WorldWideScience

Sample records for vegetation changed map

  1. VEGETATION MAPPING IN WETLANDS

    Directory of Open Access Journals (Sweden)

    F. PEDROTTI

    2004-01-01

    Full Text Available The current work examines the main aspects of wetland vegetation mapping, which can be summarized as analysis of the ecological-vegetational (ecotone gradients; vegetation complexes; relationships between vegetation distribution and geomorphology; vegetation of the hydrographic basin lo which the wetland in question belongs; vegetation monitoring with help of four vegetation maps: phytosociological map of the real and potential vegetation, map of vegetation dynamical tendencies, map of vegetation series.

  2. Cloud-based computation for accelerating vegetation mapping and change detection at regional to national scales

    Science.gov (United States)

    Matthew J. Gregory; Zhiqiang Yang; David M. Bell; Warren B. Cohen; Sean Healey; Janet L. Ohmann; Heather M. Roberts

    2015-01-01

    Mapping vegetation and landscape change at fine spatial scales is needed to inform natural resource and conservation planning, but such maps are expensive and time-consuming to produce. For Landsat-based methodologies, mapping efforts are hampered by the daunting task of manipulating multivariate data for millions to billions of pixels. The advent of cloud-based...

  3. A dataset mapping the potential biophysical effects of vegetation cover change

    Science.gov (United States)

    Duveiller, Gregory; Hooker, Josh; Cescatti, Alessandro

    2018-02-01

    Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes.

  4. Landslide Mapping in Vegetated Areas Using Change Detection Based on Optical and Polarimetric SAR Data

    Directory of Open Access Journals (Sweden)

    Simon Plank

    2016-04-01

    Full Text Available Mapping of landslides, quickly providing information about the extent of the affected area and type and grade of damage, is crucial to enable fast crisis response, i.e., to support rescue and humanitarian operations. Most synthetic aperture radar (SAR data-based landslide detection approaches reported in the literature use change detection techniques, requiring very high resolution (VHR SAR imagery acquired shortly before the landslide event, which is commonly not available. Modern VHR SAR missions, e.g., Radarsat-2, TerraSAR-X, or COSMO-SkyMed, do not systematically cover the entire world, due to limitations in onboard disk space and downlink transmission rates. Here, we present a fast and transferable procedure for mapping of landslides, based on change detection between pre-event optical imagery and the polarimetric entropy derived from post-event VHR polarimetric SAR data. Pre-event information is derived from high resolution optical imagery of Landsat-8 or Sentinel-2, which are freely available and systematically acquired over the entire Earth’s landmass. The landslide mapping is refined by slope information from a digital elevation model generated from bi-static TanDEM-X imagery. The methodology was successfully applied to two landslide events of different characteristics: A rotational slide near Charleston, West Virginia, USA and a mining waste earthflow near Bolshaya Talda, Russia.

  5. Automated Land Cover Change Detection and Mapping from Hidden Parameter Estimates of Normalized Difference Vegetation Index (NDVI) Time-Series

    Science.gov (United States)

    Chakraborty, S.; Banerjee, A.; Gupta, S. K. S.; Christensen, P. R.; Papandreou-Suppappola, A.

    2017-12-01

    Multitemporal observations acquired frequently by satellites with short revisit periods such as the Moderate Resolution Imaging Spectroradiometer (MODIS), is an important source for modeling land cover. Due to the inherent seasonality of the land cover, harmonic modeling reveals hidden state parameters characteristic to it, which is used in classifying different land cover types and in detecting changes due to natural or anthropogenic factors. In this work, we use an eight day MODIS composite to create a Normalized Difference Vegetation Index (NDVI) time-series of ten years. Improved hidden parameter estimates of the nonlinear harmonic NDVI model are obtained using the Particle Filter (PF), a sequential Monte Carlo estimator. The nonlinear estimation based on PF is shown to improve parameter estimation for different land cover types compared to existing techniques that use the Extended Kalman Filter (EKF), due to linearization of the harmonic model. As these parameters are representative of a given land cover, its applicability in near real-time detection of land cover change is also studied by formulating a metric that captures parameter deviation due to change. The detection methodology is evaluated by considering change as a rare class problem. This approach is shown to detect change with minimum delay. Additionally, the degree of change within the change perimeter is non-uniform. By clustering the deviation in parameters due to change, this spatial variation in change severity is effectively mapped and validated with high spatial resolution change maps of the given regions.

  6. Riparian Vegetation Mapping Along the Hanford Reach

    International Nuclear Information System (INIS)

    FOGWELL, T.W.

    2003-01-01

    During the biological survey and inventory of the Hanford Site conducted in the mid-1990s (1995 and 1996), preliminary surveys of the riparian vegetation were conducted along the Hanford Reach. These preliminary data were reported to The Nature Conservancy (TNC), but were not included in any TNC reports to DOE or stakeholders. During the latter part of FY2001, PNNL contracted with SEE Botanical, the parties that performed the original surveys in the mid 1990s, to complete the data summaries and mapping associated with the earlier survey data. Those data sets were delivered to PNNL and the riparian mapping by vegetation type for the Hanford Reach is being digitized during the first quarter of FY2002. These mapping efforts provide the information necessary to create subsequent spatial data layers to describe the riparian zone according to plant functional types (trees, shrubs, grasses, sedges, forbs). Quantification of the riparian zone by vegetation types is important to a number of DOE'S priority issues including modeling contaminant transport and uptake in the near-riverine environment and the determination of ecological risk. This work included the identification of vegetative zones along the Reach by changes in dominant plant species covering the shoreline from just to the north of the 300 Area to China Bar near Vernita. Dominant and indicator species included Agropyron dasytachyudA. smithii, Apocynum cannabinum, Aristida longiseta, Artemisia campestris ssp. borealis var scouleriana, Artemisa dracunculus, Artemisia lindleyana, Artemisia tridentata, Bromus tectorum, Chrysothamnus nauseosus, Coreopsis atkinsoniana. Eleocharis palustris, Elymus cinereus, Equisetum hyemale, Eriogonum compositum, Juniperus trichocarpa, Phalaris arundinacea, Poa compressa. Salk exigua, Scirpus acutus, Solidago occidentalis, Sporobolus asper,and Sporobolus cryptandrus. This letter report documents the data received, the processing by PNNL staff, and additional data gathered in FY2002

  7. Temporal reflectance changes in vegetables

    DEFF Research Database (Denmark)

    Dissing, Bjørn Skovlund; Clemmensen, Line Katrine Harder; Ersbøll, Bjarne Kjær

    2009-01-01

    Quality control in the food industry is often performed by measuring various chemical compounds of the food involved. We propose an imaging concept for acquiring high quality multispectral images to evaluate changes of carrots and celeriac over a period of 14 days. Properties originating...... in the surface chemistry of vegetables may be captured in an integrating sphere illumination which enables the creation of detailed surface chemistry maps with a good combination of spectral and spatial resolutions. Prior to multispectral image recording, the vegetables were prefried and frozen at -30Â......°C for four months. During the 14 days of image recording, the vegetables were kept at +5°C in refrigeration. In this period, surface changes and thereby reflectance properties were very subtle. To describe this small variation we employed advanced statistical techniques to search a large featurespace...

  8. Riparian Vegetation Mapping Along the Hanford Reach

    Energy Technology Data Exchange (ETDEWEB)

    FOGWELL, T.W.

    2003-07-11

    During the biological survey and inventory of the Hanford Site conducted in the mid-1990s (1995 and 1996), preliminary surveys of the riparian vegetation were conducted along the Hanford Reach. These preliminary data were reported to The Nature Conservancy (TNC), but were not included in any TNC reports to DOE or stakeholders. During the latter part of FY2001, PNNL contracted with SEE Botanical, the parties that performed the original surveys in the mid 1990s, to complete the data summaries and mapping associated with the earlier survey data. Those data sets were delivered to PNNL and the riparian mapping by vegetation type for the Hanford Reach is being digitized during the first quarter of FY2002. These mapping efforts provide the information necessary to create subsequent spatial data layers to describe the riparian zone according to plant functional types (trees, shrubs, grasses, sedges, forbs). Quantification of the riparian zone by vegetation types is important to a number of DOE'S priority issues including modeling contaminant transport and uptake in the near-riverine environment and the determination of ecological risk. This work included the identification of vegetative zones along the Reach by changes in dominant plant species covering the shoreline from just to the north of the 300 Area to China Bar near Vernita. Dominant and indicator species included Agropyron dasytachyudA. smithii, Apocynum cannabinum, Aristida longiseta, Artemisia campestris ssp. borealis var scouleriana, Artemisa dracunculus, Artemisia lindleyana, Artemisia tridentata, Bromus tectorum, Chrysothamnus nauseosus, Coreopsis atkinsoniana. Eleocharis palustris, Elymus cinereus, Equisetum hyemale, Eriogonum compositum, Juniperus trichocarpa, Phalaris arundinacea, Poa compressa. Salk exigua, Scirpus acutus, Solidago occidentalis, Sporobolus asper,and Sporobolus cryptandrus. This letter report documents the data received, the processing by PNNL staff, and additional data gathered in FY

  9. Crestridge Vegetation Map [ds211

    Data.gov (United States)

    California Natural Resource Agency — This layer represents vegetation communities in the Department of Fish and Game's Crestridge Ecological Reserve. The County of San Diego, the Conservation Biology...

  10. A vegetation map for eastern Africa

    DEFF Research Database (Denmark)

    Lillesø, Jens-Peter Barnekow; van Breugel, Paulo; Graudal, Lars

    2015-01-01

    The potential natural vegetation (PNV) map of eastern and southern Africa covers the countries Burundi, Ethiopia, Kenya, Uganda, Rwanda, Tanzania, and Zambia. The first version of the map was developed by various partners in East Africa and Europe in 2010 and has now reached version 2. The map...... is available in different formats and is accompanied by an extensive documentation of the floristic, physiognomic and other characteristics of the different vegetation types and useful woody species in the 8 countries. It is complemented by a species selection tool, which can be used to 'find the right tree...

  11. Map of mixed prairie grassland vegetation, Rocky Flats, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Clark, S J.V.; Webber, P J; Komarkova, V; Weber, W A

    1980-01-01

    A color vegetation map at the scale of 1:12,000 of the area surrounding the Rocky Flats, Rockwell International Plant near Boulder, Colorado, provides a permanent record of baseline data which can be used to monitor changes in both vegetation and environment and thus to contribute to future land management and land-use policies. Sixteen mapping units based on species composition were identified, and characterized by two 10-m/sup 2/ vegetation stands each. These were grouped into prairie, pasture, and valley side on the basis of their species composition. Both the mapping units and these major groups were later confirmed by agglomerative clustering analysis of the 32 vegetation stands on the basis of species composition. A modified Bray and Curtis ordination was used to determine the environmental factor complexes controlling the distribution of vegetation at Rocky flats. Recommendations are made for future policies of environmental management and predictions of the response to environmental change of the present vegetation at the Rocky Flats site.

  12. Vegetation Change in Blue Oak Woodlands in California

    Science.gov (United States)

    Barbara A. Holzman; Barbara H. Allen-Diaz

    1991-01-01

    A preliminary report of a statewide project investigating vegetation change in blue oak (Quercus douglasii) woodlands in California is presented. Vegetation plots taken in the 1930s, as part of a statewide vegetation mapping project, were relocated and surveyed. Species composition, cover and tree stand structure data from the earlier study were...

  13. Automatically Generated Vegetation Density Maps with LiDAR Survey for Orienteering Purpose

    Science.gov (United States)

    Petrovič, Dušan

    2018-05-01

    The focus of our research was to automatically generate the most adequate vegetation density maps for orienteering purpose. Application Karttapullatuin was used for automated generation of vegetation density maps, which requires LiDAR data to process an automatically generated map. A part of the orienteering map in the area of Kazlje-Tomaj was used to compare the graphical display of vegetation density. With different settings of parameters in the Karttapullautin application we changed the way how vegetation density of automatically generated map was presented, and tried to match it as much as possible with the orienteering map of Kazlje-Tomaj. Comparing more created maps of vegetation density the most suitable parameter settings to automatically generate maps on other areas were proposed, too.

  14. Integrating Vegetation Classification, Mapping, and Strategic Inventory for Forest Management

    Science.gov (United States)

    C. K. Brewer; R. Bush; D. Berglund; J. A. Barber; S. R. Brown

    2006-01-01

    Many of the analyses needed to address multiple resource issues are focused on vegetation pattern and process relationships and most rely on the data models produced from vegetation classification, mapping, and/or inventory. The Northern Region Vegetation Mapping Project (R1-VMP) data models are based on these three integrally related, yet separate processes. This...

  15. Vegetation (MCV / NVCS) Mapping Projects - California [ds515

    Data.gov (United States)

    California Natural Resource Agency — This metadata layer shows the footprint of vegetation mapping projects completed in California that have used the Manual California of Vegetation ( MCV 1st edition)...

  16. Global vegetation change predicted by the modified Budyko model

    Energy Technology Data Exchange (ETDEWEB)

    Monserud, R.A.; Tchebakova, N.M.; Leemans, R. (US Department of Agriculture, Moscow, ID (United States). Intermountain Research Station, Forest Service)

    1993-09-01

    A modified Budyko global vegetation model is used to predict changes in global vegetation patterns resulting from climate change (CO[sub 2] doubling). Vegetation patterns are predicted using a model based on a dryness index and potential evaporation determined by solving radiation balance equations. Climate change scenarios are derived from predictions from four General Circulation Models (GCM's) of the atmosphere (GFDL, GISS, OSU, and UKMO). All four GCM scenarios show similar trends in vegetation shifts and in areas that remain stable, although the UKMO scenario predicts greater warming than the others. Climate change maps produced by all four GCM scenarios show good agreement with the current climate vegetation map for the globe as a whole, although over half of the vegetation classes show only poor to fair agreement. The most stable areas are Desert and Ice/Polar Desert. Because most of the predicted warming is concentrated in the Boreal and Temperate zones, vegetation there is predicted to undergo the greatest change. Most vegetation classes in the Subtropics and Tropics are predicted to expand. Any shift in the Tropics favouring either Forest over Savanna, or vice versa, will be determined by the magnitude of the increased precipitation accompanying global warming. Although the model predicts equilibrium conditions to which many plant species cannot adjust (through migration or microevolution) in the 50-100 y needed for CO[sub 2] doubling, it is not clear if projected global warming will result in drastic or benign vegetation change. 72 refs., 3 figs., 3 tabs.

  17. MAPPING ALPINE VEGETATION LOCATION PROPERTIES BY DENSE MATCHING

    Directory of Open Access Journals (Sweden)

    R. Niederheiser

    2016-06-01

    Full Text Available Highly accurate 3D micro topographic mapping in mountain research demands for light equipment and low cost solutions. Recent developments in structure from motion and dense matching techniques provide promising tools for such applications. In the following, the feasibility of terrestrial photogrammetry for mapping topographic location properties of sparsely vegetated areas in selected European mountain regions is investigated. Changes in species composition at alpine vegetation locations are indicators of climate change consequences, such as the pronounced rise of average temperatures in mountains compared to the global average. Better understanding of climate change effects on plants demand for investigations on a micro-topographic scale. We use professional and consumer grade digital single-lens reflex cameras mapping 288 plots each 3 x 3 m on 18 summits in the Alps and Mediterranean Mountains within the GLORIA (GLobal Observation Research Initiative in Alpine environments network. Image matching tests result in accuracies that are in the order of millimetres in the XY-plane and below 0.5 mm in Z-direction at the second image pyramid level. Reconstructing vegetation proves to be a challenge due to its fine and small structured architecture and its permanent movement by wind during image acquisition, which is omnipresent on mountain summits. The produced 3D point clouds are gridded to 6 mm resolution from which topographic parameters such as slope, aspect and roughness are derived. At a later project stage these parameters will be statistically linked to botanical reference data in order to conclude on relations between specific location properties and species compositions.

  18. Vegetation Change in Interior Alaska Over the Last Four Decades

    Science.gov (United States)

    Huhman, H.; Dewitz, J.; Cristobal, J.; Prakash, A.

    2017-12-01

    The Arctic has become a generally warmer place over the past decades leading to earlier snowmelt, permafrost degradation and changing plant communities. One area in particular, vegetation change, is responding relatively rapidly to climate change, impacting the surrounding environment with changes to forest fire regime, forest type, forest resiliency, habitat availability for subsistence flora and fauna, hydrology, among others. To quantify changes in vegetation in the interior Alaska boreal forest over the last four decades, this study uses the National Land Cover Database (NLCD) decision-tree based classification methods, using both C5 and ERDAS Imagine software, to classify Landsat Surface Reflectance Images into the following NLCD-consistent vegetation classes: planted, herbaceous, shrubland, and forest (deciduous, evergreen and mixed). The results of this process are a total of four vegetation cover maps, that are freely accessible to the public, one for each decade in the 1980's, 1990's, 2000's, and a current map for 2017. These maps focus on Fairbanks, Alaska and the surrounding area covering approximately 36,140 square miles. The maps are validated with over 4,000 ground truth points collected through organizations such as the Landfire Project and the Long Term Ecological Research Network, as well as vegetation and soil spectra collected from the study area concurrent with the Landsat satellite over-passes with a Spectral Evolution PSR+ 3500 spectro-radiometer (0.35 - 2.5 μm). We anticipate these maps to be viewed by a wide user-community and may aid in preparing the residents of Alaska for changes in their subsistence food sources and will contribute to the scientific community in understanding the variety of changes that can occur in response to changing vegetation.

  19. Using Vegetation Maps to Provide Information on Soil Distribution

    Science.gov (United States)

    José Ibáñez, Juan; Pérez-Gómez, Rufino; Brevik, Eric C.; Cerdà, Artemi

    2016-04-01

    Many different types of maps (geology, hydrology, soil, vegetation, etc.) are created to inventory natural resources. Each of these resources is mapped using a unique set of criteria, including scales and taxonomies. Past research has indicated that comparing the results of different but related maps (e.g., soil and geology maps) may aid in identifying deficiencies in those maps. Therefore, this study was undertaken in the Almería Province (Andalusia, Spain) to (i) compare the underlying map structures of soil and vegetation maps and (ii) to investigate if a vegetation map can provide useful soil information that was not shown on a soil map. To accomplish this soil and vegetation maps were imported into ArcGIS 10.1 for spatial analysis. Results of the spatial analysis were exported to Microsoft Excel worksheets for statistical analyses to evaluate fits to linear and power law regression models. Vegetative units were grouped according to the driving forces that determined their presence or absence (P/A): (i) climatophilous (climate is the only determinant of P/A) (ii); lithologic-climate (climate and parent material determine PNV P/A); and (iii) edaphophylous (soil features determine PNV P/A). The rank abundance plots for both the soil and vegetation maps conformed to Willis or Hollow Curves, meaning the underlying structures of both maps were the same. Edaphophylous map units, which represent 58.5% of the vegetation units in the study area, did not show a good correlation with the soil map. Further investigation revealed that 87% of the edaphohygrophylous units (which demand more soil water than is supplied by other soil types in the surrounding landscape) were found in ramblas, ephemeral riverbeds that are not typically classified and mapped as soils in modern systems, even though they meet the definition of soil given by the most commonly used and most modern soil taxonomic systems. Furthermore, these edaphophylous map units tend to be islands of biodiversity

  20. Rescuing and Sharing Historical Vegetation Data for Ecological Analysis: The California Vegetation Type Mapping Project

    Directory of Open Access Journals (Sweden)

    Maggi Kelly

    2016-10-01

    Full Text Available Research efforts that synthesize historical and contemporary ecological data with modeling approaches improve our understanding of the complex response of species, communities, and landscapes to changing biophysical conditions through time and in space. Historical ecological data are particularly important in this respect. There are remaining barriers that limit such data synthesis, and technological improvements that make multiple diverse datasets more readily available for integration and synthesis are needed. This paper presents one case study of the Wieslander Vegetation Type Mapping project in California and highlights the importance of rescuing, digitizing and sharing historical datasets. We review the varied ecological uses of the historical collection: the vegetation maps have been used to understand legacies of land use change and plan for the future; the plot data have been used to examine changes to chaparral and forest communities around the state and to predict community structure and shifts under a changing climate; the photographs have been used to understand changing vegetation structure; and the voucher specimens in combination with other specimen collections have been used for large scale distribution modeling efforts. The digitization and sharing of the data via the web has broadened the scope and scale of the types of analysis performed. Yet, additional research avenues can be pursued using multiple types of VTM data, and by linking VTM data with contemporary data. The digital VTM collection is an example of a data infrastructure that expands the potential of large scale research through the integration and synthesis of data drawn from numerous data sources; its journey from analog to digital is a cautionary tale of the importance of finding historical data, digitizing it with best practices, linking it with other datasets, and sharing it with the research community.

  1. Classification and mapping of rangeland vegetation physiognomic ...

    African Journals Online (AJOL)

    Plot vegetation species growth form, cover and height data were collected from 450 sampling sites based on eight spectral strata generated using unsupervised image classification. Field data were grouped at four levels of seven, six, three and two vegetation physiognomic classes which were subjected to both ML and ...

  2. Vegetation Mapping - Tecolote Canyon, San Diego Co. [ds656

    Data.gov (United States)

    California Natural Resource Agency — Vegetation mapping has been conducted at various City of San Diego Park and Recreation Open Space lands in support of natural resource management objectives and the...

  3. New views on changing Arctic vegetation

    Science.gov (United States)

    Kennedy, Robert E.

    2012-03-01

    means of tracking retrospective changes in Arctic and boreal vegetation. These images are attractive because they are consistent over time, are good at mapping vegetation, are available for areas difficult to reach on the ground, and are of broad geographic extent. In a now-classic study, Myneni et al (1998) used historical reanalysis of AVHRR image data to document changes in vegetation phenology at continental scales in the northern hemisphere, finding patterns of change consistent with impacts of increased growing season in boreal and near-polar regions. The year 2000 launch of the MODIS sensors has allowed even more robust assessment of vegetation change in the Arctic (de Beurs and Henebry 2010) and at global scales (Zhao and Running 2010). Despite opening a window into vegetation change in the Arctic, these studies provide a relatively coarsely filtered view of change. To track trends occurring before the year 2000, researchers are constrained to the large pixel sizes of the AVHRR instrument (nominally 1 km, but typically 4-8 km for derived datasets). Even the finer grain of MODIS (250 m to 1 km resolution) obscures many important natural and anthropogenically derived spatial patterns. The effects of climate change may exacerbate contrasts in competitive status of different vegetative groups (Klady et al 2011, Pieper et al 2011, Seastedt et al 2004). Resolving mechanisms of response requires empirical observation at the scale of individual vegetative communities. Thus, the new work of Fraser et al (2011) represents a critical milestone in climate change related monitoring of Arctic vegetation. Their work is important in three ways. First, the authors provide the first spatially explicit, continuous record of long-term trends in Arctic vegetation condition at a pixel resolution of 30 m. Based on Landsat Thematic Mapper (TM) data reaching back to the mid 1980s, the work required the overcoming of several key methodological challenges to build a dataset from which

  4. Investigation on the Patterns of Global Vegetation Change Using a Satellite-Sensed Vegetation Index

    Directory of Open Access Journals (Sweden)

    Ainong Li

    2010-06-01

    Full Text Available The pattern of vegetation change in response to global change still remains a controversial issue. A Normalized Difference Vegetation Index (NDVI dataset compiled by the Global Inventory Modeling and Mapping Studies (GIMMS was used for analysis. For the period 1982–2006, GIMMS-NDVI analysis indicated that monthly NDVI changes show homogenous trends in middle and high latitude areas in the northern hemisphere and within, or near, the Tropic of Cancer and Capricorn; with obvious spatio-temporal heterogeneity on a global scale over the past two decades. The former areas featured increasing vegetation activity during growth seasons, and the latter areas experienced an even greater amplitude in places where precipitation is adequate. The discussion suggests that one should be cautious of using the NDVI time-series to analyze local vegetation dynamics because of its coarse resolution and uncertainties.

  5. Climate change and spatial distribution of vegetation in Colombia

    Directory of Open Access Journals (Sweden)

    Juan Carlos Alarcon Hincapie

    2013-12-01

    Full Text Available Vegetation change under two climate change scenarios in different periods of the 21st Century are modeled for Colombia. Vegetation for the years 1970 to 2000 was reproduced using the Holdridge model with climate data with a spatial resolution of 900 meters. The vegetation types that occupied the most territory were sub-humid tropical forest, tropical dry forest and Andean wet forest. These results were validated by comparing with the Colombian ecosystem map (SINA, 2007, which confirmed a high degree of similarity between the modeled spatial vegetation patterns and modern ecosystem distributions. Future vegetation maps were simulated using data generated by a regional climate model under two scenarios (A2 and B2; IPCC, 2007 for the periods 2011-2040 and 2070-2100. Based on our predictions high altitude vegetation will convert to that of lower altitudes and drier provinces with the most dramatic change occurring in the A2 scenario from 2070-2100. The most affected areas are the páramo and other high Andean vegetation types, which in the timeframe of the explored scenarios will disappear by the middle of the 21st Century.

  6. Vegetation classification and distribution mapping report Mesa Verde National Park

    Science.gov (United States)

    Thomas, Kathryn A.; McTeague, Monica L.; Ogden, Lindsay; Floyd, M. Lisa; Schulz, Keith; Friesen, Beverly A.; Fancher, Tammy; Waltermire, Robert G.; Cully, Anne

    2009-01-01

    The classification and distribution mapping of the vegetation of Mesa Verde National Park (MEVE) and surrounding environment was achieved through a multi-agency effort between 2004 and 2007. The National Park Service’s Southern Colorado Plateau Network facilitated the team that conducted the work, which comprised the U.S. Geological Survey’s Southwest Biological Science Center, Fort Collins Research Center, and Rocky Mountain Geographic Science Center; Northern Arizona University; Prescott College; and NatureServe. The project team described 47 plant communities for MEVE, 34 of which were described from quantitative classification based on f eld-relevé data collected in 1993 and 2004. The team derived 13 additional plant communities from field observations during the photointerpretation phase of the project. The National Vegetation Classification Standard served as a framework for classifying these plant communities to the alliance and association level. Eleven of the 47 plant communities were classified as “park specials;” that is, plant communities with insufficient data to describe them as new alliances or associations. The project team also developed a spatial vegetation map database representing MEVE, with three different map-class schemas: base, group, and management map classes. The base map classes represent the fi nest level of spatial detail. Initial polygons were developed using Definiens Professional (at the time of our use, this software was called eCognition), assisted by interpretation of 1:12,000 true-color digital orthophoto quarter quadrangles (DOQQs). These polygons (base map classes) were labeled using manual photo interpretation of the DOQQs and 1:12,000 true-color aerial photography. Field visits verified interpretation concepts. The vegetation map database includes 46 base map classes, which consist of associations, alliances, and park specials classified with quantitative analysis, additional associations and park specials noted

  7. Mapping coastal vegetation using an expert system and hyperspectral imagery

    NARCIS (Netherlands)

    Schmidt, K.S.; Skidmore, A.K.; Kloosterman, E.H.; Oosten, van H.; Kumar, L.; Janssen, J.A.M.

    2004-01-01

    Mapping and monitoring salt marshes in the Netherlands are important activities of the Ministry of Public Works (Rijkswaterstaat). The Survey Department (Meetkundige Dienst) produces vegetation maps using aerial photographs. However, it is a time-consuming and expensive activity. The accuracy of the

  8. Compositional Changes in Selected Minimally Processed Vegetables

    OpenAIRE

    O'Reilly, Emer, (Thesis)

    2000-01-01

    Compositional, physiological and microbiological changes in selected minimally processed vegetables packaged under a modified atmosphere of 2% oxygen and 5% carbon dioxide were monitored over a ten day storage period at 40 C and 80 C. The analysis targeted specific changes in the nutritional, chemical and physiological make up of the vegetables as well as the changes in the microbial levels. In addition the changes in the gas atmospheres within the packs were monitored. It has been widely acc...

  9. Vegetation Water Content Mapping for Agricultural Regions in SMAPVEX16

    Science.gov (United States)

    White, W. A.; Cosh, M. H.; McKee, L.; Berg, A. A.; McNairn, H.; Hornbuckle, B. K.; Colliander, A.; Jackson, T. J.

    2017-12-01

    Vegetation water content impacts the ability of L-band radiometers to measure surface soil moisture. Therefore it is necessary to quantify the amount of water held in surface vegetation for an accurate soil moisture remote sensing retrieval. A methodology is presented for generating agricultural vegetation water content maps using Landsat 8 scenes for agricultural fields of Iowa and Manitoba for the Soil Moisture Active Passive Validation Experiments in 2016 (SMAPVEX16). Manitoba has a variety of row crops across the region, and the study period encompasses the time frame from emergence to reproduction, as well as a forested region. The Iowa study site is dominated by corn and soybeans, presenting an easier challenge. Ground collection of vegetation biomass and water content were also collected to provide a ground truth data source. Errors for the resulting vegetation water content maps ranged depending upon crop type, but generally were less than 15% of the total plant water content per crop type. Interpolation is done between Landsat overpasses to produce daily vegetation water content maps for the summer of 2016 at a 30 meter resolution.

  10. Mapping vegetation communities of the Karkonosze National Park using APEX hyperspectral data and Support Vector Machines

    OpenAIRE

    Marcinkowska Adriana; Zagajewski Bogdan; Ochtyra Adrian; Jarocińska Anna; Raczko Edwin; Kupková Lucie; Stych Premysl; Meuleman Koen

    2014-01-01

    This research aims to discover the potential of hyperspectral remote sensing data for mapping mountain vegetation ecosystems. First, the importance of mountain ecosystems to the global system should be stressed due to mountainous ecosystems forming a very sensitive indicator of global climate change. Furthermore, a variety of biotic and abiotic factors influence the spatial distribution of vegetation in the mountains, producing a diverse mosaic leading to high biodiversity.

  11. Rendering Future Vegetation Change across Large Regions of the US

    Science.gov (United States)

    Sant'Anna Dias, Felipe; Gu, Yuting; Agarwalla, Yashika; Cheng, Yiwei; Patil, Sopan; Stieglitz, Marc; Turk, Greg

    2015-04-01

    We use two Machine Learning techniques, Decision Trees (DT) and Neural Networks (NN), to provide classified images and photorealistic renderings of future vegetation cover at three large regions in the US. The training data used to generate current vegetation cover include Landsat surface reflectance images, USGS Land Cover maps, 50 years of mean annual temperature and precipitation for the period 1950 - 2000, elevation, aspect and slope data. Present vegetation cover was generated on a 100m grid. Future vegetation cover for the period 2061- 2080 was predicted using the 1 km resolution bias corrected data from the NASA Goddard Institute for Space Studies Global Climate Model E simulation. The three test regions encompass a wide range of climatic gradients, topographic variation, and vegetation cover. The central Oregon site covers 19,182 square km and includes the Ochoco and Malheur National Forest. Vegetation cover is 50% evergreen forest and 50% shrubs and scrubland. The northwest Washington site covers 14,182 square km. Vegetation cover is 60% evergreen forest, 14% scrubs, 7% grassland, and 7% barren land. The remainder of the area includes deciduous forest, perennial snow cover, and wetlands. The third site, the Jemez mountain region of north central New Mexico, covers 5,500 square km. Vegetation cover is 47% evergreen forest, 31% shrubs, 13% grasses, and 3% deciduous forest. The remainder of the area includes developed and cultivated areas and wetlands. Using the above mentioned data sets we first trained our DT and NN models to reproduce current vegetation. The land cover classified images were compared directly to the USGS land cover data. The photorealistic generated vegetation images were compared directly to the remotely sensed surface reflectance maps. For all three sites, similarity between generated and observed vegetation cover was quite remarkable. The three trained models were then used to explore what the equilibrium vegetation would look like for

  12. New machine learning tools for predictive vegetation mapping after climate change: Bagging and Random Forest perform better than Regression Tree Analysis

    Science.gov (United States)

    L.R. Iverson; A.M. Prasad; A. Liaw

    2004-01-01

    More and better machine learning tools are becoming available for landscape ecologists to aid in understanding species-environment relationships and to map probable species occurrence now and potentially into the future. To thal end, we evaluated three statistical models: Regression Tree Analybib (RTA), Bagging Trees (BT) and Random Forest (RF) for their utility in...

  13. LBA-ECO LC-15 Aerodynamic Roughness Maps of Vegetation Canopies, Amazon Basin: 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set, LBA-ECO LC-15 Aerodynamic Roughness Maps of Vegetation Canopies, Amazon Basin: 2000, provides physical roughness maps of vegetation canopies in the...

  14. Remote sensing and vegetation mapping in South Africa

    Directory of Open Access Journals (Sweden)

    M. L. Jarman

    1983-12-01

    Full Text Available The kinds of imagery, types of data and general relationships between scale of study, scale of mapping and scale of remote sensing products that are appropriate to the South African situation for visual and digital analysis are presented. The type of remote sensing product and processing, the type of field exercise appropriate to each, and the purpose of producing maps at each scale are discussed. Lack of repetitive imagery to date has not allowed for the full investigation of monitoring potential and careful planning at national level is needed to ensure availability of imagery for monitoring purposes. Map production processes which are rapid and accurate should be utilized. An integrated approach to vegetation mapping and surveying, which incorporates the best features of both visual and digital processing, is recommended for use.

  15. Impacts of vegetation change on groundwater recharge

    Science.gov (United States)

    Bond, W. J.; Verburg, K.; Smith, C. J.

    2003-12-01

    Vegetation change is the accepted cause of increasing river salt concentrations and the salinisation of millions of hectares of farm land in Australia. Replacement of perennial native vegetation by annual crops and pastures following European settlement has altered the water balance causing increased groundwater recharge and mobilising the naturally saline groundwater. The Redesigning Agriculture for Australian Landscapes Program, of which the work described here is a part, was established to develop agricultural practices that are more attuned to the delicate water balance described above. Results of field measurements will be presented that contrast the water balance characteristics of native vegetation with those of conventional agricultural plants, and indicate the functional characteristics required of new agricultural practices to reduce recharge. New agricultural practices may comprise different management of current crops and pastures, or may involve introducing totally new species. In either case, long-term testing is required to examine their impact on recharge over a long enough climate record to encompass the natural variability of rainfall that is characteristic of most Australian farming regions. Field experimentation therefore needs to be complemented and extended by computer simulation. This requires a modelling approach that is more robust than conventional crop modelling because (a) it needs to be sensitive enough to predict small changes in the residual recharge term, (b) it needs to be able to simulate a variety of vegetation in different sequences, (c) it needs to be able to simulate continuously for several decades of input data, and (d) it therefore needs to be able to simulate the period between crops, which often has a critical impact on recharge. The APSIM simulation framework will be used to illustrate these issues and to explore the effect of different vegetation combinations on recharge.

  16. UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest and Texture Analysis

    Directory of Open Access Journals (Sweden)

    Quanlong Feng

    2015-01-01

    Full Text Available Unmanned aerial vehicle (UAV remote sensing has great potential for vegetation mapping in complex urban landscapes due to the ultra-high resolution imagery acquired at low altitudes. Because of payload capacity restrictions, off-the-shelf digital cameras are widely used on medium and small sized UAVs. The limitation of low spectral resolution in digital cameras for vegetation mapping can be reduced by incorporating texture features and robust classifiers. Random Forest has been widely used in satellite remote sensing applications, but its usage in UAV image classification has not been well documented. The objectives of this paper were to propose a hybrid method using Random Forest and texture analysis to accurately differentiate land covers of urban vegetated areas, and analyze how classification accuracy changes with texture window size. Six least correlated second-order texture measures were calculated at nine different window sizes and added to original Red-Green-Blue (RGB images as ancillary data. A Random Forest classifier consisting of 200 decision trees was used for classification in the spectral-textural feature space. Results indicated the following: (1 Random Forest outperformed traditional Maximum Likelihood classifier and showed similar performance to object-based image analysis in urban vegetation classification; (2 the inclusion of texture features improved classification accuracy significantly; (3 classification accuracy followed an inverted U relationship with texture window size. The results demonstrate that UAV provides an efficient and ideal platform for urban vegetation mapping. The hybrid method proposed in this paper shows good performance in differentiating urban vegetation mapping. The drawbacks of off-the-shelf digital cameras can be reduced by adopting Random Forest and texture analysis at the same time.

  17. USING OF THERMAL STRUCTURE MAPS FOR VEGETATION MAPPING (CASE OF ALTACHEYSKY WILDLIFE AREA

    Directory of Open Access Journals (Sweden)

    L. A. Abramova

    2014-01-01

    Full Text Available Thermal infrared imagery contains considerable amount of qualitative information about ground objects and landscapes. In spite of it, this type of data is often used to derive quantitative information such as land or sea surface temperatures. This paper describes the examination of Altacheysky wildlife area situated in the southern part of Buryatia Republic, Mukhorshibirsky district based on Landsat imagery and ground observations. Ground observations were led to study the vegetation cover of the area. Landsat imagery were used to make multitemporal thermal infrared image combined of 7 ETM+ scenes and to make multispectral image combined of different zones of a OLI scene. Both images were classified. The multitemporal thermal infrared classification result was used to compose thermal structure map of the wildlife area. Comparison of the map, multispectral image classification result and ground observations data reveals that thermal structure map describes better the particularities of Altacheysky wildlife area vegetation cover.

  18. To what extent can vegetation change and plant stress be surveyed by remote sensing?

    Energy Technology Data Exchange (ETDEWEB)

    Toemmervik, Hans

    1998-12-31

    Air pollution from the nickel processing industry in the Kola region of Russia accounts for a large part of the environmental problems in the north-eastern parts of Norway and Finland. The objectives of this thesis were to examine if vegetation damage and plant stress can be surveyed by remote sensing and to assess the use of chlorophyll fluorescence measurements to detect plant stress in the field. The study was carried out in the border area between Norway and Russia. Two spaceborne and one airborne sensors were used. Changes in vegetation cover could be monitored with a degree of accuracy varying from 75 to 83%. A hybrid classification method monitored changes in both lichen dominated vegetation and in vegetation cover types dominated by dwarf shrubs and green plants, which were significantly associated with the differences in SO{sub 2} emission during the period from 1973 to 1994. Vegetation indices, change detection maps and prediction maps provided information on biomass and coverage of green vegetation. This was associated with the differences in the SO{sub 2} emissions during the same period. The vegetation and land cover types with the greatest stress and damage had the largest modelled SO{sub 2} concentration levels in the ground air layer while the vegetation cover types with the lowest degree of stress had the lowest. Comparison of the airborne casi map with the previously processed Landsat TM map from the same area showed that the casi map separated the complete vegetation cover into more detail than the Landsat TM map. The casi images indicated a red-edge shift for the medium to heavily damaged vegetation cover types. Problems with using airborne remote sensing by casi include variable clouds, lack of synoptic view, and cost. The variation in chlorophyll fluorescence of 11 plant species at 16 sites was most influenced by precipitation, temperature and continentality. 373 refs., 49 figs., 37 tabs.

  19. Mapping Aquatic Vegetation in a Tropical Wetland Using High Spatial Resolution Multispectral Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Timothy G. Whiteside

    2015-09-01

    Full Text Available Vegetation plays a key role in the environmental function of wetlands. The Ramsar-listed wetlands of the Magela Creek floodplain in Northern Australia are identified as being at risk from weeds, fire and climate change. In addition, the floodplain is a downstream receiving environment for the Ranger Uranium Mine. Accurate methods for mapping wetland vegetation are required to provide contemporary baselines of annual vegetation dynamics on the floodplain to assist with analysing any potential change during and after minesite rehabilitation. The aim of this study was to develop and test the applicability of geographic object-based image analysis including decision tree classification to classify WorldView-2 imagery and LiDAR-derived ancillary data to map the aquatic vegetation communities of the Magela Creek floodplain. Results of the decision tree classification were compared against a Random Forests classification. The resulting maps showed the 12 major vegetation communities that exist on the Magela Creek floodplain and their distribution for May 2010. The decision tree classification method provided an overall accuracy of 78% which was significantly higher than the overall accuracy of the Random Forests classification (67%. Most of the error in both classifications was associated with confusion between spectrally similar classes dominated by grasses, such as Hymenachne and Pseudoraphis. In addition, the extent of the sedge Eleocharis was under-estimated in both cases. This suggests the method could be useful for mapping wetlands where statistical-based supervised classifications have achieved less than satisfactory results. Based upon the results, the decision tree method will form part of an ongoing operational monitoring program.

  20. Response of spatial vegetation distribution in China to climate changes since the Last Glacial Maximum (LGM)

    Science.gov (United States)

    Wang, Siyang; Xu, Xiaoting; Shrestha, Nawal; Zimmermann, Niklaus E.; Tang, Zhiyao; Wang, Zhiheng

    2017-01-01

    Analyzing how climate change affects vegetation distribution is one of the central issues of global change ecology as this has important implications for the carbon budget of terrestrial vegetation. Mapping vegetation distribution under historical climate scenarios is essential for understanding the response of vegetation distribution to future climatic changes. The reconstructions of palaeovegetation based on pollen data provide a useful method to understand the relationship between climate and vegetation distribution. However, this method is limited in time and space. Here, using species distribution model (SDM) approaches, we explored the climatic determinants of contemporary vegetation distribution and reconstructed the distribution of Chinese vegetation during the Last Glacial Maximum (LGM, 18,000 14C yr BP) and Middle-Holocene (MH, 6000 14C yr BP). The dynamics of vegetation distribution since the LGM reconstructed by SDMs were largely consistent with those based on pollen data, suggesting that the SDM approach is a useful tool for studying historical vegetation dynamics and its response to climate change across time and space. Comparison between the modeled contemporary potential natural vegetation distribution and the observed contemporary distribution suggests that temperate deciduous forests, subtropical evergreen broadleaf forests, temperate deciduous shrublands and temperate steppe have low range fillings and are strongly influenced by human activities. In general, the Tibetan Plateau, North and Northeast China, and the areas near the 30°N in Central and Southeast China appeared to have experienced the highest turnover in vegetation due to climate change from the LGM to the present. PMID:28426780

  1. Vegetation mapping of the Mond Protected Area of Bushehr Province (south-west Iran).

    Science.gov (United States)

    Mehrabian, Ahmadreza; Naqinezhad, Alireza; Mahiny, Abdolrassoul Salman; Mostafavi, Hossein; Liaghati, Homan; Kouchekzadeh, Mohsen

    2009-03-01

    Arid regions of the world occupy up to 35% of the earth's surface, the basis of various definitions of climatic conditions, vegetation types or potential for food production. Due to their high ecological value, monitoring of arid regions is necessary and modern vegetation studies can help in the conservation and management of these areas. The use of remote sensing for mapping of desert vegetation is difficult due to mixing of the spectral reflectance of bright desert soils with the weak spectral response of sparse vegetation. We studied the vegetation types in the semiarid to arid region of Mond Protected Area, south-west Iran, based on unsupervised classification of the Spot XS bands and then produced updated maps. Sixteen map units covering 12 vegetation types were recognized in the area based on both field works and satellite mapping. Halocnemum strobilaceum and Suaeda fruticosa vegetation types were the dominant types and Ephedra foliata, Salicornia europaea-Suaeda heterophylla vegetation types were the smallest. Vegetation coverage decreased sharply with the increase in salinity towards the coastal areas of the Persian Gulf. The highest vegetation coverage belonged to the riparian vegetation along the Mond River, which represents the northern boundary of the protected area. The location of vegetation types was studied on the separate soil and habitat diversity maps of the study area, which helped in final refinements of the vegetation map produced.

  2. Terrestrial transect study on driving mechanism of vegetation changes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In terms of Chinese climate-vegetation model based on the classification of plant functional types, to- gether with climatic data from 1951 to 1980 and two future climatic scenarios (SRES-A2 and SRES-B2) in China from the highest and the lowest emission scenarios of greenhouse gases, the distribution patterns of vegetation types and their changes along the Northeast China Transect (NECT) and the North-South Transect of Eastern China (NSTEC) were simulated in order to understand the driving mechanisms of vegetation changes under climatic change. The results indicated that the vegetation distribution patterns would change significantly under future climate, and the major factors driving the vegetation changes were water and heat. However, the responses of various vegetation types to the changes in water and heat factors were obviously different. The vegetation changes were more sensi- tive to heat factors than to water factors. Thus, in the future climate warming will significantly affect vegetation distribution patterns.

  3. Exploiting differential vegetation phenology for satellite-based mapping of semiarid grass vegetation in the southwestern United States and northern Mexico

    Science.gov (United States)

    Dye, Dennis G.; Middleton, Barry R.; Vogel, John M.; Wu, Zhuoting; Velasco, Miguel G.

    2016-01-01

    We developed and evaluated a methodology for subpixel discrimination and large-area mapping of the perennial warm-season (C4) grass component of vegetation cover in mixed-composition landscapes of the southwestern United States and northern Mexico. We describe the methodology within a general, conceptual framework that we identify as the differential vegetation phenology (DVP) paradigm. We introduce a DVP index, the Normalized Difference Phenometric Index (NDPI) that provides vegetation type-specific information at the subpixel scale by exploiting differential patterns of vegetation phenology detectable in time-series spectral vegetation index (VI) data from multispectral land imagers. We used modified soil-adjusted vegetation index (MSAVI2) data from Landsat to develop the NDPI, and MSAVI2 data from MODIS to compare its performance relative to one alternate DVP metric (difference of spring average MSAVI2 and summer maximum MSAVI2), and two simple, conventional VI metrics (summer average MSAVI2, summer maximum MSAVI2). The NDPI in a scaled form (NDPIs) performed best in predicting variation in perennial C4 grass cover as estimated from landscape photographs at 92 sites (R2 = 0.76, p landscapes of the Southwest, and potentially for monitoring of its response to drought, climate change, grazing and other factors, including land management. With appropriate adjustments, the method could potentially be used for subpixel discrimination and mapping of grass or other vegetation types in other regions where the vegetation components of the landscape exhibit contrasting seasonal patterns of phenology.

  4. Mapping changes – from changing perspectives

    DEFF Research Database (Denmark)

    Knudsen, Bo Nissen

    From a historical research perspective, constant changes in administrative geography present a special problem: Archival registers often use geographical/administrative entrances from a fixed point in time, and as the administrative geography changes, our picture of the past is obscured or confused....... Mapping the huge amount of changes over the past 350 years, the DigDag project (Digital atlas of the Danish historical-administrative geography) has established a uniform research infrastructure: a digital cartographical skeleton for thematic mapping and analysis. Thus, for instance epidemiological data...... initiation phase, the first spin-off result is now available on the web: a dictionary of Danish place-names containing historical name variants, analysis and interpretations of more than 150,000 toponyms....

  5. Mapping changes – from changing perspectives

    DEFF Research Database (Denmark)

    Knudsen, Bo Nissen

    Changes in administrative structures over time has profound implications for the organisation of topographically ordered research data. One example could be the numerous changes in the municipal structure in Denmark the last 150 years. Mapping the huge amount of changes over the past 350 years...... context, and for instance historical censuses tied to an obsolete parish structure can now be depicted more accurately. Digitisation of historical place-name data is a key to establishing an efficient search facility, and though not fully integrated yet, the place-name data resulting from the project can...

  6. Orbital scale vegetation change in Africa

    Science.gov (United States)

    Dupont, Lydie

    2011-12-01

    Palynological records of Middle and Late Pleistocene marine sediments off African shores is reviewed in order to reveal long-term patterns of vegetation change during climate cycles. Whether the transport of pollen and spores from the source areas on the continent to the ocean floor is mainly by wind or predominantly by rivers depends on the region. Despite the differences in transportation, accumulation rates in the marine sediments decline exponentially with distance to the shore. The marine sediments provide well-dated records presenting the vegetation history of the main biomes of western and southern Africa. The extent of different biomes varied with the climate changes of the glacial interglacial cycle. The Mediterranean forest area expanded during interglacials, the northern Saharan desert during glacials, and the semi-desert area in between during the transitions. In the sub-Saharan mountains ericaceous scrubland spread mainly during glacials and the mountainous forest area often increased during intermediate periods. Savannahs extended or shifted to lower latitudes during glacials. While the representation of the tropical rain forest fluctuated with summer insolation and precession, that of the subtropical biomes showed more obliquity variability or followed the pattern of glacial and interglacials.

  7. Mapping change in large networks.

    Directory of Open Access Journals (Sweden)

    Martin Rosvall

    2010-01-01

    Full Text Available Change is a fundamental ingredient of interaction patterns in biology, technology, the economy, and science itself: Interactions within and between organisms change; transportation patterns by air, land, and sea all change; the global financial flow changes; and the frontiers of scientific research change. Networks and clustering methods have become important tools to comprehend instances of these large-scale structures, but without methods to distinguish between real trends and noisy data, these approaches are not useful for studying how networks change. Only if we can assign significance to the partitioning of single networks can we distinguish meaningful structural changes from random fluctuations. Here we show that bootstrap resampling accompanied by significance clustering provides a solution to this problem. To connect changing structures with the changing function of networks, we highlight and summarize the significant structural changes with alluvial diagrams and realize de Solla Price's vision of mapping change in science: studying the citation pattern between about 7000 scientific journals over the past decade, we find that neuroscience has transformed from an interdisciplinary specialty to a mature and stand-alone discipline.

  8. Vegetation - Suisun Marsh, Change 1999 to 2000 [ds163

    Data.gov (United States)

    California Natural Resource Agency — This vegetation mapping project of Suisun Marsh blends ground-based classification, aerial photo interpretation, and GIS editing and processing. The method is based...

  9. Vegetation - Suisun Marsh, Change 1999 to 2003 [ds164

    Data.gov (United States)

    California Natural Resource Agency — This vegetation mapping project of Suisun Marsh blends ground-based classification, aerial photo interpretation, and GIS editing and processing. The method is based...

  10. Comparison of Modeling Grassland Degradation with and without Considering Localized Spatial Associations in Vegetation Changing Patterns

    Directory of Open Access Journals (Sweden)

    Yuwei Wang

    2018-01-01

    Full Text Available Grassland ecosystems worldwide are confronted with degradation. It is of great importance to understand long-term trajectory patterns of grassland vegetation by advanced analytical models. This study proposes a new approach called a binary logistic regression model with neighborhood interactions, or BLR-NIs, which is based on binary logistic regression (BLR, but fully considers the spatio-temporally localized spatial associations or characterization of neighborhood interactions (NIs in the patterns of grassland vegetation. The BLR-NIs model was applied to a modeled vegetation degradation of grasslands in the Xilin river basin, Inner Mongolia, China. Residual trend analysis on the normalized difference vegetation index (RESTREND-NDVI, which excluded the climatic impact on vegetation dynamics, was adopted as a preprocessing step to derive three human-induced trajectory patterns (vegetation degradation, vegetation recovery, and no significant change in vegetation during two consecutive periods, T1 (2000–2008 and T2 (2007–2015. Human activities, including livestock grazing intensity and transportation accessibility measured by road network density, were included as explanatory variables for vegetation degradation, which was defined for locations if vegetation recovery or no significant change in vegetation in T1 and vegetation degradation in T2 were observed. Our work compared the results of BLR-NIs and the traditional BLR model that did not consider NIs. The study showed that: (1 both grazing intensity and road density had a positive correlation to vegetation degradation based on the traditional BLR model; (2 only road density was found to positively correlate to vegetation degradation by the BLR-NIs model; NIs appeared to be critical factors to predict vegetation degradation; and (3 including NIs in the BLR model improved the model performance substantially. The study provided evidence for the importance of including localized spatial

  11. Comparison of Manual Mapping and Automated Object-Based Image Analysis of Non-Submerged Aquatic Vegetation from Very-High-Resolution UAS Images

    Directory of Open Access Journals (Sweden)

    Eva Husson

    2016-09-01

    Full Text Available Aquatic vegetation has important ecological and regulatory functions and should be monitored in order to detect ecosystem changes. Field data collection is often costly and time-consuming; remote sensing with unmanned aircraft systems (UASs provides aerial images with sub-decimetre resolution and offers a potential data source for vegetation mapping. In a manual mapping approach, UAS true-colour images with 5-cm-resolution pixels allowed for the identification of non-submerged aquatic vegetation at the species level. However, manual mapping is labour-intensive, and while automated classification methods are available, they have rarely been evaluated for aquatic vegetation, particularly at the scale of individual vegetation stands. We evaluated classification accuracy and time-efficiency for mapping non-submerged aquatic vegetation at three levels of detail at five test sites (100 m × 100 m differing in vegetation complexity. We used object-based image analysis and tested two classification methods (threshold classification and Random Forest using eCognition®. The automated classification results were compared to results from manual mapping. Using threshold classification, overall accuracy at the five test sites ranged from 93% to 99% for the water-versus-vegetation level and from 62% to 90% for the growth-form level. Using Random Forest classification, overall accuracy ranged from 56% to 94% for the growth-form level and from 52% to 75% for the dominant-taxon level. Overall classification accuracy decreased with increasing vegetation complexity. In test sites with more complex vegetation, automated classification was more time-efficient than manual mapping. This study demonstrated that automated classification of non-submerged aquatic vegetation from true-colour UAS images was feasible, indicating good potential for operative mapping of aquatic vegetation. When choosing the preferred mapping method (manual versus automated the desired level of

  12. Mapping and characterizing the vegetation types of the Democratic Republic of Congo using SPOT VEGETATION time series

    Science.gov (United States)

    Vancutsem, C.; Pekel, J.-F.; Evrard, C.; Malaisse, F.; Defourny, P.

    2009-02-01

    The need for quantitative and accurate information to characterize the state and evolution of vegetation types at a national scale is widely recognized. This type of information is crucial for the Democratic Republic of Congo, which contains the majority of the tropical forest cover of Central Africa and a large diversity of habitats. In spite of recent progress in earth observation capabilities, vegetation mapping and seasonality analysis in equatorial areas still represent an outstanding challenge owing to high cloud coverage and the extent and limited accessibility of the territory. On one hand, the use of coarse-resolution optical data is constrained by performance in the presence of cloud screening and by noise arising from the compositing process, which limits the spatial consistency of the composite and the temporal resolution. On the other hand, the use of high-resolution data suffers from heterogeneity of acquisition dates, images and interpretation from one scene to another. The objective of the present study was to propose and demonstrate a semi-automatic processing method for vegetation mapping and seasonality characterization based on temporal and spectral information from SPOT VEGETATION time series. A land cover map with 18 vegetation classes was produced using the proposed method that was fed by ecological knowledge gathered from botanists and reference documents. The floristic composition and physiognomy of each vegetation type are described using the Land Cover Classification System developed by the FAO. Moreover, the seasonality of each class is characterized on a monthly basis and the variation in different vegetation indicators is discussed from a phenological point of view. This mapping exercise delivers the first area estimates of seven different forest types, five different savannas characterized by specific seasonality behavior and two aquatic vegetation types. Finally, the result is compared to two recent land cover maps derived from

  13. Vegetation Mapping of the Mond Protected Area of Bushehr Provice (SW Iran)

    OpenAIRE

    Mehrabian, Ahmadreza; Mahiny, Abdolrassoul Salman; Mostafavi, Hossein; Liaghati, Homan

    2010-01-01

    The current study is a new approach to vegetation mapping in Iran using remote sensing (RS) and the geographic information system (GIS). One of the most important problems in remote sensing of desert vegetation is that the reflectance from soil and rocks is often much greater than that of sparse vegetation and this makes it difficult to separate out the vegetation signal (Gates et al. 1965); and there is spectral variability within shrubs of the same species (Duncant et al., 1993). These prop...

  14. Letters of Map Change (LOMC)

    Data.gov (United States)

    Department of Homeland Security — Documents, including different types of Letters of MAP Revision (LOMR) and Letters of Map Amendment (LOMA), which are issued by FEMA to revise or amend the flood...

  15. Mapping Aquatic Vegetation in a Large, Shallow Eutrophic Lake: A Frequency-Based Approach Using Multiple Years of MODIS Data

    Directory of Open Access Journals (Sweden)

    Xiaohan Liu

    2015-08-01

    Full Text Available Aquatic vegetation serves many important ecological and socioeconomic functions in lake ecosystems. The presence of floating algae poses difficulties for accurately estimating the distribution of aquatic vegetation in eutrophic lakes. We present an approach to map the distribution of aquatic vegetation in Lake Taihu (a large, shallow eutrophic lake in China and reduce the influence of floating algae on aquatic vegetation mapping. Our approach involved a frequency analysis over a 2003–2013 time series of the floating algal index (FAI based on moderate-resolution imaging spectroradiometer (MODIS data. Three phenological periods were defined based on the vegetation presence frequency (VPF and the growth of algae and aquatic vegetation: December and January composed the period of wintering aquatic vegetation; February and March composed the period of prolonged coexistence of algal blooms and wintering aquatic vegetation; and June to October was the peak period of the coexistence of algal blooms and aquatic vegetation. By comparing and analyzing the satellite-derived aquatic vegetation distribution and 244 in situ measurements made in 2013, we established a FAI threshold of −0.025 and VPF thresholds of 0.55, 0.45 and 0.85 for the three phenological periods. We validated the accuracy of our approach by comparing the results between the satellite-derived maps and the in situ results obtained from 2008–2012. The overall classification accuracy was 87%, 81%, 77%, 88% and 73% in the five years from 2008–2012, respectively. We then applied the approach to the MODIS images from 2003–2013 and obtained the total area of the aquatic vegetation, which varied from 265.94 km2 in 2007 to 503.38 km2 in 2008, with an average area of 359.62 ± 69.20 km2 over the 11 years. Our findings suggest that (1 the proposed approach can be used to map the distribution of aquatic vegetation in eutrophic algae-rich waters and (2 dramatic changes occurred in the

  16. Vegetation burn severity mapping using Landsat-8 and WorldView-2

    Science.gov (United States)

    Wu, Zhuoting; Middleton, Barry R.; Hetzler, Robert; Vogel, John M.; Dye, Dennis G.

    2015-01-01

    We used remotely sensed data from the Landsat-8 and WorldView-2 satellites to estimate vegetation burn severity of the Creek Fire on the San Carlos Apache Reservation, where wildfire occurrences affect the Tribe's crucial livestock and logging industries. Accurate pre- and post-fire canopy maps at high (0.5-meter) resolution were created from World- View-2 data to generate canopy loss maps, and multiple indices from pre- and post-fire Landsat-8 images were used to evaluate vegetation burn severity. Normalized difference vegetation index based vegetation burn severity map had the highest correlation coefficients with canopy loss map from WorldView-2. Two distinct approaches - canopy loss mapping from WorldView-2 and spectral index differencing from Landsat-8 - agreed well with the field-based burn severity estimates and are both effective for vegetation burn severity mapping. Canopy loss maps created with WorldView-2 imagery add to a short list of accurate vegetation burn severity mapping techniques that can help guide effective management of forest resources on the San Carlos Apache Reservation, and the broader fire-prone regions of the Southwest.

  17. Comparison of satellite imagery and infrared aerial photography as vegetation mapping methods in an arctic study area: Jameson Land, East Greenland

    DEFF Research Database (Denmark)

    Hansen, Birger Ulf; Mosbech, Anders

    1994-01-01

    Remote Sensing, vegetation mapping, SPOT, Landsat TM, aerial photography, Jameson Land, East Greenland......Remote Sensing, vegetation mapping, SPOT, Landsat TM, aerial photography, Jameson Land, East Greenland...

  18. Pre-LBA CABARE Mapped Land Surface and Vegetation Characteristics, Rondonia, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface parameter digital maps of vegetation, soil, and topography were obtained for Rondonia, Brazil, covering the 5x5 degree region bounded by 13-8 degrees S and...

  19. Pre-LBA CABARE Mapped Land Surface and Vegetation Characteristics, Rondonia, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Surface parameter digital maps of vegetation, soil, and topography were obtained for Rondonia, Brazil, covering the 5x5 degree region bounded by 13-8...

  20. High-resolution mapping of wetland vegetation biomass and distribution with L-band radar in southeastern coastal Louisiana

    Science.gov (United States)

    Thomas, N. M.; Simard, M.; Byrd, K. B.; Windham-Myers, L.; Castaneda, E.; Twilley, R.; Bevington, A. E.; Christensen, A.

    2017-12-01

    Louisiana coastal wetlands account for approximately one third (37%) of the estuarine wetland vegetation in the conterminous United States, yet the spatial distribution of their extent and aboveground biomass (AGB) is not well defined. This knowledge is critical for the accurate completion of national greenhouse gas (GHG) inventories. We generated high-resolution baselines maps of wetland vegetation extent and biomass at the Atchafalaya and Terrebonne basins in coastal Louisiana using a multi-sensor approach. Optical satellite data was used within an object-oriented machine learning approach to classify the structure of wetland vegetation types, offering increased detail over currently available land cover maps that do not distinguish between wetland vegetation types nor account for non-permanent seasonal changes in extent. We mapped 1871 km2 of wetlands during a period of peak biomass in September 2015 comprised of flooded forested wetlands and leaf, grass and emergent herbaceous marshes. The distribution of aboveground biomass (AGB) was mapped using JPL L-band Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). Relationships between time-series radar imagery and field data collected in May 2015 and September 2016 were derived to estimate AGB at the Wax Lake and Atchafalaya deltas. Differences in seasonal biomass estimates reflect the increased AGB in September over May, concurrent with periods of peak biomass and the onset of the vegetation growing season, respectively. This method provides a tractable means of mapping and monitoring biomass of wetland vegetation types with L-band radar, in a region threatened with wetland loss under projections of increasing sea-level rise and terrestrial subsidence. Through this, we demonstrate a method that is able to satisfy the IPCC 2013 Wetlands Supplement requirement for Tier 2/Tier 3 reporting of coastal wetland GHG inventories.

  1. Vegetation map and plant checklist of Ol Ari Nyiro ranch and the ...

    African Journals Online (AJOL)

    Ol Ari Nyiro is a 360 km2 ranch of the Laikipia Plateau, in a semi-arid part of Kenya. The vegetation of the ranch and nearby Mukutan Gorge was mapped, and a preliminary check-list of fungi and vascular plants compiled. The vegetation was classified in 16 different types. A total of 708 species and subspecies were ...

  2. Integrating field sampling, geostatistics and remote sensing to map wetland vegetation in the Pantanal, Brazil

    Directory of Open Access Journals (Sweden)

    J. Arieira

    2011-03-01

    Full Text Available Development of efficient methodologies for mapping wetland vegetation is of key importance to wetland conservation. Here we propose the integration of a number of statistical techniques, in particular cluster analysis, universal kriging and error propagation modelling, to integrate observations from remote sensing and field sampling for mapping vegetation communities and estimating uncertainty. The approach results in seven vegetation communities with a known floral composition that can be mapped over large areas using remotely sensed data. The relationship between remotely sensed data and vegetation patterns, captured in four factorial axes, were described using multiple linear regression models. There were then used in a universal kriging procedure to reduce the mapping uncertainty. Cross-validation procedures and Monte Carlo simulations were used to quantify the uncertainty in the resulting map. Cross-validation showed that accuracy in classification varies according with the community type, as a result of sampling density and configuration. A map of uncertainty derived from Monte Carlo simulations revealed significant spatial variation in classification, but this had little impact on the proportion and arrangement of the communities observed. These results suggested that mapping improvement could be achieved by increasing the number of field observations of those communities with a scattered and small patch size distribution; or by including a larger number of digital images as explanatory variables in the model. Comparison of the resulting plant community map with a flood duration map, revealed that flooding duration is an important driver of vegetation zonation. This mapping approach is able to integrate field point data and high-resolution remote-sensing images, providing a new basis to map wetland vegetation and allow its future application in habitat management, conservation assessment and long-term ecological monitoring in wetland

  3. Model of Peatland Vegetation Species using HyMap Image and Machine Learning

    Science.gov (United States)

    Dayuf Jusuf, Muhammad; Danoedoro, Projo; Muljo Sukojo, Bangun; Hartono

    2017-12-01

    Species Tumih / Parepat (Combretocarpus-rotundatus Mig. Dancer) family Anisophylleaceae and Meranti (Shorea Belangerang, Shorea Teysmanniana Dyer ex Brandis) family Dipterocarpaceae is a group of vegetation species distribution model. Species pioneer is predicted as an indicator of the succession of ecosystem restoration of tropical peatland characteristics and extremely fragile (unique) in the endemic hot spot of Sundaland. Climate change projections and conservation planning are hot topics of current discussion, analysis of alternative approaches and the development of combinations of species projection modelling algorithms through geospatial information systems technology. Approach model to find out the research problem of vegetation level based on the machine learning hybrid method, wavelet and artificial neural networks. Field data are used as a reference collection of natural resource field sample objects and biodiversity assessment. The testing and training ANN data set iterations times 28, achieve a performance value of 0.0867 MSE value is smaller than the ANN training data, above 50%, and spectral accuracy 82.1 %. Identify the location of the sample point position of the Tumih / Parepat vegetation species using HyMap Image is good enough, at least the modelling, design of the species distribution can reach the target in this study. The computation validation rate above 90% proves the calculation can be considered.

  4. Vegetation inventory, mapping, and classification report, Fort Bowie National Historic Site

    Science.gov (United States)

    Studd, Sarah; Fallon, Elizabeth; Crumbacher, Laura; Drake, Sam; Villarreal, Miguel

    2013-01-01

    A vegetation mapping and characterization effort was conducted at Fort Bowie National Historic Site in 2008-10 by the Sonoran Desert Network office in collaboration with researchers from the Office of Arid lands studies, Remote Sensing Center at the University of Arizona. This vegetation mapping effort was completed under the National Park Service Vegetation Inventory program which aims to complete baseline mapping inventories at over 270 national park units. The vegetation map data was collected to provide park managers with a digital map product that met national standards of spatial and thematic accuracy, while also placing the vegetation into a regional and even national context. Work comprised of three major field phases 1) concurrent field-based classification data collection and mapping (map unit delineation), 2) development of vegetation community types at the National Vegetation Classification alliance or association level and 3) map accuracy assessment. Phase 1 was completed in late 2008 and early 2009. Community type descriptions were drafted to meet the then-current hierarchy (version 1) of the National Vegetation Classification System (NVCS) and these were applied to each of the mapped areas. This classification was developed from both plot level data and censused polygon data (map units) as this project was conducted as a concurrent mapping and classification effort. The third stage of accuracy assessment completed in the fall of 2010 consisted of a complete census of each map unit and was conducted almost entirely by park staff. Following accuracy assessment the map was amended where needed and final products were developed including this report, a digital map and full vegetation descriptions. Fort Bowie National Historic Site covers only 1000 acres yet has a relatively complex landscape, topography and geology. A total of 16 distinct communities were described and mapped at Fort Bowie NHS. These ranged from lush riparian woodlands lining the

  5. Evaluation of ALOS PALSAR Data for High-Resolution Mapping of Vegetated Wetlands in Alaska

    Directory of Open Access Journals (Sweden)

    Daniel Clewley

    2015-06-01

    Full Text Available As the largest natural source of methane, wetlands play an important role in the carbon cycle. High-resolution maps of wetland type and extent are required to quantify wetland responses to climate change. Mapping northern wetlands is particularly important because of a disproportionate increase in temperatures at higher latitudes. Synthetic aperture radar data from a spaceborne platform can be used to map wetland types and dynamics over large areas. Following from earlier work by Whitcomb et al. (2009 using Japanese Earth Resources Satellite (JERS-1 data, we applied the “random forests” classification algorithm to variables from L-band ALOS PALSAR data for 2007, topographic data (e.g., slope, elevation and locational information (latitude, longitude to derive a map of vegetated wetlands in Alaska, with a spatial resolution of 50 m. We used the National Wetlands Inventory and National Land Cover Database (for upland areas to select training and validation data and further validated classification results with an independent dataset that we created. A number of improvements were made to the method of Whitcomb et al. (2009: (1 more consistent training data in upland areas; (2 better distribution of training data across all classes by taking a stratified random sample of all available training pixels; and (3 a more efficient implementation, which allowed classification of the entire state as a single entity (rather than in separate tiles, which eliminated discontinuities at tile boundaries. The overall accuracy for discriminating wetland from upland was 95%, and the accuracy at the level of wetland classes was 85%. The total area of wetlands mapped was 0.59 million km2, or 36% of the total land area of the state of Alaska. The map will be made available to download from NASA’s wetland monitoring website.

  6. Monitoring temporal Vegetation changes in Lao tropical forests

    International Nuclear Information System (INIS)

    Phompila, Chittana; Lewis, Megan; Clarke, Kenneth; Ostendorf, Bertram

    2014-01-01

    Studies on changes in vegetation are essential for understanding the interaction between humans and the environment. These studies provide key information for land use assessment, terrestrial ecosystem monitoring, carbon flux modelling and impacts of global climate change. The primary purpose of this study was to detect temporal vegetation changes in tropical forests in the southern part of Lao PDR from 2001-2012. The study investigated the annual vegetation phenological response of dominant land cover types across the study area and relationships to seasonal precipitation and temperature. Improved understanding of intra-annual patterns of vegetation variation was useful to detect longer term changes in vegetation. The breaks for additive season and trend (BFAST) approach was implemented to detect changes in these land cover types throughout the 2001-2012 period. We used the enhanced vegetation index (EVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) (MOD13Q1 products) and monthly rainfall and temperature data obtained from the Meteorology and Hydrology Department, Ministry of Agriculture-Forestry, published by Lao National Statistical Centre in this research. EVI well documented the annual seasonal growth of vegetation and clearly distinguished the characteristic phenology of four different land use types; native forest, plantation, agriculture and mixed wooded/cleared area. Native forests maintained high EVI throughout the year, while plantations, wooded/cleared areas and agriculture showed greater inter-annual variation, with minimum EVI at the end of the dry season in April and maximum EVI in September-October, around two months after the wet season peak in rainfall. The BFAST analysis detected abrupt temporal changes in vegetation in the tropical forests, especially in a large conversion of mixed wooded/cleared area into plantation. Within the study area from 2001-2012 there has been an overall decreasing trend of vegetation cover for

  7. Changes in vegetation structure and aboveground biomass in ...

    African Journals Online (AJOL)

    Changes in vegetation structure and aboveground biomass in response to traditional rangeland management practices in Borana, southern Ethiopia. ... managed by prescribed fire for five years and grazed only post-fire during dry seasons.

