WorldWideScience

Sample records for vegetation dynamics affect

  1. Vegetation dynamics and dynamic vegetation science

    NARCIS (Netherlands)

    Van der Maarel, E

    1996-01-01

    his contribution presents a review of the development of the study of vegetation dynamics since 1979, in the framework of a jubilee meeting on progress in the study of vegetation. However, an exhaustive review is both impossible and unnecessary. It is impossible within the few pages available

  2. Factors affecting re-vegetation dynamics of experimentally restored extracted peatland in Estonia.

    Science.gov (United States)

    Karofeld, Edgar; Müür, Mari; Vellak, Kai

    2016-07-01

    Increasing human activity continues to threaten peatlands, and as the area of natural mires declines, our obligation is to restore their ecosystem functions. Several restoration strategies have been developed for restoration of extracted peatlands, including "The moss layer transfer method", which was initiated on the Tässi extracted peatland in central Estonia in May 2012. Three-year study shows that despite the fluctuating water table, rainfall events can compensate for the insufficient moisture for mosses. Total plant cover on the restoration area attained 70 %, of which ~60 % is comprised of target species-Sphagnum mosses. From restoration treatments, spreading of plant fragments had a significant positive effect on the cover of bryophyte and vascular plants. Higher water table combined with higher plant fragments spreading density and stripping of oxidised peat layer affected positively the cover of targeted Sphagnum species. The species composition in the restoration area became similar to that in the donor site in a natural bog. Based on results, it was concluded that the method approved for restoration in North America gives good results also in the restoration of extracted peatland towards re-establishment of bog vegetation under northern European conditions.

  3. Monitoring of vegetation dynamics and assessing vegetation response to drought in the Iberian Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Haro, F. J.; Moreno, A.; Perez-Hoyos, A.; Gilabert, M. A.; Melia, J.; Belda, F.; Poquet, D.; Martinez, B.; Verger, A.

    2009-07-01

    Monitoring the vegetation activity over long time-scales is necessary to discern ecosystem response to climate variability. Spatial and temporally consistent estimates of the biophysical variables such as fractional vegetation cover (FVC) and leaf area index (LAI) have been obtained in the context of DULCINEA Project. We used long-term monthly climate statistics to build simple climatic indices (SPI, moisture index) at different time scales. From these indices, we estimated that the climatic disturbances affected both the growing season and the total amount of vegetation. This implies that the anomaly of vegetation cover is a good indicator of moisture condition and can be an important data source when used for detecting an monitoring drought in the Iberian Peninsula. The impact of climate variability on the vegetation dynamics has shown not to be the same for every region. We concluded that the relationships between vegetation anomaly and moisture availability are significant for the arid and semiarid areas. (Author) 6 refs.

  4. Monitoring of vegetation dynamics and assessing vegetation response to drought in the Iberian Peninsula

    International Nuclear Information System (INIS)

    Garcia-Haro, F. J.; Moreno, A.; Perez-Hoyos, A.; Gilabert, M. A.; Melia, J.; Belda, F.; Poquet, D.; Martinez, B.; Verger, A.

    2009-01-01

    Monitoring the vegetation activity over long time-scales is necessary to discern ecosystem response to climate variability. Spatial and temporally consistent estimates of the biophysical variables such as fractional vegetation cover (FVC) and leaf area index (LAI) have been obtained in the context of DULCINEA Project. We used long-term monthly climate statistics to build simple climatic indices (SPI, moisture index) at different time scales. From these indices, we estimated that the climatic disturbances affected both the growing season and the total amount of vegetation. This implies that the anomaly of vegetation cover is a good indicator of moisture condition and can be an important data source when used for detecting an monitoring drought in the Iberian Peninsula. The impact of climate variability on the vegetation dynamics has shown not to be the same for every region. We concluded that the relationships between vegetation anomaly and moisture availability are significant for the arid and semiarid areas. (Author) 6 refs.

  5. Effects of Telecoupling on Global Vegetation Dynamics

    Science.gov (United States)

    Viña, A.; Liu, J.

    2016-12-01

    With the ever increasing trend in telecoupling processes, such as international trade, all countries around the world are becoming more interdependent. However, the effects of this growing interdependence on vegetation (e.g., shifts in the geographic extent and distribution) remain unknown even though vegetation dynamics are crucially important for food production, carbon sequestration, provision of other ecosystem services, and biodiversity conservation. In this study we evaluate the effects of international trade on the spatio-temporal trajectories of vegetation at national and global scales, using vegetation index imagery collected over more than three decades by the Advanced Very High Resolution Radiometer (AVHRR) satellite sensor series together with concurrent national and international data on international trade (and its associated movement of people, goods, services and information). The spatio-temporal trajectories of vegetation are obtained using the scale of fluctuation technique, which is based on the decomposition of the AVHRR image time series to obtain information on its spatial dependence structure over time. Similar to the correlation length, the scale of fluctuation corresponds to the range over which fluctuations in the vegetation index are spatially correlated. Results indicate that global vegetation has changed drastically over the last three decades. These changes are not uniform across space, with hotspots in active trading countries. This study not only has direct implications for understanding global vegetation dynamics, but also sheds important insights on the complexity of human-nature interactions across telecoupled systems.

  6. Quantifying How Climate Affects Vegetation in the Amazon Rainforest

    Science.gov (United States)

    Das, K.; Kodali, A.; Szubert, M.; Ganguly, S.; Bongard, J.

    2016-12-01

    Amazon droughts in 2005 and 2010 have raised serious concern about the future of the rainforest. Amazon forests are crucial because of their role as the largest carbon sink in the world which would effect the global warming phenomena with decreased photosynthesis activity. Especially, after a decline in plant growth in 1.68 million km2 forest area during the once-in-a-century severe drought in 2010, it is of primary importance to understand the relationship between different climatic variables and vegetation. In an earlier study, we have shown that non-linear models are better at capturing the relation dynamics of vegetation and climate variables such as temperature and precipitation, compared to linear models. In this research, we learn precise models between vegetation and climatic variables (temperature, precipitation) for normal conditions in the Amazon region using genetic programming based symbolic regression. This is done by removing high elevation and drought affected areas and also considering the slope of the region as one of the important factors while building the model. The model learned reveals new and interesting ways historical and current climate variables affect the vegetation at any location. MAIAC data has been used as a vegetation surrogate in our study. For temperature and precipitation, we have used TRMM and MODIS Land Surface Temperature data sets while learning the non-linear regression model. However, to generalize the model to make it independent of the data source, we perform transfer learning where we regress a regularized least squares to learn the parameters of the non-linear model using other data sources such as the precipitation and temperature from the Climatic Research Center (CRU). This new model is very similar in structure and performance compared to the original learned model and verifies the same claims about the nature of dependency between these climate variables and the vegetation in the Amazon region. As a result of this

  7. Remote sensing of vegetation dynamics in drylands

    DEFF Research Database (Denmark)

    Tian, Feng; Brandt, Martin Stefan; Liu, Yi Y.

    2016-01-01

    Monitoring long-term biomass dynamics in drylands is of great importance for many environmental applications including land degradation and global carbon cycle modeling. Biomass has extensively been estimated based on the normalized difference vegetation index (NDVI) as a measure of the vegetatio...

  8. Vegetation Dynamics and Community Assembly in Post-Agricultural Heathland

    DEFF Research Database (Denmark)

    Kepfer Rojas, Sebastian

    that land-use legacies are still present in the soil and were important determinants of vegetation dynamics and community assembly. However, the effects of land-use legacies were mostly mediated by the understory vegetation and differed according to the functional groups. The distance to the edge, a proxy...... for the proximity to external seed sources, was an important factor affecting different components of the structure of the vegetation, demonstrating the importance of dispersal in the development of the community. My results indicate that the effect of the biotic interactions varies along abiotic gradients (e......Summary This PhD study aims at understanding how biotic, abiotic and stochastic factors interact to structure a heathland vegetation community managed under different traditional land-use practices for centuries prior to abandonment ca. 120 years ago. This study is part of one of the longest...

  9. Water dynamics of vegetable using radiation

    International Nuclear Information System (INIS)

    Nakanishi, Tomoko

    2000-01-01

    Neutral ray is specifically adsorbed and scattered by hydrogen, which is construction element of water. We applied nondestructive visualization of water dynamics in vegetable using neutral ray. The neutron ray was produced by JRR-3M of JAERI. Water dynamics of epigeal part of vegetable, tree, seed, root and soil near root were observed. The distribution and behavior of water were seen by image. For examples, the dry process of cedar, water adsorption process of seed of broad beam, corn, morning glory, rice and wheat. The growing process of root in the soil was analyzed by CT images that constructed three-dimensional image. Water image of root-soil system made clear water dynamics of the optional site near root. The distribution of water in the cut carnation was observed before and after dry treatment. The change of distribution of water was observed. (S.Y.)

  10. Vegetation dynamics induced by phreatophyte--aquifer interactions.

    Science.gov (United States)

    Ridolfi, Luca; D'Odorico, Paolo; Laio, Francesco

    2007-09-21

    The dynamics of phreatophyte vegetation are strongly coupled to those of the shallow phreatic aquifers from which phreatophytes extract water. Vegetation is able to influence the depth of the water table, which, in turn, can induce stress in vegetation. These interactions are likely to affect the composition and structure of phreatophyte plant communities, as well as their successional dynamics. Despite the environmental and economical value of many wetland plant ecosystems around the world, the impact of vegetation-water table interactions on ecosystem succession and interspecies competition in phreatophyte plant communities remains poorly understood. This study develops a minimalistic modelling framework to investigate the dynamics of two phreatophyte species, and their interactions with the water table. In spite of its simplicity, the model exhibits a remarkable variety of dynamical behaviors, especially when the water table depth is forced by external drivers. It is shown that, even when one of the two species is dominant with respect to the other, these two species can coexist showing periodic, quasi-periodic, and chaotic dynamics. Moreover, in the presence of a random environmental forcing, noise-induced coexistence may emerge.

  11. Dynamical effects of vegetation on the 2003 summer heat waves

    Science.gov (United States)

    Stéfanon, M.

    2012-04-01

    Dynamical effects of vegetation on the 2003 summer heat waves Marc Stéfanon(1), Philippe Drobinski(1), Fabio D'Andrea(1), Nathalie de Noblet(2) (1) IPSL/LMD, France; (2) IPSL/LSCE, France The land surface model (LSM) in regional climate models (RCMs) plays a key role in energy and water exchanges between land and atmosphere. The vegetation can affect these exchanges through physical, biophysical and bio-geophysical mechanisms. It participates to evapo-transpiration process which determines the partitioning of net radiation between sensible and latent heat flux, through water evaporation from soil throughout the entire root system. For seasonal timescale leaf cover change induced leaf-area index (LAI) and albedo changes, impacting the Earth's radiative balance. In addition, atmospheric chemistry and carbon concentration has a direct effect on plant stomatal structure, the main exchange interface with the atmosphere. Therefore the surface energy balance is intimately linked to the carbon cycle and vegetation conditions and an accurate representation of the Earth's surface is required to improve the performance of RCMs. It is even more crucial for extreme events as heat waves and droughts which display highly nonlinear behaviour. If triggering of heat waves is determined by the large scale, local coupled processes over land can amplify or inhibit heat trough several feedback mechanism. One set of two simulation has been conducted with WRF, using different LSMs. They aim to study drought and vegetation effect on the dynamical and hydrological processes controlling the occurrence and life cycle of heat waves In the MORCE plateform, the dynamical global vegetation model (DGVM) ORCHIDEE is implemented in the atmospheric module WRF. ORCHIDEE is based on three different modules. The first module, called SECHIBA, describes the fast processes such as exchanges of energy and water between the atmosphere and the biosphere, and the soil water budget. The phenology and carbon

  12. Post-fire vegetation dynamics in Portugal

    Science.gov (United States)

    Gouveia, C.; Dacamara, C. C.; Trigo, R. M.

    2009-04-01

    The number of fires and the extent of the burned surface in Mediterranean Europe have increased significantly during the last three decades. This may be due either to modifications in land-use (e.g. land abandonment and fuel accumulation) or to climatic changes (e.g. reduction of fuel humidity), both factors leading to an increase of fire risk and fire spread. As in the Mediterranean ecosystems, fires in Portugal have an intricate effect on vegetation regeneration due to the complexity of landscape structures as well as to the different responses of vegetation to the variety of fire regimes. A thorough evaluation of vegetation recovery after fire events becomes therefore crucial in land management. In the above mentioned context remote sensing plays an important role because of its ability to monitor and characterise post-fire vegetation dynamics. A number of fire recovery studies, based on remote sensing, have been conducted in regions characterised by Mediterranean climates and the use of NDVI to monitor plant regeneration after fire events was successfully tested (Díaz-Delgado et al., 1998). In particular, several studies have shown that rapid regeneration occurs within the first 2 years after the fire occurrences, with distinct recovery rates according to the geographical facing of the slopes (Pausas and Vallejo, 1999). In 2003 Portugal was hit by the most devastating sequence of large fires, responsible by a total burnt area of 450 000 ha (including 280 000 ha of forest), representing about 5% of the Portuguese mainland (Trigo et al., 2006). The aim of the present work is to assess and monitor the vegetation behaviour over Portugal following the 2003 fire episodes. For this purpose we have used the regional fields of the Normalized Difference Vegetation Index (NDVI) as obtained from the VEGETATION-SPOT5 instrument, from 1999 to 2008. We developed a methodology to identify large burnt scars in Portugal for the 2003 fire season. The vegetation dynamics was then

  13. Political Dynamics Affected by Turncoats

    Science.gov (United States)

    Di Salvo, Rosa; Gorgone, Matteo; Oliveri, Francesco

    2017-11-01

    An operatorial theoretical model based on raising and lowering fermionic operators for the description of the dynamics of a political system consisting of macro-groups affected by turncoat-like behaviors is presented. The analysis of the party system dynamics is carried on by combining the action of a suitable quadratic Hamiltonian operator with specific rules (depending on the variations of the mean values of the observables) able to adjust periodically the conservative model to the political environment.

  14. Did Aboriginal vegetation burning affect the Australian summer monsoon?

    Science.gov (United States)

    Balcerak, Ernie

    2011-08-01

    For thousands of years, Aboriginal Australians burned forests, creating grasslands. Some studies have suggested that in addition to changing the landscape, these burning practices also affected the timing and intensity of the Australian summer monsoon. Different vegetation types can alter evaporation, roughness, and surface reflectivity, leading to changes in the weather and climate. On the basis of an ensemble of experiments with a global climate model, Notaro et al. conducted a comprehensive evaluation of the effects of decreased vegetation cover on the summer monsoon in northern Australia. They found that although decreased vegetation cover would have had only minor effects during the height of the monsoon season, during the premonsoon season, burning-induced vegetation loss would have caused significant decreases in precipitation and increases in temperature. Thus, by burning forests, Aboriginals altered the local climate, effectively extending the dry season and delaying the start of the monsoon season. (Geophysical Research Letters, doi:10.1029/2011GL047774, 2011)

  15. Plant functional diversity affects climate-vegetation interaction

    Science.gov (United States)

    Groner, Vivienne P.; Raddatz, Thomas; Reick, Christian H.; Claussen, Martin

    2018-04-01

    We present how variations in plant functional diversity affect climate-vegetation interaction towards the end of the African Humid Period (AHP) in coupled land-atmosphere simulations using the Max Planck Institute Earth system model (MPI-ESM). In experiments with AHP boundary conditions, the extent of the green Sahara varies considerably with changes in plant functional diversity. Differences in vegetation cover extent and plant functional type (PFT) composition translate into significantly different land surface parameters, water cycling, and surface energy budgets. These changes have not only regional consequences but considerably alter large-scale atmospheric circulation patterns and the position of the tropical rain belt. Towards the end of the AHP, simulations with the standard PFT set in MPI-ESM depict a gradual decrease of precipitation and vegetation cover over time, while simulations with modified PFT composition show either a sharp decline of both variables or an even slower retreat. Thus, not the quantitative but the qualitative PFT composition determines climate-vegetation interaction and the climate-vegetation system response to external forcing. The sensitivity of simulated system states to changes in PFT composition raises the question how realistically Earth system models can actually represent climate-vegetation interaction, considering the poor representation of plant diversity in the current generation of land surface models.

  16. Simulating vegetation dynamics in Chile from 21ka BP to present: Effects of climate change on vegetation functions and cover

    Science.gov (United States)

    Werner, Christian; Liakka, Johan; Schmid, Manuel; Fuentes, Juan-Pablo; Ehlers, Todd A.; Hickler, Thomas

    2017-04-01

    Vegetation composition and establishment is strongly dependent on climate conditions but also a result of vegetation dynamics (competition for light, water and nutrients). In addition, vegetation exerts control over the development of landscapes as it mediates the climatic and hydrological forces shaping the terrain via hillslope and fluvial processes. At the same time, topography as well as soil texture and soil depth affect the microclimate, soil water storage and rooting space that is defining the environmental envelope for vegetation development. Within the EarthShape research program (www.earthshape.net) we evaluate these interactions by simulating the co-evolution of landscape and vegetation with a dynamic vegetation model (LPJ-GUESS) and a landscape evolution model (LandLab). LPJ-GUESS is a mechanistic model driven by daily or monthly weather data and explicitly simulates vegetation physiology, succession, competition and water and nutrient cycling. Here we present the results of first transient vegetation simulations from 21kyr BP to present-day using the TraCE-21ka climate dataset for four focus sites along the coastal cordillera of Chile that are exposed to a substantial meridional climate gradient (ranging from hyper-arid to humid-temperate conditions). We show that the warming occurring in the region from LGM to present, in addition to the increase of atmospheric CO2 concentrations, led to a shift in vegetation composition and surface cover. Future work will show how these changes resonate in the dynamics of hillslope and fluvial erosion and ultimately bi-directional feedback mechanisms of vegetation development and landscape evolution/ soil formation (see also companion presentation by Schmid et al., this session).

  17. Dynamic Synchronization of Teacher-Students Affection in Affective Instruction

    Science.gov (United States)

    Zhang, Wenhai; Lu, Jiamei

    2011-01-01

    Based on Bower's affective network theory, the article links the dynamic analysis of affective factors in affective instruction, and presents affective instruction strategic of dynamic synchronization between teacher and students to implement the best ideal mood that promotes students' cognition and affection together. In the process of teaching,…

  18. Soil-geomorphic heterogeneity governs patchy vegetation dynamics at an arid ecotone.

    Science.gov (United States)

    Bestelmeyer, Brandon T; Ward, Judy P; Havstad, Kris M

    2006-04-01

    Soil properties are well known to affect vegetation, but the role of soil heterogeneity in the patterning of vegetation dynamics is poorly documented. We asked whether the location of an ecotone separating grass-dominated and sparsely vegetated areas reflected only historical variation in degradation or was related to variation in inherent soil properties. We then asked whether changes in the cover and spatial organization of vegetated and bare patches assessed using repeat aerial photography reflected self-organizing dynamics unrelated to soil variation or the stable patterning of soil variation. We found that the present-day ecotone was related to a shift from more weakly to more strongly developed soils. Parts of the ecotone were stable over a 60-year period, but shifts between bare and vegetated states, as well as persistently vegetated and bare states, occurred largely in small (<40 m2) patches throughout the study area. The probability that patches were presently vegetated or bare, as well as the probability that vegetation persisted and/or established over the 60-year period, was negatively related to surface calcium carbonate and positively related to subsurface clay content. Thus, only a fraction of the landscape was susceptible to vegetation change, and the sparsely vegetated area probably featured a higher frequency of susceptible soil patches. Patch dynamics and self-organizing processes can be constrained by subtle (and often unrecognized) soil heterogeneity.

  19. Water–Soil–Vegetation Dynamic Interactions in Changing Climate

    Directory of Open Access Journals (Sweden)

    Xixi Wang

    2017-09-01

    Full Text Available Previous studies of land degradation, topsoil erosion, and hydrologic alteration typically focus on these subjects individually, missing important interrelationships among these important aspects of the Earth’s system. However, an understanding of water–soil–vegetation dynamic interactions is needed to develop practical and effective solutions to sustain the globe’s eco-environment and grassland agriculture, which depends on grasses, legumes, and other fodder or soil-building crops. This special issue is intended to be a platform for a discussion of the relevant scientific findings based on experimental and/or modeling studies. Its 12 peer-reviewed articles present data, novel analysis/modeling approaches, and convincing results of water–soil–vegetation interactions under historical and future climates. Two of the articles examine how lake/pond water quality is related to human activity and climate. Overall, these articles can serve as important references for future studies to further advance our understanding of how water, soil, and vegetation interactively affect the health and productivity of the Earth’s ecosystem.

  20. Dynamic vegetation modeling of tropical biomes during Heinrich events

    Science.gov (United States)

    Handiani, Dian Noor; Paul, André; Dupont, Lydie M.

    2010-05-01

    Heinrich events are thought to be associated with a slowdown of the Atlantic Meridional Overturning Circulation (AMOC), which in turn would lead to a cooling of the North Atlantic Ocean and a warming of the South Atlantic Ocean (the "bipolar seesaw" hypothesis). The accompanying abrupt climate changes occurred not only in the ocean but also on the continents. Changes were strongest in the Northern Hemisphere but were registered in the tropics as well. Pollen data from Angola and Brazil showed that climate changes during Heinrich events affected vegetation patterns very differently in eastern South America and western Africa. To understand the differential response in the terrestrial tropics, we studied the vegetation changes during Heinrich events by using a dynamic global vegetation model (TRIFFID) as part of the University of Victoria (UVic) Earth System-Climate Model (ESCM). The model results show a bipolar seesaw pattern in temperature and precipitation during a near-collapse of the AMOC. The succession in plant-functional types (PFTs) showed changes from forest to shrubs to desert, including spreading desert in northwest Africa, retreating broadleaf trees in West Africa and northern South America, but advancing broadleaf trees in Brazil. The pattern is explained by a southward shift of the tropical rainbelt resulting in a strong decrease in precipitation over northwest and West Africa as well as in northern South America, but an increase in precipitation in eastern Brazil. To facilitate the comparison between modeled vegetation results with pollen data, we diagnosed the distribution of biomes from the PFT coverage and the simulated model climate. The biome distribution was computed for Heinrich event 1 and the Last Glacial Maximum as well as for pre-industrial conditions. We used a classification of biomes in terms of "mega-biomes", which were defined following a scheme originally proposed by BIOME 6000 (v 4.2). The biome distribution of the Sahel region

  1. Soil dynamics and accelerated erosion: a sensitivity analysis of the LPJ Dynamic vegetation model

    Science.gov (United States)

    Bouchoms, Samuel; Van Oost, Kristof; Vanacker, Veerle; Kaplan, Jed O.; Vanwalleghem, Tom

    2013-04-01

    It is widely accepted that humans have become a major geomorphic force by disturbing natural vegetation patterns. Land conversion for agriculture purposes removes the protection of soils by the natural vegetation and leads to increased soil erosion by one to two orders of magnitude, breaking the balance that exists between the loss of soils and its production. Accelerated erosion and deposition have a strong influence on evolution and heterogeneity of basic soil characteristics (soil thickness, hydrology, horizon development,…) as well as on organic matter storage and cycling. Yet, since they are operating at a long time scale, those processes are not represented in state-of-art Dynamic Global Vegetation Models, which is a clear lack when exploring vegetation dynamics over past centuries. The main objectives of this paper are (i) to test the sensitivity of a Dynamic Global Vegetation Model, in terms of NPP and organic matter turnover, variations in state variables in response to accelerated erosion and (ii) to assess the performance of the model under the impact of erosion for a case-study in Central Spain. We evaluated the Lund-Postdam-Jena Dynamic Vegetation Model (LPJ DVGM) (Sitch et al, 2003) which simulates vegetation growth and carbon pools at the surface and in the soil based on climatic, pedologic and topographic variables. We assessed its reactions to changes in key soil properties that are affected by erosion such as texture and soil depth. We present the results of where we manipulated soil texture and bulk density while keeping the environmental drivers of climate, slope and altitude constant. For parameters exhibiting a strong control on NPP or SOM, a factorial analysis was conducted to test for interaction effects. The simulations show an important dependence on the clay content, especially for the slow cycling carbon pools and the biomass production, though the underground litter seems to be mostly influenced by the silt content. The fast cycling C

  2. Advances in Remote Sensing for Vegetation Dynamics and Agricultural Management

    Science.gov (United States)

    Tucker, Compton; Puma, Michael

    2015-01-01

    Spaceborne remote sensing has led to great advances in the global monitoring of vegetation. For example, the NASA Global Inventory Modeling and Mapping Studies (GIMMS) group has developed widely used datasets from the Advanced Very High Resolution Radiometer (AVHRR) sensors as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) map imagery and normalized difference vegetation index datasets. These data are valuable for analyzing vegetation trends and variability at the regional and global levels. Numerous studies have investigated such trends and variability for both natural vegetation (e.g., re-greening of the Sahel, shifts in the Eurasian boreal forest, Amazonian drought sensitivity) and crops (e.g., impacts of extremes on agricultural production). Here, a critical overview is presented on recent developments and opportunities in the use of remote sensing for monitoring vegetation and crop dynamics.

  3. Factors affecting vegetable preference in adolescents: stages of change and social cognitive theory.

    Science.gov (United States)

    Woo, Taejung; Lee, Kyung-Hea

    2017-08-01

    Despite the importance of consuming sufficient amounts of vegetables, daily vegetable intake among adolescents in Korea is lower than the current dietary recommendation. The objective of this study was to examine determinants affecting vegetable preference in order to suggest a stage-tailored education strategy that can promote vegetable consumption in adolescents. Adolescents (n = 400, aged 16-17 years) from two high schools participated in a cross-sectional study. Survey variables were vegetable preference, the social cognitive theory (SCT) and stages of change (SOC) constructs. Based on vegetable preference, subjects were classified into two groups: a low-preference group (LPG) and a high-preference group (HPG). SOC was subdivided into pre-action and action/maintenance stages. To compare SCT components and SOC related to vegetable preference, chi-squared and t-tests, along with stepwise multiple-regression analysis, were applied. In the LPG, a similar number of subjects were classified into each stage. Significant differences in self-efficacy, affective attitudes, and vegetable accessibility at home and school were detected among the stages. Subjects in the HPG were mainly at the maintenance stage (81%), and there were significant differences among the stages regarding self-efficacy, affective attitudes, and parenting practice. In the predictions of vegetable preference, self-efficacy and parenting practice had a significant effect in the "pre-action" stage. In the action/maintenance stage, outcome expectation, affective attitudes, and vegetable accessibility at school had significant predictive value. In predicting the vegetable preference for all subjects, 42.8% of the predictive variance was accounted for by affective attitudes, self-efficacy, and vegetable accessibility at school. The study revealed that different determinants affect adolescent vegetable preference in each stage. Self-efficacy and affective attitudes are important determinants affecting

  4. The influence of vegetation dynamics on anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    U. Port

    2012-11-01

    Full Text Available In this study, vegetation–climate and vegetation–carbon cycle interactions during anthropogenic climate change are assessed by using the Earth System Model of the Max Planck Institute for Meteorology (MPI ESM that includes vegetation dynamics and an interactive carbon cycle. We assume anthropogenic CO2 emissions according to the RCP 8.5 scenario in the time period from 1850 to 2120. For the time after 2120, we assume zero emissions to evaluate the response of the stabilising Earth System by 2300.

    Our results suggest that vegetation dynamics have a considerable influence on the changing global and regional climate. In the simulations, global mean tree cover extends by 2300 due to increased atmospheric CO2 concentration and global warming. Thus, land carbon uptake is higher and atmospheric CO2 concentration is lower by about 40 ppm when considering dynamic vegetation compared to the static pre-industrial vegetation cover. The reduced atmospheric CO2 concentration is equivalent to a lower global mean temperature. Moreover, biogeophysical effects of vegetation cover shifts influence the climate on a regional scale. Expanded tree cover in the northern high latitudes results in a reduced albedo and additional warming. In the Amazon region, declined tree cover causes a regional warming due to reduced evapotranspiration. As a net effect, vegetation dynamics have a slight attenuating effect on global climate change as the global climate cools by 0.22 K due to natural vegetation cover shifts in 2300.

  5. Response of alpine vegetation growth dynamics to snow cover phenology on the Tibetan Plateau

    Science.gov (United States)

    Wang, X.; Wu, C.

    2017-12-01

    Alpine vegetation plays a crucial role in global energy cycles with snow cover, an essential component of alpine land cover showing high sensitivity to climate change. The Tibetan Plateau (TP) has a typical alpine vegetation ecosystem and is rich of snow resources. With global warming, the snow of the TP has undergone significant changes that will inevitably affect the growth of alpine vegetation, but observed evidence of such interaction is limited. In particular, a comprehensive understanding of the responses of alpine vegetation growth to snow cover variability is still not well characterized on TP region. To investigate this, we calculated three indicators, the start (SOS) and length (LOS) of growing season, and the maximum of normalized difference vegetation index (NDVImax) as proxies of vegetation growth dynamics from the Moderate Resolution Imaging Spectroradiometer (MODIS) data for 2000-2015. Snow cover duration (SCD) and melt (SCM) dates were also extracted during the same time frame from the combination of MODIS and the Interactive Multi-sensor Snow and Ice Mapping System (IMS) data. We found that the snow cover phenology had a strong control on alpine vegetation growth dynamics. Furthermore, the responses of SOS, LOS and NDVImax to snow cover phenology varied among plant functional types, eco-geographical zones, and temperature and precipitation gradients. The alpine steppes showed a much stronger negative correlation between SOS and SCD, and also a more evidently positive relationship between LOS and SCD than other types, indicating a longer SCD would lead to an earlier SOS and longer LOS. Most areas showed positive correlation between SOS and SCM, while a contrary response was also found in the warm but drier areas. Both SCD and SCM showed positive correlations with NDVImax, but the relationship became weaker with the increase of precipitation. Our findings provided strong evidences between vegetation growth and snow cover phenology, and changes in

  6. Earth Observation of Vegetation Dynamics in Global Drylands

    DEFF Research Database (Denmark)

    Tian, Feng

    Land degradation in global drylands has been a concern related to both the local livelihoods and the changes in terrestrial biosphere, especially in the context of substantial global environmental changes. Earth Observation (EO) provides a unique way to assess the vegetation dynamics over the past...

  7. Contribution of Dynamic Vegetation Phenology to Decadal Climate Predictability

    NARCIS (Netherlands)

    Weiss, M.; Miller, P.A.; Hurk, van den B.J.J.M.; Noije, van T.; Stefanescu, S.; Haarsma, R.; Ulft, van L.H.; Hazeleger, W.; Sager, Le P.; Smith, B.; Schurgers, G.

    2014-01-01

    In this study, the impact of coupling and initializing the leaf area index from the dynamic vegetation model Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) is analyzed on skill of decadal predictions in the fully coupled atmosphere-land-ocean-sea ice model, the European Consortium Earth

  8. Comparison between remote sensing and a dynamic vegetation model for estimating terrestrial primary production of Africa.

    Science.gov (United States)

    Ardö, Jonas

    2015-12-01

    Africa is an important part of the global carbon cycle. It is also a continent facing potential problems due to increasing resource demand in combination with climate change-induced changes in resource supply. Quantifying the pools and fluxes constituting the terrestrial African carbon cycle is a challenge, because of uncertainties in meteorological driver data, lack of validation data, and potentially uncertain representation of important processes in major ecosystems. In this paper, terrestrial primary production estimates derived from remote sensing and a dynamic vegetation model are compared and quantified for major African land cover types. Continental gross primary production estimates derived from remote sensing were higher than corresponding estimates derived from a dynamic vegetation model. However, estimates of continental net primary production from remote sensing were lower than corresponding estimates from the dynamic vegetation model. Variation was found among land cover classes, and the largest differences in gross primary production were found in the evergreen broadleaf forest. Average carbon use efficiency (NPP/GPP) was 0.58 for the vegetation model and 0.46 for the remote sensing method. Validation versus in situ data of aboveground net primary production revealed significant positive relationships for both methods. A combination of the remote sensing method with the dynamic vegetation model did not strongly affect this relationship. Observed significant differences in estimated vegetation productivity may have several causes, including model design and temperature sensitivity. Differences in carbon use efficiency reflect underlying model assumptions. Integrating the realistic process representation of dynamic vegetation models with the high resolution observational strength of remote sensing may support realistic estimation of components of the carbon cycle and enhance resource monitoring, providing suitable validation data is available.

  9. Dynamics of climatic characteristics influencing vegetation in Siberia

    International Nuclear Information System (INIS)

    Shulgina, Tamara M; Genina, Elena Yu; Gordov, Evgeny P

    2011-01-01

    The spatiotemporal pattern of the dynamics of surface air temperature and precipitation and those bioclimatic indices that are based upon factors which control vegetation cover are investigated. Surface air temperature and precipitation data are retrieved from the ECMWF ERA Interim reanalysis and APHRODITE JMA datasets, respectively, which were found to be the closest to the observational data. We created an archive of bioclimatic indices for further detailed studies of interrelations between local climate and vegetation cover changes, which include carbon uptake changes related to changes of vegetation types and amount, as well as with spatial shifts of vegetation zones. Meanwhile, analysis reveals significant positive trends of the growing season length accompanied by a statistically significant increase of the sums of the growing degree days and precipitation over the south of West Siberia. The trends hint at a tendency for an increase of vegetation ecosystems' productivity across the south of West Siberia (55°–60°N, 59°–84°E) in the past several decades and (if sustained) may lead to a future increase of vegetation productivity in this region.

  10. Importance of vegetation dynamics for future terrestrial carbon cycling

    International Nuclear Information System (INIS)

    Ahlström, Anders; Smith, Benjamin; Xia, Jianyang; Luo, Yiqi; Arneth, Almut

    2015-01-01

    Terrestrial ecosystems currently sequester about one third of anthropogenic CO 2 emissions each year, an important ecosystem service that dampens climate change. The future fate of this net uptake of CO 2 by land based ecosystems is highly uncertain. Most ecosystem models used to predict the future terrestrial carbon cycle share a common architecture, whereby carbon that enters the system as net primary production (NPP) is distributed to plant compartments, transferred to litter and soil through vegetation turnover and then re-emitted to the atmosphere in conjunction with soil decomposition. However, while all models represent the processes of NPP and soil decomposition, they vary greatly in their representations of vegetation turnover and the associated processes governing mortality, disturbance and biome shifts. Here we used a detailed second generation dynamic global vegetation model with advanced representation of vegetation growth and mortality, and the associated turnover. We apply an emulator that describes the carbon flows and pools exactly as in simulations with the full model. The emulator simulates ecosystem dynamics in response to 13 different climate or Earth system model simulations from the Coupled Model Intercomparison Project Phase 5 ensemble under RCP8.5 radiative forcing. By exchanging carbon cycle processes between these 13 simulations we quantified the relative roles of three main driving processes of the carbon cycle; (I) NPP, (II) vegetation dynamics and turnover and (III) soil decomposition, in terms of their contribution to future carbon (C) uptake uncertainties among the ensemble of climate change scenarios. We found that NPP, vegetation turnover (including structural shifts, wild fires and mortality) and soil decomposition rates explained 49%, 17% and 33%, respectively, of uncertainties in modelled global C-uptake. Uncertainty due to vegetation turnover was further partitioned into stand-clearing disturbances (16%), wild fires (0%), stand

  11. IN11B-1621: Quantifying How Climate Affects Vegetation in the Amazon Rainforest

    Science.gov (United States)

    Das, Kamalika; Kodali, Anuradha; Szubert, Marcin; Ganguly, Sangram; Bongard, Joshua

    2016-01-01

    Amazon droughts in 2005 and 2010 have raised serious concern about the future of the rainforest. Amazon forests are crucial because of their role as the largest carbon sink in the world which would effect the global warming phenomena with decreased photosynthesis activity. Especially, after a decline in plant growth in 1.68 million km2 forest area during the once-in-a-century severe drought in 2010, it is of primary importance to understand the relationship between different climatic variables and vegetation. In an earlier study, we have shown that non-linear models are better at capturing the relation dynamics of vegetation and climate variables such as temperature and precipitation, compared to linear models. In this research, we learn precise models between vegetation and climatic variables (temperature, precipitation) for normal conditions in the Amazon region using genetic programming based symbolic regression. This is done by removing high elevation and drought affected areas and also considering the slope of the region as one of the important factors while building the model. The model learned reveals new and interesting ways historical and current climate variables affect the vegetation at any location. MAIAC data has been used as a vegetation surrogate in our study. For temperature and precipitation, we have used TRMM and MODIS Land Surface Temperature data sets while learning the non-linear regression model. However, to generalize the model to make it independent of the data source, we perform transfer learning where we regress a regularized least squares to learn the parameters of the non-linear model using other data sources such as the precipitation and temperature from the Climatic Research Center (CRU). This new model is very similar in structure and performance compared to the original learned model and verifies the same claims about the nature of dependency between these climate variables and the vegetation in the Amazon region. As a result of this

  12. A method for climate and vegetation reconstruction through the inversion of a dynamic vegetation model

    Energy Technology Data Exchange (ETDEWEB)

    Garreta, Vincent; Guiot, Joel; Hely, Christelle [CEREGE, UMR 6635, CNRS, Universite Aix-Marseille, Europole de l' Arbois, Aix-en-Provence (France); Miller, Paul A.; Sykes, Martin T. [Lund University, Department of Physical Geography and Ecosystems Analysis, Geobiosphere Science Centre, Lund (Sweden); Brewer, Simon [Universite de Liege, Institut d' Astrophysique et de Geophysique, Liege (Belgium); Litt, Thomas [University of Bonn, Paleontological Institute, Bonn (Germany)

    2010-08-15

    Climate reconstructions from data sensitive to past climates provide estimates of what these climates were like. Comparing these reconstructions with simulations from climate models allows to validate the models used for future climate prediction. It has been shown that for fossil pollen data, gaining estimates by inverting a vegetation model allows inclusion of past changes in carbon dioxide values. As a new generation of dynamic vegetation model is available we have developed an inversion method for one model, LPJ-GUESS. When this novel method is used with high-resolution sediment it allows us to bypass the classic assumptions of (1) climate and pollen independence between samples and (2) equilibrium between the vegetation, represented as pollen, and climate. Our dynamic inversion method is based on a statistical model to describe the links among climate, simulated vegetation and pollen samples. The inversion is realised thanks to a particle filter algorithm. We perform a validation on 30 modern European sites and then apply the method to the sediment core of Meerfelder Maar (Germany), which covers the Holocene at a temporal resolution of approximately one sample per 30 years. We demonstrate that reconstructed temperatures are constrained. The reconstructed precipitation is less well constrained, due to the dimension considered (one precipitation by season), and the low sensitivity of LPJ-GUESS to precipitation changes. (orig.)

  13. Multiple equilibria on planet Dune: climate–vegetation dynamics on a sandy planet

    Directory of Open Access Journals (Sweden)

    Fabio Cresto Aleina

    2013-01-01

    Full Text Available We study the interaction between climate and vegetation on an ideal water-limited planet, focussing on the influence of vegetation on the global water cycle. We introduce a simple mechanistic box model consisting in a two-layer representation of the atmosphere and a two-layer soil scheme. The model includes the dynamics of vegetation cover, and the main physical processes of energy and water exchange among the different components. With a realistic choice of parameters, this model displays three stable equilibria, depending on the initial conditions of soil water and vegetation cover. The system reaches a hot and dry state for low values of initial water content and/or vegetation cover, while we observe a wet, vegetated state with mild surface temperature when the system starts from larger initial values of both variables. The third state is a cold desert, where plants transfer enough water to the atmosphere to start a weaker, evaporation-dominated water cycle before they wilt. These results indicate that in this system vegetation plays a central role in transferring water from the soil to the atmosphere and trigger a hydrologic cycle. The model adopted here can also be used to conceptually illustrate processes and feedbacks affecting the water cycle in water-limited continental areas on Earth.

  14. Influence of dynamic vegetation on climate change and terrestrial carbon storage in the Last Glacial Maximum

    Science.gov (United States)

    O'ishi, R.; Abe-Ouchi, A.

    2013-07-01

    When the climate is reconstructed from paleoevidence, it shows that the Last Glacial Maximum (LGM, ca. 21 000 yr ago) is cold and dry compared to the present-day. Reconstruction also shows that compared to today, the vegetation of the LGM is less active and the distribution of vegetation was drastically different, due to cold temperature, dryness, and a lower level of atmospheric CO2 concentration (185 ppm compared to a preindustrial level of 285 ppm). In the present paper, we investigate the influence of vegetation change on the climate of the LGM by using a coupled atmosphere-ocean-vegetation general circulation model (AOVGCM, the MIROC-LPJ). The MIROC-LPJ is different from earlier studies in the introduction of a bias correction method in individual running GCM experiments. We examined four GCM experiments (LGM and preindustrial, with and without vegetation feedback) and quantified the strength of the vegetation feedback during the LGM. The result shows that global-averaged cooling during the LGM is amplified by +13.5 % due to the introduction of vegetation feedback. This is mainly caused by the increase of land surface albedo due to the expansion of tundra in northern high latitudes and the desertification in northern middle latitudes around 30° N to 60° N. We also investigated how this change in climate affected the total terrestrial carbon storage by using offline Lund-Potsdam-Jena dynamic global vegetation model (LPJ-DGVM). Our result shows that the total terrestrial carbon storage was reduced by 597 PgC during the LGM, which corresponds to the emission of 282 ppm atmospheric CO2. In the LGM experiments, the global carbon distribution is generally the same whether the vegetation feedback to the atmosphere is included or not. However, the inclusion of vegetation feedback causes substantial terrestrial carbon storage change, especially in explaining the lowering of atmospheric CO2 during the LGM.

  15. Influence of dynamic vegetation on climate change and terrestrial carbon storage in the Last Glacial Maximum

    Directory of Open Access Journals (Sweden)

    R. O'ishi

    2013-07-01

    Full Text Available When the climate is reconstructed from paleoevidence, it shows that the Last Glacial Maximum (LGM, ca. 21 000 yr ago is cold and dry compared to the present-day. Reconstruction also shows that compared to today, the vegetation of the LGM is less active and the distribution of vegetation was drastically different, due to cold temperature, dryness, and a lower level of atmospheric CO2 concentration (185 ppm compared to a preindustrial level of 285 ppm. In the present paper, we investigate the influence of vegetation change on the climate of the LGM by using a coupled atmosphere-ocean-vegetation general circulation model (AOVGCM, the MIROC-LPJ. The MIROC-LPJ is different from earlier studies in the introduction of a bias correction method in individual running GCM experiments. We examined four GCM experiments (LGM and preindustrial, with and without vegetation feedback and quantified the strength of the vegetation feedback during the LGM. The result shows that global-averaged cooling during the LGM is amplified by +13.5 % due to the introduction of vegetation feedback. This is mainly caused by the increase of land surface albedo due to the expansion of tundra in northern high latitudes and the desertification in northern middle latitudes around 30° N to 60° N. We also investigated how this change in climate affected the total terrestrial carbon storage by using offline Lund-Potsdam-Jena dynamic global vegetation model (LPJ-DGVM. Our result shows that the total terrestrial carbon storage was reduced by 597 PgC during the LGM, which corresponds to the emission of 282 ppm atmospheric CO2. In the LGM experiments, the global carbon distribution is generally the same whether the vegetation feedback to the atmosphere is included or not. However, the inclusion of vegetation feedback causes substantial terrestrial carbon storage change, especially in explaining the lowering of atmospheric CO2 during the LGM.

  16. Simulating sub-Milankovitch climate variations associated with vegetation dynamics

    Directory of Open Access Journals (Sweden)

    E. Tuenter

    2007-01-01

    Full Text Available Climate variability at sub-Milankovitch periods (between 2 and 15 kyr is studied in a set of transient simulations with a coupled atmosphere/ocean/vegetation model of intermediate complexity (CLIMBER-2. Focus is on the region influenced by the African and Asian summer monsoon. Pronounced variations at periods of about 10 kyr (Asia and Africa and about 5 kyr (Asia are found in the monsoonal runoff in response to the precessional forcing. In the model this is due to the following mechanism. For low summer insolation (precession maximum precipitation is low and desert expands at the expense of grass, while for high insolation (precession minimum precipitation is high and the tree fraction increases also reducing the grass fraction. This induces sub-Milankovitch variations in the grass fraction and associated variations in the water holding capacity of the soil. The runoff does not exhibit sub-Milankovitch variability when vegetation is kept fixed. High-latitude vegetation also exhibits sub-Milankovitch variability under both obliquity and precessional forcing. We thus hypothesize that sub-Milankovitch variability can occur due to the dynamic response of the vegetation. However, this mechanism should be further tested with more sophisticated climate/vegetation models.

  17. Vegetation dynamics of the Tanbi Wetland National Park, The Gambia

    Science.gov (United States)

    Ceesay, A.

    2016-12-01

    Changes in mangrove vegetation have been identified as an important indicator of environmental change. The mangroves of the Tanbi Wetland National Park (TWNP) connect the Atlantic coast with the estuary of the River Gambia and as such, play an invaluable role in the agriculture, tourism and fisheries sectors of The Gambia. Our research seeks to understand the long-term changes in the mangrove vegetation to strengthen the formulation of sustainable alternative livelihoods and adaptation strategies to climate change. Mangrove vegetation dynamics was assessed by remote sensing, using decadal Landsat images covering 1973 - 2012. Physicochemical parameters were analyzed during the rainy and dry seasons of The Gambia for correlation with climate data. Our findings indicate that the long-term changes in salinity (24.5 and 35.8ppt) and water temperature (27.6oC and 30.2oC) during the rainy and dry seasons respectively are retarding mangrove growth. Mangrove vegetation cover declined by 6%, while grassland increased by 56.4%. This research concludes that long-term hyper-salinity is the cause for the stunted vegetation and lack of mangrove rejuvenation. We propose that specialized replanting systems such as the use of saplings be adopted instead of the conventional use of propagules. Alternative livelihoods also need to be diversified to support coastal communities.

  18. Toward a Mechanistic Modeling of Nitrogen Limitation on Vegetation Dynamics

    OpenAIRE

    Xu, Chonggang; Fisher, Rosie; Wullschleger, Stan D.; Wilson, Cathy J.; Cai, Michael; McDowell, Nate G.

    2012-01-01

    Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO(2) concentration. To account for this known variability in nitrogen-photosynthesis relationships, we deve...

  19. Modelling the Congo basin ecosystems with a dynamic vegetation model

    Science.gov (United States)

    Dury, Marie; Hambuckers, Alain; Trolliet, Franck; Huynen, Marie-Claude; Haineaux, Damien; Fontaine, Corentin M.; Fayolle, Adeline; François, Louis

    2014-05-01

    The scarcity of field observations in some parts of the world makes difficult a deep understanding of some ecosystems such as humid tropical forests in Central Africa. Therefore, modelling tools are interesting alternatives to study those regions even if the lack of data often prevents sharp calibration and validation of the model projections. Dynamic vegetation models (DVMs) are process-based models that simulate shifts in potential vegetation and its associated biogeochemical and hydrological cycles in response to climate. Initially run at the global scale, DVMs can be run at any spatial scale provided that climate and soil data are available. In the framework of the BIOSERF project ("Sustainability of tropical forest biodiversity and services under climate and human pressure"), we use and adapt the CARAIB dynamic vegetation model (Dury et al., iForest - Biogeosciences and Forestry, 4:82-99, 2011) to study the Congo basin vegetation dynamics. The field campaigns have notably allowed the refinement of the vegetation representation from plant functional types (PFTs) to individual species through the collection of parameters such as the specific leaf area or the leaf C:N ratio of common tropical tree species and the location of their present-day occurrences from literature and available database. Here, we test the model ability to reproduce the present spatial and temporal variations of carbon stocks (e.g. biomass, soil carbon) and fluxes (e.g. gross and net primary productivities (GPP and NPP), net ecosystem production (NEP)) as well as the observed distribution of the studied species over the Congo basin. In the lack of abundant and long-term measurements, we compare model results with time series of remote sensing products (e.g. vegetation leaf area index (LAI), GPP and NPP). Several sensitivity tests are presented: we assess consecutively the impacts of the level at which the vegetation is simulated (PFTs or species), the spatial resolution and the initial land

  20. The role of ice dynamics in shaping vegetation in flowing waters.

    Science.gov (United States)

    Lind, Lovisa; Nilsson, Christer; Polvi, Lina E; Weber, Christine

    2014-11-01

    Ice dynamics is an important factor affecting vegetation in high-altitude and high-latitude streams and rivers. During the last few decades, knowledge about ice in streams and rivers has increased significantly and a respectable body of literature is now available. Here we review the literature on how ice dynamics influence riparian and aquatic vegetation. Traditionally, plant ecologists have focused their studies on the summer period, largely ignoring the fact that processes during winter also impact vegetation dynamics. For example, the freeze-up period in early winter may result in extensive formation of underwater ice that can restructure the channel, obstruct flow, and cause flooding and thus formation of more ice. In midwinter, slow-flowing reaches develop a surface-ice cover that accumulates snow, protecting habitats under the ice from formation of underwater ice but also reducing underwater light, thus suppressing photosynthesis. Towards the end of winter, ice breaks up and moves downstream. During this transport, ice floes can jam up and cause floods and major erosion. The magnitudes of the floods and their erosive power mainly depend on the size of the watercourse, also resulting in different degrees of disturbance to the vegetation. Vegetation responds both physically and physiologically to ice dynamics. Physical action involves the erosive force of moving ice and damage caused by ground frost, whereas physiological effects - mostly cell damage - happen as a result of plants freezing into the ice. On a community level, large magnitudes of ice dynamics seem to favour species richness, but can be detrimental for individual plants. Human impacts, such as flow regulation, channelisation, agriculturalisation and water pollution have modified ice dynamics; further changes are expected as a result of current and predicted future climate change. Human impacts and climate change can both favour and disfavour riverine vegetation dynamics. Restoration of streams

  1. Factors affecting the species composition of arable field boundary vegetation

    NARCIS (Netherlands)

    Kleijn, D.; Verbeek, M.

    2000-01-01

    1. In recent decades the botanical diversity of arable field boundaries has declined drastically. To determine the most important factors related to the species composition of arable field boundaries, the vegetation composition of 105 herbaceous boundaries, 1-m wide, in the central and eastern

  2. Vegetation Dynamics and Rainfall Sensitivity of the Amazon

    Science.gov (United States)

    Hilker, Thomas; Lyapustin, Alexei I.; Tucker, Compton J.; Hall, Forrest G.; Myneni, Ranga B.; Wang, Yujie; Bi, Jian; Mendes de Moura, Yhasmin; Sellers, Piers J.

    2014-01-01

    We show that the vegetation canopy of the Amazon rainforest is highly sensitive to changes in precipitation patterns and that reduction in rainfall since 2000 has diminished vegetation greenness across large parts of Amazonia. Large-scale directional declines in vegetation greenness may indicate decreases in carbon uptake and substantial changes in the energy balance of the Amazon. We use improved estimates of surface reflectance from satellite data to show a close link between reductions in annual precipitation, El Nino southern oscillation events, and photosynthetic activity across tropical and subtropical Amazonia. We report that, since the year 2000, precipitation has declined across 69% of the tropical evergreen forest (5.4 million sq km) and across 80% of the subtropical grasslands (3.3 million sq km). These reductions, which coincided with a decline in terrestrial water storage, account for about 55% of a satellite-observed widespread decline in the normalized difference vegetation index (NDVI). During El Nino events, NDVI was reduced about 16.6% across an area of up to 1.6 million sq km compared with average conditions. Several global circulation models suggest that a rise in equatorial sea surface temperature and related displacement of the intertropical convergence zone could lead to considerable drying of tropical forests in the 21st century. Our results provide evidence that persistent drying could degrade Amazonian forest canopies, which would have cascading effects on global carbon and climate dynamics.

  3. Effect of river flow fluctuations on riparian vegetation dynamics: Processes and models

    Science.gov (United States)

    Vesipa, Riccardo; Camporeale, Carlo; Ridolfi, Luca

    2017-12-01

    Several decades of field observations, laboratory experiments and mathematical modelings have demonstrated that the riparian environment is a disturbance-driven ecosystem, and that the main source of disturbance is river flow fluctuations. The focus of the present work has been on the key role that flow fluctuations play in determining the abundance, zonation and species composition of patches of riparian vegetation. To this aim, the scientific literature on the subject, over the last 20 years, has been reviewed. First, the most relevant ecological, morphological and chemical mechanisms induced by river flow fluctuations are described from a process-based perspective. The role of flow variability is discussed for the processes that affect the recruitment of vegetation, the vegetation during its adult life, and the morphological and nutrient dynamics occurring in the riparian habitat. Particular emphasis has been given to studies that were aimed at quantifying the effect of these processes on vegetation, and at linking them to the statistical characteristics of the river hydrology. Second, the advances made, from a modeling point of view, have been considered and discussed. The main models that have been developed to describe the dynamics of riparian vegetation have been presented. Different modeling approaches have been compared, and the corresponding advantages and drawbacks have been pointed out. Finally, attention has been paid to identifying the processes considered by the models, and these processes have been compared with those that have actually been observed or measured in field/laboratory studies.

  4. Dynamic Musical Communication of Core Affect

    Directory of Open Access Journals (Sweden)

    Nicole eFlaig

    2014-03-01

    Full Text Available Is there something special about the way music communicates feelings? Theorists since Meyer (1956 have attempted to explain how music could stimulate varied and subtle affective experiences by violating learned expectancies, or by mimicking other forms of social interaction. Our proposal is that music speaks to the brain in its own language; it need not imitate any other form of communication. We review recent theoretical and empirical literature, which suggests that all conscious processes consist of dynamic neural events, produced by spatially dispersed processes in the physical brain. Intentional thought and affective experience arise as dynamical aspects of neural events taking place in multiple brain areas simultaneously. At any given moment, this content comprises a unified scene that is integrated into a dynamic core through synchrony of neuronal oscillations. We propose that 1 neurodynamic synchrony with musical stimuli gives rise to musical qualia including tonal and temporal expectancies, and that 2 music-synchronous responses couple into core neurodynamics, enabling music to directly modulate core affect. Expressive music performance, for example, may recruit rhythm-synchronous neural responses to support affective communication. We suggest that the dynamic relationship between musical expression and the experience of affect presents a unique opportunity for the study of emotional experience. This may help elucidate the neural mechanisms underlying arousal and valence, and offer a new approach to exploring the complex dynamics of the how and why of emotional experience.

  5. Serving large portions of vegetable soup at the start of a meal affected children's energy and vegetable intake.

    Science.gov (United States)

    Spill, Maureen K; Birch, Leann L; Roe, Liane S; Rolls, Barbara J

    2011-08-01

    This study tested whether varying the portion of low-energy-dense vegetable soup served at the start of a meal affects meal energy and vegetable intakes in children. Subjects were 3- to 5-year-olds (31 boys and 41 girls) in daycare facilities. Using a crossover design, children were served lunch once a week for four weeks. On three occasions, different portions of tomato soup (150, 225, and 300 g) were served at the start of the meal, and on one occasion no soup was served. Children had 10 min to consume the soup before being served the main course. All foods were consumed ad libitum. The primary outcomes were soup intake as well as energy and vegetable intake at the main course. A mixed linear model tested the effect of soup portion size on intake. Serving any portion of soup reduced entrée energy intake compared with serving no soup, but total meal energy intake was only reduced when 150 g of soup was served. Increasing the portion size increased soup and vegetable intake. Serving low-energy-dense, vegetable soup as a first course is an effective strategy to reduce children's intake of a more energy-dense main entrée and increase vegetable consumption at the meal. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Serving large portions of vegetable soup at the start of a meal affected children’s energy and vegetable intake

    Science.gov (United States)

    Spill, Maureen K.; Birch, Leann L.; Roe, Liane S.; Rolls, Barbara J.

    2011-01-01

    This study tested whether varying the portion of low-energy-dense vegetable soup served at the start of a meal affects meal energy and vegetable intakes in children. Subjects were 3- to 5-year-olds (31 boys and 41 girls) in daycare facilities. Using a crossover design, children were served lunch once a week for four weeks. On three occasions, different portions of tomato soup (150, 225, and 300 g) were served at the start of the meal, and on one occasion no soup was served. Children had 10 minutes to consume the soup before being served the main course. All foods were consumed ad libitum. The primary outcomes were soup intake as well as energy and vegetable intake at the main course. A mixed linear model tested the effect of soup portion size on intake. Serving any portion of soup reduced entrée energy intake compared with serving no soup, but total meal energy intake was only reduced when 150 g of soup was served. Increasing the portion size increased soup and vegetable intake. Serving low-energy-dense, vegetable soup as a first course is an effective strategy to reduce children’s intake of a more energy-dense main entrée and increase vegetable consumption at the meal. PMID:21596073

  7. Recent dynamics of arctic and sub-arctic vegetation

    International Nuclear Information System (INIS)

    Epstein, Howard E; Myers-Smith, Isla; Walker, Donald A

    2013-01-01

    We present a focus issue of Environmental Research Letters on the ‘Recent dynamics of arctic and sub-arctic vegetation’. The focus issue includes three perspective articles (Verbyla 2011 Environ. Res. Lett. 6 041003, Williams et al 2011 Environ. Res. Lett. 6 041004, Loranty and Goetz 2012 Environ. Res. Lett. 7 011005) and 22 research articles. The focus issue arose as a result of heightened interest in the response of high-latitude vegetation to natural and anthropogenic changes in climate and disturbance regimes, and the consequences that these vegetation changes might have for northern ecosystems. A special session at the December 2010 American Geophysical Union Meeting on the ‘Greening of the Arctic’ spurred the call for papers. Many of the resulting articles stem from intensive research efforts stimulated by International Polar Year projects and the growing acknowledgment of ongoing climate change impacts in northern terrestrial ecosystems. (synthesis and review)

  8. Herbivore species and density affect vegetation-structure patchiness in salt marshes

    NARCIS (Netherlands)

    Nolte, Stefanie; Esselink, Peter; Smit, Christian; Bakker, Jan P.

    2014-01-01

    The importance of spatial patterns for ecosystem functioning and biodiversity has long been recognized in ecology. Grazing by herbivores is an important mechanism leading to spatial patterns in the vegetation structure. How different herbivore species and their densities affect vegetation-structure

  9. Radiative transfer in shrub savanna sites in Niger: preliminary results from HAPEX-Sahel. 3. Optical dynamics and vegetation index sensitivity to biomass and plant cover

    International Nuclear Information System (INIS)

    Leeuwen, W.J.D. van; Huete, A.R.; Duncan, J.; Franklin, J.

    1994-01-01

    A shrub savannah landscape in Niger was optically characterized utilizing blue, green, red and near-infrared wavelengths. Selected vegetation indices were evaluated for their performance and sensitivity to describe the complex Sahelian soil/vegetation canopies. Bidirectional reflectance factors (BRF) of plants and soils were measured at several view angles, and used as input to various vegetation indices. Both soil and vegetation targets had strong anisotropic reflectance properties, rendering all vegetation index (VI) responses to be a direct function of sun and view geometry. Soil background influences were shown to alter the response of most vegetation indices. N-space greenness had the smallest dynamic range in VI response, but the n-space brightness index provided additional useful information. The global environmental monitoring index (GEMI) showed a large VI dynamic range for bare soils, which was undesirable for a vegetation index. The view angle response of the normalized difference vegetation index (NDVI), atmosphere resistant vegetation index (ARVI) and soil atmosphere resistant vegetation index (SARVI) were asymmetric about nadir for multiple view angles, and were, except for the SARVI, altered seriously by soil moisture and/or soil brightness effects. The soil adjusted vegetation index (SAVI) was least affected by surface soil moisture and was symmetric about nadir for grass vegetation covers. Overall the SAVI, SARVI and the n-space vegetation index performed best under all adverse conditions and were recommended to monitor vegetation growth in the sparsely vegetated Sahelian zone. (author)

  10. Integration of biomass data in the dynamic vegetation model ORCHIDEE

    Science.gov (United States)

    Delbart, N.; Viovy, N.; Ciais, P.; Le Toan, T.

    2009-04-01

    Dynamic vegetation models (DVMs) are aimed at estimating exchanges between the terrestrial vegetated surface and the atmosphere, and the spatial distribution of natural vegetation types. For this purpose, DVMs use the climatic data alone to feed the vegetation process equations. As dynamic models, they can also give predictions under the current and the future climatic conditions. However, they currently lack accuracy in locating carbon stocks, sinks and sources, and in getting the correct magnitude. Consequently they have been essentially used to compare the vegetation responses under different scenarii. The assimilation of external data such as remote sensing data has been shown to improve the simulations. For example, the land cover maps are used to force the correct distribution of plant functional types (PFTs), and the leaf area index data is used to force the photosynthesis processes. This study concerns the integration of biomass data within the DVM ORCHIDEE. The objective here is to have the living carbon stocks with the correct magnitude and the correct location. Carbon stocks depend on interplay of carbon assimilated by photosynthesis, and carbon lost by respiration, mortality and disturbance. Biomass data can therefore be used as one essential constraint on this interplay. In this study, we use a large database provided by in-situ measurements of carbon stocks and carbon fluxes of old growth forests to constraint this interplay. For each PFT, we first adjust the simulated photosynthesis by reducing the mean error with the in situ measurements. Then we proceed similarly to adjust the autotrophic respiration. We then compare the biomass measured, and adjust the mortality processes in the model. Second, when processes are adjusted for each PFT to minimize the mean error on the carbon stock, biomass measurements can be assimilated. This assimilation is based on the hypothesis that the main variable explaining the biomass level at a given location is the age

  11. [Factors affecting the vegetation restoration after fires in cold temperate wetlands: A review].

    Science.gov (United States)

    Zhao, Feng-Jun; Wang, Li-Zhong; Shu, Li-Fu; Chen, Peng-Yu; Chen, Li-guang

    2013-03-01

    Cold temperate wetland plays an important role in maintaining regional ecological balance. Fire is an important disturbance factor in wetland ecosystem. Severe burning can induce the marked degradation of the ecological functions of wetland ecosystem. The vegetation restoration, especially the early vegetation restoration, after fires, is the premise and basis for the recovery of the ecological functions of the ecosystem. This paper reviewed the research progress on the factors affecting the vegetation restoration after fires in wetlands. The vegetation restoration after fires in cold temperate wetlands was controlled by the fire intensity, fire size, vegetation types before fires, regeneration characteristics of plant species, and site conditions. It was considered that the long-term monitoring on the post-fire vegetation restoration in cold temperate wetland, the key factors affecting the vegetation restoration, the roles of frozen soil layer on the post-fire vegetation restoration, and the theories and technologies on the vegetation restoration would be the main research directions in the future.

  12. Drought Dynamics and Vegetation Productivity in Different Land Management Systems of Eastern Cape, South Africa—A Remote Sensing Perspective

    Directory of Open Access Journals (Sweden)

    Valerie Graw

    2017-09-01

    Full Text Available Eastern Cape Province in South Africa has experienced extreme drought events during the last decade. In South Africa, different land management systems exist belonging to two different land tenure classes: commercial large scale farming and communal small-scale subsistence farming. Communal lands are often reported to be affected by land degradation and drought events among others considered as trigger for this process. Against this background, we analyzed vegetation response to drought in different land management and land tenure systems through assessing vegetation productivity trends and monitoring the intensity, frequency and distribution of the drought hazard in grasslands and communal and commercial croplands during drought and non-drought conditions. For the observation period 2000–2016, we used time series of 250 m Vegetation Condition Index (VCI based on the Moderate Resolution Imaging Spectroradiometer (MODIS Enhanced Vegetation Index (EVI and Climate Hazard Group InfraRed Precipitation with Station data (CHIRPS precipitation data with 5 km resolution. For the assessment of vegetation dynamics, we: (1 analyzed vegetation productivity in Eastern Cape over the last 16 years with EVI; (2 analyzed the impact of drought events on vegetation productivity in grasslands as well as commercial and communal croplands; and (3 compared precipitation-vegetation dynamics between the drought season 2015/2016 and the non-drought season 2011/2012. Change in total annual vegetation productivity could detect drought years while drought dynamics during the season could be rather monitored by the VCI. Correlation of vegetation condition and precipitation indicated areas experiencing significant vegetation productivity trends showing low and even negative correlation coefficients indicating other drivers for productivity change and drought impact besides rainfall.

  13. Dynamic plant ecology: the spectrum of vegetational change in space and time

    Energy Technology Data Exchange (ETDEWEB)

    Delcourt, H R; Delcourt, P A; Webb, T III

    1983-01-01

    Different environmental forcing functions influence vegetational patterns and processes over a wide range of spatial and temporal scales. On the micro-scale (1 year to 5 x 10/sup 3/ years, 1 m/sup 2/ to 10/sup 6/m/sup 2/) natural and anthropogenic disturbances affect establishment and succession of species populations. At the macro-scale (5 x 10/sup 3/ years to 10/sup 6/ years and 10/sup 6/m/sup 2/ to 10/sup 12/m/sup 2/) climatic changes influence regional vegetational processes that include migrations of species as well as displacement of ecosystems. Mega-scale phenomena such as plate tectonics, evolution of the biota and development of global patterns of vegetation occur on the time scale of > 10/sup 6/ years and over areas > 10/sup 12/m/sup 2/. Our knowledge of past vegetational changes resulting from Quaternary climatic change can be used to predict biotic responses to future climatic changes such as global warming that may be induced by increased carbon dioxide (CO/sub 2/) concentrations in the atmosphere. The time scale for future climatic warming may be much more rapid than that characterizing the early- to mid-Holocene, increasing the probability of rapid turnover in species composition, changes in local and regional dominance of important taxa, displacement of species ranges and local extinction of species. Integration of ecological and paleoecological perspectives on vegetational dynamics is fundamental to understanding and managing the biosphere.

  14. Using a Dynamic Global Vegetation Model to Simulate the Response of Vegetation to Warming at the Paleocene-Eocene Boundary

    Science.gov (United States)

    Shellito, C. J.; Sloan, L. C.

    2004-12-01

    A major turnover in benthic marine and terrestrial fauna marks the Initial Eocene Thermal Maximum (IETM) (~55Ma), a period of ~150 ky in which there was a rapid rise in deep sea and high latitude sea surface temperatures by 5-8C. Curiously, no major responses to this warming in the terrestrial floral record have been detected to date. Here, we present results from experiments examining the response of the global distribution of vegetation to changes in climate at the IETM using the NCAR Land Surface Model (LSM1.2) integrated with a dynamic global vegetation model (DGVM). DGVMs allow vegetation to respond to and interact with climate, and thus, provide a unique new method for addressing questions regarding feedbacks between the ecosystem and climate in Earth's past. However, there are a number of drawbacks to using these models that can affect interpretation of results. More specifically, these drawbacks involve uncertainties in the application of modern plant functional types to paleo-flora simulations, inaccuracies in the model climatology used to drive the DGVM, and lack of available detail regarding paleo-geography and paleo-soil type for use in model boundary conditions. For a better understanding of these drawbacks, we present results from a series of tests in the NCAR LSM-DGVM which examine (1) the effect of removing C4 grasses from the available plant functional types in the model; (2) model sensitivity to a change in soil texture; and (3), model sensitivity to a change in the value of pCO2 used in the photosynthetic rate equations. We consider our DGVM results for the IETM in light of output from these sensitivity experiments.

  15. Complex responses of spring alpine vegetation phenology to snow cover dynamics over the Tibetan Plateau, China.

    Science.gov (United States)

    Wang, Siyuan; Wang, Xiaoyue; Chen, Guangsheng; Yang, Qichun; Wang, Bin; Ma, Yuanxu; Shen, Ming

    2017-09-01

    Snow cover dynamics are considered to play a key role on spring phenological shifts in the high-latitude, so investigating responses of spring phenology to snow cover dynamics is becoming an increasingly important way to identify and predict global ecosystem dynamics. In this study, we quantified the temporal trends and spatial variations of spring phenology and snow cover across the Tibetan Plateau by calibrating and analyzing time series of the NOAA AVHRR-derived normalized difference vegetation index (NDVI) during 1983-2012. We also examined how snow cover dynamics affect the spatio-temporal pattern of spring alpine vegetation phenology over the plateau. Our results indicated that 52.21% of the plateau experienced a significant advancing trend in the beginning of vegetation growing season (BGS) and 34.30% exhibited a delaying trend. Accordingly, the snow cover duration days (SCD) and snow cover melt date (SCM) showed similar patterns with a decreasing trend in the west and an increasing trend in the southeast, but the start date of snow cover (SCS) showed an opposite pattern. Meanwhile, the spatial patterns of the BGS, SCD, SCS and SCM varied in accordance with the gradients of temperature, precipitation and topography across the plateau. The response relationship of spring phenology to snow cover dynamics varied within different climate, terrain and alpine plant community zones, and the spatio-temporal response patterns were primarily controlled by the long-term local heat-water conditions and topographic conditions. Moreover, temperature and precipitation played a profound impact on diverse responses of spring phenology to snow cover dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Assessing 20th century climate-vegetation feedbacks of land-use change and natural vegetation dynamics in a fully coupled vegetation-climate model

    NARCIS (Netherlands)

    Strengers, B.J.; Müller, C.; Schaeffer, M.; Haarsma, R.J.; Severijns, C.; Gerten, D.; Schaphoff, S.; Houdt, Van den R.; Oostenrijk, R.

