer has since been updated by identifying areas of landscape change and modifying the vegetation types utilizing a series of rules that consider the disturbance type, severity of disturbance, and time since disturbance [6, 7]. Non-disturbed areas were adjusted for vegetation growth and succession. LANDFIRE vegetation structure layers also have been updated by using data modeling techniques [see 6 for a full description]. The subsequent updated versions of LANDFIRE include LANDFIRE 2008, 2010, 2012, and LANDFIRE 2014 is being incrementally released, with all data being released in early 2017. Additionally, a comprehensive remap of the baseline data, LANDFIRE 2015 Remap, is being prototyped, and production is tentatively planned to begin in early 2017 to provide a more current baseline for future updates.

  18. Higher intake of fruits, vegetables or their fiber reduces the risk of type?2 diabetes: A meta?analysis

    OpenAIRE

    Wang, Ping?Yu; Fang, Jun?Chao; Gao, Zong?Hua; Zhang, Can; Xie, Shu?Yang

    2015-01-01

    Abstract Aims/Introduction Some previous studies reported no significant association of consuming fruit or vegetables, or fruit and vegetables combined, with type 2 diabetes. Others reported that only a greater intake of green leafy vegetables reduced the risk of type 2 diabetes. To further investigate the relationship between them, we carried out a meta‐analysis to estimate the independent effects of the intake of fruit, vegetables and fiber on the risk of type 2 diabetes. Materials and Meth...

  19. Floristic relationships among vegetation types of new zealand and the southern andes: similarities and biogeographic implications.

    Science.gov (United States)

    Ezcurra, Cecilia; Baccalá, Nora; Wardle, Peter

    2008-06-01

    Similarities between the floras of geographically comparable regions of New Zealand (NZ) and the southern Andes (SA) have interested biologists for over 150 years. The present work selects vegetation types that are physiognomically similar between the two regions, compares their floristic composition, assesses the environmental factors that characterize these matching vegetation types, and determines whether phylogenetic groups of ancestral versus modern origin are represented in different proportions in their floras, in the context of their biogeographic history. Floristic relationships based on 369 genera of ten vegetation types present in both regions were investigated with correspondence analysis (CA) and ascending hierarchical clustering (AHC). The resulting ordination and classification were related to the environmental characteristics of the different vegetation types. The proportions of different phylogenetic groups between the regions (NZ, SA) were also compared, and between forest and non-forest communities. Floristic similarities between NZ and SA tend to increase from forest to non-forest vegetation, and are highest in coastal vegetation and bog. The floras of NZ and SA also differ in their phylogenetic origin, NZ being characterized by an 'excess' of genera of basal origin, especially in forests. The relatively low similarities between forests of SA and NZ are related to the former being largely of in situ South American and Gondwanan origin, whereas the latter have been mostly reconstituted though transoceanic dispersal of propagules since the Oligocene. The greater similarities among non-forest plant communities of the two regions result from varied dispersal routes, including relatively recent transoceanic dispersal for coastal vegetation, possible dispersal via a still-vegetated Antarctica especially for bog plants, and independent immigration from Northern Hemisphere sources for many genera of alpine vegetation and grassland.

  20. The research and application of new screw-type well cover for injection well

    International Nuclear Information System (INIS)

    Yuan Yuan; Wang Haifeng; Gan Nan; Xu Ying

    2014-01-01

    Basing on the hydrogeological conditions and the working environment, a new screw-type of well cover for injection well had been designed which is suitable for high injection pressure. The well cover adopted stainless steel pipe and PVC pipe which can prevent the leakage of solution for long time because of sulfuric corrosion. The well cover was operated stably under l.5 MPa injection pressure during two-years trial. It was in low cost and had the advantages of good sealing and high reliability. The problem of lixiviant injection under high artesian water pressure was solved successfully. (authors)

  1. Use of information technologies when designing multilayered plates and covers with filler of various types

    Science.gov (United States)

    Golova, T. A.; Magerramova, I. A.; Ivanov, S. A.

    2018-05-01

    Calculation of multilayered plates and covers does not consider anisotropic properties of a construction. Calculation comes down to uniform isotropic covers and definition of one of intense and deformation conditions of constructions. The existing techniques consider work of multilayered designs by means of various coefficients. The article describes the optimized algorithm of operations when designing multilayered plates and covers with filler of various types on the basis of the conducted researches. It is dealt with a development engineering algorithm of calculation of multi-layer constructions of walls. Software is created which allows one to carry out assessment of intense and deformation conditions of constructions of walls.

  2. Representing the effects of alpine grassland vegetation cover on the simulation of soil thermal dynamics by ecosystem models applied to the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Yi, S.; Li, N.; Xiang, B.; Wang, X.; Ye, B.; McGuire, A.D.

    2013-01-01

    Soil surface temperature is a critical boundary condition for the simulation of soil temperature by environmental models. It is influenced by atmospheric and soil conditions and by vegetation cover. In sophisticated land surface models, it is simulated iteratively by solving surface energy budget equations. In ecosystem, permafrost, and hydrology models, the consideration of soil surface temperature is generally simple. In this study, we developed a methodology for representing the effects of vegetation cover and atmospheric factors on the estimation of soil surface temperature for alpine grassland ecosystems on the Qinghai-Tibetan Plateau. Our approach integrated measurements from meteorological stations with simulations from a sophisticated land surface model to develop an equation set for estimating soil surface temperature. After implementing this equation set into an ecosystem model and evaluating the performance of the ecosystem model in simulating soil temperature at different depths in the soil profile, we applied the model to simulate interactions among vegetation cover, freeze-thaw cycles, and soil erosion to demonstrate potential applications made possible through the implementation of the methodology developed in this study. Results showed that (1) to properly estimate daily soil surface temperature, algorithms should use air temperature, downward solar radiation, and vegetation cover as independent variables; (2) the equation set developed in this study performed better than soil surface temperature algorithms used in other models; and (3) the ecosystem model performed well in simulating soil temperature throughout the soil profile using the equation set developed in this study. Our application of the model indicates that the representation in ecosystem models of the effects of vegetation cover on the simulation of soil thermal dynamics has the potential to substantially improve our understanding of the vulnerability of alpine grassland ecosystems to

  3. Alien plant invasion in mixed-grass prairie: Effects of vegetation type and anthropogenic disturbance

    Science.gov (United States)

    Larson, D.L.; Anderson, P.J.; Newton, W.

    2001-01-01

    The ability of alien plant species to invade a region depends not only on attributes of the plant, but on characteristics of the habitat being invaded. Here, we examine characteristics that may influence the success of alien plant invasion in mixed-grass prairie at Theodore Roosevelt National Park, in western North Dakota, USA. The park consists of two geographically separate units with similar vegetation types and management history, which allowed us to examine the effects of native vegetation type, anthropogenic disturbance, and the separate park units on the invasion of native plant communities by alien plant species common to counties surrounding both park units. If matters of chance related to availability of propagules and transient establishment opportunities determine the success of invasion, park unit and anthropogenic disturbance should better explain the variation in alien plant frequency. If invasibility is more strongly related to biotic or physical characteristics of the native plant communities, models of alien plant occurrence should include vegetation type as an explanatory variable. We examined >1300 transects across all vegetation types in both units of the park. Akaike's Information Criterion (AIC) indicated that the fully parameterized model, including the interaction among vegetation type, disturbance, and park unit, best described the distribution of both total number of alien plants per transect and frequency of alien plants on transects where they occurred. Although all vegetation types were invaded by alien plants, mesic communities had both greater numbers and higher frequencies of alien plants than did drier communities. A strong element of stochasticity, reflected in differences in frequencies of individual species between the two park units, suggests that prediction of risk of invasion will always involve uncertainty. In addition, despite well-documented associations between anthropogenic disturbance and alien plant invasion, five of

  4. Vegetation cover change detection and assessment in arid environment using multi-temporal remote sensing images and ecosystem management approach

    Science.gov (United States)

    Abdelrahman Aly, Anwar; Mosa Al-Omran, Abdulrasoul; Shahwan Sallam, Abdulazeam; Al-Wabel, Mohammad Ibrahim; Shayaa Al-Shayaa, Mohammad

    2016-04-01

    Vegetation cover (VC) change detection is essential for a better understanding of the interactions and interrelationships between humans and their ecosystem. Remote sensing (RS) technology is one of the most beneficial tools to study spatial and temporal changes of VC. A case study has been conducted in the agro-ecosystem (AE) of Al-Kharj, in the center of Saudi Arabia. Characteristics and dynamics of total VC changes during a period of 26 years (1987-2013) were investigated. A multi-temporal set of images was processed using Landsat images from Landsat4 TM 1987, Landsat7 ETM+2000, and Landsat8 to investigate the drivers responsible for the total VC pattern and changes, which are linked to both natural and social processes. The analyses of the three satellite images concluded that the surface area of the total VC increased by 107.4 % between 1987 and 2000 and decreased by 27.5 % between years 2000 and 2013. The field study, review of secondary data, and community problem diagnosis using the participatory rural appraisal (PRA) method suggested that the drivers for this change are the deterioration and salinization of both soil and water resources. Ground truth data indicated that the deteriorated soils in the eastern part of the Al-Kharj AE are frequently subjected to sand dune encroachment, while the southwestern part is frequently subjected to soil and groundwater salinization. The groundwater in the western part of the ecosystem is highly saline, with a salinity ≥ 6 dS m-1. The ecosystem management approach applied in this study can be used to alike AE worldwide.

  5. Multivariate ordination identifies vegetation types associated with spider conservation in brassica crops

    Directory of Open Access Journals (Sweden)

    Hafiz Sohaib Ahmed Saqib

    2017-10-01

    Full Text Available Conservation biological control emphasizes natural and other non-crop vegetation as a source of natural enemies to focal crops. There is an unmet need for better methods to identify the types of vegetation that are optimal to support specific natural enemies that may colonize the crops. Here we explore the commonality of the spider assemblage—considering abundance and diversity (H—in brassica crops with that of adjacent non-crop and non-brassica crop vegetation. We employ spatial-based multivariate ordination approaches, hierarchical clustering and spatial eigenvector analysis. The small-scale mixed cropping and high disturbance frequency of southern Chinese vegetation farming offered a setting to test the role of alternate vegetation for spider conservation. Our findings indicate that spider families differ markedly in occurrence with respect to vegetation type. Grassy field margins, non-crop vegetation, taro and sweetpotato harbour spider morphospecies and functional groups that are also present in brassica crops. In contrast, pumpkin and litchi contain spiders not found in brassicas, and so may have little benefit for conservation biological control services for brassicas. Our findings also illustrate the utility of advanced statistical approaches for identifying spatial relationships between natural enemies and the land uses most likely to offer alternative habitats for conservation biological control efforts that generates testable hypotheses for future studies.

  6. Simulation of maximum light use efficiency for some typical vegetation types in China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Maximum light use efficiency (εmax) is a key parameter for the estimation of net primary productivity (NPP) derived from remote sensing data. There are still many divergences about its value for each vegetation type. The εmax for some typical vegetation types in China is simulated using a modified least squares function based on NOAA/AVHRR remote sensing data and field-observed NPP data. The vegetation classification accuracy is introduced to the process. The sensitivity analysis of εmax to vegetation classification accuracy is also conducted. The results show that the simulated values of εmax are greater than the value used in CASA model, and less than the values simulated with BIOME-BGC model. This is consistent with some other studies. The relative error of εmax resulting from classification accuracy is -5.5%―8.0%. This indicates that the simulated values of εmax are reliable and stable.

  7. Spatial and temporal variability of grass cover in two olive grove catchments on contrasting soil types

    Science.gov (United States)

    Aguilera, Laura; Taguas, Encarnación V.; Gimeno, Enrique; Gómez, José A.

    2013-04-01

    Mediterranean climate conditions -characterized by the concentration of the precipitation in the seasons of autumn and spring, the low temperatures in winter and extremely warm and dry summers- determine that ground cover by adventitious (or cover crop) vegetation shows significant seasonal and annual variability. In addition, its spatial variability associates also, partially, to water availability among the landscape. This is especially relevant in olive orchards, an agricultural system under high erosion risk in the region where the establishment of herbaceous cover has proved to improve soil protection reducing erosion risk, as well as the improvement of soil properties (Gómez et al., 2009). All these benefits are based on small scale studies where full ground cover by the cover crop is relatively easy to obtain. However, few information is available about the actual ground cover achieved at farm scale, although preliminary observations suggests that this might be extremely variable (Gómez and Giráldez, 2009). This study presents the preliminary results evaluating the spatial and temporal evolution of ground cover by adventitious vegetation (the preferred option by farmers to achieve a cover crop) in two commercial olive farms during 2 hydrological years (2011-2012). The study was conducted in two farms located in the province of Cordoba, Southern Spain. Both were olive orchards grown under deficit irrigation systems and present a gauge station where rainfall, runoff and sediment loads have been measured from the year 2005. The soil management in "La Conchuela" farm was based in the use of herbicide in the line of olive trees to keep the bare soil all year round, and the application of selective herbicide in the lane between the olive trees to promote the grown of graminaceae grasses . In addition, the grass is mechanically killed in June. In the another farm, "Arroyo Blanco", the grass spontaneous cover is allowed until mid-spring in which is also

  8. Variation in soil enzyme activity as a function of vegetation amount, type, and spatial structure in fire-prone Mediterranean shrublands.

    Science.gov (United States)

    Mayor, Ángeles G; Goirán, Silvana B; Vallejo, V Ramón; Bautista, Susana

    2016-12-15

    Fire-prone Mediterranean shrublands may be seriously threatened by land degradation due to progressive opening of the vegetation cover driven by increasing drought and fire recurrence. However, information about the consequences of this opening process for critical ecosystem functions is scant. In this work, we studied the influence of vegetation amount, type, and spatial pattern in the variation of extracellular soil enzyme activity (acid phosphatase, β-glucosidase, and urease) in fire-prone shrublands in eastern Spain. Soil was sampled in vegetation-patch and open-interpatch microsites in 15 shrubland sites affected by large wildfires in 1991. On average, the activities of the three enzymes were 1.5 (β-glucosidase and urease) to 1.7 (acid phosphatase) times higher in soils under vegetation patches than in adjacent interpatches. In addition, phosphatase activity for both microsites significantly decreased with the fragmentation of the vegetation. This result was attributed to a lower influence of roots -the main source of acid phosphatase- in the bigger interpatches of the sites with lower patch cover, and to feedbacks between vegetation pattern, redistribution of resources, and soil quality during post-fire vegetation dynamics. Phosphatase activity was also 1.2 times higher in patches of resprouter plants than in patches of non-resprouters, probably due to the faster post-fire recovery and older age of resprouter patches in these fire-prone ecosystems. The influence on the studied enzymes of topographic and climatic factors acting at the landscape scale was insignificant. According to our results, variations in the cover, pattern, and composition of vegetation patches may have profound impacts on soil enzyme activity and associated nutrient cycling processes in fire-prone Mediterranean shrublands, particularly in those related to phosphorus. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Habitat typing versus advanced vegetation classification in western forests

    Science.gov (United States)

    Tony Kusbach; John Shaw; James Long; Helga Van Miegroet

    2012-01-01

    Major habitat and community types in northern Utah were compared with plant alliances and associations that were derived from fidelity- and diagnostic-species classification concepts. Each of these classification approaches was associated with important environmental factors. Within a 20,000-ha watershed, 103 forest ecosystems were described by physiographic features,...

  10. Monitoring of fire incidences in vegetation types and Protected ...

    Indian Academy of Sciences (India)

    two types of sensor data, i.e., AWiFS and MODIS, have found fires in 281 (out of 614) Protected Areas of India. .... 56 m resolution prepared as part of national car- bon project has ...... and its deficiency in India were pointed out as back- ground.

  11. Pyrolysis compound specific isotopic analysis (δ13C and δD Py-CSIA) of soil organic matter size fractions under four vegetation covers.

    Science.gov (United States)

    Jiménez-Morillo, Nicasio T.; González-Vila, Francisco J.; Almendros, Gonzalo; De la Rosa, José M.; González-Pérez, José A.

    2015-04-01

    A chemical characterization of soil organic matter (SOM) under different ground cover from a Mediterranean climate (Doñana National Park, Andalusia, Spain) is approached using bulk δ15N, δ13C, δ18O and δD isotopic analysis (C/TC-IRMS) and δ13C and δD pyrolysis compound specific isotopic analysis (Py-CSIA: Py-GC-C/TC-IRMS). Soil samples were collected in sandy soils, Arenosols (WRB 2006) from the Doñana National Park (SW Spain) under different vegetation cover: cork oak (Quercus suber, QS), eagle fern (Pteridium aquilinum, PA), pine (Pinus pinea, PP) and rockrose (Halimium halimifolium, HH). Two size fractions; coarse (C: 1-2 mm) and fine (F: studied from each soil. A complete conventional analytical pyrolysis (Py-GC/MS) of these samples have been studied in detail (Jiménez-Morillo et al., 2015). Bulk isotopic analysis of stable light elements (δ15N, δ13C, δ18O and δD) revealed particular isotopic signatures showing differences related with the main vegetation cover and the different soil size fraction. All samples had a carbon isotopic signature between -26 and -29 ‰, which indicated that the organic matter in the two fractions of each soil sample derived from C3-type plants. The bulk δD isotopic signature in whole soil sample indicate a lower deuterium fractionation occurs in SOM under arboreal than under no-arboreal vegetation, this can be caused by the occurrence of a higher water evaporation rate under bush vegetation and/or to differences due to leaf morphology as previously described (Leaney et al., 1985). A δ15N vs. δ18O chart may provide some clues about N origin in the soil and particularly about the original source of nitrates (Kendall et al., 1996). In in all sample and size fractions our values are in the chart area corresponding to NO3 in precipitation, with lighter δ18O (c. 20 ‰) values compatible with fertilizers may be from adjacent crops. In addition we were able to assign δ13C and δD values for a number of specific SOM

  12. Exploring an extensive dataset to establish woody vegetation cover and composition in Kruger National Park for the late 1980s

    Directory of Open Access Journals (Sweden)

    Gregory A. Kiker

    2014-09-01

    Conservation implications: The results provided evidence that large-scale, woody vegetation surveys conducted along roads offer useful ecosystem level information. However, such an approach fails to pick up less common species. The data presented here provided a useful snapshot of KNP woody vegetation structure and composition and could provide excellent opportunities for spatio-temporal comparisons.

  13. Plant cover and hydrological response in a seasonally dry tropical forest (SDTF = Cobertura vegetal e as respostas hidrológicas em floresta tropical sazonalmente seca (FTSS

    Directory of Open Access Journals (Sweden)

    Eunice Maia de Andrade

    2017-10-01

    Full Text Available The scarcity of information on the processes of rainfall-flow limits understanding of the hydrology of dry regions of the world. In order to minimise the problem, this study was developed to investigate the influence of the characteristics of rainfall events and plant cover on the effective precipitation (Pe in a seasonally dry tropical forest (SDTF in the Northeast of Brazil. The study was carried out in two paired watersheds, one with SDTF under regeneration for 35 years (CR35 and the other under thinned SDTF for 5 years (TC. A historical series of five years (2009-2013 was analysed, with a total of 203 rainfall events, where only those rainfall events that generated a Pe > 1.0 mm were considered. CR35 had a greater number of Pe events (47 than TC (35. Rainfall depth and intensity were the factors that best explained the effective precipitation under both types of vegetation cover. The influence of herbaceous vegetation on the reduction of surface runoff was demonstrated by the smaller runoff depth and the greater potential for soil water storage in the watershed under thinned Caatinga. This fact leads to the conclusion that the technique of thinning is suitable management for Caatinga vegetation, and is capable of promoting the retention of soil water. = A escassez de informações sobre os processos chuva-deflúvio é uma limitação no entendimento da hidrologia das regiões secas do globo terrestre. Buscando minimizar esta problemática, desenvolveuse este estudo objetivando investigar as influências das características dos eventos pluviométricos e da cobertura vegetal na precipitação efetiva (Pe em floresta tropical sazonalmente seca (FTSS, no nordeste do Brasil. O estudo foi realizado em duas microbacias emparelhadas, uma com FTSS em regeneração há 35 anos (CR35 e outra com FTSS raleada há 5 anos (CR. Foi analisada uma série histórica de cinco anos (2009-2013, com um total de 203 eventos pluviométricos, sendo considerados

  14. Geomorphology and reflectance patterns of vegetation-covered dunes at the Tsodilo Hills, north-west Botswana

    Science.gov (United States)

    Jacobberger, P. A.; Hooper, D. M.

    1991-01-01

    Seasonal reflectance variations in semigrid environments provide a means of assessing vegetation health and density as well as monitoring landform processes. Multitemporal Landsat Thematic Mapper scenes with field measurements are used to map geomorphology and vegetation density in a stabilized dune environment and to measure seasonal reflectance changes for a series of ten geomorphological and vegetation units on the Kalahari-age linear dunes. Units were chosen based on differences in landform and proportion of trees, forbs and bare soil. Reflectance curves and normalized-difference vegetation indices (NDVI) show that dune crests have the strongest seasonal variability in color and brightness. The geomorphological link with reflectance and NDVI values are linked to biomass production and zoning of vegetation with slope, drainage and subtle soil differences.

  15. Pollen core assemblages as indicator of Polynesian and European impact on the vegetation cover of Auckland Isthmus catchment, New Zealand

    Science.gov (United States)

    Abrahim, Ghada M. S.; Parker, Robin J.; Horrocks, Mark

    2013-10-01

    Tamaki Estuary is an arm of the Hauraki Gulf situated on the eastern side of central Auckland. Over the last 100 years, Tamaki catchment has evolved from a nearly rural landscape to an urbanised and industrialised area. Pollen, 14C and glass shards analyses, were carried out on three cores collected along the estuary with the aim to reconstruct the estuary's history over the last ˜8000 years and trace natural and anthropogenic effects recorded in the sediments. Glass shard analysis was used to establish key tephra time markers such as the peralkaline eruption of Mayor Island, ˜6000 years BP. During the pre-Polynesian period (since at least 8000 years BP), regional vegetation was podocarp/hardwood forest dominated by Dacrydium cupressinun, Prumnopits taxifolia, and Metrosideros. Major Polynesian settler impact (commencing ˜700 yr BP) was associated with forest clearance as indicated by a sharp decline in forest pollen types. This coincided with an increase in bracken (Pteridium esculentum) spores and grass pollen. Continuing landscape disturbance during European settlement (commencing after 1840 AD) was accompanied by the distinctive appearance of exotic pollen taxa such as Pinus.

  16. 20 CFR 1002.163 - What types of health plans are covered by USERRA?

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false What types of health plans are covered by USERRA? 1002.163 Section 1002.163 Employees' Benefits OFFICE OF THE ASSISTANT SECRETARY FOR VETERANS... by USERRA? (a) USERRA defines a health plan to include an insurance policy or contract, medical or...

  17. The influence of vegetation cover and soil physical properties on deflagration of shallow landslides - Nova Friburgo, RJ / Brazil

    Science.gov (United States)

    de Oliveira Marques, Maria Clara; Silva, Roberta; Fraga, Joana; Luiza Coelho Netto, Ana; Mululo Sato, Anderson

    2017-04-01

    In 2011, the mountainous region of the State of Rio de Janeiro (Brazil) suffered enormous social and economic losses due to thousands of landslides caused by an extreme rainfall event. The mapping of the scars of these landslides in an area of 421 km2 in the municipality of Nova Friburgo, RJ - Brazil resulted in a total of 3622, and 89% of these scars were located in areas covered by grasses and forests. Despite the unexpected result (64% of scars in forest areas), field evidence has shown that most of the forest fragments in the municipality are in the initial stages of succession and in different states of degradation, evidencing the need for a better understanding of the role of these forests in the detonation and propagation of landslides. Two slope forest areas with different ages (20 and 50 years) were evaluated in relation to the vegetative aspects that influence the stability of the slopes in each area. Hydrological monitoring, including precipitation, interception by manual and automatic method, soil moisture and subsurface flows were performed in two different areas: forest and grass. Soil moisture was monitored by granular matrix sensors and flows by collecting troughs in trenches at depths of 0 cm, 20 cm, 50 cm, 100 cm, 150 cm and 220 cm, which were also analyzed for biomass and length of thick roots (> 2 mm diameter) and thin roots (particle size, aggregate stability, porosity and hydraulic conductivity in situ). In the grass area, the lower soil structure in relation to the forest areas makes it difficult to transmit the water through the soil matrix. During the monitoring period, that area preserved the moisture in depths of 100 cm, 150 cm and 220 cm. The fasciculate root system of the grasses increased the infiltration of water at the top of the soil, favouring the formation of more superficial saturation zones in the heavy rains, due to the hydraulic discontinuities. In forest areas, infiltration by preferential paths allows the concentration of

  18. Crop Type Classification Using Vegetation Indices of RapidEye Imagery

    Science.gov (United States)

    Ustuner, M.; Sanli, F. B.; Abdikan, S.; Esetlili, M. T.; Kurucu, Y.

    2014-09-01

    Cutting-edge remote sensing technology has a significant role for managing the natural resources as well as the any other applications about the earth observation. Crop monitoring is the one of these applications since remote sensing provides us accurate, up-to-date and cost-effective information about the crop types at the different temporal and spatial resolution. In this study, the potential use of three different vegetation indices of RapidEye imagery on crop type classification as well as the effect of each indices on classification accuracy were investigated. The Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) are the three vegetation indices used in this study since all of these incorporated the near-infrared (NIR) band. RapidEye imagery is highly demanded and preferred for agricultural and forestry applications since it has red-edge and NIR bands. The study area is located in Aegean region of Turkey. Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Original bands of RapidEye imagery were excluded and classification was performed with only three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 87, 46 % was obtained using three vegetation indices. This obtained classification accuracy is higher than the classification accuracy of any dual-combination of these vegetation indices. Results demonstrate that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the RapidEye imagery can get satisfactory results of classification accuracy without original bands.

  19. Vegetation Cover Dynamics and Resilience to Climatic and Hydrological Disturbances in Seasonal Floodplain: The Effects of Hydrological Connectivity

    Directory of Open Access Journals (Sweden)

    Linlu Shi

    2017-12-01

    Full Text Available Floodplain wetlands are valuable ecosystems for maintaining biodiversity, but are vulnerable to hydrological modification and climatic extremes. The floodplain wetlands in the middle Yangtze region are biodiversity hotspots, particularly important for wintering migratory waterbirds. In recent years, extremely low winter water level events frequently occurred in the middle Yangtze River. The hydrological droughts greatly impacted the development and distribution of the wet meadows, one of the most important ecological components in the floodplains, which is vital for the survival of many migratory waterbirds wintering in the Yangtze region. To effectively manage the wet meadows, it is critical to pinpoint the drivers for their deterioration. In this study, we assessed the effects of hydrological connectivity on the ecological stability of wet meadow in Poyang Lake for the period of 2000 to 2016. We used the time series of MODIS EVI (Enhanced Vegetation Index as a proxy for productivity to infer the ecological stability of wet meadows in terms of resistance and resilience. Our results showed that (1 the wet meadows developed in freely connected lakes had significantly higher resilience; (2 wet meadows colonizing controlled lakes had higher resistance to water level anomalies; (3 there was no difference in the resistance to rainfall anomaly between the two types of lakes; (4 the wet meadow in freely connected lakes might approach a tipping point and a regime shift might be imminent. Our findings suggest that adaptive management at regional- (i.e., operation of Three Gorges Dam and site-scale (e.g., regulating sand mining are needed to safeguard the long-term ecological stability of the system, which in term has strong implications for local, regional and global biodiversity conservation.

  20. C-14 dating and C-13/C-12 isotopic ratio in soils covered by natural vegetation of cerrado-floresta ecosystem at Humaita (AM)/Brazil

    International Nuclear Information System (INIS)

    Gouveia, Susy E.M.; Pessenda, Luiz C.R.; Roveratti, Renato; Cruz, Maria V.L.; Pessin, Glaucia; Aravena, Ramon; Boulet, Rene

    1996-01-01

    The most recent evidences show that in the Amazon region significant climatic changes occurred in the Quaternary, with emphasis to the dry periods during the Pleistocene and increased precipitation in the Holocene. In this region are found areas with characteristics of cerrado, surrounded by tropical rain forest. The evaluations of soil, vegetation and climate interactions for the formation of these areas are important. Carbon isotopes ( 12 C, 13 C, 14 C) have been applied in soil organic matter (SOM) of Humaita region, southern Amazon, to evaluate changes in vegetation communities during the Holocene. Isotopic composition of SOM in the deeper part of the soil profiles, shows that probably in the early Holocene the forest has been in the area today occupied by the cerrado vegetation. The results of SOM in the shallow part of soil profiles characterize perfectly the three types of actual vegetation communities. (author)

  1. Restraint effect of water infiltration by soil cover types of LLW disposal facility

    International Nuclear Information System (INIS)

    Park, S. M.; Lee, E. Y.; Lee, C. K.; Kim, C. L.