  8. [Application of biotope mapping model integrated with vegetation cover continuity attributes in urban biodiversity conservation].

    Science.gov (United States)

    Gao, Tian; Qiu, Ling; Chen, Cun-gen

    2010-09-01

    Based on the biotope classification system with vegetation structure as the framework, a modified biotope mapping model integrated with vegetation cover continuity attributes was developed, and applied to the study of the greenbelts in Helsingborg in southern Sweden. An evaluation of the vegetation cover continuity in the greenbelts was carried out by the comparisons of the vascular plant species richness in long- and short-continuity forests, based on the identification of woodland continuity by using ancient woodland indicator species (AWIS). In the test greenbelts, long-continuity woodlands had more AWIS. Among the forests where the dominant trees were more than 30-year-old, the long-continuity ones had a higher biodiversity of vascular plants, compared with the short-continuity ones with the similar vegetation structure. The modified biotope mapping model integrated with the continuity features of vegetation cover could be an important tool in investigating urban biodiversity, and provide corresponding strategies for future urban biodiversity conservation.

  9. Modelling and mapping of spatial differentiated impacts of nitrogen input to ecosystems within the framework of the UNECE-Convention of Air Pollution Prevention. Part II. The model BERN - assessment of vegetation change and biodiversity; Modellierung und Kartierung raeumlich differenzierter Wirkungen von Stickstoffeintraegen in Oekosysteme im Rahmen der UNECE-Luftreinhaltekonvention. Teilbericht II. Das BERN-Modell - ein Bewertungsmodell fuer die oberirdische Biodiversitaet

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, Hans-Dieter; Schlutow, Angela; Kraft, Philipp; Scheuschner, Thomas; Weigelt-Kirchner, Regine [OEKO-DATA - Ecosystem Analysis and Environmental Data Management, Strausberg (Germany)

    2010-03-15

    Semi-natural ecosystems are exposed to high atmospheric deposition for decades. In contrary to sulphur deposition which could be significantly reduced due to international conventions on air pollution prevention during the last decades, deposition of both, reduced and oxidized nitrogen is still on a very high level in average 40 kg N ha{sup -1} yr{sup -1} in forest ecosystems in Germany. The FuE-Project ''Modelling and mapping of spatial differentiated impacts of nitrogen input to ecosystems within the framework of the UNECE - Convention of Air Pollution Prevention'' was jointly conducted by 4 partner institutions and studied impacts of atmospheric nitrogen deposition and climate change on physicochemical properties of forest soils, nutrient storage and nutrient export (Karlsruhe Research Centre, IMK-IFU) as well as biodiversity of vegetation (OEKO-DATA and Waldkundeinstitut Eberswalde) and soil organisms (Giessen University). Work carried out at OEKO-DATA initially concentrated on the development of the BERN-model. About 14 585 vegetation inventories from all over Germany and other 2 914 relevant inventories evaluated from neighboring countries were integrated in BERN database. With this model, the vegetation changes as a function of variations in the location conditions could be identified due to the implementation of the corresponding time series of geochemical and climate parameters from MoBiLE. A validation of the MoBiLE-BERN-coupling was carried out at Level II sites. From the dynamics of the vegetation development in the context of location changes could be derived critical loads and limits. Also the current regeneration potential as well as a harmonious natural balance of location factors could be determined. Likewise, the potential of danger to biodiversity and the livelihood opportunities of plant species or societies could be demonstrated. The most distinct dependence of biodiversity change could be detected on the alterations of

  10. Vegetation change, malnutrition and violence in the Horn of Africa

    Science.gov (United States)

    Rowhani, P.; Degomme, O.; Linderman, M.; Guha-Sapir, D.; Lambin, E.

    2008-12-01

    In certain circumstances, climate change in association with a broad range of social factors may increase the risk of famines and subsequently, violent conflict. The impacts of climate change on society will be experienced both through changes in mean conditions over long time periods and through increases in extreme events. Recent studies have shown the historical effects of long term climate change on societies and the importance of short term climatic triggers on armed conflict. However, most of these studies are at the state level ignoring local conditions. Here we use detailed information extracted from wide-swath satellite data (MODIS) to analyze the impact of climate variability change on malnutrition and violent conflict. More specifically, we perform multivariate logistic regression analysis in order to explain the geographical distribution of malnutrition and conflict in the Horn of Africa on a sub-national level. This region, constituted by several unstable and poor states, has been affected by droughts, floods, famines, and violence in the past few years. Three commonly used nutrition and mortality indicators are used to characterize the health situation (CE-DAT database). To map violence we use the georeferenced Armed Conflicts dataset developed by the Center for the Study of Civil War. Explanatory variables include several socio-economic variables and environmental variables characterizing land degradation, vegetation activity, and interannual variability in land-surface conditions. First results show that interannual variability in land-surface conditions is associated with malnutrition but not with armed conflict. Furthermore, land degradation seems not to be associated with either malnutrition or armed conflict.

  11. Evaluating rapid ground sampling and scaling estimated plant cover using UAV imagery up to Landsat for mapping arctic vegetation

    Science.gov (United States)

    Nelson, P.; Paradis, D. P.

    2017-12-01

    The small stature and spectral diversity of arctic plant taxa presents challenges in mapping arctic vegetation. Mapping vegetation at the appropriate scale is needed to visualize effects of disturbance, directional vegetation change or mapping of specific plant groups for other applications (eg. habitat mapping). Fine spatial grain of remotely sensed data (ca. 10 cm pixels) is often necessary to resolve patches of many arctic plant groups, such as bryophytes and lichens. These groups are also spectrally different from mineral, litter and vascular plants. We sought to explore method to generate high-resolution spatial and spectral data to explore better mapping methods for arctic vegetation. We sampled ground vegetation at seven sites north or west of tree-line in Alaska, four north of Fairbanks and three northwest of Bethel, respectively. At each site, we estimated cover of plant functional types in 1m2 quadrats spaced approximately every 10 m along a 100 m long transect. Each quadrat was also scanned using a field spectroradiometer (PSR+ Spectral Evolution, 400-2500 nm range) and photographed from multiple perspectives. We then flew our small UAV with a RGB camera over the transect and at least 50 m on either side collecting on imagery of the plot, which were used to generate a image mosaic and digital surface model of the plot. We compare plant functional group cover ocular estimated in situ to post-hoc estimation, either automated or using a human observer, using the quadrat photos. We also compare interpolated lichen cover from UAV scenes to estimated lichen cover using a statistical models using Landsat data, with focus on lichens. Light and yellow lichens are discernable in the UAV imagery but certain lichens, especially dark colored lichens or those with spectral signatures similar to graminoid litter, present challenges. Future efforts will focus on integrating UAV-upscaled ground cover estimates to hyperspectral sensors (eg. AVIRIS ng) for better combined

  12. Using multi-spectral sensors for vegetation mapping

    CSIR Research Space (South Africa)

    Van Deventer, Heidi

    2016-07-01

    Full Text Available Wetland and estuarine vegetation is often difficult to detect and separate from adjacent land covers with multispectral sensors for a number of reasons. The spatial resolution of space-borne sensors is often insufficient for these features which...

  13. Continental Scale Vegetation Structure Mapping Using Field Calibrated Landsat, ALOS Palsar And GLAS ICESat

    Science.gov (United States)

    Scarth, P.; Phinn, S. R.; Armston, J.; Lucas, R.

    2015-12-01

    Vertical plant profiles are important descriptors of canopy structure and are used to inform models of biomass, biodiversity and fire risk. In Australia, an approach has been developed to produce large area maps of vertical plant profiles by extrapolating waveform lidar estimates of vertical plant profiles from ICESat/GLAS using large area segmentation of ALOS PALSAR and Landsat satellite image products. The main assumption of this approach is that the vegetation height profiles are consistent across the segments defined from ALOS PALSAR and Landsat image products. More than 1500 field sites were used to develop an index of fractional cover using Landsat data. A time series of the green fraction was used to calculate the persistent green fraction continuously across the landscape. This was fused with ALOS PALSAR L-band Fine Beam Dual polarisation 25m data and used to segment the Australian landscapes. K-means clustering then grouped the segments with similar cover and backscatter into approximately 1000 clusters. Where GLAS-ICESat footprints intersected these clusters, canopy profiles were extracted and aggregated to produce a mean vertical vegetation profile for each cluster that was used to derive mean canopy and understorey height, depth and density. Due to the large number of returns, these retrievals are near continuous across the landscape, enabling them to be used for inventory and modelling applications. To validate this product, a radiative transfer model was adapted to map directional gap probability from airborne waveform lidar datasets to retrieve vertical plant profiles Comparison over several test sites show excellent agreement and work is underway to extend the analysis to improve national biomass mapping. The integration of the three datasets provide options for future operational monitoring of structure and AGB across large areas for quantifying carbon dynamics, structural change and biodiversity.

  14. Mapping vegetation communities using statistical data fusion in the Ozark National Scenic Riverways, Missouri, USA

    Science.gov (United States)

    Chastain, R.A.; Struckhoff, M.A.; He, H.S.; Larsen, D.R.

    2008-01-01

    A vegetation community map was produced for the Ozark National Scenic Riverways consistent with the association level of the National Vegetation Classification System. Vegetation communities were differentiated using a large array of variables derived from remote sensing and topographic data, which were fused into independent mathematical functions using a discriminant analysis classification approach. Remote sensing data provided variables that discriminated vegetation communities based on differences in color, spectral reflectance, greenness, brightness, and texture. Topographic data facilitated differentiation of vegetation communities based on indirect gradients (e.g., landform position, slope, aspect), which relate to variations in resource and disturbance gradients. Variables derived from these data sources represent both actual and potential vegetation community patterns on the landscape. A hybrid combination of statistical and photointerpretation methods was used to obtain an overall accuracy of 63 percent for a map with 49 vegetation community and land-cover classes, and 78 percent for a 33-class map of the study area. ?? 2008 American Society for Photogrammetry and Remote Sensing.

  15. Mapping agroecological zones and time lag in vegetation growth by means of Fourier analysis of time series of NDVI images

    Science.gov (United States)

    Menenti, M.; Azzali, S.; Verhoef, W.; Van Swol, R.

    1993-01-01

    Examples are presented of applications of a fast Fourier transform algorithm to analyze time series of images of Normalized Difference Vegetation Index values. The results obtained for a case study on Zambia indicated that differences in vegetation development among map units of an existing agroclimatic map were not significant, while reliable differences were observed among the map units obtained using the Fourier analysis.

  16. Four years of UAS Imagery Reveals Vegetation Change Due to Permafrost Thaw

    Science.gov (United States)

    DelGreco, J. L.; Herrick, C.; Varner, R. K.; McArthur, K. J.; McCalley, C. K.; Garnello, A.; Finnell, D.; Anderson, S. M.; Crill, P. M.; Palace, M. W.

    2017-12-01

    Warming trends in sub-arctic regions have resulted in thawing of permafrost which in turn induces change in vegetation across peatlands. Collapse of palsas (i.e. permafrost plateaus) has also been correlated to increases in methane (CH4) emissions to the atmosphere. Vegetation change provides new microenvironments that promote CH4 production and emission, specifically through plant interactions and structure. By quantifying the changes in vegetation at the landscape scale, we will be able to understand the impact of thaw on CH4 emissions in these complex and climate sensitive northern ecosystems. We combine field-based measurements of vegetation composition and high resolution Unmanned Aerial Systems (UAS) imagery to characterize vegetation change in a sub-arctic mire. At Stordalen Mire (1 km x 0.5 km), Abisko, Sweden, we flew a fixed-wing UAS in July of each year between 2014 and 2017. High precision GPS ground control points were used to georeference the imagery. Seventy-five randomized square-meter plots were measured for vegetation composition and individually classified into one of five cover types, each representing a different stage of permafrost degradation. With this training data, each year of imagery was classified by cover type. The developed cover type maps were also used to estimate CH4 emissions across the mire based on average flux CH4 rates from each cover type obtained from flux chamber measurements collected at the mire. This four year comparison of vegetation cover and methane emissions has indicated a rapid response to permafrost thaw and changes in emissions. Estimation of vegetation cover types is vital in our understanding of the evolution of northern peatlands and its future role in the global carbon cycle.

  17. Vegetation Water Content Mapping in a Diverse Agricultural Landscape: National Airborne Field Experiment 2006

    Science.gov (United States)

    Cosh, Michael H.; Jing Tao; Jackson, Thomas J.; McKee, Lynn; O'Neill, Peggy

    2011-01-01

    Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE 06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE 06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/sq m. The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy. Keywords: Vegetation, field experimentation, thematic mapper, NDWI, agriculture.

  18. Hydraulic and Vegetative Models of Historic Environmental Conditions Isolate the Role of Riparian Vegetation in Inducing Channel Change

    Science.gov (United States)

    Manners, R.; Schmidt, J. C.; Wheaton, J. M.

    2011-12-01

    An enduring question in geomorphology is the role of riparian vegetation in inducing or exacerbating channel narrowing. It is typically difficult to isolate the role of vegetation in causing channel narrowing, because narrowing typically occurs where there are changes in stream flow, sediment supply, the invasion of non-native vegetation, and sometimes climate change. Therefore, linkages between changes in vegetation communities and changes in channel form are often difficult to identify. We took a mechanistic approach to isolate the role of the invasive riparian shrub tamarisk (Tamarix spp) in influencing channel narrowing in the Colorado River basin. Detailed geomorphic reconstructions of two sites on the Yampa and Green Rivers, respectively, in Dinosaur National Monument show that channel narrowing has been progressive and that tamarisk encroachment has also occurred; at the same time, dams have been constructed, diversions increased, and spring snowmelt runoff has been occurring earlier in spring. We simulated hydraulic and sediment transport conditions during the two largest floods of record -- 1984 and 2011. Two-dimensional hydraulic models were built to reflect these conditions and allowed us to perform sensitivity tests to determine the dominant determinants of the observed patterns of erosion and deposition. Channel and floodplain topography were constrained through detailed stratigraphic analysis, including precise dating of deposits based on dating of buried tamarisk plants in a series of floodplain trenches and pits. We also used historical air photos to establish past channel topography. To parameterize the influence of riparian vegetation, we developed a model that links detailed terrestrial laser scan (TLS) measurements of stand structure and its corresponding hydraulic roughness at the patch scale to reach-scale riparian vegetation patterns determined from airborne LiDaR (ALS). This model, in conjunction with maps of the ages and establishment

  19. Spatial relationship between climatologies and changes in global vegetation activity.

    Science.gov (United States)

    de Jong, Rogier; Schaepman, Michael E; Furrer, Reinhard; de Bruin, Sytze; Verburg, Peter H

    2013-06-01

    Vegetation forms a main component of the terrestrial biosphere and plays a crucial role in land-cover and climate-related studies. Activity of vegetation systems is commonly quantified using remotely sensed vegetation indices (VI). Extensive reports on temporal trends over the past decades in time series of such indices can be found in literature. However, little remains known about the processes underlying these changes at large spatial scales. In this study, we aimed at quantifying the spatial relationship between changes in potential climatic growth constraints (i.e. temperature, precipitation and incident solar radiation) and changes in vegetation activity (1982-2008). We demonstrate an additive spatial model with 0.5° resolution, consisting of a regression component representing climate-associated effects and a spatially correlated field representing the combined influence of other factors, including land-use change. Little over 50% of the spatial variance could be attributed to changes in climatologies; conspicuously, many greening trends and browning hotspots in Argentina and Australia. The nonassociated model component may contain large-scale human interventions, feedback mechanisms or natural effects, which were not captured by the climatologies. Browning hotspots in this component were especially found in subequatorial Africa. On the scale of land-cover types, strongest relationships between climatologies and vegetation activity were found in forests, including indications for browning under warming conditions (analogous to the divergence issue discussed in dendroclimatology). © 2013 Blackwell Publishing Ltd.

  20. Mapping Submerged Aquatic Vegetation Using RapidEye Satellite Data: The Example of Lake Kummerow (Germany

    Directory of Open Access Journals (Sweden)

    Christine Fritz

    2017-07-01

    Full Text Available Submersed aquatic vegetation (SAV is sensitive to changes in environmental conditions and plays an important role as a long-term indictor for the trophic state of freshwater lakes. Variations in water level height, nutrient condition, light availability and water temperature affect the growth and species composition of SAV. Detailed information about seasonal variations in littoral bottom coverage are still unknown, although these effects are expected to mask climate change-related long-term changes, as derived by snapshots of standard monitoring methods included in the European Water Framework Directive. Remote sensing offers concepts to map SAV quickly, within large areas, and at short intervals. This study analyses the potential of a semi-empirical method to map littoral bottom coverage by a multi-seasonal approach. Depth-invariant indices were calculated for four Atmospheric & Topographic Correction (ATCOR2 atmospheric corrected RapidEye data sets acquired at Lake Kummerow, Germany, between June and August 2015. RapidEye data evaluation was supported by in situ measurements of the diffuse attenuation coefficient of the water column and bottom reflectance. The processing chain was able to differentiate between SAV and sandy sediment. The successive increase of SAV coverage from June to August was correctly monitored. Comparisons with in situ and Google Earth imagery revealed medium accuracies (kappa coefficient = 0.61, overall accuracy = 72.2%. The analysed time series further revealed how water constituents and temporary surface phenomena such as sun glint or algal blooms influence the identification success of lake bottom substrates. An abundant algal bloom biased the interpretability of shallow water substrate such that a differentiation of sediments and SAV patches failed completely. Despite the documented limitations, mapping of SAV using RapidEye seems possible, even in eutrophic lakes.

  1. Remotely sensed phenology for mapping biomes and vegetation functional types

    CSIR Research Space (South Africa)

    Wessels, Konrad J

    2009-07-01

    Full Text Available clearly captured in Fig. 3. The majority of the pixels in the Savanna have a start of growing season in late October, midposition in February and end in June (Fig. 3). In contrast, the winter rainfall Succulent Karoo have a start of growing season... initially split the biomes based on vegetation production and then by the seasonality of growth IV - 1035 (Fig. 4). The three arid biomes (Desert, Succulent and Nama Figure 3. Frequency histograms of the mean START, midposition (MID) and END date...

  2. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska

    Science.gov (United States)

    Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; McGuire, A. David

    2018-01-01

    Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10–100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km2) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999–2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.

  3. Evaluating the Use of an Object-Based Approach to Lithological Mapping in Vegetated Terrain

    Directory of Open Access Journals (Sweden)

    Stephen Grebby

    2016-10-01

    Full Text Available Remote sensing-based approaches to lithological mapping are traditionally pixel-oriented, with classification performed on either a per-pixel or sub-pixel basis with complete disregard for contextual information about neighbouring pixels. However, intra-class variability due to heterogeneous surface cover (i.e., vegetation and soil or regional variations in mineralogy and chemical composition can result in the generation of unrealistic, generalised lithological maps that exhibit the “salt-and-pepper” artefact of spurious pixel classifications, as well as poorly defined contacts. In this study, an object-based image analysis (OBIA approach to lithological mapping is evaluated with respect to its ability to overcome these issues by instead classifying groups of contiguous pixels (i.e., objects. Due to significant vegetation cover in the study area, the OBIA approach incorporates airborne multispectral and LiDAR data to indirectly map lithologies by exploiting associations with both topography and vegetation type. The resulting lithological maps were assessed both in terms of their thematic accuracy and ability to accurately delineate lithological contacts. The OBIA approach is found to be capable of generating maps with an overall accuracy of 73.5% through integrating spectral and topographic input variables. When compared to equivalent per-pixel classifications, the OBIA approach achieved thematic accuracy increases of up to 13.1%, whilst also reducing the “salt-and-pepper” artefact to produce more realistic maps. Furthermore, the OBIA approach was also generally capable of mapping lithological contacts more accurately. The importance of optimising the segmentation stage of the OBIA approach is also highlighted. Overall, this study clearly demonstrates the potential of OBIA for lithological mapping applications, particularly in significantly vegetated and heterogeneous terrain.

  4. Airborne Lidar: Advances in Discrete Return Technology for 3D Vegetation Mapping

    Directory of Open Access Journals (Sweden)

    Valerie Ussyshkin

    2011-02-01

    Full Text Available Conventional discrete return airborne lidar systems, used in the commercial sector for efficient generation of high quality spatial data, have been considered for the past decade to be an ideal choice for various mapping applications. Unlike two-dimensional aerial imagery, the elevation component of airborne lidar data provides the ability to represent vertical structure details with very high precision, which is an advantage for many lidar applications focusing on the analysis of elevated features such as 3D vegetation mapping. However, the use of conventional airborne discrete return lidar systems for some of these applications has often been limited, mostly due to relatively coarse vertical resolution and insufficient number of multiple measurements in vertical domain. For this reason, full waveform airborne sensors providing more detailed representation of target vertical structure have often been considered as a preferable choice in some areas of 3D vegetation mapping application, such as forestry research. This paper presents an overview of the specific features of airborne lidar technology concerning 3D mapping applications, particularly vegetation mapping. Certain key performance characteristics of lidar sensors important for the quality of vegetation mapping are discussed and illustrated by the advanced capabilities of the ALTM-Orion, a new discrete return sensor manufactured by Optech Incorporated. It is demonstrated that advanced discrete return sensors with enhanced 3D mapping capabilities can produce data of enhanced quality, which can represent complex structures of vegetation targets at the level of details equivalent in some aspects to the content of full waveform data. It is also shown that recent advances in conventional airborne lidar technology bear the potential to create a new application niche, where high quality dense point clouds, enhanced by fully recorded intensity for multiple returns, may provide sufficient

  5. Impact of dam-induced hydrological changes on riparian vegetation

    Science.gov (United States)

    Tealdi, Stefano; Camporeale, Carlo; Ridolfi, Luca

    2010-05-01

    Hydrological disturbances are a key factor for the riparian vegetation, which is a highly dynamic ecosystem prone to external forcing. Random fluctuations of water stages drive in fact the alternation of periods of floods and exposure of the vegetated plots. During flooding, the plots are submerged and vegetation is damaged by burial, uprooting and anoxia, while during exposure periods vegetation grows according to the soil moisture content and the phreatic water table depth. The distribution of vegetation along the riparian transect is then directly connected to the stochasticity of river discharges. River damming can have remarkable impacts on the hydrology of a river and, consequently, on the riparian vegetation. Several field studies show how the river regulation induced by artificial reservoirs can greatly modify the statistical moments and the autocorrelation of the discharge time series. The vegetation responds to these changes reducing its overall heterogeneity, declining - substituted by exotic species - and shifting its starting position nearer or far away from the channel center. These latter processes are known as narrowing and widening, respectively. In our work we explore the effects of dam-induced hydrological changes on the narrowing/widening process and on the total biomass along the transect. To this aim we use an eco-hydrological stochastic model developed by Camporeale and Ridolfi [2006], which is able to give a realistic distribution of the biomass along the transect as a function of a few hydrologic, hydraulic and vegetation parameters. We apply the model to an exemplifying case, by investigating the vegetation response to a set of changes in mean discharge and coefficient of variation. The range of these changes is deduced from the analysis of field data in pre- and post-dam conditions. Firstly, we analyze the narrowing/widening process. In particular, we analyze two percentage differences of the starting transversal position with respect to

  6. Trends in landscape and vegetation change and implications for the Santa Cruz Watershed

    Science.gov (United States)

    Villarreal, Miguel; Norman, Laura M.; Webb, Robert H.; Turner, Raymond M.

    2013-01-01

    Monitoring and characterizing the interactive effects of land use and climate on land surface processes is a primary focus of land change science, and of particular concern in arid Wells Distribution in Shallow Groundwater Areas Pumping Trends Increase Streamflow Extent Declines 27 environments where both landscapes and livelihoods can be impacted by short-term climate variability. Using a multi-observational approach to land-change analysis that included landownership data as a proxy for land-use practices, multitemporal land-cover maps, and repeat photography dating to the late 19th century, we examine changing spatial and temporal distributions of two vegetation types with high conservation value in the southwestern United States: grasslands and riparian vegetation. Our study area is the bi-national Santa Cruz Watershed, a topographically complex watershed that straddles the Sonoran Desert and the Madrean Archipelago Ecoregions. In this presentation we focus on historical changes in vegetation and land use in grasslands and riparian areas of the Madrean Ecoregion (San Raphael Valley, Cienega Creek, Sonoita), and compare changes in these areas to changes in the warmer and drier Sonoran Ecoregion. Analysis of historical photography confirms major 20th century vegetation shifts documented in other research: woody plant encroachment, desertification of grasslands, and changing riparian and xeroriparian vegetation occurred in both ecoregions following human settlement. However, vegetation changes over the past decade appear to be more subtle and some of the past trajectories appear to be reversing; most notable are recent mesquite declines in xeroriparian and upland areas, and changes from shrubland to grassland area in the Madrean ecoregion. Land cover changes were temporally variable, reflecting broad climate changes. The most dynamic cover changes occurred during the period from 1989 to 1999, a period with two intense droughts. The degree of vegetation change

  7. Rapid characterisation of vegetation structure to predict refugia and climate change impacts across a global biodiversity hotspot.

    Directory of Open Access Journals (Sweden)

    Antonius G T Schut

    Full Text Available Identification of refugia is an increasingly important adaptation strategy in conservation planning under rapid anthropogenic climate change. Granite outcrops (GOs provide extraordinary diversity, including a wide range of taxa, vegetation types and habitats in the Southwest Australian Floristic Region (SWAFR. However, poor characterization of GOs limits the capacity of conservation planning for refugia under climate change. A novel means for the rapid identification of potential refugia is presented, based on the assessment of local-scale environment and vegetation structure in a wider region. This approach was tested on GOs across the SWAFR. Airborne discrete return Light Detection And Ranging (LiDAR data and Red Green and Blue (RGB imagery were acquired. Vertical vegetation profiles were used to derive 54 structural classes. Structural vegetation types were described in three areas for supervised classification of a further 13 GOs across the region. Habitat descriptions based on 494 vegetation plots on and around these GOs were used to quantify relationships between environmental variables, ground cover and canopy height. The vegetation surrounding GOs is strongly related to structural vegetation types (Kappa = 0.8 and to its spatial context. Water gaining sites around GOs are characterized by taller and denser vegetation in all areas. The strong relationship between rainfall, soil-depth, and vegetation structure (R(2 of 0.8-0.9 allowed comparisons of vegetation structure between current and future climate. Significant shifts in vegetation structural types were predicted and mapped for future climates. Water gaining areas below granite outcrops were identified as important putative refugia. A reduction in rainfall may be offset by the occurrence of deeper soil elsewhere on the outcrop. However, climate change interactions with fire and water table declines may render our conclusions conservative. The LiDAR-based mapping approach presented

  8. Vegetation mapping with satellite data of the Forsmark and Tierp regions

    Energy Technology Data Exchange (ETDEWEB)

    Boresjoe-Bronge, Laine; Wester, Kjell [SwedPower, Stockholm (Sweden)

    2002-04-01

    SKB (Swedish Nuclear Fuel and Waste Management Co) performs a siting program for deep repository of spent nuclear fuel that includes survey of three potential sites. The SKB siting process has now reached the site investigation phase. There are several fields of investigations performed in this phase. One of them is description of the surface ecosystems. The surface ecosystems are mapped both on a regional (50-100 km{sup 2} ) and a local level (1 km{sup 2} ). Two inventory methods are used, remote sensing (satellite data/aerial photographs) for the regional level, and field inventory for the detailed level. As a part of the surface ecosystem characterisation on the regional level vegetation mapping using satellite data has been performed over the three potential deep depository sites, Forsmark, Tierp and Oskarshamn. The user requirements for the vegetation mapping of the potential sites are the following: Dominated species in the tree layer, shrub layer, field layer and ground layer shall be described both on regional and local level; Dominated species in all layers shall be quantified regarding share and percentage of ground cover, or absence of cover (vegetation free ground); The regional and the local inventory shall have identical or comparable classification systems; The classification system and the method used shall make it possible to scale the results from local to regional level and vice versa; The produced layers shall be presented in digital form and make it possible to model biomass and turnover of organic matter (carbon, nutrients, water); The produced information shall in a first phase be of use for planning and for making nature and environmental considerations. Data sources used in the study include geo-referenced SPOT4 XI data (20 m ground resolution), geo-referenced Landsat TM data (30 m ground resolution), soil type data, topographic map data and colour infrared aerial photographs. The production of vegetation layers has been carried out in two

  9. Vegetation mapping with satellite data of the Forsmark and Tierp regions

    International Nuclear Information System (INIS)

    Boresjoe-Bronge, Laine; Wester, Kjell

    2002-04-01

    SKB (Swedish Nuclear Fuel and Waste Management Co) performs a siting program for deep repository of spent nuclear fuel that includes survey of three potential sites. The SKB siting process has now reached the site investigation phase. There are several fields of investigations performed in this phase. One of them is description of the surface ecosystems. The surface ecosystems are mapped both on a regional (50-100 km 2 ) and a local level (1 km 2 ). Two inventory methods are used, remote sensing (satellite data/aerial photographs) for the regional level, and field inventory for the detailed level. As a part of the surface ecosystem characterisation on the regional level vegetation mapping using satellite data has been performed over the three potential deep depository sites, Forsmark, Tierp and Oskarshamn. The user requirements for the vegetation mapping of the potential sites are the following: Dominated species in the tree layer, shrub layer, field layer and ground layer shall be described both on regional and local level; Dominated species in all layers shall be quantified regarding share and percentage of ground cover, or absence of cover (vegetation free ground); The regional and the local inventory shall have identical or comparable classification systems; The classification system and the method used shall make it possible to scale the results from local to regional level and vice versa; The produced layers shall be presented in digital form and make it possible to model biomass and turnover of organic matter (carbon, nutrients, water); The produced information shall in a first phase be of use for planning and for making nature and environmental considerations. Data sources used in the study include geo-referenced SPOT4 XI data (20 m ground resolution), geo-referenced Landsat TM data (30 m ground resolution), soil type data, topographic map data and colour infrared aerial photographs. The production of vegetation layers has been carried out in two steps. In

  10. The influence of vegetation dynamics on anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    U. Port

    2012-11-01

    Full Text Available In this study, vegetation–climate and vegetation–carbon cycle interactions during anthropogenic climate change are assessed by using the Earth System Model of the Max Planck Institute for Meteorology (MPI ESM that includes vegetation dynamics and an interactive carbon cycle. We assume anthropogenic CO2 emissions according to the RCP 8.5 scenario in the time period from 1850 to 2120. For the time after 2120, we assume zero emissions to evaluate the response of the stabilising Earth System by 2300.

    Our results suggest that vegetation dynamics have a considerable influence on the changing global and regional climate. In the simulations, global mean tree cover extends by 2300 due to increased atmospheric CO2 concentration and global warming. Thus, land carbon uptake is higher and atmospheric CO2 concentration is lower by about 40 ppm when considering dynamic vegetation compared to the static pre-industrial vegetation cover. The reduced atmospheric CO2 concentration is equivalent to a lower global mean temperature. Moreover, biogeophysical effects of vegetation cover shifts influence the climate on a regional scale. Expanded tree cover in the northern high latitudes results in a reduced albedo and additional warming. In the Amazon region, declined tree cover causes a regional warming due to reduced evapotranspiration. As a net effect, vegetation dynamics have a slight attenuating effect on global climate change as the global climate cools by 0.22 K due to natural vegetation cover shifts in 2300.

  11. miRNA control of vegetative phase change in trees.

    Directory of Open Access Journals (Sweden)

    Jia-Wei Wang

    2011-02-01

    Full Text Available After germination, plants enter juvenile vegetative phase and then transition to an adult vegetative phase before producing reproductive structures. The character and timing of the juvenile-to-adult transition vary widely between species. In annual plants, this transition occurs soon after germination and usually involves relatively minor morphological changes, whereas in trees and other perennial woody plants it occurs after months or years and can involve major changes in shoot architecture. Whether this transition is controlled by the same mechanism in annual and perennial plants is unknown. In the annual forb Arabidopsis thaliana and in maize (Zea mays, vegetative phase change is controlled by the sequential activity of microRNAs miR156 and miR172. miR156 is highly abundant in seedlings and decreases during the juvenile-to-adult transition, while miR172 has an opposite expression pattern. We observed similar changes in the expression of these genes in woody species with highly differentiated, well-characterized juvenile and adult phases (Acacia confusa, Acacia colei, Eucalyptus globulus, Hedera helix, Quercus acutissima, as well as in the tree Populus x canadensis, where vegetative phase change is marked by relatively minor changes in leaf morphology and internode length. Overexpression of miR156 in transgenic P. x canadensis reduced the expression of miR156-targeted SPL genes and miR172, and it drastically prolonged the juvenile phase. Our results indicate that miR156 is an evolutionarily conserved regulator of vegetative phase change in both annual herbaceous plants and perennial trees.

  12. Relationships between vegetation and climate change in Transbaikalia, Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Tchebakova, N.M.; Parfenova, E.I. [V.N. Sukachev Inst. of Forest, Russian Academy of Sciences, Siberian Branch, Akademgorodok, Krasnoyarsk (Russian Federation)

    2002-10-01

    This paper demonstrated how vegetation of the Lake Baikal basin may respond to climate change at a mountain biome (an orobiome over the entire basin) and a stand in a locality. An orobiome vegetation model was developed along with a higher resolution stand model based on climatic parameters. Regional climates were modeled based on physiology and site climates based on topography. Bioclimatic multiple regression models were then developed to predict regional vegetation and forest stand characteristics distribution over a mountain range in Central Transbaikalia under current and future climate scenarios. Bioclimatic models were combined with climatic layers of different resolutions. Tree species composition and wood volume was predicted based on 2 climate indices - temperature sums (base 5 degrees C) and the dryness index. Results indicate that lowland vegetation will shift 250 m upslope and highland vegetation will shift 450 m upslope. This will significantly reduce the tundra and light-needled taiga, and will expand the forest-steppe. Results also indicate that the total phytomass within the entire basin will not change much. Stand phytomass across the basin will, however, increase. The model used in this study does not include climate-forcing factors such as wind, snow and permafrost. The model is open to new development to include a dynamic components that would inject vitality into the model. 13 refs., 2 tabs., 3 figs.

  13. The pace of Holocene vegetation change - testing for synchronous developments

    Science.gov (United States)

    Giesecke, Thomas; Bennett, K. D.; Birks, H. John B.; Bjune, Anne E.; Bozilova, Elisaveta; Feurdean, Angelica; Finsinger, Walter; Froyd, Cynthia; Pokorný, Petr; Rösch, Manfred; Seppä, Heikki; Tonkov, Spasimir; Valsecchi, Verushka; Wolters, Steffen

    2011-09-01

    Mid to high latitude forest ecosystems have undergone several major compositional changes during the Holocene. The temporal and spatial patterns of these vegetation changes hold potential information to their causes and triggers. Here we test the hypothesis that the timing of vegetation change was synchronous on a sub-continental scale, which implies a common trigger or a step-like change in climate parameters. Pollen diagrams from selected European regions were statistically divided into assemblage zones and the temporal pattern of the zone boundaries analysed. The results show that the temporal pattern of vegetation change was significantly different from random. Times of change cluster around 8.2, 4.8, 3.7, and 1.2 ka, while times of higher than average stability were found around 2.1 and 5.1 ka. Compositional changes linked to the expansion of Corylus avellana and Alnus glutinosa centre around 10.6 and 9.5 ka, respectively. A climatic trigger initiating these changes may have occurred 0.5 to 1 ka earlier, respectively. The synchronous expansion of C. avellana and A. glutinosa exemplify that dispersal is not necessarily followed by population expansion. The partly synchronous, partly random expansion of A. glutinosa in adjacent European regions exemplifies that sudden synchronous population expansions are not species specific traits but vary regionally.

  14. Vegetation change: a reunifying concept in plant ecology

    Czech Academy of Sciences Publication Activity Database

    Davis, M. A.; Pergl, Jan; Truscott, A.; Kollmann, J.; Bakker, J. P.; Domenech, R.; Prach, Karel; Prieur-Richard, A.; Veeneklaas, R. M.; Pyšek, Petr; del Moral, R.; Hobbs, R. J.; Collins, S. L.; Pickett, S. T. A.; Reich, P. B.

    2005-01-01

    Roč. 7, - (2005), s. 69-76 ISSN 1433-8319 R&D Projects: GA ČR(CZ) GA206/02/0617 Institutional research plan: CEZ:AV0Z60050516 Keywords : vegetation succession * climate change * plant invasions Subject RIV: EF - Botanics Impact factor: 3.053, year: 2005

  15. The pro children intervention: applying the intervention mapping protocol to develop a school-based fruit and vegetable promotion programme.

    Science.gov (United States)

    Pérez-Rodrigo, Carmen; Wind, Marianne; Hildonen, Christina; Bjelland, Mona; Aranceta, Javier; Klepp, Knut-Inge; Brug, Johannes

    2005-01-01

    The importance of careful theory-based intervention planning is recognized for fruit and vegetable promotion. This paper describes the application of the Intervention Mapping (IM) protocol to develop the Pro Children intervention to promote consumption of fruit and vegetable among 10- to 13-year-old schoolchildren. Based on a needs assessment, promotion of intake of fruit and vegetable was split into performance objectives and related personal, social and environmental determinants. Crossing the performance objectives with related important and changeable determinants resulted in a matrix of learning and change objectives for which appropriate educational strategies were identified. Theoretically similar but culturally relevant interventions were designed, implemented and evaluated in Norway, the Netherlands and Spain during 2 school years. Programme activities included provision of fruits and vegetables in the schools, guided classroom activities, computer-tailored feedback and advice for children, and activities to be completed at home with the family. Additionally, optional intervention components for community reinforcement included incorporation of mass media, school health services or grocery stores. School project committees were supported. The Pro Children intervention was carefully developed based on the IM protocol that resulted in a comprehensive school-based fruit and vegetable promotion programme, but culturally sensible and locally relevant. (c) 2005 S. Karger AG, Basel

  16. Approaches to vegetation mapping and ecophysiological hypothesis testing using combined information from TIMS, AVIRIS, and AIRSAR

    Science.gov (United States)

    Oren, R.; Vane, G.; Zimmermann, R.; Carrere, V.; Realmuto, V.; Zebker, Howard A.; Schoeneberger, P.; Schoeneberger, M.

    1991-01-01

    The Tropical Rainforest Ecology Experiment (TREE) had two primary objectives: (1) to design a method for mapping vegetation in tropical regions using remote sensing and determine whether the result improves on available vegetation maps; and (2) to test a specific hypothesis on plant/water relations. Both objectives were thought achievable with the combined information from the Thermal Infrared Multispectral Scanner (TIMS), Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), and Airborne Synthetic Aperture Radar (AIRSAR). Implicitly, two additional objectives were: (1) to ascertain that the range within each variable potentially measurable with the three instruments is large enough in the site, relative to the sensitivity of the instruments, so that differences between ecological groups may be detectable; and (2) to determine the ability of the three systems to quantify different variables and sensitivities. We found that the ranges in values of foliar nitrogen concentration, water availability, stand structure and species composition, and plant/water relations were large, even within the upland broadleaf vegetation type. The range was larger when other vegetation types were considered. Unfortunately, cloud cover and navigation errors compromised the utility of the TIMS and AVIRIS data. Nevertheless, the AIRSAR data alone appear to have improved on the available vegetation map for the study area. An example from an area converted to a farm is given to demonstrate how the combined information from AIRSAR, TIMS, and AVIRIS can uniquely identify distinct classes of land use. The example alludes to the potential utility of the three instruments for identifying vegetation at an ecological scale finer than vegetation types.

  17. Vegetation response to climate change : implications for Canada's conservation lands

    International Nuclear Information System (INIS)

    Scott, D.; Lemieux, C.

    2003-01-01

    Studies have shown that Canada's national parks are vulnerable to the impacts of climate change. A wide range of biophysical climate change impacts could affect the integrity of conservation lands in each region of Canada. This report examines the potential impact of climate change on landscape alterations and vegetation distribution in Canada's wide network of conservation lands. It also presents several ways to integrate climate change into existing conservation policy and adaptation strategies. Canada's conservation lands include provincial parks, migratory bird sanctuaries, national wildlife areas and wildlife protected areas. This is the first study to examine biome changes by applying an equilibrium Global Vegetation Model (GVM) to Canada's network of national park systems. Some of the policy and planning challenges posed by changes in landscape level vegetation were also addressed. The report indicates that in terms of potential changes to the biome classification of Canada's national forests, more northern biomes are projected to decrease. These northern biomes include the tundra, taiga and boreal conifer forests. 56 refs., 8 tabs., 6 figs

  18. Modeling mechanisms of vegetation change due to fire in a semi-arid ecosystem

    Science.gov (United States)

    White, J.D.; Gutzwiller, K.J.; Barrow, W.C.; Randall, L.J.; Swint, P.

    2008-01-01

    Vegetation growth and community composition in semi-arid environments is determined by water availability and carbon assimilation mechanisms specific to different plant types. Disturbance also impacts vegetation productivity and composition dependent on area affected, intensity, and frequency factors. In this study, a new spatially explicit ecosystem model is presented for the purpose of simulating vegetation cover type changes associated with fire disturbance in the northern Chihuahuan Desert region. The model is called the Landscape and Fire Simulator (LAFS) and represents physiological activity of six functional plant types incorporating site climate, fire, and seed dispersal routines for individual grid cells. We applied this model for Big Bend National Park, Texas, by assessing the impact of wildfire on the trajectory of vegetation communities over time. The model was initialized and calibrated based on landcover maps derived from Landsat-5 Thematic Mapper data acquired in 1986 and 1999 coupled with plant biomass measurements collected in the field during 2000. Initial vegetation cover change analysis from satellite data showed shrub encroachment during this time period that was captured in the simulated results. A synthetic 50-year climate record was derived from historical meteorological data to assess system response based on initial landcover conditions. This simulation showed that shrublands increased to the detriment of grass and yucca-ocotillo vegetation cover types indicating an ecosystem-level trajectory for shrub encroachment. Our analysis of simulated fires also showed that fires significantly reduced site biomass components including leaf area, stem, and seed biomass in this semi-arid ecosystem. In contrast to other landscape simulation models, this new model incorporates detailed physiological responses of functional plant types that will allow us to simulated the impact of increased atmospheric CO2 occurring with climate change coupled with fire

  19. Systematic Mapping and Statistical Analyses of Valley Landform and Vegetation Asymmetries Across Hydroclimatic Gradients

    Science.gov (United States)

    Poulos, M. J.; Pierce, J. L.; McNamara, J. P.; Flores, A. N.; Benner, S. G.

    2015-12-01

    Terrain aspect alters the spatial distribution of insolation across topography, driving eco-pedo-hydro-geomorphic feedbacks that can alter landform evolution and result in valley asymmetries for a suite of land surface characteristics (e.g. slope length and steepness, vegetation, soil properties, and drainage development). Asymmetric valleys serve as natural laboratories for studying how landscapes respond to climate perturbation. In the semi-arid montane granodioritic terrain of the Idaho batholith, Northern Rocky Mountains, USA, prior works indicate that reduced insolation on northern (pole-facing) aspects prolongs snow pack persistence, and is associated with thicker, finer-grained soils, that retain more water, prolong the growing season, support coniferous forest rather than sagebrush steppe ecosystems, stabilize slopes at steeper angles, and produce sparser drainage networks. We hypothesize that the primary drivers of valley asymmetry development are changes in the pedon-scale water-balance that coalesce to alter catchment-scale runoff and drainage development, and ultimately cause the divide between north and south-facing land surfaces to migrate northward. We explore this conceptual framework by coupling land surface analyses with statistical modeling to assess relationships and the relative importance of land surface characteristics. Throughout the Idaho batholith, we systematically mapped and tabulated various statistical measures of landforms, land cover, and hydroclimate within discrete valley segments (n=~10,000). We developed a random forest based statistical model to predict valley slope asymmetry based upon numerous measures (n>300) of landscape asymmetries. Preliminary results suggest that drainages are tightly coupled with hillslopes throughout the region, with drainage-network slope being one of the strongest predictors of land-surface-averaged slope asymmetry. When slope-related statistics are excluded, due to possible autocorrelation, valley

  20. Permafrost warming and vegetation changes in continental Antarctica

    International Nuclear Information System (INIS)

    Guglielmin, Mauro; Dalle Fratte, Michele; Cannone, Nicoletta

    2014-01-01

    Continental Antarctica represents the last pristine environment on Earth and is one of the most suitable contexts to analyze the relations between climate, active layer and vegetation. In 2000 we started long-term monitoring of the climate, permafrost, active layer and vegetation in Victoria Land, continental Antarctica. Our data confirm the stability of mean annual and summer air temperature, of snow cover, and an increasing trend of summer incoming short wave radiation. The active layer thickness is increasing at a rate of 0.3 cm y −1 . The active layer is characterized by large annual and spatial differences. The latter are due to scarce vegetation, a patchy and very thin organic layer and large spatial differences in snow accumulation. The active layer thickening, probably due to the increase of incoming short wave radiation, produced a general decrease of the ground water content due to the better drainage of the ground. The resultant drying may be responsible for the decline of mosses in xeric sites, while it provided better conditions for mosses in hydric sites, following the species-specific water requirements. An increase of lichen vegetation was observed where the climate drying occurred. This evidence emphasizes that the Antarctic continent is experiencing changes that are in total contrast to the changes reported from maritime Antarctica. (paper)

  1. Last Glacial vegetation and climate change in the southern Levant

    Science.gov (United States)

    Miebach, Andrea; Chen, Chunzhu; Litt, Thomas

    2015-04-01

    Reconstructing past climatic and environmental conditions is a key task for understanding the history of modern mankind. The interaction between environmental change and migration processes of the modern Homo sapiens from its source area in Africa into Europe is still poorly understood. The principal corridor of the first human dispersal into Europe and also later migration dynamics crossed the Middle East. Therefore, the southern Levant is a key area to investigate the paleoenvironment during times of human migration. In this sense, the Last Glacial (MIS 4-2) is particularly interesting to investigate for two reasons. Firstly, secondary expansions of the modern Homo sapiens are expected to occur during this period. Secondly, there are ongoing discussions on the environmental conditions causing the prominent lake level high stand of Lake Lisan, the precursor of the Dead Sea. This high stand even culminated in the merging of Lake Lisan and Lake Kinneret (Sea of Galilee). To provide an independent proxy for paleoenvironmental reconstructions in the southern Levant during the Last Glacial, we investigated pollen assemblages of the Dead Sea/Lake Lisan and Lake Kinneret. Located at the Dead Sea Transform, the freshwater Lake Kinneret is nowadays connected via the Jordan with the hypersaline Dead Sea, which occupies Earth's lowest elevation on land. The southern Levant is a transition area of three different vegetation types. Therefore, also small changes in the climate conditions effect the vegetation and can be registered in the pollen assemblage. In contrast to the Holocene, our preliminary results suggest another vegetation pattern during the Last Glacial. The vegetation belt of the fragile Mediterranean biome did no longer exist in the vicinity of Lake Kinneret. Moreover, the vegetation was rather similar in the whole study area. A steppe vegetation with dwarf shrubs, herbs, and grasses predominated. Thermophilous elements like oaks occurred in limited amounts. The

  2. Recent Change of Vegetation Growth Trend in China

    Science.gov (United States)

    Peng, Shushi; Chen, Anping; Xu, Liang; Cao, Chunxiang; Fang, Jingyun; Myneni, Ranga B.; Pinzon, Jorge E.; Tucker, COmpton J.; Piao, Shilong

    2011-01-01

    Using satellite-derived normalized difference vegetation index (NDVI) data, several previous studies have indicated that vegetation growth significantly increased in most areas of China during the period 1982-99. In this letter, we extended the study period to 2010. We found that at the national scale the growing season (April-October) NDVI significantly increased by 0.0007/yr from 1982 to 2010, but the increasing trend in NDVI over the last decade decreased in comparison to that of the 1982-99 period. The trends in NDVI show significant seasonal and spatial variances. The increasing trend in April and May (AM) NDVI (0.0013/yr is larger than those in June, July and August (JJA) (0.0003/yr) and September and October (SO) (0.0008/yr). This relatively small increasing trend of JJA NDVI during 1982-2010 compared with that during 1982-99 (0.0012/yr) (Piao et al 2003 J. Geophys. Res.-Atmos. 108 4401) implies a change in the JJA vegetation growth trend, which significantly turned from increasing (0.0039/yr) to slightly decreasing (0:0002/yr) in 1988. Regarding the spatial pattern of changes in NDVI, the growing season NDVI increased (over 0.0020/yr) from 1982 to 2010 in southern China, while its change was close to zero in northern China, as a result of a significant changing trend reversal that occurred in the 1990s and early 2000s. In northern China, the growing season NDVI significantly increased before the 1990s as a result of warming and enhanced precipitation, but decreased after the 1990s due to drought stress strengthened by warming and reduced precipitation. Our results also show that the responses of vegetation growth to climate change vary across different seasons and ecosystems.

  3. Recent change of vegetation growth trend in China

    International Nuclear Information System (INIS)

    Peng Shushi; Fang Jingyun; Piao Shilong; Chen, Anping; Xu Liang; Myneni, Ranga B; Cao Chunxiang; Pinzon, Jorge E; Tucker, Compton J

    2011-01-01

    Using satellite-derived normalized difference vegetation index (NDVI) data, several previous studies have indicated that vegetation growth significantly increased in most areas of China during the period 1982–99. In this letter, we extended the study period to 2010. We found that at the national scale the growing season (April–October) NDVI significantly increased by 0.0007 yr −1 from 1982 to 2010, but the increasing trend in NDVI over the last decade decreased in comparison to that of the 1982–99 period. The trends in NDVI show significant seasonal and spatial variances. The increasing trend in April and May (AM) NDVI (0.0013 yr −1 ) is larger than those in June, July and August (JJA) (0.0003 yr −1 ) and September and October (SO) (0.0008 yr −1 ). This relatively small increasing trend of JJA NDVI during 1982–2010 compared with that during 1982–99 (0.0012 yr −1 ) (Piao et al 2003 J. Geophys. Res.—Atmos. 108 4401) implies a change in the JJA vegetation growth trend, which significantly turned from increasing (0.0039 yr −1 ) to slightly decreasing ( − 0.0002 yr −1 ) in 1988. Regarding the spatial pattern of changes in NDVI, the growing season NDVI increased (over 0.0020 yr −1 ) from 1982 to 2010 in southern China, while its change was close to zero in northern China, as a result of a significant changing trend reversal that occurred in the 1990s and early 2000s. In northern China, the growing season NDVI significantly increased before the 1990s as a result of warming and enhanced precipitation, but decreased after the 1990s due to drought stress strengthened by warming and reduced precipitation. Our results also show that the responses of vegetation growth to climate change vary across different seasons and ecosystems.

  4. Assessing rates of forest change and fragmentation in Alabama, USA, using the vegetation change tracker model

    Science.gov (United States)

    Li, Mingshi; Huang, Chengquan; Zhu, Zhiliang; Shi, Hua; Lu, Heng; Peng, Shikui

    2009-01-01

    Forest change is of great concern for land use decision makers and conservation communities. Quantitative and spatial forest change information is critical for addressing many pressing issues, including global climate change, carbon budgets, and sustainability. In this study, our analysis focuses on the differences in geospatial patterns and their changes between federal forests and nonfederal forests in Alabama over the time period 1987–2005, by interpreting 163 Landsat Thematic Mapper (TM) scenes using a vegetation change tracker (VCT) model. Our analysis revealed that for the most part of 1990 s and between 2000 and 2005, Alabama lost about 2% of its forest on an annual basis due to disturbances, but much of the losses were balanced by forest regeneration from previous disturbances. The disturbance maps revealed that federal forests were reasonably well protected, with the fragmentation remaining relatively stable over time. In contrast, nonfederal forests, which are predominant in area share (about 95%), were heavily disturbed, clearly demonstrating decreasing levels of fragmentation during the time period 1987–1993 giving way to a subsequent accelerating fragmentation during the time period 1994–2005. Additionally, the identification of the statistical relationships between forest fragmentation status and forest loss rate and forest net change rate in relation to land ownership implied the distinct differences in forest cutting rate and cutting patterns between federal forests and nonfederal forests. The forest spatial change information derived from the model has provided valuable insights regarding regional forest management practices and disturbance regimes, which are closely associated with regional economics and environmental concerns.

  5. Barrier island habitat map and vegetation survey—Dauphin Island, Alabama, 2015

    Science.gov (United States)

    Enwright, Nicholas M.; Borchert, Sinéad M.; Day, Richard H.; Feher, Laura C.; Osland, Michael J.; Wang, Lei; Wang, Hongqing

    2017-08-04

    Barrier islands are dynamic environments due to their position at the land-sea interface. Storms, waves, tides, currents, and relative sea-level rise are powerful forces that shape barrier island geomorphology and habitats (for example, beach, dune, marsh, and forest). Hurricane Katrina in 2005 and the Deep Water Horizon oil spill in 2010 are two major events that have affected habitats and natural resources on Dauphin Island, Alabama. The latter event prompted a collaborative effort between the U.S. Geological Survey, the U.S. Army Corps of Engineers, and the State of Alabama funded by the National Fish and Wildlife Foundation to investigate viable, sustainable restoration options that protect and restore the natural resources of Dauphin Island, Alabama.In order to understand the feasibility and sustainability of various restoration scenarios, it is important to understand current conditions on Dauphin Island. To further this understanding, a detailed 19-class habitat map for Dauphin Island was produced from 1-foot aerial infrared photography collected on December 4, 2015, and lidar data collected in January 2015. We also conducted a ground survey of habitat types, vegetation community structure, and elevations in November and December 2015. These products provide baseline data regarding the ecological and general geomorphological attributes of the area, which can be compared with observations from other dates for tracking changes over time.

  6. Association between mapped vegetation and Quaternary geology on Santa Rosa Island, California

    Science.gov (United States)

    Cronkite-Ratcliff, C.; Corbett, S.; Schmidt, K. M.

    2017-12-01

    Vegetation and surficial geology are closely connected through the interface generally referred to as the critical zone. Not only do they influence each other, but they also provide clues into the effects of climate, topography, and hydrology on the earth's surface. This presentation describes quantitative analyses of the association between the recently compiled, independently generated vegetation and geologic map units on Santa Rosa Island, part of the Channel Islands National Park in Southern California. Santa Rosa Island was heavily grazed by sheep and cattle ranching for over one hundred years prior to its acquisition by the National Park Service. During this period, the island experienced significant erosion and spatial reduction and diversity of native plant species. Understanding the relationship between geology and vegetation is necessary for monitoring the recovery of native plant species, enhancing the viability of restoration sites, and understanding hydrologic conditions favorable for plant growth. Differences in grain size distribution and soil depth between geologic units support different plant communities through their influence on soil moisture, while differences in unit age reflect different degrees of pedogenic maturity. We find that unsupervised machine learning methods provide more informative insight into vegetation-geology associations than traditional measures such as Cramer's V and Goodman and Kruskal's lambda. Correspondence analysis shows that unique vegetation-geology patterns associated with beach/dune, grassland, hillslope/colluvial, and fluvial/wetland environments can be discerned from the data. By combining geology and vegetation with topographic variables, mixture models can be used to partition the landscape into multiple representative types, which then be compared with conceptual models of plant growth and succession over different landforms. Using this collection of methods, we show various ways that that Quaternary geology

  7. Vegetation physiology controls continental water cycle responses to climate change

    Science.gov (United States)

    Lemordant, L. A.; Swann, A. L. S.; Cook, B.; Scheff, J.; Gentine, P.

    2017-12-01

    Abstract per se:Predicting how climate change will affect the hydrologic cycle is of utmost importance for ecological systems and for human life and activities. A typical perspective is that global warming will cause an intensification of the mean state, the so-called "dry gets drier, wet gets wetter" paradigm. While this result is robust over the oceans, recent works suggest it may be less appropriate for terrestrial regions. Using Earth System Models (ESMs) with decoupled surface (vegetation physiology, PHYS) and atmospheric (radiative, ATMO) CO2 responses, we show that the CO2 physiological response dominates the change in the continental hydrologic cycle compared to radiative and precipitation changes due to increased atmospheric CO2, counter to previous assumptions. Using multiple linear regression analysis, we estimate the individual contribution of each of the three main drivers, precipitation, radiation and physiological CO2 forcing (see attached figure). Our analysis reveals that physiological effects dominate changes for 3 key indicators of dryness and/or vegetation stress (namely LAI, P-ET and EF) over the largest fraction of the globe, except for soil moisture which exhibits a more complex response. This highlights the key role of vegetation in controlling future terrestrial hydrologic response.Legend of the Figure attached:Decomposition along the three main drivers of LAI (a), P-ET (b), EF (c) in the control run. Green quantifies the effect of the vegetation physiology based on the run PHYS; red and blue quantify the contribution of, respectively, net radiation and precipitation, based on multiple linear regression in ATMO. Pie charts show for each variable the fraction (labelled in %) of land under the main influence (more than 50% of the changes is attributed to this driver) of one the three main drivers (green for grid points dominated by vegetation physiology, red for grid points dominated by net radiation, and blue for grid points dominated by the

  8. Simulated Vegetation Response to Climate Change in California: The Importance of Seasonal Production Patterns

    Science.gov (United States)

    Kim, J. B.; Pitts, B.

    2013-12-01

    MC1 dynamic global vegetation model simulates vegetation response to climate change by simulating vegetation production, soil biogeochemistry, plant biogeography and fire. It has been applied at a wide range of spatial scales, yet the spatio-temporal patterns of simulated vegetation production, which drives the model's response to climate change, has not been examined in detail. We ran MC1 for California at a relatively fine scale, 30 arc-seconds, for the historical period (1895-2006) and for the future (2007-2100), using downscaled data from four CMIP3-based climate projections: A2 and B1 GHG emissions scenarios simulated by PCM and GFDL GCMs. The use of these four climate projections aligns our work with a body of climate change research work commissioned by the California Public Interest Energy Research (PIER) Program. The four climate projections vary not only in terms of changes in their annual means, but in the seasonality of projected climate change. We calibrated MC1 using MODIS NPP data for 2000-2011 as a guide, and adapting a published technique for adjusting simulated vegetation production by increasing the simulated plant rooting depths. We evaluated the simulation results by comparing the model output for the historical period with several benchmark datasets, summarizing by EPA Level 3 Ecoregions. Multi-year summary statistics of model predictions compare moderately well with Kuchler's potential natural vegetation map, National Biomass and Carbon Dataset, Leenhouts' compilation of fire return intervals, and, of course, the MODIS NPP data for 2000-2011. When we compared MC1's monthly NPP values with MODIS monthly GPP data (2000-2011), however, the seasonal patterns compared very poorly, with NPP/GPP ratio for spring (Mar-Apr-May) often exceeding 1, and the NPP/GPP ratio for summer (Jun-Jul-Aug) often flattening to zero. This suggests MC1's vegetation production algorithms are overly biased for spring production at the cost of summer production. We

  9. Mapping gains and losses in woody vegetation across global tropical drylands

    DEFF Research Database (Denmark)

    Tian, Feng; Brandt, Martin Stefan; Liu, Yi Y

    2017-01-01

    MODerate resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data to remove the interannual fluctuations of the woody leaf component. We revealed significant trends (P ... trend in the leaf component (VODleaf modeled from NDVI), indicating pronounced gradual growth/decline in woody vegetation not captured by traditional assessments. The method is validated using a unique record of ground measurements from the semiarid Sahel and shows a strong agreement between changes...

  10. Unravelling long-term vegetation change patterns in a binational watershed using multitemporal land cover data and historical photography

    Science.gov (United States)

    Villarreal, Miguel L.; Norman, Laura M.; Webb, Robert H.; Boyer, Diane E.; Turner, Raymond M.

    2011-01-01

    A significant amount of research conducted in the Sonoran Desert of North America has documented, both anecdotally and empirically, major vegetation changes over the past century due to human land use activities. However, many studies lack coincidental landscape-scale data characterizing the spatial and temporal manifestation of these changes. Vegetation changes in a binational (USA and Mexico) watershed were documented using a series of four land cover maps (1979-2009) derived from multispectral satellite imagery. Cover changes are compared to georeferenced, repeat oblique photographs dating from the late 19th century to present. Results indicate the expansion of grassland over the past 20 years following nearly a century of decline. Historical repeat photography documents early-mid 20th century mesquite invasions, but recent land cover data and rephotography demonstrate declines in xeroriparian/riparian mesquite communities in recent decades. These vegetation changes are variable over the landscape and influenced by topography and land management.

  11. Mapping the recovery of the burnt vegetation by classifying pre- and post-fire spectral indices

    Directory of Open Access Journals (Sweden)

    M. A Peña

    2017-12-01

    Full Text Available This study analyzed the state of recovery of the burnt vegetation in the National Park of Torres del Paine between December, 2011 and March, 2012. The calculation and comparison of the NVDI (normalized difference vegetation index of the burnt area throughout a time series of 24 Landsat images acquired before, during and after the fire (2009- 2015, showed the temporal variation in the biomass levels of the burnt vegetation. The subsequent classification and comparison of the spectral indices: NDVI, NBR (normalized burnt ratio and NDWI (normalized difference water index on a full-data available and phenologically matched pre- and post-fire image pair (acquired in October 2009 and 2014, enabled to analyze and mapping the state of recovery of the burnt vegetation. The results show that the area of the lowest classes of all the spectral indices of the pre-fire date became the most dominant on the post-fire date. The pre- and post- fire NDVI class crossing by a confusion matrix showed that the highest and most prevailing pre-fire NDVI classes, mostly corresponding to hydromorphic forests and Andean scrubs, turned into the lowest class in 2014. The remaining area, comprising Patagonian steppe, reestablished its biomass levels in 2014, mostly exhibiting the same pre-fire NDVI classes. These results may provide guidelines to monitor and manage the regeneration of the vegetation impacted by this fire.

  12. A comparison of two different approaches for mapping potential ozone damage to vegetation. A model study

    International Nuclear Information System (INIS)

    Simpson, D.; Ashmore, M.R.; Emberson, L.; Tuovinen, J.-P.

    2007-01-01

    Two very different types of approaches are currently in use today for indicating risk of ozone damage to vegetation in Europe. One approach is the so-called AOTX (accumulated exposure over threshold of X ppb) index, which is based upon ozone concentrations only. The second type of approach entails an estimate of the amount of ozone entering via the stomates of vegetation, the AFstY approach (accumulated stomatal flux over threshold of Y nmol m -2 s -1 ). The EMEP chemical transport model is used to map these different indicators of ozone damage across Europe, for two illustrative vegetation types, wheat and beech forests. The results show that exceedences of critical levels for either type of indicator are widespread, but that the indicators give very different spatial patterns across Europe. Model simulations for year 2020 scenarios suggest reductions in risks of vegetation damage whichever indicator is used, but suggest that AOT40 is much more sensitive to emission control than AFstY values. - Model calculations of AOT40 and AFstY show very different spatial variations in the risks of ozone damage to vegetation

  13. Mapping of the Land Cover Spatiotemporal Characteristics in Northern Russia Caused by Climate Change

    Science.gov (United States)

    Panidi, E.; Tsepelev, V.; Torlopova, N.; Bobkov, A.

    2016-06-01

    The study is devoted to the investigation of regional climate change in Northern Russia. Due to sparseness of the meteorological observation network in northern regions, we investigate the application capabilities of remotely sensed vegetation cover as indicator of climate change at the regional scale. In previous studies, we identified statistically significant relationship between the increase of surface air temperature and increase of the shrub vegetation productivity. We verified this relationship using ground observation data collected at the meteorological stations and Normalised Difference Vegetation Index (NDVI) data produced from Terra/MODIS satellite imagery. Additionally, we designed the technique of growing seasons separation for detailed investigation of the land cover (shrub cover) dynamics. Growing seasons are the periods when the temperature exceeds +5°C and +10°C. These periods determine the vegetation productivity conditions (i.e., conditions that allow growth of the phytomass). We have discovered that the trend signs for the surface air temperature and NDVI coincide on planes and river floodplains. On the current stage of the study, we are working on the automated mapping technique, which allows to estimate the direction and magnitude of the climate change in Northern Russia. This technique will make it possible to extrapolate identified relationship between land cover and climate onto territories with sparse network of meteorological stations. We have produced the gridded maps of NDVI and NDWI for the test area in European part of Northern Russia covered with the shrub vegetation. Basing on these maps, we may determine the frames of growing seasons for each grid cell. It will help us to obtain gridded maps of the NDVI linear trend for growing seasons on cell-by-cell basis. The trend maps can be used as indicative maps for estimation of the climate change on the studied areas.

  14. A land-cover map for South and Southeast Asia derived from SPOT-VEGETATION data

    Science.gov (United States)

    Stibig, H.-J.; Belward, A.S.; Roy, P.S.; Rosalina-Wasrin, U.; Agrawal, S.; Joshi, P.K.; ,; Beuchle, R.; Fritz, S.; Mubareka, S.; Giri, C.

    2007-01-01

    Aim  Our aim was to produce a uniform ‘regional’ land-cover map of South and Southeast Asia based on ‘sub-regional’ mapping results generated in the context of the Global Land Cover 2000 project.Location  The ‘region’ of tropical and sub-tropical South and Southeast Asia stretches from the Himalayas and the southern border of China in the north, to Sri Lanka and Indonesia in the south, and from Pakistan in the west to the islands of New Guinea in the far east.Methods  The regional land-cover map is based on sub-regional digital mapping results derived from SPOT-VEGETATION satellite data for the years 1998–2000. Image processing, digital classification and thematic mapping were performed separately for the three sub-regions of South Asia, continental Southeast Asia, and insular Southeast Asia. Landsat TM images, field data and existing national maps served as references. We used the FAO (Food and Agriculture Organization) Land Cover Classification System (LCCS) for coding the sub-regional land-cover classes and for aggregating the latter to a uniform regional legend. A validation was performed based on a systematic grid of sample points, referring to visual interpretation from high-resolution Landsat imagery. Regional land-cover area estimates were obtained and compared with FAO statistics for the categories ‘forest’ and ‘cropland’.Results  The regional map displays 26 land-cover classes. The LCCS coding provided a standardized class description, independent from local class names; it also allowed us to maintain the link to the detailed sub-regional land-cover classes. The validation of the map displayed a mapping accuracy of 72% for the dominant classes of ‘forest’ and ‘cropland’; regional area estimates for these classes correspond reasonably well to existing regional statistics.Main conclusions  The land-cover map of South and Southeast Asia provides a synoptic view of the distribution of land cover of tropical and sub

  15. Changes in Remotely Sensed Vegetation Growth Trend in the Heihe Basin of Arid Northwestern China.

    Directory of Open Access Journals (Sweden)

    Wenchao Sun

    Full Text Available The Heihe River Basin (HRB is the second largest inland river basin in China, characterized by high diversity in geomorphology and irrigated agriculture in middle reaches. To improve the knowledge about the relationship between biotic and hydrological processes, this study used Global Inventory Modeling and Mapping Studies Normalized Difference Vegetation Index (NDVI data (1982-2006 to analyze spatiotemporal variations in vegetation growth by using the Mann-Kendall test together with Sen's slope estimator. The results indicate that 10.1% and 1.6% of basin area exhibit statistically significant (p < 0.05 upward and downward trends, and maximum magnitude is 0.066/10a and 0.026/10a, respectively. More specifically, an increasing trend was observed in the Qilian Mountains and Hexi Corridor and a decreasing trend detected in the transitional region between them. Increases in precipitation and temperature may be one possible reason for the changes of vegetation growth in the Qilian Mountains. And decreasing trend in transitional region may be driven by the changes in precipitation. Increases of irrigation contribute to the upward trend of NDVI for cropland in the Hexi Corridor, reflecting that agricultural development becomes more intensive. Our study demonstrates the complexity of the response of vegetation growth in the HRB to climate change and anthropogenic activities and correspondingly adopting mechanistic ecological models capable of describing both factors is favorable for reasonable predictions of future vegetation growth. It is also indicated that improving irrigation water use efficiency is one practical strategy to balance water demand between human and natural ecosystems in the HRB.

  16. Past and future effects of climate change on spatially heterogeneous vegetation activity in China

    Science.gov (United States)

    Gao, Jiangbo; Jiao, Kewei; Wu, Shaohong; Ma, Danyang; Zhao, Dongsheng; Yin, Yunhe; Dai, Erfu

    2017-07-01

    Climate change is a major driver of vegetation activity but its complex ecological relationships impede research efforts. In this study, the spatial distribution and dynamic characteristics of climate change effects on vegetation activity in China from the 1980s to the 2010s and from 2021 to 2050 were investigated using a geographically weighted regression (GWR) model. The GWR model was based on combined datasets of satellite vegetation index, climate observation and projection, and future vegetation productivity simulation. Our results revealed that the significantly positive precipitation-vegetation relationship was and will be mostly distributed in North China. However, the regions with temperature-dominated distribution of vegetation activity were and will be mainly located in South China. Due to the varying climate features and vegetation cover, the spatial correlation between vegetation activity and climate change may be altered. There will be different dominant climatic factors for vegetation activity distribution in some regions such as Northwest China, and even opposite correlations in Northeast China. Additionally, the response of vegetation activity to precipitation will move southward in the next three decades. In contrast, although the high warming rate will restrain the vegetation activity, precipitation variability could modify hydrothermal conditions for vegetation activity. This observation is exemplified in the projected future enhancement of vegetation activity in the Tibetan Plateau and weakened vegetation activity in East and Middle China. Furthermore, the vegetation in most parts of North China may adapt to an arid environment, whereas in many southern areas, vegetation will be repressed by water shortage in the future.

