WorldWideScience

Sample records for vegetation structure electronic

  1. Vegetation composition and structure influences bird species ...

    African Journals Online (AJOL)

    Vegetation composition and structure influences bird species community ... variables on bird species diversity and richness of respective foraging guilds, and ... of the species assessed: (1) increasing closed cover due to woody plant density, ...

  2. Effects of vegetation structure on biomass accumulation in a Balanced Optimality Structure Vegetation Model (BOSVM v1.0

    Directory of Open Access Journals (Sweden)

    Z. Yin

    2014-05-01

    Full Text Available A myriad of interactions exist between vegetation and local climate for arid and semi-arid regions. Vegetation function, structure and individual behavior have large impacts on carbon–water–energy balances, which consequently influence local climate variability that, in turn, feeds back to the vegetation. In this study, a conceptual vegetation structure scheme is formulated and tested in the new Balanced Optimality Structure Vegetation Model (BOSVM to explore the importance of vegetation structure and vegetation adaptation to water stress on equilibrium biomass states. Surface energy, water and carbon fluxes are simulated for a range of vegetation structures across a precipitation gradient in West Africa and optimal vegetation structures that maximize biomass for each precipitation regime are determined. Two different strategies of vegetation adaptation to water stress are included. Under dry conditions vegetation tries to maximize the water use efficiency and leaf area index as it tries to maximize carbon gain. However, a negative feedback mechanism in the vegetation–soil water system is found as the vegetation also tries to minimize its cover to optimize the surrounding bare ground area from which water can be extracted, thereby forming patches of vertical vegetation. Under larger precipitation, a positive feedback mechanism is found in which vegetation tries to maximize its cover as it then can reduce water loss from bare soil while having maximum carbon gain due to a large leaf area index. The competition between vegetation and bare soil determines a transition between a "survival" state to a "growing" state.

  3. Decontamination of drug vegetative raw material by relativistic electron beam

    International Nuclear Information System (INIS)

    Gorbanyuk, A.G.; Dikiy, I.L.; Yegorov, A.M.; Linnik, A.F.; Uskov, V.V.

    2004-01-01

    The new technology of decontamination of drug vegetative raw material and medical products is proposed. Advantages of use of relativistic beams in a range of electron energies from 0.5 MeV to 5 MeV for these purposes are shown in comparison with X-radiation of energy from 80 keV to 1 MeV

  4. Electronic structure of silicene

    International Nuclear Information System (INIS)

    Voon, L. C. Lew Yan

    2015-01-01

    In this topical review, we discuss the electronic structure of free-standing silicene by comparing results obtained using different theoretical methods. Silicene is a single atomic layer of silicon similar to graphene. The interest in silicene is the same as for graphene, in being two-dimensional and possessing a Dirac cone. One advantage of silicene is due to its compatibility with current silicon electronics. Both empirical and first-principles techniques have been used to study the electronic properties of silicene. We will provide a brief overview of the parameter space for first-principles calculations. However, since the theory is standard, no extensive discussion will be included. Instead, we will emphasize what empirical methods can provide to such investigations and the current state of these theories. Finally, we will review the properties computed using both types of theories for free-standing silicene, with emphasis on areas where we have contributed. Comparisons to graphene is provided throughout. (topical review)

  5. Electronic band structure

    International Nuclear Information System (INIS)

    Grosso, G.

    1986-01-01

    The aim of this chapter is to present, in detail, some theoretical methods used to calculate electronic band structures in crystals. The basic strategies employed to attack the problem of electronic-structure calculations are presented. Successive sections present the basic formulations of the tight-binding, orthogonalized-plane-wave, Green'sfunction, and pseudopotential methods with a discussion of their application to perfect solids. Exemplifications in the case of a few selected problems provide further insight by the author into the physical aspects of the different methods and are a guide to the use of their mathematical techniques. A discussion is offered of completely a priori Hartree-Fock calculations and attempts to extend them. Special aspects of the different methods are also discussed in light of recently published related work

  6. The electronic structures of solids

    CERN Document Server

    Coles, B R

    2013-01-01

    The Electronic Structures of Solids aims to provide students of solid state physics with the essential concepts they will need in considering properties of solids that depend on their electronic structures and idea of the electronic character of particular materials and groups of materials. The book first discusses the electronic structure of atoms, including hydrogen atom and many-electron atom. The text also underscores bonding between atoms and electrons in metals. Discussions focus on bonding energies and structures in the solid elements, eigenstates of free-electron gas, and electrical co

  7. Structural characterization of vegetation in the fynbos biome

    CSIR Research Space (South Africa)

    Campbell, BM

    1981-08-01

    Full Text Available A proposed system for the standardization of descriptive terminology for structural characterization of vegetation in the Fynbos Biome is presented in tabular form. Specific applications of the system are described and illustrations of some...

  8. Changes in vegetation structure and aboveground biomass in ...

    African Journals Online (AJOL)

    Changes in vegetation structure and aboveground biomass in response to traditional rangeland management practices in Borana, southern Ethiopia. ... managed by prescribed fire for five years and grazed only post-fire during dry seasons.

  9. Electronic structure of superlattices

    International Nuclear Information System (INIS)

    Altarelli, M.

    1987-01-01

    Calculations of electronic states in semiconductor superlattices are briefly reviewed, with emphasis on the envelope-function method and on comparison with experiments. The energy levels in presence of external magnetic fields are discussed and compared to magneto-optical experiments. (author) [pt

  10. Electronic structure of alloys

    International Nuclear Information System (INIS)

    Ehrenreich, H.; Schwartz, L.M.

    1976-01-01

    The description of electronic properties of binary substitutional alloys within the single particle approximation is reviewed. Emphasis is placed on a didactic exposition of the equilibrium properties of the transport and magnetic properties of such alloys. Topics covered include: multiple scattering theory; the single band alloy; formal extensions of the theory; the alloy potential; realistic model state densities; the s-d model; and the muffin tin model. 43 figures, 3 tables, 151 references

  11. Electronics for Piezoelectric Smart Structures

    Science.gov (United States)

    Warkentin, D. J.; Tani, J.

    1997-01-01

    This paper briefly presents work addressing some of the basic considerations for the electronic components used in smart structures incorporating piezoelectric elements. After general remarks on the application of piezoelectric elements to the problem of structural vibration control, three main topics are described. Work to date on the development of techniques for embedding electronic components within structural parts is presented, followed by a description of the power flow and dissipation requirements of those components. Finally current work on the development of electronic circuits for use in an 'active wall' for acoustic noise is introduced.

  12. Vegetation structure and floristic composition of Gergeda Anfillo ...

    African Journals Online (AJOL)

    Vegetation structure and floristic composition of Gergeda Anfillo Forest, West Ethiopia. ... Moreover, the forest housed 10 of the 24 national priority tree species and four plant communities were identified by cluster analysis. Structural analysis revealed that the forest is dominated by small sized trees and shrubs.

  13. Electronic structure of silicon superlattices

    International Nuclear Information System (INIS)

    Krishnamurthy, S.; Moriarty, J.A.

    1984-01-01

    Utilizing a new complex-band-structure technique, the electronic structure of model Si-Si/sub 1-x/Ge/sub x/ and MOS superlattices has been obtained over a wide range of layer thickness d (11 less than or equal to d less than or equal to 110 A). For d greater than or equal to 44 A, it is found that these systems exhibit a direct fundamental band gap. Further calculations of band-edge effective masses and impurity scattering rates suggest the possibility of a band-structure-driven enhancement in electron mobility over bulk silicon

  14. Vegetation composition and structure significantly influence green roof performance

    Energy Technology Data Exchange (ETDEWEB)

    Dunnett, N.; Nagase, A.; Booth, R.; Grime, P. [Sheffield Univ., Sheffield (United Kingdom). Dept. of Landscape Architecture

    2005-07-01

    The majority of published literature on green roofs contains little specific information on the contribution of plants to the various functions and properties of green roofs. This paper reviewed previously published material in an attempt to shed light on the role of vegetation composition in green roof systems, with specific reference to hydrology and biodiversity support. Two ongoing experiments at the University of Sheffield were then considered: (1) a comparison of quality and quantity of runoff from different types of vegetation; and (2) a comparison of flowering seasons and biodiversity support of different vegetation. Results of the studies showed that there was no general pattern of variation in runoff that could be related to vegetation complexity or taxonomic composition of the communities. During the winter months, high precipitation quickly saturated the soil and percolate losses were similar for all treatments. In the summer, throughflow losses differed between treatments in relation to the structure of the plant canopy. Differing mechanisms resulted in variations in the volume of percolate that was collected. Lower volumes of percolate were observed in herb-only monocultures of Leontdon hispidus, a species with a high water content. Tap-rooted species were seen to more effectively absorb soil moisture. The biodiversity support study focused on the study of Sedum species and Labiatae species, which suggested that mixed vegetation containing these species had a far greater likelihood of attracting wild bees to support pollination. Results of the studies indicated that green roof vegetation with greater structural and species diversity may provide different benefits than sedum-dominated roots. Further studies are needed to investigate the trade-offs between vegetation types, and green roof functions and performance in order to justify calls for a wider diversity of green roof types. 8 refs., 2 tabs., 1 fig.

  15. Diversity and structure of woody vegetation across areas with ...

    African Journals Online (AJOL)

    Here we investigate the differences and/or similarities of woody vegetation diversity and structure across areas with different edaphic factors (i.e. soil group) in Gonarezhou National Park, Zimbabwe. We stratified our study area into two strata based on soil group, namely siallitic soil in northern Gonarezhou and regosol soil ...

  16. Riparian vegetation structure under desertification scenarios

    Science.gov (United States)

    Rosário Fernandes, M.; Segurado, Pedro; Jauch, Eduardo; Ferreira, M. Teresa

    2015-04-01

    Riparian areas are responsible for many ecological and ecosystems services, including the filtering function, that are considered crucial to the preservation of water quality and social benefits. The main goal of this study is to quantify and understand the riparian variability under desertification scenario(s) and identify the optimal riparian indicators for water scarcity and droughts (WS&D), henceforth improving river basin management. This study was performed in the Iberian Tâmega basin, using riparian woody patches, mapped by visual interpretation on Google Earth imagery, along 130 Sampling Units of 250 m long river stretches. Eight riparian structural indicators, related with lateral dimension, weighted area and shape complexity of riparian patches were calculated using Patch Analyst extension for ArcGis 10. A set of 29 hydrological, climatic, and hydrogeomorphological variables were computed, by a water modelling system (MOHID), using monthly meteorological data between 2008 and 2014. Land-use classes were also calculated, in a 250m-buffer surrounding each sampling unit, using a classification based system on Corine Land Cover. Boosted Regression Trees identified Mean-width (MW) as the optimal riparian indicator for water scarcity and drought, followed by the Weighted Class Area (WCA) (classification accuracy =0.79 and 0.69 respectively). Average Flow and Strahler number were consistently selected, by all boosted models, as the most important explanatory variables. However, a combined effect of hidrogeomorphology and land-use can explain the high variability found in the riparian width mainly in Tâmega tributaries. Riparian patches are larger towards Tâmega river mouth although with lower shape complexity, probably related with more continuous and almost monospecific stands. Climatic, hydrological and land use scenarios, singly and combined, were used to quantify the riparian variability responding to these changes, and to assess the loss of riparian

  17. Quantifying Vegetation Structure with Lightweight, Rapid-Scanning Terrestrial Lidar

    Science.gov (United States)

    Paynter, I.; Genest, D.; Saenz, E. J.; Strahler, A. H.; Li, Z.; Peri, F.; Schaaf, C.

    2016-12-01

    Light Detection and Ranging (lidar) is proving a competent technology for observing vegetation structure. Terrestrial laser scanners (TLS) are ground-based instruments which utilize hundreds of thousands to millions of lidar observations to provide detailed structural and reflective information of their surroundings. TLS has enjoyed initial success as a validation tool for satellite and airborne estimates of vegetation structure, and are producing independent estimates with increasing accuracy. Reconstruction techniques for TLS observations of vegetation have also improved rapidly, especially for trees. However, uncertainties and challenges still remain in TLS modelling of vegetation structure, especially in geometrically complex ecosystems such as tropical forests (where observation extent and density is hampered by occlusion) and highly temporally dynamic coastal ecosystems (such as saltmarshes and mangroves), where observations may be restricted to narrow microstates. Some of these uncertainties can be mitigated, and challenges met, through the use of lidar instruments optimized for favorable deployment logistics through low weight, rapid scanning, and improved durability. We have conducted studies of vegetation structure in temperate and tropical forests, saltmarshes and mangroves, utilizing a highly portable TLS with considerable deployment flexibility, the Compact Biomass Lidar (CBL). We show results from studies in the temperate Long Term Ecological Research site of Harvard Forest (MA, USA); the tropical forested long-term Carbono sites of La Selva Biological Station (Sarapiqui, Costa Rica); and the saltmarsh LTER of Plum Island (MA, USA). These results demonstrate the improvements to observations in these ecosystems which are facilitated by the specifications of the CBL (and similar TLS) which are optimized for favorable deployment logistics and flexibility. We show the benefits of increased numbers of scanning positions, and specialized deployment

  18. Electronic structure and correlation effects in actinides

    International Nuclear Information System (INIS)

    Albers, R.C.

    1998-01-01

    This report consists of the vugraphs given at a conference on electronic structure. Topics discussed are electronic structure, f-bonding, crystal structure, and crystal structure stability of the actinides and how they are inter-related

  19. Ballistic transport and electronic structure

    NARCIS (Netherlands)

    Schep, Kees M.; Kelly, Paul J.; Bauer, Gerrit E.W.

    1998-01-01

    The role of the electronic structure in determining the transport properties of ballistic point contacts is studied. The conductance in the ballistic regime is related to simple geometrical projections of the Fermi surface. The essential physics is first clarified for simple models. For real

  20. The Electronic Structure of Calcium

    DEFF Research Database (Denmark)

    Jan, J.-P.; Skriver, Hans Lomholt

    1981-01-01

    The electronic structure of calcium under pressure is re-examined by means of self-consistent energy band calculations based on the local density approximation and using the linear muffin-tin orbitals (LMTO) method with corrections to the atomic sphere approximation included. At zero pressure...

  1. Electronic structure of metal clusters

    International Nuclear Information System (INIS)

    Wertheim, G.K.

    1989-01-01

    Photoemission spectra of valence electrons in metal clusters, together with threshold ionization potential measurements, provide a coherent picture of the development of the electronic structure from the isolated atom to the large metallic cluster. An insulator-metal transition occurs at an intermediate cluster size, which serves to define the boundary between small and large clusters. Although the outer electrons may be delocalized over the entire cluster, a small cluster remains insulating until the density of states near the Fermi level exceeds 1/kT. In large clusters, with increasing cluster size, the band structure approaches that of the bulk metal. However, the bands remain significantly narrowed even in a 1000-atom cluster, giving an indication of the importance of long-range order. The core-electron binding-energy shifts of supported metal clusters depend on changes in the band structure in the initial state, as well as on various final-state effects, including changes in core hole screening and the coulomb energy of the final-state charge. For cluster supported on amorphous carbon, this macroscopic coulomb shift is often dominant, as evidenced by the parallel shifts of the core-electron binding energy and the Fermi edge. Auger data confirm that final-state effects dominate in cluster of Sn and some other metals. Surface atom core-level shifts provide a valuable guide to the contributions of initial-state changes in band structure to cluster core-electron binding energy shifts, especially for Au and Pt. The available data indicate that the shift observed in supported, metallic clusters arise largely from the charge left on the cluster by photoemission. As the metal-insulator transition is approached from above, metallic screening is suppressed and the shift is determined by the local environment. (orig.)

  2. Homogenization of vegetation structure across residential neighborhoods: effects of climate, urban morphology, and socio-economics

    Science.gov (United States)

    Climate is a key driver regulating vegetation structure across rural ecosystems. In urban ecosystems, multiple interactions between humans and the environment can have homogenizing influences, confounding the relationship between vegetation structure and climate. In fact, vegetat...

  3. Electronic structure of lanthanide scandates

    Science.gov (United States)

    Mizzi, Christopher A.; Koirala, Pratik; Marks, Laurence D.

    2018-02-01

    X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and density functional theory calculations were used to study the electronic structure of three lanthanide scandates: GdSc O3,TbSc O3 , and DySc O3 . X-ray photoelectron spectra simulated from first-principles calculations using a combination of on-site hybrid and GGA +U methods were found to be in good agreement with experimental x-ray photoelectron spectra. The hybrid method was used to model the ground state electronic structure and the GGA +U method accounted for the shift of valence state energies due to photoelectron emission via a Slater-Janak transition state approach. From these results, the lanthanide scandate valence bands were determined to be composed of Ln 4 f ,O 2 p , and Sc 3 d states, in agreement with previous work. However, contrary to previous work the minority Ln 4 f states were found to be located closer to, and in some cases at, the valence band maximum. This suggests that minority Ln 4 f electrons may play a larger role in lanthanide scandate properties than previously thought.

  4. Electron scattering and nuclear structure

    International Nuclear Information System (INIS)

    Frois, B.

    1987-01-01

    The search for the appropriate degrees of freedom to describe nuclei is the central focus of nuclear physics today. Therefore the authors explore in this review their current understanding of nuclear structure as defined by electromagnetic data. The precision of the electromagnetic probe allows us to define accurately the limits of present theoretical descriptions. The authors review here a broad range of subjects that have been addressed by recent experiments, from the study of meson exchange currents and single-particle distributions to collective excitations in heavy nuclei. However, they do not discuss elastic magnetic scattering, inelastic excitation of discrete states, or single-nucleon knockout reactions since these reactions were recently reviewed. The principal aim of this review is to offer a fresh perspective on nuclear structure, based on the new generation of electron scattering data presented here and in the above-mentioned articles

  5. Electronic structure of spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Saha-Dasgupta, Tanusri

    2016-04-15

    Highlights: • We review the theoretical modeling of quantum spin systems. • We apply the Nth order muffin-tin orbital electronic structure method. • The method shows the importance of chemistry in the modeling. • CuTe{sub 2}O{sub 5} showed a 2-dimensional coupled spin dimer behavior. • Ti substituted Zn{sub 2}VO(PO{sub 4}){sub 2} showed spin gap behavior. - Abstract: Low-dimensional quantum spin systems, characterized by their unconventional magnetic properties, have attracted much attention. Synthesis of materials appropriate to various classes within these systems has made this field very attractive and a site of many activities. The experimental results like susceptibility data are fitted with the theoretical model to derive the underlying spin Hamiltonian. However, often such a fitting procedure which requires correct guess of the assumed spin Hamiltonian leads to ambiguity in deciding the representative model. In this review article, we will describe how electronic structure calculation within the framework of Nth order muffin-tin orbital (NMTO) based Wannier function technique can be utilized to identify the underlying spin model for a large number of such compounds. We will show examples from compounds belonging to vanadates and cuprates.

  6. Linking vegetation structure, function and physiology through spectroscopic remote sensing

    Science.gov (United States)

    Serbin, S.; Singh, A.; Couture, J. J.; Shiklomanov, A. N.; Rogers, A.; Desai, A. R.; Kruger, E. L.; Townsend, P. A.

    2015-12-01

    Terrestrial ecosystem process models require detailed information on ecosystem states and canopy properties to properly simulate the fluxes of carbon (C), water and energy from the land to the atmosphere and assess the vulnerability of ecosystems to perturbations. Current models fail to adequately capture the magnitude, spatial variation, and seasonality of terrestrial C uptake and storage, leading to significant uncertainties in the size and fate of the terrestrial C sink. By and large, these parameter and process uncertainties arise from inadequate spatial and temporal representation of plant traits, vegetation structure, and functioning. With increases in computational power and changes to model architecture and approaches, it is now possible for models to leverage detailed, data rich and spatially explicit descriptions of ecosystems to inform parameter distributions and trait tradeoffs. In this regard, spectroscopy and imaging spectroscopy data have been shown to be invaluable observational datasets to capture broad-scale spatial and, eventually, temporal dynamics in important vegetation properties. We illustrate the linkage of plant traits and spectral observations to supply key data constraints for model parameterization. These constraints can come either in the form of the raw spectroscopic data (reflectance, absorbtance) or physiological traits derived from spectroscopy. In this presentation we highlight our ongoing work to build ecological scaling relationships between critical vegetation characteristics and optical properties across diverse and complex canopies, including temperate broadleaf and conifer forests, Mediterranean vegetation, Arctic systems, and agriculture. We focus on work at the leaf, stand, and landscape scales, illustrating the importance of capturing the underlying variability in a range of parameters (including vertical variation within canopies) to enable more efficient scaling of traits related to functional diversity of ecosystems.

  7. Patterns in woody vegetation structure across African savannas

    Science.gov (United States)

    Axelsson, Christoffer R.; Hanan, Niall P.

    2017-07-01

    Vegetation structure in water-limited systems is to a large degree controlled by ecohydrological processes, including mean annual precipitation (MAP) modulated by the characteristics of precipitation and geomorphology that collectively determine how rainfall is distributed vertically into soils or horizontally in the landscape. We anticipate that woody canopy cover, crown density, crown size, and the level of spatial aggregation among woody plants in the landscape will vary across environmental gradients. A high level of woody plant aggregation is most distinct in periodic vegetation patterns (PVPs), which emerge as a result of ecohydrological processes such as runoff generation and increased infiltration close to plants. Similar, albeit weaker, forces may influence the spatial distribution of woody plants elsewhere in savannas. Exploring these trends can extend our knowledge of how semi-arid vegetation structure is constrained by rainfall regime, soil type, topography, and disturbance processes such as fire. Using high-spatial-resolution imagery, a flexible classification framework, and a crown delineation method, we extracted woody vegetation properties from 876 sites spread over African savannas. At each site, we estimated woody cover, mean crown size, crown density, and the degree of aggregation among woody plants. This enabled us to elucidate the effects of rainfall regimes (MAP and seasonality), soil texture, slope, and fire frequency on woody vegetation properties. We found that previously documented increases in woody cover with rainfall is more consistently a result of increasing crown size than increasing density of woody plants. Along a gradient of mean annual precipitation from the driest (< 200 mm yr-1) to the wettest (1200-1400 mm yr-1) end, mean estimates of crown size, crown density, and woody cover increased by 233, 73, and 491 % respectively. We also found a unimodal relationship between mean crown size and sand content suggesting that maximal

  8. Patterns in woody vegetation structure across African savannas

    Directory of Open Access Journals (Sweden)

    C. R. Axelsson

    2017-07-01

    Full Text Available Vegetation structure in water-limited systems is to a large degree controlled by ecohydrological processes, including mean annual precipitation (MAP modulated by the characteristics of precipitation and geomorphology that collectively determine how rainfall is distributed vertically into soils or horizontally in the landscape. We anticipate that woody canopy cover, crown density, crown size, and the level of spatial aggregation among woody plants in the landscape will vary across environmental gradients. A high level of woody plant aggregation is most distinct in periodic vegetation patterns (PVPs, which emerge as a result of ecohydrological processes such as runoff generation and increased infiltration close to plants. Similar, albeit weaker, forces may influence the spatial distribution of woody plants elsewhere in savannas. Exploring these trends can extend our knowledge of how semi-arid vegetation structure is constrained by rainfall regime, soil type, topography, and disturbance processes such as fire. Using high-spatial-resolution imagery, a flexible classification framework, and a crown delineation method, we extracted woody vegetation properties from 876 sites spread over African savannas. At each site, we estimated woody cover, mean crown size, crown density, and the degree of aggregation among woody plants. This enabled us to elucidate the effects of rainfall regimes (MAP and seasonality, soil texture, slope, and fire frequency on woody vegetation properties. We found that previously documented increases in woody cover with rainfall is more consistently a result of increasing crown size than increasing density of woody plants. Along a gradient of mean annual precipitation from the driest (< 200 mm yr−1 to the wettest (1200–1400 mm yr−1 end, mean estimates of crown size, crown density, and woody cover increased by 233, 73, and 491 % respectively. We also found a unimodal relationship between mean crown size and sand

  9. Do edaphic aspects alter vegetation structures in the Brazilian restinga?

    Directory of Open Access Journals (Sweden)

    Francisco Soares Santos-Filho

    2013-09-01

    Full Text Available The vegetation of the Brazilian restinga (coastal woodland presents a variety of species and different characteristics, encompassing fields, fruit groves and forests on quartzarenic neosols. We hypothesised that the structure of the restinga landscape along the coast of the state of Piauí is influenced by edaphic factors and presents a pattern similar to that of other northeastern restingas. We evaluated three restingas in Piauí, using the quarter method to determine their structure. Composite soil samples were collected to determine their chemical and physical properties. Edaphic variables were correlated with plant species by canonical correspondence analysis (CCA. Phytosociological data for all three areas indicated regenerating vegetation comprising several small individuals, 82.5% of which showed a diameter at ground level < 13 cm. We also observed considerable tillering. In two of the areas, there was a predominance of Fabaceae species, such as Caesalpinia pyramidalis and Copaifera martii. Although the structural characteristics of the restingas studied were similar to those of other northeastern restingas, the former showed lower Shannon diversity indices (2.18-2.44. The CCA indicated that species distribution was influenced by edaphic factors such as pH, aluminium content and amount of organic matter. The restingas studied were similar to others along the Brazilian coast.

  10. Detecting 3D Vegetation Structure with the Galileo Space Probe: Can a Distant Probe Detect Vegetation Structure on Earth?

    Science.gov (United States)

    Doughty, Christopher E; Wolf, Adam

    2016-01-01

    Sagan et al. (1993) used the Galileo space probe data and first principles to find evidence of life on Earth. Here we ask whether Sagan et al. (1993) could also have detected whether life on Earth had three-dimensional structure, based on the Galileo space probe data. We reanalyse the data from this probe to see if structured vegetation could have been detected in regions with abundant photosynthetic pigments through the anisotropy of reflected shortwave radiation. We compare changing brightness of the Amazon forest (a region where Sagan et al. (1993) noted a red edge in the reflectance spectrum, indicative of photosynthesis) as the planet rotates to a common model of reflectance anisotropy and found measured increase of surface reflectance of 0.019 ± 0.003 versus a 0.007 predicted from only anisotropic effects. We hypothesize the difference was due to minor cloud contamination. However, the Galileo dataset had only a small change in phase angle (sun-satellite position) which reduced the observed anisotropy signal and we demonstrate that theoretically if the probe had a variable phase angle between 0-20°, there would have been a much larger predicted change in surface reflectance of 0.1 and under such a scenario three-dimensional vegetation structure on Earth could possibly have been detected. These results suggest that anisotropic effects may be useful to help determine whether exoplanets have three-dimensional vegetation structure in the future, but that further comparisons between empirical and theoretical results are first necessary.

  11. Detecting 3D Vegetation Structure with the Galileo Space Probe: Can a Distant Probe Detect Vegetation Structure on Earth?

    Directory of Open Access Journals (Sweden)

    Christopher E Doughty

    Full Text Available Sagan et al. (1993 used the Galileo space probe data and first principles to find evidence of life on Earth. Here we ask whether Sagan et al. (1993 could also have detected whether life on Earth had three-dimensional structure, based on the Galileo space probe data. We reanalyse the data from this probe to see if structured vegetation could have been detected in regions with abundant photosynthetic pigments through the anisotropy of reflected shortwave radiation. We compare changing brightness of the Amazon forest (a region where Sagan et al. (1993 noted a red edge in the reflectance spectrum, indicative of photosynthesis as the planet rotates to a common model of reflectance anisotropy and found measured increase of surface reflectance of 0.019 ± 0.003 versus a 0.007 predicted from only anisotropic effects. We hypothesize the difference was due to minor cloud contamination. However, the Galileo dataset had only a small change in phase angle (sun-satellite position which reduced the observed anisotropy signal and we demonstrate that theoretically if the probe had a variable phase angle between 0-20°, there would have been a much larger predicted change in surface reflectance of 0.1 and under such a scenario three-dimensional vegetation structure on Earth could possibly have been detected. These results suggest that anisotropic effects may be useful to help determine whether exoplanets have three-dimensional vegetation structure in the future, but that further comparisons between empirical and theoretical results are first necessary.

  12. Electronic structure of semiconductor interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Herman, F

    1983-02-01

    The study of semiconductor interfaces is one of the most active and exciting areas of current semiconductor research. Because interfaces play a vital role in modern semiconductor technology (integrated circuits, heterojunction lasers, solar cells, infrared detectors, etc.), there is a strong incentive to understand interface properties at a fundamental level and advance existing technology thereby. At the same time, technological advances such as molecular beam epitaxy have paved the way for the fabrication of semiconductor heterojunctions and superlattices of novel design which exhibit unusual electronic, optical, and magnetic properties and offer unique opportunities for fundamental scientific research. A general perspective on this subject is offered treating such topics as the atomic and electronic structure of semiconductor surfaces and interfaces; oxidation and oxide layers; semiconductor heterojunctions and superlattices; rectifying metal-semiconductor contacts; and interface reactions. Recent progress is emphasized and some future directions are indicated. In addition, the role that large-scale scientific computation has played in furthering our theoretical understanding of semiconductor surfaces and interfaces is discussed. Finally, the nature of theoretical models, and the role they play in describing the physical world is considered.

  13. Electronic structure of semiconductor interfaces

    International Nuclear Information System (INIS)

    Herman, F.

    1983-01-01

    The study of semiconductor interfaces is one of the most active and exciting areas of current semiconductor research. Because interfaces play a vital role in modern semiconductor technology (integrated circuits, heterojunction lasers, solar cells, infrared detectors, etc.), there is a strong incentive to understand interface properties at a fundamental level and advance existing technology thereby. At the same time, technological advances such as molecular beam epitaxy have paved the way for the fabrication of semiconductor heterojunctions and superlattices of novel design which exhibit unusual electronic, optical, and magnetic properties and offer unique opportunities for fundamental scientific research. A general perspective on this subject is offered treating such topics as the atomic and electronic structure of semiconductor surfaces and interfaces; oxidation and oxide layers; semiconductor heterojunctions and superlattices; rectifying metal-semiconductor contacts; and interface reactions. Recent progress is emphasized and some future directions are indicated. In addition, the role that large-scale scientific computation has played in furthering our theoretical understanding of semiconductor surfaces and interfaces is discussed. Finally, the nature of theoretical models, and the role they play in describing the physical world is considered. (Author) [pt

  14. Vegetation

    DEFF Research Database (Denmark)

    Epstein, H.E.; Walker, D.A.; Bhatt, U.S.

    2012-01-01

    increased 20-26%. • Increasing shrub growth and range extension throughout the Low Arctic are related to winter and early growing season temperature increases. Growth of other tundra plant types, including graminoids and forbs, is increasing, while growth of mosses and lichens is decreasing. • Increases...... in vegetation (including shrub tundra expansion) and thunderstorm activity, each a result of Arctic warming, have created conditions that favor a more active Arctic fire regime....

  15. Forest restoration: a global dataset for biodiversity and vegetation structure.

    Science.gov (United States)

    Crouzeilles, Renato; Ferreira, Mariana S; Curran, Michael

    2016-08-01

    Restoration initiatives are becoming increasingly applied around the world. Billions of dollars have been spent on ecological restoration research and initiatives, but restoration outcomes differ widely among these initiatives in part due to variable socioeconomic and ecological contexts. Here, we present the most comprehensive dataset gathered to date on forest restoration. It encompasses 269 primary studies across 221 study landscapes in 53 countries and contains 4,645 quantitative comparisons between reference ecosystems (e.g., old-growth forest) and degraded or restored ecosystems for five taxonomic groups (mammals, birds, invertebrates, herpetofauna, and plants) and five measures of vegetation structure reflecting different ecological processes (cover, density, height, biomass, and litter). We selected studies that (1) were conducted in forest ecosystems; (2) had multiple replicate sampling sites to measure indicators of biodiversity and/or vegetation structure in reference and restored and/or degraded ecosystems; and (3) used less-disturbed forests as a reference to the ecosystem under study. We recorded (1) latitude and longitude; (2) study year; (3) country; (4) biogeographic realm; (5) past disturbance type; (6) current disturbance type; (7) forest conversion class; (8) restoration activity; (9) time that a system has been disturbed; (10) time elapsed since restoration started; (11) ecological metric used to assess biodiversity; and (12) quantitative value of the ecological metric of biodiversity and/or vegetation structure for reference and restored and/or degraded ecosystems. These were the most common data available in the selected studies. We also estimated forest cover and configuration in each study landscape using a recently developed 1 km consensus land cover dataset. We measured forest configuration as the (1) mean size of all forest patches; (2) size of the largest forest patch; and (3) edge:area ratio of forest patches. Global analyses of the

  16. Data and methods comparing social structure and vegetation structure of urban neighborhoods in Baltimore, Maryland

    Science.gov (United States)

    J. Morgan Grove; Mary L. Cadenasso; William R., Jr. Burch; Steward T. Pickett; Kirsten Schwarz; Jarlath O' Neil-Dunne; Matthew Wilson; Austin Troy; Christopher Boone

    2006-01-01

    Recent advances in remote sensing and the adoption of geographic information systems (GIS) have greatly increased the availibility of high-resolution spatial and attribute data for examing the relationship between social and vegetation structure in urban areas. There are several motivations for understanding this relationship. First, the United States has experienced a...

  17. Quantifying vegetation distribution and structure using high resolution drone-based structure-from-motion photogrammetry

    Science.gov (United States)

    Zhang, J.; Okin, G.

    2017-12-01

    Vegetation is one of the most important driving factors of different ecosystem processes in drylands. The structure of vegetation controls the spatial distribution of moisture and heat in the canopy and the surrounding area. Also, the structure of vegetation influences both airflow and boundary layer resistance above the land surface. Multispectral satellite remote sensing has been widely used to monitor vegetation coverage and its change; however, it can only capture 2D images, which do not contain the vertical information of vegetation. In situ observation uses different methods to measure the structure of vegetation, and their results are accurate; however, these methods are laborious and time-consuming, and susceptible to undersampling in spatial heterogeneity. Drylands are sparsely covered by short plants, which allows the drone fly at a relatively low height to obtain ultra-high resolution images. Structure-from-motion (SfM) is a photogrammetric method that was proved to produce 3D model based on 2D images. Drone-based remote sensing can obtain the multiangle images for one object, which can be used to constructed 3D models of vegetation in drylands. Using these images detected by the drone, the orthomosaics and digital surface model (DSM) can be built. In this study, the drone-based remote sensing was conducted in Jornada Basin, New Mexico, in the spring of 2016 and 2017, and three derived vegetation parameters (i.e., canopy size, bare soil gap size, and plant height) were compared with those obtained with field measurement. The correlation coefficient of canopy size, bare soil gap size, and plant height between drone images and field data are 0.91, 0.96, and 0.84, respectively. The two-year averaged root-mean-square error (RMSE) of canopy size, bare soil gap size, and plant height between drone images and field data are 0.61 m, 1.21 m, and 0.25 cm, respectively. The two-year averaged measure error (ME) of canopy size, bare soil gap size, and plant height

  18. Electronic structure studies of fullerites and fullerides

    International Nuclear Information System (INIS)

    Merkel, M.; Sohmen, E.; Masaki, A.; Romberg, H.; Alexander, M.; Knupfer, M.; Golden, M.S.; Adelmann, P.; Renker, B.; Fink, J.

    1993-01-01

    The electronic structure of fullerites and fullerides has been investigated by high-resolution photoemission and by high-energy electron energy-loss spectroscopy in transmission. Information on the occupied Π and σ bands, on the unoccupied Π * and σ * bands, and on the joint density of states has been obtained. In particular, we report on the changes of the electronic structure of fullerides as a function of dopant concentration. (orig.)

  19. Solvated electron structure in glassy matrices

    International Nuclear Information System (INIS)

    Kevan, L.

    1981-01-01

    Current knowledge of the detailed geometrical structure of solvated electrons in aqueous and organic media is summarized. The geometry of solvated electrons in glassy methanol, ethanol, and 2-methyltetrahydrofuran is discussed. Advanced electron magnetic resonance methods and development of new methods of analysis of electron spin echo modulation patterns, second moment line shapes, and forbidden photon spin-flip transitions for paramagnetic species in these disordered systems are discussed. 66 references are cited

  20. Electronic structure and tautomerism of thioamides

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Igor, E-mail: inovak@csu.edu.au [Charles Sturt University, POB 883, Orange, NSW 2800 (Australia); Klasinc, Leo, E-mail: klasinc@irb.hr [Physical Chemistry Department, Ruđer Bošković Institute, HR-10002 Zagreb (Croatia); McGlynn, Sean P., E-mail: sean.mcglynn@chemgate.chem.lsu.edu [Louisiana State University, Baton Rouge, LA 70803 (United States)

    2016-05-15

    Highlights: • Electronic structure of thioamide group and its relation to Lewis basicity. • Tautomerism of the (thio)amide groups. • Substituent effects on the electronic structure of (thio)amide group. - Abstract: The electronic structures of several thioamides have been studied by UV photoelectron spectroscopy (UPS). The relative stabilities of keto–enol tautomers have been determined using high-level ab initio calculations and the results were used in the analysis of UPS spectra. The main features of electronic structure and tautomerism of thioamide derivatives are discussed. The predominant tautomers in the gas phase are of keto–(thio)keto form. The addition of cyclohexanone moiety to the thioamide group enhances the Lewis base character of the sulfur atom. The addition of phenyl group to the (thio)amide group significantly affects its electronic structure.

  1. Electron scattering and nuclear structure

    International Nuclear Information System (INIS)

    Wolynec, E.

    1985-01-01

    A review of the historical development and the theory necessary to the interpretation of the experimental results is made. Some measurement techniques, experimental results and the technique of analysis of these data are presented. Future perspectives, due to the appearence of continous electron current accelerators, in this field of study are discussed. (L.C.) [pt

  2. Electron gun controlled smart structure

    Science.gov (United States)

    Martin, Jeffrey W.; Main, John Alan; Redmond, James M.; Henson, Tammy D.; Watson, Robert D.

    2001-01-01

    Disclosed is a method and system for actively controlling the shape of a sheet of electroactive material; the system comprising: one or more electrodes attached to the frontside of the electroactive sheet; a charged particle generator, disposed so as to direct a beam of charged particles (e.g. electrons) onto the electrode; a conductive substrate attached to the backside of the sheet; and a power supply electrically connected to the conductive substrate; whereby the sheet changes its shape in response to an electric field created across the sheet by an accumulation of electric charge within the electrode(s), relative to a potential applied to the conductive substrate. Use of multiple electrodes distributed across on the frontside ensures a uniform distribution of the charge with a single point of e-beam incidence, thereby greatly simplifying the beam scanning algorithm and raster control electronics, and reducing the problems associated with "blooming". By placing a distribution of electrodes over the front surface of a piezoelectric film (or other electroactive material), this arrangement enables improved control over the distribution of surface electric charges (e.g. electrons) by creating uniform (and possibly different) charge distributions within each individual electrode. Removal or deposition of net electric charge can be affected by controlling the secondary electron yield through manipulation of the backside electric potential with the power supply. The system can be used for actively controlling the shape of space-based deployable optics, such as adaptive mirrors and inflatable antennae.

  3. Novel characterization of landscape-level variability in historical vegetation structure

    Science.gov (United States)

    Brandon M. Collins; Jamie M. Lydersen; Richard G. Everett; Danny L. Fry; Scott L. Stephens

    2015-01-01

    We analyzed historical timber inventory data collected systematically across a large mixed-conifer-dominated landscape to gain insight into the interaction between disturbances and vegetation structure and composition prior to 20th century land management practices. Using records from over 20 000 trees, we quantified historical vegetation structure and composition for...

  4. Herbivore species and density affect vegetation-structure patchiness in salt marshes

    NARCIS (Netherlands)

    Nolte, Stefanie; Esselink, Peter; Smit, Christian; Bakker, Jan P.

    2014-01-01

    The importance of spatial patterns for ecosystem functioning and biodiversity has long been recognized in ecology. Grazing by herbivores is an important mechanism leading to spatial patterns in the vegetation structure. How different herbivore species and their densities affect vegetation-structure

  5. Structure and composition of woody vegetation in two important bird areas in southern Zimbabwe

    NARCIS (Netherlands)

    Gandiwa, P.; Chinoitezvi, E.; Gandiwa, E.

    2013-01-01

    This study assessed the status of woody vegetation structure and composition in two Important Bird Areas (IBA) i.e. Manjinji Pan and Save-Runde Junction located in southeastern Zimbabwe. The objectives of this study were to: (i) determine the woody vegetation structure and composition of the study

  6. STRUCTURAL STABILITY AND ELECTRONIC STRUCTURE OF ...

    African Journals Online (AJOL)

    2012-12-31

    Dec 31, 2012 ... may be applications at high temperature strength and corrosion ... B2 structure, like that found in cesium-chloride (CsCl) and chemical formula RM, where R denotes a rare - earth element and M denotes a late transition metal ...

  7. Coastwide Reference Monitoring System (CRMS) Vegetation Volume Index: An assessment tool for marsh habitat focused on the three-dimensional structure at CRMS vegetation monitoring stations

    Science.gov (United States)

    Wood, William B.; Visser, Jenneke M.; Piazza, Sarai C.; Sharp, Leigh A.; Hundy, Laura C.; McGinnis, Tommy E.

    2015-12-04

    A Vegetation Volume (VV) variable and Vegetation Volume Index (VVI) have been developed for the Coastwide Reference Monitoring System (CRMS). The VV is a measure of the amount of three-dimensional vegetative structure present at each CRMS site and is based on vegetation data collected annually. The VV uses 10 stations per CRMS site to quantify four vegetation layers: carpet, herbaceous, shrub, and tree. For each layer an overall live vegetation percent cover and height are collected to create a layer volume; the individual layer volumes are then summed to generate a site vegetation volume profile. The VV uses the two-dimensional area of live vegetative cover (in square meters) multiplied by the height (in meters) of each layer to produce a volume (in cubic meters) for each layer present in a 2-meter by 2-meter station. These layers are additive, yielding a total volume for each of the 10 herbaceous vegetation stations and an overall CRMS marsh site average.

  8. Electronic structure of metallic glasses

    International Nuclear Information System (INIS)

    Oelhafen, P.; Lapka, R.; Gubler, U.; Krieg, J.; DasGupta, A.; Guentherodt, H.J.; Mizoguchi, T.; Hague, C.; Kuebler, J.; Nagel, S.R.

    1981-01-01

    This paper is organized in six sections and deals with (1) the glassy transition metal alloys, their d-band structure, the d-band shifts on alloying and their relation to the alloy heat of formation (ΔH) and the glass forming ability, (2) the glass to crystal phase transition viewed by valence band spectroscopy, (3) band structure calculations, (4) metallic glasses prepared by laser glazing, (5) glassy normal metal alloys, and (6) glassy hydrides

  9. Electronic structure and tautomerism of aryl ketones

    International Nuclear Information System (INIS)

    Novak, Igor; Klasinc, Leo; Šket, Boris; McGlynn, S.P.

    2015-01-01

    Graphical abstract: Photoelectron spectroscopy, tautomerism. - Highlights: • UV photoelectron spectroscopy of aryl ketones. • The relative stability of tautomers and their electronic structures. • The factors influencing tautomerism. - Abstract: The electronic structures of several aryl ketones (AK) and their α-halo derivatives have been studied by UV photoelectron spectroscopy (UPS). The relative stabilities of keto–enol tautomers have been determined using high-level ab initio calculations and the results were used in the analysis of UPS spectra. The main features of electronic structure and tautomerism of the AK derivatives are discussed

  10. Phenomenology of the electron structure function

    International Nuclear Information System (INIS)

    Slominski, W.; Szwed, J.

    2001-01-01

    The advantages of introducing the electron structure function (ESF) in electron induced processes are demonstrated. Contrary to the photon structure function it is directly measured in such processes. At present energies, a simultaneous analysis of both the electron and the photon structure functions gives an important test of the experimentally applied methods. Estimates of the ESF at LEP momenta are given. At very high momenta contributions from W and Z bosons together with γ-Z interference can be observed. Predictions for the next generation of experiments are given. (orig.)

  11. Electronic structure and tautomerism of aryl ketones

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Igor, E-mail: inovak@csu.edu.au [Charles Sturt University, POB 883, Orange, NSW 2800 (Australia); Klasinc, Leo, E-mail: klasinc@irb.hr [Physical Chemistry Department, Ruđer Bošković Institute, HR-10002 Zagreb (Croatia); Šket, Boris, E-mail: Boris.Sket@fkkt.uni-lj.si [Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 (Slovenia); McGlynn, S.P., E-mail: sean.mcglynn@chemgate.chem.lsu.edu [Louisiana State University, Baton Rouge, LA 70803 (United States)

    2015-07-15

    Graphical abstract: Photoelectron spectroscopy, tautomerism. - Highlights: • UV photoelectron spectroscopy of aryl ketones. • The relative stability of tautomers and their electronic structures. • The factors influencing tautomerism. - Abstract: The electronic structures of several aryl ketones (AK) and their α-halo derivatives have been studied by UV photoelectron spectroscopy (UPS). The relative stabilities of keto–enol tautomers have been determined using high-level ab initio calculations and the results were used in the analysis of UPS spectra. The main features of electronic structure and tautomerism of the AK derivatives are discussed.

  12. Physiological and structural aspects of fruit and vegetable mild processing

    OpenAIRE

    Panarese, Valentina

    2013-01-01

    Over the past years fruit and vegetable industry has become interested in the application of both osmotic dehydration and vacuum impregnation as mild technologies because of their low temperature and energy requirements. Osmotic dehydration is a partial dewatering process by immersion of cellular tissue in hypertonic solution. The diffusion of water from the vegetable tissue to the solution is usually accompanied by the simultaneous solutes counter-diffusion into the tissue. Vacuum imp...

  13. Epitaxial graphene electronic structure and transport

    International Nuclear Information System (INIS)

    De Heer, Walt A; Berger, Claire; Wu Xiaosong; Sprinkle, Mike; Hu Yike; Ruan Ming; First, Phillip N; Stroscio, Joseph A; Haddon, Robert; Piot, Benjamin; Faugeras, Clement; Potemski, Marek; Moon, Jeong-Sun

    2010-01-01

    Since its inception in 2001, the science and technology of epitaxial graphene on hexagonal silicon carbide has matured into a major international effort and is poised to become the first carbon electronics platform. A historical perspective is presented and the unique electronic properties of single and multilayered epitaxial graphenes on electronics grade silicon carbide are reviewed. Early results on transport and the field effect in Si-face grown graphene monolayers provided proof-of-principle demonstrations. Besides monolayer epitaxial graphene, attention is given to C-face grown multilayer graphene, which consists of electronically decoupled graphene sheets. Production, structure and electronic structure are reviewed. The electronic properties, interrogated using a wide variety of surface, electrical and optical probes, are discussed. An overview is given of recent developments of several device prototypes including resistance standards based on epitaxial graphene quantum Hall devices and new ultrahigh frequency analogue epitaxial graphene amplifiers.

  14. Instructional Approach to Molecular Electronic Structure Theory

    Science.gov (United States)

    Dykstra, Clifford E.; Schaefer, Henry F.

    1977-01-01

    Describes a graduate quantum mechanics projects in which students write a computer program that performs ab initio calculations on the electronic structure of a simple molecule. Theoretical potential energy curves are produced. (MLH)

  15. Electron conductance in curved quantum structures

    DEFF Research Database (Denmark)

    Willatzen, Morten; Gravesen, Jens

    2010-01-01

    is computationally fast and provides direct (geometrical) parameter insight as regards the determination of the electron transmission coefficient. We present, as a case study, calculations of the electron conductivity of a helically shaped quantum-wire structure and discuss the influence of the quantum......A differential-geometry analysis is employed to investigate the transmission of electrons through a curved quantum-wire structure. Although the problem is a three-dimensional spatial problem, the Schrodinger equation can be separated into three general coordinates. Hence, the proposed method...

  16. Effects of a large wildfire on vegetation structure in a variable fire mosaic.

    Science.gov (United States)

    Foster, C N; Barton, P S; Robinson, N M; MacGregor, C I; Lindenmayer, D B

    2017-12-01

    Management guidelines for many fire-prone ecosystems highlight the importance of maintaining a variable mosaic of fire histories for biodiversity conservation. Managers are encouraged to aim for fire mosaics that are temporally and spatially dynamic, include all successional states of vegetation, and also include variation in the underlying "invisible mosaic" of past fire frequencies, severities, and fire return intervals. However, establishing and maintaining variable mosaics in contemporary landscapes is subject to many challenges, one of which is deciding how the fire mosaic should be managed following the occurrence of large, unplanned wildfires. A key consideration for this decision is the extent to which the effects of previous fire history on vegetation and habitats persist after major wildfires, but this topic has rarely been investigated empirically. In this study, we tested to what extent a large wildfire interacted with previous fire history to affect the structure of forest, woodland, and heath vegetation in Booderee National Park in southeastern Australia. In 2003, a summer wildfire burned 49.5% of the park, increasing the extent of recently burned vegetation (post-fire) to more than 72% of the park area. We tracked the recovery of vegetation structure for nine years following the wildfire and found that the strength and persistence of fire effects differed substantially between vegetation types. Vegetation structure was modified by wildfire in forest, woodland, and heath vegetation, but among-site variability in vegetation structure was reduced only by severe fire in woodland vegetation. There also were persistent legacy effects of the previous fire regime on some attributes of vegetation structure including forest ground and understorey cover, and woodland midstorey and overstorey cover. For example, woodland midstorey cover was greater on sites with higher fire frequency, irrespective of the severity of the 2003 wildfire. Our results show that even

  17. Overview of nuclear structure with electrons

    International Nuclear Information System (INIS)

    Geesaman, D. F.

    1999-01-01

    Following a broad summary of the author's view of nuclear structure in 1974, he will discuss the key elements they have learned in the past 25 years from the research at the M.I.T. Bates Linear Accelerator center and its sister electron accelerator laboratories. Electron scattering has provided the essential measurements for most of the progress. The future is bright for nuclear structure research as their ability to realistically calculate nuclear structure observables has dramatically advanced and they are increasingly able to incorporate an understanding of quantum chromodynamics into their picture of the nucleus

  18. Cytosolic streaming in vegetative mycelium and aerial structures of Aspergillus niger.

    Science.gov (United States)

    Bleichrodt, R; Vinck, A; Krijgsheld, P; van Leeuwen, M R; Dijksterhuis, J; Wösten, H A B

    2013-03-15

    Aspergillus niger forms aerial hyphae and conidiophores after a period of vegetative growth. The hyphae within the mycelium of A. niger are divided by septa. The central pore in these septa allows for cytoplasmic streaming. Here, we studied inter- and intra-compartmental streaming of the reporter protein GFP in A. niger. Expression of the gene encoding nuclear targeted GFP from the gpdA or glaA promoter resulted in strong fluorescence of nuclei within the vegetative hyphae and weak fluorescence in nuclei within the aerial structures. These data and nuclear run on experiments showed that gpdA and glaA are higher expressed in the vegetative mycelium when compared to aerial hyphae, conidiophores and conidia. Notably, gpdA or glaA driven expression of the gene encoding cytosolic GFP resulted in strongly fluorescent vegetative hyphae and aerial structures. Apparently, GFP streams from vegetative hyphae into aerial structures. This was confirmed by monitoring fluorescence of photo-activatable GFP (PA-GFP). In contrast, PA-GFP did not stream from aerial structures to vegetative hyphae. Streaming of PA-GFP within vegetative hyphae or within aerial structures of A. niger occurred at a rate of 10-15 μm s(-1). Taken together, these results not only show that GFP streams from the vegetative mycelium to aerial structures but it also indicates that its encoding RNA is not streaming. Absence of RNA streaming would explain why distinct RNA profiles were found in aerial structures and the vegetative mycelium by nuclear run on analysis and micro-array analysis.

  19. Do multiple fires interact to affect vegetation structure in temperate eucalypt forests?

    Science.gov (United States)

    Haslem, Angie; Leonard, Steve W J; Bruce, Matthew J; Christie, Fiona; Holland, Greg J; Kelly, Luke T; MacHunter, Josephine; Bennett, Andrew F; Clarke, Michael F; York, Alan

    2016-12-01

    Fire plays an important role in structuring vegetation in fire-prone regions worldwide. Progress has been made towards documenting the effects of individual fire events and fire regimes on vegetation structure; less is known of how different fire history attributes (e.g., time since fire, fire frequency) interact to affect vegetation. Using the temperate eucalypt foothill forests of southeastern Australia as a case study system, we examine two hypotheses about such interactions: (1) post-fire vegetation succession (e.g., time-since-fire effects) is influenced by other fire regime attributes and (2) the severity of the most recent fire overrides the effect of preceding fires on vegetation structure. Empirical data on vegetation structure were collected from 540 sites distributed across central and eastern Victoria, Australia. Linear mixed models were used to examine these hypotheses and determine the relative influence of fire and environmental attributes on vegetation structure. Fire history measures, particularly time since fire, affected several vegetation attributes including ground and canopy strata; others such as low and sub-canopy vegetation were more strongly influenced by environmental characteristics like rainfall. There was little support for the hypothesis that post-fire succession is influenced by fire history attributes other than time since fire; only canopy regeneration was influenced by another variable (fire type, representing severity). Our capacity to detect an overriding effect of the severity of the most recent fire was limited by a consistently weak effect of preceding fires on vegetation structure. Overall, results suggest the primary way that fire affects vegetation structure in foothill forests is via attributes of the most recent fire, both its severity and time since its occurrence; other attributes of fire regimes (e.g., fire interval, frequency) have less influence. The strong effect of environmental drivers, such as rainfall and

  20. LiDAR-derived Vegetation Canopy Structure, Great Smoky Mountains National Park, 2011

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset provides multiple-return LiDAR-derived vegetation canopy structure at 30-meter spatial resolution for the Great Smoky Mountains National Park (GSMNP)....

  1. Electronic Structure of Eu6C60

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Xiong; LI Hong-Nian; XU Ya-Bo; WANG Peng; ZHANG Wen-Hua; XU Fa-Qiang

    2009-01-01

    We study the valence band of Eu-intercalated C60 by synchrotron radiation photoelectron spectroscopy to un-derstand the ferromagnetism (FM) and the giant magnetoresistance (GMR) of Eu6C60. The results reveal the semiconducting property and the remarkable 5d6s-π hybridization. Eu-C60 bonding has both ionic and covalent contributions. No more than half the 5d6s electrons transfer from Eu to the LUMO derived band of C60, and the LUMO+1 derived band is not filled. The remaining valence electrons of Eu, together with some π (LUMO, HOMO and HOMO-1) electrons, constitute the covalent bond. The electronic structure implies that the magnetic coupling in Eu6C60 should be through the intra-atomic f-sd exchange and the medium of the π electrons. The possibility of the GMR being tunnelling magnetoresistance is ruled out.

  2. Atomic and electronic structures of novel silicon surface structures

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.H. Jr.

    1997-03-01

    The modification of silicon surfaces is presently of great interest to the semiconductor device community. Three distinct areas are the subject of inquiry: first, modification of the silicon electronic structure; second, passivation of the silicon surface; and third, functionalization of the silicon surface. It is believed that surface modification of these types will lead to useful electronic devices by pairing these modified surfaces with traditional silicon device technology. Therefore, silicon wafers with modified electronic structure (light-emitting porous silicon), passivated surfaces (H-Si(111), Cl-Si(111), Alkyl-Si(111)), and functionalized surfaces (Alkyl-Si(111)) have been studied in order to determine the fundamental properties of surface geometry and electronic structure using synchrotron radiation-based techniques.

  3. Structural changes induced by electron irradiation

    International Nuclear Information System (INIS)

    Koike, J.; Pedraza, D.F.

    1993-01-01

    Highly oriented pyrolytic graphite was irradiated at room temperature with 300 kV electrons. Transmission electron microscopy and electron energy loss spectroscopy were employed to study the structural changes produced by irradiation. The occurrence of a continuous ring intensity in the selected area diffraction (SAD) pattern obtained on a specimen irradiated with the electron beam parallel to the c-crystallographic axis indicated that microstructural changes had occurred. However, from the SAD pattern obtained for the specimens tilted relative to the irradiation direction, it was found that up to a fluence of 1.1x10 27 e/m 2 graphite remained crystalline. An SAD pattern of a specimen irradiated with the electron beam perpendicular to the c-axis confirmed the persistence of crystalline order. High resolution electron microscopy showed that ordering along the c-axis direction remained. A density reduction of 8.9% due to irradiation was determined from the plasmon frequency shift. A qualitative model is proposed to explain these observations. A new determination of the threshold displacement energy, Ed, of carbon atoms in graphite was done by examining the appearance of a continuous ring in the SAD pattern at various electron energies. A value of 30 eV was obtained whether the incident electron beam was parallel or perpendicular to the c-axis, demonstrating that Ed is independent of the displacement direction

  4. Structural stability and electronic structure of YCu ductile ...

    African Journals Online (AJOL)

    We investigate the structural, elastic and electronic properties of cubic YCu intermetallic compound. Which crystallize in the CsCl- B2 type structure, the investigated using the first principle full potential linearized augmented plane wave method (FP-LAPW) within density functional Theory (DFT). We used generalized ...

  5. Terrestrial laser scanning to quantify above-ground biomass of structurally complex coastal wetland vegetation

    Science.gov (United States)

    Owers, Christopher J.; Rogers, Kerrylee; Woodroffe, Colin D.

    2018-05-01

    Above-ground biomass represents a small yet significant contributor to carbon storage in coastal wetlands. Despite this, above-ground biomass is often poorly quantified, particularly in areas where vegetation structure is complex. Traditional methods for providing accurate estimates involve harvesting vegetation to develop mangrove allometric equations and quantify saltmarsh biomass in quadrats. However broad scale application of these methods may not capture structural variability in vegetation resulting in a loss of detail and estimates with considerable uncertainty. Terrestrial laser scanning (TLS) collects high resolution three-dimensional point clouds capable of providing detailed structural morphology of vegetation. This study demonstrates that TLS is a suitable non-destructive method for estimating biomass of structurally complex coastal wetland vegetation. We compare volumetric models, 3-D surface reconstruction and rasterised volume, and point cloud elevation histogram modelling techniques to estimate biomass. Our results show that current volumetric modelling approaches for estimating TLS-derived biomass are comparable to traditional mangrove allometrics and saltmarsh harvesting. However, volumetric modelling approaches oversimplify vegetation structure by under-utilising the large amount of structural information provided by the point cloud. The point cloud elevation histogram model presented in this study, as an alternative to volumetric modelling, utilises all of the information within the point cloud, as opposed to sub-sampling based on specific criteria. This method is simple but highly effective for both mangrove (r2 = 0.95) and saltmarsh (r2 > 0.92) vegetation. Our results provide evidence that application of TLS in coastal wetlands is an effective non-destructive method to accurately quantify biomass for structurally complex vegetation.

  6. Vegetation structure characteristics and relationships of Kalahari woodlands and savannas

    CSIR Research Space (South Africa)

    Privette, JL

    2004-03-01

    Full Text Available modeling has become widespread (e.g., Potter et al., 1993, 1998; Sellers et al., 1996). Nevertheless, knowledge of vegetation canopy struc- ture remains incomplete in many remote areas, such as sub-Saharan Africa. First, comparatively small changes... 929 460 Colophospermum mopane woodland with patches of Terminalia sericea thicket Harry Oppenheimer Okavango Research Centre; Measurements were 3km east of a permanent flux tower 23.591E Okwa River Crossing, Botswana 22.411S 1089 407 Open Kalahari...

  7. Electron acoustic nonlinear structures in planetary magnetospheres

    Science.gov (United States)

    Shah, K. H.; Qureshi, M. N. S.; Masood, W.; Shah, H. A.

    2018-04-01

    In this paper, we have studied linear and nonlinear propagation of electron acoustic waves (EAWs) comprising cold and hot populations in which the ions form the neutralizing background. The hot electrons have been assumed to follow the generalized ( r , q ) distribution which has the advantage that it mimics most of the distribution functions observed in space plasmas. Interestingly, it has been found that unlike Maxwellian and kappa distributions, the electron acoustic waves admit not only rarefactive structures but also allow the formation of compressive solitary structures for generalized ( r , q ) distribution. It has been found that the flatness parameter r , tail parameter q , and the nonlinear propagation velocity u affect the propagation characteristics of nonlinear EAWs. Using the plasmas parameters, typically found in Saturn's magnetosphere and the Earth's auroral region, where two populations of electrons and electron acoustic solitary waves (EASWs) have been observed, we have given an estimate of the scale lengths over which these nonlinear waves are expected to form and how the size of these structures would vary with the change in the shape of the distribution function and with the change of the plasma parameters.

