WorldWideScience

Sample records for vegetable production systems

  1. Vegetable Production System (Veggie)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Vegetable Production System (Veggie) was developed to be a simple, easily stowed, high growth volume, low resource facility capable of producing fresh vegetables...

  2. Technology versus Agro-Ecology in Designing Vegetable Production Systems in the Netherlands

    NARCIS (Netherlands)

    Haan, de J.J.; Sukkel, W.; Stilma, E.S.C.

    2010-01-01

    Current open field vegetable production systems in the Netherlands do not meet market and societal demands. These demands could not be fulfilled by adapting current production systems. Other kinds of production systems are needed and therefore two types of systems are designed by 1) a technological

  3. Heavy metals in intensive greenhouse vegetable production systems along Yellow Sea of China

    DEFF Research Database (Denmark)

    Hu, Wenyou; Huang, Biao; Tian, Kang

    2017-01-01

    Recently, greenhouse vegetable production (GVP) has grown rapidly and counts a large proportion of vegetable production in China. In this study, the accumulation, health risk and threshold values of selected heavy metals were evaluated systematically. A total of 120 paired soil and vegetable...... relatively high concentrations and transfer factors of heavy metals. The accumulation of heavy metals in soils was affected by soil pH and soil organic matter. The calculated hazard quotients (HQ) of the heavy metals by vegetable consumption decreased in the order of leafy > rootstalk > fruit vegetables...... with hazard index (HI) values of 0.61, 0.33 and 0.26, respectively. The HI values were all below 1, which indicates that there is a low risk of greenhouse vegetable consumption. Soil threshold values (STVs) of heavy metals in GVP system were established according to the health risk assessment. The relatively...

  4. Drought Dynamics and Vegetation Productivity in Different Land Management Systems of Eastern Cape, South Africa—A Remote Sensing Perspective

    Directory of Open Access Journals (Sweden)

    Valerie Graw

    2017-09-01

    Full Text Available Eastern Cape Province in South Africa has experienced extreme drought events during the last decade. In South Africa, different land management systems exist belonging to two different land tenure classes: commercial large scale farming and communal small-scale subsistence farming. Communal lands are often reported to be affected by land degradation and drought events among others considered as trigger for this process. Against this background, we analyzed vegetation response to drought in different land management and land tenure systems through assessing vegetation productivity trends and monitoring the intensity, frequency and distribution of the drought hazard in grasslands and communal and commercial croplands during drought and non-drought conditions. For the observation period 2000–2016, we used time series of 250 m Vegetation Condition Index (VCI based on the Moderate Resolution Imaging Spectroradiometer (MODIS Enhanced Vegetation Index (EVI and Climate Hazard Group InfraRed Precipitation with Station data (CHIRPS precipitation data with 5 km resolution. For the assessment of vegetation dynamics, we: (1 analyzed vegetation productivity in Eastern Cape over the last 16 years with EVI; (2 analyzed the impact of drought events on vegetation productivity in grasslands as well as commercial and communal croplands; and (3 compared precipitation-vegetation dynamics between the drought season 2015/2016 and the non-drought season 2011/2012. Change in total annual vegetation productivity could detect drought years while drought dynamics during the season could be rather monitored by the VCI. Correlation of vegetation condition and precipitation indicated areas experiencing significant vegetation productivity trends showing low and even negative correlation coefficients indicating other drivers for productivity change and drought impact besides rainfall.

  5. Energy use pattern analyses of greenhouse vegetable production

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, M.; Akinci, I. [Department of Agricultural Machinery, Faculty of Agriculture, Akdeniz University, 07070 Antalya (Turkey)

    2006-07-15

    Greenhouse farming is a growing industry in many states. It is a very expensive way to produce greenhouse crops and there are many variables to consider before the farmer decides to take this route. A good location is essential for crop planning and growing. However, current studies related to energy use patterns and resources present in vegetable production are very limited. This research attempts to investigate the energy use patterns in greenhouse vegetable production, to determine the energy output-input ratio and their relationships. Antalya province, which has greenhouse area of about 13,337ha (30.2%), is the center of greenhouse farming in Turkey. A questionnaire was distributed to 101 greenhouse farms from 11 villages in order to obtain the available data for vegetable production. Power requirement of the machines used in greenhouse operations were measured by using a computer based data acquisition system. Energy and economical variables (i.e. output-input ratio, specific energy, production cost, net return, etc.) were calculated by using the standard equations. As a result, the operational energy and energy source requirements of the greenhouse vegetable production were found between the ranges of 23,883.5-28,034.7 and 45,763.3-49,978.8MJ/1000m{sup 2}, respectively. The energy ratio of four major greenhouse vegetables-tomato, pepper, cucumber and eggplant-was 0.32, 0.19, 0.31, 0.23, respectively. The crop yields increased as a function of the total energy inputs with the best form being second-degree polynomial. The net return of the vegetable production was found in the 595.6-2775.3$/1000m{sup 2} ranges. Among the greenhouse vegetables, tomato cultivation resulted in being the most profitable. (author)

  6. Heavy metals in intensive greenhouse vegetable production systems along Yellow Sea of China: Levels, transfer and health risk.

    Science.gov (United States)

    Hu, Wenyou; Huang, Biao; Tian, Kang; Holm, Peter E; Zhang, Yanxia

    2017-01-01

    Recently, greenhouse vegetable production (GVP) has grown rapidly and counts a large proportion of vegetable production in China. In this study, the accumulation, health risk and threshold values of selected heavy metals were evaluated systematically. A total of 120 paired soil and vegetable samples were collected from three typical intensive GVP systems along the Yellow Sea of China. Mean concentrations of Cd, As, Hg, Pb, Cu and Zn in greenhouse soils were 0.21, 7.12, 0.05, 19.81, 24.95 and 94.11 mg kg -1 , respectively. Compared to rootstalk and fruit vegetables, leafy vegetables had relatively high concentrations and transfer factors of heavy metals. The accumulation of heavy metals in soils was affected by soil pH and soil organic matter. The calculated hazard quotients (HQ) of the heavy metals by vegetable consumption decreased in the order of leafy > rootstalk > fruit vegetables with hazard index (HI) values of 0.61, 0.33 and 0.26, respectively. The HI values were all below 1, which indicates that there is a low risk of greenhouse vegetable consumption. Soil threshold values (STVs) of heavy metals in GVP system were established according to the health risk assessment. The relatively lower transfer factors of rootstalk and fruit vegetables and higher STVs suggest that these types of vegetables are more suitable for cultivation in greenhouse soils. This study will provide an useful reference for controlling heavy metals and developing sustainable GVP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Accumulation status, sources and phytoavailability of metals in greenhouse vegetable production systems in Beijing, China.

    Science.gov (United States)

    Xu, Li; Lu, Anxiang; Wang, Jihua; Ma, Zhihong; Pan, Ligang; Feng, Xiaoyuan; Luan, Yunxia

    2015-12-01

    The accumulation status, sources and phytoavailability of selected metals in greenhouse vegetable production systems in peri-urban areas of Beijing were investigated. The mean concentrations of As, Cd, Cr, Hg and Pb in greenhouse soils were 8.44, 0.25, 69.0, 0.09 and 22.0 mg kg(-1), dw, respectively. According to principal component analysis, As, Cd, Cr and Hg are mainly from anthropogenic source, but Pb is likely from natural source. Metal concentrations in all vegetable samples were decreased in the order of Cr>As>Pb>Cd>Hg. Compared with root and fruit vegetables, leaf vegetables had relatively high concentrations and transfer factors of heavy metals, except for Cd. By including soil pH, OM and greenhouse soil metals, 10 empirical models were derived using stepwise multiple linear regression analysis to predict heavy metal concentrations in the edible parts of different vegetables. Among the different vegetable groups, the highest intakes of metals occurred through consumption of leaf vegetables for the two age groups, except for Cd. The HI value of the studied metals were all below 1, indicating that consumption of vegetables grown in greenhouse soils was of low risk to consumers in our study area. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film

    International Nuclear Information System (INIS)

    Wang, Jun; Luo, Yongming; Teng, Ying; Ma, Wenting; Christie, Peter; Li, Zhengao

    2013-01-01

    The concentrations of six priority phthalic acid esters (PAEs) in intensively managed suburban vegetable soils in Nanjing, east China, were analyzed using gas chromatography–mass spectrometry (GC–MS). The total PAE concentrations in the soils ranged widely from 0.15 to 9.68 mg kg −1 with a median value of 1.70 mg kg −1 , and di-n-butyl phthalate (DnBP), bis-(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP) were the most abundant phthalate esters. Soil PAE concentrations depended on the mode of use of plastic film in which PAEs were incorporated as plasticizing agents and both the plastic film and poultry manure appeared to be important sources of soil PAEs. Vegetables in rotation with flooded rice led to lower concentrations of PAEs in soil. The results indicate that agricultural plastic film can be an important source of soil PAE contamination and further research is required to fully elucidate the mechanisms of PAE contamination of intensive agricultural soils with different use modes of use of plastic film. -- Highlights: •Phthalate esters in soils from suburban intensive vegetable production systems were investigated. •Phthalate levels and risks of the vegetable soils with different plastic film use modes were examined. •Sources of phthalate esters in vegetable production soils were analyzed. -- PAE contamination of intensively managed vegetable soils varied widely depending on the mode of use of plastic film in different production systems

  9. NEW GREENHOUSE TECHNOLOGIES FOR VEGETABLE PRODUCTION

    Directory of Open Access Journals (Sweden)

    S. M. Sirota

    2016-01-01

    Full Text Available First decade of XXI century is characterized by significant augmentation in vegetable world’s production. Average annual vegetable production has been 346 million tons, and it has exceeded the average annual potato production (318 million tons. It has occurred due to the use of up-to-date technologies for vegetable production and, particularly, in greenhouses. In Russian Federation, the total production of vegetables was 5 275.6 thousand tons in 2015 that was 13.3% more than in 2014. But the total vegetable production in greenhouses was only 722.8 thousand tons, that was 0.7% less than in 2014 (728.1 thousand tons. It can be explained that the old technologies have been used for many greenhouses around Russia. Up-to-date technologies for greenhouses are described in the article. Small-volume hydroponics. Plants are grown in mineral wadding, packed up in the special chutes. Mineral nutrition and water are supplied through special pipe with many branch pipes toward each plant. Advantage: pH and nutrition are maintained, consumption of water and mineral nutrition are optimized, and that improves plants grow control. Expenditures of labor decreased, quality of fruit became better and the yield increased significantly by 45-50 kg/m2 comparing with growing on the soil (25-30 kg/m2. Hydroponics with flowing water (salad production lines. Conveyor for salad and vegetable growing on horizontal moving chutes with flowing water and nutrition was developed. Advantage: high level of automation and mechanization of all processes of growing increased the effectiveness of the use of greenhouse areas (we can place 30% plants more at the same area. Seedling production lines. Production lines for seedlings enable to grow vegetables and leafy vegetables on stationary benches, being furnished with periodical nutrition and water supply at times. Advantage: 700 seedlings additionally on each m2 a year. Future technologies are

  10. The environmental impact of nitrogen in field vegetable production

    NARCIS (Netherlands)

    Neeteson, J.J.; Carton, O.T.

    2001-01-01

    Many intensive systems of field vegetable production are not sustainable because they lose excessive amounts of nitrogen (N) to the environment. Processes in the N cycle of agricultural systems include assimilation, mineralization/immobilization, nitrification, denitrification, ammonia

  11. Farmers' Perception towards Organic-based Vegetable Produc-tion ...

    African Journals Online (AJOL)

    It is well established that organic farming is a production system that sustain the health of the soils, ecosystems and people. This study assessed the small-scale farmers' perception towards organic based vegetable production in Ilaro agricultural zone of Ogun state, Nigeria. A multi-stage sampling procedure was used in the ...

  12. Combustion of animal or vegetable based liquid waste products

    International Nuclear Information System (INIS)

    Wikman, Karin; Berg, Magnus

    2002-04-01

    In this project experiences from combustion of animal and vegetable based liquid waste products have been compiled. Legal aspects have also been taken into consideration and the potential for this type of fuel on the Swedish energy market has been evaluated. Today the supply of animal and vegetable based liquid waste products for energy production in Sweden is limited. The total production of animal based liquid fat is about 10,000 tonnes annually. The animal based liquid waste products origin mainly from the manufacturing of meat and bone meal. Since meat and bone meal has been banned from use in animal feeds it is possible that the amount of animal based liquid fat will decrease. The vegetable based liquid waste products that are produced in the processing of vegetable fats are today used mainly for internal energy production. This result in limited availability on the commercial market. The potential for import of animal and vegetable based liquid waste products is estimated to be relatively large since the production of this type of waste products is larger in many other countries compared to Sweden. Vegetable oils that are used as food or raw material in industries could also be imported for combustion, but this is not reasonable today since the energy prices are relatively low. Restrictions allow import of SRM exclusively from Denmark. This is today the only limit for increased imports of animal based liquid fat. The restrictions for handle and combustion of animal and vegetable based liquid waste products are partly unclear since this is covered in several regulations that are not easy to interpret. The new directive for combustion of waste (2000/76/EG) is valid for animal based waste products but not for cadaver or vegetable based waste products from provisions industries. This study has shown that more than 27,400 tonnes of animal based liquid waste products and about 6,000 tonnes of vegetable based liquid waste products were used for combustion in Sweden

  13. Seasonally asymmetric enhancement of northern vegetation productivity

    Science.gov (United States)

    Park, T.; Myneni, R.

    2017-12-01

    Multiple evidences of widespread greening and increasing terrestrial carbon uptake have been documented. In particular, enhanced gross productivity of northern vegetation has been a critical role leading to observed carbon uptake trend. However, seasonal photosynthetic activity and its contribution to observed annual carbon uptake trend and interannual variability are not well understood. Here, we introduce a multiple-source of datasets including ground, atmospheric and satellite observations, and multiple process-based global vegetation models to understand how seasonal variation of land surface vegetation controls a large-scale carbon exchange. Our analysis clearly shows a seasonally asymmetric enhancement of northern vegetation productivity in growing season during last decades. Particularly, increasing gross productivity in late spring and early summer is obvious and dominant driver explaining observed trend and variability. We observe more asymmetric productivity enhancement in warmer region and this spatially varying asymmetricity in northern vegetation are likely explained by canopy development rate, thermal and light availability. These results imply that continued warming may facilitate amplifying asymmetric vegetation activity and cause these trends to become more pervasive, in turn warming induced regime shift in northern land.

  14. Effective mitigation of nitrate leaching and nitrous oxide emissions in intensive vegetable production systems using a nitrification inhibitor, dicyandiamide

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Min; Sun, Xuecheng; Hu, Chengxiao; Tan, Qiling; Zhao, Changsheng [Huazhong Agricultural Univ., Wuhan (China). Key Lab. of Subtropical Agricultural Resources and Environment; Di, Hong J. [Lincoln Univ., Christchurch (New Zealand). Center for Soil and Environment Research

    2011-07-15

    Vegetable production is one of the most intensive agricultural systems with high rates of nitrogen (N) fertilizer use and irrigation, conditions conducive for nitrate (NO{sub 3}{sup -}) leaching, and nitrous oxide (N{sub 2}O) emissions. The objective of this study was to determine the effectiveness of a nitrification inhibitor, dicyandiamide (DCD), in decreasing NO{sub 3}{sup -} leaching and N{sub 2}O emissions in vegetable production systems. Twenty-four undisturbed soil monolith lysimeters (610 mm in diameter; 700 mm in depth; surface area, 0.29 m{sup 2}) with two different soils, Huangzongrang (alfisol) and Chaotu (fluvisols), were collected and installed in a field lysimeter facility in Central China under irrigated vegetable production conditions. Urea fertilizer was applied at 650 kg N ha{sup -1}, and DCD was applied at 10 kg ha{sup -1} to the lysimeters planted with three kinds of vegetables (capsicum, Capsicum annuum L.; amaranth, Amaranthus mangostanus L.; radish, Raphanus sativus L.). The results showed that DCD reduced NO3- leaching by 58.5% and 36.2% and N{sub 2}O emissions factor by 83.8% and 72.7% in the two soils. The average NO{sub 3}{sup -}-N concentration in the drainage water was decreased from 4.9 mg NL{sup -1} to 2.3 mg NL{sup -1} and from 4.4 mg NL{sup -1} to 3.3 mg NL{sup -1}, in the Huangzongrang and Chaotu soils, respectively. In addition to the environmental benefits, the use of DCD also increased the yields of capsicum and radish in alfisol soil significantly (P < 0.01); only the amaranth yield in fluvisol soil was declined (P < 0.01), and the other vegetables yields were not affected. Total N concentrations of the three vegetables were increased significantly (P < 0.01) with the application of DCD with urea compared with urea alone. These results showed that the nitrification inhibitor DCD has the potential to significantly reduce NO{sub 3}{sup -} leaching and N{sub 2}O emissions and to make vegetable farming more environmentally

  15. Designing an agricultural vegetative waste-management system under uncertain prices of treatment-technology output products.

    Science.gov (United States)

    Broitman, D; Raviv, O; Ayalon, O; Kan, I

    2018-05-01

    Setting up a sustainable agricultural vegetative waste-management system is a challenging investment task, particularly when markets for output products of waste-treatment technologies are not well established. We conduct an economic analysis of possible investments in treatment technologies of agricultural vegetative waste, while accounting for fluctuating output prices. Under a risk-neutral approach, we find the range of output-product prices within which each considered technology becomes most profitable, using average final prices as the exclusive factor. Under a risk-averse perspective, we rank the treatment technologies based on their computed certainty-equivalent profits as functions of the coefficient of variation of the technologies' output prices. We find the ranking of treatment technologies based on average prices to be robust to output-price fluctuations provided that the coefficient of variation of the output prices is below about 0.4, that is, approximately twice as high as that of well-established recycled-material markets such as glass, paper and plastic. We discuss some policy implications that arise from our analysis regarding vegetative waste management and its associated risks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Developing a water and nitrogen management model for greenhouse vegetable production in China

    NARCIS (Netherlands)

    Liang, Hao; Hu, Kelin; Batchelor, William D.; Qin, Wei; Li, Baoguo

    2018-01-01

    Excessive water and fertilizer inputs have led to a series of environmental problems in vegetable production areas in China. Identifying the fates of water and nutrients is crucial to develop best management strategies in intensive vegetable production systems. The objectives of this study were to

  17. A bioenergy feedstock/vegetable double-cropping system

    Science.gov (United States)

    Certain warm-season vegetable crops may lend themselves to bioenergy double-cropping systems, which involve growing a winter annual bioenergy feedstock crop followed by a summer annual crop. The objective of the study was to compare crop productivity and weed communities in different pumpkin product...