    2010-01-01

    This study describes the coupling of the dynamic global vegetation model (DGVM), Lund–Potsdam–Jena Model for managed land (LPJmL), with the general circulation model (GCM), Simplified Parameterizations primitivE Equation DYnamics model (SPEEDY), to study the feedbacks between land-use change and

  17. Shifts in wind energy potential following land-use driven vegetation dynamics in complex terrain.

    Science.gov (United States)

    Fang, Jiannong; Peringer, Alexander; Stupariu, Mihai-Sorin; Pǎtru-Stupariu, Ileana; Buttler, Alexandre; Golay, Francois; Porté-Agel, Fernando

    2018-10-15

    Many mountainous regions with high wind energy potential are characterized by multi-scale variabilities of vegetation in both spatial and time dimensions, which strongly affect the spatial distribution of wind resource and its time evolution. To this end, we developed a coupled interdisciplinary modeling framework capable of assessing the shifts in wind energy potential following land-use driven vegetation dynamics in complex mountain terrain. It was applied to a case study area in the Romanian Carpathians. The results show that the overall shifts in wind energy potential following the changes of vegetation pattern due to different land-use policies can be dramatic. This suggests that the planning of wind energy project should be integrated with the land-use planning at a specific site to ensure that the expected energy production of the planned wind farm can be reached over its entire lifetime. Moreover, the changes in the spatial distribution of wind and turbulence under different scenarios of land-use are complex, and they must be taken into account in the micro-siting of wind turbines to maximize wind energy production and minimize fatigue loads (and associated maintenance costs). The proposed new modeling framework offers, for the first time, a powerful tool for assessing long-term variability in local wind energy potential that emerges from land-use change driven vegetation dynamics over complex terrain. Following a previously unexplored pathway of cause-effect relationships, it demonstrates a new linkage of agro- and forest policies in landscape development with an ultimate trade-off between renewable energy production and biodiversity targets. Moreover, it can be extended to study the potential effects of micro-climatic changes associated with wind farms on vegetation development (growth and patterning), which could in turn have a long-term feedback effect on wind resource distribution in mountainous regions. Copyright © 2018 Elsevier B.V. All rights

  18. Elephant movement closely tracks precipitation-driven vegetation dynamics in a Kenyan forest-savanna landscape.

    Science.gov (United States)

    Bohrer, Gil; Beck, Pieter Sa; Ngene, Shadrack M; Skidmore, Andrew K; Douglas-Hamilton, Ian

    2014-01-01

    This study investigates the ranging behavior of elephants in relation to precipitation-driven dynamics of vegetation. Movement data were acquired for five bachelors and five female family herds during three years in the Marsabit protected area in Kenya and changes in vegetation were mapped using MODIS normalized difference vegetation index time series (NDVI). In the study area, elevations of 650 to 1100 m.a.s.l experience two growth periods per year, while above 1100 m.a.s.l. growth periods last a year or longer. We find that elephants respond quickly to changes in forage and water availability, making migrations in response to both large and small rainfall events. The elevational migration of individual elephants closely matched the patterns of greening and senescing of vegetation in their home range. Elephants occupied lower elevations when vegetation activity was high, whereas they retreated to the evergreen forest at higher elevations while vegetation senesced. Elephant home ranges decreased in size, and overlapped less with increasing elevation. A recent hypothesis that ungulate migrations in savannas result from countervailing seasonally driven rainfall and fertility gradients is demonstrated, and extended to shorter-distance migrations. In other words, the trade-off between the poor forage quality and accessibility in the forest with its year-round water sources on the one hand and the higher quality forage in the low-elevation scrubland with its seasonal availability of water on the other hand, drives the relatively short migrations (the two main corridors are 20 and 90 km) of the elephants. In addition, increased intra-specific competition appears to influence the animals' habitat use during the dry season indicating that the human encroachment on the forest is affecting the elephant population.

  19. Changes in Vegetation Growth Dynamics and Relations with Climate over China’s Landmass from 1982 to 2011

    Directory of Open Access Journals (Sweden)

    Guang Xu

    2014-04-01

    Full Text Available Understanding how the dynamics of vegetation growth respond to climate change at different temporal and spatial scales is critical to projecting future ecosystem dynamics and the adaptation of ecosystems to global change. In this study, we investigated vegetated growth dynamics (annual productivity, seasonality and the minimum amount of vegetated cover in China and their relations with climatic factors during 1982–2011, using the updated Global Inventory Modeling and Mapping Studies (GIMMS third generation global satellite Advanced Very High Resolution Radiometer (AVHRR Normalized Difference Vegetation Index (NDVI dataset and climate data acquired from the National Centers for Environmental Prediction (NCEP. Major findings are as follows: (1 annual mean NDVI over China significantly increased by about 0.0006 per year from 1982 to 2011; (2 of the vegetated area in China, over 33% experienced a significant positive trend in vegetation growth, mostly located in central and southern China; about 21% experienced a significant positive trend in growth seasonality, most of which occurred in northern China (>35°N; (3 changes in vegetation growth dynamics were significantly correlated with air temperature and precipitation (p < 0.001 at a region scale; (4 at the country scale, changes in NDVI was significantly and positively correlated with annual air temperature (r = 0.52, p < 0.01 and not associated with annual precipitation (p > 0.1; (5 of the vegetated area, about 24% showed significant correlations between annual mean NDVI and air temperature (93% positive and remainder negative, and 12% showed significant correlations of annual mean NDVI with annual precipitation (65% positive and 35% negative. The spatiotemporal variations in vegetation growth dynamics were controlled primarily by temperature and secondly by precipitation. Vegetation growth was also affected by human activities; and (6 monthly NDVI was significantly correlated with the

  20. Do multiple fires interact to affect vegetation structure in temperate eucalypt forests?

    Science.gov (United States)

    Haslem, Angie; Leonard, Steve W J; Bruce, Matthew J; Christie, Fiona; Holland, Greg J; Kelly, Luke T; MacHunter, Josephine; Bennett, Andrew F; Clarke, Michael F; York, Alan

    2016-12-01

    Fire plays an important role in structuring vegetation in fire-prone regions worldwide. Progress has been made towards documenting the effects of individual fire events and fire regimes on vegetation structure; less is known of how different fire history attributes (e.g., time since fire, fire frequency) interact to affect vegetation. Using the temperate eucalypt foothill forests of southeastern Australia as a case study system, we examine two hypotheses about such interactions: (1) post-fire vegetation succession (e.g., time-since-fire effects) is influenced by other fire regime attributes and (2) the severity of the most recent fire overrides the effect of preceding fires on vegetation structure. Empirical data on vegetation structure were collected from 540 sites distributed across central and eastern Victoria, Australia. Linear mixed models were used to examine these hypotheses and determine the relative influence of fire and environmental attributes on vegetation structure. Fire history measures, particularly time since fire, affected several vegetation attributes including ground and canopy strata; others such as low and sub-canopy vegetation were more strongly influenced by environmental characteristics like rainfall. There was little support for the hypothesis that post-fire succession is influenced by fire history attributes other than time since fire; only canopy regeneration was influenced by another variable (fire type, representing severity). Our capacity to detect an overriding effect of the severity of the most recent fire was limited by a consistently weak effect of preceding fires on vegetation structure. Overall, results suggest the primary way that fire affects vegetation structure in foothill forests is via attributes of the most recent fire, both its severity and time since its occurrence; other attributes of fire regimes (e.g., fire interval, frequency) have less influence. The strong effect of environmental drivers, such as rainfall and

  1. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics.

    Directory of Open Access Journals (Sweden)

    Chonggang Xu

    Full Text Available Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO(2 concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO(2 concentration, temperature, and radiation when evaluated against published data of V(c,max (maximum carboxylation rate and J(max (maximum electron transport rate. A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO(2 concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the

  2. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics.

    Science.gov (United States)

    Xu, Chonggang; Fisher, Rosie; Wullschleger, Stan D; Wilson, Cathy J; Cai, Michael; McDowell, Nate G

    2012-01-01

    Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO(2) concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO(2) concentration, temperature, and radiation when evaluated against published data of V(c,max) (maximum carboxylation rate) and J(max) (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO(2) concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation

  3. Toward a Mechanistic Modeling of Nitrogen Limitation on Vegetation Dynamics

    Science.gov (United States)

    Xu, Chonggang; Fisher, Rosie; Wullschleger, Stan D.; Wilson, Cathy J.; Cai, Michael; McDowell, Nate G.

    2012-01-01

    Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO2 concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO2 concentration, temperature, and radiation when evaluated against published data of Vc,max (maximum carboxylation rate) and Jmax (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO2 concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation feedbacks

  4. Vegetative Propagule Pressure and Water Depth Affect Biomass and Evenness of Submerged Macrophyte Communities.

    Science.gov (United States)

    Li, Hong-Li; Wang, Yong-Yang; Zhang, Qian; Wang, Pu; Zhang, Ming-Xiang; Yu, Fei-Hai

    2015-01-01

    Vegetative propagule pressure may affect the establishment and structure of aquatic plant communities that are commonly dominated by plants capable of clonal growth. We experimentally constructed aquatic communities consisting of four submerged macrophytes (Hydrilla verticillata, Ceratophyllum demersum, Elodea nuttallii and Myriophyllum spicatum) with three levels of vegetative propagule pressure (4, 8 and 16 shoot fragments for communities in each pot) and two levels of water depth (30 cm and 70 cm). Increasing vegetative propagule pressure and decreasing water level significantly increased the growth of the submerged macrophyte communities, suggesting that propagule pressure and water depth should be considered when utilizing vegetative propagules to re-establish submerged macrophyte communities in degraded aquatic ecosystems. However, increasing vegetative propagule pressure and decreasing water level significantly decreased evenness of the submerged macrophyte communities because they markedly increased the dominance of H. verticillata and E. nuttallii, but had little impact on that of C. demersum and M. spicatum. Thus, effects of vegetative propagule pressure and water depth are species-specific and increasing vegetative propagule pressure under lower water level can facilitate the establishment success of submerged macrophyte communities.

  5. Vegetative Propagule Pressure and Water Depth Affect Biomass and Evenness of Submerged Macrophyte Communities.

    Directory of Open Access Journals (Sweden)

    Hong-Li Li

    Full Text Available Vegetative propagule pressure may affect the establishment and structure of aquatic plant communities that are commonly dominated by plants capable of clonal growth. We experimentally constructed aquatic communities consisting of four submerged macrophytes (Hydrilla verticillata, Ceratophyllum demersum, Elodea nuttallii and Myriophyllum spicatum with three levels of vegetative propagule pressure (4, 8 and 16 shoot fragments for communities in each pot and two levels of water depth (30 cm and 70 cm. Increasing vegetative propagule pressure and decreasing water level significantly increased the growth of the submerged macrophyte communities, suggesting that propagule pressure and water depth should be considered when utilizing vegetative propagules to re-establish submerged macrophyte communities in degraded aquatic ecosystems. However, increasing vegetative propagule pressure and decreasing water level significantly decreased evenness of the submerged macrophyte communities because they markedly increased the dominance of H. verticillata and E. nuttallii, but had little impact on that of C. demersum and M. spicatum. Thus, effects of vegetative propagule pressure and water depth are species-specific and increasing vegetative propagule pressure under lower water level can facilitate the establishment success of submerged macrophyte communities.

  6. Trends in soil-vegetation dynamics in burned Mediterranean pine forests: the effects of soil properties

    Science.gov (United States)

    Wittenberg, L.; Malkinson, D.

    2009-04-01

    Fire can impact a variety of soil physical and chemical properties. These changes may result, given the fire severity and the local conditions, in decreased infiltration and increased runoff and erosion rates. Most of these changes are caused by complex interactions among eco-geomorphic processes which affect, in turn, the rehabilitation dynamics of the soil and the regeneration of the burnt vegetation. Following wildfire events in two forests growing on different soil types, we investigated runoff, erosion, nutrient export (specifically nitrogen and phosphorous) and vegetation recovery dynamics. The Biriya forest site, burned during the 2006 summer, is composed of two dominant lithological types: soft chalk and marl which are relatively impermeable. The rocks are usually overlain by relatively thick, up of to 80 cm, grayish-white Rendzina soil, which contains large amounts of dissolved carbonate. These carbonates serve as a limiting factor for vegetation growth. The planted forest in Biriya is comprised of monospecific stands of Pinus spp. and Cupressus spp. The Mt. Carmel area, which was last burned in the 2005 spring, represents a system of varied Mediterranean landscapes, differentiated by lithology, soils and vegetation. Lithology is mainly composed of limestone, dolomite, and chalk. The dominant soil is Brown Rendzina whilst in some locations Grey Rendzina and Terra Rossa can be found. The local vegetation is composed mainly of a complex of pine (Pinus halepensis), oak (Quercus calliprinos), Pistacia lentiscus and associations At each site several 3X3 m monitoring plots were established to collect runoff and sediment. In-plot vegetation changes were monitored by a sequence of aerial photographs captured using a 6 m pole-mounted camera. At the terra-rosa sites (Mt. Carmel) mean runoff coefficients were 2.18% during the first year after the fire and 1.6% in the second. Mean erosion rates also decreased, from 42 gr/m2 to 4 gr/m2. The recovering vegetation was

  7. Increasing biological diversity in a dynamic vegetation model and consequences for simulated response to climate change

    Science.gov (United States)

    Keribin, R. M.; Friend, A. D.; Purves, D.; Smith, M. J.

    2013-12-01

    Vegetation, from tropical rainforests to the tundra, is the basis of the world food chain but is also a key component of the Earth system, with biophysical and biogeochemical impacts on the global climate, and Dynamic Global Vegetation Models (DGVMs) are an important integrative tool for understanding its responses to climate change. DGVMs up to now have treated only a small number of plant types representing broad divisions in vegetation worldwide (e.g. trees and grasses, broadleaf and needleleaf, deciduousness), but these categories ignore most of the variation that exists between plant species and between individuals within a species. Research in community ecology makes it clear however that these variations can affect large-scale ecosystem properties such as productivity and resilience to environmental changes. The current challenge is for DGVMs to account for fine-grained variations between plants and a few such models are being developed using newly-available plant trait databases such as the TRY database and insights from community ecology such as habitat filtering. Hybrid is an individual-based DGVM, first published in 1993, that models plant physiology in a mechanistic way. We modified Hybrid 8, the latest version of the model which uses surface physics taken from the GISS ModelE GCM, to include a mechanistic gap-model component with individual-based variation in tree wood density. This key plant trait is known to be strongly correlated with a trade-off between growth and mortality in the majority of forests worldwide, which allows for otherwise-similar individuals to have different life-history strategies. We investigate how the inclusion of continuous variation in wood density into the model affects the ecosystem's transient dynamics under climate change.

  8. Management intensity and vegetation complexity affect web-building spiders and their prey.

    Science.gov (United States)

    Diehl, Eva; Mader, Viktoria L; Wolters, Volkmar; Birkhofer, Klaus

    2013-10-01

    Agricultural management and vegetation complexity affect arthropod diversity and may alter trophic interactions between predators and their prey. Web-building spiders are abundant generalist predators and important natural enemies of pests. We analyzed how management intensity (tillage, cutting of the vegetation, grazing by cattle, and synthetic and organic inputs) and vegetation complexity (plant species richness, vegetation height, coverage, and density) affect rarefied richness and composition of web-building spiders and their prey with respect to prey availability and aphid predation in 12 habitats, ranging from an uncut fallow to a conventionally managed maize field. Spiders and prey from webs were collected manually and the potential prey were quantified using sticky traps. The species richness of web-building spiders and the order richness of prey increased with plant diversity and vegetation coverage. Prey order richness was lower at tilled compared to no-till sites. Hemipterans (primarily aphids) were overrepresented, while dipterans, hymenopterans, and thysanopterans were underrepresented in webs compared to sticky traps. The per spider capture efficiency for aphids was higher at tilled than at no-till sites and decreased with vegetation complexity. After accounting for local densities, 1.8 times more aphids were captured at uncut compared to cut sites. Our results emphasize the functional role of web-building spiders in aphid predation, but suggest negative effects of cutting or harvesting. We conclude that reduced management intensity and increased vegetation complexity help to conserve local invertebrate diversity, and that web-building spiders at sites under low management intensity (e.g., semi-natural habitats) contribute to aphid suppression at the landscape scale.

  9. Conservation planning under uncertainty in urban development and vegetation dynamics

    Science.gov (United States)

    Carmel, Yohay

    2018-01-01

    Systematic conservation planning is a framework for optimally locating and prioritizing areas for conservation. An often-noted shortcoming of most conservation planning studies is that they do not address future uncertainty. The selection of protected areas that are intended to ensure the long-term persistence of biodiversity is often based on a snapshot of the current situation, ignoring processes such as climate change. Scenarios, in the sense of being accounts of plausible futures, can be utilized to identify conservation area portfolios that are robust to future uncertainty. We compared three approaches for utilizing scenarios in conservation area selection: considering a full set of scenarios (all-scenarios portfolio), assuming the realization of specific scenarios, and a reference strategy based on the current situation (current distributions portfolio). Our objective was to compare the robustness of these approaches in terms of their relative performance across future scenarios. We focused on breeding bird species in Israel’s Mediterranean region. We simulated urban development and vegetation dynamics scenarios 60 years into the future using DINAMICA-EGO, a cellular-automata simulation model. For each scenario, we mapped the target species’ available habitat distribution, identified conservation priority areas using the site-selection software MARXAN, and constructed conservation area portfolios using the three aforementioned strategies. We then assessed portfolio performance based on the number of species for which representation targets were met in each scenario. The all-scenarios portfolio consistently outperformed the other portfolios, and was more robust to ‘errors’ (e.g., when an assumed specific scenario did not occur). On average, the all-scenarios portfolio achieved representation targets for five additional species compared with the current distributions portfolio (approximately 33 versus 28 species). Our findings highlight the importance

  10. The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes

    Science.gov (United States)

    Thom, Dominik; Rammer, Werner; Seidl, Rupert

    2018-01-01

    Currently, the temperate forest biome cools the earth’s climate and dampens anthropogenic climate change. However, climate change will substantially alter forest dynamics in the future, affecting the climate regulation function of forests. Increasing natural disturbances can reduce carbon uptake and evaporative cooling, but at the same time increase the albedo of a landscape. Simultaneous changes in vegetation composition can mitigate disturbance impacts, but also influence climate regulation directly (e.g., via albedo changes). As a result of a number of interactive drivers (changes in climate, vegetation, and disturbance) and their simultaneous effects on climate-relevant processes (carbon exchange, albedo, latent heat flux) the future climate regulation function of forests remains highly uncertain. Here we address these complex interactions to assess the effect of future forest dynamics on the climate system. Our specific objectives were (1) to investigate the long-term interactions between changing vegetation composition and disturbance regimes under climate change, (2) to quantify the response of climate regulation to changes in forest dynamics, and (3) to identify the main drivers of the future influence of forests on the climate system. We investigated these issues using the individual-based forest landscape and disturbance model (iLand). Simulations were run over 200 yr for Kalkalpen National Park (Austria), assuming different future climate projections, and incorporating dynamically responding wind and bark beetle disturbances. To consistently assess the net effect on climate the simulated responses of carbon exchange, albedo, and latent heat flux were expressed as contributions to radiative forcing. We found that climate change increased disturbances (+27.7% over 200 yr) and specifically bark beetle activity during the 21st century. However, negative feedbacks from a simultaneously changing tree species composition (+28.0% broadleaved species) decreased

  11. The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes.

    Science.gov (United States)

    Thom, Dominik; Rammer, Werner; Seidl, Rupert

    2017-11-01

    Currently, the temperate forest biome cools the earth's climate and dampens anthropogenic climate change. However, climate change will substantially alter forest dynamics in the future, affecting the climate regulation function of forests. Increasing natural disturbances can reduce carbon uptake and evaporative cooling, but at the same time increase the albedo of a landscape. Simultaneous changes in vegetation composition can mitigate disturbance impacts, but also influence climate regulation directly (e.g., via albedo changes). As a result of a number of interactive drivers (changes in climate, vegetation, and disturbance) and their simultaneous effects on climate-relevant processes (carbon exchange, albedo, latent heat flux) the future climate regulation function of forests remains highly uncertain. Here we address these complex interactions to assess the effect of future forest dynamics on the climate system. Our specific objectives were (1) to investigate the long-term interactions between changing vegetation composition and disturbance regimes under climate change, (2) to quantify the response of climate regulation to changes in forest dynamics, and (3) to identify the main drivers of the future influence of forests on the climate system. We investigated these issues using the individual-based forest landscape and disturbance model (iLand). Simulations were run over 200 yr for Kalkalpen National Park (Austria), assuming different future climate projections, and incorporating dynamically responding wind and bark beetle disturbances. To consistently assess the net effect on climate the simulated responses of carbon exchange, albedo, and latent heat flux were expressed as contributions to radiative forcing. We found that climate change increased disturbances (+27.7% over 200 yr) and specifically bark beetle activity during the 21st century. However, negative feedbacks from a simultaneously changing tree species composition (+28.0% broadleaved species) decreased

  12. Broad-Scale Environmental Conditions Responsible for Post-Fire Vegetation Dynamics

    Directory of Open Access Journals (Sweden)

    Stuart E. Marsh

    2010-11-01

    Full Text Available Ecosystem response to disturbance is influenced by environmental conditions at a number of scales. Changes in climate have altered fire regimes across the western United States, and have also likely altered spatio-temporal patterns of post-fire vegetation regeneration. Fire occurrence data and a vegetation index (NDVI derived from the NOAA Advanced Very High Resolution Radiometer (AVHRR were used to monitor post-fire vegetation from 1989 to 2007. We first investigated differences in post-fire rates of vegetation regeneration between ecoregions. We then related precipitation, temperature, and elevation records at four temporal scales to rates of post-fire vegetation regeneration to ascertain the influence of climate on post-fire vegetation dynamics. We found that broad-scale climate factors are an important influence on post-fire vegetation regeneration. Most notably, higher rates of post-fire regeneration occurred with warmer minimum temperatures. Increases in precipitation also resulted in higher rates of post-fire vegetation growth. While explanatory power was slight, multiple statistical approaches provided evidence for real ecological drivers of post-fire regeneration that should be investigated further at finer scales. The sensitivity of post-disturbance vegetation dynamics to climatic drivers has important ramifications for the management of ecosystems under changing climatic conditions. Shifts in temperature and precipitation regimes are likely to result in changes in post-disturbance dynamics, which could represent important feedbacks into the global climate system.

  13. Analysis of postfire vegetation dynamics of Mediterranean shrub species based on terrestrial and NDVI data.

    Science.gov (United States)

    Hernández-Clemente, Rocío; Cerrillo, R M Navarro; Hernández-Bermejo, J E; Royo, S Escuin; Kasimis, N A

    2009-05-01

    The present study offers an analysis of regeneration patterns and diversity dynamics after a wildfire, which occurred in 1993 and affected about 7000 ha in southern Spain. The aim of the work was to analyze the rule in the succession of shrub species after fire, relating it to the changes registered in the Normalized Difference Vegetation Index (NDVI). Fractional vegetation cover was recorded from permanent plots in 2000 and 2005. NDVI data related to each time were obtained from Landsat images. Both data sets, from fieldwork and remote sensing, were analyzed through statistical and quantitative analyses and then correlated. Results have permitted the description of the change in plant cover and species composition on a global and plot scale. It can be affirmed that, from the seventh to the twelfth year after the fire, the floristic composition within the burned area remained unchanged at a global level. However, on a smaller scale (plot level), the major shrub species, Ulex parviflorus, Rosmarinus officinalis, and Cistus clusii, underwent significant changes. The regeneration dynamics established by these species conditioned plant species composition and, consequently, diversity indexes such as Shannon (H) and Simpson (D). The changes recorded in the NDVI values corresponding to the surveyed plots were highly correlated with those found in the regrowth of the main species. Areas dominated by U. parviflorus in a senile phase were related to a decrease in NDVI values and an increase in the number of species. This result describes the successional dynamics; the dryness of the main colonizer shrub species is allowing the regrowth and re-establishment of other species. Within the study area, NDVI shows sensitivity to postfire plant cover changes and indirectly expresses the diversity dynamics.

  14. Analysis of Postfire Vegetation Dynamics of Mediterranean Shrub Species Based on Terrestrial and NDVI Data

    Science.gov (United States)

    Hernández-Clemente, Rocío; Navarro Cerrillo, R. M.; Hernández-Bermejo, J. E.; Escuin Royo, S.; Kasimis, N. A.

    2009-05-01

    The present study offers an analysis of regeneration patterns and diversity dynamics after a wildfire, which occurred in 1993 and affected about 7000 ha in southern Spain. The aim of the work was to analyze the rule in the succession of shrub species after fire, relating it to the changes registered in the Normalized Difference Vegetation Index (NDVI). Fractional vegetation cover was recorded from permanent plots in 2000 and 2005. NDVI data related to each time were obtained from Landsat images. Both data sets, from fieldwork and remote sensing, were analyzed through statistical and quantitative analyses and then correlated. Results have permitted the description of the change in plant cover and species composition on a global and plot scale. It can be affirmed that, from the seventh to the twelfth year after the fire, the floristic composition within the burned area remained unchanged at a global level. However, on a smaller scale (plot level), the major shrub species, Ulex parviflorus, Rosmarinus officinalis, and Cistus clusii, underwent significant changes. The regeneration dynamics established by these species conditioned plant species composition and, consequently, diversity indexes such as Shannon (H) and Simpson (D). The changes recorded in the NDVI values corresponding to the surveyed plots were highly correlated with those found in the regrowth of the main species. Areas dominated by U. parviflorus in a senile phase were related to a decrease in NDVI values and an increase in the number of species. This result describes the successional dynamics; the dryness of the main colonizer shrub species is allowing the regrowth and re-establishment of other species. Within the study area, NDVI shows sensitivity to postfire plant cover changes and indirectly expresses the diversity dynamics.

  15. Influence of climate variability, fire and phosphorus limitation on vegetation structure and dynamics of the Amazon-Cerrado border

    Science.gov (United States)

    Ane Dionizio, Emily; Heil Costa, Marcos; de Almeida Castanho, Andrea D.; Ferreira Pires, Gabrielle; Schwantes Marimon, Beatriz; Hur Marimon-Junior, Ben; Lenza, Eddie; Martins Pimenta, Fernando; Yang, Xiaojuan; Jain, Atul K.

    2018-02-01

    Climate, fire and soil nutrient limitation are important elements that affect vegetation dynamics in areas of the forest-savanna transition. In this paper, we use the dynamic vegetation model INLAND to evaluate the influence of interannual climate variability, fire and phosphorus (P) limitation on Amazon-Cerrado transitional vegetation structure and dynamics. We assess how each environmental factor affects net primary production, leaf area index and aboveground biomass (AGB), and compare the AGB simulations to an observed AGB map. We used two climate data sets (monthly average climate for 1961-1990 and interannual climate variability for 1948-2008), two data sets of total soil P content (one based on regional field measurements and one based on global data), and the INLAND fire module. Our results show that the inclusion of interannual climate variability, P limitation and fire occurrence each contribute to simulating vegetation types that more closely match observations. These effects are spatially heterogeneous and synergistic. In terms of magnitude, the effect of fire is strongest and is the main driver of vegetation changes along the transition. Phosphorus limitation, in turn, has a stronger effect on transitional ecosystem dynamics than interannual climate variability does. Overall, INLAND typically simulates more than 80 % of the AGB variability in the transition zone. However, the AGB in many places is clearly not well simulated, indicating that important soil and physiological factors in the Amazon-Cerrado border region, such as lithology, water table depth, carbon allocation strategies and mortality rates, still need to be included in the model.

  16. Recall of vegetable eating affects future predicted enjoyment and choice of vegetables in British University undergraduate students.

    Science.gov (United States)

    Robinson, Eric; Blissett, Jackie; Higgs, Suzanne

    2011-10-01

    Predictions about enjoyment of future experiences are influenced by recalling similar past experiences. However, little is known about the relationship between hedonic memories of past eating episodes and future eating behavior. We investigated recall of previous experiences of eating vegetables and the effect of recall on future predicted liking for and consumption of vegetables. British University undergraduate students were asked to retrieve memories of previous occasions when they ate vegetables and were asked to rate how enjoyable those experiences were (Study 1, n=54). The effect of different types of memory recall (including vegetable eating recall) and visualization of someone else eating vegetables (to control for priming effects) on predicted likelihood of choosing vegetables and predicted enjoyment of eating vegetables was examined (Study 2, n=95). Finally, the effect of recalling vegetable eating memories on actual food choice from a buffet was assessed (Study 3, n=63). It is reported that people recall positive memories of past vegetable consumption (Precall of a personal nonfood memory, a nonvegetable food memory, or visualization of someone else enjoying eating vegetables (increase of approximately 70% in vegetable portion size compared to controls). The results suggest that recall of previous eating experiences could be a potential strategy for altering food choices. Copyright © 2011 American Dietetic Association. Published by Elsevier Inc. All rights reserved.

  17. The affective discourse dynamics of metaphor clustering The affective discourse dynamics of metaphor clustering

    Directory of Open Access Journals (Sweden)

    Lynne Cameron

    2010-05-01

    Full Text Available

    Metaphor is examined in the very different iscourse contexts of the classroom and of reconciliation talk to highlight the neglected affective dimension. The distribution of metaphors across discourse shows clustering at certain points, often where speakers are engaged in critical interpersonal discourse activity. Clusters in classroom talk co-occur with sequences of agenda management where teachers prepare students for upcoming lessons and with giving feedback to students, both of which require careful management of interpersonal and affective issues. Clusters in reconciliation talk co-occur with discourse management and with two situations with significant affective dynamics: appropriation of metaphor and exploration of alternative scenarios.

    Metaphor is examined in the very different iscourse contexts of the classroom and of reconciliation talk to highlight the neglected affective dimension. The distribution of metaphors across discourse shows clustering at certain points, often where speakers are engaged in critical interpersonal discourse activity. Clusters in classroom talk co-occur with sequences of agenda management where teachers prepare students for upcoming lessons and with giving feedback to students, both of which require careful management of interpersonal and affective issues. Clusters in reconciliation talk co-occur with discourse management and with two situations with significant affective dynamics: appropriation of metaphor and exploration of alternative scenarios.

  18. Dynamic modeling of the cesium, strontium, and ruthenium transfer to grass and vegetables

    International Nuclear Information System (INIS)

    Renaud, P.; Real, J.; Maubert, H.; Roussel-Debet, S.

    1999-01-01

    From 1988 to 1993, the Nuclear Safety and Protection Institute (Institut de Protection et de Surete Nucleaire -- IPSN) conducted experimental programs focused on transfers to vegetation following accidental localized deposits of radioactive aerosols. In relation to vegetable crops (fruit, leaves, and root vegetables) and meadow grass these experiments have enabled a determination of the factors involved in the transfer of cesium, strontium, and ruthenium at successive harvests, or cuttings, in respect of various time lags after contamination. The dynamic modeling given by these results allows an evaluation of changes in the mass activity of vegetables and grass during the months following deposit. It constitutes part of the ASTRAL post-accident radioecology model

  19. Advances in monitoring vegetation and land use dynamics in the Sahel

    DEFF Research Database (Denmark)

    Mbow, Cheikh; Fensholt, Rasmus; Nielsen, Thomas Theis

    2014-01-01

    of CO2 in the atmosphere, grazing pressure, bush fires and agricultural expansion or contraction. The use of satellite data in combination with field data played a major role in the monitoring of vegetation dynamics and land use in the Sahel, since the mega drought of the 1970s and the 1980s. This paper...... briefly reviews the advance of satellite-based monitoring of vegetation dynamics over these 40 years. We discuss the promises of current and likely future data sources and analysis tools, as well as the need to strengthen in situ data collection to support and validate satellite-based vegetation and land...

  20. Optimizing cloud removal from satellite remotely sensed data for monitoring vegetation dynamics in humid tropical climate

    International Nuclear Information System (INIS)

    Hashim, M; Pour, A B; Onn, C H

    2014-01-01

    Remote sensing technology is an important tool to analyze vegetation dynamics, quantifying vegetation fraction of Earth's agricultural and natural vegetation. In optical remote sensing analysis removing atmospheric interferences, particularly distribution of cloud contaminations, are always a critical task in the tropical climate. This paper suggests a fast and alternative approach to remove cloud and shadow contaminations for Landsat Enhanced Thematic Mapper + (ETM + ) multi temporal datasets. Band 3 and Band 4 from all the Landsat ETM + dataset are two main spectral bands that are very crucial in this study for cloud removal technique. The Normalise difference vegetation index (NDVI) and the normalised difference soil index (NDSI) are two main derivatives derived from the datasets. Change vector analysis is used in this study to seek the vegetation dynamics. The approach developed in this study for cloud optimizing can be broadly applicable for optical remote sensing satellite data, which are seriously obscured with heavy cloud contamination in the tropical climate

  1. Vegetation

    DEFF Research Database (Denmark)

    Epstein, H.E.; Walker, D.A.; Bhatt, U.S.

    2012-01-01

    increased 20-26%. • Increasing shrub growth and range extension throughout the Low Arctic are related to winter and early growing season temperature increases. Growth of other tundra plant types, including graminoids and forbs, is increasing, while growth of mosses and lichens is decreasing. • Increases...... in vegetation (including shrub tundra expansion) and thunderstorm activity, each a result of Arctic warming, have created conditions that favor a more active Arctic fire regime....

  2. Lifestyle factors affecting fruit and vegetable consumption in the UK Women's Cohort Study.

    Science.gov (United States)

    Pollard, J; Greenwood, D; Kirk, S; Cade, J

    2001-08-01

    The UK Women's Cohort Study (UKWCS) was originally set up to look at morbidity and mortality data on subjects with a wide range of dietary intakes including vegans, lacto-ovo vegetarians, non-red meat eaters and red meat eaters. The aim of the present study was to investigate factors that affect fruit and vegetable consumption within this particular cohort of women. Females of ages 35-69 years, taking part in the UK Women's Cohort Study (N=35 367), provided health and lifestyle information including a 217-item food frequency questionnaire. In multiple logistic regression, the strongest predictors of a higher reported level of fruit and vegetable consumption were being a vegetarian or vegan, taking vitamin or mineral supplements, being married, educated to A-level or degree level and belonging to a higher socio-economic group. Conversely, smokers were found to be only half as likely as non-smokers to be high fruit and vegetable consumers. These lifestyle distinctions among three levels of reported fruit and vegetable consumption are relevant to the future targeting of health promotion strategies. Copyright 2000 Academic Press.

  3. Dynamic artificial neural networks with affective systems.

    Directory of Open Access Journals (Sweden)

    Catherine D Schuman

    Full Text Available Artificial neural networks (ANNs are processors that are trained to perform particular tasks. We couple a computational ANN with a simulated affective system in order to explore the interaction between the two. In particular, we design a simple affective system that adjusts the threshold values in the neurons of our ANN. The aim of this paper is to demonstrate that this simple affective system can control the firing rate of the ensemble of neurons in the ANN, as well as to explore the coupling between the affective system and the processes of long term potentiation (LTP and long term depression (LTD, and the effect of the parameters of the affective system on its performance. We apply our networks with affective systems to a simple pole balancing example and briefly discuss the effect of affective systems on network performance.

  4. Floodplain rehabilitation in North Cameroon: impact on vegetation dynamics

    NARCIS (Netherlands)

    Scholte, P.; Kirda, P.; Adam, S.; Kadiri, B.

    2000-01-01

    Since the construction in 1979 of a dam in the Logone floodplain in the Sahelo-Sudanian zone of Cameroon, annual inundations have decreased, reducing perennial vegetation as important grazing source for nomadic herds and wildlife during the dry season. Presently, possibilities exist to release

  5. Global sampling of the seasonal changes in vegetation biophysical properties and associated carbon flux dynamics: using the synergy of information captured by spectral time series

    Science.gov (United States)

    Campbell, P. K. E.; Huemmrich, K. F.; Middleton, E.; Voorhis, S.; Landis, D.

    2016-12-01

    Spatial heterogeneity and seasonal dynamics in vegetation function contribute significantly to the uncertainties in regional and global CO2 budgets. High spectral resolution imaging spectroscopy ( 10 nm, 400-2500 nm) provides an efficient tool for synoptic evaluation of the factors significantly affecting the ability of the vegetation to sequester carbon and to reflect radiation, due to changes in vegetation chemical and structural composition. EO-1 Hyperion has collected more than 15 years of repeated observations for vegetation studies, and currently Hyperion time series are available for study of vegetation carbon dynamics at a number of FLUX sites. This study presents results from the analysis of EO-1 Hyperion and FLUX seasonal composites for a range of ecosystems across the globe. Spectral differences and seasonal trends were evaluated for each vegetation type and specific phenology. Evaluating the relationships between CO2 flux parameters (e.g., Net ecosystem production - NEP; Gross Ecosystem Exchange - GEE, CO2 flux, μmol m-2 s-1) and spectral parameters for these very different ecosystems, high correlations were established to parameters associated with canopy water and chlorophyll content for deciduous, and photosynthetic function for conifers. Imaging spectrometry provided high spatial resolution maps of CO2 fluxes absorbed by vegetation, and was efficient in tracing seasonal flux dynamics. This study will present examples for key ecosystem tipes to demonstrate the ability of imaging spectrometry and EO-1 Hyperion to map and compare CO2 flux dynamics across the globe.

  6. How Resource Phenology Affects Consumer Population Dynamics.

    Science.gov (United States)

    Bewick, Sharon; Cantrell, R Stephen; Cosner, Chris; Fagan, William F

    2016-02-01

    Climate change drives uneven phenology shifts across taxa, and this can result in changes to the phenological match between interacting species. Shifts in the relative phenology of partner species are well documented, but few studies have addressed the effects of such changes on population dynamics. To explore this, we develop a phenologically explicit model describing consumer-resource interactions. Focusing on scenarios for univoltine insects, we show how changes in resource phenology can be reinterpreted as transformations in the year-to-year recursion relationships defining consumer population dynamics. This perspective provides a straightforward path for interpreting the long-term population consequences of phenology change. Specifically, by relating the outcome of phenological shifts to species traits governing recursion relationships (e.g., consumer fecundity or competitive scenario), we demonstrate how changes in relative phenology can force systems into different dynamical regimes, with major implications for resource management, conservation, and other areas of applied dynamics.

  7. Noise-driven cooperative dynamics between vegetation and topography in riparian zones

    Science.gov (United States)

    Vesipa, Riccardo; Camporeale, Carlo; Ridolfi, Luca

    2016-04-01

    Riparian ecosystems exhibit complex biotic and abiotic dynamics, where the triad vegetation-sediments-stream determines the eco-geomorphological features of the river landscape. Random fluctuations of the water stage are a key trait of this triad, and a number of behaviors of the fluvial environment can be understood only taking into consideration the role of noise. In fact, in a given plot, vegetation biomass can grow (if the stage is below the plot elevation) or decay (if the stage is above the plot elevation). As a result, biomass exhibits significant temporal variations. In this framework, the capability of vegetation to alter the transect topography (namely, the plot elevation) is crucial. Vegetation can increase the plot elevation by a number of mechanisms (trapping of water- and wind-transported sediment particles, production of organic soil, stabilization of the soil surface). The increment of plot elevation induces the reduction of the plot-specific magnitude, frequency and duration of floods. These more favorable plot-specific hydrological conditions, in turn, induce an increment of biomass. Moreover, the higher the vegetation biomass, the higher the plot elevation increment induced by these mechanisms. In order to elucidate how the stochastically varying water stage and the vegetation-induced topographic alteration shape the bio-morphological characteristics of riparian transects, a stochastic model that takes into account the main links between vegetation, sediments and the stream was adopted. In particular, the capability of vegetation to alter the plot topography was emphasized. In modeling such interactions, the minimalistic approach was pursued. The complex vegetation-sediments-stream interactions were modeled by a set of state-depended stochastic eco-hydraulic equations. The probability density function of vegetation biomass was then analytically evaluated in any transect plot. This pdf strongly depends on the vegetation-topography feedback. We

  8. Quantifying the Impacts of Environmental Factors on Vegetation Dynamics over Climatic and Management Gradients of Central Asia

    Directory of Open Access Journals (Sweden)

    Olena Dubovyk

    2016-07-01

    Full Text Available Currently there is a lack of quantitative information regarding the driving factors of vegetation dynamics in post-Soviet Central Asia. Insufficient knowledge also exists concerning vegetation variability across sub-humid to arid climatic gradients as well as vegetation response to different land uses, from natural rangelands to intensively irrigated croplands. In this study, we analyzed the environmental drivers of vegetation dynamics in five Central Asian countries by coupling key vegetation parameter “overall greenness” derived from Moderate Resolution Imaging Spectroradiometer (MODIS Normalized Difference Vegetation Index (NDVI time series data, with its possible factors across various management and climatic gradients. We developed nine generalized least-squares random effect (GLS-RE models to analyze the relative impact of environmental factors on vegetation dynamics. The obtained results quantitatively indicated the extensive control of climatic factors on managed and unmanaged vegetation cover across Central Asia. The most diverse vegetation dynamics response to climatic variables was observed for “intensively managed irrigated croplands”. Almost no differences in response to these variables were detected for managed non-irrigated vegetation and unmanaged (natural vegetation across all countries. Natural vegetation and rainfed non-irrigated crop dynamics were principally associated with temperature and precipitation parameters. Variables related to temperature had the greatest relative effect on irrigated croplands and on vegetation cover within the mountainous zone. Further research should focus on incorporating the socio-economic factors discussed here in a similar analysis.

  9. Erosion-vegetation dynamics in the Lucciolabella biancane badland cultural landscape (Southern Tuscany, Italy)

    Science.gov (United States)

    Maccherini, Simona; Vergari, Francesca; Santi, Elisa; Marignani, Michela; Della Seta, Marta; Rossi, Mauro; Torri, Dino; Del Monte, Maurizio

    2014-05-01

    In this work we present the results of multidisciplinary and long-lasting investigations on the complex cause-effect relationship among water erosion processes and vegetation cover on the Lucciolabella Natural Reserve, located in Upper Orcia Valley (Southern Tuscany). The area is a Site of Community Importance, where the cultural landscape of biancane badlands - water erosion landforms generated on Plio-Pleistocene marine clay outcrops - is preserved. We explored the direction and rate of change in land use and natural habitats of the biancana badland landscapes over the last 50 years, evaluating the erosion-vegetation dynamics and examining the processes involved in the biancana badland area. Historical information, such as early cadastral documents and diachronically analyzed aerial photographs, has been used to construct a database of the natural trends of modifications relative to habitat and plant species distribution, with the analysis of the consequent variations on the frequency of instability events. Old and recent land use maps were compared by using the TWINSPAN classification. Soil erodibility evaluation on the eroded biancana surfaces, regosols and well-developed vertisols, was carried out together with a decadal erosion monitoring program and the investigation of the physico-chemical properties of parent material. We also considered the effects of a few roots on saturated soil shear strength to introduce direct links between plants and soil processes. Moreover we run the LANDPLANER model in order to deepen the effect of the fragmentation of the vegetation cover on water erosion processes affecting biancana badlands. Long-lasting geomorphological survey and field erosion monitoring highlighted that biancana stations experience a very strong surface lowering rate due to water erosion, attaining an average rate of 2.4 - 2.6 cm/a. Moreover, biancanas in a more juvenile development phase, such as the ones of Lucciolabella Natural Reserve, show the maximum

  10. Global changes in dryland vegetation dynamics (1988–2008 assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data

    Directory of Open Access Journals (Sweden)

    N. Andela

    2013-10-01

    Full Text Available Drylands, covering nearly 30% of the global land surface, are characterized by high climate variability and sensitivity to land management. Here, two satellite-observed vegetation products were used to study the long-term (1988–2008 vegetation changes of global drylands: the widely used reflective-based Normalized Difference Vegetation Index (NDVI and the recently developed passive-microwave-based Vegetation Optical Depth (VOD. The NDVI is sensitive to the chlorophyll concentrations in the canopy and the canopy cover fraction, while the VOD is sensitive to vegetation water content of both leafy and woody components. Therefore it can be expected that using both products helps to better characterize vegetation dynamics, particularly over regions with mixed herbaceous and woody vegetation. Linear regression analysis was performed between antecedent precipitation and observed NDVI and VOD independently to distinguish the contribution of climatic and non-climatic drivers in vegetation variations. Where possible, the contributions of fire, grazing, agriculture and CO2 level to vegetation trends were assessed. The results suggest that NDVI is more sensitive to fluctuations in herbaceous vegetation, which primarily uses shallow soil water, whereas VOD is more sensitive to woody vegetation, which additionally can exploit deeper water stores. Globally, evidence is found for woody encroachment over drylands. In the arid drylands, woody encroachment appears to be at the expense of herbaceous vegetation and a global driver is interpreted. Trends in semi-arid drylands vary widely between regions, suggesting that local rather than global drivers caused most of the vegetation response. In savannas, besides precipitation, fire regime plays an important role in shaping trends. Our results demonstrate that NDVI and VOD provide complementary information and allow new insights into dryland vegetation dynamics.

  11. Dynamics of global vegetation biomass simulated by the integrated Earth System Model

    Science.gov (United States)

    Mao, J.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.; Piao, S.; Yang, X.; Truesdale, J. E.; Bond-Lamberty, B. P.; Chini, L. P.; Thomson, A. M.; Hurtt, G. C.; Collins, W.; Edmonds, J.

    2014-12-01

    The global vegetation biomass stores huge amounts of carbon and is thus important to the global carbon budget (Pan et al., 2010). For the past few decades, different observation-based estimates and modeling of biomass in the above- and below-ground vegetation compartments have been comprehensively conducted (Saatchi et al., 2011; Baccini et al., 2012). However, uncertainties still exist, in particular for the simulation of biomass magnitude, tendency, and the response of biomass to climatic conditions and natural and human disturbances. The recently successful coupling of the integrated Earth System Model (iESM) (Di Vittorio et al., 2014; Bond-Lamberty et al., 2014), which links the Global Change Assessment Model (GCAM), Global Land-use Model (GLM), and Community Earth System Model (CESM), offers a great opportunity to understand the biomass-related dynamics in a fully-coupled natural and human modeling system. In this study, we focus on the systematic analysis and evaluation of the iESM simulated historical (1850-2005) and future (2006-2100) biomass changes and the response of the biomass dynamics to various impact factors, in particular the human-induced Land Use/Land Cover Change (LULCC). By analyzing the iESM simulations with and without the interactive LULCC feedbacks, we further study how and where the climate feedbacks affect socioeconomic decisions and LULCC, such as to alter vegetation carbon storage. References Pan Y et. al: A large and persistent carbon sink in the World's forests. Science 2011, 333:988-993. Saatchi SS et al: Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 2011, 108:9899-9904. Baccini A et al: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Clim Change 2012, 2:182-185. Di Vittorio AV et al: From land use to land cover: restoring the afforestation signal in a coupled integrated assessment-earth system model and the implications for

  12. Inter-species competition-facilitation in stochastic riparian vegetation dynamics.

    Science.gov (United States)

    Tealdi, Stefano; Camporeale, Carlo; Ridolfi, Luca

    2013-02-07

    Riparian vegetation is a highly dynamic community that lives on river banks and which depends to a great extent on the fluvial hydrology. The stochasticity of the discharge and erosion/deposition processes in fact play a key role in determining the distribution of vegetation along a riparian transect. These abiotic processes interact with biotic competition/facilitation mechanisms, such as plant competition for light, water, and nutrients. In this work, we focus on the dynamics of plants characterized by three components: (1) stochastic forcing due to river discharges, (2) competition for resources, and (3) inter-species facilitation due to the interplay between vegetation and fluid dynamics processes. A minimalist stochastic bio-hydrological model is proposed for the dynamics of the biomass of two vegetation species: one species is assumed dominant and slow-growing, the other is subdominant, but fast-growing. The stochastic model is solved analytically and the probability density function of the plant biomasses is obtained as a function of both the hydrologic and biologic parameters. The impact of the competition/facilitation processes on the distribution of vegetation species along the riparian transect is investigated and remarkable effects are observed. Finally, a good qualitative agreement is found between the model results and field data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Osmolyte cooperation affects turgor dynamics in plants

    Science.gov (United States)

    Argiolas, Alfredo; Puleo, Gian Luigi; Sinibaldi, Edoardo; Mazzolai, Barbara

    2016-07-01

    Scientists have identified turgor-based actuation as a fundamental mechanism in plant movements. Plant cell turgor is generated by water influx due to the osmolyte concentration gradient through the cell wall and the plasma membrane behaving as an osmotic barrier. Previous studies have focused on turgor modulation with respect to potassium chloride (KCl) concentration changes, although KCl is not efficiently retained in the cell, and many other compounds, including L-glutamine (L-Gln) and D-glucose (D-Glc), are present in the cytosol. In fact, the contributions of other osmolytes to turgor dynamics remain to be elucidated. Here, we show the association of osmolytes and their consequent cooperative effects on the time-dependent turgor profile generated in a model cytosol consisting of KCl, D-Glc and L-Gln at experimentally measured plant motor/generic cell concentrations and at modified concentrations. We demonstrate the influence and association of the osmolytes using osmometry and NMR measurements. We also show, using a plant cell-inspired device we previously developed, that osmolyte complexes, rather than single osmolytes, permit to obtain higher turgor required by plant movements. We provide quantitative cues for deeper investigations of osmolyte transport for plant movement, and reveal the possibility of developing osmotic actuators exploiting a dynamically varying concentration of osmolytes.

  14. Simulating vegetation response to climate change in the Blue Mountains with MC2 dynamic global vegetation model

    Directory of Open Access Journals (Sweden)

    John B. Kim

    2018-04-01

    Full Text Available Warming temperatures are projected to greatly alter many forests in the Pacific Northwest. MC2 is a dynamic global vegetation model, a climate-aware, process-based, and gridded vegetation model. We calibrated and ran MC2 simulations for the Blue Mountains Ecoregion, Oregon, USA, at 30 arc-second spatial resolution. We calibrated MC2 using the best available spatial datasets from land managers. We ran future simulations using climate projections from four global circulation models (GCM under representative concentration pathway 8.5. Under this scenario, forest productivity is projected to increase as the growing season lengthens, and fire occurrence is projected to increase steeply throughout the century, with burned area peaking early- to mid-century. Subalpine forests are projected to disappear, and the coniferous forests to contract by 32.8%. Large portions of the dry and mesic forests are projected to convert to woodlands, unless precipitation were to increase. Low levels of change are projected for the Umatilla National Forest consistently across the four GCM’s. For the Wallowa-Whitman and the Malheur National Forest, forest conversions are projected to vary more across the four GCM-based simulations, reflecting high levels of uncertainty arising from climate. For simulations based on three of the four GCMs, sharply increased fire activity results in decreases in forest carbon stocks by the mid-century, and the fire activity catalyzes widespread biome shift across the study area. We document the full cycle of a structured approach to calibrating and running MC2 for transparency and to serve as a template for applications of MC2. Keywords: Climate change, Regional change, Simulation, Calibration, Forests, Fire, Dynamic global vegetation model

  15. Micro-Level Affect Dynamics in Psychopathology Viewed From Complex Dynamical System Theory

    NARCIS (Netherlands)

    Wichers, M.; Wigman, J. T. W.; Myin-Germeys, I.

    2015-01-01

    This article discusses the role of moment-to-moment affect dynamics in mental disorder and aims to integrate recent literature on this topic in the context of complex dynamical system theory. First, we will review the relevance of temporal and contextual aspects of affect dynamics in relation to

  16. Climate, people, fire and vegetation: new insights into vegetation dynamics in the Eastern Mediterranean since the 1st century AD

    Directory of Open Access Journals (Sweden)

    J. Bakker

    2013-01-01

    Full Text Available Anatolia forms a bridge between Europe, Africa and Asia and is influenced by all three continents in terms of climate, vegetation and human civilisation. Unfortunately, well-dated palynological records focussing on the period from the end of the classical Roman period until subrecent times are rare for Anatolia and completely absent for southwest Turkey, resulting in a lacuna in knowledge concerning the interactions of climatic change, human impact, and environmental change in this important region. Two well-dated palaeoecological records from the Western Taurus Mountains, Turkey, provide a first relatively detailed record of vegetation dynamics from late Roman times until the present in SW Turkey. Combining pollen, non-pollen palynomorphs, charcoal, sedimentological, archaeological data, and newly developed multivariate numerical analyses allows for the disentangling of climatic and anthropogenic influences on vegetation change. Results show changes in both the regional pollen signal as well as local soil sediment characteristics match shifts in regional climatic conditions. Both climatic as well as anthropogenic change had a strong influence on vegetation dynamics and land use. A moist environmental trend during the late-3rd century caused an increase in marshes and wetlands in the moister valley floors, limiting possibilities for intensive crop cultivation at such locations. A mid-7th century shift to pastoralism coincided with a climatic deterioration as well as the start of Arab incursions into the region, the former driving the way in which the vegetation developed afterwards. Resurgence in agriculture was observed in the study during the mid-10th century AD, coinciding with the Medieval Climate Anomaly. An abrupt mid-12th century decrease in agriculture is linked to socio-political change, rather than the onset of the Little Ice Age. Similarly, gradual deforestation occurring from the 16th century onwards has been linked to changes in

  17. Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes

    Science.gov (United States)

    McGuire, A.D.; Wirth, C.; Apps, M.; Beringer, J.; Clein, J.; Epstein, H.; Kicklighter, D.W.; Bhatti, J.; Chapin, F. S.; De Groot, B.; Efremov, D.; Eugster, W.; Fukuda, M.; Gower, T.; Hinzman, L.; Huntley, B.; Jia, G.J.; Kasischke, E.; Melillo, J.; Romanovsky, V.; Shvidenko, A.; Vaganov, E.; Walker, D.

    2002-01-01

    The responses of high latitude ecosystems to global change involve complex interactions among environmental variables, vegetation distribution, carbon dynamics, and water and energy exchange. These responses may have important consequences for the earth system. In this study, we evaluated how vegetation distribution, carbon stocks and turnover, and water and energy exchange are related to environmental variation spanned by the network of the IGBP high latitude transects. While the most notable feature of the high latitude transects is that they generally span temperature gradients from southern to northern latitudes, there are substantial differences in temperature among the transects. Also, along each transect temperature co-varies with precipitation and photosynthetically active radiation, which are also variable among the transects. Both climate and disturbance interact to influence latitudinal patterns of vegetation and soil carbon storage among the transects, and vegetation distribution appears to interact with climate to determine exchanges of heat and moisture in high latitudes. Despite limitations imposed by the data we assembled, the analyses in this study have taken an important step toward clarifying the complexity of interactions among environmental variables, vegetation distribution, carbon stocks and turnover, and water and energy exchange in high latitude regions. This study reveals the need to conduct coordinated global change studies in high latitudes to further elucidate how interactions among climate, disturbance, and vegetation distribution influence carbon dynamics and water and energy exchange in high latitudes.

  18. Affective Dynamics in Triadic Peer Interactions in Early Childhood

    NARCIS (Netherlands)

    Lavictoire, L.A.; Snyder, J.; Stoolmiller, M.; Hollenstein, T.P.

    2012-01-01

    In interpersonal interaction research, moving beyond dyadic to triadic dynamics can be analytically daunting. We explored the affective states expressed during triadic peer interactions to understand how patterns were associated with childhood psychopathology and sociometric status. High-risk

  19. [Soil respiration dynamics and its controlling factors of typical vegetation communities on meadow steppes in the western Songnen Plain].

    Science.gov (United States)

    Wang, Ming; Liu, Xing-Tu; Li, Xiu-Jun; Zhang, Ji-Tao; Wang, Guo-Dong; Lu, Xin-Rui; Li, Xiao-Yu

    2014-01-01

    In order to accurately explore the soil respiration dynamics and its controlling factors of typical vegetation types in the western Songnen Plain, soil respiration rates of Chloris virgata, Puccinellia distans, Phragmites australis and Leymus chinensis communities were measured. The results showed that the diurnal curves of soil respiration rates of the four vegetation communities had simple peak values, which appeared at 11:00-15:00, and the valley values occurred at 21:00-1:00 or 3:00-5:00. The seasonal dynamic patterns of their soil respiration rates were similar, with the maximum (3.21-4.84 micromol CO2 x m(-2) x s(-1)) occurring in July and August and the minimum (0.46-1.51 micromol CO2 x m(-2) x s(-1)) in October. The soil respiration rates of the four vegetation communities had significant exponential correlations with ambient air temperature and soil temperature. Soil moisture, however, only played an important role in affecting the soil respiration rate of C. virgata community while air humidity near the soil surface was significantly correlated with the soil respiration rates of P. australis and L. chinensis communities. The soil salt contents seriously constrained the CO2 dioxide emission, and the soil pH, electrical conductivity (EC), exchangeable sodium percentage (ESP) could explain 87%-91% spatial variations of the soil respiration rate.

  20. Long-term dynamics of the hemiparasite Rhinanthus angustifolius and its relationship with vegetation structure

    NARCIS (Netherlands)

    Ameloot, Els; Verheyen, Kris; Bakker, Jan P.; De Vries, Yzaak; Hermy, Martin

    2006-01-01

    Questions: 1. How are the long-term dynamics of the root hemiparasite Rhinanthus angustifolius related to vegetation structure, grassland management and climate? 2. Does R. angustifolius have a long-term impact on standing crop and community composition? Location: A formerly fertilized grassland,

  1. Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya: Contributions Toward Future Earth Initiatives

    Directory of Open Access Journals (Sweden)

    Joseph Shea

    2017-08-01

    Full Text Available Reviewed: Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya: Contributions Toward Future Earth Initiatives. Edited by R. B. Singh, Udo Schickhoff, and Suraj Mal. Cham, Switzerland: Springer, 2016. xvi + 399 pp. Hardcover: US$ 179.00, ISBN 978-3-319-28975-5. E-book: US$ 139.00, ISBN 978-3-319-28977-9.

  2. An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems

    Science.gov (United States)

    Yu Zhang; Changsheng Li; Carl C. Trettin; Harbin Li; Ge Sun

    2002-01-01

    Wetland ecosystems are an important component in global carbon (C) cycles and may exert a large influence on global clinlate change. Predictions of C dynamics require us to consider interactions among many critical factors of soil, hydrology, and vegetation. However, few such integrated C models exist for wetland ecosystems. In this paper, we report a simulation model...

  3. Impact of understory vegetation on soil carbon and nitrogen dynamic in aerially seeded Pinus massoniana plantations

    Science.gov (United States)

    Pan, Ping; Zhao, Fang; Ning, Jinkui; Ouyang, Xunzhi; Zang, Hao

    2018-01-01

    Understory vegetation plays a vital role in regulating soil carbon (C) and nitrogen (N) characteristics due to differences in plant functional traits. Different understory vegetation types have been reported following aerial seeding. While aerial seeding is common in areas with serious soil erosion, few studies have been conducted to investigate changes in soil C and N cycling as affected by understory vegetation in aerially seeded plantations. Here, we studied soil C and N characteristics under two naturally formed understory vegetation types (Dicranopteris and graminoid) in aerially seeded Pinus massoniana Lamb plantations. Across the two studied understory vegetation types, soil organic C was significantly correlated with all measured soil N variables, including total N, available N, microbial biomass N and water-soluble organic N, while microbial biomass C was correlated with all measured variables except soil organic C. Dicranopteris and graminoid differed in their effects on soil C and N process. Except water-soluble organic C, all the other C and N variables were higher in soils with graminoids. The higher levels of soil organic C, microbial biomass C, total N, available N, microbial biomass N and water-soluble organic N were consistent with the higher litter and root quality (C/N) of graminoid vegetation compared to Dicranopteris. Changes in soil C and N cycles might be impacted by understory vegetation types via differences in litter or root quality. PMID:29377926

  4. Influence of vegetation dynamic modeling on the allocation of green and blue waters

    Science.gov (United States)

    Ruiz-Pérez, Guiomar; Francés, Félix

    2015-04-01

    The long history of the Mediterranean region is dominated by the interactions and co-evolution between man and its natural environment. It is important to consider that the Mediterranean region is recurrently or permanently confronted with the scarcity of the water. The issue of climate change is (and will be) aggravating this situation. This raises the question of a loss of services that ecosystems provide to human and also the amount of available water to be used by vegetation. The question of the water cycle, therefore, should be considered in an integrated manner by taking into account both blue water (water in liquid form used for the human needs or which flows into the oceans) and green water (water having the vapor for resulting from evaporation and transpiration processes). In spite of this, traditionally, very few hydrological models have incorporated the vegetation dynamic as a state variable. In fact, most of them are able to represent fairly well the observed discharge, but usually including the vegetation as a static parameter. However, in the last decade, the number of hydrological models which explicitly take into account the vegetation development as a state variable has increased substantially. In this work, we want to analyze if it is really necessary to use a dynamic vegetation model to quantify adequately the distribution of water into blue and green water. The study site is located in the Public Forest Monte de la Hunde y Palomeras (Spain). The vegetation in the study area is dominated by Aleppo pine of high tree density with scant presence of other species. Two different daily models were applied (with static and dynamic vegetation representation respectively) in three different scenarios: dry year (2005), normal year (2008) and wet year (2010). The static vegetation model simulates the evapotranspiration considering the vegetation as a stationary parameter. Contrarily, the dynamic vegetation model connects the hydrological model with a

  5. Projected future vegetation changes for the northwest United States and southwest Canada at a fine spatial resolution using a dynamic global vegetation model.

    Science.gov (United States)

    Shafer, Sarah; Bartlein, Patrick J.; Gray, Elizabeth M.; Pelltier, Richard T.

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0–58.0°N latitude by 136.6–103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070–2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.

  6. Implications of introducing realistic fire response traits in a Dynamic Global Vegetation Model

    Science.gov (United States)

    Kelley, D.; Harrison, S. P.; Prentice, I. C.

    2013-12-01

    Bark thickness is a key trait protecting woody plants against fire damage, while the ability to resprout is a trait that confers competitive advantage over non-resprouting individuals in fire-prone landscapes. Neither trait is well represented in fire-enabled dynamic global vegetation models (DGVMs). Here we describe a version of the Land Processes and eXchanges (LPX-Mv1) DGVM that incorporates both of these traits in a realistic way. From a synthesis of a large number of field studies, we show there is considerable innate variability in bark thickness between species within a plant-functional type (PFT). Furthermore, bark thickness is an adaptive trait at ecosystem level, increasing with fire frequency. We use the data to specify the range of bark thicknesses characteristic of each model PFT. We allow this distribution to change dynamically: thinner-barked trees are killed preferentially by fire, shifting the distribution of bark thicknesses represented in a model grid cell. We use the PFT-specific bark-thickness probability range for saplings during re-establishment. Since it is rare to destroy all trees in a grid cell, this treatment results in average bark thickness increasing with fire frequency and intensity. Resprouting is a prominent adaptation of temperate and tropical trees in fire-prone areas. The ability to resprout from above-ground tissue (apical or epicormic resprouting) results in the fastest recovery of total biomass after disturbance; resprouting from basal or below-ground meristems results in slower recovery, while non-resprouting species must regenerate from seed and therefore take the longest time to recover. Our analyses show that resprouting species have thicker bark than non-resprouting species. Investment in resprouting is accompanied by reduced efficacy of regeneration from seed. We introduce resprouting PFTs in LPX-Mv1 by specifying an appropriate range of bark thickness, allowing resprouters to survive fire and regenerate vegetatively in

  7. Improving dynamic global vegetation model (DGVM) simulation of western U.S. rangelands vegetation seasonal phenology and productivity

    Science.gov (United States)

    Kerns, B. K.; Kim, J. B.; Day, M. A.; Pitts, B.; Drapek, R. J.

    2017-12-01

    Ecosystem process models are increasingly being used in regional assessments to explore potential changes in future vegetation and NPP due to climate change. We use the dynamic global vegetation model MAPSS-Century 2 (MC2) as one line of evidence for regional climate change vulnerability assessments for the US Forest Service, focusing our fine tuning model calibration from observational sources related to forest vegetation. However, there is much interest in understanding projected changes for arid rangelands in the western US such as grasslands, shrublands, and woodlands. Rangelands provide many ecosystem service benefits and local rural human community sustainability, habitat for threatened and endangered species, and are threatened by annual grass invasion. Past work suggested MC2 performance related to arid rangeland plant functional types (PFT's) was poor, and the model has difficulty distinguishing annual versus perennial grasslands. Our objectives are to increase the model performance for rangeland simulations and explore the potential for splitting the grass plant functional type into annual and perennial. We used the tri-state Blue Mountain Ecoregion as our study area and maps of potential vegetation from interpolated ground data, the National Land Cover Data Database, and ancillary NPP data derived from the MODIS satellite. MC2 historical simulations for the area overestimated woodland occurrence and underestimated shrubland and grassland PFT's. The spatial location of the rangeland PFT's also often did not align well with observational data. While some disagreement may be due to differences in the respective classification rules, the errors are largely linked to MC2's tree and grass biogeography and physiology algorithms. Presently, only grass and forest productivity measures and carbon stocks are used to distinguish PFT's. MC2 grass and tree productivity simulation is problematic, in particular grass seasonal phenology in relation to seasonal patterns

  8. CubeSats in Hydrology: Ultra-High Resolution Insights into Vegetation Dynamics and Terrestrial Evaporation

    KAUST Repository

    McCabe, Matthew; Aragon, B.; Houborg, Rasmus; Mascaro, J.

    2017-01-01

    Satellite-based remote sensing has generally necessitated a trade-off between spatial resolution and temporal frequency, affecting the capacity to observe fast hydrological processes and rapidly changing land surface conditions. An avenue for overcoming these spatiotemporal restrictions is the concept of using constellations of satellites, as opposed to the mission focus exemplified by the more conventional space-agency approach to earth observation. Referred to as CubeSats, these platforms offer the potential to provide new insights into a range of earth system variables and processes. Their emergence heralds a paradigm shift from single-sensor launches to an operational approach that envisions tens to hundreds of small, lightweight and comparatively inexpensive satellites placed into a range of low earth orbits. Although current systems are largely limited to sensing in the optical portion of the electromagnetic spectrum, we demonstrate the opportunity and potential that CubeSats present the hydrological community via the retrieval of vegetation dynamics and terrestrial evaporation and foreshadow future sensing capabilities.

  9. CubeSats in Hydrology: Ultra-High Resolution Insights into Vegetation Dynamics and Terrestrial Evaporation

    KAUST Repository

    McCabe, Matthew

    2017-12-01

    Satellite-based remote sensing has generally necessitated a trade-off between spatial resolution and temporal frequency, affecting the capacity to observe fast hydrological processes and rapidly changing land surface conditions. An avenue for overcoming these spatiotemporal restrictions is the concept of using constellations of satellites, as opposed to the mission focus exemplified by the more conventional space-agency approach to earth observation. Referred to as CubeSats, these platforms offer the potential to provide new insights into a range of earth system variables and processes. Their emergence heralds a paradigm shift from single-sensor launches to an operational approach that envisions tens to hundreds of small, lightweight and comparatively inexpensive satellites placed into a range of low earth orbits. Although current systems are largely limited to sensing in the optical portion of the electromagnetic spectrum, we demonstrate the opportunity and potential that CubeSats present the hydrological community via the retrieval of vegetation dynamics and terrestrial evaporation and foreshadow future sensing capabilities.

  10. Vegetation Dynamics in the Upper Guinean Forest Region of West Africa from 2001 to 2015

    Directory of Open Access Journals (Sweden)

    Zhihua Liu

    2016-12-01

    Full Text Available The Upper Guinea Forest (UGF region of West Africa is one of the most climatically marginal and human-impacted tropical forest regions in the world. Research on the patterns and drivers of vegetation change is critical for developing strategies to sustain ecosystem services in the region and to understand how climate and land use change will affect other tropical forests around the globe. We compared six spectral indices calculated from the 2001–2015 MODIS optical-infrared reflectance data with manually-interpreted measurements of woody vegetation cover from high resolution imagery. The tasseled cap wetness (TCW index was found to have the strongest association with woody vegetation cover, whereas greenness indices, such as the enhanced vegetation index (EVI, had relatively weak associations with woody cover. Trends in woody vegetation cover measured with the TCW index were analyzed using Mann–Kendall statistics and were contrasted with trends in vegetation greenness measured with EVI. In the drier West Sudanian Savanna and Guinean Forest-Savanna Mosaic ecoregions, EVI trends were primarily positive, and TCW trends were primarily negative, suggesting that woody vegetation cover was decreasing, while herbaceous vegetation cover is increasing. In the wettest tropical forests in the Western Guinean Lowland Forest ecoregion, declining trends in both TCW and EVI were indicative of widespread forest degradation resulting from human activities. Across all ecoregions, declines in woody cover were less prevalent in protected areas where human activities were restricted. Multiple lines of evidence suggested that human land use and resource extraction, rather than climate trends or short-term climatic anomalies, were the predominant drivers of recent vegetation change in the UGF region of West Africa.

  11. Does gender affect the quality of soil and vegetable amaranth under ...

    African Journals Online (AJOL)

    Consumption of vegetables has been established to prevent cancer, hypertension and many other diseases. Cultivation of vegetables around cities is a lucrative venture and amaranth is fact becoming a leading leafy vegetable for commercial production under peri-urban in Nigeria. The system is a source of economic ...

  12. ALPINE VEGETATION ECOTONE DYNAMICS IN GANGOTRI CATCHMENT USING REMOTE SENSING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    C. P. Singh

    2012-09-01

    Full Text Available Analysis of the satellite imagery reveals two different perspectives of the vegetation ecotone dynamics in Gangotri catchment. On one hand, there is evidence of upward shift in the alpine tree and vegetation ecotone over three decades. On the other hand, there has been densification happening at the past treeline. The time series fAPAR data of two decades from NOAA-AVHRR confirms the greening trend in the area. The density of trees in Chirbasa has gone up whereas in Bhojbasa there is no significant change in NDVI but the number of groves has increased. Near Gaumukh the vegetal activity has not shown any significant change. We found that the treeline extracted from satellite imagery has moved up about 327±80m and other vegetation line has moved up about 401±77m in three decades. The vertical rate of treeline shift is found to be 11m/yr with reference to 1976 treeline; however, this can be 5m/yr if past toposheet records (1924 – 45 are considered as reliable reference. However, the future IPCC scenario based bioclimatic fundamental niche modelling of the Betula utilis (a surrogate to alpine treeline suggests that treeline could be moving upward with an average rate of 3m/yr. This study not only confirms that there is an upward shift of vegetation in the alpine zone of Himalayas, but also indicate that old vegetation ecotones have grown denser

  13. Empirical analysis of vegetation dynamics and the possibility of a catastrophic desertification transition.

    Science.gov (United States)

    Weissmann, Haim; Kent, Rafi; Michael, Yaron; Shnerb, Nadav M

    2017-01-01

    The process of desertification in the semi-arid climatic zone is considered by many as a catastrophic regime shift, since the positive feedback of vegetation density on growth rates yields a system that admits alternative steady states. Some support to this idea comes from the analysis of static patterns, where peaks of the vegetation density histogram were associated with these alternative states. Here we present a large-scale empirical study of vegetation dynamics, aimed at identifying and quantifying directly the effects of positive feedback. To do that, we have analyzed vegetation density across 2.5 × 106 km2 of the African Sahel region, with spatial resolution of 30 × 30 meters, using three consecutive snapshots. The results are mixed. The local vegetation density (measured at a single pixel) moves towards the average of the corresponding rainfall line, indicating a purely negative feedback. On the other hand, the chance of spatial clusters (of many "green" pixels) to expand in the next census is growing with their size, suggesting some positive feedback. We show that these apparently contradicting results emerge naturally in a model with positive feedback and strong demographic stochasticity, a model that allows for a catastrophic shift only in a certain range of parameters. Static patterns, like the double peak in the histogram of vegetation density, are shown to vary between censuses, with no apparent correlation with the actual dynamical features. Our work emphasizes the importance of dynamic response patterns as indicators of the state of the system, while the usefulness of static modality features appears to be quite limited.