  8. Structure of conduction electrons on polysilanes

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Tsuneki [Hokkaido Univ., Sapporo (Japan); Kumagai, Jun

    1998-10-01

    The orbital structures of conduction electrons on permethylated oligosilane, Si{sub 2n}(CH{sub 3}){sub 2n+2}(n = 2 - 8), and poly(cyclohexylmethylsilane) have been determined by the electron spin-echo envelope modulation signals of the radical anions of these silanes in a deuterated rigid matrix at 77 K. The conduction electron on permethylated oligosilane is delocalized over the entire main chain, whereas that on poly(cyclohexylmethylsilane) is localized on a part of the main chain composed of about six Si atoms. Quantum-chemical calculations suggest that Anderson localization due to fluctuation of {sigma} conjugation by conformational disorder of the main chain is responsible for the localization of both the conduction electron and the hole. (author)

  9. Electronic structure of MgB2

    Indian Academy of Sciences (India)

    Abstract. Results of ab initio electronic structure calculations on the compound MgB2 using the. FPLAPW method employing GGA for the exchange-correlation energy are presented. Total energy minimization enables us to estimate the equilibrium volume, c/a ratio and the bulk modulus, all of which are in excellent ...

  10. Electronic structure of Fe-based superconductors

    Indian Academy of Sciences (India)

    Abstract. Fe-based superconductors have drawn much attention during the last decade due to the presence of superconductivity in materials containing the magnetic element, Fe, and the coexistence of superconductivity and magnetism. Extensive study of the electronic structure of these systems suggested the dominant ...

  11. Electronic structure of Fe-based superconductors

    Indian Academy of Sciences (India)

    2015-05-29

    May 29, 2015 ... Fe-based superconductors have drawn much attention during the last decade due to the presence of superconductivity in materials containing the magnetic element, Fe, and the coexistence of superconductivity and magnetism. Extensive study of the electronic structure of these systems suggested the ...

  12. Electronic structure of MgB 2

    Indian Academy of Sciences (India)

    Results of ab initio electronic structure calculations on the compound MgB2 using the FPLAPW method employing GGA for the exchange-correlation energy are presented. Total energy minimization enables us to estimate the equilibrium volume, / ratio and the bulk modulus, all of which are in excellent agreement with ...

  13. The electronic structure of antiferromagnetic chromium

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt

    1981-01-01

    The author has used the local spin density formalism to perform self-consistent calculations of the electronic structure of chromium in the non-magnetic and commensurate antiferromagnetic phases, as a function of the lattice parameter. A change of a few per cent in the atomic radius brings...

  14. Electronic structure calculations of calcium silicate hydrates

    International Nuclear Information System (INIS)

    Sterne, P.A.; Meike, A.

    1995-11-01

    Many phases in the calcium-silicate-hydrate system can develop in cement exposed over long periods of time to temperatures above 25 C. As a consequence, chemical reactions involving these phases can affect the relative humidity and water chemistry of a radioactive waste repository that contains significant amounts of cement. In order to predict and simulate these chemical reactions, the authors are developing an internally consistent database of crystalline Ca-Si-hydrate structures. The results of first principles electronic structure calculations on two such phases, wollastonite (CaSiO 3 ) and xonotlite (Ca 6 Si 6 O 17 (OH) 2 ), are reported here. The calculated ground state properties are in very good agreement with experiment, providing equilibrium lattice parameters within about 1--1.4% of the experimentally reported values. The roles of the different types of oxygen atoms, which are fundamental to understanding the energetics of crystalline Ca-Si-hydrates are briefly discussed in terms of their electronic state densities. The good agreement with experiment for the lattice parameters and the consistency of the electronic density of states features for the two structures demonstrate the applicability of these electronic structure methods in calculating the fundamental properties of these phases

  15. Electronic structure and electron dynamics at Si(100)

    Energy Technology Data Exchange (ETDEWEB)

    Weinelt, M. [Universitaet Erlangen-Nuernberg, Lehrstuhl fuer Festkoerperphysik, Erlangen (Germany); Max-Born-Institut, Berlin (Germany); Kutschera, M.; Schmidt, R.; Orth, C.; Fauster, T. [Universitaet Erlangen-Nuernberg, Lehrstuhl fuer Festkoerperphysik, Erlangen (Germany); Rohlfing, M. [International University Bremen, School of Engineering and Science, P.O. Box 750 561, Bremen (Germany)

    2005-02-01

    The electronic structure and electron dynamics at a Si(100) surface is studied by two-photon photoemission (2PPE). At 90 K the occupied D{sub up} dangling-bond state is located 150{+-}50 meV below the valence-band maximum (VBM) at the center of the surface Brillouin zone anti {gamma} and exhibits an effective hole mass of (0.5{+-}0.15)m{sub e}. The unoccupied D{sub down} band has a local minimum at anti {gamma} at 650{+-}50 meV above the VBM and shows strong dispersion along the dimer rows of the c(4 x 2) reconstructed surface. At 300 K the D{sub down} position shifts comparable to the Si conduction-band minimum by 40 meV to lower energies but the dispersion of the dangling-bond states is independent of temperature. The surface band bending for p-doped silicon is less than 30 meV, while acceptor-type defects cause significant and preparation-dependent band bending on n-doped samples. 2PPE spectra of Si(100) are dominated by interband transitions between the occupied and unoccupied surface states and emission out of transiently and permanently charged surface defects. Including electron-hole interaction in many-body calculations of the quasi-particle band structure leads us to assign a dangling-bond split-off state to a quasi-one-dimensional surface exciton with a binding energy of 130 meV. Electrons resonantly excited to the unoccupied D{sub down} dangling-bond band with an excess energy of about 350 meV need 1.5{+-}0.2 ps to scatter via phonon emission to the band bottom at anti {gamma} and relax within 5 ps with an excited hole in the occupied surface band to form an exciton living for nanoseconds. (orig.)

  16. Diamond surface: atomic and electronic structure

    International Nuclear Information System (INIS)

    Pate, B.B.

    1984-01-01

    Experimental studies of the diamond surface (with primary emphasis on the (111) surface) are presented. Aspects of the diamond surface which are addressed include (1) the electronic structure, (2) the atomic structure, and (3) the effect of termination of the lattice by foreign atoms. Limited studies of graphite are discussed for comparison with the diamond results. Experimental results from valence band and core level photoemission spectroscopy (PES), Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and carbon 1s near edge x-ray absorption fine structure (NEXAFS) spectroscopy (both the total electron yield (TEY) and Auger electron yield (AEY) techniques) are used to study and characterize both the clean and hydrogenated surface. In addition, the interaction of hydrogen with the diamond surface is examined using results from vibrational high resolution low energy electron loss spectroscopy (in collaboration with Waclawski, Pierce, Swanson, and Celotta at the National Bureau of Standards) and photon stimulated ion desorption (PSID) yield at photon energies near the carbon k-edge (hv greater than or equal to 280 eV). Both EELS and PSID verify that the mechanically polished 1 x 1 surface is hydrogen terminated and also that the reconstructed surface is hydrogen free. The (111) 2 x 2/2 x 1 reconstructed surface is obtained from the hydrogenated (111) 1 x 1:H surface by annealing to approx. = 1000 0 C. We observe occupied intrinsic surface states and a surface chemical shift (0.95 +- 0.1 eV) to lower binding energy of the carbon 1s level on the hydrogen-free reconstructed surface. Atomic hydrogen is found to be reactive with the reconstructed surface, while molecular hydrogen is relatively inert. Exposure of the reconstructed surface to atomic hydrogen results in chemisorption of hydrogen and removal of the intrinsic surface state emission in and near the band gap region

  17. Electronic structure and electron momentum density in TiSi

    Energy Technology Data Exchange (ETDEWEB)

    Ghaleb, A.M. [Department of Physics, College of Science, University of Kirkuk, Kirkuk (Iraq); Mohammad, F.M. [Department of Physics, College of Science, University of Tikreet, Tikreet (Iraq); Sahariya, Jagrati [Department of Physics, University College of Science, M.L. Sukhadia University, Udaipur 313001, Rajasthan (India); Sharma, Mukesh [Physics Division, Forensic Science Laboratory, Jaipur, Rajasthan (India); Ahuja, B.L., E-mail: blahuja@yahoo.com [Department of Physics, University College of Science, M.L. Sukhadia University, Udaipur 313001, Rajasthan (India)

    2013-03-01

    We report the electron momentum density in titanium monosilicide using {sup 241}Am Compton spectrometer. Experimental Compton profile has been compared with the theoretical profiles computed using linear combination of atomic orbitals (LCAO). The energy bands, density of states and Fermi surface structures of TiSi are reported using the LCAO and the full potential linearized augmented plane wave methods. Theoretical anisotropies in directional Compton profiles are interpreted in terms of energy bands. To confirm the conducting behavior, we also report the real space analysis of experimental Compton profile of TiSi.

  18. Vegetative and structural characteristics of agricultural drainages in the Mississippi Delta landscapes

    International Nuclear Information System (INIS)

    Bouldin, J.L.; Farris, J.L.; Moore, M.T.; Cooper, C.M.

    2004-01-01

    Agricultural drainage ditches in the Mississippi Alluvial Delta landscape vary from edge-of-field waterways to sizeable drainages. Ditch attributes vary with size, location and maintenance and may aid in mitigation of contaminants from agricultural fields. The goal of this study was to better understand how vegetative characteristics affect water quality in conveyance structures in the context of ditch class and surrounding land use. Characterization of 36 agricultural ditches included presence of riparian buffer strips, water depth, surrounding land use, vegetative cover, and associated aqueous physicochemical parameters. Vegetation was assessed quantitatively, obtaining stem counts in a sub-sample of ditch sites, using random quadrat method. Physical features varied with ditch size and vegetative diversity was higher in larger structures. Polygonum sp. was the dominant bed vegetation and was ubiquitous among site sizes. Macrophytes varied from aquatic to upland species, and included Leersia sp. and upland grasses (Poaceae family) in all drainage size classes. Percent cover of bed and bank varied from 0 to 100% and 70 to 100%, respectively, and highest nutrient values were measured in sites with no buffer strips. These conveyance structures and surrounding buffer zones are being ranked for their ability to reduce excess nutrients, suspended solids, and pesticides associated with runoff. - Capsule: Vegetated buffer areas provide effective mitigation for non-point source pollution from agriculture

  19. 3D Printed structural electronics: embedding and connecting electronic components into freeform electronic devices

    NARCIS (Netherlands)

    Maalderink, H.H.H.; Bruning, F.B.J.; Schipper, M.M.R. de; Werff, J.J.J. van der; Germs, W.W.C.; Remmers, J.J.C.; Meinders, E.R.

    2018-01-01

    The need for personalised and smart products drives the development of structural electronics with mass-customisation capability. A number of challenges need to be overcome in order to address the potential of complete free form manufacturing of electronic devices. One key challenge is the

  20. 3D Printed structural electronics : embedding and connecting electronic components into freeform electronic devices

    NARCIS (Netherlands)

    Maalderink, H.H.; Bruning, F.B.J.; de Schipper, M.R.; van der Werff, J.J.; Germs, W.C.; Remmers, J.J.C.; Meinders, E.R.

    2018-01-01

    The need for personalised and smart products drives the development of structural electronics with mass-customisation capability. A number of challenges need to be overcome in order to address the potential of complete free form manufacturing of electronic devices. One key challenge is the

  1. Electronic structure of super heavy atoms revisited

    International Nuclear Information System (INIS)

    Gitman, D M; Levin, A D; Tyutin, I V; Voronov, B L

    2013-01-01

    The electronic structure of an atom with Z ⩽ Z c = 137 can be described by the Dirac equation with the Coulomb field of a point charge Ze. It was believed that the Dirac equation with Z > Z c poses difficulties because the formula for the lower energy level of the Dirac Hamiltonian formally gives imaginary eigenvalues. But a strict mathematical consideration shows that difficulties with the electronic spectrum for Z > Z c do not arise if the Dirac Hamiltonian is correctly defined as a self-adjoint operator. In this paper, we briefly summarize the main physical results of that consideration in a form suitable for physicists with some additional new details and numerical calculations of the electronic spectra. (comment)

  2. Electronic Structure of Strongly Correlated Materials

    CERN Document Server

    Anisimov, Vladimir

    2010-01-01

    Electronic structure and physical properties of strongly correlated materials containing elements with partially filled 3d, 4d, 4f and 5f electronic shells is analyzed by Dynamical Mean-Field Theory (DMFT). DMFT is the most universal and effective tool used for the theoretical investigation of electronic states with strong correlation effects. In the present book the basics of the method are given and its application to various material classes is shown. The book is aimed at a broad readership: theoretical physicists and experimentalists studying strongly correlated systems. It also serves as a handbook for students and all those who want to be acquainted with fast developing filed of condensed matter physics.

  3. Electronic band structures of binary skutterudites

    International Nuclear Information System (INIS)

    Khan, Banaras; Aliabad, H.A. Rahnamaye; Saifullah; Jalali-Asadabadi, S.; Khan, Imad; Ahmad, Iftikhar

    2015-01-01

    The electronic properties of complex binary skutterudites, MX 3 (M = Co, Rh, Ir; X = P, As, Sb) are explored, using various density functional theory (DFT) based theoretical approaches including Green's Function (GW) as well as regular and non-regular Tran Blaha modified Becke Jhonson (TB-mBJ) methods. The wide range of calculated bandgap values for each compound of this skutterudites family confirm that they are theoretically as challenging as their experimental studies. The computationally expensive GW method, which is generally assume to be efficient in the reproduction of the experimental bandgaps, is also not very successful in the calculation of bandgaps. In this article, the issue of the theoretical bandgaps of these compounds is resolved by reproducing the accurate experimental bandgaps, using the recently developed non-regular TB-mBJ approach, based on DFT. The effectiveness of this technique is due to the fact that a large volume of the binary skutterudite crystal is empty and hence quite large proportion of electrons lie outside of the atomic spheres, where unlike LDA and GGA which are poor in the treatment of these electrons, this technique properly treats these electrons and hence reproduces the clear electronic picture of these compounds. - Highlights: • Theoretical and experimental electronic band structures of binary skutterudites are reviewed. • The literature reveals that none of the existing theoretical results are consistent with the experiments. • GW, regular and non-regular TB-mBJ methods are used to reproduce the correct results. • The GW and regular TB-mBJ results are better than the available results in literature. • However, non-regular TB-mBJ reproduces the correct experimental band structures

  4. Electronic band structures of binary skutterudites

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Banaras [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Aliabad, H.A. Rahnamaye [Department of Physics, Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); Saifullah [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Jalali-Asadabadi, S. [Department of Physics, Faculty of Science, University of Isfahan (UI), 81744 Isfahan (Iran, Islamic Republic of); Khan, Imad [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Ahmad, Iftikhar, E-mail: ahma5532@gmail.com [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan)

    2015-10-25

    The electronic properties of complex binary skutterudites, MX{sub 3} (M = Co, Rh, Ir; X = P, As, Sb) are explored, using various density functional theory (DFT) based theoretical approaches including Green's Function (GW) as well as regular and non-regular Tran Blaha modified Becke Jhonson (TB-mBJ) methods. The wide range of calculated bandgap values for each compound of this skutterudites family confirm that they are theoretically as challenging as their experimental studies. The computationally expensive GW method, which is generally assume to be efficient in the reproduction of the experimental bandgaps, is also not very successful in the calculation of bandgaps. In this article, the issue of the theoretical bandgaps of these compounds is resolved by reproducing the accurate experimental bandgaps, using the recently developed non-regular TB-mBJ approach, based on DFT. The effectiveness of this technique is due to the fact that a large volume of the binary skutterudite crystal is empty and hence quite large proportion of electrons lie outside of the atomic spheres, where unlike LDA and GGA which are poor in the treatment of these electrons, this technique properly treats these electrons and hence reproduces the clear electronic picture of these compounds. - Highlights: • Theoretical and experimental electronic band structures of binary skutterudites are reviewed. • The literature reveals that none of the existing theoretical results are consistent with the experiments. • GW, regular and non-regular TB-mBJ methods are used to reproduce the correct results. • The GW and regular TB-mBJ results are better than the available results in literature. • However, non-regular TB-mBJ reproduces the correct experimental band structures.

  5. Electronic structure of Pu carbides: photoelectron spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Gouder, T.; Havela, L.; Shick, Alexander; Huber, F.

    2008-01-01

    Roč. 403, č. 5-9 (2008), s. 852-853 ISSN 0921-4526 R&D Projects: GA AV ČR(CZ) IAA100100530 Grant - others:EU(XE) RITA -CT-2006-026176 Institutional research plan: CEZ:AV0Z10100520 Keywords : photoemission * electronic structure * plutonium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.822, year: 2008

  6. Structural and electronic properties of thallium compounds

    International Nuclear Information System (INIS)

    Paliwal, Neetu; Srivastava, Vipul

    2016-01-01

    The tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA has been used to calculate structural and electronic properties of thallium pnictides TlX (X=Sb, Bi) at high pressure. As a function of volume, the total energy is evaluated. Apart from this, the lattice parameter (a_0), bulk modulus (B_0), band structure (BS) and density of states (DOS) are calculated. From energy band diagram we observed metallic behaviour in TlSb and TlBi compounds. The values of equilibrium lattice constants and bulk modulus are agreed well with the available data.

  7. Structural and electronic properties of thallium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Paliwal, Neetu, E-mail: neetumanish@gmail.com [Department of Physics, AISECT University Bhopal, 464993 (India); Srivastava, Vipul [Department of Engineering Physics, NRI Institute of Research & Technology, Raisen Road, Bhopal, 462021 (India)

    2016-05-06

    The tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA has been used to calculate structural and electronic properties of thallium pnictides TlX (X=Sb, Bi) at high pressure. As a function of volume, the total energy is evaluated. Apart from this, the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure (BS) and density of states (DOS) are calculated. From energy band diagram we observed metallic behaviour in TlSb and TlBi compounds. The values of equilibrium lattice constants and bulk modulus are agreed well with the available data.

  8. Structural dynamics of electronic and photonic systems

    CERN Document Server

    Suhir, Ephraim; Steinberg, David S

    2011-01-01

    The proposed book will offer comprehensive and versatile methodologies and recommendations on how to determine dynamic characteristics of typical micro- and opto-electronic structural elements (printed circuit boards, solder joints, heavy devices, etc.) and how to design a viable and reliable structure that would be able to withstand high-level dynamic loading. Particular attention will be given to portable devices and systems designed for operation in harsh environments (such as automotive, aerospace, military, etc.)  In-depth discussion from a mechanical engineer's viewpoint will be conducte

  9. Assessing the drivers shaping global patterns of urban vegetation landscape structure.

    Science.gov (United States)

    Dobbs, C; Nitschke, C; Kendal, D

    2017-08-15

    Vegetation is one of the main resources involve in ecosystem functioning and providing ecosystem services in urban areas. Little is known on the landscape structure patterns of vegetation existing in urban areas at the global scale and the drivers of these patterns. We studied the landscape structure of one hundred cities around the globe, and their relation to demography (population), socioeconomic factors (GDP, Gini Index), climate factors (temperature and rain) and topographic characteristics (altitude, variation in altitude). The data revealed that the best descriptors of landscape structure were amount, fragmentation and spatial distribution of vegetation. Populated cities tend to have less, more fragmented, less connected vegetation with a centre of the city with low vegetation cover. Results also provided insights on the influence of socioeconomics at a global scale, as landscape structure was more fragmented in areas that are economically unequal and coming from emergent economies. This study shows the effects of the social system and climate on urban landscape patterns that gives useful insights for the distribution in the provision of ecosystem services in urban areas and therefore the maintenance of human well-being. This information can support local and global policy and planning which is committing our cities to provide accessible and inclusive green space for all urban inhabitants. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Correlated electronic structure of CeN

    Energy Technology Data Exchange (ETDEWEB)

    Panda, S.K., E-mail: swarup.panda@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden); Di Marco, I. [Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden); Delin, A. [Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden); KTH Royal Institute of Technology, School of Information and Communication Technology, Department of Materials and Nano Physics, Electrum 229, SE-164 40 Kista (Sweden); KTH Royal Institute of Technology, Swedish e-Science Research Center (SeRC), SE-100 44 Stockholm (Sweden); Eriksson, O., E-mail: olle.eriksson@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden)

    2016-04-15

    Highlights: • The electronic structure of CeN is studied within the GGA+DMFT approach using SPTF and Hubbard I approximation. • 4f spectral functions from SPTF and Hubbard I are coupled to explain the various spectroscopic manifestations of CeN. • The calculated XPS and BIS spectra show good agreement with the corresponding experimental spectra. • The contribution of the various l-states and the importance of cross-sections for the photoemission process are analyzed. - Abstract: We have studied in detail the electronic structure of CeN including spin orbit coupling (SOC) and electron–electron interaction, within the dynamical mean-field theory combined with density-functional theory in generalized gradient approximation (GGA+DMFT). The effective impurity problem has been solved through the spin-polarized T-matrix fluctuation-exchange (SPTF) solver and the Hubbard I approximation (HIA). The calculated l-projected atomic partial densities of states and the converged potential were used to obtain the X-ray-photoemission-spectra (XPS) and Bremstrahlung Isochromat spectra (BIS). Following the spirit of Gunnarsson–Schonhammer model, we have coupled the SPTF and HIA 4f spectral functions to explain the various spectroscopic manifestations of CeN. Our computed spectra in such a coupled scheme explain the experimental data remarkably well, establishing the validity of our theoretical model in analyzing the electronic structure of CeN. The contribution of the various l-states in the total spectra and the importance of cross sections are also analyzed in detail.

  11. Electronic structure theory of the superheavy elements

    Energy Technology Data Exchange (ETDEWEB)

    Eliav, Ephraim, E-mail: ephraim@tau.ac.il [School of Chemistry, Tel Aviv University, 6997801 Tel Aviv (Israel); Fritzsche, Stephan, E-mail: s.fritzsche@gsi.de [Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena (Germany); Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, D-07743 Jena (Germany); Kaldor, Uzi, E-mail: kaldor@tau.ac.il [School of Chemistry, Tel Aviv University, 6997801 Tel Aviv (Israel)

    2015-12-15

    High-accuracy calculations of atomic properties of the superheavy elements (SHE) up to element 122 are reviewed. The properties discussed include ionization potentials, electron affinities and excitation energies, which are associated with the spectroscopic and chemical behavior of these elements, and are therefore of considerable interest. Accurate predictions of these quantities require high-order inclusion of relativity and electron correlation, as well as large, converged basis sets. The Dirac–Coulomb–Breit Hamiltonian, which includes all terms up to second order in the fine-structure constant α, serves as the framework for the treatment; higher-order Lamb shift terms are considered in some selected cases. Electron correlation is treated by either the multiconfiguration self-consistent-field approach or by Fock-space coupled cluster theory. The latter is enhanced by the intermediate Hamiltonian scheme, allowing the use of larger model (P) spaces. The quality of the calculations is assessed by applying the same methods to lighter homologs of the SHEs and comparing with available experimental information. Very good agreement is obtained, within a few hundredths of an eV, and similar accuracy is expected for the SHEs. Many of the properties predicted for the SHEs differ significantly from what may be expected by straightforward extrapolation of lighter homologs, demonstrating that the structure and chemistry of SHEs are strongly affected by relativity. The major scientific challenge of the calculations is to find the electronic structure and basic atomic properties of the SHE and assign its proper place in the periodic table. Significant recent developments include joint experimental–computational studies of the excitation spectrum of Fm and the ionization energy of Lr, with excellent agreement of experiment and theory, auguring well for the future of research in the field.

  12. Spectral-Product Methods for Electronic Structure Calculations (Preprint)

    National Research Council Canada - National Science Library

    Langhoff, P. W; Mills, J. E; Boatz, J. A

    2006-01-01

    .... The spectral-product approach to molecular electronic structure avoids the repeated evaluations of the one- and two-electron integrals required in construction of polyatomic Hamiltonian matrices...

  13. Spectral-Product Methods for Electronic Structure Calculations (Postprint)

    National Research Council Canada - National Science Library

    Langhoff, P. W; Hinde, R. J; Mills, J. D; Boatz, J. A

    2007-01-01

    .... The spectral-product approach to molecular electronic structure avoids the repeated evaluations of the one- and two-electron integrals required in construction of polyatomic Hamiltonian matrices...

  14. Floristic Composition and Vegetation Structure of The KNUST ...

    African Journals Online (AJOL)

    The diversity, relative importance, canopy height and cover of plant species in the Kwame Nkrumah University of Science and Technology (KNUST) Botanic Garden were evaluated in five 1-ha plots using a stratified random sampling technique in order to build an understanding of its floristic composition and structure in two ...

  15. Electronic structure and superconductivity of europium

    International Nuclear Information System (INIS)

    Nixon, Lane W.; Papaconstantopoulos, D.A.

    2010-01-01

    We have calculated the electronic structure of Eu for the bcc, hcp, and fcc crystal structures for volumes near equilibrium up to a calculated 90 GPa pressure using the augmented-plane-wave method in the local-density approximation. The frozen-core approximation was used with a semi-empirical shift of the f-states energies in the radial Schroedinger equation to move the occupied 4f valence states below the Γ 1 energy and into the core. This shift of the highly localized f-states yields the correct europium phase ordering with lattice parameters and bulk moduli in good agreement with experimental data. The calculated superconductivity properties under pressure for the bcc and hcp structures are also found to agree with and follow a T c trend similar to recent measurement by Debessai et al.

  16. Electromagnetic Radiation of Electrons in Periodic Structures

    CERN Document Server

    Potylitsyn, Alexander Petrovich

    2011-01-01

    Periodic magnetic structures (undulators) are widely used in accelerators to generate monochromatic undulator radiation (UR) in the range from far infrared to the hard X-ray region. Another periodic crystalline structure is used to produce quasimonochromatic polarized photon beams via the coherent bremsstrahlung mechanism (CBS). Due to such characteristics as monochromaticity, polarization and adjustability, these types of radiation is of large interest for applied and basic research of accelerator-emitted radiation. The book provides a detailed overview of the fundamental principles behind electromagnetic radiation emitted from accelerated charged particles (e.g. UR, CBS, radiation of fast electrons in Laser flash fields) as well as a unified description of relatively new radiation mechanisms which attracted great interest in recent years. This are the so-called polarization radiation excited by the Coulomb field of incident particles in periodic structures, parametric X-rays, resonant transition radiation a...

  17. Boson structure functions from inelastic electron scattering

    International Nuclear Information System (INIS)

    De Jager, C.W.

    1986-01-01

    The even /sup 104-110/Pd isotopes and /sup 196/Pt have been investigated at NIKHEF-K by high-resolution inelastic electron scattering. A new IBA-2 calculation has been performed for the Pd isotopes, in which the ratio of the proton and neutron coupling constants is taken from pion scattering. One set of boson structure functions sufficed for the description of the first and second E2-excitations in all Pd isotopes. The data showed no sensitivity for different structure functions for proton and neutron bosons. A preliminary analysis of a number of negative parity states (3/sup -/,5/sup -/ and 7/sup -/), observed in /sup 196/Pt, was performed through the introduction of an f-boson. The first E4-excitation in the palladium isotopes can be reasonably described with a β-structure function, but all other E4-excitations require the introduction of g-boson admixtures

  18. Photoelectron spectroscopy bulk and surface electronic structures

    CERN Document Server

    Suga, Shigemasa

    2014-01-01

    Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization depend...

  19. Electronic Structures of LNA Phosphorothioate Oligonucleotides

    Directory of Open Access Journals (Sweden)

    Henrik G. Bohr

    2017-09-01

    Full Text Available Important oligonucleotides in anti-sense research have been investigated in silico and experimentally. This involves quantum mechanical (QM calculations and chromatography experiments on locked nucleic acid (LNA phosphorothioate (PS oligonucleotides. iso-potential electrostatic surfaces are essential in this study and have been calculated from the wave functions derived from the QM calculations that provide binding information and other properties of these molecules. The QM calculations give details of the electronic structures in terms of e.g., energy and bonding, which make them distinguish or differentiate between the individual PS diastereoisomers determined by the position of sulfur atoms. Rules are derived from the electronic calculations of these molecules and include the effects of the phosphorothioate chirality and formation of electrostatic potential surfaces. Physical and electrochemical descriptors of the PS oligonucleotides are compared to the experiments in which chiral states on these molecules can be distinguished. The calculations demonstrate that electronic structure, electrostatic potential, and topology are highly sensitive to single PS configuration changes and can give a lead to understanding the activity of the molecules. Keywords: LNA phosphorothioate, DNA/LNA oligonucleotide, diastereoisomers, Hartree-Fock calculations, iso-potential surface, anion chromatograms

  20. Spatial-structural analysis of leafless woody riparian vegetation for hydraulic considerations

    Science.gov (United States)

    Weissteiner, Clemens; Jalonen, Johanna; Järvelä, Juha; Rauch, Hans Peter

    2013-04-01

    Woody riparian vegetation is a vital element of riverine environments. On one hand woody riparian vegetation has to be taken into account from a civil engineering point of view due to boundary shear stress and vegetation drag. On the other hand it has to be considered from a river ecological point of view due to shadowing effects and as a source of organic material for aquatic habitats. In hydrodynamic and hydro-ecological studies the effects of woody riparian vegetation on flow patterns are usually investigated on a very detailed level. On the contrary vegetation elements and their spatial patterns are generally analysed and discussed on the basis of an integral approach measuring for example basal diameters, heights and projected plant areas. For a better understanding of the influence of woody riparian vegetation on turbulent flow and on river ecology, it is essential to record and analyse plant data sets on the same level of quality as for hydrodynamic or hydro-ecologic purposes. As a result of the same scale of the analysis it is possible to incorporate riparian vegetation as a sub-model in the hydraulic analysis. For plant structural components, such as branches on different topological levels it is crucial to record plant geometrical parameters describing the habitus of the plant on branch level. An exact 3D geometrical model of real plants allows for an extraction of various spatial-structural plant parameters. In addition, allometric relationships help to summarize and describe plant traits of riparian vegetation. This paper focuses on the spatial-structural composition of leafless riparia woddy vegetation. Structural and spatial analyses determine detailed geometric properties of the structural components of the plants. Geometrical and topological parameters were recorded with an electro-magnetic scanning device. In total, 23 plants (willows, alders and birches) were analysed in the study. Data were recorded on branch level, which allowed for the

  1. Extraordinary electronic properties in uncommon structure types

    Science.gov (United States)

    Ali, Mazhar Nawaz

    In this thesis I present the results of explorations into several uncommon structure types. In Chapter 1 I go through the underlying idea of how we search for new compounds with exotic properties in solid state chemistry. The ideas of exploring uncommon structure types, building up from the simple to the complex, using chemical intuition and thinking by analogy are discussed. Also, the history and basic concepts of superconductivity, Dirac semimetals, and magnetoresistance are briefly reviewed. In chapter 2, the 1s-InTaS2 structural family is introduced along with the discovery of a new member of the family, Ag0:79VS2; the synthesis, structure, and physical properties of two different polymorphs of the material are detailed. Also in this chapter, we report the observation of superconductivity in another 1s structure, PbTaSe2. This material is especially interesting due to it being very heavy (resulting in very strong spin orbit coulping (SOC)), layered, and noncentrosymmetric. Electronic structure calculations reveal the presence of a bulk 3D Dirac cone (very similar to graphene) that is gapped by SOC originating from the hexagonal Pb layer. In Chapter 3 we show the re-investigation of the crystal structure of the 3D Dirac semimetal, Cd3As2. It is found to be centrosymmetric, rather than noncentrosymmetric, and as such all bands are spin degenerate and there is a 4-fold degenerate bulk Dirac point at the Fermi level, making Cd3As2 a 3D electronic analog to graphene. Also, for the first time, scanning tunneling microscopy experiments identify a 2x2 surface reconstruction in what we identify as the (112) cleavage plane of single crystals; needle crystals grow with a [110] long axis direction. Lastly, in chapter 4 we report the discovery of "titanic" (sadly dubbed ⪉rge, nonsaturating" by Nature editors and given the acronym XMR) magnetoresistance (MR) in the non-magnetic, noncentrosymmetric, layered transition metal dichalcogenide WTe2; over 13 million% at 0.53 K in

  2. Projected quasiparticle theory for molecular electronic structure

    Science.gov (United States)

    Scuseria, Gustavo E.; Jiménez-Hoyos, Carlos A.; Henderson, Thomas M.; Samanta, Kousik; Ellis, Jason K.

    2011-09-01

    We derive and implement symmetry-projected Hartree-Fock-Bogoliubov (HFB) equations and apply them to the molecular electronic structure problem. All symmetries (particle number, spin, spatial, and complex conjugation) are deliberately broken and restored in a self-consistent variation-after-projection approach. We show that the resulting method yields a comprehensive black-box treatment of static correlations with effective one-electron (mean-field) computational cost. The ensuing wave function is of multireference character and permeates the entire Hilbert space of the problem. The energy expression is different from regular HFB theory but remains a functional of an independent quasiparticle density matrix. All reduced density matrices are expressible as an integration of transition density matrices over a gauge grid. We present several proof-of-principle examples demonstrating the compelling power of projected quasiparticle theory for quantum chemistry.

  3. Studies in the electronic structure of matter

    International Nuclear Information System (INIS)

    Swarts, C.A.

    1979-01-01

    The results of various theories for the angular distribution of electrons photoemitted from the outermost p-shell of rare gas atoms are compared. The theories compared are the local density theories of Slater (X/sub α/) and of Hohenberg, Kohn and Sham, the pseudopotential method, Hartree-Fock theory as evaluated by Kennedy and Manson, and Amusia's random phase approximation with exchange (RPAE). Extended Huekel theory is applied to GaAs, GaP, and to the nitrogen isoelectronic trap in GaAs and GaP. The computer perfect crystal band structures are found to be in reasonable agreement with those computed with empirical pseudopotentials. Nitrogen impurity levels in GaAs and GaP are calculated using a cluster model. By means of model calculations for an independent electron metal, exact lineshapes are obtained for the photon absorption, emission and photoemission spectra of deep core states. 97 references

  4. Studies in the electronic structure of matter

    International Nuclear Information System (INIS)

    Miller, D.L.

    1979-01-01

    KLL Auger transition rates for helium are computed using simple atomic orbital wavefunctions which take into account the difference in average electron--electron repulsion of initial and final states. The results are consistent with transition rates computed by other authors using a variety of many-electron techniques. It is suggested that wavefunctions determined in the manner described provide a useful representation of the autoionizing state within the first Bohr radius. A method for extracting atomic pseudopotentials from photoelectron angular distributions is described and applied photoionization of the outermost p shells of Ar, Kr, and Xe and to the 4d shell of Xe. The pseudopotentials obtained reproduce the data, and also predict accurate cross sections and phase shifts for photoelectron energies up to 100 eV. It is suggested that the pseudopotentials aptly mimic the effects of intrashell electron--electron correlations in the photoionization process. The extended Hueckel theory is applied to the nitrogen trap in GaAs and GaP. Perfect crystal band structures are computed and are shown to be in reasonable agreement with those computed with empirical pseudopotentials. Nitrogen impurity levels in GaAs and GaP are computed using an extended Hueckel cluster model. In each case the model predicts two states within the band gap, in contrast to experiment which detects one impurity state in GaP and none in GaAs. It is suggested that the choice of cluster used unrealistically concentrates states near the conduction band edge on the central atom

  5. Studies in the electronic structure of matter

    International Nuclear Information System (INIS)

    Miller, D.L.

    1979-01-01

    KLL Auger transition rates for helium are computed using simple atomic orbital wavefunctions which take into account the difference in average electron-electron repulsion of initial and final states. The results are consistent with transition rates computed by other authors using a variety of many-electron techniques. It is suggested that wavefunctions determined in the manner described provide a useful representation of the autoionizing state within the first Bohr radius. A method for extracting atomic psuedopotentials from photoelectron angular distributions is described and applied photoionization of the outermost p shells of Ar, Kr, and Xe and to the 4d shell of Xe. The pseudopotentials obtained reproduce the data, and also predict accurate cross sections and phase shifts for photoelectron energies up to 100 eV. It is suggested that the pseudopotentials aptly mimic the effects of intrashell electron-electron correlations in the photoionization process. The extended Hueckel theory is applied to the nitrogen trap in GaAs and GaP. Perfect crystal band structures are computed and are shown to be in reasonable agreement with those computed with empirical psuedopotentials. Nitrogen impurity levles in GaAs and GaP are computed using an extended Hueckel cluster model. In each case the model predicts two states within the band gap, in contrast to experiment which detects one impurity state in GaP and none in GaAs. It is suggested that the choice of cluster used unrealistically concentrates states near the conduction band edge on the central atom

  6. Electronic structure of defects in semiconductor heterojunctions

    International Nuclear Information System (INIS)

    Haussy, Bernard; Ganghoffer, Jean Francois

    2002-01-01

    Full text.heterojunctions and semiconductors and superlattices are well known and well used by people interested in optoelectronics communications. Components based on the use of heterojunctions are interesting for confinement of light and increase of quantum efficiency. An heterojunction is the contact zone between two different semiconductors, for example GaAs and Ga 1-x Al x As. Superlattices are a succession of heterojunctions (up to 10 or 20). These systems have been the subjects of many experiments ao analyse the contact between semiconductors. They also have been theoretically studied by different types of approach. The main result of those studies is the prediciton of band discontinuities. Defects in heterojunctions are real traps for charge carriers; they can affect the efficiency of the component decreasing the currents and the fluxes in it. the knowledge of their electronic structure is important, a great density of defects deeply modifies the electronic structure of the whole material creating real new bands of energy in the band structure of the component. in the first part of this work, we will describe the heterostructure and the defect in terms of quantum wells and discrete levels. This approach allows us to show the role of the width of the quantum well describing the structure but induces specific behaviours due to the one dimensional modelling. Then a perturbative treatment is proposed using the Green's functions formalism. We build atomic chains with different types of atoms featuring the heterostructure and the defect. Densities of states of a structure with a defect and levels associated to the defect are obtained. Results are comparable with the free electrons work, but the modelling do not induce problems due to a one dimensional approach. To extend our modelling, a three dimensions approach, based on a cavity model, is investigated. The influence of the defect, - of hydrogenoid type - introduced in the structure, is described by a cavity

  7. Atomic Reference Data for Electronic Structure Calculations

    CERN Document Server

    Kotochigova, S; Shirley, E L

    We have generated data for atomic electronic structure calculations, to provide a standard reference for results of specified accuracy under commonly used approximations. Results are presented here for total energies and orbital energy eigenvalues for all atoms from H to U, at microHartree accuracy in the total energy, as computed in the local-density approximation (LDA) the local-spin-density approximation (LSD); the relativistic local-density approximation (RLDA); and scalar-relativistic local-density approximation (ScRLDA).

  8. The electronic structure of impurities in semiconductors

    CERN Multimedia

    Nylandsted larsen, A; Svane, A

    2002-01-01

    The electronic structure of isolated substitutional or interstitial impurities in group IV, IV-IV, and III-V compound semiconductors will be studied. Mössbauer spectroscopy will be used to investigate the incorporation of the implanted isotopes on the proper lattice sites. The data can be directly compared to theoretical calculations using the LMTO scheme. Deep level transient spectroscopy will be used to identify the band gap levels introduced by metallic impurities, mainly in Si~and~Si$ _{x}$Ge$_{1-x}$. \\\\ \\\\

  9. Unoccupied surface electronic structure of Gd(0001)

    International Nuclear Information System (INIS)

    Li, D.; Dowben, P.A.; Ortega, J.E.; Himpsel, F.J.

    1994-01-01

    The unoccupied surface electronic structure of Gd(0001) was investigated with high-resolution inverse-photoemission spectroscopy. An empty surface state near E F is observed at bar Γ. Two other surface-sensitive features are also revealed at 1.2 and 3.1 eV above the Fermi level. Hydrogen adsorption on Gd surfaces was used to distinguish the surface-sensitive features from the bulk features. The unoccupied bulk-band critical points are determined to be Γ 3 + at 1.9 eV and A 1 at 0.8 eV

  10. Cobalamins uncovered by modern electronic structure calculations

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta; Ryde, Ulf

    2009-01-01

    electronic-structure calculations, in particular density functional methods, the understanding of the molecular mechanism of cobalamins has changed dramatically, going from a dominating view of trans-steric strain effects to a much more complex view involving an arsenal of catalytic strategies. Among...... these are cis-steric distortions, electrostatic stabilization of radical products, the realization that nucleotide units can serve as polar handles, and the careful design of the active sites, with polar residues in the radical enzymes and non-polar residues in the transferases. Together, these strategies...

  11. Electronic golden structure of the periodic chart

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, Leonard J. [Interdisciplinary Research Club, Monroeville, PA (United States)], E-mail: LJMalinowski@gmail.com

    2009-11-15

    The golden ratio has been studied since the ancient Greeks due to its inherent symmetry and aesthetic beauty, especially in the five Platonic Solids. The golden mean is now established as a pillar of El Naschie's E infinity where it achieves the physical manifestation of 0.618 034 MeV. The largest atomic electron orbital total energies average to the golden mean energy. This paper examines the golden ratio in order to expand upon a century old attempt to produce a relatively static, visual, geometric model of atomic structure.

  12. Electronic golden structure of the periodic chart

    International Nuclear Information System (INIS)

    Malinowski, Leonard J.

    2009-01-01

    The golden ratio has been studied since the ancient Greeks due to its inherent symmetry and aesthetic beauty, especially in the five Platonic Solids. The golden mean is now established as a pillar of El Naschie's E infinity where it achieves the physical manifestation of 0.618 034 MeV. The largest atomic electron orbital total energies average to the golden mean energy. This paper examines the golden ratio in order to expand upon a century old attempt to produce a relatively static, visual, geometric model of atomic structure.

  13. Electronic structure of A15 compounds

    International Nuclear Information System (INIS)

    Pickett, W.E.

    1980-01-01

    For the past twenty-five years compounds with the A15 crystal structure have dominated the class of high temperature superconductors. The crystal structure of an A15 compound A 3 B is cubic (space group O/sub h/ 3 ). However, the site symmetry (D/sub 2d/) of the A atoms is much lower than cubic, an unusual occurrence in cubic binary compounds. Variations on this theme have supplied the basis of many theoretical models of the anomalous temperature (T) dependence of normal state properties and the low temperature cubic reversible tetragonal structural transformations which accompany high values of T/sub c/ in A15 compounds. In this paper results of self-consistent pseudopotential band structure calculations are used to assess some important aspects of the unique and unusual behavior in A15 compounds: (1) the role of the B atom in determining the overall electronic structure will be shown to be important; (2) the effect of the low site symmetry of the A atom on the charge density and potential will be assessed; and (3) the bonding will be shown to be metallic-covalent with no significant A-B charge transfer

  14. Electronic structure of point defects in semiconductors

    International Nuclear Information System (INIS)

    Bruneval, Fabien

    2014-01-01

    This 'Habilitation a diriger des Recherches' memoir presents most of my scientific activities during the past 7 years, in the field of electronic structure calculations of defects in solids. Point defects (vacancies, interstitials, impurities) in functional materials are a key parameter to determine if these materials will actually fill the role they have been assigned or not. Indeed, the presence of defects cannot be avoided when the temperature is increased or when the material is subjected to external stresses, such as irradiation in the nuclear reactors and in artificial satellites with solar radiations. However, in many cases, defects are introduced in the materials on purpose to tune the electronic transport, optical or even magnetic properties. This procedure is called the doping of semiconductors, which is the foundation technique for transistors, diodes, or photovoltaic cells. However, doping is not always straightforward and unexpected features may occur, such as doping asymmetry or Fermi level pinning, which can only be explained by complex phenomena involving different types of defects or complexes of defects. In this context, the calculations of electronic structure ab initio is an ideal tool to complement the experimental observations, to gain the understanding of phenomena at the atomic level, and even to predict the properties of defects. The power of the ab initio calculations comes from their ability to describe any system of electrons and nuclei without any specific adjustment. But although there is a strong need for numerical simulations in this field, the ab initio calculations for defects are still under development as of today. The work presented in this memoir summarizes my contributions to methodological developments on this subject. These developments have followed two main tracks. The first topic is the better understanding of the unavoidable finite size effects. Indeed, defects in semiconductors or insulators are generally present in

  15. Opposing Responses of Bird Functional Diversity to Vegetation Structural Diversity in Wet and Dry Forest.

    Directory of Open Access Journals (Sweden)

    Holly Sitters

    Full Text Available Disturbance regimes are changing worldwide, and the consequences for ecosystem function and resilience are largely unknown. Functional diversity (FD provides a surrogate measure of ecosystem function by capturing the range, abundance and distribution of trait values in a community. Enhanced understanding of the responses of FD to measures of vegetation structure at landscape scales is needed to guide conservation management. To address this knowledge gap, we used a whole-of-landscape sampling approach to examine relationships between bird FD, vegetation diversity and time since fire. We surveyed birds and measured vegetation at 36 landscape sampling units in dry and wet forest in southeast Australia during 2010 and 2011. Four uncorrelated indices of bird FD (richness, evenness, divergence and dispersion were derived from six bird traits, and we investigated responses of these indices and species richness to both vertical and horizontal vegetation diversity using linear mixed models. We also considered the extent to which the mean and diversity of time since fire were related to vegetation diversity. Results showed opposing responses of FD to vegetation diversity in dry and wet forest. In dry forest, where fire is frequent, species richness and two FD indices (richness and dispersion were positively related to vertical vegetation diversity, consistent with theory relating to environmental variation and coexistence. However, in wet forest subject to infrequent fire, the same three response variables were negatively associated with vertical diversity. We suggest that competitive dominance by species results in lower FD as vegetation diversity increases in wet forest. The responses of functional evenness were opposite to those of species richness, functional richness and dispersion in both forest types, highlighting the value of examining multiple FD metrics at management-relevant scales. The mean and diversity of time since fire were uncorrelated

  16. Opposing Responses of Bird Functional Diversity to Vegetation Structural Diversity in Wet and Dry Forest.

    Science.gov (United States)

    Sitters, Holly; York, Alan; Swan, Matthew; Christie, Fiona; Di Stefano, Julian

    2016-01-01

    Disturbance regimes are changing worldwide, and the consequences for ecosystem function and resilience are largely unknown. Functional diversity (FD) provides a surrogate measure of ecosystem function by capturing the range, abundance and distribution of trait values in a community. Enhanced understanding of the responses of FD to measures of vegetation structure at landscape scales is needed to guide conservation management. To address this knowledge gap, we used a whole-of-landscape sampling approach to examine relationships between bird FD, vegetation diversity and time since fire. We surveyed birds and measured vegetation at 36 landscape sampling units in dry and wet forest in southeast Australia during 2010 and 2011. Four uncorrelated indices of bird FD (richness, evenness, divergence and dispersion) were derived from six bird traits, and we investigated responses of these indices and species richness to both vertical and horizontal vegetation diversity using linear mixed models. We also considered the extent to which the mean and diversity of time since fire were related to vegetation diversity. Results showed opposing responses of FD to vegetation diversity in dry and wet forest. In dry forest, where fire is frequent, species richness and two FD indices (richness and dispersion) were positively related to vertical vegetation diversity, consistent with theory relating to environmental variation and coexistence. However, in wet forest subject to infrequent fire, the same three response variables were negatively associated with vertical diversity. We suggest that competitive dominance by species results in lower FD as vegetation diversity increases in wet forest. The responses of functional evenness were opposite to those of species richness, functional richness and dispersion in both forest types, highlighting the value of examining multiple FD metrics at management-relevant scales. The mean and diversity of time since fire were uncorrelated with vegetation

  17. Remote sensing of Sonoran Desert vegetation structure and phenology with ground-based LiDAR

    Science.gov (United States)

    Sankey, Joel B.; Munson, Seth M.; Webb, Robert H.; Wallace, Cynthia S.A.; Duran, Cesar M.

    2015-01-01

    Long-term vegetation monitoring efforts have become increasingly important for understanding ecosystem response to global change. Many traditional methods for monitoring can be infrequent and limited in scope. Ground-based LiDAR is one remote sensing method that offers a clear advancement to monitor vegetation dynamics at high spatial and temporal resolution. We determined the effectiveness of LiDAR to detect intra-annual variability in vegetation structure at a long-term Sonoran Desert monitoring plot dominated by cacti, deciduous and evergreen shrubs. Monthly repeat LiDAR scans of perennial plant canopies over the course of one year had high precision. LiDAR measurements of canopy height and area were accurate with respect to total station survey measurements of individual plants. We found an increase in the number of LiDAR vegetation returns following the wet North American Monsoon season. This intra-annual variability in vegetation structure detected by LiDAR was attributable to a drought deciduous shrub Ambrosia deltoidea, whereas the evergreen shrub Larrea tridentata and cactus Opuntia engelmannii had low variability. Benefits of using LiDAR over traditional methods to census desert plants are more rapid, consistent, and cost-effective data acquisition in a high-resolution, 3-dimensional context. We conclude that repeat LiDAR measurements can be an effective method for documenting ecosystem response to desert climatology and drought over short time intervals and at detailed-local spatial scale.

  18. Electronic structure of hcp transition metals

    DEFF Research Database (Denmark)

    Jepsen, O.; Andersen, O. Krogh; Mackintosh, A. R.

    1975-01-01

    Using the linear muffin-tin-orbital method described in the previous paper, we have calculated the electronic structures of the hcp transition metals, Zr, Hf, Ru, and Os. We show how the band structures of these metals may be synthesized from the sp and d bands, and illustrate the effects...... of hybridization, relativistic band shifts, and spin-orbit coupling by the example of Os. By making use of parameters derived from the muffin-tin potential, we discuss trends in the positions and widths of the energy bands, especially the d bands, as a function of the location in the periodic table. The densities...... of states of the four metals are presented, and the calculated heat capacities compared with experiment. The Fermi surfaces of both Ru and Os are found to be in excellent quantitative agreement with de Haas-van Alphen measurements, indicating that the calculated d-band position is misplaced by less than 10...

  19. Experimental Benchmarking of Pu Electronic Structure

    International Nuclear Information System (INIS)

    Tobin, J.G.; Moore, K.T.; Chung, B.W.; Wall, M.A.; Schwartz, A.J.; Ebbinghaus, B.B.; Butterfield, M.T.; Teslich, N.E. Jr.; Bliss, R.A.; Morton, S.A.; Yu, S.W.; Komesu, T.; Waddill, G.D.; van der Laan, G.; Kutepov, A.L.

    2008-01-01

    The standard method to determine the band structure of a condensed phase material is to (1) obtain a single crystal with a well defined surface and (2) map the bands with angle resolved photoelectron spectroscopy (occupied or valence bands) and inverse photoelectron spectroscopy (unoccupied or conduction bands). Unfortunately, in the case of Pu, the single crystals of Pu are either nonexistent, very small and/or having poorly defined surfaces. Furthermore, effects such as electron correlation and a large spin-orbit splitting in the 5f states have further complicated the situation. Thus, we have embarked upon the utilization of unorthodox electron spectroscopies, to circumvent the problems caused by the absence of large single crystals of Pu with well-defined surfaces. Our approach includes the techniques of resonant photoelectron spectroscopy, x-ray absorption spectroscopy, electron energy loss spectroscopy, Fano Effect measurements, and Bremstrahlung Isochromat Spectroscopy, including the utilization of micro-focused beams to probe single-crystallite regions of polycrystalline Pu samples.

  20. Deep learning and the electronic structure problem

    Science.gov (United States)

    Mills, Kyle; Spanner, Michael; Tamblyn, Isaac

    In the past decade, the fields of artificial intelligence and computer vision have progressed remarkably. Supported by the enthusiasm of large tech companies, as well as significant hardware advances and the utilization of graphical processing units to accelerate computations, deep neural networks (DNN) are gaining momentum as a robust choice for many diverse machine learning applications. We have demonstrated the ability of a DNN to solve a quantum mechanical eigenvalue equation directly, without the need to compute a wavefunction, and without knowledge of the underlying physics. We have trained a convolutional neural network to predict the total energy of an electron in a confining, 2-dimensional electrostatic potential. We numerically solved the one-electron Schrödinger equation for millions of electrostatic potentials, and used this as training data for our neural network. Four classes of potentials were assessed: the canonical cases of the harmonic oscillator and infinite well, and two types of randomly generated potentials for which no analytic solution is known. We compare the performance of the neural network and consider how these results could lead to future advances in electronic structure theory.

  1. Long-term dynamics of the hemiparasite Rhinanthus angustifolius and its relationship with vegetation structure

    NARCIS (Netherlands)

    Ameloot, Els; Verheyen, Kris; Bakker, Jan P.; De Vries, Yzaak; Hermy, Martin

    2006-01-01

    Questions: 1. How are the long-term dynamics of the root hemiparasite Rhinanthus angustifolius related to vegetation structure, grassland management and climate? 2. Does R. angustifolius have a long-term impact on standing crop and community composition? Location: A formerly fertilized grassland,

  2. Watershed evapotranspiration increased due to changes in vegetation composition and structure under a subtropical climate

    Science.gov (United States)

    Ge Sun; Changqing Zuo; Shiyu Liu; Mingliang Liu; Steven G McNulty; James M. Vose

    2008-01-01

    Natural forests in southern China have been severely logged due to high human demand for timber, food, and fuels during the past century, but are recovering in the past decade. The objective of this study was to investigate how vegetation cover changes in composition and structure affected the water budgets of a 9.6-km2 Dakeng watershed located...

  3. Native herbivore exerts contrasting effects on fire regime and vegetation structure

    Science.gov (United States)

    Jose L. Hierro; Kenneth L. Clark; Lyn C. Branch; Diego Villarreal

    2011-01-01

    Although native herbivores can alter fire regimes by consuming herbaceous vegetation that serves as fine fuel and, less commonly, accumulating fuel as nest material and other structures, simultaneous considerations of contrasting effects of herbivores on fire have scarcely been addressed. We proposed that a colonial rodent, vizcacha (Lagostomus maximus...

  4. Butterflies show different functional and species diversity in relationship to vegetation structure and land use

    NARCIS (Netherlands)

    Aguirre-Gutiérrez, J.; WallisDeVries, M.F.; Marshall, L.; van't Zelfde, M.; Villalobos-Arámbula, A.R.; Boekelo, B.; Bartholomeus, H.; Franzén, M.; Biesmeijer, J.C.

    2017-01-01

    Aim: Biodiversity is rapidly disappearing at local and global scales also affecting the functional diversity of ecosystems. We aimed to assess whether functional diversity was correlated with species diversity and whether both were affected by similar land use and vegetation structure drivers.

  5. Structure, root systems and periodicity of savanna plants and vegetations in Northern Surinam

    NARCIS (Netherlands)

    Donselaar-ten Bokkel Huinink, van W.A.E.

    1966-01-01

    From July 1958 to May 1959 an investigation was carried out of the relation between physiognomic characteristics of the vegetation and the habitat on some savannas in the vicinity of Zanderij, Surinam. Root systems, structure, periodicity and characteristics of the leaves were considered, both of

  6. Structure and navigation for electronic publishing

    Science.gov (United States)

    Tillinghast, John; Beretta, Giordano B.

    1998-01-01

    The sudden explosion of the World Wide Web as a new publication medium has given a dramatic boost to the electronic publishing industry, which previously was a limited market centered around CD-ROMs and on-line databases. While the phenomenon has parallels to the advent of the tabloid press in the middle of last century, the electronic nature of the medium brings with it the typical characteristic of 4th wave media, namely the acceleration in its propagation speed and the volume of information. Consequently, e-publications are even flatter than print media; Shakespeare's Romeo and Juliet share the same computer screen with a home-made plagiarized copy of Deep Throat. The most touted tool for locating useful information on the World Wide Web is the search engine. However, due to the medium's flatness, sought information is drowned in a sea of useless information. A better solution is to build tools that allow authors to structure information so that it can easily be navigated. We experimented with the use of ontologies as a tool to formulate structures for information about a specific topic, so that related concepts are placed in adjacent locations and can easily be navigated using simple and ergonomic user models. We describe our effort in building a World Wide Web based photo album that is shared among a small network of people.

  7. Electronic structure and superconductivity of fcc Cr

    International Nuclear Information System (INIS)

    Xu, J.; Freeman, A.J.; Jarlborg, T.; Brodsky, M.B.

    1984-01-01

    Results of self-consistent electronic structure calculations are reported for metastable fcc Cr metal. Unlike the case of bcc Cr which has E/sub F/ at a minimum in the density of states (DOS), the DOS at E/sub F/ in fcc Cr is at a peak making this one of the higher-DOS metals with the fcc structure (e.g., comparable with that of Ni and Pt). A calculated Stoner factor of 0.82 indicates that ferromagnetic ordering is not expected. Calculations of the electron-phonon coupling parameter lambda and superconducting transition temperature T/sub c/ were made using the rigid-ion approximation and strong-coupling theory with various estimates of the (unknown) phonon contribution. We conclude that T/sub c/'sroughly-equal2.5 K are reasonable, although they are substantially smaller than the T/sub c/roughly-equal10 K derived from measurements on Au-Cr-Au sandwiches

  8. Rapid characterisation of vegetation structure to predict refugia and climate change impacts across a global biodiversity hotspot.

    Directory of Open Access Journals (Sweden)

    Antonius G T Schut

    Full Text Available Identification of refugia is an increasingly important adaptation strategy in conservation planning under rapid anthropogenic climate change. Granite outcrops (GOs provide extraordinary diversity, including a wide range of taxa, vegetation types and habitats in the Southwest Australian Floristic Region (SWAFR. However, poor characterization of GOs limits the capacity of conservation planning for refugia under climate change. A novel means for the rapid identification of potential refugia is presented, based on the assessment of local-scale environment and vegetation structure in a wider region. This approach was tested on GOs across the SWAFR. Airborne discrete return Light Detection And Ranging (LiDAR data and Red Green and Blue (RGB imagery were acquired. Vertical vegetation profiles were used to derive 54 structural classes. Structural vegetation types were described in three areas for supervised classification of a further 13 GOs across the region. Habitat descriptions based on 494 vegetation plots on and around these GOs were used to quantify relationships between environmental variables, ground cover and canopy height. The vegetation surrounding GOs is strongly related to structural vegetation types (Kappa = 0.8 and to its spatial context. Water gaining sites around GOs are characterized by taller and denser vegetation in all areas. The strong relationship between rainfall, soil-depth, and vegetation structure (R(2 of 0.8-0.9 allowed comparisons of vegetation structure between current and future climate. Significant shifts in vegetation structural types were predicted and mapped for future climates. Water gaining areas below granite outcrops were identified as important putative refugia. A reduction in rainfall may be offset by the occurrence of deeper soil elsewhere on the outcrop. However, climate change interactions with fire and water table declines may render our conclusions conservative. The LiDAR-based mapping approach presented

  9. Electronic structure of Ca, Sr, and Ba under pressure.

    Science.gov (United States)

    Animalu, A. O. E.; Heine, V.; Vasvari, B.

    1967-01-01

    Electronic band structure calculations phase of Ca, Sr and Ba over wide range of atomic volumes under pressure electronic band structure calculations for fcc phase of Ca, Sr and Ba over wide range of atomic volumes under pressure electronic band structure calculations for fcc phase of Ca, Sr and Ba over wide range of atomic volumes under pressure

  10. Community structure analysis of soil ammonia oxidizers during vegetation restoration in southwest China.

    Science.gov (United States)

    Liang, Yueming; He, Xunyang; Liang, Shichu; Zhang, Wei; Chen, Xiangbi; Feng, Shuzheng; Su, Yirong

    2014-03-01

    Soil ammonia oxidizers play a critical role in nitrogen cycling and ecological restoration. The composition and structure of soil ammonia oxidizers and their impacting factors were studied in four typical ecosystem soils, tussock (T), shrub (S), secondary forest (SF), and primary forest (PF), during vegetation restoration in the Karst region of Southwest China. The composition and structure of the ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) communities were characterized by sequencing the amoA and arch-amoA genes, respectively. The diversity of soil ammonia oxidizers (except in S) and plant Shannon diversity index gradually increased with vegetation restoration, and the ammonia oxidizer communities differed significantly (p soils. AOB Nitrosospira cluster 3b only appeared in PF and SF soils, while Nitrosospira cluster 3a species were found in all soils. Changes in AOB paralleled the changes in soil ammonium content that occurred with vegetation restoration. Redundancy analysis showed that the distribution of dominant AOB species was linked to pH, soil urease activity, and soil C/N ratio, whereas the distribution of dominant AOA species was mainly influenced by litter nitrogen content and C/N ratio. These results suggested that the composition and structure of the AOB community were more sensitive to changes in vegetation and soil ammonium content, and may be an important indicator of nitrogen availability in Karst ecosystem soils. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Vegetation structure in the mountain forest in the Turquino National Park, province of Granma

    Directory of Open Access Journals (Sweden)

    José Luis Rodríguez Sosa

    2013-12-01

    Full Text Available The research was conducted in the Jeringa site of the Turquino National Park in order to characterize the vegetation of a mountain forest fragment with Juglans jamaicensis. Floristic composition, vegetation structure, and the index value of importance were evaluated. Diameter at 1.30 m above the ground and height of all trees greater than 5 cm in diameter was measured. Data were analyzed using canonical correspondence analysis. 776 individuals of 43 species and 41 genera belonging to 30 families, reporting the Rubiaceae family as the richest in species, followed by Amigdalaceae, Araliaceae, Cyatheaceae, Euphorbiaceae, Flacourtiaceae, Meliaceae, Moraceae, Sapindaceae and Poaceae. The tree species with more IVI were the Pseudolmedia spuria, Oxandra laurifolia, Trophis racemosa, Ocotea leucoxylon, Guarea guara, Dendropanax arboreus and Juglans jamaicensis, mainly due to its abundance in the vegetation, but it was found that the main contributor to the organic weight parameter species was the relative frequency.