    2002-01-01

    Since soil cover for LLW disposal vault shows quite different restraint effect of water infiltration depending on its type, four different types of soil cover were studied and simulated using HELP code. Simulation result showed that Profile B1 is the most effective type in restraint of water infiltration to the disposal vault. Profile B1 is totally 6m thick and composed of silt, gravelly sand, pea gravel, sand and clayey soil mixed with bentonite 20%. Profile B1 also includes artificial layers, such as asphalt and geomembrane layers. This profile is designed conceptually by NETEC for the soil cover of the near surface disposal facility of the low-level radioactive waste. For comparison, 3 types of different profile were tested. One profile includes bentonite mixed layer only as water barrier layer, or one as same as profile B1 but without geomembrane layer or one without asphalt layer respectively. The simulation using HELP code showed that the water balance in profile B1 was effectively controlled

  2. Surface albedo in different land-use and cover types in Amazon forest region

    Directory of Open Access Journals (Sweden)

    Thiago de Oliveira Faria

    2018-05-01

    Full Text Available Albedo is the portion of energy from the Sun that is reflected by the earth's surface, thus being an important variable that controls climate and energy processes on Earth. Surface albedo is directly related to the characteristics of the Earth’s surface materials, making it a useful parameter to evaluate the effects of original soil cover replacement due to human occupation. This study evaluated the changes in the surface albedo values due to the conversion of vegetation to other land uses and to analyze the applicability of the use of albedo in the spatial delimitation of land-use classes in the transitional region between the Cerrado and Amazon biomes. Surface albedo measurements were obtained from processing of Landsat Thematic Mapper data in the Geographic Information System (GIS, and land-use information were collected using Google Earth high-resolution images. The results show that human activities such as the cultivation of crops and burning have contributed substantially to variations in the surface albedo, and that albedo estimates from Landsat imagery have the potential to help in the recognition and delimitation of features of land use and cover.

  3. The influence of slope and peatland vegetation type on riverine dissolved organic carbon and water colour at different scales.

    Science.gov (United States)

    Parry, L E; Chapman, P J; Palmer, S M; Wallage, Z E; Wynne, H; Holden, J

    2015-09-15

    Peatlands are important sources of fluvial carbon. Previous research has shown that riverine dissolved organic carbon (DOC) concentrations are largely controlled by soil type. However, there has been little work to establish the controls of riverine DOC within blanket peatlands that have not undergone major disturbance from drainage or burning. A total of 119 peatland catchments were sampled for riverine DOC and water colour across three drainage basins during six repeated sampling campaigns. The topographic characteristics of each catchment were determined from digital elevation models. The dominant vegetation cover was mapped using 0.5m resolution colour infrared aerial images, with ground-truthed validation revealing 82% accuracy. Forward and backward stepwise regression modelling showed that mean slope was a strong (and negative) determinant of DOC and water colour in blanket peatland river waters. There was a weak role for plant functional type in determining DOC and water colour. At the basin scale, there were major differences between the models depending on the basin. The dominance of topographic predictors of DOC found in our study, combined with a weaker role of vegetation type, paves the way for developing improved planning tools for water companies operating in peatland catchments. Using topographic data and aerial imagery it will be possible to predict which tributaries will typically yield lower DOC concentrations and which are therefore more suitable and cost-effective as raw water intakes. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Multi-temporal and Dual-polarization Interferometric SAR for Land Cover Type Classification

    Directory of Open Access Journals (Sweden)

    WANG Xinshuang

    2015-05-01

    Full Text Available In order to study SAR land cover classification method, this paper uses the multi-dimensional combination of temporal,polarization and InSAR data. The area covered by space borne data of ALOS PALSAR in Xunke County,Heilongjiang Province was chosen as test site. A land cover classification technique of SVM based on multi-temporal, multi-polarization and InSAR data had been proposed, using the sensitivity to land cover type of multi-temporal, multi-polarization SAR data and InSAR measurements, and combing time series characteristic of backscatter coefficient and correlation coefficient to identify ground objects. The results showed the problem of confusion between forest land and urban construction land can be nicely solved, using the correlation coefficient between HH and HV, and also combing the selected temporal, polarization and InSAR characteristics. The land cover classification result with higher accuracy is gotten using the classification algorithm proposed in this paper.

  5. Assessment of the transfer of 137Cs in three types of vegetables consumed in Hong Kong

    International Nuclear Information System (INIS)

    Yu, K.N.; Mao, S.Y.; Young, E.C.M.

    1998-01-01

    A dynamic food chain model has been built for the modeling of the transfer of 137 Cs in three types of vegetables consumed in Hong Kong, namely, white flowering cabbage (Brassica chinensis), head lettuce (Lactuca sativa) and celery (Apium graveolens). Some parameters have been estimated from the experimental data obtained in this work. The experimental data include the transfer factors of 137 Cs from soil to the different vegetable species which are determined through high resolution gamma spectrometry, maximum crop biomasses for the vegetable species, the dry-to-fresh ratios for the vegetable species, the bulk density of soil layers and the average concentration of 137 Cs in air. The derived parameters include the deposition rate and the root uptake rate, information for tillage, the logistic growth model and radionuclide concentrations in vegetables. The dynamic food chain model is solved by the Birchall-James algorithm to give the 137 Cs concentration in subsurface soil, from the 0.1-25 cm soil layer, and the 137 Cs concentration in harvested and unwashed vegetables. As validation of the model and parameters, the concentrations obtained experimentally and from the model are compared and are found to be in good agreement

  6. On the delineation of tropical vegetation types with an emphasis on forest/savanna transitions

    NARCIS (Netherlands)

    Torello-Raventos, M.; Feldpausch, T.R.; Veenendaal, E.M.; Sykora, K.V.

    2013-01-01

    Background: There is no generally agreed classification scheme for the many different vegetation formation types occurring in the tropics. This hinders cross-continental comparisons and causes confusion as words, such as ‘forest’ and ‘savanna’ have different meanings to different people. Tropical

  7. Stimulation of methane oxidation potential and effects on vegetation growth by bottom ash addition in a landfill final evapotranspiration cover

    NARCIS (Netherlands)

    Kim, G.W.; Ho, A.; Kim, P.J.; Kim, Sang Yun

    2016-01-01

    The landfilling of municipal solid waste is a significant source of atmospheric methane (CH4), contributing up to 20% of total anthropogenic CH4 emissions. The evapotranspiration (ET) cover system, an alternative final cover system in waste landfills, has been considered to be a promising way to

  8. Woody plants diversity and type of vegetation in non cultivated plain of Moutourwa, Far-North, Cameroon

    Directory of Open Access Journals (Sweden)

    Gilbert Todou

    2016-12-01

    Full Text Available In order to valorize the wild vegetal resources for the efficient conservation and sustainable use in sahelo-sudanian zone in Cameroon, a study of non cultivated plain of Moutourwa was carry out to assess the floristic richness, the specific diversity and the type of vegetation. The inventory of all trees and shrubs (dbh ? 2.5 cm and the determination of the vegetation cover were done in five linear transects (20 m × 1000 m. In total, 27 families, 54 genera and 75 species were found. Caesalpinaceae is the most abundant family that relative abundance (pi*100 is 34.41%, the most abundant genus was Piliostigma (pi*100 = 30.66% and the most represented species was Piliostigma reticulatum (pi*100 = 29.56%; D = 53.6 stems/ha. The Simpson index (E= 0.89, the Shannon index (H= 3.2 and the equitability index of Pielou (J= 0.74 indicated that there were moderate diversity with more or less equitable species. The wild fruits species were numerous (pi*100 = 32.76%; D = 59.7 stems/ha. A. senegalensis is was the most represented (pi*100 = 9.04 ; D = 16.4 followed by Hexalobus monopetalus (pi*100 = 5.16 ; D = 9.4 and Balanites aegyptiaca (pi*100 = 3.69 ; D = 6.7. These results contribute efficaciously to valorize the wild vegetal resources for efficient conservation and sustainable use. Keywords: Woody plants diversity, conservation, sustainable use, sahelo-sudanian, Moutourwa

  9. Reflectance and Polarization Characteristics of Various Vegetation Types: an Advanced Experimental Approach using the FIGIFIGO Goniospectrometer

    Science.gov (United States)

    Gritsevich, M.; Peltoniemi, J.; Zubko, N.; Pisek, J.

    2016-12-01

    To reduce data acquired by Earth Observation projects and for collecting more accurate knowledge on the Earth, universe, and environment one needs to provide a set of reliable references carefully gathered by measuring various known, well characterized targets. We present an overview of the Finnish Geodetic Institute's field goniospectrometer, FIGIFIGO, and highlight its capabilities for spectropolarimetric measurements of various samples, both under actual field conditions and in the laboratory. The design concept of this custom made instrument has proven to have a number of advantages, such as a well designed, user friendly interface, a high level of automation, and an excellent adaptability to a wide range of weather conditions during field measurements. The instrument communicates via a control computer which has a simple user-friendly interface. It is battery powered and very portable, making it feasible to transport it by plane, car, boat, or sledge. The system includes a sky camera to detect the orientation of the goniometer and a pyranometer to monitor the synchronous illumination conditions. The instrument's mirror can be finely adjusted to apply small spatial corrections to the optical chain. The foreoptics is connected to an ASD FieldSpec Pro FR 350-2500 nm spectroradiometer by an optical fiber. A calcite Glan-Thompson prism is used as a polarizer, covering the full spectral range with better than 1% accuracy.FIGIFIGO has been used to measure the reflectance properties of hundreds of different targets, including various vegetation types. In particular, it has been shown that directional and polarization signals vary largely between different species, and provide information about the leaf surface and orientation. The measurement data are stored in the FGI's Reflectance Library and new specific measurements are made upon request. The potential use of the results from these measurements are diverse; including their use as ground truth references for Earth

  10. [Influence of three types of riparian vegetation on fluvial erosion control in Pantanos de Centla, Mexico].

    Science.gov (United States)

    Sepúlveda-Lozada, Alejandra; Geissen, Violette; Ochoa-Gaona, Susana; Jarquín-Sánchez, Aarón; de la Cruz, Simón Hernández; Capetillo, Edward; Zamora-Cornelio, Luis Felipe

    2009-12-01

    Wetlands constitute very important ecological areas. The aim of this study was to quantify the soil losses due to fluvial erosion from 2006 to 2008 in two riverbanks under three types of vegetal coverage dominated by Haematoxylum campechianum, Dalbergia brownei and Brachiaria mutica, in the Pantanos de Centla Biosphere Reserve, SE Mexico. The relationship between the texture, organic matter and pH of soils and soil losses was evaluated. We used erosion sticks to estimate soil losses in 18 plots (three plots per type, three vegetation types, two riverbanks). Soil loss decreased in this order: H. campechianum>B. mutica>D. brownei indicating that D. brownei scrubland has the most potential to retain soil. The higher erosive impact within H. campechianum sites can be related with the low density of these trees in the study areas, as well as the lack of association with other types of vegetation that could reinforce the rooting of the soil profile. Furthermore, soil losses in H. campechianum sites were dependent on soil texture. The soils under this type of vegetal coverage were mainly sandy, which are more vulnerable to the erosive action in comparison with fine textured soils or soils with higher clay content, like the ones found in D. brownei and B. mutica sites. Soil losses of 100 % in the second year (B. mutica plots) can be attributed to the distribution of roots in the upper soil layer and also to livestock management along riverbanks. This study recognizes the importance of D. brownei scrublands in riverbank soil retention. Nevertheless it is necessary to consider the role of an entire vegetal community in future research.

  11. Comparing vegetation cover in the Santee Experimental Forest, South Carolina (USA), before and after hurricane Hugo: 1989-2011

    Science.gov (United States)

    Giovanni R. Cosentino

    2013-01-01

    Hurricane Hugo struck the coast of South Carolina on September 21, 1989 as a category 4 hurricane on the Saffir-Simpson Scale. Landsat Thematic mapper was utilized to determine the extent of damage experienced at the Santee Experimental Forest (SEF) (a part of Francis Marion National Forest) in South Carolina. Normalized Difference Vegetation Index (NDVI) and the...

  12. Spatiotemporal variations in vegetation cover on the Loess Plateau, China, between 1982 and 2013: possible causes and potential impacts.

    Science.gov (United States)

    Kong, Dongxian; Miao, Chiyuan; Borthwick, Alistair G L; Lei, Xiaohui; Li, Hu

    2018-03-02

    Vegetation is a key component of the ecosystem and plays an important role in water retention and resistance to soil erosion. In this study, we used a multiyear normalized difference vegetation index (NDVI) dataset (1982-2013) and corresponding datasets for observed climatic variables to analyze changes in the NDVI at both temporal and spatial scales. The relationships between NDVI, climate change, and human activities were also investigated. The annual average NDVI showed an upward trend over the 32-year study period, especially in the center of the Loess Plateau. NDVI variations lagged behind monthly temperature changes by approximately 1 month. The contribution of human activities to variations in NDVI has become increasingly significant in recent years, with human activities responsible for 30.4% of the change in NDVI during the period 2001-2013. The increased vegetation coverage has reduced soil erosion on the Loess Plateau in recent years. It is suggested that natural restoration of vegetation is the most effective measure for control of erosion; engineering measures that promote this should feature in the future governance of the Loess Plateau.

  13. Calibration and Validation of Tundra Plant Functional Type Fractional Cover Mapping

    Science.gov (United States)

    Macander, M. J.; Nelson, P.; Frost, G. V., Jr.

    2017-12-01

    Fractional cover maps are being developed for selected tundra plant functional types (PFTs) across >500,000 sq. km of arctic Alaska and adjacent Canada at 30 m resolution. Training and validation data include a field-based training dataset based on point-intercept sampling method at hundreds of plots spanning bioclimatic and geomorphic gradients. We also compiled 50 blocks of 1-5 cm resolution RGB image mosaics in Alaska (White Mountains, North Slope, and Yukon-Kuskokwim Delta) and the Yukon Territory. The mosaics and associated surface and canopy height models were developed using a consumer drone and structure from motion processing. We summarized both the in situ measurements and drone imagery to determine cover of two PFTs: Low and Tall Deciduous Shrub, and Light Fruticose/Foliose Lichen. We applied these data to train 2 m (limited extent) and 30 m (wall to wall) maps of PFT fractional cover for shrubs and lichen. Predictors for 2 m models were commercial satellite imagery such as WorldView-2 and Worldview-3, analyzed on the ABoVE Science Cloud. Predictors for 30 m models were primarily reflectance composites and spectral metrics developed from Landsat imagery, using Google Earth Engine. We compared the performance of models developed from the in situ and drone-derived training data and identify best practices to improve the performance and efficiency of arctic PFT fractional cover mapping.

  14. Detecting vegetation cover change on the summit of Cadillac Mountain using multi-temporal remote sensing datasets: 1979, 2001, and 2007.

    Science.gov (United States)

    Kim, Min-Kook; Daigle, John J

    2011-09-01

    This study examines the efficacy of management strategies implemented in 2000 to reduce visitor-induced vegetation impact and enhance vegetation recovery at the summit loop trail on Cadillac Mountain at Acadia National Park, Maine. Using single-spectral high-resolution remote sensing datasets captured in 1979, 2001, and 2007, pre-classification change detection analysis techniques were applied to measure fractional vegetation cover changes between the time periods. This popular sub-alpine summit with low-lying vegetation and attractive granite outcroppings experiences dispersed visitor use away from the designated trail, so three pre-defined spatial scales (small, 0-30 m; medium, 0-60 m; and large, 0-90 m) were examined in the vicinity of the summit loop trail with visitor use (experimental site) and a site chosen nearby in a relatively pristine undisturbed area (control site) with similar spatial scales. Results reveal significant changes in terms of rates of vegetation impact between 1979 and 2001 extending out to 90 m from the summit loop trail with no management at the site. No significant differences were detected among three spatial zones (inner, 0-30 m; middle, 30-60 m; and outer, 60-90 m) at the experimental site, but all were significantly higher rates of impact compared to similar spatial scales at the control site (all p time period. In addition, the advantages and some limitations of using remote sensing technologies are discussed in detecting vegetation change in this setting and potential application to other recreation settings.

  15. Ingression-type cell migration drives vegetal endoderm internalisation in the Xenopus gastrula.

    Science.gov (United States)

    Wen, Jason Wh; Winklbauer, Rudolf

    2017-08-10

    During amphibian gastrulation, presumptive endoderm is internalised as part of vegetal rotation, a large-scale movement that encompasses the whole vegetal half of the embryo. It has been considered a gastrulation process unique to amphibians, but we show that at the cell level, endoderm internalisation exhibits characteristics reminiscent of bottle cell formation and ingression, known mechanisms of germ layer internalisation. During ingression proper, cells leave a single-layered epithelium. In vegetal rotation, the process occurs in a multilayered cell mass; we refer to it as ingression-type cell migration. Endoderm cells move by amoeboid shape changes, but in contrast to other instances of amoeboid migration, trailing edge retraction involves ephrinB1-dependent macropinocytosis and trans -endocytosis. Moreover, although cells are separated by wide gaps, they are connected by filiform protrusions, and their migration depends on C-cadherin and the matrix protein fibronectin. Cells move in the same direction but at different velocities, to rearrange by differential migration.

  16. Sealing of Airway Fistulas for Metallic Covered Z-type Stents

    Directory of Open Access Journals (Sweden)

    Hongwu WANG

    2011-08-01

    Full Text Available Background and objective Treating airway fistulas, including esophagorespiratory fistulas (ERFs, bronchopleural fistulas (BPFs, and tracheomediastinal fistulas (TMFs, is difficult. The aim of this study is to evaluate the safety and clinical efficacy of metallic covered Z-type stents (CZTS for the treatment of airway fistulas through bronchoscopy or fluroscopy. Methods Thirty-eight patients with fistulas between the esophagus, mediastina, and airways (32 ERFs, 5 BPFs, and 1 TMF were retrospectively reviewed after treatment with covered metallic esophageal and airway stents. The fistulas were caused by esophageal (n=26, bronchogenic (n=11, and thyroid (n=1 carcinomas. Results Forty-six fistulas were found in 38 patients. The fistula size ranged from 0.5 cm to 7.0 cm. Forty airway covered metal stents (24 Y-type, 8 L-type, and 8 I-type and 24 esophageal metal stents were placed. Complete responses to the sealing effects of fistulas were noted in 4.3% of all the fistulas, 60.9% showed complete clinical responses, 23.9% showed partial responses, and 10.9% showed no response. An effectivity rate of 89.1% was observed, and the median survival duration of all patients was 5 months. Conclusion The use of CZTS appears to be safe and feasible for the palliative treatment of ERFs, BPFs, and TMFs. Airway stent placement is recommended for patients with ERF. In the event that airway stents fail, esophageal stents should be given. Airway bifurcation stents were observed to be especially suitable for the sealing of fistulas near the trachea carina.

  17. Landscape object-based analysis of wetland plant functional types: the effects of spatial scale, vegetation classes and classifier methods

    Science.gov (United States)

    Dronova, I.; Gong, P.; Wang, L.; Clinton, N.; Fu, W.; Qi, S.

    2011-12-01

    Remote sensing-based vegetation classifications representing plant function such as photosynthesis and productivity are challenging in wetlands with complex cover and difficult field access. Recent advances in object-based image analysis (OBIA) and machine-learning algorithms offer new classification tools; however, few comparisons of different algorithms and spatial scales have been discussed to date. We applied OBIA to delineate wetland plant functional types (PFTs) for Poyang Lake, the largest freshwater lake in China and Ramsar wetland conservation site, from 30-m Landsat TM scene at the peak of spring growing season. We targeted major PFTs (C3 grasses, C3 forbs and different types of C4 grasses and aquatic vegetation) that are both key players in system's biogeochemical cycles and critical providers of waterbird habitat. Classification results were compared among: a) several object segmentation scales (with average object sizes 900-9000 m2); b) several families of statistical classifiers (including Bayesian, Logistic, Neural Network, Decision Trees and Support Vector Machines) and c) two hierarchical levels of vegetation classification, a generalized 3-class set and more detailed 6-class set. We found that classification benefited from object-based approach which allowed including object shape, texture and context descriptors in classification. While a number of classifiers achieved high accuracy at the finest pixel-equivalent segmentation scale, the highest accuracies and best agreement among algorithms occurred at coarser object scales. No single classifier was consistently superior across all scales, although selected algorithms of Neural Network, Logistic and K-Nearest Neighbors families frequently provided the best discrimination of classes at different scales. The choice of vegetation categories also affected classification accuracy. The 6-class set allowed for higher individual class accuracies but lower overall accuracies than the 3-class set because

  18. Using lidar data to analyse sinkhole characteristics relevant for understory vegetation under forest cover-case study of a high karst area in the dinaric mountains.

    Directory of Open Access Journals (Sweden)

    Milan Kobal

    Full Text Available In this article, we investigate the potential for detection and characterization of sinkholes under dense forest cover by using airborne laser scanning data. Laser pulse returns from the ground provide important data for the estimation of digital elevation model (DEM, which can be used for further processing. The main objectives of this study were to map and determine the geomorphometric characteristics of a large number of sinkholes and to investigate the correlations between geomorphology and vegetation in areas with such characteristics. The selected study area has very low anthropogenic influences and is particularly suitable for studying undisturbed karst sinkholes. The information extracted from this study regarding the shapes and depths of sinkholes show significant directionality for both orientation of sinkholes and their distribution over the area. Furthermore, significant differences in vegetation diversity and composition occur inside and outside the sinkholes, which indicates their presence has important ecological impacts.

  19. Using lidar data to analyse sinkhole characteristics relevant for understory vegetation under forest cover-case study of a high karst area in the dinaric mountains.

    Science.gov (United States)

    Kobal, Milan; Bertoncelj, Irena; Pirotti, Francesco; Dakskobler, Igor; Kutnar, Lado

    2015-01-01

    In this article, we investigate the potential for detection and characterization of sinkholes under dense forest cover by using airborne laser scanning data. Laser pulse returns from the ground provide important data for the estimation of digital elevation model (DEM), which can be used for further processing. The main objectives of this study were to map and determine the geomorphometric characteristics of a large number of sinkholes and to investigate the correlations between geomorphology and vegetation in areas with such characteristics. The selected study area has very low anthropogenic influences and is particularly suitable for studying undisturbed karst sinkholes. The information extracted from this study regarding the shapes and depths of sinkholes show significant directionality for both orientation of sinkholes and their distribution over the area. Furthermore, significant differences in vegetation diversity and composition occur inside and outside the sinkholes, which indicates their presence has important ecological impacts.

  20. [Consumption of nuts and vegetal oil in people with type 1 diabetes mellitus].

    Science.gov (United States)

    Ferrer-García, Juan Carlos; Granell Vidal, Lina; Muñoz Izquierdo, Amparo; Sánchez Juan, Carlos

    2015-06-01

    Recent studies have demonstrated the cardiovascular benefits of the Mediterranean Diet, enriched with olive oil and nuts. People with diabetes, who have an increased risk of cardiovascular complications, could benefit greatly from following this type of eating pattern. Analysis of vegetable fats intake from nuts and olive oil in patients with 1 Diabetes Mellitus type (DM1). Transverse descriptive study comparing 60 people with type 1 Diabetes Mellitus (DM1) with 60 healthy individuals. We collect the frequency of consumption of vegetable oils and nuts and calculate the contribution of these foods in mono and polyunsaturated fatty acids (oleic acid, linoleic acid and α-linolenic acid). For data collection we designed a food frequency questionnaire specifically. We also collect anthropometric variables, cardiovascular risk factors and diabetes-related variables. Vegetable fat intake from vegetable oils (3.02 ± 1.14 vs 3.07 ± 1.27 portions/day, P = 0.822) and nuts (1.35 ± 2.24 vs 1.60 ± 2.44 portions/week, P = 0.560), was similar in both groups. The DM1 group consumed fewer portions of olive oil daily than the control group (2.55 ± 1.17 vs 3.02 ± 1.34 portions/day, P = 0.046). We detected a significantly lower intake of α-linolenic acid in the control group (1.13 ± 2.06 versus 2.64 ± 4.37 g/day, p = 0.018) while there were not differences in the rest of fatty acids (oleic acid 28.30 ± 18.13 vs 29.53 ± 16.90 g/day, P = 0.703; linoleic 13.70 ± 16.80 vs 15.45 ± 19.90 g/day, P = 0.605). In DM1, it not demonstrated an influence of the intake of vegetable fats and oils from nuts in the anthropometric, metabolic and diabetes-specific variables. In people with DM1, total intake of vegetable oils and nuts do not differ from the general population. However, the consumption of olive oil and the contribution of α-linolenic fatty acid derived from such fats are slightly lower than the general population. Although intake of vegetable oils and nuts in people with DM1

  1. Effect of Different Tillage Methods and Cover Crop Types on Yield and Yield Components of Wheat

    Directory of Open Access Journals (Sweden)

    Z Sharefee

    2018-05-01

    Full Text Available Introduction Conservation agriculture is an appropriate strategy for maintaining and improving agricultural resources which increases crop production and stability and also provides environmental protection. This attitude contributes to the conservation of natural resources (soil, water, and air and is one of the most effective ways to overcome the drought crisis, water management and compensation of soil organic matter in arid and semi-arid regions. The practice of zero-tillage decreases the mineralization of organic matter and contributes to the sequestration of organic carbon in the soil. Higher amounts of organic matter in the soil improve soil structure and root growth, water infiltration and retention, and cation exchange capacity. In addition, zero-tillage reduces soil compaction and crop production costs. Cover crops are cultivated to protect the soil from erosion and elements loss by leaching or runoff and also improve the soil moisture and temperature. Given that South Khorasan farmers still use traditional methods of cultivation of wheat, and cover crops have no place in their farming systems, the aim of this study was to investigate the effect of cover crops types and tillage systems on yield and yield components of wheat in Birjand region. Materials and Methods A split plot field experiment was conducted based on randomized complete block design with three replications at the Research Farm of the University of Birjand over the growing season of 2014-2015. The main factor was the type of tillage (no-till, reduced tillage and conventional tillage and cover crop type (chickling pea (Lathyrus sativus, rocket salad (Eruca sativa, triticale (X Triticosecale witmack, barley (Hordeum vulgaris and control (no cover crop was considered as sub plots. Cover crops were planted on July 2014. Before planting wheat, cover crops were dried through spraying paraquat herbicide using a backpack sprayer at a rate of 3 L ha-1. Then the three tillage

  2. Mapeamento da antiga cobertura vegetal de várzea do Baixo Amazonas a partir de imagens históricas (1975-1981 do Sensor MSS-Landsat Mapping ancient vegetation cover of the Amazon floodplain using historical MSS/Landsat images (1975-1981

    Directory of Open Access Journals (Sweden)

    Vivian Fróes Renó

    2011-03-01

    -classification techniques. The resulting map was organized four classes of land cover types: floodplain forest, non-forest floodplain vegetation, bare soil, and open water. Map accuracy was estimated from two types of ground data 1 sample points describing ground cover classes not subjected to major changes, such as permanent water bodies, and identifying indicators of the 30 year old vegetation type landscape (72 points; 2 interviews with community early residents for memory recovery of information on the vegetation cover existing in the 1970 (44 interviews. Altogether, 116 information points was collected along the study area. These points were used to calculate the Kappa Index for agreement between the four field-verified classes and the automatic classification, with value (0.78 indicates the good quality of the floodplain vegetation cover map. The region had 8650 km2 coverage of floodplain forest at the time of image acquisition.

  3. Vegetation types and forest productivity, west part of Syncrude's Lease 17, Alberta. Environmental Research Monography 1977-6. [Tar sands

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, E B; Levinsohn, A G

    1977-01-01

    The vegetation that existed in August 1977 on the western half of Syncrude's Lease 17 near Fort McMurray, Alberta is described. Eight vegetation types were identified and are mapped at a scale if 1 : 24,000. Black Spruce--Labrador Tea was the dominant vegetation type, making up 35.0% of the 9250 hectare study area. The second most abundant vegetation type was Aspen--White Spruce (26.0%) and the third was White Spruce--Aspen (18.0%). The remaining 21.0% of the area was occupied by the Aspen--Birch vegetation type (7.5%), Balsam Poplar--Alder (6.0%) along the McKay River, Sedge--Reed Grass (4.0%) mainly around bodies of standing water created by beaver dams, Willow--Reed Grass (3.0%) along stream courses, and Black Spruce--Feathermoss (0.5%). The White Spruce--Aspen type is best developed in the southern part of the lease. It is the only vegetation type that contains some white spruce stands approaching the present lower limits of merchantable forest in Alberta. The Aspen--White Spruce type was less productive. In terms of mean annual increment and site index, the two vegetation types with the greatest potential for fibre production (White Spruce--Aspen and Aspen--White Spruce types) are average or below average productivity when compared to data from similar stands elsewhere in Alberta and Saskatchewan.