  14. The role of vegetation dynamics in the control of atmospheric CO{sub 2} content

    Energy Technology Data Exchange (ETDEWEB)

    Sitch, Stephen

    2000-04-01

    This thesis contains a description of the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM) and its application to infer the role of vegetation dynamics on atmospheric CO{sub 2} content at different time-scales. The model combines vegetation dynamics and biogeochemistry in a modular framework. Individual modules describe ecosystems processes, including vegetation resource competition and production, tissue turnover, growth, fire and mortality, soil and litter biogeochemistry, including the effects of CO{sub 2} on these processes. The model simulates realistic post-disturbance succession in different environments. Seasonal exchange of H{sub 2}O and CO{sub 2} between the terrestrial biosphere and the atmosphere is modelled in reasonable agreement with observation. Global estimates of carbon stocks in soil, litter and vegetation are within their acceptable ranges and the model captures the present-day patterns in vegetation. Fire return intervals are simulated correctly in most regions. Results emphasise the important role of the terrestrial biosphere in both the seasonal cycle and in the inter-annual variability in the growth rate of atmospheric CO{sub 2}. LPJ successfully reproduced both the amplitude and phase of the seasonal cycle of atmospheric CO{sub 2} content as measured at a global network of monitoring stations. The model predicted a small net terrestrial biosphere uptake of CO{sub 2} during the 1980s with a strong CO{sub 2} fertilisation effect, which enhances plant production, reduced by the effects of climate and land use change. Historical land use change and CO{sub 2} fertilisation have been the dominant, albeit opposing factors governing the response of the terrestrial biosphere with respect to carbon storage during the 20th century. LPJ is run using one future climate and atmospheric CO{sub 2} scenario until 2200. Enhanced production due to the CO{sub 2} fertilisation effect eventually reaches an asymptote, and consequently the ability of

  15. SPOT-Based Sub-Field Level Monitoring of Vegetation Cover Dynamics: A Case of Irrigated Croplands

    Directory of Open Access Journals (Sweden)

    Olena Dubovyk

    2015-05-01

    Full Text Available Acquiring multi-temporal spatial information on vegetation condition at scales appropriate for site-specific agricultural management is often complicated by the need for meticulous field measurements. Understanding spatial/temporal crop cover heterogeneity within irrigated croplands may support sustainable land use, specifically in areas affected by land degradation due to secondary soil salinization. This study demonstrates the use of multi-temporal, high spatial resolution (10 m SPOT-4/5 image data in an integrated change vector analysis and spectral mixture analysis (CVA-SMA procedure. This procedure was implemented with the principal objective of mapping sub-field vegetation cover dynamics in irrigated lowland areas within the lowerlands of the Amu Darya River. CVA intensity and direction were calculated separately for the periods of 1998–2006 and 2006–2010. Cumulative change intensity and the overall directional trend were also derived for the entire observation period of 1998–2010. Results show that most of the vector changes were observed between 1998 and 2006; persistent conditions were seen within the study region during the 2006–2010 period. A decreasing vegetation cover trend was identified within 38% of arable land. Areas of decreasing vegetation cover were located principally in the irrigation system periphery where deficient water supply and low soil quality lead to substandard crop development. During the 2006–2010 timeframe, degraded crop cover conditions persisted in 37% of arable land. Vegetation cover increased in 25% of the arable land where irrigation water supply was adequate. This high sub-field crop performance spatial heterogeneity clearly indicates that current land management practices are inefficient. Such information can provide the basis for implementing and adapting irrigation applications and salt leaching techniques to site-specific conditions and thereby make a significant contribution to sustainable

  16. The transformation of vegetation vertical zonality affected by anthropogenic impact in East Fennoscandia (Russia)

    Science.gov (United States)

    Sidorik, Vadim; Miulgauzen, Daria

    2017-04-01

    Ecosystems of East Fennoscandia have been affected by intensive anthropogenic influence that resulted in their significant transformation. Study of ecosystems in the framework of vegetation vertical zonality disturbance as well as its recovery allows to understand the trends of anthropogenically induced changes. The aim of the present research is the comparative analysis of vegetation vertical zonality of the two uplands in East Fennoscandia which may be considered as unaffected and affected by anthropogenic impact. The objects of key studies carried out in the north-west of Kola Peninsula in the vicinity of the Pechenganikel Mining and Metallurgical Plant are represented by ecosystems of Kalkupya (h 357 m) and Hangaslachdenvara (h 284 m) uplands. They are characterized by the similarity in sequence of altitudinal belts due to the position on the northern taiga - forest-tundra boundary. Plant communities of Kalkupya upland have no visible signs of anthropogenic influence, therefore, they can be considered as model ecosystems of the area. The sequence of altitudinal belts is the following: - up to 200 m - pine subshrub and green moss ("zonal") forest replaced by mixed pine and birch forest near the upper boundary; - 200-300 m - birch crooked subshrub wood; - above 300 m - tundra subshrub and lichen communities. Ecosystems of Hangaslachdenvara upland have been damaged by air pollution (SO2, Ni, Cu emissions) of the Pechenganikel Plant. This impact has led to plant community suppression and formation of barren lands. Besides the soil cover was significantly disturbed, especially upper horizons. Burying of soil profiles, represented by Podzols (WRB, 2015), also manifested itself in the exploited part of the area. The vegetation cover of Hangaslachdenvara upland is the following: - up to 130 m - birch and aspen subshrub and grass forest instead of pine forest ("zonal"); - 130-200 m - barren lands instead of pine forest ("zonal"); - above 200 m - barren lands instead of

  17. Nitrogen deposition and soil carbon content affect nitrogen mineralization during primary succession in acid inland drift sand vegetation

    NARCIS (Netherlands)

    Sparrius, L.B.; Kooijman, A.M.

    2013-01-01

    Background and aims Two inland dunes in the Netherlands receiving low (24) and high (41 kg N ha−1 yr−1) nitrogen (N) deposition were compared for N dynamics and microbial activity to investigate the potential effect of N on succession rate of the vegetation and loss of pioneer habitats. Methods

  18. Soil Water Balance and Vegetation Dynamics in two Water-limited Mediterranean Ecosystem on Sardinia under past and future climate change

    Science.gov (United States)

    Corona, R.; Montaldo, N.; Albertson, J. D.

    2016-12-01

    hydrometeorological scenarios in the two contrasting ecosystems. Results demonstrate that vegetation dynamics are influenced by the inter-annual variability of atmospheric forcing, with vegetation density changing significantly according to seasonal rainfall amount. At the same time the vegetation dynamics affect the soil water balance.

  19. Understanding fruit and vegetable consumption in children and adolescents. The contributions of affect, self-concept and habit strength.

    Science.gov (United States)

    Albani, Viviana; Butler, Laurie T; Traill, W Bruce; Kennedy, Orla B

    2018-01-01

    Affective processes and the role of automaticity are increasingly recognised as critical in determining food choice. This study investigated the association of affective attitude, self-identity and habit with fruit and vegetable (FV) intentions and intake in children. Previous studies have not fully explored their implications for children of different age groups and have not considered their independent contribution as part of a coherent model of behaviour that also controls for other psychosocial and environmental determinants of intake. Data was collected through face-to-face interviews with 362 children, 9-15 years old. Children were asked to report on measures of affective attitude, cognitive attitude, self-concept, social norms and facilitating factors following Triandis' Theory of Interpersonal Behaviour (TIB). Three stage least squares was used to estimate the independent association of affective attitude and self-concept with intentions and of intentions and habit with intake. Self-concept had the most prominent role in explaining intentions irrespective of age for both fruit and vegetables. The importance of affective attitude varied by age and with fruit and vegetables, with greater importance for vegetables and for children aged 11-13 years. Cognitive attitude was more relevant than affective attitude for 14 to 15 year-olds' fruit intentions. Intake was more strongly associated with habit than intentions, with stronger associations for 14 to 15 year-olds. The current findings support the importance of self-concept for FV motivations and provide further evidence on the importance of habit to FV intake in young and older children and adolescents. Results also support a targeted usefulness of affective attitude for fruit and vegetable intentions. The discussion considers potential ways in which these constructs can be incorporated into interventions to increase FV intake in children. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Evolution and challenges of dynamic global vegetation models for some aspects of plant physiology and elevated atmospheric CO2.

    Science.gov (United States)

    Rezende, L F C; Arenque, B C; Aidar, S T; Moura, M S B; Von Randow, C; Tourigny, E; Menezes, R S C; Ometto, J P H B

    2016-07-01

    Dynamic global vegetation models (DGVMs) simulate surface processes such as the transfer of energy, water, CO2, and momentum between the terrestrial surface and the atmosphere, biogeochemical cycles, carbon assimilation by vegetation, phenology, and land use change in scenarios of varying atmospheric CO2 concentrations. DGVMs increase the complexity and the Earth system representation when they are coupled with atmospheric global circulation models (AGCMs) or climate models. However, plant physiological processes are still a major source of uncertainty in DGVMs. The maximum velocity of carboxylation (Vcmax), for example, has a direct impact over productivity in the models. This parameter is often underestimated or imprecisely defined for the various plant functional types (PFTs) and ecosystems. Vcmax is directly related to photosynthesis acclimation (loss of response to elevated CO2), a widely known phenomenon that usually occurs when plants are subjected to elevated atmospheric CO2 and might affect productivity estimation in DGVMs. Despite this, current models have improved substantially, compared to earlier models which had a rudimentary and very simple representation of vegetation-atmosphere interactions. In this paper, we describe this evolution through generations of models and the main events that contributed to their improvements until the current state-of-the-art class of models. Also, we describe some main challenges for further improvements to DGVMs.

  1. Analysis of Decadal Vegetation Dynamics Using Multi-Scale Satellite Images

    Science.gov (United States)

    Chiang, Y.; Chen, K.

    2013-12-01

    This study aims at quantifying vegetation fractional cover (VFC) by incorporating multi-resolution satellite images, including Formosat-2(RSI), SPOT(HRV/HRG), Landsat (MSS/TM) and Terra/Aqua(MODIS), to investigate long-term and seasonal vegetation dynamics in Taiwan. We used 40-year NDVI records for derivation of VFC, with field campaigns routinely conducted to calibrate the critical NDVI threshold. Given different sensor capabilities in terms of their spatial and spectral properties, translation and infusion of NDVIs was used to assure NDVI coherence and to determine the fraction of vegetation cover at different spatio-temporal scales. Based on the proposed method, a bimodal sequence of intra-annual VFC which corresponds to the dual-cropping agriculture pattern was observed. Compared to seasonal VFC variation (78~90%), decadal VFC reveals moderate oscillations (81~86%), which were strongly linked with landuse changes and several major disturbances. This time-series mapping of VFC can be used to examine vegetation dynamics and its response associated with short-term and long-term anthropogenic/natural events.

  2. Does school environment affect 11-year-olds' fruit and vegetable intake in Denmark?

    DEFF Research Database (Denmark)

    Krølner, Rikke; Due, Pernille; Rasmussen, Mette

    2009-01-01

    It is often found that adolescents eat too little fruit and vegetables. We examined the importance of school for 11-year-olds' daily intake measured by food frequency- and 24-h recall questionnaires in Danish data from the European 2003 Pro Children Survey. Multilevel logistic regression analyses...... > or = 130 g vegetables/day. Most of the total variance in students' intake occurred at the individual level (93-98%). There were larger between-school variations in vegetable intake than in fruit intake. Fruit and vegetable consumption clustered within schools to a larger degree for boys than girls...

  3. Potential role of vegetation dynamics on recent extreme droughts over tropical South America

    Science.gov (United States)

    Wang, G.; Erfanian, A.; Fomenko, L.

    2017-12-01

    Tropical South America is a drought hot spot. In slightly over a decade (2005-2016), the region encountered three extreme droughts (2005, 2010, and 2016). Recurrent extreme droughts not only impact the region's eco-hydrology and socio-economy, but are also globally important as they can transform the planet's largest rainforest, the Amazon, from a carbon sink to a carbon source. Understanding drought drivers and mechanisms underlying extreme droughts in tropical South America can help better project the fate of the Amazon rainforest in a changing climate. In this study we use a regional climate model (RegCM4.3.4) coupled with a comprehensive land-surface model (CLM4.5) to study the present-day hydroclimate of the region, focusing specifically on what might have caused the frequent recurrence of extreme droughts. In the context of observation natural variability of the global oceanic forcing, we tackle the role of land-atmosphere interactions and ran the model with and without dynamic vegetation to study how vegetation dynamics and carbon-nitrogen cycles may have influenced the drought characteristics. Our results demonstrate skillful simulation of the South American climate in the model, and indicate substantial sensitivity of the region's hydroclimatology to vegetation dynamics. This presentation will compare the role of global oceanic forcing versus regional land surface feedback in the recent recurrent droughts, and will characterize the effects of vegetation dynamics in enhancing the drought severity. Preliminary results on future projections of the regional ecosystem and droughts perspective will be also presented.

  4. Positive Affect and the Complex Dynamics of Human Flourishing

    Science.gov (United States)

    Fredrickson, Barbara L.; Losada, Marcial F.

    2005-01-01

    Extending B. L. Fredrickson's (1998) broaden-and-build theory of positive emotions and M. Losada's (1999) nonlinear dynamics model of team performance, the authors predict that a ratio of positive to negative affect at or above 2.9 will characterize individuals in flourishing mental health. Participants (N=188) completed an initial survey to…

  5. Relationships between vegetation dynamics and hydroclimatic drivers in the northern high-latitude uplands

    Science.gov (United States)

    Wang, H.; Tetzlaff, D.; Buttle, J. M.; Carey, S. K.; Laudon, H.; McNamara, J. P.; Soulsby, C.; Spence, C.

    2015-12-01

    IPCC projections show that climate warming will be particularly high in northern high-latitude regions, which has profound ecohydrological implications: a small rise of temperature may result in lower water availability in summer due to less rainfall and more evapotranspiration, increase flooding risks by accelerating melting rates in spring, and more rain rather than snow in winter, etc. These impacts will affect vegetation communities by altering timing of the spring "green-up" and fall "senescence". Change in vegetation water use will feedback to atmospheric and hydrological cycles. Here, we report results from the PLATO "Plant-water interlinkages in northern uplands - mediation of climate change?" project where we investigate water uptake by plants and consequent water availability in northern regions along a cross-regional climate gradient to understand future responses to change in high-latitude uplands. Six sites in Sweden (Krycklan), Canada (Wolf Creek; Baker Creek; Dorset), Scotland (Girnock) and the USA (Dry Creek) span moisture and energy gradients found at high-latitudes. We are presenting preliminary results of vegetation phenology changes from 2000 to 2014 by analysing remote sensing vegetation indices. The relationship between vegetation phenology and climatic drivers (temperature and precipitation) is also investigated.

  6. Cooking time but not cooking method affects children's acceptance of Brassica vegetables

    NARCIS (Netherlands)

    Poelman, A.A.M.; Delahunty, C.M.; Graaf, de C.

    2013-01-01

    The home environment potentially presents a simple means to increase acceptance of sensory properties of vegetables by preparation. This research investigated how preparation can effectively impact upon children's acceptance for vegetables. Five- and six-year old children (n = 82, balanced for

  7. On the statistical analysis of vegetation change: a wetland affected by water extraction and soil acidification

    NARCIS (Netherlands)

    Braak, ter C.J.F.; Wiertz, J.

    1994-01-01

    A case study is presented on the statistical analysis and interpretation of vegetation change without precise information on environmental change. The changes in a vegetation of a Junco-Molinion grassland are evaluated on the basis of relevés of 1977 and 1988 (20 plots) from a small nature reserve

  8. Variations in mountain vegetation use by reindeer (Rangifer tarandus) affects dry heath but not grass heath

    NARCIS (Netherlands)

    Moen, J.; Boogerd, C.; Skarin, A.

    2009-01-01

    Question: Are differences in landscape use of semi-domesticated reindeer reflected in the vegetation of summer grazing grounds? Location: Alpine heaths, central east Sweden. Methods: Dry heath and grass heath vegetation plots with inferred grazing intensities (high, intermediate and low) were

  9. Advances on Modelling Riparian Vegetation-Hydromorphology Interactions

    NARCIS (Netherlands)

    Solari, L.; Van Oorschot, M.; Belletti, B.; Hendriks, D.; Rinaldi, M.; Vargas-Luna, A.

    2016-01-01

    Riparian vegetation actively interacts with fluvial systems affecting river hydrodynamics, morphodynamics and groundwater. These interactions can be coupled because both vegetation and hydromorphology (i.e. the combined scientific study of hydrology and fluvial geomorphology) involve dynamic

  10. Dynamics of learner affective development in early FLL

    Directory of Open Access Journals (Sweden)

    Jelena Mihaljević Djigunović

    2012-10-01

    Full Text Available Affective learner factors were first considered as a cause of success in language learning. This was followed by a change in approach and recently authors (e.g., Edelenbos, Johnstone, & Kubanek, 2006 have considered them an important outcome, especially in early foreign language learning (FLL. Current research into affective learner factors in early FLL tries to catch the developmental aspects too, and studies are emerging that take a contextual view as well. This paper describes a study on affective characteristics of young FL learners that combines the developmental and contextual perspectives. Using the case study methodology the author analyses the affective profiles of three young learners of English as a foreign language who were followed for 4 years. The analyses are done taking into account their immediate language learning environment, home support, out-of-school exposure to English and language achievement. The findings suggest that affective learner factors contribute to the dynamic complexity of early FLL.

  11. Daily Interpersonal and Affective Dynamics in Personality Disorder

    Science.gov (United States)

    Wright, Aidan G.C.; Hopwood, Christopher J.; Simms, Leonard J.

    2015-01-01

    In this naturalistic study we adopt the lens of interpersonal theory to examine between-and within-person differences in dynamic processes of daily affect and interpersonal behaviors among individuals (N = 101) previously diagnosed with personality disorders who completed daily diaries over the course of 100 days. Dispositional ratings of interpersonal problems and measures of daily stress were used as predictors of daily shifts in interpersonal behavior and affect in multilevel models. Results indicate that ~40%–50% of the variance in interpersonal behavior and affect is due to daily fluctuations, which are modestly related to dispositional measures of interpersonal problems but strongly related to daily stress. The findings support conceptions of personality disorders as a dynamic form of psychopathology involving the individuals interacting with and regulating in response to the contextual features of their environment. PMID:26200849

  12. Testing the performance of a Dynamic Global Ecosystem Model: Water balance, carbon balance, and vegetation structure

    Science.gov (United States)

    Kucharik, Christopher J.; Foley, Jonathan A.; Delire, Christine; Fisher, Veronica A.; Coe, Michael T.; Lenters, John D.; Young-Molling, Christine; Ramankutty, Navin; Norman, John M.; Gower, Stith T.

    2000-09-01

    While a new class of Dynamic Global Ecosystem Models (DGEMs) has emerged in the past few years as an important tool for describing global biogeochemical cycles and atmosphere-biosphere interactions, these models are still largely untested. Here we analyze the behavior of a new DGEM and compare the results to global-scale observations of water balance, carbon balance, and vegetation structure. In this study, we use version 2 of the Integrated Biosphere Simulator (IBIS), which includes several major improvements and additions to the prototype model developed by Foley et al. [1996]. IBIS is designed to be a comprehensive model of the terrestrial biosphere; the model represents a wide range of processes, including land surface physics, canopy physiology, plant phenology, vegetation dynamics and competition, and carbon and nutrient cycling. The model generates global simulations of the surface water balance (e.g., runoff), the terrestrial carbon balance (e.g., net primary production, net ecosystem exchange, soil carbon, aboveground and belowground litter, and soil CO2 fluxes), and vegetation structure (e.g., biomass, leaf area index, and vegetation composition). In order to test the performance of the model, we have assembled a wide range of continental and global-scale data, including measurements of river discharge, net primary production, vegetation structure, root biomass, soil carbon, litter carbon, and soil CO2 flux. Using these field data and model results for the contemporary biosphere (1965-1994), our evaluation shows that simulated patterns of runoff, NPP, biomass, leaf area index, soil carbon, and total soil CO2 flux agree reasonably well with measurements that have been compiled from numerous ecosystems. These results also compare favorably to other global model results.

  13. Floodplain Vegetation Productivity and Carbon Cycle Dynamics of the Middle Fork Flathead River of Northwest Montana

    Science.gov (United States)

    Oakins, A. J.; Kimball, J. S.; Relyea, S.; Stanford, J. A.

    2005-05-01

    River floodplains are vital natural features that store floodwaters, improve water quality, provide habitat, and create recreational opportunities. Recent studies have shown that strong interactions among flooding, channel and sediment movement, vegetation, and groundwater create a dynamic shifting habitat mosaic that promotes biodiversity and complex food webs. Multiple physical and environmental processes interact within these systems to influence forest productivity, including water availability, nutrient supply, soil texture, and disturbance history. This study is designed to quantify the role of groundwater depth and meteorology in determining spatial and temporal patterns of net primary productivity (NPP) within the Nyack floodplain of the Middle Fork Flathead River, Northwestern Montana. We examine three intensive field sites composed of mature, mixed deciduous and evergreen conifer forest with varying hydrologic and vegetative characteristics. We use a modified Biome-BGC ecosystem process model with field-collected data (LAI, increment growth cores, groundwater depth, vegetation sap-flow, and local meteorology) to describe the effects of floodplain groundwater dynamics on vegetation community structure, and carbon/nitrogen cycling. Initial results indicate that conifers are more sensitive than deeper-rooted deciduous species to variability in groundwater depth and meteorological conditions. Forest productivity also shows a non-linear response to groundwater depth. Sites with intermediate groundwater depths (0.2-0.5m) allow vegetation to maintain connectivity to groundwater over longer periods during the growing season, are effectively uncoupled from atmospheric constraints on photosynthesis, and generally have greater productivity. Shallow groundwater sites (<0.2m) are less productive due to the indirect effects of reduced soil aerobic decomposition and reduced plant available nitrogen.

  14. Network Diversity and Affect Dynamics: The Role of Personality Traits

    Science.gov (United States)

    Alshamsi, Aamena; Pianesi, Fabio; Lepri, Bruno; Pentland, Alex; Rahwan, Iyad

    2016-01-01

    People divide their time unequally among their social contacts due to time constraints and varying strength of relationships. It was found that high diversity of social communication, dividing time more evenly among social contacts, is correlated with economic well-being both at macro and micro levels. Besides economic well-being, it is not clear how the diversity of social communication is also associated with the two components of individuals’ subjective well-being, positive and negative affect. Specifically, positive affect and negative affect are two independent dimensions representing the experience (feeling) of emotions. In this paper, we investigate the relationship between the daily diversity of social communication and dynamic affect states that people experience in their daily lives. We collected two high-resolution datasets that capture affect scores via daily experience sampling surveys and social interaction through wearable sensing technologies: sociometric badges for face-to-face interaction and smart phones for mobile phone calls. We found that communication diversity correlates with desirable affect states–e.g. an increase in the positive affect state or a decrease in the negative affect state–for some personality types, but correlates with undesirable affect states for others. For example, diversity in phone calls is experienced as good by introverts, but bad by extroverts; diversity in face-to-face interaction is experienced as good by people who tend to be positive by nature (trait) but bad for people who tend to be not positive by nature. More broadly, the moderating effect of personality type on the relationship between diversity and affect was detected without any knowledge of the type of social tie or the content of communication. This provides further support for the power of unobtrusive sensing in understanding social dynamics, and in measuring the effect of potential interventions designed to improve well-being. PMID:27035904

  15. Network Diversity and Affect Dynamics: The Role of Personality Traits.

    Directory of Open Access Journals (Sweden)

    Aamena Alshamsi

    Full Text Available People divide their time unequally among their social contacts due to time constraints and varying strength of relationships. It was found that high diversity of social communication, dividing time more evenly among social contacts, is correlated with economic well-being both at macro and micro levels. Besides economic well-being, it is not clear how the diversity of social communication is also associated with the two components of individuals' subjective well-being, positive and negative affect. Specifically, positive affect and negative affect are two independent dimensions representing the experience (feeling of emotions. In this paper, we investigate the relationship between the daily diversity of social communication and dynamic affect states that people experience in their daily lives. We collected two high-resolution datasets that capture affect scores via daily experience sampling surveys and social interaction through wearable sensing technologies: sociometric badges for face-to-face interaction and smart phones for mobile phone calls. We found that communication diversity correlates with desirable affect states--e.g. an increase in the positive affect state or a decrease in the negative affect state--for some personality types, but correlates with undesirable affect states for others. For example, diversity in phone calls is experienced as good by introverts, but bad by extroverts; diversity in face-to-face interaction is experienced as good by people who tend to be positive by nature (trait but bad for people who tend to be not positive by nature. More broadly, the moderating effect of personality type on the relationship between diversity and affect was detected without any knowledge of the type of social tie or the content of communication. This provides further support for the power of unobtrusive sensing in understanding social dynamics, and in measuring the effect of potential interventions designed to improve well-being.

  16. Network Diversity and Affect Dynamics: The Role of Personality Traits.

    Science.gov (United States)

    Alshamsi, Aamena; Pianesi, Fabio; Lepri, Bruno; Pentland, Alex; Rahwan, Iyad

    2016-01-01

    People divide their time unequally among their social contacts due to time constraints and varying strength of relationships. It was found that high diversity of social communication, dividing time more evenly among social contacts, is correlated with economic well-being both at macro and micro levels. Besides economic well-being, it is not clear how the diversity of social communication is also associated with the two components of individuals' subjective well-being, positive and negative affect. Specifically, positive affect and negative affect are two independent dimensions representing the experience (feeling) of emotions. In this paper, we investigate the relationship between the daily diversity of social communication and dynamic affect states that people experience in their daily lives. We collected two high-resolution datasets that capture affect scores via daily experience sampling surveys and social interaction through wearable sensing technologies: sociometric badges for face-to-face interaction and smart phones for mobile phone calls. We found that communication diversity correlates with desirable affect states--e.g. an increase in the positive affect state or a decrease in the negative affect state--for some personality types, but correlates with undesirable affect states for others. For example, diversity in phone calls is experienced as good by introverts, but bad by extroverts; diversity in face-to-face interaction is experienced as good by people who tend to be positive by nature (trait) but bad for people who tend to be not positive by nature. More broadly, the moderating effect of personality type on the relationship between diversity and affect was detected without any knowledge of the type of social tie or the content of communication. This provides further support for the power of unobtrusive sensing in understanding social dynamics, and in measuring the effect of potential interventions designed to improve well-being.

  17. Climate-vegetation-fire interactions and their impact on long-term carbon dynamics in a boreal peatland landscape in northern Manitoba, Canada

    Science.gov (United States)

    Camill, Philip; Barry, Ann; Williams, Evie; Andreassi, Christian; Limmer, Jacob; Solick, Donald

    2009-12-01

    Climate warming may increase the size and frequency of fires in the boreal biome, possibly causing greater carbon release that amplifies warming. However, in peatlands, vegetation change may also control long-term fire and carbon accumulation, confounding simple relationships between climate, fire, and carbon accumulation. Using 17 peat cores dating to 8000 cal years B.P. from northern Manitoba, Canada, we addressed the following questions: (1) Do past climate changes correlate with shifts in peatland vegetation? (2) What is the relationship between peatland vegetation and fire severity? (3) What is the mean return interval for boreal peat fires, and how does it change across fires of different severities? (4) How does fire severity affect carbon accumulation rates? (5) Do fire and long-term carbon accumulation change directly in response to climate or indirectly though climate-driven changes in vegetation? We measured carbon accumulation rates, fire severity, and return intervals using macroscopic charcoal and changes in vegetation using macrofossils. Climate and vegetation changes covaried, with shifts from wetter fen to drier, forested bog communities during the Holocene Thermal Maximum (HTM). Fires became more severe following the shift to forested bogs, with fire severity peaking after 4000 cal years B.P. rather than during the HTM. Rising fire severity, in turn, was correlated with a significant decrease in carbon accumulation from ˜6000 to 2000 cal years B.P. The Medieval Warm Period and Little Ice Age affected vegetation composition and permafrost, further impacting fire and carbon accumulation. Our results indicate that long-term changes in fire and carbon dynamics are mediated by climate-driven changes in vegetation.

  18. Impact of dynamic vegetation phenology on the simulated pan-Arctic land surface state

    Science.gov (United States)

    Teufel, Bernardo; Sushama, Laxmi; Arora, Vivek K.; Verseghy, Diana

    2018-03-01

    The pan-Arctic land surface is undergoing rapid changes in a warming climate, with near-surface permafrost projected to degrade significantly during the twenty-first century. Vegetation-related feedbacks have the potential to influence the rate of degradation of permafrost. In this study, the impact of dynamic phenology on the pan-Arctic land surface state, particularly near-surface permafrost, for the 1961-2100 period, is assessed by comparing two simulations of the Canadian Land Surface Scheme (CLASS)—one with dynamic phenology, modelled using the Canadian Terrestrial Ecosystem Model (CTEM), and the other with prescribed phenology. These simulations are forced by atmospheric data from a transient climate change simulation of the 5th generation Canadian Regional Climate Model (CRCM5) for the Representative Concentration Pathway 8.5 (RCP8.5). Comparison of the CLASS coupled to CTEM simulation to available observational estimates of plant area index, spatial distribution of permafrost and active layer thickness suggests that the model captures reasonably well the overall distribution of vegetation and permafrost. It is shown that the most important impact of dynamic phenology on the land surface occurs through albedo and it is demonstrated for the first time that vegetation control on albedo during late spring and early summer has the highest potential to impact the degradation of permafrost. While both simulations show extensive near-surface permafrost degradation by the end of the twenty-first century, the strong projected response of vegetation to climate warming and increasing CO2 concentrations in the coupled simulation results in accelerated permafrost degradation in the northernmost continuous permafrost regions.

  19. VEGETATION MAPPING IN WETLANDS

    Directory of Open Access Journals (Sweden)

    F. PEDROTTI

    2004-01-01

    Full Text Available The current work examines the main aspects of wetland vegetation mapping, which can be summarized as analysis of the ecological-vegetational (ecotone gradients; vegetation complexes; relationships between vegetation distribution and geomorphology; vegetation of the hydrographic basin lo which the wetland in question belongs; vegetation monitoring with help of four vegetation maps: phytosociological map of the real and potential vegetation, map of vegetation dynamical tendencies, map of vegetation series.

  20. At the Crossroads: Does the Configuration of Roadside Vegetation Affect Woodland Bird Communities in Rural Landscapes?

    Science.gov (United States)

    Hall, Mark; Nimmo, Dale; Bennett, Andrew F.

    2016-01-01

    In agricultural regions worldwide, linear networks of vegetation such as hedges, fencerows and live fences provide habitat for plant and animal species in heavily modified landscapes. In Australia, networks of remnant native vegetation along roadsides are a distinctive feature of many rural landscapes. Here, we investigated the richness and composition of woodland-dependent bird communities in networks of eucalypt woodland vegetation along roadsides, in an agricultural region in which >80% of native woodland and forest vegetation has been cleared. We stratified sites in a) cross sections and b) linear strips of roadside vegetation, to test the influence on woodland birds of site location and configuration in the linear network (the ‘intersection effect’). We also examined the influence of tree size at the site, the amount of wooded vegetation surrounding the site, and the abundance of an aggressive native species, the noisy miner Manorina melanocephala. Birds were surveyed at 26 pairs of sites (cross section or linear strip) on four occasions. A total of 66 species was recorded, including 35 woodland species. The richness of woodland bird species was influenced by site configuration, with more species present at cross sections, particularly those with larger trees (>30 cm diameter). However, the strongest influence on species richness was the relative abundance of the noisy miner. The richness of woodland birds at sites where noisy miners were abundant was ~20% of that where miners were absent. These results recognise the value of networks of roadside vegetation as habitat for woodland birds in depleted agricultural landscapes; but highlight that this value is not realised for much of this vast vegetation network because of the dominance of the noisy miner. Nevertheless, roadside vegetation is particularly important where the configuration of networks create nodes that facilitate movement. Globally, the protection, conservation and restoration of such linear

  1. At the Crossroads: Does the Configuration of Roadside Vegetation Affect Woodland Bird Communities in Rural Landscapes?

    Science.gov (United States)

    Hall, Mark; Nimmo, Dale; Bennett, Andrew F

    2016-01-01

    In agricultural regions worldwide, linear networks of vegetation such as hedges, fencerows and live fences provide habitat for plant and animal species in heavily modified landscapes. In Australia, networks of remnant native vegetation along roadsides are a distinctive feature of many rural landscapes. Here, we investigated the richness and composition of woodland-dependent bird communities in networks of eucalypt woodland vegetation along roadsides, in an agricultural region in which >80% of native woodland and forest vegetation has been cleared. We stratified sites in a) cross sections and b) linear strips of roadside vegetation, to test the influence on woodland birds of site location and configuration in the linear network (the 'intersection effect'). We also examined the influence of tree size at the site, the amount of wooded vegetation surrounding the site, and the abundance of an aggressive native species, the noisy miner Manorina melanocephala. Birds were surveyed at 26 pairs of sites (cross section or linear strip) on four occasions. A total of 66 species was recorded, including 35 woodland species. The richness of woodland bird species was influenced by site configuration, with more species present at cross sections, particularly those with larger trees (>30 cm diameter). However, the strongest influence on species richness was the relative abundance of the noisy miner. The richness of woodland birds at sites where noisy miners were abundant was ~20% of that where miners were absent. These results recognise the value of networks of roadside vegetation as habitat for woodland birds in depleted agricultural landscapes; but highlight that this value is not realised for much of this vast vegetation network because of the dominance of the noisy miner. Nevertheless, roadside vegetation is particularly important where the configuration of networks create nodes that facilitate movement. Globally, the protection, conservation and restoration of such linear

  2. The Spatial and Temporal Dynamics of Remotely-sensed Vegetation Phenology in Central Asia in the 1982-2011 Period

    Czech Academy of Sciences Publication Activity Database

    Bohovič, Roman; Dobrovolný, Petr; Klein, D.

    2016-01-01

    Roč. 2016, č. 49 (2016), s. 279-299 ISSN 2279-7254 Institutional support: RVO:67179843 Keywords : Phenology * vegetation dynamics * NDVI * GIMMS * Central Asia * SOS Subject RIV: EH - Ecology, Behaviour Impact factor: 1.533, year: 2016

  3. Co-evolution of Riparian Vegetation and Channel Dynamics in an Aggrading Braided River System, Mount Pinatubo, Philippines

    Science.gov (United States)

    Gran, K. B.; Michal, T.

    2014-12-01

    Increased bank stability by riparian vegetation in braided rivers can decrease bed reworking rates and focus the flow. The magnitude of influence and resulting channel morphology are functions of vegetation strength vs. channel dynamics, a concept encapsulated in a dimensionless ratio between timescales for vegetation growth and channel reworking known as T*. We investigate this relationship in an aggrading braided river at Mount Pinatubo, Philippines, and compare results to numerical and physical models. Gradual reductions in post-eruption sediment loads have reduced bed reworking rates, allowing vegetation to persist year-round and impact channel dynamics on the Pasig-Potrero and Sacobia Rivers. From 2009-2011, we collected data detailing vegetation extent, type, density, and root strength. Incorporating these data into RipRoot and BSTEM models shows cohesion due to roots increased from zero in unvegetated conditions to >10.2 kPa in densely-growing grasses. Field-based parameters were incorporated into a cellular model comparing vegetation growth and sediment mobility effects on braided channel dynamics. The model shows that both low sediment mobility and high vegetation strength lead to less active systems, reflecting trends observed in the field. An estimated T* between 0.8 - 2.3 for the Pasig-Potrero River suggests channels were mobile enough to maintain the braidplain width clear of vegetation and even experience slight gains in area through annual removal of existing vegetation. However, persistent vegetation focused flow and thus aggradation over the unvegetated fraction of braidplain, leading to an aggradational imbalance and transition to a more avulsive state. While physical models predict continued narrowing of the active braidplain as T* declines, the future trajectory of channel-vegetation interactions at Pinatubo as sedimentation rates decline appears more complicated due to strong seasonal variability in precipitation and sediment loads. By 2011

  4. Preharvest and postharvest factors affecting yield and nutrient contents of vegetable amaranth (Var. Amaranthus hypochondriacus)

    NARCIS (Netherlands)

    Onyango, C.

    2010-01-01

    KEYWORDS: Traditional leafy vegetables, Amaranth, diammonium phosphate, manure, yields, nutrients, antinutrients, phenolics, oxalates, small-scale farmers, Kenya Agriculture in developing countries faces a number of pressing challenges including population growth, widespread poverty and food

  5. The role of riparian vegetation density, channel orientation and water velocity in determining river temperature dynamics

    Science.gov (United States)

    Garner, Grace; Malcolm, Iain A.; Sadler, Jonathan P.; Hannah, David M.

    2017-10-01

    A simulation experiment was used to understand the importance of riparian vegetation density, channel orientation and flow velocity for stream energy budgets and river temperature dynamics. Water temperature and meteorological observations were obtained in addition to hemispherical photographs along a ∼1 km reach of the Girnock Burn, a tributary of the Aberdeenshire Dee, Scotland. Data from nine hemispherical images (representing different uniform canopy density scenarios) were used to parameterise a deterministic net radiation model and simulate radiative fluxes. For each vegetation scenario, the effects of eight channel orientations were investigated by changing the position of north at 45° intervals in each hemispheric image. Simulated radiative fluxes and observed turbulent fluxes drove a high-resolution water temperature model of the reach. Simulations were performed under low and high water velocity scenarios. Both velocity scenarios yielded decreases in mean (≥1.6 °C) and maximum (≥3.0 °C) temperature as canopy density increased. Slow-flowing water resided longer within the reach, which enhanced heat accumulation and dissipation, and drove higher maximum and lower minimum temperatures. Intermediate levels of shade produced highly variable energy flux and water temperature dynamics depending on the channel orientation and thus the time of day when the channel was shaded. We demonstrate that in many reaches relatively sparse but strategically located vegetation could produce substantial reductions in maximum temperature and suggest that these criteria are used to inform future river management.

  6. Relaxation dynamics and thermophysical properties of vegetable oils using time-domain reflectometry.

    Science.gov (United States)

    Sonkamble, Anil A; Sonsale, Rahul P; Kanshette, Mahesh S; Kabara, Komal B; Wananje, Kunal H; Kumbharkhane, Ashok C; Sarode, Arvind V

    2017-04-01

    Dielectric relaxation studies of vegetable oils are important for insights into their hydrogen bonding and intermolecular dynamics. The dielectric relaxation and thermo physical properties of triglycerides present in some vegetable oils have been measured over the frequency range of 10 MHz to 7 GHz in the temperature region 25 to 10 °C using a time-domain reflectometry approach. The frequency and temperature dependence of dielectric constants and dielectric loss factors were determined for coconut, peanut, soya bean, sunflower, palm, and olive oils. The dielectric permittivity spectra for each of the studied vegetable oils are explained using the Debye model with their complex dielectric permittivity analyzed using the Havriliak-Negami equation. The dielectric parameters static permittivity (ε 0 ), high-frequency limiting static permittivity (ε ∞ ), average relaxation time (τ 0 ), and thermodynamic parameters such as free energy (∆F τ ), enthalpy (∆H τ ), and entropy of activation (∆S τ ) were also measured. Calculation and analysis of these thermodynamic parameters agrees with the determined dielectric parameters, giving insights into the temperature dependence of the molecular dynamics of these systems.

  7. Late Quaternary vegetation, biodiversity and fire dynamics on the southern Brazilian highland and their implication for conservation and management of modern Araucaria forest and grassland ecosystems.

    Science.gov (United States)

    Behling, Hermann; Pillar, Valério DePatta

    2007-02-28

    Palaeoecological background information is needed for management and conservation of the highly diverse mosaic of Araucaria forest and Campos (grassland) in southern Brazil. Questions on the origin of Araucaria forest and grasslands; its development, dynamic and stability; its response to environmental change such as climate; and the role of human impact are essential. Further questions on its natural stage of vegetation or its alteration by pre- and post-Columbian anthropogenic activity are also important. To answer these questions, palaeoecological and palaeoenvironmental data based on pollen, charcoal and multivariate data analysis of radiocarbon dated sedimentary archives from southern Brazil are used to provide an insight into past vegetation changes, which allows us to improve our understanding of the modern vegetation and to develop conservation and management strategies for the strongly affected ecosystems in southern Brazil.

  8. Positive Affect and the Complex Dynamics of Human Flourishing

    OpenAIRE

    Fredrickson, Barbara L.; Losada, Marcial F.

    2005-01-01

    Extending B. L. Fredrickson’s (1998) broaden-and-build theory of positive emotions and M. Losada’s (1999) nonlinear dynamics model of team performance, the authors predict that a ratio of positive to negative affect at or above 2.9 will characterize individuals in flourishing mental health. Participants (N = 188) completed an initial survey to identify flourishing mental health and then provided daily reports of experienced positive and negative emotions over 28 days. Results showed that the ...

  9. Five millennia of frozen vegetation and fire dynamics from an ice core in the Mongolian Altai

    Science.gov (United States)

    Brügger, S. O.; Gobet, E.; Sigl, M.; Osmont, D.; Papina, T.; Rudaya, N.; Schwikowski, M.; Tinner, W.

    2017-12-01

    The steppes of the Altai region in Central Asia are highly vulnerable to e.g. drought and overgrazing. Degradation during the past decades may undermine their resilience under global change conditions. Knowledge about past vegetation and fire dynamics in Mongolian Altai may contribute to a better understanding of future climate and human impact responses, however, paleo records are scarce in the area. Our novel high-alpine ice record from Tsambagarav glacier (48°39.338'N, 90°50.826'E, 4130m asl) in the Mongolian Altai provides unique paleoenvironmental informations at the landscape scale. The site is surrounded by dry steppes with scattered boreal tree stands. We assume that the site collects pollen and spores within several hundred km. The archive provides an exceptional temporal resolution with a sound chronology covering the past 5500 years (Herren et al. 2013). Microfossil analysis allows to reconstruct large-scale fire and vegetation dynamics to gain a better understanding of the timing and causes of late Holocene response variability. We use pollen as proxies for vegetation composition and structure, microscopic charcoal as a proxy for fire activity (Eichler et al. 2011), and spheroidal carbonaceous particles (SCPs or soots) as a proxy for fossil fuel combustion. Here we present the first microscopic charcoal record from Mongolia and link it to vegetation dynamics of the past. The reconstructed mid to late Holocene forest collapses likely in response to climate change underscore the vulnerability of relict forest ecosystems in the Mongolian Altai. Our multiproxy-study suggests that moisture is more important than temperature for forest preservation. The lacking resilience of vegetation to moisture changes in the past emphasizes the vulnerability of large forests in neighboring dry areas such as the Russian Altai, if global warming is associated to moisture declines as future projections forecast (IPCC; Climate Change 2013). References: Eichler et al. (2011

  10. Interactive affective sharing versus non-interactive affective sharing in work groups : Comparative effects of group affect on work group performance and dynamics

    NARCIS (Netherlands)

    Klep, Annefloor; Wisse, Barbara; Van Der Flier, Henk

    This study explores whether the dynamic path to group affect, which is characterized by interactive affective sharing processes, yields different effects on task performance and group dynamics than the static path to group affect, which arises from non-interactive affective sharing. The results of

  11. Interactive affective sharing versus non-interactive affective sharing in work groups: Comparative effects of group affect on work group performance and dynamics

    NARCIS (Netherlands)

    Klep, A.H.M.; Wisse, B.M.; van der Flier, H.

    2011-01-01

    This study explores whether the dynamic path to group affect, which is characterized by interactive affective sharing processes, yields different effects on task performance and group dynamics than the static path to group affect, which arises from non-interactive affective sharing. The results of

  12. Factors affecting acceptability of an email-based intervention to increase fruit and vegetable consumption.

    Science.gov (United States)

    Kothe, Emily J; Mullan, Barbara A

    2014-09-30

    Fresh Facts is a 30-day email-delivered intervention designed to increase the fruit and vegetable consumption of Australian young adults. This study investigated the extent to which the program was acceptable to members of the target audience and examined the relationships between participant and intervention characteristics, attrition, effectiveness, and acceptability ratings. Young adults were randomised to two levels of message frequency: high-frequency (n = 102), low-frequency (n = 173). Individuals in the high-frequency group received daily emails while individuals in the low-frequency group received an email every 3 days. Individuals in the high-frequency group were more likely to indicate that they received too many emails than individuals in the low-frequency group. No other differences in acceptability were observed. Baseline beliefs about fruit and vegetables were an important predictor of intervention acceptability. In turn, acceptability was associated with a number of indicators of intervention success, including change in fruit and vegetable consumption. The findings highlight the importance of considering the relationship between these intervention and participant factors and acceptability in intervention design and evaluation. Results support the ongoing use of email-based interventions to target fruit and vegetable consumption within young adults. However, the relationships between beliefs about fruit and vegetable consumption and acceptability suggest that this intervention may be differentially effective depending on individual's existing beliefs about fruit and vegetable consumption. As such, there is a pressing need to consider these factors in future research in order to minimize attrition and maximize intervention effectiveness when interventions are implemented outside of a research context.

  13. The role of water availability in controlling coupled vegetation-atmosphere dynamics

    Science.gov (United States)

    Scanlon, Todd Michael

    This work examines how water availability affects vegetation structure and vegetation-atmosphere exchange of water, carbon, and energy for a savanna ecosystem. The study site is the Kalahari Transect (KT), in southern Africa, which follows a north-south decline in mean annual rainfall from ˜1600 mm/yr to ˜250 mm/yr between the latitudes 12°--26°S. Eddy covariance (EC) flux measurements taken over a time frame of 1--9 days at four sites along the transect during the wet (growing) season revealed that the ecosystem water use efficiency for the sites, defined as the ratio of net carbon flux to evapotranspiration, decreased with increasing mean annual rainfall. EC data were used to parameterize a large eddy simulation model, which was applied over a heterogeneous remotely-sensed surface. Water availability for the vegetation was found to affect the relative controls (structural vs. meteorological) on the spatial distribution of vegetation fluxes. When the spatial distribution of vapor pressure deficit, D, was most predictable (i.e. non water-limiting conditions) it was unimportant in shaping the distribution of the vegetation fluxes, while at times when D was least predictable (i.e. water-limiting conditions) it was most important. This observation is explained by the relative degree of vegetation-atmosphere coupling and the complexity of the non-local effects on D , both of which are dependent upon water availability. Based upon the differing ways in which trees and grass respond to interannual variability in rainfall, a new method was developed to estimate fractional tree, grass, and bare soil cover from a synthesis of satellite and ground-based data. This method was applied to the KT where it was found that tree fractional cover declines with mean annual rainfall, while grass fractional cover peaks near the middle of the gradient. A soil moisture model applied to this data indicated a shift from nutrient- to water-limitation from the mesic to arid portions of

  14. Vegetation and Carbon Cycle Dynamics in the High-Resolution Transient Holocene Simulations Using the MPI Earth System Model

    Science.gov (United States)

    Brovkin, V.; Lorenz, S.; Raddatz, T.; Claussen, M.; Dallmeyer, A.

    2017-12-01

    One of the interesting periods to investigate a climatic role of terrestrial biosphere is the Holocene, when, despite of the relatively steady global climate, the atmospheric CO2 grew by about 20 ppm from 7 kyr BP to pre-industrial. We use a new setup of the Max Planck Institute Earth System Model MPI-ESM1 consisting of the latest version of the atmospheric model ECHAM6, including the land surface model JSBACH3 with carbon cycle and vegetation dynamics, coupled to the ocean circulation model MPI-OM, which includes the HAMOCC model of ocean biogeochemistry. The model has been run for several simulations over the Holocene period of the last 8000 years under the forcing data sets of orbital insolation, atmospheric greenhouse gases, volcanic aerosols, solar irradiance and stratospheric ozone, as well as land-use changes. In response to this forcing, the land carbon storage increased by about 60 PgC between 8 and 4 kyr BP, stayed relatively constant until 2 kyr BP, and decreased by about 90 PgC by 1850 AD due to land use changes. At 8 kyr BP, vegetation cover was much denser in Africa, mainly due to increased rainfall in response to the orbital forcing. Boreal forests moved northward in both, North America and Eurasia. The boreal forest expansion in North America is much less pronounced than in Eurasia. Simulated physical ocean fields, including surface temperatures and meridional overturning, do not change substantially in the Holocene. Carbonate ion concentration in deep ocean decreases in both, prescribed and interactive CO2simulations. Comparison with available proxies for terrestrial vegetation and for the ocean carbonate chemistry will be presented. Vegetation and soil carbon changes significantly affected atmospheric CO2 during the periods of strong volcanic eruptions. In response to the eruption-caused cooling, the land initially stores more carbon as respiration decreases, but then it releases even more carbon die to productivity decrease. This decadal

  15. Regional cerebral blood flow changes related to affective speech presentation in persistent vegetative state

    NARCIS (Netherlands)

    deJong, BM; Willemsen, ATM; Paans, AMJ

    A story told by his mother was presented on tape to a trauma patient in persistent vegetative state (PVS). During auditory presentation, measurements of regional cerebral blood flow (rCBF) were performed by means of positron emission tomography (PET). Changes in rCBF related to this stimulus

  16. How light competition between plants affects trait optimization and vegetation-atmosphere feedbacks

    NARCIS (Netherlands)

    van Loon, M.P.

    2016-01-01

    How plants respond to climate change is of major concern, as plants will strongly impact future ecosystem functioning, food production and climate. Competition between plants for resources is an important selective force. As a result competition through natural selection determines vegetation

  17. Emerging new poleroviruses and tospoviruses affecting vegetables in Asia and breeding for resistance

    NARCIS (Netherlands)

    Relevante, C.; Cheewachaiwit, S.; Chuapong, J.; Stratongjun, M.; Salutan, V.E.; Peters, D.; Balatero, C.H.; Hoop, de S.J.

    2012-01-01

    The diseases caused by aphid-borne poleroviruses (genus Polerovirus, family Luteoviridae) and thrips-borne tospoviruses (genus Tospovirus, family Bunyaviridae) are emerging threats to the production of economically important vegetable and fruit crops in tropical and sub-tropical Asia. To date, at

  18. The 2005 and 2012 major drought events in Iberia: monitoring vegetation dynamics and crop yields using satellite data.

    Science.gov (United States)

    Gouveia, Célia M.; Trigo, Ricardo M.

    2014-05-01

    The Iberian Peninsula is recurrently affected by drought episodes and therefore by the adverse effects associated that range from severe water shortages to economic losses and related social impacts. During the hydrological years of 2004/2005 and 2011/2012, Iberia was hit by two of the worst drought episodes ever recording in this semi-arid region (Garcia-Herrera at al., 2007; Trigo et al., 2013). These two drought episodes were extreme in both its magnitude and spatial extent. A tendency towards a drier Mediterranean for the period 1970-2010 in comparison with 1901-70 has been identified (Hoerling et al., 2012), reinforcing the need for a continuous monitoring of vegetation stress and reliable estimates of the drought impacts. The strong effect of water scarcity on vegetation dynamics is well documented in Mediterranean and other semi-arid regions. Despite the usual link established between the decrease of vegetation greenness and the lack of precipitation during a considerably long period, the impact on vegetation activity may be amplified by other climatic anomalies, such as high temperature, high wind, and low relative humidity. The recent availability of consistent satellite imagery covering large regions over long periods of time has progressively reinforced the role of remote sensing in environmental studies, in particular in those related to drought episodes (e.g. Gouveia et al., 2009). The aim of the present work is to assess and monitor the cumulative impact over time of drought conditions on vegetation over Iberian Peninsula. For this purpose we have used the regional fields of the Normalized Difference Vegetation Index (NDVI) as obtained from the VEGETATION-SPOT5 instrument, from 1999 to 2013. The entire 15-yr long period was analysed, but particular attention was devoted to the two extreme drought episodes of 2004-2005 and 2011-2012. During the hydrological years of 2004-2005 and 2011-2012 drought episodes negative anomalies of NDVI were observed over

  19. Priming semantic concepts affects the dynamics of aesthetic appreciation.

    Science.gov (United States)

    Faerber, Stella J; Leder, Helmut; Gerger, Gernot; Carbon, Claus-Christian

    2010-10-01

    Aesthetic appreciation (AA) plays an important role for purchase decisions, for the appreciation of art and even for the selection of potential mates. It is known that AA is highly reliable in single assessments, but over longer periods of time dynamic changes of AA may occur. We measured AA as a construct derived from the literature through attractiveness, arousal, interestingness, valence, boredom and innovativeness. By means of the semantic network theory we investigated how the priming of AA-relevant semantic concepts impacts the dynamics of AA of unfamiliar product designs (car interiors) that are known to be susceptible to triggering such effects. When participants were primed for innovativeness, strong dynamics were observed, especially when the priming involved additional AA-relevant dimensions. This underlines the relevance of priming of specific semantic networks not only for the cognitive processing of visual material in terms of selective perception or specific representation, but also for the affective-cognitive processing in terms of the dynamics of aesthetic processing. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Arid landscape dynamics along a precipitation gradient: addressing vegetation - landscape structure - resource interactions at different time scales

    NARCIS (Netherlands)

    Buis, E.

    2008-01-01

    This research is entitled ‘Arid landscape dynamics along a precipitation gradient: addressing
    vegetation – landscape structure – resource interactions at different time scales’ with as subtitle
    ‘A case study for the Northern Negev Desert of Israel’. Landscape dynamics describes the

  1. Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra

    International Nuclear Information System (INIS)

    Frost, Gerald V; Epstein, Howard E; Walker, Donald A

    2014-01-01

    Widespread increases in Arctic tundra productivity have been documented for decades using coarse-scale satellite observations, but finer-scale observations indicate that changes have been very uneven, with a high degree of landscape- and regional-scale heterogeneity. Here we analyze time-series of the Normalized Difference Vegetation Index (NDVI) observed by Landsat (1984–2012), to assess landscape- and regional-scale variability of tundra vegetation dynamics in the northwest Siberian Low Arctic, a little-studied region with varied soils, landscape histories, and permafrost attributes. We also estimate spatio-temporal rates of land-cover change associated with expansion of tall alder (Alnus) shrublands, by integrating Landsat time-series with very-high-resolution imagery dating to the mid-1960s. We compiled Landsat time-series for eleven widely-distributed landscapes, and performed linear regression of NDVI values on a per-pixel basis. We found positive net NDVI trends (‘greening’) in nine of eleven landscapes. Net greening occurred in alder shrublands in all landscapes, and strong greening tended to correspond to shrublands that developed since the 1960s. Much of the spatial variability of greening within landscapes was linked to landscape physiography and permafrost attributes, while between-landscape variability largely corresponded to differences in surficial geology. We conclude that continued increases in tundra productivity in the region are likely in upland tundra landscapes with fine-textured, cryoturbated soils; these areas currently tend to support discontinuous vegetation cover, but are highly susceptible to rapid increases in vegetation cover, as well as land-cover changes associated with the development of tall shrublands. (paper)

  2. Analysing land and vegetation cover dynamics during last three decades in Katerniaghat wildlife sanctuary, India

    Science.gov (United States)

    Chitale, V. S.; Behera, M. D.

    2014-10-01

    The change in the tropical forests could be clearly linked to the expansion of the human population and economies. An understanding of the anthropogenic forcing plays an important role in analyzing the impacts of climate change and the fate of tropical forests in the present and future scenario. In the present study, we analyze the impact of natural and anthropogenic factors in forest dynamics in Katerniaghat wildlife sanctuary situated along the Indo-Nepal border in Uttar Pradesh state, India. The study site is under tremendous pressure due to anthropogenic factors from surrounding areas since last three decades. The vegetation cover of the sanctuary primarily comprised of Shorea robusta forests, Tectona grandis plantation, and mixed deciduous forest; while the land cover comprised of agriculture, barren land, and water bodies. The classification accuracy was 83.5%, 91.5%, and 95.2% with MSS, IKONOS, and Quickbird datasets, respectively. Shorea robusta forests showed an increase of 16 km2; while Tectona grandis increased by 63.01 km2 during 1975-2010. The spatial heterogeneity in these tropical vegetation classes surrounded by the human dominated agricultural lands could not be addressed using Landsat MSS data due to coarse spatial resolution; whereas the IKONOS and Quickbird satellite datasets proved to advantageous, thus being able to precisely address the variations within the vegetation classes as well as in the land cover classes and along the edge areas. Massive deforestation during 1970s along the adjoining international boundary with Nepal has led to destruction of the wildlife corridor and has exposed the wildlife sanctuary to human interference like grazing and poaching. Higher rates of forest dynamics during the 25-year period indicate the vulnerability of the ecosystem to the natural and anthropogenic disturbances in the proximity of the sanctuary.

  3. Groundwater dynamics in mountain peatlands with contrasting climate, vegetation, and hydrogeological setting

    Science.gov (United States)

    Millar, David J.; Cooper, David J.; Ronayne, Michael J.

    2018-06-01

    Hydrological dynamics act as a primary control on ecosystem function in mountain peatlands, serving as an important regulator of carbon fluxes. In western North America, mountain peatlands exist in different hydrogeological settings, across a range climatic conditions, and vary in floristic composition. The sustainability of these ecosystems, particularly those at the low end of their known elevation range, is susceptible to a changing climate via changes in the water cycle. We conducted a hydrological investigation of two mountain peatlands, with differing vegetation, hydrogeological setting (sloping vs basin), and climate (strong vs weak monsoon influence). Growing season saturated zone water budgets were modeled on a daily basis, and subsurface flow characterizations were performed during multiple field campaigns at each site. The sloping peatland expectedly showed a strong lateral groundwater potential gradient throughout the growing season. Alternatively, the basin peatland had low lateral gradients but more pronounced vertical gradients. A zero-flux plane was apparent at a depth of approximately 50 cm below the peat surface at the basin peatland; shallow groundwater above this depth moved upward towards the surface via evapotranspiration. The differences in groundwater flow dynamics between the two sites also influenced water budgets. Higher groundwater inflow at the sloping peatland offset higher rates of evapotranspiration losses from the saturated zone, which were apparently driven by differences in vegetative cover. This research revealed that although sloping peatlands cover relatively small portions of mountain watersheds, they provide unique settings where vegetation directly utilizes groundwater for transpiration, which were several-fold higher than typically reported for surrounding uplands.

  4. Dynamic modelling of processes in rivers affected by precipitation runoff

    DEFF Research Database (Denmark)

    Jacobsen, Judith L.

    1997-01-01

    In this thesis, models for the dynamics of oxygen and organic matter in receiving waters (such as rivers and creeks), which are affected by rain, are developed. A time series analysis framework is used, but presented with special emphasis on continuous time state space models. Also, the concept o....... In most models, precipitation in the form of rain have been included to study the impact from this. Finally, the future and industrial perspectives are presented, along with a list of suggestions for future research related to the subjects considered in this thesis....

  5. Model-based prediction of nephropathia epidemica outbreaks based on climatological and vegetation data and bank vole population dynamics.

    Science.gov (United States)

    Haredasht, S Amirpour; Taylor, C J; Maes, P; Verstraeten, W W; Clement, J; Barrios, M; Lagrou, K; Van Ranst, M; Coppin, P; Berckmans, D; Aerts, J-M

    2013-11-01

    could be predicted 3 months ahead with a 34% mean relative prediction error (MRPE). This took into account solely the population dynamics of the carrier species (bank voles). The time series analysis also revealed that climate change, as represented by the vegetation index, changes in forest phenology derived from satellite images and directly measured air temperature, may affect the mechanics of NE transmission. NE outbreaks in Belgium were predicted 3 months ahead with a 40% MRPE, based only on the climatological and vegetation data, in this case, without any knowledge of the bank vole's population dynamics. In this research, we demonstrated that NE outbreaks can be predicted using climate and vegetation data or the bank vole's population dynamics, by using dynamic data-based models with time-varying parameters. Such a predictive modelling approach might be used as a step towards the development of new tools for the prevention of future NE outbreaks. © 2012 Blackwell Verlag GmbH.

  6. Emerging new poleroviruses and tospoviruses affecting vegetables in Asia and breeding for resistance

    OpenAIRE

    Relevante, C.; Cheewachaiwit, S.; Chuapong, J.; Stratongjun, M.; Salutan, V.E.; Peters, D.; Balatero, C.H.; Hoop, de, S.J.

    2012-01-01

    The diseases caused by aphid-borne poleroviruses (genus Polerovirus, family Luteoviridae) and thrips-borne tospoviruses (genus Tospovirus, family Bunyaviridae) are emerging threats to the production of economically important vegetable and fruit crops in tropical and sub-tropical Asia. To date, at least 13 different polerovirus species have been characterized. In Asia, the reported poleroviruses include Cucurbit aphid-borne yellows virus (CABYV), Melon aphid-borne yellows virus (MABYV) and Sua...

  7. Pruning affects the vegetative balance of the wine grape (Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Pedro José Almanza-Merchán

    2014-08-01

    Full Text Available Grape cultivation for wine production at altitudes between 2,200 and 2,600 m a.s.l. started in the department of Boyaca in 1982. Quality wines are produced by the AinKarim Vineyard in Ricaurte High. Wine grapes have to possess suitable organoleptic compounds at harvest in order to guarantee quality grape must that can be converted into wine. Therefore, it is necessary to maintain a suitable ratio the sources and the sinks and to guarantee production, quality and vegetative sustainability over time, conserving the equilibrium and benefiting the productive potential of the vineyard. The aim of this study was to evaluate the productive and vegetative balance effect in the wine grape varieties Cabernet Sauvignon and Sauvignon Blanc in Sutamarchan-Boyaca, considering different pruning types (short, long, and mixed. A bifactorial, completely random statistical design was used. At the time of harvest, the fruit production and pruned wood were evaluated. The long-pruned vines showed the best behavior and the most balanced source/sink relationship,, while Sauvignon Blanc demonstrated a better productive yield. Meanwhile, the short and mixed prunings had the better values for the Ravaz index (balance between fruit production and vegetative growth, indicating that they are more suitable for the conditions of the region, allowing for sustainability during the productive cycles of the wine grapes.

  8. How will climate change affect the vegetation cycle over France? A generic modeling approach

    Directory of Open Access Journals (Sweden)

    Nabil Laanaia

    2016-01-01

    Full Text Available The implementation of adaptation strategies of agriculture and forestry to climate change is conditioned by the knowledge of the impacts of climate change on the vegetation cycle and of the associated uncertainties. Using the same generic Land Surface Model (LSM to simulate the response of various vegetation types is more straightforward than using several specialized crop and forestry models, as model implementation differences are difficult to assess. The objective of this study is to investigate the potential of a LSM to address this issue. Using the SURFEX (“Surface Externalisée” modeling platform, we produced and analyzed 150-yr (1950–2100 simulations of the biomass of four vegetation types (rainfed straw cereals, rainfed grasslands, broadleaf and needleleaf forests and of the soil water content associated to each of these vegetation types over France. Statistical methods were used to quantify the impact of climate change on simulated phenological dates. The duration of soil moisture stress periods increases everywhere in France, especially for grasslands with, on average, an increase of 9 days per year in near-future (NF conditions and 36 days per year in distant-future (DF conditions. For all the vegetation types, leaf onset and the annual maximum LAI occur earlier. For straw cereals in the Languedoc-Provence-Corsica area, NF leaf onset occurs 18 days earlier and 37 days earlier in DF conditions, on average. On the other hand, local discrepancies are simulated for the senescence period (e.g. earlier in western and southern France for broadleaf forests, slightly later in mountainous areas of eastern France for both NF and DF. Changes in phenological dates are more uncertain in DF than in NF conditions in relation to differences in climate models, especially for forests. Finally, it is shown that while changes in leaf onset are mainly driven by air temperature, longer soil moisture stress periods trigger earlier leaf senescence

  9. Late- and post-glacial vegetation dynamics in Western Rhodopes (Bulgaria) based on pollen analysis and radiocarbon dating

    International Nuclear Information System (INIS)

    Filipovitch, L.; Lazarova, M.

    2002-01-01

    This study offers a reconstruction of Quaternary vegetation in the region of Shiroka Polyana (Western Rhodopes mountains) on the basis of pollen analysis and 14 C dating. It helps to trace out the trends in vegetation dynamics. The palaeosuccession cycle providing valuable floristic and coenotic information about the Late Glacial (13000 BP) and the entire Holocene throughout several major stages is recreated: grassy communities, thermophilus deciduous forests, fir-hornbeam-beech forests, spruce-pine forests, pine-spruce forests. (authors)

  10. Effect of management systems and cover crops on organic matter dynamics of soil under vegetables

    Directory of Open Access Journals (Sweden)

    Rodrigo Fernandes de Souza

    2014-06-01

    Full Text Available Vegetable production in conservation tillage has increased in Brazil, with positive effects on the soil quality. Since management systems alter the quantity and quality of organic matter, this study evaluated the influence of different management systems and cover crops on the organic matter dynamics of a dystrophic Red Latosol under vegetables. The treatments consisted of the combination of three soil tillage systems: no-tillage (NT, reduced tillage (RT and conventional tillage (CT and of two cover crops: maize monoculture and maize-mucuna intercrop. Vegetables were grown in the winter and the cover crops in the summer for straw production. The experiment was arranged in a randomized block design with four replications. Soil samples were collected between the crop rows in three layers (0.0-0.05, 0.05-0.10, and 0.10-0.30 m twice: in October, before planting cover crops for straw, and in July, during vegetable cultivation. The total organic carbon (TOC, microbial biomass carbon (MBC, oxidizable fractions, and the carbon fractions fulvic acid (C FA, humic acid (C HA and humin (C HUM were determined. The main changes in these properties occurred in the upper layers (0.0-0.05 and 0.05-0.10 m where, in general, TOC levels were highest in NT with maize straw. The MBC levels were lowest in CT systems, indicating sensitivity to soil disturbance. Under mucuna, the levels of C HA were lower in RT than NT systems, while the C FA levels were lower in RT than CT. For vegetable production, the C HUM values were lowest in the 0.05-0.10 m layer under CT. With regard to the oxidizable fractions, the tillage systems differed only in the most labile C fractions, with higher levels in NT than CT in the 0.0-0.05 m layer in both summer and winter, with no differences between these systems in the other layers. The cabbage yield was not influenced by the soil management system, but benefited from the mulch production of the preceding maize-mucuna intercrop as cover

  11. Vegetation dynamics in Bishrampur collieries of northern Chhattisgarh, India: eco-restoration and management perspectives.

    Science.gov (United States)

    Kumar, A; Jhariya, M K; Yadav, D K; Banerjee, A

    2017-08-01

    Phytosociological study in and around reclaimed coal mine site is an essential requirement for judging restoration impact on a disturbed site. Various studies have been aimed towards assessing the impact of different restoration practices on coal mine wastelands. Plantation scheme in a scientific way is the most suitable approach in this context. During the present investigation, an effort have been made to assess the vegetation dynamics through structure, composition, diversity, and forest floor biomass analysis in and around Bishrampur collieries, Sarguja division, northern Chhattisgarh, India. We have tried to develop strategies for eco-restoration and habitat management of the concerned study sites. Four sites were randomly selected in different directions of the study area. We classified the vegetation community of the study sites into various strata on the basis of height. Two hundred forty quadrats were laid down in various directions of the study area to quantify vegetation under different strata. During our investigation, we found eight different tree species representing four families in the different study sites. The density of the various tree species ranged between 40 and 160 individuals ha -1 . The density of sapling, seedling, shrub, and herb ranged between 740 and 1620; 2000 and 6000; 1200 and 2000; and 484,000 and 612,000 individuals ha -1 , respectively, in different directions. The diversity indices of the tree reflected highest Shannon index value of 1.91. Simpsons index ranged between 0.28 and 0.50, species richness ranged between 0.27 and 0.61, equitability up to 1.44, and Beta diversity ranged between 2.00 and 4.00. Total forest floor biomass ranged between 4.20 and 5.65 t/ha among the study sites. Highest forest floor biomass occurred in the south direction and lowest at east direction. Total forest floor biomass declined by 6.19% in west, 13.10% in north, and 25.66% in east direction, respectively. The mining activities resulted

  12. Assessing the Influence of Precipitation Variability on the Vegetation Dynamics of the Mediterranean Rangelands using NDVI and Machine Learning

    Science.gov (United States)

    Daliakopoulos, Ioannis; Tsanis, Ioannis

    2017-04-01

    Mitigating the vulnerability of Mediterranean rangelands against degradation is limited by our ability to understand and accurately characterize those impacts in space and time. The Normalized Difference Vegetation Index (NDVI) is a radiometric measure of the photosynthetically active radiation absorbed by green vegetation canopy chlorophyll and is therefore a good surrogate measure of vegetation dynamics. On the other hand, meteorological indices such as the drought assessing Standardised Precipitation Index (SPI) are can be easily estimated from historical and projected datasets at the global scale. This work investigates the potential of driving Random Forest (RF) models with meteorological indices to approximate NDVI-based vegetation dynamics. A sufficiently large number of RF models are trained using random subsets of the dataset as predictors, in a bootstrapping approach to account for the uncertainty introduced by the subset selection. The updated E-OBS-v13.1 dataset of the ENSEMBLES EU FP6 program provides observed monthly meteorological input to estimate SPI over the Mediterranean rangelands. RF models are trained to depict vegetation dynamics using the latest version (3g.v1) of the third generation GIMMS NDVI generated from NOAA's Advanced Very High Resolution Radiometer (AVHRR) sensors. Analysis is conducted for the period 1981-2015 at a gridded spatial resolution of 25 km. Preliminary results demonstrate the potential of machine learning algorithms to effectively mimic the underlying physical relationship of drought and Earth Observation vegetation indices to provide estimates based on precipitation variability.