  18. Assessing the risks of trace elements in environmental materials under selected greenhouse vegetable production systems of China

    International Nuclear Information System (INIS)

    Chen, Yong; Huang, Biao; Hu, Wenyou; Weindorf, David C.; Liu, Xiaoxiao; Niedermann, Silvana

    2014-01-01

    The risk assessment of trace elements of different environmental media in conventional and organic greenhouse vegetable production systems (CGVPS and OGVPS) can reveal the influence of different farming philosophy on the trace element accumulations and their effects on human health. These provide important basic data for the environmental protection and human health. This paper presents trace element accumulation characteristics of different land uses; reveals the difference of soil trace element accumulation both with and without consideration of background levels; compares the trace element uptake by main vegetables; and assesses the trace element risks of soils, vegetables, waters and agricultural inputs, using two selected greenhouse vegetable systems in Nanjing, China as examples. Results showed that greenhouse vegetable fields contained significant accumulations of Zn in CGVPS relative to rice–wheat rotation fields, open vegetable fields, and geochemical background levels, and this was the case for organic matter in OGVPS. The comparative analysis of the soil medium in two systems with consideration of geochemical background levels and evaluation of the geo-accumulation pollution index achieved a more reasonable comparison and accurate assessment relative to the direct comparison analysis and the evaluation of the Nemerow pollution index, respectively. According to the Chinese food safety standards and the value of the target hazard quotient or hazard index, trace element contents of vegetables were safe for local residents in both systems. However, the spatial distribution of the estimated hazard index for producers still presented certain specific hotspots which may cause potential risk for human health in CGVPS. The water was mainly influenced by nitrogen, especially for CGVPS, while the potential risk of Cd and Cu pollution came from sediments in OGVPS. The main inputs for trace elements were fertilizers which were relatively safe based on relevant

  19. Assessing the risks of trace elements in environmental materials under selected greenhouse vegetable production systems of China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yong [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Huang, Biao, E-mail: bhuang@issas.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Hu, Wenyou [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Weindorf, David C.; Liu, Xiaoxiao [Department of Plant and Soil Science, Texas Tech University, Lubbock, TX (United States); Niedermann, Silvana [Department of Environmental Systems Science, Institute of Agricultural Science, ETH Zurich, 8092 Zurich (Switzerland)

    2014-02-01

    The risk assessment of trace elements of different environmental media in conventional and organic greenhouse vegetable production systems (CGVPS and OGVPS) can reveal the influence of different farming philosophy on the trace element accumulations and their effects on human health. These provide important basic data for the environmental protection and human health. This paper presents trace element accumulation characteristics of different land uses; reveals the difference of soil trace element accumulation both with and without consideration of background levels; compares the trace element uptake by main vegetables; and assesses the trace element risks of soils, vegetables, waters and agricultural inputs, using two selected greenhouse vegetable systems in Nanjing, China as examples. Results showed that greenhouse vegetable fields contained significant accumulations of Zn in CGVPS relative to rice–wheat rotation fields, open vegetable fields, and geochemical background levels, and this was the case for organic matter in OGVPS. The comparative analysis of the soil medium in two systems with consideration of geochemical background levels and evaluation of the geo-accumulation pollution index achieved a more reasonable comparison and accurate assessment relative to the direct comparison analysis and the evaluation of the Nemerow pollution index, respectively. According to the Chinese food safety standards and the value of the target hazard quotient or hazard index, trace element contents of vegetables were safe for local residents in both systems. However, the spatial distribution of the estimated hazard index for producers still presented certain specific hotspots which may cause potential risk for human health in CGVPS. The water was mainly influenced by nitrogen, especially for CGVPS, while the potential risk of Cd and Cu pollution came from sediments in OGVPS. The main inputs for trace elements were fertilizers which were relatively safe based on relevant

  20. Evaluation of Production and Carbon Benefit of Different Vegetables

    Directory of Open Access Journals (Sweden)

    HU Liang

    2016-01-01

    Full Text Available This study analyzed environmental and economic benefits of 8 types of vegetables in 4 different farms over 3 years. The specific results were as follows:(1The input-output ratio and carbon footprint of organic production mode was 18.5% and 87.4% of that of pollution-free mode, respectively; (2Fertilizer and power consumption was the main source of carbon emissions, accounting for 58.76% and 16.67% of total carbon emissions, respectively; (3There were positive correlations between N fertilizer and both carbon emissions and carbon footprint. In other words, higher use of N fertilizer resulted in higher carbon emissions and carbon footprint; (4 When organic fertilizers use reached 122 352 kg·hm-2, the crop production could reach the maximum under organic mode. Under the mode of pollution-free production, when agricultural chemicals input reached 20 103 yuan·hm-2, leafy vegetable production could reach the maximum. Therefore, to increase production and reduce carbon emissions in the process of vegetable production, the main approach was to use organic mode, increase the quantity of organic fertilizer, instead of the use of inorganic N fertilizer and other agricultural chemicals and establish water-saving irrigation system for electricity efficiency.

  1. Integrated emergy, energy and economic evaluation of rice and vegetable production systems in alluvial paddy fields: implications for agricultural policy in China.

    Science.gov (United States)

    Lu, Hongfang; Bai, Yu; Ren, Hai; Campbell, Daniel E

    2010-12-01

    China is the largest rice producing and consuming country in the world, but rice production has given way to the production of vegetables during the past twenty years. The government has been trying to stop this land-use conversion and increase the area in rice-vegetable rotation. Important questions that must be answered to determine what strategy is best for society are, "What is the reason behind this conversion?"; "Which system is more productive and which is more sustainable?"; and "How can economic policy be used to adjust the pattern of farmland use to attain sustainable development?" To answer these questions, a combined evaluation of these agricultural production systems was done using emergy, energy and economic methods. An economic analysis clearly showed that the reason for this conversion was simply that the economic output/input ratio and the benefit density of the vegetable production system were greater than that of rice. However, both energy and emergy evaluations showed that long-term rice was the best choice for sustainable development, followed by rotation systems. The current price of rice is lower than the em-value of rice produced from the long-term rice system, but higher than that of rice produced from the rotation system. Scenario analysis showed that if the government increases the price of rice to the em-value of rice produced from the long-term rice system, US$0.4/kg, and takes the value of soil organic matter into account, the economic output/input ratios of both the rice and rotation systems will be higher than that of the vegetable system. The three methods, energy, emergy and economics, are different but complementary, each revealing a different aspect of the same system. Their combined use shows not only the reasons behind a system's current state or condition, but also the way to adjust these systems to move toward more sustainable states. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Technical efficiency of irrigated vegetable production among ...

    African Journals Online (AJOL)

    This study was carried out to analyse the technical efficiency of irrigated vegetable production among smallholder farmers in the guinea savannah, Nigeria, and determine the cost and returns on irrigated vegetable production. Two-stage sampling technique was used, purposive selection of two states and three Local ...

  3. Accumulation and health risk of heavy metals in vegetables from harmless and organic vegetable production systems of China.

    Science.gov (United States)

    Chen, Yong; Hu, Wenyou; Huang, Biao; Weindorf, David C; Rajan, Nithya; Liu, Xiaoxiao; Niedermann, Silvana

    2013-12-01

    Heavy metal accumulation in vegetables is a growing concern for public health. Limited studies have elucidated the heavy metal accumulation characteristics and health risk of different vegetables produced in different facilities such as greenhouses and open-air fields and under different management modes such as harmless and organic. Given the concern over the aforementioned factors related to heavy metal accumulation, this study selected four typical greenhouse vegetable production bases, short-term harmless greenhouse vegetable base (SHGVB), middle-term harmless greenhouse vegetable base (MHGVB), long-term harmless greenhouse vegetable base (LHGVB), and organic greenhouse vegetable base (OGVB), in Nanjing City, China to study heavy metal accumulation in different vegetables and their associated health risks. Results showed that soils and vegetables from SHGVB and OGVB apparently accumulated fewer certain heavy metals than those from other bases, probably due to fewer planting years and special management, respectively. Greenhouse conditions significantly increased certain soil heavy metal concentrations relative to open-air conditions. However, greenhouse conditions did not significantly increase concentrations of As, Cd, Cu, Hg, and Zn in leaf vegetables. In fact, under greenhouse conditions, Pb accumulation was effectively reduced. The main source of soil heavy metals was the application of large amounts of low-grade fertilizer. There was larger health risk for producers' children to consume vegetables from the three harmless vegetable bases than those of residents' children. The hazard index (HI) over a large area exceeded 1 for these two kinds of children in the MHGVB and LHGVB. There was also a slight risk in the SHGVB for producers' children solely. However, the HI of the whole area of the OGVB for two kinds of children was below 1, suggesting low risk of heavy metal exposure through the food chain. Notably, the contribution rate of Cu and Zn to the HI were

  4. Vegetative and productive aspects of organically grown coffee cultivars under shaded and unshaded systems

    Directory of Open Access Journals (Sweden)

    Marta dos Santos Freire Ricci

    2011-08-01

    Full Text Available Although Coffea arabica species has its origin in the African understories, there is great resistance on the part of the Brazilian producers for growing this species under agroforestry systems as they fear that shading reduces production. This study aimed at evaluating some vegetative traits and the productivity of organically grown coffee (Coffea arabica L. cultivars under shaded and unshaded systems. Twelve treatments consisting of two cultivation systems (shaded and unshaded and six coffee cultivars were arranged in randomized blocks with four replicates, in a split-plot scheme. Shading was provided by banana (Musa sp. and coral bean plants (Erythrinaverna. Shading delayed fruit maturation. Late maturation cultivars, such as the Icatu and the Obatã, matured early in both cultivation systems, while medium and early maturation cultivars presented late maturation. Cultivation in the shaded system increased the leaf area and the number of lower branches, decreased the number of productive nodes per branch, and increased the distance between the nodes and the number of leaves present in the branches. Cultivation in the unshaded system presented greater number of plants with branch blight in relation to plants grown in the shade. The productivity of the cultivars was not different, at 30.0 processed bags per hectare in the shaded system, and 25.8 processed bags per hectare in the unshaded system. The most productive cultivars in the shaded system were the Tupi, the Obatã, and the Catuaí, while no differences between cultivars were obtained in the unshaded system.

  5. Marketing system analysis of vegetables and fruits in Amhara ...

    African Journals Online (AJOL)

    This study attempted to analyze the different aspects of marketing system of vegetable and fruit in Raya Kobo and Harbu woredas, Amhara regional state using different indicators. Probit estimation for determinant of participation probability in vegetable and fruit production and OLS estimation technique were also applied for ...

  6. Implementation of system dynamic simulation method to optimize profit in supply chain network of vegetable product

    Science.gov (United States)

    Tama, I. P.; Akbar, Z.; Eunike, A.

    2018-04-01

    Vegetables are categorized as a perishable product, which is a product with short lifespan thus requires proper handling and planning to reduce losses caused by the short lifespan. In order to reduce the losses, coordination among the players in the supply chain is required. On the other hand, the decision in the supply chain of vegetables and other farming products in the traditional market of developing country is independent among the players. This research is conducted by using System Dynamic Simulation method to develop model and scenario by coordinating the supply quantity amongst players in the supply chain. The scenarios are developed based on newsboy inventory model. This study aims to compare scenarios combining tiers involved in coordination program. The result shows that coordination in supply chain increases total supply chain profit, although there will always be players who experienced decrements in profit. The scenario of coordination among the farmer, the distributor, and the wholesaler resulted in the highest increase in total supply chain profit compared to other coordination scenarios, with an increased value of 10.49%.

  7. Productive vegetation: relationships between net primary productivity, vegetation types and climate change in the Wet Tropics bioregion

    International Nuclear Information System (INIS)

    Ramirez, Vanessa Valdez; Williams, Stephen E.; VanDerWal, Jeremy

    2007-01-01

    Full text: Full text: There is now ample evidence demonstrating the impacts of climate change on biodiversity and human society (Walther ef a/. 2002). Numerous studies have shown climate change is one of the most significant threats to tropical forests, such as the Wet Tropics Heritage Area, due to their high biodiversity and endemism (Pounds ef al. 1999; Hughes 2000; Parmesan and Yohe 2003). Williams ef al. (2003) suggested that small shifts in net primary productivity (NPP) as a result of climate change could lead to potentially massive follow-on effects for the extremely diverse and vulnerable rainforest flora and fauna. It is therefore crucial to explore the relationships between NPP and local biodiversity, especially to create models for different climate change scenarios. Nevertheless, NPP in the Wet Tropics has yet to be estimated. This is the first study to provide a general NPP estimate for the Wet Tropics bioregion using climate surrogates (Schuur 2003). This technique estimates NPP in an accurate, repeatable, and cost-effective way. NPP values were linked to vegetation types and examined under various climatic and environmental conditions. Results show a significant difference in productivity according to vegetation types and climatic variables, with temperature and rainfall seasonality as the most important determining variables. Additionally, lowland and upland vegetations showed a significant difference in productivity patterns throughout the year. Vegetation types located above 1000 metres in altitude had the lowest values of mean annual productivity due to their high rainfall and low temperatures; vegetation types located below 600 metres showed increased productivity values during the wet season (December-March). Net primary productivity will certainly be impacted by changes in temperature and rainfall, due to climate change. Although an increase in NPP values can be predicted for upland areas, the more widely distributed lowlands will drastically

  8. Field vegetable production in the Lake Zone of Tanzania

    NARCIS (Netherlands)

    Everaarts, A.P.; Putter, de H.; Maerere, A.P.; Amon, W.

    2014-01-01

    In November 2012 and in August 2014 surveys were carried out in field vegetable producing areas in the Lake Zone of Tanzania. The aim of the surveys was to learn the conditions for field vegetable production and marketing in these areas. Recommendations for the development of vegetable production

  9. Valuation of vegetable crops produced in the UVI Commercial Aquaponic System

    Directory of Open Access Journals (Sweden)

    Donald S. Bailey

    2017-08-01

    Full Text Available The UVI Commercial Aquaponic System is designed to produce fish and vegetables in a recirculating aquaculture system. The integration of these systems intensifies production in a small land area, conserves water, reduces waste discharged into the environment, and recovers nutrients from fish production into valuable vegetable crops. A standard protocol has been developed for the production of tilapia yielding 5 MT per annum. The production of many vegetable crops has also been studied but, because of specific growth patterns and differences of marketable product, no single protocol can be promoted. Each crop yields different value per unit area and this must be considered when selecting varieties to produce to provide the highest returns to the farmer. Variables influencing the value of a crop are density (plants/m2, yield (unit or kg, production period (weeks and unit value ($. Combining these variables to one unit, $/m2/week, provides a common point for comparison among crops. Farmers can focus production efforts on the most valuable crops or continue to produce a variety of crops meeting market demand with the knowledge that each does not contribute equally to profitability.

  10. Ultrasonic characterization of vegetable oil product

    International Nuclear Information System (INIS)

    Sidek Hj Abd Aziz; Chow Sai Pew; Abdul Halim Shaari; Nor Azizah Shaari

    1992-01-01

    The ultrasonic wave velocity and attenuation of a number vegetable oil products were measured using an ultrasonic pulse echo overlap technique from room temperature up to 90 0 C. Among the liquid samples studied were refined bleach deodorized (RED) palm oil, palm olein, coconut oil, corn oil and soya bean oil. The velocity of sound in vegetable oil products varies from about 1200 to 200 ms-1 and decrease linearly as the temperature increases. The ultrasonic properties of the oil are much dependent on their viscosity, density, relaxation effect and vibrational anharmonicity

  11. Phosphorus in China's intensive vegetable production systems: over-fertilization,soil enrichment, and enviromental implications

    Science.gov (United States)

    China’s vegetable production has experienced a rapid growth in recent years. Total production amounted to 522.7 million Mg in 2009, which was more than nine times that in 1980 and represented >50% of the world production.Meanwhile, excessive use of animal manure and chemical fertilizers in vegetab...

  12. The technology of fish-vegetable feed production

    Directory of Open Access Journals (Sweden)

    Mukatova M. D.

    2016-09-01

    Full Text Available Perspective direction of the Volga-Caspian basin fisheries is increasing the productivity of aquaculture production which requires the availability of sufficient quantities of feed. The cutting waste of carp and crucian carp, crayfish processing (cephalothorax, wheat bran, soy isolate, freshwater plants – pondweed perfoliate, fish-vegetable ration, produced feeding staffs have been investigated. In researching samples of manufactured pelleted feeds the standard methods adopted in the animal feed industry have been used. The number of nitrogen-free extractives and energy value has been determined by calculation. The composition of fish-vegetable ration has been worked out. Some manufacturing inspection of fish-vegetable feed technology using proofing process has been carried out. The possibility of manufacturing on the basis of crushed fish waste of the company LLC "VES" and dry ingredients of fish-vegetable feed has been determined; the output of feed at water content of not more than 10 % is 43 % of feed mix based on the mass of directed waste equal to 84 %. The pilot batch of dry fish-vegetable feed has been investigated to establish quality indicators. It has been determined that fish-vegetable feed meets the requirements of GOST 10385–2014 "Combined feeding staffs for fishes. General specifications" as for main quality indicators and refers to economic grower for catfish and carp fish weighing more than 50 g. This reveals good palatability of the experimental batch of floating feed by carp fish species and African catfish. Thus, fish-vegetable feed manufacturing technology can be implemented in the production for processing secondary raw materials: waste from butchering fish by grinding, cooking, mixing with selected vegetable fillings which is waste of flour or grain processing industries and freshwater plants mowed annually during the reclamation works on the Volga delta.

  13. Nitrous oxide emissions in Chinese vegetable systems: A meta-analysis.

    Science.gov (United States)

    Wang, Xiaozhong; Zou, Chunqin; Gao, Xiaopeng; Guan, Xilin; Zhang, Wushuai; Zhang, Yueqiang; Shi, Xiaojun; Chen, Xinping

    2018-04-16

    China accounts for more than half of the world's vegetable production, and identifying the contribution of vegetable production to nitrous oxide (N 2 O) emissions in China is therefore important. We performed a meta-analysis that included 153 field measurements of N 2 O emissions from 21 field studies in China. Our goal was to quantify N 2 O emissions and fertilizer nitrogen (N) based-emission factors (EFs) in Chinese vegetable systems and to clarify the effects of rates and types of N fertilizer in both open-field and greenhouse systems. The results indicated that the intensive vegetable systems in China had an average N 2 O emission of 3.91 kg N 2 O-N ha -1 and an EF of 0.69%. Although the EF was lower than the IPCC default value of 1.0%, the average N 2 O emission was generally greater than in other cropping systems due to greater input of N fertilizers. The EFs were similar in greenhouse vs. open-field systems but N 2 O emissions were about 1.4 times greater in greenhouses. The EFs were not affected by N rate, but N 2 O emissions for both open-field and greenhouse systems increased with N rate. The total and fertilizer-induced N 2 O emissions, as well as EFs, were unaffected by the type of fertilizers in greenhouse system under same N rates. In addition to providing basic information about N 2 O emissions from Chinese vegetable systems, the results suggest that N 2 O emissions could be reduced without reducing yields by treating vegetable systems in China with a combination of synthetic N fertilizer and manure at optimized economic rates. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Use of Plastic Mulch for Vegetable Production

    OpenAIRE

    Maughan, Tiffany; Drost, Dan

    2016-01-01

    Plastic mulches are used commercially for both vegetables and small fruit crops. Vegetable crops well suited for production with plastic mulch are typically high value row crops. This fact sheet describes the advantages, disadvantages, installation, and planting considerations. It includes sources for plastic and equipment.