  12. Soil metal concentrations and vegetative assemblage structure in an urban brownfield

    International Nuclear Information System (INIS)

    Gallagher, Frank J.; Pechmann, Ildiko; Bogden, John D.; Grabosky, Jason; Weis, Peddrick

    2008-01-01

    Anthropogenic sources of toxic elements have had serious ecological and human health impacts. Analysis of the soil samples from a brownfield within Liberty State Park, Jersey City, NJ, USA, showed that arsenic, chromium, lead, zinc and vanadium exist at concentrations above those considered ambient for the area. Accumulation and translocation features were characterized for the dominant plant species of four vegetative assemblages. The trees Betula populifolia and Populus deltoides were found to be accumulating Zn in leaf tissue at extremely high levels. B. populifolia, P. deltoides and Rhus copallinum accumulated Cr primarily in the root tissue. A comparison of soil metal maps and vegetative assemblage maps indicates that areas of increasing total soil metal load were dominated by successional northern hardwoods while semi-emergent marshes consisting mostly of endemic species were restricted primarily to areas of low soil metal load. - The study yields insight into the impact of metal contaminates soils on vegetative assemblage structure and development

  13. Electronic structure of MnSi : The role of electron-electron interactions

    NARCIS (Netherlands)

    Carbone, F; Zangrando, M; Brinkman, A; Nicolaou, A; Bondino, F; Magnano, E; Nugroho, A. A.; Parmigiani, F; Jarlborg, T; van der Marel, D

    We present an experimental study of the electronic structure of MnSi. Using x-ray absorption spectroscopy (XAS), x-ray photoemission, and x-ray fluorescence, we provide experimental evidence that MnSi has a mixed valence ground state. We show that self-consistent local density approximation

  14. Electronic structure of MnSi: The role of electron-electron interactions

    NARCIS (Netherlands)

    Carbone, F.; Zangrando, M.; Brinkman, Alexander; Nicolaou, A.; Bondino, F.; Magnano, E.; Nugroho, A.A.; Parmigiani, F.; Jarlborg, Th.; van der Marel, D.

    2006-01-01

    We present an experimental study of the electronic structure of MnSi. Using x-ray absorption spectroscopy (XAS), x-ray photoemission, and x-ray fluorescence, we provide experimental evidence that MnSi has a mixed valence ground state. We show that self-consistent local density approximation

  15. Fingerprint-based structure retrieval using electron density.

    Science.gov (United States)

    Yin, Shuangye; Dokholyan, Nikolay V

    2011-03-01

    We present a computational approach that can quickly search a large protein structural database to identify structures that fit a given electron density, such as determined by cryo-electron microscopy. We use geometric invariants (fingerprints) constructed using 3D Zernike moments to describe the electron density, and reduce the problem of fitting of the structure to the electron density to simple fingerprint comparison. Using this approach, we are able to screen the entire Protein Data Bank and identify structures that fit two experimental electron densities determined by cryo-electron microscopy. Copyright © 2010 Wiley-Liss, Inc.

  16. Effects of Vegetation Structure on the Location of Lion Kill Sites in African Thicket.

    Directory of Open Access Journals (Sweden)

    Andrew B Davies

    Full Text Available Predator-prey relationships are integral to ecosystem stability and functioning. These relationships are, however, difficult to maintain in protected areas where large predators are increasingly being reintroduced and confined. Where predators make kills has a profound influence on their role in ecosystems, but the relative importance of environmental variables in determining kill sites, and how these might vary across ecosystems is poorly known. We investigated kill sites for lions in South Africa's thicket biome, testing the importance of vegetation structure for kill site locations compared to other environmental variables. Kill sites were located over four years using GPS telemetry and compared to non-kill sites that had been occupied by lions, as well as to random sites within lion ranges. Measurements of 3D vegetation structure obtained from Light Detection and Ranging (LiDAR were used to calculate the visible area (viewshed around each site and, along with wind and moonlight data, used to compare kill sites between lion sexes, prey species and prey sexes. Viewshed area was the most important predictor of kill sites (sites in dense vegetation were twice as likely to be kill sites compared to open areas, followed by wind speed and, less so, moonlight. Kill sites for different prey species varied with vegetation structure, and male prey were killed when wind speeds were higher compared to female prey of the same species. Our results demonstrate that vegetation structure is an important component of predator-prey interactions, with varying effects across ecosystems. Such differences require consideration in terms of the ecological roles performed by predators, and in predator and prey conservation.

  17. Effects of Vegetation Structure on the Location of Lion Kill Sites in African Thicket.

    Science.gov (United States)

    Davies, Andrew B; Tambling, Craig J; Kerley, Graham I H; Asner, Gregory P

    2016-01-01

    Predator-prey relationships are integral to ecosystem stability and functioning. These relationships are, however, difficult to maintain in protected areas where large predators are increasingly being reintroduced and confined. Where predators make kills has a profound influence on their role in ecosystems, but the relative importance of environmental variables in determining kill sites, and how these might vary across ecosystems is poorly known. We investigated kill sites for lions in South Africa's thicket biome, testing the importance of vegetation structure for kill site locations compared to other environmental variables. Kill sites were located over four years using GPS telemetry and compared to non-kill sites that had been occupied by lions, as well as to random sites within lion ranges. Measurements of 3D vegetation structure obtained from Light Detection and Ranging (LiDAR) were used to calculate the visible area (viewshed) around each site and, along with wind and moonlight data, used to compare kill sites between lion sexes, prey species and prey sexes. Viewshed area was the most important predictor of kill sites (sites in dense vegetation were twice as likely to be kill sites compared to open areas), followed by wind speed and, less so, moonlight. Kill sites for different prey species varied with vegetation structure, and male prey were killed when wind speeds were higher compared to female prey of the same species. Our results demonstrate that vegetation structure is an important component of predator-prey interactions, with varying effects across ecosystems. Such differences require consideration in terms of the ecological roles performed by predators, and in predator and prey conservation.

  18. Relationships between NDVI, canopy structure, and photosynthesis in three California vegetation types

    International Nuclear Information System (INIS)

    Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Penuelas, J.; Valentini, R.

    1995-01-01

    In a range of plant species from three Californian vegetation types, we examined the widely used ''normalized difference vegetation index'' (NDVI) and ''simple ratio'' (SR) as indicators of canopy structure, light absorption, and photosynthetic activity. These indices, which are derived from canopy reflectance in the red and near-infrared wavebands, highlighted phenological differences between evergreen and deciduous canopies. They were poor indicators of total canopy biomass due to the varying abundance of non-green standing biomass in these vegetation types. However, in sparse canopies (leaf area index (LAI) apprxeq 0-2), NDVI was a sensitive indicator of canopy structure and chemical content (green biomass, green leaf area index, chlorophyll content, and foliar nitrogen content). At higher canopy green LAI values ( gt 2; typical of dense shrubs and trees), NDVI was relatively insensitive to changes in canopy structure. Compared to SR, NDVI was better correlated with indicators of canopy structure and chemical content, but was equivalent to the logarithm of SR. In agreement with theoretical expectations, both NDVI and SR exhibited near-linear correlations with fractional PAR intercepted by green leaves over a wide range of canopy densities. Maximum daily photosynthetic rates were positively correlated with NDVI and SR in annual grassland and semideciduous shrubs where canopy development and photosynthetic activity were in synchrony. The indices were also correlated with peak springtime canopy photosynthetic rates in evergreens. However, over most of the year, these indices were poor predictors of photosynthetic performance in evergreen species due to seasonal reductions in photosynthetic radiation-use efficiency that occurred without substantial declines in canopy greenness. Our results support the use of these vegetation indices as remote indicators of PAR absorption, and thus potential photosynthetic activity, even in

  19. Controls of vegetation structure and net primary production in restored grasslands

    Science.gov (United States)

    Munson, Seth M.; Lauenroth, William K.

    2014-01-01

    1. Vegetation structure and net primary production (NPP) are fundamental properties of ecosystems. Understanding how restoration practices following disturbance interact with environmental factors to control these properties can provide insight on how ecosystems recover and guide management efforts. 2. We assessed the relative contribution of environmental and restoration factors in controlling vegetation structure, above- and below-ground investment in production across a chronosequence of semiarid Conservation Reserve Program (CRP) fields recovering from dryland wheat cropping relative to undisturbed grassland. Importantly, we determined the role of plant diversity and how seeding either native or introduced perennial grasses influenced the recovery of vegetation properties. 3. Plant basal cover increased with field age and was highest in CRP fields seeded with native perennial grasses. In contrast, fields seeded with introduced perennial grasses had tall-growing plants with relatively low basal cover. These vegetation structural characteristics interacted with precipitation, but not soil characteristics, to influence above-ground NPP (ANPP). Fields enrolled in the CRP program for >7 years supported twice as much ANPP as undisturbed shortgrass steppe in the first wet year of the study, but all CRP fields converged on a common low amount of ANPP in the following dry year and invested less than half as much as the shortgrass steppe in below-ground biomass. 4. ANPP in CRP fields seeded with native perennial grasses for more than 7 years was positively related to species richness, whereas ANPP in CRP fields seeded with introduced perennial grasses were controlled more by dominant species. 5. Synthesis and applications. Seeding with introduced, instead of native, perennial grasses had a strong direct influence on vegetation structure, including species richness, which indirectly affected NPP through time. However, the effects of restoring either native or introduced

  20. Electromagnetic radiation of electrons in periodic structures

    International Nuclear Information System (INIS)

    Potylitsyn, Alexander Petrovich

    2011-01-01

    Periodic magnetic structures (undulators) are widely used in accelerators to generate monochromatic undulator radiation (UR) in the range from far infrared to the hard X-ray region. Another periodic crystalline structure is used to produce quasimonochromatic polarized photon beams via the coherent bremsstrahlung mechanism (CBS). Due to such characteristics as monochromaticity, polarization and adjustability, these types of radiation is of large interest for applied and basic research of accelerator-emitted radiation. The book provides a detailed overview of the fundamental principles behind electromagnetic radiation emitted from accelerated charged particles (e.g. UR, CBS, radiation of fast electrons in Laser flash fields) as well as a unified description of relatively new radiation mechanisms which attracted great interest in recent years. This are the so-called polarization radiation excited by the Coulomb field of incident particles in periodic structures, parametric X-rays, resonant transition radiation and the Smith-Purcell effect. Characteristics of such radiation sources and perspectives of their usage are discussed. The recent experimental results as well as their interpretation are presented. (orig.)

  1. Electron Liquids in Semiconductor Quantum Structures

    International Nuclear Information System (INIS)

    Pinczuk, Aron

    2009-01-01

    The groups led by Stormer and Pinczuk have focused this project on goals that seek the elucidation of novel many-particle effects that emerge in two-dimensional electron systems (2DES) as the result from fundamental quantum interactions. This experimental research is conducted under extreme conditions of temperature and magnetic field. From the materials point of view, the ultra-high mobility systems in GaAs/AlGaAs quantum structures continue to be at the forefront of this research. The newcomer materials are based on graphene, a single atomic layer of graphite. The graphene research is attracting enormous attention from many communities involved in condensed matter research. The investigated many-particle phenomena include the integer and fractional quantum Hall effect, composite fermions, and Dirac fermions, and a diverse group of electron solid and liquid crystal phases. The Stormer group performed magneto-transport experiments and far-infrared spectroscopy, while the Pinczuk group explores manifestations of such phases in optical spectra.

  2. Electrons and photons in periodic structures

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor

    . In particular, the modulation leads to the emergence of band gaps, which are accompanied by a strongly modified density of states near and within the band gap. The main focus is on two applications of such modified densities of states. Firstly, the intentional introduction of defects in an otherwise perfectly...... periodic modulation of an electron gas leads to the emergence of localized defect states with energies within the band gap, where no propagating modes exist. Secondly, the divergence of the photonic density of states near a photonic band gap leads to strongly modified light-matter interactions, which has...... of the density of states near the band gap edge. Using a perturbative approach, we demonstrate certain limits of the attainable slow down factors due to broadening of electromagnetic modes. We discuss the effect of damping due to a finite conductivity as well as structural disorder, and provide a common...

  3. Electronic structure of single crystal C60

    International Nuclear Information System (INIS)

    Wu, J.; Shen, Z.X.; Dessau, D.S.; Cao, R.; Marshall, D.S.; Pianetta, P.; Lindau, I.; Yang, X.; Terry, J.; King, D.M.; Wells, B.O.; Elloway, D.; Wendt, H.R.; Brown, C.A.; Hunziker, H.; Vries, M.S. de

    1992-01-01

    We report angle-resolved photoemission data from single crystals of C 60 cleaved in UHV. Unlike the other forms of pure carbon, the valence band spectrum of C 60 consists of many sharp features that can be essentially accounted for by the quantum chemical calculations describing individual molecules. This suggests that the electronic structure of solid C 60 is mainly determined by the bonding interactions within the individual molecules. We also observe remarkable intensity modulations of the photoemission features as a function of photon energy, suggesting strong final state effects. Finally, we address the issue of the band width of the HOMO state of C 60 . We assert that the width of the photoemission peak of C 60 does not reflect the intrinsic band width because it is broadened by the non 0-0 transitions via the Franck-Condon principle. Our view point provides a possible reconciliation between these photoemission data and those measured by other techniques. (orig.)

  4. Multilevel domain decomposition for electronic structure calculations

    International Nuclear Information System (INIS)

    Barrault, M.; Cances, E.; Hager, W.W.; Le Bris, C.

    2007-01-01

    We introduce a new multilevel domain decomposition method (MDD) for electronic structure calculations within semi-empirical and density functional theory (DFT) frameworks. This method iterates between local fine solvers and global coarse solvers, in the spirit of domain decomposition methods. Using this approach, calculations have been successfully performed on several linear polymer chains containing up to 40,000 atoms and 200,000 atomic orbitals. Both the computational cost and the memory requirement scale linearly with the number of atoms. Additional speed-up can easily be obtained by parallelization. We show that this domain decomposition method outperforms the density matrix minimization (DMM) method for poor initial guesses. Our method provides an efficient preconditioner for DMM and other linear scaling methods, variational in nature, such as the orbital minimization (OM) procedure

  5. Stand structure and vegetation dynamics of a subalpine treed fen in Rocky Mountain National Park, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.B. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Biology

    1997-06-01

    The tree population size structure and relationship between tree diameter and age were examined in a subalpine fen and surrounding Picea-Abies forest in northern Colorado. The fen grades from a sedge fen, through an ecotone, to a treed fen (i.e. fen colonized by trees). Tree growth rate varies across the vegetational gradient, with the sedge fen having the slowest growth, and the upland forest having the fastest growth. Differences in growth rate are related to the average size of peat hummocks, with areas containing tall hummocks exhibiting the highest tree growth rates. Size structures display the characteristic reverse-J distribution generally indicative of stable populations, but forest vegetation is expanding into the open regions of the fen, and within the treed fen an increase in Abies lasiocarpa is occurring. These changes are primarily attributed to a positive feedback situation wherein the fen`s surface is built up by peat accumulation. Distinct hummocks form first on the open fen but then coalesce to form raised peat islands in the treed fen. This new substrate provides habitat with a comparatively low water table and allows the growth of mesophytic forest vegetation. A pathway for this vegetational development is proposed. 40 refs., 2 figs.

  6. Testing the performance of a Dynamic Global Ecosystem Model: Water balance, carbon balance, and vegetation structure

    Science.gov (United States)

    Kucharik, Christopher J.; Foley, Jonathan A.; Delire, Christine; Fisher, Veronica A.; Coe, Michael T.; Lenters, John D.; Young-Molling, Christine; Ramankutty, Navin; Norman, John M.; Gower, Stith T.

    2000-09-01

    While a new class of Dynamic Global Ecosystem Models (DGEMs) has emerged in the past few years as an important tool for describing global biogeochemical cycles and atmosphere-biosphere interactions, these models are still largely untested. Here we analyze the behavior of a new DGEM and compare the results to global-scale observations of water balance, carbon balance, and vegetation structure. In this study, we use version 2 of the Integrated Biosphere Simulator (IBIS), which includes several major improvements and additions to the prototype model developed by Foley et al. [1996]. IBIS is designed to be a comprehensive model of the terrestrial biosphere; the model represents a wide range of processes, including land surface physics, canopy physiology, plant phenology, vegetation dynamics and competition, and carbon and nutrient cycling. The model generates global simulations of the surface water balance (e.g., runoff), the terrestrial carbon balance (e.g., net primary production, net ecosystem exchange, soil carbon, aboveground and belowground litter, and soil CO2 fluxes), and vegetation structure (e.g., biomass, leaf area index, and vegetation composition). In order to test the performance of the model, we have assembled a wide range of continental and global-scale data, including measurements of river discharge, net primary production, vegetation structure, root biomass, soil carbon, litter carbon, and soil CO2 flux. Using these field data and model results for the contemporary biosphere (1965-1994), our evaluation shows that simulated patterns of runoff, NPP, biomass, leaf area index, soil carbon, and total soil CO2 flux agree reasonably well with measurements that have been compiled from numerous ecosystems. These results also compare favorably to other global model results.

  7. Electronic structure of semiconductor quantum films

    International Nuclear Information System (INIS)

    Zhang, S.B.; Yeh, C.; Zunger, A.

    1993-01-01

    The electronic structure of thin (≤30 A) free-standing ideal films of Si(001), Si(110), and GaAs(110) is calculated using a plane-wave pseudopotential description. Unlike the expectation based on the simple effective-mass model, we find the following. (i) The band gaps of (001) quantum films exhibit even-odd oscillation as a function of the number N of monolayers. (ii) In addition to sine-type envelope functions which vanish at the film boundaries, some states have cosine envelope functions with extrema at boundaries. (iii) Even-layer Si(001) films exhibit at the valence-band maximum a state whose energy does not vary with the film thickness. Such zero confinement states have constant envelope throughout the film. (iv) Optical transitions in films exhibit boundary-imposed selection rules. Furthermore, oscillator strengths for pseudodirect transitions in the vicinity of forbidden direct transitions can be enhanced by several orders of magnitude. These findings, obtained in direct supercell calculations, can be explained in terms of a truncated crystal (TC) analysis. In this approach the film's wave functions are expanded in terms of pairs of bulk wave functions exhibiting a destructive interference at the boundaries. This maps the eigenvalue spectra of a film onto the bulk band structure evaluated at special k points which satisfy the boundary conditions. We find that the TC representation reproduces accurately the above-mentioned results of direct diagonalization of the film's Hamiltonian. This provides a simple alternative to the effective-mass model and relates the properties of quantum structures to those of the bulk material

  8. Studies in the electronic structure of matter

    International Nuclear Information System (INIS)

    Swarts, C.A.

    1979-01-01

    Chapter I: Here the results of various theories for the angular distribution of electrons photoemitted from the outermost p-shell of rare gas atoms are compared. The theories compared are (I) the local density theories of Slater (X/sub α/) and of Hohenberg, Kohn and Sham, (II) the pseudopotential method, (III) Hartree-Fock theory as evaluated by Kennedy and Manson, and (IV) Amusia's Random Phase Approximation with Exchange (RPAE). It is shown that the local density theories, although simple, generally fail to produce reliable cross section; the more complicated Hartree-Fock method is no more reliable; the a priori RPAE method is most reliable, but tedious; and the phenomenological pseudopotential method offers a good combination of reliability and simplicity. The muffin-tin approximation, widely used in molecular and condensed matter physics, is examined and found to be adequate. Chapter II: Extended Hueckel theory is applied to GaAs, GaP and to the nitrogen isoelectronic trap in GaAs and GaP. The computed perfect crystal band structures are found to be in reasonable agreement with those computed with empirical pseudopotentials. Nitrogen impurity levels in GaAs and GaP are calculated using a cluster model. Chapter III: By means of model calculations for an independent electron metal, we obtain exact lineshapes for the photon absorption, emission and photoemission spectra of deep core states. We find in each case an X-ray edge anomaly as pedicted by Nozieres and De Dominicis. Sumrules are used as a general check on the calculations and to explain the deviations of the exact theory from the exciton theory away from threshold

  9. Nonlinearity in structural and electronic materials

    International Nuclear Information System (INIS)

    Bishop, A.R.; Beardmore, K.M.; Ben-Naim, E.

    1997-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project strengthens a nonlinear technology base relevant to a variety of problems arising in condensed matter and materials science, and applies this technology to those problems. In this way the controlled synthesis of, and experiments on, novel electronic and structural materials provide an important focus for nonlinear science, while nonlinear techniques help advance the understanding of the scientific principles underlying the control of microstructure and dynamics in complex materials. This research is primarily focused on four topics: (1) materials microstructure: growth and evolution, and porous media; (2) textures in elastic/martensitic materials; (3) electro- and photo-active polymers; and (4) ultrafast photophysics in complex electronic materials. Accomplishments included the following: organization of a ''Nonlinear Materials'' seminar series and international conferences including ''Fracture, Friction and Deformation,'' ''Nonequilibrium Phase Transitions,'' and ''Landscape Paradigms in Physics and Biology''; invited talks at international conference on ''Synthetic Metals,'' ''Quantum Phase Transitions,'' ''1996 CECAM Euroconference,'' and the 1995 Fall Meeting of the Materials Research Society; large-scale simulations and microscopic modeling of nonlinear coherent energy storage at crack tips and sliding interfaces; large-scale simulation and microscopic elasticity theory for precursor microstructure and dynamics at solid-solid diffusionless phase transformations; large-scale simulation of self-assembling organic thin films on inorganic substrates; analysis and simulation of smoothing of rough atomic surfaces; and modeling and analysis of flux pattern formation in equilibrium and nonequilibrium Josephson junction arrays and layered superconductors

  10. USING OF THERMAL STRUCTURE MAPS FOR VEGETATION MAPPING (CASE OF ALTACHEYSKY WILDLIFE AREA

    Directory of Open Access Journals (Sweden)

    L. A. Abramova

    2014-01-01

    Full Text Available Thermal infrared imagery contains considerable amount of qualitative information about ground objects and landscapes. In spite of it, this type of data is often used to derive quantitative information such as land or sea surface temperatures. This paper describes the examination of Altacheysky wildlife area situated in the southern part of Buryatia Republic, Mukhorshibirsky district based on Landsat imagery and ground observations. Ground observations were led to study the vegetation cover of the area. Landsat imagery were used to make multitemporal thermal infrared image combined of 7 ETM+ scenes and to make multispectral image combined of different zones of a OLI scene. Both images were classified. The multitemporal thermal infrared classification result was used to compose thermal structure map of the wildlife area. Comparison of the map, multispectral image classification result and ground observations data reveals that thermal structure map describes better the particularities of Altacheysky wildlife area vegetation cover.

  11. A broad-scale structural classification of vegetation for practical purposes

    Directory of Open Access Journals (Sweden)

    E. Edwards

    1983-11-01

    Full Text Available An a priori system is presented for the broad structural classification of vegetation. The objectives are to provide a descriptive, consistent, easily applied system, with unambiguous, straight-forward terminology, which can be used in the field and with remote sensing and air photo techniques, and which can be used in conjuction with floristic and habitat terms to convey the essential physiognomy and structure of the vegetation. The attributes used are a primary set of four growth forms, a set of four projected crown cover classes, and a set of four height classes for each growth form. In addition, shrub substratum is used to define thicket and bushland. Special growth forms, substrata!, leaf and other attributes can be readily incorporated to extend the two-way table system where such detail is needed.

  12. The response of vegetation structure to active warming and precipitation reduction of the Sphagnum peatland

    Science.gov (United States)

    Łuców, Dominika; Basińska, Anna; Chojnicki, Bogdan; Gąbka, Maciej; Józefczyk, Damian; Juszczak, Radosław; Leśny, Jacek; Olejnik, Janusz; Reczuga, Monika; Samson, Mateusz; Silvennoinen, Hanna; Stróżecki, Marcin; Urbaniak, Marek; Zielińska, Małgorzata; Lamentowicz, Mariusz

    2017-04-01

    The recent climate change (e.g. increased temperature and decreased precipitation) is expected to affect biodiversity and vegetation structure of the European peatlands, as well as carbon fluxes. Our experimental study carried out in Western Poland, tests the hypothesis that the increased temperature, in particular in combination with rainfall reduction affects vegetation structure of the Sphagnum peatland, through changes in moss and vascular plants abundance. The innovative climate manipulation system was installed on the Rzecin peatland in 2014. The field site consists of four blocks: "drought" "warming and drought" "warming" and "control". The air and peat temperatures were increased in 2015 and 2016 by about 0.2 oC and 1.0 oC, respectively, using infrared radiators. Precipitation was reduced by automatic curtain operated only during the nights by about 37 % in both years. Data resulting from the analyses of digital pictures as well as Point Intercept method were used to identify changes in vegetation structure as a response to warming and drought. We observed increase in abundance of vascular plant and decrease in abundance of mosses during the very dry 2015 vegetation season. It appeared that Carex spp. (C. limosa and C. rostrata) abundance responded positively to warming, while Sphagnum spp. (S. angustifolium and S. teres) responded negatively. The "warming" block was characterized by an increase in abundance of Carex spp. by 8.3 % to 16.7 % and decreased abundance of Sphagnum spp. from 25 % to 19.4 %, whereas in the block of "warming and drought" 11.4 % to by 18.3 and 38 % to 26.9 %, respectively in the August 2015. However, we observed decrease in Sphagnum spp. abundance in the treatment with rainfall reduction in wetter 2016, and their increase in the control. Our results show how considerable changes in vegetation structure can be expected under the stress of warming and modified rainfall conditions, even after a short-term manipulation. However, it is

  13. Research on the Vegetation Structure of the Pastures in Silvan District, Diyarbakır

    Directory of Open Access Journals (Sweden)

    Seyithan SEYDOŞOĞLU

    2015-03-01

    Full Text Available This research was conducted to determine the vegetation structures of the native pastures in the six villages of district Silvan, Diyarbakır, in the year of 2014 .Vegetations of the pastures were studied by the Loop Method. In each pasture 400 loop measurements in 4 lines were made. Plant-covered area rate, botanical composition in the plant covered area was calculated from the loop measurements. 43 plant species of 35 genus from 11 families were determined on the vegetation of the pastures. Plant cover percentages varied between 46.2% to 72.0% and botanical composition rate of grasses, legumes and other family plants in the total plant cover varied between 30.81%, and 72.92%, 16.89%, and 48.25%, 10.19%, and 39.74%, respectively, as depending on the pastures. From the results of the research, it was concluded that vegetations of the pastures were generally composed of invader plants. Therefore the pastures have poor condition. The research on the determination of proper improvement methods for the pastures must be conducted.

  14. Vegetation structure and composition across different land use in a semi-arid savanna of southern Zimbabwe

    NARCIS (Netherlands)

    Zisadza-Gandiwa, P.; Mango, L.; Gandiwa, E.; Goza, D.; Parakasingwa, C.; Chinoitezvi, E.; Shimbani, J.; Muvengwi, J.

    2013-01-01

    We compared the structure and composition of vegetation communities across different land uses in the northern Gonarezhou National Park and adjacent areas, southeast Zimbabwe. Vegetation data were collected from 60 sample plots using a stratified random sampling technique from April to May 2012.

  15. Response of Soil Fungi Community Structure to Salt Vegetation Succession in the Yellow River Delta.

    Science.gov (United States)

    Wang, Yan-Yun; Guo, Du-Fa

    2016-10-01

    High-throughput sequencing technology was used to reveal the composition and distribution of fungal community structure in the Yellow River Delta under bare land and four kinds of halophyte vegetation (saline seepweed, Angiospermae, Imperata and Apocynum venetum [A. venetum]). The results showed that the soil quality continuously improved with the succession of salt vegetation types. The soil fungi richness of mild-salt communities (Imperata and A. venetum) was relatively higher, with Shannon index values of 5.21 and 5.84, respectively. The soil fungi richness of severe-salt-tolerant communities (saline seepweed, Angiospermae) was relatively lower, with Shannon index values of 4.64 and 4.66, respectively. The UniFrac metric values ranged from 0.48 to 0.67 when the vegetation was in different succession stages. A total of 60,174 valid sequences were obtained for the five vegetation types, and they were classified into Ascomycota, Basidiomycota, Chytridiomycota, Glomeromycota and Mucoromycotina. Ascomycota had the greatest advantage among plant communities of Imperata and A. venetum, as indicated by relative abundances of 2.69 and 69.97 %, respectively. Basidiomycota had the greatest advantage among mild-salt communities of saline seepweed and Angiospermae, with relative abundances of 9.43 and 6.64 %, respectively. Soil physical and chemical properties were correlated with the distribution of the fungi, and Mucor was significantly correlated with soil moisture (r = 0.985; P Soil quality, salt vegetation and soil fungi were influenced by each other.

  16. Graph-based linear scaling electronic structure theory

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Anders M. N., E-mail: amn@lanl.gov; Negre, Christian F. A.; Cawkwell, Marc J.; Swart, Pieter J.; Germann, Timothy C.; Bock, Nicolas [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Mniszewski, Susan M.; Mohd-Yusof, Jamal; Wall, Michael E.; Djidjev, Hristo [Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Rubensson, Emanuel H. [Division of Scientific Computing, Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala (Sweden)

    2016-06-21

    We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.

  17. Scaling estimates of vegetation structure in Amazonian tropical forests using multi-angle MODIS observations

    Science.gov (United States)

    de Moura, Yhasmin Mendes; Hilker, Thomas; Goncalves, Fabio Guimarães; Galvão, Lênio Soares; dos Santos, João Roberto; Lyapustin, Alexei; Maeda, Eduardo Eiji; de Jesus Silva, Camila Valéria

    2018-01-01

    Detailed knowledge of vegetation structure is required for accurate modelling of terrestrial ecosystems, but direct measurements of the three dimensional distribution of canopy elements, for instance from LiDAR, are not widely available. We investigate the potential for modelling vegetation roughness, a key parameter for climatological models, from directional scattering of visible and near-infrared (NIR) reflectance acquired from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). We compare our estimates across different tropical forest types to independent measures obtained from: (1) airborne laser scanning (ALS), (2) spaceborne Geoscience Laser Altimeter System (GLAS)/ICESat, and (3) the spaceborne SeaWinds/QSCAT. Our results showed linear correlation between MODIS-derived anisotropy to ALS-derived entropy (r2= 0.54, RMSE=0.11), even in high biomass regions. Significant relationships were also obtained between MODIS-derived anisotropy and GLAS-derived entropy (0.52≤ r2≤ 0.61; pMODIS-derived anisotropy and backscattering measurements (σ0) from SeaWinds/QuikSCAT presented an r2 of 0.59 and a RMSE of 0.11. We conclude that multi-angular MODIS observations are suitable to extrapolate measures of canopy entropy across different forest types, providing additional estimates of vegetation structure in the Amazon. PMID:29618964

  18. Electronic structure and chemical properties of superheavy elements

    Energy Technology Data Exchange (ETDEWEB)

    Pershina, V [Gesellschaft fuer Schwerionenforschung (GSI), Helmholtzzentrum fuer Schwerionenforschung Gmbh (Germany)

    2009-12-31

    Relativistic electronic structure calculations of superheavy elements (Z>=104) are analyzed. Preference is given to those related to experimental research. The role of relativistic effects is discussed.

  19. Structure, composition and diversity of the vegetation of hub dam catchment area, pakistan

    International Nuclear Information System (INIS)

    Shaukat, S.; Khan, M.A.

    2014-01-01

    A study of vegetation structure, composition and diversity of Hub-dam catchment area was conducted. A total of 106 species were recorded of which 57 were annuals while 49 were perennials. The vegetation was dominated by small trees and shrubs. Spatial patterns within-community of plant populations using variance/mean ratio and Morisita's index was also investigated. Of the 14 perennial species investigated seven (Barleria acanthoides, Grewia tenax, Indigofera oblongifolia, Aerva persica, Rhazya stricta, Iphiona grantioides and Cymbopogon jwarancusa) predominately exhibited aggregated pattern. Four species (Acacia senegal, Prosopis juliflora, Salvadora oleoides and Calotropis procera) usually exhibited random distribution but infrequently aggregated pattern. Three species (Senna holosericea, Zizyphus nummularia and Vernonia cinerescens) showed aggregated pattern or random distribution more or less equally often. The distribution pattern of vegetation composition and the underlying environmental gradients, correspondence analysis (CA) ordination and canonical correspondence analysis (CCA) were employed. Group structure inherent in the vegetation was disclosed using Ward's agglomerative cluster analysis. Species diversity was measured and diversity was averaged for each group. Diversity of group I (Acacia senegal and Prosopis juliflora community type) was highest because this community included a number of mid-succession species, while diversity was lowest for group 4 (Prosopis juliflora and Capparis decidua community type) as this community was highly disturbed. In the climax community (group 3), the diversity level slightly decreased, suggesting the monopolization of resources by this community. Four major community types were recognized by Ward's cluster analysis, each of which was associated with particular topographic-edaphic factors, while one was mainly governed by anthropogenic disturbance. Biological spectrum constructed for the flora showed dominance of

  20. The role of emergent vegetation in structuring aquatic insect communities in peatland drainage ditches

    NARCIS (Netherlands)

    Whatley, M.H.; van Loon, E.E.; Vonk, J.A.; van der Geest, H.G.; Admiraal, W.

    2014-01-01

    Availability of macrophyte habitat is recognized as an important driver of aquatic insect communities in peatland drainage ditches; however, eutrophication can lead to the decline of submerged vegetation. While emergent vegetation is able to persist in eutrophicated ditches, vegetation removal,

  1. Electronic structure of shandite Co3Sn2S2

    Science.gov (United States)

    Dedkov, Y. S.; Holder, M.; Molodtsov, S. L.; Rosner, H.

    2008-03-01

    The electronic structure of shandite Co3Sn2S2 was determined by photoelectron spectroscopy and compared with ab initio band structure calculations. Presented results give evidence that this compound has half-metallic ferromagnetic properties.

  2. Electronic conductance of quantum wire with serial periodic potential structures

    International Nuclear Information System (INIS)

    Fayad, Hisham M.; Shabat, Mohammed M.; Abdus Salam International Centre for Theoretical Physics, Trieste

    2000-08-01

    A theory based on the total transfer matrix is presented to investigate the electronic conductance in a quantum wire with serial periodic potentials. We apply the formalism in computation of the electronic conductance in a wire with different physical parameters of the wire structure. The numerical results could be used in designing some future quantum electronic devices. (author)

  3. Understanding patterns of vegetation structure and distribution across Great Smoky Mountains National Park using LiDAR and meteorology data

    Science.gov (United States)

    Kumar, J.; Hargrove, W. W.; Norman, S. P.; Hoffman, F. M.

    2017-12-01

    Great Smoky Mountains National Park (GSMNP) in Tennessee is a biodiversity hotspot and home to a large number of plant, animal and bird species. Driven by gradients of climate (ex. temperature, precipitation regimes), topography (ex. elevation, slope, aspect), geology (ex. soil types, textures, depth), hydrology (ex. drainage, moisture availability) etc. GSMNP offers a diverse composition and distribution of vegetation which in turn supports an array of wildlife. Understanding the vegetation canopy structure is critical to understand, monitor and manage the complex forest ecosystems like the Great Smoky Mountain National Park (GSMNP). Vegetation canopies not only help understand the vegetation, but are also a critically important habitat characteristics of many threatened and endangered animal and bird species that GSMNP is home to. Using airborne Light Detection and Ranging (LiDAR) we characterize the three-dimensional structure of the vegetation. LiDAR based analysis gives detailed insight in the canopy structure (overstory and understory) and its spatial variability within and across forest types. Vegetation structure and spatial distribution show strong correlation with climate, topographic, and edaphic variables and our multivariate analysis not just mines rich and large LiDAR data but presents ecological insights and data for vegetation within the park that can be useful to forest managers in their management and conservation efforts.

  4. Structure of liquid alkali metals as electron-ion plasmas

    International Nuclear Information System (INIS)

    Chaturvedi, D.K.; Senatore, G.; Tosi, M.P.

    1980-08-01

    The static structure factor of liquid alkali metals near freezing, and its dependence on temperature and pressure, are evaluated in an electron-ion plasma model from an accurate theoretical determination of the structure factor of the one-component classical plasma and electron-screening theory. Very good agreement is obtained with the available experimental data. (author)

  5. Electronic structure of Mo and W investigated with positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Dutschke, Markus [Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg (Germany); Sekania, Michael [Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg (Germany); Andronikashvili Institute of Physics, Tbilisi (Georgia); Benea, Diana [Faculty of Physics, Babes-Bolyai University, Cluj-Napoca (Romania); Department of Chemistry, Ludwig Maximilian University of Munich (Germany); Ceeh, Hubert; Weber, Joseph A.; Hugenschmidt, Christoph [FRM II, Technische Universitaet Muenchen, Garching (Germany); Chioncel, Liviu [Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg (Germany); Augsburg Center for Innovative Technologies, University of Augsburg (Germany)

    2016-07-01

    We perform electronic structure calculations to analyze the momentum distribution of the transition metals molybdenum and tungsten. We study the influence of positron-electron and the electron-electron interactions on the shape of the two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) spectra. Our analysis is performed within the framework of the combined Density Functional (DFT) and Dynamical Mean-Field Theory (DMFT). Computed spectra are compared with recent experimental investigations.

  6. Disentangling the role of management, vegetation structure, and plant quality for Orthoptera in lowland meadows.

    Science.gov (United States)

    Schirmel, Jens; Gerlach, Rebekka; Buhk, Constanze

    2017-08-17

    Seminatural grasslands provide habitats for various species and are important for biodiversity conservation. The understanding of the diverse responses of species and traits to different grassland management methods is therefore urgently needed. We disentangled the role of grassland management (fertilization and irrigation), vegetation structure (biomass, sward height) and plant quality (protein and fiber content) for Orthoptera communities in lowland hay meadows in Germany. We found vegetation structure to be the most important environmental category in explaining community structure of Orthoptera (species richness, total individuals, functional diversity and species composition). Intensively used meadows (fertilized, irrigated, high plant biomass) were characterized by assemblages with few species, low functional diversity, and low conservation value. Thereby, the relatively moderate fertilizer inputs in our study system of up to ∼75 kg N/ha/year reduced functional diversity of Orthoptera, while this negative effect of fertilization was not detectable when solely considering taxonomic aspects. We found strong support for a prominent role of plant quality in shaping Orthoptera communities and especially the trait composition. Our findings demonstrate the usefulness of considering both taxonomic and functional components (functional diversity) in biodiversity research and we suggest a stronger involvement of plant quality measures in Orthoptera studies. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  7. Electronic structures of elements according to ionization energies.

    Science.gov (United States)

    Zadeh, Dariush H

    2017-11-28

    The electronic structures of elements in the periodic table were analyzed using available experimental ionization energies. Two new parameters were defined to carry out the study. The first parameter-apparent nuclear charge (ANC)-quantified the overall charge of the nucleus and inner electrons observed by an outer electron during the ionization process. This parameter was utilized to define a second parameter, which presented the shielding ability of an electron against the nuclear charge. This second parameter-electron shielding effect (ESE)-provided an insight into the electronic structure of atoms. This article avoids any sort of approximation, interpolation or extrapolation. First experimental ionization energies were used to obtain the two aforementioned parameters. The second parameter (ESE) was then graphed against the electron number of each element, and was used to read the corresponding electronic structure. The ESE showed spikes/peaks at the end of each electronic shell, providing insight into when an electronic shell closes and a new one starts. The electronic structures of elements in the periodic table were mapped using this methodology. These graphs did not show complete agreement with the previously known "Aufbau" filling rule. A new filling rule was suggested based on the present observations. Finally, a new way to organize elements in the periodic table is suggested. Two earlier topics of effective nuclear charge, and shielding factor were also briefly discussed and compared numerically to demonstrate the capability of the new approach.

  8. Correct Brillouin zone and electronic structure of BiPd

    Science.gov (United States)

    Yaresko, Alexander; Schnyder, Andreas P.; Benia, Hadj M.; Yim, Chi-Ming; Levy, Giorgio; Damascelli, Andrea; Ast, Christian R.; Peets, Darren C.; Wahl, Peter

    2018-02-01

    A promising route to the realization of Majorana fermions is in noncentrosymmetric superconductors, in which spin-orbit coupling lifts the spin degeneracy of both bulk and surface bands. A detailed assessment of the electronic structure is critical to evaluate their suitability for this through establishing the topological properties of the electronic structure. This requires correct identification of the time-reversal-invariant momenta. One such material is BiPd, a recently rediscovered noncentrosymmetric superconductor which can be grown in large, high-quality single crystals and has been studied by several groups using angular resolved photoemission to establish its surface electronic structure. Many of the published electronic structure studies on this material are based on a reciprocal unit cell which is not the actual Brillouin zone of the material. We show here the consequences of this for the electronic structures and show how the inferred topological nature of the material is affected.

  9. Vegetation structure and small-scale pattern in Miombo Woodland, Marondera, Zimbabwe

    Directory of Open Access Journals (Sweden)

    B. M. Campbell

    1995-10-01

    Full Text Available The aim ol this paper is to describe woodland structure and small-scale patterning of woody plants at a miombo site, and to relate these to past disturbance and soil properties. Brachystegia spiciformis Benth. and Julbemardia globiflora (Benth. Troupin were the most frequent woody plants at the five hectare site, with size-class distributions which were markedly skewed towards the smaller size classes. The vegetation structure at the site and the increase in basal area over the past thirty years point to considerable disturbance prior to the present protected status. Six woodland subtypes were identified, grouped into two structural types: open and closed woodland. The distribution of woodland subtypes related closely to certain soil properties. It was hypothesized that the distribution of open and closed woodland is stable and a positive feedback mechanism by which this occurs is postulated.

  10. Faunal impact on vegetation structure and ecosystem function in mangrove forests

    DEFF Research Database (Denmark)

    Cannicci, S.; Burrows, Damien; Fratini, Sara

    2008-01-01

    The last 20 years witnessed a real paradigm shift concerning the impact of biotic factors on ecosystem functions as well as on vegetation structure of mangrove forests. Before this small scientific revolution took place, structural aspects of mangrove forests were viewed to be the result of abiotic...... processes acting from the bottom-up, while, at ecosystem level, the outwelling hypothesis stated that mangroves primary production was removed via tidal action and carried to adjacent nearshore ecosystems where it fuelled detrital based food-webs. The sesarmid crabs were the first macrofaunal taxon...... to be considered a main actor in mangrove structuring processes, thanks to a number of studies carried out in the Indo-Pacific forests in the late 1970s and early 1980s. Following these classical papers, a number of studies on Sesarmidae feeding and burrowing ecology were carried out, which leave no doubts about...

  11. Faunal impact on vegetation structure and ecosystem function in mangrove forests: A review

    DEFF Research Database (Denmark)

    Cannicci, S.; Burows, D.; Fratini, S.

    2008-01-01

    The last 20 years witnessed a real paradigm shift concerning the impact of biotic factors on ecosystem functions as well as on vegetation structure of mangrove forests. Before this small scientific revolution took place, structural aspects of mangrove forests were viewed to be the result of abiotic...... processes acting from the bottom-up, while, at ecosystem level, the outwelling hypothesis stated that mangroves primary production was removed via tidal action and carried to adjacent nearshore ecosystems where it fuelled detrital based food-webs. The sesarmid crabs were the first macrofaunal taxon...... to be considered a main actor in mangrove structuring processes, thanks to a number of studies carried out in the Indo-Pacific forests in the late 1970s and early 1980s. Following these classical papers, a number of studies on Sesarmidae feeding and burrowing ecology were carried out, which leave no doubts about...

  12. Relationship between Chemical Structure and Antimicrobial Activities of Isothiocyanates from Cruciferous Vegetables against Oral Pathogens.

    Science.gov (United States)

    Ko, Mi-Ok; Kim, Mi-Bo; Lim, Sang-Bin

    2016-12-28

    We evaluated the potentials of 10 isothiocyanates (ITCs) from cruciferous vegetables and radish root hydrolysate for inhibiting the growth of oral pathogens, with an emphasis on assessing any structure-function relationship. Structural differences in ITCs impacted their antimicrobial activities against oral pathogens differently. The indolyl ITC (indol-3-carbinol) was the most potent inhibitor of the growth of oral pathogens, followed by aromatic ITCs (benzyl ITC (BITC) and phenylethyl ITC (PEITC)) and aliphatic ITCs (erucin, iberin, and sulforaphene). Sulforaphene, which is similar in structure, but has one double bond, showed higher antimicrobial activity than sulforaphane. Erucin, which has a thiol group, showed higher antimicrobial activity than sulforaphane, which has a sulfinyl group. BITC and iberin with a short chain exhibited higher antimicrobial potential than PEITC and sulforaphane with a longer chain, respectively. ITCs have strong antimicrobial activities and may be useful in the prevention and management of dental caries.

  13. Electronic structure of hybrid interfaces for polymer-based electronics

    International Nuclear Information System (INIS)

    Fahlman, M; Crispin, A; Crispin, X; Henze, S K M; Jong, M P de; Osikowicz, W; Tengstedt, C; Salaneck, W R

    2007-01-01

    The fundamentals of the energy level alignment at anode and cathode electrodes in organic electronics are described. We focus on two different models that treat weakly interacting organic/metal (and organic/organic) interfaces: the induced density of interfacial states model and the so-called integer charge transfer model. The two models are compared and evaluated, mainly using photoelectron spectroscopy data of the energy level alignment of conjugated polymers and molecules at various organic/metal and organic/organic interfaces. We show that two different alignment regimes are generally observed: (i) vacuum level alignment, which corresponds to the lack of vacuum level offsets (Schottky-Mott limit) and hence the lack of charge transfer across the interface, and (ii) Fermi level pinning where the resulting work function of an organic/metal and organic/organic bilayer is independent of the substrate work function and an interface dipole is formed due to charge transfer across the interface. We argue that the experimental results are best described by the integer charge transfer model which predicts the vacuum level alignment when the substrate work function is above the positive charge transfer level and below the negative charge transfer level of the conjugated material. The model further predicts Fermi level pinning to the positive (negative) charge transfer level when the substrate work function is below (above) the positive (negative) charge transfer level. The nature of the integer charge transfer levels depend on the materials system: for conjugated large molecules and polymers, the integer charge transfer states are polarons or bipolarons; for small molecules' highest occupied and lowest unoccupied molecular orbitals and for crystalline systems, the relevant levels are the valence and conduction band edges. Finally, limits and further improvements to the integer charge transfer model are discussed as well as the impact on device design. (topical review)

  14. The electronic structure of core states under extreme compressions

    International Nuclear Information System (INIS)

    Straub, G.K.

    1992-01-01

    At normal density and for modest compressions, the electronic structure of a metal can be accurately described by treating the conduction electrons and their interactions with the usual methods of band theory. The core electrons remain essentially the same as for an isolated free atom and do not participate in the bonding forces responsible for creating a condensed phase. As the density increases, the core electrons begin to ''see'' one another as the overlap of the tails of wave functions can no longer be neglected. The electronic structure of the core electrons is responsible for an effective repulsive interaction that eventually becomes free-electron-like at very high compressions. The electronic structure of the interacting core electrons may be treated in a simple manner using the Atomic Surface Method (ASM). The ASM is a first-principles treatment of the electronic structure involving a rigorous integration of the Schroedinger equation within the atomic-sphere approximation. Solid phase wave functions are constructed from isolated atom wave functions and the band width W l and the center of gravity of the band C l are obtained from simple formulas. The ASM can also utilize analytic forms of the atomic wave functions and thus provide direct functional dependence of various aspects of the electronic structure. Of particular use in understanding the behavior of the core electrons, the ASM provides the ability to analytically determine the density dependence of the band widths and positions. The process whereby core states interact with one another is best viewed as the formation of narrow electron bands formed from atomic states. As the core-core overlap increases, the bands increase in width and mean energy. In Sec.3 this picture is further developed and from the ASM one obtains the analytic dependence on density of the relative motion of the different bands. Also in Sec. 3 is a discussion of the transition to free electron bands

  15. Pattern Analysis of Vegetation and Structure Mapping of Yard Plant in Gatak District, Sukoharjo

    Directory of Open Access Journals (Sweden)

    Sofyan Anif

    2004-01-01

    Full Text Available Target of research is to know 1 level of type variety (diversitas and mount the closeness (densitas of lawn crop which conducting in region of District of Gatak of Sub Province Sukoharjo; 2 pattern of mapping of lawn crop which conducting in region District of Gatak of Sub Province Sukoharjo of pursuant to variety level and its closeness. This research is field survey done with the method of multi stage that is stratified purposive of sampling and random sampling. Focus the survey is does the stocktaking of lawn crop which conducting in house lawn. To know the structure of vegetate data processed by using formula Cox (1989 to know the closeness level, while to know the level of species variety, data analyzed to use the index of diversities Simpson. Pursuant to result of inferential solution and research 1 result analyze the structure of vegetate of lawn crop indicate that (a District Gatak have the level of high diversities lawn crop, with the index diversities of equal to 0,84159 and index predominate equal to 0,15841, and also highest PIE 0,20657 and PIE lowerest of equal to 0,00032. Species of lawn crop having high domination that is melinjo (Gnetum gnemon, (b closeness of lawn crop at every countryside in District Gatak of included in category very meeting of because  relied on by a closeness value of every countryside more than 75%. Crop found in research are having high closeness level for example: melinjo, banana, mango, rambutan, papaya, tapioca, and coconut, while crop having low closeness level for example: jambu mete, tapak doro, flower pukul empat; and 2 mapping of lawn crop cover the function value and amount of lawn crop found by a number of 57 type of lawn crop found in researh area, can be grouped to become 5 faction that is drug crop, vegetable faction, fruit crop, decorative crop, and protector crop.

  16. Orbital Models and Electronic Structure Theory

    DEFF Research Database (Denmark)

    Linderberg, Jan

    2012-01-01

    This tribute to the work by Carl Johan Ballhausen focuses on the emergence of quantitative means for the study of the electronic properties of complexes and molecules. Development, refinement and application of the orbital picture elucidated electric and magnetic features of ranges of molecules...

  17. Crystal structure from one-electron theory

    DEFF Research Database (Denmark)

    Skriver, H. L.

    1985-01-01

    The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated by the the......The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated...

  18. Patch-Scale Effects of Equine Disturbance on Arthropod Assemblages and Vegetation Structure in Subalpine Wetlands

    Science.gov (United States)

    Holmquist, Jeffrey G.; Schmidt-Gengenbach, Jutta; Ballenger, Elizabeth A.

    2014-06-01

    Assessments of vertebrate disturbance to plant and animal assemblages often contrast grazed versus ungrazed meadows or other larger areas of usage, and this approach can be powerful. Random sampling of such habitats carries the potential, however, for smaller, more intensely affected patches to be missed and for other responses that are only revealed at smaller scales to also escape detection. We instead sampled arthropod assemblages and vegetation structure at the patch scale (400-900 m2 patches) within subalpine wet meadows of Yosemite National Park (USA), with the goal of determining if there were fine-scale differences in magnitude and directionality of response at three levels of grazing intensity. Effects were both stronger and more nuanced than effects evidenced by previous random sampling of paired grazed and ungrazed meadows: (a) greater negative effects on vegetation structure and fauna in heavily used patches, but (b) some positive effects on fauna in lightly grazed patches, suggested by trends for mean richness and total and population abundances. Although assessment of disturbance at either patch or landscape scales should be appropriate, depending on the management question at hand, our patch-scale work demonstrated that there can be strong local effects on the ecology of these wetlands that may not be detected by comparing larger scale habitats.

  19. Complex band structure and electronic transmission eigenchannels

    DEFF Research Database (Denmark)

    Jensen, Anders; Strange, Mikkel; Smidstrup, Soren

    2017-01-01

    and complex band structure, in this case individual eigenchannel transmissions and different complex bands. We present calculations of decay constants for the two most conductive states as determined by complex band structure and standard DFT Landauer transport calculations for one semi-conductor and two...

  20. Syntheses and electronic structures of decamethylmetallocenes

    International Nuclear Information System (INIS)

    Robbins, J.L.

    1981-04-01

    The synthesis of decamethylmanganocene [(eta-C 5 (CH 3 ) 5 ) 2 Mn or (Me 5 Cp) 2 Mn)] is described. Magnetic susceptibility and electron paramagnetic resonance (EPR) studies show that (Me 5 Cp) 2 Mn is a low-spin, 17-electron compound with an orbitally degenerate, 2 E/sub 2g/ [e/sub 2g/ 3 a/sub 1g/ 2 ] ground state. An x-ray crystallographic study of (Me 5 Cp) 2 Mn shows that it is a monomeric, D/sub 5d/ decamethylmetallocene with metal to ring carbon distances that are about 0.3 A shorter than those determined for high-spin manganocenes. The syntheses of new (Me 5 Cp) 2 M (M = Mg,V,Cr,Co, and Ni) and [(Me 5 Cp) 2 M]PF 6 (M = Cr,Co, and Ni) compounds are described. In addition, a preparative route to a novel, dicationic decamethylmetallocene, [(Me 5 Cp) 2 Ni](PF 6 ) 2 is reported. Infrared, nuclear magnetic resonance, magnetic susceptibility, and/or x-ray crystallographic studies indicate that all the above compounds are D/sub 5d/ or D/sub 5h/ decamethylmetallocenes with low-spin electronic configurations. Cyclic voltammetry studies verify the reversibility and the one-electron nature of the (Me 5 Cp) 2 M → [(Me 5 Cp) 2 M] + (M = Cr,Mn,Fe,Co,Ni), [(Me 5 Cp) 2 Mn] - → (Me 5 Cp) 2 Mn and [(Me 5 Cp) 2 Ni] + → [Me 5 Cp) 2 Ni] 2+ redox reactions. These studies reveal that the neutral decamethylmetallocenes are much more easily oxidized than their metallocene counterparts. This result attests to the electron-donating properties of the ten substituent methyl groups. Proton and carbon-13 NMR data are reported for the diamagnetic Mg(II), Mn(I), Fe(II), Co(III), and Ni(IV) decamethylmetallocenes and for [(Me 5 Cp) 2 V(CO) 2 ] + . The uv-visible absorption spectra of the 15-, 18- and 20- electron decamethylmetallocenes are also reported

  1. Syntheses and electronic structures of decamethylmetallocenes

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, J.L.

    1981-04-01

    The synthesis of decamethylmanganocene ((eta-C/sub 5/(CH/sub 3/)/sub 5/)/sub 2/Mn or (Me/sub 5/Cp)/sub 2/Mn)) is described. Magnetic susceptibility and electron paramagnetic resonance (EPR) studies show that (Me/sub 5/Cp)/sub 2/Mn is a low-spin, 17-electron compound with an orbitally degenerate, /sup 2/E/sub 2g/ (e/sub 2g//sup 3/ a/sub 1g//sup 2/) ground state. An x-ray crystallographic study of (Me/sub 5/Cp)/sub 2/Mn shows that it is a monomeric, D/sub 5d/ decamethylmetallocene with metal to ring carbon distances that are about 0.3 A shorter than those determined for high-spin manganocenes. The syntheses of new (Me/sub 5/Cp)/sub 2/M (M = Mg,V,Cr,Co, and Ni) and ((Me/sub 5/Cp)/sub 2/M)PF/sub 6/ (M = Cr,Co, and Ni) compounds are described. In addition, a preparative route to a novel, dicationic decamethylmetallocene, ((Me/sub 5/Cp)/sub 2/Ni)(PF/sub 6/)/sub 2/ is reported. Infrared, nuclear magnetic resonance, magnetic susceptibility, and/or x-ray crystallographic studies indicate that all the above compounds are D/sub 5d/ or D/sub 5h/ decamethylmetallocenes with low-spin electronic configurations. Cyclic voltammetry studies verify the reversibility and the one-electron nature of the (Me/sub 5/Cp)/sub 2/M ..-->.. ((Me/sub 5/Cp)/sub 2/M)/sup +/ (M = Cr,Mn,Fe,Co,Ni), ((Me/sub 5/Cp)/sub 2/Mn)/sup -/ ..-->.. (Me/sub 5/Cp)/sub 2/Mn and ((Me/sub 5/Cp)/sub 2/Ni)/sup +/ ..-->.. (Me/sub 5/Cp)/sub 2/Ni)/sup 2 +/ redox reactions. These studies reveal that the neutral decamethylmetallocenes are much more easily oxidized than their metallocene counterparts. This result attests to the electron-donating properties of the ten substituent methyl groups. Proton and carbon-13 NMR data are reported for the diamagnetic Mg(II), Mn(I), Fe(II), Co(III), and Ni(IV) decamethylmetallocenes and for ((Me/sub 5/Cp)/sub 2/V(CO)/sub 2/)/sup +/. The uv-visible absorption spectra of the 15-, 18- and 20- electron decamethylmetallocenes are also reported.

  2. To Investigate the Flow Structure of Discontinuous Vegetation Patches of Two Vertically Different Layers in an Open Channel

    Directory of Open Access Journals (Sweden)

    Naveed Anjum

    2018-01-01

    Full Text Available In the present study, the flow structure of discontinuous double-layered vegetation patches was investigated using a 3D Reynolds stress turbulence model (RSM. The channel domain was built using GAMBIT (Geometry and Mesh Building Intelligent Toolkit. For the simulation and postprocessing, FLUENT (ANSYS was used to analyze the distribution of the mean velocity, Reynolds stresses, and other flow properties against two different flow conditions. The results captured by the turbulence model at specific locations and the cross section are presented in the form of various velocity profiles and contour plots. In the gap portion, the velocity was visibly lower than that in the vegetation areas, while the influence of patch distribution was not visible in the overlying flow layer. The velocity profiles at critical locations were categorized by numerous modulation points and velocity projections close to the bed, principally for positions straight after the vegetation structures. A distinction in the velocity at the topmost of the smaller vegetation structure was prominent. Reynolds stresses, turbulent kinetic energy, and turbulence intensity exhibited large fluctuations inside the vegetation regions and just behind the vegetation structures compared with in the gap regions.

  3. Electronic structure and optical properties of solid C60

    International Nuclear Information System (INIS)

    Mattesini, M.; Ahuja, R.; Sa, L.; Hugosson, H.W.; Johansson, B.; Eriksson, O.

    2009-01-01

    The electronic structure and the optical properties of face-centered-cubic C 60 have been investigated by using an all-electron full-potential method. Our ab initio results show that the imaginary dielectric function for high-energy values looks very similar to that of graphite, revealing close electronic structure similarities between the two systems. We have also identified the origin of different peaks in the dielectric function of fullerene by means of the calculated electronic density of states. The computed optical spectrum compares fairly well with the available experimental data for the Vis-UV absorption spectrum of solid C 60 .

  4. Electronic structure of fractionally nuclear charged atoms

    International Nuclear Information System (INIS)

    Pavao, Antonio C.; Bastos, Cristiano C.; Ferreira, Joacy V.

    2008-01-01

    Different properties of quark chemistry are studied by performing accurate ab initio Hartree- Fock calculations on fractionally nuclear charged atoms. Ground and first excited states of sodium atoms with quarks attached to the nucleus are obtained using CI calculations. It is suggested that the sodium 2 P -> 2 S electronic transition can be used as a guide in searching for unconfined quarks. Also, the variation of the binding electronic energy with nuclear charge in the isoelectronic series of fractionally nuclear charged atoms A ±2/3 and A ±1/3 (A = H, Li, Na, P and Ca) is analyzed. The present calculations suggest that unconfined colored particles have large appetite for heavy nuclei and that quark-antiquark pairs could be stabilized in presence of the atomic matter. (author)

  5. Tailoring electronic structure of polyazomethines thin films

    OpenAIRE

    J. Weszka; B. Hajduk; M. Domański; M. Chwastek; J. Jurusik; B. Jarząbek; H. Bednarski; P. Jarka

    2010-01-01

    Purpose: The aim of this work is to show how electronic properties of polyazomethine thin films deposited by chemical vapor deposition method (CVD) can be tailored by manipulating technological parameters of pristine films preparation as well as modifying them while the as-prepared films put into iodine atmosphere.Design/methodology/approach: The recent achievements in the field of designing and preparation methods to be used while preparing polymer photovoltaic solar cells or optoelectronic ...