  4. Relationships between NDVI, canopy structure, and photosynthesis in three California vegetation types

    International Nuclear Information System (INIS)

    Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Penuelas, J.; Valentini, R.

    1995-01-01

    In a range of plant species from three Californian vegetation types, we examined the widely used ''normalized difference vegetation index'' (NDVI) and ''simple ratio'' (SR) as indicators of canopy structure, light absorption, and photosynthetic activity. These indices, which are derived from canopy reflectance in the red and near-infrared wavebands, highlighted phenological differences between evergreen and deciduous canopies. They were poor indicators of total canopy biomass due to the varying abundance of non-green standing biomass in these vegetation types. However, in sparse canopies (leaf area index (LAI) apprxeq 0-2), NDVI was a sensitive indicator of canopy structure and chemical content (green biomass, green leaf area index, chlorophyll content, and foliar nitrogen content). At higher canopy green LAI values ( gt 2; typical of dense shrubs and trees), NDVI was relatively insensitive to changes in canopy structure. Compared to SR, NDVI was better correlated with indicators of canopy structure and chemical content, but was equivalent to the logarithm of SR. In agreement with theoretical expectations, both NDVI and SR exhibited near-linear correlations with fractional PAR intercepted by green leaves over a wide range of canopy densities. Maximum daily photosynthetic rates were positively correlated with NDVI and SR in annual grassland and semideciduous shrubs where canopy development and photosynthetic activity were in synchrony. The indices were also correlated with peak springtime canopy photosynthetic rates in evergreens. However, over most of the year, these indices were poor predictors of photosynthetic performance in evergreen species due to seasonal reductions in photosynthetic radiation-use efficiency that occurred without substantial declines in canopy greenness. Our results support the use of these vegetation indices as remote indicators of PAR absorption, and thus potential photosynthetic activity, even in

  5. Surface energy exchanges over contrasting vegetation types on a subtropical sand island

    Science.gov (United States)

    Gray, Michael; McGowan, Hamish; Lowry, Andrew; Guyot, Adrien

    2017-04-01

    The surface energy balance of subtropical coastal vegetation communities has thus far received little attention. Here we present a multi-year observational data set using the eddy covariance method to quantify for the first time the surface energy balance over three contrasting vegetation types on a subtropical sand island in eastern Australia: a periodically inundated sedge swamp, an exotic pine plantation and a coastal heath. Maximum daily sensible heat flux varied between sites but was typically > 280 Wm-2 in the coastal heath and pine plantation but no more than 250 Wm-2 in the swamp when dry and 1. The partitioning of energy, as represented by β, is similar to a variety of Australian ecosystems, and a range of coastal vegetation types in other latitudes, but differs from other tropical or subtropical locations which have strongly seasonal rainfall patterns and therefore a switch from β > 1 before rainfall to β changes in background meteorology with the most important influences being net radiation, absolute humidity, and rainfall. The main factor differentiating the sites was soil water content, with the remnant coastal heath and swamp having ready access to water but the exotic pine plantation having much drier soils. Should the current balance between remnant vegetation and the pine plantation undergo changes there would be a corresponding shift in the surface energy balance of the island as a whole, and altered plant water use may lead to reduced water table depth, important because the groundwater of the local islands is used as part of a regional water grid. A better understanding of the response of coastal vegetation to atmospheric forcing will enable more informed decision making on land use changes, as coastal regions the world over face development pressure.

  6. Types of fruits and vegetables used in commercial baby foods and their contribution to sugar content.

    Science.gov (United States)

    Garcia, Ada Lizbeth; McLean, Kimberley; Wright, Charlotte M

    2016-10-01

    Fruits and vegetables (F&V) are often featured in names of commercial baby foods (CBFs). We aimed to survey all available CBFs in the UK market with F&V included in the food name in order to describe the amount and types of F&V used in CBF and their contribution to total sugar content. Food labels were used to identify F&V and total sugar content. Fruits were more common than vegetables in names of the 329 CBFs identified. The six most common F&V in the names were all relatively sweet: apple, banana, tomato, mango, carrot and sweet potato. The percentage of F&V in the foods ranged from a median of 94% for sweet-spoonable to 13% for dry-savoury products. Fruit content of sweet foods (n = 177) was higher than vegetable content of savoury foods (n = 152) with a median (IQR) of 64.0 g/100 g (33.0-100.0) vs. 46.0 g/100 g (33-56.7). Fruit juice was added to 18% of products. The proportion of F&V in CBF correlated significantly with sugar content for all the food types except dry-savoury food (sweet-spoonable r = 0.24, P = 0.006; savoury-spoonable r = 0.65, P vegetables which are unlikely to encourage preferences for bitter-tasting vegetables or other non-sweet foods. F&V contribute significantly to the total sugar content, particularly of savoury foods. © 2015 John Wiley & Sons Ltd.

  7. Effects of vegetation type on microbial biomass carbon and nitrogen in subalpine mountain forest soils.

    Science.gov (United States)

    Ravindran, Anita; Yang, Shang-Shyng

    2015-08-01

    Microbial biomass plays an important role in nutrient transformation and conservation of forest and grassland ecosystems. The objective of this study was to determine the microbial biomass among three vegetation types in subalpine mountain forest soils of Taiwan. Tatachia is a typical high-altitude subalpine temperate forest ecosystem in Taiwan with an elevation of 1800-3952 m and consists of three vegetation types: spruce, hemlock, and grassland. Three plots were selected in each vegetation type. Soil samples were collected from the organic layer, topsoil, and subsoil. Microbial biomass carbon (Cmic) was determined by the chloroform fumigation-extraction method, and microbial biomass nitrogen (Nmic) was determined from the total nitrogen (Ntot) released during fumigation-extraction. Bacteria, actinomycetes, fungi, cellulolytic microbes, phosphate-solubilizing microbes, and nitrogen-fixing microbes were also counted. The Cmic and Nmic were highest in the surface soil and declined with the soil depth. These were also highest in spruce soils, followed by in hemlock soils, and were lowest in grassland soils. Cmic and Nmic had the highest values in the spring season and the lowest values in the winter season. Cmic and Nmic had significantly positive correlations with total organic carbon (Corg) and Ntot. Contributions of Cmic and Nmic, respectively, to Corg and Ntot indicated that the microbial biomass was immobilized more in spruce and hemlock soils than in grassland soils. Microbial populations of the tested vegetation types decreased with increasing soil depth. Cmic and Nmic were high in the organic layer and decreased with the depth of layers. These values were higher for spruce and hemlock soils than for grassland soils. Positive correlations were observed between Cmic and Nmic and between Corg and Ntot. Copyright © 2014. Published by Elsevier B.V.

  8. Estonian soil classification as a tool for recording information on soil cover and its matching with local site types, plant covers and humus forms classifications

    Science.gov (United States)

    Kõlli, Raimo; Tõnutare, Tõnu; Rannik, Kaire; Krebstein, Kadri

    2015-04-01

    Estonian soil classification (ESC) has been used successfully during more than half of century in soil survey, teaching of soil science, generalization of soil databases, arrangement of soils sustainable management and others. The Estonian normally developed (postlithogenic) mineral soils (form 72.4% from total area) are characterized by mean of genetic-functional schema, where the pedo-ecological position of soils (ie. location among other soils) is given by means of three scalars: (i) 8 stage lithic-genetic scalar (from rendzina to podzols) separates soils each from other by parent material, lithic properties, calcareousness, character of soil processes and others, (ii) 6 stage moisture and aeration conditions scalar (from aridic or well aerated to permanently wet or reductic conditions), and (iii) 2-3 stage soil development scalar, which characterizes the intensity of soil forming processes (accumulation of humus, podzolization). The organic soils pedo-ecological schema, which links with histic postlithogenic soils, is elaborated for characterizing of peatlands superficial mantle (form 23.7% from whole soil cover). The position each peat soil species among others on this organic (peat) soil matrix schema is determined by mean of 3 scalars: (i) peat thickness, (ii) type of paludification or peat forming peculiarities, and (iii) stage of peat decomposition or peat type. On the matrix of abnormally developed (synlithogenic) soils (all together 3.9%) the soil species are positioned (i) by proceeding in actual time geological processes as erosion, fluvial processes (at vicinity of rivers, lakes or sea) or transforming by anthropogenic and technological processes, and (ii) by 7 stage moisture conditions (from aridic to subaqual) of soils. The most important functions of soil cover are: (i) being a suitable environment for plant productivity; (ii) forming adequate conditions for decomposition, transformation and conversion of falling litter (characterized by humus

  9. Soil erosion and sediment yield and their relationships with vegetation cover in upper stream of the Yellow River

    NARCIS (Netherlands)

    Ouyang, W.; Hao, F.; Skidmore, A.K.; Toxopeus, A.G.

    2010-01-01

    Soil erosion is a significant concern when considering regional environmental protection, especially in the Yellow River Basin in China. This study evaluated the temporal-spatial interaction of land cover status with soil erosion characteristics in the Longliu Catchment of China, using the Soil and

  10. Natural vegetation cover in the landscape and edge effects: differential responses of insect orders in a fragmented forest.

    Science.gov (United States)

    González, Ezequiel; Salvo, Adriana; Valladares, Graciela

    2017-10-01

    Human activities have led to global simplification of ecosystems, among which Neotropical dry forests are some of the most threatened. Habitat loss as well as edge effects may affect insect communities. Here, we analyzed insects sampled with pan traps in 9 landscapes (at 5 scales, in 100-500 m diameter circles) comprising cultivated fields and Chaco Serrano forests, at overall community and taxonomic order level. In total 7043 specimens and 456 species of hexapods were captured, with abundance and richness being directly related to forest cover at 500 m and higher at edges in comparison with forest interior. Community composition also varied with forest cover and edge/interior location. Different responses were detected among the 8 dominant orders. Collembola, Hemiptera, and Orthoptera richness and/or abundance were positively related to forest cover at the larger scale, while Thysanoptera abundance increased with forest cover only at the edge. Hymenoptera abundance and richness were negatively related to forest cover at 100 m. Coleoptera, Diptera, and Hymenoptera were more diverse and abundant at the forest edge. The generally negative influence of forest loss on insect communities could have functional consequences for both natural and cultivated systems, and highlights the relevance of forest conservation. Higher diversity at the edges could result from the simultaneous presence of forest and matrix species, although "resource mapping" might be involved for orders that were richer and more abundant at edges. Adjacent crops could benefit from forest proximity since natural enemies and pollinators are well represented in the orders showing positive edge effects. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  11. A Covering Type Extrusion Die with Twin Cavities for Semi-Hollow Al-Profiles

    Science.gov (United States)

    Deng, Rurong; Huang, Xuemei

    2018-03-01

    A new structure named covering type with twin cavities in a die for the semi-hollow aluminum profiles was present. The determination of structure parameters was introduced in detail. Mainly including the selection of the machine, the arrangement of portholes, the structure design of chamber and the selection of bearing. The method of checking the die strength was introduced. According to the extrusion results, the structure of the traditional solid die, the porthole die with single cavity and the covering type structure with twin cavities were compared. The characteristics of the latter structure were simple and easy to process. The practical application shows that the new die structure can enhance the die life, improve the production efficiency and reduce the cost. The high precision and the surface brightness of the profiles were obtained. The structure is worth promoting. The aim is to provide reliable data and reference for the further research and development of this technology on the extrusion die with multi-cavities in a die.

  12. Multi-feature machine learning model for automatic segmentation of green fractional vegetation cover for high-throughput field phenotyping.

    Science.gov (United States)

    Sadeghi-Tehran, Pouria; Virlet, Nicolas; Sabermanesh, Kasra; Hawkesford, Malcolm J

    2017-01-01

    Accurately segmenting vegetation from the background within digital images is both a fundamental and a challenging task in phenotyping. The performance of traditional methods is satisfactory in homogeneous environments, however, performance decreases when applied to images acquired in dynamic field environments. In this paper, a multi-feature learning method is proposed to quantify vegetation growth in outdoor field conditions. The introduced technique is compared with the state-of the-art and other learning methods on digital images. All methods are compared and evaluated with different environmental conditions and the following criteria: (1) comparison with ground-truth images, (2) variation along a day with changes in ambient illumination, (3) comparison with manual measurements and (4) an estimation of performance along the full life cycle of a wheat canopy. The method described is capable of coping with the environmental challenges faced in field conditions, with high levels of adaptiveness and without the need for adjusting a threshold for each digital image. The proposed method is also an ideal candidate to process a time series of phenotypic information throughout the crop growth acquired in the field. Moreover, the introduced method has an advantage that it is not limited to growth measurements only but can be applied on other applications such as identifying weeds, diseases, stress, etc.

  13. Multi-feature machine learning model for automatic segmentation of green fractional vegetation cover for high-throughput field phenotyping

    Directory of Open Access Journals (Sweden)

    Pouria Sadeghi-Tehran

    2017-11-01

    Full Text Available Abstract Background Accurately segmenting vegetation from the background within digital images is both a fundamental and a challenging task in phenotyping. The performance of traditional methods is satisfactory in homogeneous environments, however, performance decreases when applied to images acquired in dynamic field environments. Results In this paper, a multi-feature learning method is proposed to quantify vegetation growth in outdoor field conditions. The introduced technique is compared with the state-of the-art and other learning methods on digital images. All methods are compared and evaluated with different environmental conditions and the following criteria: (1 comparison with ground-truth images, (2 variation along a day with changes in ambient illumination, (3 comparison with manual measurements and (4 an estimation of performance along the full life cycle of a wheat canopy. Conclusion The method described is capable of coping with the environmental challenges faced in field conditions, with high levels of adaptiveness and without the need for adjusting a threshold for each digital image. The proposed method is also an ideal candidate to process a time series of phenotypic information throughout the crop growth acquired in the field. Moreover, the introduced method has an advantage that it is not limited to growth measurements only but can be applied on other applications such as identifying weeds, diseases, stress, etc.

  14. Assessment of heterogeneity in types of vegetables served by main household food preparers and food decision influencers.

    Science.gov (United States)

    Yi, Sunghwan; Kanetkar, Vinay; Brauer, Paula

    2015-10-01

    While vegetables are often studied as one food group, global measures may mask variation in the types and forms of vegetables preferred by different individuals. To explore preferences for and perceptions of vegetables, we assessed main food preparers based on their preparation of eight specific vegetables and mushrooms. An online self-report survey. Ontario, Canada. Measures included perceived benefits and obstacles of vegetables, convenience orientation and variety seeking in meal preparation. Of the 4517 randomly selected consumers who received the invitation, 1013 responded to the survey (22·4 % response). Data from the main food preparers were analysed (n 756). Latent profile analysis indicated three segments of food preparers. More open to new recipes, the 'crucifer lover' segment (13 %) prepared and consumed substantially more Brussels sprouts, broccoli and asparagus than the other segments. Although similar to the 'average consumer' segment (54 %) in many ways, the 'frozen vegetable user' segment (33 %) used significantly more frozen vegetables than the other segments due to higher prioritization of time and convenience in meal preparation and stronger 'healthy=not tasty' perception. Perception of specific vegetables on taste, healthiness, ease of preparation and cost varied significantly across the three consumer segments. Crucifer lovers also differed with respect to shopping and cooking habits compared with the frozen vegetable users. The substantial heterogeneity in the types of vegetables consumed and perceptions across the three consumer segments has implications for the development of new approaches to promoting these foods.

  15. Role of vegetation type on hydraulic conductivity in urban rain gardens

    Science.gov (United States)

    Schott, K.; Balster, N. J.; Johnston, M. R.

    2009-12-01

    Although case studies report improved control of urban stormwater within residential rain gardens, the extent to which vegetation type (shrub, turf, prairie) affects the saturated hydraulic conductivity (Ksat) of these depressions has yet to be investigated in a controlled experiment. We hypothesized that there would be significant differences in hydraulic conductivity by vegetation type due to differences in soil physical characteristics and rooting dynamics such that Ksat of shrub gardens would exceed that of prairie, followed by turf. To test this hypothesis, we measured changes in Ksat relative to the above vegetation types as well as non-vegetative controls, each of which were replicated three times for a total of 12 rain gardens. Ksat was calculated using a published method for curve-fitting to single-ring infiltration with a two-head approach where the shape factor is independent of ponding depth. Constant-head infiltration rates were measured at two alternating ponding depths within each garden twice over the growing season. Root core samples were also taken to qualify belowground characteristics including soil bulk density and rooting dynamics relative to differences in Ksat. We found the control and shrub gardens had the lowest mean Ksat of 3.56 (SE = 0.96) and 3.73 (1.22) cm3 hr-1, respectively. Prairie gardens had the next highest mean Ksat of 12.18 (2.26) cm3 hr-1, and turf had the highest mean value of 23.63 (1.81) cm3 hr-1. These data suggest that a denser rooting network near the soil surface may influence saturated hydraulic conductivity. We applied our observed flow rates to a Glover solution model for 3-dimensional flow, which revealed considerably larger discrepancies in turf gardens than beneath prairie or shrub. This indicated that lateral flow conditions in the turf plots could be the explanation for our observed infiltration rates.

  16. Webcam network and image database for studies of phenological changes of vegetation and snow cover in Finland, image time series from 2014 to 2016

    Science.gov (United States)

    Peltoniemi, Mikko; Aurela, Mika; Böttcher, Kristin; Kolari, Pasi; Loehr, John; Karhu, Jouni; Linkosalmi, Maiju; Melih Tanis, Cemal; Tuovinen, Juha-Pekka; Nadir Arslan, Ali

    2018-01-01

    In recent years, monitoring of the status of ecosystems using low-cost web (IP) or time lapse cameras has received wide interest. With broad spatial coverage and high temporal resolution, networked cameras can provide information about snow cover and vegetation status, serve as ground truths to Earth observations and be useful for gap-filling of cloudy areas in Earth observation time series. Networked cameras can also play an important role in supplementing laborious phenological field surveys and citizen science projects, which also suffer from observer-dependent observation bias. We established a network of digital surveillance cameras for automated monitoring of phenological activity of vegetation and snow cover in the boreal ecosystems of Finland. Cameras were mounted at 14 sites, each site having 1-3 cameras. Here, we document the network, basic camera information and access to images in the permanent data repository (http://www.zenodo.org/communities/phenology_camera/). Individual DOI-referenced image time series consist of half-hourly images collected between 2014 and 2016 (https://doi.org/10.5281/zenodo.1066862). Additionally, we present an example of a colour index time series derived from images from two contrasting sites.

  17. Webcam network and image database for studies of phenological changes of vegetation and snow cover in Finland, image time series from 2014 to 2016

    Directory of Open Access Journals (Sweden)

    M. Peltoniemi

    2018-01-01

    Full Text Available In recent years, monitoring of the status of ecosystems using low-cost web (IP or time lapse cameras has received wide interest. With broad spatial coverage and high temporal resolution, networked cameras can provide information about snow cover and vegetation status, serve as ground truths to Earth observations and be useful for gap-filling of cloudy areas in Earth observation time series. Networked cameras can also play an important role in supplementing laborious phenological field surveys and citizen science projects, which also suffer from observer-dependent observation bias. We established a network of digital surveillance cameras for automated monitoring of phenological activity of vegetation and snow cover in the boreal ecosystems of Finland. Cameras were mounted at 14 sites, each site having 1–3 cameras. Here, we document the network, basic camera information and access to images in the permanent data repository (http://www.zenodo.org/communities/phenology_camera/. Individual DOI-referenced image time series consist of half-hourly images collected between 2014 and 2016 (https://doi.org/10.5281/zenodo.1066862. Additionally, we present an example of a colour index time series derived from images from two contrasting sites.

  18. SAFARI 2000 Estimated BVOC Emissions for Southern African Land Cover Types

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Improved vegetation distribution and emission data for Africa south of the equator were developed for the Southern African Regional Science Initiative...

  19. Role of Surface Wind and Vegetation Cover in Multi-decadal Variations of Dust Emission in the Sahara and Sahel

    Science.gov (United States)

    Kim, Dong; Chin, Mian; Remer, Lorraine A.; Diehl, Thomas L.; Bian, Huisheng; Yu, Hongbin; Brown, Molly E.; Stockwell, William R.

    2016-01-01

    North Africa, the world's largest dust source, is non-uniform, consisting of a permanently arid region (Sahara), a semi-arid region (Sahel), and a relatively moist vegetated region (Savanna), each with very different rainfall patterns and surface conditions. This study aims to better understand the controlling factors that determine the variation of dust emission in North Africa over a 27-year period from 1982 to 2008, using observational data and model simulations. The results show that the model-derived Saharan dust emission is only correlated with the 10-m winds (W10m) obtained from reanalysis data, but the model-derived Sahel dust emission is correlated with both W10m and the Normalized Difference Vegetation Index (NDVI) that is obtained from satellite. While the Saharan dust accounts for 82 of the continental North Africa dust emission (1340-1570 Tg year(exp -1) in the 27-year average, the Sahel accounts for 17 with a larger seasonal and inter-annual variation (230-380 Tg year(exp -1), contributing about a quarter of the transatlantic dust transported to the northern part of South America. The decreasing dust emission trend over the 27-year period is highly correlated with W10m over the Sahara (R equals 0.92). Over the Sahel, the dust emission is correlated with W10m (R 0.69) but is also anti-correlated with the trend of NDVI (R equals 0.65). W10m is decreasing over both the Sahara and the Sahel between 1982 and 2008, and the trends are correlated (R equals 0.53), suggesting that Saharan Sahelian surface winds are a coupled system, driving the inter-annual variation of dust emission.

  20. Influence of shrub cover vegetal and slope length on soil bulk density; Influencia de la cubierta vegetal arbustiva y la longitud de la ladera sobre la densidad aparente del suelo

    Energy Technology Data Exchange (ETDEWEB)

    Bienes, R.; Jimenez, R.; Ruiz, M.; Garcia-Estringana, P.; Marques, M. J.

    2009-07-01

    In arid and semiarid environments of the Mediterranean climate, the shrub species play an important role in the revegetation of abandoned lands, which enables to control the soil losses, organic material and water. In this article are compared the results obtained under different revegetation in abandoned lands in the central area of Spain. In these revegetation has been used two native shrubs: A triplex halimus (Ah) and Retama sphaerocarpa (Rs), and were analyzed the influence of these revegetation in the contents of organic material of soil and apparent density in 5 years time after planting. As control, have been considered the pieces of ground with spontaneous vegetation abandoned in the same date that the shrubs revegetation. Atriplex halimus gives to the soil a covering capable to intercept a big amount of water drops absorbing a great amount part of the kinetic energy of the rain, while provides a microclimates as a result of be able to soften the wind, the temperature and the evaporation-transpiration, which makes it efficient to control the erosion and the desertification (Le Houerou, 2000). Retama sphaerocarpa was chosen because it is a native shrub very characteristic, and, due to its symbiosis with the Bradyrhizobium, enriches the soil in nitrogen, which is taken by the nitrophilous species enhancing the spontaneous vegetal covering. (Author) 9 refs.

  1. Meal types as sources for intakes of fruits, vegetables, fish and whole grains among Norwegian adults.

    Science.gov (United States)

    Myhre, Jannicke B; Løken, Elin B; Wandel, Margareta; Andersen, Lene F

    2015-08-01

    To study how different meals contribute to intakes of fruits, vegetables, fish and whole grains in a group of Norwegian adults and in subgroups of this population. Moreover, to investigate the consequences of skipping the meal contributing most to the intake of each food group (main contributing meal). Cross-sectional dietary survey in Norwegian adults. Dietary data were collected using two non-consecutive telephone-administered 24 h recalls. The recorded meal types were breakfast, lunch, dinner, supper/evening meal and snacks. Nationwide, Norway (2010-2011). Adults aged 18-70 years (n 1787). Dinner was the main contributing meal for fish and vegetables, while snacks were the main contributing meal for fruit intake. For whole grains, breakfast was the main contributing meal. The main contributing meal did not change for any of the food groups when studying subgroups of the participants according to intake of each food group, educational level or age. A substantially lower intake of the food groups in question was found on days when the main contributing meal was skipped. Intakes of fruits, vegetables, fish and whole grains largely depend on one meal type. Inclusion of these foods in other meals in addition to the main contributing meal, preferably replacing energy-dense nutrient-poor foods, should be promoted.

  2. Impact of vegetation types on soil organic carbon stocks SOC-S in Mediterranean natural areas

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz; Cantudo-Pérez, Marta

    2015-04-01

    Soils play a key role in the carbon geochemical cycle because they can either emit large quantities of CO2 or on the contrary they can act as a store for carbon. Agriculture and forestry are the only activities that can achieve this effect through photosynthesis and the carbon incorporation into carbohydrates (Parras-Alcántara et al., 2013). The Mediterranean evergreen oak Woodland (MEOW - dehesa) is a type of pasture with scattered evergreen and deciduous oak stands in which cereals are often grown under the tree cover. It is a system dedicated to the combined production of Iberian swine, sheep, fuel wood, coal and cork as well as to hunting. These semi-natural areas still preserve some of the primitive vegetation of the Mediterranean oak forests. The dehesa is a pasture where the herbaceous layer is comprised of either cultivated cereals such as oat, barley and wheat or native vegetation dominated by annual species, which are used as grazing resources. These Iberian open woodland rangelands (dehesas) have been studied from different points of view: hydrologically, with respect to soil organic matter content, as well as in relation to gully erosion, topographical thresholds, soil erosion and runoff production, soil degradation and management practices…etc, among others. The soil organic carbon stock capacity depends not only on abiotic factors such as the mineralogical composition and the climate, but also on soil use and management (Parras et al., 2014 and 2015). In Spanish soils, climate, use and management strongly affect the carbon variability, mainly in soils in dry Mediterranean climates characterized by low organic carbon content, weak structure and readily degradable soils. Hontoria et al. (2004) emphasized that the climate and soil use are two factors that greatly influence carbon content in the Mediterranean climate. This research sought to analyze the SOC stock (SOCS) variability in MEOW - dehesa with cereals, olive grove and Mediterranean oak forest

  3. Landsat 8 and ICESat-2: Performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass

    Science.gov (United States)

    Glenn, Nancy F.; Neuenschwander, Amy; Vierling, Lee A.; Spaete, Lucas; Li, Aihua; Shinneman, Douglas; Pilliod, David S.; Arkle, Robert; McIlroy, Susan

    2016-01-01

    The Landsat 8 mission provides new opportunities for quantifying the distribution of above-ground carbon at moderate spatial resolution across the globe, and in particular drylands. Furthermore, coupled with structural information from space-based and airborne laser altimetry, Landsat 8 provides powerful capabilities for large-area, long-term studies that quantify temporal and spatial changes in above-ground biomass and cover. With the planned launch of ICESat-2 in 2017 and thus the potential to couple Landsat 8 and ICESat-2 data, we have unprecedented opportunities to address key challenges in drylands, including quantifying fuel loads, habitat quality, biodiversity, carbon cycling, and desertification.

  4. Leguminous cover crops differentially affect maize yields in three contrasting soil types of Kakamega, Western Kenya

    Directory of Open Access Journals (Sweden)

    Kelvin Mark Mtei

    2011-06-01

    Full Text Available Maize production in smallholder farming systems in Kenya is largely limited by low soil fertility. As mineral fertilizer is expensive, green manuring using leguminous cover crops could be an alternative strategy for farmers to enhance farm productivity. However due to variability in soil type and crop management, the effects of green manure are likely to differ with farms. The objectives of this study were to evaluate Mucuna pruriens and Arachis pintoi on (i biomass and nitrogen fixation (15N natural abundance, (ii soil carbon and nitrogen stocks and (iii their effects on maize yields over two cropping seasons in Kakamega, Western Kenya. Mucuna at 6 weeks accumulated 1–1.3 Mg ha^{-1} of dry matter and 33–56 kg ha^{-1} nitrogen of which 70% was nitrogen derived from the atmosphere (Ndfa. Arachis after 12 months accumulated 2–2.7 Mg ha^{-1} of dry matter and 51–74 kg N ha^{-1} of which 52-63 % was from Ndfa. Soil carbon and nitrogen stocks at 0–15 cm depth were enhanced by 2-4 Mg C ha^{-1} and 0.3–1.0 Mg N ha^{-1} under Mucuna and Arachis fallow, irrespective of soil type. Maize yield increased by 0.5-2 Mg ha^{-1} in Mucuna and 0.5–3 Mg ha^{-1} in Arachis and the response was stronger on Nitisol than on Acrisol or Ferralsol. We concluded that leguminous cover crops seem promising in enhancing soil fertility and maize yields in Kenya, provided soil conditions and rainfall are suitable.