  13. Development and validation of a dynamical atmosphere-vegetation-soil HTO transport and OBT formation model

    Energy Technology Data Exchange (ETDEWEB)

    Ota, Masakazu, E-mail: ohta.masakazu@jaea.go.jp [Research Group for Environmental Science, Division of Environment and Radiation, Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency (Japan); Nagai, Haruyasu [Research Group for Environmental Science, Division of Environment and Radiation, Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency (Japan)

    2011-09-15

    A numerical model simulating transport of tritiated water (HTO) in atmosphere-soil-vegetation system, and, accumulation of organically bound tritium (OBT) in vegetative leaves was developed. Characteristic of the model is, for calculating tritium transport, it incorporates a dynamical atmosphere-soil-vegetation model (SOLVEG-II) that calculates transport of heat and water, and, exchange of CO{sub 2}. The processes included for calculating tissue free water tritium (TFWT) in leaves are HTO exchange between canopy air and leaf cellular water, root uptake of aqueous HTO in soil, photosynthetic assimilation of TFWT into OBT, and, TFWT formation from OBT through respiration. Tritium fluxes at the last two processes are input to a carbohydrate compartment model in leaves that calculates OBT translocation from leaves and allocation in them, by using photosynthesis and respiration rate in leaves. The developed model was then validated through a simulation of an existing experiment of acute exposure of grape plants to atmospheric HTO. Calculated TFWT concentration in leaves increased soon after the start of HTO exposure, reaching to equilibrium with the atmospheric HTO within a few hours, and then rapidly decreased after the end of the exposure. Calculated non-exchangeable OBT amount in leaves linearly increased during the exposure, and after the exposure, rapidly decreased in daytime, and, moderately nighttime. These variations in the calculated TFWT concentrations and OBT amounts, each mainly controlled by HTO exchange between canopy air and leaf cellular water and by carbohydrates translocation from leaves, fairly agreed with the observations within average errors of a factor of two. - Highlights: > TFWT retention and OBT formation in leaves were modeled > The model fairly well calculates TFWT concentration after an acute HTO exposure > The model well assesses OBT formation and attenuation of OBT amount in leaves.

  14. Evaluation of the New Dynamic Global Vegetation Model in CAS-ESM

    Science.gov (United States)

    Zhu, Jiawen; Zeng, Xiaodong; Zhang, Minghua; Dai, Yongjiu; Ji, Duoying; Li, Fang; Zhang, Qian; Zhang, He; Song, Xiang

    2018-06-01

    In the past several decades, dynamic global vegetation models (DGVMs) have been the most widely used and appropriate tool at the global scale to investigate vegetation-climate interactions. At the Institute of Atmospheric Physics, a new version of DGVM (IAP-DGVM) has been developed and coupled to the Common Land Model (CoLM) within the framework of the Chinese Academy of Sciences' Earth System Model (CAS-ESM). This work reports the performance of IAP-DGVM through comparisons with that of the default DGVM of CoLM (CoLM-DGVM) and observations. With respect to CoLMDGVM, IAP-DGVM simulated fewer tropical trees, more "needleleaf evergreen boreal tree" and "broadleaf deciduous boreal shrub", and a better representation of grasses. These contributed to a more realistic vegetation distribution in IAP-DGVM, including spatial patterns, total areas, and compositions. Moreover, IAP-DGVM also produced more accurate carbon fluxes than CoLM-DGVM when compared with observational estimates. Gross primary productivity and net primary production in IAP-DGVM were in better agreement with observations than those of CoLM-DGVM, and the tropical pattern of fire carbon emissions in IAP-DGVM was much more consistent with the observation than that in CoLM-DGVM. The leaf area index simulated by IAP-DGVM was closer to the observation than that of CoLM-DGVM; however, both simulated values about twice as large as in the observation. This evaluation provides valuable information for the application of CAS-ESM, as well as for other model communities in terms of a comparative benchmark.

  15. El Nino Southern Oscillation and vegetation dynamics as predictors of dengue fever cases in Costa Rica

    International Nuclear Information System (INIS)

    Fuller, D O; Troyo, A; Beier, J C

    2009-01-01

    Dengue fever (DF) and dengue hemorrhagic fever (DHF) are growing health concerns throughout Latin America and the Caribbean. This study focuses on Costa Rica, which experienced over 100 000 cases of DF/DHF from 2003 to 2007. We utilized data on sea-surface temperature anomalies related to the El Nino Southern Oscillation (ENSO) and two vegetation indices derived from the Moderate Resolution Imaging Spectrometer (MODIS) from the Terra satellite to model the influence of climate and vegetation dynamics on DF/DHF cases in Costa Rica. Cross-correlations were calculated to evaluate both positive and negative lag effects on the relationships between independent variables and DF/DHF cases. The model, which utilizes a sinusoid and non-linear least squares to fit case data, was able to explain 83% of the variance in weekly DF/DHF cases when independent variables were shifted backwards in time. When the independent variables were shifted forward in time, consistently with a forecasting approach, the model explained 64% of the variance. Importantly, when five ENSO and two vegetation indices were included, the model reproduced a major DF/DHF epidemic of 2005. The unexplained variance in the model may be due to herd immunity and vector control measures, although information regarding these aspects of the disease system are generally lacking. Our analysis suggests that the model may be used to predict DF/DHF outbreaks as early as 40 weeks in advance and may also provide valuable information on the magnitude of future epidemics. In its current form it may be used to inform national vector control programs and policies regarding control measures; it is the first climate-based dengue model developed for this country and is potentially scalable to the broader region of Latin America and the Caribbean where dramatic increases in DF/DHF incidence and spread have been observed.

  16. El Nino Southern Oscillation and vegetation dynamics as predictors of dengue fever cases in Costa Rica

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, D O [Department of Geography and Regional Studies, University of Miami, Coral Gables, FL 33124-2221 (United States); Troyo, A [Centro de Investigacion en Enfermedades Tropicales, Departamento de ParasitologIa, Facultad de MicrobiologIa, Universidad de Costa Rica, San Jose (Costa Rica); Beier, J C [Global Public Health Program, Department of Epidemiology and Public Health, University of Miami, Miami, FL (United States)], E-mail: dofuller@miami.edu

    2009-01-15

    Dengue fever (DF) and dengue hemorrhagic fever (DHF) are growing health concerns throughout Latin America and the Caribbean. This study focuses on Costa Rica, which experienced over 100 000 cases of DF/DHF from 2003 to 2007. We utilized data on sea-surface temperature anomalies related to the El Nino Southern Oscillation (ENSO) and two vegetation indices derived from the Moderate Resolution Imaging Spectrometer (MODIS) from the Terra satellite to model the influence of climate and vegetation dynamics on DF/DHF cases in Costa Rica. Cross-correlations were calculated to evaluate both positive and negative lag effects on the relationships between independent variables and DF/DHF cases. The model, which utilizes a sinusoid and non-linear least squares to fit case data, was able to explain 83% of the variance in weekly DF/DHF cases when independent variables were shifted backwards in time. When the independent variables were shifted forward in time, consistently with a forecasting approach, the model explained 64% of the variance. Importantly, when five ENSO and two vegetation indices were included, the model reproduced a major DF/DHF epidemic of 2005. The unexplained variance in the model may be due to herd immunity and vector control measures, although information regarding these aspects of the disease system are generally lacking. Our analysis suggests that the model may be used to predict DF/DHF outbreaks as early as 40 weeks in advance and may also provide valuable information on the magnitude of future epidemics. In its current form it may be used to inform national vector control programs and policies regarding control measures; it is the first climate-based dengue model developed for this country and is potentially scalable to the broader region of Latin America and the Caribbean where dramatic increases in DF/DHF incidence and spread have been observed.

  17. Implementation of system dynamic simulation method to optimize profit in supply chain network of vegetable product

    Science.gov (United States)

    Tama, I. P.; Akbar, Z.; Eunike, A.

    2018-04-01

    Vegetables are categorized as a perishable product, which is a product with short lifespan thus requires proper handling and planning to reduce losses caused by the short lifespan. In order to reduce the losses, coordination among the players in the supply chain is required. On the other hand, the decision in the supply chain of vegetables and other farming products in the traditional market of developing country is independent among the players. This research is conducted by using System Dynamic Simulation method to develop model and scenario by coordinating the supply quantity amongst players in the supply chain. The scenarios are developed based on newsboy inventory model. This study aims to compare scenarios combining tiers involved in coordination program. The result shows that coordination in supply chain increases total supply chain profit, although there will always be players who experienced decrements in profit. The scenario of coordination among the farmer, the distributor, and the wholesaler resulted in the highest increase in total supply chain profit compared to other coordination scenarios, with an increased value of 10.49%.

  18. Deriving Vegetation Dynamics of Natural Terrestrial Ecosystems from MODIS NDVI/EVI Data over Turkey.

    Science.gov (United States)

    Evrendilek, Fatih; Gulbeyaz, Onder

    2008-09-01

    The 16-day composite MODIS vegetation indices (VIs) at 500-m resolution for the period between 2000 to 2007 were seasonally averaged on the basis of the estimated distribution of 16 potential natural terrestrial ecosystems (NTEs) across Turkey. Graphical and statistical analyses of the time-series VIs for the NTEs spatially disaggregated in terms of biogeoclimate zones and land cover types included descriptive statistics, correlations, discrete Fourier transform (DFT), time-series decomposition, and simple linear regression (SLR) models. Our spatio-temporal analyses revealed that both MODIS VIs, on average, depicted similar seasonal variations for the NTEs, with the NDVI values having higher mean and SD values. The seasonal VIs were most correlated in decreasing order for: barren/sparsely vegetated land > grassland > shrubland/woodland > forest; (sub)nival > warm temperate > alpine > cool temperate > boreal = Mediterranean; and summer > spring > autumn > winter. Most pronounced differences between the MODIS VI responses over Turkey occurred in boreal and Mediterranean climate zones and forests, and in winter (the senescence phase of the growing season). Our results showed the potential of the time-series MODIS VI datasets in the estimation and monitoring of seasonal and interannual ecosystem dynamics over Turkey that needs to be further improved and refined through systematic and extensive field measurements and validations across various biomes.

  19. Obtaining a Pragmatic Representation of Fire Disturbance in Dynamic Vegetation Models by Assimilating Earth Observation Data

    Science.gov (United States)

    Kantzas, Euripides; Quegan, Shaun

    2015-04-01

    Fire constitutes a violent and unpredictable pathway of carbon from the terrestrial biosphere into the atmosphere. Despite fire emissions being in many biomes of similar magnitude to that of Net Ecosystem Exchange, even the most complex Dynamic Vegetation Models (DVMs) embedded in IPCC General Circulation Models poorly represent fire behavior and dynamics, a fact which still remains understated. As DVMs operate on a deterministic, grid cell-by-grid cell basis they are unable to describe a host of important fire characteristics such as its propagation, magnitude of area burned and stochastic nature. Here we address these issues by describing a model-independent methodology which assimilates Earth Observation (EO) data by employing image analysis techniques and algorithms to offer a realistic fire disturbance regime in a DVM. This novel approach, with minimum model restructuring, manages to retain the Fire Return Interval produced by the model whilst assigning pragmatic characteristics to its fire outputs thus allowing realistic simulations of fire-related processes such as carbon injection into the atmosphere and permafrost degradation. We focus our simulations in the Arctic and specifically Canada and Russia and we offer a snippet of how this approach permits models to engage in post-fire dynamics hitherto absent from any other model regardless of complexity.

  20. Characterizing phenological vegetation dynamics amidst extreme climate variability in Australia with MODIS VI data

    Science.gov (United States)

    Broich, M.; Huete, A. R.; Xuanlon, M.; Davies, K.; Restrepo-Coupe, N.; Ratana, P.

    2012-12-01

    Australia's climate is extremely variable with inter-annual rainfall at any given site varying by 5- or 6-fold or more, across the continent. In addition to such inter-annual variability, there can be significant intra-annual variability, especially in monsoonal Australia (e.g. the wet tropical savannas) and Mediterranean climates in SW Australia where prolonged dry seasons occur each year. This presents unique challenges to the characterization of seasonal dynamics with satellite datasets. In contrast to annual reoccurring temperature-driven phenology of northern hemisphere mid-latitudes, vegetation dynamics of the vast and dry Australian interior are poorly quantified by existing remote sensing products. For example, in the current global-based MODIS phenology product, central Australia is covered by ~30% fill values for any given year. Two challenges are specific to Australian landscapes: first, the difficulty of characterizing seasonality of rainfall-driven ecosystems in interior Australia where duration and magnitude of green-up and brown down cycles show high inter annual variability; second, modeling two phenologic layers, the trees and the grass in savannas were the trees are evergreen but the herbaceous understory varies with rainfall. Savannas cover >50% of Australia. Australia's vegetation and climate are different from other continents. A MODIS phenology product capable of characterizing vegetation dynamics across the continent is being developed in this research as part of the AusCover national expert network aiming to provide Australian biophysical remote sensing data time-series and continental-scale map products. These products aim to support the Terrestrial Ecosystem Research Network (TERN) serving ecosystem research in Australia. The MODIS land surface product for Australia first searches the entire time series of each Climate Modeling Grid pixel for low-high-low extreme point sequences. A double logistic function is then fit to each of these

  1. Dynamic of biogeochemical selenium cycle in terrestrial ecosystems: retention and reactivity in soil; role of vegetation

    International Nuclear Information System (INIS)

    Di Tullo, Pamela

    2015-01-01

    This work was performed in the frame of the safety assessment program prior to the possible construction of an underground repository for nuclear waste (HAVL). To consolidate risk assessment models associated to a potential 79 Se biosphere contamination, biogeochemistry of stable selenium was investigated, aiming firstly to highlight the dynamics of Se cycling in a forest ecosystem, in terms of inventories and annual fluxes. Consequently to these first results, which suggest a clay role of soil and its organic pool in the global Se cycle, two studies based on the use of isotopically enriched tracers were further carried out in order to clarify the processes involved in (i) Se retention and reactivity in soils and (ii) incorporation of inorganic Se within organic pool of vegetal biomass. (author) [fr

  2. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balances

    Science.gov (United States)

    Tang, G.; Bartlein, P. J.

    2012-08-01

    Satellite-based data, such as vegetation type and fractional vegetation cover, are widely used in hydrologic models to prescribe the vegetation state in a study region. Dynamic global vegetation models (DGVM) simulate land surface hydrology. Incorporation of satellite-based data into a DGVM may enhance a model's ability to simulate land surface hydrology by reducing the task of model parameterization and providing distributed information on land characteristics. The objectives of this study are to (i) modify a DGVM for simulating land surface water balances; (ii) evaluate the modified model in simulating actual evapotranspiration (ET), soil moisture, and surface runoff at regional or watershed scales; and (iii) gain insight into the ability of both the original and modified model to simulate large spatial scale land surface hydrology. To achieve these objectives, we introduce the "LPJ-hydrology" (LH) model which incorporates satellite-based data into the Lund-Potsdam-Jena (LPJ) DGVM. To evaluate the model we ran LH using historical (1981-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells for the conterminous US and for the entire world using coarser climate and land cover data. We evaluated the simulated ET, soil moisture, and surface runoff using a set of observed or simulated data at different spatial scales. Our results demonstrate that spatial patterns of LH-simulated annual ET and surface runoff are in accordance with previously published data for the US; LH-modeled monthly stream flow for 12 major rivers in the US was consistent with observed values respectively during the years 1981-2006 (R2 > 0.46, p 0.52). The modeled mean annual discharges for 10 major rivers worldwide also agreed well (differences day method for snowmelt computation, the addition of the solar radiation effect on snowmelt enabled LH to better simulate monthly stream flow in winter and early spring for rivers located at mid-to-high latitudes. In addition, LH

  3. The positive group affect spiral : a dynamic model of the emergence of positive affective similarity in work groups

    NARCIS (Netherlands)

    Walter, F.; Bruch, H.

    This conceptual paper seeks to clarify the process of the emergence of positive collective affect. Specifically, it develops a dynamic model of the emergence of positive affective similarity in work groups. It is suggested that positive group affective similarity and within-group relationship

  4. The effects of tree establishment on water and salt dynamics in naturally salt-affected grasslands.

    Science.gov (United States)

    Nosetto, Marcelo D; Jobbágy, Esteban G; Tóth, Tibor; Di Bella, Carlos M

    2007-07-01

    Plants, by influencing water fluxes across the ecosystem-vadose zone-aquifer continuum, can leave an imprint on salt accumulation and distribution patterns. We explored how the conversion of native grasslands to oak plantations affected the abundance and distribution of salts on soils and groundwater through changes in the water balance in naturally salt-affected landscapes of Hortobagy (Hungary), a region where artificial drainage performed approximately 150 years ago lowered the water table (from -2 to -5 m) decoupling it from the surface ecosystem. Paired soil sampling and detailed soil conductivity transects revealed consistently different salt distribution patterns between grasslands and plantations, with shallow salinity losses and deep salinity gains accompanying tree establishment. Salts accumulated in the upper soil layers during pre-drainage times have remained in drained grasslands but have been flushed away under tree plantations (65 and 83% loss of chloride and sodium, respectively, in the 0 to -0.5 m depth range) as a result of a five- to 25-fold increase in infiltration rates detected under plantations. At greater depth, closer to the current water table level, the salt balance was reversed, with tree plantations gaining 2.5 kg sodium chloride m(-2) down to 6 m depth, resulting from groundwater uptake and salt exclusion by tree roots in the capillary fringe. Diurnal water table fluctuations, detected in a plantation stand but not in the neighbouring grasslands, together with salt mass balances suggest that trees consumed approximately 380 mm groundwater per year, re-establishing the discharge regime and leading to higher salt accumulation rates than those interrupted by regional drainage practices more than a century ago. The strong influences of vegetation changes on water dynamics can have cascading consequences on salt accumulation and distribution, and a broad ecohydrological perspective that explicitly considers vegetation-groundwater links is

  5. Dynamics of the recovery of damaged tundra vegetation. Annual progress report

    International Nuclear Information System (INIS)

    Amundsen, C.C.

    1975-01-01

    A study, begun in 1971, has been undertaken to determine the environmental factors which affect the recovery of damaged tundra vegetation. A sampling technique was developed on Amchitka Island to allow the rapid acquisition of data on species presence and frequency across areas disturbed at various times and in various ways. Attempts were made to sample across all examples of aspect, slope steepness and exposure. The data were analyzed and we concluded that there was no directional secondary succession on the Amchitka tundra, although there was vigorous recovery on organic soils. The study led to recommendations which resulted in a smaller effort than planned to reclaim damaged areas by seeding and fertilizing at a considerable financial saving and without further biological perturbation. Because of the increasing activity on tundra landscape, whether for energy production, or military or other reasons, we are expanding our sampling to other tundra areas. Immediate plans include sampling at Adak Island and Barrow, Alaska. (U.S.)

  6. How spatial variation in areal extent and configuration of labile vegetation states affect the riparian bird community in Arctic tundra.

    Directory of Open Access Journals (Sweden)

    John-André Henden

    Full Text Available The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation

  7. Vegetation in drylands: Effects on wind flow and aeolian sediment transport

    Science.gov (United States)

    Drylands are characterised by patchy vegetation, erodible surfaces and erosive aeolian processes. Empirical and modelling studies have shown that vegetation elements provide drag on the overlying airflow, thus affecting wind velocity profiles and altering erosive dynamics on desert surfaces. However...

  8. Vegetation dynamics of the Guatemalan lowlands from MIS7 to MIS5: Evidence from Lake Petén-Itzá

    Science.gov (United States)

    Cruz-Silva, E.; Correa-Metrio, A.; Bush, M. B.

    2013-05-01

    Reconstructing vegetation patterns of past warm climatic stages is critical for understanding modern processes that affect diversity and climate. Tropical lowlands are of special interest because of the high biodiversity they foster and the risks they face under a scenario of rapid climate change. With a basal age of more that 191,000 years, core PI-1 from Lake Petén-Itzá, Guatemalan lowlands, offer an exceptional opportunity to investigate the dynamics of the vegetation of the area during climatic stages that might be analogous to today. Pollen analysis of the lower part of this sedimentary record shows a sequence of five different climatic stages of alternating warm and cold conditions. According to our interpretation, tropical forests extended in the area during MIS7 and MIS5, with the former characterized by drier conditions than the latter. Apparently forest dynamics closely followed global climatic changes that were recorded in the Antarctic and the Marine Stack records. Our results confirm that vegetation of the Peninsula, although highly resilient, has been very sensitive to global climatic changes.

  9. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance : Insights from a global process-based vegetation model

    NARCIS (Netherlands)

    Yue, Chao; Ciais, P.; Luyssaert, S.; Cadule, Patricia; Harden, J. L.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S.L.; Poulter, B.; Viovy, N.

    2013-01-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and

  10. Assessing vegetation structure and ANPP dynamics in a grassland-shrubland Chihuahuan ecotone using NDVI-rainfall relationships

    Science.gov (United States)

    Moreno-de las Heras, M.; Diaz-Sierra, R.; Turnbull, L.; Wainwright, J.

    2015-01-01

    Climate change and the widespread alteration of natural habitats are major drivers of vegetation change in drylands. A classic case of vegetation change is the shrub-encroachment process that has been taking place over the last 150 years in the Chihuahuan Desert, where large areas of grasslands dominated by perennial grass species (black grama, Bouteloua eriopoda, and blue grama, B. gracilis) have transitioned to shrublands dominated by woody species (creosotebush, Larrea tridentata, and mesquite, Prosopis glandulosa), accompanied by accelerated water and wind erosion. Multiple mechanisms drive the shrub-encroachment process, including exogenous triggering factors such as precipitation variations and land-use change, and endogenous amplifying mechanisms brought about by soil erosion-vegetation feedbacks. In this study, simulations of plant biomass dynamics with a simple modelling framework indicate that herbaceous (grasses and forbs) and shrub vegetation in drylands have different responses to antecedent precipitation due to functional differences in plant growth and water-use patterns, and therefore shrub encroachment may be reflected in the analysis of landscape-scale vegetation-rainfall relationships. We analyze the structure and dynamics of vegetation at an 18 km2 grassland-shrubland ecotone in the northern edge of the Chihuahuan Desert (McKenzie Flats, Sevilleta National Wildlife Refuge, NM, USA) by investigating the relationship between decade-scale (2000-2013) records of medium-resolution remote sensing of vegetation greenness (MODIS NDVI) and precipitation. Spatial evaluation of NDVI-rainfall relationship at the studied ecotone indicates that herbaceous vegetation shows quick growth pulses associated with short-term (previous 2 months) precipitation, while shrubs show a slow response to medium-term (previous 5 months) precipitation. We use these relationships to (a) classify landscape types as a function of the spatial distribution of dominant vegetation

  11. Fuel dynamics and fire behaviour in Australian mallee and heath vegetation

    Science.gov (United States)

    Juanita Myers; Jim Gould; Miguel Cruz; Meredith Henderson

    2007-01-01

    In southern Australia, shrubby heath vegetation together with woodlands dominated by multistemmed eucalypts (mallee) comprise areas of native vegetation with important biodiversity values. These vegetation types occur in semiarid and mediterranean climates and can experience large frequent fires. This study is investigating changes in the fuel complex with time, fuel...

  12. Changes in vegetative communities and water table dynamics following timber harvesting in small headwater streams

    Science.gov (United States)

    B. Choi; J.C. Dewey; J. A. Hatten; A.W. Ezell; Z. Fan

    2012-01-01

    In order to better understand the relationship between vegetation communities and water table in the uppermost portions (ephemeral–intermittent streams) of headwater systems, seasonal plot-based field characterizations of vegetation were used in conjunction with monthly water table measurements. Vegetation, soils, and water table data were examined to determine...

  13. LPJmL4 - a dynamic global vegetation model with managed land - Part 1: Model description

    Science.gov (United States)

    Schaphoff, Sibyll; von Bloh, Werner; Rammig, Anja; Thonicke, Kirsten; Biemans, Hester; Forkel, Matthias; Gerten, Dieter; Heinke, Jens; Jägermeyr, Jonas; Knauer, Jürgen; Langerwisch, Fanny; Lucht, Wolfgang; Müller, Christoph; Rolinski, Susanne; Waha, Katharina

    2018-04-01

    This paper provides a comprehensive description of the newest version of the Dynamic Global Vegetation Model with managed Land, LPJmL4. This model simulates - internally consistently - the growth and productivity of both natural and agricultural vegetation as coherently linked through their water, carbon, and energy fluxes. These features render LPJmL4 suitable for assessing a broad range of feedbacks within and impacts upon the terrestrial biosphere as increasingly shaped by human activities such as climate change and land use change. Here we describe the core model structure, including recently developed modules now unified in LPJmL4. Thereby, we also review LPJmL model developments and evaluations in the field of permafrost, human and ecological water demand, and improved representation of crop types. We summarize and discuss LPJmL model applications dealing with the impacts of historical and future environmental change on the terrestrial biosphere at regional and global scale and provide a comprehensive overview of LPJmL publications since the first model description in 2007. To demonstrate the main features of the LPJmL4 model, we display reference simulation results for key processes such as the current global distribution of natural and managed ecosystems, their productivities, and associated water fluxes. A thorough evaluation of the model is provided in a companion paper. By making the model source code freely available at https://gitlab.pik-potsdam.de/lpjml/LPJmL" target="_blank">https://gitlab.pik-potsdam.de/lpjml/LPJmL, we hope to stimulate the application and further development of LPJmL4 across scientific communities in support of major activities such as the IPCC and SDG process.

  14. Autophagy contributes to regulation of nuclear dynamics during vegetative growth and hyphal fusion in Fusarium oxysporum.

    Science.gov (United States)

    Corral-Ramos, Cristina; Roca, M Gabriela; Di Pietro, Antonio; Roncero, M Isabel G; Ruiz-Roldán, Carmen

    2015-01-01

    In the fungal pathogen Fusarium oxysporum, vegetative hyphal fusion triggers nuclear mitotic division in the invading hypha followed by migration of a nucleus into the receptor hypha and degradation of the resident nucleus. Here we examined the role of autophagy in fusion-induced nuclear degradation. A search of the F. oxysporum genome database for autophagy pathway components identified putative orthologs of 16 core autophagy-related (ATG) genes in yeast, including the ubiquitin-like protein Atg8, which is required for the formation of autophagosomal membranes. F. oxysporum Foatg8Δ mutants were generated in a strain harboring H1-cherry fluorescent protein (ChFP)-labeled nuclei to facilitate analysis of nuclear dynamics. The Foatg8Δ mutants did not show MDC-positive staining in contrast to the wild type and the FoATG8-complemented (cFoATG8) strain, suggesting that FoAtg8 is required for autophagy in F. oxysporum. The Foatg8Δ strains displayed reduced rates of hyphal growth, conidiation, and fusion, and were significantly attenuated in virulence on tomato plants and in the nonvertebrate animal host Galleria mellonella. In contrast to wild-type hyphae, which are almost exclusively composed of uninucleated hyphal compartments, the hyphae of the Foatg8Δ mutants contained a significant fraction of hyphal compartments with 2 or more nuclei. The increase in the number of nuclei per hyphal compartment was particularly evident after hyphal fusion events. Time-lapse microscopy analyses revealed abnormal mitotic patterns during vegetative growth in the Foatg8Δ mutants. Our results suggest that autophagy mediates nuclear degradation after hyphal fusion and has a general function in the control of nuclear distribution in F. oxysporum.

  15. Modeling vegetation and carbon dynamics of managed grasslands at the global scale with LPJmL 3.6

    Science.gov (United States)

    Rolinski, Susanne; Müller, Christoph; Heinke, Jens; Weindl, Isabelle; Biewald, Anne; Bodirsky, Benjamin Leon; Bondeau, Alberte; Boons-Prins, Eltje R.; Bouwman, Alexander F.; Leffelaar, Peter A.; te Roller, Johnny A.; Schaphoff, Sibyll; Thonicke, Kirsten

    2018-02-01

    Grassland management affects the carbon fluxes of one-third of the global land area and is thus an important factor for the global carbon budget. Nonetheless, this aspect has been largely neglected or underrepresented in global carbon cycle models. We investigate four harvesting schemes for the managed grassland implementation of the dynamic global vegetation model (DGVM) Lund-Potsdam-Jena managed Land (LPJmL) that facilitate a better representation of actual management systems globally. We describe the model implementation and analyze simulation results with respect to harvest, net primary productivity and soil carbon content and by evaluating them against reported grass yields in Europe. We demonstrate the importance of accounting for differences in grassland management by assessing potential livestock grazing densities as well as the impacts of grazing, grazing intensities and mowing systems on soil carbon stocks. Grazing leads to soil carbon losses in polar or arid regions even at moderate livestock densities (management options enables assessments of the global grassland production and its impact on the terrestrial biogeochemical cycles but requires a global data set on current grassland management.

  16. How internal drainage affects evaporation dynamics from soil surfaces ?

    Science.gov (United States)

    Or, D.; Lehmann, P.; Sommer, M.

    2017-12-01

    Following rainfall, infiltrated water may be redistributed internally to larger depths or lost to the atmosphere by evaporation (and by plant uptake from depths at longer time scales). A large fraction of evaporative losses from terrestrial surfaces occurs during stage1 evaporation during which phase change occurs at the wet surface supplied by capillary flow from the soil. Recent studies have shown existence of a soil-dependent characteristic length below which capillary continuity is disrupted and a drastic shift to slower stage 2 evaporation ensues. Internal drainage hastens this transition and affect evaporative losses. To predict the transition to stage 2 and associated evaporative losses, we developed an analytical solution for evaporation dynamics with concurrent internal drainage. Expectedly, evaporative losses are suppressed when drainage is considered to different degrees depending on soil type and wetness. We observe that high initial water content supports rapid drainage and thus promotes the sheltering of soil water below the evaporation depth. The solution and laboratory experiments confirm nonlinear relationship between initial water content and total evaporative losses. The concept contributes to establishing bounds on regional surface evaporation considering rainfall characteristics and soil types.

  17. Psychological biases affecting human cognitive performance in dynamic operational environments

    International Nuclear Information System (INIS)

    Takano, Kenichi; Reason, J.

    1999-01-01

    In order to identify cognitive error mechanisms observed in the dynamic operational environment, the following materials were analyzed giving special attention to psychological biases, together with possible cognitive tasks and these location, and internal and external performance shaping factors: (a) 13 human factors analyses of US nuclear power plant accidents, (b) 14 cases of Japanese nuclear power plant incidents, and (c) 23 cases collected in simulator experiments. In the resulting analysis, the most frequently identified cognitive process associated with error productions was situation assessment, and following varieties were KB processes and response planning, all of that were the higher cognitive activities. Over 70% of human error cases, psychological bias was affecting to cognitive errors, especially those to higher cognitive activities. In addition, several error occurrence patterns, including relations between cognitive process, biases, and PSFs were identified by the multivariate analysis. According to the identified error patterns, functions that an operator support system have to equip were discussed and specified for design base considerations. (author)

  18. LEAF AREA DYNAMICS AND ABOVEGROUND BIOMASS OF SPECIFIC VEGETATION TYPES OF A SEMI-ARID GRASSLAND IN SOUTHERN ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Bosco Kidake Kisambo

    2016-12-01

    Full Text Available Leaf Area Index (LAI dynamics and aboveground biomass of a semi-arid grassland region in Southern Ethiopia were determined over a long rain season. The vegetation was categorized into four distinct vegetation types namely Grassland (G, Tree-Grassland (TG, Bushed-Grassland (BG and Bush-Tree grassland (BT. LAI was measured using a Plant Canopy Analyzer (LAI2000. Biomass dynamics of litter and herbaceous components were determined through clipping while the above ground biomass of trees and shrubs were estimated using species-specific allometric equations from literature. LAI showed a seasonal increase over the season with the maximum recorded in the BG vegetation (2.52. Total aboveground biomass for the different vegetation types ranged from 0.61 ton C/ha in areas where trees were non-existent to 8.80 ± 3.81ton C/ha in the Tree-Grassland vegetation in the study site. A correlation of LAI and AGB yielded a positive relationship with an R2 value of 0.55. The results demonstrate the importance of tropical semi-arid grasslands as carbon sinks hence their potential in mitigation of climate change.

  19. Post Wildfire Changes in Plant Functioning and Vegetation Dynamics: Implications for Water Fluxes in Re-sprouting Forests

    Science.gov (United States)

    Nolan, R. H.; Lane, P. N.; Mitchell, P. J.; Bradstock, R. A.

    2011-12-01

    Fire induced changes to the vegetation dynamics in temperate forests have been demonstrated to affect evapotranspiration (Et) rates through increases in plant size and density and stand-level transpiration and interception. In many cases these transient changes in forest structure result in substantial declines in stream flow for protracted periods after the disturbance. However to date research has focused on the wetter 'ash' forests of south-eastern Australia which solely regenerate via seedlings, it is unknown what changes in Et may occur in those forests which re-sprout post-fire. We hypothesize that Et fluxes track post-fire changes in sapwood area and leaf area index (L) in re-sprouting temperate forests, increasing as the forest regenerates. Following the 2009 Black Saturday wildfires in Victoria, we monitored Et rates for over a year in both damp and dry re-sprouting forest, incorporating a range of fire severity classes. Components of Et including overstorey transpiration, rainfall interception loss and forest floor Et were measured in conjunction with changes in L, sapwood area and leaf physiology. The monitoring period began one year post-fire with a typical hot, dry summer, at which stage Et rates in burnt forest were similar or less than those in unburnt forest. During the following summer, which was one of the wettest on record, Et increased across all monitoring plots but particularly so in the burnt forest where seedling regeneration resulted in an understorey L nearly twice that of unburnt forest. Forest floor Et was up to 46% higher in burnt forest, and rainfall interception values accounted for approximately 25% of rainfall compared to 15% in unburnt forest. The greatest increase in canopy transpiration rates over this period occurred in those trees subject to a low intensity fire where most of the canopy remained intact but there was also fire-triggered sprouting of new leaves along the trunk and main branches. In these trees rates of sapflow

  20. Monitoring vegetation dynamics with medium resolution MODIS-EVI time series at sub-regional scale in southern Africa

    Science.gov (United States)

    Dubovyk, Olena; Landmann, Tobias; Erasmus, Barend F. N.; Tewes, Andreas; Schellberg, Jürgen

    2015-06-01

    Currently there is a lack of knowledge on spatio-temporal patterns of land surface dynamics at medium spatial scale in southern Africa, even though this information is essential for better understanding of ecosystem response to climatic variability and human-induced land transformations. In this study, we analysed vegetation dynamics across a large area in southern Africa using the 14-years (2000-2013) of medium spatial resolution (250 m) MODIS-EVI time-series data. Specifically, we investigated temporal changes in the time series of key phenometrics including overall greenness, peak and timing of annual greenness over the monitoring period and study region. In order to specifically capture spatial and per pixel vegetation changes over time, we calculated trends in these phenometrics using a robust trend analysis method. The results showed that interannual vegetation dynamics followed precipitation patterns with clearly differentiated seasonality. The earliest peak greenness during 2000-2013 occurred at the end of January in the year 2000 and the latest peak greenness was observed at the mid of March in 2012. Specifically spatial patterns of long-term vegetation trends allowed mapping areas of (i) decrease or increase in overall greenness, (ii) decrease or increase of peak greenness, and (iii) shifts in timing of occurrence of peak greenness over the 14-year monitoring period. The observed vegetation decline in the study area was mainly attributed to human-induced factors. The obtained information is useful to guide selection of field sites for detailed vegetation studies and land rehabilitation interventions and serve as an input for a range of land surface models.

  1. Monitoring vegetation recovery in fire-affected areas using temporal profiles of spectral signal from time series MODIS and LANDSAT satellite images

    Science.gov (United States)

    Georgopoulou, Danai; Koutsias, Nikos

    2015-04-01

    Vegetation phenology is an important element of vegetation characteristics that can be useful in vegetation monitoring especially when satellite remote sensing observations are used. In that sense temporal profiles extracted from spectral signal of time series MODIS and LANDSAT satellite images can be used to characterize vegetation phenology and thus to be helpful for monitoring vegetation recovery in fire-affected areas. The aim of this study is to explore the vegetation recovery pattern of the catastrophic wildfires that occurred in Peloponnisos, southern Greece, in 2007. These fires caused the loss of 67 lives and were recognized as the most extreme natural disaster in the country's recent history. Satellite remote sensing data from MODIS and LANDSAT satellites in the period from 2000 to 2014 were acquired and processed to extract the temporal profiles of the spectral signal for selected areas within the fire-affected areas. This dataset and time period analyzed together with the time that these fires occurred gave the opportunity to create temporal profiles seven years before and seven years after the fire. The different scale of the data used gave us the chance to understand how vegetation phenology and therefore the recovery patterns are influenced by the spatial resolution of the satellite data used. Different metrics linked to key phenological events have been created and used to assess vegetation recovery in the fire-affected areas. Our analysis was focused in the main land cover types that were mostly affected by the 2007 wildland fires. Based on CORINE land-cover maps these were agricultural lands highly interspersed with large areas of natural vegetation followed by sclerophyllous vegetation, transitional woodland shrubs, complex cultivation patterns and olive groves. Apart of the use of the original spectral data we estimated and used vegetation indices commonly found in vegetation studies as well as in burned area mapping studies. In this study we

  2. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balances

    Directory of Open Access Journals (Sweden)

    G. Tang

    2012-08-01

    Full Text Available Satellite-based data, such as vegetation type and fractional vegetation cover, are widely used in hydrologic models to prescribe the vegetation state in a study region. Dynamic global vegetation models (DGVM simulate land surface hydrology. Incorporation of satellite-based data into a DGVM may enhance a model's ability to simulate land surface hydrology by reducing the task of model parameterization and providing distributed information on land characteristics. The objectives of this study are to (i modify a DGVM for simulating land surface water balances; (ii evaluate the modified model in simulating actual evapotranspiration (ET, soil moisture, and surface runoff at regional or watershed scales; and (iii gain insight into the ability of both the original and modified model to simulate large spatial scale land surface hydrology. To achieve these objectives, we introduce the "LPJ-hydrology" (LH model which incorporates satellite-based data into the Lund-Potsdam-Jena (LPJ DGVM. To evaluate the model we ran LH using historical (1981–2006 climate data and satellite-based land covers at 2.5 arc-min grid cells for the conterminous US and for the entire world using coarser climate and land cover data. We evaluated the simulated ET, soil moisture, and surface runoff using a set of observed or simulated data at different spatial scales. Our results demonstrate that spatial patterns of LH-simulated annual ET and surface runoff are in accordance with previously published data for the US; LH-modeled monthly stream flow for 12 major rivers in the US was consistent with observed values respectively during the years 1981–2006 (R2 > 0.46, p < 0.01; Nash-Sutcliffe Coefficient > 0.52. The modeled mean annual discharges for 10 major rivers worldwide also agreed well (differences < 15% with observed values for these rivers. Compared to a degree-day method for snowmelt computation, the addition of the solar radiation effect on snowmelt

  3. Vegetation patterns and dynamics on a rock glacier in the Northern Apennines

    Directory of Open Access Journals (Sweden)

    Tomaselli, M.

    1990-12-01

    Full Text Available The vegetation colonizing a rock glacier in the north-western cirque of M. Giovo (Northern Apennines was recorded according to the Braun-Blanquet method. Numerical methods were employed both to classify and to order the phytosociological relevés. Relevés were classified by average linkage based on the similarity ratio. Four main vegetation types were so identified. They were ecologically characterized by an indirect gradient analysis based on correspondence analysis. Furthermore, dynamic connections between vegetation types were hypothesized by principal component analysis.

    [es] Modelos de vegetación y dinámica en un glaciar rocoso de los Apeninos del Norte (Norte de Italia. Se ha muestreado, según el método fitosociológico de Braun-Blanquet, la colonización vegetal de un glaciar rocoso en el circo glaciar noroeste del M. Giovo (Norte de los Apeninos. Los muestreos han sido clasificados por métodos de análisis numérico. Se definen cuatro modelos de vegetación con la ayuda de la clasificación numérica. El estudio ecológico de los modelos de vegetación se ha realizado con la ayuda del análisis de correspondencias y se ha verificado con el empleo de los valores indicadores ecológicos de LANDOLT (1977. Las tendencias dinámicas de la vegetación se definen con el análisis de componentes principales.
    [fr] Groupements végétaux et dynamique de la végétation sur un glacier rocheux dans les Apennins du Nord (Italie du Nord. La végétation colonisant un glacier rocheux dans le cirque glaciaire nord-ouest du M. Giovo (Apennins du Nord à été relevé selon le méthode phytosociologique. Les relevés ont été classifies et ordonnés par des méthodes d'analyse numérique. 4 types de végétation ont été définis a l'aide de la classification numérique. L'étude écologique des types de végétation à été réalisée par l'analyse des correspondances et vérifié avec l'emploi des valeurs indicatrices

  4. Vegetation dynamics during the late Pleistocene in the Barreirinhas region, Maranhão State, northeastern Brazil, based on carbon isotopes in soil organic matter

    Science.gov (United States)

    Pessenda, Luiz Carlos Ruiz; Ribeiro, Adauto de Souza; Gouveia, Susy Eli Marques; Aravena, Ramon; Boulet, Rene; Bendassolli, José Albertino

    2004-09-01

    The study place is in the Barreirinhas region, Maranhão State, northeastern Brazil. A vegetation transect of 78 km was studied among four vegetation types: Restinga (coastal vegetation), Cerrado (woody savanna), Cerradão (dense woody savanna), and Forest, as well as three forested sites around Lagoa do Caçó, located approximately 10 km of the transect. Soil profiles in this transect were sampled for δ13C analysis, as well as buried charcoal fragments were used for 14C dating. The data interpretation indicated that approximately between 15,000 and ˜9000 14C yr B.P., arboreal vegetation prevailed in the whole transect, probably due to the presence of a humid climate. Approximately between ˜9000 and 4000-3000 14C yr B.P., there was the expansion of the savanna, probably related to the presence of drier climate. From ˜4000-3000 14C yr B.P. to the present, the results indicated an increase in the arboreal density in the area, due to the return to a more humid and probably similar climate to the present. The presence of buried charcoal fragments in several soil depths suggested the occurrence of palaeofires during the Holocene. The vegetation dynamic inferred in this study for northeastern Brazil is in agreement with the results obtained in areas of Amazon region, based on pollen analysis of lake sediments and carbon isotope analysis of soil organic matter (SOM), implying than similar climatic conditions have affected these areas during the late Pleistocene until the present.

  5. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balance

    Science.gov (United States)

    Tang, G.; Bartlein, P. J.

    2012-01-01

    Water balance models of simple structure are easier to grasp and more clearly connect cause and effect than models of complex structure. Such models are essential for studying large spatial scale land surface water balance in the context of climate and land cover change, both natural and anthropogenic. This study aims to (i) develop a large spatial scale water balance model by modifying a dynamic global vegetation model (DGVM), and (ii) test the model's performance in simulating actual evapotranspiration (ET), soil moisture and surface runoff for the coterminous United States (US). Toward these ends, we first introduced development of the "LPJ-Hydrology" (LH) model by incorporating satellite-based land covers into the Lund-Potsdam-Jena (LPJ) DGVM instead of dynamically simulating them. We then ran LH using historical (1982-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells. The simulated ET, soil moisture and surface runoff were compared to existing sets of observed or simulated data for the US. The results indicated that LH captures well the variation of monthly actual ET (R2 = 0.61, p 0.46, p 0.52) with observed values over the years 1982-2006, respectively. The modeled spatial patterns of annual ET and surface runoff are in accordance with previously published data. Compared to its predecessor, LH simulates better monthly stream flow in winter and early spring by incorporating effects of solar radiation on snowmelt. Overall, this study proves the feasibility of incorporating satellite-based land-covers into a DGVM for simulating large spatial scale land surface water balance. LH developed in this study should be a useful tool for studying effects of climate and land cover change on land surface hydrology at large spatial scales.

  6. Evaluating the sensitivity of Eurasian forest biomass to climate change using a dynamic vegetation model

    International Nuclear Information System (INIS)

    Shuman, J K; Shugart, H H

    2009-01-01

    Climate warming could strongly influence the structure and composition of the Eurasian boreal forest. Temperature related changes have occurred, including shifts in treelines and changes in regeneration. Dynamic vegetation models are well suited to the further exploration of the impacts that climate change may have on boreal forests. Using the individual-based gap model FAREAST, forest composition and biomass are simulated at over 2000 sites across Eurasia. Biomass output is compared to detailed forest data from a representative sample of Russian forests and a sensitivity analysis is performed to evaluate the impact that elevated temperatures and modified precipitation will have on forest biomass and composition in Eurasia. Correlations between model and forest inventory biomass are strong for several boreal tree species. A significant relationship is shown between altered precipitation and biomass. This analysis showed that a modest increase in temperature of 2 deg. C across 200 years had no significant effect on biomass; however further exploration with increased warming reflective of values measured within Siberia, or at an increased rate, are warranted. Overall, FAREAST accurately simulates forest biomass and composition at sites throughout a large geographic area with widely varying climatic conditions and produces reasonable biomass responses to simulated climatic shifts. These results indicate that this model is robust and useful in making predictions regarding the effect of future climate change on boreal forest structure across Eurasia.

  7. Broad-Scale Environmental Conditions Responsible for Post-Fire Vegetation Dynamics

    OpenAIRE

    Casady, Grant M.; Marsh, Stuart E.

    2010-01-01

    Ecosystem response to disturbance is influenced by environmental conditions at a number of scales. Changes in climate have altered fire regimes across the western United States, and have also likely altered spatio-temporal patterns of post-fire vegetation regeneration. Fire occurrence data and a vegetation index (NDVI) derived from the NOAA Advanced Very High Resolution Radiometer (AVHRR) were used to monitor post-fire vegetation from 1989 to 2007. We first investigated differences in post-fi...

  8. [Vegetation spatial and temporal dynamic characteristics based on NDVI time series trajectories in grassland opencast coal mining].

    Science.gov (United States)

    Jia, Duo; Wang, Cang Jiao; Mu, Shou Guo; Zhao, Hua

    2017-06-18

    The spatiotemporal dynamic patterns of vegetation in mining area are still unclear. This study utilized time series trajectory segmentation algorithm to fit Landsat NDVI time series which generated from fusion images at the most prosperous period of growth based on ESTARFM algorithm. Combining with the shape features of the fitted trajectory, this paper extracted five vegetation dynamic patterns including pre-disturbance type, continuous disturbance type, stabilization after disturbance type, stabilization between disturbance and recovery type, and recovery after disturbance type. The result indicated that recovery after disturbance type was the dominant vegetation change pattern among the five types of vegetation dynamic pattern, which accounted for 55.2% of the total number of pixels. The follows were stabilization after disturbance type and continuous disturbance type, accounting for 25.6% and 11.0%, respectively. The pre-disturbance type and stabilization between disturbance and recovery type accounted for 3.5% and 4.7%, respectively. Vegetation disturbance mainly occurred from 2004 to 2009 in Shengli mining area. The onset time of stable state was 2008 and the spatial locations mainlydistributed in open-pit stope and waste dump. The reco-very state mainly started since the year of 2008 and 2010, while the areas were small and mainly distributed at the periphery of open-pit stope and waste dump. Duration of disturbance was mainly 1 year. The duration of stable period usually sustained 7 years. The duration of recovery state of the type of stabilization between disturbances continued 2 to 5 years, while the type of recovery after disturbance often sustained 8 years.

  9. Assessing Vegetation Cover Dynamics Induced by Policy-Driven Ecological Restoration and Implication to Soil Erosion in Southern China.

    Directory of Open Access Journals (Sweden)

    Jien Zhang

    Full Text Available In the aftermath of the severe droughts and floods at the end of the 20th century, the Chinese government launched several ecological restoration projects, including the Natural Forest Protection Program in 1998 and the Grain-for-Green Program in 1999, to promote afforestation and reforestation to reduce surface runoff and consequent soil erosion nationwide. However, it is still unclear how vegetation has changed in southern China since the launch of these programs. In this study, we used the MODIS Enhanced Vegetation Index (EVI to analyze the vegetation cover dynamics in southern China from 2000 to 2009 and evaluate the resulting effects of controlling soil erosion. Our observations indicate that 5.3% of the study area significantly increased and 0.98% significantly decreased in EVI value (p < 0.05. The spring EVI had largest increase in space. The conversions of croplands on steep slopes to forests resulting from national policies led to significant increases in EVI. The increase in EVI was not driven by annual average temperature and annual precipitation. By referencing ecological restoration statistical data and field observations, we showed that ecological restoration programs significantly improved vegetation cover in southern China. Increase in the area of farmland-converted forestlands has reduced soil erosion based upon monitoring sediment yields at hydrologic stations in the Yangtze River. This study displays the spatial patterns of trend in vegetation growth since the beginning of the 21st century in southern China and highlights the important role of China's afforestation program.

  10. Tundra shrubification and tree-line advance amplify arctic climate warming: results from an individual-based dynamic vegetation model

    Science.gov (United States)

    Zhang, Wenxin; Miller, Paul A.; Smith, Benjamin; Wania, Rita; Koenigk, Torben; Döscher, Ralf

    2013-09-01

    One major challenge to the improvement of regional climate scenarios for the northern high latitudes is to understand land surface feedbacks associated with vegetation shifts and ecosystem biogeochemical cycling. We employed a customized, Arctic version of the individual-based dynamic vegetation model LPJ-GUESS to simulate the dynamics of upland and wetland ecosystems under a regional climate model-downscaled future climate projection for the Arctic and Subarctic. The simulated vegetation distribution (1961-1990) agreed well with a composite map of actual arctic vegetation. In the future (2051-2080), a poleward advance of the forest-tundra boundary, an expansion of tall shrub tundra, and a dominance shift from deciduous to evergreen boreal conifer forest over northern Eurasia were simulated. Ecosystems continued to sink carbon for the next few decades, although the size of these sinks diminished by the late 21st century. Hot spots of increased CH4 emission were identified in the peatlands near Hudson Bay and western Siberia. In terms of their net impact on regional climate forcing, positive feedbacks associated with the negative effects of tree-line, shrub cover and forest phenology changes on snow-season albedo, as well as the larger sources of CH4, may potentially dominate over negative feedbacks due to increased carbon sequestration and increased latent heat flux.

  11. The greening of the McGill Paleoclimate Model. Part I: Improved land surface scheme with vegetation dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi; Mysak, Lawrence A.; Wang, Zhaomin [McGill University, Department of Atmospheric and Oceanic Sciences, Global Environmental and Climate Change Centre (GEC3), Montreal, QC (Canada); Brovkin, Victor [Potsdam Institute for Climate Impact Research (PIK), Potsdam (Germany)

    2005-04-01

    The formulation of a new land surface scheme (LSS) with vegetation dynamics for coupling to the McGill Paleoclimate Model (MPM) is presented. This LSS has the following notable improvements over the old version: (1) parameterization of deciduous and evergreen trees by using the model's climatology and the output of the dynamic global vegetation model, VECODE (Brovkin et al. in Ecological Modelling 101:251-261 (1997), Global Biogeochemical Cycles 16(4):1139, (2002)); (2) parameterization of tree leaf budburst and leaf drop by using the model's climatology; (3) parameterization of the seasonal cycle of the grass leaf area index; (4) parameterization of the seasonal cycle of tree leaf area index by using the time-dependent growth of the leaves; (5) calculation of land surface albedo by using vegetation-related parameters, snow depth and the model's climatology. The results show considerable improvement of the model's simulation of the present-day climate as compared with that simulated in the original physically-based MPM. In particular, the strong seasonality of terrestrial vegetation and the associated land surface albedo variations are in good agreement with several satellite observations of these quantities. The application of this new version of the MPM (the ''green'' MPM) to Holocene millennial-scale climate changes is described in a companion paper, Part II. (orig.)

  12. Tundra shrubification and tree-line advance amplify arctic climate warming: results from an individual-based dynamic vegetation model

    International Nuclear Information System (INIS)

    Zhang Wenxin; Miller, Paul A; Smith, Benjamin; Wania, Rita; Koenigk, Torben; Döscher, Ralf

    2013-01-01

    One major challenge to the improvement of regional climate scenarios for the northern high latitudes is to understand land surface feedbacks associated with vegetation shifts and ecosystem biogeochemical cycling. We employed a customized, Arctic version of the individual-based dynamic vegetation model LPJ-GUESS to simulate the dynamics of upland and wetland ecosystems under a regional climate model–downscaled future climate projection for the Arctic and Subarctic. The simulated vegetation distribution (1961–1990) agreed well with a composite map of actual arctic vegetation. In the future (2051–2080), a poleward advance of the forest–tundra boundary, an expansion of tall shrub tundra, and a dominance shift from deciduous to evergreen boreal conifer forest over northern Eurasia were simulated. Ecosystems continued to sink carbon for the next few decades, although the size of these sinks diminished by the late 21st century. Hot spots of increased CH 4 emission were identified in the peatlands near Hudson Bay and western Siberia. In terms of their net impact on regional climate forcing, positive feedbacks associated with the negative effects of tree-line, shrub cover and forest phenology changes on snow-season albedo, as well as the larger sources of CH 4 , may potentially dominate over negative feedbacks due to increased carbon sequestration and increased latent heat flux. (letter)

  13. Stochastic soil water dynamics of phreatophyte vegetation with dimorphic root systems

    NARCIS (Netherlands)

    Vervoort, R.W.; Zee, van der S.E.A.T.M.

    2009-01-01

    As the direct uptake of deep groundwater by vegetation may be essential in semiarid regions, we incorporated this process in stochastic root zone water balance models. The direct water uptake by vegetation via deep tap roots is simulated using one additional empirical parameter. This is considered

  14. Understanding global fire dynamics by classifying and comparing spatial models of vegetation and fire

    Science.gov (United States)

    Robert E. Keane; Geoffrey J. Cary; Ian D. Davies; Michael D. Flannigan; Robert H. Gardner; Sandra Lavorel; James M. Lenihan; Chao Li; T. Scott Rupp

    2007-01-01

    Wildland fire is a major disturbance in most ecosystems worldwide (Crutzen and Goldammer 1993). The interaction of fire with climate and vegetation over long time spans, often referred to as the fire regime (Agee 1993; Clark 1993; Swetnam and Baisan 1996; Swetnam 1997), has major effects on dominant vegetation, ecosystem carbon budget, and biodiversity (Gardner et aL...

  15. Finding the food-fuel balance. Supply and demand dynamics in global vegetable oil markets

    Energy Technology Data Exchange (ETDEWEB)

    Savanti, P.

    2012-10-15

    Demand for vegetable oils for food and biofuel use is expected to increase by an additional 23 million tonnes by 2016; however supply is expected to struggle to keep up with this demand, according to this Rabobank report. Vegetable oil stocks have reached a 38 year low this year due in large part to constraints such as land availability and adverse weather.

  16. Predicting landscape vegetation dynamics using state-and-transition simulation models

    Science.gov (United States)

    Colin J. Daniel; Leonardo. Frid

    2012-01-01

    This paper outlines how state-and-transition simulation models (STSMs) can be used to project changes in vegetation over time across a landscape. STSMs are stochastic, empirical simulation models that use an adapted Markov chain approach to predict how vegetation will transition between states over time, typically in response to interactions between succession,...

  17. Early to Middle Eocene vegetation dynamics at the Wilkes Land Margin (Antarctica)

    NARCIS (Netherlands)

    Contreras, L.; Pross, J.; Bijl, P.K.; Koutsodendris, A.; Raine, J.I.; van de Schootbrugge, B.; Brinkhuis, H.

    2013-01-01

    The early Eocene epoch was characterized by extreme global warmth, which in terrestrial settings was characterized by an expansion of near-tropical vegetation belts into the high latitudes. During the middle to late Eocene, global cooling caused the retreat of tropical vegetation to lower latitudes.

  18. Decomposing the uncertainty in climate impact projections of Dynamic Vegetation Models: a test with the forest models LANDCLIM and FORCLIM

    Science.gov (United States)

    Cailleret, Maxime; Snell, Rebecca; von Waldow, Harald; Kotlarski, Sven; Bugmann, Harald

    2015-04-01

    Different levels of uncertainty should be considered in climate impact projections by Dynamic Vegetation Models (DVMs), particularly when it comes to managing climate risks. Such information is useful to detect the key processes and uncertainties in the climate model - impact model chain and may be used to support recommendations for future improvements in the simulation of both climate and biological systems. In addition, determining which uncertainty source is dominant is an important aspect to recognize the limitations of climate impact projections by a multi-model ensemble mean approach. However, to date, few studies have clarified how each uncertainty source (baseline climate data, greenhouse gas emission scenario, climate model, and DVM) affects the projection of ecosystem properties. Focusing on one greenhouse gas emission scenario, we assessed the uncertainty in the projections of a forest landscape model (LANDCLIM) and a stand-scale forest gap model (FORCLIM) that is caused by linking climate data with an impact model. LANDCLIM was used to assess the uncertainty in future landscape properties of the Visp valley in Switzerland that is due to (i) the use of different 'baseline' climate data (gridded data vs. data from weather stations), and (ii) differences in climate projections among 10 GCM-RCM chains. This latter point was also considered for the projections of future forest properties by FORCLIM at several sites along an environmental gradient in Switzerland (14 GCM-RCM chains), for which we also quantified the uncertainty caused by (iii) the model chain specific statistical properties of the climate time-series, and (iv) the stochasticity of the demographic processes included in the model, e.g., the annual number of saplings that establish, or tree mortality. Using methods of variance decomposition analysis, we found that (i) The use of different baseline climate data strongly impacts the prediction of forest properties at the lowest and highest, but

  19. Using a Feedback Environment to Improve Creative Performance: A Dynamic Affect Perspective

    OpenAIRE

    Gong, Zhenxing; Zhang, Na

    2017-01-01

    Prior research on feedback and creative performance has neglected the dynamic nature of affect and has focused only on the influence of positive affect. We argue that creative performance is the result of a dynamic process in which a person experiences a phase of negative affect and subsequently enters a state of high positive affect that is influenced by the feedback environment. Hierarchical regression was used to analyze a sample of 264 employees from seven industry firms. The results indi...

  20. A Monte Carlo/response surface strategy for sensitivity analysis: application to a dynamic model of vegetative plant growth

    Science.gov (United States)

    Lim, J. T.; Gold, H. J.; Wilkerson, G. G.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1989-01-01

    We describe the application of a strategy for conducting a sensitivity analysis for a complex dynamic model. The procedure involves preliminary screening of parameter sensitivities by numerical estimation of linear sensitivity coefficients, followed by generation of a response surface based on Monte Carlo simulation. Application is to a physiological model of the vegetative growth of soybean plants. The analysis provides insights as to the relative importance of certain physiological processes in controlling plant growth. Advantages and disadvantages of the strategy are discussed.

  1. Late Holocene vegetation, climate, and land-use impacts on carbon dynamics in the Florida Everglades

    Science.gov (United States)

    Jones, Miriam C.; Bernhardt, Christopher E.; Willard, Debra A.

    2014-01-01

    Tropical and subtropical peatlands are considered a significant carbon sink. The Florida Everglades includes 6000-km2 of peat-accumulating wetland; however, detailed carbon dynamics from different environments within the Everglades have not been extensively studied or compared. Here we present carbon accumulation rates from 13 cores and 4 different environments, including sawgrass ridges and sloughs, tree islands, and marl prairies, whose hydroperiods and vegetation communities differ. We find that the lowest rates of C accumulation occur in sloughs in the southern Everglades. The highest rates are found where hydroperiods are generally shorter, including near-tails of tree islands and drier ridges. Long-term average rates of 100 to >200 g C m−2 yr−1 are as high, and in some cases, higher than rates recorded from the tropics and 10–20 times higher than boreal averages. C accumulation rates were impacted by both the Medieval Climate Anomaly and the Little Ice Age, but the largest impacts to C accumulation rates over the Holocene record have been the anthropogenic changes associated with expansion of agriculture and construction of canals and levees to control movement of surface water. Water management practices in the 20th century have altered the natural hydroperiods and fire regimes of the Everglades. The Florida Everglades as a whole has acted as a significant carbon sink over the mid- to late-Holocene, but reduction of the spatial extent of the original wetland area, as well as the alteration of natural hydrology in the late 19th and 20th centuries, have significantly reduced the carbon sink capacity of this subtropical wetland.

  2. Bacterial community dynamics and product distribution during pH-adjusted fermentation of vegetable wastes.

    Science.gov (United States)

    Ye, N-F; Lü, F; Shao, L-M; Godon, J-J; He, P-J

    2007-10-01

    To estimate the effect of pH on the structures of bacterial community during fermentation of vegetable wastes and to investigate the relationship between bacterial community dynamics and product distribution. The bacterial communities in five batch tests controlled at different pH values [uncontrolled (about pH 4), 5, 6, 7 and 8] were monitored by denaturing gradient gel electrophoresis (DGGE) and single-strand conformation polymorphism (SSCP). The two fingerprinting methods provided consistent results and principal component analysis indicated a close similarity of bacterial community at pH 7 and 8 in addition to those at pH 4-6. This clustering also corresponded to dominant metabolic pathway. Thus, pH 7-8 shifted from alcohol-forming to acid-forming, especially butyric acid, whereas both alcohol-forming and acid-forming dominated at pH 5-6, and at pH 4, fermentation was inhibited. Shannon-weaver index was calculated to analyse the DGGE profiles, which revealed that the bacterial diversities at pH 7 and 8 were the highest while those at pH 5 and 4 (uncontrolled) were the lowest. According to sequencing results of the bands excised from DGGE gels, lactic acid bacteria and Clostridium sp. were predominant at all pH values, but varieties in species were observed as pH changed and time prolonged. The bacterial community during fermentation was materially influenced by pH and the diverse product distribution was related to the shift of different bacterial population. The study reveals that the impact of pH on fermentation product distribution is implemented primarily by changes of bacterial community. It also provides information about the comparison of two fingerprinting methods, DGGE and SSCP.

  3. LPJmL4 - a dynamic global vegetation model with managed land - Part 2: Model evaluation

    Science.gov (United States)

    Schaphoff, Sibyll; Forkel, Matthias; Müller, Christoph; Knauer, Jürgen; von Bloh, Werner; Gerten, Dieter; Jägermeyr, Jonas; Lucht, Wolfgang; Rammig, Anja; Thonicke, Kirsten; Waha, Katharina

    2018-04-01

    The dynamic global vegetation model LPJmL4 is a process-based model that simulates climate and land use change impacts on the terrestrial biosphere, agricultural production, and the water and carbon cycle. Different versions of the model have been developed and applied to evaluate the role of natural and managed ecosystems in the Earth system and the potential impacts of global environmental change. A comprehensive model description of the new model version, LPJmL4, is provided in a companion paper (Schaphoff et al., 2018c). Here, we provide a full picture of the model performance, going beyond standard benchmark procedures and give hints on the strengths and shortcomings of the model to identify the need for further model improvement. Specifically, we evaluate LPJmL4 against various datasets from in situ measurement sites, satellite observations, and agricultural yield statistics. We apply a range of metrics to evaluate the quality of the model to simulate stocks and flows of carbon and water in natural and managed ecosystems at different temporal and spatial scales. We show that an advanced phenology scheme improves the simulation of seasonal fluctuations in the atmospheric CO2 concentration, while the permafrost scheme improves estimates of carbon stocks. The full LPJmL4 code including the new developments will be supplied open source through https://gitlab.pik-potsdam.de/lpjml/LPJmL" target="_blank">https://gitlab.pik-potsdam.de/lpjml/LPJmL. We hope that this will lead to new model developments and applications that improve the model performance and possibly build up a new understanding of the terrestrial biosphere.

  4. Sediment Retention Dynamics and Vegetation Along Three Tributaries of the Chesapeake Bay

    Science.gov (United States)

    Ross, K.; Ross, K.; Hupp, C.; Alexander, L.; Alexander, L.

    2001-12-01

    Coastal Plain riparian wetlands in the Mid-Atlantic United States are the last place for sediment and contaminant storage before reaching critical estuarine and marine environments. The deteriorating health of the Chesapeake Bay has been attributed in part to elevated sediment loads. The purpose of this study is to investigate the effects of channelization and urbanization on sediment deposition and geomorphic processes along the Pocomoke and Chickahominy Rivers and Dragon Run, three Coastal Plain tributaries. Floodplain microtopography was surveyed in 100 x 100 m grids at three characteristic reaches along each river and woody vegetation analyses were conducted. Floodplain suspended sediment concentrations and short and long-term sedimentation rates were estimated at each reach using single stage sediment sampler arrays, clay pads and dendrogeomorphic techniques, respectively. Site hydroperiod and flow characteristics were determined from USGS gaging station records, floodplain water level recorders, and field observations. Channelized floodplain reaches along the Pocomoke River are flooded less frequently, have lower mineral sedimentation rates (2 mm/yr to 6 mm/yr) and woody species diversity than the unchannelized reaches. Along the Chickahominy River, floodplain wetlands close to urban centers are flooded more frequently, but have shorter hydroperiods (3.5 days/yr compared to more than 45 days/yr), lower sedimentation rates (1.8 mm/yr to 6.8 mm/yr), and lower woody species diversity (0.51 to 1.95 on the Shannon-Weiner diversity index) than floodplains further downstream. Suspended sediment delivery and deposition rates are significantly influenced by floodplain hydroperiod duration and channel-floodplain connectivity. These results suggest that understanding floodplain sediment dynamics and geomorphic processes with respect to dominant watershed landuse patterns is critical for effective water quality management and restoration efforts.

  5. Using RapidEye and MODIS Data Fusion to Monitor Vegetation Dynamics in Semi-Arid Rangelands in South Africa

    Directory of Open Access Journals (Sweden)

    Andreas Tewes

    2015-05-01

    Full Text Available Image time series of high temporal and spatial resolution capture land surface dynamics of heterogeneous landscapes. We applied the ESTARFM (Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model algorithm to multi-spectral images covering two semi-arid heterogeneous rangeland study sites located in South Africa. MODIS 250 m resolution and RapidEye 5 m resolution images were fused to produce synthetic RapidEye images, from June 2011 to July 2012. We evaluated the performance of the algorithm by comparing predicted surface reflectance values to real RapidEye images. Our results show that ESTARFM predictions are accurate, with a coefficient of determination for the red band 0.80 < R2 < 0.92, and for the near-infrared band 0.83 < R2 < 0.93, a mean relative bias between 6% and 12% for the red band and 4% to 9% in the near-infrared band. Heterogeneous vegetation at sub-MODIS resolution is captured adequately: A comparison of NDVI time series derived from RapidEye and ESTARFM data shows that the characteristic phenological dynamics of different vegetation types are reproduced well. We conclude that the ESTARFM algorithm allows us to produce synthetic remote sensing images at high spatial combined with high temporal resolution and so provides valuable information on vegetation dynamics in semi-arid, heterogeneous rangeland landscapes.

  6. Microbial Dynamics During a Temporal Sequence of Bioreduction Stimulated by Emulsified Vegetable Oil

    Science.gov (United States)

    Schadt, C. W.; Gihring, T. M.; Yang, Z.; Wu, W.; Green, S.; Overholt, W.; Zhang, G.; Brandt, C. C.; Campbell, J. H.; Carroll, S. C.; Criddle, C.; Jardine, P. M.; Lowe, K.; Mehlhorn, T.; Kostka, J. E.; Watson, D. B.; Brooks, S. C.

    2011-12-01

    Amendments of slow-release substrates (e.g. emulsified vegetable oil; EVO) are potentially pragmatic alternatives to short-lived labile substrates for sustained uranium bioimmobilization within groundwater systems. The spatial and temporal dynamics of geochemical and microbial community changes during EVO amendment are likely to differ significantly from populations stimulated by readily utilizable soluble substrates (e.g. ethanol or acetate). We tracked dynamic changes in geochemistry and microbial communities for 270 days following a one-time EVO injection at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site that resulted in decreased groundwater U concentrations for ~4 months. Pyrosequencing and quantitative PCR of 16S rRNA and dissimilatory sulfite reductase (dsrA) genes from monitoring well samples revealed a rapid decline in bacterial community richness and evenness after EVO injection, concurrent with increased 16S rRNA copy levels, indicating the selection of a narrow group consisting of 10-15 dominant OTUs, rather than a broad community stimulation. By association of the known physiology of close relatives identified in the pyrosequencing analysis, it is possible to infer a hypothesized sequence of microbial functions leading the major changes in electron donors and acceptors in the system. Members of the Firmicutes family Veillonellaceae dominated after injection and most likely catalyzed the initial oil decomposition and utilized the glycerol associated with the oils. Sulfate-reducing bacteria from the genus Desulforegula, known for LCFA oxidation to acetate, also dominated shortly after EVO amendment and are thought to catalyze this process. Acetate and H2 production during LCFA degradation appeared to stimulate NO3-, Fe(III), U(VI), and SO42- reduction by members of the Comamonadaceae, Geobacteriaceae, and Desulfobacterales. Methanogenic archaea flourished late in the experiment and in some samples constituted over 25 % of the total

  7. How does selfing affect the dynamics of selfish transposable elements?

    Directory of Open Access Journals (Sweden)

    Boutin Thibaud S

    2012-03-01

    Full Text Available Abstract Background Many theoretical models predicting the dynamics of transposable elements (TEs in genomes, populations, and species have already been proposed. However, most of them only focus on populations of sexual diploid individuals, and TE dynamics in populations partly composed by autogamous individuals remains poorly investigated. To estimate the impact of selfing on TE dynamics, the short- and long-term evolution of TEs was simulated in outcrossing populations with various proportions of selfing individuals. Results Selfing has a deep impact on TE dynamics: the higher the selfing rate, the lower the probability of invasion. Already known non-equilibrium dynamics (complete loss, domestication, cyclical invasion of TEs can all be described whatever the mating system. However, their pattern and their respective frequencies greatly depend on the selfing rate. For instance, in cyclical dynamics resulting from interactions between autonomous and non-autonomous copies, cycles are faster when the selfing rate increases. Interestingly, an abrupt change in the mating system from sexuality to complete asexuality leads to the loss of all the elements over a few hundred generations. In general, for intermediate selfing rates, the transposition activity remains maintained. Conclusions Our theoretical results evidence that a clear and systematic contrast in TE content according to the mating system is expected, with a smooth transition for intermediate selfing rates. Several parameters impact the TE copy number, and all dynamics described in allogamous populations can be also observed in partly autogamous species. This study thus provides new insights to understand the complex signal from empirical comparison of closely related species with different mating systems.