  17. Analysis of regional vegetation changes with medium and high resolution imagery

    Science.gov (United States)

    Marcello, J.; Eugenio, F.; Medina, A.

    2012-09-01

    The singular characteristics of the Canarian archipelago (Spain) and, in particular, of the Gran Canaria island have allowed the development of a unique biological richness. Almost half of its territory is protected to preserve the natural environment and, in consequence, the monitoring of vegetated regions plays an important role for regional administrations which aim to develop the corresponding policies for the conservation of such ecosystems. The Normalized Difference Vegetation Index (NDVI) is a common index applied for vegetation studies. It is important to emphasize that NDVI is sensor-dependent, and changes are affected by soil background, irradiance, solar position, atmospheric attenuation, season, hydric situation and climate of the area. So, a fixed threshold cannot be set, even for the same sensor or season, to properly segment vegetated areas. In this context, a robust methodology has been applied to ensure a reliable estimation of changes using the same sensor in multiple dates or different sensors. To that respect, a supervised procedure is presented consisting on the selection of different regions within each image to precisely map each cover with its associated NDVI values and, in consequence, obtain for each individual image the optimal threshold to properly segment vegetation without the need to perform the complex preprocessing required to estimate the ground reflectivity. On the other hand, fires are an important aspect of an ecosystem and their study, a fundamental task to perform a complete assessment of the environmental and economic damage. In our work we have also analyzed in detail the fire occurring during 2007 and precisely assessed the results.

  18. Toward Estimating Wetland Water Level Changes Based on Hydrological Sensitivity Analysis of PALSAR Backscattering Coefficients over Different Vegetation Fields

    Directory of Open Access Journals (Sweden)

    Ting Yuan

    2015-03-01

    Full Text Available Synthetic Aperture Radar (SAR has been successfully used to map wetland’s inundation extents and types of vegetation based on the fact that the SAR backscatter signal from the wetland is mainly controlled by the wetland vegetation type and water level changes. This study describes the relation between L-band PALSAR  and seasonal water level changes obtained from Envisat altimetry over the island of Île Mbamou in the Congo Basin where two distinctly different vegetation types are found. We found positive correlations between and water level changes over the forested southern Île Mbamou whereas both positive and negative correlations were observed over the non-forested northern Île Mbamou depending on the amount of water level increase. Based on the analysis of sensitivity, we found that denser vegetation canopy leads to less sensitive  variation with respect to the water level changes regardless of forested or non-forested canopy. Furthermore, we attempted to estimate water level changes which were then compared with the Envisat altimetry and InSAR results. Our results demonstrated a potential to generate two-dimensional maps of water level changes over the wetlands, and thus may have substantial synergy with the planned Surface Water and Ocean Topography (SWOT mission.

  19. Mapping climate change in European temperature distributions

    International Nuclear Information System (INIS)

    Stainforth, David A; Chapman, Sandra C; Watkins, Nicholas W

    2013-01-01

    Climate change poses challenges for decision makers across society, not just in preparing for the climate of the future but even when planning for the climate of the present day. When making climate sensitive decisions, policy makers and adaptation planners would benefit from information on local scales and for user-specific quantiles (e.g. the hottest/coldest 5% of days) and thresholds (e.g. days above 28 ° C), not just mean changes. Here, we translate observations of weather into observations of climate change, providing maps of the changing shape of climatic temperature distributions across Europe since 1950. The provision of such information from observations is valuable to support decisions designed to be robust in today’s climate, while also providing data against which climate forecasting methods can be judged and interpreted. The general statement that the hottest summer days are warming faster than the coolest is made decision relevant by exposing how the regions of greatest warming are quantile and threshold dependent. In a band from Northern France to Denmark, where the response is greatest, the hottest days in the temperature distribution have seen changes of at least 2 ° C, over four times the global mean change over the same period. In winter the coldest nights are warming fastest, particularly in Scandinavia. (letter)

  20. Vegetation coupling to global climate: Trajectories of vegetation change and phenology modeling from satellite observations

    Science.gov (United States)

    Fisher, Jeremy Isaac

    Important systematic shifts in ecosystem function are often masked by natural variability. The rich legacy of over two decades of continuous satellite observations provides an important database for distinguishing climatological and anthropogenic ecosystem changes. Examples from semi-arid Sudanian West Africa and New England (USA) illustrate the response of vegetation to climate and land-use. In Burkina Faso, West Africa, pastoral and agricultural practices compete for land area, while degradation may follow intensification. The Nouhao Valley is a natural experiment in which pastoral and agricultural land uses were allocated separate, coherent reserves. Trajectories of annual net primary productivity were derived from 18 years of coarse-grain (AVHRR) satellite data. Trends suggested that pastoral lands had responded rigorously to increasing rainfall after the 1980's droughts. A detailed analysis at Landsat resolution (30m) indicated that the increased vegetative cover was concentrated in the river basins of the pastoral region, implying a riparian wood expansion. In comparison, riparian cover was reduced in agricultural regions. We suggest that broad-scale patterns of increasing semi-arid West African greenness may be indicative of climate variability, whereas local losses may be anthropogenic in nature. The contiguous deciduous forests, ocean proximity, topography, and dense urban developments of New England provide an ideal landscape to examine influences of climate variability and the impact of urban development vegetation response. Spatial and temporal patterns of interannual climate variability were examined via green leaf phenology. Phenology, or seasonal growth and senescence, is driven by deficits of light, temperature, and water. In temperate environments, phenology variability is driven by interannual temperature and precipitation shifts. Average and interannual phenology analyses across southern New England were conducted at resolutions of 30m (Landsat

  1. Exploring the Future of Fuel Loads in Tasmania, Australia: Shifts in Vegetation in Response to Changing Fire Weather, Productivity, and Fire Frequency

    Directory of Open Access Journals (Sweden)

    Rebecca Mary Bernadette Harris

    2018-04-01

    Full Text Available Changes to the frequency of fire due to management decisions and climate change have the potential to affect the flammability of vegetation, with long-term effects on the vegetation structure and composition. Frequent fire in some vegetation types can lead to transformational change beyond which the vegetation type is radically altered. Such feedbacks limit our ability to project fuel loads under future climatic conditions or to consider the ecological tradeoffs associated with management burns. We present a “pathway modelling” approach to consider multiple transitional pathways that may occur under different fire frequencies. The model combines spatial layers representing current and future fire danger, biomass, flammability, and sensitivity to fire to assess potential future fire activity. The layers are derived from a dynamically downscaled regional climate model, attributes from a regional vegetation map, and information about fuel characteristics. Fire frequency is demonstrated to be an important factor influencing flammability and availability to burn and therefore an important determinant of future fire activity. Regional shifts in vegetation type occur in response to frequent fire, as the rate of change differs across vegetation type. Fire-sensitive vegetation types move towards drier, more fire-adapted vegetation quickly, as they may be irreversibly impacted by even a single fire, and require very long recovery times. Understanding the interaction between climate change and fire is important to identify appropriate management regimes to sustain fire-sensitive communities and maintain the distribution of broad vegetation types across the landscape.

  2. Ten Years of Vegetation Change in Northern California Marshlands Detected using Landsat Satellite Image Analysis

    Science.gov (United States)

    Potter, Christopher

    2013-01-01

    The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) methodology was applied to detected changes in perennial vegetation cover at marshland sites in Northern California reported to have undergone restoration between 1999 and 2009. Results showed extensive contiguous areas of restored marshland plant cover at 10 of the 14 sites selected. Gains in either woody shrub cover and/or from recovery of herbaceous cover that remains productive and evergreen on a year-round basis could be mapped out from the image results. However, LEDAPS may not be highly sensitive changes in wetlands that have been restored mainly with seasonal herbaceous cover (e.g., vernal pools), due to the ephemeral nature of the plant greenness signal. Based on this evaluation, the LEDAPS methodology would be capable of fulfilling a pressing need for consistent, continual, low-cost monitoring of changes in marshland ecosystems of the Pacific Flyway.

  3. Changes in Vegetation Growth Dynamics and Relations with Climate over China’s Landmass from 1982 to 2011

    Directory of Open Access Journals (Sweden)

    Guang Xu

    2014-04-01

    Full Text Available Understanding how the dynamics of vegetation growth respond to climate change at different temporal and spatial scales is critical to projecting future ecosystem dynamics and the adaptation of ecosystems to global change. In this study, we investigated vegetated growth dynamics (annual productivity, seasonality and the minimum amount of vegetated cover in China and their relations with climatic factors during 1982–2011, using the updated Global Inventory Modeling and Mapping Studies (GIMMS third generation global satellite Advanced Very High Resolution Radiometer (AVHRR Normalized Difference Vegetation Index (NDVI dataset and climate data acquired from the National Centers for Environmental Prediction (NCEP. Major findings are as follows: (1 annual mean NDVI over China significantly increased by about 0.0006 per year from 1982 to 2011; (2 of the vegetated area in China, over 33% experienced a significant positive trend in vegetation growth, mostly located in central and southern China; about 21% experienced a significant positive trend in growth seasonality, most of which occurred in northern China (>35°N; (3 changes in vegetation growth dynamics were significantly correlated with air temperature and precipitation (p < 0.001 at a region scale; (4 at the country scale, changes in NDVI was significantly and positively correlated with annual air temperature (r = 0.52, p < 0.01 and not associated with annual precipitation (p > 0.1; (5 of the vegetated area, about 24% showed significant correlations between annual mean NDVI and air temperature (93% positive and remainder negative, and 12% showed significant correlations of annual mean NDVI with annual precipitation (65% positive and 35% negative. The spatiotemporal variations in vegetation growth dynamics were controlled primarily by temperature and secondly by precipitation. Vegetation growth was also affected by human activities; and (6 monthly NDVI was significantly correlated with the

  4. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Pieter S A; Goetz, Scott J, E-mail: pbeck@whrc.org [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States)

    2011-10-15

    To assess ongoing changes in high latitude vegetation productivity we compared spatiotemporal patterns in remotely sensed vegetation productivity in the tundra and boreal zones of North America and Eurasia. We compared the long-term GIMMS (Global Inventory Modeling and Mapping Studies) NDVI (Normalized Difference Vegetation Index) to the more recent and advanced MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI data set, and mapped circumpolar trends in a gross productivity metric derived from the former. We then analyzed how temporal changes in productivity differed along an evergreen-deciduous gradient in boreal Alaska, along a shrub cover gradient in Arctic Alaska, and during succession after fire in boreal North America and northern Eurasia. We find that the earlier reported contrast between trends of increasing tundra and decreasing boreal forest productivity has amplified in recent years, particularly in North America. Decreases in boreal forest productivity are most prominent in areas of denser tree cover and, particularly in Alaska, evergreen forest stands. On the North Slope of Alaska, however, increases in tundra productivity do not appear restricted to areas of higher shrub cover, which suggests enhanced productivity across functional vegetation types. Differences in the recovery of post-disturbance vegetation productivity between North America and Eurasia are described using burn chronosequences, and the potential factors driving regional differences are discussed.

  5. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences

    International Nuclear Information System (INIS)

    Beck, Pieter S A; Goetz, Scott J

    2011-01-01

    To assess ongoing changes in high latitude vegetation productivity we compared spatiotemporal patterns in remotely sensed vegetation productivity in the tundra and boreal zones of North America and Eurasia. We compared the long-term GIMMS (Global Inventory Modeling and Mapping Studies) NDVI (Normalized Difference Vegetation Index) to the more recent and advanced MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI data set, and mapped circumpolar trends in a gross productivity metric derived from the former. We then analyzed how temporal changes in productivity differed along an evergreen-deciduous gradient in boreal Alaska, along a shrub cover gradient in Arctic Alaska, and during succession after fire in boreal North America and northern Eurasia. We find that the earlier reported contrast between trends of increasing tundra and decreasing boreal forest productivity has amplified in recent years, particularly in North America. Decreases in boreal forest productivity are most prominent in areas of denser tree cover and, particularly in Alaska, evergreen forest stands. On the North Slope of Alaska, however, increases in tundra productivity do not appear restricted to areas of higher shrub cover, which suggests enhanced productivity across functional vegetation types. Differences in the recovery of post-disturbance vegetation productivity between North America and Eurasia are described using burn chronosequences, and the potential factors driving regional differences are discussed.

  6. Demonstration of wetland vegetation mapping in Florida from computer-processed satellite and aircraft multispectral scanner data

    Science.gov (United States)

    Butera, M. K.

    1979-01-01

    The success of remotely mapping wetland vegetation of the southwestern coast of Florida is examined. A computerized technique to process aircraft and LANDSAT multispectral scanner data into vegetation classification maps was used. The cost effectiveness of this mapping technique was evaluated in terms of user requirements, accuracy, and cost. Results indicate that mangrove communities are classified most cost effectively by the LANDSAT technique, with an accuracy of approximately 87 percent and with a cost of approximately 3 cent per hectare compared to $46.50 per hectare for conventional ground survey methods.

  7. A temperature and vegetation adjusted NTL urban index for urban area mapping and analysis

    Science.gov (United States)

    Zhang, Xiya; Li, Peijun

    2018-01-01

    Accurate and timely information regarding the extent and spatial distribution of urban areas on regional and global scales is crucially important for both scientific and policy-making communities. Stable nighttime light (NTL) data from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) provides a unique proxy of human settlement and activity, which has been used in the mapping and analysis of urban areas and urbanization dynamics. However, blooming and saturation effects of DMSP/OLS NTL data are two unresolved problems in regional urban area mapping and analysis. This study proposed a new urban index termed the Temperature and Vegetation Adjusted NTL Urban Index (TVANUI). It is intended to reduce blooming and saturation effects and to enhance urban features by combining DMSP/OLS NTL data with Normalized Difference Vegetation Index (NDVI) and land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer onboard the Terra satellite. The proposed index was evaluated in two study areas by comparison with established urban indices. The results demonstrated the proposed TVANUI was effective in enhancing the variation of DMSP/OLS light in urban areas and in reducing blooming and saturation effects, showing better performance than three established urban indices. The TVANUI also significantly outperformed the established urban indices in urban area mapping using both the global-fixed threshold and the local-optimal threshold methods. Thus, the proposed TVANUI provides a useful variable for urban area mapping and analysis on regional scale, as well as for urbanization dynamics using time-series DMSP/OLS and related satellite data.

  8. Spatial relationship between climatologies and changes in global vegetation activity

    NARCIS (Netherlands)

    Jong, de R.; Schaepman, M.E.; Furrer, R.; Bruin, de S.; Verburg, P.H.

    2013-01-01

    Vegetation forms a main component of the terrestrial biosphere and plays a crucial role in land-cover and climate-related studies. Activity of vegetation systems is commonly quantified using remotely sensed vegetation indices (VI). Extensive reports on temporal trends over the past decades in time

  9. Understanding and changing children’s sensory acceptance for vegetables

    NARCIS (Netherlands)

    Poelman, A.A.M.

    2016-01-01

    Vegetable intake of children is well below recommendations in Australia and in most other western countries. Vegetables are the food category least liked by children. As acceptance is a key driver of intake, strategies are needed to increase children’s acceptance of vegetables. The present thesis

  10. Analysis of Vegetation Coverage Change Characteristics in Chongqing Based on MODIS - NDVI Data

    Science.gov (United States)

    Jianfeng, WU; Cao, Guangjie; Zhang, Fengtai; Li, Wei; Wang, Haiqing

    2017-12-01

    In order to study the characteristics of vegetation cover change in Chongqing, MODIS-NDVI is used as data source. In this paper, the change of vegetation coverage in Chongqing from 2000 to 2011 was analyzed by mean value method and difference method from year, spring, summer, autumn and winter respectively. The results showed that the change of vegetation cover was larger than that of the western region on the annual scale. On the seasonal scale, the vegetation in the spring was in the middle with a high and low trend. The higher vegetation area was distributed in the summer area, and the lower area of vegetation was concentrated in the western part of the study area. Vegetation in autumn showed a flaky distribution in space. Winter vegetation to the Yangtze River as the boundary, the south cover is slightly higher than the north.

  11. The integration of GPS, vegetation mapping and GIS in ecological and behavioural studies

    Directory of Open Access Journals (Sweden)

    Steven Mark Rutter

    2007-07-01

    Full Text Available Global Positioning System (GPS satellite navigation receivers are increasingly being used in ecological and behavioural studies to track the movements of animals in relation to the environments in which they live and forage. Concurrent recording of the animal's foraging behaviour (e.g. from jaw movement recording allows foraging locations to be determined. By combining the animal GPS movement and foraging data with habitat and vegetation maps using a Geographical Information System (GIS it is possible to relate animal movement and foraging location to landscape and habitat features and vegetation types. This powerful approach is opening up new opportunities to study the spatial aspects of animal behaviour, especially foraging behaviour, with far greater precision and objectivity than before. Advances in GPS technology now mean that sub-metre precision systems can be used to track animals, extending the range of application of this technology from landscape and habitat scale to paddock and patch scale studies. As well as allowing ecological hypotheses to be empirically tested at the patch scale, the improvements in precision are also leading to the approach being increasing extended from large scale ecological studies to smaller (paddock scale agricultural studies. The use of sub-metre systems brings both new scientific opportunities and new technological challenges. For example, fitting all of the animals in a group with sub-metre precision GPS receivers allows their relative inter-individual distances to be precisely calculated, and their relative orientations can be derived from data from a digital compass fitted to each receiver. These data, analyzed using GIS, could give new insights into the social behaviour of animals. However, the improvements in precision with which the animals are being tracked also needs equivalent improvements in the precision with which habitat and vegetation are mapped. This needs some degree of automation, as

  12. Forty years of vegetation change on the Missouri River floodplain

    Science.gov (United States)

    Johnson, W. Carter; Dixon, Mark D.; Scott, Michael L.; Rabbe, Lisa; Larson, Gary; Volke, Malia; Werner, Brett

    2012-01-01

    Comparative inventories in 1969 and 1970 and in 2008 of vegetation from 30 forest stands downstream of Garrison Dam on the Missouri River in central North Dakota showed (a) a sharp decline in Cottonwood regeneration; (b) a strong compositional shift toward dominance by green ash; and (c) large increases in invasive understory species, such as smooth brome, reed canary grass, and Canada thistle. These changes, and others discovered during remeasurement, have been caused by a complex of factors, some related to damming (altered hydrologic and sediment regimes, delta formation, and associated wet-dry cycles) and some not (diseases and expansion of invasive plants). Dominance of green ash, however, may be short lived, given the likelihood that the emerald ash borer will arrive in the Dakotas in 5-10 years, with potentially devastating effects. The prospects for recovery of this valuable ecosystem, rich in ecosystem goods and services and in American history, are daunting.

  13. Simulating vegetation dynamics in Chile from 21ka BP to present: Effects of climate change on vegetation functions and cover

    Science.gov (United States)

    Werner, Christian; Liakka, Johan; Schmid, Manuel; Fuentes, Juan-Pablo; Ehlers, Todd A.; Hickler, Thomas

    2017-04-01

    Vegetation composition and establishment is strongly dependent on climate conditions but also a result of vegetation dynamics (competition for light, water and nutrients). In addition, vegetation exerts control over the development of landscapes as it mediates the climatic and hydrological forces shaping the terrain via hillslope and fluvial processes. At the same time, topography as well as soil texture and soil depth affect the microclimate, soil water storage and rooting space that is defining the environmental envelope for vegetation development. Within the EarthShape research program (www.earthshape.net) we evaluate these interactions by simulating the co-evolution of landscape and vegetation with a dynamic vegetation model (LPJ-GUESS) and a landscape evolution model (LandLab). LPJ-GUESS is a mechanistic model driven by daily or monthly weather data and explicitly simulates vegetation physiology, succession, competition and water and nutrient cycling. Here we present the results of first transient vegetation simulations from 21kyr BP to present-day using the TraCE-21ka climate dataset for four focus sites along the coastal cordillera of Chile that are exposed to a substantial meridional climate gradient (ranging from hyper-arid to humid-temperate conditions). We show that the warming occurring in the region from LGM to present, in addition to the increase of atmospheric CO2 concentrations, led to a shift in vegetation composition and surface cover. Future work will show how these changes resonate in the dynamics of hillslope and fluvial erosion and ultimately bi-directional feedback mechanisms of vegetation development and landscape evolution/ soil formation (see also companion presentation by Schmid et al., this session).

  14. Pattern Analysis of Vegetation and Structure Mapping of Yard Plant in Gatak District, Sukoharjo

    Directory of Open Access Journals (Sweden)

    Sofyan Anif

    2004-01-01

    Full Text Available Target of research is to know 1 level of type variety (diversitas and mount the closeness (densitas of lawn crop which conducting in region of District of Gatak of Sub Province Sukoharjo; 2 pattern of mapping of lawn crop which conducting in region District of Gatak of Sub Province Sukoharjo of pursuant to variety level and its closeness. This research is field survey done with the method of multi stage that is stratified purposive of sampling and random sampling. Focus the survey is does the stocktaking of lawn crop which conducting in house lawn. To know the structure of vegetate data processed by using formula Cox (1989 to know the closeness level, while to know the level of species variety, data analyzed to use the index of diversities Simpson. Pursuant to result of inferential solution and research 1 result analyze the structure of vegetate of lawn crop indicate that (a District Gatak have the level of high diversities lawn crop, with the index diversities of equal to 0,84159 and index predominate equal to 0,15841, and also highest PIE 0,20657 and PIE lowerest of equal to 0,00032. Species of lawn crop having high domination that is melinjo (Gnetum gnemon, (b closeness of lawn crop at every countryside in District Gatak of included in category very meeting of because  relied on by a closeness value of every countryside more than 75%. Crop found in research are having high closeness level for example: melinjo, banana, mango, rambutan, papaya, tapioca, and coconut, while crop having low closeness level for example: jambu mete, tapak doro, flower pukul empat; and 2 mapping of lawn crop cover the function value and amount of lawn crop found by a number of 57 type of lawn crop found in researh area, can be grouped to become 5 faction that is drug crop, vegetable faction, fruit crop, decorative crop, and protector crop.

  15. Vegetation mapping from high-resolution satellite images in the heterogeneous arid environments of Socotra Island (Yemen)

    Science.gov (United States)

    Malatesta, Luca; Attorre, Fabio; Altobelli, Alfredo; Adeeb, Ahmed; De Sanctis, Michele; Taleb, Nadim M.; Scholte, Paul T.; Vitale, Marcello

    2013-01-01

    Socotra Island (Yemen), a global biodiversity hotspot, is characterized by high geomorphological and biological diversity. In this study, we present a high-resolution vegetation map of the island based on combining vegetation analysis and classification with remote sensing. Two different image classification approaches were tested to assess the most accurate one in mapping the vegetation mosaic of Socotra. Spectral signatures of the vegetation classes were obtained through a Gaussian mixture distribution model, and a sequential maximum a posteriori (SMAP) classification was applied to account for the heterogeneity and the complex spatial pattern of the arid vegetation. This approach was compared to the traditional maximum likelihood (ML) classification. Satellite data were represented by a RapidEye image with 5 m pixel resolution and five spectral bands. Classified vegetation relevés were used to obtain the training and evaluation sets for the main plant communities. Postclassification sorting was performed to adjust the classification through various rule-based operations. Twenty-eight classes were mapped, and SMAP, with an accuracy of 87%, proved to be more effective than ML (accuracy: 66%). The resulting map will represent an important instrument for the elaboration of conservation strategies and the sustainable use of natural resources in the island.

  16. Change Detection Algorithm for the Production of Land Cover Change Maps over the European Union Countries

    Directory of Open Access Journals (Sweden)

    Sebastian Aleksandrowicz

    2014-06-01

    Full Text Available Contemporary satellite Earth Observation systems provide growing amounts of very high spatial resolution data that can be used in various applications. An increasing number of sensors make it possible to monitor selected areas in great detail. However, in order to handle the volume of data, a high level of automation is required. The semi-automatic change detection methodology described in this paper was developed to annually update land cover maps prepared in the context of the Geoland2. The proposed algorithm was tailored to work with different very high spatial resolution images acquired over different European landscapes. The methodology is a fusion of various change detection methods ranging from: (1 layer arithmetic; (2 vegetation indices (NDVI differentiating; (3 texture calculation; and methods based on (4 canonical correlation analysis (multivariate alteration detection (MAD. User intervention during the production of the change map is limited to the selection of the input data, the size of initial segments and the threshold for texture classification (optionally. To achieve a high level of automation, statistical thresholds were applied in most of the processing steps. Tests showed an overall change recognition accuracy of 89%, and the change type classification methodology can accurately classify transitions between classes.

  17. Preparing Landsat Image Time Series (LITS for Monitoring Changes in Vegetation Phenology in Queensland, Australia

    Directory of Open Access Journals (Sweden)

    Santosh Bhandari

    2012-06-01

    Full Text Available Time series of images are required to extract and separate information on vegetation change due to phenological cycles, inter-annual climatic variability, and long-term trends. While images from the Landsat Thematic Mapper (TM sensor have the spatial and spectral characteristics suited for mapping a range of vegetation structural and compositional properties, its 16-day revisit period combined with cloud cover problems and seasonally limited latitudinal range, limit the availability of images at intervals and durations suitable for time series analysis of vegetation in many parts of the world. Landsat Image Time Series (LITS is defined here as a sequence of Landsat TM images with observations from every 16 days for a five-year period, commencing on July 2003, for a Eucalyptus woodland area in Queensland, Australia. Synthetic Landsat TM images were created using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM algorithm for all dates when images were either unavailable or too cloudy. This was done using cloud-free scenes and a MODIS Nadir BRDF Adjusted Reflectance (NBAR product. The ability of the LITS to measure attributes of vegetation phenology was examined by: (1 assessing the accuracy of predicted image-derived Foliage Projective Cover (FPC estimates using ground-measured values; and (2 comparing the LITS-generated normalized difference vegetation index (NDVI and MODIS NDVI (MOD13Q1 time series. The predicted image-derived FPC products (value ranges from 0 to 100% had an RMSE of 5.6. Comparison between vegetation phenology parameters estimated from LITS-generated NDVI and MODIS NDVI showed no significant difference in trend and less than 16 days (equal to the composite period of the MODIS data used difference in key seasonal parameters, including start and end of season in most of the cases. In comparison to similar published work, this paper tested the STARFM algorithm in a new (broadleaf forest environment and also

  18. Vegetation Changes in the Permafrost Regions of the Qinghai-Tibetan Plateau from 1982-2012: Different Responses Related to Geographical Locations and Vegetation Types in High-Altitude Areas.

    Directory of Open Access Journals (Sweden)

    Zhiwei Wang

    Full Text Available The Qinghai-Tibetan Plateau (QTP contains the largest permafrost area in a high-altitude region in the world, and the unique hydrothermal environments of the active layers in this region have an important impact on vegetation growth. Geographical locations present different climatic conditions, and in combination with the permafrost environments, these conditions comprehensively affect the local vegetation activity. Therefore, the responses of vegetation to climate change in the permafrost region of the QTP may be varied differently by geographical location and vegetation condition. In this study, using the latest Global Inventory Modeling and Mapping Studies (GIMMS Normalized Difference Vegetation Index (NDVI product based on turning points (TPs, which were calculated using a piecewise linear model, 9 areas within the permafrost region of the QTP were selected to investigate the effect of geographical location and vegetation type on vegetation growth from 1982 to 2012. The following 4 vegetation types were observed in the 9 selected study areas: alpine swamp meadow, alpine meadow, alpine steppe and alpine desert. The research results show that, in these study areas, TPs mainly appeared in 2000 and 2001, and almost 55.1% and 35.0% of the TPs were located in 2000 and 2001. The global standardized precipitation evapotranspiration index (SPEI and 7 meteorological variables were selected to analyze their correlations with NDVI. We found that the main correlative variables to vegetation productivity in study areas from 1982 to 2012 were precipitation, surface downward long-wave radiation and temperature. Furthermore, NDVI changes exhibited by different vegetation types within the same study area followed similar trends. The results show that regional effects rather than vegetation type had a larger impact on changes in vegetation growth in the permafrost regions of the QTP, indicating that climatic factors had a larger impact in the permafrost

  19. Detecting Historical Vegetation Changes in the Dunhuang Oasis Protected Area Using Landsat Images

    Directory of Open Access Journals (Sweden)

    Xiuxia Zhang

    2017-09-01

    Full Text Available Abstract: Given its proximity to an artificial oasis, the Donghu Nature Reserve in the Dunhuang Oasis has faced environmental pressure and vegetation disturbances in recent decades. Satellite vegetation indices (VIs can be used to detect such changes in vegetation if the satellite images are calibrated to surface reflectance (SR values. The aim of this study was to select a suitable VI based on the Landsat Climate Data Record (CDR products and the absolute radiation-corrected results of Landsat L1T images to detect the spatio-temporal changes in vegetation for the Donghu Reserve during 1986–2015. The results showed that the VI difference (ΔVI images effectively reduced the changes in the source images. Compared with the other VIs, the soil-adjusted vegetation index (SAVI displayed greater robustness to atmospheric effects in the two types of SR images and was more responsive to vegetation changes caused by human factors. From 1986 to 2015, the positive changes in vegetation dominated the overall change trend, with changes in vegetation in the reserve decreasing during 1990–1995, increasing until 2005–2010, and then decreasing again. The vegetation changes were mainly distributed at the edge of the artificial oasis outside the reserve. The detected changes in vegetation in the reserve highlight the increased human pressure on the reserve.

  20. The Application of Remote Sensing Data to GIS Studies of Land Use, Land Cover, and Vegetation Mapping in the State of Hawaii

    Science.gov (United States)

    Hogan, Christine A.

    1996-01-01

    A land cover-vegetation map with a base classification system for remote sensing use in a tropical island environment was produced of the island of Hawaii for the State of Hawaii to evaluate whether or not useful land cover information can be derived from Landsat TM data. In addition, an island-wide change detection mosaic combining a previously created 1977 MSS land classification with the TM-based classification was produced. In order to reach the goal of transferring remote sensing technology to State of Hawaii personnel, a pilot project was conducted while training State of Hawaii personnel in remote sensing technology and classification systems. Spectral characteristics of young island land cover types were compared to determine if there are differences in vegetation types on lava, vegetation types on soils, and barren lava from soils, and if they can be detected remotely, based on differences in pigments detecting plant physiognomic type, health, stress at senescence, heat, moisture level, and biomass. Geographic information systems (GIS) and global positioning systems (GPS) were used to assist in image rectification and classification. GIS was also used to produce large-format color output maps. An interactive GIS program was written to provide on-line access to scanned photos taken at field sites. The pilot project found Landsat TM to be a credible source of land cover information for geologically young islands, and TM data bands are effective in detecting spectral characteristics of different land cover types through remote sensing. Large agriculture field patterns were resolved and mapped successfully from wildland vegetation, but small agriculture field patterns were not. Additional processing was required to work with the four TM scenes from two separate orbits which span three years, including El Nino and drought dates. Results of the project emphasized the need for further land cover and land use processing and research. Change in vegetation

  1. Large-Scale Mapping and Predictive Modeling of Submerged Aquatic Vegetation in a Shallow Eutrophic Lake

    Directory of Open Access Journals (Sweden)

    Karl E. Havens

    2002-01-01

    Full Text Available A spatially intensive sampling program was developed for mapping the submerged aquatic vegetation (SAV over an area of approximately 20,000 ha in a large, shallow lake in Florida, U.S. The sampling program integrates Geographic Information System (GIS technology with traditional field sampling of SAV and has the capability of producing robust vegetation maps under a wide range of conditions, including high turbidity, variable depth (0 to 2 m, and variable sediment types. Based on sampling carried out in AugustœSeptember 2000, we measured 1,050 to 4,300 ha of vascular SAV species and approximately 14,000 ha of the macroalga Chara spp. The results were similar to those reported in the early 1990s, when the last large-scale SAV sampling occurred. Occurrence of Chara was strongly associated with peat sediments, and maximal depths of occurrence varied between sediment types (mud, sand, rock, and peat. A simple model of Chara occurrence, based only on water depth, had an accuracy of 55%. It predicted occurrence of Chara over large areas where the plant actually was not found. A model based on sediment type and depth had an accuracy of 75% and produced a spatial map very similar to that based on observations. While this approach needs to be validated with independent data in order to test its general utility, we believe it may have application elsewhere. The simple modeling approach could serve as a coarse-scale tool for evaluating effects of water level management on Chara populations.

  2. Large-scale mapping and predictive modeling of submerged aquatic vegetation in a shallow eutrophic lake.

    Science.gov (United States)

    Havens, Karl E; Harwell, Matthew C; Brady, Mark A; Sharfstein, Bruce; East, Therese L; Rodusky, Andrew J; Anson, Daniel; Maki, Ryan P

    2002-04-09

    A spatially intensive sampling program was developed for mapping the submerged aquatic vegetation (SAV) over an area of approximately 20,000 ha in a large, shallow lake in Florida, U.S. The sampling program integrates Geographic Information System (GIS) technology with traditional field sampling of SAV and has the capability of producing robust vegetation maps under a wide range of conditions, including high turbidity, variable depth (0 to 2 m), and variable sediment types. Based on sampling carried out in August-September 2000, we measured 1,050 to 4,300 ha of vascular SAV species and approximately 14,000 ha of the macroalga Chara spp. The results were similar to those reported in the early 1990s, when the last large-scale SAV sampling occurred. Occurrence of Chara was strongly associated with peat sediments, and maximal depths of occurrence varied between sediment types (mud, sand, rock, and peat). A simple model of Chara occurrence, based only on water depth, had an accuracy of 55%. It predicted occurrence of Chara over large areas where the plant actually was not found. A model based on sediment type and depth had an accuracy of 75% and produced a spatial map very similar to that based on observations. While this approach needs to be validated with independent data in order to test its general utility, we believe it may have application elsewhere. The simple modeling approach could serve as a coarse-scale tool for evaluating effects of water level management on Chara populations.

  3. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision and hobbyist unmanned aerial vehicles

    Science.gov (United States)

    Dandois, J. P.; Ellis, E. C.

    2013-12-01

    High spatial resolution three-dimensional (3D) measurements of vegetation by remote sensing are advancing ecological research and environmental management. However, substantial economic and logistical costs limit this application, especially for observing phenological dynamics in ecosystem structure and spectral traits. Here we demonstrate a new aerial remote sensing system enabling routine and inexpensive aerial 3D measurements of canopy structure and spectral attributes, with properties similar to those of LIDAR, but with RGB (red-green-blue) spectral attributes for each point, enabling high frequency observations within a single growing season. This 'Ecosynth' methodology applies photogrammetric ''Structure from Motion'' computer vision algorithms to large sets of highly overlapping low altitude (USA. Ecosynth canopy height maps (CHMs) were strong predictors of field-measured tree heights (R2 0.63 to 0.84) and were highly correlated with a LIDAR CHM (R 0.87) acquired 4 days earlier, though Ecosynth-based estimates of aboveground biomass densities included significant errors (31 - 36% of field-based estimates). Repeated scanning of a 0.25 ha forested area at six different times across a 16 month period revealed ecologically significant dynamics in canopy color at different heights and a structural shift upward in canopy density, as demonstrated by changes in vertical height profiles of point density and relative RGB brightness. Changes in canopy relative greenness were highly correlated (R2 = 0.88) with MODIS NDVI time series for the same area and vertical differences in canopy color revealed the early green up of the dominant canopy species, Liriodendron tulipifera, strong evidence that Ecosynth time series measurements capture vegetation structural and spectral dynamics at the spatial scale of individual trees. Observing canopy phenology in 3D at high temporal resolutions represents a breakthrough in forest ecology. Inexpensive user-deployed technologies for

  4. Modelling Soil Carbon Content in South Patagonia and Evaluating Changes According to Climate, Vegetation, Desertification and Grazing

    Directory of Open Access Journals (Sweden)

    Pablo Luis Peri

    2018-02-01

    Full Text Available In Southern Patagonia, a long-term monitoring network has been established to assess bio-indicators as an early warning of environmental changes due to climate change and human activities. Soil organic carbon (SOC content in rangelands provides a range of important ecosystem services and supports the capacity of the land to sustain plant and animal productivity. The objectives in this study were to model SOC (30 cm stocks at a regional scale using climatic, topographic and vegetation variables, and to establish a baseline that can be used as an indicator of rangeland condition. For modelling, we used a stepwise multiple regression to identify variables that explain SOC variation at the landscape scale. With the SOC model, we obtained a SOC map for the entire Santa Cruz province, where the variables derived from the multiple linear regression models were integrated into a geographic information system (GIS. SOC stock to 30 cm ranged from 1.38 to 32.63 kg C m−2. The fitted model explained 76.4% of SOC variation using as independent variables isothermality, precipitation seasonality and vegetation cover expressed as a normalized difference vegetation index. The SOC map discriminated in three categories (low, medium, high determined patterns among environmental and land use variables. For example, SOC decreased with desertification due to erosion processes. The understanding and mapping of SOC in Patagonia contributes as a bridge across main issues such as climate change, desertification and biodiversity conservation.

  5. Vegetation

    DEFF Research Database (Denmark)

    Epstein, H.E.; Walker, D.A.; Bhatt, U.S.

    2012-01-01

    increased 20-26%. • Increasing shrub growth and range extension throughout the Low Arctic are related to winter and early growing season temperature increases. Growth of other tundra plant types, including graminoids and forbs, is increasing, while growth of mosses and lichens is decreasing. • Increases...... in vegetation (including shrub tundra expansion) and thunderstorm activity, each a result of Arctic warming, have created conditions that favor a more active Arctic fire regime....

  6. Accuracy assessment of vegetation community maps generated by aerial photography interpretation: perspective from the tropical savanna, Australia

    Science.gov (United States)

    Lewis, Donna L.; Phinn, Stuart

    2011-01-01

    Aerial photography interpretation is the most common mapping technique in the world. However, unlike an algorithm-based classification of satellite imagery, accuracy of aerial photography interpretation generated maps is rarely assessed. Vegetation communities covering an area of 530 km2 on Bullo River Station, Northern Territory, Australia, were mapped using an interpretation of 1:50,000 color aerial photography. Manual stereoscopic line-work was delineated at 1:10,000 and thematic maps generated at 1:25,000 and 1:100,000. Multivariate and intuitive analysis techniques were employed to identify 22 vegetation communities within the study area. The accuracy assessment was based on 50% of a field dataset collected over a 4 year period (2006 to 2009) and the remaining 50% of sites were used for map attribution. The overall accuracy and Kappa coefficient for both thematic maps was 66.67% and 0.63, respectively, calculated from standard error matrices. Our findings highlight the need for appropriate scales of mapping and accuracy assessment of aerial photography interpretation generated vegetation community maps.

  7. Vegetation changes associated with a population irruption by Roosevelt elk

    Science.gov (United States)

    Starns, H D; Weckerly, Floyd W.; Ricca, Mark; Duarte, Adam

    2015-01-01

    Interactions between large herbivores and their food supply are central to the study of population dynamics. We assessed temporal and spatial patterns in meadow plant biomass over a 23-year period for meadow complexes that were spatially linked to three distinct populations of Roosevelt elk (Cervus elaphus roosevelti) in northwestern California. Our objectives were to determine whether the plant community exhibited a tolerant or resistant response when elk population growth became irruptive. Plant biomass for the three meadow complexes inhabited by the elk populations was measured using Normalized Difference Vegetation Index (NDVI), which was derived from Landsat 5 Thematic Mapper imagery. Elk populations exhibited different patterns of growth through the time series, whereby one population underwent a complete four-stage irruptive growth pattern while the other two did not. Temporal changes in NDVI for the meadow complex used by the irruptive population suggested a decline in forage biomass during the end of the dry season and a temporal decline in spatial variation of NDVI at the peak of plant biomass in May. Conversely, no such patterns were detected in the meadow complexes inhabited by the nonirruptive populations. Our findings suggest that the meadow complex used by the irruptive elk population may have undergone changes in plant community composition favoring plants that were resistant to elk grazing.

  8. Diurnal Reflectance Changes in Vegetation Observed with AVIRIS

    Science.gov (United States)

    Vanderbilt, V. C.; Ambrosia, V. G.; Ustin, S. L.

    1998-01-01

    Among the most important short-term dynamic biological processes are diurnal changes in canopy water relations. Plant regulation of water transport through stomatal openings affects other gaseous transport processes, often dramatically decreasing photosynthetic fixation of carbon dioxide during periods of water stress. Water stress reduces stomatal conductance of water vapor through the leaf surface and alters the diurnal timing of stomatal opening. Under non-water stressed conditions, stomates typically open soon after dawn and transpire water vapor throughout the daylight period. During stress periods, stomates may close for part of the day, generally near mid-day. Under prolonged stress conditions, stomatal closure shifts to earlier times during the day; stomates may close by mid-morning and remain closed until the following morning - or remain closed entirely. Under these conditions the relationship between canopy greenness (e.g., measured with a vegetation index or by spectral mixture analysis) and photosynthetic fixation of carbon is lost and the remotely sensed vegetation metric is a poor predictor of gas exchange. Prediction of stomatal regulation and exchange of water and trace gases is critical for ecosystem and climate models to correctly estimate budgets of these gases and understand or predict other processes like gross and net ecosystem primary production. Plant gas exchange has been extensively studied by physiologists at the leaf and whole plant level and by biometeorologists at somewhat larger scales. While these energy driven processes follow a predictable if somewhat asymmetric diurnal cycle dependent on soil water availability and the constraints imposed by the solar energy budget, they are nonetheless difficult to measure at the tree and stand levels using conventional methods. Ecologists have long been interested in the potential of remote sensing for monitoring physiological changes using multi-temporal images. Much of this research has

  9. Vegetation Indices for Mapping Canopy Foliar Nitrogen in a Mixed Temperate Forest

    Directory of Open Access Journals (Sweden)

    Zhihui Wang

    2016-06-01

    Full Text Available Hyperspectral remote sensing serves as an effective tool for estimating foliar nitrogen using a variety of techniques. Vegetation indices (VIs are a simple means of retrieving foliar nitrogen. Despite their popularity, few studies have been conducted to examine the utility of VIs for mapping canopy foliar nitrogen in a mixed forest context. In this study, we assessed the performance of 32 vegetation indices derived from HySpex airborne hyperspectral images for estimating canopy mass-based foliar nitrogen concentration (%N in the Bavarian Forest National Park. The partial least squares regression (PLSR was performed for comparison. These vegetation indices were classified into three categories that are mostly correlated to nitrogen, chlorophyll, and structural properties such as leaf area index (LAI. %N was destructively measured in 26 broadleaf, needle leaf, and mixed stand plots to represent the different species and canopy structure. The canopy foliar %N is defined as the plot-level mean foliar %N of all species weighted by species canopy foliar mass fraction. Our results showed that the variance of canopy foliar %N is mainly explained by functional type and species composition. The normalized difference nitrogen index (NDNI produced the most accurate estimation of %N (R2CV = 0.79, RMSECV = 0.26. A comparable estimation of %N was obtained by the chlorophyll index Boochs2 (R2CV = 0.76, RMSECV = 0.27. In addition, the mean NIR reflectance (800–850 nm, representing canopy structural properties, also achieved a good accuracy in %N estimation (R2CV = 0.73, RMSECV = 0.30. The PLSR model provided a less accurate estimation of %N (R2CV = 0.69, RMSECV = 0.32. We argue that the good performance of all three categories of vegetation indices in %N estimation can be attributed to the synergy among plant traits (i.e., canopy structure, leaf chemical and optical properties while these traits may converge across plant species for evolutionary reasons. Our

  10. Mapping of fluoride endemic area and assessment of F(-1) accumulation in soil and vegetation.

    Science.gov (United States)

    Saini, Poonam; Khan, Suphiya; Baunthiyal, Mamta; Sharma, Vinay

    2013-02-01

    The prevalence of fluorosis is mainly due to the consumption of more fluoride (F(-1)) through drinking water, vegetables, and crops. The objective of the study was mapping of F(-1) endemic area of Newai Tehsil, Tonk district, Rajasthan, India. For the present study, water, soil (0-45 cm), and vegetation samples were collected from 17 villages. Fluoride concentration in water samples ranged from 0.3 to 9.8 mg/l. Out of 17 villages studied, the amounts of F(-1) content of eight villages were found to exceed the permissible limits. Labile F(-1) content and total F(-1) content in soil samples ranges 11.00-70.05 mg/l and 50.3-179.63 μg g(-1), respectively. F(-1) content in tree species was found in this order Azadirachta indica 47.32-55.76 μg g(-1) > Prosopis juliflora 40.16-49.63 μg g(-1) > Acacia tortilis 34.39-43.60 μg g(-1). While in case of leafy vegetables, F(-1) content order was Chenopodium album 54.23-98.42 μg g(-1) > Spinacea oleracea 30.41-64.09 μg g(-1) > Mentha arvensis 35.48-51.97 μg g(-1). The order of F(-1) content in crops was found as 41.04 μg g(-1) Pennisetum glaucum > 13.61 μg g(-1) Brassica juncea > 7.98 μg g(-1) Triticum sativum in Krishi Vigyan Kendra (KVK) farms. Among vegetation, the leafy vegetables have more F(-1) content. From the results, it is suggested that the people of KVK farms should avoid the use of highly F(-1) containing water for irrigation and drinking purpose. It has been recommended to the government authority to take serious steps to supply drinking water with low F(-1) concentration for the fluorosis affected villages. Further, grow more F(-1) hyperaccumulator plants in F(-1) endemic areas to lower the F(-1) content of the soils.

  11. REMOTE SENSING METHODS FOR PHYTOMASS ESTIMATION AND MAPPING OF TUNDRA VEGETATION

    Directory of Open Access Journals (Sweden)

    Elena Golubeva

    2010-01-01

    Full Text Available Mapping of above-ground phytomass provides a baseline for monitoring climate-induced changes, especially in the northern regions. This is important for practical applications, such as assessing quality of pastures and defining reindeer migration routes. Use of very high resolution (1 m and better aerial and satellite images is of particular interest, because changes at the level of individual trees can be monitored over comparatively large areas. The goals of this study were to: i establish relations between phytomass values and structure and spectral reflectance derived from ground research and ii upscale from ground data to QuickBird satellite imagery to compile maps of above-ground phytomass for key sites. As a result, the study has produced a preliminary map of the above-ground phytomass of lichens for a test site in the Tuliok Valley, Khibiny Mountains, central Kola Peninsula, Russia, with phytomass values well in line with fieldwork data.

  12. Measuring Social Capital Change Using Ripple Mapping

    Science.gov (United States)

    Baker, Barbara; Johannes, Elaine M.

    2013-01-01

    This article provides a detailed description of how to implement a ripple mapping activity to assess youth program effects on community capital and concludes with examples from Maine and Kansas. The maps lead to group reflection on project outcomes and further research and evaluation questions for group members. The results from five Maine…

  13. On the statistical analysis of vegetation change: a wetland affected by water extraction and soil acidification

    NARCIS (Netherlands)

    Braak, ter C.J.F.; Wiertz, J.

    1994-01-01

    A case study is presented on the statistical analysis and interpretation of vegetation change without precise information on environmental change. The changes in a vegetation of a Junco-Molinion grassland are evaluated on the basis of relevés of 1977 and 1988 (20 plots) from a small nature reserve

  14. Wieslander Vegetation

    Data.gov (United States)

    California Natural Resource Agency — Digital version of the 1945 California Vegetation Type Maps by A. E. Wieslander of the U.S. Forest Service. Source scale of maps are 1:100,000. These compiled maps...

  15. Changes in planform geomorphology and vegetation of the Umatilla River during a 50-year period of diminishing peak flow

    Science.gov (United States)

    Hughes, M. L.; McDowell, P. F.

    2017-12-01

    The Umatilla River of northeastern Oregon is a gravel-bedded, mixed pattern, salmonid-bearing channel-floodplain system typical of the Interior Columbia River Basin. Efforts to restore native salmonids in this region since the 1980's coupled with increased scrutiny of flood- and erosion-control activities have prompted a need for better understanding of the biogemorphic implications of flood disturbances. The goals of this study are: (1) to re-examine results of earlier studies of flood impacts on the Umatilla River in light of more recent flow records, and (2) to investigate the degree to which large floods have influenced existing patterns of channel-floodplain geomorphology and vegetation. Mapping of flowing channels, bars, scoured surfaces, and vegetation within the active channel from of aerial photos bracketing flood and inter-flood periods since 1964 indicates complex and spatially variable channel changes. In general, channel scour was the most consistent response to flooding. The direction (gain/loss) and magnitude of changes in bars and vegetation within the active channel, as well as the amount of lateral channel movement and changes in sinuosity, were generally inconsistent across flood events. The removal of vegetation by scour during floods was in many areas compensated by the capture of vegetation from the floodplain by avulsion and activation of secondary channels. To date, the geomorphic impacts of the 1964-65 flood-of-record have not been replicated, despite an overall increase in the frequency of smaller floods. Expansion of riparian vegetation in recent decades has mainly occurred in areas disturbed by scour and bar deposition during the 1964-65 floods. Vegetative succession during this period has caused contraction of the active channel such that it now appears much as it did before the 1964-65 floods. These results underscore the importance of large floods as drivers of biogeormphic processes and patterns over timescales relevant to river

  16. Mapping the change of Phragmites australis live biomass in the lower Mississippi River Delta marshes

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina

    2017-07-28

    Multiyear remote sensing mapping of the normalized difference vegetation index (NDVI) was carried out as an indicator of live biomass composition of the Phragmites australis (hereafter Phragmites) marsh in the lower Mississippi River Delta (hereafter delta) from 2014 to 2017. Maps of NDVI change showed that the Phragmites condition was fairly stable between May 2014 and July 2015. From July 2015 to April 2016 NDVI change indicated Phragmites suffered a widespread decline in the live biomass proportion.  Between April and September 2016, most marsh remained unchanged from the earlier period or showed improvement; although there were pockets of continued decline scattered throughout the lower delta. From September 2016 to May 2017 a pronounced and widely exhibited decline in the condition of Phragmites marsh again occurred throughout the lower delta. This final NDVI change mapping supported field observations of Phragmites decline during the same period.

  17. SACRIFICING THE ECOLOGICAL RESOLUTION OF VEGETATION MAPS AT THE ALTAR OF THEMATIC ACCURACY: ASSESSED MAP ACCURACIES FOR HIERARCHICAL VEGETATION CLASSIFICATIONS IN THE EASTERN GREAT BASIN OF THE SOUTHWEST REGIONAL GAP ANALYSIS PROJECT (SW REGAP)

    Science.gov (United States)

    The Southwest Regional Gap Analysis Project (SW ReGAP) improves upon previous GAP projects conducted in Arizona, Colorado, Nevada, New Mexico, and Utah to provide a consistent, seamless vegetation map for this large and ecologically diverse geographic region. Nevada's compone...

  18. Mapping vegetation patterns in arable land using the models STICS and DAISY

    Science.gov (United States)

    Heuer, Antje; Casper, Markus

    2010-05-01

    Several statistical methods exist to detect spatial and / or temporal variability with regard to ecological data-analysis: Semivariance-analysis, Trend surface analysis, Kriging, Voronoi polygons, Moran's I and Mantel-test, to mention just some of them. In this contribution, we concentrate on spatial vegetation patterns within the soil-vegetation-atmosphere (SVAT) system. Using variography, spatial analysis with a geographic information system and self-organizing maps, spatial patterns of yield have been isolated in an agro-ecosystem (see poster contribution EGU 2009, EGU2009-8948). Data were derived from two agricultural plots, each about 5 hectare, in the area of Newel, located in Western Palatinate, Germany. The plots have been conventionally cultivated with a crop rotation of winter rape, winter wheat and spring barley. The aim of the present study is to find out if the existing natural spatial patterns can be mapped by means of SVAT models. If so, the discretization of a landscape according to its spatial patterns could be the basis for parameterization of SVAT models in order to model soil-vegetation-atmosphere interaction over a large area, that is for up-scaling. For this purpose the SVAT models STICS (developed by INRA, France) and DAISY (developed at Tåstrup University, Denmark) are applied. After a wide sensitivity analysis both models are parameterized with field data according to the given situation of each of the detected spatial patterns. The results of the simulation per representative location of a pattern are validated first with field data concerning yield, soil water content and soil nitrogen; besides, above ground dry matter, root depth and specific stress indices are used for validation. The conclusions that can be made with regard to up-scaling are discussed in detail. In a second step the results of the STICS model are compared with those of the DAISY model to analyse the models' behaviour, to get further knowledge about the inner structure

  19. Spatio-temporal variation of vegetation coverage and its response to climate change in North China plain in the last 33 years

    Science.gov (United States)

    A, Duo; Zhao, Wenji; Qu, Xinyuan; Jing, Ran; Xiong, Kai

    2016-12-01

    Global climate change has led to significant vegetation changes in the past half century. North China Plain, the most important grain production base of china, is undergoing a process of prominent warming and drying. The vegetation coverage, which is used to monitor vegetation change, can respond to climate change (temperature and precipitation). In this study, GIMMS (Global Inventory Modelling and Mapping Studies)-NDVI (Normalized Difference Vegetation Index) data, MODIS (Moderate-resolution Imaging Spectroradiometer) - NDVI data and climate data, during 1981-2013, were used to investigate the spatial distribution and changes of vegetation. The relationship between climate and vegetation on different spatial (agriculture, forest and grassland) and temporal (yearly, decadal and monthly) scales were also analyzed in North China Plain. (1) It was found that temperature exhibiting a slight increase trend (0.20 °C/10a, P 0.05). The climate mutation period was during 1991-1994. (2) Vegetation coverage slight increase was observed in the 55% of total study area, with a change rate of 0.00039/10a. Human activities may not only accelerate the changes of the vegetation coverage, but also c effect to the rate of these changes. (3) Overall, the correlation between the vegetation coverage and climatic factor is higher in monthly scale than yearly scale. The correlation analysis between vegetation coverage and climate changes showed that annual vegetation coverage was better correlatend with precipitation in grassland biome; but it showed a better correlated with temperature i the agriculture biome and forest biome. In addition, the vegetation coverage had sensitive time-effect respond to precipitation. (4) The vegetation coverage showed the same increasing trend before and after the climatic variations, but the rate of increase slowed down. From the vegetation coverage point of view, the grassland ecological zone had an obvious response to the climatic variations, but the

  20. Soil Erosion Risk Map based on irregularity of the vegetative activity

    Science.gov (United States)

    Saa-Requejo, Antonio; Tarquis, Ana Maria; Martín-Sotoca, Juan J.; Valencia, Jose L.; Gobin, Anne; Rodriguez-Sinobas, Leonor

    2016-04-01

    Because of the difficulties to build on both daily rainfall and base shorter time, we explored the possibilities of building indexes based on land cover, which also provide us the opportunity to evaluate their evolution over time. We consider the Fournier index (Fournier, 1960) which is used to assess the rainfall erosivity based on monthly rainfall, alternatively to use of the rainfall intensity in time bases under one hour (eg., van der Knijff et al., 1999; Shamshad et al, 2008). This index can also be interpreted as an index of irregularity and representing a ratio between maximum monthly precipitation and annual rainfall. We propose to calculate this irregularity in terms of irregularity of the vegetative activity. This activity is related to precipitation, but also with the availability of water in the soil reservoir and land use. Therefore, we propose a kind of Fournier index on the effective use of water, which is also closely related to variations in infiltration. Higher is the presence of vegetation higher is the effective use of water. For this "modified Fourier index" we used the NDVI (Normalized Difference Vegetation Index) as index of available vegetative activity, which is widely reported in the literature (Jensen, 2000). Initial calculations have been done with MODIS 500 x 500 m satellite data. The selected area was Cega-Eresma-Adaja subbasin during the period from 2009 to 2012. We selected 8 days composite images product. The calculation of the valid values to eliminate areas with clouds or snow is performed according to the criteria of Martinez Sotoca (2014), ie with a Saturation (based on HSL color model) greater or equal to 0.15. Then, an average of these values was estimated to represent each month of the year. The results are very interesting when we compare Modified Fournier Index on NDVIs with the map of potential soil loss. We have found surprisingly similar patterns and practical equivalence between several classes. Therefore, the Modified

  1. Assessing 20th century climate-vegetation feedbacks of land-use change and natural vegetation dynamics in a fully coupled vegetation-climate model

    NARCIS (Netherlands)

    Strengers, B.J.; Müller, C.; Schaeffer, M.; Haarsma, R.J.; Severijns, C.; Gerten, D.; Schaphoff, S.; Houdt, Van den R.; Oostenrijk, R.

    2010-01-01

    This study describes the coupling of the dynamic global vegetation model (DGVM), Lund–Potsdam–Jena Model for managed land (LPJmL), with the general circulation model (GCM), Simplified Parameterizations primitivE Equation DYnamics model (SPEEDY), to study the feedbacks between land-use change and

  2. Use of satellite imagery to identify vegetation cover changes following the Waldo Canyon Fire event, Colorado, 2012-2013

    Science.gov (United States)

    Cole, Christopher J.; Friesen, Beverly A.; Wilson, Earl M.

    2014-01-01

    characteristics. The vector dataset was then populated with the per-pixel spectral change information to provide an estimated percentage of vegetation increase or decrease of pixels within each polygon. Information collected during a field visit to the Waldo Canyon burn scar in September 2013 was used to help validate this assessment (see photographs 1-3). The numbers on the satellite images correspond to the location of the photographs. For display purposes, the polygons shown on the map represent areas where significant decrease or increase in vegetation cover occurred. Only polygons that held a 70 percent or greater cover change are shown on this map (a GIS dataset with complete information is available upon request). A significant increase in vegetation cover was found in the burned area. This increase is likely due to the growth of grasses and other herbaceous vegetation. Minimal vegetation cover decrease was detected at this threshold. This product is meant to provide a broad survey of post-fire vegetation trends within the Waldo Canyon burned area to Federal, State, and local officials. It is not designed to quantify species-level vegetation change at this time.

  3. Factors affecting vegetable preference in adolescents: stages of change and social cognitive theory.

    Science.gov (United States)

    Woo, Taejung; Lee, Kyung-Hea

    2017-08-01

    Despite the importance of consuming sufficient amounts of vegetables, daily vegetable intake among adolescents in Korea is lower than the current dietary recommendation. The objective of this study was to examine determinants affecting vegetable preference in order to suggest a stage-tailored education strategy that can promote vegetable consumption in adolescents. Adolescents (n = 400, aged 16-17 years) from two high schools participated in a cross-sectional study. Survey variables were vegetable preference, the social cognitive theory (SCT) and stages of change (SOC) constructs. Based on vegetable preference, subjects were classified into two groups: a low-preference group (LPG) and a high-preference group (HPG). SOC was subdivided into pre-action and action/maintenance stages. To compare SCT components and SOC related to vegetable preference, chi-squared and t-tests, along with stepwise multiple-regression analysis, were applied. In the LPG, a similar number of subjects were classified into each stage. Significant differences in self-efficacy, affective attitudes, and vegetable accessibility at home and school were detected among the stages. Subjects in the HPG were mainly at the maintenance stage (81%), and there were significant differences among the stages regarding self-efficacy, affective attitudes, and parenting practice. In the predictions of vegetable preference, self-efficacy and parenting practice had a significant effect in the "pre-action" stage. In the action/maintenance stage, outcome expectation, affective attitudes, and vegetable accessibility at school had significant predictive value. In predicting the vegetable preference for all subjects, 42.8% of the predictive variance was accounted for by affective attitudes, self-efficacy, and vegetable accessibility at school. The study revealed that different determinants affect adolescent vegetable preference in each stage. Self-efficacy and affective attitudes are important determinants affecting

  4. Using Intervention Mapping for Systematic Development of Two School-Based Interventions Aimed at Increasing Children's Fruit and Vegetable Intake

    Science.gov (United States)

    Reinaerts, E.; De Nooijer, J.; De Vries, N. K.

    2008-01-01

    Purpose: The purpose of this paper is to show how the intervention mapping (IM) protocol could be applied to the development of two school-based interventions. It provides an extensive description of the development, implementation and evaluation of two interventions which aimed to increase fruit and vegetable (F&V) consumption among primary…

  5. Remotely Sensed Northern Vegetation Response to Changing Climate: Growing Season and Productivity Perspective

    Science.gov (United States)

    Ganguly, S.; Park, Taejin; Choi, Sungho; Bi, Jian; Knyazikhin, Yuri; Myneni, Ranga

    2016-01-01

    Vegetation growing season and maximum photosynthetic state determine spatiotemporal variability of seasonal total gross primary productivity of vegetation. Recent warming induced impacts accelerate shifts on growing season and physiological status over Northern vegetated land. Thus, understanding and quantifying these changes are very important. Here, we first investigate how vegetation growing season and maximum photosynthesis state are evolved and how such components contribute on inter-annual variation of seasonal total gross primary productivity. Furthermore, seasonally different response of northern vegetation to changing temperature and water availability is also investigated. We utilized both long-term remotely sensed data to extract larger scale growing season metrics (growing season start, end and duration) and productivity (i.e., growing season summed vegetation index, GSSVI) for answering these questions. We find that regionally diverged growing season shift and maximum photosynthetic state contribute differently characterized productivity inter-annual variability and trend. Also seasonally different response of vegetation gives different view of spatially varying interaction between vegetation and climate. These results highlight spatially and temporally varying vegetation dynamics and are reflective of biome-specific responses of northern vegetation to changing climate.

  6. The Importance of Temporal and Spatial Vegetation Structure Information in Biotope Mapping Schemes: A Case Study in Helsingborg, Sweden

    Science.gov (United States)

    Gao, Tian; Qiu, Ling; Hammer, Mårten; Gunnarsson, Allan

    2012-02-01

    Temporal and spatial vegetation structure has impact on biodiversity qualities. Yet, current schemes of biotope mapping do only to a limited extend incorporate these factors in the mapping. The purpose of this study is to evaluate the application of a modified biotope mapping scheme that includes temporal and spatial vegetation structure. A refined scheme was developed based on a biotope classification, and applied to a green structure system in Helsingborg city in southern Sweden. It includes four parameters of vegetation structure: continuity of forest cover, age of dominant trees, horizontal structure, and vertical structure. The major green structure sites were determined by interpretation of panchromatic aerial photographs assisted with a field survey. A set of biotope maps was constructed on the basis of each level of modified classification. An evaluation of the scheme included two aspects in particular: comparison of species richness between long-continuity and short-continuity forests based on identification of woodland continuity using ancient woodland indicators (AWI) species and related historical documents, and spatial distribution of animals in the green space in relation to vegetation structure. The results indicate that (1) the relationship between forest continuity: according to verification of historical documents, the richness of AWI species was higher in long-continuity forests; Simpson's diversity was significantly different between long- and short-continuity forests; the total species richness and Shannon's diversity were much higher in long-continuity forests shown a very significant difference. (2) The spatial vegetation structure and age of stands influence the richness and abundance of the avian fauna and rabbits, and distance to the nearest tree and shrub was a strong determinant of presence for these animal groups. It is concluded that continuity of forest cover, age of dominant trees, horizontal and vertical structures of vegetation

  7. Mapping and conservation importance rating of the South African coastal vegetation as an aid to development planning

    CSIR Research Space (South Africa)

    Raal, PA

    1996-05-01

    Full Text Available ELSEVIER Landscape and Urban Planning 34 (1996) 389-400 Mapping and conservation importance rating of the South African coastal vegetation as an aid to development planning P.A. Raal *, M.E.R. Bums Division of Earth, Marine...-incide with the local authority administrative boundaries. Areas which have not yet been mapped are also shown. P.A. Raal, M.E.R. Burns/ Landscape and Urban Planning 34 (1996) 389-400 391 a botanical map series which can be used...

  8. Phytosociological studies on vegetation change caused by road construction in natural park. III

    Energy Technology Data Exchange (ETDEWEB)

    Kameyama, A

    1975-06-01

    An attempt has been made to explain how forests have been destroyed by road construction in a natural park in Japan. The author discussed the methods of analyzing the problem, as well as the impact of the construction on various developmental stages in plants. A survey of the plant community was taken and a vegetation map on a scale of 1:3,000 was made. According to the map, vegetation was affected in an area 10-20m from the road, sometimes 50 m, by exhaust fumes from the traffic.

  9. Effects of climate change on forest vegetation in the Northern Rockies Region [Chapter 6

    Science.gov (United States)

    Keane, Robert E.; Mahalovich, Mary Frances; Bollenbacher, Barry L.; Manning, Mary E.; Loehman, Rachel A.; Jain, Terrie B.; Holsinger, Lisa M.; Larson, Andrew J.; Webster, Meredith M.

    2018-01-01

    The projected rapid changes in climate will affect the unique vegetation assemblages of the Northern Rockies region in myriad ways, both directly through shifts in vegetation growth, mortality, and regeneration, and indirectly through changes in disturbance regimes and interactions with changes in other ecosystem processes, such as hydrology, snow dynamics, and exotic invasions (Bonan 2008; Hansen and Phillips 2015; Hansen et al. 2001; Notaro et al. 2007). These impacts, taken collectively, could change the way vegetation is managed by public land agencies in this area. Some species may be in danger of rapid decreases in abundance, while others may undergo range expansion (Landhäusser et al. 2010). New vegetation communities may form, while historical vegetation complexes may simply shift to other areas of the landscape or become rare. Juxtaposed with climate change concerns are the consequences of other land management policies and past activities, such as fire exclusion, fuels treatments, and grazing. A thorough assessment of the responses of vegetation to projected climate change is needed, along with an evaluation of the vulnerability of important species, communities, and vegetation-related resources that may be influenced by the effects, both direct and indirect, of climate change. This assessment must also account for past management actions and current vegetation conditions and their interactions with future climates.

  10. Scaling of vegetation indices for environmental change studies

    International Nuclear Information System (INIS)

    Qi, J.; Huete, A.; Sorooshian, S.; Chehbouni, A.; Kerr, Y.

    1992-01-01

    The spatial integration of physical parameters in remote sensing studies is of critical concern when evaluating the global biophysical processes on the earth's surface. When high resolution physical parameters, such as vegetation indices, are degraded for integration into global scale studies, they differ from lower spatial resolution data due to spatial variability and the method by which these parameters are integrated. In this study, multi-spatial resolution data sets of SPOT and ground based data obtained at Walnut Gulch Experimental Watershed in southern Arizona, US during MONSOON '90 were used. These data sets were examined to study the variations of the vegetation index parameters when integrated into coarser resolutions. Different integration methods (conventional mean and Geostatistical mean) were used in simulations of high-to-low resolutions. The sensitivity of the integrated parameters were found to vary with both the spatial variability of the area and the integration methods. Modeled equations describing the scale-dependency of the vegetation index are suggested

  11. Response of Vegetation to Climate Change in the Drylands of East Asia

    International Nuclear Information System (INIS)

    Dai, L; Wang, K; Wang, R L; Zhang, L

    2014-01-01

    Over the past 25 years, global climate and environmental changes have caused an unprecedented rate of vegetation change, as exemplified in the drylands of East Asia. In this study, we investigated the spatio-temporal changes of vegetation in this region and analysed their relationship with climate data. Our results show that vegetation productivity significantly increased from 1982 to 2006. This increasing trend was observed for most of the region, particularly for northwest Mongolia and central Inner Mongolia. Grasslands, croplands, forests, and shrublands, all exhibited this trend. The annual growth rate of the grasslands determined using the Normalized Difference Vegetation Index (NDVI) was the largest observed change; reaching 0.07% p.a, followed by shrublands (0.06%), croplands (0.03%), and forests (0.02%). In the different geographic regions, the roles of temperature and precipitation on vegetation growth were shown to be different. Temperature was the dominant factor for the observed NDVI increase in northwest Mongolia and the centre of Inner Mongolia. The combined influences of temperature and precipitation changes have resulted in the promotion of vegetation growth, as seen in eastern GanSu. Temperature change is the primary factor for initiating vegetation growth in spring and autumn because warmer temperatures increase the length of the growing season, and are thus evaluated as an increased NDVI value. Increased precipitation has been shown to play a positive role on vegetation growth during summer

  12. Mapping and exploring variation in post-fire vegetation recovery following mixed severity wildfire using airborne LiDAR.

    Science.gov (United States)

    Gordon, Christopher E; Price, Owen F; Tasker, Elizabeth M

    2017-07-01

    There is a public perception that large high-severity wildfires decrease biodiversity and increase fire hazard by homogenizing vegetation composition and increasing the cover of mid-story vegetation. But a growing literature suggests that vegetation responses are nuanced. LiDAR technology provides a promising remote sensing tool to test hypotheses about post-fire vegetation regrowth because vegetation cover can be quantified within different height strata at fine scales over large areas. We assess the usefulness of airborne LiDAR data for measuring post-fire mid-story vegetation regrowth over a range of spatial resolutions (10 × 10 m, 30 × 30 m, 50 × 50 m, 100 × 100 m cell size) and investigate the effect of fire severity on regrowth amount and spatial pattern following a mixed severity wildfire in Warrumbungle National Park, Australia. We predicted that recovery would be more vigorous in areas of high fire severity, because park managers observed dense post-fire regrowth in these areas. Moderate to strong positive associations were observed between LiDAR and field surveys of mid-story vegetation cover between 0.5-3.0 m. Thus our LiDAR survey was an apt representation of on-ground vegetation cover. LiDAR-derived mid-story vegetation cover was 22-40% lower in areas of low and moderate than high fire severity. Linear mixed-effects models showed that fire severity was among the strongest biophysical predictors of mid-story vegetation cover irrespective of spatial resolution. However much of the variance associated with these models was unexplained, presumably because soil seed banks varied at finer scales than our LiDAR maps. Dense patches of mid-story vegetation regrowth were small (median size 0.01 ha) and evenly distributed between areas of low, moderate and high fire severity, demonstrating that high-severity fires do not homogenize vegetation cover. Our results are relevant for ecosystem conservation and fire management because they: indicate

  13. Variability and climate change trend in vegetation phenology of recent decades in the Greater Khingan Mountain area, Northeastern China

    Directory of Open Access Journals (Sweden)

    Huan Tang

    2015-09-01

    Full Text Available Vegetation phenology has been used in studies as an indicator of an ecosystem’s responses to climate change. Satellite remote sensing techniques can capture changes in vegetation greenness, which can be used to estimate vegetation phenology. In this study, a long-term vegetation phenology study of the Greater Khingan Mountain area in Northeastern China was performed by using the Global Inventory Modeling and Mapping Studies (GIMMS normalized difference vegetation index version 3 (NDVI3g dataset from the years 1982–2012. After reconstructing the NDVI time series, the start date of the growing season (SOS, the end date of the growing season (EOS and the length of the growing season (LOS were extracted using a dynamic threshold method. The response of the variation in phenology with climatic factors was also analyzed. The results showed that the phenology in the study area changed significantly in the three decades between 1982 and 2012, including a 12.1-day increase in the entire region’s average LOS, a 3.3-day advance in the SOS and an 8.8-day delay in the EOS. However, differences existed between the steppe, forest and agricultural regions, with the LOSs of the steppe region, forest region and agricultural region increasing by 4.40 days, 10.42 days and 1.71 days, respectively, and a later EOS seemed to more strongly affect the extension of the growing season. Additionally, temperature and precipitation were closely correlated with the phenology variations. This study provides a useful understanding of the recent change in phenology and its variability in this high-latitude study area, and this study also details the responses of several ecosystems to climate change.