  5. A thick homogeneous vegetated cover design proves cost - and schedule-effective for the reclamation of uranium mills sites near Spokane, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Blacklaw, J.; Robertson, G.; Stoffel, D.; Ahmad, J.; Fordham, E. [Washington State Dept. of Health, Olympia, WA (United States)] [and others

    1997-08-01

    The Washington State Department of Health (WDOH) has licensed two medium sized uranium mills with tailings impoundments covering 28 and 40 hectares (70 and 100 acres), respectively, The uranium mill licensees have submitted closure and reclamation plans to the state, and site-specific conditions have determined the closure design features, Conventional uranium mill cover designs usually incorporate an overall cap of one to three meters, which includes a low-permeability clay barrier layer. A technical evaluation of several uranium mill facilities that used this design was published in the fall of 1994 and reported that unexpected vegetation root damage had occurred in the low-permeability clay (or bentonite amended) barrier layers. The technical report suggested that the low-permeability design feature at some sites could be compromised within a very short time and the regulatory goal of 1,000 years performance might not be achieved. In October 1994, WDOH sponsored a technical forum meeting to consider design alternatives to address these reliability concerns. Representatives from the federal government, nuclear industry, licensees, engineering firms, and state regulatory agencies attended the workshop. Risk factors considered in the evaluation of the uranium mill reclamation plans include: (1) radon gas emanation through the cover (the air pathway), and (2) migration of hazardous and/or radioactive constituents (the groundwater pathway). Additional design considerations include site structural stability, longevity of 1,000 years, and no active (ongoing) maintenance. 9 refs.

  6. Vegetation cover and their functioning in dependence on the reclamation of the Velka podkrusnohorska dump during last 20 years using satellite data analysis

    International Nuclear Information System (INIS)

    Prochazka, J.; Nedbal, V.; Pecharova, E.; Brom, J.

    2010-01-01

    Vegetation plays a significant role in mass retention, solar energy dissipation, water cycle forming and local climate changes on reclamation plots of mining areas. This paper discussed the use of Landsat satellite data in order to evaluate different types of reclamation and their development for the last 20 years in the case of the Velka podkrusnohorska dump. Biophysical parameters which can be indicators of solar energy dissipation that were utilized to analyse changes of temporal development from 1991 to 2009 included land surface temperature, surface moisture expressed as wetness index tasseled cap, and normalized difference vegetation index. From these parameters, a functional index was then developed. The paper discussed the development of these parameters and their relationship to solar energy dissipation. It was concluded that since 1995, the observed parameters significantly changed, gradually converging to the state of the surrounding landscape. 16 refs., 2 tabs., 2 figs.

  7. Vegetation cover and their functioning in dependence on the reclamation of the Velka podkrusnohorska dump during last 20 years using satellite data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Prochazka, J.; Nedbal, V.; Pecharova, E. [South Bohemia Univ., Ceske Budejovice (Czech Republic); Brom, J. [Enki o.p.s., Trebon (Czech Republic)

    2010-07-01

    Vegetation plays a significant role in mass retention, solar energy dissipation, water cycle forming and local climate changes on reclamation plots of mining areas. This paper discussed the use of Landsat satellite data in order to evaluate different types of reclamation and their development for the last 20 years in the case of the Velka podkrusnohorska dump. Biophysical parameters which can be indicators of solar energy dissipation that were utilized to analyse changes of temporal development from 1991 to 2009 included land surface temperature, surface moisture expressed as wetness index tasseled cap, and normalized difference vegetation index. From these parameters, a functional index was then developed. The paper discussed the development of these parameters and their relationship to solar energy dissipation. It was concluded that since 1995, the observed parameters significantly changed, gradually converging to the state of the surrounding landscape. 16 refs., 2 tabs., 2 figs.

  8. Satellite monitoring of different vegetation types by differential optical absorption spectroscopy (DOAS in the red spectral range

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2007-01-01

    Full Text Available A new method for the satellite remote sensing of different types of vegetation and ocean colour is presented. In contrast to existing algorithms relying on the strong change of the reflectivity in the red and near infrared spectral region, our method analyses weak narrow-band (few nm reflectance structures (i.e. "fingerprint" structures of vegetation in the red spectral range. It is based on differential optical absorption spectroscopy (DOAS, which is usually applied for the analysis of atmospheric trace gas absorptions. Since the spectra of atmospheric absorption and vegetation reflectance are simultaneously included in the analysis, the effects of atmospheric absorptions are automatically corrected (in contrast to other algorithms. The inclusion of the vegetation spectra also significantly improves the results of the trace gas retrieval. The global maps of the results illustrate the seasonal cycles of different vegetation types. In addition to the vegetation distribution on land, they also show patterns of biological activity in the oceans. Our results indicate that improved sets of vegetation spectra might lead to more accurate and more specific identification of vegetation type in the future.

  9. Climate and vegetation study using environmental isotope types of stalactite at Seropan Cave, Gunung Kidul Yogyakarta

    International Nuclear Information System (INIS)

    Satrio; Sidauruk, P.; Pratikno, B.

    2012-01-01

    Climate and vegetation study using environmental isotopes (i.e., 13 C, 14 C and 18 O) variations of stalactite has been conducted at Seropan cave, Gunung Kidul Karst area. The stalactite samples were collected from Seropan Cave at Semanu, Gunung Kidul, Yogyakarta. The objective of study is to understand the climate change, and vegetation types, temperature of atmosphere, age and stalactite growth rate through the interpretation of environmental isotopes (i.e., 13 C, 14 C and 18 O) of stalactite samples. The environmental isotope content of stalactite samples were analysed through CaCO 3 compound that was found at the stalactite samples. The 13 C content of samples is important to understand climate undulation and also vegetation variation. On the other hand, the variation of 18 O and 14 C contents is important to predict past temperature of atmosphere, and the age as well as stalactite growth rate, respectively. The result of environmental 13 C isotope analysis showed that Gunung Kidul area in general can be classified as dry climate. It is also indicated that almost 87.5 % of local vegetation can be classified as dry vegetation C4 as can be seen from the variation of δ 13 C content that is -6 ‰ to +2 ‰ vs PDB. This can also mean that only 12.5 % of the time that the vegetation in the area is wet in which the variation of δ 13 C content is in the range -14 ‰ to -6 ‰ vs PDB. The variations of 18 O contents of the samples (carbonate stalactite, or drip water) showed that the average temperature since 1621 to 2011 was around 19.5 °C. On the other hand, the variations of 14 C contents of the samples showed that stalactite growth rate was around 0.1 mm/year or one mm in ten years. The result shows that the stalactite growth is very slow as generally expected in tropical area such as Gunung Kidul. (author)

  10. Wood-inhabiting fungi in southern Italy forest stands: morphogroups, vegetation types and decay classes.

    Science.gov (United States)

    Granito, Vito Mario; Lunghini, Dario; Maggi, Oriana; Persiani, Anna Maria

    2015-01-01

    The authors conducted an ecological study of forests subjected to varying management. The aim of the study was to extend and integrate, within a multivariate context, knowledge of how saproxylic fungal communities behave along altitudinal/vegetational gradients in response to the varying features and quality of coarse woody debris (CWD). The intra-annual seasonal monitoring of saproxylic fungi, based on sporocarp inventories, was used to investigate saproxylic fungi in relation to vegetation types and management categories. We analyzed fungal species occurrence, recorded according to the presence/absence and frequency of sporocarps, on the basis of the harvest season, of coarse woody debris decay classes as well as other environmental and ecological variables. Two-way cluster analysis, DCA and Spearman's rank correlations, for indirect gradient analysis, were performed to identify any patterns of seasonality and decay. Most of the species were found on CWD in an intermediate decay stage. The first DCA axis revealed the vegetational/microclimate gradient as the main driver of fungal community composition, while the second axis corresponded to a strong gradient of CWD decay classes. © 2015 by The Mycological Society of America.

  11. Major Vegetation Types of the Soutpansberg Conservancy and the Blouberg Nature Reserve, South Africa

    Directory of Open Access Journals (Sweden)

    Theo H.C. Mostert

    2008-10-01

    Full Text Available The Major Megetation Types (MVT and plant communities of the Soutpansberg Centre of Endemism are described in detail, with special reference to the Soutpansberg Conservancy and the Blouberg Nature Reserve. Phytosociological data from 442 sample plots were ordinated using a DEtrended CORrespondence ANAlysis (DECORANA and classified using TWo-Way INdicator SPecies ANalysis (TWINSPAN. The resulting classification was further refined with table-sorting procedures based on the Braun–Blanquet floristic–sociological approach of vegetation classification using MEGATAB. Eight MVT’s were identified and described as Eragrostis lehmanniana var. lehmanniana–Sclerocarya birrea subsp. caffra Blouberg Northern Plains Bushveld, Euclea divinorum–Acacia tortilis Blouberg Southern Plains Bushveld, Englerophytum magalismontanum–Combretum molle Blouberg Mountain Bushveld, Adansonia digitata–Acacia nigrescens Soutpansberg Arid Northern Bushveld, Catha edulis–Flueggia virosa Soutpansberg Moist Mountain Thickets, Diplorhynchus condylocarpon–Burkea africana Soutpansberg Leached Sandveld, Rhus rigida var. rigida–Rhus magalismontanum subsp. coddii Soutpansberg Mistbelt Vegetation and Xymalos monospora–Rhus chirendensis Soutpansberg Forest Vegetation.

  12. EFEITO DA COBERTURA VEGETAL DO SOLO SOBRE A ABUNDÂNCIA E DIVERSIDADE DE INIMIGOS NATURAIS DE PRAGAS EM VINHEDOS EFFECTS OF COVER CROPS ON THE ABUNDANCE AND DIVERSITY OF NATURAL ENEMIES OF GRAPEVINE PEST

    Directory of Open Access Journals (Sweden)

    MARCOS ANTÔNIO MATIELLO FADINI

    2001-12-01

    Full Text Available O controle de pragas da videira no Brasil restringe-se basicamente ao uso de inseticidas, devido à inexistência de trabalhos que visem a complementar o manejo de pragas através de controle biológico. Neste trabalho, objetivou-se verificar o efeito de diferentes coberturas vegetais nas entrelinhas de plantio de videira sobre a abundância e diversidade de potenciais inimigos naturais de pragas da videira no município de Caldas, região Sul do Estado de Minas Gerais. Foram testadas sete diferentes coberturas de solo (aveia-preta, aveia-preta e ervilhaca, ervilhaca, cobertura morta, uso de herbicida, capina mecânica e mato roçado. A cobertura vegetal do solo influenciou tanto a diversidade quanto a abundância de inimigos naturais, sendo o consórcio de aveia-preta e ervilhaca, cultivadas simultaneamente, o tratamento que proporcionou maior diversidade e abundância de inimigos naturais. Assim, a cobertura vegetal do solo pode, potencialmente, ser um componente importante em programas de manejo integrado de pragas na cultura da videira.The control of grapevine pests in Brazil is only based in the use of chemical products. It is due to the whole absence of experimental works developed to test and evaluate alternative control systems, like the biological control. The objective of this work was to evaluate the effect of different types of cover crops, placed between the cultivation lines of grapevine, in the abundance and diversity of natural control arthropods of grapevine pests. The experiment was conduced in the EPAMIG, Caldas Research Farm, located in the Minas Gerais State, Brazil. They Were tested seven different systems of soil covering. The presence of vegetal covering was beneficial to improve the diversity as well as the abundance of biological control agents present on the grapevine crop. The cultivation of black oat and pea together, was the treatment that showed the better result to diversity and abundance. Therefore, the cover

  13. Effects of Compost Type and Rootstock Length on Fruit and Vegetable Seedlings Growth in the Nursery

    Directory of Open Access Journals (Sweden)

    Dody Priadi

    2016-11-01

    Full Text Available The study was conducted to develop local fruit plants and to improve vegetable production at the Plant Germplasm Garden of RC for Biotechnology-LIPI. Carambola (Averrhoa carambola, durian (Durio zibethinus and guava (Psidium guajava were propagated vegetatively (grafting and budding and were grown on the media containing grass compost (K-1, spent compost of paddy straw mushroom (K-2 or oyster mushroom (K-3 in combination with rootstock length of 45-55 cm (TB-1, 65-75 cm (TB-2 and 75-90 cm (TB-3. Tomato (Lycopersicum esculentum and kangkung (Ipomoea reptans were grown on the same media in the screen house. The highest survival rate of grafted durian (71.56% was obtained from TB-3 grown on K-1 by budding technique. Meanwhile, the highest survival rate of carambola (68.89% was obtained from TB-1 by grafting technique. The budding technique was not appropriate for guava (0 % of survival. Application of K-3 of 3 kgs on tomato plants resulted in the highest fresh weight, length, and diameter of the fruit, and the highest of plant height, total leaves, and biomass of kangkung. The study is expected to be applied to improve fruit plant growth and survival rate as well as a high production of organic vegetable.How to CitePriadi, D., & Mulyaningsih, E. S. (2016. Effects of Compost Type and Rootstock Length on Fruit and Vegetable Seedlings Growth  in the Nursery. Biosaintifika: Journal of Biology & Biology Education, 8(3, 301-307. 

  14. Soil chemical and physical properties that differentiate urban land-use and cover types

    Science.gov (United States)

    R.V. Pouyat; I.D. Yesilonis; J. Russell-Anelli; N.K. Neerchal

    2007-01-01

    We investigated the effects of land use and cover and surface geology on soil properties in Baltimore, MD, with the objectives to: (i) measure the physical and chemical properties of surface soils (0?10 cm) by land use and cover; and (ii) ascertain whether land use and cover explain differences in these properties relative to surface geology. Mean and median values of...

  15. [Soil infiltration characteristics under main vegetation types in Anji County of Zhejiang Province].

    Science.gov (United States)

    Liu, Dao-Ping; Chen, San-Xiong; Zhang, Jin-Chi; Xie, Li; Jiang, Jiang

    2007-03-01

    The study on the soil infiltration under different main vegetation types in Anji County of Zhejiang Province showed that the characteristics of soil infiltration differed significantly with land use type, and the test eight vegetation types could be classified into four groups, based on soil infiltration capability. The first group, deciduous broadleaved forest, had the strongest soil infiltration capability, and the second group with a stronger soil infiltration capability was composed of grass, pine forest, shrub community and tea bush. Bamboo and evergreen broadleaved forest were classified into the third group with a relatively strong soil infiltration capability, while bare land belonged to the fourth group because of the bad soil structure and poorest soil infiltration capability. The comprehensive parameters of soil infiltration (alpha) and root (beta) were obtained by principal component analysis, and the regression model of alpha and beta could be described as alpha = 0. 1708ebeta -0. 3122. Soil infiltration capability was greatly affected by soil physical and chemical characteristics and root system. Fine roots (soil physical and chemical properties, and the increase of soil infiltration capability was closely related to the amount of the fine roots.

  16. SAFARI 2000 Estimated BVOC Emissions for Southern African Land Cover Types

    Data.gov (United States)

    National Aeronautics and Space Administration — Improved vegetation distribution and emission data for Africa south of the equator were developed for the Southern African Regional Science Initiative (SAFARI 2000)...

  17. Evolução da cobertura vegetal e uso agrícola do solo no município de Lagoa Seca, PB Evolution of vegetation covering and land use in the municipal district of Lagoa Seca, PB

    Directory of Open Access Journals (Sweden)

    Íris do S. Barbosa

    2009-10-01

    Full Text Available O presente estudo consiste no levantamento de informações relacionadas aos aspectos biofísicos, mapeamento e quantificação da vegetação natural e das áreas agricultáveis, mediante interpretação de fotos aéreas de 1984, análise visual de imagem digital do satélite Landsat, canais Tm³, TM4 e TM5, datada de 10 de julho de 1989 e no levantamento de coordenadas através do Sistema de Posicionamento Global (GPS, 2001. Foram elaborados, para a área em estudo, arquivos digitais georreferenciados, referentes aos temas limite municipal, cobertura vegetal natural e uso agrícola do solo, em ambos os períodos, 1984 e 2001, utilizados para a classificação da vegetação secundária dominante, na circunscrição das áreas de uso agrícola, de acordo com a prática agrícola peculiar, na identificação das fisionomias vegetais e avaliação do processo evolutivo das fisionomias no período mencionado.This study comprised of the collection of data on biophysical aspects, the mapping and quantification of natural vegetation and arable areas, through interpretation of aerial pictures taken in 1984, visual analysis of digital images from Landsat satellites, Tm³, TM4 and TM5 channels, carried out on July 10, 1989 and the survey of coordinates through the Global Positioning System (GPS, 2001. Digital geo-referenced files elaborated for the studied area comprising basic data about the municipal limit, natural vegetation covering, land use, in both periods, 1984 and 2001, were used for classification of the dominant secondary vegetation, definition of the agricultural use of soil in agreement with the peculiar agricultural practices, identification of the vegetable physiognomies and evaluation of their evolutionary process in the mentioned period.

  18. Correlation between hydrological drought, climatic factors, reservoir operation, and vegetation cover in the Xijiang Basin, South China

    Science.gov (United States)

    Lin, Qingxia; Wu, Zhiyong; Singh, Vijay P.; Sadeghi, S. H. R.; He, Hai; Lu, Guihua

    2017-06-01

    The Xijiang River is known as the Golden Watercourse because of its role in the development of the Pearl River Delta Regional Economic System in China, which was made possible by its abundant water resources. At present, the hydrological regime of the Xijiang River has now become complicated, the water shortages and successive droughts pose a threat to regional economic development. However, the complexity of hydroclimatological processes with emphasizes on drought has not been comprehended. In order to effectively predict and develop the adaptation strategies to cope with the water scarcity damage caused by hydrological droughts, it is essential to thoroughly analyze the relationship between hydrological droughts and pre/post-dependent hydroclimatological factors. To accomplish this, the extreme-point symmetric mode decomposition method (ESMD) was utilized to reveal the periodic variation in hydrological droughts that is characterized by the Standardized Drought Index (SDI). In addition, the cross-wavelet transform method was applied to investigate the correlation between large-scale climate indices and drought. The results showed that hydrological drought had the most significant response to spring ENSO (El Niño-Southern Oscillation), and the response lags in sub-basins were mostly 8-9 months except that in Yujiang River were mainly 5 or 8 months. Signal reservoir operation in the Yujiang River reduced drought severity by 52-95.8% from January to April over the 2003-2014 time period. Similarly, the cascade reservoir alleviated winter and spring droughts in the Hongshuihe River Basin. However, autumn drought was aggravated with severity increased by 41.9% in September and by 160.9% in October, so that the land surface models without considering human intervention must be used with caution in the hydrological simulation. The response lags of the VCI (Vegetation Condition Index) to hydrological drought were different in the sub-basins. The response lag for the

  19. Plant uptake of radiocaesium from artificially contaminated soil monoliths covering major European soil types

    Energy Technology Data Exchange (ETDEWEB)

    Waegeneers, Nadia [Laboratory for Soil and Water Management, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee (Belgium)], E-mail: nadia.waegeneers@agr.kuleuven.ac.be; Sauras-Yera, Teresa [Departament de Biologia Vegetal, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona (Spain); Thiry, Yves [SCK.CEN, Radioecology Laboratory, Boeretang 200, B-2400 Mol (Belgium); Vallejo, V. Ramon [Departament de Biologia Vegetal, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona (Spain); CEAM, Parque Tecnologico, Charles Darwin 14, 46980 Parterna (Spain); Smolders, Erik [Laboratory for Soil and Water Management, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee (Belgium); Madoz-Escande, Chantal; Brechignac, Francois [SERLAB, ISPN, Department for Environmental Protection, CE-Cadarache Batiment 159, Saint-Paul-lez-Durance Cedex 13108 (France)

    2009-06-15

    Uptake of {sup 137}Cs was measured in different agricultural plant species (beans, lettuce, barley and ryegrass) grown in 5 undisturbed soil monoliths covering major European soil types. The first cultivation was made three years after soil contamination and plants were grown during 3 successive years. The plant-soil {sup 137}Cs transfer factors varied maximally 12-fold among soils and 35-fold among species when grown on the same soil. Single correlations between transfer factors and soil properties were found, but they varied widely with plant type and can hardly be used as a predictive tool because of the few soils used. The variation of {sup 137}Cs concentrations in plants among soils was related to differences in soil solution {sup 137}Cs and K concentrations, consistent with previous observations in hydroponics and pot trials. Absolute values of transfer factors could not be predicted based on a model validated for pot trials. The {sup 137}Cs activity concentration in soil solution decreased significantly (11- to 250-fold) for most soils in the 1997-1999 period and is partly explained by decreasing K in soil solution. Transfer factors of lettuce showed both increasing and decreasing trends between 2 consecutive years depending on soil type. The trends could be explained by the variation in {sup 137}Cs and K concentrations in soil solution. It is concluded that differences in {sup 137}Cs transfer factors among soils and trends in transfer factors as a function of time can be explained from soil solution composition, as shown previously for pot trials, although absolute values of transfer factors could not be predicted.

  20. Plant uptake of radiocaesium from artificially contaminated soil monoliths covering major European soil types

    International Nuclear Information System (INIS)

    Waegeneers, Nadia; Sauras-Yera, Teresa; Thiry, Yves; Vallejo, V. Ramon; Smolders, Erik; Madoz-Escande, Chantal; Brechignac, Francois

    2009-01-01

    Uptake of 137 Cs was measured in different agricultural plant species (beans, lettuce, barley and ryegrass) grown in 5 undisturbed soil monoliths covering major European soil types. The first cultivation was made three years after soil contamination and plants were grown during 3 successive years. The plant-soil 137 Cs transfer factors varied maximally 12-fold among soils and 35-fold among species when grown on the same soil. Single correlations between transfer factors and soil properties were found, but they varied widely with plant type and can hardly be used as a predictive tool because of the few soils used. The variation of 137 Cs concentrations in plants among soils was related to differences in soil solution 137 Cs and K concentrations, consistent with previous observations in hydroponics and pot trials. Absolute values of transfer factors could not be predicted based on a model validated for pot trials. The 137 Cs activity concentration in soil solution decreased significantly (11- to 250-fold) for most soils in the 1997-1999 period and is partly explained by decreasing K in soil solution. Transfer factors of lettuce showed both increasing and decreasing trends between 2 consecutive years depending on soil type. The trends could be explained by the variation in 137 Cs and K concentrations in soil solution. It is concluded that differences in 137 Cs transfer factors among soils and trends in transfer factors as a function of time can be explained from soil solution composition, as shown previously for pot trials, although absolute values of transfer factors could not be predicted.

  1. High spatial resolution mapping of the Cerrado's land cover and land use types in the priority area for conservation Chapada da Contagem, Brazil.

    Science.gov (United States)

    Ribeiro, F.; Roberts, D. A.; Davis, F. W.; Antunes Daldegan, G.; Nackoney, J.; Hess, L. L.

    2016-12-01

    The Brazilian savanna, Cerrado, is the second largest biome over South America and the most floristically diverse savanna in the world. This biome is considered a conservation hotspot in respect to its biodiversity importance and rapid transformation of its landscape. The Cerrado's natural vegetation has been severely transformed by agriculture and pasture activities. Currently it is the main agricultural frontier in Brazil and one of the most threatened Brazilian biomes. This scenario results in environmental impacts such as ecosystems fragmentation as well as losses in connectivity, biodiversity and gene flow, changes in the microclimate and energy, carbon and nutrients cycles, among others. The Priority Areas for Conservation is a governmental program from Brazil that identifies areas with high conservation priority. One of this program's recommendation is a natural vegetation map including their major ecosystem classes. This study aims to generate more precise information for the Cerrado's vegetation. The main objective of this study is to identify which ecosystems are being prioritized and/or threatened by land use, refining information for further protection. In order to test methods, the priority area for conservation Chapada da Contagem was selected as the study site. This area is ranked as "extremely high priority" by the government and is located in the Federal District and Goias State, Brazil. Satellites with finer spatial resolution may improve the classification of the Cerrado's vegetation. Remote sensing methods and two criteria were tested using RapidEye 3A imagery (5m spatial resolution) collected in 2014 in order to classify the Cerrado's major land cover types of this area, as well as its land use. One criterion considers the Cerrado's major terrestrial ecosystems, which are divided into forest, savanna and grassland. The other involves scaling it down to the major physiognomic groups of each ecosystem. Other sources of environmental dataset such

  2. Climate Change Impact on Various Land Cover Types Water Balance in South Western Hungary

    Science.gov (United States)

    Csáki, Péter; Béla Brolly, Gábor; Czimber, Kornél; Kalicz, Péter; Kisfaludy, Balázs; Gribovszki, Zoltán

    2014-05-01

    Water balance of Zala county (South Western Hungary) was analyzed using remote-sensing based evapotranspiration (ET) 1-km spatial resolution maps for Hungary by Szilagyi and Kovacs over the 1999-2008 period [Szilagyi J., Kovacs A., 2011: A calibration-free evapotranspiration mapping technique for spatially-distributed regional-scale hydrologic modeling. J. Hydrol. Hydromech., 59, 2011, 2, 118-130.]. Mean (1999-2008 period) annual evapotranspiration and runoff (as the difference of precipitation and evapotranspiration: R = P - ET) were analyzed in the context of land cover types (artificial surfaces, agricultural areas, forest and semi natural areas, wetlands, water bodies). The average ET of Zala county was 581 mm/year, it was more than 89 percent of the mean annual precipitation (650 mm/year). The highest mean annual ET values (1999-2008) determined for water bodies and wetlands. Forest and semi natural areas had higher mean annual value than agricultural areas, the lowest rate belonged to artificial surfaces. The maximum ET value was very high in case of water bodies (845 mm) as well as forest and semi natural areas (828 mm). Runoff was the largest on artificial surfaces (89 mm/year), and it was especially low for wetlands. Spatially-distributed calibration parameter of Budyko-model (alfa) was calculated by using temperature, precipitation and ET values. Another parameter, beta (which gives the relationship between pan-evapotranspiration and actual evapotranspiration) was calculated for those pixels, where the ET value was higher than the precipitation value, because the Budyko-type model for such type of pixels is not valid. The two parameter maps (alfa and beta) aggregate all of the factors affecting ET, dominantly the surface cover. They can be used for evaluating future ET and runoff in spatially-distributed mode. ET and runoff predictions have been done for three periods (2011-2040, 2041-2070, 2071-2100) using the parameter maps (alfa and beta) and future

  3. Comparative Assessment of Two Vegetation Fractional Cover Estimating Methods and Their Impacts on Modeling Urban Latent Heat Flux Using Landsat Imagery

    Directory of Open Access Journals (Sweden)

    Kai Liu

    2017-05-01

    Full Text Available Quantifying vegetation fractional cover (VFC and assessing its role in heat fluxes modeling using medium resolution remotely sensed data has received less attention than it deserves in heterogeneous urban regions. This study examined two approaches (Normalized Difference Vegetation Index (NDVI-derived and Multiple Endmember Spectral Mixture Analysis (MESMA-derived methods that are commonly used to map VFC based on Landsat imagery, in modeling surface heat fluxes in urban landscape. For this purpose, two different heat flux models, Two-source energy balance (TSEB model and Pixel Component Arranging and Comparing Algorithm (PCACA model, were adopted for model evaluation and analysis. A comparative analysis of the NDVI-derived and MESMA-derived VFCs showed that the latter achieved more accurate estimates in complex urban regions. When the two sources of VFCs were used as inputs to both TSEB and PCACA models, MESMA-derived urban VFC produced more accurate urban heat fluxes (Bowen ratio and latent heat flux relative to NDVI-derived urban VFC. Moreover, our study demonstrated that Landsat imagery-retrieved VFC exhibited greater uncertainty in obtaining urban heat fluxes for the TSEB model than for the PCACA model.

  4. Meteorological and air quality impacts of increased urban albedo and vegetative cover in the Greater Toronto Area, Canada; FINAL

    International Nuclear Information System (INIS)

    Taha, Haider; Hammer, Hillel; Akbari, Hashem

    2002-01-01

    The study described in this report is part of a project sponsored by the Toronto Atmospheric Fund, performed at the Lawrence Berkeley National Laboratory, to assess the potential role of surface property modifications on energy, meteorology, and air quality in the Greater Toronto Area (GTA), Canada. Numerical models were used to establish the possible meteorological and ozone air-quality impacts of increased urban albedo and vegetative fraction, i.e., ''cool-city'' strategies that can mitigate the urban heat island (UHI), significantly reduce urban energy consumption, and improve thermal comfort, particularly during periods of hot weather in summer. Mitigation is even more important during critical heat wave periods with possible increased heat-related hospitalization and mortality. The evidence suggests that on an annual basis cool-city strategies are beneficial, and the implementation of such measures is currently being investigated in the U.S. and Canada. We simulated possible scenari os for urban heat-island mitigation in the GTA and investigated consequent meteorological changes, and also performed limited air-quality analysis to assess related impacts. The study was based on a combination of mesoscale meteorological modeling, Lagrangian (trajectory), and photochemical trajectory modeling to assess the potential meteorological and ozone air-quality impacts of cool-city strategies. As available air-quality and emissions data are incompatible with models currently in use at LBNL, our air-quality analysis was based on photochemical trajectory modeling. Because of questions as to the accuracy and appropriateness of this approach, in our opinion this aspect of the study can be improved in the future, and the air-quality results discussed in this report should be viewed as relatively qualitative. The MM5 meteorological model predicts a UHI in the order of 2 to 3 degrees C in locations of maxima, and about 1 degree C as a typical value over most of the urban area

  5. Evaluating Vegetation Type Effects on Land Surface Temperature at the City Scale

    Science.gov (United States)

    Wetherley, E. B.; McFadden, J. P.; Roberts, D. A.