  8. Late Quaternary sedimentary dynamics in Western Amazonia: Implications for the origin of open vegetation/forest contrasts

    Science.gov (United States)

    Rossetti, D. F.; Bertani, T. C.; Zani, H.; Cremon, E. H.; Hayakawa, E. H.

    2012-12-01

    depositional dynamics through time, a process that had an immediate effect on the development of large open vegetation patches intermingled with the Amazonian rainforest.

  9. Does Leisure Time as a Stress Coping Resource Increase Affective Complexity? Applying the Dynamic Model of Affect (DMA)

    Science.gov (United States)

    Qian, Xinyi (Lisa); Yarnal, Careen M.; Almeida, David M.

    2013-01-01

    Affective complexity, a manifestation of psychological well-being, refers to the relative independence between positive and negative affect (PA, NA). According to the Dynamic Model of Affect (DMA), stressful situations lead to highly inverse PA-NA relationship, reducing affective complexity. Meanwhile, positive events can sustain affective complexity by restoring PA-NA independence. Leisure, a type of positive events, has been identified as a coping resource. This study used the DMA to assess whether leisure time helps restore affective complexity on stressful days. We found that on days with more leisure time than usual, an individual experienced less negative PA-NA relationship after daily stressful events. The finding demonstrates the value of leisure time as a coping resource and the DMA’s contribution to coping research. PMID:24659826

  10. Measuring the pulse of urban green infrastructure: vegetation dynamics across residential landscapes

    Science.gov (United States)

    Vegetation can be an important component of urban green infrastructure. Its structure is a complex result of the socio-ecological milieu and management decisions, and it can influence numerous ecohydrological processes such as stormwater interception and evapotranspiration. Despi...

  11. The role of vegetation in pine and scrub land in the regeneration of soils affected by forest fires. Hydrological and erosion effects in the year after the fire

    International Nuclear Information System (INIS)

    Cerda, A.; Bodi, M. B.; Doerr, S. H.; Mataix-Solera, J.

    2009-01-01

    Forest fires provide an excellent opportunity to understand the relationship between vegetation and erosion. This is because changes in vegetation and erosion processes and rates are highly dynamics after the fire. Through simulated rainfall and WDPT (Water Drop Penetration Time) tests the soil water repellency and the runoff and erosion rates after a fire in the Serra Grossa Range, Eastern Spain, was measured. Sampling (six plots) was carried out in october 2002 and July 2003, under we and dry conditions respectively. (Author) 8 refs.

  12. Learning and affective responses in location-choice dynamics

    NARCIS (Netherlands)

    Han, Q.; Arentze, T.A.; Timmermans, H.J.P.

    2013-01-01

    In this paper we discuss the development of a dynamic agent-based model which simulates how agents search and explore in nonstationary environments and ultimately develop habitual, context-dependent, activity travel patterns. Conceptually, the creation of a choice set is context dependent.

  13. Habit formation and affective responses in location choice dynamics

    NARCIS (Netherlands)

    Han, Q.; Arentze, T.A.; Timmermans, H.J.P.

    2010-01-01

    This paper discusses the development of a dynamic agent-based model which simulates how agents search and explore in non-stationary environments and ultimately develop habitual, context-dependent, activity-travel patterns. In this paper, we specifically focus on how emotional values, beliefs and

  14. Inactivation of Tor proteins affects the dynamics of endocytic proteins ...

    Indian Academy of Sciences (India)

    Tor2 is an activator of the Rom2/Rho1 pathway that regulates -factor internalization. Since the recruitment of endocytic proteins such as actin-binding proteins and the amphiphysins precedes the internalization of -factor, we hypothesized that loss of Tor function leads to an alteration in the dynamics of the endocytic ...

  15. Assessing Vegetation Cover Dynamics Induced by Policy-Driven Ecological Restoration and Implication to Soil Erosion in Southern China.

    Science.gov (United States)

    Zhang, Jien; Wang, Tianming; Ge, Jianping

    2015-01-01

    In the aftermath of the severe droughts and floods at the end of the 20th century, the Chinese government launched several ecological restoration projects, including the Natural Forest Protection Program in 1998 and the Grain-for-Green Program in 1999, to promote afforestation and reforestation to reduce surface runoff and consequent soil erosion nationwide. However, it is still unclear how vegetation has changed in southern China since the launch of these programs. In this study, we used the MODIS Enhanced Vegetation Index (EVI) to analyze the vegetation cover dynamics in southern China from 2000 to 2009 and evaluate the resulting effects of controlling soil erosion. Our observations indicate that 5.3% of the study area significantly increased and 0.98% significantly decreased in EVI value (p soil erosion based upon monitoring sediment yields at hydrologic stations in the Yangtze River. This study displays the spatial patterns of trend in vegetation growth since the beginning of the 21st century in southern China and highlights the important role of China's afforestation program.

  16. Vegetation change in a man-made salt marsh affected by a reduction in both grazing and drainage

    NARCIS (Netherlands)

    Esselink, Peter; Fresco, LFM; Dijkema, KS

    In order to restore natural salt marsh in a 460-ha nature reserve established in man-made salt marsh in the Dollard estuary, The Netherlands, the artificial drainage system was neglected and cattle grazing reduced. Vegetation changes were traced through two vegetation surveys and monitoring of

  17. Studying consumer behaviour related to the quality of food: A case on vegetable preparation affecting sensory and health attributes

    NARCIS (Netherlands)

    Bongoni, R.; Steenbekkers, L.P.A.; Verkerk, R.; Boekel, van M.A.J.S.; Dekker, M.

    2013-01-01

    The domestic preparation of vegetables induces a significant change in their sensory and health attributes. The preparation of vegetables by consumers is likely to be controlled by assessing perceivable (sensory) quality attributes such as colour and texture because other quality attributes,

  18. Fire in Fennoscandia: A palaeo-perspective of spatial and temporal variability in fire frequency and vegetation dynamics

    Science.gov (United States)

    Clear, Jennifer; Bradshaw, Richard; Seppä, Heikki

    2014-05-01

    Active fire suppression in Fennoscandia has created a boreal forest ecosystem that is almost free of fire. Absence of fire is thought to have contributed to the widespread dominance of Picea abies (Norway spruce), though the character and structure of spruce forests operates as a positive feedback retarding fire frequency. This lack of fire and dominance by Picea abies may have assisted declines in deciduous tree species, with a concomitant loss of floristic diversity. Forest fires are driven by a complex interplay between natural (climate, vegetation and topography) and anthropogenic disturbance and through palaeoecology we are able to explore spatio-temporal variability in the drivers of fire, changing fire dynamics and the subsequent consequences for forest succession, development and floristic diversity over long timescales. High resolution analysis of palaeoenvironmental proxies (pollen and macroscopic charcoal) allows Holocene vegetation and fire dynamics to be reconstructed at the local forest-stand scale. Comparisons of fire histories with pollen-derived quantitative reconstruction of vegetation at local- and regional-scales identify large-scale ecosystem responses and local-scale disturbance. Spatio-temporal heterogeneity and variability in biomass burning is explored to identify the drivers of fire and palaeovegetation reconstructions are compared to process-based, climate-driven dynamic vegetation model output to test the significance of fire frequency as a driver of vegetation composition and dynamics. Fire was not always so infrequent in the northern European forest with early-Holocene fire regimes driven by natural climate variations and fuel availability. The establishment and spread of Picea abies was probably driven by an increase in continentality of climate, but local natural and anthropogenic ecosystem disturbance may have aided this spread. Picea expansion led to a step-wise reduction in regional biomass burning and here we show the now

  19. Factors Affecting Water Dynamics and Their Assessment in Agricultural Landscapes

    International Nuclear Information System (INIS)

    Sakadevan, K.; Nguyen, M.L.

    2015-01-01

    The intensification and extension of agriculture have contributed significantly to the global food production in the last five decades. However, intensification without due attention to the ecosystem services and sustainability of soil and water resources contributed to land and water quality degradation such as soil erosion, decreased soil fertility and quality, salinization and nutrient discharge to surface and ground waters. Land use change from forests to crop lands altered the vegetation pattern and hydrology of landscapes with increased nutrient discharge from crop lands to riverine environment. Global climate change will increase the amount of water required for agriculture in addition to water needed for further irrigation development causing water scarcity in many dry, arid and semi-arid regions. The water and nutrient use efficiencies of agricultural production systems are still below 40% in many regions across the globe. Nitrogen (N) and phosphorus (P) fertilizer use in agriculture have accelerated the cycling of these nutrients in the landscape and contributed to water quality degradation. Such nutrient pollution has a wide array of consequences including eutrophication of inland waters and marine ecosystems. While intensifying drought conditions, increasing water consumption and environmental pollution in many parts of the world threatens agricultural productivity and livelihood, these also provided opportunities for farmers to use improved land and water management technologies and practices to make agriculture resilient to external shocks

  20. How Does the Electron Dynamics Affect the Global Reconnection Rate

    Science.gov (United States)

    Hesse, Michael

    2012-01-01

    The question of whether the microscale controls the macroscale or vice-versa remains one of the most challenging problems in plasmas. A particular topic of interest within this context is collisionless magnetic reconnection, where both points of views are espoused by different groups of researchers. This presentation will focus on this topic. We will begin by analyzing the properties of electron diffusion region dynamics both for guide field and anti-parallel reconnection, and how they can be scaled to different inflow conditions. As a next step, we will study typical temporal variations of the microscopic dynamics with the objective of understanding the potential for secular changes to the macroscopic system. The research will be based on a combination of analytical theory and numerical modeling.

  1. Genome Dynamics of Hybrid Saccharomyces cerevisiae During Vegetative and Meiotic Divisions

    Directory of Open Access Journals (Sweden)

    Abhishek Dutta

    2017-11-01

    Full Text Available Mutation and recombination are the major sources of genetic diversity in all organisms. In the baker’s yeast, all mutation rate estimates are in homozygous background. We determined the extent of genetic change through mutation and loss of heterozygosity (LOH in a heterozygous Saccharomyces cerevisiae genome during successive vegetative and meiotic divisions. We measured genome-wide LOH and base mutation rates during vegetative and meiotic divisions in a hybrid (S288c/YJM789 S. cerevisiae strain. The S288c/YJM789 hybrid showed nearly complete reduction in heterozygosity within 31 generations of meioses and improved spore viability. LOH in the meiotic lines was driven primarily by the mating of spores within the tetrad. The S288c/YJM789 hybrid lines propagated vegetatively for the same duration as the meiotic lines, showed variable LOH (from 2 to 3% and up to 35%. Two of the vegetative lines with extensive LOH showed frequent and large internal LOH tracts that suggest a high frequency of recombination repair. These results suggest significant LOH can occur in the S288c/YJM789 hybrid during vegetative propagation presumably due to return to growth events. The average base substitution rates for the vegetative lines (1.82 × 10−10 per base per division and the meiotic lines (1.22 × 10−10 per base per division are the first genome-wide mutation rate estimates for a hybrid yeast. This study therefore provides a novel context for the analysis of mutation rates (especially in the context of detecting LOH during vegetative divisions, compared to previous mutation accumulation studies in yeast that used homozygous backgrounds.

  2. Learning and affective responses in location-choice dynamics

    OpenAIRE

    Qi Han; Theo Arentze; Harry J P Timmermans

    2013-01-01

    In this paper we discuss the development of a dynamic agent-based model which simulates how agents search and explore in nonstationary environments and ultimately develop habitual, context-dependent, activity–travel patterns. Conceptually, the creation of a choice set is context dependent. Individuals are assumed to have aspiration levels associated with location attributes that, in combination with evaluation results, determine whether the agent will start exploring or persist in habitual be...

  3. How a Reduction of Standard Working Hours Affects Employment Dynamics

    NARCIS (Netherlands)

    Santos Raposo, P.M.; van Ours, J.C.

    2009-01-01

    On December 1, 1996, a new law was implemented in Portugal to gradually reduce the stan- dard working week from 44 to 40 hours. We study how this mandatory reduction affected employment through job creation and job destruction. We find evidence that the working hours reduction had a positive effect

  4. Design features affecting dynamic behaviour of fast reactor cores

    International Nuclear Information System (INIS)

    Kayser, G.; Gouriou, A.

    1981-06-01

    The study of dynamic response of an LMFBR to normal and accidental transients needs first of all a simulation code taking into account all the important effects. The DYN-1 code aims at this target. It represents with a sufficiently accurate meshing the core in a 20 geometry for the thermal and reactivity effects, while the kinetics of this core are calculated with a point model. The primary pool, secondary loops, steam generator are also represented, as well as the control and protective systems. We give a short description of this code. Simpler codes are sometimes good enough for parametric studies

  5. How does feed with different levels of vegetable origin affect the sensory quality of ice storage Rainbow trout (Oncorhynchus mykiss)?

    DEFF Research Database (Denmark)

    Hyldig, Grethe; Nielsen, Henrik Hauch; Holm, Jørgen

    carnivores, is facing major challenges as a consequence of the limited access in future sustainable resources of wild fish or other sea living organisms from a lower trophic level for feed production. Consequently, alternative feeding regimes are now considered e.g. use of components of vegetable origin...... and methods Feed trials Rainbow trout were farmed in tanks at Biomar A/S, Hirtshals and fed on six different diets covering only marine, only vegetables and mixture of marine and vegetable feeds. Trout for the quality study were slaughtered, vacuum-packed and stored at -80°C until analysis. Sensory Quality...

  6. Dynamically tracking anxious individuals' affective response to valenced information.

    Science.gov (United States)

    Fua, Karl C; Teachman, Bethany A

    2017-09-01

    Past research has shown that an individual's feelings at any given moment reflect currently experienced stimuli as well as internal representations of similar past experiences. However, anxious individuals' affective reactions to streams of interrelated valenced information (vs. reactions to static stimuli that are arguably less ecologically valid) are rarely tracked. The present study provided a first examination of the newly developed Tracking Affect Ratings Over Time (TAROT) task to continuously assess anxious individuals' affective reactions to streams of information that systematically change valence. Undergraduate participants (N = 141) completed the TAROT task in which they listened to narratives containing positive, negative, and neutral physically- or socially-relevant events, and indicated how positive or negative they felt about the information they heard as each narrative unfolded. The present study provided preliminary evidence for the validity and reliability of the task. Within scenarios, participants higher (vs. lower) in anxiety showed many expected negative biases, reporting more negative mean ratings and overall summary ratings, changing their pattern of responding more quickly to negative events, and responding more negatively to neutral events. Furthermore, individuals higher (vs. lower) in anxiety tended to report more negative minimums during and after positive events, and less positive maximums after negative events. Together, findings indicate that positive events were less impactful for anxious individuals, whereas negative experiences had a particularly lasting impact on future affective responses. The TAROT task is able to efficiently capture a number of different cognitive biases, and may help clarify the mechanisms that underlie anxious individuals' biased negative processing. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. Spatial pattern formation of coastal vegetation in response to external gradients and positive feedbacks affecting soil porewater salinity: A model study

    Science.gov (United States)

    Jiang, J.; DeAngelis, D.L.; Smith, T. J.; Teh, S.Y.; Koh, H. L.

    2012-01-01

    Coastal vegetation of South Florida typically comprises salinity-tolerant mangroves bordering salinity-intolerant hardwood hammocks and fresh water marshes. Two primary ecological factors appear to influence the maintenance of mangrove/hammock ecotones against changes that might occur due to disturbances. One of these is a gradient in one or more environmental factors. The other is the action of positive feedback mechanisms, in which each vegetation community influences its local environment to favor itself, reinforcing the boundary between communities. The relative contributions of these two factors, however, can be hard to discern. A spatially explicit individual-based model of vegetation, coupled with a model of soil hydrology and salinity dynamics is presented here to simulate mangrove/hammock ecotones in the coastal margin habitats of South Florida. The model simulation results indicate that an environmental gradient of salinity, caused by tidal flux, is the key factor separating vegetation communities, while positive feedback involving the different interaction of each vegetation type with the vadose zone salinity increases the sharpness of boundaries, and maintains the ecological resilience of mangrove/hammock ecotones against small disturbances. Investigation of effects of precipitation on positive feedback indicates that the dry season, with its low precipitation, is the period of strongest positive feedback. ?? 2011 Springer Science+Business Media B.V. (outside the USA).

  8. The role of deep nitrogen and dynamic rooting profiles on vegetation dynamics and productivity in response to permafrost thaw and climate change in Arctic tundra

    Science.gov (United States)

    Hewitt, R. E.; Helene, G.; Taylor, D. L.; McGuire, A. D.; Mack, M. C.

    2017-12-01

    The release of permafrost-derived nitrogen (N) has the potential to fertilize tundra vegetation, modulating plant competition, stimulating productivity, and offsetting carbon losses from thawing permafrost. Dynamic rooting, mycorrhizal interactions, and coupling of N availability and root N uptake have been identified as gaps in ecosystem models. As a first step towards understanding whether Arctic plants can access deep permafrost-derived N, we characterized rooting profiles and quantified acquisition of 15N tracer applied at the permafrost boundary by moist acidic tundra plants subjected to almost three decades of warming at Toolik Lake, Alaska. In the ambient control plots the vegetation biomass is distributed between five plant functional types (PFTs): sedges, evergreen and deciduous shrubs, mosses and in lower abundance, forbs. The warming treatment has resulted in the increase of deciduous shrub biomass and the loss of sedges, evergreen shrubs, and mosses. We harvested roots by depth increment down to the top of the permafrost. Roots were classified by size class and PFT. The average thaw depth in the warmed plots was 58.3 cm ± 6.4 S.E., close to 18 cm deeper than the average thaw depth in the ambient plots (40.8 cm ± 1.8 S.E.). Across treatments the deepest rooting species was Rubus chamaemorus (ambient 40.8 cm ± 1.8 S.E., warmed 50.3 cm ± 9.8 S.E.), a non-mycorrhizal forb, followed by Eriophorum vaginatum, a non-mycorrhizal sedge. Ectomycorrhizal deciduous and ericoid mycorrhizal evergreen shrubs were rooted at more shallow depths. Deeply rooted non-mycorrhizal species had the greatest uptake of 15N tracer within 24 hours across treatments. Tracer uptake was greatest for roots of E. vaginatum in ambient plots and R. chamaemorus in warmed plots. Root profiles were integrated into a process-based ecosystem model coupled with a dynamic vegetation model. Functions modeling dynamic rooting profile relative to thaw depth were implemented for each PFT. The

  9. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests.

    Science.gov (United States)

    Xu, Xiangtao; Medvigy, David; Powers, Jennifer S; Becknell, Justin M; Guan, Kaiyu

    2016-10-01

    We assessed whether diversity in plant hydraulic traits can explain the observed diversity in plant responses to water stress in seasonally dry tropical forests (SDTFs). The Ecosystem Demography model 2 (ED2) was updated with a trait-driven mechanistic plant hydraulic module, as well as novel drought-phenology and plant water stress schemes. Four plant functional types were parameterized on the basis of meta-analysis of plant hydraulic traits. Simulations from both the original and the updated ED2 were evaluated against 5 yr of field data from a Costa Rican SDTF site and remote-sensing data over Central America. The updated model generated realistic plant hydraulic dynamics, such as leaf water potential and stem sap flow. Compared with the original ED2, predictions from our novel trait-driven model matched better with observed growth, phenology and their variations among functional groups. Most notably, the original ED2 produced unrealistically small leaf area index (LAI) and underestimated cumulative leaf litter. Both of these biases were corrected by the updated model. The updated model was also better able to simulate spatial patterns of LAI dynamics in Central America. Plant hydraulic traits are intercorrelated in SDTFs. Mechanistic incorporation of plant hydraulic traits is necessary for the simulation of spatiotemporal patterns of vegetation dynamics in SDTFs in vegetation models. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. Cross-correlation and time history analysis of laser dynamic specklegram imaging for quality evaluation and assessment of certain seasonal fruits and vegetables

    Science.gov (United States)

    Samuel, Boni; Retheesh, R.; Zaheer Ansari, Md; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.

    2017-10-01

    Quality evaluation of fruits and vegetables is of great concern as there is a shortage of unadulterated items on the market. Even unadulterated fruits and vegetables, especially those with soft tissue, cannot be stored for longer times due to physical and chemical changes. Moreover, damage can occur during harvest and in the post-harvest period, while preserving or transporting the fruits and vegetables. This work describes the use of a laser dynamic speckle imaging technique as a powerful optoelectronic tool for the quality evaluation of certain seasonal fruits and vegetables in an Indian market. A simple optical configuration was designed for developing the dynamic speckle imagining system to record dynamic specklegrams of the specimens under different conditions. These images were analysed using a cross-correlation function and the temporal history of specklegrams. The technique can be effectively adapted to the industrial environment and would be beneficial for all stakeholders in the field.

  11. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision and hobbyist unmanned aerial vehicles

    Science.gov (United States)

    Dandois, J. P.; Ellis, E. C.

    2013-12-01

    High spatial resolution three-dimensional (3D) measurements of vegetation by remote sensing are advancing ecological research and environmental management. However, substantial economic and logistical costs limit this application, especially for observing phenological dynamics in ecosystem structure and spectral traits. Here we demonstrate a new aerial remote sensing system enabling routine and inexpensive aerial 3D measurements of canopy structure and spectral attributes, with properties similar to those of LIDAR, but with RGB (red-green-blue) spectral attributes for each point, enabling high frequency observations within a single growing season. This 'Ecosynth' methodology applies photogrammetric ''Structure from Motion'' computer vision algorithms to large sets of highly overlapping low altitude (USA. Ecosynth canopy height maps (CHMs) were strong predictors of field-measured tree heights (R2 0.63 to 0.84) and were highly correlated with a LIDAR CHM (R 0.87) acquired 4 days earlier, though Ecosynth-based estimates of aboveground biomass densities included significant errors (31 - 36% of field-based estimates). Repeated scanning of a 0.25 ha forested area at six different times across a 16 month period revealed ecologically significant dynamics in canopy color at different heights and a structural shift upward in canopy density, as demonstrated by changes in vertical height profiles of point density and relative RGB brightness. Changes in canopy relative greenness were highly correlated (R2 = 0.88) with MODIS NDVI time series for the same area and vertical differences in canopy color revealed the early green up of the dominant canopy species, Liriodendron tulipifera, strong evidence that Ecosynth time series measurements capture vegetation structural and spectral dynamics at the spatial scale of individual trees. Observing canopy phenology in 3D at high temporal resolutions represents a breakthrough in forest ecology. Inexpensive user-deployed technologies for

  12. A Spiral in the Heart: Mitral Valve Endocarditis with Unusual Vegetation Shape Potentially Affecting Effectiveness of Antibiotic Therapy

    Directory of Open Access Journals (Sweden)

    Veronica Fibbi

    2015-01-01

    Full Text Available We report an unusual case of infective endocarditis (IE in an 88-year-old woman, occurring on a prolapsing mitral valve and characterized by an atypical vegetation shape resembling a spiral-like appearance. After the patient refused surgical correction, persistent IE despite prolonged antibiotic therapy was observed, resulting in an ischemic stroke probably secondary to septic embolus. The importance of vegetation shape in the management of patients with IE was classically related to the increased risk of embolization associated with pedunculated, irregular, and multilobed masses. We hypothesize that the unusual spiral-like vegetation shape in our patient may have favored IE persistence by two mechanisms, namely, a decrease of the exposed vegetation surface with creation of an internal core where the penetration of antimicrobial agents was obstacled and the creation of blood turbulence within the vegetation preventing a prolonged contact with circulating antibiotics. These considerations suggest that vegetation shape might be considered of importance in patients with IE not only because of its classical association with embolization risk, but also because of its potential effect on the efficacy of antibiotic therapy.

  13. Integrated modeling of long-term vegetation and hydrologic dynamics in Rocky Mountain watersheds

    Science.gov (United States)

    Robert Steven Ahl

    2007-01-01

    Changes in forest structure resulting from natural disturbances, or managed treatments, can have negative and long lasting impacts on water resources. To facilitate integrated management of forest and water resources, a System for Long-Term Integrated Management Modeling (SLIMM) was developed. By combining two spatially explicit, continuous time models, vegetation...

  14. Addressing climate change in the Forest Vegetation Simulator to assess impacts on landscape forest dynamics

    Science.gov (United States)

    Nicholas L. Crookston; Gerald E. Rehfeldt; Gary E. Dixon; Aaron R. Weiskittel

    2010-01-01

    To simulate stand-level impacts of climate change, predictors in the widely used Forest Vegetation Simulator (FVS) were adjusted to account for expected climate effects. This was accomplished by: (1) adding functions that link mortality and regeneration of species to climate variables expressing climatic suitability, (2) constructing a function linking site index to...

  15. Evapotranspiration variability and its association with vegetation dynamics in the Nile Basin, 2002–2011

    Science.gov (United States)

    Alemu, Henok; Senay, Gabriel B.; Kaptue, Armel T.; Kovalskyy, Valeriy

    2014-01-01

    Evapotranspiration (ET) is a vital component in land-atmosphere interactions. In drylands, over 90% of annual rainfall evaporates. The Nile Basin in Africa is about 42% dryland in a region experiencing rapid population growth and development. The relationship of ET with climate, vegetation and land cover in the basin during 2002–2011 is analyzed using thermal-based Simplified Surface Energy Balance Operational (SSEBop) ET, Normalized Difference Vegetation Index (NDVI)-based MODIS Terrestrial (MOD16) ET, MODIS-derived NDVI as a proxy for vegetation productivity and rainfall from Tropical Rainfall Measuring Mission (TRMM). Interannual variability and trends are analyzed using established statistical methods. Analysis based on thermal-based ET revealed that >50% of the study area exhibited negative ET anomalies for 7 years (2009, driest), while >60% exhibited positive ET anomalies for 3 years (2007, wettest). NDVI-based monthly ET correlated strongly (r > 0.77) with vegetation than thermal-based ET (0.52 < r < 0.73) at p < 0.001. Climate-zone averaged thermal-based ET anomalies positively correlated (r = 0.6, p < 0.05) with rainfall in 4 of the 9 investigated climate zones. Thermal-based and NDVI-based ET estimates revealed minor discrepancies over rainfed croplands (60 mm/yr higher for thermal-based ET), but a significant divergence over wetlands (440 mm/yr higher for thermal-based ET). Only 5% of the study area exhibited statistically significant trends in ET.

  16. Stand structure and vegetation dynamics of a subalpine treed fen in Rocky Mountain National Park, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.B. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Biology

    1997-06-01

    The tree population size structure and relationship between tree diameter and age were examined in a subalpine fen and surrounding Picea-Abies forest in northern Colorado. The fen grades from a sedge fen, through an ecotone, to a treed fen (i.e. fen colonized by trees). Tree growth rate varies across the vegetational gradient, with the sedge fen having the slowest growth, and the upland forest having the fastest growth. Differences in growth rate are related to the average size of peat hummocks, with areas containing tall hummocks exhibiting the highest tree growth rates. Size structures display the characteristic reverse-J distribution generally indicative of stable populations, but forest vegetation is expanding into the open regions of the fen, and within the treed fen an increase in Abies lasiocarpa is occurring. These changes are primarily attributed to a positive feedback situation wherein the fen`s surface is built up by peat accumulation. Distinct hummocks form first on the open fen but then coalesce to form raised peat islands in the treed fen. This new substrate provides habitat with a comparatively low water table and allows the growth of mesophytic forest vegetation. A pathway for this vegetational development is proposed. 40 refs., 2 figs.

  17. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya.

    Science.gov (United States)

    Dolezal, Jiri; Dvorsky, Miroslav; Kopecky, Martin; Liancourt, Pierre; Hiiesalu, Inga; Macek, Martin; Altman, Jan; Chlumska, Zuzana; Rehakova, Klara; Capkova, Katerina; Borovec, Jakub; Mudrak, Ondrej; Wild, Jan; Schweingruber, Fritz

    2016-05-04

    A rapid warming in Himalayas is predicted to increase plant upper distributional limits, vegetation cover and abundance of species adapted to warmer climate. We explored these predictions in NW Himalayas, by revisiting uppermost plant populations after ten years (2003-2013), detailed monitoring of vegetation changes in permanent plots (2009-2012), and age analysis of plants growing from 5500 to 6150 m. Plant traits and microclimate variables were recorded to explain observed vegetation changes. The elevation limits of several species shifted up to 6150 m, about 150 vertical meters above the limit of continuous plant distribution. The plant age analysis corroborated the hypothesis of warming-driven uphill migration. However, the impact of warming interacts with increasing precipitation and physical disturbance. The extreme summer snowfall event in 2010 is likely responsible for substantial decrease in plant cover in both alpine and subnival vegetation and compositional shift towards species preferring wetter habitats. Simultaneous increase in summer temperature and precipitation caused rapid snow melt and, coupled with frequent night frosts, generated multiple freeze-thaw cycles detrimental to subnival plants. Our results suggest that plant species responses to ongoing climate change will not be unidirectional upward range shifts but rather multi-dimensional, species-specific and spatially variable.

  18. Dynamics of woody vegetation in a semi-arid savanna, with a focus ...

    African Journals Online (AJOL)

    Increases in the tree:grass ratio with accompanying changes in herbaceous composition, called bush or shrub encroachment, is a worldwide phenomenon in ... Acacia mellifera-dominated savannas in the Northern Cape, South Africa, were investigated by means of vegetation classification and analyses of sequential aerial ...

  19. Using repeat electrical resistivity surveys to assess heterogeneity in soil moisture dynamics under contrasting vegetation types

    Science.gov (United States)

    Dick, Jonathan; Tetzlaff, Doerthe; Bradford, John; Soulsby, Chris

    2018-04-01

    As the relationship between vegetation and soil moisture is complex and reciprocal, there is a need to understand how spatial patterns in soil moisture influence the distribution of vegetation, and how the structure of vegetation canopies and root networks regulates the partitioning of precipitation. Spatial patterns of soil moisture are often difficult to visualise as usually, soil moisture is measured at point scales, and often difficult to extrapolate. Here, we address the difficulties in collecting large amounts of spatial soil moisture data through a study combining plot- and transect-scale electrical resistivity tomography (ERT) surveys to estimate soil moisture in a 3.2 km2 upland catchment in the Scottish Highlands. The aim was to assess the spatio-temporal variability in soil moisture under Scots pine forest (Pinus sylvestris) and heather moorland shrubs (Calluna vulgaris); the two dominant vegetation types in the Scottish Highlands. The study focussed on one year of fortnightly ERT surveys. The surveyed resistivity data was inverted and Archie's law was used to calculate volumetric soil moisture by estimating parameters and comparing against field measured data. Results showed that spatial soil moisture patterns were more heterogeneous in the forest site, as were patterns of wetting and drying, which can be linked to vegetation distribution and canopy structure. The heather site showed a less heterogeneous response to wetting and drying, reflecting the more uniform vegetation cover of the shrubs. Comparing soil moisture temporal variability during growing and non-growing seasons revealed further contrasts: under the heather there was little change in soil moisture during the growing season. Greatest changes in the forest were in areas where the trees were concentrated reflecting water uptake and canopy partitioning. Such differences have implications for climate and land use changes; increased forest cover can lead to greater spatial variability, greater

  20. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model

    Science.gov (United States)

    Smith, B.; Wårlind, D.; Arneth, A.; Hickler, T.; Leadley, P.; Siltberg, J.; Zaehle, S.

    2014-04-01

    The LPJ-GUESS dynamic vegetation model uniquely combines an individual- and patch-based representation of vegetation dynamics with ecosystem biogeochemical cycling from regional to global scales. We present an updated version that includes plant and soil N dynamics, analysing the implications of accounting for C-N interactions on predictions and performance of the model. Stand structural dynamics and allometric scaling of tree growth suggested by global databases of forest stand structure and development were well reproduced by the model in comparison to an earlier multi-model study. Accounting for N cycle dynamics improved the goodness of fit for broadleaved forests. N limitation associated with low N-mineralisation rates reduces productivity of cold-climate and dry-climate ecosystems relative to mesic temperate and tropical ecosystems. In a model experiment emulating free-air CO2 enrichment (FACE) treatment for forests globally, N limitation associated with low N-mineralisation rates of colder soils reduces CO2 enhancement of net primary production (NPP) for boreal forests, while some temperate and tropical forests exhibit increased NPP enhancement. Under a business-as-usual future climate and emissions scenario, ecosystem C storage globally was projected to increase by ca. 10%; additional N requirements to match this increasing ecosystem C were within the high N supply limit estimated on stoichiometric grounds in an earlier study. Our results highlight the importance of accounting for C-N interactions in studies of global terrestrial N cycling, and as a basis for understanding mechanisms on local scales and in different regional contexts.

  1. Reconstructing a lost Eocene Paradise, Part II: On the utility of dynamic global vegetation models in pre-Quaternary climate studies

    Science.gov (United States)

    Shellito, Cindy J.; Sloan, Lisa C.

    2006-02-01

    Models that allow vegetation to respond to and interact with climate provide a unique method for addressing questions regarding feedbacks between the ecosystem and climate in pre-Quaternary time periods. In this paper, we consider how Dynamic Global Vegetation Models (DGVMs), which have been developed for simulations with present day climate, can be used for paleoclimate studies. We begin with a series of tests in the NCAR Land Surface Model (LSM)-DGVM with Eocene geography to examine (1) the effect of removing C 4 grasses from the available plant functional types in the model; (2) model sensitivity to a change in soil texture; and (3), model sensitivity to a change in the value of pCO 2 used in the photosynthetic rate equations. The tests were designed to highlight some of the challenges of using these models and prompt discussion of possible improvements. We discuss how lack of detail in model boundary conditions, uncertainties in the application of modern plant functional types to paleo-flora simulations, and inaccuracies in the model climatology used to drive the DGVM can affect interpretation of model results. However, we also review a number of DGVM features that can facilitate understanding of past climates and offer suggestions for improving paleo-DGVM studies.

  2. Formation of banded vegetation patterns resulted from interactions between sediment deposition and vegetation growth.

    Science.gov (United States)

    Huang, Tousheng; Zhang, Huayong; Dai, Liming; Cong, Xuebing; Ma, Shengnan

    2018-03-01

    This research investigates the formation of banded vegetation patterns on hillslopes affected by interactions between sediment deposition and vegetation growth. The following two perspectives in the formation of these patterns are taken into consideration: (a) increased sediment deposition from plant interception, and (b) reduced plant biomass caused by sediment accumulation. A spatial model is proposed to describe how the interactions between sediment deposition and vegetation growth promote self-organization of banded vegetation patterns. Based on theoretical and numerical analyses of the proposed spatial model, vegetation bands can result from a Turing instability mechanism. The banded vegetation patterns obtained in this research resemble patterns reported in the literature. Moreover, measured by sediment dynamics, the variation of hillslope landform can be described. The model predicts how treads on hillslopes evolve with the banded patterns. Thus, we provide a quantitative interpretation for coevolution of vegetation patterns and landforms under effects of sediment redistribution. Copyright © 2018. Published by Elsevier Masson SAS.

  3. An improved parameterization of the allocation of assimilated carbon to plant parts in vegetation dynamics for Noah-MP

    Science.gov (United States)

    Gim, Hyeon-Ju; Park, Seon Ki; Kang, Minseok; Thakuri, Bindu Malla; Kim, Joon; Ho, Chang-Hoi

    2017-08-01

    In the land surface models predicting vegetation growth and decay, representation of the seasonality of land surface energy and mass fluxes largely depends on how to describe the vegetation dynamics. In this study, we developed a new parameterization scheme to characterize allocation of the assimilated carbon to plant parts, including leaves and fine roots. The amount of carbon allocation in this scheme depends on the climatological net primary production (NPP) of the plants. The newly developed scheme is implemented in the augmented Noah land surface model with multiple parameterization options (Noah-MP) along with other biophysical processes related to variations in photosynthetic capacity. The scheme and the augmented biophysical processes are evaluated against tower measurements of vegetation from four forest sites in various regions—two for the deciduous broadleaf and two for the needleleaf evergreen forest. Results from the augmented Noah-MP showed good agreement with the observations and demonstrated improvements in representing the seasonality of leaf area index (LAI), gross primary production (GPP), ecosystem respiration (ER), and latent heat flux. In particular, significant improvements are found in simulating amplitudes and phase shift timing in the LAI seasonal cycle, and the amount of GPP and ER in the growing season. Furthermore, the augmented Noah-MP performed reasonably well in simulating the spatial distributions of LAI, GPP, and NPP in East Asia, consistent with the satellite observations.

  4. Planning horizon affects prophylactic decision-making and epidemic dynamics.

    Science.gov (United States)

    Nardin, Luis G; Miller, Craig R; Ridenhour, Benjamin J; Krone, Stephen M; Joyce, Paul; Baumgaertner, Bert O

    2016-01-01

    The spread of infectious diseases can be impacted by human behavior, and behavioral decisions often depend implicitly on a planning horizon-the time in the future over which options are weighed. We investigate the effects of planning horizons on epidemic dynamics. We developed an epidemiological agent-based model (along with an ODE analog) to explore the decision-making of self-interested individuals on adopting prophylactic behavior. The decision-making process incorporates prophylaxis efficacy and disease prevalence with the individuals' payoffs and planning horizon. Our results show that for short and long planning horizons individuals do not consider engaging in prophylactic behavior. In contrast, individuals adopt prophylactic behavior when considering intermediate planning horizons. Such adoption, however, is not always monotonically associated with the prevalence of the disease, depending on the perceived protection efficacy and the disease parameters. Adoption of prophylactic behavior reduces the epidemic peak size while prolonging the epidemic and potentially generates secondary waves of infection. These effects can be made stronger by increasing the behavioral decision frequency or distorting an individual's perceived risk of infection.

  5. Variations in annual water-energy balance and their correlations with vegetation and soil moisture dynamics: A case study in the Wei River Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shengzhi; Huang, Qiang; Leng, Guoyong; Zhao, Menglong; Meng, Erhao

    2017-03-01

    It is of importance to investigate watershed water-energy balance variations and to explore their correlations with vegetation and soil moisture dynamics, which helps better understand the interplays between underlying surface dynamics and the terrestrial water cycle. The heuristic segmentation method was adopted to identify change points in the parameter to series in Fu's equation belonging to the Budyko framework in the Wei River Basin (WRB) and its sub-basins aiming to examine the validity of stationary assumptions. Additionally, the cross wavelet analysis was applied to explore the correlations between vegetation and soil moisture dynamics and to variations. Results indicated that (1) the omega variations in the WRB are significant, with some change points identified except for the sub-basin above Zhangjiashan, implying that the stationarity of omega series in the WRB is invalid except for the sub-basin above Zhangjiashan; (2) the correlations between soil moisture series and to series are weaker than those between Normalized Difference Vegetation Index (NDVI) series and omega series; (3) vegetation dynamics show significantly negative correlations with omega variations in 1983-2003 with a 4-8 year signal in the whole WRB, and both vegetation and soil moisture dynamics exert strong impacts on the parameter omega changes. This study helps understanding the interactions between underlying land surface dynamics and watershed water-energy balance. (C) 2017 Elsevier B.V. All rights reserved.

  6. How Fear of Future Outcomes Affects Social Dynamics

    Science.gov (United States)

    Podobnik, Boris; Jusup, Marko; Wang, Zhen; Stanley, H. Eugene

    2017-05-01

    Mutualistic relationships among the different species are ubiquitous in nature. To prevent mutualism from slipping into antagonism, a host often invokes a "carrot and stick" approach towards symbionts with a stabilizing effect on their symbiosis. In open human societies, a mutualistic relationship arises when a native insider population attracts outsiders with benevolent incentives in hope that the additional labor will improve the standard of all. A lingering question, however, is the extent to which insiders are willing to tolerate outsiders before mutualism slips into antagonism. To test the assertion by Karl Popper that unlimited tolerance leads to the demise of tolerance, we model a society under a growing incursion from the outside. Guided by their traditions of maintaining the social fabric and prizing tolerance, the insiders reduce their benevolence toward the growing subpopulation of outsiders but do not invoke punishment. This reduction of benevolence intensifies as less tolerant insiders (e.g., "radicals") openly renounce benevolence. Although more tolerant insiders maintain some level of benevolence, they may also tacitly support radicals out of fear for the future. If radicals and their tacit supporters achieve a critical majority, herd behavior ensues and the relation between the insider and outsider subpopulations turns antagonistic. To control the risk of unwanted social dynamics, we map the parameter space within which the tolerance of insiders is in balance with the assimilation of outsiders, the tolerant insiders maintain a sustainable majority, and any reduction in benevolence occurs smoothly. We also identify the circumstances that cause the relations between insiders and outsiders to collapse or that lead to the dominance of the outsiders.

  7. Form of an evolutionary tradeoff affects eco-evolutionary dynamics in a predator-prey system.

    Science.gov (United States)

    Kasada, Minoru; Yamamichi, Masato; Yoshida, Takehito

    2014-11-11

    Evolution on a time scale similar to ecological dynamics has been increasingly recognized for the last three decades. Selection mediated by ecological interactions can change heritable phenotypic variation (i.e., evolution), and evolution of traits, in turn, can affect ecological interactions. Hence, ecological and evolutionary dynamics can be tightly linked and important to predict future dynamics, but our understanding of eco-evolutionary dynamics is still in its infancy and there is a significant gap between theoretical predictions and empirical tests. Empirical studies have demonstrated that the presence of genetic variation can dramatically change ecological dynamics, whereas theoretical studies predict that eco-evolutionary dynamics depend on the details of the genetic variation, such as the form of a tradeoff among genotypes, which can be more important than the presence or absence of the genetic variation. Using a predator-prey (rotifer-algal) experimental system in laboratory microcosms, we studied how different forms of a tradeoff between prey defense and growth affect eco-evolutionary dynamics. Our experimental results show for the first time to our knowledge that different forms of the tradeoff produce remarkably divergent eco-evolutionary dynamics, including near fixation, near extinction, and coexistence of algal genotypes, with quantitatively different population dynamics. A mathematical model, parameterized from completely independent experiments, explains the observed dynamics. The results suggest that knowing the details of heritable trait variation and covariation within a population is essential for understanding how evolution and ecology will interact and what form of eco-evolutionary dynamics will result.

  8. Spatiotemporal Dynamics in Vegetation GPP over the Great Khingan Mountains Using GLASS Products from 1982 to 2015

    Directory of Open Access Journals (Sweden)

    Ling Hu

    2018-03-01

    Full Text Available Gross primary productivity (GPP is an important parameter that represents the productivity of vegetation and responses to various ecological environments. The Greater Khingan Mountain (GKM is one of the most important state-owned forest bases, and boreal forests, including the largest primeval cold-temperature bright coniferous forest in China, are widely distributed in the GKM. This study aimed to reveal spatiotemporal vegetation variations in the GKM on the basis of GPP products that were generated by the Global LAnd Surface Satellite (GLASS program from 1982 to 2015. First, we explored the spatiotemporal distribution of vegetation across the GKM. Then we analyzed the relationships between GPP variation and driving factors, including meteorological elements, growing season length (GSL, and Fraction of Photosynthetically Active Radiation (FPAR, to investigate the dominant factor for GPP dynamics. Results demonstrated that (1 the spatial distribution of accumulated GPP (AG in spring, summer, autumn, and the growing season varied due to three main reasons: understory vegetation, altitude, and land cover; (2 interannual AG in summer, autumn, and the growing season significantly increased at the regional scale during the past 34 years under climate warming and drying; (3 interannual changes of accumulated GPP in the growing season (AGG at the pixel scale displayed a rapid expansion in areas with a significant increasing trend (p < 0.05 during the period of 1982–2015 and this trend was caused by the natural forest protection project launched in 1998; and finally, (4 an analysis of driving factors showed that daily sunshine duration in summer was the most important factor for GPP in the GKM and this is different from previous studies, which reported that the GSL plays a crucial role in other areas.

  9. A dynamical-systems approach for computing ice-affected streamflow

    Science.gov (United States)

    Holtschlag, David J.

    1996-01-01

    A dynamical-systems approach was developed and evaluated for computing ice-affected streamflow. The approach provides for dynamic simulation and parameter estimation of site-specific equations relating ice effects to routinely measured environmental variables. Comparison indicates that results from the dynamical-systems approach ranked higher than results from 11 analytical methods previously investigated on the basis of accuracy and feasibility criteria. Additional research will likely lead to further improvements in the approach.

  10. Caesium dynamics in the peats and associated vegetation of northern Greece and northern Scotland

    International Nuclear Information System (INIS)

    Heaton, B.; Mitchell, R.D.J.; Killham, K.; Veresoglou, D.S.

    1990-01-01

    Sequential analyses have shown that Chernobyl-derived caesium has been largely retained in Greek basin peats (highly cultivated, base-rich, sedge peats) and retained/cycled in Scottish upland peats (uncultivated, base-poor, blanket peats). To investigate the mechanisms of retention and cycling in the Scottish peat/vegetation system, a laboratory experiment was carried out involving 'microcosms' intact peat cores. Festuca ovina was grown from seed in the cores prior to nebuliser-application of simulated rain containing caesium-134. The major factors investigated were competitive ion exchange from ammonium (designed to simulate animal waste inputs), freeze-thaw activity, and cropping (designed to simulate upland grazing). The effects of these factors are discussed in relation to the physio-cochemical and biological properties of the peat and vegetation and to our observations of the movement of caesium in the field. (author)

  11. Landscape dynamics in the Arctic foothills: Landscape evolution and vegetation succession on disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.A.; Walker, M.D.

    1990-10-20

    This document contains a summary of research accomplished by the University of Colorado's Institute of Arctic and Alpine Research (INSTAAR) Joint Facility for Regional Ecosystem Analysis (JFREA) for the Department of Energy's R D research program for 1989--1990. Aerial photographs, orthophoto topographic maps, and digital elevation models (DEMs) of the Toolik Lake region site were prepared by Aeromap US at 1:500 and 1:5000 scales. During August 1990, the region surrounding Toolik Lake was mapped at 1:5000 scale, and the intensive research grid was mapped at 1:500 scale. Mapped variables include vegetation, landforms, surface forms, and percentage surface water. Soil data from the Imnavait Creek and Toolik Lake sites are central to the analysis of landscape evolution. Soils were collected from the base of the O horizon at 72 gridpoints on the 1:500-scale map area at Imnavait Creek, and 85 grid points at Toolik Lake. Soils are being analyzed for percentage moisture, pH (saturated paste), electrical conductivity, percentage organic matter, nitrate, nitrogen, phosphorus, potassium, iron, manganese, copper. Soils were also collected from 81 permanent plots (199 horizons) which will be used for vegetation-environmental analyses. Permanent 1 {times} 1-meter point-quadrat plots were established at 85 points of the Toolik Lake grid. Data from the plots will be stratified according to slope position and terrain unit and used to compare vegetation structure and cover on different aged surfaces. Work continued on the study of the effects of road dust on tundra vegetation. 28 figs.

  12. Regeneration after fire in campo rupestre : Short- and long-term vegetation dynamics

    OpenAIRE

    Le Stradic , Soizig; Hernandez , Pauline; Fernandes , Geraldo Wilson; Buisson , Elise

    2018-01-01

    International audience; The Cerrado (Brazilian savanna) is the second largest biome in Brazil, covering 22% of the country, and campo rupestre is one of the most biodiverse ecosystem. Campo rupestre are extremely old mountaintop tropical ecosystems, composed of a mosaic of herbaceous, shrubland and savanna vegetation, generally located above 900 m above sea level characterized by shallow, acidic and nutrient-poor soils. In the context of increased land-use changes, effective conservation and ...

  13. A dynamic ecosystem process model for understanding interactions between permafrost thawing and vegetation responses in the arctic

    Science.gov (United States)

    Xu, C.; Travis, B. J.; Fisher, R. A.; Wilson, C. J.; McDowell, N.

    2010-12-01

    The arctic is expected to play an important role in the Earth’s future climate due to the large carbon stocks that are stored in permafrost and peatlands, a substantial proportion of which may be released to the atmosphere due to permafrost thawing. There may be positive feedbacks of permafrost thawing on plant growth by releasing stored nitrogen and increasing rooting depth; however, vegetation response to other changing variables such as CO2 and temperature can also modify soil hydrology and energy fluxes, leading to either positive or negative feedbacks on permafrost thawing. Disentangling the interactions between permafrost thawing and vegetation growth is critical for assessing the potential role of arctic regions on current and future global carbon cycling. We have developed a mechanistic, regional, and spatially explicit dynamic ecosystem process model through the integration of a 3-D soil hydrology and biogeochemistry model (Arctic Hydrology, ARCHY) and a dynamic vegetation model (Ecosystem Demography, ED), to quantify the importance of plant-permafrost interactions to soil and plant carbon storage. This model integrates important processes including photosynthesis, transpiration, respiration, 3-D competition for light, 3-D soil hydrology, energy fluxes (ice melting in the soil and solar radiation interception by canopy), nitrogen cycles (microbial decomposition, nitrogen transportation in soil, passive and active nitrogen uptake by plants), species migration, and drought-related mortality. A sensitivity analysis has been implemented to assess the importance of the hydrological cycle, the nitrogen cycle and energy fluxes in regulating the above and below-ground carbon cycles in arctic regions. Our model can fill an important gap between field and global land surface models for assessing plot and regional level hypotheses in the context of global climate.

  14. Quantification of the impact of macrophytes on oxygen dynamics and nitrogen retention in a vegetated lowland river

    Science.gov (United States)

    Desmet, N. J. S.; Van Belleghem, S.; Seuntjens, P.; Bouma, T. J.; Buis, K.; Meire, P.

    When macrophytes are growing in the river, the vegetation induces substantial changes to the water quality. Some effects are the result of direct interactions, such as photosynthetic activity or nutrient uptake, whereas others may be attributed to indirect effects of the water plants on hydrodynamics and river processes. This research focused on the direct effect of macrophytes on oxygen dynamics and nutrient cycling. Discharge, macrophyte biomass density, basic water quality, dissolved oxygen and nutrient concentrations were in situ monitored throughout the year in a lowland river (Nete catchment, Belgium). In addition, various processes were investigated in more detail in multiple ex situ experiments. The field and aquaria measurement results clearly demonstrated that aquatic plants can exert considerable impact on dissolved oxygen dynamics in a lowland river. When the river was dominated by macrophytes, dissolved oxygen concentrations varied from 5 to 10 mg l -1. Considering nutrient retention, it was shown that the investigated in-stream macrophytes could take up dissolved inorganic nitrogen (DIN) from the water column at rates of 33-50 mg N kgdry matter-1 h. And DIN fluxes towards the vegetation were found to vary from 0.03 to 0.19 g N ha -1 h -1 in spring and summer. Compared to the measured changes in DIN load over the river stretch, it means that about 3-13% of the DIN retention could be attributed to direct nitrogen uptake from the water by macrophytes. Yet, the role of macrophytes in rivers should not be underrated as aquatic vegetation also exerts considerable indirect effects that may have a greater impact than the direct fixation of nutrients into the plant biomass.

  15. Holocene fire, vegetation, and climate dynamics inferred from charcoal and pollen record in the eastern Tibetan Plateau

    Science.gov (United States)

    Zhao, Wenwei; Zhao, Yan; Qin, Feng

    2017-10-01

    Understanding fire history and its driving mechanisms can provide valuable insights into present fire regime (intensity, severity and frequency), the interplay between vegetation and fire, and trigger of fire activities. Here we reconstruct the Holocene fire history in the Zoige Basin on the eastern Tibetan Plateau, on the basis of sedimentary micro-charcoal record over the last 10.0 ka (1 ka = 1000 cal yr BP) and discuss the influences of vegetation and climate on fire dynamics. Our results show that regional fire was active at 10.0-3.3 ka and a significant decrease in fire activity characterized the period after 3.3 ka. The high regional fire frequency at 10.0-3.3 ka is consistent with the forested landscape suggested by high affinity scores of cool mixed forest biome (mainly consisted of spruce), implying that fire dynamics during this period was generally controlled by the variations of arboreal biomass and summer temperature. During 6.3-4.6 ka the prevailing Asian summer monsoon provided increased moisture to this region and thus suppressed fire activities to an extent, despite the availability of abundant biomass. Declined tree biomass after 3.3 ka probably accounted for the decreased fire activities. In addition, two successive fire events at ca. 3.5-3.3 ka were likely responsible for the subsequent abrupt decline of forest components in the landscape.

  16. Assessments of chromium (and other metals) in vegetables and potential bio-accumulations in humans living in areas affected by tannery wastes.

    Science.gov (United States)

    Chen, Hualin; Arocena, Joselito M; Li, Jianbing; Thring, Ronald W; Zhou, Jiangmin

    2014-10-01

    Chromium (Cr) commonly enters the food chain through uptake by vegetables. However, accurate prediction of plant uptake of Cr (and other metals) still remains a challenge. In this study, we evaluated 5 indices of availability for Cr (and other metals) to identify reliable predictors of metal transfer from soils to garlic, onion, bokchoy, radish and celery grown in soils impacted by tannery wastes. The potential bio-accumulation of Cr in humans was calculated from the Cr content of vegetable predicted by the best bio-availability index, amounts of vegetable consumed and recommended daily doses for Cr. Our results show that soil total Cr is the best predictor of Cr transfer from soils to onion (Cr in onion=8.51+0.005 Total Cr) while Cr extractable by Synthetic Precipitation Leaching Procedure at pH 5 correlates very well with Cr uptake by bokchoy (Cr bokchoy=5.86+7.32 SPLP-5 Cr) and garlic (Cr garlic=7.63+2.36 SPLP-5 Cr). The uptake of Cr by radish and celery could not be reliably estimated by any of the 5 indices of availability tested in this study. Potential bio-accumulation of Cr in humans (BA-Cr) increases from soils with low Cr (BA-Cr=11.5) to soil with high total Cr (BA-Cr=31.3). Due to numerous soil factors affecting the behavior of Cr in soils and the physiological differences among vegetables, we suggest that the prediction of the transfer of Cr (and other metals) from soils to plants should be specific to site, metal and vegetable. Potential bio-accumulation of Cr in humans can be derived from a transfer function of Cr from soils to plants and the human consumption of vegetables. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Climate change and fire effects on a prairie–woodland ecotone: projecting species range shifts with a dynamic global vegetation model

    Science.gov (United States)

    King, David A; Bachelet, Dominique M; Symstad, Amy J

    2013-01-01

    Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine–prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions

  18. Climate change and fire effects on a prairie-woodland ecotone: projecting species range shifts with a dynamic global vegetation model.

    Science.gov (United States)

    King, David A; Bachelet, Dominique M; Symstad, Amy J

    2013-12-01

    Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine-prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions and

  19. Climate change and fire effects on a prairie-woodland ecotone: projecting species range shifts with a dynamic global vegetation model

    Science.gov (United States)

    King, David A.; Bachelet, Dominique M.; Symstad, Amy J.

    2013-01-01

    Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine–prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions

  20. Using a Feedback Environment to Improve Creative Performance: A Dynamic Affect Perspective.

    Science.gov (United States)

    Gong, Zhenxing; Zhang, Na

    2017-01-01

    Prior research on feedback and creative performance has neglected the dynamic nature of affect and has focused only on the influence of positive affect. We argue that creative performance is the result of a dynamic process in which a person experiences a phase of negative affect and subsequently enters a state of high positive affect that is influenced by the feedback environment. Hierarchical regression was used to analyze a sample of 264 employees from seven industry firms. The results indicate that employees' perceptions of a supportive supervisor feedback environment indirectly influence their level of creative performance through positive affect (t2); the negative affect (t1) moderates the relationship between positive affect (t2) and creative performance (t2), rendering the relationship more positive if negative affect (t1) is high. The change in positive affect mediates the relationship between the supervisor feedback environment and creative performance; a decrease in negative affect moderates the relationship between increased positive affect and creative performance, rendering the relationship more positive if the decrease in negative affect is large. The implications for improving the creative performances of employees are further discussed.

  1. Using a Feedback Environment to Improve Creative Performance: A Dynamic Affect Perspective

    Directory of Open Access Journals (Sweden)

    Zhenxing Gong

    2017-08-01

    Full Text Available Prior research on feedback and creative performance has neglected the dynamic nature of affect and has focused only on the influence of positive affect. We argue that creative performance is the result of a dynamic process in which a person experiences a phase of negative affect and subsequently enters a state of high positive affect that is influenced by the feedback environment. Hierarchical regression was used to analyze a sample of 264 employees from seven industry firms. The results indicate that employees’ perceptions of a supportive supervisor feedback environment indirectly influence their level of creative performance through positive affect (t2; the negative affect (t1 moderates the relationship between positive affect (t2 and creative performance (t2, rendering the relationship more positive if negative affect (t1 is high. The change in positive affect mediates the relationship between the supervisor feedback environment and creative performance; a decrease in negative affect moderates the relationship between increased positive affect and creative performance, rendering the relationship more positive if the decrease in negative affect is large. The implications for improving the creative performances of employees are further discussed.

  2. Disturbance from southern pine beetle, suppression, and wildfire affects vegetation composition in central Louisiana: a case study

    Science.gov (United States)

    T.W. Coleman; Alton Martin; J.R. Meeker

    2010-01-01

    We assessed plant composition and forest succession following tree mortality from infestation of southern pine beetle (Dendroctonus frontalis), associated suppression, and wildfire in two forest types, pine (Pinus spp.) with mixed hardwood and longleaf pine (P. palustris). In this case study, vegetation was...

  3. Salt reduction in vegetable soup does not affect saltiness intensity and liking in the elderly and children

    Directory of Open Access Journals (Sweden)

    Carla Gonçalves

    2014-10-01

    Full Text Available Study background: Reduction of added salt levels in soups is recommended. We evaluated the impact of a 30% reduction of usual added salt in vegetable soups on elderly and children's saltiness and liking evaluation. Methods: Subjects were elderly and recruited from two public nursing homes (29 older adults, 79.7±8.9 years, and preschool children recruited from a public preschool (49 children, 4.5±1.3 years. This study took place in institutional lunchrooms. Through randomization and crossover, the subjects participated in two sensory evaluation sessions, on consecutive days, to assess perceived saltiness intensity (elderly sample and liking (elderly and children samples of a vegetable soup with baseline salt content and with a 30% salt reduction. Elderly rated perceived liking through a 10 cm visual analogue scale [‘like extremely’ (1 to ‘dislike extremely’ (10] and children through a five-point facial scale [‘dislike very much’ (1 to ‘like very much’ (5]. Results: After 30% added salt reduction in vegetable soup, there were no significant differences in saltiness noted by the elderly (p=0.150, and in perceived liking by children (p=0.160 and elderly (p=0.860. Conclusions: A 30% salt reduction in vegetable soup may be achieved without compromising perceived saltiness and liking in children and the elderly.

  4. Salt reduction in vegetable soup does not affect saltiness intensity and liking in the elderly and children.

    Science.gov (United States)

    Gonçalves, Carla; Monteiro, Sérgio; Padrão, Patrícia; Rocha, Ada; Abreu, Sandra; Pinho, Olívia; Moreira, Pedro

    2014-01-01

    Reduction of added salt levels in soups is recommended. We evaluated the impact of a 30% reduction of usual added salt in vegetable soups on elderly and children's saltiness and liking evaluation. Subjects were elderly and recruited from two public nursing homes (29 older adults, 79.7±8.9 years), and preschool children recruited from a public preschool (49 children, 4.5±1.3 years). This study took place in institutional lunchrooms. Through randomization and crossover, the subjects participated in two sensory evaluation sessions, on consecutive days, to assess perceived saltiness intensity (elderly sample) and liking (elderly and children samples) of a vegetable soup with baseline salt content and with a 30% salt reduction. Elderly rated perceived liking through a 10 cm visual analogue scale ['like extremely' (1) to 'dislike extremely' (10)] and children through a five-point facial scale ['dislike very much' (1) to 'like very much' (5)]. After 30% added salt reduction in vegetable soup, there were no significant differences in saltiness noted by the elderly (p=0.150), and in perceived liking by children (p=0.160) and elderly (p=0.860). A 30% salt reduction in vegetable soup may be achieved without compromising perceived saltiness and liking in children and the elderly.

  5. Burial of downed deadwood is strongly affected by log attributes, forest ground vegetation, edaphic conditions, and climate zones

    Science.gov (United States)

    Jogeir N. Stokland; Christopher W. Woodall; Jonas Fridman; Göran Ståhl

    2016-01-01

    Deadwood can represent a substantial portion of forest ecosystem carbon stocks and is often reported following good practice guidance associated with national greenhouse gas inventories. In high-latitude forest ecosystems, a substantial proportion of downed deadwood is overgrown by ground vegetation and buried in the humus layer. Such burial obfuscates the important...

  6. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product

    Science.gov (United States)

    Wang, Zhuosen; Schaaf, Crystal B.; Sun, Qingsong; Kim, JiHyun; Erb, Angela M.; Gao, Feng; Román, Miguel O.; Yang, Yun; Petroy, Shelley; Taylor, Jeffrey R.; Masek, Jeffrey G.; Morisette, Jeffrey T.; Zhang, Xiaoyang; Papuga, Shirley A.

    2017-07-01

    Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warming/cooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF/NBAR/albedo products and 30 m Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo (Shuai et al., 2011) makes use of the MODIS BRDF/Albedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30 m Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30 m albedos for the intervening daily time steps in this study. These enhanced daily 30 m spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos were evaluated using the tower albedo measurements with a Root Mean Square Error (RMSE) less than 0.013 and a

  7. Floodplain Vegetation Dynamics Modeling Using Coupled RiPCAS-DFLOW (CoRD): Jemez Canyon, Jemez River, New Mexico

    Science.gov (United States)

    Miller, S. J.; Gregory, A. E.; Turner, M. A.; Chaulagain, S.; Cadol, D.; Stone, M. C.; Sheneman, L.

    2017-12-01

    Interactions among precipitation, vegetation, soil moisture, runoff and other landscape properties set the stage for complex streamflow regimes and cascading riparian habitat impacts, particularly in semi-arid regions. A consortium of New Mexico, Nevada, and Idaho, funded through NSF-EPSCoR, has promulgated the Western Consortium for Watershed Analysis, Visualization, and Exploration (WC-WAVE). Two WC-WAVE objectives are to advance understanding of hydrologic interactions and ecosystem services, and to develop a virtual watershed platform (VWP) cyber-infrastructure to unite and streamline coordination among teams, databases and modeling tools. To provide proof of concept for the VWP and to study coevolution of riparian habitat mosaics and flood dynamics, the study team selected two models and developed a model coupling system for the Jemez River Canyon, Jemez River, NM. DFLOW is a 2-D hydrodynamic model for steady and unsteady flow conditions; the Riparian Community Alteration and Succession (RipCAS) model, developed using concepts from a vegetation disturbance and succession model (CASiMiR), uses shear stresses and flood depths from DFLOW to evolve riparian vegetation maps with associated roughness. The Coupled RipCAS-DFLOW (CoRD) model allows serial annual time step feedback of changes in peak-flow-derived depth and shear stress and vegetation-derived roughness values. An intuitive command-line interface on a computing cluster is used to call CoRD, which provides commands to calculate boundary conditions, perform multiple file and data format conversions and archive and compress decades of data. Four thirty-year synthetic annual maximum flood scenarios were selected for CoRD simulations, representing a historical wet period (1957-1986) a historical dry period (1986-2015), and flows doubling the historical wet period and halving the historical dry period. Event-driven coupled modeling simulates the spatial distribution of floodplain vegetation community evolution

  8. Vegetation dynamic characteristics and its responses to climate change in Jinghe River watershed of Loess Plateau, China

    Science.gov (United States)

    Chang, F.; Liu, W.; Zhou, H.; Ning, T.; Wang, Y.

    2017-12-01

    The Jinghe River is a second-order tributary of the Yellow River, and located in the middle-south part of the Loess Plateau. The watershed area is 45421km², with the mean annual precipitation (P) being about 508mm and aridity index 2.09. For a long time, soil and water loss in this watershed is severe, resulting in very fragile ecological environment. The GIMMS-normalized vegetation index NDVI is used to reflect condition of vegetation cover, and P and Penman potential evapotranspiration (ET) to represent climate water and heat conditions. The annual actual ET is estimated as the difference between P and runoff (ignoring the change of watershed water storage during each hydrological year, May to April of the following year). These concepts were introduced to discuss the dynamic characteristics of vegetation cover and its response to climate change. Results showed that the mean annual NDVI value was 0.51, showing a stable increasing trend from 2000 with an annual increasing rate of 8.7×10¯³. This result is consistent with the implementation of the project that converts farmland to forests and grassland and has achieved remarkable success in the Loess Plateau since 1999. It also indicates that the positive impact of human activity has been strengthened under the background of climate change. From 1982 to 2012, the annual actual ET was 464mm, accounting for 93.6% of annual P over the same period. The NDVI value of main growing season (5-9 months) is significantly correlated with annual P and annual humid index (ratio of annual P to annual potential ET). Vegetation water consumption is the main part of land surface ET, and the relationship between annual actual ET and NDVI value over the same period is also significant. The NDVI value, P and potential ET variation varied substantially within the Jinghe River watershed, and their relationships in different regions at an inter-annual scale are different. Currently, we are investigating the influence of the changes in

  9. Cooking with Kids Positively Affects Fourth Graders' Vegetable Preferences and Attitudes and Self-Efficacy for Food and Cooking

    Science.gov (United States)

    Lohse, Barbara

    2013-01-01

    Abstract Background: Cooking with Kids (CWK), an experiential school-based food education program, has demonstrated modest influence on fruit and vegetable preference, food and cooking attitudes (AT), and self-efficacy (SE) among fourth-grade, mostly low-income Hispanic students in a quasiexperimental study with an inconsistent baseline. Effect was notably strong for boys and those without previous cooking experience. The aim of this project was to assess the effect of CWK with a mostly non-Hispanic white sample that assured no previous CWK exposure. Methods: The randomized, controlled assessment of CWK effect on fourth graders was conducted with 257 students in 12 classes in four public schools. CWK included a 1-hour introductory lesson, three 2-hour cooking classes, and three 1-hour fruit and vegetable tasting sessions led by trained food educators during the school day for one semester. Fruit preference, vegetable preference, and cooking AT and SE were assessed with a tested 35-item measure, shown to have test-retest reliability. Univariate analyses considered gender and previous cooking experience. Results: Intervention efficacy was confirmed in this mostly white sample (75%; 79% with previous cooking experience; 54% girls). Increases in vegetable preference, AT, and SE were all significantly greater in CWK students with ηp 2 of 0.03, 0.02, and 0.06, respectively. CWK most strongly improved AT and SE for boys without previous cooking experience. Conclusions: CWK significantly improved fourth-grade students' vegetable preferences, AT, and SE toward food and cooking, which are factors important to healthful eating and obesity prevention. Noncookers, especially boys, benefitted from this intervention. PMID:24320723

  10. Savanna Vegetation Dynamics and their Influence on Landscape-Scale C, N, and P Biogeochemistry

    Science.gov (United States)

    Boutton, T. W.; Zhou, Y.; Wu, X. B.; Hyodo, A.

    2017-12-01

    Soil carbon (C), nitrogen (N) and phosphorus (P) cycles are strongly interlinked and controlled through biological processes, and the P cycle is further controlled through geochemical processes. In grasslands, savannas, and other dryland ecosystems throughout the world, woody plant encroachment often modifies soil C, N, and P stores, although it remains unknown if these three elements change proportionally in response to this vegetation change. We evaluated proportional changes and spatial patterns of soil organic C (SOC), total N (TN), and total P (TP) following woody encroachment by taking spatially-explicit soil cores to a depth of 1.2 m across a subtropical savanna landscape which has undergone encroachment by trees and shrubs during the past century in the Rio Grande Plains, USA. SOC and TN were coupled with respect to increasing magnitudes and spatial patterns along the soil profile following woody encroachment. In contrast, TP increased slower than SOC and TN in surface soils, but faster in subsurface soils. Spatial patterns of TP strongly resembled those of vegetation cover throughout the soil profile, but differed from those of SOC and TN, especially in deeper portions of the profile. The encroachment of woody plants into this P-limited ecosystem resulted in the accumulation of proportionally less soil P compared to C and N in surface soils; however, proportionally more P accrued in deeper portions of the profile beneath woody patches where alkaline soil pH and high carbonate concentrations would favor precipitation of P as relatively insoluble calcium phosphates. Structural equation models (SEM) showed that fine root density explained the greatest proportion of variation in SOC, TN, and TP in the surface soil. In deeper portions of the profile, SEM showed that silt and clay explained much of the variation in SOC and TN, while soil pH strongly controlled TP. This imbalanced relationship highlights that the relative importance of biotic vs. abiotic

  11. Experiments in water-macrophyte systems to uncover the dynamics of pesticide mitigation processes in vegetated surface waters/streams.