  14. Projected future vegetation changes for the northwest United States and southwest Canada at a fine spatial resolution using a dynamic global vegetation model.

    Science.gov (United States)

    Shafer, Sarah; Bartlein, Patrick J.; Gray, Elizabeth M.; Pelltier, Richard T.

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0–58.0°N latitude by 136.6–103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070–2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.

  15. Vegetation mapping in the St Lucia estuary using very high-resolution multispectral imagery and LiDAR

    CSIR Research Space (South Africa)

    Lück-Vogel, Melanie

    2016-05-01

    Full Text Available environmental conditions causing discrepancies between the field data and satellite acquisition dates rather than technical issues. Dynamics in water levels and salinity caused rapid change in vegetation communities. Further, weather impacts such as floods...

  16. Changes occurring in vegetable oils composition due to microwave heating

    Directory of Open Access Journals (Sweden)

    Hassan El-Mallah, M.

    2003-12-01

    Full Text Available The effect of microwave heating on three vegetable oils having different lipid compositions was studied. Sunflower, soybean and peanut oils in comparison with oil admixture of soybean and peanut oil (1:1, w/w, were selected for this study. Each oil was heated for 2, 4, 6, 8, 10, 12, 15 and 18 minutes in microwave oven. Peroxide value, free acidity and colour absorbance (at 420 nm were proportionally increasing with the increase of heating period. Colour absorption threw light on the formation of browning products arising from phospholipids during microwave heating. Total tocopherol contents were determined by preparative thin layer chromatography, whereas the fatty acid compositions and formed epoxy acid were analyzed by capillary gas liquid chromatography. The formed conjugated dienes and trienes were determined by UV spectrophotometry. It was found that the total tocopherols of the microwave heated oils, decreased depending on the type of the predominating tocopherols. Also a relation of peroxide formation, during microwave heating, with changes in total tocopherol composition was discussed. It was found that polyunsaturated fatty acids generally decreased by increasing the heating period. The results obtained from the heated oil admixture helped interpret the results obtained from other heated individual oils.Se estudia el efecto del calentamiento en horno de microondas sobre aceites de diferente composición en ácidos grasos. Aceites de girasol, soja, cacahuete y una mezcla de soja y cacahuete al 50%, se calentaron durante 2, 4, 6, 8 10, 12, 15 y 18 minutos. Los valores de índice de peróxidos, acidez libre y absorbancia a 420 nm fueron proporcionales al tiempo de calentamiento. Otras determinaciones incluyeron el contenido total en tocoferoles mediante cromatografía en capa fina, la composición en ácidos grasos y en epoxiácidos mediante cromatografía gas líquido, y la formación de dienos y trienos conjugados mediante

  17. Vegetation Cover Changes in Selected Pastoral Villages in Mkata ...

    African Journals Online (AJOL)

    Arid and semi-arid savannah ecosystems of Tanzania are subjected to increasing pressure from pastoral land-use systems. A spatial temporal study involving analysis of satellite imageries and range surveys was carried out to determine the effects of high stocking levels on savannah vegetation cover types in Mkata plains.

  18. Higher plant vegetation changes during Pliocene sapropel formation

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Menzel, D.; Schouten, S.; Bergen, P.F. van

    2004-01-01

    The 13C values of higher plant wax C27 33 n-alkanes were determined in three, time-equivalent Pliocene (2.943 Ma) sapropels and homogeneous calcareous ooze from three different sites forming an east-west transect in the eastern Mediterranean Basin in order to study the composition of the vegetation

  19. South African National Land-Cover Change Map | Schoeman ...

    African Journals Online (AJOL)

    Globally, countries face a changing environment due to population growth, increase in agricultural production, increasing demand on natural resources, climate change and resultant degradation of the natural environment. One means of monitoring this changing scenario is through land-cover change mapping. Modern ...

  20. Understanding semantic mapping evolution by observing changes in biomedical ontologies.

    Science.gov (United States)

    dos Reis, Julio Cesar; Pruski, Cédric; Da Silveira, Marcos; Reynaud-Delaître, Chantal

    2014-02-01

    Knowledge Organization Systems (KOSs) are extensively used in the biomedical domain to support information sharing between software applications. KOSs are proposed covering different, but overlapping subjects, and mappings indicate the semantic relation between concepts from two KOSs. Over time, KOSs change as do the mappings between them. This can result from a new discovery or a revision of existing knowledge which includes corrections of concepts or mappings. Indeed, changes affecting KOS entities may force the underline mappings to be updated in order to ensure their reliability over time. To tackle this open research problem, we study how mappings are affected by KOS evolution. This article presents a detailed descriptive analysis of the impact that changes in KOS have on mappings. As a case study, we use the official mappings established between SNOMED CT and ICD-9-CM from 2009 to 2011. Results highlight factors according to which KOS changes in varying degrees influence the evolution of mappings. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Plant pigment types, distributions, and influences on shallow water submerged aquatic vegetation mapping

    Science.gov (United States)

    Hall, Carlton R.; Bostater, Charles R., Jr.; Virnstein, Robert

    2004-11-01

    Development of robust protocols for use in mapping shallow water habitats using hyperspectral imagery requires knowledge of absorbing and scattering features present in the environment. These include, but are not limited to, water quality parameters, phytoplankton concentrations and species, submerged aquatic vegetation (SAV) species and densities, epiphytic growth on SAV, benthic microalgae and substrate reflectance characteristics. In the Indian River Lagoon, Fl. USA we conceptualize the system as having three possible basic layers, water column and SAV bed above the bottom. Each layer is occupied by plants with their associated light absorbing pigments that occur in varying proportions and concentrations. Phytoplankton communities are composed primarily of diatoms, dinoflagellates, and picoplanktonic cyanobacteria. SAV beds, including flowering plants and green, red, and brown macro-algae exist along density gradients ranging in coverage from 0-100%. SAV beds may be monotypic, or more typically, mixtures of the several species that may or may not be covered in epiphytes. Shallow water benthic substrates are colonized by periphyton communities that include diatoms, dinoflagellates, chlorophytes and cyanobacteria. Inflection spectra created form ASIA hyperspectral data display a combination of features related to water and select plant pigment absorption peaks.

  2. Productive vegetation: relationships between net primary productivity, vegetation types and climate change in the Wet Tropics bioregion

    International Nuclear Information System (INIS)

    Ramirez, Vanessa Valdez; Williams, Stephen E.; VanDerWal, Jeremy

    2007-01-01

    Full text: Full text: There is now ample evidence demonstrating the impacts of climate change on biodiversity and human society (Walther ef a/. 2002). Numerous studies have shown climate change is one of the most significant threats to tropical forests, such as the Wet Tropics Heritage Area, due to their high biodiversity and endemism (Pounds ef al. 1999; Hughes 2000; Parmesan and Yohe 2003). Williams ef al. (2003) suggested that small shifts in net primary productivity (NPP) as a result of climate change could lead to potentially massive follow-on effects for the extremely diverse and vulnerable rainforest flora and fauna. It is therefore crucial to explore the relationships between NPP and local biodiversity, especially to create models for different climate change scenarios. Nevertheless, NPP in the Wet Tropics has yet to be estimated. This is the first study to provide a general NPP estimate for the Wet Tropics bioregion using climate surrogates (Schuur 2003). This technique estimates NPP in an accurate, repeatable, and cost-effective way. NPP values were linked to vegetation types and examined under various climatic and environmental conditions. Results show a significant difference in productivity according to vegetation types and climatic variables, with temperature and rainfall seasonality as the most important determining variables. Additionally, lowland and upland vegetations showed a significant difference in productivity patterns throughout the year. Vegetation types located above 1000 metres in altitude had the lowest values of mean annual productivity due to their high rainfall and low temperatures; vegetation types located below 600 metres showed increased productivity values during the wet season (December-March). Net primary productivity will certainly be impacted by changes in temperature and rainfall, due to climate change. Although an increase in NPP values can be predicted for upland areas, the more widely distributed lowlands will drastically

  3. Integration of Landscape Metrics and Variograms to Characterize and Quantify the Spatial Heterogeneity Change of Vegetation Induced by the 2008 Wenchuan Earthquake

    Directory of Open Access Journals (Sweden)

    Ling Wang

    2017-06-01

    Full Text Available The quantification of spatial heterogeneity can be used to examine the structure of ecological systems. The 2008 Wenchuan earthquake caused severe vegetation damage. In addition to simply detecting change, the magnitude of changes must also be examined. Remote sensing and geographic information system techniques were used to produce landscape maps before and after the earthquake and analyze the spatial-temporal change of the vegetation pattern. Landscape metrics were selected to quantify the spatial heterogeneity in a categorical map at both the class and landscape levels. The results reveal that the Wenchuan earthquake greatly increased the heterogeneity in the study area. In particular, forests experienced the most fragmentation among all of the landscape types. In addition, spatial heterogeneity in a numerical map was studied by using variogram analysis of normalized difference vegetation indices derived from Landsat images. In comparison to before the earthquake, the spatial variability after the earthquake had doubled. The structure of the spatial heterogeneity represented by the range of normalized difference vegetation index (NDVI variograms also changed due to the earthquake. Moreover, the results of the NDVI variogram analysis of three contrasting landscapes, which were farmland, broadleaved forest, and coniferous forest, confirm that the earthquake produced spatial variability and changed the structure of the landscapes. Regardless of before or after the earthquake, farmland sites are the most heterogeneous among the three landscapes studied.

  4. Plot-scale evidence of tundra vegetation change and links to recent summer warming

    Science.gov (United States)

    Sarah C. Elmendorf; Gregory H.R. Henry; Robert D. Hollister; Robert G. Bjork; Noemie Boulanger-Lapointe; Elisabeth J. Cooper; Johannes H.C. Cornelissen; Thomas A. Day; Ellen Dorrepaal; Tatiana G. Elumeeva; Mike Gill; William A. Gould; John Harte; David S. Hik; Annika Hofgaard; David R. Johnson; Jill F. Johnstone; Ingijorg Svala Jonsdottir; Janet C. Jorgenson; Kari Klanderud; Julia A. Klein; Saewan Koh; Gaku Kudo; Mark Lara; Esther Levesque; Borgthor Magnusson; Jeremy L. May; Joel A. Mercado; Anders Michelsen; Ulf Molau; Isla H. Myers-Smith; Steven F. Oberbauer; Vladimir G. Onipchenko; Christian Rixen; Niels Martin Schmidt; Gaius R. Shaver; Marko J. Spasojevic; Pora Ellen Porhallsdottir; Anne Tolvanen; Tiffany Troxler; Craig E. Tweedie; Sandra Villareal; Carl-Henrik Wahren; Xanthe Walker; Patrick J. Webber; Jeffrey M. Welker; Sonja Wipf

    2012-01-01

    Temperature is increasing at unprecedented rates across most of the tundra biome1. Remote-sensing data indicate that contemporary climate warming has already resulted in increased productivity over much of the Arctic2,3, but plot-based evidence for vegetation transformation is not widespread. We analysed change in tundra vegetation surveyed between 1980 and 2010 in 158...

  5. A Mechanistic Perspective on Process-Induced Changes in Glucosinolate Content in Brassica Vegetables: A Review

    NARCIS (Netherlands)

    Nugrahedi, P.Y.; Verkerk, R.; Widianarko, B.; Dekker, M.

    2015-01-01

    Brassica vegetables are consumed mostly after processing, which is expected to give beneficial effects on the vegetable properties, such as improved palatability and bioavailability of nutrients, or shelf life extension. But processing also results to various changes in the content of health

  6. Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw

    NARCIS (Netherlands)

    Kolk, van der Henk-Jan; Heijmans, M.M.P.D.; Huissteden, van J.; Pullens, J.W.M.; Berendse, F.

    2016-01-01

    Over the past decades, vegetation and climate have changed significantly in the Arctic. Deciduous shrub cover is often assumed to expand in tundra landscapes, but more frequent abrupt permafrost thaw resulting in formation of thaw ponds could lead to vegetation shifts towards graminoid-dominated

  7. Global sampling of the seasonal changes in vegetation biophysical properties and associated carbon flux dynamics: using the synergy of information captured by spectral time series

    Science.gov (United States)

    Campbell, P. K. E.; Huemmrich, K. F.; Middleton, E.; Voorhis, S.; Landis, D.

    2016-12-01

    Spatial heterogeneity and seasonal dynamics in vegetation function contribute significantly to the uncertainties in regional and global CO2 budgets. High spectral resolution imaging spectroscopy ( 10 nm, 400-2500 nm) provides an efficient tool for synoptic evaluation of the factors significantly affecting the ability of the vegetation to sequester carbon and to reflect radiation, due to changes in vegetation chemical and structural composition. EO-1 Hyperion has collected more than 15 years of repeated observations for vegetation studies, and currently Hyperion time series are available for study of vegetation carbon dynamics at a number of FLUX sites. This study presents results from the analysis of EO-1 Hyperion and FLUX seasonal composites for a range of ecosystems across the globe. Spectral differences and seasonal trends were evaluated for each vegetation type and specific phenology. Evaluating the relationships between CO2 flux parameters (e.g., Net ecosystem production - NEP; Gross Ecosystem Exchange - GEE, CO2 flux, μmol m-2 s-1) and spectral parameters for these very different ecosystems, high correlations were established to parameters associated with canopy water and chlorophyll content for deciduous, and photosynthetic function for conifers. Imaging spectrometry provided high spatial resolution maps of CO2 fluxes absorbed by vegetation, and was efficient in tracing seasonal flux dynamics. This study will present examples for key ecosystem tipes to demonstrate the ability of imaging spectrometry and EO-1 Hyperion to map and compare CO2 flux dynamics across the globe.

  8. Change in Vegetation Growth and Its Feedback to Climate in the Tibet Plateau

    Science.gov (United States)

    Piao, S.

    2015-12-01

    Vegetation growth is strongly influenced by climate and climate change and can affect the climate system through a number of bio-physical processes. As a result, monitoring, understanding and predicting the response of vegetation growth to global change has been a central activity in Earth system science during the past two decades. The Tibetan Plateau (TP) has experienced a pronounced warming over recent decades. The warming rate of the TP over the period 1960-2009 was about twice the global average warming rate, yet with heterogeneous patterns. In this study, we use satellite derived NDVI data to investigate spatio-temporal change in vegetation growth over the last three decades.

  9. Mapping the Wetland Vegetation Communities of the Australian Great Artesian Basin Springs Using SAM, Mtmf and Spectrally Segmented PCA Hyperspectral Analyses

    Science.gov (United States)

    White, D. C.; Lewis, M. M.

    2012-07-01

    segmented for the VIS-NIR (450-1,350 nm), SWIR 1 (1,400-1,800 nm) and SWIR 2 (1,950-2,480 nm). The resulting pure endmember image pixels of the vegetation communities identified were used as target spectra for input into the SAM and MTMF algorithms. Spring wetland vegetation communities successfully discriminated include low lying reeds and sedges along spring tails (Baumea spp. and Cyperus spp.), dense homogenous stands of Phragmites australis reeds, and sporadic patches of salt couch grass (Sparabolus spp.). Our results indicate that a combination of hyperspectral remote sensing techniques which reduce superfluous wavebands providing a targeted spectral matching approach are capable of discriminating and mapping key vegetation communities of the GAB springs. This approach provides reliable baseline mapping of the GAB spring wetland vegetation communities, with repeatability over space and time. In addition it has the capability to determine the sensitivity of spring wetland vegetation extent, distribution and diversity, to associated changes in spring flow rates due to water extractions. This approach will ultimately inform water allocation plan management policies.

  10. Water–Soil–Vegetation Dynamic Interactions in Changing Climate

    Directory of Open Access Journals (Sweden)

    Xixi Wang

    2017-09-01

    Full Text Available Previous studies of land degradation, topsoil erosion, and hydrologic alteration typically focus on these subjects individually, missing important interrelationships among these important aspects of the Earth’s system. However, an understanding of water–soil–vegetation dynamic interactions is needed to develop practical and effective solutions to sustain the globe’s eco-environment and grassland agriculture, which depends on grasses, legumes, and other fodder or soil-building crops. This special issue is intended to be a platform for a discussion of the relevant scientific findings based on experimental and/or modeling studies. Its 12 peer-reviewed articles present data, novel analysis/modeling approaches, and convincing results of water–soil–vegetation interactions under historical and future climates. Two of the articles examine how lake/pond water quality is related to human activity and climate. Overall, these articles can serve as important references for future studies to further advance our understanding of how water, soil, and vegetation interactively affect the health and productivity of the Earth’s ecosystem.

  11. Downscaled Climate Change Projections for the Southern Colorado Plateau: Variability and Implications for Vegetation Changes

    Science.gov (United States)

    Garfin, G. M.; Eischeid, J. K.; Cole, K. L.; Ironside, K.; Cobb, N. S.

    2008-12-01

    Recent and rapid forest mortality in western North America and associated changes in fire frequency and area burned are among the chief concerns of ecosystem managers. These examples of climate change surprises demonstrate nonlinear and threshold ecosystem responses to increased temperatures and severe drought. A consistent management request from climate change adaptation workshops held during the last four years in the southwest U.S. is for region-specific estimates of climate and vegetation change, in order to provide guidance for management of federal and state forest, range, and riparian preserves and land holdings. Partly in response to these concerns, and partly in the interest of improving knowledge of potential ecosystem changes and their relationships with observed changes and changes demonstrated in the paleoecological record, we developed a set of integrated climate and ecosystem analyses. We selected five of twenty-two GCMs from the PCMDI archive of IPCC AR4 model runs, based on their approximations of observed critical seasonality for vegetation in the Southern Colorado Plateau (domain: 35°- 38°N, 114°-107°W), centered on the Four Corners states. We used three key seasons in our analysis, winter (November-March), pre-monsoon (May-June), and monsoon (July- September). Projections of monthly and seasonal temperature and precipitation from our five-model ensemble indicate steadily increasing temperatures in our region of interest during the twenty-first century. By 2050, the ensemble projects increases of 3.0°C during May and June, months critical for drought stress and tree mortality, and 4.5-5.0°C by 2090. Projected temperature changes for months during the heart of winter (December and January) are on the order of 2.5°C by 2050 and 3.0°C by 2090; such changes are likely to affect snow hydrology in middle to low elevations in the Southern Colorado Plateau. Summer temperature increases are on the order of 2.5°C (2050) and 4.0°C (2090). The

  12. [Responses of vegetation changes to climatic variations in Panxi area based on the MODIS multispectral data].

    Science.gov (United States)

    Shao, Huai-Yong; Wu, Jin-Hui; Liu, Meng; Yang, Wu-Nian

    2014-01-01

    It is an important research area to quantitatively studying the relationship between global climatic change and vegetation change based on the remote sensing technology. Panxi area is the ecological barrier of the upper reaches of the Yangtze River, and it is essential for the stability of the ecological environment of Sichuan as well as that of the whole China. The present article analyzes the vegetation change in 2001-2008 and the relationship between vegetation change and climatic variations of Panxi area, based on MODIS multispectral data and meteorological data. The results indicate that NDVI is positively correlated with temperature and precipitation. The precipitation is the major factor that affects the change of vegetation in the Panxi region and the trend of NDVI is similar with autumn precipitation; while at the same time the influence of climate has a one-month-time-lag.

  13. Climate change vulnerability map of Southeast Asia

    International Development Research Centre (IDRC) Digital Library (Canada)

    anshory

    Development Studies (CEDS), Padjadjaran University, for his excellent research assistance. ... Malaysia, and Philippines) are the most vulnerable to climate change. 2. ... system to adjust to climate change (including climate variability and extremes), ... national administrative areas in seven countries in Southeast Asia, i.e., ...

  14. Genome Sequencing and Mapping Reveal Loss of Heterozygosity as a Mechanism for Rapid Adaptation in the Vegetable Pathogen Phytophthora capsici

    Energy Technology Data Exchange (ETDEWEB)

    Lamour, Kurt H.; Mudge, Joann; Gobena, Daniel; Hurtado-Gonzales, Oscar P.; Schmutz, Jeremy; Kuo, Alan; Miller, Neil A.; Rice, Brandon J.; Raffaele, Sylvain; Cano, Liliana M.; Bharti, Arvind K.; Donahoo, Ryan S.; Finely, Sabra; Huitema, Edgar; Hulvey, Jon; Platt, Darren; Salamov, Asaf; Savidor, Alon; Sharma, Rahul; Stam, Remco; Sotrey, Dylan; Thines, Marco; Win, Joe; Haas, Brian J.; Dinwiddie, Darrell L.; Jenkins, Jerry; Knight, James R.; Affourtit, Jason P.; Han, Cliff S.; Chertkov, Olga; Lindquist, Erika A.; Detter, Chris; Grigoriev, Igor V.; Kamoun, Sophien; Kingsmore, Stephen F.

    2012-02-07

    The oomycete vegetable pathogen Phytophthora capsici has shown remarkable adaptation to fungicides and new hosts. Like other members of this destructive genus, P. capsici has an explosive epidemiology, rapidly producing massive numbers of asexual spores on infected hosts. In addition, P. capsici can remain dormant for years as sexually recombined oospores, making it difficult to produce crops at infested sites, and allowing outcrossing populations to maintain significant genetic variation. Genome sequencing, development of a high-density genetic map, and integrative genomic or genetic characterization of P. capsici field isolates and intercross progeny revealed significant mitotic loss of heterozygosity (LOH) in diverse isolates. LOH was detected in clonally propagated field isolates and sexual progeny, cumulatively affecting >30percent of the genome. LOH altered genotypes for more than 11,000 single-nucleotide variant sites and showed a strong association with changes in mating type and pathogenicity. Overall, it appears that LOH may provide a rapid mechanism for fixing alleles and may be an important component of adaptability for P. capsici.

  15. Digital soil mapping using remote sensing indices, terrain attributes, and vegetation features in the rangelands of northeastern Iran.

    Science.gov (United States)

    Mahmoudabadi, Ebrahim; Karimi, Alireza; Haghnia, Gholam Hosain; Sepehr, Adel

    2017-09-11

    Digital soil mapping has been introduced as a viable alternative to the traditional mapping methods due to being fast and cost-effective. The objective of the present study was to investigate the capability of the vegetation features and spectral indices as auxiliary variables in digital soil mapping models to predict soil properties. A region with an area of 1225 ha located in Bajgiran rangelands, Khorasan Razavi province, northeastern Iran, was chosen. A total of 137 sampling sites, each containing 3-5 plots with 10-m interval distance along a transect established based on randomized-systematic method, were investigated. In each plot, plant species names and numbers as well as vegetation cover percentage (VCP) were recorded, and finally one composite soil sample was taken from each transect at each site (137 soil samples in total). Terrain attributes were derived from a digital elevation model, different bands and spectral indices were obtained from the Landsat7 ETM+ images, and vegetation features were calculated in the plots, all of which were used as auxiliary variables to predict soil properties using artificial neural network, gene expression programming, and multivariate linear regression models. According to R 2 RMSE and MBE values, artificial neutral network was obtained as the most accurate soil properties prediction function used in scorpan model. Vegetation features and indices were more effective than remotely sensed data and terrain attributes in predicting soil properties including calcium carbonate equivalent, clay, bulk density, total nitrogen, carbon, sand, silt, and saturated moisture capacity. It was also shown that vegetation indices including NDVI, SAVI, MSAVI, SARVI, RDVI, and DVI were more effective in estimating the majority of soil properties compared to separate bands and even some soil spectral indices.

  16. The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate

    Energy Technology Data Exchange (ETDEWEB)

    Tchebakova, N M; Parfenova, E [V N Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Academgorodok, Krasnoyarsk, 660036 (Russian Federation); Soja, A J, E-mail: ncheby@forest.akadem.r, E-mail: Amber.J.Soja@nasa.go [National Institute of Aerospace (NIA), NASA Langley Research Center, Climate Sciences, 21 Langley Boulevard, Mail Stop 420, Hampton, VA 23681-2199 (United States)

    2009-10-15

    Observations and general circulation model projections suggest significant temperature increases in Siberia this century that are expected to have profound effects on Siberian vegetation. Potential vegetation change across Siberia was modeled, coupling our Siberian BioClimatic Model with several Hadley Centre climate change scenarios for 2020, 2050 and 2080, with explicit consideration of permafrost and fire activity. In the warmer and drier climate projected by these scenarios, Siberian forests are predicted to decrease and shift northwards and forest-steppe and steppe ecosystems are predicted to dominate over half of Siberia due to the dryer climate by 2080. Despite the large predicted increases in warming, permafrost is not predicted to thaw deep enough to sustain dark (Pinus sibirica, Abies sibirica, and Picea obovata) taiga. Over eastern Siberia, larch (Larix dahurica) taiga is predicted to continue to be the dominant zonobiome because of its ability to withstand continuous permafrost. The model also predicts new temperate broadleaf forest and forest-steppe habitats by 2080. Potential fire danger evaluated with the annual number of high fire danger days (Nesterov index is 4000-10 000) is predicted to increase by 2080, especially in southern Siberia and central Yakutia. In a warming climate, fuel load accumulated due to replacement of forest by steppe together with frequent fire weather promotes high risks of large fires in southern Siberia and central Yakutia, where wild fires would create habitats for grasslands because the drier climate would no longer be suitable for forests.

  17. Kuchler Vegetation

    Data.gov (United States)

    California Natural Resource Agency — Digital version of potential natural plant communites as compiled and published on 'Map of the Natural Vegetation of California' by A. W. Kuchler, 1976. Source map...

  18. Successional changes in forest vegetation of National Nature Reserve Dubnik

    International Nuclear Information System (INIS)

    Hrabovsky, A.; Balkovic, J.; Kollar, J.

    2011-01-01

    The aim of this is paper is phyto-sociological assessment of the current status of forest vegetation in the National Nature Reserve Dubnik (Slovakia) towards state documented in 1965. The observed state is assigned to progressive succession, which resulted in regression of large group of light-requiring species and extinction of oak forest community Quercetum pubescenti-roboris. During the reporting period there was a shift towards mezophilest types of forest with relative homogenization of habitat conditions on the major environmental gradients. (authors)

  19. Notable shifting in the responses of vegetation activity to climate change in China

    Science.gov (United States)

    Chen, Aifang; He, Bin; Wang, Honglin; Huang, Ling; Zhu, Yunhua; Lv, Aifeng

    The weakening relationship between inter-annual temperature variability and vegetation activity in the Northern Hemisphere over the last three decades has been reported by a recent study. However, how and to what extent vegetation activity responds to climate change in China is still unclear. We applied the Pearson correlation and partial correlation methods with a moving 15-y window to the GIMMS NDVI dataset from NOAA/AVHRR and observed climate data to examine the variation in the relationships between vegetation activity and climate variables. Results showed that there was an expanding negative response of vegetation growth to climate warming and a positive role of precipitation. The change patterns between NDVI and climate variables over vegetation types during the past three decades pointed an expending negative correlation between NDVI and temperature and a positive role of precipitation over most of the vegetation types (meadow, grassland, shrub, desert, cropland, and forest). Specifically, correlation between NDVI and temperature (PNDVI-T) have shifted from positive to negative in most of the station of temperature-limited areas with evergreen broadleaf forests, whereas precipitation-limited temperate grassland and desert were characterized by a positive PNDVI-P. This study contributes to ongoing investigations of the effects of climate change on vegetation activity. It is also of great importance for designing forest management strategies to cope with climate change.

  20. Quantifying Impacts of Land-Use/Cover Change on Urban Vegetation Gross Primary Production: A Case Study of Wuhan, China

    Directory of Open Access Journals (Sweden)

    Shishi Liu

    2018-03-01

    Full Text Available This study quantified the impacts of land-use/cover change (LUCC on gross primary production (GPP during 2000–2013 in a typical densely urbanized Chinese city, Wuhan. GPP was estimated at 30-m spatial resolution using annual land cover maps, meteorological data of the baseline year, and the normalized difference vegetation index (NDVI, which was generated with the spatial and temporal adaptive reflectance fusion model (STARFM based on Landsat and MODIS images. The results showed that approximately 309.95 Gg C was lost over 13 years, which was mainly due to the conversion from cropland to built-up areas. The interannual variation of GPP was affected by the change of vegetation composition, especially the increasing relative fraction of forests. The loss of GPP due to the conversion from forest to cropland fluctuated through the study period, but showed a sharp decrease in 2007 and 2008. The gain of GPP due to the conversion from cropland to forest was low between 2001 and 2009, but increased dramatically between 2009 and 2013. The change rate map showed an increasing trend along the highways, and a decreasing trend around the metropolitan area and lakes. The results indicated that carbon consequences should be considered before land management policies are put forth.

  1. Mapping climate change in European temperature distributions

    OpenAIRE

    Stainforth, David A.; Chapman, Sandra C.; Watkins, Nicholas W.

    2014-01-01

    Climate change poses challenges for decision makers across society, not just in preparing for the climate of the future but even when planning for the climate of the present day. When making climate sensitive decisions, policy makers and adaptation planners would benefit from information on local scales and for user-specific quantiles (e.g. the hottest/coldest 5% of days) and thresholds (e.g. days above 28 ° C), not just mean changes. Here, we translate observations of weather into observatio...

  2. Mapping climate change in European temperature distributions

    OpenAIRE

    Stainforth, David A; Chapman, Sandra C; Watkins, Nicholas W

    2013-01-01

    Climate change poses challenges for decision makers across society, not just in preparing for the climate of the future but even when planning for the climate of the present day. When making climate sensitive decisions, policy makers and adaptation planners would benefit from information on local scales and for user-specific quantiles (e.g. the hottest/coldest 5% of days) and thresholds (e.g. days above 28 ° C), not just mean changes. Here, we translate observations of weather into observatio...

  3. The Impact of Climate Change on Recent Vegetation Changes on Dovrefjell, Norway

    Directory of Open Access Journals (Sweden)

    Jarle Inge Holten

    2011-01-01

    Full Text Available The ongoing climate warming has been reported to affect a broad range of organisms, and mountain ecosystems are considered to be particularly sensitive because they are limited by low temperatures. Meteorological data show an increased temperature for the alpine areas at Dovrefjell, Norway, causing a prolonged growing season and increased temperature sum. As part of the worldwide project Global Observation Research Initiative in Alpine Environments (GLORIA, the short-term changes in vascular plant species richness, species composition of lichen and vascular plant communities, and abundance of single species were studied at four summits representing an altitudinal gradient from the low alpine to the high alpine zone. During the period from 2001 to 2008, an increase in species richness at the lowest summit, as well as a change in the composition of vascular plant communities, was found at the two lowest summits. The results also indicate an increase in abundance of some shrubs and graminoids and a decline in the cover of some species of lichens at the lowest summit. These changes are in accordance with climate induced changes reported in other studies, but other causes for the observed vegetation changes, in particular changes in grazing and trampling pressure, cannot be ruled out.

  4. Influence of dynamic vegetation on climate change and terrestrial carbon storage in the Last Glacial Maximum

    Science.gov (United States)

    O'ishi, R.; Abe-Ouchi, A.

    2013-07-01

    When the climate is reconstructed from paleoevidence, it shows that the Last Glacial Maximum (LGM, ca. 21 000 yr ago) is cold and dry compared to the present-day. Reconstruction also shows that compared to today, the vegetation of the LGM is less active and the distribution of vegetation was drastically different, due to cold temperature, dryness, and a lower level of atmospheric CO2 concentration (185 ppm compared to a preindustrial level of 285 ppm). In the present paper, we investigate the influence of vegetation change on the climate of the LGM by using a coupled atmosphere-ocean-vegetation general circulation model (AOVGCM, the MIROC-LPJ). The MIROC-LPJ is different from earlier studies in the introduction of a bias correction method in individual running GCM experiments. We examined four GCM experiments (LGM and preindustrial, with and without vegetation feedback) and quantified the strength of the vegetation feedback during the LGM. The result shows that global-averaged cooling during the LGM is amplified by +13.5 % due to the introduction of vegetation feedback. This is mainly caused by the increase of land surface albedo due to the expansion of tundra in northern high latitudes and the desertification in northern middle latitudes around 30° N to 60° N. We also investigated how this change in climate affected the total terrestrial carbon storage by using offline Lund-Potsdam-Jena dynamic global vegetation model (LPJ-DGVM). Our result shows that the total terrestrial carbon storage was reduced by 597 PgC during the LGM, which corresponds to the emission of 282 ppm atmospheric CO2. In the LGM experiments, the global carbon distribution is generally the same whether the vegetation feedback to the atmosphere is included or not. However, the inclusion of vegetation feedback causes substantial terrestrial carbon storage change, especially in explaining the lowering of atmospheric CO2 during the LGM.

  5. Influence of dynamic vegetation on climate change and terrestrial carbon storage in the Last Glacial Maximum

    Directory of Open Access Journals (Sweden)

    R. O'ishi

    2013-07-01

    Full Text Available When the climate is reconstructed from paleoevidence, it shows that the Last Glacial Maximum (LGM, ca. 21 000 yr ago is cold and dry compared to the present-day. Reconstruction also shows that compared to today, the vegetation of the LGM is less active and the distribution of vegetation was drastically different, due to cold temperature, dryness, and a lower level of atmospheric CO2 concentration (185 ppm compared to a preindustrial level of 285 ppm. In the present paper, we investigate the influence of vegetation change on the climate of the LGM by using a coupled atmosphere-ocean-vegetation general circulation model (AOVGCM, the MIROC-LPJ. The MIROC-LPJ is different from earlier studies in the introduction of a bias correction method in individual running GCM experiments. We examined four GCM experiments (LGM and preindustrial, with and without vegetation feedback and quantified the strength of the vegetation feedback during the LGM. The result shows that global-averaged cooling during the LGM is amplified by +13.5 % due to the introduction of vegetation feedback. This is mainly caused by the increase of land surface albedo due to the expansion of tundra in northern high latitudes and the desertification in northern middle latitudes around 30° N to 60° N. We also investigated how this change in climate affected the total terrestrial carbon storage by using offline Lund-Potsdam-Jena dynamic global vegetation model (LPJ-DGVM. Our result shows that the total terrestrial carbon storage was reduced by 597 PgC during the LGM, which corresponds to the emission of 282 ppm atmospheric CO2. In the LGM experiments, the global carbon distribution is generally the same whether the vegetation feedback to the atmosphere is included or not. However, the inclusion of vegetation feedback causes substantial terrestrial carbon storage change, especially in explaining the lowering of atmospheric CO2 during the LGM.

  6. Using management to address vegetation stress related to land-use and climate change

    Science.gov (United States)

    Middleton, Beth A.; Boudell, Jere; Fisichelli, Nicholas

    2017-01-01

    While disturbances such as fire, cutting, and grazing can be an important part of the conservation of natural lands, some adjustments to management designed to mimic natural disturbance may be necessary with ongoing and projected climate change. Stressed vegetation that is incapable of regeneration will be difficult to maintain if adults are experiencing mortality, and/or if their early life-history stages depend on disturbance. A variety of active management strategies employing disturbance are suggested, including resisting, accommodating, or directing vegetation change by manipulating management intensity and frequency. Particularly if land-use change is the main cause of vegetation stress, amelioration of these problems using management may help vegetation resist change (e.g. strategic timing of water release if a water control structure is available). Managers could direct succession by using management to push vegetation toward a new state. Despite the historical effects of management, some vegetation change will not be controllable as climates shift, and managers may have to accept some of these changes. Nevertheless, proactive measures may help managers achieve important conservation goals in the future.

  7. The Impact of Observed Vegetation Changes on Land–Atmosphere Feedbacks During Drought

    KAUST Repository

    Meng, X. H.

    2014-04-01

    Moderate Resolution Imaging Spectroradiometer (MODIS)-derived vegetation fraction data were used to update the boundary conditions of the advanced research Weather Research and Forecasting (WRF) Model to assess the influence of realistic vegetation cover on climate simulations in southeast Australia for the period 2000–08. Results show that modeled air temperature was improved when MODIS data were incorporated, while precipitation changes little with only a small decrease in the bias. Air temperature changes in different seasons reflect the variability of vegetation cover well, while precipitation changes have a more complicated relationship to changes in vegetation fraction. Both MODIS and climatology-based simulation experiments capture the overall precipitation changes, indicating that precipitation is dominated by the large-scale circulation, with local vegetation changes contributing variations around these. Simulated feedbacks between vegetation fraction, soil moisture, and drought over southeast Australia were also investigated. Results indicate that vegetation fraction changes lag precipitation reductions by 6–8 months in nonarid regions. With the onset of the 2002 drought, a potential fast physical mechanism was found to play a positive role in the soil moisture–precipitation feedback, while a slow biological mechanism provides a negative feedback in the soil moisture–precipitation interaction on a longer time scale. That is, in the short term, a reduction in soil moisture leads to a reduction in the convective potential and, hence, precipitation, further reducing the soil moisture. If low levels of soil moisture persist long enough, reductions in vegetation cover and vigor occur, reducing the evapotranspiration and thus reducing the soil moisture decreases and dampening the fast physical feedback. Importantly, it was observed that these feedbacks are both space and time dependent.

  8. Mapping SOC (Soil Organic Carbon) using LiDAR-derived vegetation indices in a random forest regression model

    Science.gov (United States)

    Will, R. M.; Glenn, N. F.; Benner, S. G.; Pierce, J. L.; Spaete, L.; Li, A.

    2015-12-01

    Quantifying SOC (Soil Organic Carbon) storage in complex terrain is challenging due to high spatial variability. Generally, the challenge is met by transforming point data to the entire landscape using surrogate, spatially-distributed, variables like elevation or precipitation. In many ecosystems, remotely sensed information on above-ground vegetation (e.g. NDVI) is a good predictor of below-ground carbon stocks. In this project, we are attempting to improve this predictive method by incorporating LiDAR-derived vegetation indices. LiDAR provides a mechanism for improved characterization of aboveground vegetation by providing structural parameters such as vegetation height and biomass. In this study, a random forest model is used to predict SOC using a suite of LiDAR-derived vegetation indices as predictor variables. The Reynolds Creek Experimental Watershed (RCEW) is an ideal location for a study of this type since it encompasses a strong elevation/precipitation gradient that supports lower biomass sagebrush ecosystems at low elevations and forests with more biomass at higher elevations. Sagebrush ecosystems composed of Wyoming, Low and Mountain Sagebrush have SOC values ranging from .4 to 1% (top 30 cm), while higher biomass ecosystems composed of aspen, juniper and fir have SOC values approaching 4% (top 30 cm). Large differences in SOC have been observed between canopy and interspace locations and high resolution vegetation information is likely to explain plot scale variability in SOC. Mapping of the SOC reservoir will help identify underlying controls on SOC distribution and provide insight into which processes are most important in determining SOC in semi-arid mountainous regions. In addition, airborne LiDAR has the potential to characterize vegetation communities at a high resolution and could be a tool for improving estimates of SOC at larger scales.

  9. Mapping swamp timothy (Cripsis schenoides) seed productivity using spectral values and vegetation indices in managed wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Rahilly, P.J.A.; Li, D.; Guo, Q.; Zhu, J.; Ortega, R.; Quinn, N.W.T.; Harmon, T.C.

    2010-01-15

    This work examines the potential to predict the seed productivity of a key wetland plant species using spectral reflectance values and spectral vegetation indices. Specifically, the seed productivity of swamp timothy (Cripsis schenoides) was investigated in two wetland ponds, managed for waterfowl habitat, in California's San Joaquin Valley. Spectral reflectance values were obtained and associated spectral vegetation indices (SVI) calculated from two sets of high resolution aerial images (May 11, 2006 and June 9, 2006) and were compared to the collected vegetation data. Vegetation data were collected and analyzed from 156 plots for total aboveground biomass, total aboveground swamp timothy biomass, and total swamp timothy seed biomass. The SVI investigated included the Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Transformed Soil Adjusted Vegetation Index (TSAVI), Modified Soil Adjusted Vegetation Index (MSAVI), and Global Environment Monitoring Index (GEMI). We evaluated the correlation of the various SVI with in situ vegetation measurements for linear, quadratic, exponential and power functions. In all cases, the June image provided better predictive capacity relative to May, a result that underscores the importance of timing imagery to coincide with more favorable vegetation maturity. The north pond with the June image using SR and the exponential function (R{sup 2}=0.603) proved to be the best predictor of swamp timothy seed productivity. The June image for the south pond was less predictive, with TSAVI and the exponential function providing the best correlation (R{sup 2}=0.448). This result was attributed to insufficient vegetal cover in the south pond (or a higher percentage of bare soil) due to poor drainage conditions which resulted in a delay in swamp timothy germination. The results of this work suggest that spectral reflectance can be used to estimate seed productivity in managed seasonal

  10. Isotopic assessment of vegetation changes in grassland and woodland systems

    International Nuclear Information System (INIS)

    Tieszen, L.L.; Archer, S.

    1990-01-01

    Dwight Billings is directly responsible for much of our understanding of plant ecophysiology, and he was one of the first to elucidate and interpret plant physiological processes in relation to ecosystem structure and function. Recent advances in stable isotope chemistry offer opportunities to identify, clarify, and trace further the linkages between plant and ecosystem-level processes, both past and present. It is within this framework of a new integrative technology, which facilitates the approaches developed by Billings, that we present this contribution. To date, there have been few studies of Great Basin vegetation processes using the techniques discussed here, and these have been described in Chapters 5 and 6, so most of our examples have been drawn from adjacent ecosystems

  11. The consequences of pleistocene climate change on lowland neotropical vegetation

    Energy Technology Data Exchange (ETDEWEB)

    De Oliveira, P.E.; Colinvaux, P.A. (Smithsonian Tropical Research Institute, Panama City (Panama))

    1994-06-01

    Palynological reconstructions indicate that lowland tropical America was subject to intense cooling during the last ice-age. The descent of presently montane taxa into the lowlands of Amazonia and Minas Gerais indicate temperature depressions ranging from 5[degrees]C to 9[degrees]C cooler-than-present. The strengthened incursion of southerly airmasses caused a reassortment of vegetation throughout Amazonia. Presently allopatric species are found to have been sympatric as novel forest assemblages and formed and dissolved. Modest drying, perhaps a 20% reduction in precipitation, accounts for all the records that show a Pleistocene expansion of savanna. No evidence is found to support the fragmentation of Amazonian forests during glacial times, and the hypothesis of forest refuges as an explanation of tropical speciation is rejected on empirical grounds.

  12. Simulating vegetation response to climate change in the Blue Mountains with MC2 dynamic global vegetation model

    Directory of Open Access Journals (Sweden)

    John B. Kim

    2018-04-01

    Full Text Available Warming temperatures are projected to greatly alter many forests in the Pacific Northwest. MC2 is a dynamic global vegetation model, a climate-aware, process-based, and gridded vegetation model. We calibrated and ran MC2 simulations for the Blue Mountains Ecoregion, Oregon, USA, at 30 arc-second spatial resolution. We calibrated MC2 using the best available spatial datasets from land managers. We ran future simulations using climate projections from four global circulation models (GCM under representative concentration pathway 8.5. Under this scenario, forest productivity is projected to increase as the growing season lengthens, and fire occurrence is projected to increase steeply throughout the century, with burned area peaking early- to mid-century. Subalpine forests are projected to disappear, and the coniferous forests to contract by 32.8%. Large portions of the dry and mesic forests are projected to convert to woodlands, unless precipitation were to increase. Low levels of change are projected for the Umatilla National Forest consistently across the four GCM’s. For the Wallowa-Whitman and the Malheur National Forest, forest conversions are projected to vary more across the four GCM-based simulations, reflecting high levels of uncertainty arising from climate. For simulations based on three of the four GCMs, sharply increased fire activity results in decreases in forest carbon stocks by the mid-century, and the fire activity catalyzes widespread biome shift across the study area. We document the full cycle of a structured approach to calibrating and running MC2 for transparency and to serve as a template for applications of MC2. Keywords: Climate change, Regional change, Simulation, Calibration, Forests, Fire, Dynamic global vegetation model

  13. The Changing California Coast: The Effect of a Variable Water Budget on Coastal Vegetation Succession

    Science.gov (United States)

    Hsu, Wei-Chen; Remar, Alex; McClure, Adam; Williams, Emily; Kannan, Soumya; Steers, Robert; Schmidt, Cindy; Skiles, Joseph W.; Hsu, Wei-Chen

    2011-01-01

    The land-ocean interface along the central coast of California is one of the most diverse biogeographic regions of the state. This area is composed of a species-rich mosaic of coastal grassland, shrubland, and forest vegetation types. An acceleration of conifer encroachment into shrublands and shrub encroachment into grasslands along the coast has been recently documented. These vegetation changes are believed to be driven primarily by fire suppression and changing grazing patterns. Climatic variables such as precipitation, fog, cloud cover, temperature, slope, and elevation also play an important role in vegetation succession. Our study area is located along the central California coast, which is characterized by a precipitation gradient from the relatively wetter and cooler north to the drier and warmer south. Some studies indicate changing fog patterns along this coast, which may greatly impact vegetation. A decrease in water availability could slow succession processes. The primary objective of this project is to determine if vegetation succession rates are changing for the study area and to identify climate and ecosystem variables which contribute to succession, specifically the transition among grassland, shrubland, and forest. To identify vegetation types and rates of succession, we classified two Landsat TM 5 scenes from 1985 to 2010 with a resulting overall accuracy of 82.4%. Vegetation succession was correlated to changes in maximum and minimum temperatures, precipitation, and elevation for each sub-region of the study area. Fog frequency was then compared between the northern and southern regions of the study area for determining the spatial relation between fog frequency and the percent of vegetation change.

  14. Land cover change map comparisons using open source web mapping technologies

    Science.gov (United States)

    Erik Lindblom; Ian Housman; Tony Guay; Mark Finco; Kevin. Megown

    2015-01-01

    The USDA Forest Service is evaluating the status of current landscape change maps and assessing gaps in their information content. These activities have been occurring under the auspices of the Landscape Change Monitoring System (LCMS) project, which is a joint effort between USFS Research, USFS Remote Sensing Applications Center (RSAC), USGS Earth Resources...

  15. Vegetation Changes along the Qinghai-Tibet Plateau Engineering Corridor Since 2000 Induced by Climate Change and Human Activities

    Directory of Open Access Journals (Sweden)

    Yi Song

    2018-01-01

    Full Text Available The Qinghai-Tibet (QT Plateau Engineering Corridor is located in the hinterland of the QT Plateau, which is highly sensitive to global climate change. Climate change causes permafrost degradation, which subsequently affects vegetation growth. This study focused on the vegetation dynamics and their relationships with climate change and human activities in the region surrounding the QT Plateau Engineering Corridor. The vegetation changes were inferred by applying trend analysis, the Mann-Kendall trend test and abrupt change analysis. Six key regions, each containing 40 nested quadrats that ranged in size from 500 × 500 m to 20 × 20 km, were selected to determine the spatial scales of the impacts from different factors. Cumulative growing season integrated enhanced vegetation index (CGSIEVI values were calculated for each of the nested quadrats of different sizes to indicate the overall vegetation state over the entire year at different spatial scales. The impacts from human activities, a sudden increase in precipitation and permafrost degradation were quantified at different spatial scales using the CGSIEVI values and meteorological data based on the double mass curve method. Three conclusions were derived. First, the vegetation displayed a significant increasing trend over 23.6% of the study area. The areas displaying increases were mainly distributed in the Hoh Xil. Of the area where the vegetation displayed a significant decreasing trend, 72.4% was made up of alpine meadows. Second, more vegetation, especially the alpine meadows, has begun to degenerate or experience more rapid degradation since 2007 due to permafrost degradation and overgrazing. Finally, an active layer depth of 3 m to 3.2 m represents a limiting depth for alpine meadows.

  16. [Vegetation changes during the Holocene in the North Ibersá, Corrientes, Argentina].

    Science.gov (United States)

    Fernández Pacella, Lionel; Garralla, Silvina; Anzótegui, Luisa

    2011-03-01

    Vegetation changes during the Holocene in the North Iberá, Corrientes, Argentina. Wetlands are very important sites for palynological studies, since they represent one of the most suitable environments for fossil pollen preservation. The aim of this work was to determine, by palynological analysis of lacustrine sediments, the vegetal communities and the predominant environment during the Holocene in NW of Iberá. Two lagoons were studied: San Sebastián and San Juan Poriahú. Sediment samples were obtained with witness using a "Levingstone square-rod sampler", processed with Faegri e Iversen techniques and dated with C14. The palynological graphs were divided in zones using the Tilia program. The palynological analysis allowed visualizing diverse changes in the vegetation: from 6 140 +/- 50 to 5 170 +/- 100 a. C., the NW of Iberá was characterized by marsh-herbaceous vegetation and arboreal vegetation typical of dry vegetation. From 5 170 +/- 100 to 3 460 +/- 60 a. C., a decrease in the species frequency, typical of wet environments, is produced, and the clogging of the waterbody, from 3460 +/- 60 a. C. onwards, while continuing the dominance of herbaceous vegetation typical of these environments, the arboreal pollen, indicates the beginning of a hygrophilous forest development.

  17. An Analytical Solution for the Impact of Vegetation Changes on Hydrological Partitioning Within the Budyko Framework

    Science.gov (United States)

    Zhang, Shulei; Yang, Yuting; McVicar, Tim R.; Yang, Dawen

    2018-01-01

    Vegetation change is a critical factor that profoundly affects the terrestrial water cycle. Here we derive an analytical solution for the impact of vegetation changes on hydrological partitioning within the Budyko framework. This is achieved by deriving an analytical expression between leaf area index (LAI) change and the Budyko land surface parameter (n) change, through the combination of a steady state ecohydrological model with an analytical carbon cost-benefit model for plant rooting depth. Using China where vegetation coverage has experienced dramatic changes over the past two decades as a study case, we quantify the impact of LAI changes on the hydrological partitioning during 1982-2010 and predict the future influence of these changes for the 21st century using climate model projections. Results show that LAI change exhibits an increasing importance on altering hydrological partitioning as climate becomes drier. In semiarid and arid China, increased LAI has led to substantial streamflow reductions over the past three decades (on average -8.5% in 1990s and -11.7% in 2000s compared to the 1980s baseline), and this decreasing trend in streamflow is projected to continue toward the end of this century due to predicted LAI increases. Our result calls for caution regarding the large-scale revegetation activities currently being implemented in arid and semiarid China, which may result in serious future water scarcity issues here. The analytical model developed here is physically based and suitable for simultaneously assessing both vegetation changes and climate change induced changes to streamflow globally.

  18. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data.

    Science.gov (United States)

    Zhang, Geli; Xiao, Xiangming; Dong, Jinwei; Kou, Weili; Jin, Cui; Qin, Yuanwei; Zhou, Yuting; Wang, Jie; Menarguez, Michael Angelo; Biradar, Chandrashekhar

    2015-08-01

    Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, and estimation of greenhouse gas (methane) emissions. Paddy rice agriculture has expanded rapidly in northeastern China in the last decade, but there are no updated maps of paddy rice fields in the region. Existing algorithms for identifying paddy rice fields are based on the unique physical features of paddy rice during the flooding and transplanting phases and use vegetation indices that are sensitive to the dynamics of the canopy and surface water content. However, the flooding phenomena in high latitude area could also be from spring snowmelt flooding. We used land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to determine the temporal window of flooding and rice transplantation over a year to improve the existing phenology-based approach. Other land cover types (e.g., evergreen vegetation, permanent water bodies, and sparse vegetation) with potential influences on paddy rice identification were removed (masked out) due to their different temporal profiles. The accuracy assessment using high-resolution images showed that the resultant MODIS-derived paddy rice map of northeastern China in 2010 had a high accuracy (producer and user accuracies of 92% and 96%, respectively). The MODIS-based map also had a comparable accuracy to the 2010 Landsat-based National Land Cover Dataset (NLCD) of China in terms of both area and spatial pattern. This study demonstrated that our improved algorithm by using both thermal and optical MODIS data, provides a robust, simple and automated approach to identify and map paddy rice fields in temperate and cold temperate zones, the northern frontier of rice planting.

  19. Global changes in dryland vegetation dynamics (1988–2008 assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data

    Directory of Open Access Journals (Sweden)

    N. Andela

    2013-10-01

    Full Text Available Drylands, covering nearly 30% of the global land surface, are characterized by high climate variability and sensitivity to land management. Here, two satellite-observed vegetation products were used to study the long-term (1988–2008 vegetation changes of global drylands: the widely used reflective-based Normalized Difference Vegetation Index (NDVI and the recently developed passive-microwave-based Vegetation Optical Depth (VOD. The NDVI is sensitive to the chlorophyll concentrations in the canopy and the canopy cover fraction, while the VOD is sensitive to vegetation water content of both leafy and woody components. Therefore it can be expected that using both products helps to better characterize vegetation dynamics, particularly over regions with mixed herbaceous and woody vegetation. Linear regression analysis was performed between antecedent precipitation and observed NDVI and VOD independently to distinguish the contribution of climatic and non-climatic drivers in vegetation variations. Where possible, the contributions of fire, grazing, agriculture and CO2 level to vegetation trends were assessed. The results suggest that NDVI is more sensitive to fluctuations in herbaceous vegetation, which primarily uses shallow soil water, whereas VOD is more sensitive to woody vegetation, which additionally can exploit deeper water stores. Globally, evidence is found for woody encroachment over drylands. In the arid drylands, woody encroachment appears to be at the expense of herbaceous vegetation and a global driver is interpreted. Trends in semi-arid drylands vary widely between regions, suggesting that local rather than global drivers caused most of the vegetation response. In savannas, besides precipitation, fire regime plays an important role in shaping trends. Our results demonstrate that NDVI and VOD provide complementary information and allow new insights into dryland vegetation dynamics.

  20. Predictors of changes in adolescents' consumption of fruits, vegetables and energy-dense snacks.

    Science.gov (United States)

    Pearson, Natalie; Ball, Kylie; Crawford, David

    2011-03-01

    Understanding the predictors of developmental changes in adolescent eating behaviours is important for the design of nutrition interventions. The present study examined associations between individual, social and physical environmental factors and changes in adolescent eating behaviours over 2 years. Consumption of fruits, vegetables and energy-dense snacks was assessed using a Web-based survey completed by 1850 adolescents from years 7 and 9 of secondary schools in Victoria, Australia, at baseline and 2 years later. Perceived value of healthy eating, self-efficacy for healthy eating, social modelling and support, and home availability and accessibility of foods were assessed at baseline. Self-efficacy for increasing fruit consumption was positively associated with the change in fruit and vegetable consumption, while self-efficacy for decreasing junk food consumption was inversely associated with the change in energy-dense snack consumption. Home availability of energy-dense foods was inversely associated with the change in fruit consumption and positively associated with the change in energy-dense snack consumption, while home availability of fruits and vegetables was positively associated with the change in vegetable consumption. Perceived value of healthy eating and modelling of healthy eating by mothers were positively associated with the change in fruit consumption. Support of best friends for healthy eating was positively associated with the change in vegetable consumption. Self-efficacy and home availability of foods appear to be consistent predictors of change in fruit, vegetable and energy-dense snack consumption. Future study should assess the effectiveness of methods to increase self-efficacy for healthy eating and to improve home availability of healthy food options in programmes promoting healthy eating among adolescents.

  1. AN INVESTIGATION OF AUTOMATIC CHANGE DETECTION FOR TOPOGRAPHIC MAP UPDATING

    Directory of Open Access Journals (Sweden)

    P. Duncan

    2012-08-01

    Full Text Available Changes to the landscape are constantly occurring and it is essential for geospatial and mapping organisations that these changes are regularly detected and captured, so that map databases can be updated to reflect the current status of the landscape. The Chief Directorate of National Geospatial Information (CD: NGI, South Africa's national mapping agency, currently relies on manual methods of detecting changes and capturing these changes. These manual methods are time consuming and labour intensive, and rely on the skills and interpretation of the operator. It is therefore necessary to move towards more automated methods in the production process at CD: NGI. The aim of this research is to do an investigation into a methodology for automatic or semi-automatic change detection for the purpose of updating topographic databases. The method investigated for detecting changes is through image classification as well as spatial analysis and is focussed on urban landscapes. The major data input into this study is high resolution aerial imagery and existing topographic vector data. Initial results indicate the traditional pixel-based image classification approaches are unsatisfactory for large scale land-use mapping and that object-orientated approaches hold more promise. Even in the instance of object-oriented image classification generalization of techniques on a broad-scale has provided inconsistent results. A solution may lie with a hybrid approach of pixel and object-oriented techniques.

  2. Tundra vegetation change near Barrow, Alaska (1972–2010)

    International Nuclear Information System (INIS)

    Villarreal, S; Johnson, D R; Lara, M J; Tweedie, C E; Hollister, R D; Webber, P J

    2012-01-01

    Knowledge of how arctic plant communities will respond to change has been largely derived from plot level experimental manipulation, not from trends of decade time scale environmental observations. This study documents plant community change in 330 marked plots at 33 sites established during the International Biological Program near Barrow, Alaska in 1972. Plots were resampled in 1999, 2008 and 2010 for species cover and presence. Cluster analysis identified nine plant communities in 1972. Non-metric multidimensional scaling (NMS) indicates that plant communities have changed in different ways over time, and that wet communities have changed more than dry communities. The relative cover of lichens increased over time, while the response of other plant functional groups varied. Species richness and diversity also increased over time. The most dramatic changes in the cover of bryophytes, graminoids and bare ground coincided with a lemming high in 2008. (letter)

  3. Spatial-temporal development of the mangrove vegetation cover on a hydraulic landfill (Via Expressa Sul, Florianópolis, SC: mapping and interpretation of digital aerophotographs, and quantitative analysis

    Directory of Open Access Journals (Sweden)

    Anderson Tavares de Melo

    2011-12-01

    Full Text Available The implementation of a hydraulic landfill along the southern expressway (Via Expressa Sul, in the central-south region of Santa Catarina Island, started in 1995 and was completed in 1997. The landfill provided the mangrove vegetation a new environment to colonize, which has developed rapidly during this short period of time. This study mapped the vegetation cover of this region using aerial photographs from five years (1994, 1997, 2002, 2004 and 2007, which demonstrated the spatial-temporal evolution of the vegetation since the year before the implementation of the landfill (1994 to its recent state (2007. The data from this study allowed changes in the surface of three bands of vegetation, a band of trees (Laguncularia racemosa and Avicennia schaueriana, a band of the seagrass praturá (Spartina alterniflora and a transition band (companions of mangrove species and restinga plants, to be quantified.

  4. Vegetation Fraction Mapping with High Resolution Multispectral Data in the Texas High Plains

    Science.gov (United States)

    Oshaughnessy, S. A.; Gowda, P. H.; Basu, S.; Colaizzi, P. D.; Howell, T. A.; Schulthess, U.

    2010-12-01

    Land surface models use vegetation fraction to more accurately partition latent, sensible and soil heat fluxes from a partially vegetated surface as it affects energy and moisture exchanges between the earth’s surface and atmosphere. In recent years, there is interest to integrate vegetation fraction data into intelligent irrigation scheduling systems to avoid false positive signals to irrigate. Remote sensing can facilitate the collection of vegetation fraction information on individual fields over large areas in a timely and cost-effective manner. In this study, we developed and evaluated a set of vegetation fraction models using least square regression and artificial neural network (ANN) techniques using RapidEye satellite data (6.5 m spatial resolution and on-demand temporal resolution). Four images were acquired during the 2010 summer growing season, covering bare soil to full crop cover conditions, over the USDA-ARS-Conservation and Production Research Laboratory in Bushland, Texas [350 11' N, 1020 06' W; 1,170 m elevation MSL]. Spectral signatures were extracted from 25 ground truth locations with geographic coordinates. Vegetation fraction information was derived from digital photos taken at the time of image acquisition using a supervised classification technique. Comparison of performance statistics indicate that ANN performed slightly better than least square regression models.

  5. Climatic Changes Effects On Spectral Vegetation Indices For Forested Areas Analysis From Satellite Data

    International Nuclear Information System (INIS)

    Zoran, M.; Stefan, S.

    2007-01-01

    Climate-induced changes at the land surface may in turn feed back on the climate itself through changes in soil moisture, vegetation, radiative characteristics, and surface-atmosphere exchanges of water vapor. Thresholding based on biophysical variables derived from time trajectories of satellite data is a new approach to classifying forest land cover via remote . sensing .The input data are composite values of the Normalized Difference Vegetation Index (NDVI). Classification accuracies are function of the class, comparison method and season of the year. The aim of the paper is forest biomass assessment and land-cover changes analysis due to climatic effects

  6. Dynamic plant ecology: the spectrum of vegetational change in space and time

    Energy Technology Data Exchange (ETDEWEB)

    Delcourt, H R; Delcourt, P A; Webb, T III

    1983-01-01

    Different environmental forcing functions influence vegetational patterns and processes over a wide range of spatial and temporal scales. On the micro-scale (1 year to 5 x 10/sup 3/ years, 1 m/sup 2/ to 10/sup 6/m/sup 2/) natural and anthropogenic disturbances affect establishment and succession of species populations. At the macro-scale (5 x 10/sup 3/ years to 10/sup 6/ years and 10/sup 6/m/sup 2/ to 10/sup 12/m/sup 2/) climatic changes influence regional vegetational processes that include migrations of species as well as displacement of ecosystems. Mega-scale phenomena such as plate tectonics, evolution of the biota and development of global patterns of vegetation occur on the time scale of > 10/sup 6/ years and over areas > 10/sup 12/m/sup 2/. Our knowledge of past vegetational changes resulting from Quaternary climatic change can be used to predict biotic responses to future climatic changes such as global warming that may be induced by increased carbon dioxide (CO/sub 2/) concentrations in the atmosphere. The time scale for future climatic warming may be much more rapid than that characterizing the early- to mid-Holocene, increasing the probability of rapid turnover in species composition, changes in local and regional dominance of important taxa, displacement of species ranges and local extinction of species. Integration of ecological and paleoecological perspectives on vegetational dynamics is fundamental to understanding and managing the biosphere.

  7. Vegetation Activity Trend and Its Relationship with Climate Change in the Three Gorges Area, China

    Directory of Open Access Journals (Sweden)

    Guifeng Han

    2013-01-01

    Full Text Available Based on SPOT/VGT NDVI time series images from 1999 to 2009 in the Three Gorges Area (TGA, we detected vegetation activity and trends using two methods, the Mann-Kendall and Slope tests. The relationships between vegetation activity trends and annual average temperature and annual total precipitation were analyzed using observational data in seven typical meteorological stations. Vegetation activity presents a distinctive uptrend during the study period, especially in Fengjie, Yunyang, Wushan, Wuxi, and Badong counties located in the midstream of the Three Gorges Reservoir. However, in the Chongqing major area (CMA and its surrounding areas and Fuling, Yichang, and part of Wanzhou, vegetation activity shows a decreasing trend as a result of urban expansion. The NDVI has two fluctuation troughs in 2004 and 2006. The annual mean temperature presents a slight overall upward trend, but the annual total precipitation does not present a significant trend. And they almost have no significant correlations with the NDVI. Therefore, temperature and precipitation are not major influences on vegetation activity change. Instead, increasing vegetation cover benefits from a number of environment protection policies and management, and ecological construction is a major factor resulting in the upward trend. In addition, resettlement schemes mitigate the impact of human activity on vegetation activity.

  8. Ethanol induces MAP2 changes in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Noraberg, J; Zimmer, J

    1998-01-01

    loss of CA3 pyramidal cells and moderate loss of dentate granule cells, as seen in vivo. The results indicate that brain slice cultures combined with immunostaining for cytoskeleton and neuronal markers can be used for studies of ethanol and organic solvent neurotoxicity.......Microtubule-associated protein 2 (MAP2) and neuron-specific protein (NeuN) immunostains were used to demonstrate neurotoxic effects in mature hippocampal slice cultures exposed to ethanol (50, 100, 200 mM) for 4 weeks. At the low dose the density of MAP2 immunostaining in the dentate molecular...... layer was 118% of the control cultures, with no detectable changes in CA1 and CA3. At 100 mM no changes were detected, while 200 mM ethanol significantly reduced the MAP2 density in both dentate (19%) and hippocampal dendritic fields (CA3, 52%; CA1, 55%). At this dose NeuN staining showed considerable...

  9. Mapping species of submerged aquatic vegetation with multi-seasonal satellite images and considering life history information

    Science.gov (United States)

    Luo, Juhua; Duan, Hongtao; Ma, Ronghua; Jin, Xiuliang; Li, Fei; Hu, Weiping; Shi, Kun; Huang, Wenjiang

    2017-05-01

    Spatial information of the dominant species of submerged aquatic vegetation (SAV) is essential for restoration projects in eutrophic lakes, especially eutrophic Taihu Lake, China. Mapping the distribution of SAV species is very challenging and difficult using only multispectral satellite remote sensing. In this study, we proposed an approach to map the distribution of seven dominant species of SAV in Taihu Lake. Our approach involved information on the life histories of the seven SAV species and eight distribution maps of SAV from February to October. The life history information of the dominant SAV species was summarized from the literature and field surveys. Eight distribution maps of the SAV were extracted from eight 30 m HJ-CCD images from February to October in 2013 based on the classification tree models, and the overall classification accuracies for the SAV were greater than 80%. Finally, the spatial distribution of the SAV species in Taihu in 2013 was mapped using multilayer erasing approach. Based on validation, the overall classification accuracy for the seven species was 68.4%, and kappa was 0.6306, which suggests that larger differences in life histories between species can produce higher identification accuracies. The classification results show that Potamogeton malaianus was the most widely distributed species in Taihu Lake, followed by Myriophyllum spicatum, Potamogeton maackianus, Potamogeton crispus, Elodea nuttallii, Ceratophyllum demersum and Vallisneria spiralis. The information is useful for planning shallow-water habitat restoration projects.

  10. Models of vegetation change for landscape planning: a comparison of FETM, LANDSUM, SIMPPLLE, and VDDT

    Science.gov (United States)

    T. M. Barrett

    2001-01-01

    Landscape assessment and planning often depend on the ability to predict change of vegetation. This report compares four modeling systems (FETM, LANDSUM, SIMPPLLE, and VDDT) that can be used to understand changes resulting from succession, natural disturbance, and management activities. The four models may be useful for regional or local assessments in National Forest...

  11. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change

    Science.gov (United States)

    Patrick Gonzalez; Ronald P. Neilson; James M. Lenihan; Raymond J. Drapek

    2010-01-01

    Climate change threatens to shift vegetation, disrupting ecosystems and damaging human well-being. Field observations in boreal, temperate and tropical ecosystems have detected biome changes in the 20th century, yet a lack of spatial data on vulnerability hinders organizations that manage natural resources from identifying priority areas for adaptation measures. We...

  12. Climate change and California: potential implications for vegetation, carbon, and fire.

    Science.gov (United States)

    Jonathan. Thompson

    2005-01-01

    Nineteen scientists from leading research institutes in the United States collaborated to estimate how California’s environment and economy would respond to global climate change. A scientist from the PNW Research Station led efforts to estimate effects on vegetation, carbon, and fire.To quantify the range of the possible effects of climate change over the...

  13. Direct and terrestrial vegetation-mediated effects of environmental change on aquatic ecosystem processes

    Science.gov (United States)

    Becky A. Ball; John S. Kominoski; Heather E. Adams; Stuart E. Jones; Evan S. Kane; Terrance D. Loecke; Wendy M. Mahaney; Jason P. Martina; Chelse M. Prather; Todd M.P. Robinson; Christopher T. Solomon

    2010-01-01

    Global environmental changes have direct effects on aquatic ecosystems, as well as indirect effects through alterations of adjacent terrestrial ecosystem structure and functioning. For example, shifts in terrestrial vegetation communities resulting from global changes can affect the quantity and quality of water, organic matter, and nutrient inputs to aquatic...

  14. Stages of change to increase fruit and vegetable intake and its relationships with fruit and vegetable intake and related psychosocial factors.

    Science.gov (United States)

    Chee Yen, Wong; Mohd Shariff, Zalilah; Kandiah, Mirnalini; Mohd Taib, Mohd Nasir

    2014-06-01

    Understanding individual's intention, action and maintenance to increase fruit and vegetable intake is an initial step in designing nutrition or health promotion programs. This study aimed to determine stages of change to increase fruit and vegetable intake and its relationships with fruit and vegetable intake, self-efficacy, perceived benefits and perceived barriers. This cross-sectional study was conducted among 348 public university staff in Universiti Putra Malaysia. A pre-tested self-administered questionnaire and two days 24-hour diet recall were used. Half of the respondents (50%) were in preparation stage, followed by 43% in action/maintenance, 7% in pre-contemplation/contemplation stages. Respondents in action/maintenance stages had significantly higher self-efficacy (F = 9.17, P diet high in fruits and vegetables in order to promote healthy changes in having high fruit and vegetable intake.