    2017-12-01

    Understanding the effects of different plant functional types and urban materials on surface temperatures has significant consequences for climate modeling, water management, and human health in cities. To date, doing so at the urban scale has been complicated by small-scale surface heterogeneity and limited data. In this study we examined gradients of land surface temperature (LST) across sub-pixel mixtures of different vegetation types and urban materials across the entire Los Angeles, CA, metropolitan area (4,283 km2). We used AVIRIS airborne hyperspectral imagery (36 m resolution, 224 bands, 0.35 - 2.5 μm) to estimate sub-pixel fractions of impervious, pervious, tree, and turfgrass surfaces, validating them with simulated mixtures constructed from image spectra. We then used simultaneously imaged LST retrievals collected at multiple times of day to examine how temperature changed along gradients of the sub-pixel mixtures. Diurnal in situ LST measurements were used to confirm image values. Sub-pixel fractions were well correlated with simulated validation data for turfgrass (r2 = 0.71), tree (r2 = 0.77), impervious (r2 = 0.77), and pervious (r2 = 0.83) surfaces. The LST of pure pixels showed the effects of both the diurnal cycle and the surface type, with vegetated classes having a smaller diurnal temperature range of 11.6°C whereas non-vegetated classes had a diurnal range of 16.2°C (similar to in situ measurements collected simultaneously with the imagery). Observed LST across fractional gradients of turf/impervious and tree/impervious sub-pixel mixtures decreased linearly with increasing vegetation fraction. The slopes of decreasing LST were significantly different between tree and turf mixtures, with steeper slopes observed for turf (p < 0.05). These results suggest that different physiological characteristics and different access to irrigation water of urban trees and turfgrass results in significantly different LST effects, which can be detected at

  6. Type of vegetable oils used in cooking and risk of metabolic syndrome among Asian Indians.

    Science.gov (United States)

    Lakshmipriya, Nagarajan; Gayathri, Rajagopal; Praseena, Kallingal; Vijayalakshmi, Parthasarathy; Geetha, Gunasekaran; Sudha, Vasudevan; Krishnaswamy, Kamala; Anjana, Ranjit Mohan; Henry, Jeyakumar; Mohan, Viswanathan

    2013-03-01

    There is little data on the type of vegetable oil used and the prevalence of metabolic syndrome (MS) in Asian Indians. Food frequency questionnaire was used to document the type of cooking oil in 1875 adults in Chennai city. MS was assessed by new harmonizing criteria. The prevalence of MS was higher among sunflower oil users (30.7%) than palmolein (23.2%) and traditional oil (17.1%, p < 0.001) users. The higher prevalence of MS in sunflower oil group persisted even when stratified according to body mass index, except in obese groups. The risk of MS was further compounded by quantity of refined cereals consumed. Higher LA%E and linoleic acid/alpha-linolenic acid ratio in sunflower oil probably contributes to increased risk of MS.

  7. Controls on plant functional surface cover types along a precipitation gradient in the Negev Desert of Israel

    NARCIS (Netherlands)

    Buis, E.; Veldkamp, A.; Boeken, B.; Breemen, van N.

    2009-01-01

    We studied the controls on functional surface cover types in four catchments along a semi-arid to arid precipitation gradient in the northern Negev Desert of Israel. First, we selected four functional types, based on their unique water use and redistribution functionality: shrubs, Asphodelus

  8. Alien plant invasion in mixed-grass prairie: effects of vegetation type, stochiasticity, and anthropogenic disturbance in two park units

    Science.gov (United States)

    Larson, Diane L.; Anderson, Patrick J.; Newton, Wesley E.

    2001-01-01

    The ability of alien plant species to invade a region depends not only on attributes of the plant, but on characteristics of the habitat being invaded. Here, we examine characteristics that may influence the success of alien plant invasion in mixed-grass prairie at Theodore Roosevelt National Park, in western North Dakota, USA. The park consists of two geographically separate units with similar vegetation types and management history, which allowed us to examine the effects of native vegetation type, anthropogenic disturbance, and the separate park units on the invasion of native plant communities by alien plant species common to counties surrounding both park units. If matters of chance related to availability of propagules and transient establishment opportunities determine the success of invasion, park unit and anthropogenic disturbance should better explain the variation in alien plant frequency. If invasibility is more strongly related to biotic or physical characteristics of the native plant communities, models of alien plant occurrence should include vegetation type as an explanatory variable. We examined >1300 transects across all vegetation types in both units of the park. Akaike's Information Criterion (AIC) indicated that the fully parameterized model, including the interaction among vegetation type, disturbance, and park unit, best described the distribution of both total number of alien plants per transect and frequency of alien plants on transects where they occurred. Although all vegetation types were invaded by alien plants, mesic communities had both greater numbers and higher frequencies of alien plants than did drier communities. A strong element of stochasticity, reflected in differences in frequencies of individual species between the two park units, suggests that prediction of risk of invasion will always involve uncertainty. In addition, despite well-documented associations between anthropogenic disturbance and alien plant invasion, five of

  9. Spatial-temporal development of the mangrove vegetation cover on a hydraulic landfill (Via Expressa Sul, Florianópolis, SC): mapping and interpretation of digital aerophotographs, and quantitative analysis

    OpenAIRE

    Anderson Tavares de Melo; Eduardo Juan Soriano-Sierra; Luiz Antônio Paulino

    2011-01-01

    The implementation of a hydraulic landfill along the southern expressway (Via Expressa Sul), in the central-south region of Santa Catarina Island, started in 1995 and was completed in 1997. The landfill provided the mangrove vegetation a new environment to colonize, which has developed rapidly during this short period of time. This study mapped the vegetation cover of this region using aerial photographs from five years (1994, 1997, 2002, 2004 and 2007), which demonstrated the spatial-tempora...

  10. Lettuce growth and productivity under different types of soil covering = Crescimento e produtividade de alface sob diferentes tipos de cobertura do solo

    Directory of Open Access Journals (Sweden)

    Natalia Barreto Meneses

    2016-07-01

    Full Text Available In Brazil, the lettuce is the main vegetable produced and marketed, however, the crop is deficient in technology to optimize production and to ensure environmental sustainability in agricultural areas. This study aimed to verify the effect of different soil covering on soil temperature, and lettuce growth and yield. The experiment was settled adopting a randomized block design with six treatments consisted by different types of soil covering: cover with organic matter (CVe, black polyethylene (0.020 mm (PPt, silver polyethylene (0.020 mm (PPr, white polyethylene (0.020 mm (PBr, transparent polyethylene (0.100 mm (PTr and bare soil (control - T; and with five repetitions per each treatment. The variables analyzed were: total fresh weight, number and fresh weight of commercial leaves, root fresh weight, lettuce head diameter and yield. The soil temperature was monitored during the crop growth. The silver, white and black polyethylene coverings showed similar results. However, they were superior for all the evaluated characteristics compared to other coverings. The soil temperature was influenced by the different types of covering. There was increases of soil temperature for all the plastic coverings. However, the organic material reduced the soil temperature in comparison to the control treatment. = No Brasil, a alface é a principal hortaliça produzida e comercializada, carecendo, contudo, de tecnologias para otimizar a produção e garantir a sustentabilidade ambiental em áreas agrícolas. Objetivou-se com este trabalho verificar o efeito de diferentes coberturas do solo no crescimento, produtividade de plantas de alface e na temperatura do solo. O delineamento experimental utilizado foi em blocos casualizados, com seis tratamentos e cinco repetições. Os tratamentos estudados consistiram de tipos de cobertura do solo, sendo: cobertura com material vegetal (CVe, polietileno preto (0,020 mm (PPt, polietileno prata (0,020 mm (PPr, polietileno

  11. Comportamento vegetativo e produtivo de videiras 'Cabernet sauvignon' cultivadas sob cobertura plástica Vegetative growth and yield of 'Cabernet sauvignon' grapevine under overhead plastic covering

    Directory of Open Access Journals (Sweden)

    Clenilso Sehnen Mota

    2008-03-01

    randomized block design, with two treatments (uncovered and covered plants and four replicates of 15 plants (experimental unit. The micro-environmental changes imposed by the cover did not affect grapevines phenology. The grapevines under the cover had higher values for branches growth (length and fresh mass, and leaf expansion (area and dry mass than the uncovered ones. The berries weight and diameter were superior on grapevines under covering plastic only at earlier stages of fruit growth but not at harvest. The other variables assessed were not affected by the cover. The results show that overhead plastic covering can interfere with vegetative growth without affecting yield.

  12. Fruit and vegetable intake and type 2 diabetes: EPIC-InterAct prospective study and meta-analysis

    Science.gov (United States)

    Cooper, Andrew J; Forouhi, Nita G; Ye, Zheng; Buijsse, Brian; Arriola, Larraitz; Balkau, Beverley; Barricarte, Aurelio; Beulens, Joline WJ; Boeing, Heiner; Büchner, Frederike L; Dahm, Christina C; de Lauzon-Guillain, Blandine; Fagherazzi, Guy; Franks, Paul W; Gonzalez, Carlos; Grioni, Sara; Kaaks, Rudolf; Key, Timothy J; Masala, Giovanna; Navarro, Carmen; Nilsson, Peter; Overvad, Kim; Panico, Salvatore; Quirós, Jose Ramón; Rolandsson, Olov; Roswall, Nina; Sacerdote, Carlotta; Sánchez, María-José; Slimani, Nadia; Sluijs, Ivonne; Spijkerman, Annemieke MW; Teucher, Birgit; Tjonneland, Anne; Tumino, Rosario; Sharp, Stephen J; Langenberg, Claudia; Feskens, Edith JM; Riboli, Elio; Wareham, Nicholas J

    2013-01-01

    Background/Objective Fruit and vegetable intake (FVI) may reduce the risk of type 2 diabetes (T2D), but the epidemiological evidence is inconclusive. The aim of this study is to examine the prospective association of FVI with T2D and conduct an updated meta-analysis. Subjects/Methods In the EPIC-InterAct (European Prospective Investigation into Cancer-InterAct) prospective case-cohort study nested within eight European countries, a representative sample of 16 154 participants and 12 403 incident cases of T2D were identified from 340 234 individuals with 3.99 million person-years of follow-up. For the meta-analysis we identified prospective studies on FVI and T2D risk by systematic searches of MEDLINE and EMBASE until April 2011. Results In EPIC-InterAct, estimated FVI by dietary questionnaires varied more than two-fold between countries. In adjusted analyses the hazard ratio (95% confidence interval) comparing the highest with lowest quartile of reported intake was 0.90 (0.80-1.01) for FVI; 0.89 (0.76-1.04) for fruit, and 0.94 (0.84-1.05) for vegetables. Among FV sub-types, only root vegetables were inversely associated with diabetes 0.87 (0.77-0.99). In meta-analysis using pooled data from five studies including EPIC-InterAct, comparing the highest with lowest category for FVI was associated with a lower relative risk of diabetes (0.93 (0.87-1.00)). Fruit or vegetables separately were not associated with diabetes. Among FV sub-types, only green leafy vegetable intake (RR: 0.84 (0.74-0.94)) was inversely associated with diabetes. Conclusions Sub-types of vegetables, such as root vegetables or green leafy vegetables may be beneficial for the prevention of diabetes, while total FVI may exert a weaker overall effect. PMID:22854878

  13. Vegetation types alter soil respiration and its temperature sensitivity at the field scale in an estuary wetland.

    Directory of Open Access Journals (Sweden)

    Guangxuan Han

    Full Text Available Vegetation type plays an important role in regulating the temporal and spatial variation of soil respiration. Therefore, vegetation patchiness may cause high uncertainties in the estimates of soil respiration for scaling field measurements to ecosystem level. Few studies provide insights regarding the influence of vegetation types on soil respiration and its temperature sensitivity in an estuary wetland. In order to enhance the understanding of this issue, we focused on the growing season and investigated how the soil respiration and its temperature sensitivity are affected by the different vegetation (Phragmites australis, Suaeda salsa and bare soil in the Yellow River Estuary. During the growing season, there were significant linear relationships between soil respiration rates and shoot and root biomass, respectively. On the diurnal timescale, daytime soil respiration was more dependent on net photosynthesis. A positive correlation between soil respiration and net photosynthesis at the Phragmites australis site was found. There were exponential correlations between soil respiration and soil temperature, and the fitted Q10 values varied among different vegetation types (1.81, 2.15 and 3.43 for Phragmites australis, Suaeda salsa and bare soil sites, respectively. During the growing season, the mean soil respiration was consistently higher at the Phragmites australis site (1.11 µmol CO2 m(-2 s(-1, followed by the Suaeda salsa site (0.77 µmol CO2 m(-2 s(-1 and the bare soil site (0.41 µmol CO2 m(-2 s(-1. The mean monthly soil respiration was positively correlated with shoot and root biomass, total C, and total N among the three vegetation patches. Our results suggest that vegetation patchiness at a field scale might have a large impact on ecosystem-scale soil respiration. Therefore, it is necessary to consider the differences in vegetation types when using models to evaluate soil respiration in an estuary wetland.

  14. Vegetation Types Alter Soil Respiration and Its Temperature Sensitivity at the Field Scale in an Estuary Wetland

    Science.gov (United States)

    Han, Guangxuan; Xing, Qinghui; Luo, Yiqi; Rafique, Rashad; Yu, Junbao; Mikle, Nate

    2014-01-01

    Vegetation type plays an important role in regulating the temporal and spatial variation of soil respiration. Therefore, vegetation patchiness may cause high uncertainties in the estimates of soil respiration for scaling field measurements to ecosystem level. Few studies provide insights regarding the influence of vegetation types on soil respiration and its temperature sensitivity in an estuary wetland. In order to enhance the understanding of this issue, we focused on the growing season and investigated how the soil respiration and its temperature sensitivity are affected by the different vegetation (Phragmites australis, Suaeda salsa and bare soil) in the Yellow River Estuary. During the growing season, there were significant linear relationships between soil respiration rates and shoot and root biomass, respectively. On the diurnal timescale, daytime soil respiration was more dependent on net photosynthesis. A positive correlation between soil respiration and net photosynthesis at the Phragmites australis site was found. There were exponential correlations between soil respiration and soil temperature, and the fitted Q 10 values varied among different vegetation types (1.81, 2.15 and 3.43 for Phragmites australis, Suaeda salsa and bare soil sites, respectively). During the growing season, the mean soil respiration was consistently higher at the Phragmites australis site (1.11 µmol CO2 m−2 s−1), followed by the Suaeda salsa site (0.77 µmol CO2 m−2 s−1) and the bare soil site (0.41 µmol CO2 m−2 s−1). The mean monthly soil respiration was positively correlated with shoot and root biomass, total C, and total N among the three vegetation patches. Our results suggest that vegetation patchiness at a field scale might have a large impact on ecosystem-scale soil respiration. Therefore, it is necessary to consider the differences in vegetation types when using models to evaluate soil respiration in an estuary wetland. PMID:24608636

  15. The role of pore soil solutions in redistribution of 137Cs, 90Sr, 239,240Pu and 241Am within soil-vegetative cover

    International Nuclear Information System (INIS)

    Ovsiannikova, S.V.; Sokolik, G.A.; Kilchitskaya, S.L.; Eismont, E.A.; Zhukovich, N.V.; Kimlenko, I.M.

    1998-01-01

    The role of pore soil solutions in the migration of 137 Cs, 90 Sr, 239,240 Pu and 241 Am within soil-vegetative cover of natural ecosystems was examined. The soil solutions were found to play an important role in the redistribution of 137 Cs, 90 Sr, 239,240 Pu and 241 Am in the soil-plant systems. Obvious relationships between the distribution coefficients of radionuclides between solid and liquid phases (K d ) and the intensity of vertical migration of 137 Cs, 90 Sr, 239,240 Pu and 241 Am along the soil profiles and with intensity of their accumulation by grass vegetation of natural meadows have been obtained. It means that the distribution coefficient may be used as a criterion of the radionuclide mobility in the soil-plant system whatever its level of radioactive contamination is. The influence of the degree of soil moistening, the content of mobile radionuclide forms in the soils and some characteristics of pore soil solutions (pH, content of K + , Ca 2+ , NH 4 + , water soluble organic substances) on the concentration of radionuclide in the soil solutions and on the value of radionuclide distribution coefficient have been analysed. The results of investigation are of great importance in the evaluation of radioecological situation and in solution of problems of radioecological rehabilitation of the contaminated territories. The received data constitute a part of scientific basis for the development of a system of countermeasures to decrease the mobility and biological availability of radionuclides of high and very high radiotoxicity

  16. Plant pigment types, distributions, and influences on shallow water submerged aquatic vegetation mapping

    Science.gov (United States)

    Hall, Carlton R.; Bostater, Charles R., Jr.; Virnstein, Robert

    2004-11-01

    Development of robust protocols for use in mapping shallow water habitats using hyperspectral imagery requires knowledge of absorbing and scattering features present in the environment. These include, but are not limited to, water quality parameters, phytoplankton concentrations and species, submerged aquatic vegetation (SAV) species and densities, epiphytic growth on SAV, benthic microalgae and substrate reflectance characteristics. In the Indian River Lagoon, Fl. USA we conceptualize the system as having three possible basic layers, water column and SAV bed above the bottom. Each layer is occupied by plants with their associated light absorbing pigments that occur in varying proportions and concentrations. Phytoplankton communities are composed primarily of diatoms, dinoflagellates, and picoplanktonic cyanobacteria. SAV beds, including flowering plants and green, red, and brown macro-algae exist along density gradients ranging in coverage from 0-100%. SAV beds may be monotypic, or more typically, mixtures of the several species that may or may not be covered in epiphytes. Shallow water benthic substrates are colonized by periphyton communities that include diatoms, dinoflagellates, chlorophytes and cyanobacteria. Inflection spectra created form ASIA hyperspectral data display a combination of features related to water and select plant pigment absorption peaks.

  17. Macrofauna invertebrada edáfica em cultivo de mandioca sob sistemas de cobertura do solo Edaphic invertebrate macrofauna in cassava cultivation under vegetable cover crops

    Directory of Open Access Journals (Sweden)

    Rogério Ferreira da Silva

    2007-06-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito do cultivo da mandioca em diferentes sistemas de cobertura do solo na densidade e diversidade da comunidade da macrofauna de invertebrados edáfica. O trabalho foi conduzido no Município de Glória de Dourados, MS, num Argissolo Vermelho, sob sistema convencional (SC, plantio direto sobre palhada de mucuna (PDMu, sorgo (PDSo e milheto (PDMi, além de sistema com vegetação nativa (VN, como referencial para comparação. As avaliações foram realizadas em quatro épocas distintas: abril/2003 (antes do plantio, novembro/2003 (6 meses após o plantio, abril/2004 (11 meses após o plantio e novembro/2004 (18 meses após o plantio. Houve efeito da interação entre os sistemas avaliados e as épocas de amostragens sobre a densidade, riqueza e diversidade da macrofauna invertebrada do solo. Entre os grupos da macrofauna invertebrada do solo, cupins, formigas e coleópteros (imaturo e adulto foram predominantes no ambiente estudado. O uso de plantas de cobertura no pré-cultivo de mandioca no sistema plantio direto proporcionou condições para a recomposição da comunidade de macrofauna invertebrada do solo, o que indica que as espécies utilizadas, mucuna, sorgo e milheto, representam alternativas promissoras para melhor manejo dessa cultura.The objective of this work was to evaluate the effect of cassava cultivation under different vegetable cover crops according to the density and diversity of soil invertebrate macrofauna. Field experiment was carried out at Glória de Dourados, Mato Grosso do Sul State, Brazil, on an Oxisol, under conventional drilling (SC, no-tillage system under Stizolobium cinereum (PDMu, Sorghum bicolor (PDSo and Pennisetum glaucum (PDMi mulching, with comparison of native vegetation system (VN. Evaluations were performed in April/2003 (before sowing, November/2003 (6 months after sowing, April/2004 (11 months after sowing and November/2004 (18 months after sowing. Significant

  18. Diversification of Nitrogen Sources in Various Tundra Vegetation Types in the High Arctic.

    Directory of Open Access Journals (Sweden)

    Grzegorz Skrzypek

    Full Text Available Low nitrogen availability in the high Arctic represents a major constraint for plant growth, which limits the tundra capacity for carbon retention and determines tundra vegetation types. The limited terrestrial nitrogen (N pool in the tundra is augmented significantly by nesting seabirds, such as the planktivorous Little Auk (Alle alle. Therefore, N delivered by these birds may significantly influence the N cycling in the tundra locally and the carbon budget more globally. Moreover, should these birds experience substantial negative environmental pressure associated with climate change, this will adversely influence the tundra N-budget. Hence, assessment of bird-originated N-input to the tundra is important for understanding biological cycles in polar regions. This study analyzed the stable nitrogen composition of the three main N-sources in the High Arctic and in numerous plants that access different N-pools in ten tundra vegetation types in an experimental catchment in Hornsund (Svalbard. The percentage of the total tundra N-pool provided by birds, ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment was built in 36% by birds, 38% by atmospheric deposition, and 26% by atmospheric N2-fixation. The stable nitrogen isotope mixing mass balance, in contrast to direct methods that measure actual deposition, indicates the ratio between the actual N-loads acquired by plants from different N-sources. Our results enhance our understanding of the importance of different N-sources in the Arctic tundra and the used methodological approach can be applied elsewhere.

  19. Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992-2015)

    Science.gov (United States)

    Li, Wei; MacBean, Natasha; Ciais, Philippe; Defourny, Pierre; Lamarche, Céline; Bontemps, Sophie; Houghton, Richard A.; Peng, Shushi

    2018-01-01

    Land-use and land-cover change (LULCC) impacts local energy and water balance and contributes on global scale to a net carbon emission to the atmosphere. The newly released annual ESA CCI (climate change initiative) land cover maps provide continuous land cover changes at 300 m resolution from 1992 to 2015, and can be used in land surface models (LSMs) to simulate LULCC effects on carbon stocks and on surface energy budgets. Here we investigate the absolute areas and gross and net changes in different plant functional types (PFTs) derived from ESA CCI products. The results are compared with other datasets. Global areas of forest, cropland and grassland PFTs from ESA are 30.4, 19.3 and 35.7 million km2 in the year 2000. The global forest area is lower than that from LUH2v2h (Hurtt et al., 2011), Hansen et al. (2013) or Houghton and Nassikas (2017) while cropland area is higher than LUH2v2h (Hurtt et al., 2011), in which cropland area is from HYDE 3.2 (Klein Goldewijk et al., 2016). Gross forest loss and gain during 1992-2015 are 1.5 and 0.9 million km2 respectively, resulting in a net forest loss of 0.6 million km2, mainly occurring in South and Central America. The magnitudes of gross changes in forest, cropland and grassland PFTs in the ESA CCI are smaller than those in other datasets. The magnitude of global net cropland gain for the whole period is consistent with HYDE 3.2 (Klein Goldewijk et al., 2016), but most of the increases happened before 2004 in ESA and after 2007 in HYDE 3.2. Brazil, Bolivia and Indonesia are the countries with the largest net forest loss from 1992 to 2015, and the decreased areas are generally consistent with those from Hansen et al. (2013) based on Landsat 30 m resolution images. Despite discrepancies compared to other datasets, and uncertainties in converting into PFTs, the new ESA CCI products provide the first detailed long-term time series of land-cover change and can be implemented in LSMs to characterize recent carbon dynamics

  20. Land cover fire proneness in Europe

    Directory of Open Access Journals (Sweden)

    Mario Gonzalez Pereira

    2014-12-01

    Full Text Available Aim of study: This study aims to identify and characterize the spatial and temporal evolution of the types of vegetation that are most affected by forest fires in Europe. The characterization of the fuels is an important issue of the fire regime in each specific ecosystem while, on the other hand, fire is an important disturbance for global vegetation dynamics.Area of study: Southern European countries: Portugal, Spain, France, Italy and Greece.Material and Methods: Corine Land Cover maps for 2000 and 2006 (CLC2000, CLC2006 and burned area (BA perimeters, from 2000 to 2013 in Europe are combined to access the spatial and temporal evolution of the types of vegetation that are most affected by wild fires using descriptive statistics and Geographical Information System (GIS techniques.Main results: The spatial and temporal distribution of BA perimeters, vegetation and burnt vegetation by wild fires was performed and different statistics were obtained for Mediterranean and entire Europe, confirming the usefulness of the proposed land cover system. A fire proneness index is proposed to assess the fire selectivity of land cover classes. The index allowed to quantify and to compare the propensity of vegetation classes and countries to fire.Research highlights: The usefulness and efficiency of the land cover classification scheme and fire proneness index. The differences between northern Europe and southern Europe and among the Mediterranean region in what concerns to vegetation cover, fire incidence, area burnt in land cover classes and fire proneness between classes for the different countries.Keywords: Fire proneness; Mixed forests; Land cover/land use; Fire regime; Europe; GIS; Corine land cover

  1. Efectos de la instalación de un gasoducto sobre algunas propiedades del suelo superficial y la cobertura vegetal en el NE de Chubut Gas-pipeline installation effects on superficial soil properties and vegetation cover in Northeastern Chubut

    Directory of Open Access Journals (Sweden)

    Esteban Kowaljow

    2008-07-01

    , sobre todo, por la baja calidad de los sedimentos extraídos de los horizontes inferiores de la zanja.In this work we describe the impact of a gas-pipeline installation and the replacing of the material removed in part of the clear-cutting, on some physical and chemical properties of the soils and vegetation in three ecological sites of Northeastern Chubut. In these sites we identified four different areas: area 1, clear-cut strip, where the traffic of heavy machinery was intense; area 2, clear-cut strip, with soil and vegetation replaced; and other two areas in the undisturbed adjacent steppe: mounds associated to shrubs and mound interspaces. The highest bulk densities were recorded in area 1 and in the mound interspaces (1.43 Mg m-3. The penetrometer resistance was significantly higher in the areas 1 and 2, recording values higher than 1 MPa. The infiltration rate was much higher in the mound (261 mm h-1 than in the other areas. The infiltration rate of area 2 (85 mm h-1 was higher than that of area 1 (35 mm h-1 and the mound interspaces (50 mm h-1. Total nitrogen and organic carbon content in soils of the areas 1 and 2 were similar to those of the mound interspaces and significantly lower than those of the mound, except in the area 2 of one ecological site. Clear-cut and topsoil removal, and the subsequent traffic of heavy machinery caused by underground gas-pipeline installation produced a strong impact on the physical properties of these soils. The main limitation in the highly disturbed soils was the decrease in the infiltration rate, mainly due to high compaction and low porosity. This may in part explain the slow vegetation cover recovery in the area 1. The replacement of the stripped sediment and vegetation on the disturbed strip did not improve the recovery of the vegetation cover. It was mainly due to the low quality of the sediments extracted from the pipeline ditch.

  2. Genetic diversity analysis of Leuconostoc mesenteroides from Korean vegetables and food products by multilocus sequence typing.

    Science.gov (United States)

    Sharma, Anshul; Kaur, Jasmine; Lee, Sulhee; Park, Young-Seo

    2018-06-01

    In the present study, 35 Leuconostoc mesenteroides strains isolated from vegetables and food products from South Korea were studied by multilocus sequence typing (MLST) of seven housekeeping genes (atpA, groEL, gyrB, pheS, pyrG, rpoA, and uvrC). The fragment sizes of the seven amplified housekeeping genes ranged in length from 366 to 1414 bp. Sequence analysis indicated 27 different sequence types (STs) with 25 of them being represented by a single strain indicating high genetic diversity, whereas the remaining 2 were characterized by five strains each. In total, 220 polymorphic nucleotide sites were detected among seven housekeeping genes. The phylogenetic analysis based on the STs of the seven loci indicated that the 35 strains belonged to two major groups, A (28 strains) and B (7 strains). Split decomposition analysis showed that intraspecies recombination played a role in generating diversity among strains. The minimum spanning tree showed that the evolution of the STs was not correlated with food source. This study signifies that the multilocus sequence typing is a valuable tool to access the genetic diversity among L. mesenteroides strains from South Korea and can be used further to monitor the evolutionary changes.