  15. STOVE: Seed treatments for organic vegetable production

    NARCIS (Netherlands)

    Schmitt, A.; Jahn, M.; Kromphardt, C.; Krauthausen, H.J.; Roberts, S.J.; Wright, S.A.I.; Amein, T.; Forsberg, G.; Tinivella, F.; Gullino, M.L.; Wikström, M.; Wolf, van der J.M.; Groot, S.P.C.; Werner, S.; Koch, E.

    2008-01-01

    The aim of the EU-financed research project „STOVE“ (Seed Treatments for Organic Vegetable Production) is to evaluate different methods potentially suited for seed treatment of vegetables in organic farming regarding their efficacy, to optimise these methods, and where feasible to combine them with

  16. Peri-urban Dry Season Vegetable Production in Ibadan, Nigeria

    Directory of Open Access Journals (Sweden)

    Kintomo, AA.

    1997-01-01

    Full Text Available Peri-urban dry season vegetable production in Ibadan is increasingly becoming important, due to its relatively recent importance as a means of producing food in the city. Information on : (1 management practices ; (2 cropping systems ; and (3 economies of production, was hardly available. A diagnostic study organised in the dry season of 1994/95 addresses these issues. Its results indicate that the major crops in the system are Corchorus, Amaranthus and Celosia and are grown in intercropping systems. Farmers in the systems were constrained by poor drainage systems, weeds, dearth of improved seeds and marketing, inefficient input delivery system, high cost of input, pests and diseases and unavailability of labour at critical times. However, net benefits amounts to approximately N235650/ha/season ($ 2772. Significant and sustainable increases in productivity of the system could be achieved with the use of integrated water, crop, soil and pest management systems together with efficient input delivery systems.

  17. Using MODIS NDVI products for vegetation state monitoring on the oil production territory in Western Siberia

    OpenAIRE

    Kovalev, Anton; Tokareva, Olga Sergeevna

    2016-01-01

    Article describes the results of using remote sensing data for vegetation state monitoring on the oil field territories in Western Siberia. We used MODIS data product providing the normalized difference vegetation index (NDVI) values. Average NDVI values of each studied area were calculated for the period from 2010 to 2015 with one year interval for June, July and August. Analysis was carried out via an open tool of geographic information system QGIS used for spatial analysis and calculation ...

  18. Wastewater Reuse: An Economic Perspective to Identify Suitable Areas for Poplar Vegetation Filter Systems for Energy Production

    Directory of Open Access Journals (Sweden)

    Mauro Viccaro

    2017-11-01

    Full Text Available The increasing interest towards climate change, water and energy saving, and soil protection has led the research community to consider non-conventional water as a sustainable source for irrigation of energy crops. Vegetation filter systems are considered a reliable technique for sustainable biomass cultivation, enabling the use of reclaimed wastewater as water and nutrients sources during irrigation periods. In this study, a geographic information system (GIS-based spatial model was developed to identify areas potentially suitable for creating vegetation filter systems with poplars to size the plants of energy production. An economic assessment allowed us to identify the cost-effectiveness areas for biomass production that can be fertigated by reclaimed wastewater. Considering the Basilicata region as the test region, a surface area of 258,512 ha was investigated, identifying 73,331 ha of SRF soils sited downstream of 45 wastewater treatment plants (WWTPs. However, considering only areas that have positive net present value and are economically attractive, results indicate 1606 ha of SRF falling within the areas of influence of 39 WWTPs. The results show that the sector of dedicated crops, adjacent and linked with WWTPs, expresses a total capacity of 50.56 MW for thermal, 8.25 MW for electricity, and 31 MW for cogeneration (25.07 MWt and 5.94 MWe plants.

  19. Plant Growth Optimization by Vegetable Production System in HI-SEAS Analog Habitat

    Science.gov (United States)

    Ehrlich, Joshua W.; Massa, Gioia D.; Wheeler, Raymond M.; Gill, Tracy R.; Quincy, Charles D.; Roberson, Luke B.; Binsted, Kim; Morrow, Robert C.

    2017-01-01

    The Vegetable Production System (Veggie) is a scientific payload designed to support plant growth for food production under microgravity conditions. The configuration of Veggie consists of an LED lighting system with modular rooting pillows designed to contain substrate media and time-release fertilizer. The pillows were designed to be watered passively using capillary principles but have typically been watered manually by the astronauts in low-Earth orbit (LEO). The design of Veggie allows cabin air to be drawn through the plant enclosure for thermal and humidity control and for supplying CO2 to the plants. Since its delivery to the International Space Station (ISS) in 2014, Veggie has undergone several experimental trials by various crews. Ground unit testing of Veggie was conducted during an 8-month Mars analog study in a semi-contained environment of a simulated habitat located at approximately 8,200 feet (2,500 m) elevation on the Mauna Loa volcano on the Island of Hawaii. The Hawaii Space Exploration Analog and Simulation (HI-SEAS) offered conditions (habitat, mission, communications, etc.) intended to simulate a planetary exploration mission. This paper provides data and analyses to show the prospect for optimized use of the current Veggie design for human habitats. Lessons learned during the study may provide opportunities for updating the system design and operational parameters for current Veggie experiments being conducted onboard the ISS and for payloads on future deep space missions.

  20. Improving technology universal vegetable semi-finished products for the enterprises of food industry

    Directory of Open Access Journals (Sweden)

    M. N. Kutkina

    2016-01-01

    Full Text Available Healthy nutrition is one of the main factors that becomes stronger the human immune system, especially in the big cities, forms intellectual abilities of people, increases the qualitative characteristics of living standards etc. The most important components of a healthy nutrition are vegetables and products from them. Rather high moisture content of many vegetables, e.g., fruit, partially fills the needs of the human organism in water, lowers the energy value of the diet, enhances the motility of the gastrointestinal tract. In this regard, the improvement of technology universal product from regional vegetables available has got importance, prolonged pronounced social effect and contributes to health improvement. Among vegetables the zucchini include diet properties, but the use of them is accompanied by certain difficulties associated with seasonal logistics and the limited range of products from them. In this work, there were studied the varietal characteristics of the zucchini, zoned in the North-West region, in terms of their technological properties, morphological characteristics and biochemical composition of fruit during ripening. Were investigated the optimal ways of canning zucchini by drying with freeze-drying and infrared heating that allows you to provide catering universal semi-finished product during the whole year, not only in areas of cultivation, but also in areas outside of growing vegetables. There was discovered the effect of anomalous dehydration of fruit vegetables in the result of the study , which helped to explain the increased, in comparison with other types of vegetables, losses during heat treatment and to justify their methods and technological parameters of drying. It was found that one of the reasons for the reduction of mechanical strength parenchymal tissue of fruit vegetables, is the destruction of cell walls by increasing the pressure inside the air inclusions, in contrast to some other types of fruit

  1. The MODIS Vegetation Canopy Water Content product

    Science.gov (United States)

    Ustin, S. L.; Riano, D.; Trombetti, M.

    2008-12-01

    Vegetation water stress drives wildfire behavior and risk, having important implications for biogeochemical cycling in natural ecosystems, agriculture, and forestry. Water stress limits plant transpiration and carbon gain. The regulation of photosynthesis creates close linkages between the carbon, water, and energy cycles and through metabolism to the nitrogen cycle. We generated systematic weekly CWC estimated for the USA from 2000-2006. MODIS measures the sunlit reflectance of the vegetation in the visible, near-infrared, and shortwave infrared. Radiative transfer models, such as PROSPECT-SAILH, determine how sunlight interacts with plant and soil materials. These models can be applied over a range of scales and ecosystem types. Artificial Neural Networks (ANN) were used to optimize the inversion of these models to determine vegetation water content. We carried out multi-scale validation of the product using field data, airborne and satellite cross-calibration. An Algorithm Theoretical Basis Document (ATBD) of the product is under evaluation by NASA. The CWC product inputs are 1) The MODIS Terra/Aqua surface reflectance product (MOD09A1/MYD09A1) 2) The MODIS land cover map product (MOD12Q1) reclassified to grassland, shrub-land and forest canopies; 3) An ANN trained with PROSPECT-SAILH; 4) A calibration file for each land cover type. The output is an ENVI file with the CWC values. The code is written in Matlab environment and is being adapted to read not only the 8 day MODIS composites, but also daily surface reflectance data. We plan to incorporate the cloud and snow mask and generate as output a geotiff file. Vegetation water content estimates will help predicting linkages between biogeochemical cycles, which will enable further understanding of feedbacks to atmospheric concentrations of greenhouse gases. It will also serve to estimate primary productivity of the biosphere; monitor/assess natural vegetation health related to drought, pollution or diseases

  2. Modeling Linkages Between Effective Impervious Surface and Urban Vegetation Productivity in Semi-arid Environments

    Science.gov (United States)

    Shields, C. A.; Tague, C.

    2010-12-01

    With a majority of the world's population now living in urban areas, the role of vegetation in urban ecosystems warrants increased attention. We address the question of how the fine scale (significantly impact the productivity of vegetation and uptake of C and N. To gain insight into how landscape features influence vegetation productivity, we use a coupled ecohydrogic model to estimate impacts of the amount and arrangement of impervious surfaces on vegetation water use. We use the model to explore how concepts from research in natural semi-arid ecosystems can be applied in the urban context. Ecological research in semi-arid ecosystems has shown that the arrangement of vegetated and bare surfaces plays a key role in regulating both runoff and ecosystem water use and productivity. Systems that include a mixture of bare and vegetated surfaces, for example, tend to show less runoff and more productivity than those with more homogeneous cover. In some instances, patchiness of bare and vegetated surfaces is more important than total vegetated area in determining rates of runoff and vegetation use of rainfall. In an urban context, impervious surfaces can be viewed as analogous to the bare surfaces present in undeveloped ecosystems. We consider not only the total impervious area (TIA), but also the effect of impervious area with a direct hydrologic connection to the stream network, effective impervious area (EIA). While increases in total impervious area (TIA) have been widely shown to impact catchment hydrology, the role of effective impervious area (EIA) has been less extensively studied. A consensus is emerging from the literature that EIA is as important or even more important than TIA as an indicator of catchment response to urbanization. Ecohydrologic models offer a tool to quantify the role of EIA on water availability and plant productivity and demonstrate the potential of urban areas to act as C or N sinks (and minimize the impacts such as increased storm runoff

  3. Hydrolyzed Vegetable Protein Containing Products Recalls

    Data.gov (United States)

    U.S. Department of Health & Human Services — This list includes products subject to recall in the United States since February 2010 related to hydrolyzed vegetable protein (HVP) paste and powder distributed by...

  4. Mini Tuber Production in Potato Via Aeroponic System

    Directory of Open Access Journals (Sweden)

    Hussein Abdullah Ahmed AHMED

    2018-02-01

    Full Text Available The aeroponic production system is one of the new applications in soilless agriculture. This system is also an alternative seed production system for mini-tuber production of potato in terms of providing optimum growth conditions, enabling potato production to be free from diseases and pests and to make economic use of agricultural inputs. This system, which is independent of climatic conditions, has the advantage of improving the vegetative growth, delaying tuber formation, prolonging the vegetative period, increasing the tuber yield per plant and total tuber yield while decreasing the tuber weight. Due to the problems experienced in potato seedling tuber production in recent years, it emerged as an alternative production system for our country.

  5. Greenhouse design for vegetable production in subtropical climate in Taiwan

    NARCIS (Netherlands)

    Hemming, S.; Speetjens, S.L.; Wang, D.; Tsay, J.R.

    2014-01-01

    In Taiwan open field vegetable production is threatened by subtropical climatic disasters, such as high wind speeds and heavy rainfall, which can cause the destruction of whole crops. Next to that vegetable production is threatened by pests and diseases resulting a high need for pesticides.

  6. Heavy metals in vegetables collected from production and market sites of a tropical urban area of India.

    Science.gov (United States)

    Sharma, Rajesh Kumar; Agrawal, Madhoolika; Marshall, Fiona M

    2009-03-01

    Vegetables (Beta vulgaris L., Abelmoschus esculentus L. and Brassica oleracea L.) from the production and market sites of India were tested for Cu, Cd, Zn and Pb. At market sites, the mean concentration of Cu in cauliflower, and of Zn and Cd in both palak and cauliflower had exceeded the PFA standard. Zn at the production sites also exceeded the PFA standard in cauliflower. Cd concentration in vegetables tested from both production and market sites was many folds higher than the EU standard. In contrast, Pb in vegetables tested from both production and market sites was below the PFA limit, but was considerably higher than the current EU and WHO standards. Heavy metals accumulation in vegetables tested are higher at market sites than those at the crop production sites. The contributions of these vegetables to dietary intake of Cu, Zn, Cd and Pb were 13%, 1%, 47% and 9% of provisional tolerable daily intake, respectively. The study concludes that the transportation and marketing systems of vegetables play a significant role in elevating the contaminant levels of heavy metals which may pose a threat to the quality of the vegetables with consequences for the health of the consumers of locally produced foodstuffs.

  7. Ultrasonic system for NDE of fruits and vegetables

    International Nuclear Information System (INIS)

    Jhang, Kyung Young; Jung, Gyoo Hong; Kim, Man Soo

    1999-01-01

    The nondestructive internal quality evaluation of agricultural products has been strongly required from the needs for individual inspection. In recent, ultrasonic wave has been considered as a solution for this problem. This study is to construct the ultrasonic inspection system for fruits and vegetables on the basis of pre-knowledge that general frequency band(higher than 100 kHz) ultrasonic waves do not transmitted well due to severe attenuation. Our system includes ultrasonic pulser and receiver, transducers(50 kHz), acoustic hem, pneumatic controller and signal processing units (PC). In order to confirm the performance, several samples (apple, pear, persimmon, kiwi fruit, potato and radish) were tested, and the results showed sufficient possibility to apply to NDE of fruits and vegetables.

  8. Remotely Sensed Northern Vegetation Response to Changing Climate: Growing Season and Productivity Perspective

    Science.gov (United States)

    Ganguly, S.; Park, Taejin; Choi, Sungho; Bi, Jian; Knyazikhin, Yuri; Myneni, Ranga

    2016-01-01

    Vegetation growing season and maximum photosynthetic state determine spatiotemporal variability of seasonal total gross primary productivity of vegetation. Recent warming induced impacts accelerate shifts on growing season and physiological status over Northern vegetated land. Thus, understanding and quantifying these changes are very important. Here, we first investigate how vegetation growing season and maximum photosynthesis state are evolved and how such components contribute on inter-annual variation of seasonal total gross primary productivity. Furthermore, seasonally different response of northern vegetation to changing temperature and water availability is also investigated. We utilized both long-term remotely sensed data to extract larger scale growing season metrics (growing season start, end and duration) and productivity (i.e., growing season summed vegetation index, GSSVI) for answering these questions. We find that regionally diverged growing season shift and maximum photosynthetic state contribute differently characterized productivity inter-annual variability and trend. Also seasonally different response of vegetation gives different view of spatially varying interaction between vegetation and climate. These results highlight spatially and temporally varying vegetation dynamics and are reflective of biome-specific responses of northern vegetation to changing climate.

  9. Sustainability aspects of biobased products : comparison of different crops and products from the vegetable oil platform

    NARCIS (Netherlands)

    Meesters, K.P.H.; Corré, W.J.; Conijn, J.G.; Patel, M.K.; Bos, H.L.

    2012-01-01

    This study focusses on the production of vegetable oil based products. A limited number of aspacts of the sustainability of the full chain (from agriculture to product at the factory gate) was evaluated. Three different vegetable oils were taken into account: palm oil, soy oil and rapeseed oil. Also

  10. 7 CFR 318.13-14 - Movement of processed fruits, vegetables, and other products.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Movement of processed fruits, vegetables, and other... fruits, vegetables, and other products. (a) Fruits, vegetables, and other products that are processed.../plants/manuals/ports/downloads/puerto_rico.pdf. (b) Consignments of processed fruits, vegetables, or...

  11. Bacteriological quality of vegetables from organic and conventional production in different areas of Korea.

    Science.gov (United States)

    Tango, Charles Nkufi; Choi, Na-Jung; Chung, Myung-Sub; Oh, Deog Hwan

    2014-08-01

    Foods grown in organic production systems have been described as representing an increased risk to public health compared with foods from conventional production. Leafy vegetables (spinach, romaine lettuce, and green sesame leaves) grown in organic and conventional systems were collected from various areas in Korea and examined using standard culture methods to compare the microbiological quality of the produce grown in the two agricultural systems. The 354 samples of these leafy vegetables were analyzed for levels of indicator bacteria (aerobic bacteria, coliforms, and Escherichia coli) and the prevalence of the pathogens Staphylococcus aureus, E. coli O157:H7, Listeria monocytogenes, Bacillus cereus, and Salmonella. Aerobic bacteria and coliforms were detected in all vegetable types, but nonpathogenic E. coli was below the limit of detection in all samples. B. cereus was the most prevalent pathogen, found on 7 (11.1%) of the 63 organic spinach samples. The prevalence of S. aureus was highest in organic sesame leaves; it was found on 5 (8.0%) of the 63 samples. The prevalence of L. monocytogenes was highest on organic romaine lettuce and spinach; it was found in 4 (6.4%) of 63 samples of each type of vegetable. E. coli O157:H7 found on only 1 (1.58%) of 55 conventional spinach samples. These results suggest that farming type at most only slightly affects the hygienic quality of leafy vegetables, and no effect was found for sample collection area. Salmonella was not isolated from any of the conventional or organic leafy vegetables. These results do not support the hypothesis that organic produce poses a substantially greater risk of pathogen contamination than does conventional produce.