  15. Detecting long-term changes to vegetation in northern Canada using the Landsat satellite image archive

    International Nuclear Information System (INIS)

    Fraser, R H; Olthof, I; Carrière, M; Deschamps, A; Pouliot, D

    2011-01-01

    Analysis of coarse resolution (∼1 km) satellite imagery has provided evidence of vegetation changes in arctic regions since the mid-1980s that may be attributable to climate warming. Here we investigate finer-scale changes to northern vegetation over the same period using stacks of 30 m resolution Landsat TM and ETM + satellite images. Linear trends in the normalized difference vegetation index (NDVI) and tasseled cap indices are derived for four widely spaced national parks in northern Canada. The trends are related to predicted changes in fractional shrub and other vegetation covers using regression tree classifiers trained with plot measurements and high resolution imagery. We find a consistent pattern of greening (6.1–25.5% of areas increasing) and predicted increases in vascular vegetation in all four parks that is associated with positive temperature trends. Coarse resolution (3 km) NDVI trends were not detected in two of the parks that had less intense greening. A range of independent studies and observations corroborate many of the major changes observed.

  16. Recent shifts in Himalayan vegetation activity trends in response to climatic change and environmental drivers

    Science.gov (United States)

    Mishra, N. B.; Mainali, K. P.

    2016-12-01

    Climatic changes along with anthropogenic disturbances are causing dramatic ecological impacts in mid to high latitude mountain vegetation including in the Himalayas which are ecologically sensitive environments. Given the challenges associated with in situ vegetation monitoring in the Himalayas, remote sensing based quantification of vegetation dynamics can provide essential ecological information on changes in vegetation activity that may consist of alternative sequence of greening and/or browning periods. This study utilized a trend break analysis procedure for detection of monotonic as well as abrupt (either interruption or reversal) trend changes in smoothed normalized difference vegetation index satellite time-series data over the Himalayas. Overall, trend breaks in vegetation greenness showed high spatio-temporal variability in distribution considering elevation, ecoregion and land cover/use stratifications. Interrupted greening was spatially most dominant in all Himalayan ecoregions followed by abrupt browning. Areas showing trend reversal and monotonic trends appeared minority. Trend type distribution was strongly dependent on elevation as majority of greening (with or without interruption) occurred at lower elevation areas at higher elevation were dominantly. Ecoregion based stratification of trend types highlighted some exception to this elevational dependence as high altitude ecoregions of western Himalayas showed significantly less browning compared to the ecoregions in eastern Himalaya. Land cover/use based analysis of trend distribution showed that interrupted greening was most dominant in closed needleleafed forest following by rainfed cropland and mosaic croplands while interrupted browning most dominant in closed to open herbaceous vegetation found at higher elevation areas followed by closed needleleafed forest and closed to open broad leafed evergreen forests. Spatial analysis of trend break timing showed that for majority of areas experiencing

  17. Ecosystem Evapotranspiration as a Response to Climate and Vegetation Coverage Changes in Northwest Yunnan, China.

    Science.gov (United States)

    Yang, Hao; Luo, Peng; Wang, Jun; Mou, Chengxiang; Mo, Li; Wang, Zhiyuan; Fu, Yao; Lin, Honghui; Yang, Yongping; Bhatta, Laxmi Dutt

    2015-01-01

    Climate and human-driven changes play an important role in regional droughts. Northwest Yunnan Province is a key region for biodiversity conservation in China, and it has experienced severe droughts since the beginning of this century; however, the extent of the contributions from climate and human-driven changes remains unclear. We calculated the ecosystem evapotranspiration (ET) and water yield (WY) of northwest Yunnan Province, China from 2001 to 2013 using meteorological and remote sensing observation data and a Surface Energy Balance System (SEBS) model. Multivariate regression analyses were used to differentiate the contribution of climate and vegetation coverage to ET. The results showed that the annual average vegetation coverage significantly increased over time with a mean of 0.69 in spite of the precipitation fluctuation. Afforestation/reforestation and other management efforts attributed to vegetation coverage increase in NW Yunnan. Both ET and WY considerably fluctuated with the climate factors, which ranged from 623.29 mm to 893.8 mm and -51.88 mm to 384.40 mm over the time period. Spatially, ET in the southeast of NW Yunnan (mainly in Lijiang) increased significantly, which was in line with the spatial trend of vegetation coverage. Multivariate linear regression analysis indicated that climatic factors accounted for 85.18% of the ET variation, while vegetation coverage explained 14.82%. On the other hand, precipitation accounted for 67.5% of the WY. We conclude that the continuous droughts in northwest Yunnan were primarily climatically driven; however, man-made land cover and vegetation changes also increased the vulnerability of local populations to drought. Because of the high proportion of the water yield consumed for subsistence and poor infrastructure for water management, local populations have been highly vulnerable to climate drought conditions. We suggest that conservation of native vegetation and development of water

  18. Ecosystem Evapotranspiration as a Response to Climate and Vegetation Coverage Changes in Northwest Yunnan, China.

    Directory of Open Access Journals (Sweden)

    Hao Yang

    Full Text Available Climate and human-driven changes play an important role in regional droughts. Northwest Yunnan Province is a key region for biodiversity conservation in China, and it has experienced severe droughts since the beginning of this century; however, the extent of the contributions from climate and human-driven changes remains unclear. We calculated the ecosystem evapotranspiration (ET and water yield (WY of northwest Yunnan Province, China from 2001 to 2013 using meteorological and remote sensing observation data and a Surface Energy Balance System (SEBS model. Multivariate regression analyses were used to differentiate the contribution of climate and vegetation coverage to ET. The results showed that the annual average vegetation coverage significantly increased over time with a mean of 0.69 in spite of the precipitation fluctuation. Afforestation/reforestation and other management efforts attributed to vegetation coverage increase in NW Yunnan. Both ET and WY considerably fluctuated with the climate factors, which ranged from 623.29 mm to 893.8 mm and -51.88 mm to 384.40 mm over the time period. Spatially, ET in the southeast of NW Yunnan (mainly in Lijiang increased significantly, which was in line with the spatial trend of vegetation coverage. Multivariate linear regression analysis indicated that climatic factors accounted for 85.18% of the ET variation, while vegetation coverage explained 14.82%. On the other hand, precipitation accounted for 67.5% of the WY. We conclude that the continuous droughts in northwest Yunnan were primarily climatically driven; however, man-made land cover and vegetation changes also increased the vulnerability of local populations to drought. Because of the high proportion of the water yield consumed for subsistence and poor infrastructure for water management, local populations have been highly vulnerable to climate drought conditions. We suggest that conservation of native vegetation and development of water

  19. On the potential of long wavelength imaging radars for mapping vegetation types and woody biomass in tropical rain forests

    Science.gov (United States)

    Rignot, Eric J.; Zimmermann, Reiner; Oren, Ram

    1995-01-01

    In the tropical rain forests of Manu, in Peru, where forest biomass ranges from 4 kg/sq m in young forest succession up to 100 kg/sq m in old, undisturbed floodplain stands, the P-band polarimetric radar data gathered in June of 1993 by the AIRSAR (Airborne Synthetic Aperture Radar) instrument separate most major vegetation formations and also perform better than expected in estimating woody biomass. The worldwide need for large scale, updated biomass estimates, achieved with a uniformly applied method, as well as reliable maps of land cover, justifies a more in-depth exploration of long wavelength imaging radar applications for tropical forests inventories.

  20. [Effects of climate and land use change on the changes of vegetation coverage in farming-pastoral ecotone of Northern China].

    Science.gov (United States)

    Liu, Jun-Hui; Gao, Ji-Xi

    2008-09-01

    Based on the remote sensing images and the meteorological data in 1986 and 2000, and by using the model of extracting vegetation coverage, the spatiotemporal changes of vegetation coverage in the farming-pastoral ecotone of Northern China in 1986-2000 were studied, with the effects of climate and land use change on the changes analyzed. The results showed that in this ecotone, the area with lower vegetation coverage was increasing, while that with higher vegetation coverage was in adverse. The regions with increasing vegetation coverage were mainly in the east of northeast section, the west of north section, and the west of northwest section of the ecotone, while the vegetation coverage in the other sections was obviously degraded. The vegetation coverage were positively correlated with precipitation and aridity index, but negatively correlated with temperature. The change direction and extent of the vegetation coverage varied with land use types.

  1. Nile Basin Vegetation Response and Vulnerability to Climate Change: A Multi-Sensor Remote Sensing Approach

    Science.gov (United States)

    Yitayew, M.; Didan, K.; Barreto-munoz, A.

    2013-12-01

    The Nile Basin is one of the world's water resources hotspot that is home to over 437 million people in ten riparian countries with 54% or 238 millions live directly within the basin. The basin like all other basins of the world is facing water resources challenges exacerbated by climate change and increased demand. Nowadays any water resource management action in the basin has to assess the impacts of climate change to be able to predict future water supply and also to help in the negotiation process. Presently, there is a lack of basin wide weather networks to understand sensitivity of the vegetation cover to the impacts of climate change. Vegetation plays major economic and ecological functions in the basin and provides key services ranging from pastoralism, agricultural production, firewood, habitat and food sources for the rich wildlife, as well as a major role in the carbon cycle and climate regulation of the region. Under the threat of climate change and the incessant anthropogenic pressure the distribution and services of the region's ecosystems are projected to change The goal of this work is to assess and characterize how the basin vegetation productivity, distribution, and phenology have changed over the last 30+ years and what are the key climatic drivers of this change. This work makes use of a newly generated multi-sensor long-term land surface data set about vegetation and phenology. Vegetation indices derived from remotely sensed surface reflectance data are commonly used to characterize phenology or vegetation dynamics accurately and with enough spatial and temporal resolution to support change detection. We used more than 30 years of vegetation index and growing season data from AVHRR and MODIS sensors compiled by the Vegetation Index and Phenology laboratory (VIP LAB) at the University of Arizona. Available climate data about precipitation and temperature for the corresponding 30 years period is also used for this analysis. We looked at the

  2. Development of a dynamic web mapping service for vegetation productivity using earth observation and in situ sensors in a sensor web based approach

    NARCIS (Netherlands)

    Kooistra, L.; Bergsma, A.R.; Chuma, B.; Bruin, de S.

    2009-01-01

    This paper describes the development of a sensor web based approach which combines earth observation and in situ sensor data to derive typical information offered by a dynamic web mapping service (WMS). A prototype has been developed which provides daily maps of vegetation productivity for the

  3. A taxonomy of behaviour change methods: an Intervention Mapping approach

    OpenAIRE

    Kok, Gerjo; Gottlieb, Nell H.; Peters, Gjalt-Jorn Y.; Mullen, Patricia Dolan; Parcel, Guy S.; Ruiter, Robert A.C.; Fern?ndez, Mar?a E.; Markham, Christine; Bartholomew, L. Kay

    2015-01-01

    ABSTRACT In this paper, we introduce the Intervention Mapping (IM) taxonomy of behaviour change methods and its potential to be developed into a coding taxonomy. That is, although IM and its taxonomy of behaviour change methods are not in fact new, because IM was originally developed as a tool for intervention development, this potential was not immediately apparent. Second, in explaining the IM taxonomy and defining the relevant constructs, we call attention to the existence of parameters fo...

  4. RIGOROUS PHOTOGRAMMETRIC PROCESSING OF CHANG'E-1 AND CHANG'E-2 STEREO IMAGERY FOR LUNAR TOPOGRAPHIC MAPPING

    OpenAIRE

    K. Di; Y. Liu; B. Liu; M. Peng

    2012-01-01

    Chang'E-1(CE-1) and Chang'E-2(CE-2) are the two lunar orbiters of China's lunar exploration program. Topographic mapping using CE-1 and CE-2 images is of great importance for scientific research as well as for preparation of landing and surface operation of Chang'E-3 lunar rover. In this research, we developed rigorous sensor models of CE-1 and CE-2 CCD cameras based on push-broom imaging principle with interior and exterior orientation parameters. Based on the rigorous sensor model, the 3D c...

  5. Human Activity Influences on Vegetation Cover Changes in Beijing, China, from 2000 to 2015

    Directory of Open Access Journals (Sweden)

    Meichen Jiang

    2017-03-01

    Full Text Available For centuries, the rapid development of human society has already made human activity the dominant factor in the terrestrial ecosystem. As the city of greatest importance in China, the capital Beijing has experienced eco-environmental changes with unprecedented economic and population growth during the past few decades. To better understand the ecological transition and its correlations in Beijing, Landsat Thematic Mapper (TM and Operational Land Imager (OLI images were used to investigate vegetation coverage changes using a dimidiate pixel model. Piecewise linear regression, bivariate-partial correlation analysis, and factor analysis were applied to the probing of the relationship between vegetation coverage changes and climatic/human-induced factors. The results showed that from 2000 to 2005, 2005 to 2010, and 2010 to 2015, Beijing experienced both restoration (6.33%, 10.08%, and 12.81%, respectively and degradation (13.62%, 9.35%, and 9.49%, respectively. The correlation analysis results between climate and vegetation changes demonstrated that from 2000 to 2015, both the multi-year annual mean temperature (r = −0.819, p < 0.01 and the multi-year annual mean precipitation (r = 0.653, p < 0.05 had a significantly correlated relationship with vegetation change. The Beijing-Tianjin Sandstorm Source Control Project (BTSSCP has shown beneficial spatial effects on vegetation restoration; the total effectiveness in conservation areas (84.94 in 2000–2010 was much better than non-BTSSCP areas (34.34 in 2000–2010. The most contributory socioeconomic factors were the population (contribution = 54.356% and gross domestic product (GDP (contribution = 30.677%. The population showed a significantly negative correlation with the overall vegetation coverage (r = −0.684, p < 0.05. The GDP was significantly negatively correlated with vegetation in Tongzhou, Daxing, Central city, Fangshan, Shunyi, and Changping (r = −0.601, p < 0.01, while positively

  6. Nonlinear vegetation cover changes in the North Ethiopian Highlands: Evidence from the Lake Ashenge closed basin

    Energy Technology Data Exchange (ETDEWEB)

    Lanckriet, Sil, E-mail: sil.lanckriet@ugent.be [Department of Geography, Ghent University, Krijgslaan 281 (S8), B-9000 Ghent (Belgium); Rucina, Stephen [National Museum of Kenya, Earth Science Department, Palynology Section, P.O. Box 40658 00100, Nairobi (Kenya); Frankl, Amaury [Department of Geography, Ghent University, Krijgslaan 281 (S8), B-9000 Ghent (Belgium); Ritler, Alfons [Centre for Development and Environment, University of Bern, Hallerstrasse 10, CH-3012 Bern (Switzerland); Gelorini, Vanessa [Department of Geology and Soil Science, Ghent University, Krijgslaan 281 (S8), B-9000 Ghent (Belgium); Nyssen, Jan [Department of Geography, Ghent University, Krijgslaan 281 (S8), B-9000 Ghent (Belgium)

    2015-12-01

    Vegetation cover changes in African drylands are often thought to result from population growth, social factors and aridification. Here we show that long-term vegetation proxy records can help disentangling these main driving factors. Taking the case of North Ethiopia, we performed an integrated investigation of land cover changes over the last four centuries around the endorheic Lake Ashenge, as derived from pollen analysis and repeat photography complemented with information from historical sources. Pollen and sediment analysis of radiocarbon-dated lake deposits shows a phase of environmental destabilization during the 18th century, after a more stable previous period. This is evidenced by decreases of tree pollen (Juniperus, Olea, Celtis, Podocarpus < 5%), increases in Poaceae (> 40%) and deposition of coarser silt lake sediments (> 70%). Quantitative analysis of 30 repeated landscape photographs around the lake indicates a gradual decline of the vegetation cover since a relative maximum during the mid-19th Century. Vegetation cover declined sharply between the 1950s and the 1980s, but has since begun to recover. Overall, the data from around Lake Ashenge reveal a nonlinear pattern of deforestation and forest regrowth with several periods of vegetation cover change over the past four centuries. While there is forcing of regional drought and the regional land tenure system, the cyclic changes do not support a simplified focus on aridification or population growth. - Highlights: • Vegetation cover changes are often related with population growth or climate • We investigated land cover changes over the last four centuries near Lake Ashenge • Overall, the data reveal a nonlinear pattern of deforestation and forest regrowth.

  7. Responses of Vegetation Cover to Environmental Change in Large Cities of China

    Directory of Open Access Journals (Sweden)

    Kai Jin

    2018-01-01

    Full Text Available Vegetation cover is crucial for the sustainability of urban ecosystems; however, this cover has been undergoing substantial changes in cities. Based on climate data, city statistical data, nighttime light data and the Normalized Difference Vegetation Index (NDVI dataset, we investigate the spatiotemporal variations of climate factors, urban lands and vegetation cover in 71 large cities of China during 1998–2012, and explore their correlations. A regression model between growing-season NDVI (G-NDVI and urban land proportion (PU is built to quantify the impact of urbanization on vegetation cover change. The results indicate that the spatiotemporal variations of temperature, precipitation, PU and G-NDVI are greatly different among the 71 cities which experienced rapid urbanization. The spatial difference of G-NDVI is closely related to diverse climate conditions, while the inter-annual variations of G-NDVI are less sensitive to climate changes. In addition, there is a negative correlation between G-NDVI trend and PU change, indicating vegetation cover in cities have been negatively impacted by urbanization. For most of the inland cities, the urbanization impacts on vegetation cover in urban areas are more severe than in suburban areas. But the opposite occurs in 17 cities mainly located in the coastal areas which have been undergoing the most rapid urbanization. Overall, the impacts of urbanization on G-NDVI change are estimated to be −0.026 per decade in urban areas and −0.015 per decade in suburban areas during 1998–2012. The long-term developments of cities would persist and continue to impact on the environmental change and sustainability. We use a 15-year window here as a case study, which implies the millennia of human effects on the natural biotas and warns us to manage landscapes and preserve ecological environments properly.

  8. Nonlinear vegetation cover changes in the North Ethiopian Highlands: Evidence from the Lake Ashenge closed basin

    International Nuclear Information System (INIS)

    Lanckriet, Sil; Rucina, Stephen; Frankl, Amaury; Ritler, Alfons; Gelorini, Vanessa; Nyssen, Jan

    2015-01-01

    Vegetation cover changes in African drylands are often thought to result from population growth, social factors and aridification. Here we show that long-term vegetation proxy records can help disentangling these main driving factors. Taking the case of North Ethiopia, we performed an integrated investigation of land cover changes over the last four centuries around the endorheic Lake Ashenge, as derived from pollen analysis and repeat photography complemented with information from historical sources. Pollen and sediment analysis of radiocarbon-dated lake deposits shows a phase of environmental destabilization during the 18th century, after a more stable previous period. This is evidenced by decreases of tree pollen (Juniperus, Olea, Celtis, Podocarpus < 5%), increases in Poaceae (> 40%) and deposition of coarser silt lake sediments (> 70%). Quantitative analysis of 30 repeated landscape photographs around the lake indicates a gradual decline of the vegetation cover since a relative maximum during the mid-19th Century. Vegetation cover declined sharply between the 1950s and the 1980s, but has since begun to recover. Overall, the data from around Lake Ashenge reveal a nonlinear pattern of deforestation and forest regrowth with several periods of vegetation cover change over the past four centuries. While there is forcing of regional drought and the regional land tenure system, the cyclic changes do not support a simplified focus on aridification or population growth. - Highlights: • Vegetation cover changes are often related with population growth or climate • We investigated land cover changes over the last four centuries near Lake Ashenge • Overall, the data reveal a nonlinear pattern of deforestation and forest regrowth

  9. Vegetation changes and human impact inferred from an oxbow lake in southwestern Amazonia, Brazil since the 19th century

    Science.gov (United States)

    Rodríguez-Zorro, Paula A.; Enters, Dirk; Hermanowski, Barbara; da Costa, Marcondes Lima; Behling, Hermann

    2015-10-01

    Pollen and X-ray fluorescence spectrometry (XRF) analyses from a 272 cm-long sediment core of Lago Amapá, an oxbow lake in western Amazonia, reveal the first palaeoecological investigation of late Holocene sediments in Acre state, Brazil. Radiocarbon dating of older sediments failed due to re-deposition of organic material but a historical map suggests that lacustrine deposition started at 1900 AD. We detected two periods of changes in sediment and vegetation, dominated by pioneer taxa especially Cecropia. The first period around 1900 AD is documenting an initial oxbow lake, with regular fluvial input (high Ti) and low accumulation of organic matter (low inc/coh ratio). During that period Andean pollen taxa originating from Peruvian Andean headwaters were deposited. A fully lacustrine phase started about 1950 AD and is characterized by prolonged periods of stagnant water (low Fe/Mn ratio). The increase of pioneer taxa, sedimentation rates and a reduction of most of the XRF element counts point to a period during which Lago Amapá was a more isolated lake which was flooded only during exceptional severe flood events and is catching mainly anthropogenic disturbances. The extensive human influence during this period was assumed by 1) the high occurrence of pioneer taxa and the absence of charcoal which could indicate changes in vegetation possibly as a result of logging, 2) the Ca and Ti/K ratio which reflect changes to a local sediment source, and 3) comparison of Landsat images from the last 30 years which shows broad changes in vegetation cover and land transformation in the peripheral areas of the oxbow lake.

  10. Soil organic carbon mapping of partially vegetated agricultural fields with imaging spectroscopy

    NARCIS (Netherlands)

    Bartholomeus, H.; Kooistra, L.; Stevens, A.; Leeuwen, van M.; Wesemael, van B.; Ben-Dor, E.; Tychon, B.

    2011-01-01

    Soil Organic Carbon (SOC) is one of the key soil properties, but the large spatial variation makes continuous mapping a complex task. Imaging spectroscopy has proven to be an useful technique for mapping of soil properties, but the applicability decreases rapidly when fields are partially covered

  11. Vegetation-climate feedbacks modulate rainfall patterns in Africa under future climate change

    Science.gov (United States)

    Wu, Minchao; Schurgers, Guy; Rummukainen, Markku; Smith, Benjamin; Samuelsson, Patrick; Jansson, Christer; Siltberg, Joe; May, Wilhelm

    2016-07-01

    Africa has been undergoing significant changes in climate and vegetation in recent decades, and continued changes may be expected over this century. Vegetation cover and composition impose important influences on the regional climate in Africa. Climate-driven changes in vegetation structure and the distribution of forests versus savannah and grassland may feed back to climate via shifts in the surface energy balance, hydrological cycle and resultant effects on surface pressure and larger-scale atmospheric circulation. We used a regional Earth system model incorporating interactive vegetation-atmosphere coupling to investigate the potential role of vegetation-mediated biophysical feedbacks on climate dynamics in Africa in an RCP8.5-based future climate scenario. The model was applied at high resolution (0.44 × 0.44°) for the CORDEX-Africa domain with boundary conditions from the CanESM2 general circulation model. We found that increased tree cover and leaf-area index (LAI) associated with a CO2 and climate-driven increase in net primary productivity, particularly over subtropical savannah areas, not only imposed important local effect on the regional climate by altering surface energy fluxes but also resulted in remote effects over central Africa by modulating the land-ocean temperature contrast, Atlantic Walker circulation and moisture inflow feeding the central African tropical rainforest region with precipitation. The vegetation-mediated feedbacks were in general negative with respect to temperature, dampening the warming trend simulated in the absence of feedbacks, and positive with respect to precipitation, enhancing rainfall reduction over the rainforest areas. Our results highlight the importance of accounting for vegetation-atmosphere interactions in climate projections for tropical and subtropical Africa.

  12. Simulating the vegetation response in western Europe to abrupt climate changes under glacial background conditions

    Directory of Open Access Journals (Sweden)

    M.-N. Woillez

    2013-03-01

    Full Text Available The last glacial period has been punctuated by two types of abrupt climatic events, the Dansgaard–Oeschger (DO and Heinrich (HE events. These events, recorded in Greenland ice and in marine sediments, involved changes in the Atlantic Meridional Overturning Circulation (AMOC and led to major changes in the terrestrial biosphere. Here we use the dynamical global vegetation model ORCHIDEE to simulate the response of vegetation to abrupt changes in the AMOC strength. We force ORCHIDEE offline with outputs from the IPSL_CM4 general circulation model, in which the AMOC is forced to change by adding freshwater fluxes in the North Atlantic. We investigate the impact of a collapse and recovery of the AMOC, at different rates, and focus on Western Europe, where many pollen records are available for comparison. The impact of an AMOC collapse on the European mean temperatures and precipitations simulated by the GCM is relatively small but sufficient to drive an important regression of forests and expansion of grasses in ORCHIDEE, in qualitative agreement with pollen data for an HE event. On the contrary, a run with a rapid shift of the AMOC to a hyperactive state of 30 Sv, mimicking the warming phase of a DO event, does not exhibit a strong impact on the European vegetation compared to the glacial control state. For our model, simulating the impact of an HE event thus appears easier than simulating the abrupt transition towards the interstadial phase of a DO. For both a collapse or a recovery of the AMOC, the vegetation starts to respond to climatic changes immediately but reaches equilibrium about 200 yr after the climate equilibrates, suggesting a possible bias in the climatic reconstructions based on pollen records, which assume equilibrium between climate and vegetation. However, our study does not take into account vegetation feedbacks on the atmosphere.

  13. Mapping vegetation and fuels for fire management on the Gila National Forest Complex, New Mexico

    Science.gov (United States)

    Robert E. Keane; Scott A. Mincemoyer; Kirsten M. Schmidt; Donald G. Long; Janice L. Garner

    2000-01-01

    (Please note: This PDF is part of a CD-ROM package only and was not printed on paper.) Fuels and vegetation spatial data layers required by the spatially explicit fire growth model FARSITE were developed for all lands in and around the Gila National Forest in New Mexico. Satellite imagery, terrain modeling, and biophysical simulation were used to create the three...

  14. An empirical InSAR-optical fusion approach to mapping vegetation canopy height

    Science.gov (United States)

    Wayne S. Walker; Josef M. Kellndorfer; Elizabeth LaPoint; Michael Hoppus; James Westfall

    2007-01-01

    Exploiting synergies afforded by a host of recently available national-scale data sets derived from interferometric synthetic aperture radar (InSAR) and passive optical remote sensing, this paper describes the development of a novel empirical approach for the provision of regional- to continental-scale estimates of vegetation canopy height. Supported by data from the...

  15. Fine scale vegetation classification and fuel load mapping for prescribed burning

    Science.gov (United States)

    Andrew D. Bailey; Robert Mickler

    2007-01-01

    Fire managers in the Coastal Plain of the Southeastern United States use prescribed burning as a tool to reduce fuel loads in a variety of vegetation types, many of which have elevated fuel loads due to a history of fire suppression. While standardized fuel models are useful in prescribed burn planning, those models do not quantify site-specific fuel loads that reflect...

  16. Comparing Different Approaches for Mapping Urban Vegetation Cover from Landsat ETM+ Data: A Case Study on Brussels

    Directory of Open Access Journals (Sweden)

    Frank Canters

    2008-06-01

    Full Text Available Urban growth and its related environmental problems call for sustainable urban management policies to safeguard the quality of urban environments. Vegetation plays an important part in this as it provides ecological, social, health and economic benefits to a city’s inhabitants. Remotely sensed data are of great value to monitor urban green and despite the clear advantages of contemporary high resolution images, the benefits of medium resolution data should not be discarded. The objective of this research was to estimate fractional vegetation cover from a Landsat ETM+ image with sub-pixel classification, and to compare accuracies obtained with multiple stepwise regression analysis, linear spectral unmixing and multi-layer perceptrons (MLP at the level of meaningful urban spatial entities. Despite the small, but nevertheless statistically significant differences at pixel level between the alternative approaches, the spatial pattern of vegetation cover and estimation errors is clearly distinctive at neighbourhood level. At this spatially aggregated level, a simple regression model appears to attain sufficient accuracy. For mapping at a spatially more detailed level, the MLP seems to be the most appropriate choice. Brightness normalisation only appeared to affect the linear models, especially the linear spectral unmixing.

  17. Temporal Changes in Coupled Vegetation Phenology and Productivity are Biome-Specific in the Northern Hemisphere

    Directory of Open Access Journals (Sweden)

    Lanhui Wang

    2017-12-01

    Full Text Available Global warming has greatly stimulated vegetation growth through both extending the growing season and promoting photosynthesis in the Northern Hemisphere (NH. Analyzing the combined dynamics of such trends can potentially improve our current understanding on changes in vegetation functioning and the complex relationship between anthropogenic and climatic drivers. This study aims to analyze the relationships (long-term trends and correlations of length of vegetation growing season (LOS and vegetation productivity assessed by the growing season NDVI integral (GSI in the NH (>30°N to study any dependency of major biomes that are characterized by different imprint from anthropogenic influence. Spatial patterns of converging/diverging trends in LOS and GSI and temporal changes in the coupling between LOS and GSI are analyzed for major biomes at hemispheric and continental scales from the third generation Global Inventory Monitoring and Modeling Studies (GIMMS Normalized Difference Vegetation Index (NDVI dataset for a 32-year period (1982–2013. A quarter area of the NH is covered by converging trends (consistent significant trends in LOS and GSI, whereas diverging trends (opposing significant trends in LOS and GSI cover about 6% of the region. Diverging trends are observed mainly in high latitudes and arid/semi-arid areas of non-forest biomes (shrublands, savannas, and grasslands, whereas forest biomes and croplands are primarily characterized by converging trends. The study shows spatially-distinct and biome-specific patterns between the continental land masses of Eurasia (EA and North America (NA. Finally, areas of high positive correlation between LOS and GSI showed to increase during the period of analysis, with areas of significant positive trends in correlation being more widespread in NA as compared to EA. The temporal changes in the coupled vegetation phenology and productivity suggest complex relationships and interactions that are induced

  18. Using endmembers in AVIRIS images to estimate changes in vegetative biomass

    Science.gov (United States)

    Smith, Milton O.; Adams, John B.; Ustin, Susan L.; Roberts, Dar A.

    1992-01-01

    Field techniques for estimating vegetative biomass are labor intensive, and rarely are used to monitor changes in biomass over time. Remote-sensing offers an attractive alternative to field measurements; however, because there is no simple correspondence between encoded radiance in multispectral images and biomass, it is not possible to measure vegetative biomass directly from AVIRIS images. Ways to estimate vegetative biomass by identifying community types and then applying biomass scalars derived from field measurements are investigated. Field measurements of community-scale vegetative biomass can be made, at least for local areas, but it is not always possible to identify vegetation communities unambiguously using remote measurements and conventional image-processing techniques. Furthermore, even when communities are well characterized in a single image, it typically is difficult to assess the extent and nature of changes in a time series of images, owing to uncertainties introduced by variations in illumination geometry, atmospheric attenuation, and instrumental responses. Our objective is to develop an improved method based on spectral mixture analysis to characterize and identify vegetative communities, that can be applied to multi-temporal AVIRIS and other types of images. In previous studies, multi-temporal data sets (AVIRIS and TM) of Owens Valley, CA were analyzed and vegetation communities were defined in terms of fractions of reference (laboratory and field) endmember spectra. An advantage of converting an image to fractions of reference endmembers is that, although fractions in a given pixel may vary from image to image in a time series, the endmembers themselves typically are constant, thus providing a consistent frame of reference.

  19. Using NDVI to assess vegetative land cover change in central Puget Sound.

    Science.gov (United States)

    Morawitz, Dana F; Blewett, Tina M; Cohen, Alex; Alberti, Marina

    2006-03-01

    We used the Normalized Difference Vegetation Index (NDVI) in the rapidly growing Puget Sound region over three 5-year time blocks between 1986-1999 at three spatial scales in 42 Watershed Administrative Units (WAUs) to assess changes in the amounts and patterns of green vegetation. On average, approximately 20% of the area in each WAU experienced significant NDVI change over each 5-year time block. Cumulative NDVI change over 15 years (summing change over each 5-year time block) was an average of approximately 60% of each WAU, but was as high as 100% in some. At the regional scale, seasonal weather patterns and green-up from logging were the primary drivers of observed increases in NDVI values. At the WAU scale, anthropogenic factors were important drivers of both positive and negative NDVI change. For example, population density was highly correlated with negative NDVI change over 15 years (r = 0.66, P < 0.01), as was road density (r = 0.71, P < 0.01). At the smallest scale (within 3 case study WAUs) land use differences such as preserving versus harvesting forest lands drove vegetation change. We conclude that large areas within most watersheds are continually and heavily impacted by the high levels of human use and development over short time periods. Our results indicate that varying patterns and processes can be detected at multiple scales using changes in NDVIa values.

  20. Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya: Contributions Toward Future Earth Initiatives

    Directory of Open Access Journals (Sweden)

    Joseph Shea

    2017-08-01

    Full Text Available Reviewed: Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya: Contributions Toward Future Earth Initiatives. Edited by R. B. Singh, Udo Schickhoff, and Suraj Mal. Cham, Switzerland: Springer, 2016. xvi + 399 pp. Hardcover: US$ 179.00, ISBN 978-3-319-28975-5. E-book: US$ 139.00, ISBN 978-3-319-28977-9.

  1. Vegetation change in northern KwaZulu-Natal since the Anglo-Zulu ...

    African Journals Online (AJOL)

    The quality of the landscape is declining in many grassland and savanna areas of Africa as a consequence of woody plant encroachment. We investigated the changes in vegetation at selected sites on the battlefields of the Anglo-Zulu War of 1879 in KwaZulu-Natal. We used fixed-point repeat photographs to compare the ...

  2. Addressing climate change in the Forest Vegetation Simulator to assess impacts on landscape forest dynamics

    Science.gov (United States)

    Nicholas L. Crookston; Gerald E. Rehfeldt; Gary E. Dixon; Aaron R. Weiskittel

    2010-01-01

    To simulate stand-level impacts of climate change, predictors in the widely used Forest Vegetation Simulator (FVS) were adjusted to account for expected climate effects. This was accomplished by: (1) adding functions that link mortality and regeneration of species to climate variables expressing climatic suitability, (2) constructing a function linking site index to...

  3. Watershed evapotranspiration increased due to changes in vegetation composition and structure under a subtropical climate

    Science.gov (United States)

    Ge Sun; Changqing Zuo; Shiyu Liu; Mingliang Liu; Steven G McNulty; James M. Vose

    2008-01-01

    Natural forests in southern China have been severely logged due to high human demand for timber, food, and fuels during the past century, but are recovering in the past decade. The objective of this study was to investigate how vegetation cover changes in composition and structure affected the water budgets of a 9.6-km2 Dakeng watershed located...

  4. Volcanic ash deposition and long-term vegetation change on Subantarctic Marion Island

    NARCIS (Netherlands)

    Yeloff, D.; Mauquoy, D.S.; Barber, K.; Way, S.; van Geel, B.; Turney, C.S.M.

    2007-01-01

    A c. 5500 year record of peatland development and vegetation change was generated from a core recovered from an Agrostis magellanica peat bog on subantarctic Marion Island, using palynomorph, plant macrofossil, and tephra analyses. Two tephra horizons (both 17 cm thick) were identified and dated to

  5. Regional cerebral blood flow changes related to affective speech presentation in persistent vegetative state

    NARCIS (Netherlands)

    deJong, BM; Willemsen, ATM; Paans, AMJ

    A story told by his mother was presented on tape to a trauma patient in persistent vegetative state (PVS). During auditory presentation, measurements of regional cerebral blood flow (rCBF) were performed by means of positron emission tomography (PET). Changes in rCBF related to this stimulus

  6. Network based early warning indicators of vegetation changes in a land–atmosphere model

    NARCIS (Netherlands)

    Yin, Z.; Dekker, S.C.; Rietkerk, M.; Hurk, B.J.J.M. van den; Dijkstra, H.A.

    2016-01-01

    Abstract Numerous model studies demonstrate that ecosystems might not shift smoothly with a gradual change in resource concentration. At specific points, vegetation can suddenly shift from one stable state to another. To predict such undesirable shifts, statistical indicators are proposed for early

  7. The contribution of vegetation and landscape configuration for predicting environmental change impacts on Iberian birds

    DEFF Research Database (Denmark)

    Triviño, Maria; Thuiller, Wilfried; Cabeza, Mar

    2011-01-01

    of distributions, but they are rarely considered in such assessments. We explore the consequences of using simulated vegetation structure and composition as well as its associated landscape configuration in models projecting global change effects on Iberian bird species distributions. Both present-day and future...

  8. Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions.

    Science.gov (United States)

    Valolahti, Hanna; Kivimäenpää, Minna; Faubert, Patrick; Michelsen, Anders; Rinnan, Riikka

    2015-09-01

    Emissions of biogenic volatile organic compounds (BVOCs) have been earlier shown to be highly temperature sensitive in subarctic ecosystems. As these ecosystems experience rapidly advancing pronounced climate warming, we aimed to investigate how warming affects the BVOC emissions in the long term (up to 13 treatment years). We also aimed to assess whether the increased litterfall resulting from the vegetation changes in the warming subarctic would affect the emissions. The study was conducted in a field experiment with factorial open-top chamber warming and annual litter addition treatments on subarctic heath in Abisko, northern Sweden. After 11 and 13 treatment years, BVOCs were sampled from plant communities in the experimental plots using a push-pull enclosure technique and collection into adsorbent cartridges during the growing season and analyzed with gas chromatography-mass spectrometry. Plant species coverage in the plots was analyzed by the point intercept method. Warming by 2 °C caused a 2-fold increase in monoterpene and 5-fold increase in sesquiterpene emissions, averaged over all measurements. When the momentary effect of temperature was diminished by standardization of emissions to a fixed temperature, warming still had a significant effect suggesting that emissions were also indirectly increased. This indirect increase appeared to result from increased plant coverage and changes in vegetation composition. The litter addition treatment also caused significant increases in the emission rates of some BVOC groups, especially when combined with warming. The combined treatment had both the largest vegetation changes and the highest BVOC emissions. The increased emissions under litter addition were probably a result of a changed vegetation composition due to alleviated nutrient limitation and stimulated microbial production of BVOCs. We suggest that the changes in the subarctic vegetation composition induced by climate warming will be the major factor

  9. Vegetation Response to Climate Change in the Southern Part of Qinghai-Tibet Plateau at Basinal Scale

    Science.gov (United States)

    Liu, X.; Liu, C.; Kang, Q.; Yin, B.

    2018-04-01

    Global climate change has significantly affected vegetation variation in the third-polar region of the world - the Qinghai-Tibet Plateau. As one of the most important indicators of vegetation variation (growth, coverage and tempo-spatial change), the Normalized Difference Vegetation Index (NDVI) is widely employed to study the response of vegetation to climate change. However, a long-term series analysis cannot be achieved because a single data source is constrained by time sequence. Therefore, a new framework was presented in this paper to extend the product series of monthly NDVI, taking as an example the Yarlung Zangbo River Basin, one of the most important river basins in the Qinghai-Tibet Plateau. NDVI products were acquired from two public sources: Global Inventory Modeling and Mapping Studies (GIMMS) Advanced Very High Resolution Radiometer (AVHRR) and Moderate-Resolution Imaging spectroradiometer (MODIS). After having been extended using the new framework, the new time series of NDVI covers a 384 months period (1982-2013), 84 months longer than previous time series of NDVI product, greatly facilitating NDVI related scientific research. In the new framework, the Gauss Filtering Method was employed to filter out noise in the NDVI product. Next, the standard method was introduced to enhance the comparability of the two data sources, and a pixel-based regression method was used to construct NDVI-extending models with one pixel after another. The extended series of NDVI fit well with original AVHRR-NDVI. With the extended time-series, temporal trends and spatial heterogeneity of NDVI in the study area were studied. Principal influencing factors on NDVI were further determined. The monthly NDVI is highly correlated with air temperature and precipitation in terms of climatic change wherein the spatially averaged NDVI slightly increases in the summer and has increased in temperature and decreased in precipitation in the 32 years period. The spatial heterogeneity of

  10. VEGETATION RESPONSE TO CLIMATE CHANGE IN THE SOUTHERN PART OF QINGHAI-TIBET PLATEAU AT BASINAL SCALE

    Directory of Open Access Journals (Sweden)

    X. Liu

    2018-04-01

    Full Text Available Global climate change has significantly affected vegetation variation in the third-polar region of the world – the Qinghai-Tibet Plateau. As one of the most important indicators of vegetation variation (growth, coverage and tempo-spatial change, the Normalized Difference Vegetation Index (NDVI is widely employed to study the response of vegetation to climate change. However, a long-term series analysis cannot be achieved because a single data source is constrained by time sequence. Therefore, a new framework was presented in this paper to extend the product series of monthly NDVI, taking as an example the Yarlung Zangbo River Basin, one of the most important river basins in the Qinghai-Tibet Plateau. NDVI products were acquired from two public sources: Global Inventory Modeling and Mapping Studies (GIMMS Advanced Very High Resolution Radiometer (AVHRR and Moderate-Resolution Imaging spectroradiometer (MODIS. After having been extended using the new framework, the new time series of NDVI covers a 384 months period (1982–2013, 84 months longer than previous time series of NDVI product, greatly facilitating NDVI related scientific research. In the new framework, the Gauss Filtering Method was employed to filter out noise in the NDVI product. Next, the standard method was introduced to enhance the comparability of the two data sources, and a pixel-based regression method was used to construct NDVI-extending models with one pixel after another. The extended series of NDVI fit well with original AVHRR-NDVI. With the extended time-series, temporal trends and spatial heterogeneity of NDVI in the study area were studied. Principal influencing factors on NDVI were further determined. The monthly NDVI is highly correlated with air temperature and precipitation in terms of climatic change wherein the spatially averaged NDVI slightly increases in the summer and has increased in temperature and decreased in precipitation in the 32 years period. The

  11. Varying responses of vegetation activity to climate changes on the Tibetan Plateau grassland.

    Science.gov (United States)

    Cong, Nan; Shen, Miaogen; Yang, Wei; Yang, Zhiyong; Zhang, Gengxin; Piao, Shilong

    2017-08-01

    Vegetation activity on the Tibetan Plateau grassland has been substantially enhanced as a result of climate change, as revealed by satellite observations of vegetation greenness (i.e., the normalized difference vegetation index, NDVI). However, little is known about the temporal variations in the relationships between NDVI and temperature and precipitation, and understanding this is essential for predicting how future climate change would affect vegetation activity. Using NDVI data and meteorological records from 1982 to 2011, we found that the inter-annual partial correlation coefficient between growing season (May-September) NDVI and temperature (R NDVI-T ) in a 15-year moving window for alpine meadow showed little change, likely caused by the increasing R NDVI-T in spring (May-June) and autumn (September) and decreasing R NDVI-T in summer (July-August). Growing season R NDVI-T for alpine steppe increased slightly, mainly due to increasing R NDVI-T in spring and autumn. The partial correlation coefficient between growing season NDVI and precipitation (R NDVI-P ) for alpine meadow increased slightly, mainly in spring and summer, and R NDVI-P for alpine steppe increased, mainly in spring. Moreover, R NDVI-T for the growing season was significantly higher in those 15-year windows with more precipitation for alpine steppe. R NDVI-P for the growing season was significantly higher in those 15-year windows with higher temperature, and this tendency was stronger for alpine meadow than for alpine steppe. These results indicate that the impact of warming on vegetation activity of Tibetan Plateau grassland is more positive (or less negative) during periods with more precipitation and that the impact of increasing precipitation is more positive (or less negative) during periods with higher temperature. Such positive effects of the interactions between temperature and precipitation indicate that the projected warmer and wetter future climate will enhance vegetation activity

  12. Analysis of Seasonal and Annual Change of Vegetation in the Indian Thar Desert Using Modis Data

    Science.gov (United States)

    Santra, P.; Chkraborty, A.

    2011-09-01

    The western part of India, specifically the dry region, will play an important role in determining the Indian monsoon and even global climate patterns. Drastically change in land use pattern of the region has been observed during last few decades. In this paper, an effort was made to track the seasonal as well as annual changes of vegetation pattern in Jaisalmer district using MODIS normalized difference vegetation index (NDVI) products. Apart from this, ground data on vegetation were also collected under vegetation carbon pool assessment programme of ISRO-IGBP. It was found that during the hot summer month of May, the area under NDVI class 0-0.1 is reduced from 98% during 2003 to 95% during 2009 with a simultaneous increase in area under NDVI class 0.1-0.2 from 2 to 5%. During the month of September, area under NDVI class 0.2-0.3 increased from almost negligible during May to 34-39% during normal or surplus rainfall year but only to 3% during a deficit year. From the ground data on vegetation biomass, it was found that Prosopis juliflora and Acacia senegal are the most abundant trees in Jaisalmer region of the desert. The sites with NDVI value ≥ 0.2 were mostly found with Prosopis juliflora tree. Among shrubs, the most abundant species was Calotropis procera and Zizyphus numularia. From this study, it has been found that MODIS NDVI products may be used to quickly assess the vegetation changes in response to rainfall as well as due to anthroprogenic interventions in desert.

  13. Next-generation forest change mapping across the United States: the landscape change monitoring system (LCMS)

    Science.gov (United States)

    Sean P. Healey; Warren B. Cohen; Yang Zhiqiang; Ken Brewer; Evan Brooks; Noel Gorelick; Mathew Gregory; Alexander Hernandez; Chengquan Huang; Joseph Hughes; Robert Kennedy; Thomas Loveland; Kevin Megown; Gretchen Moisen; Todd Schroeder; Brian Schwind; Stephen Stehman; Daniel Steinwand; James Vogelmann; Curtis Woodcock; Limin Yang; Zhe. Zhu

    2015-01-01

    Forest change information is critical in forest planning, ecosystem modeling, and in updating forest condition maps. The Landsat satellite platform has provided consistent observations of the world’s ecosystems since 1972. A number of innovative change detection algorithms have been developed to use the Landsat archive to identify and characterize forest change. The...

  14. Competency mapping and visualisation techniques in change management

    OpenAIRE

    Schöpfel , Joachim; Creusot , Jacques

    2008-01-01

    Purpose: The article describes techniques that may facilitate change management in the library. Approach: The paper is based on practical experience and evidence from the INIST library department in France. Findings: Based on standard inventories of LIS professions and competencies, we present techniques for the mapping and visualisation of individual or team-centred job functions and skills. These techniques can help and facilitate communication, information and participation and are useful ...

  15. Impacts of 21st century climate changes on flora and vegetation in Denmark

    Science.gov (United States)

    Skov, Flemming; Nygaard, Bettina; Wind, Peter; Borchsenius, Finn; Normand, Signe; Balslev, Henrik; Fløjgaard, Camilla; Svenning, Jens-Christian

    2009-11-01

    In this paper we examined the potential impacts of predicted climatic changes on the flora and vegetation in Denmark using data from a digital database on the natural vegetation of Europe. Climate scenarios A2 and B2 were used to find regions with present climatic conditions similar to Denmark's climate in the year 2100. The potential natural vegetation of Denmark today is predominantly deciduous forest that would cover more than 90% of the landscape. Swamps, bogs, and wet forest would be found under moist or wet conditions. Dwarf shrub heaths would be naturally occurring on poor soils along the coast together with dune systems and salt-marsh vegetation. When comparing the natural vegetation of Denmark to the vegetation of five future-climate analogue areas, the most obvious trend is a shift from deciduous to thermophilous broadleaved forest currently found in Southern and Eastern Europe. A total of 983 taxa were recorded for this study of which 539 were found in Denmark. The Sørensen index was used to measure the floristic similarity between Denmark and the five subregions. Deciduous forest, dwarf shrub heath, and coastal vegetation were treated in more detail, focusing on potential new immigrant species to Denmark. Finally, implications for management were discussed. The floristic similarity between Denmark and regions in Europe with a climate similar to what is expected for Denmark in year 2100 was found to vary between 48-78%, decreasing from North to South. Hence, it seems inevitable that climate changes of the magnitudes foreseen will alter the distribution of individual species and the composition of natural vegetation units. Changes, however, will not be immediate. Historic evidence shows a considerable lag in response to climatic change under natural conditions, but little is known about the effects of human land-use and pollution on this process. Facing such uncertainties we suggested that a dynamic strategy based on modeling, monitoring and adaptive

  16. Impacts of 21st century climate changes on flora and vegetation in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Skov, Flemming; Nygaard, Bettina; Wind, Peter; Floejgaard, Camilla [Department of Wildlife Ecology and Biodiversity, National Environmental Research Institute, Aarhus University, Grenaavej 14, DK-8410 Roende (Denmark); Borchsenius, Finn; Normand, Signe; Balslev, Henrik; Svenning, Jens-Christian, E-mail: fs@dmu.d [Department of Biological Sciences, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C (Denmark)

    2009-11-01

    In this paper we examined the potential impacts of predicted climatic changes on the flora and vegetation in Denmark using data from a digital database on the natural vegetation of Europe. Climate scenarios A2 and B2 were used to find regions with present climatic conditions similar to Denmark's climate in the year 2100. The potential natural vegetation of Denmark today is predominantly deciduous forest that would cover more than 90% of the landscape. Swamps, bogs, and wet forest would be found under moist or wet conditions. Dwarf shrub heaths would be naturally occurring on poor soils along the coast together with dune systems and salt-marsh vegetation. When comparing the natural vegetation of Denmark to the vegetation of five future-climate analogue areas, the most obvious trend is a shift from deciduous to thermophilous broadleaved forest currently found in Southern and Eastern Europe. A total of 983 taxa were recorded for this study of which 539 were found in Denmark. The Soerensen index was used to measure the floristic similarity between Denmark and the five subregions. Deciduous forest, dwarf shrub heath, and coastal vegetation were treated in more detail, focusing on potential new immigrant species to Denmark. Finally, implications for management were discussed. The floristic similarity between Denmark and regions in Europe with a climate similar to what is expected for Denmark in year 2100 was found to vary between 48-78%, decreasing from North to South. Hence, it seems inevitable that climate changes of the magnitudes foreseen will alter the distribution of individual species and the composition of natural vegetation units. Changes, however, will not be immediate. Historic evidence shows a considerable lag in response to climatic change under natural conditions, but little is known about the effects of human land-use and pollution on this process. Facing such uncertainties we suggested that a dynamic strategy based on modeling, monitoring and

  17. Impacts of 21st century climate changes on flora and vegetation in Denmark

    International Nuclear Information System (INIS)

    Skov, Flemming; Nygaard, Bettina; Wind, Peter; Floejgaard, Camilla; Borchsenius, Finn; Normand, Signe; Balslev, Henrik; Svenning, Jens-Christian

    2009-01-01

    In this paper we examined the potential impacts of predicted climatic changes on the flora and vegetation in Denmark using data from a digital database on the natural vegetation of Europe. Climate scenarios A2 and B2 were used to find regions with present climatic conditions similar to Denmark's climate in the year 2100. The potential natural vegetation of Denmark today is predominantly deciduous forest that would cover more than 90% of the landscape. Swamps, bogs, and wet forest would be found under moist or wet conditions. Dwarf shrub heaths would be naturally occurring on poor soils along the coast together with dune systems and salt-marsh vegetation. When comparing the natural vegetation of Denmark to the vegetation of five future-climate analogue areas, the most obvious trend is a shift from deciduous to thermophilous broadleaved forest currently found in Southern and Eastern Europe. A total of 983 taxa were recorded for this study of which 539 were found in Denmark. The Soerensen index was used to measure the floristic similarity between Denmark and the five subregions. Deciduous forest, dwarf shrub heath, and coastal vegetation were treated in more detail, focusing on potential new immigrant species to Denmark. Finally, implications for management were discussed. The floristic similarity between Denmark and regions in Europe with a climate similar to what is expected for Denmark in year 2100 was found to vary between 48-78%, decreasing from North to South. Hence, it seems inevitable that climate changes of the magnitudes foreseen will alter the distribution of individual species and the composition of natural vegetation units. Changes, however, will not be immediate. Historic evidence shows a considerable lag in response to climatic change under natural conditions, but little is known about the effects of human land-use and pollution on this process. Facing such uncertainties we suggested that a dynamic strategy based on modeling, monitoring and adaptive

  18. Assessment of Pen Branch delta and corridor vegetation changes using multispectral scanner data 1992--1994

    International Nuclear Information System (INIS)

    1996-01-01

    Airborne multispectral scanner data were used to monitor natural succession of wetland vegetation species over a three-year period from 1992 through 1994 for Pen Branch on the Savannah River Site in South Carolina. Image processing techniques were used to identify and measure wetland vegetation communities in the lower portion of the Pen Branch corridor and delta. The study provided a reliable means for monitoring medium- and large-scale changes in a diverse environment. Findings from the study will be used to support decisions regarding remediation efforts following the cessation of cooling water discharge from K reactor at the Department of Energy's Savannah River Site in South Carolina

  19. Vegetation response to climate change : implications for Canada's conservation lands

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D. [Environment Canada, Ottawa, ON (Canada). Adaptation and Impact Research Group; Lemieux, C. [Waterloo Univ., ON (Canada). Dept. of Geography

    2003-05-01

    Studies have shown that Canada's national parks are vulnerable to the impacts of climate change. A wide range of biophysical climate change impacts could affect the integrity of conservation lands in each region of Canada. This report examines the potential impact of climate change on landscape alterations and vegetation distribution in Canada's wide network of conservation lands. It also presents several ways to integrate climate change into existing conservation policy and adaptation strategies. Canada's conservation lands include provincial parks, migratory bird sanctuaries, national wildlife areas and wildlife protected areas. This is the first study to examine biome changes by applying an equilibrium Global Vegetation Model (GVM) to Canada's network of national park systems. Some of the policy and planning challenges posed by changes in landscape level vegetation were also addressed. The report indicates that in terms of potential changes to the biome classification of Canada's national forests, more northern biomes are projected to decrease. These northern biomes include the tundra, taiga and boreal conifer forests. 56 refs., 8 tabs., 6 figs.

  20. Farmers perceptions on climate change in lowland and highland vegetable production centers of South Sulawesi, Indonesia

    Science.gov (United States)

    Adiyoga, W.

    2018-02-01

    A survey was carried out in South Sulawesi, Indonesia interviewing 220 vegetable farmers. It was aimed at examining the vegetable farmers’ perception of climate change and assessing the consistency of farmers’ perception with available time series meteorological data. Results suggest that meteorological data analysis is in agreement with farmers’ perception regarding faster start, longer ending, and longer duration of rainy season. Further data analysis supports the claim of most farmers who perceive the occurrence of increasing air temperature, changing or shifting of the hottest and coldest month. Most respondents also suggest that climate change has affected vegetable farm yield and profitability. Other respondents even predict that climate change may affect the quality of life of their future descendants. Meanwhile, significant number of farmers is quite optimistic that they can cope with climate change problems through adaptation strategy. However, the attitude of farmers towards climate change is mostly negative as compared to positive or neutral feeling. Informative and educational campaign should be continuously carried out to encourage farmers in developing positive attitude or positive thinking towards climate change. Positive attitude may eventually lead to constructive behavior in selecting and implementing adaptation options.

  1. A monitoring protocol for vegetation change on Irish peatland and heath

    Science.gov (United States)

    O'Connell, J.; Connolly, J.; Holden, N. M.

    2014-09-01

    Amendments to Articles 3.3 and 3.4 of the Kyoto Protocol have meant that detection of vegetation change may now form an interracial part of national soil carbon stocks. In this study multispectral multi-platform satellite data was processed to detect change to the surface vegetation of four peatland sites and one heath in Ireland. Spectral and spatial thresholds were used on difference images between master and slave data in the extraction of temporally invariant targets for multi-platform cross calibration. The Kolmogorov-Smirnov test was used to evaluate any difference in the cumulative probability distributions of the master, slave and calibrated slave data as expressed by the D statistic, with values reduced by an average of 89.7% due to the cross calibration procedure. A change detection model was created which incorporated a spatial threshold of 9 pixels and a standard deviation (SD) spectral threshold. Kappa accuracy values for the five sites ranged from 80 to 97%, showing that 1.5 SD was the optimum spectral threshold for detecting vegetation change. Change detection results showed mean percentage change ranging from 2.11 to 3.28% of total area and cumulative change over the observed time period of between 15.24 and 49.27% of total area.

  2. Changes in vegetation, peat properties and peat accumulation in Swedish peatlands as revealed by archive data.

    Science.gov (United States)

    Schoning, Kristian; Sohlenius, Gustav

    2016-04-01

    In this investigation we have studied patterns in peat accumulation and changes in mire status since the early 1900s for two areas in Sweden. In the early 1900s the Geological Survey of Sweden collected a vast amount of peat and peatland data, including information on vegetation and land-use. We have used this archive data to evaluate changes in mire vegetation, mire wetness and surface peat properties, rates of peat accumulation, succession in young wetlands and the effects of cultivation on peatlands. In total 156 mires in an uplift area of eastern middle Sweden were included in the data-set, including both pristine mires and peatlands used for agricultural purposes. In this area new peatlands have continuously been formed during the past 7 000 years making it possible to evaluate changes in peat accumulation over time. The other study area is situated in the south Swedish Uplands where we have revisited some larger bogs. The results from our investigation show that many of the peatlands have underwent major changes since the early 1900s. In most of the small peatlands we have found important changes in vegetation where mire vegetation has been replaced by nutrient demanding and/or dry species flora while the tree stand on large mires in south Sweden have increased. In some mires humification has increased in the uppermost peat-layers and the mire surface have become drier compared to the early 1900s. In eastern middle Sweden there are indications that the peat accumulation is lower 0,5 mm/year in older peatlands compared with younger ones 1,2 mm/year, although the mire vegetation in the older peatlands is dominated by sphagnum. The peat depth of the cultivated mires in this area shows a mean decrease of 40 cm since the early 1900s.

  3. Simulated effects of a seasonal precipitation change on the vegetation in tropical Africa

    Directory of Open Access Journals (Sweden)

    E. S. Gritti

    2010-03-01

    Full Text Available Pollen data collected in Africa at high (Kuruyange, valley swamp, Burundi and low altitude (Victoria, lake, Uganda; Ngamakala, pond, Congo showed that after 6 ky before present (BP, pollen of deciduous trees increase their relative percentage, suggesting thus the reduction of the annual amount of precipitation and/or an increase of in the length of the dry season. Until now, pollen-climate transfer functions only investigated mean annual precipitation, due to the absence of modern pollen-assemblage analogs under diversified precipitation regimes. Hence these functions omit the potential effect of a change in precipitation seasonality modifying thus the length of the dry season. In the present study, we use an equilibrium biosphere model (i.e. BIOME3.5 to estimate the sensitivity of equatorial African vegetation, at specific sites, to such changes. Climatic scenarios, differing only in the monthly distribution of the current annual amount of precipitation, are examined at the above three locations in equatorial Africa. Soil characteristics, monthly temperatures and cloudiness are kept constant at their present-day values. Good agreement is shown between model simulations and current biomes assemblages, as inferred from pollen data. To date, the increase of the deciduous forest component in the palaeodata around 6 ky BP has been interpreted as the beginning of a drier climate period. However, our results demonstrate that a change in the seasonal distribution of precipitation could also induce the observed changes in vegetation types. This study confirms the importance of taking into account seasonal changes in the hydrological balance. Palaeoecologists can greatly benefit from the use of dynamic process based vegetation models to acccount for modification of the length of the dry season when they wish to reconstruct vegetation composition or to infer quantitative climate parameters, such as temperature and precipitation, from pollen or vegetation

  4. Unveiling topographical changes using LiDAR mapping capability: case study of Belaga in Sarawak, East-Malaysia

    Science.gov (United States)

    Ganendra, T. R.; Khan, N. M.; Razak, W. J.; Kouame, Y.; Mobarakeh, E. T.

    2016-06-01

    The use of Light Detection and Ranging (LiDAR) remote sensing technology to scan and map landscapes has proven to be one of the most popular techniques to accurately map topography. Thus, LiDAR technology is the ultimate method of unveiling the surface feature under dense vegetation, and, this paper intends to emphasize the diverse techniques that can be utilized to elucidate topographical changes over the study area, using multi-temporal airborne full waveform LiDAR datasets collected in 2012 and 2014. Full waveform LiDAR data offers access to an almost unlimited number of returns per shot, which enables the user to explore in detail topographical changes, such as vegetation growth measurement. The study also found out topography changes at the study area due to earthwork activities contributing to soil consolidation, soil erosion and runoff, requiring cautious monitoring. The implications of this study not only concurs with numerous investigations undertaken by prominent researchers to improve decision making, but also corroborates once again that investigations employing multi-temporal LiDAR data to unveil topography changes in vegetated terrains, produce more detailed and accurate results than most other remote sensing data.

  5. Vegetation change and the protection of the Csaroda relic mires, Hungary

    Directory of Open Access Journals (Sweden)

    Tibor Simon

    2014-01-01

    Full Text Available Study of vegetation change of the protected mires situated near Csaroda and Beregdaróc (the Great Hungarian Plain are presented. These are the southermost mires with raised bog communities in the plains of Europe. In the past few decades (by the early 80-s vegetation showed both qualitative and quantitative signs of degradation. These changes were caused by natural (climatic variation, succesion and by human effects. Natural changes were following: the decline or extinction of hygrophytes, the expansion of hydromesophytes and mesophytes and the acceleration of forest growth. The most important human-caused change was the drainage of the bogs. The harmful processes had slight effect on the Sphagnum-dominated associations. The "original" (i.e. before drying out state of mires has been recovered by blocking drainage canals, plantation of a buffor zone and prohibition of using chemicals.

  6. The potential natural vegetation of eastern Africa distribution, conservation and future changes

    DEFF Research Database (Denmark)

    van Breugel, Paulo

    and sustainable management of the natural environment. There is therefore an urgent need for information that allow us to assess the current status of the region’s natural environment and to predict how this may change under future climates. This thesis aims to improve our knowledge on natural vegetation...... and how this is likely to change under different climate change scenarios. Chapter 4 presents an environmental gap analysis to prioritize conservation efforts in eastern Africa, based on an evaluation of the environmental representativeness of protected areas and an assessment of the level of threat...... distribution in eastern African, examine how this may change under future climates, and how this can be used to identify conservation priorities in the region. Chapter 1 presents a brief overview of the concept of the potential natural vegetation (PNV), synthesizes the general findings and discusses future...

  7. Impacts of Climate Change Induced Vegetation Responses on BVOC Emissions from Subarctic Heath Ecosystems

    DEFF Research Database (Denmark)

    Valolahti, Hanna Maritta

    The role of biogenic volatile organic compounds (BVOCs) affecting Earths’ climate system is one of the greatest uncertainties when modelling the global climate change. BVOCs presence in the atmosphere can have both positive and negative climate feedback mechanisms when they involve atmospheric...... chemistry and physics. Vegetation is the main source of BVOCs. Their production is directly linked to temperature and the foliar biomass. On global scale, vegetation in subarctic and arctic regions has been modeled to have only minor contribution to annual total BVOC emissions. In these regions cold...... temperature has been regulating annual plant biomass production, but ongoing global warming is more pronounced in these regions than what the global average is. This may increase the importance of subarctic and arctic vegetation as a source of BVOC emissions in near future. This thesis aims to increase...

  8. The Impact of Observed Vegetation Changes on Land–Atmosphere Feedbacks During Drought

    KAUST Repository

    Meng, X. H.; Evans, J. P.; McCabe, Matthew

    2014-01-01

    Simulated feedbacks between vegetation fraction, soil moisture, and drought over southeast Australia were also investigated. Results indicate that vegetation fraction changes lag precipitation reductions by 6–8 months in nonarid regions. With the onset of the 2002 drought, a potential fast physical mechanism was found to play a positive role in the soil moisture–precipitation feedback, while a slow biological mechanism provides a negative feedback in the soil moisture–precipitation interaction on a longer time scale. That is, in the short term, a reduction in soil moisture leads to a reduction in the convective potential and, hence, precipitation, further reducing the soil moisture. If low levels of soil moisture persist long enough, reductions in vegetation cover and vigor occur, reducing the evapotranspiration and thus reducing the soil moisture decreases and dampening the fast physical feedback. Importantly, it was observed that these feedbacks are both space and time dependent.

  9. Curricular activities and change in determinants of fruit and vegetable intake among adolescents

    DEFF Research Database (Denmark)

    Jørgensen, Thea Suldrup; Rasmussen, Mette; Jørgensen, Sanne Ellegaard

    2017-01-01

    ) schools at follow-up; and 2) associations between curriculum dose received and delivered (student and teacher data aggregated to school- and class-level) and these determinants among students at intervention schools only. At follow-up, more students from intervention than control schools knew......-component school-based intervention (2010 - 2011) on key determinants of adolescents' fruit and vegetable intake and 2) if dose of curricular activities was positively associated with change in these determinants. Using multi-level linear and logistic regression analyses stratified by gender and socioeconomic...... the recommendation for vegetable intake (OR 1.56, CI:1.18, 2.06) and number of fruits liked (taste preferences) increased by 0.22 (CI:0.04, 0.41). At class-level, curriculum dose received was positively associated with proportion of students knowing the recommendation for vegetable intake (OR 1.06, CI:1.002, 1...

  10. Seasonal changes in quality of wastewater from fruit and vegetable industry

    Science.gov (United States)

    Puchlik, Monika; Ignatowicz, Katarzyna

    2017-11-01

    The paper aimed at evaluating the seasonal changes in quality of wastewater from facilities producing fruit and vegetable juices, processed and frozen products, and vegetable concentrates. The study revealed that wastewater from fruit and vegetable industry contain large amounts of organic substances expressed as BOD5 (minimum - 500 mgO2/dm3, maximum - 6 100 mgO2/dm3) and COD (minimum - 806 mg O2/dm3, maximum - 7 732 mg O2/dm3), while is deficient in nitrogen and phosphorus. Considerable seasonal oscillations in sewage load disposed by industry to sewerage, were observed. An increase of 50%-60% wastewater concentrations was found between June and October in 2013-2016 as compared to the remaining months.

  11. Automated first-principles mapping for phase-change materials.

    Science.gov (United States)

    Esser, Marc; Maintz, Stefan; Dronskowski, Richard

    2017-04-05

    Plotting materials on bi-coordinate maps according to physically meaningful descriptors has a successful tradition in computational solid-state science spanning more than four decades. Equipped with new ab initio techniques introduced in this work, we generate an improved version of the treasure map for phase-change materials (PCMs) as introduced previously by Lencer et al. which, other than before, charts all industrially used PCMs correctly. Furthermore, we suggest seven new PCM candidates, namely SiSb 4 Te 7 , Si 2 Sb 2 Te 5 , SiAs 2 Te 4 , PbAs 2 Te 4 , SiSb 2 Te 4 , Sn 2 As 2 Te 5 , and PbAs 4 Te 7 , to be used as synthetic targets. To realize aforementioned maps based on orbital mixing (or "hybridization") and ionicity coordinates, structural information was first included into an ab initio numerical descriptor for sp 3 orbital mixing and then generalized beyond high-symmetry structures. In addition, a simple, yet powerful quantum-mechanical ionization measure also including structural information was introduced. Taken together, these tools allow for (automatically) generating materials maps solely relying on first-principles calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Predicting Changes in Arctic Tundra Vegetation: Towards an Understanding of Plant Trait Uncertainty

    Science.gov (United States)

    Euskirchen, E. S.; Serbin, S.; Carman, T.; Iversen, C. M.; Salmon, V.; Helene, G.; McGuire, A. D.

    2017-12-01

    Arctic tundra plant communities are currently undergoing unprecedented changes in both composition and distribution under a warming climate. Predicting how these dynamics may play out in the future is important since these vegetation shifts impact both biogeochemical and biogeophysical processes. More precise estimates of these future vegetation shifts is a key challenge due to both a scarcity of data with which to parameterize vegetation models, particularly in the Arctic, as well as a limited understanding of the importance of each of the model parameters and how they may vary over space and time. Here, we incorporate newly available field data from arctic Alaska into a dynamic vegetation model specifically developed to take into account a particularly wide array of plant species as well as the permafrost soils of the arctic tundra (the Terrestrial Ecosystem Model with Dynamic Vegetation and Dynamic Organic Soil, Terrestrial Ecosystem Model; DVM-DOS-TEM). We integrate the model within the Predicative Ecosystem Analyzer (PEcAn), an open-source integrated ecological bioinformatics toolbox that facilitates the flows of information into and out of process models and model-data integration. We use PEcAn to evaluate the plant functional traits that contribute most to model variability based on a sensitivity analysis. We perform this analysis for the dominant types of tundra in arctic Alaska, including heath, shrub, tussock and wet sedge tundra. The results from this analysis will help inform future data collection in arctic tundra and reduce model uncertainty, thereby improving our ability to simulate Arctic vegetation structure and function in response to global change.

  13. Study of Maowusu Sandy Land Vegetation Coverage Change Based on Modis Ndvi

    Science.gov (United States)

    Ye, Q.; Liu, H.; Lin, Y.; Han, R.