  3. Assessing onset and length of greening period in six vegetation types in Oaxaca, Mexico, using NDVI-precipitation relationships.

    Science.gov (United States)

    Gómez-Mendoza, L; Galicia, L; Cuevas-Fernández, M L; Magaña, V; Gómez, G; Palacio-Prieto, J L

    2008-07-01

    Variations in the normalized vegetation index (NDVI) for the state of Oaxaca, in southern Mexico, were analyzed in terms of precipitation anomalies for the period 1997-2003. Using 10-day averages in NDVI data, obtained from AVHRR satellite information, the response of six types of vegetation to intra-annual and inter-annual fluctuations in precipitation were examined. The onset and temporal evolution of the greening period were studied in terms of precipitation variations through spectral analysis (coherence and phase). The results indicate that extremely dry periods, such as those observed in 1997 and 2001, resulted in low values of NDVI for much of Oaxaca, while good precipitation periods produced a rapid response (20-30 days of delay) from a stressed to a non-stressed condition in most vegetation types. One of these rapid changes occurred during the transition from dry to wet conditions during the summer of 1998. As in many parts of the tropics and subtropics, the NDVI reflects low frequency variations in precipitation on several spatial scales. Even after long dry periods (2001-2002), the various regional vegetation types are capable of recovering when a good rainy season takes place, indicating that vegetation types such as the evergreen forests in the high parts of Oaxaca respond better to rainfall characteristics (timing, amount) than to temperature changes, as is the case in most mid-latitudes. This finding may be relevant to prepare climate change scenarios for forests, where increases in surface temperature and precipitation anomalies are expected.

  4. Studies on the injuries of crops by harmful gases under covering. I. Injuries of vegetables by gaseous nitrogen dioxide and the conditions affecting crop susceptibility. [Eggplant

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T; Tachibana, S; Inden, T

    1974-09-01

    The effects of environmental conditions such as soil-moisture humidity, and light on injuries to crops such as kidney bean, cucumber, tomato, and egg plant as well as the relationships between injury occurrence and plant nutrition, age of seedlings, and leaf position were investigated when the crops were exposed to gaseous nitrogen dioxide under a covering. The injury was severer when the soil moisture was richer and the humidity was higher. Injury was greater under dark conditions as opposed to light conditions before, during, and after NO/sub 2/ exposure. The first leaves of kidney bean plants were more susceptible to the gas when they were younger. Leaves with active metabolism (in the middle position) were the most susceptible to NO/sub 2/. Vegetables grown in fields or cultures poor in nitrogen were apparently susceptible to the gas, and those grown in ammonia-nitrogen rich cultures were more severely injured than those grown on nitrate-nitrogen rich cultures. Those grown in iron-deficient cultures were more susceptible to NO/sub 2/ than controls.

  5. The Effects of Vegetative Type, Edges, Fire History, Rainfall and Management in Fire-Maintained Habitat

    Science.gov (United States)

    Breininger, David R.; Foster, Tammy E.; Carter, Geoffrey M.; Duncan, Brean W.; Stolen, Eric D.; Lyon, James E.

    2018-01-01

    The combined effects of fire history, climate, and landscape features (e.g., edges) on habitat specialists need greater focus in fire ecology studies, which usually only emphasize characteristics of the most recent fire. Florida scrub-jays are an imperiled, territorial species that prefer medium (1.2-1.7 m) shrub heights, which are dynamic because of frequent fires. We measured short, medium, and tall habitat quality states annually within 10 ha grid cells (that represented potential territories) because fires and vegetative recovery cause annual variation in habitat quality. We used multistate models and model selection to test competing hypotheses about how transition probabilities vary between states as functions of environmental covariates. Covariates included vegetative type, edges (e.g., roads, forests), precipitation, openings (gaps between shrubs), mechanical cutting, and fire characteristics. Fire characteristics not only included an annual presence/absence of fire covariate, but also fire history covariates: time since the previous fire, the longest fire-free interval, and the number of repeated fires. Statistical models with support included many covariates for each transition probability, often including fire history, interactions and nonlinear relationships. Tall territories resulted from 28 years of fire suppression and habitat fragmentation that reduced the spread of fires across landscapes. Despite 35 years of habitat restoration and prescribed fires, half the territories remained tall suggesting a regime shift to a less desirable habitat condition. Edges reduced the effectiveness of fires in setting degraded scrub and flatwoods into earlier successional states making mechanical cutting an important tool to compliment frequent prescribed fires.

  6. The Effects of Vegetative Type, Edges, Fire History, Rainfall and Management in Fire-Maintained Ecosystems

    Science.gov (United States)

    Breininger, David R.; Foster, Tammy E.; Carter, Geoffrey M.; Duncan, Brean W.; Stolen, Eric D.; Lyon, James E.

    2017-01-01

    The combined effects of repeated fires, climate, and landscape features (e.g., edges) need greater focus in fire ecology studies, which usually emphasize characteristics of the most recent fire and not fire history. Florida scrub-jays are an imperiled, territorial species that prefer medium (1.2-1.7 m) shrub heights. We measured short, medium, and tall habitat quality states annually within 10 ha grid cells that represented potential territories because frequent fires and vegetative recovery cause annual variation in habitat quality. We used multistate models and model selection to test competing hypotheses about how transition probabilities between states varied annually as functions of environmental covariates. Covariates included vegetative type, edges, precipitation, openings (gaps between shrubs), mechanical cutting, and fire characteristics. Fire characteristics not only included an annual presenceabsence of fire covariate, but also fire history covariates: time since the previous fire, the maximum fire-free interval, and the number of repeated fires. Statistical models with support included many covariates for each transition probability, often including fire history, interactions and nonlinear relationships. Tall territories resulted from 28 years of fire suppression and habitat fragmentation that reduced the spread of fires across landscapes. Despite 35 years of habitat restoration and prescribed fires, half the territories remained tall suggesting a regime shift to a less desirable habitat condition. Measuring territory quality states and environmental covariates each year combined with multistate modeling provided a useful empirical approach to quantify the effects of repeated fire in combinations with environmental variables on transition probabilities that drive management strategies and ecosystem change.

  7. Modulation of Fire Regimes by Vegetation and Site Type in Southwestern Patagonia Since 13 ka

    Directory of Open Access Journals (Sweden)

    Patricio I. Moreno

    2018-04-01

    Full Text Available The degree to which vegetation and site type have influenced fire regimes through the Holocene has not been investigated in detail in the temperate ecosystems of southern Patagonia. Here we present a first attempt using a paired-basin approach to study the evolution of fire regimes in sectors dominated by humid Nothofagus forests and the xeric Patagonian steppe in the Magallanes region of Chilean Patagonia (51°S. We analyzed sediment cores from two small lakes and a bog located within the same climate zone on opposite sides of the forest-steppe ecotone, ~28 km apart. The position of this biological boundary east of the Andes is controlled by the strength and position of the southern westerly winds, which constitute the sole source of precipitation throughout western Patagonia. Our results indicate that fires have occurred in the study region repeated times over the last ~13,000 years at bi- and tridecadal timescales. Sectors currently dominated by Patagonian steppe feature high frequency and low magnitude of local fires, and vice versa in humid forests. Climate-driven expansion of Nothofagus scrubland/woodland into steppe environments over the last ~4,200 years increased the magnitude and lowered the frequency of fire events, culminating with peak Nothofagus abundance, fire magnitude and frequency during the last millennium. We also detect divergences between lake-based vs. bog-based paleofire histories among paired sites located within the Patagonian steppe, ~12 km apart, which we attribute to local burning of the bog at times of lowered water table. This divergence suggests to us that bog-based vegetation and fire histories exacerbate a local, azonal, signal blurring extra-local or regional regimes, thus accounting for some discrepancies in the Quaternary paleovegetation/paleoclimate literature of southern Patagonia.

  8. The Critical Depth of Freeze-Thaw Soil under Different Types of Snow Cover

    Directory of Open Access Journals (Sweden)

    Qiang Fu

    2017-05-01

    Full Text Available Snow cover is the most common upper boundary condition influencing the soil freeze-thaw process in the black soil farming area of northern China. Snow is a porous dielectric cover, and its unique physical properties affect the soil moisture diffusion, heat conduction, freezing rate and other variables. To understand the spatial distribution of the soil water-heat and the variable characteristics of the critical depth of the soil water and heat, we used field data to analyze the freezing rate of soil and the extent of variation in soil water-heat in a unit soil layer under bare land (BL, natural snow (NS, compacted snow (CS and thick snow (TS treatments. The critical depth of the soil water and heat activity under different snow covers were determined based on the results of the analysis, and the variation fitting curve of the difference sequences on the soil temperature and water content between different soil layers and the surface 5-cm soil layer were used to verify the critical depth. The results were as follows: snow cover slowed the rate of soil freezing, and the soil freezing rate under the NS, CS and TS treatments decreased by 0.099 cm/day, 0.147 cm/day and 0.307 cm/day, respectively, compared with that under BL. In addition, the soil thawing time was delayed, and the effect was more significant with increased snow cover. During freeze-thaw cycles, the extent of variation in the water and heat time series in the shallow soil was relatively large, while there was less variation in the deep layer. There was a critical stratum in the vertical surface during hydrothermal migration, wherein the critical depth of soil water and heat change gradually increased with increasing snow cover. The variance in differences between the surface layer and both the soil water and heat in the different layers exhibited “steady-rising-steady” behavior, and the inflection point of the curve is the critical depth of soil freezing and thawing. This critical

  9. Spatial-temporal development of the mangrove vegetation cover on a hydraulic landfill (Via Expressa Sul, Florianópolis, SC: mapping and interpretation of digital aerophotographs, and quantitative analysis

    Directory of Open Access Journals (Sweden)

    Anderson Tavares de Melo

    2011-12-01

    Full Text Available The implementation of a hydraulic landfill along the southern expressway (Via Expressa Sul, in the central-south region of Santa Catarina Island, started in 1995 and was completed in 1997. The landfill provided the mangrove vegetation a new environment to colonize, which has developed rapidly during this short period of time. This study mapped the vegetation cover of this region using aerial photographs from five years (1994, 1997, 2002, 2004 and 2007, which demonstrated the spatial-temporal evolution of the vegetation since the year before the implementation of the landfill (1994 to its recent state (2007. The data from this study allowed changes in the surface of three bands of vegetation, a band of trees (Laguncularia racemosa and Avicennia schaueriana, a band of the seagrass praturá (Spartina alterniflora and a transition band (companions of mangrove species and restinga plants, to be quantified.

  10. Assessment of the transfer of {sup 137}Cs in three types of vegetables consumed in Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Yu, K.N.; Mao, S.Y.; Young, E.C.M

    1998-12-01

    A dynamic food chain model has been built for the modeling of the transfer of {sup 137}Cs in three types of vegetables consumed in Hong Kong, namely, white flowering cabbage (Brassica chinensis), head lettuce (Lactuca sativa) and celery (Apium graveolens). Some parameters have been estimated from the experimental data obtained in this work. The experimental data include the transfer factors of {sup 137}Cs from soil to the different vegetable species which are determined through high resolution gamma spectrometry, maximum crop biomasses for the vegetable species, the dry-to-fresh ratios for the vegetable species, the bulk density of soil layers and the average concentration of {sup 137}Cs in air. The derived parameters include the deposition rate and the root uptake rate, information for tillage, the logistic growth model and radionuclide concentrations in vegetables. The dynamic food chain model is solved by the Birchall-James algorithm to give the {sup 137}Cs concentration in subsurface soil, from the 0.1-25 cm soil layer, and the {sup 137}Cs concentration in harvested and unwashed vegetables. As validation of the model and parameters, the concentrations obtained experimentally and from the model are compared and are found to be in good agreement.

  11. Human well-being and land cover types in the southeastern U.S.A.

    Science.gov (United States)

    B. Gyawali; R. Fraser; J. Schelhas; Y. Wang; W. Tadesse; J. Bukenya

    2009-01-01

    The west-central region of Alabama is rich in natural resources.  Yet changes in land use seem unrelated to improvements in human well-being.  Satellite imagery and U.S. census data for 1980 and 2000 were analyzed to test whether changes in land cover were related to changes in a human well-being index-of income, employment and education at the Cenus Block Group (CBG)...

  12. Eleven years of ground–air temperature tracking over different land cover types

    Czech Academy of Sciences Publication Activity Database

    Čermák, Vladimír; Bodri, L.; Krešl, Milan; Dědeček, Petr; Šafanda, Jan

    2017-01-01

    Roč. 37, č. 2 (2017), s. 1084-1099 ISSN 0899-8418 R&D Projects: GA ČR(CZ) GAP210/11/0183; GA MŠk(CZ) LG13040 Institutional support: RVO:67985530 Keywords : long-term temperature monitoring * land-cover materials * underground climate signal * borehole climatology * climate change Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 3.760, year: 2016

  13. The influence of cockchafer larvae on net soil methane fluxes under different vegetation types - a mesocosm study

    Science.gov (United States)

    Görres, Carolyn-Monika; Kammann, Claudia; Chesmore, David; Müller, Christoph

    2017-04-01

    The influence of land-use associated pest insects on net soil CH4 fluxes has received little attention thus far, although e.g. soil-dwelling Scarabaeidae larvae are qualitatively known to emit CH4. The project "CH4ScarabDetect" aims to provide the first quantitative estimate of the importance of soil-dwelling larvae of two important European agricultural and forest pest insect species - the common cockchafer (Melolontha melolontha) and the forest cockchafer (M. hippocastani) - for net soil CH4 fluxes. Here we present a mesocosm study within "CH4ScarabDetect" which tests the influence of different abundances of common cockchafer larvae on net soil CH4 fluxes under different vegetation types. In August 2016, 27 PVC boxes with a base area of 50 cm x 50 cm and a height of 40 cm were buried in planting beds previously used for cultivating vegetables. The bottom of each box was filled with a 10 cm thick layer of loam which was then covered with a 25 cm thick layer of loamy sand. The soil was hand-sieved prior to filling the boxes to remove any macrofauna. The mesocosms were planted with either turf, carrots or a combination of both. Of the resulting nine replicates per vegetation type, six were infested with one cockchafer larvae each in November 2016. In three of these infested mesocosms, the larvae abundance will be further increased to three in May 2017. This mesocosm study will continue until October 2017 during which measurements of net soil CH4 fluxes will be conducted with the chamber flux method twice per month. For the in situ separation of gross CH4 production and gross CH4 oxidation, the chamber method will be combined with a 13CH4 isotope pool dilution technique. Methane concentrations and their isotopic signatures in the collected gas samples will be analysed with a state-of-the-art CRDS analyzer (cavity ring-down spectroscopy, G2201-i) equipped with the Small Sample Isotope Module 2 - A0314 (Picarro Inc., USA). Different combinations of larvae abundance and

  14. LEAF AREA DYNAMICS AND ABOVEGROUND BIOMASS OF SPECIFIC VEGETATION TYPES OF A SEMI-ARID GRASSLAND IN SOUTHERN ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Bosco Kidake Kisambo

    2016-12-01

    Full Text Available Leaf Area Index (LAI dynamics and aboveground biomass of a semi-arid grassland region in Southern Ethiopia were determined over a long rain season. The vegetation was categorized into four distinct vegetation types namely Grassland (G, Tree-Grassland (TG, Bushed-Grassland (BG and Bush-Tree grassland (BT. LAI was measured using a Plant Canopy Analyzer (LAI2000. Biomass dynamics of litter and herbaceous components were determined through clipping while the above ground biomass of trees and shrubs were estimated using species-specific allometric equations from literature. LAI showed a seasonal increase over the season with the maximum recorded in the BG vegetation (2.52. Total aboveground biomass for the different vegetation types ranged from 0.61 ton C/ha in areas where trees were non-existent to 8.80 ± 3.81ton C/ha in the Tree-Grassland vegetation in the study site. A correlation of LAI and AGB yielded a positive relationship with an R2 value of 0.55. The results demonstrate the importance of tropical semi-arid grasslands as carbon sinks hence their potential in mitigation of climate change.

  15. Evolution of soil and vegetation cover on the bottom of drained thermokarst lake (a case study in the European Northeast of Russia)

    Science.gov (United States)

    Kaverin, Dmitry; Pastukhov, Alexander

    2015-04-01

    The evolution of soils and landscapes has been studied in a lake bed of former thermokarst lake, which was totally drained in 1979. Melioration of thermokarst lakes was conducted experimentally and locally under Soviet economics program during 1970-s. The aim of the program was to increase in biomass productivity of virgin tundra permafrost-thermokarst sites under agricultural activities. The former thermokarst lake "Opytnoe" located in the Bolshezemelskaya Tundra, Russian European Northeast. The lake bed is covered by peat-mineral sediments, which serves as soil-forming sediments favoring subsequent permafrost aggradation and cryogenic processes as well. Initially, after drainage, swampy meadows had been developed almost all over the lake bed. Further on, succession of landscape went diversely, typical and uncommon tundra landscapes formed. When activated, cryogenic processes favored the formation of peat mounds under dwarf shrub - lichen vegetation (7% of the area). Frost cracks and peat circles affected flat mounds all over the former lake bottom. On drained peat sites, with no active cryogenic processes, specific grass meadows on Cryic Sapric Histosols were developed. Totally, permafrost-affected soils occupy 77% of the area (2011). In some part of the lake bed further development of waterlogging leads to the formation of marshy meadows and willow communities where Gleysols prevail. During last twenty years, permafrost degradation has occurred under tall shrub communities, and it will progress in future. Water erosion processes in the drained lake bottom promoted the formation of local hydrographic network. In the stream floodplain grassy willow-stands formed on Fluvisols (3% of the area). The study has been conducted under Clima-East & RFBR 14-05-31111 projects.

  16. Simulation of green roof runoff under different substrate depths and vegetation covers by coupling a simple conceptual and a physically based hydrological model.

    Science.gov (United States)

    Soulis, Konstantinos X; Valiantzas, John D; Ntoulas, Nikolaos; Kargas, George; Nektarios, Panayiotis A

    2017-09-15

    In spite of the well-known green roof benefits, their widespread adoption in the management practices of urban drainage systems requires the use of adequate analytical and modelling tools. In the current study, green roof runoff modeling was accomplished by developing, testing, and jointly using a simple conceptual model and a physically based numerical simulation model utilizing HYDRUS-1D software. The use of such an approach combines the advantages of the conceptual model, namely simplicity, low computational requirements, and ability to be easily integrated in decision support tools with the capacity of the physically based simulation model to be easily transferred in conditions and locations other than those used for calibrating and validating it. The proposed approach was evaluated with an experimental dataset that included various green roof covers (either succulent plants - Sedum sediforme, or xerophytic plants - Origanum onites, or bare substrate without any vegetation) and two substrate depths (either 8 cm or 16 cm). Both the physically based and the conceptual models matched very closely the observed hydrographs. In general, the conceptual model performed better than the physically based simulation model but the overall performance of both models was sufficient in most cases as it is revealed by the Nash-Sutcliffe Efficiency index which was generally greater than 0.70. Finally, it was showcased how a physically based and a simple conceptual model can be jointly used to allow the use of the simple conceptual model for a wider set of conditions than the available experimental data and in order to support green roof design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Natural islands and habitat islands as refuges of vegetation cover and wild bees. The case of the Lednica Landscape Park in western Poland

    Directory of Open Access Journals (Sweden)

    Banaszak Józef

    2016-03-01

    Full Text Available The study has contributed to the identification of the apifauna of central Wielkopolska. The study identified 161 bee species, accounting for 34.2% of the Polish bee fauna. The highest contribution (28.7% of the fauna comes from four species, namely Andrena haemorrhoa, A. helvola, Evylaeus calceatus and Osmia rufa, while Bombus terrestris and Evylaeus pauxillus are two subdominants. The assemblages of Apiformes in the study area are characterised by a significant contribution of spring-associated species, which is probably an effect of the presence of numerous willow thickets offering abundant host plants (mainly Salix sp. div.. Both the islands and the surroundings of the lake have a unique species composition, and there are differences in the proportions of the individual dominant species. The overall abundance of bees varies greatly, with mean seasonal density figures on Ostrów Lednicki Island being more than twice as high as that on the mainland grassland, with a distinct predominance of bumblebees. The exceptional richness of Apiformes, including bumblebees, on Ostrów Lednicki should be regarded as the basis for treating this island as a life refuge for bumblebees and including it and its environs in the list of sites of Community importance (SCI. A simultaneous study of the vegetation cover contributed significant data on the vascular plant flora and plant communities of the Lednica Landscape Park. For example, it was the first such investigation of Mewia Island. The study revealed the importance of marginal habitats (natural islands and habitat islands for the preservation of protected and endangered plant species and plant communities receding from an agricultural landscape.

  18. Regular, high, and moderate intake of vegetables rich in antioxidants may reduce cataract risk in Central African type 2 diabetics

    Directory of Open Access Journals (Sweden)

    Mvitu M

    2012-06-01

    Full Text Available Moise Mvitu,1 Benjamin Longo-Mbenza,2 Dieudonné Tulomba,3 Augustin Nge31Department of Ophthalmology, University of Kinshasa, Democratic Republic of Congo; 2Faculty of Health Sciences, Walter Sisulu University, South Africa; 3Biostatistics Unit, Lomo Medical Center and Heart of Africa Center of Cardiology, Kinshasa, Democratic Republic of CongoBackground: Antioxidant nutrients found in popularly consumed vegetables, including red beans, are thought to prevent diabetic complications. In this study, we assessed the frequency and contributing factors of intake of fruits and vegetables rich in antioxidants, and we determined their impact on the prevention of diabetes-related cataract extraction.Methods: This was a cross-sectional study, run in Congo among 244 people with type 2 diabetes mellitus. An intake of ≥three servings of vegetables rich in antioxidants/day, intake of red beans, consumption of fruit, and cataract extraction were considered as dependent variables.Results: No patient reported a fruit intake. Intake of red beans was reported by 64 patients (26.2%, while 77 patients (31.6% reported ≥three servings of vegetables rich in antioxidants. High socioeconomic status (OR = 2.3; 95% CI: 1.1–12.5; P = 0.030 and moderate alcohol intake (OR = 4; 95% CI: 1.1–17.4; P = 0.049 were the independent determinants of eating ≥three servings of vegetables rich in antioxidants. Red beans intake (OR = 0.282; 95% CI: 0.115–0.687; P > 0.01 and eating ≥three servings of vegetables rich in antioxidants (OR = 0.256; 95% CI: 0.097–0.671; P = 0.006 were identified as independent and protective factors against the presence of cataracts (9.8% n = 24, whereas type 2 diabetes mellitus duration ≥3 years was the independent risk factor for cataract extraction (OR = 6.3; 95% CI: 2.1–19.2; P > 0.001 in the model with red beans intake and OR = 7.1; 95% CI: 2.3–22.2; P > 0.001 in the model with ≥three servings of vegetables rich in antioxidants

  19. Seismic response of the 'Cut-and Cover' type reactor containment considering nonlinear soil behavior

    International Nuclear Information System (INIS)

    El-Tahan, H.; Reddy, D.V.

    1979-01-01

    This paper describes some parametric studies of dynamic soil-structure interaction for the 'cut-and-cover' reactor concept. The dynamic loading considered is a horizontal earthquake motion. The high frequency ranges, which must be considered in the study of soil-structure interaction for nuclear power plants, and the nonlinearity of soil behavior during strong earthquakes are adequately taken into account. Soil nonlinearity is accounted for in an approximate manner using a combination of the 'equivalent linear method' and the method of complex response with complex moduli. The structure considered is a reinforced concrete containment for a 1100 - MWe power plant, buried in a dense sand medium. (orig.)

  20. Vegetation Changes in the Permafrost Regions of the Qinghai-Tibetan Plateau from 1982-2012: Different Responses Related to Geographical Locations and Vegetation Types in High-Altitude Areas.

    Directory of Open Access Journals (Sweden)

    Zhiwei Wang

    Full Text Available The Qinghai-Tibetan Plateau (QTP contains the largest permafrost area in a high-altitude region in the world, and the unique hydrothermal environments of the active layers in this region have an important impact on vegetation growth. Geographical locations present different climatic conditions, and in combination with the permafrost environments, these conditions comprehensively affect the local vegetation activity. Therefore, the responses of vegetation to climate change in the permafrost region of the QTP may be varied differently by geographical location and vegetation condition. In this study, using the latest Global Inventory Modeling and Mapping Studies (GIMMS Normalized Difference Vegetation Index (NDVI product based on turning points (TPs, which were calculated using a piecewise linear model, 9 areas within the permafrost region of the QTP were selected to investigate the effect of geographical location and vegetation type on vegetation growth from 1982 to 2012. The following 4 vegetation types were observed in the 9 selected study areas: alpine swamp meadow, alpine meadow, alpine steppe and alpine desert. The research results show that, in these study areas, TPs mainly appeared in 2000 and 2001, and almost 55.1% and 35.0% of the TPs were located in 2000 and 2001. The global standardized precipitation evapotranspiration index (SPEI and 7 meteorological variables were selected to analyze their correlations with NDVI. We found that the main correlative variables to vegetation productivity in study areas from 1982 to 2012 were precipitation, surface downward long-wave radiation and temperature. Furthermore, NDVI changes exhibited by different vegetation types within the same study area followed similar trends. The results show that regional effects rather than vegetation type had a larger impact on changes in vegetation growth in the permafrost regions of the QTP, indicating that climatic factors had a larger impact in the permafrost

  1. O factor de coberto vegetal, para árvores e Arbustos, em modelos de erosão hídrica The vegetation cover factor, for tree and bush canopies, in models of water erosion

    Directory of Open Access Journals (Sweden)

    Carla Rolo Antunes

    2011-07-01

    Full Text Available O objectivo primordial do presente trabalho consiste na análise do comportamento de cobertos arbóreos e arbustivos, em termos do processo de intercepção da precipitação, designadamente, retenção e gotejo, e no estabelecimento de uma componente a incluir em modelos de erosão, que permita quantificar o factor de coberto vegetal em caso de ocupação do solo por estes cobertos, associados a culturas arvenses, em subcoberto, particularmente, na Equação Universal da Perda de Solo Revista (RUSLE. O trabalho experimental utilizou um simulador de chuva, tendo-se obtido valores do diâmetro das gotas (gotejo das folhas de espécies características dos sistemas de uso do solo mais comuns no Sul de Portugal, nomeadamente sobreiro (Quercus suber L., azinheira (Quercus ilex L. ssp. rotundifolia Lam e carrasco (Quercus coccifera L., e quantificado valores de retenção nas folhas. A partir dos resultados obtidos estimou-se a energia cinética para diferentes alturas de queda e, consequentemente, valores correctivos a aplicar aos valores de C tradicionalmente considerados, relativos às culturas agrícolas.The main objective of this work consists on the analyzes of tree and bush canopies behavior, in terms of the rainfall interception process, namely, leave retention, and dripping, and the establishment of a erosion model component to include in to quantify the cover factor (C of the Revised Universal Soil Loss Equation (RUSLE for mixed land covered systems with arable crops, in association with trees and bushes. In the experimental work a rainfall simulator was used and the characteristic values for the diameter of the dripping drops and retention of the leaves from characteristic species of the more common mixed land-use systems in Southern of Portugal, particularly with Cork oak (Quercus suber L., Holm or evergreen oak (Quercus ilex L. ssp. rotundifolia Lam and Kermes or wild oak (Quercus coccifera L., were obtained. From the obtained results

  2. Biodiesel classification by base stock type (vegetable oil) using near infrared spectroscopy data

    Energy Technology Data Exchange (ETDEWEB)

    Balabin, Roman M., E-mail: balabin@org.chem.ethz.ch [Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich (Switzerland); Safieva, Ravilya Z. [Gubkin Russian State University of Oil and Gas, 119991 Moscow (Russian Federation)

    2011-03-18

    The use of biofuels, such as bioethanol or biodiesel, has rapidly increased in the last few years. Near infrared (near-IR, NIR, or NIRS) spectroscopy (>4000 cm{sup -1}) has previously been reported as a cheap and fast alternative for biodiesel quality control when compared with infrared, Raman, or nuclear magnetic resonance (NMR) methods; in addition, NIR can easily be done in real time (on-line). In this proof-of-principle paper, we attempt to find a correlation between the near infrared spectrum of a biodiesel sample and its base stock. This correlation is used to classify fuel samples into 10 groups according to their origin (vegetable oil): sunflower, coconut, palm, soy/soya, cottonseed, castor, Jatropha, etc. Principal component analysis (PCA) is used for outlier detection and dimensionality reduction of the NIR spectral data. Four different multivariate data analysis techniques are used to solve the classification problem, including regularized discriminant analysis (RDA), partial least squares method/projection on latent structures (PLS-DA), K-nearest neighbors (KNN) technique, and support vector machines (SVMs). Classifying biodiesel by feedstock (base stock) type can be successfully solved with modern machine learning techniques and NIR spectroscopy data. KNN and SVM methods were found to be highly effective for biodiesel classification by feedstock oil type. A classification error (E) of less than 5% can be reached using an SVM-based approach. If computational time is an important consideration, the KNN technique (E = 6.2%) can be recommended for practical (industrial) implementation. Comparison with gasoline and motor oil data shows the relative simplicity of this methodology for biodiesel classification.