  12. Vegetable milks and their fermented derivative products

    Directory of Open Access Journals (Sweden)

    Neus Bernat

    2014-04-01

    Full Text Available The so-called vegetable milks are in the spotlight thanks to their lactose-free, animal protein-free and cholesterol-free features which fit well with the current demand for healthy food products. Nevertheless, and with the exception of soya, little information is available about these types of milks and their derivatives. The aims of this review, therefore, are to: highlight the main nutritional benefits of the nut and cereal vegetable milks available on the market, fermented or not; describe the basic processing steps involved in their manufacturing process; and analyze the major problems affecting their overall quality, together with the current feasible solutions. On the basis of the information gathered, vegetable milks and their derivatives have excellent nutritional properties which provide them a high potential and positive market expectation. Nevertheless, optimal processing conditions for each raw material or the application of new technologies have to be researched in order to improve the quality of the products. Hence, further studies need to be developed to ensure the physical stability of the products throughout their whole shelf-life. These studies would also allow for a reduction in the amount of additives (hydrocolloids and/or emulsifiers and thus reduce the cost of the products. In the particular case of fermented products, the use of starters which are able to both improve the quality (by synthesizing enhanced flavors and providing optimal textures and exert health benefits for consumers (i.e. probiotics is the main challenge to be faced in future studies.

  13. THE DEVELOPMENT OF PLANTS FOR THE PRODUCTION OF CONCENTRATED PASTES OF FRUIT AND VEGETABLE RAW MATERIALS

    Directory of Open Access Journals (Sweden)

    G. O. Magomedov

    2015-01-01

    Full Text Available Summary. Developed a new system for producing concentrated semi-finished products in the form of pastes for the food industry. Currently, an important task of the food industry is the creation of new products with the aim of improving the structure of the range, saving scarce raw materials, as well as reduce sugar intake; development of product functionality and products with extended shelf life. The use of local non-traditional types of plant materials can contribute to solving existing problems. Fruit and vegetable pastes are a valuable food products which can be used as a semifinished product in the confectionery, bakery, food concentrates industry. Fruit and vegetable purees have a distinct structurally viscous or pseudo-plastic properties and concentration form a very viscous mass. Already in the beginning of the process of concentration, i.e. at a relatively low degree of evaporation that leads to a rapid increase in the viscosity of the concentrate mass and reduce evaporation. With increasing temperature is the burning mass, and also change its color and flavor. Therefore, for the concentration of fruit and vegetable purees, you must use equipment whose design takes into account the possible rheological and thermal problems. The analysis of literary data structures evaporators and studies, we developed a system for producing concentrated pastes of fruit and vegetable raw materials. Developed installation can increase the quality of the finished product due to the intensification of the process of concentration, to reduce material and energy resources, increase productivity.

  14. Comparative energy input–output and financial analyses of greenhouse and open field vegetables production in West Java, Indonesia

    International Nuclear Information System (INIS)

    Kuswardhani, Nita; Soni, Peeyush; Shivakoti, Ganesh P.

    2013-01-01

    This paper estimates energy consumption per unit floor area of greenhouse and open field for tomato, chili and lettuce production. Primary data were collected from 530 vegetable farmers during Jan–Dec, 2010 in West Java, Indonesia. Energy estimates were calculated from actual amount of inputs and outputs and corresponding conversion factors. Results reveal that the total input energy used in greenhouse (GH) production of tomato, chili (medium and high land) and lettuce were 47.62, 41.55, 58.84, and 24.54 GJ/ha respectively. Whereas, the requirement of total input energy for open field (OF) production of tomato, chili (medium and high land) and lettuce were 49.01, 41.04, 57.94 and 23.87 GJ/ha, respectively. The ratio of output to input energy was higher in greenhouse production (0.85, 0.45 and 0.49) than open field vegetable production (0.52, 0.175 and 0.186) for tomato, chili medium land and chili highland, respectively, but output–input ratio of lettuce open field production was twice as that of greenhouse vegetable production. Financial analysis revealed higher mean net returns from greenhouse vegetable production as 7043 $/ha (922–15,299 $/ha) when compared to 571 $/ha (44–1172 $/ha) from open field vegetable production. Among the greenhouse vegetables, tomato cultivation was the most profitable in terms of energy efficiency and financial productivity. - Highlights: ► Energy input–output analysis is carried out to compare vegetables production in greenhouse and open field. ► Tomato, Chili and Lettuce production in West Java, Indonesia. ► Economic analysis is conducted to compare the two production systems

  15. Production systems of traditional leafy vegetables: Challenges for ...

    African Journals Online (AJOL)

    to access the indigenous or local knowledge associated with the production of these crops. This paper focuses on factors that are unique to TLV production systems. TLV production is dominated by women farmers in an attempt to sustain immediate household food security. The cultural environment within which the women ...

  16. Review article: Vegetative growth, reproduction, browse production ...

    African Journals Online (AJOL)

    Vegetative growth, reproduction, browse production and response to tree clearing of ... water stress, soil nutrient availability, carbohydrate reserves, plant hormones, ... animal-plant interactions) of woody plants in various savanna ecosystems.

  17. The effect of floating vegetation on denitrification and greenhouse gas production in wetland mesocosms

    Science.gov (United States)

    Jacobs, A. E.; Harrison, J. A.

    2012-12-01

    Anthropogenic intensification of nitrogen (N) loading to aquatic ecosystems is widespread and can lead to the degradation of these systems. Wetlands are important sites for N removal via denitrification, the microbially mediated reduction of reactive nitrate to inert N2 gas, but they can also produce high levels of greenhouse gases. Floating plants play an important role in encouraging denitrification, since they create low oxygen conditions that may favor denitrification. We investigated whether wetland sediments with floating plant cover had higher denitrification and greenhouse gas production rates than wetland sediments without floating plants. Replicate flow-through mesocosms with wetland sediment and water were constructed in a growth chamber to mimic the wetland where the sediment and water were collected. Mesocosm treatments were covered with floating vegetation (duckweed), an opaque tarp, or no cover to determine how cover type affects denitrification and greenhouse gas production and whether biotic or abiotic factors are likely responsible for observed differences. Denitrification and greenhouse gas production rates were calculated by measuring excess N2 gas, methane, and nitrous oxide concentrations in the water column and measuring the gas exchange rates between the water column and the atmosphere. Gas exchange rates were measured using an inert volatile tracer added to the water column and accumulation of gas in the mesocosm headspace. Additional mesocosm experiments were performed to determine how duckweed-dominated wetland systems respond to nitrogen loading and which mechanism for lowering dissolved oxygen concentrations is important in affecting denitrification under floating vegetation. Mesocosms with floating vegetation had lower dissolved oxygen than no cover or tarp-covered mesocosms, which is consistent with field and literature observations. Water flowing out of the mesocosms had statistically lower total nitrogen and nitrate concentrations

  18. OPTIMIZATION OF VEGETABLE WASTES FOR LACTIC ACID PRODUCTION: A LABORATORY SCALE APPROACH

    Directory of Open Access Journals (Sweden)

    Sailaja Daharbha

    2015-04-01

    Full Text Available Vegetables wastes are organic materials which are not utilized as vegetables and are discarded at all stages of production, processing and marketing. These wastes form a major part of municipal solid wastes and are cause of foul smell and growth of microorganisms due to their high organic contents. The vegetable wastes can be utilized in many different ways to produces different products. We have shown that they can be utilized for production of lactic acid using anaerobic digestion. The 2nd day was the optimum day for recovery of lactic acid while 1:1 ratio of slurry and water was found to the best ratio for production of lactic acid from vegetable wastes. Effect of salts on lactic acid was also studied and it was found that the production decreased in all the concentrations of salts.

  19. Variation in vegetable production among urban farmers in Ilorin, Kwara state, Nigeria

    Directory of Open Access Journals (Sweden)

    Yusuf, O.R.

    2012-12-01

    Full Text Available Urban agriculture in Nigerian cities has contributed immensely to provision of fresh vegetables and the overall food security in the urban space. Though this vegetable production takes place throughout the year, resource utilization that contributes to productivity among the various groups of urban cultivators is improperly understood. This paper addresses this issue in Ilorin, focusing on seventy farmers drawn from the two major groups of cultivators; Fadama and Okiti. Data were gathered through the use of focus group discussion (FGD, non participant observation, and questionnaire survey. Tabulation, percentages and trend description were employed in data analysis. Multiple Regression Analysis isolated utilization of pump machine, harvest from vegetable plots, utilization of modern input and type of labour used as the determinants of efficiency with a total percentage contribution of 89.6 to land-use, the major resource. Among the major findings is that the operational scale of Fadama cultivators is larger with a corresponding increase in profit compared to Okiti cultivators. It is also discovered that although the two systems are faced with similar constraints of environmental and inaccessibility to input problems, there exist some fundamental differences based on scale and production efficiency. Some solutions proffered to the identified problem include the recognition and integration of urban farmers into urban land use structure so that they can form cooperatives through which they can access productive inputs.

  20. Derivation of global vegetation biophysical parameters from EUMETSAT Polar System

    Science.gov (United States)

    García-Haro, Francisco Javier; Campos-Taberner, Manuel; Muñoz-Marí, Jordi; Laparra, Valero; Camacho, Fernando; Sánchez-Zapero, Jorge; Camps-Valls, Gustau

    2018-05-01

    This paper presents the algorithm developed in LSA-SAF (Satellite Application Facility for Land Surface Analysis) for the derivation of global vegetation parameters from the AVHRR (Advanced Very High Resolution Radiometer) sensor on board MetOp (Meteorological-Operational) satellites forming the EUMETSAT (European Organization for the Exploitation of Meteorological Satellites) Polar System (EPS). The suite of LSA-SAF EPS vegetation products includes the leaf area index (LAI), the fractional vegetation cover (FVC), and the fraction of absorbed photosynthetically active radiation (FAPAR). LAI, FAPAR, and FVC characterize the structure and the functioning of vegetation and are key parameters for a wide range of land-biosphere applications. The algorithm is based on a hybrid approach that blends the generalization capabilities offered by physical radiative transfer models with the accuracy and computational efficiency of machine learning methods. One major feature is the implementation of multi-output retrieval methods able to jointly and more consistently estimate all the biophysical parameters at the same time. We propose a multi-output Gaussian process regression (GPRmulti), which outperforms other considered methods over PROSAIL (coupling of PROSPECT and SAIL (Scattering by Arbitrary Inclined Leaves) radiative transfer models) EPS simulations. The global EPS products include uncertainty estimates taking into account the uncertainty captured by the retrieval method and input errors propagation. A sensitivity analysis is performed to assess several sources of uncertainties in retrievals and maximize the positive impact of modeling the noise in training simulations. The paper discusses initial validation studies and provides details about the characteristics and overall quality of the products, which can be of interest to assist the successful use of the data by a broad user's community. The consistent generation and distribution of the EPS vegetation products will

  1. Evaluating the Sustainability of a Small-Scale Low-Input Organic Vegetable Supply System in the United Kingdom

    DEFF Research Database (Denmark)

    Markussen, Mads Ville; Kulak, Michal; Smith, Laurence G.

    2014-01-01

    Resource use and environmental impacts of a small-scale low-input organic vegetable supply system in the United Kingdom were assessed by emergy accounting and Life Cycle Assessment (LCA). The system consisted of a farm with high crop diversity and a related box-scheme distribution system. We...... compared empirical data from this case system with two modeled organic food supply systems representing high-and low-yielding practices for organic vegetable production. Further, these systems were embedded in a supermarket distribution system and they provided the same amount of comparable vegetables...

  2. Macauba: a promising tropical palm for the production of vegetable oil

    Directory of Open Access Journals (Sweden)

    Colombo Carlos Augusto

    2018-01-01

    Full Text Available The growing global demand for vegetable oils for food and for replacing fossil fuels leads to increased oilseeds production. Almost 122 of the current 187 million tons of vegetable oils produced in the world correspond to palm and soybean oils. The oil palm is cultivated in the tropical zone, in areas formerly occupied by forests, and soybean oil is a by-product of protein meal production. The diversification of raw materials for the vegetable oil market is thus strategic for both food and non-food sectors. Sources for vegetable oil should be economically competitive and provide sustainability indexes higher than that provided by oil palm and soybean. In this context, we describe the potential of Acrocomia aculeata, popularly known as macauba. Macauba is an American palm from the tropical zones which presents oil productivity and quality similar to that of the oil palm. It grows spontaneously in a wide range of environments and it is not very water demanding. Macauba palm has a high potential for oil production and for diversification of co-products with some potential of value aggregation. Such a perennial and sustainable species will probably fulfill the requirements to become an important new commercial oilseed crop.

  3. Estimation of Global Vegetation Productivity from Global LAnd Surface Satellite Data

    Directory of Open Access Journals (Sweden)

    Tao Yu

    2018-02-01

    Full Text Available Accurately estimating vegetation productivity is important in research on terrestrial ecosystems, carbon cycles and climate change. Eight-day gross primary production (GPP and annual net primary production (NPP are contained in MODerate Resolution Imaging Spectroradiometer (MODIS products (MOD17, which are considered the first operational datasets for monitoring global vegetation productivity. However, the cloud-contaminated MODIS leaf area index (LAI and Fraction of Photosynthetically Active Radiation (FPAR retrievals may introduce some considerable errors to MODIS GPP and NPP products. In this paper, global eight-day GPP and eight-day NPP were first estimated based on Global LAnd Surface Satellite (GLASS LAI and FPAR products. Then, GPP and NPP estimates were validated by FLUXNET GPP data and BigFoot NPP data and were compared with MODIS GPP and NPP products. Compared with MODIS GPP, a time series showed that estimated GLASS GPP in our study was more temporally continuous and spatially complete with smoother trajectories. Validated with FLUXNET GPP and BigFoot NPP, we demonstrated that estimated GLASS GPP and NPP achieved higher precision for most vegetation types.

  4. Diagnosis of vegetation recovery within herbaceous sub-systems in the West African Sahel Region

    Science.gov (United States)

    Anchang, J.; Hanan, N. P.; Prihodko, L.; Sathyachandran, S. K.; Ji, W.; Ross, C. W.

    2017-12-01

    The West African Sahel (WAS) region is an extensive water limited environment that features a delicate balance of herbaceous and woody vegetation sub systems. These play an important role in the cycling of carbon while also supporting the dominant agro-pastoral human activities in the region. Quantifying the temporal trends in vegetation with regard to these two systems is therefore very important in assessing resource sustainability and food security. In water limited areas, rainfall is a primary driver of vegetation productivity and past watershed scale studies in the WAS region have shown that increase in the slope of the productivity-to-rainfall relationship is indicative of increasing cover and density of herbaceous plants. Given the importance of grazing resources to the region, we perform a wall-to-wall pixel based analysis of changing short-term vegetation sensitivity to changing annual rainfall (hereafter referred to as dS) to examine temporal trends in herbaceous vegetation health. Results indicate that 43% of the Sahelian region has experienced changes (P Western and Central Mali and South Western Niger. Positive dS is indicative of herbaceous vegetation recovery, in response to changing management and rainfall conditions that promote long-term herbaceous community recovery following degradation during the 1970-1980s droughts.

  5. Process for the production of protein enriched fractions from vegetable materials

    NARCIS (Netherlands)

    Dijkink, B.H.; Willemsen, J.H.A.

    2006-01-01

    The present invention provides a method for the production of a protein enriched fraction and a fibre enriched fraction from a vegetable material, wherein the vegetable material comprises a total fat content of 0.1 to 22.0 % by dry weight of the total vegetable material and a total starch content of

  6. Integrated Emergy, Energy and Economic Evaluation of Rice and Vegetable Production Systems in Alluvial Paddy Fields: Implications for Agricultural Policy in China

    Science.gov (United States)

    China is the largest rice producing and consuming country in the world, but rice production has given way to the production of vegetables during the past twenty years. The government has been trying to stop this land-use conversion and increase the area in rice-vegetable rotation...

  7. The Vegetable industry in China; Developments in policies, production, marketing and international trade

    NARCIS (Netherlands)

    Liu, Y.M.; Jinsong, C.; Zhang XiaoYong, Xiaoyong; Kamphuis, B.M.

    2004-01-01

    Development of Chinese vegetable industry over the past three decades. The changes of governmental vegetable policy and the major institutions involved. The major production regions in China, their leading vegetable varieties and cultivation technology. The reform of vegetable marketing structure

  8. Soil environmental quality in greenhouse vegetable production systems in eastern China: Current status and management strategies.

    Science.gov (United States)

    Hu, Wenyou; Zhang, Yanxia; Huang, Biao; Teng, Ying

    2017-03-01

    Greenhouse vegetable production (GVP) has become an important source of public vegetable consumption and farmers' income in China. However, various pollutants can be accumulated in GVP soils due to the high cropping index, large agricultural input, and closed environment. Ecological toxicity caused by excessive pollutants' accumulation can then lead to serious health risks. This paper was aimed to systematically review the current status of soil environmental quality, analyze their impact factors, and consequently to propose integrated management strategies for GVP systems. Results indicated a decrease in soil pH, soil salinization, and nutrients imbalance in GVP soils. Fungicides, remaining nutrients, antibiotics, heavy metals, and phthalate esters were main pollutants accumulating in GVP soils comparing to surrounding open field soils. Degradation of soil ecological function, accumulation of major pollutants in vegetables, deterioration of neighboring water bodies, and potential human health risks has occurred due to the changes of soil properties and accumulation of pollutants such as heavy metals and fungicides in soils. Four dominant factors were identified leading to the above-mentioned issues including heavy application of agricultural inputs, outmoded planting styles with poor environmental protection awareness, old-fashion regulations, unreasonable standards, and ineffective supervisory management. To guarantee a sustainable GVP development, several strategies were suggested to protect and improve soil environmental quality. Implementation of various strategies not only requires the concerted efforts among different stakeholders, but also the whole lifecycle assessment throughout the GVP processes as well as effective enforcement of policies, laws, and regulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. African Leafy Vegetables: A Review of Status, Production and Utilization in South Africa

    Directory of Open Access Journals (Sweden)

    Innocent Maseko

    2017-12-01

    Full Text Available African leafy vegetables (ALVs are mostly gathered from the wild, with few selected species being cultivated, usually as part of a mixed cropping system in home gardens or smallholder plots. They have important advantages over exotic vegetable species, because of their adaptability to marginal agricultural production areas and their ability to provide dietary diversity in poor rural communities. Despite their significance in food and nutrition security, there is limited availability or access to these crops leading to underutilisation. The objective of this review was to document the state of utilisation and production of ALVs in South Africa. A qualitative systematic approach review of online sources, peer reviewed papers published in journals, books and other publications was conducted. There is lack of suitable production systems, innovative processing, and value-adding techniques that promote utilisation of ALVs. Furthermore, there is a perception that ALVs are food for the poor among the youth and urban folks, while, among the affluent, they are highly regarded as being nutritious. To promote ALVs from household consumption and commercialisation, further research on agronomy, post-harvest handling, storage and processing is required in South Africa.