    2018-04-01

    This paper selected 2006-2016 MODIS NDVI data with a spatial resolution of 500m and time resolution of 16d, got the 11 years' time series NDVI data of Maowusu sandy land through mosaicking, projection transformation, cutting process in batch. Analysed the spatial and temporal distribution and variation characteristics of vegetation cover in year, season and month time scales by maximum value composite, and unary linear regression analysis. Then, we combined the meteorological data of 33 sites around the sandy area, analysed the response characteristics of vegetation cover change to temperature and precipitation through Pearson correlation coefficient. Studies have shown that: (1) The NDVI value has a stable increase trend, which rate is 0.0075 / a. (2) The vegetation growth have significantly difference in four seasons, the NDVI value of summer > autumn > spring > winter. (3) The NDVI value change trend is conformed to the gauss normal distribution in a year, and it comes to be largest in August, its green season is in April, and yellow season is in the middle of November, the growth period is about 220 d. (4) The vegetation has a decreasing trend from the southeast to the northwest, most part is slightly improved, and Etuokeqianqi improved significantly. (5) The correlation indexes of annual NDVI with temperature and precipitation are -0.2178 and 0.6309, the vegetation growth is mainly affected by precipitation. In this study, a complete vegetation cover analysis and evaluation model for sandy land is established. It has important guiding significance for the sand ecological environment protection.

  14. Consequences of changes in vegetation and snow cover for climate feedbacks in Alaska and northwest Canada

    Science.gov (United States)

    Euskirchen, Eugénie S.; Bennett, A. P.; Breen, Amy L.; Genet, Helene; Lindgren, Michael A.; Kurkowski, Tom; McGuire, A. David; Rupp, T. Scott

    2016-01-01

    Changes in vegetation and snow cover may lead to feedbacks to climate through changes in surface albedo and energy fluxes between the land and atmosphere. In addition to these biogeophysical feedbacks, biogeochemical feedbacks associated with changes in carbon (C) storage in the vegetation and soils may also influence climate. Here, using a transient biogeographic model (ALFRESCO) and an ecosystem model (DOS-TEM), we quantified the biogeophysical feedbacks due to changes in vegetation and snow cover across continuous permafrost to non-permafrost ecosystems in Alaska and northwest Canada. We also computed the changes in carbon storage in this region to provide a general assessment of the direction of the biogeochemical feedback. We considered four ecoregions, or Landscape Conservations Cooperatives (LCCs; including the Arctic, North Pacific, Western Alaska, and Northwest Boreal). We examined the 90 year period from 2010 to 2099 using one future emission scenario (A1B), under outputs from two general circulation models (MPI-ECHAM5 and CCCMA-CGCM3.1). We found that changes in snow cover duration, including both the timing of snowmelt in the spring and snow return in the fall, provided the dominant positive biogeophysical feedback to climate across all LCCs, and was greater for the ECHAM (+3.1 W m−2 decade−1regionally) compared to the CCCMA (+1.3 W m−2 decade−1 regionally) scenario due to an increase in loss of snow cover in the ECHAM scenario. The greatest overall negative feedback to climate from changes in vegetation cover was due to fire in spruce forests in the Northwest Boreal LCC and fire in shrub tundra in the Western LCC (−0.2 to −0.3 W m−2 decade−1). With the larger positive feedbacks associated with reductions in snow cover compared to the smaller negative feedbacks associated with shifts in vegetation, the feedback to climate warming was positive (total feedback of +2.7 W m−2decade regionally in the ECHAM scenario compared to +0.76 W

  15. Local-scale flood mapping on vegetated floodplains from radiometrically calibrated airborne LiDAR data

    DEFF Research Database (Denmark)

    Malinowski, Radoslaw; Höfle, Bernhard; König, Kristina

    2016-01-01

    that can be used for classification of water surfaces. Following the laser footprint analysis, three classifiers, namely AdaBoost with Decision Tree, Naïve Bayes and Random Forest, were utilised to classify laser points into flooded and non-flooded classes and to derive the map of flooding extent...

  16. Fully polarimetric ALOS PALSAR data to aid geological mapping in densely vegetated areas

    CSIR Research Space (South Africa)

    Engelbrecht, J

    2016-08-01

    Full Text Available The analysis of image data from space-borne or airborne sensors has been widely used to aid geological mapping. The advantages of using remotely sensed data are numerous and include the fact that large areas can be observed in a single observation...

  17. Mapping of landslides under dense vegetation cover using object - oriented analysis and LiDAR derivatives

    NARCIS (Netherlands)

    Van Den Eeckhout, Miet; Kerle, N.; Hervas, Javier; Supper, Robert; Margottini, C.; Canuti, P.; Sassa, K.

    2013-01-01

    Light Detection and Ranging (LiDAR) and its wide range of derivative products have become a powerful tool in landslide research, particularly for landslide identification and landslide inventory mapping. In contrast to the many studies that use expert-based analysis of LiDAR derivatives to identify

  18. A spatio-temporal analysis of climatic drivers for observed changes in Sahelian vegetation productivity 1982-2007

    DEFF Research Database (Denmark)

    Kaspersen, Per; Fensholt, Rasmus; Huber Gharib, Silvia

    2011-01-01

    Linear trend analysis and seasonal trend analysis are performed on gridded data of vegetation, rainfall, solar radiation flux, and air temperature, in order to examine the influence of the past three decades of climate variability and change on the Sahelian vegetation dynamics. Per......-pixel correlation analyses are conducted on annual and monthly data, and analyses of change in the potential climatic constraints to the natural vegetation development from 1982–2007 are performed. The results reveal two distinct periods: (a) 1982–1994 marked by large increases in vegetation productivity...... and rainfall and little change in average air temperatures and solar radiation and (b) 1995–2007 characterized by no distinct trends in vegetation productivity and rainfall and increase in average air temperatures and decrease in solar radiation flux. Correlations between vegetation productivity and climatic...

  19. Palynological evidence for Pennsylvanian (Late Carboniferous) vegetation change in the Sydney Coalfield, eastern Canada

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrova, T.K.; Zodrow, E.L.; Cleal, C.J.; Thomas, B.A. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. of Geology

    2010-07-15

    The palynology of elastic samples from seven stratigraphical levels in the late Moscovian Sydney Mines Formation, exposed along the shore at Bras d'Or, Nova Scotia, has been investigated. Most of the samples were from roof shales of major coals; the one sample that was not yielded a much higher proportion of pollen derived from extra-basinal vegetation. The four stratigraphically lower roof shale samples yielded essentially similar palynological spectra, with 39 {+-} 4% lycophytes, 9 {+-} 4% sphenophylls, 23 {+-} 4% tree-ferns, 12 4% other ferns and 5 {+-} 3% cordaites. The palynology of the upper part of the investigated succession suggests a shift in vegetation towards one favouring more marattialean tree-ferns, cordaites and conifers, and fewer lycophytes. This correlates with changes in drainage patterns as the alluvial plain migrated seawards and thus changed water tables. No evidence was found to suggest significant climate change at this time.

  20. Probabilistic mapping of flood-induced backscatter changes in SAR time series

    Science.gov (United States)

    Schlaffer, Stefan; Chini, Marco; Giustarini, Laura; Matgen, Patrick

    2017-04-01

    The information content of flood extent maps can be increased considerably by including information on the uncertainty of the flood area delineation. This additional information can be of benefit in flood forecasting and monitoring. Furthermore, flood probability maps can be converted to binary maps showing flooded and non-flooded areas by applying a threshold probability value pF = 0.5. In this study, a probabilistic change detection approach for flood mapping based on synthetic aperture radar (SAR) time series is proposed. For this purpose, conditional probability density functions (PDFs) for land and open water surfaces were estimated from ENVISAT ASAR Wide Swath (WS) time series containing >600 images using a reference mask of permanent water bodies. A pixel-wise harmonic model was used to account for seasonality in backscatter from land areas caused by soil moisture and vegetation dynamics. The approach was evaluated for a large-scale flood event along the River Severn, United Kingdom. The retrieved flood probability maps were compared to a reference flood mask derived from high-resolution aerial imagery by means of reliability diagrams. The obtained performance measures indicate both high reliability and confidence although there was a slight under-estimation of the flood extent, which may in part be attributed to topographically induced radar shadows along the edges of the floodplain. Furthermore, the results highlight the importance of local incidence angle for the separability between flooded and non-flooded areas as specular reflection properties of open water surfaces increase with a more oblique viewing geometry.

  1. [Variation trends of natural vegetation net primary productivity in China under climate change scenario].

    Science.gov (United States)

    Zhao, Dong-sheng; Wu, Shao-hong; Yin, Yun-he

    2011-04-01

    Based on the widely used Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ) for climate change study, and according to the features of natural environment in China, the operation mechanism of the model was adjusted, and the parameters were modified. With the modified LPJ model and taking 1961-1990 as baseline period, the responses of natural vegetation net primary productivity (NPP) in China to climate change in 1991-2080 were simulated under the Special Report on Emissions Scenarios (SRES) B2 scenario. In 1961-1990, the total NPP of natural vegetation in China was about 3.06 Pg C a(-1); in 1961-2080, the total NPP showed a fluctuant decreasing trend, with an accelerated decreasing rate. Under the condition of slight precipitation change, the increase of mean air temperature would have definite adverse impact on the NPP. Spatially, the NPP decreased from southeast coast to northwest inland, and this pattern would have less variation under climate change. In eastern China with higher NPP, especially in Northeast China, east of North China, and Loess Plateau, the NPP would mainly have a decreasing trend; while in western China with lower NPP, especially in the Tibetan Plateau and Tarim Basin, the NPP would be increased. With the intensive climate change, such a variation trend of NPP would be more obvious.

  2. Vegetation community change points suggest that critical loads of nutrient nitrogen may be too high

    Science.gov (United States)

    Wilkins, Kayla; Aherne, Julian; Bleasdale, Andy

    2016-12-01

    It is widely accepted that elevated nitrogen deposition can have detrimental effects on semi-natural ecosystems, including changes to plant diversity. Empirical critical loads of nutrient nitrogen have been recommended to protect many sensitive European habitats from significant harmful effects. In this study, we used Threshold Indicator Taxa Analysis (TITAN) to investigate shifts in vegetation communities along an atmospheric nitrogen deposition gradient for twenty-two semi-natural habitat types (as described under Annex I of the European Union Habitats Directive) in Ireland. Significant changes in vegetation community, i.e., change points, were determined for twelve habitats, with seven habitats showing a decrease in the number of positive indicator species. Community-level change points indicated a decrease in species abundance along a nitrogen deposition gradient ranging from 3.9 to 15.3 kg N ha-1 yr-1, which were significantly lower than recommended critical loads (Wilcoxon signed-rank test; V = 6, p < 0.05). These results suggest that lower critical loads of empirical nutrient nitrogen deposition may be required to protect many European habitats. Changes to vegetation communities may mean a loss of sensitive indicator species and potentially rare species in these habitats, highlighting how emission reductions policies set under the National Emissions Ceilings Directive may be directly linked to meeting the goal set out under the European Union's Biodiversity Strategy of "halting the loss of biodiversity" across Europe by 2020.

  3. NDVI indicated characteristics of vegetation cover change in China's metropolises over the last three decades.

    Science.gov (United States)

    Sun, Jinyu; Wang, Xuhui; Chen, Anping; Ma, Yuecun; Cui, Mengdi; Piao, Shilong

    2011-08-01

    How urban vegetation was influenced by three decades of intensive urbanization in China is of great interest but rarely studied. In this paper, we used satellite derived Normalized Difference Vegetation Index (NDVI) and socioeconomic data to evaluate effects of urbanization on vegetation cover in China's 117 metropolises over the last three decades. Our results suggest that current urbanization has caused deterioration of urban vegetation across most cities in China, particularly in East China. At the national scale, average urban area NDVI (NDVI(u)) significantly decreased during the last three decades (P NDVI(u) did not show statistically significant trend before 1990 but decrease remarkably after 1990 (P NDVI(u) turning point. The year when NDVI(u) started to decline significantly for Central China and East China was 1987 and 1990, respectively, while NDVI(u) in West China remained relatively constant until 1998. NDVI(u) changes in the Yangtze River Delta and the Pearl River Delta, two regions which has been undergoing the most rapid urbanization in China, also show different characteristics. The Pearl River Delta experienced a rapid decline in NDVI(u) from the early 1980s to the mid-1990s; while in the Yangtze River Delta, NDVI(u) did not decline significantly until the early 1990s. Such different patterns of NDVI(u) changes are closely linked with policy-oriented difference in urbanization dynamics of these regions, which highlights the importance of implementing a sustainable urban development policy.

  4. Changes in vegetation and soil seed bank of meadow after waterlogging caused by Castor fiber

    Directory of Open Access Journals (Sweden)

    Magdalena Franczak

    2015-07-01

    Full Text Available Soil waterlogging is among abiotic stresses that influence species composition and productivity in numerous plant communities. The aim of the study was to find answer to the question of how waterlogging caused by beavers’ activity induces quantitative and qualitative changes of vegetation and soil seed bank levels of variable-moist meadows. An immediate effect of the waterlogging at the level of vegetation was the decline in species richness and a decrease in the values of the biodiversity index. Water stress inhibited growth and development of plants already present and, primarily, impeded recruitment of new individuals of species characteristic of variable-moist meadows, e.g. Cirsium rivulare, Filipendula ulmaria and Lythrum salicaria, which were replaced by Carex acutiformis. Prolonged waterlogging did not induce equally substantial changes in the soil seed bank as in the vegetation. Both in the waterlogged and control patches, slightly decreased species richness and biodiversity index were recorded. After waterlogging withdrawal, the reserves of the soil seed bank were slightly higher than the initial values. The differences were not statistically significant. In the waterlogged patch, the qualitative floristic similarity between taxa identified in the soil seed bank and vegetation cover declined, which was evidenced by the value of Jaccard’s index decreasing from 0.46 to 0.36. A reverse relationship was found in control patch, where the value of the similarity index slightly increased from 0.41 to 0.48.

  5. Effects of projected climate change on vegetation in the Blue Mountains ecoregion, USA

    Directory of Open Access Journals (Sweden)

    Becky K. Kerns

    2018-04-01

    Full Text Available We used autecological, paleoecological, and modeling information to explore the potential effects of climate change on vegetation in the Blue Mountains ecoregion, Oregon (USA. Although uncertainty exists about the exact nature of future vegetation change, we infer that the following are likely to occur by the end of the century: (1 dominance of ponderosa pine and sagebrush will increase in many locations, (2 the forest-steppe ecotone will move upward in latitude and elevation, (3 ponderosa pine will be distributed at higher elevations, (4 subalpine and alpine systems will be replaced by grass species, pine, and Douglas-fir, (5 moist forest types may increase under wetter scenarios, (6 the distribution and abundance of juniper woodlands may decrease if the frequency and extent of wildfire increase, and (7 grasslands and shrublands will increase at lower elevations. Tree growth in energy-limited landscapes (high elevations, north aspects will increase as the climate warms and snowpack decreases, whereas tree growth in water-limited landscapes (low elevations, south aspects will decrease. Ecological disturbances, including wildfire, insect outbreaks, and non-native species, which are expected to increase in a warmer climate, will affect species distribution, tree age, and vegetation structure, facilitating transitions to new combinations of species and vegetation patterns. In dry forests where fire has not occurred for several decades, crown fires may result in high tree mortality, and the interaction of multiple disturbances and stressors will probably exacerbate stress complexes. Increased disturbance will favor species with physiological and phenological traits that allow them to tolerate frequent disturbance. Keywords: Climate change, Disturbance, Vegetation, Wildfire

  6. Changes in vegetation in northern Alaska under scenarios of climate change, 2003-2100: implications for climate feedbacks

    Science.gov (United States)

    Euskirchen, Eugénie S.; McGuire, Anthony David; Chapin, F. Stuart; Yi, S.; Thompson, Catharine Copass

    2009-01-01

    Assessing potential future changes in arctic and boreal plant species productivity, ecosystem composition, and canopy complexity is essential for understanding environmental responses under expected altered climate forcing. We examined potential changes in the dominant plant functional types (PFTs) of the sedge tundra, shrub tundra, and boreal forest ecosystems in ecotonal northern Alaska, USA, for the years 2003–2100. We compared energy feedbacks associated with increases in biomass to energy feedbacks associated with changes in the duration of the snow-free season. We based our simulations on nine input climate scenarios from the Intergovernmental Panel on Climate Change (IPCC) and a new version of the Terrestrial Ecosystem Model (TEM) that incorporates biogeochemistry, vegetation dynamics for multiple PFTs (e.g., trees, shrubs, grasses, sedges, mosses), multiple vegetation pools, and soil thermal regimes. We found mean increases in net primary productivity (NPP) in all PFTs. Most notably, birch (Betula spp.) in the shrub tundra showed increases that were at least three times larger than any other PFT. Increases in NPP were positively related to increases in growing-season length in the sedge tundra, but PFTs in boreal forest and shrub tundra showed a significant response to changes in light availability as well as growing-season length. Significant NPP responses to changes in vegetation uptake of nitrogen by PFT indicated that some PFTs were better competitors for nitrogen than other PFTs. While NPP increased, heterotrophic respiration (RH) also increased, resulting in decreases or no change in net ecosystem carbon uptake. Greater aboveground biomass from increased NPP produced a decrease in summer albedo, greater regional heat absorption (0.34 ± 0.23 W·m−2·10 yr−1 [mean ± SD]), and a positive feedback to climate warming. However, the decrease in albedo due to a shorter snow season (−5.1 ± 1.6 d/10 yr) resulted in much greater regional heat

  7. Selection of vegetation indices for mapping the sugarcane condition around the oil and gas field of North West Java Basin, Indonesia

    Science.gov (United States)

    Muji Susantoro, Tri; Wikantika, Ketut; Saepuloh, Asep; Handoyo Harsolumakso, Agus

    2018-05-01

    Selection of vegetation indices in plant mapping is needed to provide the best information of plant conditions. The methods used in this research are the standard deviation and the linear regression. This research tried to determine the vegetation indices used for mapping the sugarcane conditions around oil and gas fields. The data used in this study is Landsat 8 OLI/TIRS. The standard deviation analysis on the 23 vegetation indices with 27 samples has resulted in the six highest standard deviations of vegetation indices, termed as GRVI, SR, NLI, SIPI, GEMI and LAI. The standard deviation values are 0.47; 0.43; 0.30; 0.17; 0.16 and 0.13. Regression correlation analysis on the 23 vegetation indices with 280 samples has resulted in the six vegetation indices, termed as NDVI, ENDVI, GDVI, VARI, LAI and SIPI. This was performed based on regression correlation with the lowest value R2 than 0,8. The combined analysis of the standard deviation and the regression correlation has obtained the five vegetation indices, termed as NDVI, ENDVI, GDVI, LAI and SIPI. The results of the analysis of both methods show that a combination of two methods needs to be done to produce a good analysis of sugarcane conditions. It has been clarified through field surveys and showed good results for the prediction of microseepages.

  8. Spatiotemporal changes of normalized difference vegetation index (NDVI) and response to climate extremes and ecological restoration in the Loess Plateau, China

    Science.gov (United States)

    Zhao, Anzhou; Zhang, Anbing; Liu, Xianfeng; Cao, Sen

    2018-04-01

    Extreme drought, precipitation, and other extreme climatic events often have impacts on vegetation. Based on meteorological data from 52 stations in the Loess Plateau (LP) and a satellite-derived normalized difference vegetation index (NDVI) from the third-generation Global Inventory Modeling and Mapping Studies (GIMMS3g) dataset, this study investigated the relationship between vegetation change and climatic extremes from 1982 to 2013. Our results showed that the vegetation coverage increased significantly, with a linear rate of 0.025/10a ( P NDVI revealed an increasing trend from the northwest to the southeast, with about 61.79% of the LP exhibiting a significant increasing trend ( P NDVI at the yearly time scale ( P NDVI during the spring and autumn ( P NDVI and RX1day, TMAXmean, TXn, and TXx was insignificant in summer. Vegetation exhibited a significant negative relationship with precipitation extremes in winter ( P NDVI in Yan'an and Yulin during 1998-2013, r = 0.859 and 0.85, n = 16, P < 0.001.

  9. VEGETATION CHANGES OF SUNDARBANS BASED ON LANDSAT IMAGERY ANALYSIS BETWEEN 1975 AND 2006

    Directory of Open Access Journals (Sweden)

    MD. TARIQUL ISLAM

    2014-06-01

    Full Text Available The Sundarbans in Bangladesh and India is the largest single block of tidal halophytic mangrove forest in the world. This forest is threatened by effect of climate change and manmade activities. The aim of this paper is to show changes in vegetation cover of Sundarbans since 1975 using Landsat imagery. Normalized Difference Vegetation Index is applied to quantify and qualify density of vegetation on a patch of land. Estimated land area (excluded water body of this forest is 66% in Bangladesh, and 34% in India, respectively. Net erosion since 1975 to 2006 is ~5.9%. In vicinity of human settlement, areal changes are not observed since 1975. The mangrove forest is decreased by 19.3% due severe tropical cyclone in 1977 and 1988. Moreover, the dense forest is damaged by about 50%. However, more than 25 years is taken by Sundarbans to recover from damage by a severe tropical cyclone. The biodiversity of Sundarbans depends to fresh water flow through it. Therefore, the future of Sundarbans depends to the impact of climate change which has further effect to increasing intensity and frequency of severe tropical cyclone and salinity in water channels in Sundarbans.

  10. ANALYSIS ON TEMPORAL-SPATIAL CHANGES OF VEGETATION CVERRGE IN FARMING-PASTORAL ECOTONE OF INNER MONGOLIA

    Directory of Open Access Journals (Sweden)

    X. Yan

    2018-04-01

    Full Text Available Chen Barag Banner is located in the typical farming-pastoral ecotone of Inner Mongolia, and it is also the core area of Hulunbuir steppe. Typical agricultural and pastoral staggered production mode so that the vegetation growth of the region not only determines the local ecological environment, and animal husbandry production, but also have a significant impact on the whole Hulunbuir ecological security and economic development. Therefore, it is necessary to monitor the change of vegetation in this area. Based on 17 MODIS Normalized Difference Vegetation Index (NDVI images, the authors reconstructed the dynamic change characteristics of Fraction vegetation coverage(FVC)in Chen Barag Banner from 2000 to 2016. In this paper, first at all, Pixel Decomposition Models was introduced to inversion FVC, and the time series of vegetation coverage was reconstructed. Then we analyzed the temporal-spatial changes of FVC by employing transition matrix. Finally, through image analyzing and processing, the results showed that the vegetation coverage in the study area was influenced by effectors including climate, topography and human actives. In the past 17 years, the overall effect of vegetation coverage showed a downward trend of fluctuation. The average vegetation coverage decreased from 58.81 % in 2000 to 48.14 % in 2016, and the area of vegetation cover degradation accounts for 40.09 % of the total change area. Therefore, the overall degradation trend was obvious.

  11. Analysis on Temporal-Spatial Changes of Vegetation Cverrge in Farming-Pastoral Ecotone of Inner Mongolia

    Science.gov (United States)

    Yan, X.; Li, J.; Yang, Z.

    2018-04-01

    Chen Barag Banner is located in the typical farming-pastoral ecotone of Inner Mongolia, and it is also the core area of Hulunbuir steppe. Typical agricultural and pastoral staggered production mode so that the vegetation growth of the region not only determines the local ecological environment, and animal husbandry production, but also have a significant impact on the whole Hulunbuir ecological security and economic development. Therefore, it is necessary to monitor the change of vegetation in this area. Based on 17 MODIS Normalized Difference Vegetation Index (NDVI) images, the authors reconstructed the dynamic change characteristics of Fraction vegetation coverage (FVC) in Chen Barag Banner from 2000 to 2016. In this paper, first at all, Pixel Decomposition Models was introduced to inversion FVC, and the time series of vegetation coverage was reconstructed. Then we analyzed the temporal-spatial changes of FVC by employing transition matrix. Finally, through image analyzing and processing, the results showed that the vegetation coverage in the study area was influenced by effectors including climate, topography and human actives. In the past 17 years, the overall effect of vegetation coverage showed a downward trend of fluctuation. The average vegetation coverage decreased from 58.81 % in 2000 to 48.14 % in 2016, and the area of vegetation cover degradation accounts for 40.09 % of the total change area. Therefore, the overall degradation trend was obvious.

  12. A procedure to derive intra-and inter-annual changes on vegetation from NDVI time series. A case study in Spain

    International Nuclear Information System (INIS)

    Gilabert, M. A; Martinez, B.; Melia, J.

    2009-01-01

    The objective of this work is to study the spatial patterns of vegetation activity over spain and its temporal variability throughout the period 1989-2002. A multi-resolution analysis (MRA) bases on the wavelet transform has been implemented on NDVI time series from the MEDOKADS database. The MRA decomposes the original signal as a sum of series associated with temporal scales. Specifically, the intra-annual series is processed to define several key features in relation with the vegetation penology. In contras, the inter-annual components of the signal is used to detect trends by means of a Mann-Kendall test and map the magnitude of the land-cover change. Finally, a comprehensive identification of the areas presenting a negative value of the magnitude of change is carried out to select those linked to land degradation processes. Results show a major presence of these areas the Southeast of Spain. (Author) 5 refs.

  13. A procedure to derive intra-and inter-annual changes on vegetation from NDVI time series. A case study in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Gilabert, M. A; Martinez, B.; Melia, J.

    2009-07-01

    The objective of this work is to study the spatial patterns of vegetation activity over spain and its temporal variability throughout the period 1989-2002. A multi-resolution analysis (MRA) bases on the wavelet transform has been implemented on NDVI time series from the MEDOKADS database. The MRA decomposes the original signal as a sum of series associated with temporal scales. Specifically, the intra-annual series is processed to define several key features in relation with the vegetation penology. In contras, the inter-annual components of the signal is used to detect trends by means of a Mann-Kendall test and map the magnitude of the land-cover change. Finally, a comprehensive identification of the areas presenting a negative value of the magnitude of change is carried out to select those linked to land degradation processes. Results show a major presence of these areas the Southeast of Spain. (Author) 5 refs.

  14. Effects of climate change on forest vegetation in the northern Rockies

    Science.gov (United States)

    Keane, Robert E.; Mahalovich, Mary Frances; Bollenbacher, Barry L.; Manning, Mary E.; Loehman, Rachel A.; Jain, Terrie B.; Holsinger, Lisa M.; Larson, Andrew J.; Halofsky, Jessica E.; Peterson, David L.

    2018-01-01

    Increasing air temperature, through its influence on soil moisture, is expected to cause gradual changes in the abundance and distribution of tree, shrub, and grass species throughout the Northern Rockies, with drought tolerant species becoming more competitive. The earliest changes will be at ecotones between lifeforms (e.g., upper and lower treelines). Ecological disturbance, including wildfire and insect outbreaks, will be the primary facilitator of vegetation change, and future forest landscapes may be dominated by younger age classes and smaller trees. High-elevation forests will be especially vulnerable if disturbance frequency

  15. Tropical climate and vegetation changes during Heinrich Event 1: a model-data comparison

    Directory of Open Access Journals (Sweden)

    D. Handiani

    2012-01-01

    Full Text Available Abrupt climate changes from 18 to 15 thousand years before present (kyr BP associated with Heinrich Event 1 (HE1 had a strong impact on vegetation patterns not only at high latitudes of the Northern Hemisphere, but also in the tropical regions around the Atlantic Ocean. To gain a better understanding of the linkage between high and low latitudes, we used the University of Victoria (UVic Earth System-Climate Model (ESCM with dynamical vegetation and land surface components to simulate four scenarios of climate-vegetation interaction: the pre-industrial era, the Last Glacial Maximum (LGM, and a Heinrich-like event with two different climate backgrounds (interglacial and glacial. We calculated mega-biomes from the plant-functional types (PFTs generated by the model to allow for a direct comparison between model results and palynological vegetation reconstructions.

    Our calculated mega-biomes for the pre-industrial period and the LGM corresponded well with biome reconstructions of the modern and LGM time slices, respectively, except that our pre-industrial simulation predicted the dominance of grassland in southern Europe and our LGM simulation resulted in more forest cover in tropical and sub-tropical South America.

    The HE1-like simulation with a glacial climate background produced sea-surface temperature patterns and enhanced inter-hemispheric thermal gradients in accordance with the "bipolar seesaw" hypothesis. We found that the cooling of the Northern Hemisphere caused a southward shift of those PFTs that are indicative of an increased desertification and a retreat of broadleaf forests in West Africa and northern South America. The mega-biomes from our HE1 simulation agreed well with paleovegetation data from tropical Africa and northern South America. Thus, according to our model-data comparison, the reconstructed vegetation changes for the tropical regions around the Atlantic Ocean were physically consistent with the remote

  16. Relationships between declining summer sea ice, increasing temperatures and changing vegetation in the Siberian Arctic tundra from MODIS time series (2000–11)

    International Nuclear Information System (INIS)

    Dutrieux, L P; Bartholomeus, H; Herold, M; Verbesselt, J

    2012-01-01

    The concern about Arctic greening has grown recently as the phenomenon is thought to have significant influence on global climate via atmospheric carbon emissions. Earlier work on Arctic vegetation highlighted the role of summer sea ice decline in the enhanced warming and greening phenomena observed in the region, but did not contain enough details for spatially characterizing the interactions between sea ice, temperature and vegetation photosynthetic absorption. By using 1 km resolution data from the Moderate Resolution Imaging Spectrometer (MODIS) as a primary data source, this study presents detailed maps of vegetation and temperature trends for the Siberian Arctic region, using the time integrated normalized difference vegetation index (TI-NDVI) and summer warmth index (SWI) calculated for the period 2000–11 to represent vegetation greenness and temperature respectively. Spatio-temporal relationships between the two indices and summer sea ice conditions were investigated with transects at eight locations using sea ice concentration data from the Special Sensor Microwave/Imager (SSM/I). In addition, the derived vegetation and temperature trends were compared among major Arctic vegetation types and bioclimate subzones. The fine resolution trend map produced confirms the overall greening (+1% yr −1 ) and warming (+0.27% yr −1 ) of the region, reported in previous studies, but also reveals browning areas. The causes of such local decreases in vegetation, while surrounding areas are experiencing the opposite reaction to changing conditions, are still unclear. Overall correlations between sea ice concentration and SWI as well as TI-NDVI decreased in strength with increasing distance from the coast, with a particularly pronounced pattern in the case of SWI. SWI appears to be driving TI-NDVI in many cases, but not systematically, highlighting the presence of limiting factors other than temperature for plant growth in the region. Further unravelling those limiting

  17. Changing energy-related behavior: An Intervention Mapping approach

    International Nuclear Information System (INIS)

    Kok, Gerjo; Lo, Siu Hing; Peters, Gjalt-Jorn Y.; Ruiter, Robert A.C.

    2011-01-01

    This paper's objective is to apply Intervention Mapping, a planning process for the systematic development of theory- and evidence-based health promotion interventions, to the development of interventions to promote energy conservation behavior. Intervention Mapping (IM) consists of six steps: needs assessment, program objectives, methods and applications, program development, planning for program implementation, and planning for program evaluation. Examples from the energy conservation field are provided to illustrate the activities associated with these steps. It is concluded that applying IM in the energy conservation field may help the development of effective behavior change interventions, and thus develop a domain specific knowledge-base for effective intervention design. - Highlights: → Intervention Mapping (IM) is a planning process for developing evidence-based interventions.→ IM takes a problem-driven rather than theory-driven approach. → IM can be applied to the promotion of energy-conservation in a multilevel approach. → IM helps identifying determinants of behaviors and environmental conditions. → IM helps selecting appropriate theory-based methods and practical applications.

  18. Changing energy-related behavior: An Intervention Mapping approach

    Energy Technology Data Exchange (ETDEWEB)

    Kok, Gerjo, E-mail: g.kok@maastrichtuniversity.nl [Department of Work and Social Psychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht (Netherlands); Lo, Siu Hing, E-mail: siu-hing.lo@maastrichtuniversity.nl [Department of Work and Social Psychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht (Netherlands); Peters, Gjalt-Jorn Y., E-mail: gj.peters@maastrichtuniversity.nl [Department of Work and Social Psychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht (Netherlands); Ruiter, Robert A.C., E-mail: r.ruiter@maastrichtuniversity.nl [Department of Work and Social Psychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht (Netherlands)

    2011-09-15

    This paper's objective is to apply Intervention Mapping, a planning process for the systematic development of theory- and evidence-based health promotion interventions, to the development of interventions to promote energy conservation behavior. Intervention Mapping (IM) consists of six steps: needs assessment, program objectives, methods and applications, program development, planning for program implementation, and planning for program evaluation. Examples from the energy conservation field are provided to illustrate the activities associated with these steps. It is concluded that applying IM in the energy conservation field may help the development of effective behavior change interventions, and thus develop a domain specific knowledge-base for effective intervention design. - Highlights: > Intervention Mapping (IM) is a planning process for developing evidence-based interventions.> IM takes a problem-driven rather than theory-driven approach. > IM can be applied to the promotion of energy-conservation in a multilevel approach. > IM helps identifying determinants of behaviors and environmental conditions. > IM helps selecting appropriate theory-based methods and practical applications.

  19. Variation of Vegetation Ecological Water Consumption and Its Response to Vegetation Coverage Changes in the Rocky Desertification Areas in South China.

    Science.gov (United States)

    Wan, Long; Tong, Jing; Zhou, Jinxing; Guo, Hongyan; Cui, Ming; Liu, Yuguo; Ning, Like; Tang, Fukai

    2016-01-01

    Over the past several decades, rocky desertification has led to severe ecological problems in karst areas in South China. After a rocky desertification treatment project was completed, the vegetation coverage changed greatly and, consequently, increased the ecology water consumption (approximately equal to the actual evapotranspiration) of the regional vegetation. Thus, it intensified the regional water stresses. This study explored the changes in the actual evapotranspiration (ETa) response to the vegetation coverage changes in the rocky desertification areas in South China based on the precipitation (P), potential evapotranspiration (ETp) and NDVI (the normalized difference vegetation index) datasets. The revised Bagrov model was used to simulate the actual evapotranspiration changes with the supposed increasing NDVI. The results indicated that the average NDVI value was lower when the rocky desertification was more severe. The ETa, evapotranspiration efficiency (ETa/ETp) and potential humidity (P/ETp) generally increased with the increasing NDVI. The sensitivity of the ETa response to vegetation coverage changes varied due to different precipitation conditions and different rocky desertification severities. The ETa was more sensitive under drought conditions. When a drought occurred, the ETa exhibited an average increase of 40~60 mm with the NDVI increasing of 0.1 in the rocky desertification areas. Among the 5 different severity categories of rocky desertification, the ETa values' responses to NDVI changes were less sensitive in the severe rocky desertification areas but more sensitive in the extremely and potential rocky desertification areas. For example, with the NDVI increasing of 0.025, 0.05, 0.075, and 0.1, the corresponding ETa changes increased by an average of 2.64 mm, 10.62 mm, 19.19 mm, and 27.58 mm, respectively, in severe rocky desertification areas but by 4.94 mm, 14.99 mm, 26.80, and 37.13 mm, respectively, in extremely severe rocky

  20. A submonthly database for detecting changes in vegetation-atmosphere coupling

    Science.gov (United States)

    Zscheischler, Jakob; Orth, René; Seneviratne, Sonia I.

    2016-04-01

    Land-atmosphere coupling and changes in coupling regimes are important for making precise future climate predictions and understanding vegetation-climate feedbacks. Here we introduce the Vegetation-Atmosphere Coupling (VAC) index which identifies regions and times of concurrent strong anomalies in temperature and photosynthetic activity. The different classes of the index determine whether a location is currently in an energy-limited or water-limited regime, and its high temporal resolution allows to investigate how these regimes change over time at the regional scale. We show that the VAC index helps to distinguish different evaporative regimes. It can therefore provide indirect information about the local soil moisture state. We further demonstrate how the index can be used to understand processes leading to and occurring during extreme climate events, using the 2010 heat wave in Russia and the 2010 Amazon drought as examples.

  1. CO2-vegetation feedbacks and other climate changes implicated in reducing base flow

    Science.gov (United States)

    Trancoso, Ralph; Larsen, Joshua R.; McVicar, Tim R.; Phinn, Stuart R.; McAlpine, Clive A.

    2017-03-01

    Changes in the hydrological cycle have a significant impact in water limited environments. Globally, some of these regions are experiencing declining precipitation yet are simultaneously becoming greener, partly due to vegetation feedbacks associated with increasing atmospheric CO2 concentrations. Reduced precipitation together with increasing rates of actual evapotranspiration diminishes streamflow, especially base flow, a critical freshwater dry-season resource. Here we assess recent changes in base flow in Australia from 1981-2013 and 1950-2013 and separate the contribution of precipitation, potential evapotranspiration, and other factors on base flow trends. Our findings reveal that these other factors influencing the base flow trends are best explained by an increase in photosynthetic activity. These results provide the first robust observational evidence that increasing atmospheric CO2 and its associated vegetation feedbacks are reducing base flow in addition to other climatic impacts. These findings have broad implications for water resource management, especially in the world's water limited regions.

  2. Plant physiological ecology and the global changes Ecofisiologia vegetal e as mudanças globais

    Directory of Open Access Journals (Sweden)

    João Paulo Rodrigues Alves Delfino Barbosa

    2012-06-01

    Full Text Available The global changes are marked by alteration on the normal patterns of important biochemical and biophysical processes of the Earth. However, the real effects as well as the feedbacks of the global changes over vegetation are still unclear. Part of this uncertainty can be attributed to the inattention of stakeholders and scientists towards vegetation and its complex interrelations with the environment, which drive plant physiological processes in different space-time scales. Notwithstanding, some key subjects of the global changes could be better elucidated with a more plant physiological ecology approach. We discuss some issues related to this topic, going through some limitations of approaching vegetation as a static component of the biosphere as the other sub-systems of the Earth-system change. With this perspective, this review is an initial reflection towards the assessment of the role and place of vegetation structure and function in the global changes context. We reviewed the Earth-system and global changes terminology; attempted to illustrate key plant physiological ecology researches themes in the global changes context; consider approaching plants as complex systems in order to adequately quantify systems characteristics as sensibility, homeostasis, and vulnerability. Moreover, we propose insights that would allow vegetation studies and scaling procedures in the context of the Earth-system. We hope this review will assist researchers on their strategy to identify, understand and anticipate the potential effects of global changes over the most vulnerable vegetation processes from the leaf to the global levels.As mudanças globais englobam importantes alterações nos padrões normais de processos bioquímicos e biofísicos da Terra. Os reais efeitos e retroalimentações das mudanças globais sobre a vegetação ainda são incertos. Parte das incertezas pode ser atribuída à falta de atenção de cientistas e políticos para a vegeta

  3. Forest soil survey and mapping of the nutrient status of the vegetation on Olkiluoto island. Results from the first inventory on the FEH plots

    International Nuclear Information System (INIS)

    Tamminen, P.; Aro, A.; Salemaa, M.

    2007-09-01

    The aim of the inventory was to determine the status of the forest soils and to map the current nutrient status of forest vegetation on Olkiluoto Island in order to create a basis for monitoring future changes in the forests and to provide data for a biospheric description of the island. The study was carried out on 94 FEH plots, which were selected from the forest extensive monitoring network (FET plots) on the basis of the forest site type distribution and tree stand characteristics measured on the island during 2002 - 2004. Forest soils on Olkiluoto are very young and typical of soils along the Finnish coast, i.e. stony or shallow soils overlying bedrock, but with more nutrients than the forest soils inland. In addition to nutrients, the heavy metal concentrations are clearly higher on Olkiluoto than the average values for Finnish forest soils. The soil in the alder stands growing along the seashore is different from the other soils on Olkiluoto and the control soils inland. These soils are less acidic and have large reserves of sodium, magnesium and nitrogen. Macronutrient concentrations in vascular plant species were relatively similar to those reported for Southern Finland. However, it is obvious that the accumulation of particulate material on the vegetation, especially on forest floor bryophytes, has increased due to emissions derived from the construction of roads, drilling and rock crushing, as well as the other industrial activities on Olkiluoto Island. Leaf and needle analysis indicated that the tree stands had, in the main, a good nutrient status on Olkiluoto Island. The surveying methods used on Olkiluoto are better suited to detect systematic changes over a larger area or within a group of sample plots than the changes on individual plots. (orig.)

  4. Mapping Post-Fire Vegetation Recovery at Different Lithologies of Taygetos mt (greece) with Multi-Temporal Remote Sensing Data

    Science.gov (United States)

    Vassilakis, Emmanuel; Mallinis, George; Christopoulou, Anastasia; Farangitakis, Georgios-Pavlos; Papanikolaou, Ioannis; Arianoutsou, Margarita

    2017-04-01

    Mt Taygetos (2407m), located at southern Peloponnese (Greece) suffered a large fire during the summer of 2007. The fire burned approximately 45% of the area covered by the endemic Greek fir (Abies cephalonica) and Black Pine (Pinus nigra) forest ecosystems. The aim of the current study is to examine the potential differences on post-fire vegetation recovery imposed by the lithology as well as the geomorphology of the given area over sites of the same climatic and landscape conditions (elevation, aspect, slope etc.). The main lithologies consist of carbonate, permeable, not easily erodible formations (limestones and marbles) and clastic, impermeable (schists, slate and flysch) erodible ones. A time-series of high spatial resolution satellite images were interpreted, analyzed and compared in order to detect changes in vegetation coverage which could prioritize areas of interest for fieldwork campaigns. The remote sensing datasets were acquired before (Ikonos-2), a few months after (Quickbird-2) and some years after (Worldview-3) the 2007 fire. High resolution Digital Elevation Model was used for the ortho-rectification and co-registration of the remote sensing data, but also for the extraction of the mountainous landscape characteristics. The multi-temporal image dataset was analyzed through GEographic-Object Based Image Analysis (GEOBIA). Objects corresponding to different vegetation types through time were identified through spectral and textural features. The classification results were combined with basic layers such as lithological outcrops, pre-fire vegetation, landscape morphology etc., supplementing a spatial geodatabase used for classifying burnt areas with varying post-fire plant community recovery. We validated the results of the classification during fieldwork and found that at a local scale, where the landscape features are quite similar, the bedrock type proves to be an important factor for vegetation recovery, as it clearly defines the soil generation

  5. The Impact of CO2-Driven Vegetation Changes on Wildfire Risk

    Science.gov (United States)

    Skinner, C. B.; Poulsen, C. J.

    2017-12-01

    While wildfires are a key component of natural ecological restoration and succession, they also pose tremendous risks to human life, health, and property. Wildfire frequency is expected to increase in many regions as the radiative effects of elevated CO2 drive warmer surface air temperatures, earlier spring snow melt, and more frequent meteorological drought. However, high CO2 concentrations will also directly impact vegetation growth and physiology, potentially altering wildfire characteristics through changes in fuel amount and surface hydrology. Depending on the biome and time of year, these vegetation-driven responses may mitigate or enhance radiative-driven wildfire changes. In this study, we use a suite of earth system models from the Coupled Model Intercomparison Project 5 with active biogeophysics and biogeochemistry to understand how the vegetation response to high CO2 (CO2 quadrupling) contributes to future changes in wildfire risk across the globe. Across the models, projected CO2 fertilization enhances aboveground biomass (about a 30% leaf area index (LAI) increase averaged across the globe) during the spring and summer months, increasing the availability of wildfire fuel across all biomes. Despite greater LAI, models robustly project widespread reductions in summer season transpiration (about -15% averaged across the globe) in response to reduced stomatal conductance from CO2 physiological forcing. Reduced transpiration warms summer season near surface temperatures and lowers relative humidity across vegetated regions of the mid-to-high latitudes, heightening the risk of wildfire occurrence. However, as transpiration goes down in response to greater plant water use efficiency, a larger fraction of soil water remains in the soil, potentially halting the spread of wildfires in some regions. Given the myriad ways in which the vegetation response to CO2 may alter wildfire risk, and the robustness of the responses across models, an explicit simulation of

  6. Late Holocene vegetation changes in relation with climate fluctuations and human activity in Languedoc (southern France)

    OpenAIRE

    Azuara , J; Combourieu-Nebout , N; Lebreton , V; Mazier , F; Müller , S D; Dezileau , L ,

    2015-01-01

    International audience; Holocene climate fluctuations and human activity since the Neolithic have shaped present-day Mediter-ranean environments. Separating anthropogenic effects from climatic impacts to better understand Mediterranean pale-oenvironmental changes over the last millennia remains a challenging issue. High-resolution pollen analyses were un-dertaken on two cores from the Palavasian lagoon system (Hérault, southern France). These records allow reconstruction of vegetation dynamic...

  7. Carbon isotopes and charcoal in soils, vegetation changes and climate inferences in the southeastern Brazil

    International Nuclear Information System (INIS)

    Pessenda, L.C.R.; Gouveia, S.E.M; Aravena, R; Boulet, R; Bendassolli, J.A

    2001-01-01

    The use of carbon isotopes in studies of soil organic matter (SOM) dynamics have been applied to infer information about vegetation and climate changes during the late Quaternary (Schwartz et al., 1986; Pessenda et al., 1996). This approach had also been used in different areas in Brazil to document vegetation changes during the Holocene (Desjardins et al., 1996; Gouveia et al., 1997; Pessenda et al., 1998a, b, 2001) and late Pleistocene/Holocene (Freitas et al., 2001). The application of carbon isotopes is based on the different 13 C composition of C 3 and C 4 plants and its preservation in SOM. 13 C values of C 3 plant species range from approximately -32% o to -20% o PDB, with a mean of -27% o . In contrast, δ 13 C of C 4 species range from -17% o to -9% o with mean of -13% o . Thus, C 3 and C 4 plant species have distinct δ 13 C values and differ from each other by approximately 14% o (Boutton, 1991). The study of charcoal fragments found in sediments and soils also supplies information about climatic conditions. Charcoal distribution in the soil profiles can provide information about the occurrence of paleofires (Pessenda et al., 1996), possibly associated with drier climate periods and/or human disturbance. In this paper we report δ 13 C data of soil and 14 C dates on charcoal from five soil profiles collected under natural vegetation in the Parana and Sao Paulo states, southeastern Brazil. Carbon isotopes are used to evaluate vegetation changes during the late Pleistocene and Holocene. Charcoal distribution in the soil and its dating are used to infer linkage between forest fires and climate changes and to establish the chronology (au)

  8. Changes of Bacterial Diversity Depend on the Spoilage of Fresh Vegetables

    Directory of Open Access Journals (Sweden)

    Dong Hwan Lee

    2011-04-01

    Full Text Available Almost 10~30% of vegetables were discarded by the spoilage from farms to tables. After harvest, vegetables are often spoiled by a wide variety of microorganisms including many bacterial and fungal species. This investigation was conducted to extent the knowledge of relationship the spoilage of vegetables and the diversity of microbes. The total aerobic bacterial numbers in fresh lettuce, perilla leaf, and chicory were 2.6~2.7×106, 4.6×105, 1.2×106 CFU/g of fresh weight, respectively. The most common bacterial species were Pseudomonas spp., Alysiella spp., and Burkholderia spp., and other 18 more genera were involved in. After one week of incubation of those vegetables at 28℃, the microbial diversity had been changed. The total aerobic bacterial numbers increased to 1.1~4.6×108, 4.9×107, and 7.6×108 CFU/g of fresh weight for lettuce, perilla leaf, and chicory that is about 102 times increased bacterial numbers than that before spoilage. However, the diversity of microbes isolated had been simplified and fewer bacterial species had been isolated. The most bacterial population (~48% was taken up by Pseudomonas spp., and followed by Arthrobacter spp. and Bacillus spp. The spoilage activity of individual bacterial isolates had been tested using axenic lettuce plants. Among tested isolates, Pseudomonas fluorescence and Pantoea agglomerans caused severe spoilage on lettuce.

  9. Analyzing Vegetation Change in an Elephant-Impacted Landscape Using the Moving Standard Deviation Index

    Directory of Open Access Journals (Sweden)

    Timothy J. Fullman

    2014-01-01

    Full Text Available Northern Botswana is influenced by various socio-ecological drivers of landscape change. The African elephant (Loxodonta africana is one of the leading sources of landscape shifts in this region. Developing the ability to assess elephant impacts on savanna vegetation is important to promote effective management strategies. The Moving Standard Deviation Index (MSDI applies a standard deviation calculation to remote sensing imagery to assess degradation of vegetation. Used previously for assessing impacts of livestock on rangelands, we evaluate the ability of the MSDI to detect elephant-modified vegetation along the Chobe riverfront in Botswana, a heavily elephant-impacted landscape. At broad scales, MSDI values are positively related to elephant utilization. At finer scales, using data from 257 sites along the riverfront, MSDI values show a consistent negative relationship with intensity of elephant utilization. We suggest that these differences are due to varying effects of elephants across scales. Elephant utilization of vegetation may increase heterogeneity across the landscape, but decrease it within heavily used patches, resulting in the observed MSDI pattern of divergent trends at different scales. While significant, the low explanatory power of the relationship between the MSDI and elephant utilization suggests the MSDI may have limited use for regional monitoring of elephant impacts.

  10. Geomorphology and vegetation mapping the ice-free terrains of the Western Antarctic Peninsula region using very high resolution imagery from an UAV

    Science.gov (United States)

    Vieira, G.; Mora, C.; Pina, P.; Bandeira, L.; Hong, S. G.

    2014-12-01

    The West Antarctic Peninsula (WAP) is one of the Earth's regions with a fastest warming signal since the 1950's with an increase of over +2.5 ºC in MAAT. Significant changes have been reported for glaciers, ice-shelves, sea-ice and also for the permafrost environment. Mapping and monitoring the ice-free areas of the WAP has been until recently limited by the available aerial photo surveys, but also by the scarce high resolution satellite imagery (e.g. QuickBird, WorldView, etc.) that are seriously constrained by the high cloudiness of the region. Recent developments in Unmanned Aerial Vehicles (UAV's), which have seen significant technological advances and price reduction in the last few years, allow for its systematical use for mapping and monitoring in remote environments. In the framework of projects PERMANTAR-3 (PTDC/AAG-GLO/3908/2012 - FCT) and 3DAntártida (Ciência Viva), we complement traditional terrain surveying and mapping, satellite remote sensing (SAR and optical) and D-GPS deformation monitoring, with the application of an UAV. In this communication, we present the results from the application of a Sensefly ebee UAV in mapping the vegetation and geomorphological processes (e.g. sorted circles), as well as for digital elevation model generation in a test site in Barton Pen., King George Isl.. The UAV is a lightweight (ci. 700g) aircraft, with a 96 cm wingspan, which is portable and easy to transport. It allows for up to 40 min flight time, with application of RGB or NIR cameras. We have tested the ebee successfully with winds up to 10 m/s and obtained aerial photos with a ground resolution of 4 cm/pixel. The digital orthophotomaps, high resolution DEM's together with field observations have allowed for deriving geomorphological maps with unprecedented detail and accuracy, providing new insight into the controls on the spatial distribution of geomorphological processes. The talk will focus on the first results from the field surveys of February and

  11. Exploring the Potential of High Resolution Remote Sensing Data for Mapping Vegetation and the Age Groups of Oil Palm Plantation

    Science.gov (United States)

    Kamiran, N.; Sarker, M. L. R.

    2014-02-01

    The land use/land cover transformation in Malaysia is enormous due to palm oil plantation which has provided huge economical benefits but also created a huge concern for carbon emission and biodiversity. Accurate information about oil palm plantation and the age of plantation is important for a sustainable production, estimation of carbon storage capacity, biodiversity and the climate model. However, the problem is that this information cannot be extracted easily due to the spectral signature for forest and age group of palm oil plantations is similar. Therefore, a noble approach "multi-scale and multi-texture algorithms" was used for mapping vegetation and different age groups of palm oil plantation using a high resolution panchromatic image (WorldView-1) considering the fact that pan imagery has a potential for more detailed and accurate mapping with an effective image processing technique. Seven texture algorithms of second-order Grey Level Co-occurrence Matrix (GLCM) with different scales (from 3×3 to 39×39) were used for texture generation. All texture parameters were classified step by step using a robust classifier "Artificial Neural Network (ANN)". Results indicate that single spectral band was unable to provide good result (overall accuracy = 34.92%), while higher overall classification accuracies (73.48%, 84.76% and 93.18%) were obtained when textural information from multi-scale and multi-texture approach were used in the classification algorithm.

  12. Exploring the Potential of High Resolution Remote Sensing Data for Mapping Vegetation and the Age Groups of Oil Palm Plantation

    International Nuclear Information System (INIS)

    Kamiran, N; Sarker, M L R

    2014-01-01

    The land use/land cover transformation in Malaysia is enormous due to palm oil plantation which has provided huge economical benefits but also created a huge concern for carbon emission and biodiversity. Accurate information about oil palm plantation and the age of plantation is important for a sustainable production, estimation of carbon storage capacity, biodiversity and the climate model. However, the problem is that this information cannot be extracted easily due to the spectral signature for forest and age group of palm oil plantations is similar. Therefore, a noble approach ''multi-scale and multi-texture algorithms'' was used for mapping vegetation and different age groups of palm oil plantation using a high resolution panchromatic image (WorldView-1) considering the fact that pan imagery has a potential for more detailed and accurate mapping with an effective image processing technique. Seven texture algorithms of second-order Grey Level Co-occurrence Matrix (GLCM) with different scales (from 3×3 to 39×39) were used for texture generation. All texture parameters were classified step by step using a robust classifier A rtificial Neural Network (ANN) . Results indicate that single spectral band was unable to provide good result (overall accuracy = 34.92%), while higher overall classification accuracies (73.48%, 84.76% and 93.18%) were obtained when textural information from multi-scale and multi-texture approach were used in the classification algorithm

  13. Development of a high-resolution binational vegetation map of the Santa Cruz River riparian corridor and surrounding watershed, southern Arizona and northern Sonora, Mexico

    Science.gov (United States)

    Wallace, Cynthia S.A.; Villarreal, Miguel L.; Norman, Laura M.

    2011-01-01

    This report summarizes the development of a binational vegetation map developed for the Santa Cruz Watershed, which straddles the southern border of Arizona and the northern border of Sonora, Mexico. The map was created as an environmental input to the Santa Cruz Watershed Ecosystem Portfolio Model (SCWEPM) that is being created by the U.S. Geological Survey for the watershed. The SCWEPM is a map-based multicriteria evaluation tool that allows stakeholders to explore tradeoffs between valued ecosystem services at multiple scales within a participatory decision-making process. Maps related to vegetation type and are needed for use in modeling wildlife habitat and other ecosystem services. Although detailed vegetation maps existed for the U.S. side of the border, there was a lack of consistent data for the Santa Cruz Watershed in Mexico. We produced a binational vegetation classification of the Santa Cruz River riparian habitat and watershed vegetation based on NatureServe Terrestrial Ecological Systems (TES) units using Classification And Regression Tree (CART) modeling. Environmental layers used as predictor data were derived from a seasonal set of Landsat Thematic Mapper (TM) images (spring, summer, and fall) and from a 30-meter digital-elevation-model (DEM) grid. Because both sources of environmental data are seamless across the international border, they are particularly suited to this binational modeling effort. Training data were compiled from existing field data for the riparian corridor and data collected by the NM-GAP (New Mexico Gap Analysis Project) team for the original Southwest Regional Gap Analysis Project (SWReGAP) modeling effort. Additional training data were collected from core areas of the SWReGAP classification itself, allowing the extrapolation of the SWReGAP mapping into the Mexican portion of the watershed without collecting additional training data.

  14. Changes in vegetation phenology on the Mongolian Plateau and their climatic determinants.

    Directory of Open Access Journals (Sweden)

    Lijuan Miao

    Full Text Available Climate change affects the timing of phenological events, such as the start, end, and length of the growing season of vegetation. A better understanding of how the phenology responded to climatic determinants is important in order to better anticipate future climate-ecosystem interactions. We examined the changes of three phenological events for the Mongolian Plateau and their climatic determinants. To do so, we derived three phenological metrics from remotely sensed vegetation indices and associated these with climate data for the period of 1982 to 2011. The results suggested that the start of the growing season advanced by 0.10 days yr-1, the end was delayed by 0.11 days yr-1, and the length of the growing season expanded by 6.3 days during the period from 1982 to 2011. The delayed end and extended length of the growing season were observed consistently in grassland, forest, and shrubland, while the earlier start was only observed in grassland. Partial correlation analysis between the phenological events and the climate variables revealed that higher temperature was associated with an earlier start of the growing season, and both temperature and precipitation contributed to the later ending. Overall, our findings suggest that climate change will substantially alter the vegetation phenology in the grasslands of the Mongolian Plateau, and likely also in biomes with similar environmental conditions, such as other semi-arid steppe regions.

  15. Changes in vegetation phenology on the Mongolian Plateau and their climatic determinants.

    Science.gov (United States)

    Miao, Lijuan; Müller, Daniel; Cui, Xuefeng; Ma, Meihong

    2017-01-01

    Climate change affects the timing of phenological events, such as the start, end, and length of the growing season of vegetation. A better understanding of how the phenology responded to climatic determinants is important in order to better anticipate future climate-ecosystem interactions. We examined the changes of three phenological events for the Mongolian Plateau and their climatic determinants. To do so, we derived three phenological metrics from remotely sensed vegetation indices and associated these with climate data for the period of 1982 to 2011. The results suggested that the start of the growing season advanced by 0.10 days yr-1, the end was delayed by 0.11 days yr-1, and the length of the growing season expanded by 6.3 days during the period from 1982 to 2011. The delayed end and extended length of the growing season were observed consistently in grassland, forest, and shrubland, while the earlier start was only observed in grassland. Partial correlation analysis between the phenological events and the climate variables revealed that higher temperature was associated with an earlier start of the growing season, and both temperature and precipitation contributed to the later ending. Overall, our findings suggest that climate change will substantially alter the vegetation phenology in the grasslands of the Mongolian Plateau, and likely also in biomes with similar environmental conditions, such as other semi-arid steppe regions.

  16. Heterogeneity in global vegetation and terrestrial climate change during the late Eocene to early Oligocene transition.

    Science.gov (United States)

    Pound, Matthew J; Salzmann, Ulrich

    2017-02-24

    Rapid global cooling at the Eocene - Oligocene Transition (EOT), ~33.9-33.5 Ma, is widely considered to mark the onset of the modern icehouse world. A large and rapid drop in atmospheric pCO 2 has been proposed as the driving force behind extinctions in the marine realm and glaciation on Antarctica. However, the global terrestrial response to this cooling is uncertain. Here we present the first global vegetation and terrestrial temperature reconstructions for the EOT. Using an extensive palynological dataset, that has been statistically grouped into palaeo-biomes, we show a more transitional nature of terrestrial climate change by indicating a spatial and temporal heterogeneity of vegetation change at the EOT in both hemispheres. The reconstructed terrestrial temperatures show for many regions a cooling that started well before the EOT and continued into the Early Oligocene. We conclude that the heterogeneous pattern of global vegetation change has been controlled by a combination of multiple forcings, such as tectonics, sea-level fall and long-term decline in greenhouse gas concentrations during the late Eocene to early Oligocene, and does not represent a single response to a rapid decline in atmospheric pCO 2 at the EOT.

  17. How will climate change affect the vegetation cycle over France? A generic modeling approach

    Directory of Open Access Journals (Sweden)

    Nabil Laanaia

    2016-01-01

    Full Text Available The implementation of adaptation strategies of agriculture and forestry to climate change is conditioned by the knowledge of the impacts of climate change on the vegetation cycle and of the associated uncertainties. Using the same generic Land Surface Model (LSM to simulate the response of various vegetation types is more straightforward than using several specialized crop and forestry models, as model implementation differences are difficult to assess. The objective of this study is to investigate the potential of a LSM to address this issue. Using the SURFEX (“Surface Externalisée” modeling platform, we produced and analyzed 150-yr (1950–2100 simulations of the biomass of four vegetation types (rainfed straw cereals, rainfed grasslands, broadleaf and needleleaf forests and of the soil water content associated to each of these vegetation types over France. Statistical methods were used to quantify the impact of climate change on simulated phenological dates. The duration of soil moisture stress periods increases everywhere in France, especially for grasslands with, on average, an increase of 9 days per year in near-future (NF conditions and 36 days per year in distant-future (DF conditions. For all the vegetation types, leaf onset and the annual maximum LAI occur earlier. For straw cereals in the Languedoc-Provence-Corsica area, NF leaf onset occurs 18 days earlier and 37 days earlier in DF conditions, on average. On the other hand, local discrepancies are simulated for the senescence period (e.g. earlier in western and southern France for broadleaf forests, slightly later in mountainous areas of eastern France for both NF and DF. Changes in phenological dates are more uncertain in DF than in NF conditions in relation to differences in climate models, especially for forests. Finally, it is shown that while changes in leaf onset are mainly driven by air temperature, longer soil moisture stress periods trigger earlier leaf senescence

  18. Mapping critical levels of ozone, sulfur dioxide and nitrogen oxide for crops, forests and natural vegetation in the United States

    International Nuclear Information System (INIS)

    Rosenbaum, B.J.; Strickland, T.C.; McDowell, M.K.

    1994-01-01

    Air pollution abatement strategies for controlling nitrogen dioxide, sulfur dioxide, and ozone emissions in the United States focus on a 'standards-based' approach. This approach places limits on air pollution by maintaining a baseline value for air quality, no matter what the ecosystem can or cannot withstand. This paper, presents example critical levels maps for the conterminous U.S. developed using the 'effects-based' mapping approach as defined by the United Nations Economic Commission for Europe's Convention on Long-Range Transboundary Air Pollution, Task Force on Mapping. This approach emphasizes the pollution level or load capacity an ecosystem can accommodate before degradation occurs, and allows for analysis of cumulative effects. Presents the first stage of an analysis that reports the distribution of exceedances of critical levels for NO 2 , SO 2 , and O 3 in sensitive forest, crop, and natural vegetation ecosystems in the contiguous United States. It is concluded that extrapolation to surrounding geographic areas requires the analysis of diverse and compounding factors that preclude simple extrapolation methods. Pollutant data depicted in this analysis are limited to locationally specific data, and would be enhanced by utilizing spatial statistics, along with converging associated anthropogenic and climatological factors. Values used for critical levels were derived from current scientific knowledge. While not intended to be a definitive value, adjustments will occur as the scientific community gains new insight to pollutant/receptor relationships. We recommend future analysis to include a refinement of sensitive receptor data coverages and to report relative proportions of exceedances at varying grid scales. 27 refs., 4 figs., 1 tab

  19. Flood Extent Mapping for Namibia Using Change Detection and Thresholding with SAR

    Science.gov (United States)

    Long, Stephanie; Fatoyinbo, Temilola E.; Policelli, Frederick

    2014-01-01

    A new method for flood detection change detection and thresholding (CDAT) was used with synthetic aperture radar (SAR) imagery to delineate the extent of flooding for the Chobe floodplain in the Caprivi region of Namibia. This region experiences annual seasonal flooding and has seen a recent renewal of severe flooding after a long dry period in the 1990s. Flooding in this area has caused loss of life and livelihoods for the surrounding communities and has caught the attention of disaster relief agencies. There is a need for flood extent mapping techniques that can be used to process images quickly, providing near real-time flooding information to relief agencies. ENVISAT/ASAR and Radarsat-2 images were acquired for several flooding seasons from February 2008 to March 2013. The CDAT method was used to determine flooding from these images and includes the use of image subtraction, decision based classification with threshold values, and segmentation of SAR images. The total extent of flooding determined for 2009, 2011 and 2012 was about 542 km2, 720 km2, and 673 km2 respectively. Pixels determined to be flooded in vegetation were typically flooding in vegetation was much greater (almost one third of the total flooded area). The time to maximum flooding for the 2013 flood season was determined to be about 27 days. Landsat water classification was used to compare the results from the new CDAT with SAR method; the results show good spatial agreement with Landsat scenes.

  20. Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands.

    Science.gov (United States)

    Tietjen, Britta; Schlaepfer, Daniel R; Bradford, John B; Lauenroth, William K; Hall, Sonia A; Duniway, Michael C; Hochstrasser, Tamara; Jia, Gensuo; Munson, Seth M; Pyke, David A; Wilson, Scott D

    2017-07-01

    Drylands occur worldwide and are particularly vulnerable to climate change because dryland ecosystems depend directly on soil water availability that may become increasingly limited as temperatures rise. Climate change will both directly impact soil water availability and change plant biomass, with resulting indirect feedbacks on soil moisture. Thus, the net impact of direct and indirect climate change effects on soil moisture requires better understanding. We used the ecohydrological simulation model SOILWAT at sites from temperate dryland ecosystems around the globe to disentangle the contributions of direct climate change effects and of additional indirect, climate change-induced changes in vegetation on soil water availability. We simulated current and future climate conditions projected by 16 GCMs under RCP 4.5 and RCP 8.5 for the end of the century. We determined shifts in water availability due to climate change alone and due to combined changes of climate and the growth form and biomass of vegetation. Vegetation change will mostly exacerbate low soil water availability in regions already expected to suffer from negative direct impacts of climate change (with the two RCP scenarios giving us qualitatively similar effects). By contrast, in regions that will likely experience increased water availability due to climate change alone, vegetation changes will counteract these increases due to increased water losses by interception. In only a small minority of locations, climate change-induced vegetation changes may lead to a net increase in water availability. These results suggest that changes in vegetation in response to climate change may exacerbate drought conditions and may dampen the effects of increased precipitation, that is, leading to more ecological droughts despite higher precipitation in some regions. Our results underscore the value of considering indirect effects of climate change on vegetation when assessing future soil moisture conditions in water

  1. Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands

    Science.gov (United States)

    Tietjen, Britta; Schlaepfer, Daniel R.; Bradford, John B.; Laurenroth, William K.; Hall, Sonia A.; Duniway, Michael C.; Hochstrasser, Tamara; Jia, Gensuo; Munson, Seth M.; Pyke, David A.; Wilson, Scott D.

    2017-01-01

    Drylands occur world-wide and are particularly vulnerable to climate change since dryland ecosystems depend directly on soil water availability that may become increasingly limited as temperatures rise. Climate change will both directly impact soil water availability, and also change plant biomass, with resulting indirect feedbacks on soil moisture. Thus, the net impact of direct and indirect climate change effects on soil moisture requires better understanding.We used the ecohydrological simulation model SOILWAT at sites from temperate dryland ecosystems around the globe to disentangle the contributions of direct climate change effects and of additional indirect, climate change-induced changes in vegetation on soil water availability. We simulated current and future climate conditions projected by 16 GCMs under RCP 4.5 and RCP 8.5 for the end of the century. We determined shifts in water availability due to climate change alone and due to combined changes of climate and the growth form and biomass of vegetation.Vegetation change will mostly exacerbate low soil water availability in regions already expected to suffer from negative direct impacts of climate change (with the two RCP scenarios giving us qualitatively similar effects). By contrast, in regions that will likely experience increased water availability due to climate change alone, vegetation changes will counteract these increases due to increased water losses by interception. In only a small minority of locations, climate change induced vegetation changes may lead to a net increase in water availability. These results suggest that changes in vegetation in response to climate change may exacerbate drought conditions and may dampen the effects of increased precipitation, i.e. leading to more ecological droughts despite higher precipitation in some regions. Our results underscore the value of considering indirect effects of climate change on vegetation when assessing future soil moisture conditions in water

  2. Climate and vegetation changes around the Atlantic Ocean resulting from changes in the meridional overturning circulation during deglaciation

    Science.gov (United States)

    Handiani, D.; Paul, A.; Dupont, L.

    2012-07-01

    The Bølling-Allerød (BA, starting ~ 14.5 ka BP) is one of the most pronounced abrupt warming periods recorded in ice and pollen proxies. The leading explanation of the cause of this warming is a sudden increase in the rate of deepwater formation in the North Atlantic Ocean and the resulting effect on the heat transport by the Atlantic Meridional Overturning Circulation (AMOC). In this study, we used the University of Victoria (UVic) Earth System-Climate Model (ESCM) to run simulations, in which a freshwater perturbation initiated a BA-like warming period. We found that under present climate conditions, the AMOC intensified when freshwater was added to the Southern Ocean. However, under Heinrich event 1 (HE1, ~ 16 ka BP) climate conditions, the AMOC only intensified when freshwater was extracted from the North Atlantic Ocean, possibly corresponding to an increase in evaporation or a decrease in precipitation in this region. The intensified AMOC led to a warming in the North Atlantic Ocean and a cooling in the South Atlantic Ocean, resembling the bipolar seesaw pattern typical of the last glacial period. In addition to the physical response, we also studied the simulated vegetation response around the Atlantic Ocean region. Corresponding with the bipolar seesaw hypothesis, the rainbelt associated with the Intertropical Convergence Zone (ITCZ) shifted northward and affected the vegetation pattern in the tropics. The most sensitive vegetation area was found in tropical Africa, where grass cover increased and tree cover decreased under dry climate conditions. An equal but opposite response to the collapse and recovery of the AMOC implied that the change in vegetation cover was transient and robust to an abrupt climate change such as during the BA period, which is also supported by paleovegetation data. The results are in agreement with paleovegetation records from Western tropical Africa, which also show a reduction in forest cover during this time period. Further

  3. Predictive Mapping of Dwarf Shrub Vegetation in an Arid High Mountain Ecosystem Using Remote Sensing and Random Forests

    Directory of Open Access Journals (Sweden)

    Kim André Vanselow

    2014-07-01

    Full Text Available In many arid mountains, dwarf shrubs represent the most important fodder and firewood resources; therefore, they are intensely used. For the Eastern Pamirs (Tajikistan, they are assumed to be overused. However, empirical evidence on this issue is lacking. We aim to provide a method capable of mapping vegetation in this mountain desert. We used random forest models based on remote sensing data (RapidEye, ASTER GDEM and 359 plots to predictively map total vegetative cover and the distribution of the most important firewood plants, K. ceratoides and A. leucotricha. These species were mapped as present in 33.8% of the study area (accuracy 90.6%. The total cover of the dwarf shrub communities ranged from 0.5% to 51% (per pixel. Areas with very low cover were limited to the vicinity of roads and settlements. The model could explain 80.2% of the total variance. The most important predictor across the models was MSAVI2 (a spectral vegetation index particularly invented for low-cover areas. We conclude that the combination of statistical models and remote sensing data worked well to map vegetation in an arid mountainous environment. With this approach, we were able to provide tangible data on dwarf shrub resources in the Eastern Pamirs and to relativize previous reports about their extensive depletion.