  3. Biodiesel classification by base stock type (vegetable oil) using near infrared spectroscopy data

    International Nuclear Information System (INIS)

    Balabin, Roman M.; Safieva, Ravilya Z.

    2011-01-01

    The use of biofuels, such as bioethanol or biodiesel, has rapidly increased in the last few years. Near infrared (near-IR, NIR, or NIRS) spectroscopy (>4000 cm -1 ) has previously been reported as a cheap and fast alternative for biodiesel quality control when compared with infrared, Raman, or nuclear magnetic resonance (NMR) methods; in addition, NIR can easily be done in real time (on-line). In this proof-of-principle paper, we attempt to find a correlation between the near infrared spectrum of a biodiesel sample and its base stock. This correlation is used to classify fuel samples into 10 groups according to their origin (vegetable oil): sunflower, coconut, palm, soy/soya, cottonseed, castor, Jatropha, etc. Principal component analysis (PCA) is used for outlier detection and dimensionality reduction of the NIR spectral data. Four different multivariate data analysis techniques are used to solve the classification problem, including regularized discriminant analysis (RDA), partial least squares method/projection on latent structures (PLS-DA), K-nearest neighbors (KNN) technique, and support vector machines (SVMs). Classifying biodiesel by feedstock (base stock) type can be successfully solved with modern machine learning techniques and NIR spectroscopy data. KNN and SVM methods were found to be highly effective for biodiesel classification by feedstock oil type. A classification error (E) of less than 5% can be reached using an SVM-based approach. If computational time is an important consideration, the KNN technique (E = 6.2%) can be recommended for practical (industrial) implementation. Comparison with gasoline and motor oil data shows the relative simplicity of this methodology for biodiesel classification.

  4. Abundance and distribution of sylvatic dengue virus vectors in three different land cover types in Sarawak, Malaysian Borneo.

    Science.gov (United States)

    Young, Katherine I; Mundis, Stephanie; Widen, Steven G; Wood, Thomas G; Tesh, Robert B; Cardosa, Jane; Vasilakis, Nikos; Perera, David; Hanley, Kathryn A

    2017-08-31

    Mosquito-borne dengue virus (DENV) is maintained in a sylvatic, enzootic cycle of transmission between canopy-dwelling non-human primates and Aedes mosquitoes in Borneo. Sylvatic DENV can spill over into humans living in proximity to forest foci of transmission, in some cases resulting in severe dengue disease. The most likely vectors of such spillover (bridge vectors) in Borneo are Ae. albopictus and Ae. niveus. Borneo is currently experiencing extensive forest clearance. To gauge the effect of this change in forest cover on the likelihood of sylvatic DENV spillover, it is first necessary to characterize the distribution of bridge vectors in different land cover types. In the current study, we hypothesized that Ae. niveus and Ae. albopictus would show significantly different distributions in different land cover types; specifically, we predicted that Ae. niveus would be most abundant in forests whereas Ae. albopictus would have a more even distribution in the landscape. Mosquitoes were collected from a total of 15 sites using gravid traps and a backpack aspirator around Kampong Puruh Karu, Sarawak, Malaysian Borneo, where sylvatic DENV spillover has been documented. A total of 2447 mosquitoes comprising 10 genera and 4 species of Aedes, were collected over the three years, 2013, 2014 and 2016, in the three major land cover types in the area, homestead, agriculture and forest. Mosquitoes were identified morphologically, pooled by species and gender, homogenized, and subject to DNA barcoding of each Aedes species and to arbovirus screening. As predicted, Ae. niveus was found almost exclusively in forests whereas Ae. albopictus was collected in all land cover types. Aedes albopictus was significantly (P = 0.04) more abundant in agricultural fields than forests. Sylvatic DENV was not detected in any Aedes mosquito pools, however genomes of 14 viruses were detected using next generation sequencing. Land cover type affects the abundance and distribution of the most

  5. Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods

    Science.gov (United States)

    Zhuosen Wang; Crystal B. Schaaf; Alan H. Strahler; Mark J. Chopping; Miguel O. Román; Yanmin Shuai; Curtis E. Woodcock; David Y. Hollinger; David R. Fitzjarrald

    2014-01-01

    This study assesses the Moderate-resolution Imaging Spectroradiometer (MODIS) BRDF/albedo 8 day standard product and products from the daily Direct Broadcast BRDF/albedo algorithm, and shows that these products agree well with ground-based albedo measurements during the more difficult periods of vegetation dormancy and snow cover. Cropland, grassland, deciduous and...

  6. Seasat synthetic aperture radar ( SAR) response to lowland vegetation types in eastern Maryland and Virginia.

    Science.gov (United States)

    Krohn, M.D.; Milton, N.M.; Segal, D.B.

    1983-01-01

    Examination of Seasat SAR images of eastern Maryland and Virginia reveals botanical distinctions between vegetated lowland areas and adjacent upland areas. Radar returns from the lowland areas can be either brighter or darker than returns from the upland forests. Scattering models and scatterometer measurements predict an increase of 6 dB in backscatter from vegetation over standing water. This agrees with the 30-digital number (DN) increase observed in the digital Seasat data. The density, morphology, and relative geometry of the lowland vegetation with respect to standing water can all affect the strength of the return L band signal.-from Authors

  7. The performance of solar collector CPC (compound parabolic concentrator) type with three pipes covered by glass tubes

    Science.gov (United States)

    Gaos, Yogi Sirodz; Yulianto, Muhamad; Juarsa, Mulya; Nurrohman, Marzuki, Edi; Yuliaji, Dwi; Budiono, Kabul

    2017-03-01

    Indonesia is a tropical country that has potential energy of solar radiation worth of 4.5 until 4.8 kWh/m2. However, this potential has not been utilized regularly. This paper will discuss the performance of solar collector compound parabolic concentrator (CPC) type with water as the working fluid. This CPC solar collector utilized three pipes covered by glass tubes. This paper has contribution to provide the temperature achievement between three pipes covered by glass tubes with and without glass cover of solar collector CPC type. The research conducted by varying the water flow rate of 1 l/m up to 6 l/m with three pipes arranged in series and parallel. From the results, the used of solar collector CPC type in the current study shows that the decrease of solar radiation, which was caused by climate change, did not influence the heat absorbance by water in the pipe. Therefore, the design of the solar collector in this research has potential to be used in future when solar radiation are used as the energy source.

  8. Evaluating Water and Energy Fluxes across Three Land Cover Types in a Desert Urban Environment through a Mobile Eddy Covariance Platform

    Science.gov (United States)

    Pierini, N.; Vivoni, E. R.; Schreiner-McGraw, A.; Lopez-Castrillo, I.

    2015-12-01

    The urbanization process transforms a natural landscape into a built environment with many engineered surfaces, leading to significant impacts on surface energy and water fluxes across multiple spatial and temporal scales. Nevertheless, the effects of different urban land covers on energy and water fluxes has been rarely quantified across the large varieties of construction materials, landscaping and vegetation types, and industrial, commercial and residential areas in cities. In this study, we deployed a mobile eddy covariance tower at three different locations in the Phoenix, Arizona, metropolitan area to capture a variety of urban land covers. The three locations each represent a common urban class in Phoenix: 1) a dense, xeric landscape (gravel cover and native plants with drip-irrigation systems near tall buildings); 2) a high-density urban site (asphalt-paved parking lot near a high-traffic intersection); and 3) a suburban mesic landscape (sprinkler-irrigated turf grass in a suburban neighborhood). At each site, we measured meteorological variables, including air temperature and relative humidity at three heights, precipitation and pressure, surface temperature, and soil moisture and temperature (where applicable), to complement the eddy covariance measurements of radiation, energy, carbon dioxide and water vapor fluxes. We evaluated the tower footprint at each site to characterize the contributing surface area to the flux measurements, including engineered and landscaping elements, as a function of time for each deployment. The different sites allowed us to compare how turbulent fluxes of water vapor and carbon dioxide vary for these representative urban land covers, in particular with respect to the role of precipitation events and irrigation. While the deployments covered different seasons, from winter to summer in 2015, the variety of daily conditions allowed quantification of the differential response to precipitation events during the winter, pre

  9. Lake Bathymetric Aquatic Vegetation

    Data.gov (United States)

    Minnesota Department of Natural Resources — Aquatic vegetation represented as polygon features, coded with vegetation type (emergent, submergent, etc.) and field survey date. Polygons were digitized from...

  10. Using the Landsat Archive to Estimate and Map Changes in Agriculture, Forests, and other Land Cover Types in East Africa

    Science.gov (United States)

    Healey, S. P.; Oduor, P.; Cohen, W. B.; Yang, Z.; Ouko, E.; Gorelick, N.; Wilson, S.

    2017-12-01

    Every country's land is distributed among different cover types, such as: agriculture; forests; rangeland; urban areas; and barren lands. Changes in the distribution of these classes can inform us about many things, including: population pressure; effectiveness of preservation efforts; desertification; and stability of the food supply. Good assessment of these changes can also support wise planning, use, and preservation of natural resources. We are using the Landsat archive in two ways to provide needed information about land cover change since the year 2000 in seven East African countries (Ethiopia, Kenya, Malawi, Rwanda, Tanzania, Uganda, and Zambia). First, we are working with local experts to interpret historical land cover change from historical imagery at a probabilistic sample of 2000 locations in each country. This will provide a statistical estimate of land cover change since 2000. Second, we will use the same data to calibrate and validate annual land cover maps for each country. Because spatial context can be critical to development planning through the identification of hot spots, these maps will be a useful complement to the statistical, country-level estimates of change. The Landsat platform is an ideal tool for mapping land cover change because it combines a mix of appropriate spatial and spectral resolution with unparalleled length of service (Landsat 1 launched in 1972). Pilot tests have shown that time series analysis accessing the entire Landsat archive (i.e., many images per year) improves classification accuracy and stability. It is anticipated that this project will meet the civil needs of both governmental and non-governmental users across a range of disciplines.

  11. Response of Coprophagus Beetles (Coleoptera: Scarabaeidae on changes of vegetation structure in various habitat types at Lore Lindu National Park, Central Sulawesi

    Directory of Open Access Journals (Sweden)

    CHRISTIAN H. SCHULZE

    2007-01-01

    Full Text Available This study analysed the response of dung beetles − a group of beetles which play a major role in decomposition of dung and animal carcasses − to changes of vegetation structure due to forest conversion to different human-made habitat types at the margin of Lore Lindu National Park. Therefore, dung beetles were sampled at natural forest, cacao agroforestry systems and open area. A total of 28 species of coprophagus beetle species were recorded from the sampled sites. Species richness and abundance of dung beetles, particularly of large species, decreased from forest towards agroforestry systems and open areas. However, more than 80 % of the species recorded in natural forest were found in cacao agroforestry systems Of the measured habitat parameters, particularly the number of tree species, air temperature, and canopy cover had a significant power for explaining changes in dung beetle ensembles along the gradient of land-use intensity.

  12. On the potential of long wavelength imaging radars for mapping vegetation types and woody biomass in tropical rain forests

    Science.gov (United States)

    Rignot, Eric J.; Zimmermann, Reiner; Oren, Ram

    1995-01-01

    In the tropical rain forests of Manu, in Peru, where forest biomass ranges from 4 kg/sq m in young forest succession up to 100 kg/sq m in old, undisturbed floodplain stands, the P-band polarimetric radar data gathered in June of 1993 by the AIRSAR (Airborne Synthetic Aperture Radar) instrument separate most major vegetation formations and also perform better than expected in estimating woody biomass. The worldwide need for large scale, updated biomass estimates, achieved with a uniformly applied method, as well as reliable maps of land cover, justifies a more in-depth exploration of long wavelength imaging radar applications for tropical forests inventories.

  13. Grazing effects on species composition in different vegetation types (La Palma, Canary Islands)

    Science.gov (United States)

    Arévalo, J. R.; de Nascimento, L.; Fernández-Lugo, S.; Mata, J.; Bermejo, L.

    2011-05-01

    Grazing management is probably one of the most extensive land uses, but its effects on plant communities have in many cases been revealed to be contradictory. Some authors have related these contradictions to the stochastic character of grazing systems. Because of that, it is necessary to implement specific analyses of grazing effects on each community, especially in natural protected areas, in order to provide the best information to managers. We studied the effects of grazing on the species composition of the main vegetation types where it takes place (grasslands, shrublands and pine forests) on the island of La Palma, Canary Islands. We used the point-quadrat intersect method to study the species composition of grazed and ungrazed areas, which also were characterized by their altitude, distance to farms, distance to settlements, year of sampling, herbaceous aboveground biomass and soil organic matter. The variables organic matter, productivity and species richness were not significantly affected by grazing. The species composition of the analyzed plant communities was affected more by variables such as altitude or distance to farms than by extensive grazing that has been traditionally carried out on the island of La Palma involving certain practices such as continuous monitoring of animals by goat keepers, medium stocking rates adjusted to the availability of natural pastures, supplementation during the dry season using local forage shrubs or mown pastures and rotating animals within grazing areas Although some studies have shown a negative effect of grazing on endangered plant species, these results cannot be freely extrapolated to the traditional grazing systems that exert a low pressure on plant communities (as has been found in this study). We consider extensive grazing as a viable way of ensuring sustainable management of the studied ecosystems.

  14. Forest-cover-type separation using RADARSAT-1 synthetic aperture radar imagery

    Science.gov (United States)

    Mark D. Nelson; Kathleen T. Ward; Marvin E. Bauer

    2009-01-01

    RADARSAT-1 synthetic aperture radar data, speckle reduction, and texture measures provided for separation among forest types within the Twin Cities metropolitan area, MN, USA. The highest transformed divergence values for 16-bit data resulted from speckle filtering while the highest values for 8-bit data resulted from the orthorectified image, before and after...

  15. ANALYSIS OF RELATIONSHIP BETWEEN URBAN HEAT ISLAND EFFECT AND LAND USE/COVER TYPE USING LANDSAT 7 ETM+ AND LANDSAT 8 OLI IMAGES

    Directory of Open Access Journals (Sweden)

    N. Aslan

    2016-06-01

    Full Text Available The main objectives of this study are (i to calculate Land Surface Temperature (LST from Landsat imageries, (ii to determine the UHI effects from Landsat 7 ETM+ (June 5, 2001 and Landsat 8 OLI (June 17, 2014 imageries, (iii to examine the relationship between LST and different Land Use/Land Cover (LU/LC types for the years 2001 and 2014. The study is implemented in the central districts of Antalya. Initially, the brightness temperatures are retrieved and the LST values are calculated from Landsat thermal images. Then, the LU/LC maps are created from Landsat pan-sharpened images using Random Forest (RF classifier. Normalized Difference Vegetation Index (NDVI image, ASTER Global Digital Elevation Model (GDEM and DMSP_OLS nighttime lights data are used as auxiliary data during the classification procedure. Finally, UHI effect is determined and the LST values are compared with LU/LC classes. The overall accuracies of RF classification results were computed higher than 88 % for both Landsat images. During 13-year time interval, it was observed that the urban and industrial areas were increased significantly. Maximum LST values were detected for dry agriculture, urban, and bareland classes, while minimum LST values were detected for vegetation and irrigated agriculture classes. The UHI effect was computed as 5.6 °C for 2001 and 6.8 °C for 2014. The validity of the study results were assessed using MODIS/Terra LST and Emissivity data and it was found that there are high correlation between Landsat LST and MODIS LST data (r2 = 0.7 and r2 = 0.9 for 2001 and 2014, respectively.

  16. The Influence of Different Cover Types on American Robin Nest Success in Organic Agroecosystems

    Directory of Open Access Journals (Sweden)

    James R. Brandle

    2013-08-01

    Full Text Available There are many opportunities for biodiversity conservation in organic farm systems. Successful and sustainable conservation efforts in organic systems, however, need to measure appropriate outcomes. In particular, data are needed on the breeding success of associated wildlife species. We measured nesting success of the American Robin (Turdus migratorius in woodlands embedded within eight organic farms in eastern Nebraska. We modeled daily nest survival rate to identify land use and land cover patterns that optimize conservation of birds in organic farm systems. The percentage of a crop in the fields adjacent to linear woodlands best predicted daily survival rate. Daily survival rate was lower in fields adjacent to wheat and greater in woodlands adjacent to soybean fields, though the latter may be a weak effect. There was no evidence that reducing the area allocated to organic crop production would improve daily survival rate but rather an evidence of a patch-matrix interaction. These results suggest that, if suitable nesting sites exist, organic farmers can complement local conservation efforts without losing working farmland.

  17. Study of the specific activity concentrations of 40K, {sup 226}Ra, {sup 228}Ra and {sup 232}Th in vegetables and their respective covering tissues (peels)

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, J.M.; Garcêz, R.W.D., E-mail: marqueslopez@yahoo.com.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Silva, A.X. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Escola Politécnica

    2017-07-01

    This work presents an analysis of specific concentrations of {sup 40}K, {sup 226}Ra, {sup 228}Ra and {sup 232}Th in some vegetables that are part of the diet of the population of the state of Rio de Janeiro. Furthermore, was analyzed the concentrations of radionuclides in the same coating tissue that compose the vegetables. It can notice an increase of the specific concentration of {sup 40}K in the peels of vegetables that have little or no contact with the ground. Among the samples examined, only the pumpkin showed measurable amount of {sup 137}Cs both saves and in the skin. (author)

  18. Study of the specific activity concentrations of 40K, 226Ra, 228Ra and 232Th in vegetables and their respective covering tissues (peels)

    International Nuclear Information System (INIS)

    Lopes, J.M.; Garcêz, R.W.D.; Silva, A.X.

    2017-01-01

    This work presents an analysis of specific concentrations of 40 K, 226 Ra, 228 Ra and 232 Th in some vegetables that are part of the diet of the population of the state of Rio de Janeiro. Furthermore, was analyzed the concentrations of radionuclides in the same coating tissue that compose the vegetables. It can notice an increase of the specific concentration of 40 K in the peels of vegetables that have little or no contact with the ground. Among the samples examined, only the pumpkin showed measurable amount of 137 Cs both saves and in the skin. (author)

  19. Variations in fresh fruit and vegetable quality by store type, urban-rural setting and neighbourhood deprivation in Scotland.

    Science.gov (United States)

    Cummins, Steven; Smith, Dianna M; Taylor, Mathew; Dawson, John; Marshall, David; Sparks, Leigh; Anderson, Annie S

    2009-11-01

    Neighbourhood differences in access to fresh fruit and vegetables may explain social inequalities in diet. Investigations have focused on variations in cost and availability as barriers to the purchase and consumption of fresh produce; investigations of quality have been neglected. Here we investigate whether produce quality systematically varies by food store type, rural-urban location and neighbourhood deprivation in a selection of communities across Scotland. Cross-sectional survey of twelve fresh fruit and vegetable items in 288 food stores in ten communities across Scotland. Communities were selected to reflect a range of urban-rural settings and a food retail census was conducted in each location. The quality of twelve fruit and vegetable items within each food store was evaluated. Data from the Scottish Executive were used to characterise each small area by deprivation and urban-rural classification. Scotland. Quality of fruit and vegetables within the surveyed stores was high. Medium-sized stores, stores in small town and rural areas, and stores in more affluent areas tended to have the highest-quality fresh fruit and vegetables. Stores where food is secondary, stores in urban settings and stores in more deprived areas tended have the lowest-quality fresh produce. Although differences in quality were not always statistically significant, patterns were consistent for the majority of fruit and vegetable items. The study provides evidence that variations in food quality may plausibly be a micro-environmental mediating variable in food purchase and consumption and help partially explain neighbourhood differences in food consumption patterns.

  20. Accuracy comparison of remotely sensed evapotranspiration products and their associated water stress footprints under different land cover types in Korean peninsula

    KAUST Repository

    Liaqat, Umar Waqas

    2016-09-09

    Robust spatial information of evapotranspiration from multiple land cover types is deemed critical for several applications in agriculture and water balance studies. Energy balance models, used in association with satellite observations, are beneficial to map spatial variability of evapotranspiration which is mainly governed by different vegetation practices and local environmental conditions. This study utilize the Surface Energy Balance System model to estimate actual evapotranspiration and water scarcity footprints under complex landscape of Korean peninsula using Moderate-Resolution Imaging Spectroradiometer satellite data for a complete hydrological year of 2012. The modeled evapotranspiration was compared with flux tower measurements obtained from a subhumid cropland and temperate forest sites for the accuracy assessment. This accuracy comparison at daily scale had good agreement yielding reasonable coefficient of determination (0.72, 0.51), bias (0.41 mm day−1, 1.01 mm day−1) and root mean squared error (0.92 mm day−1, 1.53 mm day−1) at two observation (cropland, forest) sites, respectively. Furthermore, the monthly aggregated evapotranspiration from Surface Energy Balance System showed promising results than those of obtained from Moderate-Resolution Imaging Spectroradiometer based readymade global evapotranspiration product, i.e., MOD16, when both products were compared with unclosed and closed flux tower measurements. However, the variations in monthly evapotranspiration obtained from both products were significantly controlled by several climate factors and vegetation characteristics. Water stress mapping at regional and monthly scale also revealed strong contrast between the products of two approaches. Highest mean water stress (0.74) was observed for land use areas associated with evergreen forest and under sparsely vegetation condition by using estimated evapotranspiration from Surface Energy Balance System while an extreme mean water stress

  1. Temperature and substrate controls on intra-annual variation in ecosystem respiration in two subarctic vegetation types

    DEFF Research Database (Denmark)

    Grogan, Paul; Jonasson, Sven Evert

    2005-01-01

    significantly to ecosystem respiration during most phases of winter and summer in the two vegetation types. Ecosystem respiration rates through the year did not differ significantly between vegetation types despite substantial differences in biomass pools, soil depth and temperature regime. Most (76...... contributions of bulk soil organic matter and plant-associated carbon pools to ecosystem respiration is critical to predicting the response of arctic ecosystem net carbon balance to climate change. In this study, we determined the variation in ecosystem respiration rates from birch forest understory and heath......-92%) of the intra-annual variation in ecosystem respiration rates from these two common mesic subarctic ecosystems was explained using a first-order exponential equation relating respiration to substrate chemical quality and soil temperature. Removal of plants and their current year's litter significantly reduced...

  2. Terminal Restriction Fragment Length Polymorphism Analysis of Soil Bacterial Communities under Different Vegetation Types in Subtropical Area.

    Directory of Open Access Journals (Sweden)

    Zeyan Wu

    Full Text Available Soil microbes are active players in energy flow and material exchange of the forest ecosystems, but the research on the relationship between the microbial diversity and the vegetation types is less conducted, especially in the subtropical area of China. In this present study, the rhizosphere soils of evergreen broad-leaf forest (EBF, coniferous forest (CF, subalpine dwarf forest (SDF and alpine meadow (AM were chosen as test sites. Terminal-restriction fragment length polymorphisms (T-RFLP analysis was used to detect the composition and diversity of soil bacterial communities under different vegetation types in the National Natural Reserve of Wuyi Mountains. Our results revealed distinct differences in soil microbial composition under different vegetation types. Total 73 microbes were identified in soil samples of the four vegetation types, and 56, 49, 46 and 36 clones were obtained from the soils of EBF, CF, SDF and AM, respectively, and subsequently sequenced. The Actinobacteria, Fusobacterium, Bacteroidetes and Proteobacteria were the most predominant in all soil samples. The order of Shannon-Wiener index (H of all soil samples was in the order of EBF>CF>SDF>AM, whereas bacterial species richness as estimated by four restriction enzymes indicated no significant difference. Principal component analysis (PCA revealed that the soil bacterial communities' structures of EBF, CF, SDF and AM were clearly separated along the first and second principal components, which explained 62.17% and 31.58% of the total variance, respectively. The soil physical-chemical properties such as total organic carbon (TOC, total nitrogen (TN, total phosphorus (TP and total potassium (TK were positively correlated with the diversity of bacterial communities.

  3. Wieslander Vegetation

    Data.gov (United States)

    California Natural Resource Agency — Digital version of the 1945 California Vegetation Type Maps by A. E. Wieslander of the U.S. Forest Service. Source scale of maps are 1:100,000. These compiled maps...

  4. Rapid Assessment of Key Structural Elements of Different Vegetation Types of West African Savannas in Burkina Faso

    Directory of Open Access Journals (Sweden)

    Qasim Mohammad

    2016-01-01

    Full Text Available Estimations of Leaf Area Index (LAI have recently gained attention due to the sensitivity to the effects of climate change and its impact on forest ecosystems. Hence, a study was conducted on the LAI estimation of four vegetation types: (i gallery forests, (ii woodland savannas, (iii tree savannas, and (iv shrub savannas, at two protected areas of Nazinga Game Ranch and Bontioli Nature Reserve, Burkina Faso. A relationship between LAI and Crown Diameter was also investigated at these two sites. Digital hemispherical photography was used for the LAI estimation. Crown diameters (CD were determined perpendicular to each other and averaged for each tree and shrub. Overall results revealed that LAI ranged from 0-1.33 and the CD was recorded in the range of 0.46-11.01 m. The gallery forests recorded the highest mean LAI 1.33 ± 0.32 as well as the highest mean CD 7.69 ± 1.90 m. The LAI for the vegetation types were at their lower ends as the study was conducted in summer season, higher values are therefore expected in the wet season, as a significant correlation between LAI and precipitation has been emphasized by various studies. Continuous LAI monitoring and studies on various growth parameters of different vegetation types at the study sites are recommended towards enhanced monitoring and an ecologically feasible forest- and savanna-use and management to maintain essential ecosystem functions and services.

  5. Effect of vegetation types on soil arbuscular mycorrhizal fungi and nitrogen-fixing bacterial communities in a karst region.

    Science.gov (United States)

    Liang, Yueming; Pan, Fujing; He, Xunyang; Chen, Xiangbi; Su, Yirong

    2016-09-01

    Arbuscular mycorrhizal (AM) fungi and nitrogen-fixing bacteria play important roles in plant growth and recovery in degraded ecosystems. The desertification in karst regions has become more severe in recent decades. Evaluation of the fungal and bacterial diversity of such regions during vegetation restoration is required for effective protection and restoration in these regions. Therefore, we analyzed relationships among AM fungi and nitrogen-fixing bacteria abundances, plant species diversity, and soil properties in four typical ecosystems of vegetation restoration (tussock (TK), shrub (SB), secondary forest (SF), and primary forest (PF)) in a karst region of southwest China. Abundance of AM fungi and nitrogen-fixing bacteria, plant species diversity, and soil nutrient levels increased from the tussock to the primary forest. The AM fungus, nitrogen-fixing bacterium, and plant community composition differed significantly between vegetation types (p fungi and nitrogen-fixing bacteria, respectively. Available phosphorus, total nitrogen, and soil organic carbon levels and plant richness were positively correlated with the abundance of AM fungi and nitrogen-fixing bacteria (p fungi and nitrogen-fixing bacteria increased from the tussock to the primary forest and highlight the essentiality of these communities for vegetation restoration.

  6. Cloud cover typing from environmental satellite imagery. Discriminating cloud structure with Fast Fourier Transforms (FFT)

    Science.gov (United States)

    Logan, T. L.; Huning, J. R.; Glackin, D. L.

    1983-01-01

    The use of two dimensional Fast Fourier Transforms (FFTs) subjected to pattern recognition technology for the identification and classification of low altitude stratus cloud structure from Geostationary Operational Environmental Satellite (GOES) imagery was examined. The development of a scene independent pattern recognition methodology, unconstrained by conventional cloud morphological classifications was emphasized. A technique for extracting cloud shape, direction, and size attributes from GOES visual imagery was developed. These attributes were combined with two statistical attributes (cloud mean brightness, cloud standard deviation), and interrogated using unsupervised clustering amd maximum likelihood classification techniques. Results indicate that: (1) the key cloud discrimination attributes are mean brightness, direction, shape, and minimum size; (2) cloud structure can be differentiated at given pixel scales; (3) cloud type may be identifiable at coarser scales; (4) there are positive indications of scene independence which would permit development of a cloud signature bank; (5) edge enhancement of GOES imagery does not appreciably improve cloud classification over the use of raw data; and (6) the GOES imagery must be apodized before generation of FFTs.

  7. GAP Land Cover - Image

    Data.gov (United States)

    Minnesota Department of Natural Resources — This raster dataset is a simple image of the original detailed (1-acre minimum), hierarchically organized vegetation cover map produced by computer classification of...