  10. Farmers' adoption of improved vegetable production practices under ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... the annual income of the PFs and NPFs, respectively. ... Key words: Adoption, improved vegetable, production practices, farmers and national fadama ..... so, fixed cost components such as depreciation, insurance, repairs,.

  11. Quality determinants of fruit and vegetables productions

    OpenAIRE

    Bruno Mezzetti; Cherubino Leonardi

    2009-01-01

    Nowadays, the main goal for modern horticultural production is the increase of quality. Furthermore, in consideration of the new consumer demand, always more attracted by a diet based on a larger consumption of fruit and vegetables without risks of pesticides residues and with increased nutritional value, new important features in addition to the traditional quality attributes are now requested. For a program of qualification and valorisation of modern horticultural productions, it is fundame...

  12. Floodplain Vegetation Productivity and Carbon Cycle Dynamics of the Middle Fork Flathead River of Northwest Montana

    Science.gov (United States)

    Oakins, A. J.; Kimball, J. S.; Relyea, S.; Stanford, J. A.

    2005-05-01

    River floodplains are vital natural features that store floodwaters, improve water quality, provide habitat, and create recreational opportunities. Recent studies have shown that strong interactions among flooding, channel and sediment movement, vegetation, and groundwater create a dynamic shifting habitat mosaic that promotes biodiversity and complex food webs. Multiple physical and environmental processes interact within these systems to influence forest productivity, including water availability, nutrient supply, soil texture, and disturbance history. This study is designed to quantify the role of groundwater depth and meteorology in determining spatial and temporal patterns of net primary productivity (NPP) within the Nyack floodplain of the Middle Fork Flathead River, Northwestern Montana. We examine three intensive field sites composed of mature, mixed deciduous and evergreen conifer forest with varying hydrologic and vegetative characteristics. We use a modified Biome-BGC ecosystem process model with field-collected data (LAI, increment growth cores, groundwater depth, vegetation sap-flow, and local meteorology) to describe the effects of floodplain groundwater dynamics on vegetation community structure, and carbon/nitrogen cycling. Initial results indicate that conifers are more sensitive than deeper-rooted deciduous species to variability in groundwater depth and meteorological conditions. Forest productivity also shows a non-linear response to groundwater depth. Sites with intermediate groundwater depths (0.2-0.5m) allow vegetation to maintain connectivity to groundwater over longer periods during the growing season, are effectively uncoupled from atmospheric constraints on photosynthesis, and generally have greater productivity. Shallow groundwater sites (<0.2m) are less productive due to the indirect effects of reduced soil aerobic decomposition and reduced plant available nitrogen.

  13. Eat fresh vegetables, fruit, and whole grain products | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... please turn Javascript on. Feature: Diverticulitis "Eat fresh vegetables, fruit, and whole grain products." Past Issues / Winter 2010 ... or the diverticulitis. I once again eat fresh vegetables and fruit and whole grain products. My two episodes of ...

  14. Control of enteric pathogens in ready-to-eat vegetable crops in organic and 'low input' production systems: a HACCP-based approach.

    Science.gov (United States)

    Leifert, C; Ball, K; Volakakis, N; Cooper, J M

    2008-10-01

    Risks from pathogens such as Salmonella, Yersinia, Campylobacter and Escherichia coli O157 have been identified as a particular concern for organic and 'low input' food production systems that rely on livestock manure as a nutrient source. Current data do not allow any solid conclusions to be drawn about the level of this risk, relative to conventional production systems. This review describes six Risk Reduction Points (RRPs) where risks from enteric pathogens can be reduced in ready-to-eat vegetables. Changes can be made to animal husbandry practices (RRP1) to reduce inoculum levels in manure. Outdoor livestock management (RRP2) can be optimized to eliminate the risk of faecal material entering irrigation water. Manure storage and processing (RRP3), soil management practices (RRP4) and timing of manure application (RRP5), can be adjusted to reduce the survival of pathogens originating from manure. During irrigation (RRP6), pathogen risks can be reduced by choosing a clean water source and minimizing the chances of faecal material splashing on to the crop. Although preventive measures at these RRPs can minimize enteric pathogen risk, zero risk can never be obtained for raw ready-to-eat vegetables. Good food hygiene practices at home are essential to reduce the incidence of food-borne illnesses.

  15. Production of Biodiesel from Locally Available Spent Vegetable Oils

    Directory of Open Access Journals (Sweden)

    Mohamed Mostafa Al Naggar

    2017-06-01

    Full Text Available The depletion of fossil fuels prompted considerable research to find alternative fuels. Due its environmental benefits and renewable nature the production of biodiesel has acquired increasing importance with a view to optimizing the production procedure and the sources of feedstock. Millions of liters of waste frying oil are produced from local restaurants and houses every year, most are discarded into sewage systems causing damage to the networks.  This study is intended to consider aspects related to the feasibility of the production of biodiesel from waste frying oils which will solve the problem of waste frying oil pollution and reduce the cost of biodiesel production.This research studies the conversion of locally available spent vegetable oils of different origins and with different chemical compositions into an environmentally friendly fuel. The biodiesel production requirements by base catalyzed trans-esterification process for the different feed stocks are determined according to the measured physical properties. The quality of the produced biodiesel is compared to petro diesel in terms of established standard specifications.

  16. Quality determinants of fruit and vegetables productions

    Directory of Open Access Journals (Sweden)

    Bruno Mezzetti

    2009-04-01

    Full Text Available Nowadays, the main goal for modern horticultural production is the increase of quality. Furthermore, in consideration of the new consumer demand, always more attracted by a diet based on a larger consumption of fruit and vegetables without risks of pesticides residues and with increased nutritional value, new important features in addition to the traditional quality attributes are now requested. For a program of qualification and valorisation of modern horticultural productions, it is fundamental a study of the major quality determinants organized by following a heuristic approache useful to identify the contribution of each factor in defining the quality of the product. The genetic knowledge applied to all available techniques useful for the creation of new genetic variability surely represent the most important starting point for the release of new varieties with increased nutritional quality without limitation in plant productivity. About agronomic practices, new opportunities are offered by the sustainable management of the production factors able to improve the plant-environment interaction, to well address the reduction of inputs needed for the production, and finally to induce specific stress conditions able to promote higher quality at reduced inputs. Much more attention is also addressed to the post-harvest technologies, this because of the increased needs to guarantee the preservation of the high quality obtained in the field until the consumer use. Taking in account such complexity of the horticultural production systems and examples of some major model crops, an outlook of the main determinants and potential valorisation of high quality horticultural products are attempted.

  17. Quality determinants of fruit and vegetables productions

    Directory of Open Access Journals (Sweden)

    Bruno Mezzetti

    Full Text Available Nowadays, the main goal for modern horticultural production is the increase of quality. Furthermore, in consideration of the new consumer demand, always more attracted by a diet based on a larger consumption of fruit and vegetables without risks of pesticides residues and with increased nutritional value, new important features in addition to the traditional quality attributes are now requested. For a program of qualification and valorisation of modern horticultural productions, it is fundamental a study of the major quality determinants organized by following a heuristic approache useful to identify the contribution of each factor in defining the quality of the product. The genetic knowledge applied to all available techniques useful for the creation of new genetic variability surely represent the most important starting point for the release of new varieties with increased nutritional quality without limitation in plant productivity. About agronomic practices, new opportunities are offered by the sustainable management of the production factors able to improve the plant-environment interaction, to well address the reduction of inputs needed for the production, and finally to induce specific stress conditions able to promote higher quality at reduced inputs. Much more attention is also addressed to the post-harvest technologies, this because of the increased needs to guarantee the preservation of the high quality obtained in the field until the consumer use. Taking in account such complexity of the horticultural production systems and examples of some major model crops, an outlook of the main determinants and potential valorisation of high quality horticultural products are attempted.

  18. Effect of management systems and cover crops on organic matter dynamics of soil under vegetables

    Directory of Open Access Journals (Sweden)

    Rodrigo Fernandes de Souza

    2014-06-01

    Full Text Available Vegetable production in conservation tillage has increased in Brazil, with positive effects on the soil quality. Since management systems alter the quantity and quality of organic matter, this study evaluated the influence of different management systems and cover crops on the organic matter dynamics of a dystrophic Red Latosol under vegetables. The treatments consisted of the combination of three soil tillage systems: no-tillage (NT, reduced tillage (RT and conventional tillage (CT and of two cover crops: maize monoculture and maize-mucuna intercrop. Vegetables were grown in the winter and the cover crops in the summer for straw production. The experiment was arranged in a randomized block design with four replications. Soil samples were collected between the crop rows in three layers (0.0-0.05, 0.05-0.10, and 0.10-0.30 m twice: in October, before planting cover crops for straw, and in July, during vegetable cultivation. The total organic carbon (TOC, microbial biomass carbon (MBC, oxidizable fractions, and the carbon fractions fulvic acid (C FA, humic acid (C HA and humin (C HUM were determined. The main changes in these properties occurred in the upper layers (0.0-0.05 and 0.05-0.10 m where, in general, TOC levels were highest in NT with maize straw. The MBC levels were lowest in CT systems, indicating sensitivity to soil disturbance. Under mucuna, the levels of C HA were lower in RT than NT systems, while the C FA levels were lower in RT than CT. For vegetable production, the C HUM values were lowest in the 0.05-0.10 m layer under CT. With regard to the oxidizable fractions, the tillage systems differed only in the most labile C fractions, with higher levels in NT than CT in the 0.0-0.05 m layer in both summer and winter, with no differences between these systems in the other layers. The cabbage yield was not influenced by the soil management system, but benefited from the mulch production of the preceding maize-mucuna intercrop as cover

  19. Recent developments in high-quality drying of vegetables, fruits, and aquatic products.

    Science.gov (United States)

    Zhang, Min; Chen, Huizhi; Mujumdar, Arun S; Tang, Juming; Miao, Song; Wang, Yuchuan

    2017-04-13

    Fresh foods like vegetables, fruits, and aquatic products have high water activity and they are highly heat-sensitive and easily degradable. Dehydration is one of the most common methods used to improve food shelf-life. However, drying methods used for food dehydration must not only be efficient and economic but also yield high-quality products based on flavor, nutrients, color, rehydration, uniformity, appearance, and texture. This paper reviews some new drying technologies developed for dehydration of vegetables, fruits, and aquatic products. These include: infrared drying, microwave drying, radio frequency drying, electrohydrodynamic drying, etc., as well as hybrid drying methods combining two or more different drying techniques. A comprehensive review of recent developments in high-quality drying of vegetables, fruits and aquatic products is presented and recommendations are made for future research.

  20. Farming of Vegetables in Space-Limited Environments

    Science.gov (United States)

    He, Jie

    2015-10-01

    Vegetables that contain most of the essential components of human nutrition are perishable and cannot be stocked. To secure vegetable supply in space limited cities such as Singapore, there are different farming methods to produce vegetables. These include low-cost urban community gardening and innovative rooftop and vertical farms integrated with various technologies such as hydroponics, aquaponics and aeroponics. However, for large-scale vegetable production in space-limited Singapore, we need to develop farming systems that not only increase productivity many-fold per unit of land but also produce all types of vegetable, all year-round for today and the future. This could be resolved through integrated vertical aeroponic farming system. Manipulation of root-zone (RZ) environments such as cooling the RZ, modifying mineral nutrients and introducing elevated RZ CO2 using aeroponics can further boost crop productivity beyond what can be achieved from more efficient use of land area. We could also adopt energy saving light emitting diodes (LEDs) for vertical aeroponic farming system to promote uniform growth and to improve the utilisation of limited space via shortening the growth cycle, thus improving vegetable production in a cost-effective manner.

  1. Vegetable soybean: seed composition and production research

    Directory of Open Access Journals (Sweden)

    Qiuying Zhang

    2017-10-01

    Full Text Available Vegetable soybean (edamame [Glycine max (L. Merr.] is a low input, high nutritional value, short crop cycle and soil-enriching profitable crop. It offers quick economic return and provides health benefits to the consumers. The market demand for edamame has begun to flourish and expand dramatically in recent decades due to increased awareness of nutritional properties, and the change in life styles towards healthier food. This article highlighted the importance of edamame as a nutraceutical and functional food-grade produce, summarised the research advances in seed composition and their roles, cultivar selection and crop establishment, planting date and fertilisation, weed management and harvesting. Current production problem of extensive labor at harvest and future research challenges in improving crop establishment, developing cultivars competitive to weed and resistant to pest insects/diseases, assessing biological activities of edamame elemental and phytochemical properties on cancer cell inhibition, and developing organic production system were also proposed with aims of enhancing farm profitability and expanding opportunities for extensive use of edamame.

  2. Study on biomethane production and biodegradability of different leafy vegetables in anaerobic digestion.

    Science.gov (United States)

    Yan, Hu; Zhao, Chen; Zhang, Jiafu; Zhang, Ruihong; Xue, Chunyu; Liu, Guangqing; Chen, Chang

    2017-12-01

    Enormous amounts of vegetable residues are wasted annually, causing many environmental problems due to their high moisture and organic contents. In this study, the methane production potential of 20 kinds of typical leafy vegetable residues in China were explored using a unified method. A connection between the biochemical components and the methane yields of these vegetables was well established which could be used to predict biogas performance in practice. A high volatile solid/total solid (VS/TS) ratio and hemicellulose content exhibited a positive impact on the biogas yield while lignin had a negative impact. In addition, three kinetic models were used to describe the methane production process of these agro-wastes. The systematic comparison of the methane production potentials of these leafy vegetables shown in this study will not only serve as a reference for basic research on anaerobic digestion but also provide useful data and information for agro-industrial applications of vegetable residues in future work.

  3. Determination of lipid oxidation products in vegetable oils and marine omega-3 supplements.

    Science.gov (United States)

    Halvorsen, Bente Lise; Blomhoff, Rune

    2011-01-01

    There is convincing evidence that replacing dietary saturated fats with polyunsaturated fats (PUFA) decreases risk of cardiovascular diseases. Therefore, PUFA rich foods such as vegetable oils, fatty fish, and marine omega-3 supplements are recommended. However, PUFA are easily oxidizable and there is concern about possible negative health effects from intake of oxidized lipids. Little is known about the degree of lipid oxidation in such products. To assess the content of lipid oxidation products in a large selection of vegetable oils and marine omega-3 supplements available in Norway. Both fresh and heated vegetable oils were studied. A large selection of commercially available vegetable oils and marine omega-3 supplements was purchased from grocery stores, pharmacies, and health food stores in Norway. The content of lipid oxidation products were measured as peroxide value and alkenal concentration. Twelve different vegetable oils were heated for a temperature (225°C) and time (25 minutes) resembling conditions typically used during cooking. The peroxide values were in the range 1.04-10.38 meq/kg for omega-3 supplements and in the range 0.60-5.33 meq/kg for fresh vegetable oils. The concentration range of alkenals was 158.23-932.19 nmol/mL for omega-3 supplements and 33.24-119.04 nmol/mL for vegetable oils. After heating, a 2.9-11.2 fold increase in alkenal concentration was observed for vegetable oils. The contents of hydroperoxides and alkenals in omega-3 supplements are higher than in vegetable oils. After heating vegetable oils, a large increase in alkenal concentration was observed.

  4. Scientific Verification Test of Orbitec Deployable Vegetable Production System for Salad Crop Growth on ISS- Gas Exchange System design and function

    Science.gov (United States)

    Eldemire, Ashleigh

    2007-01-01

    The ability to produce and maintain salad crops during long term missions would be a great benefit to NASA; the renewable food supply would save cargo space, weight and money. The ambient conditions of previous ground controlled crop plant experiments do not reflect the microgravity and high CO2 concentrations present during orbit. It has been established that microgravity does not considerably alter plant growth. (Monje, Stutte, Chapman, 2005). To support plants in a space-craft environment efficient and effective lighting and containment units are necessary. Three lighting systems were previously evaluated for radish growth in ambient air; fluorescent lamps in an Orbitec Biomass Production System Educational (BPSE), a combination of red, blue, and green LED's in a Deployable Vegetable Production System (Veggie), and a combination of red and blue LED's in a Veggie. When mass measurements compared the entire possible growing area vs. power consumed by the respective units, the Veggies clearly exceeded the BPSE indicating that the LED units were a more resource efficient means of growing radishes under ambient conditions in comparison with fluorescent lighting. To evaluate the most productive light treatment system for a long term space mission a more closely simulated ISS environment is necessary. To induce a CO2 dense atmosphere inside the Veggie's and BPSE a gas exchange system has been developed to maintain a range of 1000-1200 ppm CO2 during a 21-day light treatment experiment. This report details the design and function of the gas exchange system. The rehabilitation, trouble shooting, maintenance and testing of the gas exchange system have been my major assignments. I have also contributed to the planting, daily measurements and harvesting of the radish crops 21-day light treatment verification test.

  5. Changes in soil quality and plant available water capacity following systems re-design on commercial vegetable farms

    NARCIS (Netherlands)

    Alliaume, F.; Rossing, W.A.H.; Garcia, M.; Giller, K.E.; Dogliotti Moro, S.

    2013-01-01

    Loss of ecological functions due to soil degradation impacts viability of crop production systems world-wide, particularly in vegetable cropping systems commonly located in the most productive areas and characterized by intensive soil cultivation. This paper reports soil degradation caused by

  6. Determination of lipid oxidation products in vegetable oils and marine omega-3 supplements

    Directory of Open Access Journals (Sweden)

    Rune Blomhoff

    2011-06-01

    Full Text Available Background : There is convincing evidence that replacing dietary saturated fats with polyunsaturated fats (PUFA decreases risk of cardiovascular diseases. Therefore, PUFA rich foods such as vegetable oils, fatty fish, and marine omega-3 supplements are recommended. However, PUFA are easily oxidizable and there is concern about possible negative health effects from intake of oxidized lipids. Little is known about the degree of lipid oxidation in such products. Objective : To assess the content of lipid oxidation products in a large selection of vegetable oils and marine omega-3 supplements available in Norway. Both fresh and heated vegetable oils were studied. Design : A large selection of commercially available vegetable oils and marine omega-3 supplements was purchased from grocery stores, pharmacies, and health food stores in Norway. The content of lipid oxidation products were measured as peroxide value and alkenal concentration. Twelve different vegetable oils were heated for a temperature (225°C and time (25 minutes resembling conditions typically used during cooking. Results : The peroxide values were in the range 1.04–10.38 meq/kg for omega-3 supplements and in the range 0.60–5.33 meq/kg for fresh vegetable oils. The concentration range of alkenals was 158.23–932.19 nmol/mL for omega-3 supplements and 33.24–119.04 nmol/mL for vegetable oils. After heating, a 2.9–11.2 fold increase in alkenal concentration was observed for vegetable oils. Conclusions : The contents of hydroperoxides and alkenals in omega-3 supplements are higher than in vegetable oils. After heating vegetable oils, a large increase in alkenal concentration was observed.