  6. The Importance of Temporal and Spatial Vegetation Structure Information in Biotope Mapping Schemes: A Case Study in Helsingborg, Sweden

    Science.gov (United States)

    Gao, Tian; Qiu, Ling; Hammer, Mårten; Gunnarsson, Allan

    2012-02-01

    Temporal and spatial vegetation structure has impact on biodiversity qualities. Yet, current schemes of biotope mapping do only to a limited extend incorporate these factors in the mapping. The purpose of this study is to evaluate the application of a modified biotope mapping scheme that includes temporal and spatial vegetation structure. A refined scheme was developed based on a biotope classification, and applied to a green structure system in Helsingborg city in southern Sweden. It includes four parameters of vegetation structure: continuity of forest cover, age of dominant trees, horizontal structure, and vertical structure. The major green structure sites were determined by interpretation of panchromatic aerial photographs assisted with a field survey. A set of biotope maps was constructed on the basis of each level of modified classification. An evaluation of the scheme included two aspects in particular: comparison of species richness between long-continuity and short-continuity forests based on identification of woodland continuity using ancient woodland indicators (AWI) species and related historical documents, and spatial distribution of animals in the green space in relation to vegetation structure. The results indicate that (1) the relationship between forest continuity: according to verification of historical documents, the richness of AWI species was higher in long-continuity forests; Simpson's diversity was significantly different between long- and short-continuity forests; the total species richness and Shannon's diversity were much higher in long-continuity forests shown a very significant difference. (2) The spatial vegetation structure and age of stands influence the richness and abundance of the avian fauna and rabbits, and distance to the nearest tree and shrub was a strong determinant of presence for these animal groups. It is concluded that continuity of forest cover, age of dominant trees, horizontal and vertical structures of vegetation

  7. Wildfires alter rodent community structure across four vegetation types in southern California, USA

    Science.gov (United States)

    Brehme, Cheryl S.; Clark, Denise R.; Rochester, Carlton J.; Fisher, Robert N.

    2011-01-01

    We surveyed burned and unburned plots across four habitat reserves in San Diego County, California, USA, in 2005 and 2006, to assess the effects of the 2003 wildfires on the community structure and relative abundance of rodent species. The reserves each contained multiple vegetation types (coastal sage scrub, chaparral, woodland, and grassland) and spanned from 250 m to 1078 m in elevation. Multivariate analyses revealed a more simplified rodent community structure in all burned habitats in comparison to unburned habitats. Reduction in shrub and tree cover was highly predictive of changes in post-fire rodent community structure in the burned coastal sage scrub and chaparral habitats. Reduction in cover was not predictive for the less substantially burned woodlands and grasslands, for which we hypothesized that interspecific competition played a greater role in post-fire community structure. Across vegetation types, generalists and open habitat specialists typically increased in relative abundance, whereas closed habitat specialists decreased. We documented significant increases in relative abundance of the deer mouse (Peromyscus maniculatus Wagner) and Dulzura kangaroo rat (Dipodomys simulans Merriam). In contrast, we found significant decreases in relative abundance for the California mouse (Peromyscus californicus Gambel), San Diego pocket mouse (Chaetodipus fallax Merriam), desert woodrat (Neotoma lepida Thomas), and brush mouse (Peromyscus boylii Baird). Currently, our research program involves assessment of whether habitat conservation plans (HCPs) in southern California provide long-term protection to HCP covered species, as well as preserve ecosystem function. The scenario of increased wildfires needs to be incorporated into this assessment. We discuss our results in relation to management and conservation planning under a future scenario of larger and more frequent wildfires in southern California.

  8. Electronic structure and formation energy of a vacancy in aluminum

    International Nuclear Information System (INIS)

    Chakraborty, B.; Siegel, R.W.

    1981-11-01

    The electronic structure of a vacancy in Al was calculated self-consistently using norm-conserving ionic pseudopotentials obtained from ab initio atomic calculations. A 27-atom-site supercell containing 1 vacancy and 26 atoms was used to simulate the environment of the vacancy. A vacancy formation energy of 1.5 eV was also calculated (cf. the experimental value of 0.66 eV). The effects of the supercell and the nature of the ionic potential on the resulting electronic structure and formation energy are discussed. Results for the electronic structure of a divacancy are also presented. 3 figures

  9. One-Electron Theory of Metals. Cohesive and Structural Properties

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt

    The work described in the report r.nd the 16 accompanying publications is based upon a one-electron theory obtained within the local approximation to density-functional theory, and deals with the ground state of metals as obtained from selfconsistent electronic-structure calculations performed...... by means of the Linear Muffin-Tin Orbital (LMTO) method. It has been the goal of the work to establish how well this one-electron approach describes physical properties such as the crystal structures of the transition metals, the structural phase transitions in the alkali, alkaline earth, and rare earth...

  10. Structure and electron-ion correlation in liquid Mg

    Energy Technology Data Exchange (ETDEWEB)

    Tahara, Shuta [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu Chuo-ku, Fukuoka 810-8560 (Japan); Fujii, Hiroyuki [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu Chuo-ku, Fukuoka 810-8560 (Japan); Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Yokota, Yukinobu [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu Chuo-ku, Fukuoka 810-8560 (Japan); Kawakita, Yukinobu [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu Chuo-ku, Fukuoka 810-8560 (Japan); Kohara, Shinji [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Takeda, Shin' ichi [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu Chuo-ku, Fukuoka 810-8560 (Japan)]. E-mail: takeda@rc.kyushu-u.ac.jp

    2006-11-15

    For liquid Mg at 700 deg. C, structure factors were obtained from both neutron and X-ray diffraction measurements. The bond angle and coordination number distributions were derived from the reverse Monte Carlo analysis. By a combination of both structure factors, charge density function and electron-ion partial structure factor were deduced.

  11. Structural and electronic parameters of ferroelectric KWOF

    Science.gov (United States)

    Atuchin, V. V.; Gavrilova, T. A.; Kesler, V. G.; Molokeev, M. S.; Aleksandrov, K. S.

    2010-11-01

    The low-temperature ferroelectric G2 polymorph of K 3WO 3F 3 oxyfluoride is formed by chemical synthesis. The electronic parameters of G2-K 3WO 3F 3 have been measured by X-ray photoelectron spectroscopy under excitation with Al Kα radiation (1486.6 eV). Detailed spectra have been recorded for all element core levels and Auger lines. The chemical bonding effects in the WO 3F 3 and WO 6 octahedrons are considered by using the binding energy difference ΔBE(O-W)=BE(O 1s)-BE(W 4f).

  12. Nodal Structure of the Electronic Wigner Function

    DEFF Research Database (Denmark)

    Schmider, Hartmut; Dahl, Jens Peder

    1996-01-01

    On the example of several atomic and small molecular systems, the regular behavior of nodal patterns in the electronic one-particle reduced Wigner function is demonstrated. An expression found earlier relates the nodal pattern solely to the dot-product of the position and the momentum vector......, if both arguments are large. An argument analogous to the ``bond-oscillatory principle'' for momentum densities links the nuclear framework in a molecule to an additional oscillatory term in momenta parallel to bonds. It is shown that these are visible in the Wigner function in terms of characteristic...

  13. Electronic structure of the light actinides

    International Nuclear Information System (INIS)

    Dunlap, B.D.

    1976-01-01

    In the last few years, considerable advances have been made in our understanding of the properties of the light actinides. Although these are 5f transition elements formally equivalent to the lanthanide (4f) elements, these materials show a much more varied behavior due to the larger spatial extent and ionizability of the 5f electrons. A review is given of some areas of current interest, especially where hyperfine measurements have played an active role. These include studies of a variety of magnetic phenomena, systematics of isomer shift measurements, and studies of paramagnetic relaxation

  14. Unsupervised classification of lidar-based vegetation structure metrics at Jean Lafitte National Historical Park and Preserve

    Science.gov (United States)

    Kranenburg, Christine J.; Palaseanu-Lovejoy, Monica; Nayegandhi, Amar; Brock, John; Woodman, Robert

    2012-01-01

    Traditional vegetation maps capture the horizontal distribution of various vegetation properties, for example, type, species and age/senescence, across a landscape. Ecologists have long known, however, that many important forest properties, for example, interior microclimate, carbon capacity, biomass and habitat suitability, are also dependent on the vertical arrangement of branches and leaves within tree canopies. The objective of this study was to use a digital elevation model (DEM) along with tree canopy-structure metrics derived from a lidar survey conducted using the Experimental Advanced Airborne Research Lidar (EAARL) to capture a three-dimensional view of vegetation communities in the Barataria Preserve unit of Jean Lafitte National Historical Park and Preserve, Louisiana. The EAARL instrument is a raster-scanning, full waveform-resolving, small-footprint, green-wavelength (532-nanometer) lidar system designed to map coastal bathymetry, topography and vegetation structure simultaneously. An unsupervised clustering procedure was then applied to the 3-dimensional-based metrics and DEM to produce a vegetation map based on the vertical structure of the park's vegetation, which includes a flotant marsh, scrub-shrub wetland, bottomland hardwood forest, and baldcypress-tupelo swamp forest. This study was completed in collaboration with the National Park Service Inventory and Monitoring Program's Gulf Coast Network. The methods presented herein are intended to be used as part of a cost-effective monitoring tool to capture change in park resources.

  15. Electron beam crosslinked PVC : structure property relationships

    International Nuclear Information System (INIS)

    Gupta, Neeraj K.; Sabharwal, Sunil

    2001-01-01

    PVC is used extensively for its insulating properties for the manufacture of wires and cables and for other applications. Its gradual degradation, oxidation and even dehydro chlorination restricts use for long lasting period in installations such as high temperature zones, underground cables, communication systems, electro-nuclear facilities, etc. The technological properties and performance characteristics of PVC based insulation can be improved via crosslinking by high-energy electrons. PVC is however a polymer, which on irradiation predominantly undergoes degradation. To avoid degradation, it needs to be compounded with sensitizing agents or multifunctional monomers so that crosslinking is the predominant reaction. Radiation cross linkable formulations are complex mixtures of resin and various additives incorporated for achieving desired technological and performance characteristics, ease of processing and improving quality. The proper choice of additives and sensitizing agents enable low dose requirements for efficient crosslinking and improvements in various technological properties. The purposes of this work was to investigate the effect of using a binary sensitizer blend of a trifunctional monomer and a rubber in PVC, and develop suitable electron beam cross linkable formulations for wire insulation. This paper presents some aspects of the investigations and development of insulation demonstrated at industrial scale

  16. Vegetation composition and structure of southern coastal plain pine forests: An ecological comparison

    Science.gov (United States)

    Hedman, C.W.; Grace, S.L.; King, S.E.

    2000-01-01

    Longleaf pine (Pinus palustris) ecosystems are characterized by a diverse community of native groundcover species. Critics of plantation forestry claim that loblolly (Pinus taeda) and slash pine (Pinus elliottii) forests are devoid of native groundcover due to associated management practices. As a result of these practices, some believe that ecosystem functions characteristic of longleaf pine are lost under loblolly and slash pine plantation management. Our objective was to quantify and compare vegetation composition and structure of longleaf, loblolly, and slash pine forests of differing ages, management strategies, and land-use histories. Information from this study will further our understanding and lead to inferences about functional differences among pine cover types. Vegetation and environmental data were collected in 49 overstory plots across Southlands Experiment Forest in Bainbridge, GA. Nested plots, i.e. midstory, understory, and herbaceous, were replicated four times within each overstory plot. Over 400 species were identified. Herbaceous species richness was variable for all three pine cover types. Herbaceous richness for longleaf, slash, and loblolly pine averaged 15, 13, and 12 species per m2, respectively. Longleaf pine plots had significantly more (p < 0.029) herbaceous species and greater herbaceous cover (p < 0.001) than loblolly or slash pine plots. Longleaf and slash pine plots were otherwise similar in species richness and stand structure, both having lower overstory density, midstory density, and midstory cover than loblolly pine plots. Multivariate analyses provided additional perspectives on vegetation patterns. Ordination and classification procedures consistently placed herbaceous plots into two groups which we refer to as longleaf pine benchmark (34 plots) and non-benchmark (15 plots). Benchmark plots typically contained numerous herbaceous species characteristic of relic longleaf pine/wiregrass communities found in the area. Conversely

  17. Electronic structure and isomer shifts of Sn halides

    International Nuclear Information System (INIS)

    Terra, J.; Guenzburger, D.

    1988-01-01

    The all-electron first-principles Discrete Variational method was employed to study the electronic structure of SnF 4 , SnCl 4 , SnBr 4 and SnI 4 . Values of the electronic density at the Sn nucleus were derived and related to 119 Sn Isomer Shifts to obtain the nuclear constant Δ 2 >. Differences in values of ρ(o) area discussed in terms of the chemical bonding between Sn and halogen atoms. (author) [pt

  18. Electronic structure of graphene beyond the linear dispersion regime

    OpenAIRE

    POWER, STEPHEN; FERREIRA, MAURO

    2011-01-01

    PUBLISHED Among the many interesting features displayed by graphene, one of the most attractive is the simplicity with which its electronic structure can be described. The study of its physical properties is significantly simplified by the linear dispersion relation of electrons in a narrow range around the Fermi level. Unfortunately, the mathematical simplicity of graphene electrons is limited only to this narrow energy region and is not very practical when dealing with problems that invo...

  19. Continental Scale Vegetation Structure Mapping Using Field Calibrated Landsat, ALOS Palsar And GLAS ICESat

    Science.gov (United States)

    Scarth, P.; Phinn, S. R.; Armston, J.; Lucas, R.

    2015-12-01

    Vertical plant profiles are important descriptors of canopy structure and are used to inform models of biomass, biodiversity and fire risk. In Australia, an approach has been developed to produce large area maps of vertical plant profiles by extrapolating waveform lidar estimates of vertical plant profiles from ICESat/GLAS using large area segmentation of ALOS PALSAR and Landsat satellite image products. The main assumption of this approach is that the vegetation height profiles are consistent across the segments defined from ALOS PALSAR and Landsat image products. More than 1500 field sites were used to develop an index of fractional cover using Landsat data. A time series of the green fraction was used to calculate the persistent green fraction continuously across the landscape. This was fused with ALOS PALSAR L-band Fine Beam Dual polarisation 25m data and used to segment the Australian landscapes. K-means clustering then grouped the segments with similar cover and backscatter into approximately 1000 clusters. Where GLAS-ICESat footprints intersected these clusters, canopy profiles were extracted and aggregated to produce a mean vertical vegetation profile for each cluster that was used to derive mean canopy and understorey height, depth and density. Due to the large number of returns, these retrievals are near continuous across the landscape, enabling them to be used for inventory and modelling applications. To validate this product, a radiative transfer model was adapted to map directional gap probability from airborne waveform lidar datasets to retrieve vertical plant profiles Comparison over several test sites show excellent agreement and work is underway to extend the analysis to improve national biomass mapping. The integration of the three datasets provide options for future operational monitoring of structure and AGB across large areas for quantifying carbon dynamics, structural change and biodiversity.

  20. Phase stability and electronic structure of transition-metal aluminides

    International Nuclear Information System (INIS)

    Carlsson, A.E.

    1992-01-01

    This paper will describe the interplay between die electronic structure and structural energetics in simple, complex, and quasicrystalline Al-transition metal (T) intermetallics. The first example is the Ll 2 -DO 22 competition in Al 3 T compounds. Ab-initio electronic total-energy calculations reveal surprisingly large structural-energy differences, and show that the phase stability of both stoichiometric and ternary-substituted compounds correlates closely with a quasigap in the electronic density of states (DOS). Secondly, ab-initio calculations for the structural stability of the icosahedrally based Al 12 W structure reveal similar quasigap effects, and provide a simple physical explanation for the stability of the complex aluminide structures. Finally, parametrized tight-binding model calculations for the Al-Mn quasicrystal reveal a large spread in the local Mn DOS behavior, and support a two-site model for the quasicrystal's magnetic behavior

  1. Elucidation of structural isomers from the homogeneous rhodium-catalyzed isomerization of vegetable oils.

    Science.gov (United States)

    Andjelkovic, Dejan D; Min, Byungrok; Ahn, Dong; Larock, Richard C

    2006-12-13

    The structural isomers formed by the homogeneous rhodium-catalyzed isomerization of several vegetable oils have been elucidated. A detailed study of the isomerization of the model compound methyl linoleate has been performed to correlate the distribution of conjugated isomers, the reaction kinetics, and the mechanism of the reaction. It has been shown that [RhCl(C8H8)2]2 is a highly efficient and selective isomerization catalyst for the production of highly conjugated vegetable oils with a high conjugated linoleic acid (CLA) content, which is highly desirable in the food industry. The combined fraction of the two major CLA isomers [(9Z,11E)-CLA and (10E,12Z)-CLA] in the overall CLA mixture is in the range from 76.2% to 93.4%. The high efficiency and selectivity of this isomerization method along with the straightforward purification process render this approach highly promising for the preparation of conjugated oils and CLA. Proposed improvements in catalyst recovery and reusability will only make this method more appealing to the food, paint, coating, and polymer industries in the future.

  2. Riparian vegetation structure and the hunting behavior of adult estuarine crocodiles.

    Directory of Open Access Journals (Sweden)

    Luke J Evans

    Full Text Available Riparian ecosystems are amongst the most biodiverse tropical habitats. They are important, and essential, ecological corridors, linking remnant forest fragments. In this study, we hypothesised that crocodile's actively select nocturnal resting locations based on increased macaque predation potential. We examined the importance of riparian vegetation structure in the maintenance of crocodile hunting behaviours. Using airborne Light Detection and Ranging (LiDAR and GPS telemetry on animal movement, we identified the repeated use of nocturnal resting sites by adult estuarine crocodiles (Crocodylus porosus throughout the fragmented Lower Kinabatangan Wildlife Sanctuary in Sabah, Malaysia. Crocodile resting locations were found to resemble, in terms of habitat characteristics, the sleeping sites of long-tailed macaque; positioned in an attempt to avoid predation by terrestrial predators. We found individual crocodiles were actively selecting overhanging vegetation and that the protrusion of trees from the tree line was key to site selection by crocodiles, as well as influencing both the presence and group size of sleeping macaques. Although these findings are correlational, they have broad management implications, with the suggestion that riparian corridor maintenance and quality can have implications beyond that of terrestrial fauna. We further place our findings in the context of the wider ecosystem and the maintenance of trophic interactions, and discuss how future habitat management has the potential to mitigate human-wildlife conflict.

  3. Composition and structure of bird communities in vegetational gradients of Bodoquena Mountains, western Brazil

    Directory of Open Access Journals (Sweden)

    MAURICIO N. GODOI

    2016-03-01

    Full Text Available ABSTRACT The informations of bird species distribution in different habitats and the structure of their communities are crucial for bird conservation. We tested the differences in composition, richness and abundance of birds in different phytophysiognomies at Bodoquena Mountains, western Brazil, and we demonstrated the variations in richness and abundance of birds between different trophic groups. Sampling was conducted between July 2011 and June 2012 in 200 point counts arranged in the study area. A total of 3350 contacts were obtained belonging to 156 bird species. Woodland savannas, seasonal forests and arboreal savannas had higher bird abundance and richness, while riparian forests, clean pastures and dirty pastures had smaller values of these parameters. The bird community was organized according to local vegetational gradient, with communities of forests, open areas and savannas, although many species occurred in more than one vegetation type. The insectivorous, omnivorous, frugivorous and gramnivorous birds composed most of the community. These data showed how important environmental heterogeneity is to bird communities. Furthermore, the presence of extensive patches of natural habitats, the small distance between these patches and the permeability of pastures, with high arboreal and shrubby cover, are indicated as important factors to maintain the bird diversity.

  4. Electronic structure of filled tetrahedral semiconductors

    NARCIS (Netherlands)

    Wood, D.M.; Zunger, Alex; Groot, R. de

    1985-01-01

    We discuss the susceptibility of zinc-blende semiconductors to band-structure modification by insertion of small atoms at their tetrahedral interstitial states. GaP is found to become a direct-gap semiconductor with two He atoms present at its interstitial sites; Si does not. Analysis of the factors

  5. Electronic Band Structure of Helical Polyisocyanides.

    Science.gov (United States)

    Champagne, Benoît; Liégeois, Vincent; Fripiat, Joseph G; Harris, Frank E

    2017-10-19

    Restricted Hartree-Fock computations are reported for a methyl isocyanide polymer (repeating unit -C═N-CH 3 ), whose most stable conformation is expected to be a helical chain. The computations used a standard contracted Gaussian orbital set at the computational levels STO-3G, 3-21G, 6-31G, and 6-31G**, and studies were made for two line-group configurations motivated by earlier work and by studies of space-filling molecular models: (1) A structure of line-group symmetry L9 5 , containing a 9-fold screw axis with atoms displaced in the axial direction by 5/9 times the lattice constant, and (2) a structure of symmetry L4 1 that had been proposed, containing a 4-fold screw axis with translation by 1/4 of the lattice constant. Full use of the line-group symmetry was employed to cause most of the computational complexity to depend only on the size of the asymmetric repeating unit. Data reported include computed bond properties, atomic charge distribution, longitudinal polarizability, band structure, and the convoluted density of states. Most features of the description were found to be insensitive to the level of computational approximation. The work also illustrates the importance of exploiting line-group symmetry to extend the range of polymer structural problems that can be treated computationally.

  6. Electronic structure and ionicity of actinide oxides from first principles

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.

    2010-01-01

    The ground-state electronic structures of the actinide oxides AO, A2O3, and AO2 (A=U, Np, Pu, Am, Cm, Bk, and Cf) are determined from first-principles calculations, using the self-interaction corrected local spin-density approximation. Emphasis is put on the degree of f-electron localization, whi...

  7. On the electronic structure of high Tc superconductors

    International Nuclear Information System (INIS)

    Fink, J.; Nuecker, N.; Romberg, H.; Alexander, M.; Knupfer, M.; Mante, J.; Claessen, R.; Buslaps, T.; Harm, S.; Manzke, R.; Skibowski, M.

    1992-01-01

    Studies of the electronic structure of high-T c superconductors and related compounds by high-energy spectroscopies are reviewed. In particular, we report on investigations by electron energy-loss, angle-resolved photoemission, and inverse angle-resolved photoemission spectroscopy. Information on the symmetry and the character of states close to the Fermi level has been obtained. 25 refs., 8 figs

  8. Electronic structure and equilibrium properties of hcp titanium

    Indian Academy of Sciences (India)

    The electronic structures of hexagonal-close-packed divalent titanium (3-d) and zirconium (4-d) transition metals are studied by using a non-local model potential method. From the present calculation of energy bands, Fermi energy, density of states and the electronic heat capacity of these two metals are determined and ...

  9. Weiss oscillations in the electronic structure of modulated graphene

    International Nuclear Information System (INIS)

    Tahir, M; Sabeeh, K; MacKinnon, A

    2007-01-01

    We present a theoretical study of the electronic structure of modulated graphene in the presence of a perpendicular magnetic field. The density of states and the bandwidth for the Dirac electrons in this system are determined. The appearance of unusual Weiss oscillations in the bandwidth and density of states is the main focus of this work

  10. Electronic Structure of Au25 Clusters: Between Discrete and Continuous

    KAUST Repository

    Katsiev, Khabiboulakh

    2016-07-15

    Here, an approach based on synchrotron resonant photoemission is emplyed to explore the transition between quantization and hybridization of the electronic structure in atomically precise ligand-stabilized nanoparticles. While the presence of ligands maintains quantization in Au25 clusters, their removal renders increased hybridization of the electronic states at the vicinity of the Fermi level. These observations are supported by DFT studies.

  11. Electronic Structure of Au25 Clusters: Between Discrete and Continuous

    KAUST Repository

    Katsiev, Khabiboulakh; Lozova, Nataliya; Wang, Lu; Katla, Saikrishna; Li, Ruipeng; Mei, Wai Ning; Skrabalak, Sara; Challa, Challa; Losovyj, Yaroslav

    2016-01-01

    Here, an approach based on synchrotron resonant photoemission is emplyed to explore the transition between quantization and hybridization of the electronic structure in atomically precise ligand-stabilized nanoparticles. While the presence of ligands maintains quantization in Au25 clusters, their removal renders increased hybridization of the electronic states at the vicinity of the Fermi level. These observations are supported by DFT studies.

  12. Electronic Structure of Cdse Nanowires Terminated With Gold ...

    African Journals Online (AJOL)

    Bheema

    Owing to their unusual electronic and structural properties, SC clusters have received considerable attention ... performing molecular dynamics simulations. A similar .... Analysis of the charge density, gap, corresponding to states with energies ...

  13. Structures and electronics of buried and unburied semiconductor interfaces

    International Nuclear Information System (INIS)

    Kamiya, Itaru

    2011-01-01

    The structure of interfaces plays an important role in determining the electronic properties of semiconductor nanostructures. Here, such examples are shown and discussed using semiconductor nanostructures prepared by molecular beam epitaxy and colloidal synthesis.

  14. Manganites in Perovskite Superlattices: Structural and Electronic Properties

    KAUST Repository

    Jiwuer, Jilili

    2016-01-01

    Perovskite manganites are widely investigated compounds due to the discovery of the colossal magnetoresistance effect in 1994. They have a broad range of structural, electronic, magnetic properties and potential device applications in sensors

  15. Structure and electron-ion correlation of liquid germanium

    Energy Technology Data Exchange (ETDEWEB)

    Kawakita, Y. [Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan)]. E-mail: kawakita@rc.kyushu-u.ac.jp; Fujita, S. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Kohara, S. [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto Mikazuki-cho, Hyogo 679-5198 (Japan); Ohshima, K. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Fujii, H. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Yokota, Y. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Takeda, S. [Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan)

    2005-08-15

    Structure factor of liquid germanium (Ge) has a shoulder at {theta} = 3.2 A{sup -1} in the high-momentum-transfer region of the first peak. To investigate the origin of such a non-simplicity in the structure, high energy X-ray diffraction measurements have been performed using 113.26 keV incident X-ray, at BL04B2 beamline of SPring-8. By a combination of the obtained structure factor with the reported neutron diffraction data, charge density function and electron-ion partial structure factor have been deduced. The peak position of the charge distribution is located at about 1 A, rather smaller r value than the half value of nearest neighbor distance ({approx}2.7 A), which suggests that valence electrons of liquid Ge play a role of screening electrons around a metallic ion rather than covalently bonding electrons.

  16. Structure functions in electron-nucleon deep inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Fazal-E-Aleem (University of the Punjab, Lahore (Pakistan). Dept. of Physics)

    1982-06-26

    The phenomenological expressions for the structure functions in electron-nucleon deep inelastic scattering are proposed and are shown to satisfy the experimental data as well as a number of sum rules.

  17. First-principle calculations of structural, electronic, optical, elastic ...

    Indian Academy of Sciences (India)

    S CHEDDADI

    2017-11-28

    Nov 28, 2017 ... First-principle calculations on the structural, electronic, optical, elastic and thermal properties of the chalcopyrite ... The Kohn–Sham equations were solved using the ... RMTKmax = 7 was used for all the investigated systems,.

  18. Electronic structure of incident carbon ions on a graphite surface

    International Nuclear Information System (INIS)

    Kiuchi, Masato; Takeuchi, Takae; Yamamoto, Masao.

    1997-01-01

    The electronic structure of an incident carbon ion on a graphite surface is discussed on the basis of ab initio molecular orbital calculations. A carbon cation forms a covalent bond with the graphite, and a carbon nonion is attracted to the graphite surface through van der Waals interaction. A carbon anion has no stable state on a graphite surface. The charge effects of incident ions become clear upon detailed examination of the electronic structure. (author)

  19. Mangrove vegetation structure in Southeast Brazil from phased array L-band synthetic aperture radar data

    Science.gov (United States)

    de Souza Pereira, Francisca Rocha; Kampel, Milton; Cunha-Lignon, Marilia

    2016-07-01

    The potential use of phased array type L-band synthetic aperture radar (PALSAR) data for discriminating distinct physiographic mangrove types with different forest structure developments in a subtropical mangrove forest located in Cananéia on the Southern coast of São Paulo, Brazil, is investigated. The basin and fringe physiographic types and the structural development of mangrove vegetation were identified with the application of the Kruskal-Wallis statistical test to the SAR backscatter values of 10 incoherent attributes. The best results to separate basin to fringe types were obtained using copolarized HH, cross-polarized HV, and the biomass index (BMI). Mangrove structural parameters were also estimated using multiple linear regressions. BMI and canopy structure index were used as explanatory variables for canopy height, mean height, and mean diameter at breast height regression models, with significant R2=0.69, 0.73, and 0.67, respectively. The current study indicates that SAR L-band images can be used as a tool to discriminate physiographic types and to characterize mangrove forests. The results are relevant considering the crescent availability of freely distributed SAR images that can be more utilized for analysis, monitoring, and conservation of the mangrove ecosystem.

  20. Electronic structure of UCl5: A reexamination

    International Nuclear Information System (INIS)

    Soule, E.; Edelstein, N.

    1980-01-01

    On the basis of the absorption spectrum of UCl 5 recorded at 4.2 K, Leung and Poon attempted a determination of both the spin-orbit coupling constant and the crystal field parameters. Their parameters, however, led to a calculated g-tensor at variance with the position of the electron paramagnetic resonance line observed by Miyake et al. It was therefore attempted to simultaneously interpret both spectra (absorption and EPR), assuming the validity of the Newman superposition model, and taking the point symmetry group on each uranium of the (UCl 5 ) 2 dimer as C 2 sub(v). We obtain one and only one satisfactory solution, namely a set of parameters that reasonably reproduce the observed absorption peaks, and lead to the following principal values of the g-tensor: gx = 0.226 (unobservable); gy = 1.187; gz = 1.186. Therefore the paradox stemming from the apparent isotropy of the EPR signal for a species of low point symmetry is resolved. (orig.)

  1. Electronic structure of metal overlayers on rhodium

    International Nuclear Information System (INIS)

    Feibelman, P.J.; Hamann, D.R.

    1983-01-01

    We have evaluated work functions, surface core-level shifts, and surface band dispersions for clean, Ag-covered, and Pd-covered Rh(100) surfaces, and for clean and Ag-covered Rh(111). The calculations were performed self-consistently, using the surface-linearized augmented-plane-wave method. As expected from the Pauling electronegativities, Ag adsorption lowers the work function from the clean Rh value, by several tenths of an eV, while Pd has an almost negligible effect. The values calculated for the core-level shifts of various films are shown to correspond to expectations based on surface band narrowing and layerwise charge neutrality. Using the core-level shifts, we predict heat-of-adsorption differences (for Ag on Pd vs Ag on Rh, etc.) that are in quite good agreement with the empirical predictions of Miedema and Dorleijn. Finally, the chemical inactivity of the Ag-covered Rh surface is associated with the fact that, for that system, the outer-layer local density of states is essentially that of Ag, with a characteristically low value at the Fermi energy. On the other hand, the Pd-covered Rh surface should behave much like clean Rh with an extra electron per surface atom. The surface band dispersions for the Pd-covered and clean Rh surfaces are closely similar. This result contrasts sharply with the case of Pd-covered Nb, for which, because of the appreciable electronegativity difference, the Pd overlayer is effectively ''noble.''

  2. Woody Vegetation Composition and Structure in Peri-urban Chongming Island, China

    Science.gov (United States)

    Zhao, Min; Escobedo, Francisco J.; Wang, Ruijing; Zhou, Qiaolan; Lin, Wenpeng; Gao, Jun

    2013-05-01

    Chongming, the world's largest alluvial island, is located within the municipality of Shanghai, China. Recent projects have now linked peri-urban Chongming to Shanghai's urban core and as a result will soon undergo substantial changes from urbanization. We quantitatively analyzed the structure and composition of woody vegetation across subtropical, peri-urban Chongming as a basis for sustainable management of these rapidly urbanizing subtropical ecosystems elsewhere. We used 178 permanent, random plots to statistically and spatially analyze woody plant composition and tree structure across the 1,041 km2 of Chongming. A total of 2,251 woody plants were measured comprising 42 species in 37 genera. We statistically and geospatially analyzed field data according to land uses and modeled air pollution removal by trees. Average tree diameter at breast height, total height, and crown widths on transportation land uses were greater than other land uses. These same values were lowest on forest land use and greater tree cover was associated with areas of increased anthropogenic activity. Less than 20 % of the woody vegetation was exotic and a species richness index was significantly different between land uses due to legacy effects. Composition of agriculture and forest land uses were similar to residential and transportation. Tree cover across Chongming was also estimated to annually remove 1,400 tons of air pollutants. We propose that this integrated and quantitative method can be used in other subtropical, peri-urban areas in developing countries to establish baseline trends for future sustainability objectives and to monitor the effects of urbanization and climate change.

  3. Floristic and vegetation structure of a grassland plant community on shallow basalt in southern Brazil

    Directory of Open Access Journals (Sweden)

    Marcelo Fett Pinto

    2013-03-01

    Full Text Available Few studies have adequately described the floristic and structural features of natural grasslands associated with shallow basalt soils in southern Brazil. This study was carried out on natural grazing land used for livestock production in the municipality of Santana do Livramento, in the Campanha region of the state of Rio Grande do Sul, Brazil. The aim of the study was to describe the floristic and structural diversity of the area. The floristic list obtained comprises 229 plant taxa from 40 botanical families, with a predominance of the families Poaceae (62, Asteraceae (28, Fabaceae (16 and Cyperaceae (12. The estimated diversity and evenness in the community were 3.00 and 0.874, respectively. Bare soil and rock outcrops accounted for 19.3% of the area, resulting in limited forage availability. Multivariate analysis revealed two well-defined groups among the sampling units. One group showed a high degree of internal aggregation, associated with deep soils, and was characterized by the presence of tussocks, whereas the other was less aggregate and was characterized by prostrate species growing on shallow soil. Ordination analysis indicated a gradient of moisture and of soil depth in the study area, resulting in different vegetation patterns. These patterns were analogous to the vegetation physiognomies described for Uruguayan grasslands. Overall, the grassland community studied is similar to others found throughout southern Brazil, although it harbors more winter forage species. In addition, the rare grass Paspalum indecorum Mez is locally dominant in some patches, behaving similarly to P. notatum Fl., a widespread grass that dominates extensive grassland areas in southern Brazil.

  4. Electronic structure properties of UO2 as a Mott insulator

    Science.gov (United States)

    Sheykhi, Samira; Payami, Mahmoud

    2018-06-01

    In this work using the density functional theory (DFT), we have studied the structural, electronic and magnetic properties of uranium dioxide with antiferromagnetic 1k-, 2k-, and 3k-order structures. Ordinary approximations in DFT, such as the local density approximation (LDA) or generalized gradient approximation (GGA), usually predict incorrect metallic behaviors for this strongly correlated electron system. Using Hubbard term correction for f-electrons, LDA+U method, as well as using the screened Heyd-Scuseria-Ernzerhof (HSE) hybrid functional for the exchange-correlation (XC), we have obtained the correct ground-state behavior as an insulator, with band gaps in good agreement with experiment.

  5. New Insight into Carbon Nanotube Electronic Structure Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL; Jiang, Deen [ORNL

    2009-01-01

    The fundamental role of aryl diazonium salts for post synthesis selectivity of carbon nanotubes is investigated using extensive electronic structure calculations. The resulting understanding for diazonium salt based selective separation of conducting and semiconducting carbon nanotubes shows how the primary contributions come from the interplay between the intrinsic electronic structure of the carbon nanotubes and that of the anion of the salt. We demonstrate how the electronic transport properties change upon the formation of charge transfer complexes and upon their conversion into covalently attached functional groups. Our results are found to correlate well with experiments and provide for the first time an atomistic description for diazonium salt based chemical separation of carbon nanotubes

  6. Electronic structure of the copper oxides

    International Nuclear Information System (INIS)

    Pickett, W.E.; Cohen, R.E.; Singh, D.; Krakauer, H.

    1989-01-01

    Since the discovery of the high temperature superconducting copper oxides a great deal has been learned from experiment about their behavior. From the theoretical side, there continues to be developments both within the band picture and from the model Hamiltonian viewpoint emphasizing correlations. In this paper the authors discuss these complementary viewpoints in relation to some of the experimental data. Due to their background in the band structure area, they approach the discussion by evaluating which phenomena can be (or has been) accounted for by the standard band approach, and point out which properties appear to require more intricate treatments of correlation

  7. Electronic and geometric structures of calcium metaborates

    International Nuclear Information System (INIS)

    Baranovskij, V.I.; Lopatin, S.I.; Sizov, V.V.

    2000-01-01

    Calculations of geometric structure, vibration frequencies, ionization potentials and atomization energies of CaBO 2 and CaB 2 O 4 molecules were made. It is shown that linear conformations of the molecules are the most stable ones. In the metaborates studied calcium atom coordination with oxygen is a monodentate one, meanwhile CaB 2 O 4 can be considered as a Ca 2+ compound, whereas CaBO 2 - as a Ca + compound, which explains similarity of the molecule (from the viewpoint of its geometry, spectral and energy characteristics) to alkaline metal metaborates [ru

  8. Equilibrium and nonequilibrium solvation and solute electronic structure

    International Nuclear Information System (INIS)

    Kim, H.J.; Hynes, J.T.

    1990-01-01

    When a molecular solute is immersed in a polar and polarizable solvent, the electronic wave function of the solute system is altered compared to its vacuum value; the solute electronic structure is thus solvent-dependent. Further, the wave function will be altered depending upon whether the polarization of the solvent is or is not in equilibrium with the solute charge distribution. More precisely, while the solvent electronic polarization should be in equilibrium with the solute electronic wave function, the much more sluggish solvent orientational polarization need not be. We call this last situation non-equilibrium solvation. We outline a nonlinear Schroedinger equation approach to these issues

  9. Rethinking the role of edaphic condition in halophyte vegetation degradation on salt marshes due to coastal defense structure

    Science.gov (United States)

    Xie, Tian; Cui, Baoshan; Bai, Junhong; Li, Shanze; Zhang, Shuyan

    2018-02-01

    Determining how human disturbance affects plant community persistence and species conservation is one of the most pressing ecological challenges. The large-scale disturbance form defense structures usually have a long-term and potential effect on phytocommunity in coastal saltmarshes. Coastal defense structures usually remove the effect of tidal wave on tidal salt marshes. As a consequence, edaphic factors such as the salinity and moisture contents are disturbed by tidal action blocking. However, few previous studies have explicitly addressed the response of halophyte species persistence and dynamics to the changing edaphic conditions. The understanding of the response of species composition in seed banks and aboveground vegetation to the stress is important to identify ecological effect of coastal defense structures and provide usefully insight into restoration. Here, we conducted a field study to distinguish the density, species composition and relationships of seed bank with aboveground vegetation between tidal flat wetlands with and without coastal defense structures. We also addressed the role of edaphic condition in vegetation degradation caused by coastal defense structures in combination with field monitor and greenhouse experiments. Our results showed the density of the seed bank and aboveground vegetation in the tidal flat without coastal defense structures was significantly lower than the surrounded flat with coastal defense structures. A total of 14 species were founded in the surrounded flat seed bank and 11 species in the tidal flat, but three species were only recorded in aboveground vegetation of the tidal flat which was much lower than 24 aboveground species in the surrounded flat. The absent of species in aboveground vegetation contributed to low germination rate which depend on the edaphic condition. The germination of seeds in the seed bank were inhabited by high soil salinity in the tidal flat and low soil moisture in the surrounded flat. Our

  10. Structure and electronic properties of azadirachtin.

    Science.gov (United States)

    de Castro, Elton A S; de Oliveira, Daniel A B; Farias, Sergio A S; Gargano, Ricardo; Martins, João B L

    2014-02-01

    We performed a combined DFT and Monte Carlo (13)C NMR chemical-shift study of azadirachtin A, a triterpenoid that acts as a natural insect antifeedant. A conformational search using a Monte Carlo technique based on the RM1 semiempirical method was carried out in order to establish its preferred structure. The B3LYP/6-311++G(d,p), wB97XD/6-311++G(d,p), M06/6-311++G(d,p), M06-2X/6-311++G(d,p), and CAM-B3LYP/6-311++G(d,p) levels of theory were used to predict NMR chemical shifts. A Monte Carlo population-weighted average spectrum was produced based on the predicted Boltzmann contributions. In general, good agreement between experimental and theoretical data was obtained using both methods, and the (13)C NMR chemical shifts were predicted highly accurately. The geometry was optimized at the semiempirical level and used to calculate the NMR chemical shifts at the DFT level, and these shifts showed only minor deviations from those obtained following structural optimization at the DFT level, and incurred a much lower computational cost. The theoretical ultraviolet spectrum showed a maximum absorption peak that was mainly contributed by the tiglate group.

  11. Structural complexities in the active layers of organic electronics.

    Science.gov (United States)

    Lee, Stephanie S; Loo, Yueh-Lin

    2010-01-01

    The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.

  12. Atomic and electronic structures of divacancy in graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Jun [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Zeng Hui, E-mail: zenghui@yangtzeu.edu.cn [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Wei Jianwei [School of Mathematics and Physics, Chongqing University of Technology, Chongqing 400054 (China)

    2012-01-15

    First principles calculations have been performed to investigate the electronic structures and transport properties of defective graphene nanoribbons (GNRs) in the presence of pentagon-octagon-pentagon (5-8-5) defects. Electronic band structure results reveal that 5-8-5 defects in the defective zigzag graphene nanoribbon (ZGNR) is unfavorable for electronic transport. However, such defects in the defective armchair graphene nanoribbon (AGNR) give rise to smaller band gap than that in the pristine AGNR, and eventually results in semiconductor to metal-like transition. The distinct roles of 5-8-5 defects in two kinds of edged-GNR are attributed to the different coupling between {pi}{sup Low-Asterisk} and {pi} subbands influenced by the defects. Our findings indicate the possibility of a new route to improve the electronic transport properties of graphene nanoribbons via tailoring the atomic structures by ion irradiation.

  13. Electronic structure of a graphene superlattice with massive Dirac fermions

    International Nuclear Information System (INIS)

    Lima, Jonas R. F.

    2015-01-01

    We study the electronic and transport properties of a graphene-based superlattice theoretically by using an effective Dirac equation. The superlattice consists of a periodic potential applied on a single-layer graphene deposited on a substrate that opens an energy gap of 2Δ in its electronic structure. We find that extra Dirac points appear in the electronic band structure under certain conditions, so it is possible to close the gap between the conduction and valence minibands. We show that the energy gap E g can be tuned in the range 0 ≤ E g  ≤ 2Δ by changing the periodic potential. We analyze the low energy electronic structure around the contact points and find that the effective Fermi velocity in very anisotropic and depends on the energy gap. We show that the extra Dirac points obtained here behave differently compared to previously studied systems

  14. Effects of Structural Correlations on Electronic Properties

    International Nuclear Information System (INIS)

    Pastawski, H.M.; Weisz, J.F.

    1984-01-01

    A one dimensional alloy model is treated in the nearest neighbour tight binding approximation in which the correlation of the atoms can be adjusted. The correlation can be changed from a situation in which there is a tendency for atoms to alternate to a situation in which the atoms are randomly located, consistent with a fixed concentration c for A c B 1-c . The results show that when there is short range order, at certain energies there is a tendency for localized states and formation of structure induced minimum in the density of states. The results for the ordered case are similar to those of Charge Density Wave (CDW). A smooth transition is carried out between this case and the randomly disordered case which behaves like the Anderson model for uncorrelated disorder. (M.W.O.) [pt

  15. The surface electronic structure of Y(0001)

    International Nuclear Information System (INIS)

    Searle, C.

    1998-12-01

    Yttrium has been grown epitaxially on W(110). The growth was monitored by using photoemission spectroscopy with a synchrotron radiation source. The film thickness has been gauged by the attenuation of the W 4f 7/2 bulk component. The films have been grown reproducibly and show a prominent surface state which is indicative of good order and low contamination. Angle-Resolved Ultra-Violet Photoemission Spectroscopy has been used to examine the valence band of these ultra-thin films. The films show a very different structure to the valence band of a bulk crystal of yttrium. The differences have been investigated by a series of model calculations using the LMASA-46 tight-binding LMTO program. The calculations suggest that the ultra-thin film surface state may be hybridised with a tungsten orbital having (x 2 - y 2 ) character. (author)

  16. Structural stability, electronic structure and mechanical properties of actinide carbides AnC (An = U, Np)

    International Nuclear Information System (INIS)

    Manikandan, M.; Santhosh, M.; Rajeswarapalanichamy, R.

    2016-01-01

    Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of actinide carbides AnC (An=U, Np) for three different crystal structures, namely NaCl, CsCl and ZnS. Among the considered structures, NaCl structure is found to be the most stable structure for these carbides at normal pressure. A pressure induced structural phase transition from NaCl to ZnS is observed. The electronic structure reveals that these carbides are metals. The calculated elastic constants indicate that these carbides are mechanically stable at normal pressure.

  17. Impact of 3D Canopy Structure on Remote Sensing Vegetation Index and Solar Induced Chlorophyll Fluorescence

    Science.gov (United States)

    Zeng, Y.; Berry, J. A.; Jing, L.; Qinhuo, L.

    2017-12-01

    Terrestrial ecosystem plays a critical role in removing CO2 from atmosphere by photosynthesis. Remote sensing provides a possible way to monitor the Gross Primary Production (GPP) at the global scale. Vegetation Indices (VI), e.g., NDVI and NIRv, and Solar Induced Fluorescence (SIF) have been widely used as a proxy for GPP, while the impact of 3D canopy structure on VI and SIF has not be comprehensively studied yet. In this research, firstly, a unified radiative transfer model for visible/near-infrared reflectance and solar induced chlorophyll fluorescence has been developed based on recollision probability and directional escape probability. Then, the impact of view angles, solar angles, weather conditions, leaf area index, and multi-layer leaf angle distribution (LAD) on VI and SIF has been studied. Results suggest that canopy structure plays a critical role in distorting pixel-scale remote sensing signal from leaf-scale scattering. In thin canopy, LAD affects both of the remote sensing estimated GPP and real GPP, while in dense canopy, SIF variations are mainly due to canopy structure, instead of just due to physiology. At the microscale, leaf angle reflects the plant strategy to light on the photosynthesis efficiency, and at the macroscale, a priori knowledge of leaf angle distribution for specific species can improve the global GPP estimation by remote sensing.

  18. Electronic properties in a quantum well structure of Weyl semimetal

    International Nuclear Information System (INIS)

    You, Wen-Long; Zhou, Jiao-Jiao; Wang, Xue-Feng; Oleś, Andrzej M.

    2016-01-01

    We investigate the confined states and transport of three-dimensional Weyl electrons around a one-dimensional external rectangular electrostatic potential. The confined states with finite transverse wave vector exist at energies higher than the half well depth or lower than the half barrier height. The rectangular potential appears completely transparent to the normal incident electrons but not otherwise. The tunneling transmission coefficient is sensitive to their incident angle and shows resonant peaks when their energy coincides with the confined spectra. In addition, for the electrons in the conduction (valence) band through a potential barrier (well), the transmission spectrum has a gap of width increasing with the incident angle. Interestingly, the electron linear zero-temperature conductance over the potential can approach zero when the Fermi energy is aligned to the top and bottom energies of the potential, when only electron beams normal to the potential interfaces can pass through. The considered structure can be used to collimate the Weyl electron beams.

  19. Effect of electron emission on an ion sheath structure

    International Nuclear Information System (INIS)

    Mishra, M K; Phukan, A; Chakraborty, M

    2014-01-01

    This article reports on the variations of ion sheath structures due to the emission of both hot and cold electrons in the target plasma region of a double plasma device. The ion sheath is produced in front of a negatively biased plate. The plasma is produced by hot filament discharge in the source region, and no discharge is created in the target region of the device. The plate is placed in the target (diffused plasma) region where cold electron emitting filaments are present. These cold electrons are free from maintenance of discharge, which is sustained in the source region. The hot ionizing electrons are present in the source region. Three important parameters are changed by both hot and cold electrons i.e. plasma density, plasma potential and electron temperature. The decrease in plasma potential and the increase in plasma density lead to the contraction of the sheath. (paper)

  20. Impact of communal land use and conservation on woody vegetation structure in the Lowveld savannas of South Africa

    CSIR Research Space (South Africa)

    Wessels, Konrad J

    2011-01-01

    Full Text Available @yahoo.co 0378-1127/ doi Please cite this article in press as: Wessels, K.J., et al., Impact of communal land use and conservation on woody vegetation structure in the Lowveld savannas of South Africa. Forest Ecol. Manage. (2010), doi:10.1016/j.foreco.2010....09.012 d in revised form 24 August 2010 d 7 September 2010 y words: R l land use r National Park y vegetation structure l wood a Using airborne LiDAR from the Carnegie Airborne Observatory (CAO), we quantified and compared tree canopy cover...

  1. Structure Identification in High-Resolution Transmission Electron Microscopic Images

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Kling, Jens; Dahl, Anders Bjorholm

    2014-01-01

    A connection between microscopic structure and macroscopic properties is expected for almost all material systems. High-resolution transmission electron microscopy is a technique offering insight into the atomic structure, but the analysis of large image series can be time consuming. The present ...

  2. Electronic and chemical properties of graphene-based structures:

    DEFF Research Database (Denmark)

    Vanin, Marco

    In the present thesis several aspects of graphene-based structures have been investigated using density functional theory calculations to solve the electronic structure problem. A review of the implementation of a localized basis-set within the projector augmented wave method - the way of describ...... are attractive candidates although issues regarding the poisoning of the active site remain to be addressed....

  3. Electronic structure of palladium and its relation to uv spectroscopy

    DEFF Research Database (Denmark)

    Christensen, N.E.

    1976-01-01

    The electronic-energy-band structure of palladium has been calculated by means of the relativistic augmented-plane-wave method covering energies up to 30 eV above the Fermi level. The optical interband transitions producing structure in the dielectric function up to photon energies of 25 eV have ...

  4. The electron irradiation effects in different structures of diodes

    International Nuclear Information System (INIS)

    Li Quanfen; Wang Jiaxu

    1993-01-01

    This paper describes the different electron irradiation effects in different structures of diodes and the different results produced by different irradiation ways. From this work, we can know how to choose proper manufacture arts and comprehensive factors according to the structures of diodes and the irradiation conditions

  5. Electron vortex magnetic holes: A nonlinear coherent plasma structure

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Christopher T., E-mail: c.t.haynes@qmul.ac.uk; Burgess, David; Sundberg, Torbjorn [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Camporeale, Enrico [Multiscale Dynamics, Centrum Wiskunde and Informatica (CWI), Amsterdam (Netherlands)

    2015-01-15

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is some initial perpendicular temperature anisotropy at the structure location. The properties of these structures (scale size, trapped population, etc.) are able to explain the observed properties of magnetic holes in the terrestrial plasma sheet. EVMHs may also contribute to turbulence properties, such as intermittency, at short scale lengths in other astrophysical plasmas.

  6. Chemical modulation of electronic structure at the excited state

    Science.gov (United States)

    Li, F.; Song, C.; Gu, Y. D.; Saleem, M. S.; Pan, F.

    2017-12-01

    Spin-polarized electronic structures are the cornerstone of spintronics, and have thus attracted a significant amount of interest; in particular, researchers are looking into how to modulate the electronic structure to enable multifunctional spintronics applications, especially in half-metallic systems. However, the control of the spin polarization has only been predicted in limited two-dimensional systems with spin-polarized Dirac structures and is difficult to achieve experimentally. Here, we report the modulation of the electronic structure in the light-induced excited state in a typical half-metal, L a1 /2S r1 /2Mn O3 -δ . According to the spin-transport measurements, there appears a light-induced increase in magnetoresistance due to the enhanced spin scattering, which is closely associated with the excited spin polarization. Strikingly, the light-induced variation can be enhanced via alcohol processing and reduced by oxygen annealing. X-ray photoelectron spectroscopy measurements show that in the chemical process, a redox reaction occurs with a change in the valence of Mn. Furthermore, first-principles calculations reveal that the change in the valence of Mn alters the electronic structure and consequently modulates the spin polarization in the excited state. Our findings thus report a chemically tunable electronic structure, demonstrating interesting physics and the potential for multifunctional applications and ultrafast spintronics.

  7. Orbital approach to the electronic structure of solids

    CERN Document Server

    Canadell, Enric; Iung, Christophe

    2012-01-01

    This book provides an intuitive yet sound understanding of how structure and properties of solids may be related. The natural link is provided by the band theory approach to the electronic structure of solids. The chemically insightful concept of orbital interaction and the essential machinery of band theory are used throughout the book to build links between the crystal and electronic structure of periodic systems. In such a way, it is shown how important tools for understandingproperties of solids like the density of states, the Fermi surface etc. can be qualitatively sketched and used to ei

  8. Design Considerations for Optimized Lateral Spring Structures for Wearable Electronics

    KAUST Repository

    Hussain, Aftab M.

    2016-03-07

    The market for wearable electronics has been gaining momentum in the recent years. For completely electronic wearable textiles with integrated sensors, actuators, computing units and communication circuitry, it is important that there is significant stretchability. This stretchability can be obtained by introducing periodic stretchable structures between the electronic circuits. In this work, we derive the equations and constraints governing the stretchability in horseshoe lateral spring structures. We have derived the optimum design and the parameters therein, to help develop the best spring structures for a given stretchability. We have also developed a figure of merit, called area efficiency of stretchability, to compare all twodimensional stretchable systems. Finally, we experimentally verify the validity of our equations by fabricating a metal/polymer bilayer thin film based stretchable horseshoe lateral spring structures. We obtain a stretchability of 1.875 which is comparable to the theoretical maxima of 2.01 for the given parameters.

  9. Design Considerations for Optimized Lateral Spring Structures for Wearable Electronics

    KAUST Repository

    Hussain, Aftab M.; Hussain, Muhammad Mustafa

    2016-01-01

    The market for wearable electronics has been gaining momentum in the recent years. For completely electronic wearable textiles with integrated sensors, actuators, computing units and communication circuitry, it is important that there is significant stretchability. This stretchability can be obtained by introducing periodic stretchable structures between the electronic circuits. In this work, we derive the equations and constraints governing the stretchability in horseshoe lateral spring structures. We have derived the optimum design and the parameters therein, to help develop the best spring structures for a given stretchability. We have also developed a figure of merit, called area efficiency of stretchability, to compare all twodimensional stretchable systems. Finally, we experimentally verify the validity of our equations by fabricating a metal/polymer bilayer thin film based stretchable horseshoe lateral spring structures. We obtain a stretchability of 1.875 which is comparable to the theoretical maxima of 2.01 for the given parameters.

  10. Studies on electronic structure of GaN(0001) surface

    CERN Document Server

    Xie Chang Kun; Xu Fa Qiang; Deng Rui; Liu Feng; Yibulaxin, K

    2002-01-01

    An electronic structure investigation on GaN(0001) is reported. The authors employ a full-potential linearized augmented plane-wave (FPLAPW) approach to calculate the partial density of state, which is in agreement with previous experimental results. The effects of the Ga3d semi-core levels on the electronic structure of GaN are discussed. The valence-electronic structure of the wurtzite GaN(0001) surface is investigated using synchrotron radiation excited angle-resolved photoemission spectroscopy. The bulk bands dispersion along GAMMA A direction in the Brillouin zones is measured using normal-emission spectra by changing photon-energy. The band structure derived from authors' experimental data is compared well with the results of authors' FPLAPW calculation. Furthermore, off-normal emission spectra are also measured along the GAMMA K and GAMMA M directions. Two surface states are identified, and their dispersions are characterized

  11. Electronic structure of the high-temperature oxide superconductors

    International Nuclear Information System (INIS)

    Pickett, W.E.

    1989-01-01

    Since the discovery of superconductivity above 30 K by Bednorz and Mueller in the La copper oxide system, the critical temperature has been raised to 90 K in YBa 2 Cu 3 O 7 and to 110 and 125 K in Bi-based and Tl-based copper oxides, respectively. In the two years since this Nobel-prize-winning discovery, a large number of electronic structure calculations have been carried out as a first step in understanding the electronic properties of these materials. In this paper these calculations (mostly of the density-functional type) are gathered and reviewed, and their results are compared with the relevant experimental data. The picture that emerges is one in which the important electronic states are dominated by the copper d and oxygen p orbitals, with strong hybridization between them. Photon, electron, and positron spectroscopies provide important information about the electronic states, and comparison with electronic structure calculations indicates that, while many features can be interpreted in terms of existing calculations, self-energy corrections (''correlations'') are important for a more detailed understanding. The antiferromagnetism that occurs in some regions of the phase diagram poses a particularly challenging problem for any detailed theory. The study of structural stability, lattice dynamics, and electron-phonon coupling in the copper oxides is also discussed. Finally, a brief review is given of the attempts so far to identify interaction constants appropriate for a model Hamiltonian treatment of many-body interactions in these materials

  12. Standardized structure of electronic records for information exchange

    International Nuclear Information System (INIS)

    Galabova, Sevdalina; Trencheva, Tereza; Trenchev, Ivan

    2009-01-01

    In the paper is presented the structure of the electronic record whose form is standardized in ISO 2709:2008. This International Standard describes a generalized structure, a framework designed specially for communications between data processing systems and not for use as a processing format within systems.Basic terms are defined as follows: character, data field, directory, directory map, field, field separator etc. It’s presented the general structure of a record. The application analysis of this structure shows the effective information exchange in the widest range.The purpose of this research is to find out advantages and structure of the information exchange format standardized in ISO 2709:2008. Key words: Standardized structure, electronic records, exchange formats, data field, directory, directory map, indicators, identifiers

  13. The stabilities and electron structures of Al-Mg clusters with 18 and 20 valence electrons

    Science.gov (United States)

    Yang, Huihui; Chen, Hongshan

    2017-07-01

    The spherical jellium model predicts that metal clusters having 18 and 20 valence electrons correspond to the magic numbers and will show specific stabilities. We explore in detail the geometric structures, stabilities and electronic structures of Al-Mg clusters containing 18 and 20 valence electrons by using genetic algorithm combined with density functional theories. The stabilities of the clusters are governed by the electronic configurations and Mg/Al ratios. The clusters with lower Mg/Al ratios are more stable. The molecular orbitals accord with the shell structures predicted by the jellium model but the 2S level interweaves with the 1D levels and the 2S and 1D orbitals form a subgroup. The clusters having 20 valence electrons form closed 1S21P61D102S2 shells and show enhanced stability. The Al-Mg clusters with a valence electron count of 18 do not form closed shells because one 1D orbital is unoccupied. The ionization potential and electron affinity are closely related to the electronic configurations; their values are determined by the subgroups the HOMO or LUMO belong to. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-80042-9

  14. Spatially dependent biotic and abiotic factors drive survivorship and physical structure of green roof vegetation.

    Science.gov (United States)

    Aloisio, Jason M; Palmer, Matthew I; Giampieri, Mario A; Tuininga, Amy R; Lewis, James D

    2017-01-01

    Plant survivorship depends on biotic and abiotic factors that vary at local and regional scales. This survivorship, in turn, has cascading effects on community composition and the physical structure of vegetation. Survivorship of native plant species is variable among populations planted in environmentally stressful habitats like urban roofs, but the degree to which factors at different spatial scales affect survivorship in urban systems is not well understood. We evaluated the effects of biotic and abiotic factors on survivorship, composition, and physical structure of two native perennial species assemblages, one characterized by a mixture of C 4 grasses and forbs (Hempstead Plains, HP) and one characterized by a mixture of C 3 grasses and forbs (Rocky Summit, RS), that were initially sown at equal ratios of growth forms (5:1:4; grass, N-fixing forb and non-N-fixing forb) in replicate 2-m 2 plots planted on 10 roofs in New York City (New York, USA). Of 24 000 installed plants, 40% survived 23 months after planting. Within-roof factors explained 71% of variation in survivorship, with biotic (species identity and assemblage) factors accounting for 54% of the overall variation, and abiotic (growing medium depth and plot location) factors explaining 17% of the variation. Among-roof factors explained 29% of variation in survivorship and increased solar radiation correlated with decreased survivorship. While growing medium properties (pH, nutrients, metals) differed among roofs there was no correlation with survivorship. Percent cover and sward height increased with increasing survivorship. At low survivorship, cover of the HP assemblage was greater compared to the RS assemblage. Sward height of the HP assemblage was about two times greater compared to the RS assemblage. These results highlight the effects of local biotic and regional abiotic drivers on community composition and physical structure of green roof vegetation. As a result, initial green roof plant

  15. Multiple Scales of Control on the Structure and Spatial Distribution of Woody Vegetation in African Savanna Watersheds.

    Directory of Open Access Journals (Sweden)

    Nicholas R Vaughn

    Full Text Available Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50-450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques.

  16. Modeling of the atomic and electronic structures of interfaces

    International Nuclear Information System (INIS)

    Sutton, A.P.

    1988-01-01

    Recent tight binding and Car-Parrinello simulations of grain boundaries in semiconductors are reviewed. A critique is given of some models of embrittlement that are based on electronic structure considerations. The structural unit model of grain boundary structure is critically assessed using some results for mixed tilt and twist grain boundaries. A new method of characterizing interfacial structure in terms of bond angle distribution functions is described. A new formulation of thermodynamic properties of interfaces is presented which focusses on the local atomic environment. Effective, temperature dependent N-body atomic interactions are derived for studying grain boundary structure at elevated temperature

  17. Deer herbivory reduces web-building spider abundance by simplifying forest vegetation structure

    Directory of Open Access Journals (Sweden)

    Elizabeth J. Roberson

    2016-09-01

    Full Text Available Indirect ecological effects are a common feature of ecological systems, arising when one species affects interactions among two or more other species. We examined how browsing by white-tailed deer (Odocoileus virginianus indirectly affected the abundance and composition of a web-building spider guild through their effects on the structure of the ground and shrub layers of northern hardwood forests. We examined paired plots consisting of deer-free and control plots in the Allegheny Plateau region Pennsylvania and Northern Highlands region of Wisconsin. We recorded the abundance of seven types of webs, each corresponding to a family of web-building spiders. We quantified vegetation structure and habitat suitability for the spiders by computing a web scaffold availability index (WSAI at 0.5 m and 1.0 m above the ground. At Northern Highlands sites, we recorded prey availability. Spider webs were twice as abundant in deer-free plots compared to control plots, while WSAI was 7–12 times greater in deerfree plots. Prey availability was lower in deer-free plots. With the exception of funnel web-builders, all spider web types were significantly more abundant in deer-free plots. Both deer exclusion and the geographic region of plots were significant predictors of spider community structure. In closed canopy forests with high browsing pressure, the low density of tree saplings and shrubs provides few locations for web-building spiders to anchor webs. Recruitment of these spiders may become coupled with forest disturbance events that increase tree and shrub recruitment. By modifying habitat structure, deer appear to indirectly modify arthropod food web interactions. As deer populations have increased in eastern North America over the past several decades, the effects of deer on web-building spiders may be widespread.