  8. GAP Land Cover - Vector

    Data.gov (United States)

    Minnesota Department of Natural Resources — This vector dataset is a detailed (1-acre minimum), hierarchically organized vegetation cover map produced by computer classification of combined two-season pairs of...

  9. Efeito da cobertura vegetal sobre a pérola-da-terra (Hemiptera: Margarodidae na cultura da videira = Effect of cover crops on brazilian ground pearl (Hemiptera: Margarodidae in vineyards

    Directory of Open Access Journals (Sweden)

    Marcos Botton

    2010-10-01

    Full Text Available O uso da cobertura vegetal em vinhedos é uma prática empregada paraminimizar a erosão e melhorar as qualidades químicas e físicas do solo. Neste trabalho, foi avaliado o efeito de coberturas vegetais sobre a população da pérola-da-terra Eurhizococcus brasiliensis (Hemiptera: Margarodidae na cultura da videira. No primeiro experimento, o vinhedo foi mantido sem cobertura vegetal por meio da aplicação trimestral do herbicida glifosato comparado com o uso de vegetação espontânea, durante o ano, de vegetação espontânea, no verão, e de aveia preta no inverno. No segundo experimento foi avaliado o efeito da mucuna-preta (Stizolobium aterrimum cultivada no vinhedo durante o verão comparado com a vegetação espontânea. No primeiro experimento, a população da pérolada-terra nas raízes de plantas de videira foi maior em áreas mantidas sem cobertura vegetal emostrou-se semelhante em áreas onde se manteve a vegetação espontânea, ao longo do ano, e com aveia preta no inverno e vegetação espontânea no verão. A infestação das plantas de videira em áreas onde foi empregada a mucuna-preta durante o verão foi equivalente à da vegetação espontânea. S. aterrimum foi registrada pela primeira vez como hospedeira de E. brasiliensis. The use of cover crops is an important strategy to reduce erosion and improve chemical and physical soil properties. In this work, we evaluate the effect of cover crops to reduce Brazilian ground pearl Eurhizococcus brasiliensis (Hemiptera: Margarodidae infestation in vineyards. In the first experiment, glyphosate was sprayed each three months to avoid cover crops. This treatment was compared with naturally occurring vegetation during the year and the use of Avena sativa in the winter. In a second experiment, Stizolobium aterrimum was cultivated during the summer compared with naturally occurringvegetation. Brazilian ground pearl population was higher in glyphosate sprayed areas than where cover

  10. The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30years.

    Science.gov (United States)

    Zhang, Zengxin; Chang, Juan; Xu, Chong-Yu; Zhou, Yang; Wu, Yanhong; Chen, Xi; Jiang, Shanshan; Duan, Zheng

    2018-09-01

    Lakes and vegetation are important factors of the Earth's hydrological cycle and can be called an "indicator" of climate change. In this study, long-term changes of lakes' area and vegetation coverage in the Qinghai-Tibetan Plateau (QTP) and their relations to the climate change were analyzed by using Mann-Kendall method during the past 30years. Results showed that: 1) the lakes' area of the QTP increased significantly during the past 30years as a whole, and the increasing rates have been dramatically sped up since the year of 2000. Among them, the area of Ayakekumu Lake has the fastest growing rate of 51.35%, which increased from 618km 2 in the 1980s to 983km 2 in the 2010s; 2) overall, the Normalized Difference Vegetation Index (NDVI) increased in the QTP during the past 30years. Above 79% of the area in the QTP showed increasing trend of NDVI before the year of 2000; 3) the air temperature increased significantly, the precipitation increased slightly, and the pan evaporation decreased significantly during the past 30years. The lake area and vegetation coverage changes might be related to the climate change. The shifts in the temporal climate trend occurred around the year 2000 had led the lake area and vegetation coverage increasing. This study is of importance in further understanding the environmental changes under global warming over the QTP. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Changes in Vegetation Cover in Reforested Areas in the State of São Paulo, Brazil and the Implication for Landslide Processes

    Directory of Open Access Journals (Sweden)

    Regina Célia dos Santos Alvalá

    2012-09-01

    Full Text Available In Brazil, plantations of exotic species such as Eucalyptus have expanded substantially in recent years, due in large part to the great demand for cellulose and wood. The combination of the steep slopes in some of these regions, such as the municipalities located close to the Serra do Mar and Serra da Mantiqueira, and the soil exposure that occurs in some stages in the Eucalyptus cultivation cycle, can cause landslides. The use of a geographic information system (GIS assists with the identification of areas that are susceptible to landslides, and one of the GIS tools used is the spatial inference technique. In this work, the landslide susceptibility of areas occupied by Eucalyptus plantations in different stages of development in municipalities in the state of São Paulo was examined. Eight thematic maps were used, and, the fuzzy gamma technique was used for data integration and the generation of susceptibility maps, in which scenarios were created with different gamma values for the dry and rainy seasons. The results for areas planted with Eucalyptus were compared with those obtained for other land uses and covers. In the moderate and high susceptibility classes, the pasture is the land use type that presented the greatest susceptibility, followed by new Eucalyptus plantations and urban areas.

  12. Vegetation types of East Ladakh: species and growth form composition along main environmental gradients

    Czech Academy of Sciences Publication Activity Database

    Dvorský, Miroslav; Doležal, Jiří; de Bello, Francesco; Klimešová, Jitka; Klimeš, Leoš

    2011-01-01

    Roč. 14, č. 1 (2011), 132-147 ISSN 1402-2001 R&D Projects: GA AV ČR IAA600050802 Institutional research plan: CEZ:AV0Z60050516 Keywords : alpine vegetation * Classification * Trans-Himalaya Subject RIV: EF - Botanics Impact factor: 1.678, year: 2011

  13. Szendro - type Integrated Vegetation Fire Management--Wildfire Management Program from Hungary

    Science.gov (United States)

    Ágoston Restás

    2006-01-01

    Szendrő Fire Department is located in the northeastern part of Hungary. The main task is to fight against wildfire and mitigate the impact of fire at the Aggtelek National Park -- which belongs to the UNESCO World Heritage list. Because of greater effectiveness, in 2004 the Fire Department started a project named Integrated Vegetation Fire Management (IVFM)....

  14. Predictors of College-Student Food Security and Fruit and Vegetable Intake Differ by Housing Type

    Science.gov (United States)

    Mirabitur, Erica; Peterson, Karen E.; Rathz, Colleen; Matlen, Stacey; Kasper, Nicole

    2016-01-01

    Objective: We assessed whether college-student characteristics associate with food security and fruit and vegetable (FV) intake and whether these associations differ in students in housing with and without food provision. Participants: 514 randomly-sampled students from a large, Midwestern, public university in 2012 and 2013 Methods: Ordered…

  15. Paleogene events in Central Eurasia: their role in the flora and vegetation cover evolution, migration of phytochore boundaries, and climate changes

    Science.gov (United States)

    Akhmetiev, M. A.; Zaporozhets, N. I.

    2014-05-01

    The flora and vegetation of Central Eurasia evolved in the Paleogene to a significant extent in line with the scenario similar to the Late Cretaceous one. The position of high-rank phytochores was controlled by the global climatic zonality, while development stages of the flora depended on interaction between the Arctic and Tethyan water masses and direction of atmospheric flows and were determined by principal geological and paleogeographic events in the Paleogene history of Central Eurasia. Five main stages are definable in development of the Paleogene flora: (1) early-middle Danian with the wide distribution of temperate-thermophilic floras in the middle and high latitudes and their westward and southward expansion from the Pacific and Arctic regions of the Boreal realm; (2) Late Paleocene-Early Eocene with the maximal advancement of the Tethyan flora to the high latitudes and northward migration of phytochore boundaries in response to intense water exchange between the Tethys and Atlantic oceans with its trade currents and atmospheric heat transfer directly from the tropical zone in absence of the Alpine-Himalayan orogen; (3) Lutetian with development of subtropical monsoon-type floras under influence of the water mass exchange between the Arctic Basin and Peritethys with the monsoon-induced currents and atmospheric heat transfer from the Peritethys under conditions of the restricted connection between the Central Asia basins and Tethys; (4) (?) late Lutetian-Priabonian reflecting the climate inversion due to isolation of the West Siberian Sea from the Arctic Basin against the background of its continuing connection with the Peritethys; the formation of the semiclosed West Siberian Sea at that time was accompanied by development of a climate with humid winters, hot dry summers, and deficiency of average annual precipitation in the middle latitudes of Central Eurasia, where luxuriant subtropical Quercus-Laurus forests with Castanopsis that prevailed at the

  16. Higher intake of fruits, vegetables or their fiber reduces the risk of type 2 diabetes: A meta-analysis.

    Science.gov (United States)

    Wang, Ping-Yu; Fang, Jun-Chao; Gao, Zong-Hua; Zhang, Can; Xie, Shu-Yang

    2016-01-01

    Some previous studies reported no significant association of consuming fruit or vegetables, or fruit and vegetables combined, with type 2 diabetes. Others reported that only a greater intake of green leafy vegetables reduced the risk of type 2 diabetes. To further investigate the relationship between them, we carried out a meta-analysis to estimate the independent effects of the intake of fruit, vegetables and fiber on the risk of type 2 diabetes. Searches of MEDLINE and EMBASE for reports of prospective cohort studies published from 1 January 1966 to 21 July 2014 were carried out, checking reference lists, hand-searching journals and contacting experts. The primary analysis included a total of 23 (11 + 12) articles. The pooled maximum-adjusted relative risk of type 2 diabetes for the highest intake vs the lowest intake were 0.91 (95% confidence interval [CI] 0.87-0.96) for total fruits, 0.75 (95% CI 0.66-0.84) for blueberries, 0.87 (95% CI 0.81-0.93) for green leafy vegetables, 0.72 (95% CI 0.57-0.90) for yellow vegetables, 0.82 (95% CI 0.67-0.99) for cruciferous vegetables and 0.93 (95% CI 0.88-0.99) for fruit fiber in these high-quality studies in which scores were seven or greater, and 0.87 (95% CI 0.80-0.94) for vegetable fiber in studies with a follow-up period of 10 years or more. A higher intake of fruit, especially berries, and green leafy vegetables, yellow vegetables, cruciferous vegetables or their fiber is associated with a lower risk of type 2 diabetes.

  17. Determinants of vegetation distribution at continental scale. The contribution of natural and anthropogenic factors

    DEFF Research Database (Denmark)

    Greve, Michelle; Svenning, J.-C.; Lykke, Anne Mette

    2011-01-01

    It has long been debated what determines distribution of vegetation types, though this has rarely been tested at continental scale. We thus aimed to determine which vegetation types are most accurately predicted by natural environmental factors, and which of these factors best predict current veg...... was also assessed, and found to be of some importance for most vegetation types. We conclude that, in addition to including environmental variables in predicting vegetation distribution, it is essential that human impact be considered, also in future climate change scenarios....... vegetation distribution across Africa. Vegetation types were extracted from the Global Land Cover Map for the year 2000, and the distribution of vegetation types modelled in terms of climate, soil and topography. Annual precipitation was the best predictor of the distribution of all vegetation types...

  18. [Comparison of soil fertility among open-pit mine reclaimed lands in Antaibao regenerated with different vegetation types].

    Science.gov (United States)

    Wang, Xiang; Li, Jin-chuan; Yue, Jian-ying; Zhou, Xiao-mei; Guo, Chun-yan; Lu, Ning; Wang, Yu-hong; Yang, Sheng-quan

    2013-09-01

    Re-vegetation is mainly applied into regeneration in opencast mine to improve the soil quality. It is very important to choose feasible vegetation types for soil restoration. In this study, three typical forest restoration types were studied at Antaibao mine, namely, Medicago sativa, mixed forests Pinus taebelaefolius-Robinia pseudoacacia-Caragana korshinskii and Elaeagnus angustifolia-Robinia pseudoacacia-Caragana korshinskii-Hipophae rhamnoides, to determine the nutrient contents and enzyme activities in different soil layers. The results showed that re-vegetation markedly increased soil nutrient contents and the enzyme activities during the restoration process. The nutrient content of soil in the P. taebelaefolius-R. pseudoacacia-C. korshinskii mixed forest field was significantly higher than those in other plots. It was found that the soil of the P. taebelaefolius-R. pseudoacacia-C. korshinskii mixed forest had the highest integrated fertility index values. In conclusion, the restoration effects of the P. zaebelaefolius-R. pseudoacacia-C. Korshinskii mixed forest was better than that of E. angustifolia-R. pseudoacacia-C. korshinskii-H. rhamnoides, while M. sativa grassland had the least effect.

  19. Preliminary investigations to assess the usefulness of Be-7 as a radiotracer in soil covered by vegetation [Activities of the Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf

    International Nuclear Information System (INIS)

    Iurian, Andra-Rada; Dercon, Gerd; Adu-Gyamfi, Joseph; Mabit, Lionel; Kis-Benedek, Gyula; Ceccatelli, Alessia; Tarjan, Sandor; Blake, William

    2014-01-01

    Different factors may affect the extent of radionuclides’ interception by plants and therewith their inventories in soil covered areas. In particular, there is interest in assessing the impact of the vegetation factor for different soil coverage conditions, when using 7 Be as radiotracer of soil redistribution in cropped farmland. Our results suggest that 7 Be foliar interception of bean plants is likely to affect the radionuclide inventories and their spatial uniformity in covered soil. Reliable results on short-term erosion using 7 Be can be obtained in cropped farmland with limited cover, but only when taking into account the interception factor. The impact of the interception factor is highly dependent on rainfall intensity and duration, crop species and the growing stage of the plants. Further investigations into these variables are required

  20. Preliminary investigations to assess the usefulness of Be-7 as a radiotracer in soil covered by vegetation [Activities of the Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf

    Energy Technology Data Exchange (ETDEWEB)

    Iurian, Andra-Rada [Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca (Romania); Dercon, Gerd; Adu-Gyamfi, Joseph; Mabit, Lionel [Soil and Water Management and Crop Nutrition Laboratory, Joint FAO/IAEA Division for Nuclear Techniques in Food and Agriculture, Seibersdorf (Austria); Kis-Benedek, Gyula; Ceccatelli, Alessia; Tarjan, Sandor [3Terrestrial Environment Laboratory, IAEA Environment Laboratories, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Seibersdorf (Austria); Blake, William [School of Geography, University of Plymouth, Plymouth (United Kingdom); others, and

    2014-07-15

    Different factors may affect the extent of radionuclides’ interception by plants and therewith their inventories in soil covered areas. In particular, there is interest in assessing the impact of the vegetation factor for different soil coverage conditions, when using {sup 7}Be as radiotracer of soil redistribution in cropped farmland. Our results suggest that {sup 7}Be foliar interception of bean plants is likely to affect the radionuclide inventories and their spatial uniformity in covered soil. Reliable results on short-term erosion using {sup 7}Be can be obtained in cropped farmland with limited cover, but only when taking into account the interception factor. The impact of the interception factor is highly dependent on rainfall intensity and duration, crop species and the growing stage of the plants. Further investigations into these variables are required.

  1. Pérdidas de suelo y nutrientes bajo diferentes coberturas vegetales en la zona Andina de Colombia Soil and nutrient loss under different vegetation covers in Colombia's Andean region

    Directory of Open Access Journals (Sweden)

    J. Alexander Rodríguez

    2009-07-01

    Full Text Available El estudio se realizó en la reserva natural El Ciprés, ubicada en la vereda Bellavista, municipio de El Dovio (Valle del Cauca. La vereda se encuentra en la zona Andina de la cordillera occidental, en el departamento del Valle del Cauca, entre 1700 y 1800 m.s.n.m., con una temperatura promedio de 18 °C. Según la clasificación climática de Holdridge, corresponde a una zona de bosque húmedo Montano Bajo, con una precipitación promedio entre 2500 y 2700 mm/año, una humedad relativa de 90% y una pendiente del suelo de 62%. Las mediciones se hicieron en parcelas de escorrentía de 32 m² cada una y siete tipos de coberturas: guadua (Guadua angustifolia Kunth, bosque secundario, pastura (Brachiaria decumbens, café (Coffea arabica; banco de proteína (Trichanthera gigantea, caña forrajera (Saccharum officinarum y cultivo limpio conformado por yuca (Manihot esculenta, maíz (Zea mays y arracacha (Arracacia zanthorrhiza Brancroft. Para la evaluación se midieron las pérdidas de suelo y los nutrientes calcio, magnesio, potasio y fósforo en un periodo de 7 meses. Los resultados mostraron diferencias (P Soil and nutrient (calcium, magnesium, potassium, phosphorus losses were measured over a 7-month period in the El Ciprés Natural Reserve, located in the Bellavista rural community, municipality of El Dovio, in the western cordillera of the Andes of the department of Valle del Cauca, Colombia. At 1700-1800 meters above sea level, the area presents an average temperature of 18 °C, an average annual precipitation of 2500-2700 mm, 90% relative humidity, and a 62% slope. According to the Holdridge climate classification system, it corresponds to a lower montane rain forest. Measurements were taken in runoff plots, each 32 m², with seven types of vegetation cover: giant bamboo (Guadua angustifolia Kunth; secondary forest; pastures (Brachiaria decumbens; coffee (Coffea arabica; protein bank (Trichanthera gigantea; forage cane (Saccharum officinarum

  2. Type utilization of baked-smashed sweet potato and vegetables on patisserie product

    Science.gov (United States)

    Ana; Subekti, S.; Sudewi; Perdani, E. N.; Hanum, F.; Suciani, T.; Tania, V.

    2016-04-01

    The research was an experimental study in Green Skill Patisserie Course using Project-Based Learning model. It aims to complete the project development of pie named guramnis rainbow pie. Several experiments were carried out to produce a pie dough crust mixed with baked-smashed sweet potato and added with vegetables extract as the food coloring. The experiment method in order to make a better appearance or an attractive shape and to have more nutrition. In addition, the pie was filled with a mixture of sweet and sour gurame as Indonesian traditional food. By applying an organoleptic test to 10 respondents, the result shows that pie dough recipe using flour substituted by baked-smashed sweet potato with 2:1 of a ratio. Coloring pie dough adding extract vegetables (carrots, beets and celery) as color. We found that pie dough has more interesting pie color (90%) and the texture of the pie with a quite level of crispness (60%). Moreover, the pie taste is fairly (70%) and tasty (70%). Nutritional analysis results show that per size, serving guramnis rainbow pie contains energy as much as 81.72 calories, carbohydrates 12.5 grams, fat 2.32 grams and 2.77 grams of protein. The main findings are the pie appearance and taste was different compared to the previous pies because of the pie was served with gurame asam manis as the filling and had flour and cilembu sweet potato as the basic ingredients. The color of guramnis rainbow pie was resulted not only from food coloring but also from vegetables extract namely carrot (orange), bit (red), and salary (green). Thus, it had many benefits for health and adds the nutrition. The researchers recommend a further study in order to make pie dough with baked sweet potato and vegetables extract having an optimal level of crispness.

  3. Soil carbon fractions and enzyme activities under different vegetation types on the Loess Plateau of China

    OpenAIRE

    Zhang, Haixin; Zeng, Quanchao; An, Shaoshan; Dong, Yanghong; Darboux, Frédéric

    2016-01-01

    Vegetation restoration was effective way of protecting soil erosion and water conservation on the Loess Plateau. Carbon fractions and enzyme activities were sensitive parameters for assessment of soil remediation through revegetation. Forest, forest steppe and grassland soils were collected at 0–5 cm and 5–20 cm soil layers in Yanhe watershed, Shaanxi Province. Urease, sucrase, alkaline phosphatase, soil organic carbon (SOC), microbial biomass carbon (MBC), easily ox...

  4. Fire patterns in piñon and juniper land cover types in the Semiarid Western United States from 1984 through 2013

    Science.gov (United States)

    David I. Board; Jeanne C. Chambers; Richard F. Miller; Peter J. Weisberg

    2018-01-01

    Increases in area burned and fire size have been reported across a wide range of forest and shrubland types in the Western United States in recent decades, but little is known about potential changes in fire regimes of piñon and juniper land cover types. We evaluated spatio-temporal patterns of fire in piñon and juniper land cover types from the National Gap Analysis...

  5. Estimating the influence of different urban canopy cover types on atmospheric particulate matter (PM10) pollution abatement in London UK.

    Science.gov (United States)

    Tallis, Matthew; Freer-Smith, Peter; Sinnett, Danielle; Aylott, Matthew; Taylor, Gail

    2010-05-01

    In the urban environment atmospheric pollution by PM10 (particulate matter with a diameter less than 10 x 10-6 m) is a problem that can have adverse effects on human health, particularly increasing rates of respiratory disease. The main contributors to atmospheric PM10 in the urban environment are road traffic, industry and power production. The urban tree canopy is a receptor for removing PM10s from the atmosphere due to the large surface areas generated by leaves and air turbulence created by the structure of the urban forest. In this context urban greening has long been known as a mechanism to contribute towards PM10 removal from the air, furthermore, tree canopy cover has a role in contributing towards a more sustainable urban environment. The work reported here has been carried out within the BRIDGE project (SustainaBle uRban plannIng Decision support accountinG for urban mEtabolism). The aim of this project is to assess the fluxes of energy, water, carbon dioxide and particulates within the urban environment and develope a DSS (Decision Support System) to aid urban planners in sustainable development. A combination of published urban canopy cover data from ground, airborne and satellite based surveys was used. For each of the 33 London boroughs the urban canopy was classified to three groups, urban woodland, street trees and garden trees and each group quantified in terms of ground cover. The total [PM10] for each borough was taken from the LAEI (London Atmospheric Emissions Inventory 2006) and the contribution to reducing [PM10] was assessed for each canopy type. Deposition to the urban canopy was assessed using the UFORE (Urban Forest Effects Model) approach. Deposition to the canopy, boundary layer height and percentage reduction of the [PM10] in the atmosphere was assessed using both hourly meterological data and [PM10] and seasonal data derived from annual models. Results from hourly and annual data were compared with measured values. The model was then

  6. Climatological determinants of woody cover in Africa

    OpenAIRE

    Good, Stephen P.; Caylor, Kelly K.

    2011-01-01

    Determining the factors that influence the distribution of woody vegetation cover and resolving the sensitivity of woody vegetation cover to shifts in environmental forcing are critical steps necessary to predict continental-scale responses of dryland ecosystems to climate change. We use a 6-year satellite data record of fractional woody vegetation cover and an 11-year daily precipitation record to investigate the climatological controls on woody vegetation cover across the African continent....

  7. Dissolved organic carbon (DOC) concentrations in UK soils and the influence of soil, vegetation type and seasonality.

    Science.gov (United States)

    van den Berg, Leon J L; Shotbolt, Laura; Ashmore, Mike R

    2012-06-15

    Given the lack of studies which measured dissolved organic carbon (DOC) over long periods, especially in non-forest habitat, the aim of this study was to expand the existing datasets with data of mainly non-forest sites that were representative of the major soil and habitat types in the UK. A further aim was to predict DOC concentrations from a number of biotic and abiotic explanatory variables such as rainfall, temperature, vegetation type and soil type in a multivariate way. Pore water was sampled using Rhizon or Prenart samplers at two to three week intervals for 1 year. DOC, pH, organic carbon, carbon/nitrogen (C:N) ratios of soils and slope were measured and data on vegetation, soil type, temperature and precipitation were obtained. The majority of the variation in DOC concentrations between the UK sites could be explained by simple empirical models that included annual precipitation, and soil C:N ratio with precipitation being negatively related to DOC concentrations and C:N ratio being positively related to DOC concentrations. Our study adds significantly to the data reporting DOC concentrations in soils, especially in grasslands, heathlands and moorlands. Broad climatic and site factors have been identified as key factors influencing DOC concentrations. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Vegetation types, dominant compositions, woody plant diversity and stand structure in Trishna Wildlife Sanctuary of Northeast India.

    Science.gov (United States)

    Majumdar, Koushik; Datta, B K

    2015-03-01

    Present study was carried out to assess the vegetation types, diversity and phytosociological status of woody plants in Trishna Wildlife Sanctuary of Tripura, Northeast India. Vegetation data was derived by 25 line transects (10 m wide and 500 m length, each 0.5 ha size). All woody species at >10 cm gbh (Girth at Breast Height) within each plots were measured and counted. A total of six forest types were classified by cluster analysis using Importance Value Index (IVI) of 289 woody species. Species diversity, forest structure and woody community associations were evaluated and discussed. One way ANOVA revealed significant differences in all species diversity measures and stand structure along the forest types. Distribution of stem density at ten different gbh classes showed reverse J-shaped curves. Population status of woody plants was also examined through grouping of all individuals into four population age stages viz. sapling ( or = 30 - 120 - 210 cm gbh) and old (> or =210 cm). To observe dominant composition and species population trend, IVI of top ten dominant species from all forest types were tabulated. The present study suggested that Trishna Wildlife Sanctuary is an important habitat in Tripura from floristic point of view and it should be conserved on priority basis for remaining wildlife endurances and monitor for forest livelihoods products for sustainable biodiversity conservation in this region.

  9. CLASIFICACIÓN NO SUPERVISADA DE COBERTURAS VEGETALES SOBRE IMÁGENES DIGITALES DE SENSORES REMOTOS: “LANDSAT - ETM+” NONSUPERVISED CLASSIFICATION OF VEGETABLE COVERS ON DIGITAL IMAGES OF REMOTE SENSORS: "LANDSAT - ETM+"

    Directory of Open Access Journals (Sweden)

    Mauricio Arango Gutiérrez

    2005-06-01

    .The plant species diversity in Colombia and the lack of inventories of them suggests the need for a process that facilitates the work of investigators in these disciplines. Remote satellite sensors such as LANDSAT ETM+ and non-supervised artificial intelligence techniques, such as self-organizing maps - SOM, could provide viable alternatives for advancing in the rapid obtaining of information related to zones with different vegetative covers in the national geography. The zone proposed for the study case was classified in a supervised form by the method of maximum likelihood by another investigation in forest sciences and eight types of vegetative covers were discriminated. This information served as a base line to evaluate the performance of the non-supervised sort keys ISODATA and SOM. However, the information that the images provided had to first be purified according to the criteria of use and data quality, so that adequate information for these non-supervised methods were used. For this, several concepts were used; such as, image statistics, spectral behavior of the vegetative communities, sensor characteristics and the average divergence that allowed to define the best bands and their combinations. Principal component analysis was applied to these to reduce to the number of data while conserving a large percentage of the information. The non-supervised techniques were applied to these purified data, modifying some parameters that could yield a better convergence of the methods. The results obtained were compared with the supervised classification via confusion matrices and it was concluded that there was not a good convergence of non-supervised classification methods with this process for the case of vegetative covers.

  10. The spatial distribution of vegetation types in the Serengeti ecosystem : the influence of rainfall and topographic relief on vegetation patch characteristics

    NARCIS (Netherlands)

    Reed, D. N.; Anderson, T. M.; Dempewolf, J.; Metzger, K.; Serneels, S.

    The aim of this study is to introduce a structural vegetation map of the Serengeti ecosystem and, based on the map, to test the relative influences of landscape factors on the spatial heterogeneity of vegetation in the ecosystem. This study was conducted in the Serengeti-Maasai Mara ecosystem in

  11. Vegetation type and the presence of ash as factors in the evolution of soil water repellency after a forest fire

    Directory of Open Access Journals (Sweden)

    P. Jiménez-Pinilla

    2013-05-01

    Full Text Available After wildfires, burning may induce the occurrence of soil water repellency. Soil water repellency may vary in space and time in function of vegetation, the presence of ash and soil moisture. This study analyzes the evolution of fire-induced soil water repellency in function of these factors, and proposes measures to promote the restoration of fire-affected soils. Burnt and unburnt (control soil plots under pine and shrub from a recently burned area (Gorga, Alicante, SE Spain were established. Three treatments were applied: in some of the plots, the original ash layer was kept on the ground; in a second group, the ash layer was removed for simulating the effects of erosion; finally, in a third group, percolating irrigation was conducted to simulate a possible good input of water into the soil profile after burning, that could occur if the first rains were with high quantity but low intensity. During the dry season, soil moisture content was significantly lower in burned plots due to fire-induced water repellency and reduced vegetation cover. During the wet season, soil moisture decreased in the control unburnt plots due to direct evaporation of water intercepted by vegetation and consumption by roots. Fire increased soil water repellency only in plots under pine. Water repellency decreased during the wet season, disappearing in January and reappearing after declining rainfalls. This baseline recovery of soil water repellency was lower where ash removal was simulated. In unburned plots, seasonal fluctuations were less important. In general, ash removal promotes a rapid reduction of water repellency, since it can induce washing of hydrophobic compounds. Irrigation performed immediately after the fire also contributed to decreased water repellency.

  12. Spatio-temporal forest cover characterisation of mascareignite zones of reunion Island; Caracterisation spatio-temporelle du couvert