  7. Health risk assessment of heavy metals in vegetables grown around battery production area

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2014-04-01

    Full Text Available Battery production is one of the main sources of heavy metals that present great harm to human health even in low concentrations. Chromium (Cr, Cadmium (Cd and Lead (Pb were measured in edible portions of vegetables and soils around a battery production area in China, and the potential health risk of heavy metal contamination to the local population via vegetable consumption was evaluated. Their concentrations in edible portions of vegetables were 2.354 (0.078-14.878, 0.035 (0.003-0.230 and 0.039 (0.003-0.178 mg kg-1, respectively. Approximately 3 % of the Cd in the vegetable samples exceeded the maximum concentration allowable by national food safety criteria, although Pb content in all samples were within the criteria. Transfer factors (TF from soils to vegetables were dependent on vegetable species. Leguminous vegetables were more likely to accumulate Cr, while leaf vegetables tended to show higher levels of concentration of Cd and Pb. Melon vegetables demonstrated a relatively low capacity for accumulating the heavy metals studied. TF were positively correlated with soil organic matter and negatively correlated with soil pH. The mean estimated daily intake of Cr, Cd and Pb via dietary consumption of vegetables was 0.011, 1.65 × 10-4 and 1.84 × 10-4 mg kg-1 of body weight per day, respectively, levels that were much lower than the reference doses recommended by USEPA (U.S. Environmental Protection Agency and JECFA (Joint FAO/WHO Expert Committee on Food Additives, indicating that the potential health risk of Cr, Cd and Pb exposure via vegetable consumption to the local population around this battery production area could be negligible.

  8. Vegetable fats and oils as functional ingredients in meat products

    Directory of Open Access Journals (Sweden)

    Alfonso Totosaus

    2011-12-01

    Full Text Available Sausages are a widely consumed food in México, and due to their low fat content (ca. 10% they can be employed to enrich diet by including functional or nutraceutic ingredients as vegetable fats and oils. The replace or incorporation of vegetable fats or oils in cooked sausages is a way to improve their nutritional profile to offer functional meat products.

  9. Perceptions of using low-quality irrigation water in vegetable production in Morogoro, Tanzania

    DEFF Research Database (Denmark)

    Mayilla, Winfrida; Keraita, Bernard; Ngowi, Helena

    2017-01-01

    This study was conducted to examine perceptions of the farmers and key informants on the use of low-quality irrigation water for vegetable production in urban and peri-urban areas in Morogoro, Tanzania. The methods used to collect data were farmer surveys (n = 60), focus group discussions (n = 4)...... in formulating policies and creating health promotion awareness for safe use of low-quality water for benefit maximization and health risk reduction....... of buying commercial fertilizers, vegetable production all year round, sustainable income generation from selling vegetables and also jobs creation in the community among farmers and vegetable sellers. Findings from Mann–Whitney U test and Kruskal–Wallis test score on farmers perception scales indicate...

  10. Vegetation Earth System Data Record from DSCOVR EPIC Observations

    Science.gov (United States)

    Knyazikhin, Y.; Song, W.; Yang, B.; Mottus, M.; Rautiainen, M.; Stenberg, P.

    2017-12-01

    The NASA's Earth Polychromatic Imaging Camera (EPIC) onboard NOAA's Deep Space Climate Observatory (DSCOVR) mission was launched on February 11, 2015 to the Sun-Earth Lagrangian L1 point where it began to collect radiance data of the entire sunlit Earth every 65 to 110 min in June 2015. It provides imageries in near backscattering directions with the scattering angle between 168° and 176° at ten ultraviolet to near infrared (NIR) narrow spectral bands centered at 317.5 (band width 1.0) nm, 325.0 (2.0) nm, 340.0 (3.0) nm, 388.0 (3.0) nm, 433.0 (3.0) nm, 551.0 (3.0) nm, 680.0 (3.0) nm, 687.8 (0.8) nm, 764.0 (1.0) nm and 779.5 (2.0) nm. This poster presents current status of the Vegetation Earth System Data Record of global Leaf Area Index (LAI), solar zenith angle dependent Sunlit Leaf Area Index (SLAI), Fraction vegetation absorbed Photosynthetically Active Radiation (FPAR) and Normalized Difference Vegetation Index (NDVI) derived from the DSCOVR EPIC observations. Whereas LAI is a standard product of many satellite missions, the SLAI is a new satellite-derived parameter. Sunlit and shaded leaves exhibit different radiative response to incident Photosynthetically Active Radiation (400-700 nm), which in turn triggers various physiological and physical processes required for the functioning of plants. FPAR, LAI and SLAI are key state parameters in most ecosystem productivity models and carbon/nitrogen cycle. The product at 10 km sinusoidal grid and 65 to 110 min temporal frequency as well as accompanying Quality Assessment (QA) variables will be publicly available from the NASA Langley Atmospheric Science Data Center. The Algorithm Theoretical Basis (ATBD) and product validation strategy are also discussed in this poster.

  11. The transgenosis main directions in vegetable and melon production: theory and practice

    Directory of Open Access Journals (Sweden)

    Н. В. Лещук

    2013-08-01

    Full Text Available The article deals with priority directions of vegetable and melon plants selection. The wide varieties of alien genetic information transferring methods during the transgenic plants creation of vegetable and melon species are grounded. The essence of the new hybrids identification method as genetic engineering products: kind of cabbage, tomatoes, carrots, zucchini, lettuce seed, pea Pisum sativum, common bean, eggplant and capsicum is revealed. The transgenosis main directions of botanical taxa varieties of vegetable and melon plants on condition of the international and national practice holding are proved. The international practice of the state approbation and registration of genetically engineered structures in biological objects (plant varieties and in their processed products are studied. A monitoring about food and pharmaceutical substances based on genetically modified varieties and hybrids structures of vegetable and melon plants have been held.

  12. Life Cycle Assessment of a Highly Diverse Vegetable Multi-Cropping System in Fengqiu County, China

    Directory of Open Access Journals (Sweden)

    Li Li

    2018-03-01

    Full Text Available Agricultural biodiversity usually leads to greater sustainability in production practices. To understand the environmental implications of the development of village-level multi-cropping in rural China, we compared the environmental impact of a highly diverse vegetable multi-cropping system to a conventional wheat/maize rotation system based on the method of life cycle assessment (LCA. Using household level cultivation data, this study examined the gate-to-gate environmental impacts of on-site cultivation practices relating to the production of 10,000 nutrient equivalent units. Results show that vegetable multi-cropping resulted in decreased average land requirement, and diesel, water and electricity usage by 69.8%, 62.2%, 71.7%, and 63.4%, respectively, while average nitrogen (Total N, phosphorus (P2O5, and potassium (K2O usage in vegetable multi-cropping systems decreased by 16.3%, 42.1%, and 75.8%, respectively. Additional corresponding effects led to a decrease in the total global warming, eutrophication, and acidification potentials from external inputs by 21.6%, 16.7%, and 16.2% of the entire system, respectively. Moreover, the midpoint human toxicity potential from pesticide usage of the vegetable multi-cropping system was lower than that of the conventional system. However, the midpoint eco-toxicity potential from pesticide usage was higher due to certain highly toxic substances, and both human and eco-toxicity potentials from heavy metals were all higher by a few orders of magnitudes. Thus, to mitigate these detrimental consequences, some related measures are proposed for sustainable practices in the future implementation of multi-cropping systems.

  13. Using MODIS NDVI products for vegetation state monitoring on the oil production territory in Western Siberia

    Directory of Open Access Journals (Sweden)

    Kovalev Anton

    2016-01-01

    Full Text Available Article describes the results of using remote sensing data for vegetation state monitoring on the oil field territories in Western Siberia. We used MODIS data product providing the normalized difference vegetation index (NDVI values. Average NDVI values of each studied area were calculated for the period from 2010 to 2015 with one year interval for June, July and August. Analysis was carried out via an open tool of geographic information system QGIS used for spatial analysis and calculation of statistical parameters within chosen polygons. Results are presented in graphs showing the variation of NDVI for each study area and explaining the changes in trend lines for each field. It is shown that the majority of graphs are similar in shape which is caused by similar weather conditions. To confirm these results, we have conducted data analysis including temperature conditions and information about the accidents for each area. Abnormal changes in NDVI values revealed an emergency situation on the Priobskoe oil field caused by the flood in 2015. To sum up, the research results show that vegetation of studied areas is in a sufficiently stable state.

  14. SOLID BIOFUEL UTILIZATION IN VEGETABLE OIL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Slusarenko V.

    2016-08-01

    Full Text Available The paper deals with questions of creating at JSC “Alimentarmash "in the last 20 years the technological equipment for the production of vegetable oils from oilseeds: from the press for the final spin to mini oilfactory, using as an energy source for heating the liquid coolant (Thermal oil "Arian" of solid biofuels - husk of sunflower seeds.

  15. Improvement of the Raman detection system for pesticide residues on/in fruits and vegetables

    Science.gov (United States)

    Li, Yan; Peng, Yankun; Zhai, Chen; Chao, Kuanglin; Qin, Jianwei

    2017-05-01

    Pesticide residue is one of the major challenges to fruits safety, while the traditional detection methods of pesticide residue on fruits and vegetables can't afford the demand of rapid detection in actual production because of timeconsuming. Thus rapid identification and detection methods for pesticide residue are urgently needed at present. While most Raman detection systems in the market are spot detection systems, which limits the range of application. In the study, our lab develops a Raman detection system to achieve area-scan thorough the self-developed spot detection Raman system with a control software and two devices. In the system, the scanning area is composed of many scanning spots, which means every spot needs to be detected and more time will be taken than area-scan Raman system. But lower detection limit will be achieved in this method. And some detection device is needed towards fruits and vegetables in different shape. Two detection devices are developed to detect spherical fruits and leaf vegetables. During the detection, the device will make spherical fruit rotate along its axis of symmetry, and leaf vegetables will be pressed in the test surface smoothly. The detection probe will be set to keep a proper distance to the surface of fruits and vegetables. It should make sure the laser shins on the surface of spherical fruit vertically. And two software are used to detect spherical fruits and leaf vegetables will be integrated to one, which make the operator easier to switch. Accordingly two detection devices for spherical fruits and leaf vegetables will also be portable devices to make it easier to change. In the study, a new way is developed to achieve area-scan result by spot-scan Raman detection system.

  16. Linking vegetable preferences, health and local food systems through community-supported agriculture.

    Science.gov (United States)

    Wilkins, Jennifer L; Farrell, Tracy J; Rangarajan, Anusuya

    2015-09-01

    The objective of the present study was to explore the influence of participation in community-supported agriculture (CSA) on vegetable exposure, vegetable intake during and after the CSA season, and preference related to locally produced vegetables acquired directly from CSA growers. Quantitative surveys were administered at three time points in two harvest seasons to four groups of CSA participants: new full-paying, returning full-paying, new subsidized and returning subsidized members. Questionnaires included a vegetable frequency measure and measures of new and changed vegetable preference. Comparisons were made between new and returning CSA members and between those receiving subsidies and full-paying members. The research was conducted in a rural county in New York, USA. CSA members who agreed to participate in the study. Analysis was based on 151 usable questionnaires. CSA participants reported higher intake of eleven different vegetables during the CSA season, with a sustained increase in some winter vegetables. Over half of the respondents reported trying at least one, and up to eleven, new vegetables. Sustained preferences for CSA items were reported. While those who choose to join a CSA may be more likely to acquire new and expanded vegetable preferences than those who do not, the CSA experience has the potential to enhance vegetable exposure, augment vegetable preference and increase overall vegetable consumption. Dietary patterns encouraged through CSA participation can promote preferences and consumer demand that support local production and seasonal availability. Emphasis on fresh and fresh stored locally produced vegetables is consistent with sustainable community-based food systems.

  17. An RFID-Based Tracing and Tracking System for the Fresh Vegetables Supply Chain

    Directory of Open Access Journals (Sweden)

    Luca Mainetti

    2013-01-01

    Full Text Available The paper presents an innovative gapless traceability system able to improve the main business processes of the fresh vegetables supply chain. The performed analysis highlighted some critical aspects in the management of the whole supply chain, from the land to the table of the end consumer, and allowed us to reengineer the most important processes. In particular, the first steps of the supply chain, which include cultivation in greenhouses and manufacturing of packaged vegetables, were analyzed. The re-engineered model was designed by exploiting the potentialities derived from the combined use of innovative Radio Frequency technologies, such as RFID and NFC, and important international standards, such as EPCglobal. The proposed tracing and tracking system allows the end consumer to know the complete history of the purchased product. Furthermore, in order to evaluate the potential benefits of the reengineered processes in a real supply chain, a pilot project was implemented in an Italian food company, which produces ready-to-eat vegetables, known as IV gamma products. Finally, some important metrics have been chosen to carry out the analysis of the potential benefits derived from the use of the re-engineered model.

  18. Role of MODIS Vegetation Phenology Products in the U.S. for Warn Early Warning System for Forest Threats

    Science.gov (United States)

    Spruce, Joseph; Hargrove, William; Norman, Steve; Gasser, Gerald; Smoot, James; Kuper, Philip

    2012-01-01

    U.S. forests occupy approx 751 million acres (approx 1/3 of total land). Several abiotic and biotic damage agents disturb, damage, kill, and/or threaten these forests. Regionally extensive forest disturbances can also threaten human life and property, bio-diversity and water supplies. timely regional forest disturbance monitoring products are needed to aid forest health management work at finer scales. daily MODIS data provide a means to monitor regional forest disturbances on a weekly basis, leveraging vegetation phenology. In response, the USFS and NASA began collaborating in 2006 to develop a Near Real Time (NRT) forest monitoring capability, based on MODIS NDVI data, as part of a national forest threat Early Warning System (EWS).

  19. NUTRIENTS DYNIMIC IN AN AQUAPONIC RECIRCULATING SYSTEM FOR STURGEON AND LETTUCE (LACTUCA SATIVA PRODUCTION

    Directory of Open Access Journals (Sweden)

    LORENA SFETCU

    2008-10-01

    Full Text Available Aquaponics are modern production systems, which integrate the aquaculture technology with hydroponic systems (vegetable production without soil with a goal of fructification of residual nutrients resulted from metabolic activity of fish biomass as high quality vegetable biomass sealable as ecological products. In the present study, as a first step in aquaponic recirculating systems evaluation, the authors aim to compare two types of recirculating systems: classical (hereby noted with RAS and integrated/aquaponic (RAS_A regarding water quality parameters generally, and TAN (total ammonia nitrogen production and transformation, particularly.

  20. Research on Vegetable Pest Warning System Based on Multidimensional Big Data

    Directory of Open Access Journals (Sweden)

    Changzhen Zhang

    2018-06-01

    Full Text Available Pest early warning technology is part of the prerequisite for the timely and effective control of pest outbreaks. Traditional pest warning system with artificial mathematical statistics, radar, and remote sensing has some deficiency in many aspects, such as higher cost, weakness of accuracy, low efficiency, and so on. In this study, Pest image data was collected and information about four major vegetable pests (Bemisia tabaci (Gennadius, Phyllotreta striolata (Fabricius, Plutella xylostella (Linnaeus, and Frankliniella occidentalis (Pergande (Thysanoptera, Thripidae in southern China was extracted. A multi-sensor network system was constructed to collect small-scale environmental data on vegetable production sites. The key factors affecting the distribution of pests were discovered by multi-dimensional information, such as soil, environment, eco-climate, and meteorology of vegetable fields, and finally, the vegetable pest warning system that is based on multidimensional big data (VPWS-MBD was implemented. Pest and environmental data from Guangzhou Dongsheng Bio-Park were collected from June 2017 to February 2018. The number of pests is classified as level I (0–56, level II (57–131, level III (132–299, and level IV (above 300 by K-Means algorithm. The Pearson correlation coefficient and the grey relational analysis algorithm were used to calculate the five key influence factors of rainfall, soil temperature, air temperature, leaf surface humidity, and soil moisture. Finally, Back Propagation (BP Neural Network was used for classification prediction. The result shows: I-level warning accuracy was 96.14%, recall rate was 97.56%; II-level pest warning accuracy was 95.34%, the recall rate was 96.45%; III-level pest warning accuracy of 100%, the recall rate was 96.28%; IV-level pest warning accuracy of 100%, recall rate was 100%. It proves that the early warning system can effectively predict vegetable pests and achieve the early warning of

  1. A spatio-temporal analysis of climatic drivers for observed changes in Sahelian vegetation productivity 1982-2007

    DEFF Research Database (Denmark)

    Kaspersen, Per; Fensholt, Rasmus; Huber Gharib, Silvia

    2011-01-01

    Linear trend analysis and seasonal trend analysis are performed on gridded data of vegetation, rainfall, solar radiation flux, and air temperature, in order to examine the influence of the past three decades of climate variability and change on the Sahelian vegetation dynamics. Per......-pixel correlation analyses are conducted on annual and monthly data, and analyses of change in the potential climatic constraints to the natural vegetation development from 1982–2007 are performed. The results reveal two distinct periods: (a) 1982–1994 marked by large increases in vegetation productivity...... and rainfall and little change in average air temperatures and solar radiation and (b) 1995–2007 characterized by no distinct trends in vegetation productivity and rainfall and increase in average air temperatures and decrease in solar radiation flux. Correlations between vegetation productivity and climatic...

  2. Yield estimation using SPOT-VEGETATION products: A case study of wheat in European countries

    NARCIS (Netherlands)

    Kowalik, W.; Dabrowska-Zielinska, K.; Meroni, M.; Raczka, T.U.; Wit, de A.J.W.

    2014-01-01

    In the period 1999-2009 ten-day SPOT-VEGETATION products of the Normalized Difference Vegetation Index (NDVI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) at 1 km spatial resolution were used in order to estimate and forecast the wheat yield over Europe. The products were

  3. Improved meteorology from an updated WRF/CMAQ modeling system with MODIS vegetation and albedo

    Science.gov (United States)

    Realistic vegetation characteristics and phenology from the Moderate Resolution Imaging Spectroradiometer (MODIS) products improve the simulation for the meteorology and air quality modeling system WRF/CMAQ (Weather Research and Forecasting model and Community Multiscale Air Qual...

  4. Design and evaluation of a no-tillage seeder for small scale vegetable production using a two-wheeled tractor in Coahuila, Mexico

    NARCIS (Netherlands)

    Vries, de J.; Cadena Zapata, M.; Hoogmoed, W.B.