  18. Extremely large magnetoresistance and electronic structure of TmSb

    Science.gov (United States)

    Wang, Yi-Yan; Zhang, Hongyun; Lu, Xiao-Qin; Sun, Lin-Lin; Xu, Sheng; Lu, Zhong-Yi; Liu, Kai; Zhou, Shuyun; Xia, Tian-Long

    2018-02-01

    We report the magnetotransport properties and the electronic structure of TmSb. TmSb exhibits extremely large transverse magnetoresistance and Shubnikov-de Haas (SdH) oscillation at low temperature and high magnetic field. Interestingly, the split of Fermi surfaces induced by the nonsymmetric spin-orbit interaction has been observed from SdH oscillation. The analysis of the angle-dependent SdH oscillation illustrates the contribution of each Fermi surface to the conductivity. The electronic structure revealed by angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations demonstrates a gap at the X point and the absence of band inversion. Combined with the trivial Berry phase extracted from SdH oscillation and the nearly equal concentrations of electron and hole from Hall measurements, it is suggested that TmSb is a topologically trivial semimetal and the observed XMR originates from the electron-hole compensation and high mobility.

  19. Assessing vegetation structure and ANPP dynamics in a grassland-shrubland Chihuahuan ecotone using NDVI-rainfall relationships

    Science.gov (United States)

    Moreno-de las Heras, M.; Diaz-Sierra, R.; Turnbull, L.; Wainwright, J.

    2015-01-01

    Climate change and the widespread alteration of natural habitats are major drivers of vegetation change in drylands. A classic case of vegetation change is the shrub-encroachment process that has been taking place over the last 150 years in the Chihuahuan Desert, where large areas of grasslands dominated by perennial grass species (black grama, Bouteloua eriopoda, and blue grama, B. gracilis) have transitioned to shrublands dominated by woody species (creosotebush, Larrea tridentata, and mesquite, Prosopis glandulosa), accompanied by accelerated water and wind erosion. Multiple mechanisms drive the shrub-encroachment process, including exogenous triggering factors such as precipitation variations and land-use change, and endogenous amplifying mechanisms brought about by soil erosion-vegetation feedbacks. In this study, simulations of plant biomass dynamics with a simple modelling framework indicate that herbaceous (grasses and forbs) and shrub vegetation in drylands have different responses to antecedent precipitation due to functional differences in plant growth and water-use patterns, and therefore shrub encroachment may be reflected in the analysis of landscape-scale vegetation-rainfall relationships. We analyze the structure and dynamics of vegetation at an 18 km2 grassland-shrubland ecotone in the northern edge of the Chihuahuan Desert (McKenzie Flats, Sevilleta National Wildlife Refuge, NM, USA) by investigating the relationship between decade-scale (2000-2013) records of medium-resolution remote sensing of vegetation greenness (MODIS NDVI) and precipitation. Spatial evaluation of NDVI-rainfall relationship at the studied ecotone indicates that herbaceous vegetation shows quick growth pulses associated with short-term (previous 2 months) precipitation, while shrubs show a slow response to medium-term (previous 5 months) precipitation. We use these relationships to (a) classify landscape types as a function of the spatial distribution of dominant vegetation

  20. Vegetation Structure and Carbon Stocks of Two Protected Areas within the South-Sudanian Savannas of Burkina Faso

    Directory of Open Access Journals (Sweden)

    Mohammad Qasim

    2016-09-01

    Full Text Available Savannas and adjacent vegetation types like gallery forests are highly valuable ecosystems contributing to several ecosystem services including carbon budgeting. Financial mechanisms such as REDD+ (Reduced Emissions from Deforestation and Forest Degradation can provide an opportunity for developing countries to alleviate poverty through conservation of its forestry resources. However, for availing such opportunities carbon stock assessments are essential. Therefore, a research study for this purpose was conducted at two protected areas (Nazinga Game Ranch and Bontioli Nature Reserve in Burkina Faso. Similarly, analysis of various vegetation parameters was also conducted to understand the overall vegetation structure of these two protected areas. For estimating above ground biomass, existing allometric equations for dry tropical woody vegetation types were used. Compositional structure was described by applying tree species and family importance indices. The results show that both sites collectively contain a mean carbon stock of 3.41 ± 4.98 Mg·C·ha−1. Among different savanna vegetation types, gallery forests recorded the highest mean carbon stock of 9.38 ± 6.90 Mg·C·ha−1. This study was an attempt at addressing the knowledge gap particularly on carbon stocks of protected savannas—it can serve as a baseline for carbon stocks for future initiatives such as REDD+ within these areas.

  1. Remote Sensing of Sonoran Desert Vegetation Structure and Phenology with Ground-Based LiDAR

    Directory of Open Access Journals (Sweden)

    Joel B. Sankey

    2014-12-01

    Full Text Available Long-term vegetation monitoring efforts have become increasingly important for understanding ecosystem response to global change. Many traditional methods for monitoring can be infrequent and limited in scope. Ground-based LiDAR is one remote sensing method that offers a clear advancement to monitor vegetation dynamics at high spatial and temporal resolution. We determined the effectiveness of LiDAR to detect intra-annual variability in vegetation structure at a long-term Sonoran Desert monitoring plot dominated by cacti, deciduous and evergreen shrubs. Monthly repeat LiDAR scans of perennial plant canopies over the course of one year had high precision. LiDAR measurements of canopy height and area were accurate with respect to total station survey measurements of individual plants. We found an increase in the number of LiDAR vegetation returns following the wet North American Monsoon season. This intra-annual variability in vegetation structure detected by LiDAR was attributable to a drought deciduous shrub Ambrosia deltoidea, whereas the evergreen shrub Larrea tridentata and cactus Opuntia engelmannii had low variability. Benefits of using LiDAR over traditional methods to census desert plants are more rapid, consistent, and cost-effective data acquisition in a high-resolution, 3-dimensional context. We conclude that repeat LiDAR measurements can be an effective method for documenting ecosystem response to desert climatology and drought over short time intervals and at detailed-local spatial scale.

  2. Electronic Structure of Large-Scale Graphene Nanoflakes

    OpenAIRE

    Hu, Wei; Lin, Lin; Yang, Chao; Yang, Jinlong

    2014-01-01

    With the help of the recently developed SIESTA-PEXSI method [J. Phys.: Condens. Matter \\textbf{26}, 305503 (2014)], we perform Kohn-Sham density functional theory (DFT) calculations to study the stability and electronic structure of hexagonal graphene nanoflakes (GNFs) with up to 11,700 atoms. We find the electronic properties of GNFs, including their cohesive energy, HOMO-LUMO energy gap, edge states and aromaticity, depend sensitively on the type of edges (ACGNFs and ZZGNFs), size and the n...

  3. The freezing and thawing of water in poultry meat and vegetables irradiated by electrons at doses of 0.1-4 kGy

    International Nuclear Information System (INIS)

    Dubini, B.; Montecchia, F.; Ponzi-Bossi, M.G.; Messina, G.

    1993-01-01

    Poultry meat and some vegetables, irradiated by 5 MeV electrons (0.1-4 kGy), were analysed by differential scanning calorimetry, from 24 h after irradiation. The temperature and enthalpy transitions of the water contained in the irradiated samples were measured and compared with those of unirradiated samples. The authors analysed 18 meat and 10 vegetable samples for each irradiation dose together with a similar number of unirradiated controls. The mean supercooling temperatures of water in the irradiated poultry meat samples and in some vegetables are significantly lower than those of controls. Moreover, the freezing enthalpies of the irradiated poultry breast are significantly lower than those of controls, while they are unchanged in the other cases. The mean ice melting temperatures and enthalpies are similar for all samples. The amount of the lowering of the water-ice transition depends on the nature of the sample and is highest in poultry breast and lowest in vegetables. (author)

  4. Human enamel structure studied by high resolution electron microscopy

    International Nuclear Information System (INIS)

    Wen, S.L.

    1989-01-01

    Human enamel structural features are characterized by high resolution electron microscopy. The human enamel consists of polycrystals with a structure similar to Ca10(PO4)6(OH)2. This article describes the structural features of human enamel crystal at atomic and nanometer level. Besides the structural description, a great number of high resolution images are included. Research into the carious process in human enamel is very important for human beings. This article firstly describes the initiation of caries in enamel crystal at atomic and unit-cell level and secondly describes the further steps of caries with structural and chemical demineralization. The demineralization in fact, is the origin of caries in human enamel. The remineralization of carious areas in human enamel has drawn more and more attention as its potential application is realized. This process has been revealed by high resolution electron microscopy in detail in this article. On the other hand, the radiation effects on the structure of human enamel are also characterized by high resolution electron microscopy. In order to reveal this phenomenon clearly, a great number of electron micrographs have been shown, and a physical mechanism is proposed. 26 references

  5. Study of electronic and structural properties of CaS

    International Nuclear Information System (INIS)

    Mirfenderski, M.; Akbarzdeh, H.; Mokhtari, A.

    2003-01-01

    The electronic and structural properties of CaS are calculated using full potential linearized augmented plane wave method within the local density approximation and generalized gradient approximation for the exchange -correlation energy. For both structures, NaCl structure (B1) and CsCl structure (B2), the obtained values for lattice parameters, bulk modulus and its pressure derivative and transition pressure are in reasonable agreement with the experimental values. For electronic properties, the obtained value for band gap is smaller than the experimental value as well as other calculated results based on density functional theory. Engel and Vosko calculated an exchange potential for some atoms within the so-called optimize-potential model and then used the virial relation and constructed a new exchange-correlation functional. We used that functional and obtained reasonable results for band gap. Finally we investigated the possibility for a third phase ( Zinc Blend structure) for this crystal

  6. Ceramic materials on perovskite-type structure for electronic applications

    International Nuclear Information System (INIS)

    Surowiak, Z.

    2003-01-01

    Ceramic materials exhibiting the perovskite-type structure constitute among others, resource base for many fields of widely understood electronics (i.e., piezoelectronics, accustoelectronics, optoelectronics, computer science, tele- and radioelectronics etc.). Most often they are used for fabrication of different type sensors (detectors), transducers, ferroelectric memories, limiters of the electronic current intensity, etc., and hence they are numbered among so-called intelligent materials. Prototype structure of this group of materials is the structure of the mineral called perovskite (CaTiO 3 ). By means of right choice of the chemical composition of ABO 3 and deforming the regular perovskite structure (m3m) more than 5000 different chemical compounds and solid solutions exhibiting the perovskite-type structure have been fabricated. The concept of perovskite functional ceramics among often things ferroelectric ceramics, pyroelectric ceramics, piezoelectric ceramics, electrostrictive ceramics, posistor ceramics, superconductive ceramics and ferromagnetic ceramics. New possibilities of application of the perovskite-type ceramics are opened by nanotechnology. (author)

  7. Electron confinement in thin metal films. Structure, morphology and interactions

    Energy Technology Data Exchange (ETDEWEB)

    Dil, J.H.

    2006-05-15

    This thesis investigates the interplay between reduced dimensionality, electronic structure, and interface effects in ultrathin metal layers (Pb, In, Al) on a variety of substrates (Si, Cu, graphite). These layers can be grown with such a perfection that electron confinement in the direction normal to the film leads to the occurrence of quantum well states in their valence bands. These quantum well states are studied in detail, and their behaviour with film thickness, on different substrates, and other parameters of growth are used here to characterise a variety of physical properties of such nanoscale systems. The sections of the thesis deal with a determination of quantum well state energies for a large data set on different systems, the interplay between film morphology and electronic structure, and the influence of substrate electronic structure on their band shape; finally, new ground is broken by demonstrating electron localization and correlation effects, and the possibility to measure the influence of electron-phonon coupling in bulk bands. (orig.)

  8. Atomic and electronic structure of exfoliated black phosphorus

    International Nuclear Information System (INIS)

    Wu, Ryan J.; Topsakal, Mehmet; Jeong, Jong Seok; Wentzcovitch, Renata M.; Mkhoyan, K. Andre; Low, Tony; Robbins, Matthew C.; Haratipour, Nazila; Koester, Steven J.

    2015-01-01

    Black phosphorus, a layered two-dimensional crystal with tunable electronic properties and high hole mobility, is quickly emerging as a promising candidate for future electronic and photonic devices. Although theoretical studies using ab initio calculations have tried to predict its atomic and electronic structure, uncertainty in its fundamental properties due to a lack of clear experimental evidence continues to stymie our full understanding and application of this novel material. In this work, aberration-corrected scanning transmission electron microscopy and ab initio calculations are used to study the crystal structure of few-layer black phosphorus. Directly interpretable annular dark-field images provide a three-dimensional atomic-resolution view of this layered material in which its stacking order and all three lattice parameters can be unambiguously identified. In addition, electron energy-loss spectroscopy (EELS) is used to measure the conduction band density of states of black phosphorus, which agrees well with the results of density functional theory calculations performed for the experimentally determined crystal. Furthermore, experimental EELS measurements of interband transitions and surface plasmon excitations are also consistent with simulated results. Finally, the effects of oxidation on both the atomic and electronic structure of black phosphorus are analyzed to explain observed device degradation. The transformation of black phosphorus into amorphous PO 3 or H 3 PO 3 during oxidation may ultimately be responsible for the degradation of devices exposed to atmosphere over time

  9. Atomic and electronic structure of exfoliated black phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ryan J.; Topsakal, Mehmet; Jeong, Jong Seok; Wentzcovitch, Renata M.; Mkhoyan, K. Andre, E-mail: mkhoyan@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Low, Tony; Robbins, Matthew C.; Haratipour, Nazila; Koester, Steven J. [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-11-15

    Black phosphorus, a layered two-dimensional crystal with tunable electronic properties and high hole mobility, is quickly emerging as a promising candidate for future electronic and photonic devices. Although theoretical studies using ab initio calculations have tried to predict its atomic and electronic structure, uncertainty in its fundamental properties due to a lack of clear experimental evidence continues to stymie our full understanding and application of this novel material. In this work, aberration-corrected scanning transmission electron microscopy and ab initio calculations are used to study the crystal structure of few-layer black phosphorus. Directly interpretable annular dark-field images provide a three-dimensional atomic-resolution view of this layered material in which its stacking order and all three lattice parameters can be unambiguously identified. In addition, electron energy-loss spectroscopy (EELS) is used to measure the conduction band density of states of black phosphorus, which agrees well with the results of density functional theory calculations performed for the experimentally determined crystal. Furthermore, experimental EELS measurements of interband transitions and surface plasmon excitations are also consistent with simulated results. Finally, the effects of oxidation on both the atomic and electronic structure of black phosphorus are analyzed to explain observed device degradation. The transformation of black phosphorus into amorphous PO{sub 3} or H{sub 3}PO{sub 3} during oxidation may ultimately be responsible for the degradation of devices exposed to atmosphere over time.

  10. Momentum space analysis of the electronic structure of biphenyl

    International Nuclear Information System (INIS)

    Morini, F; Shojaei, S H Reza; Deleuze, M S

    2014-01-01

    The results of a yet to come experimental study of the electronic structure of biphenyl employing electron momentum spectroscopy (EMS) have been theoretically predicted, taking into account complications such as structural mobility in the electronic ground state, electronic correlation and relaxation, and a dispersion of the inner-valence ionization intensity to electronically excited (shake-up) configurations in the cation. The main purpose of this work is to explore the current limits of EMS in unraveling details of the molecular structure, namely the torsional characteristics of large and floppy aromatic molecules. At the benchmark ADC(3)/cc-pVDZ level of theory, the influence of the twist angle between the two phenyl rings is found to be extremely limited, except for individual orbital momentum profiles corresponding to ionization lines at electron binding energies ranging from 15 to 18 eV. When taking band overlap effects into account, this influence is deceptively far too limited to allow for any experimental determination of the torsional characteristics of biphenyl by means of EMS. (paper)

  11. Quasiparticle GW calculations within the GPAW electronic structure code

    DEFF Research Database (Denmark)

    Hüser, Falco

    The GPAW electronic structure code, developed at the physics department at the Technical University of Denmark, is used today by researchers all over the world to model the structural, electronic, optical and chemical properties of materials. They address fundamental questions in material science...... and use their knowledge to design new materials for a vast range of applications. Todays hottest topics are, amongst many others, better materials for energy conversion (e.g. solar cells), energy storage (batteries) and catalysts for the removal of environmentally dangerous exhausts. The mentioned...... properties are to a large extent governed by the physics on the atomic scale, that means pure quantum mechanics. For many decades, Density Functional Theory has been the computational method of choice, since it provides a fairly easy and yet accurate way of determining electronic structures and related...

  12. A multipole acceptability criterion for electronic structure theory

    International Nuclear Information System (INIS)

    Schwegler, E.; Challacombe, M.; Head-Gordon, M.

    1998-01-01

    Accurate and computationally inexpensive estimates of multipole expansion errors are crucial to the success of several fast electronic structure methods. In this paper, a new nonempirical multipole acceptability criterion is described that is directly applicable to expansions of high order moments. Several model calculations typical of electronic structure theory are presented to demonstrate its performance. For cases involving small translation distances, accuracies are increased by up to five orders of magnitude over an empirical criterion. The new multipole acceptance criterion is on average within an order of magnitude of the exact expansion error. Use of the multipole acceptance criterion in hierarchical multipole based methods as well as in traditional electronic structure methods is discussed. copyright 1998 American Institute of Physics

  13. Structural and electronic properties of L-amino acids

    Science.gov (United States)

    Tulip, P. R.; Clark, S. J.

    2005-05-01

    The structural and electronic properties of four L-amino acids alanine, leucine, isoleucine, and valine have been investigated using density functional theory (DFT) and the generalized gradient approximation. Within the crystals, it is found that the constituent molecules adopt zwitterionic configurations, in agreement with experimental work. Lattice constants are found to be in good agreement with experimentally determined values, although certain discrepancies do exist due to the description of van der Waals interactions. We find that these materials possess wide DFT band gaps in the region of 5 eV, with electrons highly localized to the constituent molecules. It is found that the main mechanisms behind crystal formation are dipolar interactions and hydrogen bonding of a primarily electrostatic character, in agreement with current biochemical understanding of these systems. The electronic structure suggests that the amine and carboxy functional groups are dominant in determining band structure.

  14. Electron transfer reactions in structural units of copper proteins

    International Nuclear Information System (INIS)

    Faraggi, M.

    1975-01-01

    In previous pulse radiolysis studies it was suggested that the reduction of the Cu(II) ions in copper proteins by the hydrated electron is a multi-step electron migration process. The technique has been extended to investigate the reduction of some structural units of these proteins. These studies include: the reaction of the hydrated electron with peptides, the reaction of the disulphide bridge with formate radical ion and radicals produced by the reduction of peptides, and the reaction of Cu(II)-peptide complex with esub(aq)sup(-) and CO 2 - . Using these results the reduction mechanism of copper and other proteins will be discussed. (author)

  15. Electronic structure of deep impurity centers in silicon

    International Nuclear Information System (INIS)

    Oosten, A.B. van.

    1989-01-01

    This thesis reports an experimental study of deep level impurity centers in silicon, with much attention for theoretical interpretation of the data. A detailed picture of the electronic structure of several centers was obtained by magnetic resonance techniques, such as electron paramagnetic resonance (EPR), electron-nuclear double resonance (ENDOR) and field scanned ENDOR (FSE). The thesis consists of two parts. The first part deals with chalcogen (sulfur, selenium and tellurium) related impurities, which are mostly double donors. The second part is about late transition metal (nickel, palladium and platinum) impurities, which are single (Pd,Pt) or double (Ni) acceptor centers. (author). 155 refs.; 51 figs.; 23 tabs

  16. Arid landscape dynamics along a precipitation gradient: addressing vegetation - landscape structure - resource interactions at different time scales

    NARCIS (Netherlands)

    Buis, E.

    2008-01-01

    This research is entitled ‘Arid landscape dynamics along a precipitation gradient: addressing
    vegetation – landscape structure – resource interactions at different time scales’ with as subtitle
    ‘A case study for the Northern Negev Desert of Israel’. Landscape dynamics describes the

  17. Characterization and classification of vegetation canopy structure and distribution within the Great Smoky Mountains National Park using LiDAR

    Science.gov (United States)

    Jitendra Kumar; Jon Weiner; William W. Hargrove; Steve Norman; Forrest M. Hoffman; Doug Newcomb

    2016-01-01

    Vegetation canopy structure is a critically important habitat characteristic for many threatened and endangered birds and other animal species, and it is key information needed by forest and wildlife managers for monitoring and managing forest resources, conservation planning and fostering biodiversity. Advances in Light Detection and Ranging (LiDAR) technologies have...

  18. Effect of vegetation structure on breeding territory selection by red-winged blackbirds in a floodplain forest restoration project

    Science.gov (United States)

    Maria A. Furey; Dirk E. Burhans; Hong He; Michael A. Gold; Bruce E. Cutter

    2003-01-01

    Our research investigates the role of vegetation structure in the selection of breeding territories by red-winged blackbirds (Agelaius phoeniceus) in two floodplain oak-restoration sites. Perches are used extensively by red-winged blackbirds in territorial display during the spring (Yasukawa and Searcy 1995). We hypothesized that breeding territory...

  19. Photoelectron spectra and electronic structure of some spiroborate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Vovna, V.I.; Tikhonov, S.A.; Lvov, I.B., E-mail: lvov.ib@dvfu.ru; Osmushko, I.S.; Svistunova, I.V.; Shcheka, O.L.

    2014-12-15

    Highlights: • The electronic structure of three spiroborate complexes—boron 1,2-dioxyphenylene β-diketonates has been investigated. • UV and X-ray photoelectron spectra have been interpreted. • DFT calculations have been used for interpretation of spectral bands. • The binding energy of nonequivalent carbon and oxygen atoms were measured. • The structure of X-ray photoelectron spectra of the valence electrons is in good agreement with the energies and composition of Kohn–Sham orbitals. - Abstract: The electronic structure of the valence and core levels of three spiroborate complexes – boron 1,2-dioxyphenylene β-diketonates – has been investigated by methods of UV and X-ray photoelectron spectroscopy and quantum chemical density functional theory. The ionization energy of π- and n-orbitals of the dioxyphenylene fragment and β-diketonate ligand were measured from UV photoelectron spectra. This made it possible to determine the effect of substitution of one or two methyl groups by the phenyl in diketone on the electronic structure of complexes. The binding energy of nonequivalent carbon and oxygen atoms were measured from X-ray photoelectron spectra. The results of calculations of the energy of the valence orbitals of complexes allowed us to refer bands observed in the spectra of the valence electrons to the 2s-type levels of carbon and oxygen.

  20. Detection of irradiated fruits and vegetables by gas-chromatographic methods and electron spin-resonance

    Energy Technology Data Exchange (ETDEWEB)

    Farag, S.E.A. (National Centre for Radiation Research and Technology, Cairo (Egypt))

    1993-01-01

    Gas chromatographic methods detected some hydrocarbons esp. 17:1, 16:2, 15:0 and 14:1 in irradiated, Avocado, Papaya, Mangoes with 0.75, 1.5, 3.0 kGy and Apricot with 0.5 and 3.0 kGy. The detection of hydrocarbons was clearly at high doses but the low doses need more sensitive conditions using Liquid-Liquid-Gas chromatographic method as used here. Using Electron Spin-Resonance, produce a specific signal from irradiated onion (dried leaves) as well as apricot (hard coat of kernels) after some weeks of irradiation process but not clear with the other foodstuffs. (orig.)

  1. Electronic structure of ordered and disordered Fe sub 3 Pt

    CERN Document Server

    Major, Z; Jarlborg, T; Bruno, E; Ginatempo, B; Staunton, J B; Poulter, J

    2003-01-01

    The electronic structure of invar alloys (i.e. materials in which the near absence of thermal expansion is observed) has been the focus of much study, owing both to the technological applications of these materials and interest in the fundamental mechanism that is responsible for the effect. Here, calculations of the magnetic Compton profiles are presented for ordered and disordered Fe sub 3 Pt alloys. Using linear muffin-tin orbital and KKR methods, the latter incorporating the coherent potential approximation to describe the substitutional disorder, the electronic band structure and measurable quantities such as the Fermi surface topology are presented.

  2. Band structure and unconventional electronic topology of CoSi

    Science.gov (United States)

    Pshenay-Severin, D. A.; Ivanov, Y. V.; Burkov, A. A.; Burkov, A. T.

    2018-04-01

    Semimetals with certain crystal symmetries may possess unusual electronic structure topology, distinct from that of the conventional Weyl and Dirac semimetals. Characteristic property of these materials is the existence of band-touching points with multiple (higher than two-fold) degeneracy and nonzero Chern number. CoSi is a representative of this group of materials exhibiting the so-called ‘new fermions’. We report on an ab initio calculation of the electronic structure of CoSi using density functional methods, taking into account the spin-orbit interactions. The linearized \

  3. Comparison of electronic structure between monolayer silicenes on Ag (111)

    Science.gov (United States)

    Chun-Liang, Lin; Ryuichi, Arafune; Maki, Kawai; Noriaki, Takagi

    2015-08-01

    The electronic structures of monolayer silicenes (4 × 4 and ) grown on Ag (111) surface are studied by scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations. While both phases have similar electronic structures around the Fermi level, significant differences are observed in the higher energy unoccupied states. The DFT calculations show that the contributions of Si 3pz orbitals to the unoccupied states are different because of their different buckled configurations. Project supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) through Grants-in-Aid for Scientific Research (Grant Nos. 24241040 and 25110008) and the World Premier International Research Center Initiative (WPI), MEXT, Japan.

  4. Solving complex and disordered surface structures with electron diffraction

    International Nuclear Information System (INIS)

    Van Hove, M.A.

    1987-10-01

    The past of surface structure determination with low-energy electron diffraction (LEED) will be briefly reviewed, setting the stage for a discussion of recent and future developments. The aim of these developments is to solve complex and disordered surface structures. Some efficient solutions to the theoretical and experimental problems will be presented. Since the theoretical problems dominate, the emphasis will be on theoretical approaches to the calculation of the multiple scattering of electrons through complex and disordered surfaces. 49 refs., 13 figs., 1 tab

  5. Associations between soil variables and vegetation structure and composition of Caribbean dry forests

    Science.gov (United States)

    Elvia M. Melendez-Ackerman; Julissa Rojas-Sandoval; Danny S. Fernandez; Grizelle Gonzalez; Hana Lopez; Jose Sustache; Mariely Morales; Miguel Garcia-Bermudez; Susan Aragon

    2016-01-01

    Soil–vegetation associations have been understudied in tropical dry forests when compared to the amount of extant research on this issue in tropical wet forests. Recent studies assert that vegetation in tropical dry forests is highly heterogeneous and that soil variability may be a contributing factor. In this study, we evaluated the relationship between soil variables...

  6. Structure and floristic diversity of inselberg vegetation in south-central Benin

    NARCIS (Netherlands)

    Yedomonhan, H.; Houndagba, C.J.; Akoegninou, A.; Maesen, van der L.J.G.

    2008-01-01

    The inselberg vegetation in the southern part of Centre-Benin was investigated using floristic relevés within plots of 900 m2 each. A total of 108 floristic relevés were performed and 380 plant species recorded. Five types of vegetation were identified: dry forest, woodland, tree savannah, fallow,

  7. Electromagnetic Structure and Electron Acceleration in Shock–Shock Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Nakanotani, Masaru [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580 (Japan); Matsukiyo, Shuichi; Hada, Tohru [Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580 (Japan); Mazelle, Christian X., E-mail: nakanot@esst.kyushu-u.ac.jp [IRAP, Université Paul Sabatier Toulouse III-CNRS, F-31028 Toulouse Cedex 4 (France)

    2017-09-10

    A shock–shock interaction is investigated by using a one-dimensional full particle-in-cell simulation. The simulation reproduces the collision of two symmetrical high Mach number quasi-perpendicular shocks. The basic structure of the shocks and ion dynamics is similar to that obtained by previous hybrid simulations. The new aspects obtained here are as follows. Electrons are already strongly accelerated before the two shocks collide through multiple reflection. The reflected electrons self-generate waves upstream between the two shocks before they collide. The waves far upstream are generated through the right-hand resonant instability with the anomalous Doppler effect. The waves generated near the shock are due to firehose instability and have much larger amplitudes than those due to the resonant instability. The high-energy electrons are efficiently scattered by the waves so that some of them gain large pitch angles. Those electrons can be easily reflected at the shock of the other side. The accelerated electrons form a power-law energy spectrum. Due to the accelerated electrons, the pressure of upstream electrons increases with time. This appears to cause the deceleration of the approaching shock speed. The accelerated electrons having sufficiently large Larmor radii are further accelerated through the similar mechanism working for ions when the two shocks are colliding.

  8. Surface electron structure of short-period semiconductor superlattice

    International Nuclear Information System (INIS)

    Bartos, I.; Czech Academy Science, Prague,; Strasser, T.; Schattke, W.

    2004-01-01

    Full text: Semiconductor superlattices represent man-made crystals with unique physical properties. By means of the directed layer-by-layer molecular epitaxy growth their electric properties can be tailored (band structure engineering). Longer translational periodicity in the growth direction is responsible for opening of new electron energy gaps (minigaps) with surface states and resonances localized at superlattice surfaces. Similarly as for the electron structure of the bulk, a procedure enabling to modify the surface electron structure of superlattices is desirable. Short-period superlattice (GaAs) 2 (AlAs) 2 with unreconstructed (100) surface is investigated in detail. Theoretical description in terms of full eigenfunctions of individual components has to be used. The changes of electron surface state energies governed by the termination of a periodic crystalline potential, predicted on simple models, are confirmed for this system. Large surface state shifts are found in the lowest minigap of the superlattice when this is terminated in four different topmost layer configurations. The changes should be observable in angle resolved photoelectron spectroscopy as demonstrated in calculations based on the one step model of photoemission. Surface state in the center of the two dimensional Brillouin zone moves from the bottom of the minigap (for the superlattice terminated by two bilayers of GaAs) to its top (for the superlattice terminated by two bilayers of AlAs) where it becomes a resonance. No surface state/resonance is found for a termination with one bilayer of AlAs. The surface state bands behave similarly in the corresponding gaps of the k-resolved section of the electron band structure. The molecular beam epitaxy, which enables to terminate the superlattice growth with atomic layer precision, provides a way of tuning the superlattice surface electron structure by purely geometrical means. The work was supported by the Grant Agency of the Academy of Sciences

  9. Electronic structure and optical properties of AIN under high pressure

    International Nuclear Information System (INIS)

    Li Zetao; Dang Suihu; Li Chunxia

    2011-01-01

    We have calculated the electronic structure and optical properties of Wurtzite structure AIN under different high pressure with generalized gradient approximation (GGA) in this paper. The total energy, density of state, energy band structure and optical absorption and reflection properties under high pressure are calculated. By comparing the changes of the energy band structure, we obtained AIN phase transition pressure for 16.7 GPa, which is a direct band structure transforming to an indirect band structure. Meanwhile, according to the density of states distribution and energy band structure, we analyzed the optical properties of AIN under high-pressure, the results showed that the absorption spectra moved from low-energy to high-energy. (authors)

  10. Electronic structure of disordered alloys, surfaces and interfaces

    CERN Document Server

    Turek, Ilja; Kudrnovský, Josef; Šob, Mojmír; Weinberger, Peter

    1997-01-01

    At present, there is an increasing interest in the prediction of properties of classical and new materials such as substitutional alloys, their surfaces, and metallic or semiconductor multilayers. A detailed understanding based on a thus of the utmost importance for fu­ microscopic, parameter-free approach is ture developments in solid state physics and materials science. The interrela­ tion between electronic and structural properties at surfaces plays a key role for a microscopic understanding of phenomena as diverse as catalysis, corrosion, chemisorption and crystal growth. Remarkable progress has been made in the past 10-15 years in the understand­ ing of behavior of ideal crystals and their surfaces by relating their properties to the underlying electronic structure as determined from the first principles. Similar studies of complex systems like imperfect surfaces, interfaces, and mul­ tilayered structures seem to be accessible by now. Conventional band-structure methods, however, are of limited use ...

  11. Electronic structure of nitrides PuN and UN

    Science.gov (United States)

    Lukoyanov, A. V.; Anisimov, V. I.

    2016-11-01

    The electronic structure of uranium and plutonium nitrides in ambient conditions and under pressure is investigated using the LDA + U + SO band method taking into account the spin-orbit coupling and the strong correlations of 5 f electrons of actinoid ions. The parameters of these interactions for the equilibrium cubic structure are calculated additionally. The application of pressure reduces the magnetic moment in PuN due to predominance of the f 6 configuration and the jj-type coupling. An increase in the occupancy of the 5 f state in UN leads to a decrease in the magnetic moment, which is also detected in the trigonal structure of the UN x β phase (La2O3-type structure). The theoretical results are in good agreement with the available experimental data.

  12. Changes in Microbial Community Structure and Soil Biological Properties in Mined Dune Areas During Re-vegetation.

    Science.gov (United States)

    Escobar, Indra Elena C; Santos, Vilma M; da Silva, Danielle Karla A; Fernandes, Marcelo F; Cavalcante, Uided Maaze T; Maia, Leonor C

    2015-06-01

    The aim of this study was to describe the impact of re-vegetation on the restoration of microbial community structure and soil microbiological properties in sand dunes that had been affected by mining activity. Soil samples were collected during the dry and rainy seasons from a chronosequence (1, 9, 21 years) of re-vegetated dunes using a single preserved dune as a reference. The composition of the fatty acid methyl esters and soil microbial properties were evaluated. The results showed that the changes in microbial community structure were related to seasonal variations: biomarkers of Gram-positive bacteria were higher than Gram-negative bacteria during the dry season, showing that this group of organisms is more tolerant to these stressful conditions. The microbial community structure in the natural dune was less affected by seasonal variation compared to the re-vegetated areas, whereas the opposite was observed for microbiological properties. Thus, in general, the proportion of saprobic fungi was higher in the natural dune, whereas Gram-negative bacteria were proportionally more common in the younger areas. Although over time the re-vegetation allows the recovery of the microbial community and the soil functions, these communities and functions are different from those found in the undisturbed areas.

  13. Characterization and classification of vegetation canopy structure and distribution within the Great Smoky Mountains National Park using LiDAR

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Jitendra [ORNL; HargroveJr., William Walter [United States Department of Agriculture (USDA), United States Forest Service (USFS); Norman, Steven P [United States Department of Agriculture (USDA), United States Forest Service (USFS); Hoffman, Forrest M [ORNL; Newcomb, Doug [U.S. Fish and Wildlife Service

    2015-01-01

    Vegetation canopy structure is a critically important habit characteristic for many threatened and endangered birds and other animal species, and it is key information needed by forest and wildlife managers for monitoring and managing forest resources, conservation planning and fostering biodiversity. Advances in Light Detection and Ranging (LiDAR) technologies have enabled remote sensing-based studies of vegetation canopies by capturing three-dimensional structures, yielding information not available in two-dimensional images of the landscape pro- vided by traditional multi-spectral remote sensing platforms. However, the large volume data sets produced by airborne LiDAR instruments pose a significant computational challenge, requiring algorithms to identify and analyze patterns of interest buried within LiDAR point clouds in a computationally efficient manner, utilizing state-of-art computing infrastructure. We developed and applied a computationally efficient approach to analyze a large volume of LiDAR data and to characterize and map the vegetation canopy structures for 139,859 hectares (540 sq. miles) in the Great Smoky Mountains National Park. This study helps improve our understanding of the distribution of vegetation and animal habitats in this extremely diverse ecosystem.

  14. Vegetation structure and species diversity of Wadi Turbah Zahran, Albaha area, southwestern Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Sami Asir Al-Robai

    2017-06-01

    Full Text Available The aim of this work was to study the vegetation structure of Wadi Turbah Zahran, Albaha area, Saudi Arabia and some biodiversity indices. Paleontological Statistics (PAST Software Package was used for data analysis. A total of 266 species (201 genera, 71 families were identified and most of the species were herbs (87%. Therophytes (32.7% and Chamaephytes (30.45% were the most prominent groups. Asteraceae family was represented by the highest number of species (15.4% followed by Poaceae (9.4%. Thirty-one families (43.7% were represented by a single genus and species. Thirty-four species (12.8% were common to all sites. The genus Solanum was the most speciose followed by Rumex. Most of the calculated indices showed variations among the sites. Shannon (3.71–4.06, Menhenick (2.271–4.746 and Chao-1 (106–319.6 diversity indices markedly varied among the sites while Simpson values (0.96–0.97 were almost the same. Berger-Parker values revealed the dominance of Hyparrhenia hirta in four sites. Beta diversity values indicated high diversity between site 1 and 4 and less diversity between site 1 and 6.

  15. Quantitative vs. qualitative approaches to the electronic structure of solids

    International Nuclear Information System (INIS)

    Oliva, J.M.; Llunell, Miquel; Alemany, Pere; Canadell, Enric

    2003-01-01

    The usefulness of qualitative and quantitative theoretical approaches in solid state chemistry is discussed by considering three different types of problems: (a) the distribution of boron and carbon atoms in MB 2 C 2 (M=Ca, La, etc.) phases, (b) the band structure and Fermi surface of low-dimensional transition metal oxides and bronzes, and (c) the correlation between the crystal and electronic structure of the ternary nitride Ca 2 AuN

  16. Electronic structure of binuclear acetylacetonates of boron difluoride

    Science.gov (United States)

    Tikhonov, Sergey A.; Svistunova, Irina V.; Samoilov, Ilya S.; Osmushko, Ivan S.; Borisenko, Aleksandr V.; Vovna, Vitaliy I.

    2018-05-01

    The electronic structure of boron difluoride acetylacetonate and its three derivatives was studied using photoelectron and absorption spectroscopy, as well as the density functional theory. In a series of binuclear acetylacetonate complexes containing bridge-moieties of sulfur and selenium atoms, it was found an appreciable mixing of the π3-orbital of the chelate cycle with atomic orbitals S 3p and Se 4p resulting in destabilization of the HOMO levels by 0.4-0.6 eV, in comparison with the monomer. The positively charged fragment C(CH3)-CX-C(CH3) causes the field effect, which leads to stabilization of the LUMO levels by 0.3-0.4 eV and C 1s-levels by 0.5-1.2 eV. An analysis of the research results on the electronic structure made it possible to determine the effect of substituents in the γ position on the absorption spectra, which is mainly determined by the electron density transfer from the chalcogen atoms to the chelate cycles. It is shown that the calculated energy intervals between electron levels correlate well with the structure of the photoelectron spectra of valence and core electrons.

  17. The electronic structure of C60 and its derivatives

    International Nuclear Information System (INIS)

    Lichtenberger, D.L.; Rempe, M.E.; Gruhn, N.E.; Wright, L.L.

    1993-01-01

    Molecular orbital calculations are used to examine the electronic structure of C 60 and its interaction with metals and some other atoms. The bonding capabilities of the η 5 , η 6 , and the two possible η 2 sites of C 60 to metals are probed with Fenske-Hall calculations of a silver cation bound in those positions. These results are compared to the bonding capabilities of cyclopentadiene, benzene and ethylene, respectively. It is found that the silver cation bonding to C 60 is favored at the η 2 that is shared between five-membered rings, but that the silver cation bonds more favorably to ethylene than to the η 2 site of C 60 . The electronic structure of the known platinum compound, C 60 Pt(phosphine) 2 , where the bonding is also to this η 2 site, is investigated and compared to the electronic structure of the corresponding ethylene complex. In this more electron-rich metal case, the bonding of the C 60 and ethylene are very similar. A calculation on C 60 OsO 4 (NH 3 ) 2 , where C 60 is bound to two oxygens, shows that the orbital composition correlates with the observed NMR shifts of the carbon atoms. The calculations are used to clarify the interpretations of experimental data obtained from STM, NMR, PES and reactivity. The latest results of these electronic studies will be presented

  18. Nature-Inspired Structural Materials for Flexible Electronic Devices.

    Science.gov (United States)

    Liu, Yaqing; He, Ke; Chen, Geng; Leow, Wan Ru; Chen, Xiaodong

    2017-10-25

    Exciting advancements have been made in the field of flexible electronic devices in the last two decades and will certainly lead to a revolution in peoples' lives in the future. However, because of the poor sustainability of the active materials in complex stress environments, new requirements have been adopted for the construction of flexible devices. Thus, hierarchical architectures in natural materials, which have developed various environment-adapted structures and materials through natural selection, can serve as guides to solve the limitations of materials and engineering techniques. This review covers the smart designs of structural materials inspired by natural materials and their utility in the construction of flexible devices. First, we summarize structural materials that accommodate mechanical deformations, which is the fundamental requirement for flexible devices to work properly in complex environments. Second, we discuss the functionalities of flexible devices induced by nature-inspired structural materials, including mechanical sensing, energy harvesting, physically interacting, and so on. Finally, we provide a perspective on newly developed structural materials and their potential applications in future flexible devices, as well as frontier strategies for biomimetic functions. These analyses and summaries are valuable for a systematic understanding of structural materials in electronic devices and will serve as inspirations for smart designs in flexible electronics.

  19. Electronic Structure of GdCuGe Intermetallic Compound

    Science.gov (United States)

    Lukoyanov, A. V.; Knyazev, Yu. V.; Kuz'min, Yu. I.

    2018-04-01

    The electronic structure of GdCuGe intermetallic compound has been studied. Spin-polarized energy spectrum calculations have been performed by the band method with allowance for strong electron correlations in the 4 f-shell of gadolinium ions. Antiferromagnetic ordering of GdCuGe at low temperatures has been obtained in a theoretical calculation, with the value of the effective magnetic moment of gadolinium ions reproduced in fair agreement with experimental data. The electronic density of states has been analyzed. An optical conductivity spectrum has been calculated for GdCuGe; it reveals specific features that are analogous to the ones discovered previously in the GdCuSi compound with a similar hexagonal structure.

  20. First principle calculations of alkali hydride electronic structures

    International Nuclear Information System (INIS)

    Novakovic, N; Radisavljevic, I; Colognesi, D; Ostojic, S; Ivanovic, N

    2007-01-01

    Electronic structure, volume optimization, bulk moduli, elastic constants, and frequencies of the transversal optical vibrations in LiH, NaH, KH, RbH, and CsH are calculated using the full potential augmented plane wave method, extended with local orbitals, and the full potential linearized augmented plane wave method. The obtained results show some common features in the electronic structure of these compounds, but also clear differences, which cannot be explained using simple empirical trends. The differences are particularly prominent in the electronic distributions and interactions in various crystallographic planes. In the light of these findings we have elaborated some selected experimental results and discussed several theoretical approaches frequently used for the description of various alkali hydride properties

  1. Strontium titanate thin film deposition - structural and electronical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hanzig, Florian; Hanzig, Juliane; Stoecker, Hartmut; Mehner, Erik; Abendroth, Barbara; Meyer, Dirk C. [TU Bergakademie Freiberg, Institut fuer Experimentelle Physik (Germany); Franke, Michael [TU Bergakademie Freiberg, Institut fuer Elektronik- und Sensormaterialien (Germany)

    2012-07-01

    Strontium titanate is on the one hand a widely-used model oxide for solids which crystallize in perovskite type of structure. On the other hand, with its large band-gap energy and its mixed ionic and electronic conductivity, SrTiO{sub 3} is a promising isolating material in metal-insulator-metal (MIM) structures for resistive switching memory cells. Here, we used physical vapour deposition methods (e. g. electron-beam and sputtering) to produce strontium titanate layers. Sample thicknesses were probed with X-ray reflectometry (XRR) and spectroscopic ellipsometry (SE). Additionally, layer densities and dielectric functions were quantified with XRR and SE, respectively. Using infrared spectroscopy free electron concentrations were obtained. Phase and element composition analysis was carried out with grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy. Subsequent temperature treatment of samples lead to crystallization of the initially amorphous strontium titanate.

  2. Electron Heat Flux in Pressure Balance Structures at Ulysses

    Science.gov (United States)

    Yamauchi, Yohei; Suess, Steven T.; Sakurai, Takashi; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Pressure balance structures (PBSs) are a common feature in the high-latitude solar wind near solar minimum. Rom previous studies, PBSs are believed to be remnants of coronal plumes and be related to network activity such as magnetic reconnection in the photosphere. We investigated the magnetic structures of the PBSs, applying a minimum variance analysis to Ulysses/Magnetometer data. At 2001 AGU Spring meeting, we reported that PBSs have structures like current sheets or plasmoids, and suggested that they are associated with network activity at the base of polar plumes. In this paper, we have analyzed high-energy electron data at Ulysses/SWOOPS to see whether bi-directional electron flow exists and confirm the conclusions more precisely. As a result, although most events show a typical flux directed away from the Sun, we have obtained evidence that some PBSs show bi-directional electron flux and others show an isotropic distribution of electron pitch angles. The evidence shows that plasmoids are flowing away from the Sun, changing their flow direction dynamically in a way not caused by Alfven waves. From this, we have concluded that PBSs are generated due to network activity at the base of polar plumes and their magnetic structures axe current sheets or plasmoids.

  3. The structure of spinach Photosystem I studied by electron microscopy

    NARCIS (Netherlands)

    Boekema, Egbert J.; Wynn, R. Max; Malkin, Richard

    1990-01-01

    The structure of three types of Photosystem I (PS I) complex isolated from spinach chloroplasts was studied by electron microscopy and computer image analysis. Molecular projections (top views and side views) of a native PS I complex (PSI-200), an antenna-depleted PS I complex (PSI-100) and the PS I

  4. Ground-state electronic structure of actinide monocarbides and mononitrides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.

    2009-01-01

    The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U,Np,Pu,Am,Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually increa...

  5. Effects of thickness on electronic structure of titanium thin films

    Indian Academy of Sciences (India)

    using near-edge X-ray absorption fine structure (NEXAFS) technique at titanium L2,3 edge in total electron yield .... the contribution of titanium L2,3 levels to the absorption co- ... all absorption coefficient of a sample is related to the atomic.

  6. Empirical pseudo-potential studies on electronic structure

    Indian Academy of Sciences (India)

    Theoretical investigations of electronic structure of quantum dots is of current interest in nanophase materials. Empirical theories such as effective mass approximation, tight binding methods and empirical pseudo-potential method are capable of explaining the experimentally observed optical properties. We employ the ...

  7. Electronic structure and superconductivity of MgB 2

    Indian Academy of Sciences (India)

    Results of ab initio electronic structure calculations on the compound, MgB2, using the FPLAPW method employing GGA for the exchange–correlation energy are presented. Total energy minimization enables us to estimate the equilibrium volume, / ratio and the bulk modulus, all of which are in excellent agreement with ...

  8. First principles calculations of structural, electronic and thermal ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 37; Issue 5. First principles calculations of structural, electronic and thermal properties of lead chalcogenides PbS, PbSe and PbTe compounds. N Boukhris H Meradji S Amara Korba S Drablia S Ghemid F El Haj Hassan. Volume 37 Issue 5 August 2014 pp 1159-1166 ...

  9. Structural, elastic, electronic and optical properties of bi-alkali ...

    Indian Academy of Sciences (India)

    The structural parameters, elastic constants, electronic and optical properties of the bi-alkali ... and efficient method for the calculation of the ground-state ... Figure 2. Optimization curve (E–V) of the bi-alkali antimonides: (a) Na2KSb, (b) Na2RbSb, (c) Na2CsSb, .... ical shape of the charge distributions in the contour plots.

  10. First-principle calculations of the structural, electronic ...

    Indian Academy of Sciences (India)

    First-principle calculations were performed to study the structural, electronic, thermodynamic and thermal properties of ... functional theory (DFT) combined with the quasi-harmonic .... is consistent with Vegard's law which assumes that the lat- tice constant varies .... reflects a charge-transfer effect which is due to the different.

  11. Structural, energetic and electronic properties of intercalated boron ...

    Indian Academy of Sciences (India)

    2National Institute for R&D of Isotopic and Molecular Technologies, Cluj-Napoca 400 293, Romania. MS received 8 November 2010; revised 28 March 2012. Abstract. The effects of chirality and the intercalation of transitional metal atoms inside single walled BN nano- tubes on structural, energetic and electronic properties ...

  12. Removal of Vesicle Structures from Transmission Electron Microscope Images

    DEFF Research Database (Denmark)

    Jensen, Katrine Hommelhoff; Sigworth, Fred; Brandt, Sami Sebastian

    2015-01-01

    In this paper, we address the problem of imaging membrane proteins for single-particle cryo-electron microscopy reconstruction of the isolated protein structure. More precisely, we propose a method for learning and removing the interfering vesicle signals from the micrograph, prior to reconstruct...

  13. Small round structured viruses (SRSVs) and transmission electron ...

    African Journals Online (AJOL)

    Administrator

    immune-electron microscopy (IEM) from patients' feces. They reported this virus particle as the causative agent of winter vomiting outbreaks in Norwalk (Kapikian et al.,. 1972). This is the remarkable landmark study of non- bacterial gastroenteritis viruses, especially for small round structured viruses (SRSVs). After that, many.

  14. Electronic structure and optical properties of thorium monopnictides

    Indian Academy of Sciences (India)

    Unknown

    Indian Academy of Sciences. 165. Electronic structure and optical properties of thorium monopnictides. S KUMAR* and S AULUCK†. Physics Department, Institute of Engineering and Technology, M.J.P. Rohilkhand University, Bareilly 243 006,. India. †Department of Physics, Indian Institute of Technology, Roorkee 247 667, ...

  15. Variational cellular model of the molecular and crystal electronic structure

    International Nuclear Information System (INIS)

    Ferreira, L.G.; Leite, J.R.

    1977-12-01

    A variational version of the cellular method is developed to calculate the electronic structure of molecules and crystals. Due to the simplicity of the secular equation, the method is easy to be implemented. Preliminary calculations on the hydrogen molecular ion suggest that it is also accurate and of fast convergence [pt

  16. CLOPW; a mixed basis set full potential electronic structure method

    NARCIS (Netherlands)

    Bekker, H.G.; Bekker, Hermie Gerhard

    1997-01-01

    This thesis is about the development of the full potental CLOPW package for electronic structure calculations. Chapter 1 provides the necessary background in the theory of solid state physics. It gives a short overview of the effective one particle model as commonly used in solid state physics. It

  17. The effect of oxygen exposure on pentacene electronic structure

    NARCIS (Netherlands)

    Vollmer, A; Jurchescu, OD; Arfaoui, [No Value; Salzmann, [No Value; Palstra, TTM; Rudolf, P; Niemax, J; Pflaum, J; Rabe, JP; Koch, N; Arfaoui, I.; Salzmann, I.

    We use ultraviolet photoelectron spectroscopy to investigate the effect of oxygen and air exposure on the electronic structure of pentacene single crystals and thin films. it is found that O-2 and water do not react noticeably with pentacene, whereas singlet oxygen/ozone readily oxidize the organic

  18. Electronic structures and photophysics of d8-d8 complexes

    Czech Academy of Sciences Publication Activity Database

    Gray, H. B.; Záliš, Stanislav; Vlček, Antonín

    2017-01-01

    Roč. 345, AUG 2017 (2017), s. 297-317 ISSN 0010-8545 R&D Projects: GA MŠk LH13015 Grant - others:COST(XE) CM1405 Institutional support: RVO:61388955 Keywords : excitation * electronic structures * photophysics Subject RIV: CG - Electrochemistry OBOR OECD: Physical chemistry Impact factor: 13.324, year: 2016

  19. The electronic structure of 4d and 5d silicides

    NARCIS (Netherlands)

    Speier, W.; Kumar, L.; Sarma, D.D.; Groot, R.A. de; Fuggle, J.C.

    1989-01-01

    A systematic experimental and theoretical study of the electronic structure of stoichiometric silicides with Nb, Mo, Ta and W is presented. We have employed x-ray photoemission and bremsstrahlung isochromat spectroscopy as experimental techniques and interpreted the measured data by calculation of

  20. Highlighting material structure with transmission electron diffraction correlation coefficient maps.

    Science.gov (United States)

    Kiss, Ákos K; Rauch, Edgar F; Lábár, János L

    2016-04-01

    Correlation coefficient maps are constructed by computing the differences between neighboring diffraction patterns collected in a transmission electron microscope in scanning mode. The maps are shown to highlight material structural features like grain boundaries, second phase particles or dislocations. The inclination of the inner crystal interfaces are directly deduced from the resulting contrast. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. First principles calculations of structural, electronic and thermal ...

    Indian Academy of Sciences (India)

    Administrator

    2013-07-28

    Jul 28, 2013 ... The structural, electronic and thermal properties of lead chalcogenides PbS, PbSe and BeTe using .... results for all the systems are presented in table 1, along ... as interatomic bonding, equations of state and phonon spectra.

  2. Structural and Electronic Investigations of Complex Intermetallic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Hyunjin [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    In solid state chemistry, numerous investigations have been attempted to address the relationships between chemical structure and physical properties. Such questions include: (1) How can we understand the driving forces of the atomic arrangements in complex solids that exhibit interesting chemical and physical properties? (2) How do different elements distribute themselves in a solid-state structure? (3) Can we develop a chemical understanding to predict the effects of valence electron concentration on the structures and magnetic ordering of systems by both experimental and theoretical means? Although these issues are relevant to various compound classes, intermetallic compounds are especially interesting and well suited for a joint experimental and theoretical effort. For intermetallic compounds, the questions listed above are difficult to answer since many of the constituent atoms simply do not crystallize in the same manner as in their separate, elemental structures. Also, theoretical studies suggest that the energy differences between various structural alternatives are small. For example, Al and Ga both belong in the same group on the Periodic Table of Elements and share many similar chemical properties. Al crystallizes in the fcc lattice with 4 atoms per unit cell and Ga crystallizes in an orthorhombic unit cell lattice with 8 atoms per unit cell, which are both fairly simple structures (Figure 1). However, when combined with Mn, which itself has a very complex cubic crystal structure with 58 atoms per unit cell, the resulting intermetallic compounds crystallize in a completely different fashion. At the 1:1 stoichiometry, MnAl forms a very simple tetragonal lattice with two atoms per primitive unit cell, while MnGa crystallizes in a complicated rhombohedral unit cell with 26 atoms within the primitive unit cell. The mechanisms influencing the arrangements of atoms in numerous crystal structures have been studied theoretically by calculating electronic

  3. Electronic structures of azafullerene C48N12

    International Nuclear Information System (INIS)

    Brena, Barbara; Luo Yi

    2003-01-01

    Two recently proposed low-energy azafullerene C 48 N 12 isomers have been theoretically characterized using x-ray spectroscopies. The x-ray photoelectron spectroscopy, the near-edge absorption fine structure, the x-ray emission spectroscopy, and the ultraviolet photoelectron spectroscopy for both isomers have been predicted at the gradient-corrected density functional theory level. These spectroscopies together give a comprehensive insight of the electronic structure on the core, valence, and unoccupied orbitals. They have also provided a convincing way for identifying the isomer structures

  4. Electronic structure of graphene on Ni surfaces with different orientation

    International Nuclear Information System (INIS)

    Pudikov, D.A.; Zhizhin, E.V.; Rybkin, A.G.; Rybkina, A.A.; Zhukov, Y.M.; Vilkov, O. Yu.; Shikin, A.M.

    2016-01-01

    An experimental study of the graphene, synthesized by propylene cracking on Ni surfaces with different orientation: (100) and (111), using angle-resolved photoemission, has been performed. It has been shown that graphene on Ni(111) had a perfect lateral structure due to consistency of their lattices, whereas graphene/Ni(100) consisted of a lot of domains. For both systems electronic structure was quite similar and demonstrated a strong bonding of graphene to the underlying Ni surface. After Au intercalation the electronic structure of graphene in both systems was shifted to the Fermi level and became linear in the vicinity of the K point of the Brillouin zone. - Highlights: • Graphene on Ni(111) is well-ordered, whereas on Ni(100) – multi-domain. • Graphene on Ni(111) and Ni(100) is strongly bonded with substrate. • Intercalation of Au atoms restores the linearity in dispersion and makes graphene quasi-free on both Ni(100) and Ni(111).

  5. Surface morphology and electronic structure of Ni/Ag(100)

    International Nuclear Information System (INIS)

    Hite, D. A.; Kizilkaya, O.; Sprunger, P. T.; Howard, M. M.; Ventrice, C. A. Jr.; Geisler, H.; Zehner, D. M.

    2000-01-01

    The growth morphology and electronic structure of Ni on Ag(100) has been studied with scanning tunneling microscopy (STM) and synchrotron based angle resolved photoemission spectroscopy. At deposition temperatures at or below 300 K, STM reveals Ni cluster growth on the surface along with some subsurface growth. Upon annealing to 420 K, virtually all Ni segregates into the subsurface region forming embedded nanoclusters. The electronic structure of Ni d bands in the unannealed surface shows dispersion only perpendicular to the surface whereas the annealed surface has Ni d bands that exhibit a three-dimensional-like structure. This is a result of the increased Ni d-Ag sp hybridization bonding and increased coordination of the embedded Ni nanoclusters. (c) 2000 American Vacuum Society

  6. Electronic structure and optical properties of metal doped tetraphenylporphyrins

    Science.gov (United States)

    Shah, Esha V.; Roy, Debesh R.

    2018-05-01

    A density functional scrutiny on the structure, electronic and optical properties of metal doped tetraphenylporphyrins MTPP (M=Fe, Co, Ni) is performed. The structural stability of the molecules is evaluated based on the electronic parameters like HOMO-LUMO gap (HLG), chemical hardness (η) and binding energy of the central metal atom to the molecular frame etc. The computed UltraViolet-Visible (UV-Vis) optical absorption spectra for all the compounds are also compared. The molecular structures reported are the lowest energy configurations. The entire calculations are carried out with a widely reliable functional, viz. B3LYP with a popular basis set which includes a scaler relativistic effect, viz. LANL2DZ.

  7. Electronic structure of multi-walled carbon fullerenes

    International Nuclear Information System (INIS)

    Doore, Keith; Cook, Matthew; Clausen, Eric; Lukashev, Pavel V; Kidd, Tim E; Stollenwerk, Andrew J

    2017-01-01

    Despite an enormous amount of research on carbon based nanostructures, relatively little is known about the electronic structure of multi-walled carbon fullerenes, also known as carbon onions. In part, this is due to the very high computational expense involved in estimating electronic structure of large molecules. At the same time, experimentally, the exact crystal structure of the carbon onion is usually unknown, and therefore one relies on qualitative arguments only. In this work we present the results of a computational study on a series of multi-walled fullerenes and compare their electronic structures to experimental data. Experimentally, the carbon onions were fabricated using ultrasonic agitation of isopropanol alcohol and deposited onto the surface of highly ordered pyrolytic graphite using a drop cast method. Scanning tunneling microscopy images indicate that the carbon onions produced using this technique are ellipsoidal with dimensions on the order of 10 nm. The majority of differential tunneling spectra acquired on individual carbon onions are similar to that of graphite with the addition of molecular-like peaks, indicating that these particles span the transition between molecules and bulk crystals. A smaller, yet sizable number exhibited a semiconducting gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels. These results are compared with the electronic structure of different carbon onion configurations calculated using first-principles. Similar to the experimental results, the majority of these configurations are metallic with a minority behaving as semiconductors. Analysis of the configurations investigated here reveals that each carbon onion exhibiting an energy band gap consisted only of non-metallic fullerene layers, indicating that the interlayer interaction is not significant enough to affect the total density of states in these structures. (paper)

  8. Characterization of strained semiconductor structures using transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oezdoel, Vasfi Burak

    2011-08-15

    Today's state-of-the-art semiconductor electronic devices utilize the charge transport within very small volumes of the active device regions. The structural, chemical and optical material properties in these small dimensions can critically affect the performance of these devices. The present thesis is focused on the nanometer scale characterization of the strain state in semiconductor structures using transmission electron microscopy (TEM). Although high-resolution TEM has shown to provide the required accuracy at the nanometer scale, optimization of imaging conditions is necessary for accurate strain measurements. An alternative HRTEM method based on strain mapping on complex-valued exit face wave functions is developed to reduce the artifacts arising from objective lens aberrations. However, a much larger field of view is crucial for mapping strain in the active regions of complex structures like latest generation metal-oxide-semiconductor field-effect transistors (MOSFETs). To overcome this, a complementary approach based on electron holography is proposed. The technique relies on the reconstruction of the phase shifts in the diffracted electron beams from a focal series of dark-field images using recently developed exit-face wave function reconstruction algorithm. Combining high spatial resolution, better than 1 nm, with a field of view of about 1 {mu}m in each dimension, simultaneous strain measurements on the array of MOSFETs are possible. Owing to the much lower electron doses used in holography experiments when compared to conventional quantitative methods, the proposed approach allows to map compositional distribution in electron beam sensitive materials such as InGaN heterostructures without alteration of the original morphology and chemical composition. Moreover, dark-field holography experiments can be performed on thicker specimens than the ones required for high-resolution TEM, which in turn reduces the thin foil relaxation. (orig.)