    Science.gov (United States)

    Stang, Christoph; Bakanov, Nikita; Schulz, Ralf

    2016-01-01

    Knowledge on the dynamics and the durability of the processes governing the mitigation of pesticide loads by aquatic vegetation in vegetated streams, which are characterized by dynamic discharge regimes and short chemical residence times, is scarce. In a static long-term experiment (48 h), the dissipation of five pesticides from the aqueous phase followed a biphasic pattern in the presence of aquatic macrophytes. A dynamic concentration decrease driven by sorption to the macrophytes ranged from 8.3 to 60.4% for isoproturon and bifenox, respectively, within the first 2 h of exposure. While the aqueous concentrations of imidacloprid, isoproturon, and tebufenozide remained constant thereafter, the continuous but decelerated concentration decrease of difenoconazole and bifenox in the water-macrophyte systems used here was assumed to be attributed to macrophyte-induced degradation processes. In addition, a semi-static short-term experiment was conducted, where macrophytes were transferred to uncontaminated medium after 2 h of exposure to simulate a transient pesticide peak. In the first part of the experiment, adsorption to macrophytes resulted in partitioning coefficients (logK D_Adsorp) ranging from 0.2 for imidacloprid to 2.2 for bifenox. One hour after the macrophytes were transferred to the uncontaminated medium, desorption of the compounds from the macrophytes resulted in a new phase equilibrium and K D_Desorp values of 1.46 for difenoconazole and 1.95 for bifenox were determined. A correlation analysis revealed the best match between the compound affinity to adsorb to macrophytes (expressed as K D_Adsorp) and their soil organic carbon-water partitioning coefficient (K OC) compared to their octanol-water partitioning coefficient (K OW) or a mathematically derived partitioning coefficient.

  12. Temporal changes in vegetation of a virgin beech woodland remnant: stand-scale stability with intensive fine-scale dynamics governed by stand dynamic events

    Directory of Open Access Journals (Sweden)

    Tibor Standovár

    2017-03-01

    Full Text Available The aim of this resurvey study is to check if herbaceous vegetation on the forest floor exhibits overall stability at the stand-scale in spite of intensive dynamics at the scale of individual plots and stand dynamic events (driven by natural fine scale canopy gap dynamics. In 1996, we sampled a 1.5 ha patch using 0.25 m² plots placed along a 5 m × 5 m grid in the best remnant of central European montane beech woods in Hungary. All species in the herbaceous layer and their cover estimates were recorded. Five patches representing different stand developmental situations (SDS were selected for resurvey. In 2013, 306 plots were resurveyed by using blocks of four 0.25 m² plots to test the effects of imperfect relocation. We found very intensive fine-scale dynamics in the herbaceous layer with high species turnover and sharp changes in ground layer cover at the local-scale (< 1 m2. A decrease in species richness and herbaceous layer cover, as well as high species turnover, characterized the closing gaps. Colonization events and increasing species richness and herbaceous layer cover prevailed in the two newly created gaps. A pronounced decrease in the total cover, but low species turnover and survival of the majority of the closed forest specialists was detected by the resurvey at the stand-scale. The test aiming at assessing the effect of relocation showed a higher time effect than the effect of imprecise relocation. The very intensive fine-scale dynamics of the studied beech forest are profoundly determined by natural stand dynamics. Extinction and colonisation episodes even out at the stand-scale, implying an overall compositional stability of the herbaceous vegetation at the given spatial and temporal scale. We argue that fine-scale gap dynamics, driven by natural processes or applied as a management method, can warrant the survival of many closed forest specialist species in the long-run. Nomenclature: Flora Europaea (Tutin et al. 2010 for

  13. Calibration of transfer functions between phytolith, vegetation and climate for integration of grassland dynamics in vegetation models. Application to a 50,000 yr crater lake core in Tanzania.

    Science.gov (United States)

    Bremond, L.; Alexandre, A.; Hely, C.; Vincens, A.; Williamson, D.; Guiot, J.

    2004-12-01

    Global vegetation models provide a way to translate the outputs from climate models into maps of potential vegetation distribution for present, past and future. Validation of these models goes through the comparison between model outputs and vegetation proxies for well constrained past climatic periods. Grass-dominated biomes are widespread and numerous. This diversity is hardly mirrored by common proxies such as pollen, charcoal or carbon isotopes. Phytoliths are amorphous silica that precipitate in and/or between living plant cells. They are commonly used to trace grasslands dynamics. However, calibration between phytolith assemblages, vegetation, and climate parameters are scarce. This work introduces transfer functions between phytolith indices, inter-tropical grassland physiognomy, and bio-climatic data that will be available for model/data comparisons. The Iph phytolith index discriminates tall from short grass savannas in West Africa. A transfer function allows to estimate evapo-transpiration AET/PET. The Ic phytolith index accurately estimates the proportion of Pooideae and Panicoideae grass sub-families, and potentially the C4/C3 grass dominance on East African mountains. The D/P index appears as a good proxy of Leaf Area Index (LAI) in tropical areas. These environmental parameters are commonly used as vegetation model outputs, but have been, up to now, hardly estimated by vegetation proxies. These transfer functions are applied to a 50,000 yr phytolith sequence from a crater lake (9°S; 33°E Tanzania). The record is compared to the pollen vegetation reconstruction and confronted to simulations of the LPJ-GUESS vegetation model (Stitch et. al, 2003).

  14. Being together – Exploring the modulation of affect in improvisational music therapy with a man in a persistent vegetative state – a qualitative single case study

    Directory of Open Access Journals (Sweden)

    Wolfgang Schmid

    2016-12-01

    Full Text Available This article explores the role of affective expression and modulation as a means of communication in improvisational music therapy with a 44-year-old man living in a persistent vegetative state. Within a practice-based approach two vignettes from music therapy illustrate the regulation of the intensity of affect in an interpersonal relationship. Perspectives from modern attachment theory, developmental psychology, and embodiment research will be introduced and discussed, to theoretically frame and embed the practical work. It is suggested that the bodily-emotional situatedness of the man and the music therapist form the area of exchange for a non-verbal, affect-driven communication. In this way, playing with the affect is the main topic for the encounter, promoting self-organizational processes in both individuals involved.

  15. Decline of woody vegetation in a saline landscape in the Groundnut Basin, Senegal

    DEFF Research Database (Denmark)

    Sambou, Antoine; Theilade, Ida; Fensholt, Rasmus

    2016-01-01

    Several studies have documented that vegetation in the Sahel is highly dynamic and is affected by the prevailing climatic conditions, as well as by human use of the areas. However, little is known about vegetation dynamics in the large saline areas bordering the rivers of West Africa. Combining s...

  16. Holocene Vegetation and Fire Dynamics for Ecosystem Management in the Spruce-Moss Domain in Northwestern Québec

    Science.gov (United States)

    Andy, H.; Blarquez, O.; Grondin, P.

    2017-12-01

    Facing the depletion of the wood resource in Québec and possible threats such as climate change, actors of the forest sector urge the need for a scientific frame to the forest management. A set of reference conditions has been developed for defining management targets that will help to keep forests within their natural range of variability according to the preindustrial period (XIX-XX centuries). Those reference conditions are based on the stands age-class distribution under a given fire regime that enable to define the percentage of old-growth forest (>100 years) to be maintained in a landscape. For the western spruce-moss domain in Québec, the fire return interval (FRI) is equal to 150 years resulting in a target of 48% of old-growth forests. Yet, this target supposes that the environment and the ecosystem processes are homogeneous for an entire bioclimatic domain of 175 000 km2. By using a Redundancy Analysis (RDA) on modern inventories data on natural and human disturbances; climate and physical variables and forest composition, we were able to distinguish 5 main zones where interactions between stands and their environment are homogeneous and where local management targets could be developed. We then used 10 published sedimentary pollens and charcoal series in order to reconstruct the holocene fire and vegetation dynamics for those zones. Vegetation deduced from the analysis of the pollen diagrams showed that the long-term vegetation dynamics are zone specific indicating that the modern forest composition is a result of the Holocene trajectories occurring within each zone. Charcoals series were statistically analyzed for past fire detection and long-term FRI reconstruction. They suggest that for the entire territory the holocene FRI range from 174 to 265 years resulting in old-growth forests percentage within 44 and 65% depending on the zone. Hence, we conclude that current management targets should be revised to fit more with local forests ecosystem

  17. The intra-day dynamics of affect, self-esteem, tiredness, and suicidality in Major Depression.

    Science.gov (United States)

    Crowe, Eimear; Daly, Michael; Delaney, Liam; Carroll, Susan; Malone, Kevin M

    2018-02-21

    Despite growing interest in the temporal dynamics of Major Depressive Disorder (MDD), we know little about the intra-day fluctuations of key symptom constructs. In a study of momentary experience, the Experience Sampling Method captured the within-day dynamics of negative affect, positive affect, self-esteem, passive suicidality, and tiredness across clinical MDD (N= 31) and healthy control groups (N= 33). Ten symptom measures were taken per day over 6 days (N= 2231 observations). Daily dynamics were modeled via intra-day time-trends, variability, and instability in symptoms. MDD participants showed significantly increased variability and instability in negative affect, positive affect, self-esteem, and suicidality. Significantly different time-trends were found in positive affect (increased diurnal variation and an inverted U-shaped pattern in MDD, compared to a positive linear trend in controls) and tiredness (decreased diurnal variation in MDD). In the MDD group only, passive suicidality displayed a negative linear trend and self-esteem displayed a quadratic inverted U trend. MDD and control participants thus showed distinct dynamic profiles in all symptoms measured. As well as the overall severity of symptoms, intra-day dynamics appear to define the experience of MDD symptoms. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Overall Quality of Fruits and Vegetables Products Affected by the Drying Processes with the Assistance of Vacuum-Microwaves.

    Science.gov (United States)

    Figiel, Adam; Michalska, Anna

    2016-12-30

    The seasonality of fruits and vegetables makes it impossible to consume and use them throughout the year, thus numerous processing efforts have been made to offer an alternative to their fresh consumption and application. To prolong their availability on the market, drying has received special attention as currently this method is considered one of the most common ways for obtaining food and pharmaceutical products from natural sources. This paper demonstrates the weakness of common drying methods applied for fruits and vegetables and the possible ways to improve the quality using different drying techniques or their combination with an emphasis on the microwave energy. Particular attention has been drawn to the combined drying with the assistance of vacuum-microwaves. The quality of the dried products was ascribed by chemical properties including the content of polyphenols, antioxidant capacity and volatiles as well as physical parameters such as color, shrinkage, porosity and texture. Both these fields of quality classification were considered taking into account sensory attributes and energy aspects in the perspective of possible industrial applications. In conclusion, the most promising way for improving the quality of dried fruit and vegetable products is hybrid drying consisting of osmotic dehydration in concentrated fruit juices followed by heat pump drying and vacuum-microwave finish drying.

  19. Overall Quality of Fruits and Vegetables Products Affected by the Drying Processes with the Assistance of Vacuum-Microwaves

    Directory of Open Access Journals (Sweden)

    Adam Figiel

    2016-12-01

    Full Text Available The seasonality of fruits and vegetables makes it impossible to consume and use them throughout the year, thus numerous processing efforts have been made to offer an alternative to their fresh consumption and application. To prolong their availability on the market, drying has received special attention as currently this method is considered one of the most common ways for obtaining food and pharmaceutical products from natural sources. This paper demonstrates the weakness of common drying methods applied for fruits and vegetables and the possible ways to improve the quality using different drying techniques or their combination with an emphasis on the microwave energy. Particular attention has been drawn to the combined drying with the assistance of vacuum-microwaves. The quality of the dried products was ascribed by chemical properties including the content of polyphenols, antioxidant capacity and volatiles as well as physical parameters such as color, shrinkage, porosity and texture. Both these fields of quality classification were considered taking into account sensory attributes and energy aspects in the perspective of possible industrial applications. In conclusion, the most promising way for improving the quality of dried fruit and vegetable products is hybrid drying consisting of osmotic dehydration in concentrated fruit juices followed by heat pump drying and vacuum-microwave finish drying.

  20. Drought impacts on vegetation dynamics in the Mediterranean based on remote sensing and multi-scale drought indices

    Science.gov (United States)

    Trigo, Ricardo; Gouveia, Celia M.; Beguería, Santiago; Vicente-Serrano, Sergio

    2015-04-01

    A number of recent studies have identified a significant increase in the frequency of drought events in the Mediterranean basin (e.g. Trigo et al., 2013, Vicente-Serrano et al., 2014). In the Mediterranean region, large drought episodes are responsible for the most negative impacts on the vegetation including significant losses of crop yield, increasing risk of forest fires (e.g. Gouveia et al., 2012) and even forest decline. The aim of the present work is to analyze in detail the impacts of drought episodes on vegetation in the Mediterranean basin behavior using NDVI data from (from GIMMS) for entire Mediterranean basin (1982-2006) and the multi-scale drought index (the Standardised Precipitation-Evapotranspiration Index (SPEI). Correlation maps between fields of monthly NDVI and SPEI for at different time scales (1-24 months) were computed in order to identify the regions and seasons most affected by droughts. Affected vegetation presents high spatial and seasonal variability, with a maximum in summer and a minimum in winter. During February 50% of the affected pixels corresponded to a time scale of 6 months, while in November the most frequent time scale corresponded to 3 months, representing more than 40% of the affected region. Around 20% of grid points corresponded to the longer time scales (18 and 24 months), persisting fairly constant along the year. In all seasons the wetter clusters present higher NDVI values which indicates that aridity holds a key role to explain the spatial differences in the NDVI values along the year. Despite the localization of these clusters in areas with higher values of monthly water balance, the strongest control of drought on vegetation activity are observed for the drier classes located over regions with smaller absolute values of water balance. Gouveia C.M., Bastos A., Trigo R.M., DaCamara C.C. (2012) "Drought impacts on vegetation in the pre and post-fire events over Iberian Peninsula". Natural Hazards and Earth System

  1. Dynamics of growth/mature-related substances in vegetables using specific triple labeled compound

    International Nuclear Information System (INIS)

    Yamato, Yoichi; Hamano, Megumi; Yamazaki, Hiroko; Miura, Hiroyuki

    2000-01-01

    To progress physiological studies of vegetables, development of biosynthetic method for production of triple labeled compounds was attempted in this study and such method for vegetables using specifically labeled sugars was examined. As a sugar compound, 6-C 14 -glucose (14-CG) and 1-H 3 -glucose (3-HG) were given to culture medium for cells derived from tomato embryonic axis and the changes of these compounds were monitored. Tomato embryonic cells were harvested 20 and 44 hours after the addition of 14-CG or 3-CG into the culture medium the cells. The cells were homogenized and the supernatant after centrifugation was applied onto HPLC. Radio analyzer revealed major two peaks in the chromatography of the sugar fraction from the cells after 20 hours from the addition of 14-CG. One was the peak of glucose, itself and the other was estimated to be that of fructose based on the retention time. Whereas in the elution pattern of the sugar fraction after 44 hours from the addition, a peak of sucrose was found along with the peak of glucose. These results indicate that C 14 in 14-CG but not H 3 in 3-HG was transferred into fructose after the metabolism in tomato. Moreover, in both elution patterns, there was a peak positioned at the same retention time, indicating that the compound in this peak was produced from either of 14-CG or 3-HG. Therefore, it is thought that H 3 and C 14 double-labeled compound could be produced from the cell culture added with both labeled compounds; 14-CG and 3-HG. (M.N.)

  2. Critical Zone Co-dynamics: Quantifying Interactions between Subsurface, Land Surface, and Vegetation Properties Using UAV and Geophysical Approaches

    Science.gov (United States)

    Dafflon, B.; Leger, E.; Peterson, J.; Falco, N.; Wainwright, H. M.; Wu, Y.; Tran, A. P.; Brodie, E.; Williams, K. H.; Versteeg, R.; Hubbard, S. S.

    2017-12-01

    Improving understanding and modelling of terrestrial systems requires advances in measuring and quantifying interactions among subsurface, land surface and vegetation processes over relevant spatiotemporal scales. Such advances are important to quantify natural and managed ecosystem behaviors, as well as to predict how watershed systems respond to increasingly frequent hydrological perturbations, such as droughts, floods and early snowmelt. Our study focuses on the joint use of UAV-based multi-spectral aerial imaging, ground-based geophysical tomographic monitoring (incl., electrical and electromagnetic imaging) and point-scale sensing (soil moisture sensors and soil sampling) to quantify interactions between above and below ground compartments of the East River Watershed in the Upper Colorado River Basin. We evaluate linkages between physical properties (incl. soil composition, soil electrical conductivity, soil water content), metrics extracted from digital surface and terrain elevation models (incl., slope, wetness index) and vegetation properties (incl., greenness, plant type) in a 500 x 500 m hillslope-floodplain subsystem of the watershed. Data integration and analysis is supported by numerical approaches that simulate the control of soil and geomorphic characteristic on hydrological processes. Results provide an unprecedented window into critical zone interactions, revealing significant below- and above-ground co-dynamics. Baseline geophysical datasets provide lithological structure along the hillslope, which includes a surface soil horizon, underlain by a saprolite layer and the fractured Mancos shale. Time-lapse geophysical data show very different moisture dynamics in various compartments and locations during the winter and growing season. Integration with aerial imaging reveals a significant linkage between plant growth and the subsurface wetness, soil characteristics and the topographic gradient. The obtained information about the organization and

  3. Scaling of Sediment Dynamics in a Reach-Scale Laboratory Model of a Sand-Bed Stream with Riparian Vegetation

    Science.gov (United States)

    Gorrick, S.; Rodriguez, J. F.

    2011-12-01

    A movable bed physical model was designed in a laboratory flume to simulate both bed and suspended load transport in a mildly sinuous sand-bed stream. Model simulations investigated the impact of different vegetation arrangements along the outer bank to evaluate rehabilitation options. Preserving similitude in the 1:16 laboratory model was very important. In this presentation the scaling approach, as well as the successes and challenges of the strategy are outlined. Firstly a near-bankfull flow event was chosen for laboratory simulation. In nature, bankfull events at the field site deposit new in-channel features but cause only small amounts of bank erosion. Thus the fixed banks in the model were not a drastic simplification. Next, and as in other studies, the flow velocity and turbulence measurements were collected in separate fixed bed experiments. The scaling of flow in these experiments was simply maintained by matching the Froude number and roughness levels. The subsequent movable bed experiments were then conducted under similar hydrodynamic conditions. In nature, the sand-bed stream is fairly typical; in high flows most sediment transport occurs in suspension and migrating dunes cover the bed. To achieve similar dynamics in the model equivalent values of the dimensionless bed shear stress and the particle Reynolds number were important. Close values of the two dimensionless numbers were achieved with lightweight sediments (R=0.3) including coal and apricot pips with a particle size distribution similar to that of the field site. Overall the moveable bed experiments were able to replicate the dominant sediment dynamics present in the stream during a bankfull flow and yielded relevant information for the analysis of the effects of riparian vegetation. There was a potential conflict in the strategy, in that grain roughness was exaggerated with respect to nature. The advantage of this strategy is that although grain roughness is exaggerated, the similarity of

  4. Holocene vegetation dynamics of Taiga forest in the Southern Altai Mountains documented by sediments from Kanas Lake

    Science.gov (United States)

    Huang, X.; Chen, F.

    2016-12-01

    The Chinese Altai is the southern limit of the Taiga forest of the continent, and regional vegetation dynamics during the Holocene will help us to understand regional climate changes, such as the Siberian High variations. Here we present a pollen-based vegetation and climate reconstruction from a well dated sediment core from Kanas Lake, a deep glacial moraine dammed lake in the Southern Altai Mountains (Chinese Altai). The 244-cm-long sequence spans the last 13,500 years, and the chronology is based on nine accelerator mass spectrometry radiocarbon dates from terrestrial plant macrofossils. At least five stages of regional vegetation history are documented: (i) From 13.5 to 11.7 ka (1 ka = 1000 cal yr BP), Kanas Lake region was occupied by steppe dominated by Artemisia, Chenopodiaceae and grass pollen, with low tree coverage. (ii) From 11.7 to 8.5 ka, regional forest build up dramatically indicated by increasing tree pollen percentages, including Picea, Larix, and the highest Junipers, with decreasing Artemisia and increasing Chenopodiaceae. (iii) From 8.5 to 7.2 ka, the forest around the lake became dense with the maximum content of Picea and Betula pollen types. And the steppe pollen types reached their lowest values. (iv) From 7.2 to 4 ka, as a typical tree species of Taiga forest, Larix pollen percentage became much higher than previous stage, and the sum of trees & shrubs pollen types decreased, which possibly indicated cooler and wetter climate (v) After 4 ka, trees & shrubs (e.g. Betula, Junipers) pollen types decreased, with increasing Artemisia and decreasing Chenopodiaceae, which might indicated more humid and cooler climate in the late Holocene. Comparing to the other pollen records in the Altai Mountains, Lake Grusha and Lake Hoton had recorded a slightly different process of vegetation evolution in the early Holocene, where forest was built up in the northern side of the Chinese Altai faster than that of the Kanas Lake area. And the difference could

  5. Ages and transit times as important diagnostics of model performance for predicting carbon dynamics in terrestrial vegetation models

    Science.gov (United States)

    Ceballos-Núñez, Verónika; Richardson, Andrew D.; Sierra, Carlos A.

    2018-03-01

    The global carbon cycle is strongly controlled by the source/sink strength of vegetation as well as the capacity of terrestrial ecosystems to retain this carbon. These dynamics, as well as processes such as the mixing of old and newly fixed carbon, have been studied using ecosystem models, but different assumptions regarding the carbon allocation strategies and other model structures may result in highly divergent model predictions. We assessed the influence of three different carbon allocation schemes on the C cycling in vegetation. First, we described each model with a set of ordinary differential equations. Second, we used published measurements of ecosystem C compartments from the Harvard Forest Environmental Measurement Site to find suitable parameters for the different model structures. And third, we calculated C stocks, release fluxes, radiocarbon values (based on the bomb spike), ages, and transit times. We obtained model simulations in accordance with the available data, but the time series of C in foliage and wood need to be complemented with other ecosystem compartments in order to reduce the high parameter collinearity that we observed, and reduce model equifinality. Although the simulated C stocks in ecosystem compartments were similar, the different model structures resulted in very different predictions of age and transit time distributions. In particular, the inclusion of two storage compartments resulted in the prediction of a system mean age that was 12-20 years older than in the models with one or no storage compartments. The age of carbon in the wood compartment of this model was also distributed towards older ages, whereas fast cycling compartments had an age distribution that did not exceed 5 years. As expected, models with C distributed towards older ages also had longer transit times. These results suggest that ages and transit times, which can be indirectly measured using isotope tracers, serve as important diagnostics of model structure

  6. Amphiphilic copolymers based on polyoxazoline and grape seed vegetable oil derivatives: self-assemblies and dynamic light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Travelet, Christophe, E-mail: Christophe.Travelet@cermav.cnrs.fr [Universite Joseph Fourier (UJF), Institut de Chimie Moleculaire de Grenoble (ICMG-FR 2607 CNRS), PolyNat Carnot institute, Arcane LabEx, domaine universitaire de Grenoble, Centre de Recherches sur les Macromolecules Vegetales - CERMAV-UPR 5301 CNRS (France); Stemmelen, Mylene; Lapinte, Vincent [Universite de Montpellier II, Institut Charles Gerhardt Montpellier (UMR 5253 CNRS-UM2-UM1-ENSCM), equipe ingenierie et architectures macromoleculaires (France); Dubreuil, Frederic [Universite Joseph Fourier (UJF), Institut de Chimie Moleculaire de Grenoble (ICMG-FR 2607 CNRS), PolyNat Carnot institute, Arcane LabEx, domaine universitaire de Grenoble, Centre de Recherches sur les Macromolecules Vegetales - CERMAV-UPR 5301 CNRS (France); Robin, Jean-Jacques [Universite de Montpellier II, Institut Charles Gerhardt Montpellier (UMR 5253 CNRS-UM2-UM1-ENSCM), equipe ingenierie et architectures macromoleculaires (France); and others

    2013-06-15

    The self-assembly in solution of original structures of amphiphilic partially natural copolymers based on polyoxazoline [more precisely poly(2-methyl-2-oxazoline) (POx)] and grape seed vegetable oil derivatives (linear, T-, and trident-structure) is investigated. The results show that such systems are found, using dynamic light scattering (DLS), to spontaneously self-organize into monomodal, narrow-size, and stable nanoparticles in aqueous medium. The obtained hydrodynamic diameters (D{sub h}) range from 8.6 to 32.5 nm. Specifically, such size increases strongly with increasing natural block (i.e., lipophilic species) length due to higher hydrophobic interactions (from 10.1 nm for C{sub 19} to 19.2 nm for C{sub 57}). Furthermore, increasing the polyoxazoline (i.e., hydrophilic block) length leads to a moderate linear increase of the D{sub h}-values. Therefore, the first-order size effect comes from the natural lipophilic block, whereas the characteristic size can be tuned more finely (i.e., in a second-order) by choosing appropriately the polyoxazoline length. The DLS results in terms of characteristic size are corroborated using nanoparticle tracking analysis (NTA), and also by atomic force microscopy (AFM) and transmission electron microscopy (TEM) imaging where well-defined spherical and individual nanoparticles exhibit a very good mechanical resistance upon drying. Moreover, changing the lipophilic block architecture from linear to T-shape, while keeping the same molar mass, generates a branching and thus a shrinking by a factor of 2 of the nanoparticle volume, as observed by DLS. In this paper, it is clearly shown that the self-assemblies of amphiphilic block copolymer obtained from grape seed vegetable oil derivatives (sustainable renewable resources) as well as their tunability are of great interest for biomass valorization at the nanoscale level [continuation of the article by Stemmelen et al. (Polym Chem 4:1445-1458, 2013)].Graphical Abstract

  7. Amphiphilic copolymers based on polyoxazoline and grape seed vegetable oil derivatives: self-assemblies and dynamic light scattering

    International Nuclear Information System (INIS)

    Travelet, Christophe; Stemmelen, Mylène; Lapinte, Vincent; Dubreuil, Frédéric; Robin, Jean-Jacques

    2013-01-01

    The self-assembly in solution of original structures of amphiphilic partially natural copolymers based on polyoxazoline [more precisely poly(2-methyl-2-oxazoline) (POx)] and grape seed vegetable oil derivatives (linear, T-, and trident-structure) is investigated. The results show that such systems are found, using dynamic light scattering (DLS), to spontaneously self-organize into monomodal, narrow-size, and stable nanoparticles in aqueous medium. The obtained hydrodynamic diameters (D h ) range from 8.6 to 32.5 nm. Specifically, such size increases strongly with increasing natural block (i.e., lipophilic species) length due to higher hydrophobic interactions (from 10.1 nm for C 19 to 19.2 nm for C 57 ). Furthermore, increasing the polyoxazoline (i.e., hydrophilic block) length leads to a moderate linear increase of the D h -values. Therefore, the first-order size effect comes from the natural lipophilic block, whereas the characteristic size can be tuned more finely (i.e., in a second-order) by choosing appropriately the polyoxazoline length. The DLS results in terms of characteristic size are corroborated using nanoparticle tracking analysis (NTA), and also by atomic force microscopy (AFM) and transmission electron microscopy (TEM) imaging where well-defined spherical and individual nanoparticles exhibit a very good mechanical resistance upon drying. Moreover, changing the lipophilic block architecture from linear to T-shape, while keeping the same molar mass, generates a branching and thus a shrinking by a factor of 2 of the nanoparticle volume, as observed by DLS. In this paper, it is clearly shown that the self-assemblies of amphiphilic block copolymer obtained from grape seed vegetable oil derivatives (sustainable renewable resources) as well as their tunability are of great interest for biomass valorization at the nanoscale level [continuation of the article by Stemmelen et al. (Polym Chem 4:1445–1458, 2013)].Graphical AbstractAmphiphilic copolymers based

  8. River flow and riparian vegetation dynamics - implications for management of the Yampa River through Dinosaur National Monument

    Science.gov (United States)

    Scott, Michael L; Friedman, Jonathan M.

    2018-01-01

    This report addresses the relation between flow of the Yampa River and occurrence of herbaceous and woody riparian vegetation in Dinosaur National Monument (DINO) with the goal of informing management decisions related to potential future water development. The Yampa River in DINO flows through diverse valley settings, from the relatively broad restricted meanders of Deerlodge Park to narrower canyons, including debris fan-affected reaches in the upper Yampa Canyon and entrenched meanders in Harding Hole and Laddie Park. Analysis of occurrence of all plant species measured in 1470 quadrats by multiple authors over the last 24 years shows that riparian vegetation along the Yampa River is strongly related to valley setting and geomorphic surfaces, defined here as active channel, active floodplain, inactive floodplain, and upland. Principal Coordinates Ordination arrayed quadrats and species along gradients of overall cover and moisture availability, from upland and inactive floodplain quadrats and associated xeric species like western wheat grass (Pascopyrum smithii), cheatgrass (Bromus tectorum), and saltgrass (Distichlis spicata) to active channel and active floodplain quadrats supporting more mesic species including sandbar willow (Salix exigua), wild licorice (Glycyrrhiza lepidota), and cordgrass (Spartina spp.). Indicator species analysis identified plants strongly correlated with geomorphic surfaces. These species indicate state changes in geomorphic surfaces, such as the conversion of active channel to floodplain during channel narrowing. The dominant woody riparian species along the Yampa River are invasive tamarisk (Tamarix ramosissima), and native Fremont cottonwood (Populus deltoides ssp. wislizenii), box elder (Acer negundo L. var. interius), and sandbar willow (Salix exigua). These species differ in tolerance of drought, salinity, inundation, flood disturbance and shade, and in seed size, timing of seed dispersal and ability to form root sprouts. These

  9. Scorched Earth: how will changes in the strength of the vegetation sink to ozone deposition affect human health and ecosystems?

    Directory of Open Access Journals (Sweden)

    L. D. Emberson

    2013-07-01

    Full Text Available This study investigates the effect of ozone (O3 deposition on ground level O3 concentrations and subsequent human health and ecosystem risk under hot summer "heat wave" type meteorological events. Under such conditions, extended drought can effectively "turn off" the O3 vegetation sink leading to a substantial increase in ground level O3 concentrations. Two models that have been used for human health (the CMAQ chemical transport model and ecosystem (the DO3SE O3 deposition model risk assessment are combined to provide a powerful policy tool capable of novel integrated assessments of O3 risk using methods endorsed by the UNECE Convention on Long-Range Transboundary Air Pollution. This study investigates 2006, a particularly hot and dry year during which a heat wave occurred over the summer across much of the UK and Europe. To understand the influence of variable O3 dry deposition three different simulations were investigated during June and July: (i actual conditions in 2006, (ii conditions that assume a perfect vegetation sink for O3 deposition and (iii conditions that assume an extended drought period that reduces the vegetation sink to a minimum. The risks of O3 to human health, assessed by estimating the number of days during which running 8 h mean O3 concentrations exceeded 100 μg m−3, show that on average across the UK, there is a difference of 16 days exceedance of the threshold between the perfect sink and drought conditions. These average results hide local variation with exceedances between these two scenarios reaching as high as 20 days in the East Midlands and eastern UK. Estimates of acute exposure effects show that O3 removed from the atmosphere through dry deposition during the June and July period would have been responsible for approximately 460 premature deaths. Conversely, reduced O3 dry deposition will decrease the amount of O3 taken up by vegetation and, according to flux-based assessments of vegetation damage, will lead

  10. How Biotic Differentiation of Human Impacted Nutrient Poor Deciduous Forests Can Affect the Preservation Status of Mountain Forest Vegetation

    Directory of Open Access Journals (Sweden)

    Tomasz Durak

    2016-10-01

    Full Text Available A significant loss of biodiversity resulting from human activity has caused biotic homogenisation to become the dominant process shaping forest communities. In this paper, we present a rare case of biotic differentiation in European temperate deciduous forest herb layer vegetation. The process is occurring in nutrient poor oak-hornbeam forests in mountain areas (Polish Eastern Carpathians, Central Europe where non-timber use was converted into conventional forest management practice. This change contributed to increases in the nitrogen content and pH reaction of the soil that, contrary to predominant beliefs on the negative impact of habitat eutrophication on diversity, did not result in a decrease in the latter. We discuss possible reasons for this phenomenon that indicate the important role of tree stand composition (an increasing admixture of beech worsening the trophic properties of the soil. The second issue considered involves the effect of the changes in herb species composition of oak-hornbeam forest on its distinctiveness from the beech forest predominating in the Polish Eastern Carpathians. Unfortunately, despite the increase in the species compositional dissimilarity of oak-hornbeam forest, a reduction in their distinctiveness in relation to the herb species composition of beech forest was found. Such a phenomenon is an effect of the major fragmentation of oak-hornbeam forests, a spread of beech forest-type species, and forest management that gives preference to beech trees. Consequently, it can be expected that changes occurring in oak-hornbeam forest vegetation will contribute to a decrease in the forest vegetation variability at the regional scale.

  11. Dynamics of vegetative cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana

    Science.gov (United States)

    Kuang, A.; Musgrave, M. E.

    1996-01-01

    Ultrastructural changes of pollen cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana were studied. The pollen cytoplasm develops a complicated ultrastructure and changes dramatically during these stages. Lipid droplets increase after generative cell formation and their organization and distribution change with the developmental stage. Starch grains in amyloplasts increase in number and size during generative and sperm cell formation and decrease at pollen maturity. The shape and membrane system of mitochondria change only slightly. Dictyosomes become very prominent, and numerous associated vesicles are observed during and after sperm cell formation. Endoplasmic reticulum appears extensively as stacks during sperm cell formation. Free and polyribosomes are abundant in the cytoplasm at all developmental stages although they appear denser at certain stages and in some areas. In mature pollen, all organelles are randomly distributed throughout the vegetative cytoplasm and numerous small particles appear. Organization and distribution of storage substances and appearance of these small particles during generative and sperm cell formation and pollen maturation are discussed.

  12. A History of Vegetation, Sediment and Nutrient Dynamics at Tivoli North Bay, Hudson Estuary, New York

    Science.gov (United States)

    Sritrairat, Sanpisa; Peteet, Dorothy M.; Kenna, Timothy C.; Sambrotto, Ray; Kurdyla, Dorothy; Guilderson, Tom

    2012-01-01

    We conduct a stratigraphic paleoecological investigation at a Hudson River National Estuarine Research Reserve (HRNERR) site, Tivoli Bays, spanning the past 1100 years. Marsh sediment cores were analyzed for ecosystem changes using multiple proxies, including pollen, spores, macrofossils, charcoal, sediment bulk chemistry, and stable carbon and nitrogen isotopes. The results reveal climatic shifts such as the warm and dry Medieval Warm Period (MWP) followed by the cooler Little Ice Age (LIA), along with significant anthropogenic influence on the watershed ecosystem. A five-fold expansion of invasive species, including Typha angustifolia and Phragmites australis, is documented along with marked changes in sediment composition and nutrient input. During the last century, a ten-fold sedimentation rate increase due to land-use changes is observed. The large magnitude of shifts in vegetation, sedimentation, and nutrients during the last few centuries suggest that human activities have made the greatest impact to the marshes of the Hudson Estuary during the last millennium. Climate variability and ecosystem changes similar to those observed at other marshes in northeastern and mid-Atlantic estuaries, attest to the widespread regional signature recorded at Tivoli Bays.

  13. Seasonal dynamics of the shoreline vegetation in the Zapatosa floodplain lake complex, Colombia

    Directory of Open Access Journals (Sweden)

    Udo Schmidt-Mumm

    2014-09-01

    Full Text Available Floodplain lakes and associated wetlands in tropical dry climates are controlled by pronounced and severe seasonal hydrologic fluctuations. We examined the plant community response to a bimodal flooding pattern in the Zapatosa Floodplain Lake Complex (ZFLC, Northern Colombia. We measured floristic and quantitative change in four sampling periods emphasizing seasonal differences in plant abundance and life-form structure. Of 79 species identified in the lake complex, 52 were used to characterize eight community types via classification and ordination procedures. Results showed that community structure does not change significantly during the flooding/receding stages. But maximum drawdown phase significantly disrupts the aquatic community structure and the exposed shorelines become colonized by ruderal terrestrial plants. Early rainfalls at the beginning of the wet season are emphasized as an important feature of plant regeneration and community development. The general strategy of the ZFLC vegetation can be framed into the flood pulse concept of river-floodplain systems. Thus, plant communities are mainly responding to disturbances and destruction events imposed by extreme water level fluctuations. Rev. Biol. Trop. 62 (3: 1073-1097. Epub 2014 September 01.

  14. Changing facial affect recognition in schizophrenia: Effects of training on brain dynamics

    Directory of Open Access Journals (Sweden)

    Petia Popova

    2014-01-01

    Full Text Available Deficits in social cognition including facial affect recognition and their detrimental effects on functional outcome are well established in schizophrenia. Structured training can have substantial effects on social cognitive measures including facial affect recognition. Elucidating training effects on cortical mechanisms involved in facial affect recognition may identify causes of dysfunctional facial affect recognition in schizophrenia and foster remediation strategies. In the present study, 57 schizophrenia patients were randomly assigned to (a computer-based facial affect training that focused on affect discrimination and working memory in 20 daily 1-hour sessions, (b similarly intense, targeted cognitive training on auditory-verbal discrimination and working memory, or (c treatment as usual. Neuromagnetic activity was measured before and after training during a dynamic facial affect recognition task (5 s videos showing human faces gradually changing from neutral to fear or to happy expressions. Effects on 10–13 Hz (alpha power during the transition from neutral to emotional expressions were assessed via MEG based on previous findings that alpha power increase is related to facial affect recognition and is smaller in schizophrenia than in healthy subjects. Targeted affect training improved overt performance on the training tasks. Moreover, alpha power increase during the dynamic facial affect recognition task was larger after affect training than after treatment-as-usual, though similar to that after targeted perceptual–cognitive training, indicating somewhat nonspecific benefits. Alpha power modulation was unrelated to general neuropsychological test performance, which improved in all groups. Results suggest that specific neural processes supporting facial affect recognition, evident in oscillatory phenomena, are modifiable. This should be considered when developing remediation strategies targeting social cognition in schizophrenia.

  15. Spatio-Temporal Analysis of Vegetation Dynamics in Relation to Shifting Inundation and Fire Regimes: Disentangling Environmental Variability from Land Management Decisions in a Southern African Transboundary Watershed

    Directory of Open Access Journals (Sweden)

    Narcisa G. Pricope

    2015-07-01

    Full Text Available Increasing temperatures and wildfire incidence and decreasing precipitation and river runoff in southern Africa are predicted to have a variety of impacts on the ecology, structure, and function of semi-arid savannas, which provide innumerable livelihood resources for millions of people. This paper builds on previous research that documents change in inundation and fire regimes in the Chobe River Basin (CRB in Namibia and Botswana and proposes to demonstrate a methodology that can be applied to disentangle the effect of environmental variability from land management decisions on changing and ecologically sensitive savanna ecosystems in transboundary contexts. We characterized the temporal dynamics (1985–2010 of vegetation productivity for the CRB using proxies of vegetation productivity and examine the relative importance of shifts in flooding and fire patterns to vegetation dynamics and effects of the association of phases of the El Niño—Southern Oscillation (ENSO on vegetation greenness. Our results indicate that vegetation in these semi-arid environments is highly responsive to climatic fluctuations and the long-term trend is one of increased but heterogeneous vegetation cover. The increased cover and heterogeneity during the growing season is especially noted in communally-managed areas of Botswana where long-term fire suppression has been instituted, in contrast to communal areas in Namibia where heterogeneity in vegetation cover is mostly increasing primarily outside of the growing season and may correspond to mosaic early dry season burns. Observed patterns of increased vegetation productivity and heterogeneity may relate to more frequent and intense burning and higher spatial variability in surface water availability from both precipitation and regional inundation patterns, with implications for global environmental change and adaptation in subsistence-based communities.

  16. Impact of vegetation dynamics on hydrological processes in a semi-arid basin by using a land surface-hydrology coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Yang; Lei, Huimin; Yang, Dawen; Huang, Maoyi; Liu, Dengfeng; Yuan, Xing

    2017-08-01

    Land surface models (LSMs) are widely used to understand the interactions between hydrological processes and vegetation dynamics, which is important for the attribution and prediction of regional hydrological variations. However, most LSMs have large uncertainties in their representations of ecohydrological processes due to deficiencies in hydrological parameterizations. In this study, the Community Land Model version 4 (CLM4) LSM was modified with an advanced runoff generation and flow routing scheme, resulting in a new land surface-hydrology coupled model, CLM-GBHM. Both models were implemented in the Wudinghe River Basin (WRB), which is a semi-arid basin located in the middle reaches of the Yellow River, China. Compared with CLM, CLM-GBHM increased the Nash Sutcliffe efficiency for daily river discharge simulation (1965–1969) from 0.03 to 0.23 and reduced the relative bias in water table depth simulations (2010–2012) from 32.4% to 13.4%. The CLM-GBHM simulations with static, remotely sensed and model-predicted vegetation conditions showed that the vegetation in the WRB began to recover in the 2000s due to the Grain for Green Program but had not reached the same level of vegetation cover as regions in natural eco-hydrological equilibrium. Compared with a simulation using remotely sensed vegetation cover, the simulation with a dynamic vegetation model that considers only climate-induced change showed a 10.3% increase in evapotranspiration, a 47.8% decrease in runoff, and a 62.7% and 71.3% deceleration in changing trend of the outlet river discharge before and after the year 2000, respectively. This result suggests that both natural and anthropogenic factors should be incorporated in dynamic vegetation models to better simulate the eco-hydrological cycle.

  17. Sulphate sulphur concentration in vegetable crops, soil and ground water in the region affected by the sulphur dioxide emission from Plock oil refinery (central Poland)

    International Nuclear Information System (INIS)

    Mikula, W.

    1995-01-01

    Research was carried out in 1984-1990 in the region affected by the sulphur dioxide emission from one of the greatest oil refineries in Europe (Plock, central Poland). The sulphate sulphur concentration in the vegetable crops (red beet, carrot, parsley, bean, cabbage and dill), the soil and in ground water was defined in selected allotment gardens of Plock city and in a household garden located in the rural area about 25 km from the town. The highest amount of sulphur was found in the vegetable crops cultivated in the garden situated in the closest vicinity of the refinery. Sulphate sulphur contents harmful for plants (above 0.50 per cent d.m.) were noted in cabbage and carrot leaves in almost all the gardens (except one). The soil in all examined gardens was characterised by high sulphate sulphur concentration, which considerably exceeds the maximum amount admissible for light soil in Poland, i.e. 0.004 per cent d.m. The sulphate sulphur concentration in ground water in all the gardens exceeded the highest permissible content in drinking water in Poland. The sulphate sulphur content in the soil and ground water was not significantly dependent on the garden's distance from the refinery. Generally, the above normal sulphate sulphur concentrations occurred quite universally in the examined region and they concerned all the considered environmental components (vegetable crops, soil, ground water) and all the gardens. 22 refs., 6 tabs

  18. Simulating the effects of soil organic nitrogen and grazing on arctic tundra vegetation dynamics on the Yamal Peninsula, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Yu Qin; Epstein, Howard [Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22903 (United States); Walker, Donald [Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States)

    2009-10-15

    Sustainability of tundra vegetation under changing climate on the Yamal Peninsula, northwestern Siberia, home to the world's largest area of reindeer husbandry, is of crucial importance to the local native community. An integrated investigation is needed for better understanding of the effects of soils, climate change and grazing on tundra vegetation in the Yamal region. In this study we applied a nutrient-based plant community model-ArcVeg-to evaluate how two factors (soil organic nitrogen (SON) levels and grazing) interact to affect tundra responses to climate warming across a latitudinal climatic gradient on the Yamal Peninsula. Model simulations were driven by field-collected soil data and expected grazing patterns along the Yamal Arctic Transect (YAT), within bioclimate subzones C (high arctic), D (northern low arctic) and E (southern low arctic). Plant biomass and NPP (net primary productivity) were significantly increased with warmer bioclimate subzones, greater soil nutrient levels and temporal climate warming, while they declined with higher grazing frequency. Temporal climate warming of 2 deg. C caused an increase of 665 g m{sup -2} in total biomass at the high SON site in subzone E, but only 298 g m{sup -2} at the low SON site. When grazing frequency was also increased, total biomass increased by only 369 g m{sup -2} at the high SON site in contrast to 184 g m{sup -2} at the low SON site in subzone E. Our results suggest that high SON can support greater plant biomass and plant responses to climate warming, while low SON and grazing may limit plant response to climate change. In addition to the first order factors (SON, bioclimate subzones, grazing and temporal climate warming), interactions among these significantly affect plant biomass and productivity in the arctic tundra and should not be ignored in regional scale studies.

  19. Simulating the effects of soil organic nitrogen and grazing on arctic tundra vegetation dynamics on the Yamal Peninsula, Russia

    International Nuclear Information System (INIS)

    Yu Qin; Epstein, Howard; Walker, Donald

    2009-01-01

    Sustainability of tundra vegetation under changing climate on the Yamal Peninsula, northwestern Siberia, home to the world's largest area of reindeer husbandry, is of crucial importance to the local native community. An integrated investigation is needed for better understanding of the effects of soils, climate change and grazing on tundra vegetation in the Yamal region. In this study we applied a nutrient-based plant community model-ArcVeg-to evaluate how two factors (soil organic nitrogen (SON) levels and grazing) interact to affect tundra responses to climate warming across a latitudinal climatic gradient on the Yamal Peninsula. Model simulations were driven by field-collected soil data and expected grazing patterns along the Yamal Arctic Transect (YAT), within bioclimate subzones C (high arctic), D (northern low arctic) and E (southern low arctic). Plant biomass and NPP (net primary productivity) were significantly increased with warmer bioclimate subzones, greater soil nutrient levels and temporal climate warming, while they declined with higher grazing frequency. Temporal climate warming of 2 deg. C caused an increase of 665 g m -2 in total biomass at the high SON site in subzone E, but only 298 g m -2 at the low SON site. When grazing frequency was also increased, total biomass increased by only 369 g m -2 at the high SON site in contrast to 184 g m -2 at the low SON site in subzone E. Our results suggest that high SON can support greater plant biomass and plant responses to climate warming, while low SON and grazing may limit plant response to climate change. In addition to the first order factors (SON, bioclimate subzones, grazing and temporal climate warming), interactions among these significantly affect plant biomass and productivity in the arctic tundra and should not be ignored in regional scale studies.

  20. Modeling distribution of Schinus molle L. in the Brazilian Pampa: insights on vegetation dynamics and conservation of the biome

    Directory of Open Access Journals (Sweden)

    R.P.M. Lemos

    2014-12-01

    Full Text Available Natural establishment of forests in the Brazilian Pampa biome should occur due to soil, hydrology and climate conditions, although no significant forest expansion over grassland has been noticed, precluded mainly by human interference and lack of environmental management. In this study, we used niche-modeling distribution of the tree species Schinus molle L. based on climatic variables to access the vegetation dynamics of the Brazilian Pampa and to develop strategies that assure the conservation of this biome, concerning both grassland and forest formations. Here we show that a large area of the Brazilian Pampa is suitable for expansion of S. molle populations, supporting the forest expansion over grassland as a natural process in this biome. We propose that the current absence of tree species expansion over the grassland in these areas is a result of the resilience of the grassland and of human interferences through expansion of agriculture, ranching and forestry with exotic species. Therefore, conservationist actions should focus on establishing preservation unities that include forest populations and grassland, while environmental management should be applied just in farming areas with historical human interference. Such actions will respect the ecological dynamics of the Pampa and value the forest formations in this grassland-dominated environment.

  1. Vegetation development following stream/river restoration: more natural fluvial dynamics and morphology, return of aquatic and riparian plant species?

    Science.gov (United States)

    Soons, M. B.

    2012-04-01

    After centuries of human interventions in stream/river dynamics and morphology aimed at optimizing landscapes for agricultural and industrial purposes, new insights have inspired water managers to try and combine stream and river ecosystem functions with the conservation of biodiversity. Around the world, aquatic and riparian species have declined strongly due to pollution, destruction and fragmentation of their habitat, so that biodiversity conservation initiatives primarily focus on habitat restoration. In the past decades many stream and river restoration projects have been carried out and often hydrological dynamics and morphology have been restored to a more natural state. However, the successful restoration of aquatic and riparian habitats very often failed to result in restoration of their biodiversity. This lack of success from a biodiversity conservation perspective is usually attributed to 'dispersal limitation', meaning that the habitat may be restored, but species fail to reach the site and re-colonize it. Especially re-colonization by aquatic and riparian plant species is important, as such species function as ecosystem engineers: their presence alters fluvial dynamics and morphology, generates additional habitat heterogeneity and provides habitat and food for animal species. Following minor disturbances, re-colonization is often possible through locally remaining populations, by seeds in the seed bank or by surviving plant fragments. However, following major disturbances, colonization and establishment from other source populations are necessary. This usually occurs through dispersal of seeds (and in more aquatic species also by dispersal of vegetative fragments) into the restored wetland area. As dispersal occurs predominantly over short distances and source populations of aquatic and riparian species may be lacking in the surroundings, dispersal may be a limiting factor in the development of aquatic and riparian vegetation at a restored site. But

  2. Stand Dynamics and Plant Associates of Loblolly Pine Plantations to Midrotation after Early Intensive Vegetation Management-A Southeastern United States Regional Study

    Science.gov (United States)

    James H. Miller; Bruce R. Zutter; Ray A. Newbold; M. Boyd Edwards; Shepard M. Zedaker

    2003-01-01

    Increasingly, pine plantations worldwide are grown using early control of woodv and/or herbaceous vegetation. Assuredsustainablepractices require long-term data on pine plantation development detailing patterns and processes to understand both crop-competition dynamics and the role of stand participants in providing multiple attributes such as biodiversity conservation...

  3. Development of a dynamic web mapping service for vegetation productivity using earth observation and in situ sensors in a sensor web based approach

    NARCIS (Netherlands)

    Kooistra, L.; Bergsma, A.R.; Chuma, B.; Bruin, de S.

    2009-01-01

    This paper describes the development of a sensor web based approach which combines earth observation and in situ sensor data to derive typical information offered by a dynamic web mapping service (WMS). A prototype has been developed which provides daily maps of vegetation productivity for the

  4. School Factors Explaining Achievement on Cognitive and Affective Outcomes : Establishing a Dynamic Model of Educational Effectiveness

    NARCIS (Netherlands)

    Creemers, Bert; Kyriakides, Leonidas

    2010-01-01

    The dynamic model of educational effectiveness defines school level factors associated with student outcomes. Emphasis is given to the two main aspects of policy, evaluation, and improvement in schools which affect quality of teaching and learning at both the level of teachers and students: a)

  5. Environmental Factors Affecting Computer Assisted Language Learning Success: A Complex Dynamic Systems Conceptual Model

    Science.gov (United States)

    Marek, Michael W.; Wu, Wen-Chi Vivian

    2014-01-01

    This conceptual, interdisciplinary inquiry explores Complex Dynamic Systems as the concept relates to the internal and external environmental factors affecting computer assisted language learning (CALL). Based on the results obtained by de Rosnay ["World Futures: The Journal of General Evolution", 67(4/5), 304-315 (2011)], who observed…

  6. Modeling affect dynamics : State-of-the-art and future challenges

    NARCIS (Netherlands)

    Hamaker, E.L.; Ceulemans, Eva; Grasman, R.P.P.P.; Tuerlinckx, Francis

    2015-01-01

    The current article aims to provide an up-to-date synopsis of available techniques to study affect dynamics using intensive longitudinal data (ILD). We do so by introducing the following eight dichotomies that help elucidate what kind of data one has, what process aspects are of interest, and what

  7. Predicting bed shear stress and its role in sediment dynamics and restoration potential of the Everglades and other vegetated flow systems

    Science.gov (United States)

    Larsen, Laurel G.; Harvey, Judson; Crimaldi, John P.

    2009-01-01

    Entrainment of sediment by flowing water affects topography, habitat suitability, and nutrient cycling in vegetated floodplains and wetlands, impacting ecosystem evolution and the success of restoration projects. Nonetheless, restoration managers lack simple decision-support tools for predicting shear stresses and sediment redistribution potential in different vegetation communities. Using a field-validated numerical model, we developed state-space diagrams that provide these predictions over a range of water-surface slopes, depths, and associated velocities in Everglades ridge and slough vegetation communities. Diminished bed shear stresses and a consequent decrease in bed sediment redistribution are hypothesized causes of a recent reduction in the topographic and vegetation heterogeneity of this ecosystem. Results confirmed the inability of present-day flows to entrain bed sediment. Further, our diagrams showed bed shear stresses to be highly sensitive to emergent vegetation density and water-surface slope but less sensitive to water depth and periphyton or floating vegetation abundance. These findings suggested that instituting a pulsing flow regime could be the most effective means to restore sediment redistribution to the Everglades. However, pulsing flows will not be sufficient to erode sediment from sloughs with abundant spikerush, unless spikerush density first decreases by natural or managed processes. Our methods provide a novel tool for identifying restoration parameters and performance measures in many types of vegetated aquatic environments where sediment erosion and deposition are involved.

  8. Contamination dynamics in fallouts, pasturable vegetation and milk in Leningrad distrist after Chernobyl accident

    International Nuclear Information System (INIS)

    Nedbaevskaya, N.A.; Sanzharova, N.I.; Blinova, L.D.; Kryshev, I.I.; Aleksakhin, R.M.

    1991-01-01

    Radiation monitoring of individual elements of agroecosystem in the area of the Leningrad NPP is carried out with the purpose of studying the concentration dynamics of radioisotopes in the atmosphere resulting from the accident at the Chernobyl NPP. The γ-radiation dose rate on the terrain, content and radionuclide composition of atmospheric fallout, content of γ-emitting isotopes in the soil and plants at pastures is monitored from April up to September 1986; radioisotope content in cow milk by pasturing is determined

  9. Factors affecting the wettability of different surface materials with vegetable oil at high temperatures and its relation to cleanability

    DEFF Research Database (Denmark)

    Ashokkumar, Saranya; Adler-Nissen, Jens; Møller, Per

    2012-01-01

    The main aim of the work was to investigate the wettability of different surface materials with vegetable oil (olive oil) over the temperature range of 25–200°C to understand the differences in cleanability of different surfaces exposed to high temperatures in food processes. The different surface...... different levels of roughness. The cosine of the contact angle of olive oil on different surface materials rises linearly with increasing temperature. Among the materials analyzed, polymers (PTFE, silicone) gave the lowest cosθ values. Studies of the effect of roughness and surface flaws on wettability...... contact angle and cleanability. In addition to surface wettability with oil many other factors such as roughness and surface defects play an essential role in determining their cleanability....

  10. Real-time imaging of hydrogen peroxide dynamics in vegetative and pathogenic hyphae of Fusarium graminearum.

    Science.gov (United States)

    Mentges, Michael; Bormann, Jörg

    2015-10-08

    Balanced dynamics of reactive oxygen species in the phytopathogenic fungus Fusarium graminearum play key roles for development and infection. To monitor those dynamics, ratiometric analysis using the novel hydrogen peroxide (H2O2) sensitive fluorescent indicator protein HyPer-2 was established for the first time in phytopathogenic fungi. H2O2 changes the excitation spectrum of HyPer-2 with an excitation maximum at 405 nm for the reduced and 488 nm for the oxidized state, facilitating ratiometric readouts with maximum emission at 516 nm. HyPer-2 analyses were performed using a microtiter fluorometer and confocal laser scanning microscopy (CLSM). Addition of external H2O2 to mycelia caused a steep and transient increase in fluorescence excited at 488 nm. This can be reversed by the addition of the reducing agent dithiothreitol. HyPer-2 in F. graminearum is highly sensitive and specific to H2O2 even in tiny amounts. Hyperosmotic treatment elicited a transient internal H2O2 burst. Hence, HyPer-2 is suitable to monitor the intracellular redox balance. Using CLSM, developmental processes like nuclear division, tip growth, septation, and infection structure development were analyzed. The latter two processes imply marked accumulations of intracellular H2O2. Taken together, HyPer-2 is a valuable and reliable tool for the analysis of environmental conditions, cellular development, and pathogenicity.

  11. Design and dynamic simulation of a novel polygeneration system fed by vegetable oil and by solar energy

    International Nuclear Information System (INIS)

    Calise, Francesco; Palombo, Adolfo; Vanoli, Laura

    2012-01-01

    Highlights: ► A novel polygeneration system based on engines (RE) fed by rapeseed oil is investigated. ► RE are integrated with high temperature solar heating and cooling systems. ► The polygeneration system is dynamically investigated for a Mediterranean Climate. ► System performance is excellent from the energetic point of view. ► The system is economically profitable only in case of feed-in tariffs. - Abstract: In this paper the integration of vegetable oil-fed reciprocating engines with solar thermal collector is investigated, seeking to design a novel polygeneration system producing: electricity, space heating and cooling and domestic hot water, for a university building located in Naples (Italy), assumed as case study. The polygeneration system is based on the following main components: concentrating parabolic trough solar collector, double-stage LiBr–H 2 O absorption chiller and a reciprocating engine fed by vegetable oil. The engine operates at full load producing electrical energy which is in part consumed by the building lights and equipments, in part used by the system passive loads and the rest is eventually sold to the grid. In fact, the engine is grid connected in order to perform a convenient net metering. The system was designed and then simulated by means of a zero-dimensional transient simulation model, developed using the TRNSYS software. The simulation tool developed by the authors allows one to analyze the results for different time basis (minutes, days, weeks, months and years), from both energetic and economic points of view. The economic results show that the system under investigation is profitable, especially if properly funded.

  12. Soil Response to Natural Vegetation Dynamics During the Late Holocene in Minnesota, USA, and Implications for SOM Accumulation and Loss

    Science.gov (United States)

    Mason, J. A.; Kasmerchak, C. S.; Keita, H.; Gruley, K. E.

    2016-12-01

    We studied soil response to late Holocene shifts in the dynamic boundary between forest and grassland, in two contrasting landscapes of Minnesota, USA. On both the glaciated landscape of northwestern Minnesota and steep bedrock slopes of southeastern Minnesota, forest has replaced grassland in the late Holocene (after 4 ka in the NW, during at least the last few 100 yr in the SE). Two distinct soil morphologies coexist in essentially the same climate and parent materials, Mollisols with deep SOM accumulation under grassland and Alfisols with most SOM in thin A horizons under forest. Organic carbon stocks of the Mollisols we sampled (to 1 m depth) are at least 50% greater than those of the Alfisols; thus, replacement of grassland by forest involves substantial SOM loss. Ultimately, the transition from Alfisols to Mollisols can probably be explained by much lower proportions of belowground SOM addition, and possibly less bioturbation, under forest; however, the timescale of this change is of great interest. Mollisols and transitional soils occur under forest today near the 19th century location of the vegetation boundary in NW Minnesota, and in certain slope positions in SE Minnesota. Stable C isotope profiles within those soils record the transition from C4 or mixed C3/C4 vegetation (tallgrass prairie or savanna) to C3 forest vegetation. Combined with 14C dating these data demonstrate a substantial lag in loss of the Mollisol morphology—thick SOM-rich A horizons with highly stable aggregates—after forest occupation. In fact, these thick A horizons may persist even when C4 grass-derived SOM has largely been replaced by SOM added after forest occupation. We are exploring possible explanations for this persistence in NW Minnesota. In SE Minnesota, it is likely related to parent material rich in dolomite fragments, with stable aggregation and SOM accumulation favored by abundant Ca2+and Mg2+. This parent material effect results in localization of high SOM

  13. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    Science.gov (United States)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S.L.; Poulter, B.; Viovy, N.

    2013-01-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO2 history at each chronosequence site, the model simulations generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO2 flux ~100 g C m−2 yr−1, for biomass carbon ~1000 g C m−2 and for soil carbon ~2000 g C m−2). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation

  14. An Investigation of Factors Affecting Elementary School Students’ BMI Values Based on the System Dynamics Modeling

    Directory of Open Access Journals (Sweden)

    Tian-Syung Lan

    2014-01-01

    Full Text Available This study used system dynamics method to investigate the factors affecting elementary school students’ BMI values. The construction of the dynamic model is divided into the qualitative causal loop and the quantitative system dynamics modeling. According to the system dynamics modeling, this study consisted of research on the four dimensions: student’s personal life style, diet-relevant parenting behaviors, advocacy and implementation of school nutrition education, and students’ peer interaction. The results of this study showed that students with more adequate health concepts usually have better eating behaviors and consequently have less chance of becoming obese. In addition, this study also verified that educational attainment and socioeconomic status of parents have a positive correlation with students’ amounts of physical activity, and nutrition education has a prominent influence on changing students’ high-calorie diets.

  15. An investigation of factors affecting elementary school students' BMI values based on the system dynamics modeling.

    Science.gov (United States)

    Lan, Tian-Syung; Chen, Kai-Ling; Chen, Pin-Chang; Ku, Chao-Tai; Chiu, Pei-Hsuan; Wang, Meng-Hsiang

    2014-01-01

    This study used system dynamics method to investigate the factors affecting elementary school students' BMI values. The construction of the dynamic model is divided into the qualitative causal loop and the quantitative system dynamics modeling. According to the system dynamics modeling, this study consisted of research on the four dimensions: student's personal life style, diet-relevant parenting behaviors, advocacy and implementation of school nutrition education, and students' peer interaction. The results of this study showed that students with more adequate health concepts usually have better eating behaviors and consequently have less chance of becoming obese. In addition, this study also verified that educational attainment and socioeconomic status of parents have a positive correlation with students' amounts of physical activity, and nutrition education has a prominent influence on changing students' high-calorie diets.

  16. Dynamics of growth/mature-related substances in vegetables using specific triple labelled compound

    International Nuclear Information System (INIS)

    Imada, Shigeo; Yamato, Yoichi; Hamano, Megumi; Yamazaki, Hiroko; Miura, Hiroyuki

    1999-01-01

    Dynamics and metabolism of sugar in tomato fruit was studied. The fruit was used after 20 days from anthesis. 14 C-fructose (46.1 KBq/one fruit) was injected into fruit through peduncle. Then samples were kept at 20degC. After the constant time, the sample was divided into fruit and peduncle. Each part was extracted by ethanol and 14 C was counted by a liquid scintillation counter. When 14 C-fructose was introduced into fruit, sucrose was strayed for a short time and decreased gradually by degradation. Fructose transferred to sucrose after 5 min, and almost fructose were lost for 5 hours. In the peduncle, sucrose was synthesized from fructose after 0.5 hour. (S.Y.)

  17. Patient affect experiencing following therapist interventions in short-term dynamic psychotherapy.

    Science.gov (United States)

    Town, Joel M; Hardy, Gillian E; McCullough, Leigh; Stride, Chris

    2012-01-01

    The aim of this research was to examine the relationship between therapist interventions and patient affect responses in Short-Term Dynamic Psychotherapy (STDP). The Affect Experiencing subscale from the Achievement of Therapeutic Objectives Scale (ATOS) was adapted to measure individual immediate affect experiencing (I-AES) responses in relation to therapist interventions coded within the preceding speaking turn, using the Psychotherapy Interaction Coding (PIC) system. A hierarchical linear modelling procedure was used to assess the change in affect experiencing and the relationship between affect experiencing and therapist interventions within and across segments of therapy. Process data was taken from six STDP cases; in total 24 hours of video-taped sessions were examined. Therapist interventions were found to account for a statistically significant amount of variance in immediate affect experiencing. Higher levels of immediate affect experiencing followed the therapist's use of Confrontation, Clarification and Support compared to Questions, Self-disclosure and Information interventions. Therapist Confrontation interventions that attempted to direct pressure towards either the visceral experience of affect or a patient's defences against feelings led to the highest levels of immediate affect experiencing. The type of therapist intervention accounts for a small but significant amount of the variation observed in a patient's immediate emotional arousal. Empirical findings support clinical theory in STDP that suggests strategic verbal responses promote the achievement of this specific therapeutic objective.

  18. Regional vegetation dynamics and its response to climate change—a case study in the Tao River Basin in Northwestern China

    International Nuclear Information System (INIS)

    Li, Changbin; Yang, Linshan; Wang, Shuaibing; Yang, Wenjin; Zhu, Gaofeng; Qi, Jiaguo; Zou, Songbing; Zhang, Feng

    2014-01-01

    The 30-year normalized-difference vegetation index (NDVI) time series from AVHRR/MODIS satellite sensors was used in this study to assess the regional vegetation dynamic changes in the Tao River Basin, which cuts across the Eastern Tibetan Plateau (ETP) and the Southwestern Loess Plateau (SLP). First, principal component and correlation analyses were carried out to determine the key climatic variables driving ecological change in the region. Then, regression models were tested to correlate NDVI with the selected climatic variables to determine their predictive power. Finally, Sen’s slope method was used to determine how terrestrial vegetation has responded to regional climate change in the region. The results indicated an average winter season NDVI value of 0.14 in the ETP but only 0.04 in the SLP. Primarily driven by increasing temperature, vegetation growth has generally been enhanced since 1981; spring NDVI increased by 0.03 every 10 years in the ETP and 0.02 in the SLP. Further, results from trend analyses suggest vegetation growth in the ETP shifted to earlier-start and earlier-end dates, however in the SLP, the growing season has been extended with an earlier-start and later-end date. The precipitation threshold for vegetation germination, measured by the cumulative spring rainfall, was found to be 44 mm for both the ETP and SLP. (paper)

  19. Affect

    NARCIS (Netherlands)

    Cetinic, M.; Diamanti, J.; Szeman, I.; Blacker, S.; Sully, J.

    2017-01-01

    This chapter historicizes four divergent but historically contemporaneous genres of affect theory – romantic, realist, speculative, and materialist. While critics credited with the turn to affect in the 1990s wrote largely in the wake of poststructuralism from the perspective of gender and queer

  20. Dynamics of the recovery of damaged tundra vegetation. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Amundsen, C.C.

    1976-01-01

    A study, begun in 1971, continues to document the environmental factors which affect the recovery of damaged tundra landscapes. A measurement technique was developed on Amchitka Island to allow the rapid acquisition of data on species presence and frequency across areas disturbed at various times and in various ways. Samples across all examples of aspect, slope steepness and exposure are taken. Studies now include Adak Island and the Point Barrow area. We have concluded that there was no directional secondary succession on the Aleutian tundra, although there was vigorous recovery on organic soils. Our study led to recommendations which resulted in less intensive reclamation management at a considerable financial saving and without further biological perturbation. Because of the increasing activity on tundra landscapes, for energy extraction, transportation or production, military or other reasons, we have expanded our sampling to other tundra areas where landscape disruption is occurring or is predicted.

  1. Small Prizes Increased Plain Milk and Vegetable Selection by Elementary School Children without Adversely Affecting Total Milk Purchase

    Directory of Open Access Journals (Sweden)

    Megan Emerson

    2017-02-01

    Full Text Available (1 Background: Pediatric obesity continues to be a major public health issue. Poor food selection in the school cafeteria is a risk factor. Chocolate or strawberry flavored milk is favored by the majority of elementary school students. Previous health promotion efforts have led to increased selection of plain milk, but may compromise total milk purchased. In our study, we examined the effectiveness of small prizes as incentives to improve healthy food and beverage selection by elementary school students; (2 Methods: In a small Midwestern school district, small prizes were given to elementary school students who selected a “Power Plate” (PP, the healthful combination of a plain milk, a fruit, a vegetable and an entrée with whole grain over two academic school years; (3 Results: PP selection increased from 0.05 per student to 0.19, a 271% increase (p < 0.001. All healthful foods had increased selection with plain milk having the greatest increase, 0.098 per student to 0.255, a 159% increase (p < 0.001; (4 Total milk purchased increased modestly from 0.916 to 0.956 per student (p = 0.000331. Conclusion: Giving small prizes as a reward for healthful food selection substantially improves healthful food selection and the effect is sustainable over two academic years.

  2. DEVELOPMENT OF AN INDEX OF ALIEN SPECIES INVASIVENESS: AN AID TO ASSESSING RIPARIAN VEGETATION CONDITION

    Science.gov (United States)

    Many riparian areas are invaded by alien plant species that negatively affect native species composition, community dynamics and ecosystem properties. We sampled vegetation along reaches of 31 low order streams in eastern Oregon, and characterized species assemblages at patch an...

  3. Long-Term Arctic Peatland Dynamics, Vegetation and Climate History of the Pur-Taz Region, Western Siberia

    Science.gov (United States)

    Peteet, Dorothy; Andreev, Andrei; Bardeen, William; Mistretta, Francesca

    1998-01-01

    Stratigraphic analyses of peat composition, LOI, pollen, spores, macrofossils, charcoal, and AMS ages are used to reconstruct the peatland, vegetation and climatic dynamics in the Pur-Taz region of western Siberia over 5000 years (9300 - 4500 BP). Section stratigraphy shows many changes from shallow lake sediment to different combinations of forested or open sedge, moss, and Equisetum fen and peatland environments. Macrofossil and pollen data indicate that Larix sibirica and Betula pubescens trees were first to arrive, followed by Picea obovata. The dominance of Picea macrofossils 6000-5000 BP in the Pur-Taz peatland along with regional Picea pollen maxima indicate warmer conditions and movement of the spruce treeline northward at this time. The decline of pollen and macrofossils from all of these tree species in uppermost peats suggests a change in the environment less favorable for their growth, perhaps cooler temperatures and/or less moisture. Of major significance is the evidence for old ages of the uppermost peats in this area of Siberia, suggesting a real lack of peat accumulation in recent millennia or recent oxidation of uppermost peat.

  4. Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: interactions of ecological and social factors affecting the Arctic normalized difference vegetation index

    International Nuclear Information System (INIS)

    Walker, D A; Bhatt, U S; Raynolds, M K; Romanovsky, V E; Leibman, M O; Gubarkov, A A; Khomutov, A V; Moskalenko, N G; Orekhov, P; Ukraientseva, N G; Epstein, H E; Yu, Q; Forbes, B C; Kaarlejaervi, E; Comiso, J C; Jia, G J; Kaplan, J O; Kumpula, T; Kuss, P; Matyshak, G

    2009-01-01

    The causes of a greening trend detected in the Arctic using the normalized difference vegetation index (NDVI) are still poorly understood. Changes in NDVI are a result of multiple ecological and social factors that affect tundra net primary productivity. Here we use a 25 year time series of AVHRR-derived NDVI data (AVHRR: advanced very high resolution radiometer), climate analysis, a global geographic information database and ground-based studies to examine the spatial and temporal patterns of vegetation greenness on the Yamal Peninsula, Russia. We assess the effects of climate change, gas-field development, reindeer grazing and permafrost degradation. In contrast to the case for Arctic North America, there has not been a significant trend in summer temperature or NDVI, and much of the pattern of NDVI in this region is due to disturbances. There has been a 37% change in early-summer coastal sea-ice concentration, a 4% increase in summer land temperatures and a 7% change in the average time-integrated NDVI over the length of the satellite observations. Gas-field infrastructure is not currently extensive enough to affect regional NDVI patterns. The effect of reindeer is difficult to quantitatively assess because of the lack of control areas where reindeer are excluded. Many of the greenest landscapes on the Yamal are associated with landslides and drainage networks that have resulted from ongoing rapid permafrost degradation. A warming climate and enhanced winter snow are likely to exacerbate positive feedbacks between climate and permafrost thawing. We present a diagram that summarizes the social and ecological factors that influence Arctic NDVI. The NDVI should be viewed as a powerful monitoring tool that integrates the cumulative effect of a multitude of factors affecting Arctic land-cover change.