    2009-01-01

    Currently used conventional tillage systems for small-scale vegetable production in the region of Saltillo, Coahuila, Mexico require a considerable amount of hand labor, energy and materials for all activities. Seedbed preparation can require up to 60% of the total production cost in some systems in

  5. An Intercomparison of Vegetation Products from Satellite-based Observations used for Soil Moisture Retrievals

    Science.gov (United States)

    Vreugdenhil, Mariette; de Jeu, Richard; Wagner, Wolfgang; Dorigo, Wouter; Hahn, Sebastian; Bloeschl, Guenter

    2013-04-01

    Vegetation and its water content affect active and passive microwave soil moisture retrievals and need to be taken into account in such retrieval methodologies. This study compares the vegetation parameterisation that is used in the TU-Wien soil moisture retrieval algorithm to other vegetation products, such as the Vegetation Optical Depth (VOD), Net Primary Production (NPP) and Leaf Area Index (LAI). When only considering the retrieval algorithm for active microwaves, which was developed by the TU-Wien, the effect of vegetation on the backscattering coefficient is described by the so-called slope [1]. The slope is the first derivative of the backscattering coefficient in relation to the incidence angle. Soil surface backscatter normally decreases quite rapidly with the incidence angle over bare or sparsely vegetated soils, whereas the contribution of dense vegetation is fairly uniform over a large range of incidence angles. Consequently, the slope becomes less steep with increasing vegetation. Because the slope is a derivate of noisy backscatter measurements, it is characterised by an even higher level of noise. Therefore, it is averaged over several years assuming that the state of the vegetation doesn't change inter-annually. The slope is compared to three dynamic vegetation products over Australia, the VOD, NPP and LAI. The VOD was retrieved from AMSR-E passive microwave data using the VUA-NASA retrieval algorithm and provides information on vegetation with a global coverage of approximately every two days [2]. LAI is defined as half the developed area of photosynthetically active elements of the vegetation per unit horizontal ground area. In this study LAI is used from the Geoland2 products derived from SPOT Vegetation*. The NPP is the net rate at which plants build up carbon through photosynthesis and is a model-based estimate from the BiosEquil model [3, 4]. Results show that VOD and slope correspond reasonably well over vegetated areas, whereas in arid

  6. Simulated Vegetation Response to Climate Change in California: The Importance of Seasonal Production Patterns

    Science.gov (United States)

    Kim, J. B.; Pitts, B.

    2013-12-01

    MC1 dynamic global vegetation model simulates vegetation response to climate change by simulating vegetation production, soil biogeochemistry, plant biogeography and fire. It has been applied at a wide range of spatial scales, yet the spatio-temporal patterns of simulated vegetation production, which drives the model's response to climate change, has not been examined in detail. We ran MC1 for California at a relatively fine scale, 30 arc-seconds, for the historical period (1895-2006) and for the future (2007-2100), using downscaled data from four CMIP3-based climate projections: A2 and B1 GHG emissions scenarios simulated by PCM and GFDL GCMs. The use of these four climate projections aligns our work with a body of climate change research work commissioned by the California Public Interest Energy Research (PIER) Program. The four climate projections vary not only in terms of changes in their annual means, but in the seasonality of projected climate change. We calibrated MC1 using MODIS NPP data for 2000-2011 as a guide, and adapting a published technique for adjusting simulated vegetation production by increasing the simulated plant rooting depths. We evaluated the simulation results by comparing the model output for the historical period with several benchmark datasets, summarizing by EPA Level 3 Ecoregions. Multi-year summary statistics of model predictions compare moderately well with Kuchler's potential natural vegetation map, National Biomass and Carbon Dataset, Leenhouts' compilation of fire return intervals, and, of course, the MODIS NPP data for 2000-2011. When we compared MC1's monthly NPP values with MODIS monthly GPP data (2000-2011), however, the seasonal patterns compared very poorly, with NPP/GPP ratio for spring (Mar-Apr-May) often exceeding 1, and the NPP/GPP ratio for summer (Jun-Jul-Aug) often flattening to zero. This suggests MC1's vegetation production algorithms are overly biased for spring production at the cost of summer production. We

  7. Production and marketing challenges of vegetable farming: a case ...

    African Journals Online (AJOL)

    Production and marketing challenges of vegetable farming: a case study of Kumasi metropolis of Ashanti region, Ghana. ... Current Issue · Archives · Journal Home > Vol 9, No 1 (2016) >. Log in or Register to get access to full text downloads.

  8. Towards sustainable vegetable production around agro-pastoral dams in Northern Benin

    NARCIS (Netherlands)

    Kpéra, G.N.; Segnon, Alcade C.; Saïdou, Aliou; Mensah, Guy A.; Aarts, Noelle; Zijpp, van der Akke J.

    2017-01-01

    Background: Rehabilitation and optimized utilization of agro-pastoral dams (APDs), especially for vegetable production, has been recently promoted to boost agricultural production and ensure food security in Benin. However, little information was available on APDs' agricultural potentials and

  9. Agricultural Capacity to Increase the Production of Select Fruits and Vegetables in the US: A Geospatial Modeling Analysis.

    Science.gov (United States)

    Conrad, Zach; Peters, Christian J; Chui, Kenneth; Jahns, Lisa; Griffin, Timothy S

    2017-09-23

    The capacity of US agriculture to increase the output of specific foods to accommodate increased demand is not well documented. This research uses geospatial modeling to examine the capacity of the US agricultural landbase to increase the per capita availability of an example set of nutrient-dense fruits and vegetables. These fruits and vegetables were selected based on nutrient content and an increasing trend of domestic production and consumption. Geographic information system models were parameterized to identify agricultural land areas meeting crop-specific growing requirements for monthly precipitation and temperature; soil depth and type; cropland availability; and proximity to existing production centers. The results of these analyses demonstrate that crop production can be expanded by nearly 144,000 ha within existing national production centers, generating an additional 0.05 cup-equivalents of fruits and vegetables per capita per day, representing a 1.7% increase above current total F&V availability. Expanding the size of national crop production centers can further increase the availability of all F&V by 2.5%-5.4%, which is still less than the recommended amount. Challenges to increasing F&V production in the US include lack of labor availability, barriers to adoption among producers, and threats to crop yields from environmental concerns.

  10. PLANT BREEDING IS A SOLUTION FOR IMPORT SUBSTITUTION IN VEGETABLE PRODUCTION

    Directory of Open Access Journals (Sweden)

    V. F. Pivovarov

    2017-01-01

    Full Text Available The vegetable production  is one of the economic sectors  that  provides  the  population  with  foodstuff  products with high biological values. To achieve independence in production  of the agricultural foodstuffs,  the part of imported  products should not be beyond 25 % from total volume of foodstuffs  fabricated. As a result of national breeding program, the varieties and hybrids adapted to different growing conditions, with resistance to  local races of pathogens, temperature stresses, and ground frosts were developed to provide the sustainable production of vegetables with high nutritional and medicinal qualities. The varieties and hybrids F1  of white  head cabbage that have been created for the last 5 years are distinguished from foreign ones by taste qualities, appropriate pickling characteristics with increased  sugar,  and  decreased  cellulose  contents. The local onion varieties combine long shelf life, early maturing, well bulb formation, high dry matter content (18-20% and ability to form the bulb for one year. The cucumber  is  the  traditional  vegetable crop  in  Russia and very profitable for greenhouse enterprises. Breeders have developed bee-pollinated and parthenocarpic hybrids well adapted to local growing conditions and  suitable  for   open  field   cultivation   in  different regions of Russia. Parthenocarpic heterotic hybrids of the  multi-propose  use, corresponding  to  the  modern variety model with high productivity, early-ripening, bunch ovary disposition, resistance to abiotic stresses, and  most  harmful  diseases. The carrot  and  red  beet varieties with  high nutritional  qualities, long shelf-life, ecological plasticity that are widely used for seed production have been created. The varieties of nightshade crops have been developed to cultivate in NonChernozem zone, Far East, Western Siberia, the Middle Belt of Russia and the south of Russia, are also

  11. Potential and limitations of biomass production for energy purposes: Vegetable oils compared with alcohol

    International Nuclear Information System (INIS)

    Andrade, C.S.; Rosa, L.P.

    1984-01-01

    Since Brazil has favourable conditions for biomass production, as regards land mass, soil and climate, several agricultural products have been proposed as alternatives to petroleum-derived fuels. An analysis is made of the potential and limitations of energy systems using biomass production aimed at the use of vegetable oils in diesel engines compared with the experience acquired in Brazil with alcohol fuel in Otto engines. The current status of the national programme for alcohol production (PNA) within the framework of Brazilian agriculture in the last few years is presented, taking into account its objectives, achievements and impacts. Regarding vegetable oils, it must be emphasized that freight and mass passenger transport is being researched in every aspect - from the agricultural production of oleaginous plants to the use of oils in diesel engines. To assess the potential of oleaginous plant production, land needs for the years 1990 and 2000 have been estimated. From the study of some selected oleaginous plants and their potential expansion in a realistic way it was concluded that the viability of this alternative to diesel oil is limited in the short and medium term compared with alcohol, which provides better conditions for great expansion in the short term. It is believed that the option is viable, provided that it is launched gradually to avoid repeating the negative impacts that (according to some experts) were generated by PNA. (author)

  12. Effect of the addition of fatty by-products from the refining of vegetable oil on methane production in co-digestion.

    Science.gov (United States)

    Torrijos, M; Sousbie, P; Badey, L; Bosque, F; Steyer, J P

    2012-01-01

    The purpose of this work was to investigate the effects of the addition of by-products from the refining of vegetable oil on the behavior of co-digestion reactors treating a mixture of grass, cow dung and fruit and vegetable waste. Three by-products were used: one soapstock, one used winterization earth and one skimming of aeroflotation of the effluents. Three 15 l reactors were run in parallel and fed five times a week. In a first phase of 4 weeks, the three reactors were fed with the co-digestion substrates alone (grass, cow dung and fruit and vegetable waste) at an organic loading rate (OLR) of 1.5 g VS/kg d (VS: volatile solids). Then, a different by-product from the refining of oil was added to the feed of each reactor at an OLR of 0.5 g VS/kg d, generating a 33% increase in the OLR. The results show that the addition of by-products from the refining of oil is an efficient way of increasing the methane production of co-digestion reactors thanks to high methane yield of such by-products (0.69-0.77 l CH(4)/g VS loaded). In fact, in this work, it was possible to raise the methane production of the reactors by about 60% through a 33% increase in the OLR thanks to the addition of the by-products from the refining of vegetable oil.

  13. Can conservation tillage reduce N2O emissions on cropland transitioning to organic vegetable production?

    Science.gov (United States)

    Chen, Guihua; Kolb, Lauren; Cavigelli, Michel A; Weil, Ray R; Hooks, Cerruti R R

    2018-03-15

    Nitrous oxide (N 2 O) is an important greenhouse gas and a catalyst of stratospheric ozone decay. Agricultural soils are the source of 75% of anthropogenic N 2 O emissions globally. Recently, significant attention has been directed at examining effects of conservation tillage on carbon sequestration in agricultural systems. However, limited knowledge is available regarding how these practices impact N 2 O emissions, especially for organic vegetable production systems. In this context, a three-year study was conducted in a well-drained sandy loam field transitioning to organic vegetable production in the Mid-Atlantic coastal plain of USA to investigate impacts of conservation tillage [strip till (ST) and no-till (NT)] and conventional tillage (CT) [with black plastic mulch (CT-BP) and bare-ground (CT-BG)] on N 2 O emissions. Each year, a winter cover crop mixture (forage radish: Raphanus sativus var. longipinnatus, crimson clover: Trifolium incarnatum L., and rye: Secale cereale L.) was grown and flail-mowed in the spring. Nearly 80% of annual N 2 O-nitrogen (N) emissions occurred during the vegetable growing season for all treatments. Annual N 2 O-N emissions were greater in CT-BP than in ST and NT, and greater in CT-BG than in NT, but not different between CT-BG and CT-BP, ST and NT, or CT-BG and ST. Conventional tillage promoted N mineralization and plastic mulch increased soil temperature, which contributed to greater N 2 O-N fluxes. Though water filled porosity in NT was higher and correlated well with N 2 O-N fluxes, annual N 2 O-N emissions were lowest in NT suggesting a lack of substrates for nitrification and denitrification processes. Crop yield was lowest in NT in Year 1 and CT-BP in Year 3 but yield-scaled N 2 O-N emissions were consistently greatest in CT-BP and lowest in NT each year. Our results suggest that for coarse-textured soils in the coastal plain with winter cover crops, conservation tillage practices may reduce N 2 O emissions in organic

  14. Status of compost usage and its performance on vegetable production in Monga areas of Bangladesh

    OpenAIRE

    G.K.M.M. Rahman

    2014-01-01

    The present study was carried out to assess the existing status of compost usage on vegetable production and determine the overall effect of household waste compost (HWC) on growth and yield of vegetables and enhancement of soil fertility in the monga areas of Bangladesh. A field survey was conducted on 152 sampled farmers during 2010 to 2011. Questionnaire containing both closed and open-ended questions were used to assess existing production practices of vegetables using compost in both hom...

  15. Mapping swamp timothy (Cripsis schenoides) seed productivity using spectral values and vegetation indices in managed wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Rahilly, P.J.A.; Li, D.; Guo, Q.; Zhu, J.; Ortega, R.; Quinn, N.W.T.; Harmon, T.C.

    2010-01-15

    This work examines the potential to predict the seed productivity of a key wetland plant species using spectral reflectance values and spectral vegetation indices. Specifically, the seed productivity of swamp timothy (Cripsis schenoides) was investigated in two wetland ponds, managed for waterfowl habitat, in California's San Joaquin Valley. Spectral reflectance values were obtained and associated spectral vegetation indices (SVI) calculated from two sets of high resolution aerial images (May 11, 2006 and June 9, 2006) and were compared to the collected vegetation data. Vegetation data were collected and analyzed from 156 plots for total aboveground biomass, total aboveground swamp timothy biomass, and total swamp timothy seed biomass. The SVI investigated included the Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Transformed Soil Adjusted Vegetation Index (TSAVI), Modified Soil Adjusted Vegetation Index (MSAVI), and Global Environment Monitoring Index (GEMI). We evaluated the correlation of the various SVI with in situ vegetation measurements for linear, quadratic, exponential and power functions. In all cases, the June image provided better predictive capacity relative to May, a result that underscores the importance of timing imagery to coincide with more favorable vegetation maturity. The north pond with the June image using SR and the exponential function (R{sup 2}=0.603) proved to be the best predictor of swamp timothy seed productivity. The June image for the south pond was less predictive, with TSAVI and the exponential function providing the best correlation (R{sup 2}=0.448). This result was attributed to insufficient vegetal cover in the south pond (or a higher percentage of bare soil) due to poor drainage conditions which resulted in a delay in swamp timothy germination. The results of this work suggest that spectral reflectance can be used to estimate seed productivity in managed seasonal

  16. CYCLICAL MANNER OF VEGETABLE PRODUCTION INDUSTRY; THE EFFICIENCY OF GREENHOUSE BUSINESS

    Directory of Open Access Journals (Sweden)

    O. N. Krylov

    2017-01-01

    Full Text Available Economical  efficiency  of  agricultural  industry  is  a major characteristic of the level of development of an enterprise. A profit from product sale depends on volume and structure of product  sales, self-cost as well as the level of  sales price.  Thus, the gross revenue from cultivated crops and vegetable cultivars can be observed at the time of fruit harvesting. The total sum of  the gross earnings from  the harvest, determining the  efficiency  of  enterprise can  be  calculated  as a product of values of daily price and mass of total harvest. There are no challenging points in the condition of permanent price and vegetable harvest. Even the registration of average-sales prices for vegetable doesn’t make the production difficult. But real market situation essentially differs from accepted practice to register average-sales prices with relatively permanent vegetable  harvest.  The  price  indexes  of  sales  for tomato and cucumber produced in greenhouse in Udmurt Republic with showing the dynamic of retail price for vegetables were presented in the article. It was shown  that  prices  of  tomatoes  and cucumbers had the seasonal factor that meant weekly price wavering.  The  temporal  row  harvest  of  cucumber ‘Tseres           F1’  and  tomato  ‘Admiro  F1’  produced  at Zaviyalovskiy greenhouse enterprise was  described. The average derivation between nearest and last harvest was in the  gap  23%  to  29%  in cucumber  and reached up to 70% in tomato. The values of such derivations were occasionally provoked and determined by some inter-enterprise factors. The construction  of trend lines for such series and further line evaluation with  the aid of  determination  coefficient  R2  showed extremely low quality of model  of the kind y=a•x+b. The value of R2 cubic  polynominals was in the limits R2=0.32-0.46. Essentially, plans for vegetable production

  17. Chapter 14. Radionuclides in vegetal production and food processing

    International Nuclear Information System (INIS)

    Toelgyessy, J.; Harangozo, M.

    2000-01-01

    This is a chapter of textbook of radioecology for university students. In this chapter authors deal with problems connected with using of radionuclides in vegetal production and food processing. Chapter consist of next parts: (1) Influence of radiation on foods; (2) Radiation sterilisation in health service

  18. Heavy Metals in the Vegetables Collected from Production Sites

    Directory of Open Access Journals (Sweden)

    Hassan Taghipour

    2013-12-01

    Full Text Available Background: Contamination of vegetable crops (as an important part of people's diet with heavy metals is a health concern. Therefore, monitoring levels of heavy metals in vegetables can provide useful information for promoting food safety. The present study was carried out in north-west of Iran (Tabriz on the content of heavy metals in vegetable crops. Methods: Samples of vegetables including kurrat (n=20 (Allium ampeloprasumssp. Persicum, onion (n=20 (Allium cepa and tomato (n=18 (Lycopersiconesculentum var. esculentum, were collected from production sites in west of Tabriz and analyzed for presence of Cd, Cr, Cu, Ni, Pb and Zn by atomic absorption spectroscopy (AAS after extraction by aqua regia method (drying, grounding and acid digestion. Results: Mean ± SD (mg/kg DW concentrations of Cd, Cu, Cr, Ni and Zn were 0.32 ± 0.58, 28.86 ± 28.79, 1.75 ± 2.05, 6.37± 5.61 and 58.01 ± 27.45, respectively. Cr, Cu and Zn were present in all the samples and the highest concentrations were observed in kurrat (leek. Levels of Cd, Cr and Cu were higher than the acceptable limits. There was significant difference in levels of Cr (P<0.05 and Zn (P<0.001 among the studied vegetables. Positive correlation was observed between Cd:Cu (R=0.659, P<0.001 Cr:Ni (R=0.326, P<0.05 and Cr:Zn (R=0.308, P<0.05. Conclusion: Level of heavy metals in some of the analyzed vegetables, especially kurrat samples, was higher than the standard levels. Considering the possible health outcomes due to the consumption of contaminated vegetables, it is required to take proper actions for avoiding people's chronic exposure.