  9. Structure determination of modulated structures by powder X-ray diffraction and electron diffraction

    Czech Academy of Sciences Publication Activity Database

    Zhou, Z.Y.; Palatinus, Lukáš; Sun, J.L.

    2016-01-01

    Roč. 3, č. 11 (2016), s. 1351-1362 ISSN 2052-1553 Institutional support: RVO:68378271 Keywords : electron diffraction * incommensurate structure * powder diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.036, year: 2016

  10. Nano-structured thin films : a Lorentz transmission electron microscopy and electron holography study

    NARCIS (Netherlands)

    Hosson, J.Th.M. de; Raedt, H.A. De; Zhong, ZY; Saka, H; Kim, TH; Holm, EA; Han, YF; Xie, XS

    2005-01-01

    This paper aims at applying advanced transmission electron microscopy (TEM) to functional materials, such as ultra-soft magnetic films for high-frequency inductors, to reveal the structure-property relationship. The ultimate goal is to delineate a more quantitative way to obtain information of the

  11. Electronic structure of a striped nickelate studied by the exact exchange for correlated electrons (EECE) approach

    KAUST Repository

    Schwingenschlö gl, Udo; Schuster, Cosima B.; Fré sard, Raymond

    2009-01-01

    Motivated by a RIXS study of Wakimoto, et al.(Phys. Rev. Lett., 102 (2009) 157001) we use density functional theory to analyze the magnetic order in the nickelate La5/3Sr1/3NiO4 and the details of its crystal and electronic structure. We compare

  12. Slow electron acoustic double layer (SEADL) structures in bi-ion plasma with trapped electrons

    Science.gov (United States)

    Shan, Shaukat Ali; Imtiaz, Nadia

    2018-05-01

    The properties of ion acoustic double layer (IADL) structures in bi-ion plasma with electron trapping are investigated by using the quasi-potential analysis. The κ-distributed trapped electrons number density expression is truncated to some finite order of the electrostatic potential. By utilizing the reductive perturbation method, a modified Schamel equation which describes the evolution of the slow electron acoustic double layer (SEADL) with the modified speed due to the presence of bi-ion species is investigated. The Sagdeev-like potential has been derived which accounts for the effect of the electron trapping and superthermality in a bi-ion plasma. It is found that the superthermality index, the trapping efficiency of electrons, and ion to electron temperature ratio are the inhibiting parameters for the amplitude of the slow electron acoustic double layers (SEADLs). However, the enhanced population of the cold ions is found to play a supportive role for the low frequency DLs in bi-ion plasmas. The illustrations have been presented with the help of the bi-ion plasma parameters in the Earth's ionosphere F-region.

  13. Electronic structure of divacancy-hydrogen complexes in silicon

    International Nuclear Information System (INIS)

    Coutinho, J; Torres, V J B; Jones, R; Oeberg, S; Briddon, P R

    2003-01-01

    Divacancy-hydrogen complexes (V 2 H and V 2 H 2 ) in Si are studied by ab initio modelling using large supercells. Here we pay special attention to their electronic structure, showing that these defects produce deep carrier traps. Calculated electrical gap levels indicate that V 2 H 2 is an acceptor, whereas V 2 H is amphoteric, with levels close to those of the well known divacancy. Finally our results are compared with the available data from deep level transient spectroscopy and electron paramagnetic resonance experiments

  14. Structural defects in laser- and electron-beam annealed silicon

    International Nuclear Information System (INIS)

    Narayan, J.

    1979-01-01

    Laser and electron beam pulses provide almost an ideal source of heat by which thin layers of semiconductors can be rapidly melted and solidified with heating and cooling rates exceeding 10 80 C/sec. Microstructural modifications obtained as a function of laser parameters are examined and it is shown that both laser and electron beam pulses can be used to remove displacement damage, dislocations, dislocation loops and precipitates. Annealing of defects underneath the oxide layers in silicon is possible within a narrow energy window. The formation of cellular structure provides a rather clear evidence of melting which leads to segregation and supercooling, and subsequent cell formation

  15. Synthesis, reactivity, and electronic structure of molecular uranium nitrides

    OpenAIRE

    Cleaves, Peter A.

    2016-01-01

    The study of metal-ligand multiple bonding offers insight into the electronic structure and bond of metal systems. Until recently, for uranium, such systems were limited to uranyl, and terminal chalcogenide, imide and carbene complexes. In 2012, this was extended to nitrides with the first preparation of a uranium–nitride (U≡N) species isolable under standard conditions, namely [U(TrenTIPS)(N)][Na(12C4)2] (52), which is prepared by the two-electron reduction of sodium azide with a trivalent u...

  16. Electronic structure of superlattices of graphene and hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.

    2011-11-14

    We study the electronic structure of superlattices consisting of graphene and hexagonal boron nitride slabs, using ab initio density functional theory. We find that the system favors a short C–B bond length at the interface between the two component materials. A sizeable band gap at the Dirac point is opened for superlattices with single graphene layers but not for superlattices with graphene bilayers. The system is promising for applications in electronic devices such as field effect transistors and metal-oxide semiconductors.

  17. Acceptors in cadmium telluride. Identification and electronic structure

    International Nuclear Information System (INIS)

    Molva, E.

    1983-11-01

    It is shown that electronic properties of CdTe are determined by impurities more than by intrinsic defects like vacancies or interstitials in Cd or Te contrary to classical theories. These results are based on annealing, diffusion, implantation and electron irradiation at 4 K. Centers appearing in treated samples are accurately identified by photoluminescence, cathodoluminescence infra-red absorption, electrical measurements and magneto-optic properties. Acceptors identified are Li, Na, Cu, Ag and Au impurities in Cd and N, P and As in Te. Energy levels of all acceptors and fine structure of excitons are determined [fr

  18. Grid-based electronic structure calculations: The tensor decomposition approach

    Energy Technology Data Exchange (ETDEWEB)

    Rakhuba, M.V., E-mail: rakhuba.m@gmail.com [Skolkovo Institute of Science and Technology, Novaya St. 100, 143025 Skolkovo, Moscow Region (Russian Federation); Oseledets, I.V., E-mail: i.oseledets@skoltech.ru [Skolkovo Institute of Science and Technology, Novaya St. 100, 143025 Skolkovo, Moscow Region (Russian Federation); Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkina St. 8, 119333 Moscow (Russian Federation)

    2016-05-01

    We present a fully grid-based approach for solving Hartree–Fock and all-electron Kohn–Sham equations based on low-rank approximation of three-dimensional electron orbitals. Due to the low-rank structure the total complexity of the algorithm depends linearly with respect to the one-dimensional grid size. Linear complexity allows for the usage of fine grids, e.g. 8192{sup 3} and, thus, cheap extrapolation procedure. We test the proposed approach on closed-shell atoms up to the argon, several molecules and clusters of hydrogen atoms. All tests show systematical convergence with the required accuracy.

  19. Electronic structure of superlattices of graphene and hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.; Cheng, Yingchun; Schwingenschlö gl, Udo

    2011-01-01

    We study the electronic structure of superlattices consisting of graphene and hexagonal boron nitride slabs, using ab initio density functional theory. We find that the system favors a short C–B bond length at the interface between the two component materials. A sizeable band gap at the Dirac point is opened for superlattices with single graphene layers but not for superlattices with graphene bilayers. The system is promising for applications in electronic devices such as field effect transistors and metal-oxide semiconductors.

  20. A Robust Gold Deconvolution Approach for LiDAR Waveform Data Processing to Characterize Vegetation Structure

    Science.gov (United States)

    Zhou, T.; Popescu, S. C.; Krause, K.; Sheridan, R.; Ku, N. W.

    2014-12-01

    Increasing attention has been paid in the remote sensing community to the next generation Light Detection and Ranging (lidar) waveform data systems for extracting information on topography and the vertical structure of vegetation. However, processing waveform lidar data raises some challenges compared to analyzing discrete return data. The overall goal of this study was to present a robust de-convolution algorithm- Gold algorithm used to de-convolve waveforms in a lidar dataset acquired within a 60 x 60m study area located in the Harvard Forest in Massachusetts. The waveform lidar data was collected by the National Ecological Observatory Network (NEON). Specific objectives were to: (1) explore advantages and limitations of various waveform processing techniques to derive topography and canopy height information; (2) develop and implement a novel de-convolution algorithm, the Gold algorithm, to extract elevation and canopy metrics; and (3) compare results and assess accuracy. We modeled lidar waveforms with a mixture of Gaussian functions using the Non-least squares (NLS) algorithm implemented in R and derived a Digital Terrain Model (DTM) and canopy height. We compared our waveform-derived topography and canopy height measurements using the Gold de-convolution algorithm to results using the Richardson-Lucy algorithm. Our findings show that the Gold algorithm performed better than the Richardson-Lucy algorithm in terms of recovering the hidden echoes and detecting false echoes for generating a DTM, which indicates that the Gold algorithm could potentially be applied to processing of waveform lidar data to derive information on terrain elevation and canopy characteristics.

  1. Electron-Poor Polar Intermetallics: Complex Structures, Novel Clusters, and Intriguing Bonding with Pronounced Electron Delocalization.

    Science.gov (United States)

    Lin, Qisheng; Miller, Gordon J

    2018-01-16

    Intermetallic compounds represent an extensive pool of candidates for energy related applications stemming from magnetic, electric, optic, caloric, and catalytic properties. The discovery of novel intermetallic compounds can enhance understanding of the chemical principles that govern structural stability and chemical bonding as well as finding new applications. Valence electron-poor polar intermetallics with valence electron concentrations (VECs) between 2.0 and 3.0 e - /atom show a plethora of unprecedented and fascinating structural motifs and bonding features. Therefore, establishing simple structure-bonding-property relationships is especially challenging for this compound class because commonly accepted valence electron counting rules are inappropriate. During our efforts to find quasicrystals and crystalline approximants by valence electron tuning near 2.0 e - /atom, we observed that compositions close to those of quasicrystals are exceptional sources for unprecedented valence electron-poor polar intermetallics, e.g., Ca 4 Au 10 In 3 containing (Au 10 In 3 ) wavy layers, Li 14.7 Mg 36.8 Cu 21.5 Ga 66 adopting a type IV clathrate framework, and Sc 4 Mg x Cu 15-x Ga 7.5 that is incommensurately modulated. In particular, exploratory syntheses of AAu 3 T (A = Ca, Sr, Ba and T = Ge, Sn) phases led to interesting bonding features for Au, such as columns, layers, and lonsdaleite-type tetrahedral frameworks. Overall, the breadth of Au-rich polar intermetallics originates, in part, from significant relativistics effect on the valence electrons of Au, effects which result in greater 6s/5d orbital mixing, a small effective metallic radius, and an enhanced Mulliken electronegativity, all leading to ultimate enhanced binding with nearly all metals including itself. Two other successful strategies to mine electron-poor polar intermetallics include lithiation and "cation-rich" phases. Along these lines, we have studied lithiated Zn-rich compounds in which structural

  2. Electronic structure and insulating gap in epitaxial VO2 polymorphs

    Directory of Open Access Journals (Sweden)

    Shinbuhm Lee

    2015-12-01

    Full Text Available Determining the origin of the insulating gap in the monoclinic V O2(M1 is a long-standing issue. The difficulty of this study arises from the simultaneous occurrence of structural and electronic transitions upon thermal cycling. Here, we compare the electronic structure of the M1 phase with that of single crystalline insulating V O2(A and V O2(B thin films to better understand the insulating phase of VO2. As these A and B phases do not undergo a structural transition upon thermal cycling, we comparatively study the origin of the gap opening in the insulating VO2 phases. By x-ray absorption and optical spectroscopy, we find that the shift of unoccupied t2g orbitals away from the Fermi level is a common feature, which plays an important role for the insulating behavior in VO2 polymorphs. The distinct splitting of the half-filled t2g orbital is observed only in the M1 phase, widening the bandgap up to ∼0.6 eV. Our approach of comparing all three insulating VO2 phases provides insight into a better understanding of the electronic structure and the origin of the insulating gap in VO2.

  3. Electronic structure of germanium selenide investigated using ultra-violet photo-electron spectroscopy

    Science.gov (United States)

    Mishra, P.; Lohani, H.; Kundu, A. K.; Patel, R.; Solanki, G. K.; Menon, Krishnakumar S. R.; Sekhar, B. R.

    2015-07-01

    The valence band electronic structure of GeSe single crystals has been investigated using angle resolved photoemission spectroscopy (ARPES) and x-ray photoelectron spectroscopy. The experimentally observed bands from ARPES, match qualitatively with our LDA-based band structure calculations along the Γ-Z, Γ-Y and Γ-T symmetry directions. The valence band maximum occurs nearly midway along the Γ-Z direction, at a binding energy of -0.5 eV, substantiating the indirect band gap of GeSe. Non-dispersive features associated with surface states and indirect transitions have been observed. The difference in hybridization of Se and Ge 4p orbitals leads to the variation of dispersion along the three symmetry directions. The predominance of the Se 4pz orbitals, evidenced from theoretical calculations, may be the cause for highly dispersive bands along the Γ-T direction. Detailed electronic structure analysis reveals the significance of the cation-anion 4p orbitals hybridization in the valence band dispersion of IV-VI semiconductors. This is the first comprehensive report of the electronic structure of a GeSe single crystal using ARPES in conjugation with theoretical band structure analysis.

  4. Electronic structure of germanium selenide investigated using ultra-violet photo-electron spectroscopy

    International Nuclear Information System (INIS)

    Mishra, P; Lohani, H; Sekhar, B R; Kundu, A K; Menon, Krishnakumar S R; Patel, R; Solanki, G K

    2015-01-01

    The valence band electronic structure of GeSe single crystals has been investigated using angle resolved photoemission spectroscopy (ARPES) and x-ray photoelectron spectroscopy. The experimentally observed bands from ARPES, match qualitatively with our LDA-based band structure calculations along the Γ–Z, Γ–Y and Γ–T symmetry directions. The valence band maximum occurs nearly midway along the Γ–Z direction, at a binding energy of −0.5 eV, substantiating the indirect band gap of GeSe. Non-dispersive features associated with surface states and indirect transitions have been observed. The difference in hybridization of Se and Ge 4p orbitals leads to the variation of dispersion along the three symmetry directions. The predominance of the Se 4p z orbitals, evidenced from theoretical calculations, may be the cause for highly dispersive bands along the Γ–T direction. Detailed electronic structure analysis reveals the significance of the cation–anion 4p orbitals hybridization in the valence band dispersion of IV–VI semiconductors. This is the first comprehensive report of the electronic structure of a GeSe single crystal using ARPES in conjugation with theoretical band structure analysis. (paper)

  5. Contrast in edge vegetation structure modifies the predation risk of natural ground nests in an agricultural landscape.

    Directory of Open Access Journals (Sweden)

    Nicole A Schneider

    Full Text Available Nest predation risk generally increases nearer forest-field edges in agricultural landscapes. However, few studies test whether differences in edge contrast (i.e. hard versus soft edges based on vegetation structure and height affect edge-related predation patterns and if such patterns are related to changes in nest conspicuousness between incubation and nestling feeding. Using data on 923 nesting attempts we analyse factors influencing nest predation risk at different edge types in an agricultural landscape of a ground-cavity breeding bird species, the Northern Wheatear (Oenanthe oenanthe. As for many other bird species, nest predation is a major determinant of reproductive success in this migratory passerine. Nest predation risk was higher closer to woodland and crop field edges, but only when these were hard edges in terms of ground vegetation structure (clear contrast between tall vs short ground vegetation. No such edge effect was observed at soft edges where adjacent habitats had tall ground vegetation (crop, ungrazed grassland. This edge effect on nest predation risk was evident during the incubation stage but not the nestling feeding stage. Since wheatear nests are depredated by ground-living animals our results demonstrate: (i that edge effects depend on edge contrast, (ii that edge-related nest predation patterns vary across the breeding period probably resulting from changes in parental activity at the nest between the incubation and nestling feeding stage. Edge effects should be put in the context of the nest predator community as illustrated by the elevated nest predation risk at hard but not soft habitat edges when an edge is defined in terms of ground vegetation. These results thus can potentially explain previously observed variations in edge-related nest predation risk.

  6. Electronic structure of p type Delta doped systems

    International Nuclear Information System (INIS)

    Gaggero S, L.M.; Perez A, R.

    1998-01-01

    We summarize of the results obtained for the electronic structure of quantum wells that consist in an atomic layer doped with impurities of p type. The calculations are made within the frame worth of the wrapper function approach to independent bands and with potentials of Hartree. We study the cases reported experimentally (Be in GaAs and B in Si). We present the levels of energy, the wave functions and the rate of the electronic population between the different subbands, as well as the dependence of these magnitudes with the density of impurities in the layer. The participation of the bans of heavy holes is analysed, light and split-off band in the total electronic population. The effect of the temperature is discussed and we give a possible qualitative explanation of the experimental optical properties. (Author)

  7. Valence electronic structure of tantalum carbide and nitride

    Institute of Scientific and Technical Information of China (English)

    FAN; ChangZeng

    2007-01-01

    The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.……

  8. Valence electronic structure of tantalum carbide and nitride

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.

  9. Study of polysilane mainchain electronic structure by picosecond pulse radiolysis

    International Nuclear Information System (INIS)

    Habara, H.; Saeki, A.; Kunimi, Y.; Seki, S.; Kozawa, T.; Yoshida, Y.; Tagawa, S.

    2000-01-01

    The electronic structure of a charged polysilane molecle is studied. The transient absorption spectroscopy was carried out for charged radicals of poly (methylphenylsilane): PMPS by pico-second and nanosecond pulse radiolysis technique. It was observed that the peak of the transient absorption spectra shifted to longer wavelength region within a few nsec, and an increase was observed in the optical density at 370 nm, which had been already assigned to the radical anions of PMPS. It is ascribed to inter-segment electron transfer (intra-molecular transfer) through polymer chain. The nanosecond pulse radiolysis experiments gave similar kinetic traces in near-UV and IR region. This suggests the presence of an interband level, that is, a polaron level occupied by an excess electron or a hole. (author)

  10. Anomalous electronic structure and magnetoresistance in TaAs2.

    Science.gov (United States)

    Luo, Yongkang; McDonald, R D; Rosa, P F S; Scott, B; Wakeham, N; Ghimire, N J; Bauer, E D; Thompson, J D; Ronning, F

    2016-06-07

    The change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g., in metals with anisotropic Fermi surfaces or with spin-disorder scattering and semimetals with Dirac or Weyl electronic structures. Here we show that the non-magnetic semimetal TaAs2 possesses a very large negative magnetoresistance, with an unknown scattering mechanism. Density functional calculations find that TaAs2 is a new topological semimetal [ℤ2 invariant (0;111)] without Dirac dispersion, demonstrating that a negative magnetoresistance in non-magnetic semimetals cannot be attributed uniquely to the Adler-Bell-Jackiw chiral anomaly of bulk Dirac/Weyl fermions.

  11. Two-particle approach to the electronic structure of solids

    International Nuclear Information System (INIS)

    Gonis, A.

    2007-01-01

    Based on an extension of Hubbard's treatment of the electronic structure of correlated electrons in matter we propose a methodology that incorporates the scattering off the Coulomb interaction through the determination of a two-particle propagator. The Green function equations of motion are then used to obtain single-particle Green functions and related properties such as densities of states. The solutions of the equations of motion in two- and single-particle spaces are accomplished through applications of the coherent potential approximation. The formalism is illustrated by means of calculations for a single-band model system representing a linear arrangement of sites with nearest neighbor hopping and an one-site repulsion when two electrons of opposite spin occupy the same site in the lattice in the manner described by the so-called Hubbard Hamiltonian

  12. Changes in composition, ecology and structure of high-mountain vegetation: a re-visitation study over 42 years.

    Science.gov (United States)

    Evangelista, Alberto; Frate, Ludovico; Carranza, Maria Laura; Attorre, Fabio; Pelino, Giovanni; Stanisci, Angela

    2016-01-27

    High-mountain ecosystems are increasingly threatened by climate change, causing biodiversity loss, habitat degradation and landscape modifications. However, very few detailed studies have focussed on plant biodiversity in the high mountains of the Mediterranean. In this study, we investigated the long-term changes that have occurred in the composition, structure and ecology of high-mountain vegetation in the central Apennines (Majella) over the last 42 years. We performed a re-visitation study, using historical and newly collected vegetation data to explore which ecological and structural features have been the most successful in coping with climatic changes. Vegetation changes were analysed by comparing geo-referenced phytosociological relevés collected in high-mountain habitats (dolines, gentle slopes and ridges) on the Majella massif in 1972 and in 2014. Composition analysis was performed by detrended correspondence analysis, followed by an analysis of similarities for statistical significance assessment and by similarity percentage procedure (SIMPER) for identifying which species indicate temporal changes. Changes in ecological and structural indicators were analysed by a permutational multivariate analysis of variance, followed by a post hoc comparison. Over the last 42 years, clear floristic changes and significant ecological and structural variations occurred. We observed a significant increase in the thermophilic and mesonitrophilic plant species and an increment in the frequencies of hemicryptophytes. This re-visitation study in the Apennines agrees with observations in other alpine ecosystems, providing new insights for a better understanding of the effects of global change on Mediterranean high-mountain biodiversity. The observed changes in floristic composition, the thermophilization process and the shift towards a more nutrient-demanding vegetation are likely attributable to the combined effect of higher temperatures and the increase in soil nutrients

  13. Mangrove forests submitted to depositional processes and salinity variation investigated using satellite images and vegetation structure surveys

    OpenAIRE

    Cunha-Lignon, M.; Kampel, M.; Menghini, R.P.; Schaeffer-Novelli, Y.; Cintrón, G.; Dahdouh-Guebas, F.

    2011-01-01

    The current paper examines the growth and spatio-temporal variation of mangrove forests in response to depositional processes and different salinity conditions. Data from mangrove vegetation structure collected at permanent plots and satellite images were used. In the northern sector important environmental changes occurred due to an artificial channel producing modifications in salinity. The southern sector is considered the best conserved mangrove area along the coast of São Paulo State, Br...

  14. Carbon nanotube on Si(001): structural and electronic properties

    International Nuclear Information System (INIS)

    Orellana, W.; Fazzio, A.; Miwa, R.W.

    2003-01-01

    Full text: The promising nanoscale technology based on carbon nanotubes has attracted much attention due to the unique electronic, chemical and mechanical properties of the nanotubes. Single-wall carbon nanotubes (SWCNs) provide an ideal atomically uniform one dimensional (1D) conductors, having a strong electronic confinement around its circumference, which can be retained up to room temperature[1]. This interesting property may lead one to consider SWCNs as 1D conductors for the development of nanoscale electronic devices. In this work the structural and electronic properties of the contact between a metallic (6,6) SWCN adsorbed on a silicon (001) surface are studied from first-principles total-energy calculations. We consider two adsorption sites for the tube on the Si(001) surface: on the top of the Si-dimer rows and on the surface 'trench' between two consecutive dimer rows. Our results show a chemical bond between the nanotube and Si(001) when the tube is located along the 'trench', which corresponds to the only bound structure. We find a binding energy per tube length of 0.21 eV/angstrom. We also verified that the binding energy depends on the rotation of the tube. Typically, a rotation of 15 deg can reduce the binding energy up to 0.07 eV/angstrom. Our calculated electronic properties indicate that the most stable structure shows a subband associated to the tube/surface bond that cross the Fermi level. This result indicates an enhanced metallic behavior along the tube/surface contact characterizing a 1D quantum wire. The charge transfer between the Si surface and the tube is also discussed. [1] Z. Yao, C. Dekker, and P. Avouris in Carbon Nanotubes, M. S. Dresselhaus, G. Dresselhaus, and P. Avouris Eds., (Springer, Berlin 2001), p. 147. (author)

  15. Fast electronic structure methods for strongly correlated molecular systems

    International Nuclear Information System (INIS)

    Head-Gordon, Martin; Beran, Gregory J O; Sodt, Alex; Jung, Yousung

    2005-01-01

    A short review is given of newly developed fast electronic structure methods that are designed to treat molecular systems with strong electron correlations, such as diradicaloid molecules, for which standard electronic structure methods such as density functional theory are inadequate. These new local correlation methods are based on coupled cluster theory within a perfect pairing active space, containing either a linear or quadratic number of pair correlation amplitudes, to yield the perfect pairing (PP) and imperfect pairing (IP) models. This reduces the scaling of the coupled cluster iterations to no worse than cubic, relative to the sixth power dependence of the usual (untruncated) coupled cluster doubles model. A second order perturbation correction, PP(2), to treat the neglected (weaker) correlations is formulated for the PP model. To ensure minimal prefactors, in addition to favorable size-scaling, highly efficient implementations of PP, IP and PP(2) have been completed, using auxiliary basis expansions. This yields speedups of almost an order of magnitude over the best alternatives using 4-center 2-electron integrals. A short discussion of the scope of accessible chemical applications is given

  16. Strongly correlated electron materials. I. Theory of the quasiparticle structure

    International Nuclear Information System (INIS)

    Lopez-Aguilar, F.; Costa-Quintana, J.; Puig-Puig, L.

    1993-01-01

    In this paper we give a method for analyzing the renormalized electronic structure of the Hubbard systems. The first step is the determination of effective interactions from the random-phase approximation (RPA) and from an extended RPA (ERPA) that introduces vertex effects within the bubble polarization. The second step is the determination of the density of states deduced from the spectral functions. Its analysis leads us to conclude that these systems can exhibit three types of resonances in their electronic structures: the lower-, middle-, and upper-energy resonances. Furthermore, we analyze the conditions for which there is only one type of resonance and the causes that lead to the disappearance of the heavy-fermion state. We finally introduce the RPA and ERPA effective interactions within the strong-coupling theory and we give the conditions for obtaining coupling and superconductivity

  17. Phase Diagram and Electronic Structure of Praseodymium and Plutonium

    Directory of Open Access Journals (Sweden)

    Nicola Lanatà

    2015-01-01

    Full Text Available We develop a new implementation of the Gutzwiller approximation in combination with the local density approximation, which enables us to study complex 4f and 5f systems beyond the reach of previous approaches. We calculate from first principles the zero-temperature phase diagram and electronic structure of Pr and Pu, finding good agreement with the experiments. Our study of Pr indicates that its pressure-induced volume-collapse transition would not occur without change of lattice structure—contrarily to Ce. Our study of Pu shows that the most important effect originating the differentiation between the equilibrium densities of its allotropes is the competition between the Peierls effect and the Madelung interaction and not the dependence of the electron correlations on the lattice structure.

  18. Relationship between electronic structure and radioprotective activity of some indazoles

    International Nuclear Information System (INIS)

    Sokolov, Yu.A.

    2000-01-01

    The quantum-chemical study of electronic structure of 29 indasoles with complete optimization of geometry and search of quantitative link between the established characteristics and radioprotective activity (RPA) was carried out through the MNDO method with application of multiple linear and nonlinear regression analysis and the basic component method. The equations of correlation relationship between the RPA and electronic characteristics are presented. 10 indasole structures, the forecasted RPA values whereof (survival rate, %) equal 50% and above, are selected. The statistic significance of the obtained correlation equations and their regression coefficients make it possible to conclude, that the established relationships are not accidental and are prospective for forecasting RPA of other close compounds of the indasole series [ru

  19. Electronic structure of C and Si fullerenes and fullerides

    International Nuclear Information System (INIS)

    Saito, S.

    1996-01-01

    Fullerenes, i.e., cage-structure clusters are now studied intensively as a building unit for a new class of materials. The electronic structure of C 60 and Si 20 fullerenes and their fullerides obtained in the framework of the density-functional theory is discussed with emphasis on the electronic as well as the geometrical hierarchy in superconducting fullerides. In both C 60 and Si 20 fullerides, the charge transfer from alkali atoms to fullerenes and the hybridization between alkaline-earth states and fullerene states are observed. Also A 3 C 60 and (Ba 3 Si 3 Na rate at Si 20 ) 2 superconductors are found to have high Fermi-level density of states, although the mechanism giving it is different in two materials. Interesting materials to be produced in the future are also discussed. (orig.)

  20. Structure of Corrective Feedback for Selection of Ineffective Vegetable Parenting Practices for Use in a Simulation Videogame.

    Science.gov (United States)

    Baranowski, Tom; Beltran, Alicia; Chen, Tzu-An; O'Connor, Teresia; Hughes, Sheryl; Buday, Richard; Baranowski, Janice

    2013-02-01

    A serious videogame is being developed to train parents of preschool children in selecting and using parenting practices that are likely to encourage their child to eat more vegetables. The structure of feedback to the parents on their selection may influence what they learn from the game. Feedback Intervention Theory provides some guidance on the design of such messages. The structure of preferred performance feedback statements has not been investigated within serious videogames. Two feedback formats were tested for a player's preferences within the context of this videogame. Based on Feedback Intervention Theory, which proposes that threat to self-concept impairs feedback response, three-statement (a nonaffirming comment sandwiched between two affirming comments, called "Oreo" feedback, which should minimize threat to self-concept) and two-statement (a nonaffirming comment followed by an affirming comment) performance feedbacks were tailored to respondents. Tailoring was based on participants' report of frequency of use of effective and ineffective vegetable parenting practices and the reasons for use of the ineffective practices. Participants selected their preference between the two forms of feedback for each of eight ineffective vegetable parenting practices. In general, mothers ( n =81) (no male respondents) slightly preferred the "Oreo" feedback, but the pattern of preferences varied by demographic characteristics. Stronger relationships by income suggest the feedback structure should be tailored to family income. Future research with larger and more diverse samples needs to test whether perceived threat to self-concept mediates the response to feedback and otherwise verify these findings.

  1. Comparing two iteration algorithms of Broyden electron density mixing through an atomic electronic structure computation

    International Nuclear Information System (INIS)

    Zhang Man-Hong

    2016-01-01

    By performing the electronic structure computation of a Si atom, we compare two iteration algorithms of Broyden electron density mixing in the literature. One was proposed by Johnson and implemented in the well-known VASP code. The other was given by Eyert. We solve the Kohn-Sham equation by using a conventional outward/inward integration of the differential equation and then connect two parts of solutions at the classical turning points, which is different from the method of the matrix eigenvalue solution as used in the VASP code. Compared to Johnson’s algorithm, the one proposed by Eyert needs fewer total iteration numbers. (paper)

  2. Electronic structure of a striped nickelate studied by the exact exchange for correlated electrons (EECE) approach

    KAUST Repository

    Schwingenschlögl, Udo

    2009-12-01

    Motivated by a RIXS study of Wakimoto, et al.(Phys. Rev. Lett., 102 (2009) 157001) we use density functional theory to analyze the magnetic order in the nickelate La5/3Sr1/3NiO4 and the details of its crystal and electronic structure. We compare the generalized gradient approximation to the hybrid functional approach of exact exchange for correlated electrons (EECE). In contrast to the former, the latter reproduces the insulating state of the compound and the midgap states. The EECE approach, in general, appears to be appropriate for describing stripe phases in systems with orbital degrees of freedom. Copyright © EPLA, 2009.

  3. Electronic structure and superconductivity of FeSe-related superconductors.

    Science.gov (United States)

    Liu, Xu; Zhao, Lin; He, Shaolong; He, Junfeng; Liu, Defa; Mou, Daixiang; Shen, Bing; Hu, Yong; Huang, Jianwei; Zhou, X J

    2015-05-13

    FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, FeTe, possesses a unique antiferromagnetic ground state but is non-superconducting. Substitution of Se with Te in the FeSe superconductor results in an enhancement of Tc up to 14.5 K and superconductivity can persist over a large composition range in the Fe(Se,Te) system. Intercalation of the FeSe superconductor leads to the discovery of the AxFe2-ySe2 (A = K, Cs and Tl) system that exhibits a Tc higher than 30 K and a unique electronic structure of the superconducting phase. A recent report of possible high temperature superconductivity in single-layer FeSe/SrTiO3 films with a Tc above 65 K has generated much excitement in the community. This pioneering work opens a door for interface superconductivity to explore for high Tc superconductors. The distinct electronic structure and superconducting gap, layer-dependent behavior and insulator-superconductor transition of the FeSe/SrTiO3 films provide critical information in understanding the superconductivity mechanism of iron-based superconductors. In this paper, we present a brief review of the investigation of the electronic structure and superconductivity of the FeSe superconductor and related systems, with a particular focus on the FeSe films.

  4. Structural and electronic properties of hydrosilylated silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Baumer, A.

    2005-11-15

    The structural and electronic properties of alkyl-terminated Si surfaces prepared by thermallyinduced hydrosilylation have been studied in detail in the preceding chapters. Various surfaces have been used for the functionalization ranging from crystalline Si over amorphous hydrogenated Si to nanoscaled materials such as Si nanowires and nanoparticles. In each case, the alkyl-terminated surfaces have been compared to the native oxidized and H-terminated surfaces. (orig.)

  5. Thick-Restart Lanczos Method for Electronic Structure Calculations

    International Nuclear Information System (INIS)

    Simon, Horst D.; Wang, L.-W.; Wu, Kesheng

    1999-01-01

    This paper describes two recent innovations related to the classic Lanczos method for eigenvalue problems, namely the thick-restart technique and dynamic restarting schemes. Combining these two new techniques we are able to implement an efficient eigenvalue problem solver. This paper will demonstrate its effectiveness on one particular class of problems for which this method is well suited: linear eigenvalue problems generated from non-self-consistent electronic structure calculations

  6. Electronic structure of ternary hydrides based on light elements

    Energy Technology Data Exchange (ETDEWEB)

    Orgaz, E. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)]. E-mail: orgaz@eros.pquim.unam.mx; Membrillo, A. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Castaneda, R. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Aburto, A. [Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)

    2005-12-08

    Ternary hydrides based on light elements are interesting owing to the high available energy density. In this work we focused into the electronic structure of a series of known systems having the general formula AMH{sub 4}(A=Li,Na,M=B,Al). We computed the energy bands and the total and partial density of states using the linear-augmented plane waves method. In this report, we discuss the chemical bonding in this series of complex hydrides.

  7. Final Technical Report: Electronic Structure Workshop (ES13)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shiwei [College of William and Mary, Williamsburg, VA (United States)

    2015-02-26

    The 25th Annual Workshop on Recent Developments in Electronic Structure Methods (ES2013) was successfully held at the College of William & Mary in Williamsburg VA on June 11-14, 2013. The workshop website is at http://es13.wm.edu/ , which contains updated information on the workshop and a permanent archive of the scientific contents. DOE's continued support has been instrumental to the success of the workshop.

  8. Formalized Medical Guidelines and a Structured Electronic Health Record.

    Czech Academy of Sciences Publication Activity Database

    Peleška, Jan; Anger, Z.; Buchtela, David; Šebesta, K.; Tomečková, Marie; Veselý, Arnošt; Zvára, K.; Zvárová, Jana

    2005-01-01

    Roč. 11, - (2005), s. 4652-4656 ISSN 1727-1983. [EMBEC'05. European Medical and Biomedical Conference /3./. Prague, 20.11.2005-25.11.2005] R&D Projects: GA AV ČR 1ET200300413 Institutional research plan: CEZ:AV0Z10300504 Keywords : formalization of guidelines in cardilogy * GLIF model * structure electronic health record * algorithm in cardiovascular diagnostics and treatment Subject RIV: BD - Theory of Information

  9. Dissociative recombination of interstellar ions: electronic structure calculations for HCO+

    International Nuclear Information System (INIS)

    Kraemer, W.P.; Hazi, A.U.

    1985-01-01

    The present study of the interstellar formyl ion HCO + is the first attempt to investigate dissociative recombination for a triatomic molecular ion using an entirely theoretical approach. We describe a number of fairly extensive electronic structure calculations that were performed to determine the reaction mechanism of the e-HCO + process. Similar calculations for the isoelectronic ions HOC + and HN 2 + are in progress. 60 refs

  10. Strain-induced changes to the electronic structure of germanium

    KAUST Repository

    Tahini, H. A.

    2012-04-17

    Density functional theory calculations (DFT) are used to investigate the strain-induced changes to the electronic structure of biaxially strained (parallel to the (001), (110) and (111) planes) and uniaxially strained (along the [001], [110] and [111] directions) germanium (Ge). It is calculated that a moderate uniaxial strain parallel to the [111] direction can efficiently transform Ge to a direct bandgap material with a bandgap energy useful for technological applications. © 2012 IOP Publishing Ltd.

  11. Structured electron beams from nano-engineered cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Lueangaramwong, A. [NICADD, DeKalb; Mihalcea, D. [NICADD, DeKalb; Andonian, G. [RadiaBeam Tech.; Piot, P. [Fermilab

    2017-03-07

    The ability to engineer cathodes at the nano-scale have open new possibilities such as enhancing quantum eciency via surface-plasmon excitation, forming ultra-low-emittance beams, or producing structured electron beams. In this paper we present numerical investigations of the beam dynamics associated to this class of cathode in the weak- and strong-field regimes.We finally discuss the possible applications of some of the achievable cathode patterns when coupled with other phase space manipulations.

  12. Strain-induced changes to the electronic structure of germanium

    KAUST Repository

    Tahini, H. A.; Chroneos, Alexander I.; Grimes, Robin W.; Schwingenschlö gl, Udo; Dimoulas, Athanasios Dimoulas

    2012-01-01

    Density functional theory calculations (DFT) are used to investigate the strain-induced changes to the electronic structure of biaxially strained (parallel to the (001), (110) and (111) planes) and uniaxially strained (along the [001], [110] and [111] directions) germanium (Ge). It is calculated that a moderate uniaxial strain parallel to the [111] direction can efficiently transform Ge to a direct bandgap material with a bandgap energy useful for technological applications. © 2012 IOP Publishing Ltd.

  13. An automatic chip structure optical inspection system for electronic components

    Science.gov (United States)

    Song, Zhichao; Xue, Bindang; Liang, Jiyuan; Wang, Ke; Chen, Junzhang; Liu, Yunhe

    2018-01-01

    An automatic chip structure inspection system based on machine vision is presented to ensure the reliability of electronic components. It consists of four major modules, including a metallographic microscope, a Gigabit Ethernet high-resolution camera, a control system and a high performance computer. An auto-focusing technique is presented to solve the problem that the chip surface is not on the same focusing surface under the high magnification of the microscope. A panoramic high-resolution image stitching algorithm is adopted to deal with the contradiction between resolution and field of view, caused by different sizes of electronic components. In addition, we establish a database to storage and callback appropriate parameters to ensure the consistency of chip images of electronic components with the same model. We use image change detection technology to realize the detection of chip images of electronic components. The system can achieve high-resolution imaging for chips of electronic components with various sizes, and clearly imaging for the surface of chip with different horizontal and standardized imaging for ones with the same model, and can recognize chip defects.

  14. Atomic structures and electronic properties of phosphorene grain boundaries

    International Nuclear Information System (INIS)

    Guo, Yu; Zhou, Si; Bai, Yizhen; Zhao, Jijun; Zhang, Junfeng

    2016-01-01

    Grain boundary (GB) is one main type of defects in two-dimensional (2D) crystals, and has significant impact on the physical properties of 2D materials. Phosphorene, a recently synthesized 2D semiconductor, possesses a puckered honeycomb lattice and outstanding electronic properties. It is very interesting to know the possible GBs present in this novel material, and how their properties differ from those in the other 2D materials. Based on first-principles calculations, we explore the atomic structure, thermodynamic stability, and electronic properties of phosphorene GBs. A total of 19 GBs are predicted and found to be energetically stable with formation energies much lower than those in graphene. These GBs do not severely affect the electronic properties of phosphorene: the band gap of perfect phosphorene is preserved, and the electron mobilities are only moderately reduced in these defective systems. Our theoretical results provide vital guidance for experimental tailoring the electronic properties of phosphorene as well as the device applications using phosphorene materials. (paper)

  15. Electronic shell structure and chemisorption on gold nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Ask Hjorth; Kleis, Jesper; Thygesen, Kristian Sommer

    2011-01-01

    to distort considerably, creating large band gaps at the Fermi level. For up to 200 atoms we consider structures generated with a simple EMT potential and clusters based on cuboctahedra and icosahedra. All types of cluster geometry exhibit jelliumlike electronic shell structure. We calculate adsorption...... energies of several atoms on the cuboctahedral clusters. Adsorption energies are found to vary abruptly at magic numbers. Using a Newns-Anderson model we find that the effect of magic numbers on adsorption energy can be understood from the location of adsorbate-induced states with respect to the cluster...

  16. DFTB Parameters for the Periodic Table: Part 1, Electronic Structure.

    Science.gov (United States)

    Wahiduzzaman, Mohammad; Oliveira, Augusto F; Philipsen, Pier; Zhechkov, Lyuben; van Lenthe, Erik; Witek, Henryk A; Heine, Thomas

    2013-09-10

    A parametrization scheme for the electronic part of the density-functional based tight-binding (DFTB) method that covers the periodic table is presented. A semiautomatic parametrization scheme has been developed that uses Kohn-Sham energies and band structure curvatures of real and fictitious homoatomic crystal structures as reference data. A confinement potential is used to tighten the Kohn-Sham orbitals, which includes two free parameters that are used to optimize the performance of the method. The method is tested on more than 100 systems and shows excellent overall performance.

  17. Asymptotic convergence for iterative optimization in electronic structure

    International Nuclear Information System (INIS)

    Lippert, Ross A.; Sears, Mark P.

    2000-01-01

    There have recently been a number of proposals for solving large electronic structure problems (local-density approximation, Hartree-Fock, and tight-binding methods) iteratively with a computational effort proportional to the size of the system. The effort needed to perform a single iteration in these schemes is well understood but the convergence rate has been an empirical matter. This paper will show that many of the proposed methods have a single underlying geometrical structure, which has a specific asymptotic convergence behavior, and that behavior can be understood in terms of some simple condition numbers based on the spectrum of the Hamiltonian. (c) 2000 The American Physical Society

  18. Highlighting material structure with transmission electron diffraction correlation coefficient maps

    International Nuclear Information System (INIS)

    Kiss, Ákos K.; Rauch, Edgar F.; Lábár, János L.

    2016-01-01

    Correlation coefficient maps are constructed by computing the differences between neighboring diffraction patterns collected in a transmission electron microscope in scanning mode. The maps are shown to highlight material structural features like grain boundaries, second phase particles or dislocations. The inclination of the inner crystal interfaces are directly deduced from the resulting contrast. - Highlights: • We propose a novel technique to image the structure of polycrystalline TEM-samples. • Correlation coefficients maps highlights the evolution of the diffracting signal. • 3D views of grain boundaries are provided for nano-particles or polycrystals.

  19. Linking Vegetation Structure and Spider Diversity in Riparian and Adjacent Habitats in Two Rivers of Central Argentina: An Analysis at Two Conceptual Levels.

    Science.gov (United States)

    Griotti, Mariana; Muñoz-Escobar, Christian; Ferretti, Nelson E

    2017-08-01

    The link between vegetation structure and spider diversity has been well explored in the literature. However, few studies have compared spider diversity and its response to vegetation at two conceptual levels: assemblage (species diversity) and ensemble (guild diversity). Because of this, we studied spider diversity in riparian and adjacent habitats of a river system from the Chacoan subregion in central Argentina and evaluated their linkage with vegetation structure at these two levels. To assess vegetation structure, we measured plant species richness and vegetation cover in the herb and shrub - tree layers. We collected spiders for over 6 months by using vacuum netting, sweep netting and pitfall traps. We collected 3,808 spiders belonging to 119 morphospecies, 24 families and 9 guilds. At spider assemblage level, SIMPROF analysis showed significant differences among studied habitats. At spider ensemble level, nevertheless, we found no significant differences among habitats. Concerning the linkage with vegetation structure, BIOENV test showed that spider diversity at either assemblage or ensemble level was not significantly correlated with the vegetation variables assessed. Our results indicated that spider diversity was not affected by vegetation structure. Hence, even though we found a pattern in spider assemblages among habitats, this could not be attributed to vegetation structure. In this study, we show that analyzing a community at two conceptual levels will be useful for recognizing different responses of spider communities to vegetation structure in diverse habitat types. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Electronic structures near surfaces of perovskite type oxides

    International Nuclear Information System (INIS)

    Hara, Toru

    2005-01-01

    This work is intended to draw attention to the origin of the electronic structures near surfaces of perovskite type oxides. Deep states were observed by ultraviolet photoelectron spectroscopic measurements. The film thickness dependent electronic structures near surfaces of (Ba 0.5 Sr 0.5 )TiO 3 thin films were observed. As for the 117-308 nm thick (Ba 0.5 Sr 0.5 )TiO 3 films, deep states were lying at 0.20, 0.55, and 0.85 eV below the quasi-fermi level, respectively. However, as for the 40 nm thick (Ba 0.5 Sr 0.5 )TiO 3 film, the states were overlapped. The A-site doping affected electronic structures near surfaces of SrTiO 3 single crystals. No evolution of deep states in non-doped SrTiO 3 single crystal was observed. However, the evolution of deep states in La-doped SrTiO 3 single crystal was observed

  1. Transmission electron microscopy in molecular structural biology: A historical survey.

    Science.gov (United States)

    Harris, J Robin

    2015-09-01

    In this personal, historic account of macromolecular transmission electron microscopy (TEM), published data from the 1940s through to recent times is surveyed, within the context of the remarkable progress that has been achieved during this time period. The evolution of present day molecular structural biology is described in relation to the associated biological disciplines. The contribution of numerous electron microscope pioneers to the development of the subject is discussed. The principal techniques for TEM specimen preparation, thin sectioning, metal shadowing, negative staining and plunge-freezing (vitrification) of thin aqueous samples are described, with a selection of published images to emphasise the virtues of each method. The development of digital image analysis and 3D reconstruction is described in detail as applied to electron crystallography and reconstructions from helical structures, 2D membrane crystals as well as single particle 3D reconstruction of icosahedral viruses and macromolecules. The on-going development of new software, algorithms and approaches is highlighted before specific examples of the historical progress of the structural biology of proteins and viruses are presented. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Direct electron crystallographic determination of zeolite zonal structures

    International Nuclear Information System (INIS)

    Dorset, Douglas L.; Gilmore, Christopher J.; Jorda, Jose Luis; Nicolopoulos, Stavros

    2007-01-01

    The prospect for improving the success of ab initio zeolite structure investigations with electron diffraction data is evaluated. First of all, the quality of intensities obtained by precession electron diffraction at small hollow cone illumination angles is evaluated for seven representative materials: ITQ-1, ITQ-7, ITQ-29, ZSM-5, ZSM-10, mordenite, and MCM-68. It is clear that, for most examples, an appreciable fraction of a secondary scattering perturbation is removed by precession at small angles. In one case, ZSM-10, it can also be argued that precession diffraction produces a dramatically improved 'kinematical' data set. There seems to no real support for application of a Lorentz correction to these data and there is no reason to expect for any of these samples that a two-beam dynamical scattering relationship between structure factor amplitude and observed intensity should be valid. Removal of secondary scattering by the precession mode appears to facilitate ab initio structure analysis. Most zeolite structures investigated could be solved by maximum entropy and likelihood phasing via error-correcting codes when precession data were used. Examples include the projected structure of mordenite that could not be determined from selected area data alone. One anomaly is the case of ZSM-5, where the best structure determination in projection is made from selected area diffraction data. In a control study, the zonal structure of SSZ-48 could be determined from selected area diffraction data by either maximum entropy and likelihood or traditional direct methods. While the maximum entropy and likelihood approach enjoys some advantages over traditional direct methods (non-dependence on predicted phase invariant sums), some effort must be made to improve the figures of merit used to identify potential structure solutions

  3. Electronic structure of free and doped actinides: N and Z dependences of energy levels and electronic structure parameters

    International Nuclear Information System (INIS)

    Kulagin, N.

    2005-01-01

    Theoretical study of electronic structure of antinide ions and its dependence on N and Z are presented in this paper. The main 5f N and excited 5f N n'l' N' configurations of actinides have been studied using Hartree-Fock-Pauli approximation. Results of calculations of radial integrals and the energy of X-ray lines for all 5f ions with electronic state AC +1 -AC +4 show approximate dependence on N and Z. A square of N and cubic of Z are ewalized for the primary electronic parameters of the actinides. Theoretical values of radial integrals for free actinides and for ions in a cluster AC +n :[L] k are compared, too

  4. Vegetation Structure Controls Carbon Sequestration Potential in a Savannah Ecosystem of Mt. Kilimanjaro Region

    Science.gov (United States)

    Becker, J. N.; Gutlein, A.; Sierra Cornejo, N.; Ralf, K.; Hertel, D.; Kuzyakov, Y.

    2016-12-01

    The savannah biome is a hotspot for biodiversity and wildlife conservation in Africa and recently got in the focus of research on carbon (C) sequestration. Savanna ecosystems are increasingly pressured by climate and land-use changes, especially around populous areas such as the Mt. Kilimanjaro region. Savanna vegetation consists of grassland with isolated trees and is therefore characterized by high spatial variation and patchiness of canopy cover and aboveground biomass. Both are major regulators for soil ecological properties and soil-atmospheric trace gas exchange (CO2, N2O, CH4), especially in water-limited environments. Our objectives were to determine spatial trends in soil properties and trace-gas fluxes during the dry season and to relate above- and belowground processes and attributes. We chose three trees from each of the two most dominant species (Acacia nilotica and Balanites aegyptiaca) in our research area. For each tree, we selected transects with nine sampling points of the same relative distances to the stem. At each sampling point (0-10 & 10-30 cm depth) we measured soil C and nitrogen (N) storage, microbial biomass C and N, Natural δ13C, soil respiration, available nutrients, pH, cation exchange capacity (CEC) as well as root biomass and -density, soil temperature and soil water content. The tree species had no effect on soil parameters and gas fluxes under the crown. CEC, C and N fractions decreased up to 50% outside the crown-covered area. Tree leaf litter had a far lower C:N ratio than leaf litter of the C4-grass species. δ13C in soil under the crowns shifted about 15% in the direction of tree leaf litter δ13C compared to soil in open area reflecting the tree litter contribution to soil organic matter. The microbial C:N ratio and CO2 efflux were about 30% higher in the open area and strongly dependent on mineral N availability. This indicates N limitation and low C-use efficiency in soil under open grassland. We conclude that the spatial

  5. Influence of climate variability, fire and phosphorus limitation on vegetation structure and dynamics of the Amazon-Cerrado border

    Science.gov (United States)

    Ane Dionizio, Emily; Heil Costa, Marcos; de Almeida Castanho, Andrea D.; Ferreira Pires, Gabrielle; Schwantes Marimon, Beatriz; Hur Marimon-Junior, Ben; Lenza, Eddie; Martins Pimenta, Fernando; Yang, Xiaojuan; Jain, Atul K.

    2018-02-01

    Climate, fire and soil nutrient limitation are important elements that affect vegetation dynamics in areas of the forest-savanna transition. In this paper, we use the dynamic vegetation model INLAND to evaluate the influence of interannual climate variability, fire and phosphorus (P) limitation on Amazon-Cerrado transitional vegetation structure and dynamics. We assess how each environmental factor affects net primary production, leaf area index and aboveground biomass (AGB), and compare the AGB simulations to an observed AGB map. We used two climate data sets (monthly average climate for 1961-1990 and interannual climate variability for 1948-2008), two data sets of total soil P content (one based on regional field measurements and one based on global data), and the INLAND fire module. Our results show that the inclusion of interannual climate variability, P limitation and fire occurrence each contribute to simulating vegetation types that more closely match observations. These effects are spatially heterogeneous and synergistic. In terms of magnitude, the effect of fire is strongest and is the main driver of vegetation changes along the transition. Phosphorus limitation, in turn, has a stronger effect on transitional ecosystem dynamics than interannual climate variability does. Overall, INLAND typically simulates more than 80 % of the AGB variability in the transition zone. However, the AGB in many places is clearly not well simulated, indicating that important soil and physiological factors in the Amazon-Cerrado border region, such as lithology, water table depth, carbon allocation strategies and mortality rates, still need to be included in the model.

  6. Vegetation structure and heavy metal uptake by plants in the mining ...

    African Journals Online (AJOL)

    This study assessed the plant species composition and the heavy metal uptake by plants in the mining-impacted and non mining-impacted areas of the southern Lake Victoria basin. The vegetation of the wetlands was stratified into riverine forest, riverine thickets, swampy grassland, open woodland and floodplain grassland ...

  7. Cytosolic streaming in vegetative mycelium and aerial structures of aspergillus niger

    NARCIS (Netherlands)

    Bleichrodt, R.; Vinck, A.; Krijgsheld, P.; van Leeuwen, M.R.; Dijksterhuis, J.; Wösten, H.A.B.

    2013-01-01

    Aspergillus niger forms aerial hyphae and conidiophores after a period of vegetative growth. The hyphae within the mycelium of A. niger are divided by septa. The central pore in these septa allows for cytoplasmic streaming. Here, we studied inter- and intra-compartmental streaming of the reporter

  8. Diet Deterioration and Food Retail Structure: Why Are Italians Eating Less Fruits and Vegetables

    NARCIS (Netherlands)

    Bonanno, A.; Castellari, E.; Sckokay, P.; Bimbo, F.

    2015-01-01

    In spite of Italy presenting one of the largest consumption of fruits and vegetables (FV) among EU Countries, the number of adult Italians consuming the recommended daily amounts of FV is declining, especially in the South of the country, were the expansion of the food retail industry has been

  9. Electronic Structure Approach to Tunable Electronic Properties of Hybrid Organic-Inorganic Perovskites

    Science.gov (United States)

    Liu, Garnett; Huhn, William; Mitzi, David B.; Kanai, Yosuke; Blum, Volker

    We present a study of the electronic structure of layered hybrid organic-inorganic perovskite (HOIP) materials using all-electron density-functional theory. Varying the nature of the organic and inorganic layers should enable systematically fine-tuning the carrier properties of each component. Using the HSE06 hybrid density functional including spin-orbit coupling (SOC), we validate the principle of tuning subsystem-specific parts of the electron band structures and densities of states in CH3NH3PbX3 (X=Cl, Br, I) compared to a modified organic component in layered (C6H5C2H4NH3) 2PbX4 (X=Cl, Br, I) and C20H22S4N2PbX4 (X=Cl, Br, I). We show that tunable shifts of electronic levels indeed arise by varying Cl, Br, I as the inorganic components, and CH3NH3+ , C6H5C2H4NH3+ , C20H22S4N22 + as the organic components. SOC is found to play an important role in splitting the conduction bands of the HOIP compounds investigated here. The frontier orbitals of the halide shift, increasing the gap, when Cl is substituted for Br and I.

  10. The electron-electron instability in a spherical plasma structure with an intermediate double layer

    International Nuclear Information System (INIS)

    Lapuerta, V.; Ahedo, E.

    2003-01-01

    A linear dynamic model of a spherical plasma structure with an intermediate double layer is analyzed in the high-frequency range. The two ion populations tend to stay frozen in their stationary response and this prevents the displacement of the double layer. Different electron modes dominate the plasma dynamics in each quasineutral region. The electrostatic potential and the electron current are the magnitudes most perturbed. The structure develops a reactive electron-electron instability, which is made up of a countable family of eigenmodes. Space-charge effects must be included in the quasineutral regions to determine the eigenmode carrying the maximum growth rate. Except for very small Debye lengths, the fundamental eigenmode governs the instability. The growth rate for the higher harmonics approaches that of an infinite plasma. The instability modes develop mainly on the plasma at the high-potential side of the double layer. The influence of the parameters defining the stationary solution on the instability growth rate is investigated, and the parametric regions of stability are found. The comparison with a couple of experiments on plasma contactors is satisfactory

  11. Electronic structure and electron-phonon coupling in layered copper oxide superconductors

    International Nuclear Information System (INIS)

    Pickett, W.E.; Cohen, R.E.; Krakauer, H.

    1991-01-01

    Experimental data on the layered Cu-O superconductors seem more and more to reflect normal Fermi-liquid behavior and substantial correspondence with band structure predictions. Recent self-consistent, microscopic band theoretic calculations of the electronic structure, lattice instabilities, phonon frequencies, and electron-phonon coupling characteristics and strength for La 2 CuO 4 and YBa 2 Cu 3 O 7 are reviewed. A dominant feature of the coupling is a novel Madelung-like contribution which would be screened out in high density of states superconductors but survives in cuprates because of weak screening. Local density functional theory correctly predicts the instability of (La, Ba) 2 CuO 4 to both the low-temperature orthorhombic phase (below room temperature) and the lower-temperature tetragonal phase (below 50 K). (orig.)

  12. Interactions Between Wind Erosion, Vegetation Structure, and Soil Stability in Groundwater Dependent Plant Communities

    Science.gov (United States)

    Vest, K. R.; Elmore, A. J.; Okin, G. S.

    2009-12-01

    Desertification is a human induced global phenomenon causing a loss of biodiversity and ecosystem productivity. Semi-arid grasslands are vulnerable to anthropogenic impacts (i.e., groundwater pumping and surface water diversion) that decrease vegetation cover and increase bare soil area leading to a greater probability of soil erosion, potentially enhancing feedback processes associated with desertification. To enhance our understanding of interactions between anthropogenic, physical, and biological factors causing desertification, this study used a combination of modeling and field observations to examine the relationship between chronic groundwater pumping and vegetation cover change and its effects on soil erosion and stability. The work was conducted in Owens Valley California, where a long history of groundwater pumping and surface water diversion has lead to documented vegetation changes. The work examined hydrological, ecological and biogeochemical factors across thirteen sites in Owens Valley. We analyzed soil stability, vegetation and gap size, soil organic carbon, and we also installed Big Spring Number Eight (BSNE) catchers to calculate mass transport of aeolian sediment across sites. Mass transport calculations were used to validate a new wind erosion model that represents the effect of porous vegetation on surface windshear velocity. Results across two field seasons show that the model can be used to predict mass transport, and areas with increased groundwater pumping show a greater susceptibility to erosion. Sediment collected in BSNE catchers was positively correlated with site gap size. Additionally, areas with larger gap sizes have a greater threshold shear velocity and soil stability, yet mass transport was greater at these sites than at sites with smaller gap sizes. Although modeling is complicated by spatial variation in multiple model parameters (e.g., gap size, threshold shear velocity in gaps), our results support the hypothesis that soils

  13. Software abstractions and computational issues in parallel structure adaptive mesh methods for electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, S.; Weare, J.; Ong, E.; Baden, S.

    1997-05-01

    We have applied structured adaptive mesh refinement techniques to the solution of the LDA equations for electronic structure calculations. Local spatial refinement concentrates memory resources and numerical effort where it is most needed, near the atomic centers and in regions of rapidly varying charge density. The structured grid representation enables us to employ efficient iterative solver techniques such as conjugate gradient with FAC multigrid preconditioning. We have parallelized our solver using an object- oriented adaptive mesh refinement framework.

  14. Structural and electronic properties of La C[sub 82

    Energy Technology Data Exchange (ETDEWEB)

    Laasonen, K.; Andreoni, W.; Parrinello, M. (Zurich Research Lab., Rueschlikon (Switzerland))

    1992-12-18

    The structural and electronic properties of the La C[sub 82] fullerene have been investigated by means of the Car-Parrinello method, which is based on the local density approximation of the density functional theory. The topological arrangement of the C[sub 82] cage was assumed to be a C[sub 3v] symmetry isomer. Three configurations were considered, one with the lanthanum atom at the center of the cluster, one with it along the threefold axis, and one with it at a low-symmetry, highly coordinated site. The structure was fully relaxed and it was found that the last of these configurations is energetically preferred. In this position, the lanthanum atom is nearly in a La[sup 3+] state and the unpaired electron is somewhat delocalized on the cage, in agreement with available experimental data. This arrangement suggests that the chemical shifts of the 5s and 5p lanthanum states can be used as a structural probe and as a way of further validating this picture. It is argued that this conclusion is not affected by the assumed fullerene structure.