  4. On the suitability of MODIS time series metrics to map vegetation types in dry savanna ecosystems: A case study in the Kalahari of NE Namibia

    NARCIS (Netherlands)

    Hüttich, C.; Gessner, U.; Herold, M.; Strohbach, B.; Schmidt, M.; Keil, M.; Dech, S.

    2009-01-01

    The characterization and evaluation of the recent status of biodiversity in Southern Africa’s Savannas is a major prerequisite for suitable and sustainable land management and conservation purposes. This paper presents an integrated concept for vegetation type mapping in a dry savanna ecosystem

  5. An empirical study on the utility of BRDF model parameters and topographic parameters for mapping vegetation in a semi-arid region with MISR imagery

    Science.gov (United States)

    Multi-angle remote sensing has been proved useful for mapping vegetation community types in desert regions. Based on Multi-angle Imaging Spectro-Radiometer (MISR) multi-angular images, this study compares roles played by Bidirectional Reflectance Distribution Function (BRDF) model parameters with th...

  6. Increasing of Urban Radiation due to Climate Change and Reduction Strategy using Vegetation

    Science.gov (United States)

    Park, C.; Lee, D.; Heo, H. K.; Ahn, S.

    2017-12-01

    Urban Heat Island (UHI) which means urban air temperature is higher than suburban area is one of the most important environmental issues in Urban. High density of buildings and high ratio of impervious surfaces increases the radiation fluxes in urban canopy. Furthermore, climate change is expected to make UHI even more seriously in the future. Increased irradiation and air temperature cause high amount of short wave and long wave radiation, respectively. This increases net radiation negatively affects heat condition of pedestrian. UHI threatens citizen's health by increasing violence and heat related diseases. For this reason, understanding how much urban radiation will increase in the future, and exploring radiation reduction strategies is important for reducing UHI. In this research, we aim to reveal how the radiation flux in the urban canyon will change as the climate change and determine how much of urban vegetation will be needed to cover this degradation. The study area is a commercial district in Seoul where highly populated area. Due to the high density of buildings and lack of urban vegetation, this area has a poor thermal condition in summer. In this research, we simulate the radiation flux on the ground using multi-layer urban canopy model. Unlike conventionally used urban canopy model to simulate radiation transfer using vertically single layer, the multi-layer model we used here, enables to consider the vertical heterogeneous of buildings and urban vegetation. As a result, net radiation of urban ground will be increase 2.1 W/m² in the 2050s and 2.7 W/m² in the 2100s. And to prevent the increase of radiation, it is revealed that the urban vegetation should by increased by 10%. This research will be valuable in establishing greening planning as a strategy to reduce UHI effect.

  7. The use of remotely-sensed snow, soil moisture and vegetation indices to develop resilience to climate change in Kazakhstan

    Science.gov (United States)

    Saidaliyeva, Zarina; Davenport, Ian; Nobakht, Mohamad; White, Kevin; Shahgedanova, Maria

    2017-04-01

    Kazakhstan is a major producer of grain. Large scale grain production dominates in the north, making Kazakhstan one of the largest exporters of grain in the world. Agricultural production accounts for 9% of the national GDP, providing 25% of national employment. The south relies on grain production from household farms for subsistence, and has low resilience, so is vulnerable to reductions in output. Yields in the south depend on snowmelt and glacier runoff. The major limit to production is water supply, which is affected by glacier retreat and frequent droughts. Climate change is likely to impact all climate drivers negatively, leading to a decrease in crop yield, which will impact Kazakhstan and countries dependent on importing its produce. This work makes initial steps in modelling the impact of climate change on crop yield, by identifying the links between snowfall, soil moisture and agricultural productivity. Several remotely-sensed data sources are being used. The availability of snowmelt water over the period 2010-2014 is estimated by extracting the annual maximum snow water equivalent (SWE) from the Globsnow dataset, which assimilates satellite microwave observations with field observations to produce a spatial map. Soil moisture over the period 2010-2016 is provided by the ESA Soil Moisture and Ocean Salinity (SMOS) mission. Vegetation density is approximated by the Normalised Difference Vegetation Index (NDVI) produced from NASA's MODIS instruments. Statistical information on crop yields is provided by the Ministry of National Economy of the Republic of Kazakhstan Committee on Statistics. Demonstrating the link between snowmelt yield and agricultural productivity depends on showing the impact of snow mass during winter on remotely-sensed soil moisture, the link between soil moisture and vegetation density, and finally the link between vegetation density and crop yield. Soil moisture maps were extracted from SMOS observations, and resampled onto a 40km x

  8. Development of a Dynamic Web Mapping Service for Vegetation Productivity Using Earth Observation and in situ Sensors in a Sensor Web Based Approach

    Directory of Open Access Journals (Sweden)

    Sytze de Bruin

    2009-03-01

    Full Text Available This paper describes the development of a sensor web based approach which combines earth observation and in situ sensor data to derive typical information offered by a dynamic web mapping service (WMS. A prototype has been developed which provides daily maps of vegetation productivity for the Netherlands with a spatial resolution of 250 m. Daily available MODIS surface reflectance products and meteorological parameters obtained through a Sensor Observation Service (SOS were used as input for a vegetation productivity model. This paper presents the vegetation productivity model, the sensor data sources and the implementation of the automated processing facility. Finally, an evaluation is made of the opportunities and limitations of sensor web based approaches for the development of web services which combine both satellite and in situ sensor sources.

  9. Knowledge Mapping for Climate Change and Food- and Waterborne Diseases

    Science.gov (United States)

    Semenza, Jan C.; Höuser, Christoph; Herbst, Susanne; Rechenburg, Andrea; Suk, Jonathan E.; Frechen, Tobias; Kistemann, Thomas

    2011-01-01

    The authors extracted from the PubMed and ScienceDirect bibliographic databases all articles published between 1998 and 2009 that were relevant to climate change and food- and waterborne diseases. Any material within each article that provided information about a relevant pathogen and its relationship with climate and climate change was summarized as a key fact, entered into a relational knowledge base, and tagged with the terminology (predefined terms) used in the field. These terms were organized, quantified, and mapped according to predefined hierarchical categories. For noncholera Vibrio sp. and Cryptosporidium sp., data on climatic and environmental influences (52% and 49% of the total number of key facts, respectively) pertained to specific weather phenomena (as opposed to climate change phenomena) and environmental determinants, whereas information on the potential effects of food-related determinants that might be related to climate or climate change were virtually absent. This proportion was lower for the other pathogens studied (Campylobacter sp. 40%, Salmonella sp. 27%, Norovirus 25%, Listeria sp. 8%), but they all displayed a distinct concentration of information on general food-and water-related determinants or effects, albeit with little detail. Almost no information was available concerning the potential effects of changes in climatic variables on the pathogens evaluated, such as changes in air or water temperature, precipitation, humidity, UV radiation, wind, cloud coverage, sunshine hours, or seasonality. Frequency profiles revealed an abundance of data on weather and food-specific determinants, but also exposed extensive data deficiencies, particularly with regard to the potential effects of climate change on the pathogens evaluated. A reprioritization of public health research is warranted to ensure that funding is dedicated to explicitly studying the effects of changes in climate variables on food- and waterborne diseases. PMID:24771989

  10. Vegetation change in a man-made salt marsh affected by a reduction in both grazing and drainage

    NARCIS (Netherlands)

    Esselink, Peter; Fresco, LFM; Dijkema, KS

    In order to restore natural salt marsh in a 460-ha nature reserve established in man-made salt marsh in the Dollard estuary, The Netherlands, the artificial drainage system was neglected and cattle grazing reduced. Vegetation changes were traced through two vegetation surveys and monitoring of

  11. Interannual variability of the normalized difference vegetation index on the Tibetan Plateau and its relationship with climate change

    Science.gov (United States)

    Zhou, Dingwen; Fan, Guangzhou; Huang, Ronghui; Fang, Zhifang; Liu, Yaqin; Li, Hongquan

    2007-05-01

    The Qinghai-Xizang Plateau, or Tibetan Plateau, is a sensitive region for climate change, where the manifestation of global warming is particularly noticeable. The wide climate variability in this region significantly affects the local land ecosystem and could consequently lead to notable vegetation changes. In this paper, the interannual variations of the plateau vegetation are investigated using a 21-year normalized difference vegetation index (NDVI) dataset to quantify the consequences of climate warming for the regional ecosystem and its interactions. The results show that vegetation coverage is best in the eastern and southern plateau regions and deteriorates toward the west and north. On the whole, vegetation activity demonstrates a gradual enhancement in an oscillatory manner during 1982 2002. The temporal variation also exhibits striking regional differences: an increasing trend is most apparent in the west, south, north and southeast, whereas a decreasing trend is present along the southern plateau boundary and in the central-east region. Covariance analysis between the NDVI and surface temperature/precipitation suggests that vegetation change is closely related to climate change. However, the controlling physical processes vary geographically. In the west and east, vegetation variability is found to be driven predominantly by temperature, with the impact of precipitation being of secondary importance. In the central plateau, however, temperature and precipitation factors are equally important in modulating the interannual vegetation variability.

  12. Simulating the Effect of Climate Change on Vegetation Zone Distribution on the Loess Plateau, Northwest China

    Directory of Open Access Journals (Sweden)

    Guoqing Li

    2015-06-01

    Full Text Available A risk assessment of vegetation zone responses to climate change was conducted using the classical Holdridge life zone model on the Loess Plateau of Northwest China. The results show that there are currently ten vegetation zones occurring on the Loess Plateau (1950–2000, including alvar desert, alpine wet tundra, alpine rain tundra, boreal moist forest, boreal wet forest, cool temperate desert, cool temperate desert scrub, cool temperate steppe, cool temperate moist forest, warm temperate desert scrub, warm temperate thorn steppe, and warm temperate dry forest. Seventy years later (2070S, the alvar desert, the alpine wet tundra and the cool temperate desert will disappear, while warm temperate desert scrub and warm temperate thorn steppe will emerge. The area proportion of warm temperate dry forest will expand from 12.2% to 22.8%–37.2%, while that of cool temperate moist forest will decrease from 18.5% to 6.9%–9.5%. The area proportion of cool temperate steppe will decrease from 51.8% to 34.5%–51.6%. Our results suggest that future climate change will be conducive to the growth and expansion of forest zones on the Loess Plateau, which can provide valuable reference information for regional vegetation restoration planning and adaptive strategies in this region.

  13. Benthic Habitat Mapping - Indian River Lagoon, Florida Submerged Aquatic Vegetation (SAV) Data 1996 Geoform

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Office for Coastal Management's Coastal Change Analysis Program, in cooperation with the St. Johns River and South Florida Water Management Districts, used...

  14. Benthic Habitat Mapping - Indian River Lagoon, Florida Submerged Aquatic Vegetation (SAV) Data 1996 Geodatabase

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Office for Coastal Management's Coastal Change Analysis Program, in cooperation with the St. Johns River and South Florida Water Management Districts, used...

  15. Benthic Habitat Mapping - Indian River Lagoon, Florida Submerged Aquatic Vegetation (SAV) Data 1996 Substrate

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Office for Coastal Management's Coastal Change Analysis Program, in cooperation with the St. Johns River and South Florida Water Management Districts, used...

  16. Mapping Congo Basin vegetation types from 300 m and 1 km multi-sensor time series for carbon stocks and forest areas estimation

    Directory of Open Access Journals (Sweden)

    A. Verhegghen

    2012-12-01

    Full Text Available This study aims to contribute to the understanding of the Congo Basin forests by delivering a detailed map of vegetation types with an improved spatial discrimination and coherence for the whole Congo Basin region. A total of 20 land cover classes were described with the standardized Land Cover Classification System (LCCS developed by the FAO. Based on a semi-automatic processing chain, the Congo Basin vegetation types map was produced by combining 19 months of observations from the Envisat MERIS full resolution products (300 m and 8 yr of daily SPOT VEGETATION (VGT reflectances (1 km. Four zones (north, south and two central were delineated and processed separately according to their seasonal and cloud cover specificities. The discrimination between different vegetation types (e.g. forest and savannas was significantly improved thanks to the MERIS sharp spatial resolution. A better discrimination was achieved in cloudy areas by taking advantage of the temporal consistency of the SPOT VGT observations. This resulted in a precise delineation of the spatial extent of the rural complex in the countries situated along the Atlantic coast. Based on this new map, more accurate estimates of the surface areas of forest types were produced for each country of the Congo Basin. Carbon stocks of the Basin were evaluated to a total of 49 360 million metric tons. The regional scale of the map was an opportunity to investigate what could be an appropriate tree cover threshold for a forest class definition in the Congo Basin countries. A 30% tree cover threshold was suggested. Furthermore, the phenology of the different vegetation types was illustrated systematically with EVI temporal profiles. This Congo Basin forest types map reached a satisfactory overall accuracy of 71.5% and even 78.9% when some classes are aggregated. The values of the Cohen's kappa coefficient, respectively 0.64 and 0.76 indicates a result significantly better than random.

  17. Vegetation monitoring to detect and predict vegetation change: Connecting historical and future shrub/steppe data in Yellowstone National Park

    Science.gov (United States)

    Geneva Chong; David Barnett; Benjamin Chemel; Roy Renkin; Pamela Sikkink

    2011-01-01

    A 2002 National Research Council (NRC) evaluation of ungulate management practices in Yellowstone specifically concluded that previous (1957 to present) vegetation monitoring efforts were insufficient to determine whether climate or ungulates were more influential on shrub/steppe dynamics on the northern ungulate winter range. The NRC further recommended that the...

  18. The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes

    Science.gov (United States)

    Thom, Dominik; Rammer, Werner; Seidl, Rupert

    2018-01-01

    Currently, the temperate forest biome cools the earth’s climate and dampens anthropogenic climate change. However, climate change will substantially alter forest dynamics in the future, affecting the climate regulation function of forests. Increasing natural disturbances can reduce carbon uptake and evaporative cooling, but at the same time increase the albedo of a landscape. Simultaneous changes in vegetation composition can mitigate disturbance impacts, but also influence climate regulation directly (e.g., via albedo changes). As a result of a number of interactive drivers (changes in climate, vegetation, and disturbance) and their simultaneous effects on climate-relevant processes (carbon exchange, albedo, latent heat flux) the future climate regulation function of forests remains highly uncertain. Here we address these complex interactions to assess the effect of future forest dynamics on the climate system. Our specific objectives were (1) to investigate the long-term interactions between changing vegetation composition and disturbance regimes under climate change, (2) to quantify the response of climate regulation to changes in forest dynamics, and (3) to identify the main drivers of the future influence of forests on the climate system. We investigated these issues using the individual-based forest landscape and disturbance model (iLand). Simulations were run over 200 yr for Kalkalpen National Park (Austria), assuming different future climate projections, and incorporating dynamically responding wind and bark beetle disturbances. To consistently assess the net effect on climate the simulated responses of carbon exchange, albedo, and latent heat flux were expressed as contributions to radiative forcing. We found that climate change increased disturbances (+27.7% over 200 yr) and specifically bark beetle activity during the 21st century. However, negative feedbacks from a simultaneously changing tree species composition (+28.0% broadleaved species) decreased

  19. The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes.

    Science.gov (United States)

    Thom, Dominik; Rammer, Werner; Seidl, Rupert

    2017-11-01

    Currently, the temperate forest biome cools the earth's climate and dampens anthropogenic climate change. However, climate change will substantially alter forest dynamics in the future, affecting the climate regulation function of forests. Increasing natural disturbances can reduce carbon uptake and evaporative cooling, but at the same time increase the albedo of a landscape. Simultaneous changes in vegetation composition can mitigate disturbance impacts, but also influence climate regulation directly (e.g., via albedo changes). As a result of a number of interactive drivers (changes in climate, vegetation, and disturbance) and their simultaneous effects on climate-relevant processes (carbon exchange, albedo, latent heat flux) the future climate regulation function of forests remains highly uncertain. Here we address these complex interactions to assess the effect of future forest dynamics on the climate system. Our specific objectives were (1) to investigate the long-term interactions between changing vegetation composition and disturbance regimes under climate change, (2) to quantify the response of climate regulation to changes in forest dynamics, and (3) to identify the main drivers of the future influence of forests on the climate system. We investigated these issues using the individual-based forest landscape and disturbance model (iLand). Simulations were run over 200 yr for Kalkalpen National Park (Austria), assuming different future climate projections, and incorporating dynamically responding wind and bark beetle disturbances. To consistently assess the net effect on climate the simulated responses of carbon exchange, albedo, and latent heat flux were expressed as contributions to radiative forcing. We found that climate change increased disturbances (+27.7% over 200 yr) and specifically bark beetle activity during the 21st century. However, negative feedbacks from a simultaneously changing tree species composition (+28.0% broadleaved species) decreased

  20. Interannual water-level fluctuations and the vegetation of prairie potholes: Potential impacts of climate change

    Science.gov (United States)

    van der Valk, Arnold; Mushet, David M.

    2016-01-01

    Mean water depth and range of interannual water-level fluctuations over wet-dry cycles in precipitation are major drivers of vegetation zone formation in North American prairie potholes. We used harmonic hydrological models, which require only mean interannual water depth and amplitude of water-level fluctuations over a wet–dry cycle, to examine how the vegetation zones in a pothole would respond to small changes in water depth and/or amplitude of water-level fluctuations. Field data from wetlands in Saskatchewan, North Dakota, and South Dakota were used to parameterize harmonic models for four pothole classes. Six scenarios in which small negative or positive changes in either mean water depth, amplitude of interannual fluctuations, or both, were modeled to predict if they would affect the number of zones in each wetland class. The results indicated that, in some cases, even small changes in mean water depth when coupled with a small change in amplitude of water-level fluctuations can shift a prairie pothole wetland from one class to another. Our results suggest that climate change could alter the relative proportion of different wetland classes in the prairie pothole region.

  1. Risk and contributing factors of ecosystem shifts over naturally vegetated land under climate change in China.

    Science.gov (United States)

    Yin, Yuanyuan; Tang, Qiuhong; Wang, Lixin; Liu, Xingcai

    2016-02-12

    Identifying the areas at risk of ecosystem transformation and the main contributing factors to the risk is essential to assist ecological adaptation to climate change. We assessed the risk of ecosystem shifts in China using the projections of four global gridded vegetation models (GGVMs) and an aggregate metric. The results show that half of naturally vegetated land surface could be under moderate or severe risk at the end of the 21(st) century under the middle and high emission scenarios. The areas with high risk are the Tibetan Plateau region and an area extended northeastward from the Tibetan Plateau to northeast China. With the three major factors considered, the change in carbon stocks is the main contributing factor to the high risk of ecosystem shifts. The change in carbon fluxes is another important contributing factor under the high emission scenario. The change in water fluxes is a less dominant factor except for the Tibetan Plateau region under the high emission scenario. Although there is considerable uncertainty in the risk assessment, the geographic patterns of the risk are generally consistent across different scenarios. The results could help develop regional strategies for ecosystem conservation to cope with climate change.

  2. Rigorous Photogrammetric Processing of CHANG'E-1 and CHANG'E-2 Stereo Imagery for Lunar Topographic Mapping

    Science.gov (United States)

    Di, K.; Liu, Y.; Liu, B.; Peng, M.

    2012-07-01

    Chang'E-1(CE-1) and Chang'E-2(CE-2) are the two lunar orbiters of China's lunar exploration program. Topographic mapping using CE-1 and CE-2 images is of great importance for scientific research as well as for preparation of landing and surface operation of Chang'E-3 lunar rover. In this research, we developed rigorous sensor models of CE-1 and CE-2 CCD cameras based on push-broom imaging principle with interior and exterior orientation parameters. Based on the rigorous sensor model, the 3D coordinate of a ground point in lunar body-fixed (LBF) coordinate system can be calculated by space intersection from the image coordinates of con-jugate points in stereo images, and the image coordinates can be calculated from 3D coordinates by back-projection. Due to uncer-tainties of the orbit and the camera, the back-projected image points are different from the measured points. In order to reduce these inconsistencies and improve precision, we proposed two methods to refine the rigorous sensor model: 1) refining EOPs by correcting the attitude angle bias, 2) refining the interior orientation model by calibration of the relative position of the two linear CCD arrays. Experimental results show that the mean back-projection residuals of CE-1 images are reduced to better than 1/100 pixel by method 1 and the mean back-projection residuals of CE-2 images are reduced from over 20 pixels to 0.02 pixel by method 2. Consequently, high precision DEM (Digital Elevation Model) and DOM (Digital Ortho Map) are automatically generated.

  3. RIGOROUS PHOTOGRAMMETRIC PROCESSING OF CHANG'E-1 AND CHANG'E-2 STEREO IMAGERY FOR LUNAR TOPOGRAPHIC MAPPING

    Directory of Open Access Journals (Sweden)

    K. Di

    2012-07-01

    Full Text Available Chang'E-1(CE-1 and Chang'E-2(CE-2 are the two lunar orbiters of China's lunar exploration program. Topographic mapping using CE-1 and CE-2 images is of great importance for scientific research as well as for preparation of landing and surface operation of Chang'E-3 lunar rover. In this research, we developed rigorous sensor models of CE-1 and CE-2 CCD cameras based on push-broom imaging principle with interior and exterior orientation parameters. Based on the rigorous sensor model, the 3D coordinate of a ground point in lunar body-fixed (LBF coordinate system can be calculated by space intersection from the image coordinates of con-jugate points in stereo images, and the image coordinates can be calculated from 3D coordinates by back-projection. Due to uncer-tainties of the orbit and the camera, the back-projected image points are different from the measured points. In order to reduce these inconsistencies and improve precision, we proposed two methods to refine the rigorous sensor model: 1 refining EOPs by correcting the attitude angle bias, 2 refining the interior orientation model by calibration of the relative position of the two linear CCD arrays. Experimental results show that the mean back-projection residuals of CE-1 images are reduced to better than 1/100 pixel by method 1 and the mean back-projection residuals of CE-2 images are reduced from over 20 pixels to 0.02 pixel by method 2. Consequently, high precision DEM (Digital Elevation Model and DOM (Digital Ortho Map are automatically generated.

  4. Probabilistic change mapping from airborne LiDAR for post-disaster damage assessment

    Science.gov (United States)

    Jalobeanu, A.; Runyon, S. C.; Kruse, F. A.

    2013-12-01

    When both pre- and post-event LiDAR point clouds are available, change detection can be performed to identify areas that were most affected by a disaster event, and to obtain a map of quantitative changes in terms of height differences. In the case of earthquakes in built-up areas for instance, first responders can use a LiDAR change map to help prioritize search and recovery efforts. The main challenge consists of producing reliable change maps, robust to collection conditions, free of processing artifacts (due for instance to triangulation or gridding), and taking into account the various sources of uncertainty. Indeed, datasets acquired within a few years interval are often of different point density (sometimes an order of magnitude higher for recent data), different acquisition geometries, and very likely suffer from georeferencing errors and geometric discrepancies. All these differences might not be important for producing maps from each dataset separately, but they are crucial when performing change detection. We have developed a novel technique for the estimation of uncertainty maps from the LiDAR point clouds, using Bayesian inference, treating all variables as random. The main principle is to grid all points on a common grid before attempting any comparison, as working directly with point clouds is cumbersome and time consuming. A non-parametric approach based on local linear regression was implemented, assuming a locally linear model for the surface. This enabled us to derive error bars on gridded elevations, and then elevation differences. In this way, a map of statistically significant changes could be computed - whereas a deterministic approach would not allow testing of the significance of differences between the two datasets. This approach allowed us to take into account not only the observation noise (due to ranging, position and attitude errors) but also the intrinsic roughness of the observed surfaces occurring when scanning vegetation. As only

  5. Changes in Intake of Fruits and Vegetables and Weight Change in United States Men and Women Followed for Up to 24 Years: Analysis from Three Prospective Cohort Studies.

    Science.gov (United States)

    Bertoia, Monica L; Mukamal, Kenneth J; Cahill, Leah E; Hou, Tao; Ludwig, David S; Mozaffarian, Dariush; Willett, Walter C; Hu, Frank B; Rimm, Eric B

    2015-09-01

    Current dietary guidelines recommend eating a variety of fruits and vegetables. However, based on nutrient composition, some particular fruits and vegetables may be more or less beneficial for maintaining or achieving a healthy weight. We hypothesized that greater consumption of fruits and vegetables with a higher fiber content or lower glycemic load would be more strongly associated with a healthy weight. We examined the association between change in intake of specific fruits and vegetables and change in weight in three large, prospective cohorts of 133,468 United States men and women. From 1986 to 2010, these associations were examined within multiple 4-y time intervals, adjusting for simultaneous changes in other lifestyle factors, including other aspects of diet, smoking status, and physical activity. Results were combined using a random effects meta-analysis. Increased intake of fruits was inversely associated with 4-y weight change: total fruits -0.53 lb per daily serving (95% CI -0.61, -0.44), berries -1.11 lb (95% CI -1.45, -0.78), and apples/pears -1.24 lb (95% CI -1.62, -0.86). Increased intake of several vegetables was also inversely associated with weight change: total vegetables -0.25 lb per daily serving (95% CI -0.35, -0.14), tofu/soy -2.47 lb (95% CI, -3.09 to -1.85 lb) and cauliflower -1.37 lb (95% CI -2.27, -0.47). On the other hand, increased intake of starchy vegetables, including corn, peas, and potatoes, was associated with weight gain. Vegetables having both higher fiber and lower glycemic load were more strongly inversely associated with weight change compared with lower-fiber, higher-glycemic-load vegetables (p fruits and non-starchy vegetables is inversely associated with weight change, with important differences by type suggesting that other characteristics of these foods influence the magnitude of their association with weight change.

  6. Spatiotemporal analysis of the effect of climate change on vegetation health in the Drakensberg Mountain Region of South Africa.

    Science.gov (United States)

    Mukwada, Geoffrey; Manatsa, Desmond

    2018-05-24

    The impact of climate change on mountain ecosystems has been in the spotlight for the past three decades. Climate change is generally considered to be a threat to ecosystem health in mountain regions. Vegetation indices can be used to detect shifts in ecosystem phenology and climate change in mountain regions while satellite imagery can play an important role in this process. However, what has remained problematic is determining the extent to which ecosystem phenology is affected by climate change under increasingly warming conditions. In this paper, we use climate and vegetation indices that were derived from satellite data to investigate the link between ecosystem phenology and climate change in the Namahadi Catchment Area of the Drakensberg Mountain Region of South Africa. The time series for climate indices as well as those for gridded precipitation and temperature data were analyzed in order to determine climate shifts, and concomitant changes in vegetation health were assessed in the resultant epochs using vegetation indices. The results indicate that vegetation indices should only be used to assess trends in climate change under relatively pristine conditions, where human influence is limited. This knowledge is important for designing climate change monitoring strategies that are based on ecosystem phenology and vegetation health.

  7. Spider Trait Assembly Patterns and Resilience under Fire-Induced Vegetation Change in South Brazilian Grasslands

    Science.gov (United States)

    Podgaiski, Luciana R.; Joner, Fernando; Lavorel, Sandra; Moretti, Marco; Ibanez, Sebastien; Mendonça, Milton de S.; Pillar, Valério D.

    2013-01-01

    Disturbances induce changes on habitat proprieties that may filter organism's functional traits thereby shaping the structure and interactions of many trophic levels. We tested if communities of predators with foraging traits dependent on habitat structure respond to environmental change through cascades affecting the functional traits of plants. We monitored the response of spider and plant communities to fire in South Brazilian Grasslands using pairs of burned and unburned plots. Spiders were determined to the family level and described in feeding behavioral and morphological traits measured on each individual. Life form and morphological traits were recorded for plant species. One month after fire the abundance of vegetation hunters and the mean size of the chelicera increased due to the presence of suitable feeding sites in the regrowing vegetation, but irregular web builders decreased due to the absence of microhabitats and dense foliage into which they build their webs. Six months after fire rosette-form plants with broader leaves increased, creating a favourable habitat for orb web builders which became more abundant, while graminoids and tall plants were reduced, resulting in a decrease of proper shelters and microclimate in soil surface to ground hunters which became less abundant. Hence, fire triggered changes in vegetation structure that lead both to trait-convergence and trait-divergence assembly patterns of spiders along gradients of plant biomass and functional diversity. Spider individuals occurring in more functionally diverse plant communities were more diverse in their traits probably because increased possibility of resource exploitation, following the habitat heterogeneity hypothesis. Finally, as an indication of resilience, after twelve months spider communities did not differ from those of unburned plots. Our findings show that functional traits provide a mechanistic understanding of the response of communities to environmental change

  8. Coastal-change and glaciological maps of Antarctica

    Science.gov (United States)

    Williams, Richard S.

    2004-01-01

    availability of this information provided the impetus for carrying out a comprehensive analysis of the glaciological features of the coastal regions and changes in ice fronts of Antarctica (Swithinbank, 1988; Williams and Ferrigno, 1988). The project was later modified to include Landsat 4 and 5 MSS and Thematic Mapper (TM) (and in some areas Landsat 7 Enhanced Thematic Mapper Plus (ETM+)), RADARSAT images, and other data where available, to compare changes over a 20- to 25- or 30-year time interval (or longer where data were available, as in the Antarctic Peninsula). The results of the analysis are being used to produce a digital database and a series of USGS Geologic Investigations Series Maps consisting of 24 maps at 1:1,000,000 scale and 1 map at 1:5,000,000 scale, in both paper and digital format (Williams and others, 1995; Williams and Ferrigno, 1998; and Ferrigno and others, 2002).

  9. Early-Holocene warming in Beringia and its mediation by sea-level and vegetation changes

    Science.gov (United States)

    Bartlein, P.J.; Edwards, M.E.; Hostetler, Steven W.; Shafer, Sarah; Anderson, P.M.; Brubaker, L. B; Lozhkin, A. V

    2015-01-01

    Arctic land-cover changes induced by recent global climate change (e.g., expansion of woody vegetation into tundra and effects of permafrost degradation) are expected to generate further feedbacks to the climate system. Past changes can be used to assess our understanding of feedback mechanisms through a combination of process modeling and paleo-observations. The subcontinental region of Beringia (northeastern Siberia, Alaska, and northwestern Canada) was largely ice-free at the peak of deglacial warming and experienced both major vegetation change and loss of permafrost when many arctic regions were still ice covered. The evolution of Beringian climate at this time was largely driven by global features, such as the amplified seasonal cycle of Northern Hemisphere insolation and changes in global ice volume and atmospheric composition, but changes in regional land-surface controls, such as the widespread development of thaw lakes, the replacement of tundra by deciduous forest or woodland, and the flooding of the Bering–Chukchi land bridge, were probably also important. We examined the sensitivity of Beringia's early Holocene climate to these regional-scale controls using a regional climate model (RegCM). Lateral and oceanic boundary conditions were provided by global climate simulations conducted using the GENESIS V2.01 atmospheric general circulation model (AGCM) with a mixed-layer ocean. We carried out two present-day simulations of regional climate – one with modern and one with 11 ka geography – plus another simulation for 6 ka. In addition, we performed five ~ 11 ka climate simulations, each driven by the same global AGCM boundary conditions: (i) 11 ka Control, which represents conditions just prior to the major transitions (exposed land bridge, no thaw lakes or wetlands, widespread tundra vegetation), (ii) sea-level rise, which employed present-day continental outlines, (iii) vegetation change, with deciduous needleleaf and deciduous broadleaf boreal

  10. Arctic Vegetation under Climate Change – Biogenic Volatile Organic Compound Emissions and Leaf Anatomy

    DEFF Research Database (Denmark)

    Schollert, Michelle

    common arctic plant species, illustrating the great importance of vegetation composition for determining ecosystem BVOC emissions. Additionally, this thesis assesses the BVOC emission responses in common arctic plant species to effects of climate change: warming, shading and snow addition. Against...... treatment effects on BVOC emissions. Furthermore, the anatomy of arctic plants seems to respond differently to warming than species at lower latitudes. The results in this thesis demonstrate the complexity of the effects of climate change on BVOC emissions and leaf anatomy of arctic plant species...... emissions from the arctic region are assumed to be low, but data from the region is lacking. BVOC emissions are furthermore expected to change drastically due to the rapidly proceeding climate change in the Arctic, which can provide a feedback to climate warming of unknown direction and magnitude. BVOC...

  11. Changes in vegetation and biological soil crust communities on sand dunes stabilizing after a century of grazing on San Miguel Island, Channel Island National Park, California

    Science.gov (United States)

    Zellman, Kristine L.

    2014-01-01

    San Miguel Island is the westernmost of the California Channel Islands and one of the windiest areas on the west coast of North America. The majority of the island is covered by coastal sand dunes, which were stripped of vegetation and subsequently mobilized due to droughts and sheep ranching during the late 19th century and early 20th century. Since the removal of grazing animals, vegetation and biological soil crusts have once again stabilized many of the island's dunes. In this study, historical aerial photographs and field surveys were used to develop a chronosequence of the pattern of change in vegetation communities and biological soil crust levels of development (LOD) along a gradient of dune stabilization. Historical aerial photographs from 1929, 1954, 1977, and 2009 were georeferenced and used to delineate changes in vegetation canopy cover and active (unvegetated) dune extent among 5 historical periods (pre-1929, 1929–1954, 1954–1977, 1977–2009, and 2009–2011). During fieldwork, vegetation and biological soil crust communities were mapped along transects distributed throughout San Miguel Island's central dune field on land forms that had stabilized during the 5 time periods of interest. Analyses in a geographic information system (GIS) quantified the pattern of changes that vegetation and biological soil crust communities have exhibited on the San Miguel Island dunes over the past 80 years. Results revealed that a continuing increase in total vegetation cover and a complex pattern of change in vegetation communities have taken place on the San Miguel Island dunes since the removal of grazing animals. The highly specialized native vascular vegetation (sea rocket, dunedelion, beach-bur, and locoweed) are the pioneer stabilizers of the dunes. This pioneer community is replaced in later stages by communities that are dominated by native shrubs (coastal goldenbush, silver lupine, coyote-brush, and giant coreopsis), with apparently overlapping or

  12. Short-term vegetation change on rehabilitated peatland on Rietvlei Nature Reserve

    Directory of Open Access Journals (Sweden)

    C.E. Venter

    2003-12-01

    Full Text Available Natural peatlands occur on the Rietvlei Nature Reserve. Before the Pretoria City Council acquired the land, these peatlands were mined by private land-owners. Ditches were constructed to drain the area for mining and the peatlands became desicrated. Later the area was proclaimed as a nature reserve and has since then been managed as such. Rehabilitation of the drained peatland on Rietvlei Nature Reserve first started in 2000 as a Working for Water project. The aim of the rehabilitation was to close the ditches and rewet the peatland, to enable possible revival of the peatland. A baseline vegetation survey was undertaken during the summer (March to April of 2001 to determine the nature of the pioneer communities that established on the rehabilitated area. This survey was repeated during the summer (March to April of 2002 to detect changes in the vegetation. The same sample plots were used on both occasions. The initial pioneer vegetation was mostly composed of weedy annuals.

  13. [Vegetation change of Yamzho Yumco Basin in southern Tibet based on SPOT-VGT NDVI].

    Science.gov (United States)

    Yu, Shu-Mei; Liu, Jing-Shi; Yuan, Jin-Guo

    2010-06-01

    The area we studied is Lake Yamzho Yumco Basin (28 degrees 27'-29 degrees 12'N, 90 degrees 08'-91 degrees 45'E), the largest inland lake basin in southern Tibetan Plateau, China. Using the SPOT-VGT NDVI vegetation index from 1998 to 2007 in the basin, the temporal and spatial variation characteristics of NDVI and its correlation with the major climatic factors (air temperature, precipitation) were analyzed. The results show that the average NDVI of the lake basin ranges from 0.12 to 0.31 and its seasonal change is obvious; the NDVI begins to rise rapidly in May and reaches the maximum value in early September. The average NDVI of the basin shows the slow increasing trend during 1998 to 2007, and it indicates that the eco-environment of the basin is recovering. The high value of NDVI has close relationships with water supply, altitude and vegetation types, so NDVI is relatively high near water sources and is the highest in meadow grassland. The summer air temperature and precipitation are the important climate elements that influence the vegetation in the basin, and the linear correlation coefficients between NDVI and air temperature and precipitation are 0.7 and 0.71, respectively. In recent years, warm and humid trend of the local climate is prevailing to improve the ecological environment in Yamzho Yumco Basin.

  14. Changes in Vegetation Structure along Four Tourist Trails from Kasprowy Wierch, Tatra Mountains

    Directory of Open Access Journals (Sweden)

    Magdalena OPRZĄDEK

    2014-11-01

    Full Text Available In this paper there is a new method to asses tourist impact on vegetation cover presented and tested in four locations, which have a different tourist traffic magnitude. Research area is Kasprowy Wierch surroundings in Tatra Mountains. It is a specific place in Tatra Mts., because it can be reached either by cable car or five tourist trails, being the most visited summit in the Polish Carpathians. Each year, there are about 500 thousand people reaching Kasprowy Wierch with a cable car and thousands of walking people. High tourist impact causes many vegetation injuries. Methods used in this research is based on average daily and monthly magnitude of tourist traffic and geobotanical method, which based on a plant species registration and its’ surface coverage estimation using Daubenmeir scale. The results attest that some species are resistant to the pressure and other not. In this regard, the species composition and species percentage can be suitable indicator to measure vegetation changes due to the tourist impact.

  15. Changes in northeast African hydrology and vegetation associated with Pliocene–Pleistocene sapropel cycles

    Science.gov (United States)

    Rose, Cassaundra; Polissar, Pratigya J.; Tierney, Jessica E.; Filley, Timothy

    2016-01-01

    East African climate change since the Late Miocene consisted of persistent shorter-term, orbital-scale wet–dry cycles superimposed upon a long-term trend towards more open, grassy landscapes. Either or both of these modes of palaeoclimate variability may have influenced East African mammalian evolution, yet the interrelationship between these secular and orbital palaeoclimate signals remains poorly understood. Here, we explore whether the long-term secular climate change was also accompanied by significant changes at the orbital-scale. We develop northeast African hydroclimate and vegetation proxy data for two 100 kyr-duration windows near 3.05 and 1.75 Ma at ODP Site 967 in the eastern Mediterranean basin, where sedimentation is dominated by eastern Sahara dust input and Nile River run-off. These two windows were selected because they have comparable orbital configurations and bracket an important increase in East African C4 grasslands. We conducted high-resolution (2.5 kyr sampling) multiproxy biomarker, H- and C-isotopic analyses of plant waxes and lignin phenols to document orbital-scale changes in hydrology, vegetation and woody cover for these two intervals. Both intervals are dominated by large-amplitude, precession-scale (approx. 20 kyr) changes in northeast African vegetation and rainfall/run-off. The δ13Cwax values and lignin phenol composition record a variable but consistently C4 grass-dominated ecosystem for both intervals (50–80% C4). Precessional δDwax cycles were approximately 20–30‰ in peak-to-peak amplitude, comparable with other δDwax records of the Early Holocene African Humid Period. There were no significant differences in the means or variances of the δDwax or δ13Cwax data for the 3.05 and 1.75 Ma intervals studied, suggesting that the palaeohydrology and palaeovegetation responses to precessional forcing were similar for these two periods. Data for these two windows suggest that the eastern Sahara did not experience the

  16. Changes in Soil Carbon Stocks and Fluxes in Response to Altered Above- and Belowground Vegetation Inputs

    Science.gov (United States)

    Marañón-Jiménez, S.; Schuetze, C.; Cuntz, M.; García-Quirós, I.; Dienstbach, L.; Schrumpf, M.; Rebmann, C.

    2016-12-01

    The stimulation of vegetation productivity in response to rising atmospheric CO2 concentrations can potentially compensate climate change feedbacks. However, this will depend on the allocation of C resources of vegetation into biomass production versus root exudates and on the feedbacks with soil microorganisms. These dynamic adjustments of vegetation will result on changes in above- and belowground productivity and on the amount of C exported to root exudates. Consequent alteration of litter and rhizosphere detritus inputs to the soil and their interaction on controlling soil C sequestration capacity has been, however, rarely assessed. We hypothesize that above- and belowground vegetation exert a synergistic control of soil CO2 emissions, and that the activation of soil organic matter mineralization by the addition of labile organic substrates (i.e.: the priming effect) is altered by changes in the amount and in the quality of the carbon inputs. In order to elucidate these questions, different levels of litter addition were implemented on trenched (root exclusion) and non-trenched plots (with roots) in a temperate deciduous forest. Changes in the sensitivity of soil respiration to temperature and moisture were detected by measuring CO2 fluxes continuously at high temporal resolution with automatic chambers, whereas the spatial and seasonal variability was determined using portable chambers. Annual changes in soil carbon and nitrogen stocks provide additional information on the soil carbon sequestration in response to above- and belowground inputs. Both roots and litter inputs significantly enhanced soil CO2 effluxes soon after the implementation of the experiment. We detected synergistic effects between roots and litter inputs on soil CO2 emissions: When roots were present, carbon mineralized in response to litter addition was much higher than the total amount of carbon added in litter (ca. 170 g C m-2 y-1). Preliminary results of this study suggest that labile

  17. A taxonomy of behaviour change methods: an Intervention Mapping approach.

    Science.gov (United States)

    Kok, Gerjo; Gottlieb, Nell H; Peters, Gjalt-Jorn Y; Mullen, Patricia Dolan; Parcel, Guy S; Ruiter, Robert A C; Fernández, María E; Markham, Christine; Bartholomew, L Kay

    2016-09-01

    In this paper, we introduce the Intervention Mapping (IM) taxonomy of behaviour change methods and its potential to be developed into a coding taxonomy. That is, although IM and its taxonomy of behaviour change methods are not in fact new, because IM was originally developed as a tool for intervention development, this potential was not immediately apparent. Second, in explaining the IM taxonomy and defining the relevant constructs, we call attention to the existence of parameters for effectiveness of methods, and explicate the related distinction between theory-based methods and practical applications and the probability that poor translation of methods may lead to erroneous conclusions as to method-effectiveness. Third, we recommend a minimal set of intervention characteristics that may be reported when intervention descriptions and evaluations are published. Specifying these characteristics can greatly enhance the quality of our meta-analyses and other literature syntheses. In conclusion, the dynamics of behaviour change are such that any taxonomy of methods of behaviour change needs to acknowledge the importance of, and provide instruments for dealing with, three conditions for effectiveness for behaviour change methods. For a behaviour change method to be effective: (1) it must target a determinant that predicts behaviour; (2) it must be able to change that determinant; (3) it must be translated into a practical application in a way that preserves the parameters for effectiveness and fits with the target population, culture, and context. Thus, taxonomies of methods of behaviour change must distinguish the specific determinants that are targeted, practical, specific applications, and the theory-based methods they embody. In addition, taxonomies should acknowledge that the lists of behaviour change methods will be used by, and should be used by, intervention developers. Ideally, the taxonomy should be readily usable for this goal; but alternatively, it should be

  18. Increasing biological diversity in a dynamic vegetation model and consequences for simulated response to climate change

    Science.gov (United States)

    Keribin, R. M.; Friend, A. D.; Purves, D.; Smith, M. J.

    2013-12-01

    Vegetation, from tropical rainforests to the tundra, is the basis of the world food chain but is also a key component of the Earth system, with biophysical and biogeochemical impacts on the global climate, and Dynamic Global Vegetation Models (DGVMs) are an important integrative tool for understanding its responses to climate change. DGVMs up to now have treated only a small number of plant types representing broad divisions in vegetation worldwide (e.g. trees and grasses, broadleaf and needleleaf, deciduousness), but these categories ignore most of the variation that exists between plant species and between individuals within a species. Research in community ecology makes it clear however that these variations can affect large-scale ecosystem properties such as productivity and resilience to environmental changes. The current challenge is for DGVMs to account for fine-grained variations between plants and a few such models are being developed using newly-available plant trait databases such as the TRY database and insights from community ecology such as habitat filtering. Hybrid is an individual-based DGVM, first published in 1993, that models plant physiology in a mechanistic way. We modified Hybrid 8, the latest version of the model which uses surface physics taken from the GISS ModelE GCM, to include a mechanistic gap-model component with individual-based variation in tree wood density. This key plant trait is known to be strongly correlated with a trade-off between growth and mortality in the majority of forests worldwide, which allows for otherwise-similar individuals to have different life-history strategies. We investigate how the inclusion of continuous variation in wood density into the model affects the ecosystem's transient dynamics under climate change.

  19. Projected future changes in vegetation in western North America in the 21st century

    Science.gov (United States)

    Xiaoyan, Jiang; Rauscher, Sara A.; Ringler, Todd D.; Lawrence, David M.; Williams, A. Park; Allen, Craig D.; Steiner, Allison L.; Cai, D. Michael; McDowell, Nate G.

    2013-01-01

    Rapid and broad-scale forest mortality associated with recent droughts, rising temperature, and insect outbreaks has been observed over western North America (NA). Climate models project additional future warming and increasing drought and water stress for this region. To assess future potential changes in vegetation distributions in western NA, the Community Earth System Model (CESM) coupled with its Dynamic Global Vegetation Model (DGVM) was used under the future A2 emissions scenario. To better span uncertainties in future climate, eight sea surface temperature (SST) projections provided by phase 3 of the Coupled Model Intercomparison Project (CMIP3) were employed as boundary conditions. There is a broad consensus among the simulations, despite differences in the simulated climate trajectories across the ensemble, that about half of the needleleaf evergreen tree coverage (from 24% to 11%) will disappear, coincident with a 14% (from 11% to 25%) increase in shrubs and grasses by the end of the twenty-first century in western NA, with most of the change occurring over the latter half of the twenty-first century. The net impact is a ~6 GtC or about 50% decrease in projected ecosystem carbon storage in this region. The findings suggest a potential for a widespread shift from tree-dominated landscapes to shrub and grass-dominated landscapes in western NA because of future warming and consequent increases in water deficits. These results highlight the need for improved process-based understanding of vegetation dynamics, particularly including mortality and the subsequent incorporation of these mechanisms into earth system models to better quantify the vulnerability of western NA forests under climate change.

  20. Landscape changes in a neotropical forest-savanna ecotone zone in central Brazil: The role of protected areas in the maintenance of native vegetation.

    Science.gov (United States)

    Garcia, Andrea S; Sawakuchi, Henrique O; Ferreira, Manuel Eduardo; Ballester, Maria Victoria R

    2017-02-01

    In the Amazon-savanna ecotone in northwest Brazil, the understudied Araguaia River Basin contains high biodiversity and seasonal wetlands. The region is representative of tropical humid-dry ecotone zones, which have experienced intense land use and land cover (LULC) conversions. Here we assessed the LULC changes for the last four decades in the central portion of the Araguaia River Basin to understand the temporal changes in the landscape composition and configuration outside and inside protected areas. We conducted these analyzes by LULC mapping and landscape metrics based on patch classes. During this period, native vegetation was reduced by 26%. Forests were the most threatened physiognomy, with significant areal reduction and fragmentation. Native vegetation cover was mainly replaced by croplands and pastures. Such replacement followed spatial and temporal trends related to the implementation of protected areas and increases in population cattle herds. The creation of most protected areas took place between 1996 and 2007, the same period during which the conversion of the landscape matrix from natural vegetation to agriculture occurred. We observed that protected areas mitigate fragmentation, but their roles differ according to their location and level of protection. Still, we argue that landscape characteristics, such as suitability for agriculture, also influence landscape conversions and should be considered when establishing protected areas. The information provided in this study can guide new research on species conservation and landscape planning, as well as improve the understanding of the impacts of landscape composition and configuration changes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The role of climate change in regulating Arctic permafrost peatland hydrological and vegetation change over the last millennium

    Science.gov (United States)

    Zhang, Hui; Piilo, Sanna R.; Amesbury, Matthew J.; Charman, Dan J.; Gallego-Sala, Angela V.; Väliranta, Minna M.

    2018-02-01

    Climate warming has inevitable impacts on the vegetation and hydrological dynamics of high-latitude permafrost peatlands. These impacts in turn determine the role of these peatlands in the global biogeochemical cycle. Here, we used six active layer peat cores from four permafrost peatlands in Northeast European Russia and Finnish Lapland to investigate permafrost peatland dynamics over the last millennium. Testate amoeba and plant macrofossils were used as proxies for hydrological and vegetation changes. Our results show that during the Medieval Climate Anomaly (MCA), Russian sites experienced short-term permafrost thawing and this induced alternating dry-wet habitat changes eventually followed by desiccation. During the Little Ice Age (LIA) both sites generally supported dry-hummock habitats, at least partly driven by permafrost aggradation. However, proxy data suggest that occasionally, MCA habitat conditions were drier than during the LIA, implying that evapotranspiration may create important additional eco-hydrological feedback mechanisms under warm conditions. All sites showed a tendency towards dry conditions as inferred from both proxies starting either from ca. 100 years ago or in the past few decades after slight permafrost thawing, suggesting that recent warming has stimulated surface desiccation rather than deeper permafrost thawing. This study shows links between two important controls over hydrology and vegetation changes in high-latitude peatlands: direct temperature-induced surface layer response and deeper permafrost layer-related dynamics. These data provide important backgrounds for predictions of Arctic permafrost peatlands and related feedback mechanisms. Our results highlight the importance of increased evapotranspiration and thus provide an additional perspective to understanding of peatland-climate feedback mechanisms.

  2. Kinetics of heat-induced color change of a tuna-vegetable mixture

    OpenAIRE

    Scherer, Erika; Sandoval, Aleida J; Barreiro, José A

    2009-01-01

    Heat induced color change kinetics in a tuna-vegetable mixture was evaluated by measuring color parameter "L" (Hunter-Lab) and 5-hydroxi-methyl-furfural (5-HMF) accumulation. For this purpose small reusable stainless steel TDT cans were used and the kinetic studies performed in a temperature range characteristic of thermal processing of low acid canned foods (110-125°C). The color parameter L was better described by a pseudo zero order while a pseudo first order reaction was found for 5-HMF a...

  3. Response of vegetation indices to changes in three measures of leaf water stress

    Science.gov (United States)

    Cohen, Warren B.

    1991-01-01

    The responses of vegetation indices to changes in water stress were evaluated in two separate laboratory experiments. In one experiment the normalized difference vegetation index (NDVI), the near-IR to red ratio (near-IR/red), the Infrared Index (II), and the Moisture Stress Index (MSI) were more highly correlated to leaf water potential in lodgepole pine branches than were the Leaf Water Content Index (LWCI), the mid-IR ratio (Mid-IR), or any of the single Thematic Mapper (TM) bands. In the other experiment, these six indices and the TM Tasseled Cap brightness, greenness, and wetness indices responded to changes in leaf relative water content (RWC) differently than they responded to changes in leaf water content (WC) of three plant species, and the responses were dependent on how experimental replicates were pooled. With no pooling, the LWCI was the most highly correlated index to both RWC and WC among replications, followed by the II, MSI, and wetness. Only the LWCI was highly correlated to RWC and WC when replications were pooled within species. With among species pooling the LWCI was the only index highly correlated with RWC, while the II, MSI, Mid-IR, and wetness were most highly correlated with WC.

  4. Assessing the Three-North Shelter Forest Program in China by a novel framework for characterizing vegetation changes

    Science.gov (United States)

    Qiu, Bingwen; Chen, Gong; Tang, Zhenghong; Lu, Difei; Wang, Zhuangzhuang; Chen, Chongchen

    2017-11-01

    The Three-North Shelter Forest Program (TNSFP) in China has been intensely invested for approximately 40 years. However, the efficacy of the TNSFP has been debatable due to the spatiotemporal complexity of vegetation changes. A novel framework was proposed for characterizing vegetation changes in the TNSFP region through Combining Trend and Temporal Similarity trajectory (COTTS). This framework could automatically and continuously address the fundamental questions on where, what, how and when vegetation changes have occurred. Vegetation trend was measured by a non-parametric method. The temporal similarity trajectory was tracked by the Jeffries-Matusita (JM) distance of the inter-annual vegetation indices temporal profiles and modeled using the logistic function. The COTTS approach was applied to examine the afforestation efforts of the TNSFP using 500 m 8-day composites MODIS datasets from 2001 to 2015. Accuracy assessment from the 1109 reference sites reveals that the COTTS is capable of automatically determining vegetation dynamic patterns, with an overall accuracy of 90.08% and a kappa coefficient of 0.8688. The efficacy of the TNSFP was evaluated through comprehensive considerations of vegetation, soil and wetness. Around 45.78% areas obtained increasing vegetation trend, 2.96% areas achieved bare soil decline and 4.50% areas exhibited increasing surface wetness. There were 4.49% areas under vegetation degradation & desertification. Spatiotemporal heterogeneity of efficacy of the TNSFP was revealed: great vegetation gain through the abrupt dynamic pattern in the semi-humid and humid regions, bare soil decline & potential efficacy in the semi-arid region and remarkable efficacy in functional region of Eastern Ordos.

  5. Land area change and fractional water maps in the Chenier Plain, Louisiana, following hurricane Rita

    Science.gov (United States)

    Palaseanu-Lovejoy, M.; Kranenburg, C.; Brock, J. C.

    2009-12-01

    The objective of this study is to develop a fractional water map at 30-m resolution scale using QuickBird and/or IKONOS high-resolution imagery as dependent variable to investigate the impact of hurricane Rita in the Chenier Plain, Louisiana. Eleven different indices were tested to obtain a high-resolution land / water classification on QuickBird (acquired on 05/23/2003) and IKONOS (acquired on 03/25/2006) images. The percent area covered by water in the high resolution images varied from 22 to 26% depending on the index used , with the simple ratio index (red band / NIR band) accounting for the lowest percent and the blue ratio index (blue band / sum(all bands)) for the highest percent. Using the ERDAS NLCD (National Land Cover Data) Mapping tool module, 100, 000 stratified random sample points with minimum 1000 points per stratum were selected from the high resolution dependent variable as training information for the independent variable layers. The rules for the regression tree were created using the data mining software Rulequest Cubist v. 2.05. This information was used to generate a fractional water map for the entire Landsat scene. The increase in water areas of about 10 - 15% between 2003 to 2006, as well as temporary changes in the water - land configurations are attributed to remnant flooding and removal of aquatic vegetation caused by hurricane Rita, and water level variations caused by tidal and / or meteorological variations between the acquisition dates of the satellite images. This analysis can assist in monitoring post-hurricane wetland recovery and assess trends in land loss due to extreme storm events, although estimation of permanent land loss cannot be made until wetland areas have the opportunity to recover from hurricane impacts.

  6. Submersed aquatic vegetation in Chesapeake Bay: Sentinel species in a changing world

    Science.gov (United States)

    Orth, Robert J.; Dennison, William C.; Lefcheck, Jonathon S.; Gurbisz, Cassie; Hannam, Michael; Keisman, Jennifer; Landry, J. Brooke; Moore, Kenneth A.; Murphy, Rebecca R.; Patrick, Christopher J.; Testa, Jeremy; Weller, Donald E.; Wilcox, David J.

    2017-01-01

    Chesapeake Bay has undergone profound changes since European settlement. Increases in human and livestock populations, associated changes in land use, increases in nutrient loadings, shoreline armoring, and depletion of fish stocks have altered the important habitats within the Bay. Submersed aquatic vegetation (SAV) is a critical foundational habitat and provides numerous benefits and services to society. In Chesapeake Bay, SAV species are also indicators of environmental change because of their sensitivity to water quality and shoreline development. As such, SAV has been deeply integrated into regional regulations and annual assessments of management outcomes, restoration efforts, the scientific literature, and popular media coverage. Even so, SAV in Chesapeake Bay faces many historical and emerging challenges. The future of Chesapeake Bay is indicated by and contingent on the success of SAV. Its persistence will require continued action, coupled with new practices, to promote a healthy and sustainable ecosystem.

  7. A MAP MASH-UP APPLICATION: INVESTIGATION THE TEMPORAL EFFECTS OF CLIMATE CHANGE ON SALT LAKE BASIN

    Directory of Open Access Journals (Sweden)

    O. S. Kirtiloglu

    2016-06-01

    Full Text Available The main purpose of this paper is to investigate climate change effects that have been occurred at the beginning of the twenty-first century at the Konya Closed Basin (KCB located in the semi-arid central Anatolian region of Turkey and particularly in Salt Lake region where many major wetlands located in and situated in KCB and to share the analysis results online in a Web Geographical Information System (GIS environment. 71 Landsat 5-TM, 7-ETM+ and 8-OLI images and meteorological data obtained from 10 meteorological stations have been used at the scope of this work. 56 of Landsat images have been used for extraction of Salt Lake surface area through multi-temporal Landsat imagery collected from 2000 to 2014 in Salt lake basin. 15 of Landsat images have been used to make thematic maps of Normalised Difference Vegetation Index (NDVI in KCB, and 10 meteorological stations data has been used to generate the Standardized Precipitation Index (SPI, which was used in drought studies. For the purpose of visualizing and sharing the results, a Web GIS-like environment has been established by using Google Maps and its useful data storage and manipulating product Fusion Tables which are all Google’s free of charge Web service elements. The infrastructure of web application includes HTML5, CSS3, JavaScript, Google Maps API V3 and Google Fusion Tables API technologies. These technologies make it possible to make effective “Map Mash-Ups” involving an embedded Google Map in a Web page, storing the spatial or tabular data in Fusion Tables and add this data as a map layer on embedded map. The analysing process and map mash-up application have been discussed in detail as the main sections of this paper.

  8. a Map Mash-Up Application: Investigation the Temporal Effects of Climate Change on Salt Lake Basin

    Science.gov (United States)

    Kirtiloglu, O. S.; Orhan, O.; Ekercin, S.

    2016-06-01

    The main purpose of this paper is to investigate climate change effects that have been occurred at the beginning of the twenty-first century at the Konya Closed Basin (KCB) located in the semi-arid central Anatolian region of Turkey and particularly in Salt Lake region where many major wetlands located in and situated in KCB and to share the analysis results online in a Web Geographical Information System (GIS) environment. 71 Landsat 5-TM, 7-ETM+ and 8-OLI images and meteorological data obtained from 10 meteorological stations have been used at the scope of this work. 56 of Landsat images have been used for extraction of Salt Lake surface area through multi-temporal Landsat imagery collected from 2000 to 2014 in Salt lake basin. 15 of Landsat images have been used to make thematic maps of Normalised Difference Vegetation Index (NDVI) in KCB, and 10 meteorological stations data has been used to generate the Standardized Precipitation Index (SPI), which was used in drought studies. For the purpose of visualizing and sharing the results, a Web GIS-like environment has been established by using Google Maps and its useful data storage and manipulating product Fusion Tables which are all Google's free of charge Web service elements. The infrastructure of web application includes HTML5, CSS3, JavaScript, Google Maps API V3 and Google Fusion Tables API technologies. These technologies make it possible to make effective "Map Mash-Ups" involving an embedded Google Map in a Web page, storing the spatial or tabular data in Fusion Tables and add this data as a map layer on embedded map. The analysing process and map mash-up application have been discussed in detail as the main sections of this paper.

  9. Asynchronous changes in vegetation, runoff and erosion in the nile river watershed during the holocene.

    Science.gov (United States)

    Blanchet, Cécile L; Frank, Martin; Schouten, Stefan

    2014-01-01

    The termination of the African Humid Period in northeastern Africa during the early Holocene was marked by the southward migration of the rain belt and the disappearance of the Green Sahara. This interval of drastic environmental changes was also marked by the initiation of food production by North African hunter-gatherer populations and thus provides critical information on human-environment relationships. However, existing records of regional climatic and environmental changes exhibit large differences in timing and modes of the wet/dry transition at the end of the African Humid Period. Here we present independent records of changes in river runoff, vegetation and erosion in the Nile River watershed during the Holocene obtained from a unique sedimentary sequence on the Nile River fan using organic and inorganic proxy data. This high-resolution reconstruction allows to examine the phase relationship between the changes of these three parameters and provides a detailed picture of the environmental conditions during the Paleolithic/Neolithic transition. The data show that river runoff decreased gradually during the wet/arid transition at the end of the AHP whereas rapid shifts of vegetation and erosion occurred earlier between 8.7 and ∼6 ka BP. These asynchronous changes are compared to other regional records and provide new insights into the threshold responses of the environment to climatic changes. Our record demonstrates that the degradation of the environment in northeastern Africa was more abrupt and occurred earlier than previously thought and may have accelerated the process of domestication in order to secure sustainable food resources for the Neolithic African populations.

  10. Examining Severe Drought-Induced Vegetation Change and its Influence on Water Resources

    Science.gov (United States)

    White, A. B.; Springer, E. P.; Vivoni, E. R.

    2007-12-01

    A "global-change-type" drought that occurred in the southwestern U.S. from 2000 to 2003, accompanied by increased temperatures and bark beetle infestations, induced large-scale woodland overstory mortality, the consequent redistribution of water, radiation, and nutrients, as well as modification of the ecosystem phenology. Our objectives in this research are to examine these vegetation changes in detail and to determine whether they translated to changes in hydrological processes. We chose the Rio Ojo Caliente, a subbasin of the Rio Grande, as a study site since a significant portion of the woodland ecosystem (piñon-juniper) was affected. Examining a remotely-sensed vegetation index (1-km AVHRR NDVI from 1989 to 2006), there is an increasing trend in the mean NDVI from 1989 to 1998 (pre-drought period), a decreasing trend from 1999 to 2003 (drought period), and a dramatic increasing trend from 2004 to 2006 (post-drought period) in which the mean NDVI rebounds to pre- drought magnitudes. Streamflow records from 1932 to 2006 show the watershed to be primarily spring snowmelt-driven, although monsoonal summer precipitation also plays a significant role. We compare the temporal variability in the streamflow to the NDVI, including the mean, anomalies from the mean, and seasonally- based duration curves, and find significant correlations (correlation coefficient ρ = -0.61) between the streamflow and NDVI at approximately a three-month lag (NDVI lagging streamflow). In analyzing the three phases of the drought, the correlation is slightly stronger during the pre-drought (ρ = -0.64) and drought (ρ = -0.65) periods, yet markedly stronger during the post-drought period (ρ = -0.74). This suggests that the coupling between vegetation water use and streamflow is tighter after the drought. This may be attributable to the reduction in the less-responsive overstory (pinñon mortality) and increase in the more-responsive understory (grasses and shrubs exploiting newly

  11. Quantifying Regional Vegetation Changes in China During Three Contrasting Warming Intervals since the Last Glacial Maximum

    Science.gov (United States)

    Li, Q.; Wu, H.; Yu, Y.; Sun, A.; Luo, Y.

    2017-12-01

    Reconstructing patterns of past vegetation change on a large-scale facilitates a better understanding of the interactions and feedbacks between climate change and the terrestrial biosphere. In addition, reducing the uncertainty in predictions of vegetation change under global warming highlights the importance of reconstructing vegetation patterns during past warming intervals. Here, we present a quantitative regional vegetation reconstruction for China during three intervals: Last Glacial Maximum (LGM, 18±2 14C kyr B.P.), early Holocene (8.5±0.5 14C kyr B.P.), and mid-Holocene (6±0.5 14C kyr B.P.). The biomization method, based on 249 pollen records, was used for the reconstructions. The results demonstrate that during the LGM, steppe and desert expanded eastwards and southwards, reaching the present-day temperate deciduous forest (TEDE) zone, and dominated northern China. In contrast, the forest in Eastern China underwent a substantial southwards retreat and the percentage of forest-type sites was at a minimum. In addition, the warm mixed forest (WAMF) and TEDE shifted southwards of 10° N relative to the present-day, and tropical seasonal rain forest (TSFO) was almost absent. At the same time, the forest-steppe boundary shifted southwards to near the middle and lower reaches of Yangtze River. For the early Holocene and mid-Holocene, the TSFO, WAMF, and TEDE shifted northwards by 2-5° relative to today, and the percentage of forest sites increased and reached a maximum in the mid-Holocene. The slight expansion of forest from the early Holocene to the mid-Holocene caused the forest-steppe boundary to shift northwestwards to near the present-day 300 mm isohyet by the mid-Holocene. Our results also indicate that climatic warming since the LGM, which strengthened the East Asian summer monsoon, favored the development of forest in China. This is potentially an important finding for evaluating the possible response of forest in China to future global warming.

  12. Understanding Pan-Arctic Tundra Vegetation Change Through Long-term Remotely Sensed Data

    Science.gov (United States)

    Bhatt, U.; Walker, D. A.; Bieniek, P.; Raynolds, M. K.; Epstein, H. E.; Comiso, J. C.; Pinzon, J. E.; Tucker, C. J.

    2012-12-01

    The goal of this paper is to present an analysis of the seasonality of tundra vegetation variability and change using long-term remotely sensed data as well as ground based measurements and reanalyses. An increase of Pan-Arctic tundra vegetation greenness has been documented using the remotely sensed Normalized Difference Vegetation Index (NDVI). Coherent variability between NDVI, springtime coastal sea ice (passive microwave) and land surface temperatures (AVHRR) has also been established. Satellite based snow and cloud cover data sets are being incorporated into this analysis. The Arctic tundra is divided into domains based on Treshnikov divisions that are modified based on floristic provinces. There is notable heterogeneity in Pan-Arctic vegetation and climate trends, which necessitates a regional analysis. This study uses remotely sensed weekly 25-km sea ice concentration, weekly surface temperature, and bi-weekly NDVI from 1982 to 2010. The GIMMS NDVI3g data has been corrected for biases during the spring and fall, with special focus on the Arctic. Trends of Maximum NDVI (MaxNDVI), Time Integrated NDVI (TI-NDVI), Summer Warmth Index (SWI, sum of degree months above freezing during May-August), and open water area are calculated for the Pan Arctic. Remotely sensed snow data trends suggest varying patterns throughout the Arctic and may in part explain the heterogeneous MaxNDVI trends. Standard climate data (station, reanalysis, and model data) and ground observations are used in the analysis to provide additional support for hypothesized mechanisms. Overall, we find that trends over the 30-year record are changing as evidenced by the following examples from recent years. The sea ice decline has increased in Eurasia and slowed in North America. The weekly AVHRR landsurface temperatures reveal that there has been summer cooling over Eurasia and that the warming over North America has slowed. The MaxNDVI rates of change have diverged between N. America and Eurasia

  13. Impact of water-level changes to aquatic vegetation in small oligotrophic lakes

    Directory of Open Access Journals (Sweden)

    Egert VANDEL

    2016-06-01

    Full Text Available This study demonstrates the effect of drastic water-level changes to the aquatic vegetation in three small oligotrophic lakes situated in Kurtna Kame Field in north-eastern Estonia. The area holds around 40 lakes in 30 km2 of which 18 lakes are under protection as Natura Habitat lakes (Natura 2000 network. The area is under a strong human impact as it is surrounded by oil shale mines, sand quarry, peat harvesting field etc. The most severe impact comes from the groundwater intake established in 1972 in the vicinity of three studied lakes. The exploitation of groundwater led to drastic water-level drops. In 1980s the water-level drops were measured to be up to 3 to 4 meters compared to the levels of 1946. Lake Martiska and Lake Kuradijärv were severely affected and only 29% and 45% of lake area respectively and 21% of initial volume remained. Both lakes were described as oligotrophic lakes before severe human impact and held characteristic macrophytes such as Isoëtes lacustris L., Sparganium angustifolium Michx and Lobelia dortmanna L. As the water level declined the lakes lost their rare characteristic species and can now be described more as a meso- or even eutrophic lakes. When the volume of groundwater abstraction decreased in the 1990s the water levels started to recover but did not reach the natural levels of pre-industrialized era. Also the vegetation did not show any signs of recovery. In 2012 the pumping rates increased again causing a new rapid decline in water levels which almost exceed the previous minimum levels. The water-level monitoring alongside with the macrophyte monitoring data gives us a good case study on how the long term abrupt water-level changes can affect the aquatic vegetation

  14. Monitoring vegetation change in Abu Dhabi Emirate from 1996 to 2000 and 2004 using Landsat Satellite Imagery

    International Nuclear Information System (INIS)

    Starbuck, M.J.; Tamayo, J.

    2007-01-01

    In the fall of 2001, a study was initiated to investigate vegetation changes in the Abu Dhabi Emirates. The vast majority of vegetation present in the region is irrigated and analysis of vegetation change will support groundwater investigations in the region by indicating areas of increased water use. Satellite-based imaging systems provide a good source of data for such an analysis. The recent analysis was completed between February and November 2002 using Landsat 5 Thematic Mapper satellite imagery acquired in 1996 and Landsat 7 Enhanced Thematic Mapper Plus imagery acquired in 2000. These assessments were augmented in 2004with the study of Landsat 7 imagery acquired in early 2004. The total area of vegetation for each of seven study areas was calculated using the Normalized Difference Vegetation Index (NDVI) technique. Multiband image classification was used to differentiate general vegetation types. Change analysis consisted of simple NDVI image differencing and post-classification change matrices. Measurements of total vegetation are for the Abu Dhabi Emirate indicate an increase from 77,200 hectares in 1996 to 162,700 hectares in 2000 (110% increase). Based on comparison with manual interpretation of satellite imagery, the amount of under-reporting of irrigated land is estimated at about 15% of the actual area. From the assessment of 2004 Landset imagery, it was found that the growth of irrigated vegetation in most areas of Emirate had stabilized and had actually slightly decreased in some cases. The decreases are probably due to variability in the measurement technique and not due to actual decreases in area of vegetation. (author)

  15. Combined effects of climate change and forest clearing on the Amazon vegetation: Projections for 2080-2100

    Science.gov (United States)

    Cook, K. H.; Vizy, E. K.