  5. Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: interactions of ecological and social factors affecting the Arctic normalized difference vegetation index

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D A; Bhatt, U S; Raynolds, M K; Romanovsky, V E [University of Alaska Fairbanks, Fairbanks, AK (United States); Leibman, M O; Gubarkov, A A; Khomutov, A V; Moskalenko, N G; Orekhov, P; Ukraientseva, N G [Earth Cryosphere Institute, Russian Academy of Science, Siberian Branch, Tyumen (Russian Federation); Epstein, H E; Yu, Q [University of Virginia, Charlottesville, VA (United States); Forbes, B C; Kaarlejaervi, E [Arctic Center, University of Lapland, Rovaniemi (Finland); Comiso, J C [NASA Goddard Space Flight Center, MD (United States); Jia, G J [Chinese Academy of Sciences, Institute for Atmospheric Physics, Beijing (China); Kaplan, J O [Swiss Federal Institute for Forest Snow and Landscape Research, Birmensdorf (Switzerland); Kumpula, T [University of Joensuu, Joensuu (Finland); Kuss, P [University of Berne, Berne (Switzerland); Matyshak, G [Moscow State University, Moscow (Russian Federation)

    2009-10-15

    The causes of a greening trend detected in the Arctic using the normalized difference vegetation index (NDVI) are still poorly understood. Changes in NDVI are a result of multiple ecological and social factors that affect tundra net primary productivity. Here we use a 25 year time series of AVHRR-derived NDVI data (AVHRR: advanced very high resolution radiometer), climate analysis, a global geographic information database and ground-based studies to examine the spatial and temporal patterns of vegetation greenness on the Yamal Peninsula, Russia. We assess the effects of climate change, gas-field development, reindeer grazing and permafrost degradation. In contrast to the case for Arctic North America, there has not been a significant trend in summer temperature or NDVI, and much of the pattern of NDVI in this region is due to disturbances. There has been a 37% change in early-summer coastal sea-ice concentration, a 4% increase in summer land temperatures and a 7% change in the average time-integrated NDVI over the length of the satellite observations. Gas-field infrastructure is not currently extensive enough to affect regional NDVI patterns. The effect of reindeer is difficult to quantitatively assess because of the lack of control areas where reindeer are excluded. Many of the greenest landscapes on the Yamal are associated with landslides and drainage networks that have resulted from ongoing rapid permafrost degradation. A warming climate and enhanced winter snow are likely to exacerbate positive feedbacks between climate and permafrost thawing. We present a diagram that summarizes the social and ecological factors that influence Arctic NDVI. The NDVI should be viewed as a powerful monitoring tool that integrates the cumulative effect of a multitude of factors affecting Arctic land-cover change.

  6. Factors affecting the wettability of different surface materials with vegetable oil at high temperatures and its relation to cleanability

    Energy Technology Data Exchange (ETDEWEB)

    Ashokkumar, Saranya, E-mail: saras@food.dtu.dk [Accoat A/S, Munkegardsvej 16, 3490 Kvistgard (Denmark); Food Production Engineering, DTU FOOD, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Adler-Nissen, Jens [Food Production Engineering, DTU FOOD, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Moller, Per [Department of Materials Science and Engineering, DTU Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)

    2012-12-15

    Graphical abstract: Plot of cos {theta} versus temperature for metal and ceramic surfaces where cos {theta} rises linearly with increase in temperature. Highlights: Black-Right-Pointing-Pointer cos {theta} of olive oil on different surface materials rises linearly with increase in temperature. Black-Right-Pointing-Pointer Slopes are much higher for quasicrystalline and polymers than for ceramics. Black-Right-Pointing-Pointer Increase in surface roughness and surface flaws increases surface wettability. Black-Right-Pointing-Pointer Contact angle values gave information for grouping easy-clean polymers from other materials. Black-Right-Pointing-Pointer Contact angle measurements cannot directly estimate the cleanability of a surface. - Abstract: The main aim of the work was to investigate the wettability of different surface materials with vegetable oil (olive oil) over the temperature range of 25-200 Degree-Sign C to understand the differences in cleanability of different surfaces exposed to high temperatures in food processes. The different surface materials investigated include stainless steel (reference), PTFE (polytetrafluoroethylene), silicone, quasicrystalline (Al, Fe, Cr) and ceramic coatings: zirconium oxide (ZrO{sub 2}), zirconium nitride (ZrN) and titanium aluminum nitride (TiAlN). The ceramic coatings were deposited on stainless steel with two different levels of roughness. The cosine of the contact angle of olive oil on different surface materials rises linearly with increasing temperature. Among the materials analyzed, polymers (PTFE, silicone) gave the lowest cos {theta} values. Studies of the effect of roughness and surface flaws on wettability revealed that the cos {theta} values increases with increasing roughness and surface flaws. Correlation analysis indicates that the measured contact angle values gave useful information for grouping easy-clean polymer materials from the other materials; for the latter group, there is no direct relation between

  7. Factors Affecting Stock Returns of Firms Quoted in ISE Market: A Dynamic Panel Data Approach

    Directory of Open Access Journals (Sweden)

    Şebnem Er

    2013-07-01

    Full Text Available Several studies, explaining the factors affecting stock returns, have been published both in developed and developing countries. In many of these papers, either cross-sectional or time series methods have been applied. In this study, Dynamic Panel Data Analysis Methods have been conducted to explain the factors affecting stock returns of 64 manufacturing firms that are continuously quoted in ISE during the period of 2003-2007. The results indicate that stock performance, financial structure, activity and profitability ratios can be used to explain the stock returns as well as the oil prices, economic growth, exchange rate, interest rate, and money supply.

  8. Development of a Dynamic Web Mapping Service for Vegetation Productivity Using Earth Observation and in situ Sensors in a Sensor Web Based Approach

    Directory of Open Access Journals (Sweden)

    Sytze de Bruin

    2009-03-01

    Full Text Available This paper describes the development of a sensor web based approach which combines earth observation and in situ sensor data to derive typical information offered by a dynamic web mapping service (WMS. A prototype has been developed which provides daily maps of vegetation productivity for the Netherlands with a spatial resolution of 250 m. Daily available MODIS surface reflectance products and meteorological parameters obtained through a Sensor Observation Service (SOS were used as input for a vegetation productivity model. This paper presents the vegetation productivity model, the sensor data sources and the implementation of the automated processing facility. Finally, an evaluation is made of the opportunities and limitations of sensor web based approaches for the development of web services which combine both satellite and in situ sensor sources.

  9. Does Climate Change Mitigation Activity Affect Crude Oil Prices? Evidence from Dynamic Panel Model

    OpenAIRE

    Dike, Jude C.

    2014-01-01

    This paper empirically investigates how climate change mitigation affects crude oil prices while using carbon intensity as the indicator for climate change mitigation. The relationship between crude oil prices and carbon intensity is estimated using an Arellano and Bond GMM dynamic panel model. This study undertakes a regional-level analysis because of the geographical similarities among the countries in a region. Regions considered for the study are Africa, Asia and Oceania, Central and Sout...

  10. Design factors affecting dynamic behaviour of fast reactor cores. UK review paper

    Energy Technology Data Exchange (ETDEWEB)

    Brindley, K W [National Nuclear Corporation Ltd., Risley, Warrington (United Kingdom); Perks, M A [United Kingdom Atomic Energy Authority, Risley, Warrington (United Kingdom)

    1982-01-01

    This paper summarises the consideration that has been given in the UK to the following factors that affect the dynamic behaviour of fast reactor cores: fuel design - Pu/u homogeneity, fuel expansion, fuel-clad gaps, uranium fraction. Structural response - CR supports, diagrid, sub-assembly bowing sodium expansion coefficients - low void cores including heterogenous cores. Calculational methods and models are outlined and some experimental results are discussed. (author)

  11. Temporal dynamics of physical activity and affect in depressed and nondepressed individuals.

    Science.gov (United States)

    Stavrakakis, Nikolaos; Booij, Sanne H; Roest, Annelieke M; de Jonge, Peter; Oldehinkel, Albertine J; Bos, Elisabeth H

    2015-12-01

    The association between physical activity and affect found in longitudinal observational studies is generally small to moderate. It is unknown how this association generalizes to individuals. The aim of the present study was to investigate interindividual differences in the bidirectional dynamic relationship between physical activity and affect, in depressed and nondepressed individuals, using time-series analysis. A pair-matched sample of 10 depressed and 10 nondepressed participants (mean age = 36.6, SD = 8.9, 30% males) wore accelerometers and completed electronic questionnaires 3 times a day for 30 days. Physical activity was operationalized as the total energy expenditure (EE) per day segment (i.e., 6 hr). The multivariate time series (T = 90) of every individual were analyzed using vector autoregressive modeling (VAR), with the aim to assess direct as well as lagged (i.e., over 1 day) effects of EE on positive and negative affect, and vice versa. Large interindividual differences in the strength, direction and temporal aspects of the relationship between physical activity and positive and negative affect were observed. An exception was the direct (but not the lagged) effect of physical activity on positive affect, which was positive in nearly all individuals. This study showed that the association between physical activity and affect varied considerably across individuals. Thus, while at the group level the effect of physical activity on affect may be small, in some individuals the effect may be clinically relevant. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  12. Analysis of vegetation and land cover dynamics in north-western Morocco during the last decade using MODIS NDVI time series data

    Directory of Open Access Journals (Sweden)

    C. Höpfner

    2011-11-01

    Full Text Available Vegetation phenology as well as the current variability and dynamics of vegetation and land cover, including its climatic and human drivers, are examined in a region in north-western Morocco that is nearly 22 700 km2 big. A gapless time series of Normalized Differenced Vegetation Index (NDVI composite raster data from 29 September 2000 to 29 September 2009 is utilised. The data have a spatial resolution of 250 m and were acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS sensor.

    The presented approach allows to compose and to analyse yearly land cover maps in a widely unknown region with scarce validated ground truth data by deriving phenological parameters. Results show that the high temporal resolution of 16 d is sufficient for (a determining local land cover better than global land cover classifications of Plant Functional Types (PFT and Global Land Cover 2000 (GLC2000 and (b for drawing conclusions on vegetation dynamics and its drivers. Areas of stably classified land cover types (i.e. areas that did not change their land cover type show climatically driven inter- and intra-annual variability with indicated influence of droughts. The presented approach to determine human-driven influence on vegetation dynamics caused by agriculture results in a more than ten times larger area compared with stably classified areas. Change detection based on yearly land cover maps shows a gain of high-productive vegetation (cropland of about 259.3 km2. Statistically significant inter-annual trends in vegetation dynamics during the last decade could however not be discovered. A sequence of correlations was respectively carried out to extract the most important periods of rainfall responsible for the production of green biomass and for the extent of land cover types. Results show that mean daily precipitation from 1 October to 15 December has high correlation results (max. r2=0.85 on an intra

  13. Do Valenced Odors and Trait Body Odor Disgust Affect Evaluation of Emotion in Dynamic Faces?

    Science.gov (United States)

    Syrjänen, Elmeri; Liuzza, Marco Tullio; Fischer, Håkan; Olofsson, Jonas K

    2017-12-01

    Disgust is a core emotion evolved to detect and avoid the ingestion of poisonous food as well as the contact with pathogens and other harmful agents. Previous research has shown that multisensory presentation of olfactory and visual information may strengthen the processing of disgust-relevant information. However, it is not known whether these findings extend to dynamic facial stimuli that changes from neutral to emotionally expressive, or if individual differences in trait body odor disgust may influence the processing of disgust-related information. In this preregistered study, we tested whether a classification of dynamic facial expressions as happy or disgusted, and an emotional evaluation of these facial expressions, would be affected by individual differences in body odor disgust sensitivity, and by exposure to a sweat-like, negatively valenced odor (valeric acid), as compared with a soap-like, positively valenced odor (lilac essence) or a no-odor control. Using Bayesian hypothesis testing, we found evidence that odors do not affect recognition of emotion in dynamic faces even when body odor disgust sensitivity was used as moderator. However, an exploratory analysis suggested that an unpleasant odor context may cause faster RTs for faces, independent of their emotional expression. Our results further our understanding of the scope and limits of odor effects on facial perception affect and suggest further studies should focus on reproducibility, specifying experimental circumstances where odor effects on facial expressions may be present versus absent.

  14. A vegetable oil feeding history affects digestibility and intestinal fatty acid uptake in juvenile rainbow trout Oncorhynchus mykiss.

    Science.gov (United States)

    Geurden, Inge; Jutfelt, Fredrik; Olsen, Rolf-Erik; Sundell, Kristina S

    2009-04-01

    Future expansion of aquaculture relies on the use of alternatives to fish oil in fish feed. This study examined to what extent the nature of the feed oil affects intestinal lipid uptake properties in rainbow trout. The fish were fed a diet containing fish (FO), rapeseed (RO) or linseed (LO) oil for 8 weeks after which absorptive properties were assessed. Differences in digestibility due to feed oil history were measured using diet FO with an indigestible marker. Intestinal integrity, paracellular permeability, in vitro transepithelial fatty acid transport (3H-18:3n-3 and 14C-16:0) and their incorporation into intestinal epithelia were compared using Ussing chambers. Feed oil history did not affect the triacylglycerol/phosphatidylcholine ratio (TAG/PC) of the newly synthesized lipids in the segments. The lower TAG/PC ratio with 16:0 (2:1) than with 18:3 (10:1) showed the preferential incorporation of 16:0 into polar lipids. The FO-feeding history decreased permeability and increased transepithelial resistance of the intestinal segments. Transepithelial passage rates of 18:3n-3 were higher when pre-fed LO compared to RO or FO. Similarly, pre-feeding LO increased apparent lipid and fatty acid digestibilities compared to RO or FO. These results demonstrate that the absorptive intestinal functions in fish can be altered by the feed oil history and that the effect remains after a return to a standard fish oil diet.

  15. Theorizing One Learner’s Perceived Affective Experiences and Performances from a Dynamic Perspective

    Directory of Open Access Journals (Sweden)

    Luanyi Xiao

    2016-03-01

    Full Text Available This paper examines the perceptions of one Chinese learner of English at a university. From a Dynamic System Theory (DST perspective, the student’s perceptions, affective experiences and classroom learning will be explored by identifying the non-linear relationships between them. This paper aims to investigate the relationship between the student’s perceived affective experiences and her self-reported performances in a foreign language classroom. The participant was a second-year university student from a foreign language university in China. Diary, questionnaire, semi-structured interview, and class observation were applied to investigate this 6-month longitudinal study. Emotional ambivalence including several different affective patterns and five attractor states, namely, Integrative Disposition, Amotivation, Autonomy, Actual Learning Process and Language Awareness were identified.

  16. Overexpression of the kiwifruit SVP3 gene affects reproductive development and suppresses anthocyanin biosynthesis in petals, but has no effect on vegetative growth, dormancy, or flowering time.

    Science.gov (United States)

    Wu, Rongmei; Wang, Tianchi; McGie, Tony; Voogd, Charlotte; Allan, Andrew C; Hellens, Roger P; Varkonyi-Gasic, Erika

    2014-09-01

    SVP-like MADS domain transcription factors have been shown to regulate flowering time and both inflorescence and flower development in annual plants, while having effects on growth cessation and terminal bud formation in perennial species. Previously, four SVP genes were described in woody perennial vine kiwifruit (Actinidia spp.), with possible distinct roles in bud dormancy and flowering. Kiwifruit SVP3 transcript was confined to vegetative tissues and acted as a repressor of flowering as it was able to rescue the Arabidopsis svp41 mutant. To characterize kiwifruit SVP3 further, ectopic expression in kiwifruit species was performed. Ectopic expression of SVP3 in A. deliciosa did not affect general plant growth or the duration of endodormancy. Ectopic expression of SVP3 in A. eriantha also resulted in plants with normal vegetative growth, bud break, and flowering time. However, significantly prolonged and abnormal flower, fruit, and seed development were observed, arising from SVP3 interactions with kiwifruit floral homeotic MADS-domain proteins. Petal pigmentation was reduced as a result of SVP3-mediated interference with transcription of the kiwifruit flower tissue-specific R2R3 MYB regulator, MYB110a, and the gene encoding the key anthocyanin biosynthetic step, F3GT1. Constitutive expression of SVP3 had a similar impact on reproductive development in transgenic tobacco. The flowering time was not affected in day-neutral and photoperiod-responsive Nicotiana tabacum cultivars, but anthesis and seed germination were significantly delayed. The accumulation of anthocyanin in petals was reduced and the same underlying mechanism of R2R3 MYB NtAN2 transcript reduction was demonstrated. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Glacial-interglacial vegetation dynamics in South Eastern Africa coupled to sea surface temperature variations in the Western Indian Ocean

    NARCIS (Netherlands)

    Dupont, L.M.; Caley, T.; Kim, J.H.; Castañeda, I.S; Malaize, B.; Giraudeau, J.

    2011-01-01

    Glacial-interglacial fluctuations in the vegetation of South Africa might elucidate the climate system at the edge of the tropics between the Indian and Atlantic Oceans. However, vegetation records covering a full glacial cycle have only been published from the eastern South Atlantic. We present a

  18. On the relative importance of vegetation terms in computational fluid dynamics on flow and Dispersion in the urban environment

    NARCIS (Netherlands)

    Gromke, C.B.; Blocken, B.J.E.

    2013-01-01

    The relative importance of vegetation terms was analysed for flow and dispersion in an urban street canyon with avenue-trees. To this end, simulations with three k-e turbulence models and different approaches to model vegetation were performed. The different approaches resulted in rather slight

  19. Long-term effects of elevated ozone and UV-B radiation on vegetation and methane dynamics in northern peatland ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Morsky, S.K.

    2012-06-15

    In the stratosphere, ozone (O{sub 3}) forms an effective barrier against high energy ultraviolet radiation (UV), which is harmful to living cells. Despite the stratospheric O{sub 3} layer recovering due to international agreements, seasonal O{sub 3} depletion periods with high UV-B levels, may still occur, especially in the Polar regions. In the troposphere, O{sub 3} is a significant greenhouse gas contributing to global warming and also causing oxidative stress to animal- and plant cells. Global tropospheric O{sub 3} concentration has approximately doubled during the last century and the same trend is expected to continue. Northern peatlands are sinks of atmospheric carbon dioxide (CO{sub 2}) and sources of the powerful greenhouse gas methane (CH{sub 4}). Two multi-year open-field experiments were conducted to study the effects of elevated O{sub 3} concentration and UV-B radiation on peatland vegetation and CH{sub 4} dynamics in Finland. Peatland microcosms were used in the O{sub 3} experiment and the UV-B exposure study was conducted on a natural fen. Elevated O{sub 3} concentration significantly increased leaf cross-sections and the total number of Eriophorum vaginatum leaves towards the end of the experiment, but did not affect relative length growth, stomatal density or volume of aerenchymatous tissue of leaves. Elevated O{sub 3} did not affect relative length growth of Sphagnum papillosum shoots either. Concentrations of chlorophylls or carotenoids in E. vaginatum leaves or in S. papillosum shoots were not changed under elevated O{sub 3}. During the first growing season, elevated O{sub 3} concentration decreased methanol-extractable, UV-absorbing compounds in E. vaginatum leaves. Elevated O{sub 3} increased concentrations of organic acids and microbial biomass (estimated by phospholipid fatty acid biomarkers) in peat during the third growing season. In the first growing season net CH{sub 4} emission was temporarily decreased by elevated O{sub 3} concentration

  20. DYNAMICS OF HUMUS CONTENT AND AIR-WATER SOIL PROPERTIES IN INTENSIVE VEGETABLE AND FLOWER GLASSHOUSE PRODUCTION

    Directory of Open Access Journals (Sweden)

    Nada Parađiković

    2007-12-01

    Full Text Available The investigation was conducted in Magadenovac glasshouses, eastern Croatia during seventeen years (1985. - 2002.. In that period, the glasshouse production of vegetables and flowers was intensive during the whole year. The trial was set up on 500 m2. Because of often crop rotation during the same year, soil tillage must be done fast and soil must be homogenized till depth of about 40 cm. Often in practice it is not possible to plough because of numerous reasons and then main mechanization is roto-digging machine. The aim of this investigation was to determine the consequences of long-term application of the special roto-digging machine and dynamics of organic matter and humus content during 17 years. For this purpose, multiple chemical and physical analyses were done. It was determined that, by intensive production during 17 years, organic matter content in soil surface layer significantly decreased (1995 year - 8.60% and 2002 year - 5.00%. In subsurface layer (35-50 cm organic matter content decreased by about 50%. At the same time, by decreasing organic matter content soil became more acid, because pH value measured in 1M KCl after 17 years was by 1.4 units lower in the surface layer, and by about 0.5 units lower in subsurface layer. Finally, soil became acid (pHKCl = 4.8. Decreasing in organic matter and humus content led to soil compaction, decreased soil porosity and degradation of other physical and chemical properties. It can be concluded, that it is necessary to import complete agricultural operations relative to soil tillage for soil preserving.

  1. Human-animal agency in reindeer management: Sami herders' perspectives on Fennoscandian tundra vegetation dynamics under climate change

    Science.gov (United States)

    Forbes, B. C.; Horstkotte, T.; Utsi, T. A.; Larsson-Blind, Å.; Burgess, P.; Käyhkö, J.; Oksanen, L.; Johansen, B.

    2016-12-01

    Many primary livelihoods in Arctic and sub-Arctic regions are increasingly faced with accelerating effects of climate change and resource exploitation. The often close connection between indigenous populations and the dynamics of their respective territories allows them to make detailed observations of how these changes transform the landscapes where they practice their daily activities. Here, we report Sami reindeer herders' observations based on their long-term occupancy and use of contrasting pastoral landscapes in northern Fennoscandia. In particular, we focus on the capacity for various herd management regimes to prevent a potential transformation of open tundra vegetation to shrubland or woodland. Fennoscandian Sami herders did not confirm a substantial, rapid or large-scale transformation of treeless arctic-alpine areas into shrub- and/or woodlands as a consequence of climate change. However, where encroachment of open tundra landscapes has been observed, a range of drivers were deemed responsible. These included abiotic conditions, anthropogenic influences and the direct and indirect effects of reindeer. Mountain birch tree line advances were in some cases associated with reduced or discontinued grazing, depending on the seasonal significance of these particular areas. In the many places where tree line has risen, herding practices have by necessity adapted to these changes. Exploiting the capacity of reindeer grazing/browsing as a conservation tool offers new adaptive strategies of ecosystem management to counteract a potential encroachment of the tundra by woody plants. However, such novel solutions in environmental governance are confronted with difficult trade-offs involved in ecosystem management for ecologically reasonable, economically viable and socially desirable management strategies.

  2. Modelling carbon fluxes of forest and grassland ecosystems in Western Europe using the CARAIB dynamic vegetation model: evaluation against eddy covariance data.

    Science.gov (United States)

    Henrot, Alexandra-Jane; François, Louis; Dury, Marie; Hambuckers, Alain; Jacquemin, Ingrid; Minet, Julien; Tychon, Bernard; Heinesch, Bernard; Horemans, Joanna; Deckmyn, Gaby

    2015-04-01

    Eddy covariance measurements are an essential resource to understand how ecosystem carbon fluxes react in response to climate change, and to help to evaluate and validate the performance of land surface and vegetation models at regional and global scale. In the framework of the MASC project (« Modelling and Assessing Surface Change impacts on Belgian and Western European climate »), vegetation dynamics and carbon fluxes of forest and grassland ecosystems simulated by the CARAIB dynamic vegetation model (Dury et al., iForest - Biogeosciences and Forestry, 4:82-99, 2011) are evaluated and validated by comparison of the model predictions with eddy covariance data. Here carbon fluxes (e.g. net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RECO)) and evapotranspiration (ET) simulated with the CARAIB model are compared with the fluxes measured at several eddy covariance flux tower sites in Belgium and Western Europe, chosen from the FLUXNET global network (http://fluxnet.ornl.gov/). CARAIB is forced either with surface atmospheric variables derived from the global CRU climatology, or with in situ meteorological data. Several tree (e.g. Pinus sylvestris, Fagus sylvatica, Picea abies) and grass species (e.g. Poaceae, Asteraceae) are simulated, depending on the species encountered on the studied sites. The aim of our work is to assess the model ability to reproduce the daily, seasonal and interannual variablility of carbon fluxes and the carbon dynamics of forest and grassland ecosystems in Belgium and Western Europe.

  3. How Volatilities Nonlocal in Time Affect the Price Dynamics in Complex Financial Systems

    Science.gov (United States)

    Tan, Lei; Zheng, Bo; Chen, Jun-Jie; Jiang, Xiong-Fei

    2015-01-01

    What is the dominating mechanism of the price dynamics in financial systems is of great interest to scientists. The problem whether and how volatilities affect the price movement draws much attention. Although many efforts have been made, it remains challenging. Physicists usually apply the concepts and methods in statistical physics, such as temporal correlation functions, to study financial dynamics. However, the usual volatility-return correlation function, which is local in time, typically fluctuates around zero. Here we construct dynamic observables nonlocal in time to explore the volatility-return correlation, based on the empirical data of hundreds of individual stocks and 25 stock market indices in different countries. Strikingly, the correlation is discovered to be non-zero, with an amplitude of a few percent and a duration of over two weeks. This result provides compelling evidence that past volatilities nonlocal in time affect future returns. Further, we introduce an agent-based model with a novel mechanism, that is, the asymmetric trading preference in volatile and stable markets, to understand the microscopic origin of the volatility-return correlation nonlocal in time. PMID:25723154

  4. How volatilities nonlocal in time affect the price dynamics in complex financial systems.

    Directory of Open Access Journals (Sweden)

    Lei Tan

    Full Text Available What is the dominating mechanism of the price dynamics in financial systems is of great interest to scientists. The problem whether and how volatilities affect the price movement draws much attention. Although many efforts have been made, it remains challenging. Physicists usually apply the concepts and methods in statistical physics, such as temporal correlation functions, to study financial dynamics. However, the usual volatility-return correlation function, which is local in time, typically fluctuates around zero. Here we construct dynamic observables nonlocal in time to explore the volatility-return correlation, based on the empirical data of hundreds of individual stocks and 25 stock market indices in different countries. Strikingly, the correlation is discovered to be non-zero, with an amplitude of a few percent and a duration of over two weeks. This result provides compelling evidence that past volatilities nonlocal in time affect future returns. Further, we introduce an agent-based model with a novel mechanism, that is, the asymmetric trading preference in volatile and stable markets, to understand the microscopic origin of the volatility-return correlation nonlocal in time.

  5. Nitrogen and dry matter dynamics in linseed as affected by the nitrogen level and genotype in a Mediterranean environment

    International Nuclear Information System (INIS)

    Dordas, Christos A.

    2012-01-01

    Linseed or oilseed flax (Linum usitatissimum L.) is an important source of edible and industrial vegetable oil and is grown widely in temperate regions around the world. Nitrogen, one of the most important nutrients for linseed, is often applied for higher yield and better quality. However, the effects of N level on dry matter and N accumulation, partitioning, and retranslocation have not yet been identified in linseed. A two-year field study was therefore conducted to determine the effects of N level on dry matter, N accumulation, partitioning, and retranslocation of three linseed cultivars (Livia, Lirina, Creola) grown in a Mediterranean environment under rain-fed conditions. It was found that N fertilization increased biomass at anthesis by an average of 47% and at maturity by an average of 38%, compared with the control. N fertilization increased the dry matter partitioning in leaves + flowers and stems at anthesis, and also in leaves + capsule vegetative components, stems, and seeds at maturity. Dry matter translocation was affected by N fertilization, growing season, and by the interaction between growing season and N treatment. In addition, N fertilization increased N retranslocation from the vegetative parts of the plant to the seed. Moreover, the N uptake by seeds was more affected by the seed yield and less affected by the seed N concentration. The present study indicates that N fertilization affects dry matter and N translocation in linseed. -- Highlights: ► Dry matter translocation was affected by N fertilization, year, and their interaction. ► HI was affected by N fertilization while NHI was not. ► N fertilization increased N retranslocation from the vegetative parts to the seed.

  6. The dynamic interplay between appraisal and core affect in daily life

    Directory of Open Access Journals (Sweden)

    Peter eKuppens

    2012-10-01

    Full Text Available Appraisals and core affect are both considered central to the experience of emotion. In this study we examine the bidirectional relationships between these two components of emotional experience by examining how core affect changes following how people appraise events and how appraisals in turn change following how they feel in daily life. In an experience sampling study, participants recorded their core affect and appraisals of ongoing events; data were analyzed using cross-lagged multilevel modeling. Valence-appraisal relationships were found to be characterized by congruency: The same appraisals that were associated with a change in pleasure-displeasure (motivational congruency, other-agency, coping potential, and future expectancy, changed themselves as a function of pleasure-displeasure. In turn, mainly secondary appraisals of who is responsible and how one is able to cope with events were associated with changes in arousal, which itself is followed by changes in the future appraised relevance of events. These results integrate core affect and appraisal approaches to emotion by demonstrating the dynamic interplay of how appraisals are followed by changes in core affect which in turn change our basis for judging future events.

  7. A modified dynamic evolving neural-fuzzy approach to modeling customer satisfaction for affective design.

    Science.gov (United States)

    Kwong, C K; Fung, K Y; Jiang, Huimin; Chan, K Y; Siu, Kin Wai Michael

    2013-01-01

    Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.

  8. A Modified Dynamic Evolving Neural-Fuzzy Approach to Modeling Customer Satisfaction for Affective Design

    Directory of Open Access Journals (Sweden)

    C. K. Kwong

    2013-01-01

    Full Text Available Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1 the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS failed to run due to a large number of inputs; (2 the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.

  9. Arabidopsis FH1 Formin Affects Cotyledon Pavement Cell Shape by Modulating Cytoskeleton Dynamics.

    Science.gov (United States)

    Rosero, Amparo; Oulehlová, Denisa; Stillerová, Lenka; Schiebertová, Petra; Grunt, Michal; Žárský, Viktor; Cvrčková, Fatima

    2016-03-01

    Plant cell morphogenesis involves concerted rearrangements of microtubules and actin microfilaments. We previously reported that FH1, the main Arabidopsis thaliana housekeeping Class I membrane-anchored formin, contributes to actin dynamics and microtubule stability in rhizodermis cells. Here we examine the effects of mutations affecting FH1 (At3g25500) on cell morphogenesis and above-ground organ development in seedlings, as well as on cytoskeletal organization and dynamics, using a combination of confocal and variable angle epifluorescence microscopy with a pharmacological approach. Homozygous fh1 mutants exhibited cotyledon epinasty and had larger cotyledon pavement cells with more pronounced lobes than the wild type. The pavement cell shape alterations were enhanced by expression of the fluorescent microtubule marker GFP-microtubule-associated protein 4 (MAP4). Mutant cotyledon pavement cells exhibited reduced density and increased stability of microfilament bundles, as well as enhanced dynamics of microtubules. Analogous results were also obtained upon treatments with the formin inhibitor SMIFH2 (small molecule inhibitor of formin homology 2 domains). Pavement cell shape in wild-type (wt) and fh1 plants in some situations exhibited a differential response towards anti-cytoskeletal drugs, especially the microtubule disruptor oryzalin. Our observations indicate that FH1 participates in the control of microtubule dynamics, possibly via its effects on actin, subsequently influencing cell morphogenesis and macroscopic organ development. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Dynamic Response of Satellite-Derived Vegetation Growth to Climate Change in the Three North Shelter Forest Region in China

    Directory of Open Access Journals (Sweden)

    Bin He

    2015-08-01

    Full Text Available Since the late 1970s, the Chinese government has initiated ecological restoration programs in the Three North Shelter Forest System Project (TNSFSP area. Whether accelerated climate change will help or hinder these efforts is still poorly understood. Using the updated and extended AVHRR NDVI3g dataset from 1982 to 2011 and corresponding climatic data, we investigated vegetation variations in response to climate change. The results showed that the overall state of vegetation in the study region has improved over the past three decades. Vegetation cover significantly decreased in 23.1% and significantly increased in 21.8% of the study area. An increase in all three main vegetation types (forest, grassland, and cropland was observed, but the trend was only statistically significant in cropland. In addition, bare and sparsely vegetated areas, mainly located in the western part of the study area, have significantly expanded since the early 2000s. A moisture condition analysis indicated that the study area experienced significant climate variations, with warm-wet conditions in the western region and warm-dry conditions in the eastern region. Correlation analysis showed that variations in the Normalized Difference Vegetation Index (NDVI were positively correlated with precipitation and negatively correlated with temperature. Ultimately, climate change influenced vegetation growth by controlling the availability of soil moisture. Further investigation suggested that the positive impacts of precipitation on NDVI have weakened in the study region, whereas the negative impacts from temperature have been enhanced in the eastern study area. However, over recent years, the negative temperature impacts have been converted to positive impacts in the western region. Considering the variations in the relationship between NDVI and climatic variables, the warm–dry climate in the eastern region is likely harmful to vegetation growth, whereas the warm

  11. Impact of the Little Ice Age cooling and 20th century climate change on peatland vegetation dynamics in central and northern Alberta using a multi-proxy approach and high-resolution peat chronologies

    Science.gov (United States)

    Magnan, Gabriel; van Bellen, Simon; Davies, Lauren; Froese, Duane; Garneau, Michelle; Mullan-Boudreau, Gillian; Zaccone, Claudio; Shotyk, William

    2018-04-01

    Northern boreal peatlands are major terrestrial sinks of organic carbon and these ecosystems, which are highly sensitive to human activities and climate change, act as sensitive archives of past environmental change at various timescales. This study aims at understanding how the climate changes of the last 1000 years have affected peatland vegetation dynamics in the boreal region of Alberta in western Canada. Peat cores were collected from five bogs in the Fort McMurray region (56-57° N), at the southern limit of sporadic permafrost, and two in central Alberta (53° N and 55° N) outside the present-day limit of permafrost peatlands. The past changes in vegetation communities were reconstructed using detailed plant macrofossil analyses combined with high-resolution peat chronologies (14C, atmospheric bomb-pulse 14C, 210Pb and cryptotephras). Peat humification proxies (C/N, H/C, bulk density) and records of pH and ash content were also used to improve the interpretation of climate-related vegetation changes. Our study shows important changes in peatland vegetation and physical and chemical peat properties during the Little Ice Age (LIA) cooling period mainly from around 1700 CE and the subsequent climate warming of the 20th century. In some bogs, the plant macrofossils have recorded periods of permafrost aggradation during the LIA with drier surface conditions, increased peat humification and high abundance of ericaceous shrubs and black spruce (Picea mariana). The subsequent permafrost thaw was characterized by a short-term shift towards wetter conditions (Sphagnum sect. Cuspidata) and a decline in Picea mariana. Finally, a shift to a dominance of Sphagnum sect. Acutifolia (mainly Sphagnum fuscum) occurred in all the bogs during the second half of the 20th century, indicating the establishment of dry ombrotrophic conditions under the recent warmer and drier climate conditions.

  12. Recruitment dynamics mediated by ungulate herbivory can affect species coexistence for tree seedling assemblages

    Directory of Open Access Journals (Sweden)

    Chi-Yu Weng

    2017-08-01

    Full Text Available The best-known mechanism that herbivory affects species coexistence of tree seedlings is negative density-dependency driven by specialist natural enemies. However, in a forest with intense herbivory by non-specialists, what causes a diversifying seedling bank if rare species do not benefit from negative density-dependency in dominant species? We hypothesize that generalist herbivores can cause unevenly distributed species-specific mortality, which mediates recruitment dynamics and therefore affects species coexistence. To answer this question, we conducted a fence-control experiment in a montane cloud forest, Taiwan, and found that herbivorous damages were mainly caused by ungulates, which are generalists. We explored ungulate herbivory effects on recruitment dynamics by censusing tree seedling dynamics for three years. We found that herbivorous damages by ungulates significantly cause seedling death, mostly at their early stage of establishment. The percentage of death caused by herbivory varied among species. In particular, nurse plants and seedling initial height help shade-tolerant species to persist under such intense herbivory. Whereas, deaths caused by other factors occurred more often in older seedlings, with a consistent low percentage among species. We then tested species coexistence maintenance by dynamic modelling under different scenarios of ungulate herbivory. Raising percentages of death by herbivory changes relative species abundances by suppressing light-demanding species and increasing shade-tolerant species. Density-dependent mortality immediately after bursts of recruitments can suppress dominance of abundant species. With ungulate herbivory, fluctuating recruitment further prevent rare species from apparent competition induced by abundant species. Such bio-processes can interact with ungulate herbivory so that long-term coexistence can be facilitated.

  13. Predator Presence and Vegetation Density Affect Capture Rates and Detectability of Litoria aurea Tadpoles: Wide-Ranging Implications for a Common Survey Technique.

    Directory of Open Access Journals (Sweden)

    Madeleine R Sanders

    Full Text Available Trapping is a common sampling technique used to estimate fundamental population metrics of animal species such as abundance, survival and distribution. However, capture success for any trapping method can be heavily influenced by individuals' behavioural plasticity, which in turn affects the accuracy of any population estimates derived from the data. Funnel trapping is one of the most common methods for sampling aquatic vertebrates, although, apart from fish studies, almost nothing is known about the effects of behavioural plasticity on trapping success. We used a full factorial experiment to investigate the effects that two common environmental parameters (predator presence and vegetation density have on the trapping success of tadpoles. We estimated that the odds of tadpoles being captured in traps was 4.3 times higher when predators were absent compared to present and 2.1 times higher when vegetation density was high compared to low, using odds ratios based on fitted model means. The odds of tadpoles being detected in traps were also 2.9 times higher in predator-free environments. These results indicate that common environmental factors can trigger behavioural plasticity in tadpoles that biases trapping success. We issue a warning to researchers and surveyors that trapping biases may be commonplace when conducting surveys such as these, and urge caution in interpreting data without consideration of important environmental factors present in the study system. Left unconsidered, trapping biases in capture success have the potential to lead to incorrect interpretations of data sets, and misdirection of limited resources for managing species.

  14. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying; Zhang, Chaobin; Wang, Zhaoqi; Chen, Yizhao; Gang, Chengcheng [School of Life Science, Nanjing University, Xianlin Road 163, Qixia District, Nanjing, 210046 (China); An, Ru [School of Earth Science and Engineering, Hohai University, Xikang Road 129, Nanjing, 210098 (China); Li, Jianlong, E-mail: lijianlongnju@163.com [School of Life Science, Nanjing University, Xianlin Road 163, Qixia District, Nanjing, 210046 (China)

    2016-09-01

    The Three-River Source Region (TRSR), a region with key importance to the ecological security of China, has undergone climate changes and a shift in human activities driven by a series of ecological restoration projects in recent decades. To reveal the spatiotemporal dynamics of vegetation dynamics and calculate the contributions of driving factors in the TRSR across different periods from 1982 to 2012, net primary productivity (NPP) estimated using the Carnegie–Ames–Stanford approach model was used to assess the status of vegetation. The actual effects of different climatic variation trends on interannual variation in NPP were analyzed. Furthermore, the relationships of NPP with different climate factors and human activities were analyzed quantitatively. Results showed the following: from 1982 to 2012, the average NPP in the study area was 187.37 g cm{sup −2} yr{sup −1}. The average NPP exhibited a fluctuation but presented a generally increasing trend over the 31-year study period, with an increase rate of 1.31 g cm{sup −2} yr{sup −2}. During the entire study period, the average contributions of temperature, precipitation, and solar radiation to NPP interannual variation over the entire region were 0.58, 0.73, and 0.09 g cm{sup −2} yr{sup −2}, respectively. Radiation was the climate factor with the greatest influence on NPP interannual variation. The factor that restricted NPP increase changed from temperature and radiation to precipitation. The average contributions of climate change and human activities to NPP interannual variation were 1.40 g cm{sup −2} yr{sup −2} and − 0.08 g cm{sup −2} yr{sup −2}, respectively. From 1982 to 2000, the general climate conditions were favorable to vegetation recovery, whereas human activities had a weaker negative impact on vegetation growth. From 2001 to 2012, climate conditions began to have a negative impact on vegetation growth, whereas human activities made a favorable impact on vegetation

  15. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012

    International Nuclear Information System (INIS)

    Zhang, Ying; Zhang, Chaobin; Wang, Zhaoqi; Chen, Yizhao; Gang, Chengcheng; An, Ru; Li, Jianlong

    2016-01-01

    The Three-River Source Region (TRSR), a region with key importance to the ecological security of China, has undergone climate changes and a shift in human activities driven by a series of ecological restoration projects in recent decades. To reveal the spatiotemporal dynamics of vegetation dynamics and calculate the contributions of driving factors in the TRSR across different periods from 1982 to 2012, net primary productivity (NPP) estimated using the Carnegie–Ames–Stanford approach model was used to assess the status of vegetation. The actual effects of different climatic variation trends on interannual variation in NPP were analyzed. Furthermore, the relationships of NPP with different climate factors and human activities were analyzed quantitatively. Results showed the following: from 1982 to 2012, the average NPP in the study area was 187.37 g cm"−"2 yr"−"1. The average NPP exhibited a fluctuation but presented a generally increasing trend over the 31-year study period, with an increase rate of 1.31 g cm"−"2 yr"−"2. During the entire study period, the average contributions of temperature, precipitation, and solar radiation to NPP interannual variation over the entire region were 0.58, 0.73, and 0.09 g cm"−"2 yr"−"2, respectively. Radiation was the climate factor with the greatest influence on NPP interannual variation. The factor that restricted NPP increase changed from temperature and radiation to precipitation. The average contributions of climate change and human activities to NPP interannual variation were 1.40 g cm"−"2 yr"−"2 and − 0.08 g cm"−"2 yr"−"2, respectively. From 1982 to 2000, the general climate conditions were favorable to vegetation recovery, whereas human activities had a weaker negative impact on vegetation growth. From 2001 to 2012, climate conditions began to have a negative impact on vegetation growth, whereas human activities made a favorable impact on vegetation recovery. - Highlights: • Partitioned the

  16. Using vegetation structure estimates derived from multi-source remote sensing to predict dynamics of a semi-arid ecosystem in the western US

    Science.gov (United States)

    Shrestha, R.; Mitchell, J. J.; Glenn, N. F.; Flores, A. N.

    2014-12-01

    The distribution of species and vegetation types across the western US are expected to shift in response to climate change. Previous studies have documented the change in fire regime and the increasing fire-invasive grass cycle occurring in the western U.S. The change in vegetation structure due to climate change and invasive species alters the fuel load, making these ecosystems vulnerable to high-severity fire. Synergistic remote sensing data, such as hyperspectral data and high-resolution lidar, can be leveraged to capture the composition and structural variability of short-statured semiarid vegetation (e.g. sagebrush, annual grasses). We use a random-forests based fusion technique to integrate multi-source airborne data (hyperspectral and LiDAR) and generate spatially-explicit estimates of vegetation composition and structure (biomass, cover, density, height, LAI) and associated uncertainty across a climate and elevation gradient in southern Idaho. The results will be used to initialize an individual-based terrestrial biosphere model (Ecosystem Demography, ED2) and estimate structural dynamics under future scenarios. This study will provide a basis for understanding feedback mechanisms related to changing climate conditions, fire regimes and patterns of non-native plant invasion. The forthcoming field and remote sensing collection campaigns are also designed for parameterizing a dryland shrub plant functional type in the ED2 model.

  17. Vegetation dynamics during the Last Interglacial-Glacial cycle in the Arno coastal plain (Tuscany, western Italy): location of a new tree refuge

    Science.gov (United States)

    Lucchi, M. Ricci

    2008-12-01

    Pollen analysis of the pre-Last Glacial Maximum succession of a 105 m-long continuous core from Tirrenia (Tuscany) provides evidence for the existence of an area of relatively high ecological stability where the effects of climate change were mitigated. The chronological framework of the vegetation record, spanning the Last Interglacial-Glacial cycle, was established by (i) AMS 14C dating, (ii) correlation with well-dated pollen sequences, and (iii) local stratigraphical constraints. A high lithological and sedimentological variability, with facies associations changing from fluvial to alluvial and coastal plain, enhances the palaeoenvironmental control on pollen distribution, thus helping to discriminate the impact of local factors on vegetation history. The most remarkable evidence, however, is represented by the continuous record of temperate trees throughout the whole glacial period, which provides useful indications on the location and nature of cold stage refugia. Most of the vegetation changes recorded in the core can be compared to the vegetation history of the Last Interglacial-Glacial cycle from southern Europe as a whole. In addition, local geographic and environmental features account for a more complex and varied floristic composition. Only the last phase of the Penultimate Glacial (MIS6), which was characterized by the diffusion of an arid steppe tundra, is recorded at the base of the core. The subsequent Last Interglacial (MIS5e) interval shows a poor and scattered pollen content due to the instability of the sedimentary environment. Nevertheless, it provides evidence of both global and local controls on vegetation dynamics, as indicated by the initial expansion of thermophilous forests and the remarkably late diffusion of conifers ( Pinus-Abies-Picea forests), respectively. Similarly, the transition to the Last Glacial (MIS5b and 5a in the core) is characterized by a reduced vegetation response to the typical stadial/interstadial climate variability

  18. Exploring the potential of the cosmic-ray neutron method to simultaneously predict soil water and vegetation dynamics

    Science.gov (United States)

    Bogena, H. R.; Fuchs, H.; Jakobi, J.; Huisman, J. A.; Diekkrüger, B.; Vereecken, H.

    2016-12-01

    Cosmic-ray neutron soil moisture probes are an emerging technology that rely on the negative correlation between near-surface fast neutron counts and soil moisture content since hydrogen atoms in the soil, which are mainly present as water, moderate the secondary neutrons on the way back to the surface. Any application of this method needs to consider the sensitivity of the neutron counts to additional sources of hydrogen (e.g. above- and below-ground biomass, humidity of the lower atmosphere, lattice water of the soil minerals, organic matter and water in the litter layer, intercepted water in the canopy, and soil organic matter). In this study, we analyzed the effects of temporally changing above- and below-ground biomass and intercepted water in the canopy on the cosmic-ray neutron counts and the calibration parameter N0. For this, two arable fields cropped with winter wheat and sugar beet were instrumented with several cosmic-ray neutron probes and a wireless sensor network with more than 200 in-situ soil moisture sensors. In addition, we measured rainfall interception in the wheat canopy at several locations in the field using totalisators and leaf wetness sensors. In order to track the changes in above- and below-ground biomass, roots and plants were sampled approximately every four weeks and LAI was measured weekly during the growing season. Weekly biomass changes were derived by relating LAI to total biomass. As expected, we found an increasing discrepancy between cosmic-ray-derived and in-situ measured soil moisture during the growing season and a sharp decrease in discrepancy after the harvest. In order to quantify the effect of hydrogen stored in the vegetation on fast neutron intensity, we derived time series of the calibration parameter N0 using a weekly moving-window optimization. We found a linear negative relationship between N0 and total fresh biomass and N0 and intercepted precipitation. Using these relationships for the correction of fast neutron

  19. Deficiency of RITA results in multiple mitotic defects by affecting microtubule dynamics.

    Science.gov (United States)

    Steinhäuser, K; Klöble, P; Kreis, N-N; Ritter, A; Friemel, A; Roth, S; Reichel, J M; Michaelis, J; Rieger, M A; Louwen, F; Oswald, F; Yuan, J

    2017-04-01

    Deregulation of mitotic microtubule (MT) dynamics results in defective spindle assembly and chromosome missegregation, leading further to chromosome instability, a hallmark of tumor cells. RBP-J interacting and tubulin-associated protein (RITA) has been identified as a negative regulator of the Notch signaling pathway. Intriguingly, deregulated RITA is involved in primary hepatocellular carcinoma and other malignant entities. We were interested in the potential molecular mechanisms behind its involvement. We show here that RITA binds to tubulin and localizes to various mitotic MT structures. RITA coats MTs and affects their structures in vitro as well as in vivo. Tumor cell lines deficient of RITA display increased acetylated α-tubulin, enhanced MT stability and reduced MT dynamics, accompanied by multiple mitotic defects, including chromosome misalignment and segregation errors. Re-expression of wild-type RITA, but not RITA Δtub ineffectively binding to tubulin, restores the phenotypes, suggesting that the role of RITA in MT modulation is mediated via its interaction with tubulin. Mechanistically, RITA interacts with tubulin/histone deacetylase 6 (HDAC6) and its suppression decreases the binding of the deacetylase HDAC6 to tubulin/MTs. Furthermore, the mitotic defects and increased MT stability are also observed in RITA -/- mouse embryonic fibroblasts. RITA has thus a novel role in modulating MT dynamics and its deregulation results in erroneous chromosome segregation, one of the major reasons for chromosome instability in tumor cells.

  20. Dynamic Analysis of Cable-Stayed Bridges Affected by Accidental Failure Mechanisms under Moving Loads

    Directory of Open Access Journals (Sweden)

    Fabrizio Greco

    2013-01-01

    Full Text Available The dynamic behavior of cable-stayed bridges subjected to moving loads and affected by an accidental failure in the cable suspension system is investigated. The main aim of the paper is to quantify, numerically, the dynamic amplification factors of typical kinematic and stress design variables, by means of a parametric study developed in terms of the structural characteristics of the bridge components. The bridge formulation is developed by using a geometric nonlinear formulation, in which the effects of local vibrations of the stays and of large displacements in the girder and the pylons are taken into account. Explicit time dependent damage laws, reproducing the failure mechanism in the cable system, are considered to investigate the influence of the failure mode characteristics on the dynamic bridge behavior. The analysis focuses attention on the influence of the inertial characteristics of the moving loads, by accounting coupling effects arising from the interaction between girder and moving system. Sensitivity analyses of typical design bridge variables are proposed. In particular, the effects produced by the moving system characteristics, the tower typologies, and the failure mode characteristics involved in the cable system are investigated by means of comparisons between damaged and undamaged bridge configurations.

  1. Large-scale assessment of soil erosion in Africa: satellites help to jointly account for dynamic rainfall and vegetation cover

    Science.gov (United States)

    Vrieling, Anton; Hoedjes, Joost C. B.; van der Velde, Marijn

    2015-04-01

    Efforts to map and monitor soil erosion need to account for the erratic nature of the soil erosion process. Soil erosion by water occurs on sloped terrain when erosive rainfall and consequent surface runoff impact soils that are not well-protected by vegetation or other soil protective measures. Both rainfall erosivity and vegetation cover are highly variable through space and time. Due to data paucity and the relative ease of spatially overlaying geographical data layers into existing models like USLE (Universal Soil Loss Equation), many studies and mapping efforts merely use average annual values for erosivity and vegetation cover as input. We first show that rainfall erosivity can be estimated from satellite precipitation data. We obtained average annual erosivity estimates from 15 yr of 3-hourly TRMM Multi-satellite Precipitation Analysis (TMPA) data (1998-2012) using intensity-erosivity relationships. Our estimates showed a positive correlation (r = 0.84) with long-term annual erosivity values of 37 stations obtained from literature. Using these TMPA erosivity retrievals, we demonstrate the large interannual variability, with maximum annual erosivity often exceeding two to three times the mean value, especially in semi-arid areas. We then calculate erosivity at a 10-daily time-step and combine this with vegetation cover development for selected locations in Africa using NDVI - normalized difference vegetation index - time series from SPOT VEGETATION. Although we do not integrate the data at this point, the joint analysis of both variables stresses the need for joint accounting for erosivity and vegetation cover for large-scale erosion assessment and monitoring.

  2. Decreased summer drought affects plant productivity and soil carbon dynamics in a Mediterranean woodland

    Science.gov (United States)

    Cotrufo, M. F.; Alberti, G.; Inglima, I.; Marjanović, H.; Lecain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F.

    2011-09-01

    Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 58 % and 220 %, respectively, as compared to the control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction in precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodlands. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long-term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long-term soil C stocks.

  3. Decreased summer drought affects plant productivity and soil carbon dynamics in a Mediterranean woodland

    Directory of Open Access Journals (Sweden)

    M. F. Cotrufo

    2011-09-01

    Full Text Available Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR. Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 58 % and 220 %, respectively, as compared to the control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction in precipitation did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodlands. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long-term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long-term soil C stocks.

  4. Decreased summer drought affects plant productivity and soil carbon dynamics in Mediterranean woodland

    Science.gov (United States)

    Cotrufo, M. F.; Alberti, G.; Inglima, I.; Marjanović, H.; Lecain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F.

    2011-06-01

    Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. The throughfall manipulation experiment started in 2004 and we report data up to the 2009 growing season. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 50 % and 220 %, respectively, as compared to control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction of precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodland. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long term soil C stocks.

  5. Representing the effects of alpine grassland vegetation cover on the simulation of soil thermal dynamics by ecosystem models applied to the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Yi, S.; Li, N.; Xiang, B.; Wang, X.; Ye, B.; McGuire, A.D.

    2013-01-01

    Soil surface temperature is a critical boundary condition for the simulation of soil temperature by environmental models. It is influenced by atmospheric and soil conditions and by vegetation cover. In sophisticated land surface models, it is simulated iteratively by solving surface energy budget equations. In ecosystem, permafrost, and hydrology models, the consideration of soil surface temperature is generally simple. In this study, we developed a methodology for representing the effects of vegetation cover and atmospheric factors on the estimation of soil surface temperature for alpine grassland ecosystems on the Qinghai-Tibetan Plateau. Our approach integrated measurements from meteorological stations with simulations from a sophisticated land surface model to develop an equation set for estimating soil surface temperature. After implementing this equation set into an ecosystem model and evaluating the performance of the ecosystem model in simulating soil temperature at different depths in the soil profile, we applied the model to simulate interactions among vegetation cover, freeze-thaw cycles, and soil erosion to demonstrate potential applications made possible through the implementation of the methodology developed in this study. Results showed that (1) to properly estimate daily soil surface temperature, algorithms should use air temperature, downward solar radiation, and vegetation cover as independent variables; (2) the equation set developed in this study performed better than soil surface temperature algorithms used in other models; and (3) the ecosystem model performed well in simulating soil temperature throughout the soil profile using the equation set developed in this study. Our application of the model indicates that the representation in ecosystem models of the effects of vegetation cover on the simulation of soil thermal dynamics has the potential to substantially improve our understanding of the vulnerability of alpine grassland ecosystems to

  6. Vulnerability and Resilience of Temperate Forest Landscapes to Broad-Scale Deforestation in Response to Changing Fire Regimes and Altered Post-Fire Vegetation Dynamics

    Science.gov (United States)

    Tepley, A. J.; Veblen, T. T.; Perry, G.; Anderson-Teixeira, K. J.

    2015-12-01

    In the face of on-going climatic warming and land-use change, there is growing concern that temperate forest landscapes could be near a tipping point where relatively small changes to the fire regime or altered post-fire vegetation dynamics could lead to extensive conversion to shrublands or savannas. To evaluate vulnerability and resilience to such conversion, we develop a simple model based on three factors we hypothesize to be key in predicting temperate forest responses to changing fire regimes: (1) the hazard rate (i.e., the probability of burning in the next year given the time since the last fire) in closed-canopy forests, (2) the hazard rate for recently-burned, open-canopy vegetation, and (3) the time to redevelop canopy closure following fire. We generate a response surface representing the proportions of the landscape potentially supporting closed-canopy forest and non-forest vegetation under nearly all combinations of these three factors. We then place real landscapes on this response surface to assess the type and magnitude of changes to the fire regime that would drive extensive forest loss. We show that the deforestation of much of New Zealand that followed initial human colonization and the introduction of a new ignition source ca. 750 years ago was essentially inevitable due to the slow rate of forest recovery after fire and the high flammability of post-fire vegetation. In North America's Pacific Northwest, by contrast, a predominantly forested landscape persisted despite two periods of widespread burning in the recent past due in large part to faster post-fire forest recovery and less pronounced differences in flammability between forests and the post-fire vegetation. We also assess the factors that could drive extensive deforestation in other regions to identify where management could reduce this potential and to guide field and modeling work to better understand the responses and ecological feedbacks to changing fire regimes.

  7. Multilevel Dynamic Systems Affecting Introduction of HIV/STI Prevention Innovations among Chinese Women in Sex Work Establishments

    Science.gov (United States)

    Weeks, Margaret R.; Li, Jianghong; Liao, Susu; Zhang, Qingning; Dunn, Jennifer; Wang, Yanhong; Jiang, Jingmei

    2013-01-01

    Social and public health scientists are increasingly interested in applying system dynamics theory to improve understanding and to harness the forces of change within complex, multilevel systems that affect community intervention implementation, effects, and sustainability. Building a system dynamics model based on ethnographic case study has the…

  8. Vegetation, climate and fire-dynamics in East Africa inferred from the Maundi crater pollen record from Mt Kilimanjaro during the last glacial-interglacial cycle

    Science.gov (United States)

    Schüler, Lisa; Hemp, Andreas; Zech, Wolfgang; Behling, Hermann

    2012-04-01

    The pollen, charcoal and sedimentological record from the Maundi crater, located at 2780 m elevation on the south-eastern slope of Mt Kilimanjaro, is one of the longest terrestrial records in equatorial East Africa, giving an interesting insight into the vegetation and climate dynamics back to the early last Glacial period. Our sediment record has a reliable chronology until 42 ka BP. An extrapolation of the age-depth model, as well as matching with other palaeo-records from tropical East Africa, suggest a total age of about 90 ka BP at the bottom of the record. During the last Glacial the distribution as well as the composition of the vegetation belts classified as colline savanna, submontane woodland, montane forest, ericaceous belt, and alpine vegetation changed. The early last Glacial is characterized by high amounts of Poaceae and Asteraceae pollen suggesting a climatically dry but stable phase. Based on the absence of pollen grains in samples deposited around 70 ka BP, we assume the occurrence of distinct drought periods. During the pre-LGM (Last Glacial Maximum) a higher taxa diversity of the ericaceous and montane zone is recorded and suggests a spread of forest and shrub vegetation, thus indicating a more humid period. The taxa diversity increases steadily during the recorded time span. The decent of vegetation zones indicate dry and cold conditions during the LGM and seem to have been detrimental for many taxa, especially those of the forest vegetation; however, the early last Glacial seems to have been markedly drier than the LGM. The reappearance of most of the taxa (most importantly Alchemilla, Araliaceae, Dodonea, Hagenia, Ilex, Myrsine, Moraceae, Piperaceae) during the deglacial and Holocene period suggest a shift into humid conditions. An increase in ferns and the decrease in grasses during the Holocene also indicate increasing humidity. Fire played an important role in controlling the development and elevation of the ericaceous zone and the tree

  9. Analysis of interactions between channel dynamics and vegetation development following damming: example of the Old Rhine downstream of Kembs (1949-2009)

    Science.gov (United States)

    Arnaud, F.; Béraud, C.; Piégay, H.; Schmitt, L.; Rollet, A.; Johnstone, K.; Hoenen, D.; Béal, D.

    2010-12-01

    1D hydromorphodynamical simulations. Indeed, numerical modelling is able to calculate the bed shear stress over the critical shear stress ratio for different grain sizes according to the type of vegetation observed and the magnitude and duration of floods occurred. Finally, both GIS study and 1D modelling are complementary revealing the channel and vegetation evolution and underlined the significant impact of vegetation development on the bed dynamics over decades.

  10. Changes in the structure and function of northern Alaskan ecosystems when considering variable leaf-out times across groupings of species in a dynamic vegetation model

    Science.gov (United States)

    Euskirchen, E.S.; Carman, T.B.; McGuire, Anthony David

    2013-01-01

    The phenology of arctic ecosystems is driven primarily by abiotic forces, with temperature acting as the main determinant of growing season onset and leaf budburst in the spring. However, while the plant species in arctic ecosystems require differing amounts of accumulated heat for leaf-out, dynamic vegetation models simulated over regional to global scales typically assume some average leaf-out for all of the species within an ecosystem. Here, we make use of air temperature records and observations of spring leaf phenology collected across dominant groupings of species (dwarf birch shrubs, willow shrubs, other deciduous shrubs, grasses, sedges, and forbs) in arctic and boreal ecosystems in Alaska. We then parameterize a dynamic vegetation model based on these data for four types of tundra ecosystems (heath tundra, shrub tundra, wet sedge tundra, and tussock tundra), as well as ecotonal boreal white spruce forest, and perform model simulations for the years 1970 -2100. Over the course of the model simulations, we found changes in ecosystem composition under this new phenology algorithm compared to simulations with the previous phenology algorithm. These changes were the result of the differential timing of leaf-out, as well as the ability for the groupings of species to compete for nitrogen and light availability. Regionally, there were differences in the trends of the carbon pools and fluxes between the new phenology algorithm and the previous phenology algorithm, although these differences depended on the future climate scenario. These findings indicate the importance of leaf phenology data collection by species and across the various ecosystem types within the highly heterogeneous Arctic landscape, and that dynamic vegetation models should consider variation in leaf-out by groupings of species within these ecosystems to make more accurate projections of future plant distributions and carbon cycling in Arctic regions.

  11. ALM-FATES: Using dynamic vegetation and demography to capture changes in forest carbon cycling and competition at the global scale

    Science.gov (United States)

    Holm, J. A.; Knox, R. G.; Koven, C.; Riley, W. J.; Bisht, G.; Fisher, R.; Christoffersen, B. O.; Dietze, M.; Chambers, J. Q.

    2017-12-01

    The inclusion of dynamic vegetation demography in Earth System Models (ESMs) has been identified as a critical step in moving ESMs towards more realistic representations of plant ecology and the processes that govern climatically important fluxes of carbon, energy, and water. Successful application of dynamic vegetation models, and process-based approaches to simulate plant demography, succession, and response to disturbances without climate envelopes at the global scale is a challenging endeavor. We integrated demographic processes using the Functionally-Assembled Terrestrial Ecosystem Simulator (FATES) in the newly developed ACME Land Model (ALM). We then use an ALM-FATES globally gridded simulation for the first time to investigate plant functional type (PFT) distributions and dynamic turnover rates. Initial global simulations successfully include six interacting and competing PFTs (ranging from tropical to boreal, evergreen, deciduous, needleleaf and broadleaf); including more PFTs is planned. Global maps of net primary productivity, leaf area index, and total vegetation biomass by ALM-FATES matched patterns and values when compared to CLM4.5-BGC and MODIS estimates. We also present techniques for PFT parameterization based on the Predictive Ecosystem Analyzer (PEcAn), field based turnover rates, improved PFT groupings based on trait-tradeoffs, and improved representation of multiple canopy positions. Finally, we applied the improved ALM-FATES model at a central Amazon tropical and western U.S. temperate sites and demonstrate improvements in predicted PFT size- and age-structure and regional distribution. Results from the Amazon tropical site investigate the ability and magnitude of a tropical forest to act as a carbon sink by 2100 with a doubling of CO2, while results from the temperate sites investigate the response of forest mortality with increasing droughts.

  12. Are facial expressions of emotion produced by categorical affect programs or dynamically driven by appraisal?

    Science.gov (United States)

    Scherer, Klaus R; Ellgring, Heiner

    2007-02-01

    The different assumptions made by discrete and componential emotion theories about the nature of the facial expression of emotion and the underlying mechanisms are reviewed. Explicit and implicit predictions are derived from each model. It is argued that experimental expression-production paradigms rather than recognition studies are required to critically test these differential predictions. Data from a large-scale actor portrayal study are reported to demonstrate the utility of this approach. The frequencies with which 12 professional actors use major facial muscle actions individually and in combination to express 14 major emotions show little evidence for emotion-specific prototypical affect programs. Rather, the results encourage empirical investigation of componential emotion model predictions of dynamic configurations of appraisal-driven adaptive facial actions. (c) 2007 APA, all rights reserved.

  13. Does Climate Change Mitigation Activity Affect Crude Oil Prices? Evidence from Dynamic Panel Model

    Directory of Open Access Journals (Sweden)

    Jude C. Dike

    2014-01-01

    Full Text Available This paper empirically investigates how climate change mitigation affects crude oil prices while using carbon intensity as the indicator for climate change mitigation. The relationship between crude oil prices and carbon intensity is estimated using an Arellano and Bond GMM dynamic panel model. This study undertakes a regional-level analysis because of the geographical similarities among the countries in a region. Regions considered for the study are Africa, Asia and Oceania, Central and South America, the EU, the Middle East, and North America. Results show that there is a positive relationship between crude oil prices and carbon intensity, and a 1% change in carbon intensity is expected to cause about 1.6% change in crude oil prices in the short run and 8.4% change in crude oil prices in the long run while the speed of adjustment is 19%.

  14. Dynamic cerebral autoregulatory capacity is affected early in Type 2 diabetes

    DEFF Research Database (Denmark)

    Kim, Y.S.; Immink, R.V.; Stok, W.J.

    2008-01-01

    Type 2 diabetes is associated with an increased risk of endothelial dysfunction and microvascular complications with impaired autoregulation of tissue perfusion. Both microvascular disease and cardiovascular autonomic neuropathy may affect cerebral autoregulation. In the present study, we tested...... the hypothesis that, in the absence of cardiovascular autonomic neuropathy, cerebral autoregulation is impaired in subjects with DM+ (Type 2 diabetes with microvascular complications) but intact in subjects with DM- (Type 2 diabetes without microvascular complications). Dynamic cerebral autoregulation...... and the steady-state cerebrovascular response to postural change were studied in subjects with DM+ and DM-, in the absence of cardiovascular autonomic neuropathy, and in CTRL (healthy control) subjects. The relationship between spontaneous changes in MCA V(mean) (middle cerebral artery mean blood velocity...

  15. Mediterranean evergreen vegetation dynamics : detection and modelling of forest and shrub-land development in the Peyne catchment

    NARCIS (Netherlands)

    Nijland, W.

    2011-01-01

    Vegetation development in Mediterranean landscapes is often a slow process. The typical Mediterranean climate -with long dry periods in summer, mild winters and concentrated rainfall events in spring and autumn- is an important constraint on growth, enhanced by the often marginal and degraded soil

  16. Quantification of the impact of macrophytes on oxygen dynamics and nitrogen retention in a vegetated lowland river

    NARCIS (Netherlands)

    Desmet, N.J.S.; Van Belleghem, S.; Seuntjens, P.; Bouma, T.J.; Buis, K.; Meire, P.

    2011-01-01

    When macrophytes are growing in the river, the vegetation induces substantial changes to the water quality. Some effects are the result of direct interactions, such as photosynthetic activity or nutrient uptake, whereas others may be attributed to indirect effects of the water plants on

  17. ANALYSIS OF THE WOODY VEGETATION DYNAMICS IN THE AREA OF TREE LINE ECOTONE ON THE BASIS OF PHOTO MONITORING DATA AND USING GIS

    Directory of Open Access Journals (Sweden)

    A. P. Mikhailovich

    2016-01-01

    Full Text Available A method of processing and presentation of the repeated landscape photographs for analysis of spatio-temporal dynamics of woody vegetation in tree line ecotone the Polar Urals (mountain Rai-Iz was developed. It is intended to solve problems with the use of such photographs so as to help the researcher to gain an integral representation of the space under study, obtain additional information about the region of interest, create and update annotation to photographs, and develop thematic maps using repeated landscape photography.

  18. A novel assessment of the role of land-use and land-cover change in the global carbon cycle, using a new Dynamic Global Vegetation Model version of the CABLE land surface model

    Science.gov (United States)

    Haverd, Vanessa; Smith, Benjamin; Nieradzik, Lars; Briggs, Peter; Canadell, Josep

    2017-04-01

    In recent decades, terrestrial ecosystems have sequestered around 1.2 PgC y-1, an amount equivalent to 20% of fossil-fuel emissions. This land carbon flux is the net result of the impact of changing climate and CO2 on ecosystem productivity (CO2-climate driven land sink ) and deforestation, harvest and secondary forest regrowth (the land-use change (LUC) flux). The future trajectory of the land carbon flux is highly dependent upon the contributions of these processes to the net flux. However their contributions are highly uncertain, in part because the CO2-climate driven land sink and LUC components are often estimated independently, when in fact they are coupled. We provide a novel assessment of global land carbon fluxes (1800-2015) that integrates land-use effects with the effects of changing climate and CO2 on ecosystem productivity. For this, we use a new land-use enabled Dynamic Global Vegetation Model (DGVM) version of the CABLE land surface model, suitable for use in attributing changes in terrestrial carbon balance, and in predicting changes in vegetation cover and associated effects on land-atmosphere exchange. In this model, land-use-change is driven by prescribed gross land-use transitions and harvest areas, which are converted to changes in land-use area and transfer of carbon between pools (soil, litter, biomass, harvested wood products and cleared wood pools). A novel aspect is the treatment of secondary woody vegetation via the coupling between the land-use module and the POP (Populations Order Physiology) module for woody demography and disturbance-mediated landscape heterogeneity. Land-use transitions to and from secondary forest tiles modify the patch age distribution within secondary-vegetated tiles, in turn affecting biomass accumulation and turnover rates and hence the magnitude of the secondary forest sink. The resulting secondary forest patch age distribution also influences the magnitude of the secondary forest harvest and clearance fluxes

  19. On Modeling Affect in Audio with Non-Linear Symbolic Dynamics

    Directory of Open Access Journals (Sweden)

    Pauline Mouawad

    2017-09-01

    Full Text Available The discovery of semantic information from complex signals is a task concerned with connecting humans’ perceptions and/or intentions with the signals content. In the case of audio signals, complex perceptions are appraised in a listener’s mind, that trigger affective responses that may be relevant for well-being and survival. In this paper we are interested in the broader question of relations between uncertainty in data as measured using various information criteria and emotions, and we propose a novel method that combines nonlinear dynamics analysis with a method of adaptive time series symbolization that finds the meaningful audio structure in terms of symbolized recurrence properties. In a first phase we obtain symbolic recurrence quantification measures from symbolic recurrence plots, without the need to reconstruct the phase space with embedding. Then we estimate symbolic dynamical invariants from symbolized time series, after embedding. The invariants are: correlation dimension, correlation entropy and Lyapunov exponent. Through their application for the logistic map, we show that our measures are in agreement with known methods from literature. We further show that one symbolic recurrence measure, namely the symbolic Shannon entropy, correlates positively with the positive Lyapunov exponents. Finally we evaluate the performance of our measures in emotion recognition through the implementation of classification tasks for different types of audio signals, and show that in some cases, they perform better than state-of-the-art methods that rely on low-level acoustic features.