  15. Valence band electronic structure of Pd based ternary chalcogenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lohani, H. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India); Mishra, P. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Goyal, R.; Awana, V.P.S. [National Physical Laboratory(CSIR), Dr. K. S. Krishnan Road, New Delhi 110012 (India); Sekhar, B.R., E-mail: sekhar@iopb.res.in [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India)

    2016-12-15

    Highlights: • VB Photoemission study and DFT calculations on Pd based ternary superconductors are presented. • Nb{sub 2}Pd{sub 0.95}S{sub 5} shows a temperature dependent pseudogap. • VB spectral features of ternary superconductors are correlated to their structural geometry. - Abstract: We present a comparative study of the valence band electronic structure of Pd based ternary chalcogenide superconductors Nb{sub 2}Pd{sub 0.95}S{sub 5}, Ta{sub 2}Pd{sub 0.97}S{sub 6} and Ta{sub 2}Pd{sub 0.97}Te{sub 6} using experimental photoemission spectroscopy and density functional based theoretical calculations. We observe a qualitatively similarity between valence band (VB) spectra of Nb{sub 2}Pd{sub 0.95}S{sub 5} and Ta{sub 2}Pd{sub 0.97}S{sub 6}. Further, we find a pseudogap feature in Nb{sub 2}Pd{sub 0.95}S{sub 5} at low temperature, unlike other two compounds. We have correlated the structural geometry with the differences in VB spectra of these compounds. The different atomic packing in these compounds could vary the strength of inter-orbital hybridization among various atoms which leads to difference in their electronic structure as clearly observed in our DOS calculations.

  16. Atomic and electronic structures of an extremely fragile liquid.

    Science.gov (United States)

    Kohara, Shinji; Akola, Jaakko; Patrikeev, Leonid; Ropo, Matti; Ohara, Koji; Itou, Masayoshi; Fujiwara, Akihiko; Yahiro, Jumpei; Okada, Junpei T; Ishikawa, Takehiko; Mizuno, Akitoshi; Masuno, Atsunobu; Watanabe, Yasuhiro; Usuki, Takeshi

    2014-12-18

    The structure of high-temperature liquids is an important topic for understanding the fragility of liquids. Here we report the structure of a high-temperature non-glass-forming oxide liquid, ZrO2, at an atomistic and electronic level. The Bhatia-Thornton number-number structure factor of ZrO2 does not show a first sharp diffraction peak. The atomic structure comprises ZrO5, ZrO6 and ZrO7 polyhedra with a significant contribution of edge sharing of oxygen in addition to corner sharing. The variety of large oxygen coordination and polyhedral connections with short Zr-O bond lifetimes, induced by the relatively large ionic radius of zirconium, disturbs the evolution of intermediate-range ordering, which leads to a reduced electronic band gap and increased delocalization in the ionic Zr-O bonding. The details of the chemical bonding explain the extremely low viscosity of the liquid and the absence of a first sharp diffraction peak, and indicate that liquid ZrO2 is an extremely fragile liquid.

  17. Auger electron spectroscopy analysis of high metal content micro-structures grown by electron beam induced deposition

    International Nuclear Information System (INIS)

    Cicoira, F.; Hoffmann, P.; Olsson, C.O.A.; Xanthopoulos, N.; Mathieu, H.J.; Doppelt, P.

    2005-01-01

    An auger electron spectroscopy study was carried out on Rh-containing micro-structures grown by electron beam induced deposition (EBID) of the iso-structural and iso-electronic precursors [RhCl(PF 3 ) 2 ] 2 and [RhCl(CO) 2 ] 2 . A material containing between 55 and 60 at.% Rh was obtained from both precursors. The chemical composition of structures grown from the two different precursors indicates a similar decomposition mechanism. Deposits grown from [RhCl(PF 3 ) 2 ] 2 showed a chemical composition independent of electron energy and electron dose in the investigated range of conditions

  18. Electronic structure of PPP@ZnO from all-electron quasiarticle calculations

    Science.gov (United States)

    Höffling, Benjamin; Nabok, Dimitri; Draxl, Claudia; Condensed Matter Theory Group, Humboldt University Berlin Team

    We investigate the electronic properties of poly(para-phenylene) (PPP) adsorbed on the non-polar (001) surface of rocksalt (rs) ZnO using all-electron density functional theory (DFT) as well as quasiparticle (QP) calculations within the GW approach. A particular focus is put on the electronic band discontinuities at the interface, where we investigate the impact of quantum confinement, molecular polarization, and charge rearrangement. For our prototypical system, PPP@ZnO, we find a type-I heterostructure. Comparison of the band offsets derived from a QP-treatment of the hybrid system with predictions based on mesoscopic methods, like the Shockley-Anderson model or alignment via the electrostatic potential, reveals the inadequacy of these simple approaches for the prediction of the electronic structure of such inorganic/organic heterosystems. Finally, we explore the optical excitations of the interface compared to the features of the pristine components and discuss the methodological implications for the ab-initio treatment of interface electronics.

  19. Structural and electronic properties of carbon nanotubes under hydrostatic pressures

    International Nuclear Information System (INIS)

    Zhang Ying; Cao Juexian; Yang Wei

    2008-01-01

    We studied the structural and electronic properties of carbon nanotubes under hydrostatic pressures based on molecular dynamics simulations and first principles band structure calculations. It is found that carbon nanotubes experience a hard-to-soft transition as external pressure increases. The bulk modulus of soft phase is two orders of magnitude smaller than that of hard phase. The band structure calculations show that band gap of (10, 0) nanotube increases with the increase of pressure at low pressures. Above a critical pressure (5.70GPa), band gap of (10, 0) nanotube drops rapidly and becomes zero at 6.62GPa. Moreover, the calculated charge density shows that a large pressure can induce an sp 2 -to-sp 3 bonding transition, which is confirmed by recent experiments on deformed carbon nanotubes

  20. Geometric and electronic structures of small GaN clusters

    Energy Technology Data Exchange (ETDEWEB)

    Song Bin; Cao Peilin

    2004-08-02

    The geometric and electronic structures of Ga{sub x}N{sub y} (x+y{<=}8) clusters have been calculated using a full-potential linear-muffin-tin-orbital method, combined with molecular dynamics and simulated annealing techniques. It is found that the structures, binding energies and HOMO-LUMO gaps of these clusters strongly depend on their size and composition. The lowest energy structures of these clusters are obtained, and the trends in the geometries are discussed. The binding energy of the cluster increases as the size of cluster increases. N-rich cluster has larger binding energy than Ga-rich ones. The HOMO-LUMO gaps of these clusters are evaluated.

  1. Influences of vegetation structure and elevation on CO2 uptake in a mature jack pine forest in Saskatchewan, Canada

    International Nuclear Information System (INIS)

    Chasmer, L.; McCaughey, H.; Treitz, P.

    2008-01-01

    Eddy covariance (EC) is often used to measure the movement and direction of energy and trace gas concentrations in ecosystems. Data from EC networks are often combined with remote sensing data and ecosystem models in order to assess the spatial and temporal variability of carbon dioxide (CO 2 ) exchanges within specific areas of interest. This study presented a new method of determining changes in the structural characteristics of biomass and elevation. Lidar was used within the contours of half-hourly flux footprint areas to characterize vegetation structure and elevation. The influences of vegetation structure and elevation on CO 2 concentrations were measured by EC and Lidar measurements for 3 mature growing periods at a mature jack pine site in Saskatchewan. Mensuration data were collected over 2 periods. Meteorological, CO 2 , and H2O flux measurements were collected for 30 minute periods each day. Statistical analyses were conducted to determine the influence of meteorological variables on vegetation structure. Footprint contour lines were then layered onto the canopy height models derived by the lidar data. Multiple regression equations were used to determine net ecosystem productivity (NEP) and gross ecosystem productivity (GEP) using meteorological variables, canopy fractional cover; and elevation, as well as the results obtained from a Landsberg equation. The study showed that differences in NEP variability were influenced by differences in canopy and ground surface characteristics within the site. EC measurements underestimated gross CO 2 fluxes by 5 per cent as the biomass was lower within the immediate vicinity of the EC network. It was concluded that canopy structures and elevation are important factors for determining annual carbon balances. 36 refs., 8 tabs., 9 figs

  2. Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron-Phonon Coupling in Cuprate Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.J.

    2010-04-30

    In addition to the record high superconducting transition temperature (T{sub c}), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T{sub c}, and anomalous normal state properties above T{sub c}. In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd with conventional metals which is usually described by Fermi liquid theory; instead, the normal state at optimal doping fits better with the marginal Fermi liquid phenomenology. Most notable is the observation of the pseudogap state in the underdoped region above T{sub c}. As in other strongly correlated electrons systems, these unusual properties stem from the interplay between electronic, magnetic, lattice and orbital degrees of freedom. Understanding the microscopic process involved in these materials and the interaction of electrons with other entities is essential to understand the mechanism of high temperature superconductivity. Since the discovery of high-T{sub c} superconductivity in cuprates, angle-resolved photoemission spectroscopy (ARPES) has provided key experimental insights in revealing the electronic structure of high temperature superconductors. These include, among others, the earliest identification of dispersion and a large Fermi surface, an anisotropic superconducting gap suggestive of a d-wave order parameter, and an observation of the pseudogap in underdoped samples. In the mean time, this technique itself has experienced a dramatic improvement in its energy and momentum resolutions, leading to a series of new discoveries not

  3. Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron-Phonon Coupling in Cuprate Superconductors

    International Nuclear Information System (INIS)

    Zhou, X.J.

    2010-01-01

    In addition to the record high superconducting transition temperature (T c ), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T c , and anomalous normal state properties above T c . In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd with conventional metals which is usually described by Fermi liquid theory; instead, the normal state at optimal doping fits better with the marginal Fermi liquid phenomenology. Most notable is the observation of the pseudogap state in the underdoped region above T c . As in other strongly correlated electrons systems, these unusual properties stem from the interplay between electronic, magnetic, lattice and orbital degrees of freedom. Understanding the microscopic process involved in these materials and the interaction of electrons with other entities is essential to understand the mechanism of high temperature superconductivity. Since the discovery of high-T c superconductivity in cuprates, angle-resolved photoemission spectroscopy (ARPES) has provided key experimental insights in revealing the electronic structure of high temperature superconductors. These include, among others, the earliest identification of dispersion and a large Fermi surface, an anisotropic superconducting gap suggestive of a d-wave order parameter, and an observation of the pseudogap in underdoped samples. In the mean time, this technique itself has experienced a dramatic improvement in its energy and momentum resolutions, leading to a series of new discoveries not thought possible

  4. Electronic Structure and Transport in Solids from First Principles

    Science.gov (United States)

    Mustafa, Jamal Ibrahim

    The focus of this dissertation is the determination of the electronic structure and trans- port properties of solids. We first review some of the theory and computational methodology used in the calculation of electronic structure and materials properties. Throughout the dissertation, we make extensive use of state-of-the-art software packages that implement density functional theory, density functional perturbation theory, and the GW approximation, in addition to specialized methods for interpolating matrix elements for extremely accurate results. The first application of the computational framework introduced is the determination of band offsets in semiconductor heterojunctions using a theory of quantum dipoles at the interface. This method is applied to the case of heterojunction formed between a new metastable phase of silicon, with a rhombohedral structure, and cubic silicon. Next, we introduce a novel method for the construction of localized Wannier functions, which we have named the optimized projection functions method (OPFM). We illustrate the method on a variety of systems and find that it can reliably construct localized Wannier functions with minimal user intervention. We further develop the OPFM to investigate a class of materials called topological insulators, which are insulating in the bulk but have conductive surface states. These properties are a result of a nontrivial topology in their band structure, which has interesting effects on the character of the Wannier functions. In the last sections of the main text, the noble metals are studied in great detail, including their electronic properties and carrier dynamics. In particular, we investigate, the Fermi surface properties of the noble metals, specifically electron-phonon scattering lifetimes, and subsequently the transport properties determined by carriers on the Fermi surface. To achieve this, a novel sampling technique is developed, with wide applicability to transport calculations

  5. Electronic structure, bonding and chemisorption in metallic hydrides

    International Nuclear Information System (INIS)

    Ward, J.W.

    1980-01-01

    Problems that can arise during the cycling steps for a hydride storage system usually involve events at surfaces. Chemisorption and reaction processes can be affected by small amounts of contaminants that may act as catalytic poisons. The nature of the poisoning process can vary greatly for the different metals and alloys that form hydrides. A unifying concept is offered, which satisfactorily correlates many of the properties of transition-metal, rare-earth and actinide hydrides. The metallic hydrides can be differentiated on the basis of electronegativity, metallic radius (valence) and electronic structure. For those systems where there are d (transition metals) or f (early actinides) electrons near the Fermi level a broad range of chemical and catalytic behaviors are found, depending on bandwidth and energy. The more electropositive metals (rare-earths, actinides, transition metals with d > 5) dissolve hydrogen and form hydrides by an electronically somewhat different process, and as a class tend to adsorb electrophobic molecules. The net charge-transfer in either situation is subtle; however, the small differences are responsible for many of the observed structural, chemical, and catalytic properties in these hydride systems

  6. Novel electronic structures of superlattice composed of graphene and silicene

    International Nuclear Information System (INIS)

    Yu, S.; Li, X.D.; Wu, S.Q.; Wen, Y.H.; Zhou, S.; Zhu, Z.Z.

    2014-01-01

    Highlights: • Graphene/silicene superlattices exhibit metallic electronic properties. • Dirac point of graphene is folded to the Γ-point in the superlattice system. • Significant changes in the transport properties of the graphene layers are expected. • Small amount of charge transfer from the graphene to the silicene layers is found. - Abstract: Superlattice is a major force in providing man-made materials with unique properties. Here we report a study of the structural and electronic properties of a superlattice made with alternate stacking of graphene and hexagonal silicene. Three possible stacking models, i.e., the top-, bridge- and hollow-stacking, are considered. The top-stacking is found to be the most stable pattern. Although both the free-standing graphene and silicene are semi-metals, our results suggest that the graphene and silicene layers in the superlattice both exhibit metallic electronic properties due to a small amount of charge transfer from the graphene to the silicene layers. More importantly, the Dirac point of graphene is folded to the Γ-point of the superlattice, instead of the K-point in the isolated graphene. Such a change in the Dirac point of graphene could lead to significant change in the transportation property of the graphene layer. Moreover, the band structure and the charge transfer indicate that the interaction between the stacking sheets in the graphene/silicene superlattice is more than just the van der Waals interaction

  7. Structural Fingerprinting of Nanocrystals in the Transmission Electron Microscope

    Science.gov (United States)

    Rouvimov, Sergei; Plachinda, Pavel; Moeck, Peter

    2010-03-01

    Three novel strategies for the structurally identification of nanocrystals in a transmission electron microscope are presented. Either a single high-resolution transmission electron microscopy image [1] or a single precession electron diffractogram (PED) [2] may be employed. PEDs from fine-grained crystal powders may also be utilized. Automation of the former two strategies is in progress and shall lead to statistically significant results on ensembles of nanocrystals. Open-access databases such as the Crystallography Open Database which provides more than 81,500 crystal structure data sets [3] or its mainly inorganic and educational subsets [4] may be utilized. [1] http://www.scientificjournals.org/journals 2007/j/of/dissertation.htm [2] P. Moeck and S. Rouvimov, in: {Drugs and the Pharmaceutical Sciences}, Vol. 191, 2009, 270-313 [3] http://cod.ibt.lt, http://www.crystallography.net, http://cod.ensicaen.fr, http://nanocrystallography.org, http://nanocrystallography.net, http://journals.iucr.org/j/issues/2009/04/00/kk5039/kk5039.pdf [4] http://nanocrystallography.research.pdx.edu/CIF-searchable

  8. HREELS to identify electronic structures of organic thin films.

    Science.gov (United States)

    Oeter, D; Ziegler, C; Göpel, W

    1995-10-01

    The electronic structure of alpha-oligothiophene (alphanT) thin films has been investigated for increasing chain lengths of n= 4-8 thiophene units with high resolution electron energy loss spectroscopy (HREELS) in the specular reflection geometry at a primary energy of 15 eV. The great advantage of this technique in contrast to UV/VIS absorption spectroscopy results from the fact, that the impact scattering mechanism of HREELS makes it possible to also detect optically forbidden electronic transitions. On the other hand, the electrons used as probes in HREELS have a wavelength which is two orders of magnitudes smaller if compared to those of photons used in UV/VIS absorption spectroscopy. Therefore individual molecules are excited by HREELS independent from each other and hence the excitation of collective excitons is not possible. As a result, information about the orientation of the molecules cannot be achieved with HREELS, which, however, is possible in polarization-dependent UV/VIS spectroscopy.

  9. Electronic structure and mechanical properties of plasma nitrided ferrous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Portolan, E. [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul-RS (Brazil); Baumvol, I.J.R. [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul-RS (Brazil); Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-970 (Brazil); Figueroa, C.A., E-mail: cafiguer@ucs.br [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul-RS (Brazil)

    2009-04-15

    The electronic structures of the near-surface regions of two different nitrided steels (AISI 316 and 4140) were investigated using X-ray photoelectron spectroscopy. Photoelectron groups from all main chemical elements involved were addressed for steel samples with implanted-N concentrations in the range 16-32 at.%. As the implanted-N concentrations were increased, rather contrasting behaviors were observed for the two kinds of steel. The N1s photoelectrons had spectral shifts toward lower (nitrided AISI 316) or higher (nitrided AISI 4140) binding energies, whereas the Fe2p{sub 3/2} photoelectron spectrum remains at a constant binding energy (nitrided AISI 316) or shifts toward higher binding energies (AISI 4140). These trends are discussed in terms of the metallic nitride formation and the overlapping of atomic orbitals. For nitrided AISI 316, a semi-classical approach of charge transfer between Cr and N is used to explain the experimental facts (formation of CrN), while for nitrided AISI 4140 we propose that the interaction between orbitals 4s from Fe and 2p from N promotes electrons to the conduction band increasing the electrical attraction of the N1s and Fe2p electrons in core shells (formation of FeN{sub x}). The increase in hardness of the steel upon N implantation is attributed to the localization of electrons in specific bonds, which diminishes the metallic bond character.

  10. Electronic structure and mechanical properties of plasma nitrided ferrous alloys

    Science.gov (United States)

    Portolan, E.; Baumvol, I. J. R.; Figueroa, C. A.

    2009-04-01

    The electronic structures of the near-surface regions of two different nitrided steels (AISI 316 and 4140) were investigated using X-ray photoelectron spectroscopy. Photoelectron groups from all main chemical elements involved were addressed for steel samples with implanted-N concentrations in the range 16-32 at.%. As the implanted-N concentrations were increased, rather contrasting behaviors were observed for the two kinds of steel. The N1s photoelectrons had spectral shifts toward lower (nitrided AISI 316) or higher (nitrided AISI 4140) binding energies, whereas the Fe2p 3/2 photoelectron spectrum remains at a constant binding energy (nitrided AISI 316) or shifts toward higher binding energies (AISI 4140). These trends are discussed in terms of the metallic nitride formation and the overlapping of atomic orbitals. For nitrided AISI 316, a semi-classical approach of charge transfer between Cr and N is used to explain the experimental facts (formation of CrN), while for nitrided AISI 4140 we propose that the interaction between orbitals 4s from Fe and 2p from N promotes electrons to the conduction band increasing the electrical attraction of the N1s and Fe2p electrons in core shells (formation of FeN x). The increase in hardness of the steel upon N implantation is attributed to the localization of electrons in specific bonds, which diminishes the metallic bond character.

  11. Electronic structure and mechanical properties of plasma nitrided ferrous alloys

    International Nuclear Information System (INIS)

    Portolan, E.; Baumvol, I.J.R.; Figueroa, C.A.

    2009-01-01

    The electronic structures of the near-surface regions of two different nitrided steels (AISI 316 and 4140) were investigated using X-ray photoelectron spectroscopy. Photoelectron groups from all main chemical elements involved were addressed for steel samples with implanted-N concentrations in the range 16-32 at.%. As the implanted-N concentrations were increased, rather contrasting behaviors were observed for the two kinds of steel. The N1s photoelectrons had spectral shifts toward lower (nitrided AISI 316) or higher (nitrided AISI 4140) binding energies, whereas the Fe2p 3/2 photoelectron spectrum remains at a constant binding energy (nitrided AISI 316) or shifts toward higher binding energies (AISI 4140). These trends are discussed in terms of the metallic nitride formation and the overlapping of atomic orbitals. For nitrided AISI 316, a semi-classical approach of charge transfer between Cr and N is used to explain the experimental facts (formation of CrN), while for nitrided AISI 4140 we propose that the interaction between orbitals 4s from Fe and 2p from N promotes electrons to the conduction band increasing the electrical attraction of the N1s and Fe2p electrons in core shells (formation of FeN x ). The increase in hardness of the steel upon N implantation is attributed to the localization of electrons in specific bonds, which diminishes the metallic bond character.

  12. Design and fabrication of a continuous wave electron accelerating structure

    International Nuclear Information System (INIS)

    Takahashi, Jiro

    1997-01-01

    The Physics Institute of Sao Paulo University, SP, Brazil is fabricating a 31 MeV cw racetrack microtron (RTM) designed for nuclear physics research. This is a two-stage microtron that includes a 1.93 MeV injector linac feeding a five-turn microtron booster. After 28 turns, the main microtron delivers a 31 MeV continuous electron beam. The objective of this work is the development and fabrication of an advanced, beta=l, cw accelerating structure for the main microtron. The accelerating structure will be a side-coupled structure (SCS). We have chosen this kind of cavity, because it presents good vacuum properties, allows operation at higher accelerating electric fields and has a shunt impedance better than 81 MQ/m, with a high coupling factor ( 3 - 5%). The engineering design is the Los Alamos one. There will be two tuning plungers placed at both ends of the accelerating structure. They automatically and quickly compensate for the variation in the resonance frequency caused by changes in the structure temperature. Our design represents an advanced accelerating structure with the optimum SCS properties coexisting with the plunger's good tuning properties. (author)

  13. Structural phase transition and electronic properties in samarium chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, Y. S., E-mail: yspanwar2011@gmail.com [Department of Physics, Govt. New Science College Dewas-455001 (India); Aynyas, Mahendra [Department of Physics, C.S.A. Govt. P.G. College, Sehore, 466001 (India); Pataiya, J.; Sanyal, Sankar P. [Department of Physics, Barkatullah University, Bhopal, 462026 (India)

    2016-05-06

    The electronic structure and high pressure properties of samarium monochalcogenides SmS, SmSe and SmTe have been reported by using tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). The total energy as a function of volume is evaluated. It is found that these monochalcogenides are stable in NaCl-type structure under ambient pressure. We predict a structural phase transition from NaCl-type (B{sub 1}-phase) structure to CsCl-type (B{sub 2}-type) structure for these compounds. Phase transition pressures were found to be 1.7, 4.4 and 6.6 GPa, for SmS, SmSe and SmTe respectively. Apart from this, the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure (BS) and density of states (DOS) are calculated. From energy band diagram we observed that these compounds exhibit metallic character. The calculated values of equilibrium lattice parameter and phase transition pressure are in general good agreement with available data.

  14. Electronic structure of benzene adsorbed on Ni and Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weinelt, M.; Nilsson, A.; Wassdahl, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Benzene has for a long time served as a prototype adsorption system of large molecules. It adsorbs with the molecular plane parallel to the surface. The bonding of benzene to a transition metal is typically viewed to involve the {pi} system. Benzene adsorbs weakly on Cu and strongly on Ni. It is interesting to study how the adsorption strength is reflected in the electronic structure of the adsorbate-substrate complex. The authors have used X-ray Emission (XE) and X-ray Absorption (XA) spectroscopies to selectively study the electronic states localized on the adsorbed benzene molecule. Using XES the occupied states can be studies and with XAS the unoccupied states. The authors have used beamline 8.0 and the Swedish endstation equipped with a grazing incidence x-ray spectrometer and a partial yield absorption detector. The resolution in the XES and XAS were 0.5 eV and 0.05 eV, respectively.

  15. Electronic structure classifications using scanning tunneling microscopy conductance imaging

    International Nuclear Information System (INIS)

    Horn, K.M.; Swartzentruber, B.S.; Osbourn, G.C.; Bouchard, A.; Bartholomew, J.W.

    1998-01-01

    The electronic structure of atomic surfaces is imaged by applying multivariate image classification techniques to multibias conductance data measured using scanning tunneling microscopy. Image pixels are grouped into classes according to shared conductance characteristics. The image pixels, when color coded by class, produce an image that chemically distinguishes surface electronic features over the entire area of a multibias conductance image. Such open-quotes classedclose quotes images reveal surface features not always evident in a topograph. This article describes the experimental technique used to record multibias conductance images, how image pixels are grouped in a mathematical, classification space, how a computed grouping algorithm can be employed to group pixels with similar conductance characteristics in any number of dimensions, and finally how the quality of the resulting classed images can be evaluated using a computed, combinatorial analysis of the full dimensional space in which the classification is performed. copyright 1998 American Institute of Physics

  16. Microscopical Studies of Structural and Electronic Properties of Semiconductors

    CERN Multimedia

    2002-01-01

    The electronic and structural properties of point defects in semiconductors, e.g. radiation defects, impurities or passivating defects can excellently be studied by the hyperfine technique of Perturbed Angular Correlation (PAC). The serious limitation of this method, the small number of chemically different radioactive PAC probe atoms can be widely overcome by means of ISOLDE. Providing shortliving isotopes, which represent common dopants as well as suitable PAC probe atoms, the ISOLDE facility enables a much broader application of PAC to problems in semiconductor physics.\\\\ Using the probe atom $^{111m}$ Cd , the whole class of III-V compounds becomes accessible for PAC investigations. First successful experiments in GaAs, InP and GaP have been performed, concerning impurity complex formation and plasma induced defects. In Si and Ge, the electronic properties~-~especially their influence on acceptor-donor interaction~-~could be exemplarily st...

  17. Electronic structure of molecules using relativistic effective core potentials

    International Nuclear Information System (INIS)

    Hay, P.J.

    1981-01-01

    Starting with one-component Cowan-Griffin relativistic Hartree-Fock orbitals, which successfully incorporate the mass-velocity and Darwin terms present in more complicated wavefunctions such as Dirac-Hartree-Fock, one can derive relativistic effective core potentials (RECP's) to carry out molecular calculations. These potentials implicitly include the dominant relativistic terms for molecules while allowing one to use the traditional quantum chemical techniques for studying the electronic structure of molecules. The effects of spin-orbit coupling can then be included using orbitals from such calculations using an effective 1-electron, 1-center spin-orbit operator. Applications to molecular systems involving heavy atoms, show good agreement with available spectroscopic data on molecular geometries and excitation energies

  18. Development and application of advanced methods for electronic structure calculations

    DEFF Research Database (Denmark)

    Schmidt, Per Simmendefeldt

    . For this reason, part of this thesis relates to developing and applying a new method for constructing so-called norm-conserving PAW setups, that are applicable to GW calculations by using a genetic algorithm. The effect of applying the new setups significantly affects the absolute band positions, both for bulk......This thesis relates to improvements and applications of beyond-DFT methods for electronic structure calculations that are applied in computational material science. The improvements are of both technical and principal character. The well-known GW approximation is optimized for accurate calculations...... of electronic excitations in two-dimensional materials by exploiting exact limits of the screened Coulomb potential. This approach reduces the computational time by an order of magnitude, enabling large scale applications. The GW method is further improved by including so-called vertex corrections. This turns...

  19. Structural and electronic properties of GaAsBi

    International Nuclear Information System (INIS)

    Achour, H.; Louhibi, S.; Amrani, B.; Tebboune, A.; Sekkal, N.

    2008-05-01

    The structural and electronic properties of the GaAs 1-x Bi x ternary alloy are investigated by means of two first principles and full potential methods, the linear augmented plane waves (FPLAPW) method and a recent version of the full potential linear muffin-tin orbitals method (FPLMTO) which enables an accurate treatment of the interstitial regions. In particular, we have found that the maximal GaBi mole fraction x for which GaBixAs 1-x remains a semiconductor is probably around x = 0.5. The electronic properties of (GaAs) m /(GaBi) n quantum well superlattices (SLs) have also been calculated and it is found that such SLs are semiconductors when m is larger or equal to n. (author)

  20. Protonated serotonin: Geometry, electronic structures and photophysical properties

    Science.gov (United States)

    Omidyan, Reza; Amanollahi, Zohreh; Azimi, Gholamhassan

    2017-07-01

    The geometry and electronic structures of protonated serotonin have been investigated by the aim of MP2 and CC2 methods. The relative stabilities, transition energies and geometry of sixteen different protonated isomers of serotonin have been presented. It has been predicted that protonation does not exhibit essential alteration on the S1 ← S0 electronic transition energy of serotonin. Instead, more complicated photophysical nature in respect to its neutral analogue is suggested for protonated system owing to radiative and non-radiative deactivation pathways. In addition to hydrogen detachment (HD), hydrogen/proton transfer (H/PT) processes from ammonium to indole ring along the NH+⋯ π hydrogen bond have been predicted as the most important photophysical consequences of SERH+ at S1 excited state. The PT processes is suggested to be responsible for fluorescence of SERH+ while the HD driving coordinate is proposed for elucidation of its nonradiative deactivation mechanism.

  1. Electronic structure characterization and bandgap engineering of solar hydrogen materials

    International Nuclear Information System (INIS)

    Guo, Jinghua

    2007-01-01

    Bandgap, band edge positions as well as the overall band structure of semiconductors are of crucial importance in photoelectrochemical and photocatalytic applications. The energy position of the band edge level can be controlled by the electronegativity of the dopants, the pH of the solution (flatband potential variation of 60 mV per pH unit), as well as by quantum confinement effects. Accordingly, band edges and bandgap can be tailored to achieve specific electronic, optical or photocatalytic properties. Synchrotron radiation with photon energy at or below 1 keV is giving new insight into such areas as condensed matter physics and extreme ultraviolet optics technology. In the soft x-ray region, the question tends to be, what are the electrons doing as they migrated between the atoms. In this paper, I will present a number of soft x-ray spectroscopic study of nanostructured 3d metal compounds Fe 2 O 3 and ZnO

  2. Modification of electronic structure, magnetic structure, and topological phase of bismuthene by point defects

    Science.gov (United States)

    Kadioglu, Yelda; Kilic, Sevket Berkay; Demirci, Salih; Aktürk, O. Üzengi; Aktürk, Ethem; Ciraci, Salim

    2017-12-01

    This paper reveals how the electronic structure, magnetic structure, and topological phase of two-dimensional (2D), single-layer structures of bismuth are modified by point defects. We first showed that a free-standing, single-layer, hexagonal structure of bismuth, named h-bismuthene, exhibits nontrivial band topology. We then investigated interactions between single foreign adatoms and bismuthene structures, which comprise stability, bonding, electronic structure, and magnetic structures. Localized states in diverse locations of the band gap and resonant states in band continua of bismuthene are induced upon the adsorption of different adatoms, which modify electronic and magnetic properties. Specific adatoms result in reconstruction around the adsorption site. Single vacancies and divacancies can form readily in bismuthene structures and remain stable at high temperatures. Through rebondings, Stone-Whales-type defects are constructed by divacancies, which transform into a large hole at high temperature. Like adsorbed adatoms, vacancies induce also localized gap states, which can be eliminated through rebondings in divacancies. We also showed that not only the optical and magnetic properties, but also the topological features of pristine h-bismuthene can be modified by point defects. The modification of the topological features depends on the energies of localized states and also on the strength of coupling between point defects.

  3. Quantum Monte Carlo for electronic structure: Recent developments and applications

    International Nuclear Information System (INIS)

    Rodriguez, M.M.S.; Lawrence Berkeley Lab., CA

    1995-04-01

    Quantum Monte Carlo (QMC) methods have been found to give excellent results when applied to chemical systems. The main goal of the present work is to use QMC to perform electronic structure calculations. In QMC, a Monte Carlo simulation is used to solve the Schroedinger equation, taking advantage of its analogy to a classical diffusion process with branching. In the present work the author focuses on how to extend the usefulness of QMC to more meaningful molecular systems. This study is aimed at questions concerning polyatomic and large atomic number systems. The accuracy of the solution obtained is determined by the accuracy of the trial wave function's nodal structure. Efforts in the group have given great emphasis to finding optimized wave functions for the QMC calculations. Little work had been done by systematically looking at a family of systems to see how the best wave functions evolve with system size. In this work the author presents a study of trial wave functions for C, CH, C 2 H and C 2 H 2 . The goal is to study how to build wave functions for larger systems by accumulating knowledge from the wave functions of its fragments as well as gaining some knowledge on the usefulness of multi-reference wave functions. In a MC calculation of a heavy atom, for reasonable time steps most moves for core electrons are rejected. For this reason true equilibration is rarely achieved. A method proposed by Batrouni and Reynolds modifies the way the simulation is performed without altering the final steady-state solution. It introduces an acceleration matrix chosen so that all coordinates (i.e., of core and valence electrons) propagate at comparable speeds. A study of the results obtained using their proposed matrix suggests that it may not be the optimum choice. In this work the author has found that the desired mixing of coordinates between core and valence electrons is not achieved when using this matrix. A bibliography of 175 references is included

  4. Electron microscope investigation into dislocation structure of cast aluminium alloys

    International Nuclear Information System (INIS)

    Zolotorevskij, V.S.; Orelkina, T.A.; Istomin-Kastrovskij, V.V.

    1978-01-01

    By applying the diffraction electron microscopy method, the general specific features of the disclocation structure of cast binary alloys of aluminium with different additions were established. It is shown that in most alloys, when they undergo cooling in the process of crystallization at the rate of about 850 deg/min, the cellular dislocation structure is formed. It is shown that in all the alloys studied, the total density of dislocations of one order is about-10 9 cm -2 , which exceeds by 1 to 2 orders of magnitude the value which follows from the Tiller theory of concentration stresses. It has been experimentally established that the contribution of shrinkage and thermal stresses to the formation of a dislocation structure is rather insignificant; yet the dislocation density values calculated according to the size of dendritic cells and the medium angles of their disorientation are close to those determined by the electron-microscopic method. This is the basis for making a supposition that the greater part of the dislocations in castings are formed as a result of comparing dendritic branches with one another, which are disoriented in respect to each other

  5. Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Goldsbury, C.; Wall, J.; Baxa, U.; Simon, M. N.; Steven, A. C.; Engel, A.; Aebi, U.; Muller, S. A.

    2011-01-01

    Amyloid fibrils are filamentous protein aggregates implicated in several common diseases such as Alzheimer's disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).

  6. Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Tao; Hong, Jisang, E-mail: hongj@pknu.ac.kr [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2015-08-07

    We investigated the electronic structure and magnetism of zigzag blue phosphorene nanoribbons (ZBPNRs) using first principles density functional theory calculations by changing the widths of ZBPNRs from 1.5 to 5 nm. In addition, the effect of H and O passivation was explored as well. The ZBPNRs displayed intra-edge antiferromagnetic ground state with a semiconducting band gap of ∼0.35 eV; and this was insensitive to the edge structure relaxation effect. However, the edge magnetism of ZBPNRs disappeared with H-passivation. Moreover, the band gap of H-passivated ZBPNRs was greatly enhanced because the calculated band gap was ∼1.77 eV, and this was almost the same as that of two-dimensional blue phosphorene layer. For O-passivated ZBPNRs, we also found an intra-edge antiferromagnetic state. Besides, both unpassivated and O-passivated ZBPNRs preserved almost the same band gap. We predict that the electronic band structure and magnetic properties can be controlled by means of passivation. Moreover, the edge magnetism can be also modulated by the strain. Nonetheless, the intrinsic physical properties are size independent. This feature can be an advantage for device applications because it may not be necessary to precisely control the width of the nanoribbon.

  7. X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, Kimberly Sue [Univ. of California, Berkeley, CA (United States)

    2000-01-01

    Semiconductor nanocrystals are a system which has been the focus of interest due to their size dependent properties and their possible use in technological applications. Many chemical and physical properties vary systematically with the size of the nanocrystal and thus their study enables the investigation of scaling laws. Due to the increasing surface to volume ratio as size is decreased, the surfaces of nanocrystals are expected to have a large influence on their electronic, thermodynamic, and chemical behavior. In spite of their importance, nanocrystal surfaces are still relatively uncharacterized in terms of their structure, electronic properties, bonding, and reactivity. Investigation of nanocrystal surfaces is currently limited by what techniques to use, and which methods are suitable for nanocrystals is still being determined. This work presents experiments using x-ray and electronic spectroscopies to explore the structure, reactivity, and electronic properties of semiconductor (CdSe, InAs) nanocrystals and how they vary with size. Specifically, x-ray absorption near edge spectroscopy (XANES) in conjunction with multiple scattering simulations affords information about the structural disorder present at the surface of the nanocrystal. X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS) probe the electronic structure in terms of hole screening, and also give information about band lineups when the nanocrystal is placed in electric contact with a substrate. XPS of the core levels of the nanocrystal as a function of photo-oxidation time yields kinetic data on the oxidation reaction occurring at the surface of the nanocrystal.

  8. Structural studies of glasses by transmission electron microscopy and electron diffraction

    International Nuclear Information System (INIS)

    Kashchieva, E.P.

    1997-01-01

    The purpose of this work is to present information about the applications of transmission electron microscopy (TEM) and electron diffraction (ED) for structural investigations of glasses. TEM investigations have been carried out on some binary and on a large number of ternary borate-telluride systems where glass-forming oxides, oxides of transitional elements and modified oxides of elements from I, II and III groups in the periodic table, are used as third component. The large experimental data given by TEM method allows the fine classification of the micro-heterogeneities. A special case of micro-heterogeneous structure with technological origin occurs near the boundary between the 2 immiscible liquids obtained at macro-phase separation. TEM was also used for the direct observation of the glass structure and we have studied the nano-scale structure of borate glasses obtained at slow and fast cooling of the melts. The ED possesses advantages for analysis of amorphous thin films or micro-pastilles and it is a very useful technique for study in materials containing simultaneously light and heavy elements. A comparison between the possibilities of the 3 diffraction techniques (X-ray diffraction, neutron diffraction and ED) is presented

  9. III - V semiconductor structures for biosensor and molecular electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Luber, S M

    2007-01-15

    The present work reports on the employment of III-V semiconductor structures to biosensor and molecular electronics applications. In the first part a sensor based on a surface-near two dimensional electron gas for a use in biological environment is studied. Such a two dimensional electron gas inherently forms in a molecular beam epitaxy (MBE) grown, doped aluminum gallium arsenide - gallium arsenide (AlGaAs-GaAs) heterostructure. Due to the intrinsic instability of GaAs in aqueous solutions the device is passivated by deposition of a monolayer of 4'-substituted mercaptobiphenyl molecules. The influence of these molecules which bind to the GaAs via a sulfur group is investigated by Kelvin probe measurements in air. They reveal a dependence of GaAs electron affinity on the intrinsic molecular dipole moment of the mercaptobiphenyls. Furthermore, transient surface photovoltage measurements are presented which demonstrate an additional influence of mercaptobiphenyl chemisorption on surface carrier recombination rates. As a next step, the influence of pH-value and salt concentration upon the sensor device is discussed based on the results obtained from sensor conductance measurements in physiological solutions. A dependence of the device surface potential on both parameters due to surface charging is deduced. Model calculations applying Poisson-Boltzmann theory reveal as possible surface charging mechanisms either the adsorption of OH- ions on the surface, or the dissociation of OH groups in surface oxides. A comparison between simulation settings and physical device properties indicate the OH- adsorption as the most probable mechanism. In the second part of the present study the suitability of MBE grown III-V semiconductor structures for molecular electronics applications is examined. In doing so, a method to fabricate nanometer separated, coplanar, metallic electrodes based on the cleavage of a supporting AlGaAs-GaAs heterostructure is presented. This is followed by a

  10. III - V semiconductor structures for biosensor and molecular electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Luber, S.M.

    2007-01-15

    The present work reports on the employment of III-V semiconductor structures to biosensor and molecular electronics applications. In the first part a sensor based on a surface-near two dimensional electron gas for a use in biological environment is studied. Such a two dimensional electron gas inherently forms in a molecular beam epitaxy (MBE) grown, doped aluminum gallium arsenide - gallium arsenide (AlGaAs-GaAs) heterostructure. Due to the intrinsic instability of GaAs in aqueous solutions the device is passivated by deposition of a monolayer of 4'-substituted mercaptobiphenyl molecules. The influence of these molecules which bind to the GaAs via a sulfur group is investigated by Kelvin probe measurements in air. They reveal a dependence of GaAs electron affinity on the intrinsic molecular dipole moment of the mercaptobiphenyls. Furthermore, transient surface photovoltage measurements are presented which demonstrate an additional influence of mercaptobiphenyl chemisorption on surface carrier recombination rates. As a next step, the influence of pH-value and salt concentration upon the sensor device is discussed based on the results obtained from sensor conductance measurements in physiological solutions. A dependence of the device surface potential on both parameters due to surface charging is deduced. Model calculations applying Poisson-Boltzmann theory reveal as possible surface charging mechanisms either the adsorption of OH- ions on the surface, or the dissociation of OH groups in surface oxides. A comparison between simulation settings and physical device properties indicate the OH- adsorption as the most probable mechanism. In the second part of the present study the suitability of MBE grown III-V semiconductor structures for molecular electronics applications is examined. In doing so, a method to fabricate nanometer separated, coplanar, metallic electrodes based on the cleavage of a supporting AlGaAs-GaAs heterostructure is presented. This is followed

  11. Temperature dependence of the electronic structure of semiconductors and insulators

    Energy Technology Data Exchange (ETDEWEB)

    Poncé, S., E-mail: samuel.pon@gmail.com; Gillet, Y.; Laflamme Janssen, J.; Gonze, X. [European Theoretical Spectroscopy Facility and Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Chemin des étoiles 8, bte L07.03.01, B-1348 Louvain-la-neuve (Belgium); Marini, A. [Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km 29.3, CP 10, 00016 Monterotondo Stazione (Italy); Verstraete, M. [European Theoretical Spectroscopy Facility and Physique des matériaux et nanostructures, Université de Liège, Allée du 6 Août 17, B-4000 Liège (Belgium)

    2015-09-14

    The renormalization of electronic eigenenergies due to electron-phonon coupling (temperature dependence and zero-point motion effect) is sizable in many materials with light atoms. This effect, often neglected in ab initio calculations, can be computed using the perturbation-based Allen-Heine-Cardona theory in the adiabatic or non-adiabatic harmonic approximation. After a short description of the recent progresses in this field and a brief overview of the theory, we focus on the issue of phonon wavevector sampling convergence, until now poorly understood. Indeed, the renormalization is obtained numerically through a slowly converging q-point integration. For non-zero Born effective charges, we show that a divergence appears in the electron-phonon matrix elements at q → Γ, leading to a divergence of the adiabatic renormalization at band extrema. This problem is exacerbated by the slow convergence of Born effective charges with electronic wavevector sampling, which leaves residual Born effective charges in ab initio calculations on materials that are physically devoid of such charges. Here, we propose a solution that improves this convergence. However, for materials where Born effective charges are physically non-zero, the divergence of the renormalization indicates a breakdown of the adiabatic harmonic approximation, which we assess here by switching to the non-adiabatic harmonic approximation. Also, we study the convergence behavior of the renormalization and develop reliable extrapolation schemes to obtain the converged results. Finally, the adiabatic and non-adiabatic theories, with corrections for the slow Born effective charge convergence problem (and the associated divergence) are applied to the study of five semiconductors and insulators: α-AlN, β-AlN, BN, diamond, and silicon. For these five materials, we present the zero-point renormalization, temperature dependence, phonon-induced lifetime broadening, and the renormalized electronic band structure.

  12. Electronic structure and magnetic properties of Pd sub(3)Fe

    International Nuclear Information System (INIS)

    Kuhnen, C.A.

    1988-01-01

    In this work we study the electronic and magnetic properties of the Pd sub(3)Fe alloy. For the ordered phase of Pd sub(3)Fe we employed the Linear Muffin-Tin Orbitals Method, with the atomic sphere approximation, which is a first principles method and includes spin polarization. The theoretical results for the thermal and magnetic properties show good agreement with experience. Here we explain the formation of the localized magnetic moments from completely itinerant electrons. We investigate the influence of the hydrogen in the physical properties of the compound Pd sub(3)Fe, where we obtain a drastic reduction in the magnetic moments at the Pd and Fe sites. This reduction is confirmed by experience. The self consistent potentials of the Pd sub(3)Fe compound were used for an analysis of the influence of the disorder in the electronic structure of Pd sub(3)Fe alloy. To this end, we employ a spin polarized version of the Green's Function Method with the Coherent Potential Approximation (or KKR-CPA). The results obtained show that in random ferromagnetic alloys different degrees of disorder occurs for the different spin directions. The formation of the magnetic moments in these alloys were explained from the existence of 'virtual crystal' states for spin up electrons and 'split band' states for spin down electrons. Finally we employ the muffin-tin orbitals to calculate the X-ray photoemission spectra of the Pd sub(3)Fe and Pd sub(3)FeH compounds, which allows us a direct comparison between theory and experiment. (author)

  13. Electronic Structure of the Bismuth Family of High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Lisa

    2002-03-07

    High temperature superconductivity remains the central intellectual problem in condensed matter physics fifteen years after its discovery. Angle resolved photoemission spectroscopy (ARPES) directly probes the electronic structure, and has played an important role in the field of high temperature superconductors. With the recent advances in sample growth and the photoemission technique, we are able to study the electronic structure in great detail, and address regimes that were previously inaccessible. This thesis work contains systematic photoemission studies of the electronic structure of the Bi-family of high temperature superconductors, which include the single-layer system (Bi2201), the bi-layer system (Bi2212), and the tri-layer system (Bi2223). We show that, unlike conventional BCS superconductors, phase coherence information emerges in the single particle excitation spectrum of high temperature superconductors as the superconducting peak in Bi2212. The universality and various properties of this superconducting peak are studied in various systems. We argue that the origin of the superconducting peak may provide the key to understanding the mechanism of High-Tc superconductors. In addition, we identified a new experimental energy scale in the bilayer material, the anisotropic intra-bilayer coupling energy. For a long time, it was predicted that this energy scale would cause bilayer band splitting. We observe this phenomenon, for the first time, in heavily overdoped Bi2212. This new observation requires the revision of the previous picture of the electronic excitation in the Brillouin zone boundary. As the first ARPES study of a trilayer system, various detailed electronic proper- ties of Bi2223 are examined. We show that, comparing with Bi2212, both superconducting gap and relative superconducting peak intensity become larger in Bi2223, however, the strength of the interlayer coupling within each unit cell is possibly weaker. These results suggest that the

  14. Differentiate responses of soil structure to natural vegetation and artificial plantation in landslide hazard region of the West Qinling Mountains, China

    Science.gov (United States)

    Wang, X.; Huang, Z.; Zhao, Y.; Hong, M.

    2017-12-01

    Natural vegetation and artificial plantation are the most important measures for ecological restoration in soil erosion and landslide hazard-prone regions of China. Previous studies have demonstrated that both measures can significantly change the soil structure and decrease soil and water erosion. Few reports have compared the effects of the two contrasting measures on mechanical and hydrological properties and further tested the differentiate responses of soil structure. In the study areas, two vegetation restoration measures-natural vegetation restoration (NVR) and artificial plantation restoration (APR) compared with control site, with similar topographical and geological backgrounds were selected to investigate the different effects on soil structure based on eight-year ecological restoration projects. The results showed that the surface vegetation played an important role in releasing soil erosion and enhance soil structure stability through change the soil aggregates (SA) and total soil porosity (TSP). The SArestoration and conservation in geological hazard-prone regions.

  15. Three-dimensional woody vegetation structure across different land-use types and land-use intensities in a semi-arid savanna

    CSIR Research Space (South Africa)

    Fisher, J

    2009-07-01

    Full Text Available Factors influencing woody savanna vegetation structure across a land-use gradient of intensity (highly and lightly utilized communal rangeland) and type (national protected area, private game reserve and communal rangelands) were investigated. Small...

  16. Vegetation structure and composition of a tropical dry forest in regeneration in Bataclán (Cali, Colombia

    Directory of Open Access Journals (Sweden)

    Viviana Londoño Lemos

    2015-01-01

    Full Text Available Characterization of long-term vegetation in a tropical dry forest (TDF that is in the process of regeneration permits establishment of patterns of composition, structure and dynamics of plant communities and sheds light on the different stages of plant succession. In this study, the plant community of ecoparque Bataclán, Cali, Colombia was evaluated by determining its structure and composition in two regeneration strategies. One strategy consisted of natural regeneration with bamboo barriers and the other of natural regeneration without bamboo barriers. Three permanent plots of 500 m2 were established in each regeneration strategy (six plots in total. Composition and structure was determined, taking into account all the growth habits, with different sampling methods. We found no significant differences between vegetation structure and composition of the two strategies for forest regeneration. forty-one species belonging to 27 families were recorded (trees and shrubs 58.5 %, herbs 24.4 %, climbers or scandents 14.6 %, epiphytes 2.4 %. The dominant family was Melastomataceae and the dominant species was Miconia prasina. The orchidCatasetum ochraceum and the grass Thrasya petrosa were indicator species for high luminosity. We conclude that the plant community is in an early successional stage, where there is a mixture of planted and naturally regenerated species in the zone, characterized by pioneer species from TDF and other nearby life zones.

  17. Electronic, structural, and optical properties of crystalline yttria

    International Nuclear Information System (INIS)

    Xu, Y.; Gu, Z.; Ching, W.Y.

    1997-01-01

    The electronic structure of crystalline Y 2 O 3 is investigated by first-principles calculations within the local-density approximation (LDA) of the density-functional theory. Results are presented for the band structure, the total density of states (DOS), the atom- and orbital-resolved partial DOS, effective charges, bond order, and charge-density distributions. Partial covalent character in the Y-O bonding is shown, and the nonequivalency of the two Y sites is demonstrated. The calculated electronic structure is compared with a variety of available experimental data. The total energy of the crystal is calculated as a function of crystal volume. A bulk modulus B of 183 Gpa and a pressure coefficient B ' of 4.01 are obtained, which are in good agreement with compression data. An LDA band gap of 4.54 eV at Γ is obtained which increases with pressure at a rate of dE g /dP=0.012eV/Gpa at the equilibrium volume. Also investigated are the optical properties of Y 2 O 3 up to a photon energy of 20 eV. The calculated complex dielectric function and electron-energy-loss function are in good agreement with experimental data. A static dielectric constant of var-epsilon(0)=3.20 is obtained. It is also found that the bottom of the conduction band consists of a single band, and direct optical transition at Γ between the top of the valence band and the bottom of the conduction band may be symmetry forbidden. copyright 1997 The American Physical Society

  18. Changes in Vegetation Structure along Four Tourist Trails from Kasprowy Wierch, Tatra Mountains

    Directory of Open Access Journals (Sweden)

    Magdalena OPRZĄDEK

    2014-11-01

    Full Text Available In this paper there is a new method to asses tourist impact on vegetation cover presented and tested in four locations, which have a different tourist traffic magnitude. Research area is Kasprowy Wierch surroundings in Tatra Mountains. It is a specific place in Tatra Mts., because it can be reached either by cable car or five tourist trails, being the most visited summit in the Polish Carpathians. Each year, there are about 500 thousand people reaching Kasprowy Wierch with a cable car and thousands of walking people. High tourist impact causes many vegetation injuries. Methods used in this research is based on average daily and monthly magnitude of tourist traffic and geobotanical method, which based on a plant species registration and its’ surface coverage estimation using Daubenmeir scale. The results attest that some species are resistant to the pressure and other not. In this regard, the species composition and species percentage can be suitable indicator to measure vegetation changes due to the tourist impact.

  19. Comparison of optimization methods for electronic-structure calculations

    International Nuclear Information System (INIS)

    Garner, J.; Das, S.G.; Min, B.I.; Woodward, C.; Benedek, R.

    1989-01-01

    The performance of several local-optimization methods for calculating electronic structure is compared. The fictitious first-order equation of motion proposed by Williams and Soler is integrated numerically by three procedures: simple finite-difference integration, approximate analytical integration (the Williams-Soler algorithm), and the Born perturbation series. These techniques are applied to a model problem for which exact solutions are known, the Mathieu equation. The Williams-Soler algorithm and the second Born approximation converge equally rapidly, but the former involves considerably less computational effort and gives a more accurate converged solution. Application of the method of conjugate gradients to the Mathieu equation is discussed

  20. Modern quantum chemistry introduction to advanced electronic structure theory

    CERN Document Server

    Szabo, Attila

    1996-01-01

    The aim of this graduate-level textbook is to present and explain, at other than a superficial level, modem ab initio approaches to the calculation of the electronic structure and properties of molecules. The first three chapters contain introductory material culminating in a thorough discussion of the Hartree-Fock approximation.The remaining four chapters describe a variety of more sophisticated approaches, which improve upon this approximation.Among the highlights of the seven chapters are (1) a review of the mathematics (mostly matrix algebra) required for the rest of the book, (2) an intr

  1. Structural, electronic and optical properties of carbon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, M L [California Univ., Berkeley (United States). Dept. of Physics

    1996-05-01

    Carbon nitride was proposed as a superhard material and a structural prototype, {beta}-C{sub 3}N{sub 4}, was examined using several theoretical models. Some reports claiming experimental verifications have been made recently. The current status of the theory and experiment is reviewed, and a detailed discussion is presented of calculations of the electronic and optical properties of this material. These calculations predict that {beta}-C{sub 3}N{sub 4} will have a minimum gap which is indirect at 6.4{+-}0.5 eV. A discussion of the possibility of carbon nitride nanotubes is also presented. (orig.)

  2. CIF2Cell: Generating geometries for electronic structure programs

    Science.gov (United States)

    Björkman, Torbjörn

    2011-05-01

    The CIF2Cell program generates the geometrical setup for a number of electronic structure programs based on the crystallographic information in a Crystallographic Information Framework (CIF) file. The program will retrieve the space group number, Wyckoff positions and crystallographic parameters, make a sensible choice for Bravais lattice vectors (primitive or principal cell) and generate all atomic positions. Supercells can be generated and alloys are handled gracefully. The code currently has output interfaces to the electronic structure programs ABINIT, CASTEP, CPMD, Crystal, Elk, Exciting, EMTO, Fleur, RSPt, Siesta and VASP. Program summaryProgram title: CIF2Cell Catalogue identifier: AEIM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL version 3 No. of lines in distributed program, including test data, etc.: 12 691 No. of bytes in distributed program, including test data, etc.: 74 933 Distribution format: tar.gz Programming language: Python (versions 2.4-2.7) Computer: Any computer that can run Python (versions 2.4-2.7) Operating system: Any operating system that can run Python (versions 2.4-2.7) Classification: 7.3, 7.8, 8 External routines: PyCIFRW [1] Nature of problem: Generate the geometrical setup of a crystallographic cell for a variety of electronic structure programs from data contained in a CIF file. Solution method: The CIF file is parsed using routines contained in the library PyCIFRW [1], and crystallographic as well as bibliographic information is extracted. The program then generates the principal cell from symmetry information, crystal parameters, space group number and Wyckoff sites. Reduction to a primitive cell is then performed, and the resulting cell is output to suitably named files along with documentation of the information source generated from any bibliographic information contained in the CIF

  3. Electronic structure and photoelectron spectra of boron beta-diketonates

    International Nuclear Information System (INIS)

    Borisenko, A.V.; Vovna, V.I.

    1990-01-01

    Photoelectron spectra and data of semiempirical (MNDO, CNDO/2, CNDO/S, INDO) and nonempirical (with STO-3G basis) methods of calculation were obtained to analyse the electronic structure of boron-containing diketonate cycle and the influence of substitution effect (aromatic substituents in particular) on it. The sequence and the character of upper occupied MO were determined; the nature of bond of the fragment X 2 B + and AA was established; charges of six-membered ion and influence of substituents on their values were determined. 13 refs.; 5 figs.; 4 tabs

  4. 8th international conference on electronic spectroscopy and structure

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Art

    2000-10-16

    Gathering from 33 countries around the world, 408 registrants and a number of local drop-in participants descended on the Clark Kerr Campus of the University of California, Berkeley, from Monday, August 7 through Saturday, August 12, 2000 for the Eighth International Conference on Electronic Structure and Spectroscopy (ICESS8). At the conference, participants benefited from an extensive scientific program comprising more than 100 oral presentations (plenary lectures and invited and contributed talks) and 330 poster presentations, as well as ample time for socializing and a tour of the Advanced Light Source (ALS) at the nearby Lawrence Berkeley National Laboratory.

  5. Electronic band structure of magnetic bilayer graphene superlattices

    International Nuclear Information System (INIS)

    Pham, C. Huy; Nguyen, T. Thuong; Nguyen, V. Lien

    2014-01-01

    Electronic band structure of the bilayer graphene superlattices with δ-function magnetic barriers and zero average magnetic flux is studied within the four-band continuum model, using the transfer matrix method. The periodic magnetic potential effects on the zero-energy touching point between the lowest conduction and the highest valence minibands of pristine bilayer graphene are exactly analyzed. Magnetic potential is shown also to generate the finite-energy touching points between higher minibands at the edges of Brillouin zone. The positions of these points and the related dispersions are determined in the case of symmetric potentials.

  6. Wavelets in self-consistent electronic structure calculations

    International Nuclear Information System (INIS)

    Wei, S.; Chou, M.Y.

    1996-01-01

    We report the first implementation of orthonormal wavelet bases in self-consistent electronic structure calculations within the local-density approximation. These local bases of different scales efficiently describe localized orbitals of interest. As an example, we studied two molecules, H 2 and O 2 , using pseudopotentials and supercells. Considerably fewer bases are needed compared with conventional plane-wave approaches, yet calculated binding properties are similar. Our implementation employs fast wavelet and Fourier transforms, avoiding evaluating any three-dimensional integral numerically. copyright 1996 The American Physical Society

  7. Self-consistent electronic-structure calculations for interface geometries

    International Nuclear Information System (INIS)

    Sowa, E.C.; Gonis, A.; MacLaren, J.M.; Zhang, X.G.

    1992-01-01

    This paper describes a technique for computing self-consistent electronic structures and total energies of planar defects, such as interfaces, which are embedded in an otherwise perfect crystal. As in the Layer Korringa-Kohn-Rostoker approach, the solid is treated as a set of coupled layers of atoms, using Bloch's theorem to take advantage of the two-dimensional periodicity of the individual layers. The layers are coupled using the techniques of the Real-Space Multiple-Scattering Theory, avoiding artificial slab or supercell boundary conditions. A total-energy calculation on a Cu crystal, which has been split apart at a (111) plane, is used to illustrate the method

  8. Alloying effect on the electronic structures of hydrogen storage compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yukawa, H.; Moringa, M.; Takahashi, Y. [Nagoya Univ. (Japan). Dept. of Mater. Sci. and Eng.

    1997-05-20

    The electronic structures of hydrogenated LaNi{sub 5} containing various 3d transition elements were investigated by the DV-X{alpha} molecular orbital method. The hydrogen atom was found to form a strong chemical bond with the Ni rather than the La atoms. The alloying modified the chemical bond strengths between atoms in a small metal octahedron containing a hydrogen atom at the center, resulting in the change in the hydrogen absorption and desorption characteristics of LaNi{sub 5} with alloying. (orig.) 7 refs.

  9. STRUCTURE FOR SUB-ASSEMBLIES OF ELECTRONIC EQUIPMENT

    Science.gov (United States)

    Bell, P.R.; Harris, C.C.

    1959-03-31

    Sub-assemblies for electronic systems, particularly a unit which is self- contained and which may be adapted for quick application to and detachment from a chassis or panel, are discussed. The disclosed structure serves the dual purpose of a cover or enclosure for a subassembly comprising a base plate and also acts as a clamp for retaining the base plate in position on a chassis. The clamping action is provided by flexible fingers projecting from the side walls of the cover and extending through grooves in the base plate to engage with the opposite side of the chassis.

  10. Design of Carborane Molecular Architectures via Electronic Structure Computations

    International Nuclear Information System (INIS)

    Oliva, J.M.; Serrano-Andres, L.; Klein, D.J.; Schleyer, P.V.R.; Mich, J.

    2009-01-01

    Quantum-mechanical electronic structure computations were employed to explore initial steps towards a comprehensive design of poly carborane architectures through assembly of molecular units. Aspects considered were (i) the striking modification of geometrical parameters through substitution, (ii) endohedral carboranes and proposed ejection mechanisms for energy/ion/atom/energy storage/transport, (iii) the excited state character in single and dimeric molecular units, and (iv) higher architectural constructs. A goal of this work is to find optimal architectures where atom/ion/energy/spin transport within carborane superclusters is feasible in order to modernize and improve future photo energy processes.

  11. Microstructural and electron-structural anomalies and high temperature superconductivity

    International Nuclear Information System (INIS)

    Gao, L.; Huang, Z.J.; Bechtold, J.; Hor, P.H.; Chu, C.W.; Xue, Y.Y.; Sun, Y.Y.; Meng, R.L.; Tao, Y.K.

    1989-01-01

    Microstructural and electron-structural anomalies have been found to exist in all HYSs by x-ray diffraction and positron annihilation experiments. These anomalies are induced either by doping near the metal-insulator phase boundary at 300 K, or by cooling the HTSs below T c . This has been taken as evidence for a charge transfer between the CuO 2 -layers and their surroundings, which suggests the importance of charge transfers and implies the importance of charge fluctuations in HTS. Several new compounds with the T'- and T*-phases have been found. Further implications of these observations are discussed

  12. Electron Beam Freeform Fabrication of Titanium Alloy Gradient Structures

    Science.gov (United States)

    Brice, Craig A.; Newman, John A.; Bird, Richard Keith; Shenoy, Ravi N.; Baughman, James M.; Gupta, Vipul K.