    2007-05-01

    A regional climate model with resolution of 60 km coupled with a potential vegetation model is used to simulate future vegetation distributions over South America. The coupled model, which produces an accurate representation of today's climate and vegetation, is forced with increasing atmospheric CO2 concentrations, sea surface temperature from a global model, and scenarios of future land use practices to predict climate and vegetation distributions for the last 2 decades of the 21st century. When only climate change is considered, under a business-as-usual scenario for global emissions, the extent of the Amazon rainforest is reduced by about 70 per cent by the end of this century, and the shrubland (caatinga) vegetation of Brazil's Nordeste region spreads westward and southward. Reductions in annual mean precipitation are widespread and rainfall becomes insufficient to support the rainforest in these regions, but some areas receive more precipitation. The length of the dry season increases in the central and southern Amazon in association with changes in the large-scale tropical circulation. Without this change in seasonality, local refugia of Amazon vegetation would be preserved and the retreat of the rainforest would be somewhat less extensive. Including various projections of future land use practices in addition to climate change may accelerate the unrecoverable demise of the rainforest and feedback to modify climate on regional space scales. The portions of the rainforest that are most vulnerable to climate change are the same as those that are under the most pressure from human activity, presenting a remarkable competition.

  16. Localised proton MR spectroscopy of brain metabolism changes in vegetative patients

    International Nuclear Information System (INIS)

    Ricci, R.; Barbarella, G.; Musi, P.; Boldrini, P.; Trevisan, C.; Basaglia, N.

    1997-01-01

    We examined 14 vegetative brain-injured patients with proton magnetic resonance single-volume spectroscopy ( 1 H MRS) at 1.5 T to establish whether there were changes in relative concentrations of N -acetyl aspartate (NAA), choline (Cho) and creatine (CR) metabolites from those found in healthy brains. Spectra were obtained from two different (2 x 2 x 2 cm) volumes of interest in the left and in the right frontal cortex, normal on MRI. All spectra revealed abnormalities compared with normal spectra obtained from age-matched control subjects. Values outside the normal range for at least one of the metabolite ratios were observed in all patients. Cho/Cr was markedly higher and NAA/Cho and NAA/Cr were markedly lower than in the control subjects. At different times six patients regained awareness and the ability to obey commands, and four were re-examined; changes in metabolite ratios were observed, which were different in individual patients. The NAA/Cho ratio reaches statistical significance in discriminating between the patients with a poor outcome (death or prolonged vegetative state) and those who regained awareness; the dividing line appears to be at a value of about 1.6. (orig.). With 8 figs., 2 tabs

  17. Climate change impacts detection in dry forested ecosystem as indicated by vegetation cover change in -Laikipia, of Kenya.

    Science.gov (United States)

    M'mboroki, Kiambi Gilbert; Wandiga, Shem; Oriaso, Silas Odongo

    2018-03-29

    The objective of the study was to detect and identify land cover changes in Laikipia County of Kenya that have occurred during the last three decades. The land use types of study area are six, of which three are the main and the other three are the minor. The main three, forest, shrub or bush land and grassland, changed during the period, of which grasslands reduced by 5864 ha (40%), forest by 3071 ha (24%) and shrub and bush land increased by 8912 ha (43%). The other three minor land use types were bare land which had reduced by 238 ha (45%), river bed vegetation increased by 209 ha (72%) and agriculture increased by 52 ha (600%) over the period decades. Differences in spatiotemporal variations of vegetation could be largely attributed to the effects of climate factors, anthropogenic activities and their interactions. Precipitation and temperature have been demonstrated to be the key climate factors for plant growth and vegetation development where rainfall decreased by 200 mm and temperatures increased by 1.5 °C over the period. Also, the opinion of the community on the change of land use and management was attributed to climate change and also adaptation strategies applied by the community over time. For example unlike the common understanding that forest resources utilisation increases with increasing human population, Mukogodo dry forested ecosystem case is different in that the majority of the respondents (78.9%) reported that the forest resource use was more in that period than now and also a similar majority (74.2%) had the same opinion that forest resource utilisation was low compared to last 30 years. In Yaaku community, change impacts were evidenced and thus mitigation measures suggested to address the impacts which included the following: controlled bush management and indigenous grass reseeding programme were advocated to restore original grasslands, and agricultural (crop farming) activities are carried out in designated areas outside the

  18. Dynamic Response of Satellite-Derived Vegetation Growth to Climate Change in the Three North Shelter Forest Region in China

    Directory of Open Access Journals (Sweden)

    Bin He

    2015-08-01

    Full Text Available Since the late 1970s, the Chinese government has initiated ecological restoration programs in the Three North Shelter Forest System Project (TNSFSP area. Whether accelerated climate change will help or hinder these efforts is still poorly understood. Using the updated and extended AVHRR NDVI3g dataset from 1982 to 2011 and corresponding climatic data, we investigated vegetation variations in response to climate change. The results showed that the overall state of vegetation in the study region has improved over the past three decades. Vegetation cover significantly decreased in 23.1% and significantly increased in 21.8% of the study area. An increase in all three main vegetation types (forest, grassland, and cropland was observed, but the trend was only statistically significant in cropland. In addition, bare and sparsely vegetated areas, mainly located in the western part of the study area, have significantly expanded since the early 2000s. A moisture condition analysis indicated that the study area experienced significant climate variations, with warm-wet conditions in the western region and warm-dry conditions in the eastern region. Correlation analysis showed that variations in the Normalized Difference Vegetation Index (NDVI were positively correlated with precipitation and negatively correlated with temperature. Ultimately, climate change influenced vegetation growth by controlling the availability of soil moisture. Further investigation suggested that the positive impacts of precipitation on NDVI have weakened in the study region, whereas the negative impacts from temperature have been enhanced in the eastern study area. However, over recent years, the negative temperature impacts have been converted to positive impacts in the western region. Considering the variations in the relationship between NDVI and climatic variables, the warm–dry climate in the eastern region is likely harmful to vegetation growth, whereas the warm

  19. Fine-scale patterns of vegetation assembly in the monitoring of changes in coastal sand-dune landscapes

    Directory of Open Access Journals (Sweden)

    J. Honrado

    2010-02-01

    Full Text Available Understanding dune ecosystem responses to multi-scale environmental changes can provide the framework for reliable forecasts and cost-efficient protocols for detecting shifts in prevailing coastal dynamics. Based on the hypothesis that stress and disturbance interact as primary community controls in coastal dunes, we studied the fine-scale floristic assembly of foredune vegetation, in its relation to topography, along regional and local environmental gradients in the 200 km long coastline of northern Portugal, encompassing a major biogeographic transition in western Europe. Thirty topographic profiles perpendicular to the shoreline were recorded at ten sites along the regional climate gradient, and vegetation was sampled by recording the frequency of plant species along those profiles. Quantitative topographic attributes of vegetated dune profiles (e.g. length or height exhibited wide variations relatable to differences in prevailing coastal dynamics. Metrics of taxonomic diversity (e.g. total species richness and its additive beta component and of the functional composition of vegetation were highly correlated to attributes of dune topography. Under transgressive dynamics, vegetation profiles have fewer species, increased dominance, lower turnover rates, and lower total vegetation cover. These changes may drive a decrease in structural and functional diversity, with important consequences for resistance, resilience and other ecosystem properties. Moreover, differences in both vegetation assembly (in meta-stable dunes and response to increased disturbance (in eroding dunes between distinct biogeographic contexts highlight a possible decline in facilitation efficiency under extreme physical stress (i.e. under Mediterranean climate and support the significance of functional approaches in the study of local ecosystem responses to disturbance along regional gradients. Our results strongly suggest that assessing fine-scale community assembly can

  20. Mapping post-fire forest regeneration and vegetation recovery using a combination of very high spatial resolution and hyperspectral satellite imagery

    Science.gov (United States)

    Mitri, George H.; Gitas, Ioannis Z.

    2013-02-01

    Careful evaluation of forest regeneration and vegetation recovery after a fire event provides vital information useful in land management. The use of remotely sensed data is considered to be especially suitable for monitoring ecosystem dynamics after fire. The aim of this work was to map post-fire forest regeneration and vegetation recovery on the Mediterranean island of Thasos by using a combination of very high spatial (VHS) resolution (QuickBird) and hyperspectral (EO-1 Hyperion) imagery and by employing object-based image analysis. More specifically, the work focused on (1) the separation and mapping of three major post-fire classes (forest regeneration, other vegetation recovery, unburned vegetation) existing within the fire perimeter, and (2) the differentiation and mapping of the two main forest regeneration classes, namely, Pinus brutia regeneration, and Pinus nigra regeneration. The data used in this study consisted of satellite images and field observations of homogeneous regenerated and revegetated areas. The methodology followed two main steps: a three-level image segmentation, and, a classification of the segmented images. The process resulted in the separation of classes related to the aforementioned objectives. The overall accuracy assessment revealed very promising results (approximately 83.7% overall accuracy, with a Kappa Index of Agreement of 0.79). The achieved accuracy was 8% higher when compared to the results reported in a previous work in which only the EO-1 Hyperion image was employed in order to map the same classes. Some classification confusions involving the classes of P. brutia regeneration and P. nigra regeneration were observed. This could be attributed to the absence of large and dense homogeneous areas of regenerated pine trees in the study area.

  1. AVALIAÇÃO E MAPEAMENTO DA COBERTURA VEGETAL DA REGIÃO CENTRAL DA CIDADE DE JUIZ DE FORA – MG - EVALUATION AND MAPPING OF REGION CENTRAL VEGETATION COVER OF JUIZ DE FORA – MG

    Directory of Open Access Journals (Sweden)

    Isabela Fernanda Moraes de Paula

    2017-04-01

    proposed by Jim (1989, in the analysis of the shape and spatial distribution of vegetation cover. In this sense, the results achieved show that most regions of the central area of the city of Juiz de Fora are less than desirable in vegetation cover, requiring investments, mainly in the areas of urban integration, whose percentage of areas covered by vegetation in respect of all covers only 2%. It is noteworthy that the higher the population density, the lower the percentage of vegetation cover, it can be said that the vegetation cover in the central area of the city of Juiz de Fora is fragmented, discontinuous and presents many "empty spaces". In the mapping carried out was found 15.401% of areas covered by woody vegetation, about 1.694% of shrub and 8.59% of undergrowth. The largest expanses of green spots are scattered in between, scattered throughout the area and disconnect with each other. Therefore, its measurement, classification and spatial distribution are of paramount importance as it become essential basis for improvements and planning in the context of urban areas.

  2. Long-term vegetation changes in a temperate forest impacted by climate change

    Science.gov (United States)

    Lauren E. Oakes; Paul E. Hennon; Kevin L. O' Hara; Rodolfo Dirzo

    2014-01-01

    Pervasive forest mortality is expected to increase in future decades as a result of increasing temperatures. Climate-induced forest dieback can have consequences on ecosystem services, potentially mediated by changes in forest structure and understory community composition that emerge in response to tree death. Although many dieback events around the world have been...

  3. Flood extent mapping for Namibia using change detection and thresholding with SAR

    International Nuclear Information System (INIS)

    Long, Stephanie; Fatoyinbo, Temilola E; Policelli, Frederick

    2014-01-01

    A new method for flood detection change detection and thresholding (CDAT) was used with synthetic aperture radar (SAR) imagery to delineate the extent of flooding for the Chobe floodplain in the Caprivi region of Namibia. This region experiences annual seasonal flooding and has seen a recent renewal of severe flooding after a long dry period in the 1990s. Flooding in this area has caused loss of life and livelihoods for the surrounding communities and has caught the attention of disaster relief agencies. There is a need for flood extent mapping techniques that can be used to process images quickly, providing near real-time flooding information to relief agencies. ENVISAT/ASAR and Radarsat-2 images were acquired for several flooding seasons from February 2008 to March 2013. The CDAT method was used to determine flooding from these images and includes the use of image subtraction, decision-based classification with threshold values, and segmentation of SAR images. The total extent of flooding determined for 2009, 2011 and 2012 was about 542 km 2 , 720 km 2 , and 673 km 2 respectively. Pixels determined to be flooded in vegetation were typically <0.5% of the entire scene, with the exception of 2009 where the detection of flooding in vegetation was much greater (almost one third of the total flooded area). The time to maximum flooding for the 2013 flood season was determined to be about 27 days. Landsat water classification was used to compare the results from the new CDAT with SAR method; the results show good spatial agreement with Landsat scenes. (paper)

  4. Cascading ecohydrological transitions: Multiple changes in vegetation and hydrology over the past 500 years for a semiarid forest/woodland boundary zone in New Mexico, USA

    Science.gov (United States)

    Allen, Craig D.

    2010-05-01

    On decadal and centennial time scales, multiple drivers can cause substantial changes in vegetation cover, which can trigger associated changes in runoff and erosion patterns and processes, with consequent feedbacks to the vegetation - cumulatively this can lead to a cascading series of non-equilibrial ecosystem changes through time. The work reported here provides a relatively detailed 500-year perspective of such changes on the mesas the eastern Jemez Mountains in northern New Mexico (USA), which today exhibit vegetation transitions along an elevational gradient between semiarid ponderosa pine (Pinus ponderosa) forests, mixed woodlands dominated by piñon (Pinus edulis) and one-seed juniper (Juniperus monosperma), and juniper savannas. Using multiple lines of evidence, a history of major ecosystem changes since ca. 1500 A.D. is reconstructed for a dynamic transition zone on one such mesa (Frijolito Mesa). Evidence includes intensive archaeological surveys, dendrochronological reconstructions of the demographic and spatial patterns of establishment and mortality for these three main tree species, dendrochronological reconstructions of fire regimes and climate patterns, broad-scale mapping of vegetation changes from historic aerial photographs since 1935, monitoring of vegetation from permanent transects since 1991, detailed soil maps and interpretations, intensive ecohydrological studies since 1993 on portions of this mesa, and research on the ecosystem effects of an experimental tree-thinning experiment conducted in 1997. Frijolito Mesa was fully occupied by large numbers of Native American farmers from the A.D. 1200's until the late 1500's, when they left these mesas for settlements in the adjoining Rio Grande Valley. Archaeological evidence and tree ages indicate that the mesa was likely quite deforested when abandoned, followed by episodic tree establishment dominated by ponderosa pine during the Little Ice Age. By the late 1700's Frijolito Mesa included

  5. Global warming and climate change in Amazonia: Climate-vegetation feedback and impacts on water resources

    Science.gov (United States)

    Marengo, José; Nobre, Carlos A.; Betts, Richard A.; Cox, Peter M.; Sampaio, Gilvan; Salazar, Luis

    This chapter constitutes an updated review of long-term climate variability and change in the Amazon region, based on observational data spanning more than 50 years of records and on climate-change modeling studies. We start with the early experiments on Amazon deforestation in the late 1970s, and the evolution of these experiments to the latest studies on greenhouse gases emission scenarios and land use changes until the end of the twenty-first century. The "Amazon dieback" simulated by the HadCM3 model occurs after a "tipping point" of CO2 concentration and warming. Experiments on Amazon deforestation and change of climate suggest that once a critical deforestation threshold (or tipping point) of 40-50% forest loss is reached in eastern Amazonia, climate would change in a way which is dangerous for the remaining forest. This may favor a collapse of the tropical forest, with a substitution of the forest by savanna-type vegetation. The concept of "dangerous climate change," as a climate change, which induces positive feedback, which accelerate the change, is strongly linked to the occurrence of tipping points, and it can be explained as the presence of feedback between climate change and the carbon cycle, particularly involving a weakening of the current terrestrial carbon sink and a possible reversal from a sink (as in present climate) to a source by the year 2050. We must, therefore, currently consider the drying simulated by the Hadley Centre model(s) as having a finite probability under global warming, with a potentially enormous impact, but with some degree of uncertainty.

  6. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect.

    Science.gov (United States)

    Swann, Abigail L; Fung, Inez Y; Levis, Samuel; Bonan, Gordon B; Doney, Scott C

    2010-01-26

    Arctic climate is projected to change dramatically in the next 100 years and increases in temperature will likely lead to changes in the distribution and makeup of the Arctic biosphere. A largely deciduous ecosystem has been suggested as a possible landscape for future Arctic vegetation and is seen in paleo-records of warm times in the past. Here we use a global climate model with an interactive terrestrial biosphere to investigate the effects of adding deciduous trees on bare ground at high northern latitudes. We find that the top-of-atmosphere radiative imbalance from enhanced transpiration (associated with the expanded forest cover) is up to 1.5 times larger than the forcing due to albedo change from the forest. Furthermore, the greenhouse warming by additional water vapor melts sea-ice and triggers a positive feedback through changes in ocean albedo and evaporation. Land surface albedo change is considered to be the dominant mechanism by which trees directly modify climate at high-latitudes, but our findings suggest an additional mechanism through transpiration of water vapor and feedbacks from the ocean and sea-ice.

  7. Late Holocene vegetation changes in relation with climate fluctuations and human activity in Languedoc (southern France)

    Science.gov (United States)

    Azuara, J.; Combourieu-Nebout, N.; Lebreton, V.; Mazier, F.; Müller, S. D.; Dezileau, L.

    2015-12-01

    Holocene climate fluctuations and human activity since the Neolithic have shaped present-day Mediterranean environments. Separating anthropogenic effects from climatic impacts to better understand Mediterranean paleoenvironmental changes over the last millennia remains a challenging issue. High-resolution pollen analyses were undertaken on two cores from the Palavasian lagoon system (Hérault, southern France). These records allow reconstruction of vegetation dynamics over the last 4500 years. Results are compared with climatic, historical and archeological archives. A long-term aridification trend is highlighted during the late Holocene, and three superimposed arid events are recorded at 4600-4300, 2800-2400 and 1300-1100 cal BP. These periods of high-frequency climate variability coincide in time with the rapid climatic events observed in the Atlantic Ocean (Bond et al., 2001). From the Bronze Age (4000 cal BP) to the end of the Iron Age (around 2000 cal BP), the spread of sclerophyllous taxa and loss of forest cover result from anthropogenic impact. Classical Antiquity is characterized by a major reforestation event related to the concentration of rural activity and populations in coastal plains leading to forest recovery in the mountains. A major regional deforestation occurred at the beginning of the High Middle Ages. Around 1000 cal BP, forest cover is minimal while the cover of olive, chestnut and walnut expands in relation to increasing human influence. The present-day vegetation dominated by Mediterranean shrubland and pines has been in existence since the beginning of the 20th century.

  8. Holocene vegetation and climate change on the Haanja heights, South-East Estonia

    International Nuclear Information System (INIS)

    Saarse, Leili; Rajamaee, Raivo

    1997-01-01

    The development of forests on the Haanja Heights has been controlled by external factors, including climate, soils, hydrology, and human impact. The sediment sequence from Lake Kirikumaee, which covers about 12 000 years, records the vegetation history throughout the Late Glacial and Holocene. In the Alleroed, woodland tundra with sparse birch and willow was established. Grass-shrub tundra in the Younger Dryas was replaced by birch forest in the Pre-Boreal. During the Holocene two major shifts in vegetation dynamics occurred: the first about 8500 BP with a sharp decline in Betula-Pinus forest and development of broad-leaved forest, and the second about 3500 BP, with a decline in broad-leaved forest and regeneration of Pinus-Betula forest with a high share of Picea. The climate modelling, based on pollen record and lake-level changes, suggest cold, severe climate with low precipitation values in the early Pre-Boreal. Between 9500-8500 BP the climate was rather stable. The lake level first rose, then stabilized, and finally dropped. The sharp climate amelioration in the late Boreal together with the humidity increase resulted in a lake-level rise. The decreased precipitation and rather high summer temperatures, increased evapotranspiration, and reduced water balance are characteristic of the Sub-Boreal. Since 3500 BP, the climate deteriorated and mixed coniferous forest started to dominate. Several small climatic fluctuations, including the Little Ice Age cooling, have been traced by modelling. (author)

  9. Changing land management practices and vegetation on the Central Plateau of Burkina Faso (1968-2002)

    Science.gov (United States)

    Reij, C.; Tappan, G.; Belemvire, A.

    2005-01-01

    In the early 1980s, the situation on the northern part of the Central Plateau of Burkina Faso was characterized by expanding cultivation on lands marginal to agriculture, declining rainfall, low and declining cereal yields, disappearing and impoverishing vegetation, falling ground-water levels and strong outmigration. This crisis situation provoked two reactions. Farmers, as well as technicians working for non-governmental organizations, started to experiment in improving soil and water conservation (SWC) techniques. When these experiments proved successful, donor agencies rapidly designed SWC projects based on simple, effective techniques acceptable to farmers. A study looked at the impact of SWC investments in nine villages and identified a number of major impacts, including: significant increases in millet and sorghum yields since the mid-1980s, cultivated fields treated with SWC techniques have more trees than 10-15 years ago, but the vegetation on most of the non-cultivated areas continues to degrade, greater availability of forage for livestock, increased investment in livestock by men and women and a beginning change in livestock management from extensive to semi-intensive methods, improved soil fertility management by farmers, locally rising ground-water tables, a decrease in outmigration and a significant reduction in rural poverty. Finally, data are presented on the evolution of land use in three villages between 1968 and 2002. ?? 2005 Elsevier Ltd. All rights reserved.

  10. Ozone impacts on vegetation in a nitrogen enriched and changing climate

    International Nuclear Information System (INIS)

    Mills, Gina; Harmens, Harry; Wagg, Serena; Sharps, Katrina; Hayes, Felicity; Fowler, David; Sutton, Mark; Davies, Bill

    2016-01-01

    This paper provides a process-oriented perspective on the combined effects of ozone (O_3), climate change and/or nitrogen (N) on vegetation. Whereas increasing CO_2 in controlled environments or open-top chambers often ameliorates effects of O_3 on leaf physiology, growth and C allocation, this is less likely in the field. Combined responses to elevated temperature and O_3 have rarely been studied even though some critical growth stages such as seed initiation are sensitive to both. Under O_3 exposure, many species have smaller roots, thereby enhancing drought sensitivity. Of the 68 species assessed for stomatal responses to ozone, 22.5% were unaffected, 33.5% had sluggish or increased opening and 44% stomatal closure. The beneficial effect of N on root development was lost at higher O_3 treatments whilst the effects of increasing O_3 on root biomass became more pronounced as N increased. Both responses to gradual changes in pollutants and climate and those under extreme weather events require further study. - Highlights: • CO_2 amelioration of O_3 effects on leaf physiology are less likely in the field. • Both extremes of temperature and O_3 impact on critical growth stages. • Many species are more sensitive to drought as a result of exposure to O_3 pollution. • The beneficial effect of N on root development is lost at higher O_3 treatments. • The effects of O_3 on root biomass are higher at high than low N. - A process-oriented perspective on the combined effects of ozone, climate change and/or nitrogen on vegetation.

  11. Changes in vegetative communities and water table dynamics following timber harvesting in small headwater streams

    Science.gov (United States)

    B. Choi; J.C. Dewey; J. A. Hatten; A.W. Ezell; Z. Fan

    2012-01-01

    In order to better understand the relationship between vegetation communities and water table in the uppermost portions (ephemeral–intermittent streams) of headwater systems, seasonal plot-based field characterizations of vegetation were used in conjunction with monthly water table measurements. Vegetation, soils, and water table data were examined to determine...

  12. Evaluating the sensitivity of Eurasian forest biomass to climate change using a dynamic vegetation model

    International Nuclear Information System (INIS)

    Shuman, J K; Shugart, H H

    2009-01-01

    Climate warming could strongly influence the structure and composition of the Eurasian boreal forest. Temperature related changes have occurred, including shifts in treelines and changes in regeneration. Dynamic vegetation models are well suited to the further exploration of the impacts that climate change may have on boreal forests. Using the individual-based gap model FAREAST, forest composition and biomass are simulated at over 2000 sites across Eurasia. Biomass output is compared to detailed forest data from a representative sample of Russian forests and a sensitivity analysis is performed to evaluate the impact that elevated temperatures and modified precipitation will have on forest biomass and composition in Eurasia. Correlations between model and forest inventory biomass are strong for several boreal tree species. A significant relationship is shown between altered precipitation and biomass. This analysis showed that a modest increase in temperature of 2 deg. C across 200 years had no significant effect on biomass; however further exploration with increased warming reflective of values measured within Siberia, or at an increased rate, are warranted. Overall, FAREAST accurately simulates forest biomass and composition at sites throughout a large geographic area with widely varying climatic conditions and produces reasonable biomass responses to simulated climatic shifts. These results indicate that this model is robust and useful in making predictions regarding the effect of future climate change on boreal forest structure across Eurasia.

  13. Mapeamento da antiga cobertura vegetal de várzea do Baixo Amazonas a partir de imagens históricas (1975-1981 do Sensor MSS-Landsat Mapping ancient vegetation cover of the Amazon floodplain using historical MSS/Landsat images (1975-1981

    Directory of Open Access Journals (Sweden)

    Vivian Fróes Renó

    2011-03-01

    -classification techniques. The resulting map was organized four classes of land cover types: floodplain forest, non-forest floodplain vegetation, bare soil, and open water. Map accuracy was estimated from two types of ground data 1 sample points describing ground cover classes not subjected to major changes, such as permanent water bodies, and identifying indicators of the 30 year old vegetation type landscape (72 points; 2 interviews with community early residents for memory recovery of information on the vegetation cover existing in the 1970 (44 interviews. Altogether, 116 information points was collected along the study area. These points were used to calculate the Kappa Index for agreement between the four field-verified classes and the automatic classification, with value (0.78 indicates the good quality of the floodplain vegetation cover map. The region had 8650 km2 coverage of floodplain forest at the time of image acquisition.

  14. The importance of vegetation change in the prediction of future tropical cyclone flood statistics

    Science.gov (United States)

    Irish, J. L.; Resio, D.; Bilskie, M. V.; Hagen, S. C.; Weiss, R.

    2015-12-01

    Global sea level rise is a near certainty over the next century (e.g., Stocker et al. 2013 [IPCC] and references therein). With sea level rise, coastal topography and land cover (hereafter "landscape") is expected to change and tropical cyclone flood hazard is expected to accelerate (e.g., Irish et al. 2010 [Ocean Eng], Woodruff et al. 2013 [Nature], Bilskie et al. 2014 [Geophys Res Lett], Ferreira et al. 2014 [Coast Eng], Passeri et al. 2015 [Nat Hazards]). Yet, the relative importance of sea-level rise induced landscape change on future tropical cyclone flood hazard assessment is not known. In this paper, idealized scenarios are used to evaluate the relative impact of one class of landscape change on future tropical cyclone extreme-value statistics in back-barrier regions: sea level rise induced vegetation migration and loss. The joint probability method with optimal sampling (JPM-OS) (Resio et al. 2009 [Nat Hazards]) with idealized surge response functions (e.g., Irish et al. 2009 [Nat Hazards]) is used to quantify the present-day and future flood hazard under various sea level rise scenarios. Results are evaluated in terms of their impact on the flood statistics (a) when projected flood elevations are included directly in the JPM analysis (Figure 1) and (b) when represented as additional uncertainty within the JPM integral (Resio et al. 2013 [Nat Hazards]), i.e., as random error. Findings are expected to aid in determining the level of effort required to reasonably account for future landscape change in hazard assessments, namely in determining when such processes are sufficiently captured by added uncertainty and when sea level rise induced vegetation changes must be considered dynamically, via detailed modeling initiatives. Acknowledgements: This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1206271 and by the National Sea Grant College Program of the U.S. Department of Commerce's National Oceanic and

  15. Changes of Vegetation Distribution in the East Dongting Lake After the Operation of the Three Gorges Dam, China

    Directory of Open Access Journals (Sweden)

    Jia-Yu Hu

    2018-05-01

    Full Text Available Water regime is regarded as the primary factor influencing the vegetation distribution in natural wetland ecosystems. However, the effect of water regime change induced by large-scale hydraulic engineering on vegetation distribution is still unclear. In this study, multi-temporal TM/ETM+/OLI images and hydrological data from 1995 to 2015 were used to elucidate how the change in water regime influenced the vegetation distribution in the East Dongting Lake (EDTL, especially after the operation of the Three Gorges Dam (TGD in 2003. Using unsupervised and supervised classification methods, three types of land cover were identified in the study area: Water and Mudflat, Grass, and Reed and Forest. Results showed that the total vegetation area in EDTL increased by approximately 78 km2 during 1995–2015. The areas of Reed and Forest and Grass exhibited a contrasting trend, dramatic increase in Reed and Forest but sharp decrease in Grass, particularly after the operation of TGD. The lowest distribution elevations of Grass and Reed and Forest decreased by 0.61 and 0.52 m, respectively. As a result of water level variation, submergence duration increased at 20–21 m and 28 m elevations (1–13 days, but significantly decreased at 22–27 m and 29–30 m elevations (-3 to -31 days. The submergence duration of Grass and Reed and Forest was 246 and 177 days, respectively. This study indicated that wetland vegetation pattern significantly changed after the operation of TGD, mainly as a result of changes in submergence condition. Submergence duration might be an effective indicator to predict the shift of vegetation distribution in EDTL, and which could provide scientific guidance for vegetation restoration and wetland management in this lake.

  16. Mapping Changes in a Recovering Mine Site with Hyperspectral Airborne HyMap Imagery (Sotiel, SW Spain

    Directory of Open Access Journals (Sweden)

    Jorge Buzzi

    2014-04-01

    Full Text Available Hyperspectral high spatial resolution HyMap data are used to map mine waste from massive sulfide ore deposits, mostly abandoned, on the Iberian Pyrite Belt (southwest Spain. Mine dams, mill tailings and mine dumps in variable states of pyrite oxidation are recognizable. The interpretation of hyperspectral remote sensing requires specific algorithms able to manage high dimensional data compared to multispectral data. The routine of image processing methods used to extract information from hyperspectral data to map geological features is explained, as well as the sequence of algorithms used to produce maps of the mine sites. The mineralogical identification capability of algorithms to produce maps based on archive spectral libraries is discussed. Trends of mineral growth differ spectrally over time according to the geological setting and the recovery state of the mine site. Subtle mineralogical changes are enhanced using the spectral response as indicators of pyrite oxidation intensity of the mine waste piles and pyrite mud tailings. The changes in the surface of the mill tailings deserve a detailed description, as the surfaces are inaccessible to direct observation. Such mineralogical changes respond faithfully to industrial activities or the influence of climate when undisturbed by human influence.

  17. Changes in Intake of Fruits and Vegetables and Weight Change in United States Men and Women Followed for Up to 24 Years: Analysis from Three Prospective Cohort Studies.

    Directory of Open Access Journals (Sweden)

    Monica L Bertoia

    2015-09-01

    Full Text Available Current dietary guidelines recommend eating a variety of fruits and vegetables. However, based on nutrient composition, some particular fruits and vegetables may be more or less beneficial for maintaining or achieving a healthy weight. We hypothesized that greater consumption of fruits and vegetables with a higher fiber content or lower glycemic load would be more strongly associated with a healthy weight.We examined the association between change in intake of specific fruits and vegetables and change in weight in three large, prospective cohorts of 133,468 United States men and women. From 1986 to 2010, these associations were examined within multiple 4-y time intervals, adjusting for simultaneous changes in other lifestyle factors, including other aspects of diet, smoking status, and physical activity. Results were combined using a random effects meta-analysis. Increased intake of fruits was inversely associated with 4-y weight change: total fruits -0.53 lb per daily serving (95% CI -0.61, -0.44, berries -1.11 lb (95% CI -1.45, -0.78, and apples/pears -1.24 lb (95% CI -1.62, -0.86. Increased intake of several vegetables was also inversely associated with weight change: total vegetables -0.25 lb per daily serving (95% CI -0.35, -0.14, tofu/soy -2.47 lb (95% CI, -3.09 to -1.85 lb and cauliflower -1.37 lb (95% CI -2.27, -0.47. On the other hand, increased intake of starchy vegetables, including corn, peas, and potatoes, was associated with weight gain. Vegetables having both higher fiber and lower glycemic load were more strongly inversely associated with weight change compared with lower-fiber, higher-glycemic-load vegetables (p < 0.0001. Despite the measurement of key confounders in our analyses, the potential for residual confounding cannot be ruled out, and although our food frequency questionnaire specified portion size, the assessment of diet using any method will have measurement error.Increased consumption of fruits and non

  18. You are what you eat: within-subject increases in fruit and vegetable consumption confer beneficial skin-color changes.

    Directory of Open Access Journals (Sweden)

    Ross D Whitehead

    Full Text Available Fruit and vegetable consumption and ingestion of carotenoids have been found to be associated with human skin-color (yellowness in a recent cross-sectional study. This carotenoid-based coloration contributes beneficially to the appearance of health in humans and is held to be a sexually selected cue of condition in other species.Here we investigate the effects of fruit and vegetable consumption on skin-color longitudinally to determine the magnitude and duration of diet change required to change skin-color perceptibly. Diet and skin-color were recorded at baseline and after three and six weeks, in a group of 35 individuals who were without makeup, self-tanning agents and/or recent intensive UV exposure. Six-week changes in fruit and vegetable consumption were significantly correlated with changes in skin redness and yellowness over this period, and diet-linked skin reflectance changes were significantly associated with the spectral absorption of carotenoids and not melanin. We also used psychophysical methods to investigate the minimum color change required to confer perceptibly healthier and more attractive skin-coloration. Modest dietary changes are required to enhance apparent health (2.91 portions per day and attractiveness (3.30 portions.Increased fruit and vegetable consumption confers measurable and perceptibly beneficial effects on Caucasian skin appearance within six weeks. This effect could potentially be used as a motivational tool in dietary intervention.

  19. Mineral and Vegetation Maps of the Bodie Hills, Sweetwater Mountains, and Wassuk Range, California/Nevada, Generated from ASTER Satellite Data

    Science.gov (United States)

    Rockwell, Barnaby W.

    2010-01-01

    Multispectral remote sensing data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were analyzed to identify and map minerals, vegetation groups, and volatiles (water and snow) in support of geologic studies of the Bodie Hills, Sweetwater Mountains, and Wassuk Range, California/Nevada. Digital mineral and vegetation mapping results are presented in both portable document format (PDF) and ERDAS Imagine format (.img). The ERDAS-format files are suitable for integration with other geospatial data in Geographic Information Systems (GIS) such as ArcGIS. The ERDAS files showing occurrence of 1) iron-bearing minerals, vegetation, and water, and 2) clay, sulfate, mica, carbonate, Mg-OH, and hydrous quartz minerals have been attributed according to identified material, so that the material detected in a pixel can be queried with the interactive attribute identification tools of GIS and image processing software packages (for example, the Identify Tool of ArcMap and the Inquire Cursor Tool of ERDAS Imagine). All raster data have been orthorectified to the Universal Transverse Mercator (UTM) projection using a projective transform with ground-control points selected from orthorectified Landsat Thematic Mapper data and a digital elevation model from the U.S. Geological Survey (USGS) National Elevation Dataset (1/3 arc second, 10 m resolution). Metadata compliant with Federal Geographic Data Committee (FGDC) standards for all ERDAS-format files have been included, and contain important information regarding geographic coordinate systems, attributes, and cross-references. Documentation regarding spectral analysis methodologies employed to make the maps is included in these cross-references.

  20. Global isoprene and monoterpene emissions under changing climate, vegetation, CO2 and land use

    DEFF Research Database (Denmark)

    Hantson, Stijn; Knorr, Wolfgang; Schurgers, Guy

    2017-01-01

    Plants emit large quantities of isoprene and monoterpenes, the main components of global biogenic volatile organic compound (BVOC) emissions. BVOCs have an important impact on the atmospheric composition of methane, and of short-lived radiative forcing agents (e.g. ozone, aerosols etc.). It is th......Plants emit large quantities of isoprene and monoterpenes, the main components of global biogenic volatile organic compound (BVOC) emissions. BVOCs have an important impact on the atmospheric composition of methane, and of short-lived radiative forcing agents (e.g. ozone, aerosols etc.......). It is therefore necessary to know how isoprene and monoterpene emissions have changed over the past and how future changes in climate, land-use and other factors will impact them. Here we present emission estimates of isoprene and monoterpenes over the period 1901–2 100 based on the dynamic global vegetation...... model LPJ-GUESS, including the effects of all known important drivers. We find that both isoprene and monoterpene emissions at the beginning of the 20th century were higher than at present. While anthropogenic land-use change largely drives the global decreasing trend for isoprene over the 20th century...

  1. How Can Implicit and Explicit Attitudes Both Be Changed? Testing Two Interventions to Promote Consumption of Green Vegetables.

    Science.gov (United States)

    Mattavelli, Simone; Avishai, Aya; Perugini, Marco; Richetin, Juliette; Sheeran, Paschal

    2017-08-01

    Although correlational studies have demonstrated that implicit and explicit attitudes are both important in predicting eating behavior, few studies targeting food choice have attempted to change both types of attitudes. We tested the impact of (a) an evaluative learning intervention that uses the self to change attitudes (i.e., a Self-Referencing task) and (b) a persuasive communication in modifying implicit and explicit attitudes towards green vegetables and promoting readiness to change. The study targeted individuals who explicitly reported they did not like or only moderately liked green vegetables. Participants (N = 273) were randomly allocated to a 2 (self-referencing: present vs. absent) × 2 (persuasive message: present vs. absent) factorial design. The outcomes were implicit and explicit attitudes as well as readiness to increase consumption of green vegetables. Implicit attitudes increased after repeatedly pairing green vegetable stimuli with the self in the self-referencing task but did not change in response to the persuasive communication. The persuasive message increased explicit attitudes and readiness to change, but did not alter implicit attitudes. A three-way interaction with pre-existing explicit attitudes was also observed. In the absence of a persuasive message, the self-referencing task increased on readiness to change among participants with more negative pre-existing explicit attitudes. This study is the first to demonstrate that a self-referencing task is effective in changing both implicit attitudes and readiness to change eating behavior. Findings indicate that distinct intervention strategies are needed to change implicit and explicit attitudes towards green vegetables.

  2. Impact of economic growth on vegetation health in China based on GIMMS NDVI

    NARCIS (Netherlands)

    Jin, X.; Wan, L.; Zhang, Y.K.; Schaepman, M.E.

    2008-01-01

    The negative impact of economic development on vegetation health in China was assessed using gross domestic product (GDP) and the Global Inventory Modelling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) data. Five levels of vegetation changes were established based on the

  3. Evaluating the Impact of Land Use Change on Submerged Aquatic Vegetation Stressors in Mobile Bay

    Science.gov (United States)

    Al-Hamdan, Mohammad; Estes, Maurice G., Jr.; Quattrochi, Dale; Thom, Ronald; Woodruff, Dana; Judd, Chaeli; Ellis, Jean; Watson, Brian; Rodriquez, Hugo; Johnson, Hoyt

    2009-01-01

    Alabama coastal systems have been subjected to increasing pressure from a variety of activities including urban and rural development, shoreline modifications, industrial activities, and dredging of shipping and navigation channels. The impacts on coastal ecosystems are often observed through the use of indicator species. One such indicator species for aquatic ecosystem health is submerged aquatic vegetation (SAV). Watershed and hydrodynamic modeling has been performed to evaluate the impact of land use change in Mobile and Baldwin counties on SAV stressors and controlling factors (temperature, salinity, and sediment) in Mobile Bay. Watershed modeling using the Loading Simulation Package in C++ (LSPC) was performed for all watersheds contiguous to Mobile Bay for land use scenarios in 1948, 1992, 2001, and 2030. Landsat-derived National Land Cover Data (NLCD) were used in the 1992 and 2001 simulations after having been reclassified to a common classification scheme. The Prescott Spatial Growth Model was used to project the 2030 land use scenario based on current trends. The LSPC model simulations provided output on changes in flow, temperature, and sediment for 22 discharge points into the Bay. Theses results were inputted in the Environmental Fluid Dynamics Computer Code (EFDC) hydrodynamic model to generate data on changes in temperature, salinity, and sediment on a grid with four vertical profiles throughout Mobile Bay. The changes in the aquatic ecosystem were used to perform an ecological analysis to evaluate the impact on SAV habitat suitability. This is the key product benefiting the Mobile Bay coastal environmental managers that integrates the influences of temperature, salinity, and sediment due to land use driven flow changes with the restoration potential of SAVs.

  4. Acceleration and Counteraction of Changes in Vegetation Seasonality and Patterns using CMIP5 Projections from Different ESMs.

    Science.gov (United States)

    Chavaillaz, Y.; Joussaume, S.; De Noblet-Decoudre, N.

    2017-12-01

    Most climatological studies characterize future climate change as the evolution between a fixed current baseline and the future. Considering the pace of future climate change is however of major importance, since it may strongly influence how we experience climate hazards. To complement previous work related to the pace of temperature and precipitation changes, we propose here to study how fast vegetation seasonality and patterns of climate change evolve in different future configurations according to CMIP5 simulations of several Earth system models. The pace is defined as the difference in relevant metrics between two successive 20-year periods, i.e. with a continually moving baseline. Shifts of vegetation groups and changes in the characteristics of the seasonal cycle are considered. Both accelerate in close relationship with the warming rate regardless of the selected scenario, but they balance each other out, especially for trees in northern mid- and high-latitudes. Efforts are nevertheless strongly needed to harmonize the representation of vegetation in new versions of model inter-comparison projects, in order to properly conduct multi-model analyses related to vegetation changes.

  5. Monitoring the long term vegetation phenology change in Northeast China from 1982 to 2015.

    Science.gov (United States)

    Yu, Lingxue; Liu, Tingxiang; Bu, Kun; Yan, Fengqin; Yang, Jiuchun; Chang, Liping; Zhang, Shuwen

    2017-11-07

    Global warming has contributed to the extension of the growing season in North Hemisphere. In this paper, we investigated the spatial characteristics of the date of the start of the season (SOS), the date of the end of the season (EOS) and the length of the season (LOS) and their change trends from 1982 to 2015 in Northeast China. Our results showed that there was a significant advance of SOS and a significant delay of EOS, especially in the north part of Northeast China. For the average change slope of EOS in the study area, the delay trend was 0.25 d/y, which was more obvious than the advance trend of -0.13 d/y from the SOS. In particular, the LOS of deciduous needleleaf forest (DNF) and grassland increased with a trend of 0.63 d/y and 0.66 d/y from 1982 to 2015, indicating the growth season increased 21.42 and 22.44 days in a 34-year period, respectively. However, few negative signals were detected nearby Hulun Lake, suggesting that the continuous climate warming in the future may bring no longer growing periods for the grass in the semiarid areas as the drought caused by climate warming may limit the vegetation growth.

  6. Holocene vegetation change in the northern Peten and its implications for Maya prehistory

    Science.gov (United States)

    Wahl, David; Byrne, Roger; Schreiner, Thomas; Hansen, Richard

    2006-05-01

    An ˜8400 cal yr record of vegetation change from the northern Peten, Guatemala, provides new insights into the environmental history of the archaeological area known as the Mirador Basin. Pollen, loss on ignition, and magnetic susceptibility analyses indicate warm and humid conditions in the early to mid-Holocene. Evidence for a decrease in forest cover around 4600 cal yr B.P. coincides with the first appearance of Zea mays pollen, suggesting that human activity was responsible. The period between 3450 cal yr B.P. and 1000 cal yr B.P. is characterized by a further decline in forest pollen types, includes an abrupt increase in weedy taxa, and exhibits the highest magnetic susceptibility values since the early Holocene, all of which suggest further agricultural disturbance in the watershed. A brief drop in disturbance indicators around 1800 cal yr B.P. may represent the Preclassic abandonment of the area. Changing pollen frequencies around 1000 cal yr B.P. indicate a cessation of human disturbance, which represents the Late Classic collapse of the southern Maya lowlands.

  7. The Arctic Vegetation Type Change retrieved from Spaceborne Observations and its Influence on the Simulation of Permafrost Thawing

    Science.gov (United States)

    Kim, Y.; Wang, Z.

    2017-12-01

    The vegetation types change in Arctic has been studied using 10 years of MODIS land cover product (MCD12Q1). The shrub expansion is observed in Alaska and Northeast Asia, while shrub fraction decreases in North Canada and Southwest Arctic Eurasia. The total Arctic shrub fraction increases 3% in 10 years. The tundra decreases where the shrub expands, and thrives where the shrub retreats. In order to isolate the influence of the vegetation dynamic on the permafrost thawing, the Arctic terrestrial ecosystem in recent decades will be simulated using the Community Land Model (CLM) with and without the vegetation type changes. The energy and carbon exchange on the land surface will also be simulated and compared. Acknowledgement: This work was supported by the Korea Polar Research Institute (KOPRI, PN17081) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2015R1C1A2A01054800).

  8. Changes in composition, ecology and structure of high-mountain vegetation: a re-visitation study over 42 years.

    Science.gov (United States)

    Evangelista, Alberto; Frate, Ludovico; Carranza, Maria Laura; Attorre, Fabio; Pelino, Giovanni; Stanisci, Angela

    2016-01-27

    High-mountain ecosystems are increasingly threatened by climate change, causing biodiversity loss, habitat degradation and landscape modifications. However, very few detailed studies have focussed on plant biodiversity in the high mountains of the Mediterranean. In this study, we investigated the long-term changes that have occurred in the composition, structure and ecology of high-mountain vegetation in the central Apennines (Majella) over the last 42 years. We performed a re-visitation study, using historical and newly collected vegetation data to explore which ecological and structural features have been the most successful in coping with climatic changes. Vegetation changes were analysed by comparing geo-referenced phytosociological relevés collected in high-mountain habitats (dolines, gentle slopes and ridges) on the Majella massif in 1972 and in 2014. Composition analysis was performed by detrended correspondence analysis, followed by an analysis of similarities for statistical significance assessment and by similarity percentage procedure (SIMPER) for identifying which species indicate temporal changes. Changes in ecological and structural indicators were analysed by a permutational multivariate analysis of variance, followed by a post hoc comparison. Over the last 42 years, clear floristic changes and significant ecological and structural variations occurred. We observed a significant increase in the thermophilic and mesonitrophilic plant species and an increment in the frequencies of hemicryptophytes. This re-visitation study in the Apennines agrees with observations in other alpine ecosystems, providing new insights for a better understanding of the effects of global change on Mediterranean high-mountain biodiversity. The observed changes in floristic composition, the thermophilization process and the shift towards a more nutrient-demanding vegetation are likely attributable to the combined effect of higher temperatures and the increase in soil nutrients

  9. Changes in hydrological connectivity due to vegetation recovery and wall collapse in abandoned terraced fields

    Science.gov (United States)

    Lana-Renault, Noemí; López-Vicente, Manuel; Oranjuren, Rafael; Ángel Llorente, José; Ruiz-Flaño, Purificación; Arnáez, José

    2017-04-01

    and the results were validated in the field by identifying stable, erosion, delivery and sedimentation forms in a representative sub-catchment. We then applied the IC for the past scenario, when all terraced fields were cultivated, and we analysed the changes in connectivity due to farmland abandonment, including the separate effect of changes in vegetation, linear landscape elements and water conservation structures. Results of this study have implications for other agro-ecosystems sensitive to farmland abandonment as well as where terrace failure may happen.

  10. River flow response to changes in vegetation cover in a South ...

    African Journals Online (AJOL)

    It was hypothesised in this study that annual river yield (river flow as a fraction of rainfall) in the Molenaars catchment near Paarl, South Africa co-varies with an index of green vegetation cover derived from satellite data (the normalised difference vegetation index, NDVI). The catchment was partitioned into 'upland' and ...

  11. Vegetation of Paektu Mt. alpine tundra and changes of species composition in its ecotone

    Czech Academy of Sciences Publication Activity Database

    Kolbek, Jiří; Jarolímek, I.

    2007-01-01

    Roč. 39, č. 2 (2007), s. 707-725 ISSN 0253-116X R&D Projects: GA ČR(CZ) GA206/05/0119 Institutional research plan: CEZ:AV0Z60050516 Keywords : High mountain vegetation * hypsometric vegetation transect * Korean-Chinese boundary Subject RIV: EF - Botanics

  12. Bird species turnover is related to changing predation risk along a vegetation gradient

    Science.gov (United States)

    LaManna, Joseph A.; Hemenway, Amy B.; Boccadori, Vanna; Martin, Thomas E.

    2015-01-01

    Turnover in animal species along vegetation gradients is often assumed to reflect adaptive habitat preferences that are narrower than the full gradient. Specifically, animals may decline in abundance where their reproductive success is low, and these poor-quality locations differ among species. Yet habitat use does not always appear adaptive. The crucial tests of how abundances and demographic costs of animals vary along experimentally manipulated vegetation gradients are lacking. We examined habitat use and nest predation rates for 16 bird species that exhibited turnover with shifts in deciduous and coniferous vegetation. For most bird species, decreasing abundance was associated with increasing predation rates along both natural and experimentally modified vegetation gradients. This landscape-scale approach strongly supports the idea that vegetation-mediated effects of predation are associated with animal distributions and species turnover.

  13. Modeling L-band synthetic aperture radar observations through dielectric changes in soil moisture and vegetation over shrublands

    Science.gov (United States)

    L-band airborne synthetic aperture radar observations were made over California shrublands to better understand the effects by soil and vegetation parameters on backscatter. Temporal changes in radar backscattering coefficient (s0) of up to 3 dB were highly correlated to surface soil moisture but no...

  14. The influence of environmental changes on local and regional vegetation patterns at Rieme (NW Belgium): implications for Final Palaeolithic habitation

    NARCIS (Netherlands)

    Bos, J.A.A.; Verbruggen, F.; Engels, S.; Crombé, P.

    2012-01-01

    Late-glacial vegetation changes were studied at Rieme, NW Belgium. Human occupation of this cover sand area occurred from the Final Palaeolithic onwards. The research area is situated on the northern side of a large cover sand ridge in an undulating landscape with small ridges and depressions. The

  15. Age interpretation of the Wonderkrater spring sediments and vegetation change in the Savanna Biome, Limpopo province, South Africa

    CSIR Research Space (South Africa)

    Scott, L

    2003-09-01

    Full Text Available is proposed by excluding samples that were possibly contaminated by younger or older materials. The dating places the pollen-based vegetation history more firmly in a framework of regional and global climate change during the Late Quaternary, thereby making...

  16. Twenty-three years of vegetation change in a fly-ash leachate impacted meadow

    Science.gov (United States)

    Pavlovic, Noel B.; Leicht-Young, Stacey A.; Wilcox, Douglas; Hiebert, Ron; Murphy, Marilyn K.; Mason, Daniel; Frohnapple, Krystal

    2009-01-01

    1. Blag Slough, located in Indiana Dunes National Lakeshore, has received leachates from nearby fly-ash ponds for 13 years (1967-1980). We have monitored vegetation and sediment of Blag Slough since 1982, two years after the sealing of the fly-ash ponds and one year after the substrate was first exposed. The pH of the soil has increased one order of magnitude from 3.0 to 4.0 over the 23 years (1982-2005). If the pH further increases the solubility of many heavy metals will decrease, except for arsenic. We provide evidence that boron and zinc were bioaccumulating in the leaves of woody plants in 1984. The ratio of leaf concentration and soil concentration of aluminum suggests this element was not bioaccumulating in woody plants in 1984. 2. Soil concentrations of iron, aluminum, arsenic, and strontium were higher nearest the fly-ash ponds in 2005. The southwest corner of Blag Slough and middle position of transect X had the highest elevated levels of these metals and correlated with the occurrence of mixed spikerush association (dominated by Eleocharis olivacea). 3. Only a few exotic species occurred in the Blag Slough. Common reed (Phragmites australis) was among such species that occurred in three large clones. Other exotic species included dandelion (Taraxacum officinale), mullein (Verbascum thapsis), Jerusalem oak goosefoot (Chenopodium botrys), and sheep sorrel (Rumex acetosella). Ruderal species have occurred including thistle (Cirsium spp.), fire weed (Erechtites hieracifolium), and horseweed (Conyza canadensis). While occasional cattail (Typha) have been sampled and mapped in Blag Slough they have never persisted for very long. 4. Species richness leveled off between 1991 and 2005, except for Transect X that had a peak in 1986-7. After an extreme rainfall event in August 18, 1990, Transect V had an average water depth of 0.70 cm, W had 7.1 cm, and X had 26.90 cm. Richness in Transect X declined to a low level in 1990 and 1991 after the extreme flooding event

  17. Evaluating and Quantifying the Climate-Driven Interannual Variability in Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) at Global Scales

    Science.gov (United States)

    Zeng, Fanwei; Collatz, George James; Pinzon, Jorge E.; Ivanoff, Alvaro

    2013-01-01

    Satellite observations of surface reflected solar radiation contain informationabout variability in the absorption of solar radiation by vegetation. Understanding thecauses of variability is important for models that use these data to drive land surface fluxesor for benchmarking prognostic vegetation models. Here we evaluated the interannualvariability in the new 30.5-year long global satellite-derived surface reflectance index data,Global Inventory Modeling and Mapping Studies normalized difference vegetation index(GIMMS NDVI3g). Pearsons correlation and multiple linear stepwise regression analyseswere applied to quantify the NDVI interannual variability driven by climate anomalies, andto evaluate the effects of potential interference (snow, aerosols and clouds) on the NDVIsignal. We found ecologically plausible strong controls on NDVI variability by antecedent precipitation and current monthly temperature with distinct spatial patterns. Precipitation correlations were strongest for temperate to tropical water limited herbaceous systemswhere in some regions and seasons 40 of the NDVI variance could be explained byprecipitation anomalies. Temperature correlations were strongest in northern mid- to-high-latitudes in the spring and early summer where up to 70 of the NDVI variance was explained by temperature anomalies. We find that, in western and central North America,winter-spring precipitation determines early summer growth while more recent precipitation controls NDVI variability in late summer. In contrast, current or prior wetseason precipitation anomalies were correlated with all months of NDVI in sub-tropical herbaceous vegetation. Snow, aerosols and clouds as well as unexplained phenomena still account for part of the NDVI variance despite corrections. Nevertheless, this study demonstrates that GIMMS NDVI3g represents real responses of vegetation to climate variability that are useful for global models.

  18. Tracking changes of river morphology in Ayeyarwady River in Myanmar using earth observations and surface water mapping tool

    Science.gov (United States)

    Piman, T.; Schellekens, J.; Haag, A.; Donchyts, G.; Apirumanekul, C.; Hlaing, K. T.

    2017-12-01

    River morphology changes is one of the key issues in Ayeyarwady River in Myanmar which cause impacts on navigation, riverine habitats, agriculture lands, communities and livelihoods near the bank of the river. This study is aimed to track the changes in river morphology in the middle reach of Ayeyarwady River over last 30 years from 1984-2014 to improve understanding of riverbank dynamic, erosion and deposition procress. Earth observations including LandSat-7, LandSat-8, Digital Elevation Model from SRTM Plus and, ASTER-2 GoogleMap and Open Street Map were obtained for the study. GIS and remote sensing tools were used to analyze changes in river morphology while surface water mapping tool was applied to determine how the dynamic behaviour of the surface river and effect of river morphology changes. The tool consists of two components: (1) a Google Earth Engine (GEE) javascript or python application that performs image analysis and (2) a user-friendly site/app using Google's appspot.com that exposes the application to the users. The results of this study shown that the fluvial morphology in the middle reach of Ayeyarwady River is continuously changing under the influence of high water flows in particularly from extreme flood events and land use change from mining and deforestation. It was observed that some meandering sections of the riverbank were straightened, which results in the movement of sediment downstream and created new sections of meandering riverbank. Several large islands have formed due to the stabilization by vegetation and is enforced by sedimentation while many small bars were formed and migrated dynamically due to changes in water levels and flow velocity in the wet and dry seasons. The main channel was changed to secondary channel in some sections of the river. This results a constant shift of the navigation route. We also found that some villages were facing riverbank erosion which can force villagers to relocate. The study results demonstrated

  19. Golden Gate National Recreation Area Vegetation Inventory Project

    Data.gov (United States)

    California Natural Resource Agency — High resolution vegetation polygons mapped by the National Park Service. The vegetation units of this map were determined through stereoscopic interpretation of...

  20. Tropical vegetation evidence for rapid sea level changes associated with Heinrich Events

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Catalina; Dupont, Lydie M, E-mail: catalina@uni-bremen.d, E-mail: dupont@uni-bremen.d [MARUM - Centre for Marine Environmental Sciences, University of Bremen, Leobener Strasse, D-28359 Germany (Germany)

    2010-03-15

    A Cariaco Basin pollen record shows the development of tropical salt marshes during marine isotope stage 3. Rapid and abrupt expansions of salt marsh vegetation in tropical South America are associated with north Atlantic Heinrich Events stadials (HE-stadials). Intervals of salt marsh expansion have an internal structure, which consists of a recurrent alternation of species that starts with pollen increments of Chenopodiaceae, that are followed by increments of grasses, and subsequently by increments of Cyperaceae. This pattern suggests a successional process that is determined by the close relationship between sea-level and plant community dynamics. The salt tolerant Chenopodiaceae, indicate hypersaline intertidal environments, which were most likely promoted by extremely dry atmospheric conditions. Rapid sea-level rise characterizes the onset of HE-stadials, causing the continued recruitment of pioneer species, which are the only ones tolerating rapid rates of disturbance. Once sea-level rise decelerates, marsh plants are able to trap and stabilize sediments, favouring the establishment of more competitive species. These results add to the scarce knowledge on the dynamics of tropical salt marsh ecosystems, and provide independent paleoclimatic evidence on sea-level changes following Antarctic climate variability.

  1. Vegetation Response to Changing Climate - A Case Study from Gandaki River Basin in Nepal Himalaya

    Science.gov (United States)

    Panthi, J., Sr.; Kirat, N. H.; Dahal, P.

    2015-12-01

    The climate of the Himalayan region is changing rapidly - temperature is increasingly high and rainfall has become unpredictable. IPCC predicts that average annual mean temperature over the Asian land mass, including the Himalayas, will increase by about 3°C by the 2050s and about 5°C by the 2080s and the average annual precipitation in this region will increase by 10-30% by 2080s. Climate and the human activities can influence the land cover status and the eco-environmental quality. There are enough evidences that there is strong interaction between climate variability and ecosystems. A project was carried out in Gandaki river basin in central Nepal to analyze the relationship of NDVI vegetation index with the temperature, rainfall and snowcover information. The relationships were analyzed for different landuses classes-grassland, forest and agriculture. Results show that the snowcover area is decreasing at the rate of 0.15% per year in the basin. The NDVI shows seasonal fluctuations and lightly correlated with the rainfall and temperature.

  2. Remote mapping of vegetation and geological features by lidar in the 9-11-μm region

    International Nuclear Information System (INIS)

    Foy, Bernard R.; McVey, Brian D.; Petrin, Roger R.; Tiee, Joe J.; Wilson, Carl W.

    2001-01-01

    We report examples of the use of a scanning tunable CO 2 laser lidar system in the 9-11-μm region to construct images of vegetation and rocks at ranges as far as 5 km from the instrument. Range information is combined with horizontal and vertical distances to yield an image with three spatial dimensions simultaneous with the classification of target type. Object classification is based on reflectance spectra, which are sufficiently distinct to allow discrimination between several tree species, between trees and scrub vegetation, and between natural and artificial targets. Limitations imposed by laser speckle noise are discussed

  3. Vegetation and Climate Change during the Last Deglaciation in the Great Khingan Mountain, Northeastern China.

    Science.gov (United States)

    Wu, Jing; Liu, Qiang; Wang, Luo; Chu, Guo-qiang; Liu, Jia-qi

    2016-01-01

    The Great Khingan Mountain range, Northeast China, is located on the northern limit of modern East Asian Summer Monsoon (EASM) and thus highly sensitive to the extension of the EASM from glacial to interglacial modes. Here, we present a high-resolution pollen record covering the last glacial maximum and the early Holocene from a closed crater Lake Moon to reconstruct vegetation history during the glacial-interglacial transition and thus register the evolution of the EASM during the last deglaciation. The vegetation history has gone through distinct changes from subalpine meadow in the last glacial maximum to dry steppe dominated by Artemisia from 20.3 to 17.4 ka BP, subalpine meadow dominated by Cyperaceae and Artemisia between 17.4 and 14.4 ka BP, and forest steppe dominated by Betula and Artemisia after 14.4 ka BP. The pollen-based temperature index demonstrates a gradual warming trend started at around 20.3 ka BP with interruptions of several brief events. Two cold conditions occurred around at 17.2-16.6 ka BP and 12.8-11.8 ka BP, temporally correlating to the Henrich 1 and the Younger Dryas events respectively, 1and abrupt warming events occurred around at 14.4 ka BP and 11.8 ka BP, probably relevant to the beginning of the Bølling-Allerød stages and the Holocene. The pollen-based moisture proxy shows distinct drought condition during the last glacial maximum (20.3-18.0 ka BP) and the Younger Dryas. The climate history based on pollen record of Lake Moon suggests that the regional temperature variability was coherent with the classical climate in the North Atlantic, implying the dominance of the high latitude processes on the EASM evolution from the Last Glacial Maximum (LGM) to early Holocene. The local humidity variability was influenced by the EASM limitedly before the Bølling-Allerød warming, which is mainly controlled by the summer rainfall due to the EASM front covering the Northeast China after that.

  4. Vegetation and Climate Change during the Last Deglaciation in the Great Khingan Mountain, Northeastern China.

    Directory of Open Access Journals (Sweden)

    Jing Wu

    Full Text Available The Great Khingan Mountain range, Northeast China, is located on the northern limit of modern East Asian Summer Monsoon (EASM and thus highly sensitive to the extension of the EASM from glacial to interglacial modes. Here, we present a high-resolution pollen record covering the last glacial maximum and the early Holocene from a closed crater Lake Moon to reconstruct vegetation history during the glacial-interglacial transition and thus register the evolution of the EASM during the last deglaciation. The vegetation history has gone through distinct changes from subalpine meadow in the last glacial maximum to dry steppe dominated by Artemisia from 20.3 to 17.4 ka BP, subalpine meadow dominated by Cyperaceae and Artemisia between 17.4 and 14.4 ka BP, and forest steppe dominated by Betula and Artemisia after 14.4 ka BP. The pollen-based temperature index demonstrates a gradual warming trend started at around 20.3 ka BP with interruptions of several brief events. Two cold conditions occurred around at 17.2-16.6 ka BP and 12.8-11.8 ka BP, temporally correlating to the Henrich 1 and the Younger Dryas events respectively, 1and abrupt warming events occurred around at 14.4 ka BP and 11.8 ka BP, probably relevant to the beginning of the Bølling-Allerød stages and the Holocene. The pollen-based moisture proxy shows distinct drought condition during the last glacial maximum (20.3-18.0 ka BP and the Younger Dryas. The climate history based on pollen record of Lake Moon suggests that the regional temperature variability was coherent with the classical climate in the North Atlantic, implying the dominance of the high latitude processes on the EASM evolution from the Last Glacial Maximum (LGM to early Holocene. The local humidity variability was influenced by the EASM limitedly before the Bølling-Allerød warming, which is mainly controlled by the summer rainfall due to the EASM front covering the Northeast China after that.

  5. Vegetation - McKenzie Preserve [ds703

    Data.gov (United States)

    California Natural Resource Agency — The California Native Plant Society (CNPS) Vegetation Program produced a vegetation map and classification for approximately 11,600 acres primarily within Millerton...

  6. Quantitative assessment of errors in monitoring landcover changes by comparison of maps

    Directory of Open Access Journals (Sweden)

    Jean Francois Mas

    2012-02-01

    Full Text Available Many studies aimed at assessing land-cover changes are based upon the comparison of maps elaborated in different dates. This comparison allows the calculation of change rates as well as to generate more detailed data such as the transition matrix and the change map. In this study, we evaluated the errors incurred when comparing maps elaborated at different scales, obtained through independent digitalisation processes, elaborated using different classification schemes or when the maps were elaborated with inputs from different dates. Errors derived from the difference of scale or from the map-digitalisation processes led to false changes with a similar or greater scale to that of true changes. The comparison of maps based on different classification schemes invalidated the results of the comparison. By contrast, the different approaches used to tackle the issue of maps with multiple dates produced similar results. The paper discusses some methods aimed at reducing these problems and evaluating the reliability of multi-temporal databases.

  7. A facile method to compare EFTEM maps obtained from materials changing composition over time

    KAUST Repository

    Casu, Alberto

    2015-10-31

    Energy Filtered Transmission Electron Microscopy (EFTEM) is an analytical tool that has been successfully and widely employed in the last two decades for obtaining fast elemental maps in TEM mode. Several studies and efforts have been addressed to investigate limitations and advantages of such technique, as well as to improve the spatial resolution of compositional maps. Usually, EFTEM maps undergo post-acquisition treatments by changing brightness and contrast levels, either via dedicated software or via human elaboration, in order to maximize their signal-to-noise ratio and render them as visible as possible. However, elemental maps forming a single set of EFTEM images are usually subjected to independent map-by-map image treatment. This post-acquisition step becomes crucial when analyzing materials that change composition over time as a consequence of an external stimulus, because the map-by-map approach doesn\\'t take into account how the chemical features of the imaged materials actually progress, in particular when the investigated elements exhibit very low signals. In this article, we present a facile procedure applicable to whole sets of EFTEM maps acquired on a sample that is evolving over time. The main aim is to find a common method to treat the images features, in order to make them as comparable as possible without affecting the information there contained. Microsc. Res. Tech. 78:1090–1097, 2015. © 2015 Wiley Periodicals, Inc.

  8. A facile method to compare EFTEM maps obtained from materials changing composition over time

    KAUST Repository

    Casu, Alberto; Genovese, Alessandro; Di Benedetto, Cristiano; Lentijo Mozo, Sergio; Sogne, Elisa; Zuddas, Efisio; Falqui, Andrea

    2015-01-01

    Energy Filtered Transmission Electron Microscopy (EFTEM) is an analytical tool that has been successfully and widely employed in the last two decades for obtaining fast elemental maps in TEM mode. Several studies and efforts have been addressed to investigate limitations and advantages of such technique, as well as to improve the spatial resolution of compositional maps. Usually, EFTEM maps undergo post-acquisition treatments by changing brightness and contrast levels, either via dedicated software or via human elaboration, in order to maximize their signal-to-noise ratio and render them as visible as possible. However, elemental maps forming a single set of EFTEM images are usually subjected to independent map-by-map image treatment. This post-acquisition step becomes crucial when analyzing materials that change composition over time as a consequence of an external stimulus, because the map-by-map approach doesn't take into account how the chemical features of the imaged materials actually progress, in particular when the investigated elements exhibit very low signals. In this article, we present a facile procedure applicable to whole sets of EFTEM maps acquired on a sample that is evolving over time. The main aim is to find a common method to treat the images features, in order to make them as comparable as possible without affecting the information there contained. Microsc. Res. Tech. 78:1090–1097, 2015. © 2015 Wiley Periodicals, Inc.

  9. Lower Pliocene Fast and Repetitive Vegetation Changes In Southwestern Romania As A Response To Milankovitch Cycles

    Science.gov (United States)

    Popescu, S.-M.; Suc, J.-P.; Loutre, M. F.

    High-resolution pollen analyses on the lignite-clay Lupoaia section (from 4.9 to 4.3 Ma) in southwestern Romania provide an accurate record of the Lower Pliocene veg- etation changes in the Danube paleodelta environment close to the Carpathians. Many major fluctuations concern thermophilous trees vs. altitudinal trees (chiefly in agree- ment with lignite-clay alternations) and have been referred to changes in temperature. Thanks to a reliable magnetostratigraphic calibration of the section, such changes are to be linked to eccentricity cycles, that provides a more precise chronologic control to the section (Popescu, in press). In addition, regular secondary fluctuations occur which oppose swamp trees (such as most of the Taxodiaceae) to marsh herbs (such as Cyperaceae). They evoke the present-day landscape of the Mississippi delta where swamp forests (constituted by Taxodium distichum mainly) are in competition with herbaceous marshes (made of Cyperaceae such as Mariscus jamaicensis in addition to some Cyrillaceae and Myrica). The latest require significantly more water than the swamps (Roberts, 1986). These plant environments cause two kinds of lignite deposition that have been also identified in the Lupoaia section (Ticleanu and Dia- conita, 1997). According to the chronologic frame previously defined, it is possible to evidence a precession forcing for these alternations. Minima in precession probably caused increasing rainfall over the region and expansion of marshes. So, it is sug- gested that during Lower Pliocene the West Asian monsoon influenced climate of the northeastern Mediterranean region. References. Popescu, S.-M., in press. Repetitive changes in Lower Pliocene vegetation revealed by high-resolution pollen analysis: revised cyclostratigraphy of Southwest- ern Romania. Rev. Palaeobot. Palynol. Roberts, H.H., 1986. Selected depositional en- vironments of the Mississippi River deltaic plain. Geol. Sc. America Centennial Field Guide-Southeastern Section

  10. Extensive transcriptome changes during natural onset and release of vegetative bud dormancy in Populus

    Directory of Open Access Journals (Sweden)

    Glenn Thomas Howe

    2015-12-01

    Full Text Available To survive winter, many perennial plants become endodormant, a state of suspended growth maintained even in favorable growing environments. To understand vegetative bud endodormancy, we collected paradormant, endodormant, and ecodormant axillary buds from Populus trees growing under natural conditions. Of 44,441 Populus gene models analyzed using NimbleGen microarrays, we found that 1,362 (3.1% were differentially expressed among the three dormancy states, and another 429 (1.0% were differentially expressed during only one of the two dormancy transitions (false discovery rate p-value < 0.05. Of all differentially expressed genes, 69% were down-regulated from paradormancy to endodormancy, which was expected given the lower metabolic activity associated with endodormancy. Dormancy transitions were accompanied by changes in multiple genes associated with DNA methylation (via RNA-directed DNA methylation and histone modifications (via Polycomb Repressive Complex 2, confirming and extending knowledge of chromatin modification as major features of dormancy transitions. Among the chromatin-associated genes, we found two genes similar to SPT (SUPPRESSOR OF TY that were strongly up-regulated during endodormancy. Transcription factor genes and gene sets that were atypically up-regulated during