  20. How does the antagonism between capping and anti-capping proteins affect actin network dynamics?

    International Nuclear Information System (INIS)

    Hu Longhua; Papoian, Garegin A

    2011-01-01

    Actin-based cell motility is essential to many biological processes. We built a simplified, three-dimensional computational model and subsequently performed stochastic simulations to study the growth dynamics of lamellipodia-like branched networks. In this work, we shed light on the antagonism between capping and anti-capping proteins in regulating actin dynamics in the filamentous network. We discuss detailed mechanisms by which capping and anti-capping proteins affect the protrusion speed of the actin network and the rate of nucleation of filaments. We computed a phase diagram showing the regimes of motility enhancement and inhibition by these proteins. Our work shows that the effects of capping and anti-capping proteins are mainly transmitted by modulation of the filamentous network density and local availability of monomeric actin. We discovered that the combination of the capping/anti-capping regulatory network with nucleation-promoting proteins introduces robustness and redundancy in cell motility machinery, allowing the cell to easily achieve maximal protrusion speeds under a broader set of conditions. Finally, we discuss distributions of filament lengths under various conditions and speculate on their potential implication for the emergence of filopodia from the lamellipodial network.

  1. Predicted Bacterial Interactions Affect in Vivo Microbial Colonization Dynamics in Nematostella

    Science.gov (United States)

    Domin, Hanna; Zurita-Gutiérrez, Yazmín H.; Scotti, Marco; Buttlar, Jann; Hentschel Humeida, Ute; Fraune, Sebastian

    2018-01-01

    The maintenance and resilience of host-associated microbiota during development is a fundamental process influencing the fitness of many organisms. Several host properties were identified as influencing factors on bacterial colonization, including the innate immune system, mucus composition, and diet. In contrast, the importance of bacteria–bacteria interactions on host colonization is less understood. Here, we use bacterial abundance data of the marine model organism Nematostella vectensis to reconstruct potential bacteria–bacteria interactions through co-occurrence networks. The analysis indicates that bacteria–bacteria interactions are dynamic during host colonization and change according to the host’s developmental stage. To assess the predictive power of inferred interactions, we tested bacterial isolates with predicted cooperative or competitive behavior for their ability to influence bacterial recolonization dynamics. Within 3 days of recolonization, all tested bacterial isolates affected bacterial community structure, while only competitive bacteria increased bacterial diversity. Only 1 week after recolonization, almost no differences in bacterial community structure could be observed between control and treatments. These results show that predicted competitive bacteria can influence community structure for a short period of time, verifying the in silico predictions. However, within 1 week, the effects of the bacterial isolates are neutralized, indicating a high degree of resilience of the bacterial community. PMID:29740401

  2. Predicted Bacterial Interactions Affect in Vivo Microbial Colonization Dynamics in Nematostella

    Directory of Open Access Journals (Sweden)

    Hanna Domin

    2018-04-01

    Full Text Available The maintenance and resilience of host-associated microbiota during development is a fundamental process influencing the fitness of many organisms. Several host properties were identified as influencing factors on bacterial colonization, including the innate immune system, mucus composition, and diet. In contrast, the importance of bacteria–bacteria interactions on host colonization is less understood. Here, we use bacterial abundance data of the marine model organism Nematostella vectensis to reconstruct potential bacteria–bacteria interactions through co-occurrence networks. The analysis indicates that bacteria–bacteria interactions are dynamic during host colonization and change according to the host’s developmental stage. To assess the predictive power of inferred interactions, we tested bacterial isolates with predicted cooperative or competitive behavior for their ability to influence bacterial recolonization dynamics. Within 3 days of recolonization, all tested bacterial isolates affected bacterial community structure, while only competitive bacteria increased bacterial diversity. Only 1 week after recolonization, almost no differences in bacterial community structure could be observed between control and treatments. These results show that predicted competitive bacteria can influence community structure for a short period of time, verifying the in silico predictions. However, within 1 week, the effects of the bacterial isolates are neutralized, indicating a high degree of resilience of the bacterial community.

  3. Psychosocial and Pedagogical Means of Reduction of Hyper Dynamic Manifestations Syndrome Within the Affective Personality Disorder

    Directory of Open Access Journals (Sweden)

    Liana Novitska

    2017-06-01

    Full Text Available The problem of correction of affective personality disorders (for example, reducing the manifestations of hyper dynamic syndrome, analyzes the main approaches to its solution. We determined the causes and forms of attention deficit disorder with hyperactivity. To characterize the basic correction means reducing the manifestations of hyper dynamic behavior, which includes two areas with different content and psycho social and recreational components. The first direction is connected with the conduct of an individual or group psycho-correction work; the second – social and recreational include tasks aimed at providing social and psychological support to the individual. It is shown that the problem of hyperactive behavior is determined by the individual variability and natural features caused by human development. Psychological studies suggest the importance of external, social factors, primarily adequate forms of organization and communication, the influence of family relations on the manifestations of hyperactivity. It is shown that the implementation of psycho-pedagogical bases of overcoming hyperactivity leads to increased self-esteem, developing the ability to plan and predict their own behavior and, as a consequence – the disclosure of the individual adaptation possibilities.

  4. Factors affecting population dynamics of maternally transmitted endosymbionts in Bemisia tabaci.

    Directory of Open Access Journals (Sweden)

    Huipeng Pan

    Full Text Available While every individual of Bemisia tabaci (Hemiptera: Aleyrodidae harbors the primary symbiont (P-symbiont Portiera, the infection frequencies of the six secondary symbionts (S-symbionts including Hamiltonella, Arsenophonus, Cardinium, Wolbachia, Rickettsia and Fritschea vary greatly among different populations. To characterize the factors influencing the infection dynamics of the six S-symbionts in B. tabaci, gene-specific PCR were conducted to screen for the presence of the P-symbiont Portiera and the six S-symbionts in 61 (17 B and 44 Q biotypes field populations collected from different plant species and locations in China. All individuals of the 61 populations hosted the P-symbiont Portiera, but none of them harbored Arsenophonus and Fritschea. The presence and infection rates of Hamiltonella, Cardinium, Rickettsia, Wolbachia and their co-infections Rickettsia + Hamiltonella (RH, Rickettsia + Cardinium (RC, Hamiltonella + Cardinium (HC and Rickettsia + Hamiltonella + Cardinium (RHC varied significantly among the 61 field populations; and the observed variations can be explained by biotypes, sexes, host plants and geographical locations of these field populations. Taken together, at least three factors including biotype, host plant and geographical location affect the infection dynamics of S-symbionts in B. tabaci.

  5. ALS mutant SOD1 interacts with G3BP1 and affects stress granule dynamics.

    Science.gov (United States)

    Gal, Jozsef; Kuang, Lisha; Barnett, Kelly R; Zhu, Brian Z; Shissler, Susannah C; Korotkov, Konstantin V; Hayward, Lawrence J; Kasarskis, Edward J; Zhu, Haining

    2016-10-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Mutations in Cu/Zn superoxide dismutase (SOD1) are responsible for approximately 20 % of the familial ALS cases. ALS-causing SOD1 mutants display a gain-of-toxicity phenotype, but the nature of this toxicity is still not fully understood. The Ras GTPase-activating protein-binding protein G3BP1 plays a critical role in stress granule dynamics. Alterations in the dynamics of stress granules have been reported in several other forms of ALS unrelated to SOD1. To our surprise, the mutant G93A SOD1 transgenic mice exhibited pathological cytoplasmic inclusions that co-localized with G3BP1-positive granules in spinal cord motor neurons. The co-localization was also observed in fibroblast cells derived from familial ALS patient carrying SOD1 mutation L144F. Mutant SOD1, unlike wild-type SOD1, interacted with G3BP1 in an RNA-independent manner. Moreover, the interaction is specific for G3BP1 since mutant SOD1 showed little interaction with four other RNA-binding proteins implicated in ALS. The RNA-binding RRM domain of G3BP1 and two particular phenylalanine residues (F380 and F382) are critical for this interaction. Mutant SOD1 delayed the formation of G3BP1- and TIA1-positive stress granules in response to hyperosmolar shock and arsenite treatment in N2A cells. In summary, the aberrant mutant SOD1-G3BP1 interaction affects stress granule dynamics, suggesting a potential link between pathogenic SOD1 mutations and RNA metabolism alterations in ALS.

  6. Comparison of vegetation roughness descriptions

    NARCIS (Netherlands)

    Augustijn, Dionysius C.M.; Huthoff, Freek; van Velzen, E.H.; Altinakar, M.S.; Kokpinar, M.A.; Aydin, I.; Cokgor, S.; Kirkgoz, S.

    2008-01-01

    Vegetation roughness is an important parameter in describing flow through river systems. Vegetation impedes the flow, which affects the stage-discharge curve and may increase flood risks. Roughness is often used as a calibration parameter in river models, however when vegetation is allowed to

  7. Evaluation of global continental hydrology as simulated by the Land-surface Processes and eXchanges Dynamic Global Vegetation Model

    Directory of Open Access Journals (Sweden)

    S. J. Murray

    2011-01-01

    Full Text Available Global freshwater resources are sensitive to changes in climate, land cover and population density and distribution. The Land-surface Processes and eXchanges Dynamic Global Vegetation Model is a recent development of the Lund-Potsdam-Jena model with improved representation of fire-vegetation interactions. It allows simultaneous consideration of the effects of changes in climate, CO2 concentration, natural vegetation and fire regime shifts on the continental hydrological cycle. Here the model is assessed for its ability to simulate large-scale spatial and temporal runoff patterns, in order to test its suitability for modelling future global water resources. Comparisons are made against observations of streamflow and a composite dataset of modelled and observed runoff (1986–1995 and are also evaluated against soil moisture data and the Palmer Drought Severity Index. The model captures the main features of the geographical distribution of global runoff, but tends to overestimate runoff in much of the Northern Hemisphere (where this can be somewhat accounted for by freshwater consumption and the unrealistic accumulation of the simulated winter snowpack in permafrost regions and the southern tropics. Interannual variability is represented reasonably well at the large catchment scale, as are seasonal flow timings and monthly high and low flow events. Further improvements to the simulation of intra-annual runoff might be achieved via the addition of river flow routing. Overestimates of runoff in some basins could likely be corrected by the inclusion of transmission losses and direct-channel evaporation.

  8. Harvesting Method Affects Water Dynamics and Yield of Sweet Orange with Huanglongbing

    Directory of Open Access Journals (Sweden)

    Said A. Hamido

    2018-03-01

    Full Text Available Changes in grove management practices may change crop water dynamics. The objective of this study was to estimate sap flow, stem water potential (Ψstem, and citrus yield as affected by harvesting methods in sweet orange (Citrus sinensis trees affected by Huanglongbing. The study was initiated in March 2015 for two years on five-year-old commercial sweet orange trees at a commercial grove located at Felda, Florida (26.61° N, 81.48° W on Felda fine sand soil (Loamy, siliceous, superactive, hyperthermic Arenic Endoaqualfs. All measurements were replicated before and after harvest in four experiments (A, B, C and D under hand and mechanical harvesting treatments. Sap flow measurements were taken on four trees per treatment with two sensors per tree. Sap flow measured by the heat balance method at hourly intervals during March and April of 2015 and 2016 significantly declined after harvesting by 25% and 35% after hand and mechanical harvesting, respectively. Ψstem measured after harvest was significantly higher than measurements before harvest. The average value of Ψstem measured increased by 10% and 6% after hand and mechanical harvesting, respectively. Mechanical harvesting exhibited lower fruit yields that averaged between 83%, 63%, 49% and 36% of hand-harvested trees under A, B, C and D experiments, respectively. It is concluded that the hand harvesting method is less stressful and less impactful on tree water uptake and fruit yield compared with mechanical harvesting.

  9. Cue competition affects temporal dynamics of edge-assignment in human visual cortex.

    Science.gov (United States)

    Brooks, Joseph L; Palmer, Stephen E

    2011-03-01

    Edge-assignment determines the perception of relative depth across an edge and the shape of the closer side. Many cues determine edge-assignment, but relatively little is known about the neural mechanisms involved in combining these cues. Here, we manipulated extremal edge and attention cues to bias edge-assignment such that these two cues either cooperated or competed. To index their neural representations, we flickered figure and ground regions at different frequencies and measured the corresponding steady-state visual-evoked potentials (SSVEPs). Figural regions had stronger SSVEP responses than ground regions, independent of whether they were attended or unattended. In addition, competition and cooperation between the two edge-assignment cues significantly affected the temporal dynamics of edge-assignment processes. The figural SSVEP response peaked earlier when the cues causing it cooperated than when they competed, but sustained edge-assignment effects were equivalent for cooperating and competing cues, consistent with a winner-take-all outcome. These results provide physiological evidence that figure-ground organization involves competitive processes that can affect the latency of figural assignment.

  10. Laccase-13 Regulates Seed Setting Rate by Affecting Hydrogen Peroxide Dynamics and Mitochondrial Integrity in Rice

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2017-07-01

    Full Text Available Seed setting rate is one of the most important components of rice grain yield. To date, only several genes regulating setting rate have been identified in plant. In this study, we showed that laccase-13 (OsLAC13, a member of laccase family genes which are known for their roles in modulating phenylpropanoid pathway and secondary lignification in cell wall, exerts a regulatory function in rice seed setting rate. OsLAC13 expressed in anthers and promotes hydrogen peroxide production both in vitro and in the filaments and anther connectives. Knock-out of OsLAC13 showed significantly increased seed setting rate, while overexpression of this gene exhibited induced mitochondrial damage and suppressed sugar transportation in anthers, which in turn affected seed setting rate. OsLAC13 also induced H2O2 production and mitochondrial damage in the root tip cells which caused the lethal phenotype. We also showed that high abundant of OsmiR397, the suppressor of OsLAC13 mRNA, increased the seed setting rate of rice plants, and restrains H2O2 accumulation in roots during oxidative stress. Our results suggested a novel regulatory role of OsLAC13 gene in regulating seed setting rate by affecting H2O2 dynamics and mitochondrial integrity in rice.

  11. Glutathione S-transferase M1 and T1 gene polymorphisms with consumption of high fruit-juice and vegetable diet affect antioxidant capacity in healthy adults.

    Science.gov (United States)

    Yuan, Linhong; Zhang, Ling; Ma, Weiwei; Zhou, Xin; Ji, Jian; Li, Nan; Xiao, Rong

    2013-01-01

    To our knowledge, no data have yet shown the combined effects of GSTM1/GSTT1 gene polymorphisms with high consumption of a fruit and vegetable diet on the body's antioxidant capacity. A 2-wk dietary intervention in healthy participants was conducted to test the hypothesis that the antioxidant biomarkers in individuals with different glutathione-S-transferases (GST) genotypes will be different in response to a high fruit-juice and vegetable diet. In our study, 24 healthy volunteers with different GST genotypes (12 GSTM1+/GSTT1+ and 12 GSTM1-/GSTT1- participants) consumed a controlled diet high in fruit-juice and vegetables for 2 wk. Blood and first-void urine specimens were obtained at baseline, 1-wk, and 2-wk intervals. The antioxidant capacity-related biomarkers in blood and urine were observed and recorded at the scheduled times. Erythrocyte GST and glutathione reductase (GR) activities response to a high fruit-juice and vegetable diet are GST genotype-dependent. Two weeks on the high fruit-juice and vegetable diet increased GST and GR activities in the GSTM1+/GSTT1+ group (P juice and vegetable diet than GSTM1-/GSTT1- participants. The diet intervention was effective in enhancing glutathione peroxidase and catalase activities in all participants (P 0.05). The effects of a diet rich in fruit-juice and vegetables on antioxidant capacity were dependent on GSTM1/GSTT1 genotypes. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Frozen Nature - A high-alpine ice core record reveals fire and vegetation dynamics in Western Europe over the past millennium

    Science.gov (United States)

    Brügger, S.; Gobet, E.; Sigl, M.; Osmont, D.; Schwikowski, M.; Tinner, W.

    2017-12-01

    Wild fires are an ecological disturbance agent across ecosystems, driving vegetation dynamics and resulting in disruption of habitats (Moritz et al. 2014).We analyze pollen and spores as proxies for vegetation composition, structure and agricultural activity, microscopic charcoal as a proxy for fire activity, and spheroidal carbonaceous particles (SCPs or soots) as a proxy for fossil fuel combustion which preserve in ice cores over millennia (Eichler et al. 2011).Our high-alpine ice core (4452 m a.s.l.) from Colle Gnifetti, Swiss Alps is located in the center of Western Europe, thus allowing to assess vegetation and societal responses to climatic change and wildfire disturbance on a subcontinental scale. The record covers the last millennium with an excellent chronological control (Jenk et al. 2009, Sigl et al. 2009), particularly over the most recent 200 years - the period that experienced important climatic changes and an increasing globalization of economy.The Colle Gnifetti record reflects large scale impacts such as extreme weather, societal innovations, agricultural crises and pollution of the industrial period in Western Europe. Pollution tracers occur in the record as early as 1750 AD and coincide with the shift to large-scale maize production in Northern Italy and with increased fire activity. Our multiproxy record may allow desentagling the role of climate and humans for vegetation composition and biomass burning. The attribution of causes may significantly advance our understanding of future vegetation and fire dynamics under global change conditions. To our knowledge we present the first long-term high-resolution palynological record of a high elevation ice core in Europe.REFERENCESEichler et al. (2011): An ice-core based history of Siberian forest fires since AD 1250. Quaternary Science Reviews, 30(9), 1027-1034.Jenk et al. (2009): A novel radiocarbon dating technique applied to an ice core from the Alps indicating late Pleistocene ages. Journal of

  13. Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems.

    Science.gov (United States)

    Wullschleger, Stan D; Epstein, Howard E; Box, Elgene O; Euskirchen, Eugénie S; Goswami, Santonu; Iversen, Colleen M; Kattge, Jens; Norby, Richard J; van Bodegom, Peter M; Xu, Xiaofeng

    2014-07-01

    Earth system models describe the physical, chemical and biological processes that govern our global climate. While it is difficult to single out one component as being more important than another in these sophisticated models, terrestrial vegetation is a critical player in the biogeochemical and biophysical dynamics of the Earth system. There is much debate, however, as to how plant diversity and function should be represented in these models. Plant functional types (PFTs) have been adopted by modellers to represent broad groupings of plant species that share similar characteristics (e.g. growth form) and roles (e.g. photosynthetic pathway) in ecosystem function. In this review, the PFT concept is traced from its origin in the early 1800s to its current use in regional and global dynamic vegetation models (DVMs). Special attention is given to the representation and parameterization of PFTs and to validation and benchmarking of predicted patterns of vegetation distribution in high-latitude ecosystems. These ecosystems are sensitive to changing climate and thus provide a useful test case for model-based simulations of past, current and future distribution of vegetation. Models that incorporate the PFT concept predict many of the emerging patterns of vegetation change in tundra and boreal forests, given known processes of tree mortality, treeline migration and shrub expansion. However, representation of above- and especially below-ground traits for specific PFTs continues to be problematic. Potential solutions include developing trait databases and replacing fixed parameters for PFTs with formulations based on trait co-variance and empirical trait-environment relationships. Surprisingly, despite being important to land-atmosphere interactions of carbon, water and energy, PFTs such as moss and lichen are largely absent from DVMs. Close collaboration among those involved in modelling with the disciplines of taxonomy, biogeography, ecology and remote sensing will be

  14. Reduced short term adaptation to robot generated dynamic environment in children affected by Cerebral Palsy.

    Science.gov (United States)

    Masia, Lorenzo; Frascarelli, Flaminia; Morasso, Pietro; Di Rosa, Giuseppe; Petrarca, Maurizio; Castelli, Enrico; Cappa, Paolo

    2011-05-21

    It is known that healthy adults can quickly adapt to a novel dynamic environment, generated by a robotic manipulandum as a structured disturbing force field. We suggest that it may be of clinical interest to evaluate to which extent this kind of motor learning capability is impaired in children affected by cerebal palsy. We adapted the protocol already used with adults, which employs a velocity dependant viscous field, and compared the performance of a group of subjects affected by Cerebral Palsy (CP group, 7 subjects) with a Control group of unimpaired age-matched children. The protocol included a familiarization phase (FA), during which no force was applied, a force field adaptation phase (CF), and a wash-out phase (WO) in which the field was removed. During the CF phase the field was shut down in a number of randomly selected "catch" trials, which were used in order to evaluate the "learning index" for each single subject and the two groups. Lateral deviation, speed and acceleration peaks and average speed were evaluated for each trajectory; a directional analysis was performed in order to inspect the role of the limb's inertial anisotropy in the different experimental phases. During the FA phase the movements of the CP subjects were more curved, displaying greater and variable directional error; over the course of the CF phase both groups showed a decreasing trend in the lateral error and an after-effect at the beginning of the wash-out, but the CP group had a non significant adaptation rate and a lower learning index, suggesting that CP subjects have reduced ability to learn to compensate external force. Moreover, a directional analysis of trajectories confirms that the control group is able to better predict the force field by tuning the kinematic features of the movements along different directions in order to account for the inertial anisotropy of arm. Spatial abnormalities in children affected by cerebral palsy may be related not only to disturbance in

  15. Reduced short term adaptation to robot generated dynamic environment in children affected by Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Di Rosa Giuseppe

    2011-05-01

    Full Text Available Abstract Background It is known that healthy adults can quickly adapt to a novel dynamic environment, generated by a robotic manipulandum as a structured disturbing force field. We suggest that it may be of clinical interest to evaluate to which extent this kind of motor learning capability is impaired in children affected by cerebal palsy. Methods We adapted the protocol already used with adults, which employs a velocity dependant viscous field, and compared the performance of a group of subjects affected by Cerebral Palsy (CP group, 7 subjects with a Control group of unimpaired age-matched children. The protocol included a familiarization phase (FA, during which no force was applied, a force field adaptation phase (CF, and a wash-out phase (WO in which the field was removed. During the CF phase the field was shut down in a number of randomly selected "catch" trials, which were used in order to evaluate the "learning index" for each single subject and the two groups. Lateral deviation, speed and acceleration peaks and average speed were evaluated for each trajectory; a directional analysis was performed in order to inspect the role of the limb's inertial anisotropy in the different experimental phases. Results During the FA phase the movements of the CP subjects were more curved, displaying greater and variable directional error; over the course of the CF phase both groups showed a decreasing trend in the lateral error and an after-effect at the beginning of the wash-out, but the CP group had a non significant adaptation rate and a lower learning index, suggesting that CP subjects have reduced ability to learn to compensate external force. Moreover, a directional analysis of trajectories confirms that the control group is able to better predict the force field by tuning the kinematic features of the movements along different directions in order to account for the inertial anisotropy of arm. Conclusions Spatial abnormalities in children affected

  16. Oscillations in a simple climate–vegetation model

    Directory of Open Access Journals (Sweden)

    J. Rombouts

    2015-05-01

    Full Text Available We formulate and analyze a simple dynamical systems model for climate–vegetation interaction. The planet we consider consists of a large ocean and a land surface on which vegetation can grow. The temperature affects vegetation growth on land and the amount of sea ice on the ocean. Conversely, vegetation and sea ice change the albedo of the planet, which in turn changes its energy balance and hence the temperature evolution. Our highly idealized, conceptual model is governed by two nonlinear, coupled ordinary differential equations, one for global temperature, the other for vegetation cover. The model exhibits either bistability between a vegetated and a desert state or oscillatory behavior. The oscillations arise through a Hopf bifurcation off the vegetated state, when the death rate of vegetation is low enough. These oscillations are anharmonic and exhibit a sawtooth shape that is characteristic of relaxation oscillations, as well as suggestive of the sharp deglaciations of the Quaternary. Our model's behavior can be compared, on the one hand, with the bistability of even simpler, Daisyworld-style climate–vegetation models. On the other hand, it can be integrated into the hierarchy of models trying to simulate and explain oscillatory behavior in the climate system. Rigorous mathematical results are obtained that link the nature of the feedbacks with the nature and the stability of the solutions. The relevance of model results to climate variability on various timescales is discussed.

  17. Oscillations in a simple climate-vegetation model

    Science.gov (United States)

    Rombouts, J.; Ghil, M.

    2015-05-01

    We formulate and analyze a simple dynamical systems model for climate-vegetation interaction. The planet we consider consists of a large ocean and a land surface on which vegetation can grow. The temperature affects vegetation growth on land and the amount of sea ice on the ocean. Conversely, vegetation and sea ice change the albedo of the planet, which in turn changes its energy balance and hence the temperature evolution. Our highly idealized, conceptual model is governed by two nonlinear, coupled ordinary differential equations, one for global temperature, the other for vegetation cover. The model exhibits either bistability between a vegetated and a desert state or oscillatory behavior. The oscillations arise through a Hopf bifurcation off the vegetated state, when the death rate of vegetation is low enough. These oscillations are anharmonic and exhibit a sawtooth shape that is characteristic of relaxation oscillations, as well as suggestive of the sharp deglaciations of the Quaternary. Our model's behavior can be compared, on the one hand, with the bistability of even simpler, Daisyworld-style climate-vegetation models. On the other hand, it can be integrated into the hierarchy of models trying to simulate and explain oscillatory behavior in the climate system. Rigorous mathematical results are obtained that link the nature of the feedbacks with the nature and the stability of the solutions. The relevance of model results to climate variability on various timescales is discussed.

  18. Response of spatial vegetation distribution in China to climate changes since the Last Glacial Maximum (LGM)

    Science.gov (United States)

    Wang, Siyang; Xu, Xiaoting; Shrestha, Nawal; Zimmermann, Niklaus E.; Tang, Zhiyao; Wang, Zhiheng

    2017-01-01

    Analyzing how climate change affects vegetation distribution is one of the central issues of global change ecology as this has important implications for the carbon budget of terrestrial vegetation. Mapping vegetation distribution under historical climate scenarios is essential for understanding the response of vegetation distribution to future climatic changes. The reconstructions of palaeovegetation based on pollen data provide a useful method to understand the relationship between climate and vegetation distribution. However, this method is limited in time and space. Here, using species distribution model (SDM) approaches, we explored the climatic determinants of contemporary vegetation distribution and reconstructed the distribution of Chinese vegetation during the Last Glacial Maximum (LGM, 18,000 14C yr BP) and Middle-Holocene (MH, 6000 14C yr BP). The dynamics of vegetation distribution since the LGM reconstructed by SDMs were largely consistent with those based on pollen data, suggesting that the SDM approach is a useful tool for studying historical vegetation dynamics and its response to climate change across time and space. Comparison between the modeled contemporary potential natural vegetation distribution and the observed contemporary distribution suggests that temperate deciduous forests, subtropical evergreen broadleaf forests, temperate deciduous shrublands and temperate steppe have low range fillings and are strongly influenced by human activities. In general, the Tibetan Plateau, North and Northeast China, and the areas near the 30°N in Central and Southeast China appeared to have experienced the highest turnover in vegetation due to climate change from the LGM to the present. PMID:28426780

  19. Dynamics of vegetation and soils of oak/saw palmetto scrub after fire: Observations from permanent transects

    Science.gov (United States)

    Schmalzer, Paul A.; Hinkle, G. Ross

    1991-01-01

    Ten permanent 15 m transects previously established in two oak/saw palmetto scrub stands burned in December 1986, while two transects remained unburned. Vegetation in the greater than 0.5 m and the less than 0.5 m layers on these transects was sampled at 6, 12, 18, 24, and 36 months postburn and determined structural features of the vegetation (height, percent bare ground, total cover). The vegetation data were analyzed from each sampling by height layer using detrended correspondence analysis ordination. Vegetation data for the greater than 0.5 m layer for the entire time sequence were combined and analyzed using detrended correspondence analysis ordination. Soils were sampled at 6, 12, 18, and 24 months postburn and analyzed for pH, conductivity, organic matter, exchangeable cations (Ca, Mg, K, Na), NO3-N, NH4-N, Al, available metals (Cu, Fe, Mn, Zn), and PO4-P. Shrub species recovered at different rates postfire with saw palmetto reestablishing cover greater than 0.5 m within one year, but the scrub oaks had not returned to preburn cover greater than 0.5 m in 3 years after the fire. These differences in growth rates resulted in dominance shifts after the fire with saw palmetto increasing relative to the scrub oaks. Overall changes in species richness were minor, although changes occurred in species richness by height layers due to different growth rates. Soils of well drained and poorly drained sites differed markedly. Soil responses to the fire appeared minor. Soil pH increased at 6 and 12 months postfire; calcium increased at 6 months postburn. Nitrate-nitrogen increased at 12 months postburn. Low values of conductivity, PO4-P, Mg, K, Na, and Fe at 12 months postburn may be related to heavy rainfall the preceding month. Seasonal variability in some soil parameters appeared to occur.

  20. INTER-SEASONAL DYNAMICS OF VEGETATION COVER AND SURFACE TEMPERATURE DISTRIBUTION: A CASE STUDY OF ONDO STATE, NIGERIA

    Directory of Open Access Journals (Sweden)

    H. A. Ibitolu

    2016-06-01

    Full Text Available This study employs Landsat ETM+ satellite imagery to access the inter-seasonal variations of Surface Temperature and Vegetation cover in Ondo State in 2013. Also, air temperature data for year 2013 acquired from 3 synoptic meteorological stations across the state were analyzed. The Single-channel Algorithm was used to extract the surface temperature maps from the digital number embedded within the individual pixel. To understand the spatio-temporal distribution of LST and vegetation across the various landuse types, 200 sample points were randomly chosen, so that each land-use covers 40 points. Imagery for the raining season where unavailable because of the intense cloud cover. Result showed that the lowest air temperature of 20.9°C was in January, while the highest air temperature of 34°C occurred in January and March. There was a significant shift in the vegetation greenness over Ondo State, as average NDVI tend to increase from a weak positive value (0.189 to a moderate value (0.419. The LULC map revealed that vegetation cover occupied the largest area (65% followed by Built-up (26%, Swampy land (4%, Rock outcrop (3% and water bodies (2%. The surface temperature maps revealed that January has the lowest temperature of 10°C experienced in the coastal riverine areas of Ilaje and Igbokoda, while the highest temperature of 39°C observed in September is experienced on the rocky grounds. The study also showed the existence of pockets of Urban Heat Islands (UHI that are well scattered all over the state. This finding proves the capability and reliability of Satellite remote sensing for environmental studies.

  1. Soil Seed Bank Dynamics in Tithonia diversifolia Dominated Fallowland Vegetation in Ile-Ife Area of Southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    Samson Olajide OKE

    2009-12-01

    Full Text Available The soil seedbank of Tithonia diversifolia, an invasive species which dominates open waste fallowland vegetation was studied. Two different roadside sites which vary in extent of open waste land were selected.The species composition of the established vegetation was assessed in the two diferent sites. Twenty top soil samples were collected at five different distances (15 cm, 30 cm, 45 cm, 60 cm, and 75 cm inwards away from each main road in dry and rainy seasons and the seed bank composition was determined by greenhouse germination over a 6 month period. The similarity between the composition of the seed bank flora and that of the established vegetation was low. The least and the highest emerged seedlings density was recorded in the 15 metres and 75 metres respectively inwards away from the main road in both seasons. The results of the seedlings emergence is a reflection of the extent of open waste land dominated by the invasive species due to human disturbance (road construction on both sites. Overall results suggest that the emergence of the species from the soil seed bank may be due to the impact of the invasive species Tithonia diversifolia on other plant species in the study environment.

  2. Glacial-interglacial vegetation dynamics in South Eastern Africa coupled to sea surface temperature variations in the Western Indian Ocean

    Directory of Open Access Journals (Sweden)

    L. M. Dupont

    2011-11-01

    Full Text Available Glacial-interglacial fluctuations in the vegetation of South Africa might elucidate the climate system at the edge of the tropics between the Indian and Atlantic Oceans. However, vegetation records covering a full glacial cycle have only been published from the eastern South Atlantic. We present a pollen record of the marine core MD96-2048 retrieved by the Marion Dufresne from the Indian Ocean ∼120 km south of the Limpopo River mouth. The sedimentation at the site is slow and continuous. The upper 6 m (spanning the past 342 Ka have been analysed for pollen and spores at millennial resolution. The terrestrial pollen assemblages indicate that during interglacials, the vegetation of eastern South Africa and southern Mozambique largely consisted of evergreen and deciduous forests. During glacials open mountainous scrubland dominated. Montane forest with Podocarpus extended during humid periods was favoured by strong local insolation. Correlation with the sea surface temperature record of the same core indicates that the extension of mountainous scrubland primarily depends on sea surface temperatures of the Agulhas Current. Our record corroborates terrestrial evidence of the extension of open mountainous scrubland (including fynbos-like species of the high-altitude Grassland biome for the last glacial as well as for other glacial periods of the past 300 Ka.

  3. Pattern and dynamics of the ground vegetation in south Swedish Carpinus betulus forests. Importance of soil chemistry and management

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, J. [Swedish Univ. of Agricultural Sciences, Dept. of Conservation Biology, Uppsala (Sweden); Falkengren-Grerup, U.; Tyler, G. [Plant Ecology, Dept. of Ecology, Lund (Sweden)

    1997-10-01

    The vegetation and environmental conditions of south Swedish horn-beam Carpinus betulus forests are described with data from 35 permanent sample plots. The main floristic gradient of the ground vegetation is closely related to acid-base properties of the top soil: Base saturation, pH and organic matter content. Other floristic differences are related to tree canopy cover and the distance of the sample plots to the Baltic coast. Species richness of herbaceous plants typical of forests increases with soil pH. The number of other herbaceous species, occurring in both forests and open habitats, and of woody species is not related to pH. Comparisons of vegetation data from 1983 and 1993 show relatively small compositional differences of the herbaceous forest flora. The number of other herbaceous species increased considerably in those plots where canopy trees had been cut after 1983. The number of new species in managed plots increases with soil pH. Species losses and gains of the herbaceous forest flora between 1983 and 1993 are generally lower as compared with other herbaceous species and woody species. However, the ground cover of herbaceous forest species, especially of Oxalis acetosella and Lamium galeobdolon, was considerably lower in 1993 as compared to 1983 in both unmanaged and managed plots. Possible explanations for this decrease are current soil acidification and drought during the growing season. (au) 32 refs.

  4. Comparison of water-use efficiency estimates based on tree-ring carbon isotopes with simulations of a dynamic vegetation model

    Science.gov (United States)

    Saurer, Matthias; Renato, Spahni; Fortunat, Joos; David, Frank; Kerstin, Treydte; Rolf, Siegwolf

    2015-04-01

    Tree-ring d13C-based estimates of intrinsic water-use efficiency (iWUE, reflecting the ratio of assimilation A to stomatal conductance gs) generally show a strong increase during the industrial period, likely associated with the increase in atmospheric CO2. However, it is not clear, first, if tree-ring d13C-derived iWUE-values indeed reflect actual plant and ecosystem-scale variability in fluxes and, second, what physiological changes were the drivers of the observed iWUE increase, changes in A or gs or both. To address these questions, we used a complex dynamic vegetation model (LPX) that combines process-based vegetation dynamics with land-atmosphere carbon and water exchange. The analysis was conducted for three functional types, representing conifers, oaks, larch, and various sites in Europe, where tree-ring isotope data are available. The increase in iWUE over the 20th century was comparable in LPX-simulations as in tree-ring-estimates, strengthening confidence in these results. Furthermore, the results from the LPX model suggest that the cause of the iWUE increase was reduced stomatal conductance during recent decades rather than increased assimilation. High-frequency variation reflects the influence of climate, like for example the 1976 summer drought, resulting in strongly reduced A and g in the model, particularly for oak.

  5. Benzene dynamics and biodegradation in alluvial aquifers affected by river fluctuations.

    Science.gov (United States)

    Batlle-Aguilar, J; Morasch, B; Hunkeler, D; Brouyère, S

    2014-01-01

    The spatial distribution and temporal dynamics of a benzene plume in an alluvial aquifer strongly affected by river fluctuations was studied. Benzene concentrations, aquifer geochemistry datasets, past river morphology, and benzene degradation rates estimated in situ using stable carbon isotope enrichment were analyzed in concert with aquifer heterogeneity and river fluctuations. Geochemistry data demonstrated that benzene biodegradation was on-going under sulfate reducing conditions. Long-term monitoring of hydraulic heads and characterization of the alluvial aquifer formed the basis of a detailed modeled image of aquifer heterogeneity. Hydraulic conductivity was found to strongly correlate with benzene degradation, indicating that low hydraulic conductivity areas are capable of sustaining benzene anaerobic biodegradation provided the electron acceptor (SO4 (2-) ) does not become rate limiting. Modeling results demonstrated that the groundwater flux direction is reversed on annual basis when the river level rises up to 2 m, thereby forcing the infiltration of oxygenated surface water into the aquifer. The mobilization state of metal trace elements such as Zn, Cd, and As present in the aquifer predominantly depended on the strong potential gradient within the plume. However, infiltration of oxygenated water was found to trigger a change from strongly reducing to oxic conditions near the river, causing mobilization of previously immobile metal species and vice versa. MNA appears to be an appropriate remediation strategy in this type of dynamic environment provided that aquifer characterization and targeted monitoring of redox conditions are adequate and electron acceptors remain available until concentrations of toxic compounds reduce to acceptable levels. © 2013, National Ground Water Association.

  6. Population dynamics of dechlorinators and factors affecting the level and products of PCB dechlorination in sediments

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.S.; Sokol, R.C.; Liu, X.; Bethoney, C.M.; Rhee, G.Y. [State Univ. of New York and New York State Department of Health, Albany, NY (United States)

    1996-12-31

    Microbial dechlorination of polychlorinated biphenyls (PCBs) often stops although a significant number of removable chlorines remain. To determine the reason for the cessation, we investigated the limitation of organic carbon, PCB bioavailability, and inhibition by metabolic products. Enrichment with carbon sources did not induce additional chlorination, indicating the plateau was not due to depletion of organic carbon. The bioavailability was not limiting, since a subcritical micelle concentration of the surfactant, which enhanced desorption without inhibiting dechlorinating microorganisms, failed to lower the plateau. Neither was it due to accumulation of metabolites, since no additional dechlorination was detected when plateau sediments were incubated with fresh medium. Similarly, dechlorination was not inhibited in freshly spiked sediment slurries. Dechlorination ended up at the same level with nearly identical congener profiles, regardless of treatment. These results indicate that cessation of dechlorination was due to the accumulation of daughter congeners, which cannot be used as electron acceptors by microbes. To determine whether the decreasing availability affected the microorganisms, we determined the population dynamics of dechlorinators using the most probable number technique. The growth dynamics of the dechlorinators mirrored the time course of dechlorination. It started when the population increased by two orders of magnitude. Once dechlorination stopped the dechlorinating population also began to decrease. When dechlorinators were inoculated into PCB-free sediments, the population decreased over time. The decrease of the population as dechlorination ceased confirms that the diminishing availability of congeners was the reason for the incomplete dechlorination. Recent findings have shown that a second phase of dechlorination of certain congeners can occur after a long lag. 45 refs., 8 figs.

  7. Impact of climate variability on terrestrial environment in Western Europe between 45 and 9 kyr cal. BP: vegetation dynamics recorded by the Bergsee Lake (Black Forest, Germany).

    Science.gov (United States)

    Duprat-Oualid, Fanny; Begeot, Carole; Rius, Damien; Millet, Laurent; Magny, Michel

    2016-04-01

    Between 9 and 45 kyr cal. BP, two great transitions lead the global climate system to evolve from the Last-Glacial period (115-14.7 kyr cal. BP), to two successive warmer periods, the Late-Glacial Interstadial (14.7-11.7 kyr cal. BP) and the Holocene (11.7-0 kyr cal. BP). δ18O variations recorded in Greenland ice cores (GRIP & NGRIP) revealed high frequency climate variability within the Last Glacial. These reference isotopic records highlighted a succession of centennial-to-millennial warm/cold events, the so-called Greenland Interstadials (GI) and Greenland Stadials (GS). The number continental records about the period 14.7-0 kyr cal. BP is substantial. This allowed to understand the vegetation dynamics in response to climate changes this period at the North-Atlantic scale. However, sequences covering the glacial period (beyond 20 kyr cal.BP) remain rare, because of hiatuses mostly due to local glaciers. Therefore, sedimentary continuous records of vegetation dynamics are still needed to better understand climate changes during the Last Glacial in Western Europe (Heiri et al. 2014). Here we present a new high-resolution pollen record from Lake Bergsee (47°34'20''N, 7°56'11''E, 382 m a.s.l). This lake is located south of Black Forest and north of the Alps, beyond the zone of glaciers maximal extension. Therefore it could have recorded the whole last climatic cycle, i.e. 120-0 kyr cal. BP. In 2013, a 29 m long core was extracted from the Bergsee. According to the depth-age model based on 14C AMS dating and the Laacher See Tephra (LST), the record spans continuously at least the last 45 kyrs. The first series of pollen analysis, focused on the 45-9 kyr cal. BP time window, allows us to reconstruct a precise, faithful and continuous vegetation history at the centennial scale. This high temporal resolution enabled to assess the response of vegetation to secular climate events (e.g. GI-4 = 200 yrs). First, our results show that vegetation responded to climate

  8. At the Frontiers of Modeling Intensive Longitudinal Data: Dynamic Structural Equation Models for the Affective Measurements from the COGITO Study.

    Science.gov (United States)

    Hamaker, E L; Asparouhov, T; Brose, A; Schmiedek, F; Muthén, B

    2018-04-06

    With the growing popularity of intensive longitudinal research, the modeling techniques and software options for such data are also expanding rapidly. Here we use dynamic multilevel modeling, as it is incorporated in the new dynamic structural equation modeling (DSEM) toolbox in Mplus, to analyze the affective data from the COGITO study. These data consist of two samples of over 100 individuals each who were measured for about 100 days. We use composite scores of positive and negative affect and apply a multilevel vector autoregressive model to allow for individual differences in means, autoregressions, and cross-lagged effects. Then we extend the model to include random residual variances and covariance, and finally we investigate whether prior depression affects later depression scores through the random effects of the daily diary measures. We end with discussing several urgent-but mostly unresolved-issues in the area of dynamic multilevel modeling.

  9. Using a dynamic vegetation model for future projections of crop yields: application to Belgium in the framework of the VOTES and MASC projects

    Science.gov (United States)

    Jacquemin, Ingrid; Henrot, Alexandra-Jane; Fontaine, Corentin M.; Dendoncker, Nicolas; Beckers, Veronique; Debusscher, Bos; Tychon, Bernard; Hambuckers, Alain; François, Louis

    2016-04-01

    Dynamic vegetation models (DVM) were initially designed to describe the dynamics of natural ecosystems as a function of climate and soil, to study the role of the vegetation in the carbon cycle. These models are now directly coupled with climate models in order to evaluate feedbacks between vegetation and climate. But DVM characteristics allow numerous other applications, leading to amelioration of some of their modules (e.g., evaluating sensitivity of the hydrological module to land surface changes) and developments (e.g., coupling with other models like agent-based models), to be used in ecosystem management and land use planning studies. It is in this dynamic context about DVMs that we have adapted the CARAIB (CARbon Assimilation In the Biosphere) model. One of the main improvements is the implementation of a crop module, allowing the assessment of climate change impacts on crop yields. We try to validate this module at different scales: - from the plot level, with the use of eddy-covariance data from agricultural sites in the FLUXNET network, such as Lonzée (Belgium) or other Western European sites (Grignon, Dijkgraaf,…), - to the country level, for which we compare the crop yield calculated by CARAIB to the crop yield statistics for Belgium and for different agricultural regions of the country. Another challenge for the CARAIB DVM was to deal with the landscape dynamics, which is not directly possible due to the lack of consideration of anthropogenic factors in the system. In the framework of the VOTES and the MASC projects, CARAIB is coupled with an agent-based model (ABM), representing the societal component of the system. This coupled module allows the use of climate and socio-economic scenarios, particularly interesting for studies which aim at ensuring a sustainable approach. This module has particularly been exploited in the VOTES project, where the objective was to provide a social, biophysical and economic assessment of the ecosystem services in

  10. High day- and night-time temperatures affect grain growth dynamics in contrasting rice genotypes.

    Science.gov (United States)

    Shi, Wanju; Yin, Xinyou; Struik, Paul C; Solis, Celymar; Xie, Fangming; Schmidt, Ralf C; Huang, Min; Zou, Yingbin; Ye, Changrong; Jagadish, S V Krishna

    2017-11-02

    Rice grain yield and quality are predicted to be highly vulnerable to global warming. Five genotypes including heat-tolerant and susceptible checks, a heat-tolerant near-isogenic line and two hybrids were exposed to control (31 °C/23 °C, day/night), high night-time temperature (HNT; 31 °C/30 °C), high day-time temperature (HDT; 38 °C/23 °C) and high day- and night-time temperature (HNDT; 38 °C/30 °C) treatments for 20 consecutive days during the grain-filling stage. Grain-filling dynamics, starch metabolism enzymes, temporal starch accumulation patterns and the process of chalk formation were quantified. Compensation between the rate and duration of grain filling minimized the impact of HNT, but irreversible impacts on seed-set, grain filling and ultimately grain weight were recorded with HDT and HNDT. Scanning electron microscopy demonstrated irregular and smaller starch granule formation affecting amyloplast build-up with HDT and HNDT, while a quicker but normal amylopast build-up was recorded with HNT. Our findings revealed temporal variation in the starch metabolism enzymes in all three stress treatments. Changes in the enzymatic activity did not derail starch accumulation under HNT when assimilates were sufficiently available, while both sucrose supply and the conversion of sucrose into starch were affected by HDT and HNDT. The findings indicate differential mechanisms leading to high day and high night temperature stress-induced loss in yield and quality. Additional genetic improvement is needed to sustain rice productivity and quality under future climates. © Society for Experimental Biology 2017.

  11. The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM: a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs

    Directory of Open Access Journals (Sweden)

    R. Pavlick

    2013-06-01

    Full Text Available Terrestrial biosphere models typically abstract the immense diversity of vegetation forms and functioning into a relatively small set of predefined semi-empirical plant functional types (PFTs. There is growing evidence, however, from the field ecology community as well as from modelling studies that current PFT schemes may not adequately represent the observed variations in plant functional traits and their effect on ecosystem functioning. In this paper, we introduce the Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM as a new approach to terrestrial biosphere modelling with a richer representation of functional diversity than traditional modelling approaches based on a small number of fixed PFTs. JeDi-DGVM simulates the performance of a large number of randomly generated plant growth strategies, each defined by a set of 15 trait parameters which characterize various aspects of plant functioning including carbon allocation, ecophysiology and phenology. Each trait parameter is involved in one or more functional trade-offs. These trade-offs ultimately determine whether a strategy is able to survive under the climatic conditions in a given model grid cell and its performance relative to the other strategies. The biogeochemical fluxes and land surface properties of the individual strategies are aggregated to the grid-cell scale using a mass-based weighting scheme. We evaluate the simulated global biogeochemical patterns against a variety of field and satellite-based observations following a protocol established by the Carbon-Land Model Intercomparison Project. The land surface fluxes and vegetation structural properties are reasonably well simulated by JeDi-DGVM, and compare favourably with other state-of-the-art global vegetation models. We also evaluate the simulated patterns of functional diversity and the sensitivity of the JeDi-DGVM modelling approach to the number of sampled strategies. Altogether, the results demonstrate the

  12. How Major Depressive Disorder affects the ability to decode multimodal dynamic emotional stimuli

    Directory of Open Access Journals (Sweden)

    FILOMENA SCIBELLI

    2016-09-01

    Full Text Available Most studies investigating the processing of emotions in depressed patients reported impairments in the decoding of negative emotions. However, these studies adopted static stimuli (mostly stereotypical facial expressions corresponding to basic emotions which do not reflect the way people experience emotions in everyday life. For this reason, this work proposes to investigate the decoding of emotional expressions in patients affected by Recurrent Major Depressive Disorder (RMDDs using dynamic audio/video stimuli. RMDDs’ performance is compared with the performance of patients with Adjustment Disorder with Depressed Mood (ADs and healthy (HCs subjects. The experiments involve 27 RMDDs (16 with acute depression - RMDD-A, and 11 in a compensation phase - RMDD-C, 16 ADs and 16 HCs. The ability to decode emotional expressions is assessed through an emotion recognition task based on short audio (without video, video (without audio and audio/video clips. The results show that AD patients are significantly less accurate than HCs in decoding fear, anger, happiness, surprise and sadness. RMDD-As with acute depression are significantly less accurate than HCs in decoding happiness, sadness and surprise. Finally, no significant differences were found between HCs and RMDD-Cs in a compensation phase. The different communication channels and the types of emotion play a significant role in limiting the decoding accuracy.

  13. A dynamic evolution model of human opinion as affected by advertising

    Science.gov (United States)

    Luo, Gui-Xun; Liu, Yun; Zeng, Qing-An; Diao, Su-Meng; Xiong, Fei

    2014-11-01

    We propose a new model to investigate the dynamics of human opinion as affected by advertising, based on the main idea of the CODA model and taking into account two practical factors: one is that the marginal influence of an additional friend will decrease with an increasing number of friends; the other is the decline of memory over time. Simulations show several significant conclusions for both advertising agencies and the general public. A small difference of advertising’s influence on individuals or advertising coverage will result in significantly different advertising effectiveness within a certain interval of value. Compared to the value of advertising’s influence on individuals, the advertising coverage plays a more important role due to the exponential decay of memory. Meanwhile, some of the obtained results are in accordance with people’s daily cognition about advertising. The real key factor in determining the success of advertising is the intensity of exchanging opinions, and people’s external actions always follow their internal opinions. Negative opinions also play an important role.

  14. Dynamics of Sr90 and its analogs accumulation by the vegetative parts of cabbage (Brassica oleracea l.) during its ontogenesis

    International Nuclear Information System (INIS)

    Nenasheva, M.N.; Timofeev, S.F.

    2003-01-01

    Field experiment demonstrated that the maximal content of Sr90 was observed in assimilative leaves of cabbage while the minimal content of Sr90 was traced in upper leaves. In conductive tissues Sr90 concentration increased insignificantly during the growth season. For assimilative plant parts the discrimination coefficient of Sr90 in relation to calcium was less than 1. It was revealed the positive correlative dependence between the contents of calcium, magnesium, stable strontium and manganese in vegetative tissues on the one hand and accumulation of Sr90 by these tissues on the other hand

  15. Dynamics of Sr 90 and its analogs accumulation by the vegetative parts of cabbage (Brassica oleracea L.) during its ontogenesis

    International Nuclear Information System (INIS)

    Nenasheva, M.N.; Timofeev, S.F.

    2004-01-01

    Field experiment demonstrated that the maximal content of Sr 90 was observed in assimilative leaves of cabbage while the minimal content of Sr 90 was traced in upper leaves. In conductive tissues Sr 90 concentration increased insignificantly during the growth season. For assimilative plant parts the discrimination coefficient of Sr 90 in relation to calcium was less than 1. The authors revealed the positive correlative dependence between the contents of calcium, magnesium, stable strontium and manganese in vegetative tissues on the one hand and accumulation of Sr 90 by these tissues on the other hand. (Authors)

  16. [Dynamics of vegetative indicators induced by low-frequency magnetotherapy and EHF-puncture in hypertensive workers exposed to vibration].

    Science.gov (United States)

    Drobyshev, V A; Efremov, A V; Loseva, M I; Sukharevskaia, T M; Michurin, A I

    2002-01-01

    Low-frequency magnetic fields and EHF-therapy have been used in correction of autonomic homeostasis in workers exposed to vibration for different periods of time. The workers suffered from early arterial hypertension. Vegetative status and central hemodynamics improved best in workers exposed to vibration for less than 5 years. If the exposure was 6-15 years, a positive trend occurred in the tension of regulatory mechanisms. Workers with long exposure to vibration suffering from vagotonia showed an inadequate response of the autonomic parameters to treatment. This necessitates enhancement of therapeutic measures with medicines.

  17. TEMPORAL VEGETATION DYNAMICS IN PEAT SWAMP AREA USING MODIS TIME-SERIES IMAGERY: A MONITORING APPROACH OF HIGH-SENSITIVE ECOSYSTEM IN REGIONAL SCALE

    Directory of Open Access Journals (Sweden)

    Yudi Setiawan

    2016-10-01

    Full Text Available Peat swamp area is an essential ecosystem due to high vulnerability of functions and services. As the change of forest cover in peat swamp area has increased considerably, many studies on peat swamp have focused on forest conversion or forest degradation. Meanwhile, in the context of changes in the forestlands are the sum of several processes such as deforestation, reforestation/afforestation, regeneration of previously deforested areas, and the changing spatial location of the forest boundary. Remote sensing technology seems to be a powerful tool to provide information required following that concerns. A comparison imagery taken at the different dates over the same locations for assessing those changes tends to be limited by the vegetation phenology and land-management practices. Consequently, the simultaneous analysis seems to be a way to deal with the issues above, as a means for better understanding of the dynamics changes in peat swamp area. In this study, we examined the feasibility of using MODIS images during the last 14 years for detecting and monitoring the changes in peat swamp area. We identified several significant patterns that have been assigned as the specific peat swamp ecosystem. The results indicate that a different type of ecosystem and its response to the environmental changes can be portrayed well by the significant patterns. In understanding the complex situations of each pattern, several vegetation dynamics patterns were characterized by physical land characteristics, such as peat depth, land use, concessions and others. Characterizing the pathways of dynamics change in peat swamp area will allow further identification for the range of proximate and underlying factors of the forest cover change that can help to develop useful policy interventions in peatland management.

  18. Monitoring Urbanization-Related Land Cover Change on the U.S. Great Plains and Impacts on Remotely Sensed Vegetation Dynamics

    Science.gov (United States)

    Krehbiel, C. P.; Jackson, T.; Henebry, G. M.

    2014-12-01

    Earth is currently in an era of rapid urban growth with >50% of global population living in urban areas. Urbanization occurs alongside urban population growth, as cities expand to meet the demands of increasing population. Consequently, there is a need for remote sensing research to detect, monitor, and measure urbanization and its impacts on the biosphere. Here we used MODIS and Landsat data products to (1) detect urbanization-related land cover changes, (2) investigate urbanization-related impacts on land surface phenology (LSP) across rural to urban gradients and (3) explore fractional vegetation and impervious surface area regionally across the US Great Plains and within 14 cities in this region. We used the NLCD Percent Impervious Surface Area (%ISA) and Land Cover Type (LCT) products from 2001, 2006, and 2011 for 30m classification of the peri-urban environment. We investigated the impacts of urbanization-related land cover change on urban LSP at 30m resolution using the NDVI product from Web Enabled Landsat Data (http://weld.cr.usgs.gov) with accumulated growing degree-days calculated from first-order weather stations. We fitted convex quadratic LSP models to a decade (2003-2012) of observations to yield these phenometrics: modeled peak NDVI, time (thermal and calendar) to modeled peak, duration of season (DOS), and model fit. We compared our results to NDVI from MODIS NBAR (500m) and we explored the utility of 4 μm radiance (MODIS band 23) at 1 km resolution to characterize fractional vegetation dynamics in and around urbanized areas. Across all 14 cities we found increases in urbanized area (>25 %ISA) exceeding 10% from 2001-2011. Using LSP phenometrics, we were able to detect changes from cropland to suburban LCTs. In general we found negative relationships between DOS and distance from city center. We found a distinct seasonal cycle of MIR radiance over cropland LCTs due to the spectral contrast between bare soils and green vegetation.

  19. Treeline advances and associated shifts in the ground vegetation alter fine root dynamics and mycelia production in the South and Polar Urals.

    Science.gov (United States)

    Solly, Emily F; Djukic, Ika; Moiseev, Pavel A; Andreyashkina, Nelly I; Devi, Nadezhda M; Göransson, Hans; Mazepa, Valeriy S; Shiyatov, Stepan G; Trubina, Marina R; Schweingruber, Fritz H; Wilmking, Martin; Hagedorn, Frank

    2017-02-01

    Climate warming is shifting the elevational boundary between forests and tundra upwards, but the related belowground responses are poorly understood. In the pristine South and Polar Urals with shifts of the treeline ecotone documented by historical photographs, we investigated fine root dynamics and production of extramatrical mycorrhizal mycelia (EMM) along four elevational transects reaching from the closed forest to the treeless tundra. In addition, we analysed elevational differences in climate and vegetation structure, and excavated trees to estimate related changes in the partitioning between below- and aboveground biomass. Fine root biomass of trees (<2 mm) increased by 13-79% with elevation, paralleled by a 35-72% increase in ground vegetation fine roots from the closed forest to the tundra. During the first year of decomposition, mass loss of fine root litter from different vegetation types was greater at lower elevations in the forest-tundra ecotone. The ratio between fine roots of trees and stem biomass largely increased with elevation in both regions, but these increases were not accompanied by a distinct production of EMM. Production of EMM, however, increased with the presence of ectomycorrhizal trees at the transition from the tundra to the forest. Our results imply that the recorded upward expansion of forest into former tundra in the Ural Mountains by 4-8 m per decade is decreasing the partitioning of plant biomass to fine roots. They further suggest that climate-driven forest advances will alter EMM production rates with potential feedbacks on soil carbon and nutrient cycling in these ecosystems.

  20. Climate change and functional traits affect population dynamics of a long-lived seabird.

    Science.gov (United States)

    Jenouvrier, Stéphanie; Desprez, Marine; Fay, Remi; Barbraud, Christophe; Weimerskirch, Henri; Delord, Karine; Caswell, Hal

    2018-07-01

    Recent studies unravelled the effect of climate changes on populations through their impact on functional traits and demographic rates in terrestrial and freshwater ecosystems, but such understanding in marine ecosystems remains incomplete. Here, we evaluate the impact of the combined effects of climate and functional traits on population dynamics of a long-lived migratory seabird breeding in the southern ocean: the black-browed albatross (Thalassarche melanophris, BBA). We address the following prospective question: "Of all the changes in the climate and functional traits, which would produce the biggest impact on the BBA population growth rate?" We develop a structured matrix population model that includes the effect of climate and functional traits on the complete BBA life cycle. A detailed sensitivity analysis is conducted to understand the main pathway by which climate and functional trait changes affect the population growth rate. The population growth rate of BBA is driven by the combined effects of climate over various seasons and multiple functional traits with carry-over effects across seasons on demographic processes. Changes in sea surface temperature (SST) during late winter cause the biggest changes in the population growth rate, through their effect on juvenile survival. Adults appeared to respond to changes in winter climate conditions by adapting their migratory schedule rather than by modifying their at-sea foraging activity. However, the sensitivity of the population growth rate to SST affecting BBA migratory schedule is small. BBA foraging activity during the pre-breeding period has the biggest impact on population growth rate among functional traits. Finally, changes in SST during the breeding season have little effect on the population growth rate. These results highlight the importance of early life histories and carry-over effects of climate and functional traits on demographic rates across multiple seasons in population response to climate

  1. Emotion expression of an affective state space; a humanoid robot displaying a dynamic emotional state during a soccer game

    NARCIS (Netherlands)

    van der Mey, A.; Smit, F; Droog, K.J.; Visser, A.

    2010-01-01

    Following a soccer game is an example where clear emotions are displayed. This example is worked out for a humanoid robot which can express emotions with body language. The emotions expressed by the robot are not just stimuli-response, but are based on an affective state which shows dynamic behavior

  2. The structure and dynamic of the defensive organization the personality in Paranoid Schizophrenia, Schizoaffective and Affective Disorders

    Directory of Open Access Journals (Sweden)

    I M Kadyrov

    2011-03-01

    Full Text Available The article suggests a research model and discusses results of an empirical study of the defensive organization mechanisms of patients diagnosed with paranoid schizophrenia, schizoaffective and affective disorders. The research deals with structural and dynamic aspects of the defensive organization profiles in the mentioned three clinical groups.

  3. An NDVI-Based Vegetation Phenology Is Improved to be More Consistent with Photosynthesis Dynamics through Applying a Light Use Efficiency Model over Boreal High-Latitude Forests

    Directory of Open Access Journals (Sweden)

    Siheng Wang

    2017-07-01

    Full Text Available Remote sensing of high-latitude forests phenology is essential for understanding the global carbon cycle and the response of vegetation to climate change. The normalized difference vegetation index (NDVI has long been used to study boreal evergreen needleleaf forests (ENF and deciduous broadleaf forests. However, the NDVI-based growing season is generally reported to be longer than that based on gross primary production (GPP, which can be attributed to the difference between greenness and photosynthesis. Instead of introducing environmental factors such as land surface or air temperature like previous studies, this study attempts to make VI-based phenology more consistent with photosynthesis dynamics through applying a light use efficiency model. NDVI (MOD13C2 was used as a proxy for both fractional of absorbed photosynthetically active radiation (APAR and light use efficiency at seasonal time scale. Results show that VI-based phenology is improved towards tracking seasonal GPP changes more precisely after applying the light use efficiency model compared to raw NDVI or APAR, especially over ENF.

  4. Calibration of the maximum carboxylation velocity (Vcmax using data mining techniques and ecophysiological data from the Brazilian semiarid region, for use in Dynamic Global Vegetation Models

    Directory of Open Access Journals (Sweden)

    L. F. C. Rezende

    Full Text Available Abstract The semiarid region of northeastern Brazil, the Caatinga, is extremely important due to its biodiversity and endemism. Measurements of plant physiology are crucial to the calibration of Dynamic Global Vegetation Models (DGVMs that are currently used to simulate the responses of vegetation in face of global changes. In a field work realized in an area of preserved Caatinga forest located in Petrolina, Pernambuco, measurements of carbon assimilation (in response to light and CO2 were performed on 11 individuals of Poincianella microphylla, a native species that is abundant in this region. These data were used to calibrate the maximum carboxylation velocity (Vcmax used in the INLAND model. The calibration techniques used were Multiple Linear Regression (MLR, and data mining techniques as the Classification And Regression Tree (CART and K-MEANS. The results were compared to the UNCALIBRATED model. It was found that simulated Gross Primary Productivity (GPP reached 72% of observed GPP when using the calibrated Vcmax values, whereas the UNCALIBRATED approach accounted for 42% of observed GPP. Thus, this work shows the benefits of calibrating DGVMs using field ecophysiological measurements, especially in areas where field data is scarce or non-existent, such as in the Caatinga.

  5. Dynamic response of woody vegetation on fencing protection in semi-arid areas; Case study: Pilot exclosure on the Firmihin Plateau, Socotra Island

    Directory of Open Access Journals (Sweden)

    Hana Habrova

    2017-02-01

    Full Text Available Woody vegetation dynamics and Dracaena cinnabari regeneration have been studied for five years in the conditions of Socotra Island. Woody plants were measured regularly inside and outside the exclosure area, and the growth and survival of D. cinnabari seedlings were observed. In the exclosure of about 1000 m2 a total of 49 species were identified, including 23 endemics, growing in the average density of 3.82 specimens per m2. The fenced area was overgrown relatively rapidly by dense grass cover – reaching approx. 2.7 t/ha. Species growth dynamics inside and outside the exclosure shows that grazing had a marked impact, leading to the elimination of trees and shrubs. All grazed species grew noticeably in the exclosure, in the average of 50 cm in 5 years. D. cinnabari as the dominant flagship species of Socotra has been studied with regards to regeneration dynamics. Observations indicate that probability of its seedlings survival increases with their age. No seedlings germinated from the seeds sown in the experiment, however, outplanted seedlings performed relatively well. Field observations show that D. cinnabari seed germination is triggered when the seed reaches a protected micro-habitat with a developed humus layer and high relative humidity in the soil lasts for at least two days.

  6. Plasma membrane factor XIIIA transglutaminase activity regulates osteoblast matrix secretion and deposition by affecting microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Hadil F Al-Jallad

    2011-01-01

    Full Text Available Transglutaminase activity, arising potentially from transglutaminase 2 (TG2 and Factor XIIIA (FXIIIA, has been linked to osteoblast differentiation where it is required for type I collagen and fibronectin matrix deposition. In this study we have used an irreversible TG-inhibitor to 'block -and-track' enzyme(s targeted during osteoblast differentiation. We show that the irreversible TG-inhibitor is highly potent in inhibiting osteoblast differentiation and mineralization and reduces secretion of both fibronectin and type I collagen and their release from the cell surface. Tracking of the dansyl probe by Western blotting and immunofluorescence microscopy demonstrated that the inhibitor targets plasma membrane-associated FXIIIA. TG2 appears not to contribute to crosslinking activity on the osteoblast surface. Inhibition of FXIIIA with NC9 resulted in defective secretory vesicle delivery to the plasma membrane which was attributable to a disorganized microtubule network and decreased microtubule association with the plasma membrane. NC9 inhibition of FXIIIA resulted in destabilization of microtubules as assessed by cellular Glu-tubulin levels. Furthermore, NC9 blocked modification of Glu-tubulin into 150 kDa high-molecular weight Glu-tubulin form which was specifically localized to the plasma membrane. FXIIIA enzyme and its crosslinking activity were colocalized with plasma membrane-associated tubulin, and thus, it appears that FXIIIA crosslinking activity is directed towards stabilizing the interaction of microtubules with the plasma membrane. Our work provides the first mechanistic cues as to how transglutaminase activity could affect protein secretion and matrix deposition in osteoblasts and suggests a novel function for plasma membrane FXIIIA in microtubule dynamics.

  7. How the type of input function affects the dynamic response of conducting polymer actuators

    Science.gov (United States)

    Xiang, Xingcan; Alici, Gursel; Mutlu, Rahim; Li, Weihua

    2014-10-01

    There has been a growing interest in smart actuators typified by conducting polymer actuators, especially in their (i) fabrication, modeling and control with minimum external data and (ii) applications in bio-inspired devices, robotics and mechatronics. Their control is a challenging research problem due to the complex and nonlinear properties of these actuators, which cannot be predicted accurately. Based on an input-shaping technique, we propose a new method to improve the conducting polymer actuators’ command-following ability, while minimizing their electric power consumption. We applied four input functions with smooth characteristics to a trilayer conducting polymer actuator to experimentally evaluate its command-following ability under an open-loop control strategy and a simulated feedback control strategy, and, more importantly, to quantify how the type of input function affects the dynamic response of this class of actuators. We have found that the four smooth inputs consume less electrical power than sharp inputs such as a step input with discontinuous higher-order derivatives. We also obtained an improved transient response performance from the smooth inputs, especially under the simulated feedback control strategy, which we have proposed previously [X Xiang, R Mutlu, G Alici, and W Li, 2014 “Control of conducting polymer actuators without physical feedback: simulated feedback control approach with particle swarm optimization’, Journal of Smart Materials and Structure, 23]. The idea of using a smooth input command, which results in lower power consumption and better control performance, can be extended to other smart actuators. Consuming less electrical energy or power will have a direct effect on enhancing the operational life of these actuators.

  8. How the type of input function affects the dynamic response of conducting polymer actuators

    International Nuclear Information System (INIS)

    Xiang, Xingcan; Alici, Gursel; Mutlu, Rahim; Li, Weihua

    2014-01-01

    There has been a growing interest in smart actuators typified by conducting polymer actuators, especially in their (i) fabrication, modeling and control with minimum external data and (ii) applications in bio-inspired devices, robotics and mechatronics. Their control is a challenging research problem due to the complex and nonlinear properties of these actuators, which cannot be predicted accurately. Based on an input-shaping technique, we propose a new method to improve the conducting polymer actuators’ command-following ability, while minimizing their electric power consumption. We applied four input functions with smooth characteristics to a trilayer conducting polymer actuator to experimentally evaluate its command-following ability under an open-loop control strategy and a simulated feedback control strategy, and, more importantly, to quantify how the type of input function affects the dynamic response of this class of actuators. We have found that the four smooth inputs consume less electrical power than sharp inputs such as a step input with discontinuous higher-order derivatives. We also obtained an improved transient response performance from the smooth inputs, especially under the simulated feedback control strategy, which we have proposed previously [X Xiang, R Mutlu, G Alici, and W Li, 2014 “Control of conducting polymer actuators without physical feedback: simulated feedback control approach with particle swarm optimization’, Journal of Smart Materials and Structure, 23]. The idea of using a smooth input command, which results in lower power consumption and better control performance, can be extended to other smart actuators. Consuming less electrical energy or power will have a direct effect on enhancing the operational life of these actuators. (paper)

  9. Beyond HIV-serodiscordance: Partnership communication dynamics that affect engagement in safer conception care.

    Science.gov (United States)

    Matthews, Lynn T; Burns, Bridget F; Bajunirwe, Francis; Kabakyenga, Jerome; Bwana, Mwebesa; Ng, Courtney; Kastner, Jasmine; Kembabazi, Annet; Sanyu, Naomi; Kusasira, Adrine; Haberer, Jessica E; Bangsberg, David R; Kaida, Angela

    2017-01-01

    We explored acceptability and feasibility of safer conception methods among HIV-affected couples in Uganda. We recruited HIV-positive men and women on antiretroviral therapy (ART) ('index') from the Uganda Antiretroviral Rural Treatment Outcomes cohort who reported an HIV-negative or unknown-serostatus partner ('partner'), HIV-serostatus disclosure to partner, and personal or partner desire for a child within two