    2014-01-01

    Historically, the structural optimization of aerospace components has been done through geometric methods. A monolithic material is chosen based on the best compromise between the competing design limiting criteria. Then the structure is geometrically optimized to give the best overall performance using the single material chosen. Functionally graded materials offer the potential to further improve structural efficiency by allowing the material composition and/or microstructural features to spatially vary within a single structure. Thus, local properties could be tailored to the local design limiting criteria. Additive manufacturing techniques enable the fabrication of such graded materials and structures. This paper presents the results of a graded material study using two titanium alloys processed using electron beam freeform fabrication, an additive manufacturing process. The results show that the two alloys uniformly mix at various ratios and the resultant static tensile properties of the mixed alloys behave according to rule-of-mixtures. Additionally, the crack growth behavior across an abrupt change from one alloy to the other shows no discontinuity and the crack smoothly transitions from one crack growth regime into another.

  13. Vegetation Structure of Ebony Leaf Monkey (Trachypithecus auratus) Habitat in Kecubung Ulolanang Nature Preservation Central Java-Indonesia

    Science.gov (United States)

    Ervina, Rahmawati; Wasiq, Hidayat Jafron

    2018-02-01

    Kecubung Ulolanang Nature Preservation is ebony leaf monkey's habitats in Central Java Indonesia. Continuously degradation of their population is caused by illegal hunting and habitat degradation that made this species being vulnerable. Habitat conservation is one of important aspects to prevent them from extinction. The purpose of this research was to analyze the vegetation's structure and composition, which was potentially, becomes habitat and food source for the monkeys. Data collected using purposive sampling with line transect method of four different level of vegetation. Data analysis used Important Value Index and Diversity Index. There were 43 species of vegetation at seedling stage, 18 species at sapling stage, 8 species at poles stage and 27 species at trees stage. Species that had the highest important value index at seedling was Stenochlaena palustri , at the sapling was Gnetum gnemon, at pole was Swietenia mahagoni and at tree was Tectona grandis . Species of trees those were potentially to become habitat (food source) for ebony leaf monkey were T. grandis, Dipterocarpus gracilis, Quercus sundaica and Ficus superba. The highest diversity index was at seedling gwoth stage.

  14. Structural and floristic changes caused by gamma radiation in understory vegetation of two forest types in northern Wisconsin

    International Nuclear Information System (INIS)

    Zavitkovski, J.

    1977-01-01

    Structural and floristic changes of the understory vegetation of gamma-irradiated aspen and maple-aspen-birch (MAB) communities in northern Wisconsin were quantified by comparing the pre- and postirradiation floristic composition and vegetational cover. A size-dependent radiosensitivity was determined among three vegetational strata, the tall shrubs being the most sensitive, low shrubs intermediate, and herbs the most resistant. Corylus cornuta, whose nuclear characteristics indicated that it could be resistant, was very sensitive and was completely eliminated at exposures of 500 r/20-hr day or higher. The cover of Rubus strigosus, minimal before irradiation, increased manifold and accounted for most of the shrub cover 2 years after the conclusion of irradiation. Among herbs, Carex pensylvanica and Luzula acuminata were very resistant, and Trillium grandiflorum, Aralia nudicaulis, Oryzopsis asperifolia, and Clintonia borealis were very sensitive. The herbaceous stratum of the aspen type appeared more resistant than that of the MAB. This difference apparently resulted from differences in floristic composition of the two communities

  15. Structure studies by electron microscopy and electron diffraction at Physics Department, University of Oslo, 1976-1985

    International Nuclear Information System (INIS)

    Gjoennes, J.K.; Olsen, A.

    1985-08-01

    The paper describes the reasearch activities and plans at the electron microscopy laboratorium, Physics Departmen, University of Oslo. Since the first electron microscope was installed in 1968, the research has covered inorganic structures, physical metallurgy, as well as theory of electron scattering and the development of methods in this field. The current plans involve efforts in the development of crystallographic and spectroscopic methods

  16. Structure and Electronic Properties of Cerium Orthophosphate: Theory and Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adelstein, Nicole; Mun, B. Simon; Ray, Hannah; Ross Jr, Phillip; Neaton, Jeffrey; De Jonghe, Lutgard

    2010-07-27

    Structural and electronic properties of cerium orthophosphate (CePO{sub 4}) are calculated using density functional theory (DFT) with the local spin-density approximation (LSDA+U), with and without gradient corrections (GGA-(PBE)+U), and compared to X-ray diffraction and photoemission spectroscopy measurements. The density of states is found to change significantly as the Hubbard parameter U, which is applied to the Ce 4f states, is varied from 0 to 5 eV. The calculated structural properties are in good agreement with experiment and do not change significantly with U. Choosing U = 3 eV for LDSA provides the best agreement between the calculated density of states and the experimental photoemission spectra.

  17. Electronic structure of CdTe using GGA+USIC

    International Nuclear Information System (INIS)

    Menéndez-Proupin, E.; Amézaga, A.; Cruz Hernández, N.

    2014-01-01

    A simple method to obtain a gap-corrected band structure of cadmium telluride within density functional theory is presented. On-site Coulomb self-interaction-like correction potential has been applied to the 5p-shell of Te and the 4d-shell of Cd. The predicted physical properties are similar to or better than those obtained with hybrid functionals and at largely reduced computational cost. In addition to the corrected electronic structure, the lattice parameters and the bulk modulus are improved. The relative stabilities of the different phases (zincblende, wurtzite, rocksalt and cinnabar) are preserved. The formation energy of the cadmium vacancy remains close to the values obtained from hybrid functional calculations

  18. Electronic structure of Ag8GeS6

    Directory of Open Access Journals (Sweden)

    D.I. Bletskan

    2017-04-01

    Full Text Available For the first time, the energy band structure, total and partial densities of states of Ag8GeS6 crystal were calculated using the ab initio density functional method in LDA and LDA+U approximations. Argyrodite is direct-gap semiconductor with the calculated band gap width Egd = 1.46 eV in the LDA+U approximation. The valence band of argyrodite contains four energy separated groups of occupied subzones. The unique feature of electron-energy structure of Ag8GeS6 crystal is the energy overlapping between the occupied d-states of Ag atoms and the delocalized valence p-states of S atoms in relatively close proximity to the valence band top.

  19. Atomistic simulations of divacancy defects in armchair graphene nanoribbons: Stability, electronic structure, and electron transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jun [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Zeng, Hui, E-mail: zenghui@yangtzeu.edu.cn [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Wei, Jianwei [College of Optoelectronic Information, Chongqing University of Technology, Chongqing 400054 (China); Li, Biao; Xu, Dahai [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China)

    2014-01-17

    Using the first principles calculations associated with nonequilibrium Green's function, we have studied the electronic structures and quantum transport properties of defective armchair graphene nanoribbon (AGNR) in the presence of divacancy defects. The triple pentagon–triple heptagon (555–777) defect in the defective AGNR is energetically more favorable than the pentagon–octagon–pentagon (5–8–5) defect. Our calculated results reveal that both 5–8–5-like defect and 555–777-like defect in AGNR could improve the electron transport. It is anticipated that defective AGNRs can exhibit large range variations in transport behaviors, which are strongly dependent on the distributions of the divacancy defect.

  20. Modifying the Electronic Properties of Nano-Structures Using Strain

    International Nuclear Information System (INIS)

    Lamba, V K; Engles, D

    2012-01-01

    We used density-functional theory based Non equilibrium green function simulations to study the effects of strain and quantum confinement on the electronic properties of Germanium and Silicon NWs along the [110] direction, such as the energy gap and the effective masses of the electron and hole. The diameters of the NWs being studied in a range of 3-20 Å. On basis of our calculation we conclude that the Ge [110] NWs possess a direct band gap, while Si [110] NWs possess indirect band gap at nanoscale. The band gap is almost a linear function of strain when the diameter of Ge NWs D 15 Å; and for Si it is linear in behaviour. On doping silicon wire we found that the bandgap shows parabolic behaviour for change in strain. We also concluded that the band gap and the effective masses of charge carries (i.e. electron and hole) changes by applying the strain to the NWs. Our results suggested that strain can be used to tune the band structures of NWs, which may help in de sign of future nanoelectronic devices.

  1. Electronic structure and chemical bond of high Tc superconductors

    International Nuclear Information System (INIS)

    Gupta, R.P.

    1988-01-01

    Results of the band structure calculations for the compound Bi 2 Sr 2 CaCu 2 O 8 are discussed and compared to those obtained for YBa 2 Cu 3 O 7 . An analysis of the contribution of the densities of states at the different atomic sites shows that the states at the Fermi energy. E F , have a strong bidimensional character due to the CuO 2 planes. Moreover, for the bismuth compound, the contribution of the Bi-O planes at E F is substantial. The elements Y and Ba in YBa 2 Cu 3 O 7 , Ca and Sr in Bi 2 Sr 2 CaCu 2 O 8 act essentially as electron donors, the corresponding densities of states at E F are very small. An analysis of the electronic charge at the different atomic sites is presented. The respective roles of the CuO 2 planes. Cu-O chains and Bi-O planes on the electronic properties at the Fermi level are discussed [fr

  2. Electronic structure and physicochemical properties of selected penicillins

    Science.gov (United States)

    Soriano-Correa, Catalina; Ruiz, Juan F. Sánchez; Raya, A.; Esquivel, Rodolfo O.

    Traditionally, penicillins have been used as antibacterial agents due to their characteristics and widespread applications with few collateral effects, which have motivated several theoretical and experimental studies. Despite the latter, their mechanism of biological action has not been completely elucidated. We present a theoretical study at the Hartree-Fock and density functional theory (DFT) levels of theory of a selected group of penicillins such as the penicillin-G, amoxicillin, ampicillin, dicloxacillin, and carbenicillin molecules, to systematically determine the electron structure of full ?-lactam antibiotics. Our results allow us to analyze the electronic properties of the pharmacophore group, the aminoacyl side-chain, and the influence of the substituents (R and X) attached to the aminoacyl side-chain at 6? (in contrast with previous studies focused at the 3? substituents), and to corroborate the results of previous studies performed at the semiempirical level, solely on the ?-lactam ring of penicillins. Besides, several density descriptors are determined with the purpose of analyzing their link to the antibacterial activity of these penicillin compounds. Our results for the atomic charges (fitted to the electrostatic potential), the bond orders, and several global reactivity descriptors, such as the dipole moments, ionization potential, hardness, and the electrophilicity index, led us to characterize: the active sites, the effect of the electron-attracting substituent properties and their physicochemical features, which altogether, might be important to understand the biological activity of these type of molecules.

  3. Automatic Segmentation and Quantification of Filamentous Structures in Electron Tomography.

    Science.gov (United States)

    Loss, Leandro A; Bebis, George; Chang, Hang; Auer, Manfred; Sarkar, Purbasha; Parvin, Bahram

    2012-10-01

    Electron tomography is a promising technology for imaging ultrastructures at nanoscale resolutions. However, image and quantitative analyses are often hindered by high levels of noise, staining heterogeneity, and material damage either as a result of the electron beam or sample preparation. We have developed and built a framework that allows for automatic segmentation and quantification of filamentous objects in 3D electron tomography. Our approach consists of three steps: (i) local enhancement of filaments by Hessian filtering; (ii) detection and completion (e.g., gap filling) of filamentous structures through tensor voting; and (iii) delineation of the filamentous networks. Our approach allows for quantification of filamentous networks in terms of their compositional and morphological features. We first validate our approach using a set of specifically designed synthetic data. We then apply our segmentation framework to tomograms of plant cell walls that have undergone different chemical treatments for polysaccharide extraction. The subsequent compositional and morphological analyses of the plant cell walls reveal their organizational characteristics and the effects of the different chemical protocols on specific polysaccharides.

  4. Structure of Corrective Feedback for Selection of Ineffective Vegetable Parenting Practices for Use in a Simulation Videogame

    Science.gov (United States)

    Beltran, Alicia; Chen, Tzu-An; O'Connor, Teresia; Hughes, Sheryl; Buday, Richard; Baranowski, Janice

    2013-01-01

    Abstract A serious videogame is being developed to train parents of preschool children in selecting and using parenting practices that are likely to encourage their child to eat more vegetables. The structure of feedback to the parents on their selection may influence what they learn from the game. Feedback Intervention Theory provides some guidance on the design of such messages. The structure of preferred performance feedback statements has not been investigated within serious videogames. Two feedback formats were tested for a player's preferences within the context of this videogame. Based on Feedback Intervention Theory, which proposes that threat to self-concept impairs feedback response, three-statement (a nonaffirming comment sandwiched between two affirming comments, called “Oreo” feedback, which should minimize threat to self-concept) and two-statement (a nonaffirming comment followed by an affirming comment) performance feedbacks were tailored to respondents. Tailoring was based on participants' report of frequency of use of effective and ineffective vegetable parenting practices and the reasons for use of the ineffective practices. Participants selected their preference between the two forms of feedback for each of eight ineffective vegetable parenting practices. In general, mothers (n=81) (no male respondents) slightly preferred the “Oreo” feedback, but the pattern of preferences varied by demographic characteristics. Stronger relationships by income suggest the feedback structure should be tailored to family income. Future research with larger and more diverse samples needs to test whether perceived threat to self-concept mediates the response to feedback and otherwise verify these findings. PMID:24761320

  5. Effects of vegetation, structural and human factors on the thermal performance of residences in a semi-arid environment

    Science.gov (United States)

    Kliman, Susan Schaefer

    The objectives of the study were to examine and quantify the relationship between vegetation and the thermal performance of residences in a hot arid environment. Also explored were structural and human influences on residential energy consumption. A primary goal was to determine how much energy savings could be realized through strategic planting of vegetation. This study sought to validate previous simulation and modeling studies that documented annual savings of 2--11% on residential cooling loads. Also examined was whether shrubs and grass could provide a benefit similar to that of trees, assessing the importance of evapotranspiration versus shading. An empirical study was conducted using 105 existing homes in the metropolitan area of Tucson, Arizona. Data included construction type, amenities, living habits of occupants, and energy consumption for heating and cooling over a two-year period. These data were analyzed with a combination of bivariate and multivariate analyses to examine direct correlations between specific variables and energy consumption and the relative importance of each variable. These analyses were unable to document any measurable savings in summer cooling loads as a result of vegetation adjacent to the house, and the presence of trees actually increased the winter heating load by 2%. While trees provide important shading benefits, and can reduce the direct solar gain through the windows of a house, analysis demonstrated that structural and human factors were the most important aspects in residential energy consumption. The size of the house is of primary importance. Houses with evaporative cooling consumed significantly less energy than those with air conditioning. Thermostat settings and habits regarding thermostat operation were the most critical human factors. Occupants who adjusted their thermostats a few degrees cooler in winter and warmer in summer realized measurable savings. Occupants who turned their heating and cooling equipment

  6. Distribution and structure of internal secretory reservoirs on the vegetative organs of Inula helenium L. (Asteraceae

    Directory of Open Access Journals (Sweden)

    Aneta Sulborska

    2012-12-01

    Full Text Available The aim of the study was to investigate the structure and topography of endogenous secretory tissues of Inula helenium L. By using light and electron microscopy, morphological and anatomical observations of stems, leaves and rhizomes were made. It was shown that in the stems secretory cavities were situated in the vicinity of phloem and xylem bundles. The number of the reservoirs reached its maximum value (34 at shoot flowerig termination, whereas the cavities with the largest diameter were observed at full flowering stage (44.6 µm. In the leaf petioles and midribs, the reservoirs also accompanied the vascular bundles, and their number and size increased along with the growth of the assimilation organs. Observations of the cross sections of the rhizomes revealed the presence of several rings of secretory reservoirs. The measurements of the cavities showed that as a rule the reservoirs with a larger dimension were located in the phelloderm, whereas the smallest ones in the xylem area. The secretory cavities located in the stems and leaves developed by schizogenesis, whereas the rhizome reservoirs were probably formed schizolisygenously. The cells lining the reservoirs formed a one - four-layered epithelium. Observed in TEM, the secretory cells of the mature cavities located in the rhizomes were characterised by the presence of a large central vacuole, whereas the protoplast was largely degraded. Fibrous elements of osmophilic secretion and numerous different coloured vesicles could be distinguished in it. The cell walls formed, from the side of the reservoir lumen, ingrowths into the interior of the epithelial cells. Between the cell wall and the plasmalemma of the glandular cells, a brighter periplasmatic zone with secretory vesicles was observed.

  7. Electronic structure imperfections and chemical bonding at graphene interfaces

    Science.gov (United States)

    Schultz, Brian Joseph

    nanomaterial with lateral dimensions in the hundreds of microns if not larger, with a corresponding atomic vertical thickness poses significant difficulties. Graphene's unique structure is dominated by surface area or potentially hybridized interfaces; consequently, the true realization of this remarkable nanomaterial in device constructs relies on engineering graphene interfaces at the surface in order to controllably mold the electronic structure. Near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy and the transmission mode analogue scanning transmission X-ray microscopy (STXM) are particularly useful tools to study the unoccupied states of graphene and graphene interfaces. In addition, polarized NEXAFS and STXM studies provide information on surface orientation, bond sterics, and the extent of substrate alignment before and after interfacial hybridization. The work presented in this dissertation is fundamentally informed by NEXAFS and STXM measurements on graphene/metal, graphene/dielectric, and graphene/organic interfaces. We start with a general review of the electronic structure of freestanding graphene and graphene interfaces in Chapter 1. In Chapter 2, we investigate freestanding single-layer graphene via STXM and NEXAFS demonstrating that electronic structure heterogeneities from synthesis and processing are ubiquitous in 2-dimensional graphene. We show the mapping of discrete charge transfer regions as a result of doped impurities that decorate the surfaces of graphene and that transfer processing imparts local electronic corrugations or ripples. In corroboration with density functional theory, definitive assignments to the spectral features, global steric orientations of the localized domains, and quantitative charge transfer schemes are evidenced. In the following chapters, we deliberately (Chapter 3) incorporate substitutional nitrogen into reduced graphene oxide to induce C--N charge redistribution and improve global conductivity, (Chapter 4

  8. Direct observations of the MOF (UiO-66) structure by transmission electron microscopy

    KAUST Repository

    Zhu, Liangkui; Zhang, Daliang; Xue, Ming; Li, Huan; Qiu, Shilun

    2013-01-01

    As a demonstration of ab initio structure characterizations of nano metal organic framework (MOF) crystals by high resolution transmission electron microscopy (HRTEM) and electron diffraction tomography methods, a Zr-MOF (UiO-66) structure

  9. The Dual Role of Vegetation as a Constraint on Mass and Energy Flux into the Critical Zone and as an Emergent Property of Geophysical Critical Zone Structure

    Science.gov (United States)

    Brooks, P. D.; Swetnam, T. L.; Barnard, H. R.; Singha, K.; Harpold, A.; Litvak, M. E.

    2017-12-01

    Spatial patterns in vegetation long have been used to scale both landsurface-atmosphere exchanges of water and carbon as well as to infer subsurface structure. These pursuits typical proceed in isolation and rarely do inferences gained from one community propagate to related efforts in another. Perhaps more importantly, vegetation often is treated as an emergent property of landscape-climate interactions rather than an active modifier of both critical zone structure and energy fluxes. We posit that vegetation structure and activity are under utilized as a tool towards understanding landscape evolution and present examples that begin to disentangle the role of vegetation as both an emergent property and an active control on critical zone structure and function. As climate change, population growth, and land use changes threaten water resources worldwide, the need for the new insights vegetation can provide becomes not just a basic science priority, but a pressing applied science question with clear societal importance. This presentation will provide an overview of recent efforts to address the dual role of vegetation in both modifying and reflecting critical zone structure in the western North American forests. For example, interactions between topography and stand scale vegetation structure influence both solar radiation and turbulence altering landscape scale partitioning of evaporation vs transpiration with major impacts of surface water supply. Similarly, interactions between topographic shading, lateral redistribution of plant available water, and subsurface storage create a mosaic of drought resistance and resilience across complex terrain. These complex interactions between geophysical and vegetation components of critical zone structure result in predictable patterns in catchment scale hydrologic partitioning within individual watersheds while simultaneously suggesting testable hypotheses for why catchments under similar climate regimes respond so

  10. Electronic properties of a new structured Sin/O superlattice

    Directory of Open Access Journals (Sweden)

    S. Yu

    2016-11-01

    Full Text Available Silicon is a material which dominants the semiconductor industry and has a well-established processing technology based on it. However, silicon has an indirect-bandgap and is not efficient in light emitting. This limits its applications in optoelectronics. In this paper, we proposed a new structural model for the silicon-based superlattice, i.e., the Sin/O one. The model consists of alternating films of n-layers of Si and a monolayer of oxygen along z-direction, together with a surface cell of Si(001 (2×1 reconstruction in the x-y plane. The importance of employing such a Si(001 (2×1 reconstruction is that all the electrons at interface can be strongly bonded. Our results showed interesting electronic properties, e.g., the band folding and large band gap of bulk Si, when the thickness of the silicon layers was increased (but still thin. Our structure might also offer other interesting properties.

  11. Structural enzymology using X-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    Christopher Kupitz

    2017-07-01

    Full Text Available Mix-and-inject serial crystallography (MISC is a technique designed to image enzyme catalyzed reactions in which small protein crystals are mixed with a substrate just prior to being probed by an X-ray pulse. This approach offers several advantages over flow cell studies. It provides (i room temperature structures at near atomic resolution, (ii time resolution ranging from microseconds to seconds, and (iii convenient reaction initiation. It outruns radiation damage by using femtosecond X-ray pulses allowing damage and chemistry to be separated. Here, we demonstrate that MISC is feasible at an X-ray free electron laser by studying the reaction of M. tuberculosis ß-lactamase microcrystals with ceftriaxone antibiotic solution. Electron density maps of the apo-ß-lactamase and of the ceftriaxone bound form were obtained at 2.8 Å and 2.4 Å resolution, respectively. These results pave the way to study cyclic and non-cyclic reactions and represent a new field of time-resolved structural dynamics for numerous substrate-triggered biological reactions.

  12. Mechanical properties and electronic structures of Fe-Al intermetallic

    Energy Technology Data Exchange (ETDEWEB)

    Liu, YaHui; Chong, XiaoYu; Jiang, YeHua, E-mail: jiangyehua@kmust.edu.cn; Zhou, Rong; Feng, Jing, E-mail: jingfeng@kmust.edu.cn

    2017-02-01

    Using the first-principles calculations, the elastic properties, anisotropy properties, electronic structures, Debye temperature and stability of Fe-Al (Fe{sub 3}Al, FeAl, FeAl{sub 2}, Fe{sub 2}Al{sub 5} and FeAl{sub 3}) binary compounds were calculated. The formation enthalpy and cohesive energy of these Fe-Al compounds are negative, and show they are thermodynamically stable structures. Fe{sub 2}Al{sub 5} has the lowest formation enthalpy, which shows the Fe{sub 2}Al{sub 5} is the most stable of Fe-Al binary compounds. These Fe-Al compounds display disparate anisotropy due to the calculated different shape of the 3D curved surface of the Young’s modulus and anisotropic index. Fe{sub 3}Al has the biggest bulk modulus with the value 233.2 GPa. FeAl has the biggest Yong’s modulus and shear modulus with the value 296.2 GPa and 119.8 GPa, respectively. The partial density of states, total density of states and electron density distribution maps of the binary Fe-Al binary compounds are analyzed. The bonding characteristics of these Fe-Al binary compounds are mainly combination by covalent bond and metallic bonds. Meanwhile, also exist anti-bond effect. Moreover, the Debye temperatures and sound velocity of these Fe-Al compounds are explored.

  13. Vegetation structure of plantain-based agrosystems determines numerical dominance in community of ground-dwelling ants.

    Science.gov (United States)

    Dassou, Anicet Gbéblonoudo; Tixier, Philippe; Dépigny, Sylvain; Carval, Dominique

    2017-01-01

    In tropics, ants can represent an important part of animal biomass and are known to be involved in ecosystem services, such as pest regulation. Understanding the mechanisms underlying the structuring of local ant communities is therefore important in agroecology. In the humid tropics of Africa, plantains are cropped in association with many other annual and perennial crops. Such agrosystems differ greatly in vegetation diversity and structure and are well-suited for studying how habitat-related factors affect the ant community. We analysed abundance data for the six numerically dominant ant taxa in 500 subplots located in 20 diversified, plantain-based fields. We found that the density of crops with foliage at intermediate and high canopy strata determined the numerical dominance of species. We found no relationship between the numerical dominance of each ant taxon with the crop diversity. Our results indicate that the manipulation of the densities of crops with leaves in the intermediate and high strata may help maintain the coexistence of ant species by providing different habitat patches. Further research in such agrosystems should be performed to assess if the effect of vegetation structure on ant abundance could result in efficient pest regulation.

  14. Organic/metal interfaces. Electronic and structural properties

    Energy Technology Data Exchange (ETDEWEB)

    Duhm, Steffen

    2008-07-17

    This work addresses several important topics of the field of organic electronics. The focus lies on organic/metal interfaces, which exist in all organic electronic devices. Physical properties of such interfaces are crucial for device performance. Four main topics have been covered: (i) the impact of molecular orientation on the energy levels, (ii) energy level tuning with strong electron acceptors, (iii) the role of thermodynamic equilibrium at organic/ organic homo-interfaces and (iv) the correlation of interfacial electronic structure and bonding distance. To address these issues a broad experimental approach was necessary: mainly ultraviolet photoelectron spectroscopy was used, supported by X-ray photoelectron spectroscopy, metastable atom electron spectroscopy, X-ray diffraction and X-ray standing waves, to examine vacuum sublimed thin films of conjugated organic molecules (COMs) in ultrahigh vacuum. (i) A novel approach is presented to explain the phenomenon that the ionization energy in molecular assemblies is orientation dependent. It is demonstrated that this is due to a macroscopic impact of intramolecular dipoles on the ionization energy in molecular assemblies. Furthermore, the correlation of molecular orientation and conformation has been studied in detail for COMs on various substrates. (ii) A new approach was developed to tune hole injection barriers ({delta}{sub h}) at organic/metal interfaces by adsorbing a (sub-) monolayer of an organic electron acceptor on the metal electrode. Charge transfer from the metal to the acceptor leads to a chemisorbed layer, which reduces {delta}{sub h} to the COM overlayer. This concept was tested with three acceptors and a lowering of {delta}{sub h} of up to 1.2 eV could be observed. (iii) A transition from vacuum-level alignment to molecular level pinning at the homo-interface between a lying monolayer and standing multilayers of a COM was observed, which depended on the amount of a pre-deposited acceptor. The

  15. Bismuth zinc vanadate, BiZn2VO6: New crystal structure type and electronic structure

    International Nuclear Information System (INIS)

    Eliziario Nunes, Sayonara; Wang, Chun-Hai; So, Karwei; Evans, John S.O.; Evans, Ivana Radosavljević

    2015-01-01

    We report a combined experimental and computational study of the crystal structure and electronic properties of bismuth zinc vanadate, BiZn 2 VO 6 , known for its visible light photocatalytic activity. The crystal structure has been solved from laboratory powder X-ray diffraction data using the repeated minimisations from random starting values method. BiZn 2 VO 6 adopts a new structure type, based on the following building blocks: corner- and edge-sharing ZnO 4 tetrahedra, ZnO 6 octahedra and VO 4 tetrahedra, and Bi 2 O 12 dimers. It is the only known member of the BiM 2 AO 6 (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family which does not appear to be structurally closely related to others. The electronic structure of BiZn 2 VO 6 , calculated by DFT methods, shows that it is an indirect gap semiconductor with a calculated band gap of 1.6 eV, which compares favourably to the experimentally measured value of 2.4 eV. - Graphical abstract: The crystal structure of BiZn 2 VO 6 , a new structure type in the BiM 2 AO 6 (M=Mg, Ca, Cd, Cu, Pb, Mn, Zn; A=V, P, As) family. - Highlights: • Structure solution from PXRD data by repeated minimisations from random starting values. • New structure type in the BiM 2 AO 6 (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family. • Electronic structure calculation

  16. Features of morpho-anatomic structure of vegetative organs of Sedum antiquum Omelcz et Zaverucha (Crassulaceae DC.

    Directory of Open Access Journals (Sweden)

    Valentyna Berezkina

    2015-05-01

    Full Text Available The study results of biological features and morpho-anatomical structure of vegetative organs of Sedum antiquum Omelcz et Zaverucha (Crassulaceae DC. are given. S. antiquum is Eastern Carpathian-Opillia rare endemic species. It is listed in the Red Book of Ukraine and in the European Red List of Animals and Plants and is endangered in world scale. As a result of study of morpho-anatomic structure of leaves and stems of S. antiquum the anisocytic type of stomata and presence of cuticle have been determined. It was ascertained that structure of leaves is adapted to the accumulation of significant water reserves and its further gradual use. Ecological and phytocenotic conditions of growth are studied too. S. antiquum has been determined here as petrophyte, calcephyl, and succulent ephemer. This rare species need protection and control of population state in all natural habitats.

  17. Manganites in Perovskite Superlattices: Structural and Electronic Properties

    KAUST Repository

    Jilili, Jiwuer

    2016-07-13

    Perovskite oxides have the general chemical formula ABO3, where A is a rare-earth or alkali-metal cation and B is a transition metal cation. Perovskite oxides can be formed with a variety of constituent elements and exhibit a wide range of properties ranging from insulators, metals to even superconductors. With the development of growth and characterization techniques, more information on their physical and chemical properties has been revealed, which diversified their technological applications. Perovskite manganites are widely investigated compounds due to the discovery of the colossal magnetoresistance effect in 1994. They have a broad range of structural, electronic, magnetic properties and potential device applications in sensors and spintronics. There is not only the technological importance but also the need to understand the fundamental mechanisms of the unusual magnetic and transport properties that drive enormous attention. Manganites combined with other perovskite oxides are gaining interest due to novel properties especially at the interface, such as interfacial ferromagnetism, exchange bias, interfacial conductivity. Doped manganites exhibit diverse electrical properties as compared to the parent compounds. For instance, hole doped La0.7Sr0.3MnO3 is a ferromagnetic metal, whereas LaMnO3 is an antiferromagnetic insulator. Since manganites are strongly correlated systems, heterojunctions composed of manganites and other perovskite oxides are sunject to complex coupling of the spin, orbit, charge, and lattice degrees of freedom and exhibit unique electronic, magnetic, and transport properties. Electronic reconstructions, O defects, doping, intersite disorder, magnetic proximity, magnetic exchange, and polar catastrophe are some effects to explain these interfacial phenomena. In our work we use first-principles calculations to study the structural, electronic, and magnetic properties of manganite based superlattices. Firstly, we investigate the electronic

  18. Indium antimonide quantum well structures for electronic device applications

    Science.gov (United States)

    Edirisooriya, Madhavie

    The electron effective mass is smaller in InSb than in any other III-V semiconductor. Since the electron mobility depends inversely on the effective mass, InSb-based devices are attractive for field effect transistors, magnetic field sensors, ballistic transport devices, and other applications where the performance depends on a high mobility or a long mean free path. In addition, electrons in InSb have a large g-factor and strong spin orbit coupling, which makes them well suited for certain spin transport devices. The first n-channel InSb high electron mobility transistor (HEMT) was produced in 2005 with a power-delay product superior to HEMTs with a channel made from any other III-V semiconductor. The high electron mobility in the InSb quantum-well channel increases the switching speed and lowers the required supply voltage. This dissertation focuses on several materials challenges that can further increase the appeal of InSb quantum wells for transistors and other electronic device applications. First, the electron mobility in InSb quantum wells, which is the highest for any semiconductor quantum well, can be further increased by reducing scattering by crystal defects. InSb-based heteroepitaxy is usually performed on semi-insulating GaAs (001) substrates due to the lack of a lattice matched semi-insulating substrate. The 14.6% mismatch between the lattice parameters of GaAs and InSb results in the formation of structural defects such as threading dislocations and microtwins which degrade the electrical and optical properties of InSb-based devices. Chapter 1 reviews the methods and procedures for growing InSb-based heterostructures by molecular beam epitaxy. Chapters 2 and 3 introduce techniques for minimizing the crystalline defects in InSb-based structures grown on GaAs substrates. Chapter 2 discusses a method of reducing threading dislocations by incorporating AlyIn1-ySb interlayers in an AlxIn1-xSb buffer layer and the reduction of microtwin defects by growth

  19. Electronic structure and properties of uranyl compounds. Problems of electron-donor conception

    International Nuclear Information System (INIS)

    Glebov, V.A.

    1982-01-01

    Comparison of the series of the ligand mutual substitution in the uranyl compounds with the ligand series of d-elements and with the uranyl ''covalent model'', is made. The data on ionization potentials of the ligand higher valent levels and on the structure of some uranyl nitrate compounds are considered. It is concluded that the mechanism of the ligand effect on the properties of uranyl grouping is more complex, than it is supposed in the traditional representations on the nature of electron-donor interactions in the uranyl compounds

  20. Efficacy and External Validity of Electronic and Mobile Phone-Based Interventions Promoting Vegetable Intake in Young Adults: Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Nour, Monica; Chen, Juliana; Allman-Farinelli, Margaret

    2016-04-08

    Young adults (18-35 years) remain among the lowest vegetable consumers in many western countries. The digital era offers opportunities to engage this age group in interventions in new and appealing ways. This systematic review evaluated the efficacy and external validity of electronic (eHealth) and mobile phone (mHealth) -based interventions that promote vegetable intake in young adults. We searched several electronic databases for studies published between 1990 and 2015, and 2 independent authors reviewed the quality and risk of bias of the eligible papers and extracted data for analyses. The primary outcome of interest was the change in vegetable intake postintervention. Where possible, we calculated effect sizes (Cohen d and 95% CIs) for comparison. A random effects model was applied to the data for meta-analysis. Reach and representativeness of participants, intervention implementation, and program maintenance were assessed to establish external validity. Published validation studies were consulted to determine the validity of tools used to measure intake. We applied the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to evaluate the overall quality of the body of evidence. Of the 14 studies that met the selection criteria, we included 12 in the meta-analysis. In the meta-analysis, 7 studies found positive effects postintervention for fruit and vegetable intake, Cohen d 0.14-0.56 (pooled effect size 0.22, 95% CI 0.11-0.33, I(2)=68.5%, P=.002), and 4 recorded positive effects on vegetable intake alone, Cohen d 0.11-0.40 (pooled effect size 0.15, 95% CI 0.04-0.28, I(2)=31.4%, P=.2). These findings should be interpreted with caution due to variability in intervention design and outcome measures. With the majority of outcomes documented as a change in combined fruit and vegetable intake, it was difficult to determine intervention effects on vegetable consumption specifically. Measurement of intake was most commonly by self

  1. DAMPING OF ELECTRON DENSITY STRUCTURES AND IMPLICATIONS FOR INTERSTELLAR SCINTILLATION

    International Nuclear Information System (INIS)

    Smith, K. W.; Terry, P. W.

    2011-01-01

    The forms of electron density structures in kinetic Alfven wave (KAW) turbulence are studied in connection with scintillation. The focus is on small scales L ∼ 10 8 -10 10 cm where the KAW regime is active in the interstellar medium, principally within turbulent H II regions. Scales at 10 times the ion gyroradius and smaller are inferred to dominate scintillation in the theory of Boldyrev et al. From numerical solutions of a decaying KAW turbulence model, structure morphology reveals two types of localized structures, filaments and sheets, and shows that they arise in different regimes of resistive and diffusive damping. Minimal resistive damping yields localized current filaments that form out of Gaussian-distributed initial conditions. When resistive damping is large relative to diffusive damping, sheet-like structures form. In the filamentary regime, each filament is associated with a non-localized magnetic and density structure, circularly symmetric in cross section. Density and magnetic fields have Gaussian statistics (as inferred from Gaussian-valued kurtosis) while density gradients are strongly non-Gaussian, more so than current. This enhancement of non-Gaussian statistics in a derivative field is expected since gradient operations enhance small-scale fluctuations. The enhancement of density gradient kurtosis over current kurtosis is not obvious, yet it suggests that modest density fluctuations may yield large scintillation events during pulsar signal propagation. In the sheet regime the same statistical observations hold, despite the absence of localized filamentary structures. Probability density functions are constructed from statistical ensembles in both regimes, showing clear formation of long, highly non-Gaussian tails.

  2. Changes in the bacterial number (enterohaemorrhagic E. coli O157:H7, coliforms and SPC) in salted vegetables during storage and by treatment with electron-beam irradiation

    International Nuclear Information System (INIS)

    Miyahara, Michiko; Miyahara, Makoto

    2007-01-01

    Enterohaemorrhagic Escherichia coli O157:H7 causes severe illness in humans, especially young children and elder people. Some 2-3% salted vegetables (called Asazuke) contaminated with E. coli O157:H7 have caused food-poisoning and even death. The viability of E. coli O157:H7 in saline water and in salted vegetables was tested. During cold and frozen storage, the apparent decrease in the number of E. coli O157:H7 was not observed. However, electron-beam irradiation (0.534, 1.097 and 2.639 kGy) caused clear decrease in the numbers of E. coli O157:H7 in frozen salted Mizuna. The number of standard plating count (SPC) and coliforms were also counted and compared with the changes in the number of E. coli O157:H7. (author)

  3. Effects of future climate change, CO2 enrichment, and vegetation structure variation on hydrological processes in China

    Science.gov (United States)

    Zhu, Qiuan; Jiang, Hong; Peng, Changhui; Liu, Jinxun; Fang, Xiuqin; Wei, Xiaohua; Liu, Shirong; Zhou, Guomo

    2012-01-01

    Investigating the relationship between factors (climate change, atmospheric CO2 concentrations enrichment, and vegetation structure) and hydrological processes is important for understanding and predicting the interaction between the hydrosphere and biosphere. The Integrated Biosphere Simulator (IBIS) was used to evaluate the effects of climate change, rising CO2, and vegetation structure on hydrological processes in China at the end of the 21st century. Seven simulations were implemented using the assemblage of the IPCC climate and CO2 concentration scenarios, SRES A2 and SRES B1. Analysis results suggest that (1) climate change will have increasing effects on runoff, evapotranspiration (ET), transpiration (T), and transpiration ratio (transpiration/evapotranspiration, T/E) in most hydrological regions of China except in the southernmost regions; (2) elevated CO2 concentrations will have increasing effects on runoff at the national scale, but at the hydrological region scale, the physiology effects induced by elevated CO2 concentration will depend on the vegetation types, climate conditions, and geographical background information with noticeable decreasing effects shown in the arid Inland region of China; (3) leaf area index (LAI) compensation effect and stomatal closure effect are the dominant factors on runoff in the arid Inland region and southern moist hydrological regions, respectively; (4) the magnitudes of climate change (especially the changing precipitation pattern) effects on the water cycle are much larger than those of the elevated CO2 concentration effects; however, increasing CO2 concentration will be one of the most important modifiers to the water cycle; (5) the water resource condition will be improved in northern China but depressed in southernmost China under the IPCC climate change scenarios, SRES A2 and SRES B1.

  4. Quantum Monte Carlo for electronic structure: Recent developments and applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodriquez, Maria Milagos Soto [Lawrence Berkeley Lab. and Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1995-04-01

    Quantum Monte Carlo (QMC) methods have been found to give excellent results when applied to chemical systems. The main goal of the present work is to use QMC to perform electronic structure calculations. In QMC, a Monte Carlo simulation is used to solve the Schroedinger equation, taking advantage of its analogy to a classical diffusion process with branching. In the present work the author focuses on how to extend the usefulness of QMC to more meaningful molecular systems. This study is aimed at questions concerning polyatomic and large atomic number systems. The accuracy of the solution obtained is determined by the accuracy of the trial wave function`s nodal structure. Efforts in the group have given great emphasis to finding optimized wave functions for the QMC calculations. Little work had been done by systematically looking at a family of systems to see how the best wave functions evolve with system size. In this work the author presents a study of trial wave functions for C, CH, C2H and C2H2. The goal is to study how to build wave functions for larger systems by accumulating knowledge from the wave functions of its fragments as well as gaining some knowledge on the usefulness of multi-reference wave functions. In a MC calculation of a heavy atom, for reasonable time steps most moves for core electrons are rejected. For this reason true equilibration is rarely achieved. A method proposed by Batrouni and Reynolds modifies the way the simulation is performed without altering the final steady-state solution. It introduces an acceleration matrix chosen so that all coordinates (i.e., of core and valence electrons) propagate at comparable speeds. A study of the results obtained using their proposed matrix suggests that it may not be the optimum choice. In this work the author has found that the desired mixing of coordinates between core and valence electrons is not achieved when using this matrix. A bibliography of 175 references is

  5. Rietveld analysis and electronic bands structure on Tc superconductors systems

    International Nuclear Information System (INIS)

    Aldea, N.; Tiusan, C. V.; Sandu, V.

    1999-01-01

    A procedure for simultaneous refinement of structural and micro-structural disorder parameters for polycrystalline YBa 2 Cu 3 O 7-x system is proposed. It is based on Rietveld method combined with Fourier analysis for broadened peaks Another purpose of this paper consists in electronic structure determination studied by using the self-consistent Tight Binding Linear Muffin-Tin Orbital Atomic Spheres Approximation TB-LMTO-ASA methods. The Rietveld method uses an analytical function that describes the profiles, usually pseudo-Voigt (pV) or Pearson VII (PVII). The parameters of the analytical profiles describe its amplitude, position and peak shape. The full width at half maximum (FWHM) is supposed to vary with the diffraction angle in agreement with the Caglioti, Paoletti and Ricci's relationship. The best structural parameters are determined in the least squares sense by the minimisation a classical residual using the Marquardt method. In this case, the peak profiles were modelled by the pseudo-Voigt function corrected by the instrumental asymmetry. The physical information obtained are: scale factor, lattice parameters, atomic position and displacements, atomic occupation numbers, temperature factor (isotropy or anisotropy), preferred orientation parameter, crystalline size and micro-strain along different crystallographic directions, distributions of crystallite size and micro-strain functions. This procedure was implemented on computer code and it has a friendly graphical interface based on pull down menus technique. From the experimental point of view the X-ray diffraction data were collected using a horizontal powder diffractometer in the Bragg-Brentano (BB) geometry with a Ni filtered CuKα, λ = 1.54178 A, at room temperature using a DRON 2 set-up. The diffraction profiles were measured with a proportional gas detector, a single channel pulse-height discrimination and a standard associated counting circuit. The electronic band calculations are based on the TB

  6. Electronic structure and molecular dynamics of Na2Li

    Science.gov (United States)

    Malcolm, Nathaniel O. J.; McDouall, Joseph J. W.

    Following the first report (Mile, B., Sillman, P. D., Yacob, A. R. and Howard, J. A., 1996, J. chem. Soc. Dalton Trans , 653) of the EPR spectrum of the mixed alkali-metal trimer Na2Li a detailed study has been made of the electronic structure and structural dynamics of this species. Two isomeric forms have been found: one of the type, Na-Li-Na, of C , symmetry and another, Li-Na-Na, of C symmetry. Also, there are two linear saddle points which correspond to 'inversion' transition structures, and a saddle point of C symmetry which connects the two minima. A molecular dynamics investigation of these species shows that, at the temperature of the reported experiments (170 K), the C minimum is not 'static', but undergoes quite rapid inversion. At higher temperatures the C minimum converts to the C form, but by a mechanism very different from that suggested by minimum energy path considerations. 2 2v s s 2v 2v s

  7. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    López-Oyama, A. B.; Silva-Molina, R. A.; Ruíz-García, J.; Guirado-López, R. A., E-mail: guirado@ifisica.uaslp.mx [Instituto de Física “Manuel Sandoval Vallarta,” Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, San Luis Potosí (Mexico); Gámez-Corrales, R. [Departamento de Física, Universidad de Sonora, Apartado Postal 5-088, 83190, Hermosillo, Sonora (Mexico)

    2014-11-07

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH–MWCNT). Our MWCNTs have average diameters of ∼2 nm, lengths of approximately 100–300 nm, and a hydroxyl surface coverage θ∼0.1. When deposited on the air/water interface the OH–MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images show that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO–LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH–MWCNTs might have promising applications.

  8. Insight into mitochondrial structure and function from electron tomography.

    Science.gov (United States)

    Frey, T G; Renken, C W; Perkins, G A

    2002-09-10

    In recent years, electron tomography has provided detailed three-dimensional models of mitochondria that have redefined our concept of mitochondrial structure. The models reveal an inner membrane consisting of two components, the inner boundary membrane (IBM) closely apposed to the outer membrane and the cristae membrane that projects into the matrix compartment. These two components are connected by tubular structures of relatively uniform size called crista junctions. The distribution of crista junction sizes and shapes is predicted by a thermodynamic model based upon the energy of membrane bending, but proteins likely also play a role in determining the conformation of the inner membrane. Results of structural studies of mitochondria during apoptosis demonstrate that cytochrome c is released without detectable disruption of the outer membrane or extensive swelling of the mitochondrial matrix, suggesting the formation of an outer membrane pore large enough to allow passage of holo-cytochrome c. The possible compartmentation of inner membrane function between the IBM and the cristae membrane is also discussed.

  9. Geometry, electronic structures and optical properties of phosphorus nanotubes

    International Nuclear Information System (INIS)

    Hu, Tao; Hashmi, Arqum; Hong, Jisang

    2015-01-01

    Using a first principles approach, we investigated the geometry, electronic structures, and optical properties of phosphorus nanotubes (PNTs). Two possible 1D configurations, the so-called α-PNTs and β-PNTs, are proposed, which are structurally related to blue and black phosphorus monolayers, respectively. Hereby, we predict that both armchair and zigzag geometries can be synthesized in α-PNTs, but the zigzag form of β-PNT is highly unfavorable because of large strain and conformation energies. The band gap of α-PNTs is expected to be ∼2.67 eV, and this is insensitive to the chirality when the tube’s inner diameter is larger than 1.3 nm, while the armchair β-PNTs have a much smaller band gap. Interestingly, we find nearly flat band structures in the zigzag α-PNT system. This may indicate that an excited particle–hole pair has a huge effective mass. We also find asymmetric optical properties with respect to the polarization direction. The armchair α-PNT for parallel polarization shows a large refractive index of 2.6 near the ultraviolet wavelength, and also we find that the refractive index can be even smaller than 1 in certain frequency ranges. The zigzag tubes show very weak reflectivity for parallel polarization, while the armchair tube displays high reflectivity. (paper)

  10. Electronic structure and interatomic bonding in Al10V

    International Nuclear Information System (INIS)

    Jahnatek, M; Krajci, M; Hafner, J

    2003-01-01

    On the basis of ab initio calculations we analysed the electron density distribution in the elementary cell of the compound Al 10 V. We found covalent bonding between certain atoms. The Al-V bonds of enhanced covalency are linked into -Al-V-Al-V- chains that extend over the whole crystal. The chains intersect at each V site and together form a Kagome network of corner-sharing tetrahedra. The large voids of this network are filled by Z 16 Friauf polyhedra consisting of Al atoms only. The skeleton of the Friauf polyhedron has the form of a truncated tetrahedron and consists of 12 strongly bonded Al atoms. These Al-Al bonds also have covalent character. The bonding is dominated by sp 2 hybridization. The centre of the Friauf polyhedron may be empty or occupied by an Al atom. The thermodynamic stability of the phase is investigated. The Al 21 V 2 phase with occupied voids is at low temperatures less stable than Al 10 V. The Al 10 V structure can be considered as a special case of the Al 18 Cr 2 Mg 3 structural class. We have found the same picture of bonding as we report here for Al 10 V for several other aluminium-rich alloys belonging to the Al 18 Cr 2 Mg 3 structural class also

  11. Nuclear structure functions at a future electron-ion collider

    Science.gov (United States)

    Aschenauer, E. C.; Fazio, S.; Lamont, M. A. C.; Paukkunen, H.; Zurita, P.

    2017-12-01

    The quantitative knowledge of heavy nuclei's partonic structure is currently limited to rather large values of momentum fraction x —robust experimental constraints below x ˜10-2 at low resolution scale Q2 are particularly scarce. This is in sharp contrast to the free proton's structure which has been probed in Deep Inelastic Scattering (DIS) measurements down to x ˜10-5 at perturbative resolution scales. The construction of an electron-ion collider (EIC) with a possibility to operate with a wide variety of nuclei, will allow one to explore the low-x region in much greater detail. In the present paper we simulate the extraction of the nuclear structure functions from measurements of inclusive and charm reduced cross sections at an EIC. The potential constraints are studied by analyzing simulated data directly in a next-to-leading order global fit of nuclear Parton Distribution Functions based on the recent EPPS16 analysis. A special emphasis is placed on studying the impact an EIC would have on extracting the nuclear gluon parton distribution function, the partonic component most prone to nonlinear effects at low Q2. In comparison to the current knowledge, we find that the gluon parton distribution function can be measured at an EIC with significantly reduced uncertainties.

  12. Impact of forest disturbance on the structure and composition of vegetation in tropical rainforest of Central Sulawesi, Indonesia

    Directory of Open Access Journals (Sweden)

    RAMADHANIL PITOPANG

    2012-10-01

    Full Text Available We presented the structure and composition of vegetation in four (4 different land use types namely undisturbed primary forest, lightly disturbed primary forest, selectively logged forest, and cacao forest garden in tropical rainforest margin of the Lore Lindu National Park, Central Sulawesi Indonesia. Individually all big trees (dbh > 10 cm was numbered with tree tags and their position in the plot mapped, crown diameter and dbh measured, whereas trunk as well as total height measured by Vertex. Additionally, overstorey plants (dbh 2- 9.9 cm were also surveyed in all land use types. Identification of vouchers and additional herbarium specimens was done in the field as well as at Herbarium Celebense (CEB, Tadulako University, and Nationaal Herbarium of Netherland (L Leiden branch, the Netherland. The result showed that the structure and composition of vegetation in studied are was different. Tree species richness was decreased from primary undisturbed forest to cacao plantation, whereas tree diversity and its composition were significantly different among four (4 land use types. Palaquium obovatum, Chionanthus laxiflorus, Castanopsis acuminatissima, Lithocarpus celebicus, Canarium hirsutum, Eonymus acuminifolius and Sarcosperma paniculata being predominant in land use type A, B and C and Coffea robusta, Theobroma cacao, Erythrina subumbrans, Glyricidia sepium, Arenga pinnata, and Syzygium aromaticum in the cacao plantation. At the family level, undisturbed natural forest was dominated by Fagaceae and Sapotaceae disturbed forest by Moraceae, Sapotaceae, Rubiaceae, and agroforestry systems by Sterculiaceae and Fabaceae.

  13. Vegetation types, dominant compositions, woody plant diversity and stand structure in Trishna Wildlife Sanctuary of Northeast India.

    Science.gov (United States)

    Majumdar, Koushik; Datta, B K

    2015-03-01

    Present study was carried out to assess the vegetation types, diversity and phytosociological status of woody plants in Trishna Wildlife Sanctuary of Tripura, Northeast India. Vegetation data was derived by 25 line transects (10 m wide and 500 m length, each 0.5 ha size). All woody species at >10 cm gbh (Girth at Breast Height) within each plots were measured and counted. A total of six forest types were classified by cluster analysis using Importance Value Index (IVI) of 289 woody species. Species diversity, forest structure and woody community associations were evaluated and discussed. One way ANOVA revealed significant differences in all species diversity measures and stand structure along the forest types. Distribution of stem density at ten different gbh classes showed reverse J-shaped curves. Population status of woody plants was also examined through grouping of all individuals into four population age stages viz. sapling ( or = 30 - 120 - 210 cm gbh) and old (> or =210 cm). To observe dominant composition and species population trend, IVI of top ten dominant species from all forest types were tabulated. The present study suggested that Trishna Wildlife Sanctuary is an important habitat in Tripura from floristic point of view and it should be conserved on priority basis for remaining wildlife endurances and monitor for forest livelihoods products for sustainable biodiversity conservation in this region.

  14. Effects of vegetation structure on soil carbon, nutrients and greenhouse gas exchange in a savannah ecosystem of Mount Kilimanjaro Region

    Science.gov (United States)

    Becker, J.

    2015-12-01

    The savannah biome is a hotspot for biodiversity and wildlife conservation in Africa and recently got in the focus of research on carbon sequestration. Savannah ecosystems are under strong pressure from climate and land-use change, especially around populous areas like the Mt. Kilimanjaro region. Savannah vegetation consists of grassland with isolated trees and is therefore characterized by high spatial variation of canopy cover, aboveground biomass and root structure. The canopy structure is a major regulator for soil ecological parameters and soil-atmospheric trace gas exchange (CO2, N2O, CH4) in water limited environments. The spatial distribution of these parameters and the connection between above and belowground processes are important to understand and predict ecosystem changes and estimate its vulnerability. Our objective was to determine spatial trends and changes of soil parameters and relate their variability to the vegetation structure. We chose three trees from each of the two most dominant species (Acacia nilotica and Balanites aegyptiaca) in our research area. For each tree, we selected transects with nine sampling points of the same relative distances to the stem. At these each sampling point a soil core was taken and separated in 0-10 cm and 10-30 cm depth. We measured soil carbon (C) and nitrogen (N) storage, microbial biomass C and N, Natural δ13C, soil respiration, available nutrients, pH, cation exchange capacity (CEC) as well as root biomass and -density, soil temperature and soil water content. Concentrations and stocks of C and N fractions, CEC and K+ decreased up to 50% outside the crown covered area. Microbial C:N ratio and CO2 efflux was about 30% higher outside the crown. This indicates N limitation and low C use efficiency in soil outside the crown area. We conclude that the spatial structure of aboveground biomass in savanna ecosystems leads to a spatial variance in nutrient limitation. Therefore, the capability of a savanna ecosystem

  15. LANDFIRE 2015 Remap – Utilization of Remotely Sensed Data to Classify Existing Vegetation Type and Structure to Support Strategic Planning and Tactical Response

    Science.gov (United States)

    Picotte, Joshua J.; Long, Jordan; Peterson, Birgit; Nelson, Kurtis

    2017-01-01

    The LANDFIRE Program produces national scale vegetation, fuels, fire regimes, and landscape disturbance data for the entire U.S. These data products have been used to model the potential impacts of fire on the landscape [1], the wildfire risks associated with land and resource management [2, 3], and those near population centers and accompanying Wildland Urban Interface zones [4], as well as many other applications. The initial LANDFIRE National Existing Vegetation Type (EVT) and vegetation structure layers, including vegetation percent cover and height, were mapped circa 2001 and released in 2009 [5]. Each EVT is representative of the dominant plant community within a given area. The EVT layer has since been updated by identifying areas of landscape change and modifying the vegetation types utilizing a series of rules that consider the disturbance type, severity of disturbance, and time since disturbance [6, 7]. Non-disturbed areas were adjusted for vegetation growth and succession. LANDFIRE vegetation structure layers also have been updated by using data modeling techniques [see 6 for a full description]. The subsequent updated versions of LANDFIRE include LANDFIRE 2008, 2010, 2012, and LANDFIRE 2014 is being incrementally released, with all data being released in early 2017. Additionally, a comprehensive remap of the baseline data, LANDFIRE 2015 Remap, is being prototyped, and production is tentatively planned to begin in early 2017 to provide a more current baseline for future updates.

  16. Electronic structure and chemical bond in technetium dimer

    International Nuclear Information System (INIS)

    Klyagina, A.P.; Fursova, V.D.; Levin, A.A.; Gutsev, G.L.

    1987-01-01

    DV-X α method is used to study electron structure and peculiarities of chemical bond in Tc 2 and Tc 2 2+ dimers. Electron state characteristics are calculated in the basis of numerical Hartree-Fock functions for d 6 s 1 - and d 5 s 2 -configurations of Tc atom and for Tc 2 2+ ion d 5 s 1 -configuration. Disposition order for valence MO in Tc and Tc 2 2+ calculated for the given configurations is presented. It is shown that quinary bond with π u 4 dσ g 2 σ g 4 sσ g 2 δ u 2 configuration corresponds to the ground state of Tc 2 molecule. In Tc 2 some weakening of binding for π- and δ-orbitals and strengthening of total σ-binding in comparison with Mo 2 takes place. In Tc + and Tc 2+ MO composition is slightly changed, but a shift of 2σ-MO relatively MO consisting of d-AO is occured

  17. Electronic structure characterization and bandgap engineeringofsolar hydrogen materials

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jinghua

    2007-11-01

    Bandgap, band edge positions as well as the overall band structure of semiconductors are of crucial importance in photoelectrochemical and photocatalytic applications. The energy position of the band edge level can be controlled by the electronegativity of the dopants, the pH of the solution (flatband potential variation of 60 mV per pH unit), as well as by quantum confinement effects. Accordingly, band edges and bandgap can be tailored to achieve specific electronic, optical or photocatalytic properties. Synchrotron radiation with photon energy at or below 1 keV is giving new insight into such areas as condensed matter physics and extreme ultraviolet optics technology. In the soft x-ray region, the question tends to be, what are the electrons doing as they migrated between the atoms. In this paper, I will present a number of soft x-ray spectroscopic study of nanostructured 3d metal compounds Fe{sub 2}O{sub 3} and ZnO.

  18. Surface and Core Electronic Structure of Oxidized Silicon Nanocrystals

    Directory of Open Access Journals (Sweden)

    Noor A. Nama

    2010-01-01

    Full Text Available Ab initio restricted Hartree-Fock method within the framework of large unit cell formalism is used to simulate silicon nanocrystals between 216 and 1000 atoms (1.6–2.65 nm in diameter that include Bravais and primitive cell multiples. The investigated properties include core and oxidized surface properties. Results revealed that electronic properties converge to some limit as the size of the nanocrystal increases. Increasing the size of the core of a nanocrystal resulted in an increase of the energy gap, valence band width, and cohesive energy. The lattice constant of the core and oxidized surface parts shows a decreasing trend as the nanocrystal increases in a size that converges to 5.28 Ǻ in a good agreement with the experiment. Surface and core convergence to the same lattice constant reflects good adherence of oxide layer at the surface. The core density of states shows highly degenerate states that split at the oxygenated (001-(1×1 surface due to symmetry breaking. The nanocrystal surface shows smaller gap and higher valence and conduction bands when compared to the core part, due to oxygen surface atoms and reduced structural symmetry. The smaller surface energy gap shows that energy gap of the nanocrystal is controlled by the surface part. Unlike the core part, the surface part shows a descending energy gap that proves its obedience to quantum confinement effects. Nanocrystal geometry proved to have some influence on all electronic properties including the energy gap.

  19. Electronic structure and phase equilibria in ternary substitutional alloys

    International Nuclear Information System (INIS)

    Traiber, A.J.S.; Allen, S.M.; Waterstrat, R.M.

    1996-01-01

    A reliable, consistent scheme to study phase equilibria in ternary substitutional alloys based on the tight-binding approximation is presented. With electronic parameters from linear muffin-tin orbital calculations, the computed density of states and band structures compare well with those from more accurate abinitio calculations. Disordered alloys are studied within the tight-binding coherent-potential approximation extended to alloys; energetics of ordered systems are obtained through effective pair interactions computed with the general perturbation method; and partially ordered alloys are studied with a novel simplification of the molecular coherent-potential approximation combined with the general perturbation method. The formalism is applied to bcc-based Zr-Ru-Pd alloys which are promising candidates for medical implant devices. Using energetics obtained from the above scheme, we apply the cluster- variation method to study phase equilibria for particular pseudo- binary alloys and show that results are consistent with observed behavior of electronic specific heat coefficient with composition for Zr 0.5 (Ru, Pd) 0.5

  20. Electronic structure of magnesium diboride and related compounds

    Energy Technology Data Exchange (ETDEWEB)

    Paduani, C. [Departamento de Fisica, Universidade Federal de Santa Catarina, UFSC, Florianopolis, CEP 88040-900, SC (Brazil)

    2003-11-01

    The electronic structure of AlB{sub 2}-type diborides and related compounds has been investigated in first-principles calculations with the molecular cluster discrete variational method. For MgB{sub 2} was studied the effect of the lattice relaxation on the total density of states at the Fermi energy (N({epsilon}{sub F})). The results indicated that a contraction of about 2% in the lattice spacings a and c can lead to a slight increase of N({epsilon}{sub F}) for boron. In the MB{sub 2} diborides, M=Al, Ti, V, Cr, Zr, Nb, Mo and Ta, the largest contributions to N({epsilon}{sub F}) is observed for Cr, Mo and Nb. TiB{sub 2} possess the highest chemical stability in the series. The electronic specific heat coefficient {gamma} also is calculated for the diborides. The method is employed to obtain the partial B2p contribution to the total DOS at the Fermi level with the introduction of a monolayer of solute atoms as a substitution for Mg atoms of Na, Al, Ca, Ti, V, Cr, Zr, Nb, Mo and Ta in layered superstructures.. /M/B{sub 2}/Mg/B{sub 2}/.. A stronger covalent bonding between boron atoms is identified in these cases. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)