  19. LEGISLATIVE ENSURING FOR SEED PRODUCTION OF VEGETABLE CROPS IN RUSSIAN FEDERATION (BASED ON PARLIAMENTARY SESSION ON 11 JULY IN 2017

    Directory of Open Access Journals (Sweden)

    S. M. Sirota

    2017-01-01

    Full Text Available The analysis of the national seed market state really showed the high dependence of Russian food security on imported seeds. The government means for supporting the national seed production program undertaken in 2015 by Ministry of Agriculture of RF were very effective and took action as showed the data from ‘Roselkhozcentre’. Thus, the total land area used for seed production in vegetables, melons and gourds was increased by 48% that amounted to 2104.3 ha in 2016, and that was more than in 2015. Moreover, the vegetable and melon seed producers and breeders are worried about the facts of falsification and low quality. The main reason of occurrence of such seeds that are not meeting the variety requirements in the market is an insufficient legislative system and its lack of correspondence to the current seed production, conditions and up-to-date requirements. It is necessary to take urgent measures to revise the current state of legislative system in national seed production program. 

  20. Comparison between remote sensing and a dynamic vegetation model for estimating terrestrial primary production of Africa.

    Science.gov (United States)

    Ardö, Jonas

    2015-12-01

    Africa is an important part of the global carbon cycle. It is also a continent facing potential problems due to increasing resource demand in combination with climate change-induced changes in resource supply. Quantifying the pools and fluxes constituting the terrestrial African carbon cycle is a challenge, because of uncertainties in meteorological driver data, lack of validation data, and potentially uncertain representation of important processes in major ecosystems. In this paper, terrestrial primary production estimates derived from remote sensing and a dynamic vegetation model are compared and quantified for major African land cover types. Continental gross primary production estimates derived from remote sensing were higher than corresponding estimates derived from a dynamic vegetation model. However, estimates of continental net primary production from remote sensing were lower than corresponding estimates from the dynamic vegetation model. Variation was found among land cover classes, and the largest differences in gross primary production were found in the evergreen broadleaf forest. Average carbon use efficiency (NPP/GPP) was 0.58 for the vegetation model and 0.46 for the remote sensing method. Validation versus in situ data of aboveground net primary production revealed significant positive relationships for both methods. A combination of the remote sensing method with the dynamic vegetation model did not strongly affect this relationship. Observed significant differences in estimated vegetation productivity may have several causes, including model design and temperature sensitivity. Differences in carbon use efficiency reflect underlying model assumptions. Integrating the realistic process representation of dynamic vegetation models with the high resolution observational strength of remote sensing may support realistic estimation of components of the carbon cycle and enhance resource monitoring, providing suitable validation data is available.

  1. Vegetation productivity responses to drought on tribal lands in the four corners region of the Southwest USA

    Science.gov (United States)

    El-Vilaly, Mohamed Abd Salam; Didan, Kamel; Marsh, Stuart E.; van Leeuwen, Willem J. D.; Crimmins, Michael A.; Munoz, Armando Barreto

    2018-03-01

    For more than a decade, the Four Corners Region has faced extensive and persistent drought conditions that have impacted vegetation communities and local water resources while exacerbating soil erosion. These persistent droughts threaten ecosystem services, agriculture, and livestock activities, and expose the hypersensitivity of this region to inter-annual climate variability and change. Much of the intermountainWestern United States has sparse climate and vegetation monitoring stations, making fine-scale drought assessments difficult. Remote sensing data offers the opportunity to assess the impacts of the recent droughts on vegetation productivity across these areas. Here, we propose a drought assessment approach that integrates climate and topographical data with remote sensing vegetation index time series. Multisensor Normalized Difference Vegetation Index (NDVI) time series data from 1989 to 2010 at 5.6 km were analyzed to characterize the vegetation productivity changes and responses to the ongoing drought. A multi-linear regression was applied to metrics of vegetation productivity derived from the NDVI time series to detect vegetation productivity, an ecosystem service proxy, and changes. The results show that around 60.13% of the study area is observing a general decline of greenness ( pchallenges to the region's already stressed ecosystems. Whereas the results provide additional insights into this isolated and vulnerable region, the drought assessment approach used in this study may be adapted for application in other regions where surface-based climate and vegetation monitoring record is spatially and temporally limited.

  2. The fire-vegetation-climate system: how ecology can contribute to earth system science

    CSIR Research Space (South Africa)

    Archibald, S

    2013-05-01

    Full Text Available and future state of global vegetation. A key complexity that is currently not well captured by Earth System models is that vegetation is not always deterministically responsive to climate and soils. Feedbacks within the Earth System, top-down controls...

  3. Using Food Grade Lye “omushelekha” in the Formulation of Health Products from Commonly Consumed African Indigenous Vegetables and Vegetable Combinations

    Directory of Open Access Journals (Sweden)

    Florence O Habwe

    2011-05-01

    Full Text Available Background: Lye, sodium hydroxide and potassium hydroxide has been used over the years in food preparation including the preparation of vegetables and dried meat products, washing or chemical peeling of fruits and vegetables, cocoa processing, caramel production, poultry scalding and cooking among others. Lye is believed to improve the organoleptic properties and also enhances the nutritional value to the products.Objective: To assess the effect of food grade lye on the levels of copper and iron in the raw, boiled and boiled-fried single vegetables and vegetable combinations treated with and without food grade lye.Methods: Single vegetables, Crotalaria occroleuca, Solanum scabrum, Vigna unguiculata and Amaranthus blitum and their combinations were cooled and kept in the fridge at 4oCs. Elemental analysis was done for the raw, boiled and boiled-fried samples using Atomic Absorption Spectrophotometry (AAS under standard conditions using wavelengths of 248.3nm for iron and 324.2nm for copper. Paired t-test was used to compare the iron and copper levels of the boiled and boiled-fried vegetables while the independent t-test was done to assess the levels of iron and copper in the raw, boiled and boiled fried samples.Results: Boiled-fried samples recorded higher content of iron and copper than the boiled ones. A combination of Amaranthus blitum-Crotolaria occloreuca boiled without lye boiled-fried with lye, and boiled-fried without lye had the highest copper contents of 1.66mg/100gram, 4.56mg/100gram, and 4.56mg/100gram respectively, compared to Amaranthus blitum aloneFunctional Foods in Heals and Disease 2011; 5:189-197(3.48mg/100gram and Crotolaria occloreuca (0.42mg/100gram. A combination of Amaranthus blitum-Crotolaria occloreuca boiled in non-lye water, and those boiled-fried with and without lye had the highest extractable iron of 557mg/100g, 859.2mg/100g, and 859.2mg/100g respectively. Iron content was high in the Solanum scabrum (281.1mg/100g

  4. Estimating the Fractional Vegetation Cover from GLASS Leaf Area Index Product

    Directory of Open Access Journals (Sweden)

    Zhiqiang Xiao

    2016-04-01

    Full Text Available The fractional vegetation cover (FCover is an essential biophysical variable and plays a critical role in the carbon cycle studies. Existing FCover products from satellite observations are spatially incomplete and temporally discontinuous, and also inaccurate for some vegetation types to meet the requirements of various applications. In this study, an operational method is proposed to calculate high-quality, accurate FCover from the Global LAnd Surface Satellite (GLASS leaf area index (LAI product to ensure physical consistency between LAI and FCover retrievals. As a result, a global FCover product (denoted by TRAGL were generated from the GLASS LAI product from 2000 to present. With no missing values, the TRAGL FCover product is spatially complete. A comparison of the TRAGL FCover product with the Geoland2/BioPar version 1 (GEOV1 FCover product indicates that these FCover products exhibit similar spatial distribution pattern. However, there were relatively large discrepancies between these FCover products over equatorial rainforests, broadleaf crops in East-central United States, and needleleaf forests in Europe and Siberia. Temporal consistency analysis indicates that TRAGL FCover product has continuous trajectories. Direct validation with ground-based FCover estimates demonstrated that TRAGL FCover values were more accurate (RMSE = 0.0865, and R2 = 0.8848 than GEOV1 (RMSE = 0.1541, and R2 = 0.7621.

  5. Ready-to-eat vegetables production with low-level water chlorination. An evaluation of water quality, and of its impact on end products.

    Science.gov (United States)

    D'Acunzo, Francesca; Del Cimmuto, Angela; Marinelli, Lucia; Aurigemma, Caterina; De Giusti, Maria

    2012-01-01

    We evaluated the microbiological impact of low-level chlorination (1 ppm free chlorine) on the production of ready-to-eat (RTE) vegetables by monitoring the microbiological quality of irrigation and processing water in two production plants over a 4-season period, as well as the microbiological quality of unprocessed vegetables and RTE product. Water samples were also characterized in terms of some chemical and physico-chemical parameters of relevance in chlorination management. Both producers use water with maximum 1 ppm free chlorine for vegetables rinsing, while the two processes differ by the number of washing cycles. Salmonella spp and Campylobacter spp were detected once in two different irrigation water samples out of nine from one producer. No pathogens were found in the vegetable samples. As expected, the procedure encompassing more washing cycles performed slightly better in terms of total mesophilic count (TMC) when comparing unprocessed and RTE vegetables of the same batch. However, data suggest that low-level chlorination may be insufficient in preventing microbial build-up in the washing equipment and/or batch-to batch cross-contamination.

  6. studies on biogas production from fruits and vegetable waste 115

    African Journals Online (AJOL)

    DR. AMINU

    results of the study on biogas production from fruits and vegetables waste materials and their effect on plants when used as fertilizer (Using digested and undigested sludge). It has been ... as fuel or fertilizer, offers several benefits such as, the.

  7. Life cycle inventory analysis of hydrogen production by the steam-reforming process: comparison between vegetable oils and fossil fuels as feedstock

    International Nuclear Information System (INIS)

    Marquevich, M.; Sonnemann, G.W.; Castells, F.; Montane, D.

    2002-01-01

    A life cycle inventory analysis has been conducted to assess the environmental load, specifically CO 2 (fossil) emissions and global warming potential (GWP), associated to the production of hydrogen by the steam reforming of hydrocarbon feedstocks (methane and naphtha) and vegetable oils (rapeseed oil, soybean oil and palm oil). Results show that the GWPs associated with the production of hydrogen by steam reforming in a 100 years time frame are 9.71 and 9.46 kg CO 2 -equivalent/kg H 2 for natural gas and naphtha, respectively. For vegetable oils, the GWP decreases to 6.42 kg CO 2 -equivalent/kg H 2 for rapeseed oil, 4.32 for palm oil and 3.30 for soybean oil. A dominance analysis determined that the part of the process that has the largest effect on the GWP is the steam reforming reaction itself for the fossil fuel-based systems, which accounts for 56.7% and 74% of the total GWP for natural gas and naphtha, respectively. This contribution is zero for vegetable oil-based systems, for which harvesting and oil production are the main sources of CO 2 -eq emissions.(author)

  8. Identification and dose determination using ESR measurements in the flesh of irradiated vegetable products

    International Nuclear Information System (INIS)

    Jesus, E.F.O. de; Rossi, A.M.; Lopes, R.T.

    2000-01-01

    The international commerce of vegetable products is often dependent on the quarantine protections that are imposed by the importing countries because of the fear of contamination by fruit flies. The use of ionizing radiation as a treatment for these products can be used to remove this problem and a real proof of irradiation can contribute to the implementation of the international commerce. ESR measurement on the pulp of vegetable products can be used as a proof of irradiation using the species introduced in cellulose that are found uniquely in irradiated products. The stability of these species are compatible with the life of the products analyzed. The pulp signal intensity is sufficient to identify products irradiated with doses as low as 100 Gy for some fruits

  9. Influence Factors of Willingness to Pay for Vegetable Cleaner Production Technology Subsidies: Taking the Questionnaire Investigation on the Application of Vegetable Residue Composting Technology as an Example

    Directory of Open Access Journals (Sweden)

    ZHOU Ying

    2016-05-01

    Full Text Available Currently, producing the safe, high quality and nutritious vegetable products has become the common goal of the food producers and consumers. In doing so, Chinese government vigorously promotes clean production technology of vegetables for the source control and production process control. Unfortunately, lots of vegetables residues are still thrown away after the harvest, which has caused severe environmental pollution in producing areas. Vegetable waste composting technology, an important technology of vegetable cleaner production, has low requirements for technology conditions and is suitable for the promotion of rural households. But it needs additional investment costs including retting pond construction costs during application process and its personal income is less than the social benefits brought by the technology itself, which makes it difficult to mobilize the enthusiasm of farmers to adapt cleaner technology and the technology promotion is not smooth. It is of great and practical significance to investigate the influence mechanism of technology application, assess subsides policy effectiveness and encourage farmers environmentally and friendly produce behavior. The goal of this study is thus to use the contingent valuation method(CVM to understand the farmers' willingness to subsidize for heap retting pool construction fee and to analyze the direction and intensity of influence factors of willingness to pay(WTP by using a Logistic econometric model and the 142 questionnaires in Gaocheng City of Hebei Province. The results indicated that the direct cost of production and operation was an important factor to affect the WTP of technology subsidies and individual labor time and social relationship were the internal control factors that affects the WTP, while the policy measures based on technology subsidies was an important factor to affect the WTP and environmental cognition factor of soil pollution presented a reverse relationship with

  10. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Pieter S A; Goetz, Scott J, E-mail: pbeck@whrc.org [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States)

    2011-10-15

    To assess ongoing changes in high latitude vegetation productivity we compared spatiotemporal patterns in remotely sensed vegetation productivity in the tundra and boreal zones of North America and Eurasia. We compared the long-term GIMMS (Global Inventory Modeling and Mapping Studies) NDVI (Normalized Difference Vegetation Index) to the more recent and advanced MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI data set, and mapped circumpolar trends in a gross productivity metric derived from the former. We then analyzed how temporal changes in productivity differed along an evergreen-deciduous gradient in boreal Alaska, along a shrub cover gradient in Arctic Alaska, and during succession after fire in boreal North America and northern Eurasia. We find that the earlier reported contrast between trends of increasing tundra and decreasing boreal forest productivity has amplified in recent years, particularly in North America. Decreases in boreal forest productivity are most prominent in areas of denser tree cover and, particularly in Alaska, evergreen forest stands. On the North Slope of Alaska, however, increases in tundra productivity do not appear restricted to areas of higher shrub cover, which suggests enhanced productivity across functional vegetation types. Differences in the recovery of post-disturbance vegetation productivity between North America and Eurasia are described using burn chronosequences, and the potential factors driving regional differences are discussed.

  11. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences

    International Nuclear Information System (INIS)

    Beck, Pieter S A; Goetz, Scott J

    2011-01-01

    To assess ongoing changes in high latitude vegetation productivity we compared spatiotemporal patterns in remotely sensed vegetation productivity in the tundra and boreal zones of North America and Eurasia. We compared the long-term GIMMS (Global Inventory Modeling and Mapping Studies) NDVI (Normalized Difference Vegetation Index) to the more recent and advanced MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI data set, and mapped circumpolar trends in a gross productivity metric derived from the former. We then analyzed how temporal changes in productivity differed along an evergreen-deciduous gradient in boreal Alaska, along a shrub cover gradient in Arctic Alaska, and during succession after fire in boreal North America and northern Eurasia. We find that the earlier reported contrast between trends of increasing tundra and decreasing boreal forest productivity has amplified in recent years, particularly in North America. Decreases in boreal forest productivity are most prominent in areas of denser tree cover and, particularly in Alaska, evergreen forest stands. On the North Slope of Alaska, however, increases in tundra productivity do not appear restricted to areas of higher shrub cover, which suggests enhanced productivity across functional vegetation types. Differences in the recovery of post-disturbance vegetation productivity between North America and Eurasia are described using burn chronosequences, and the potential factors driving regional differences are discussed.

  12. Experimental and theoretical study of the influence of water on hydrolyzed product formation during the feruloylation of vegetable oil.

    Science.gov (United States)

    Compton, David L; Evans, Kervin O; Appell, Michael

    2017-07-01

    Feruloylated vegetable oil is a valuable green bioproduct that has several cosmeceutical applications associated with its inherent anti-oxidant and ultraviolet-absorption properties. Hydrolyzed vegetable oil by-products can influence product quality and consistency. The formation of by-products by residual water in the enzymatic synthesis of feruloylated vegetable oil was investigated using chemical theory and experimental studies by monitoring the reaction over a 22-day period. The hydrolysis of vegetable oil is thermodynamically favored over the hydrolysis of the ethyl ferulate starting material. These results suggest that hydrolyzed vegetable oil products will be experimentally observed in greater concentrations compared to hydrolyzed ethyl ferulate products. Quantum chemical studies identified several reaction mechanisms that explain the formation of side products by water, suggesting that residual water influences product quality. Efforts to reduce residual water can improve product consistency and reduce purification costs. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  13. The influence of animal fat replacement with vegetable oils on sensorial perception of meat emulsified products

    Directory of Open Access Journals (Sweden)

    Cristian TUDOSE

    2014-12-01

    Full Text Available For the purpose of the present study, in an emulsified meat product the pork backfat was replaced with a vegetable oil pre-emulsion and its effect on quality attributes were investigated. In order to do so, a classic and a new meat products were manufactured. Extra virgin olive oil and palm oil pre-emulsion were added instead of animal fat in the new product. Texture and physiochemical properties were analyzed by instrumental measurements. It was observed that during storage moisture and pH decreased. Using vegetable oils determined substantial increase of TBA values. Texture was influenced mainly by storage time for both products, while replacement of pork backfat with vegetable oil pre-emulsion had no influence on sample firmness. The sensory properties of meat products were evaluated by a group of trained panelists using an analitycal sensory evaluation technique. Overall the new product presented good acceptability which recommends it like a new healthier meat product.

  14. Modeling Agricultural Crop Production in China using AVHRR-based Vegetation Health Indices

    Science.gov (United States)

    Yang, B.; Kogan, F.; Guo, W.; Zhiyuan, P.; Xianfeng, J.

    Weather related crop losses have always been a concern for farmers On a wider scale it has always influenced decision of Governments traders and other policy makers for the purpose of balanced food supplies trade and distribution of aid to the nations in need Therefore national policy and decision makers are giving increasing importance to early assessment of crop losses in response to weather fluctuations This presentation emphasizes utility of AVHRR-based Vegetation health index VHI for early warning of drought-related losses of agricultural production in China The VHI is a three-channel index characterizing greenness vigor and temperature of land surface which can be used as proxy for estimation of how healthy and potentially productive could be vegetation China is the largest in the world producer of grain including wheat and rice and cotton In the major agricultural areas China s crop production is very dependent on weather The VHI being a proxy indicator of weather impact on vegetation showed some correlation with productivity of agricultural crops during the critical period of their development The periods of the strongest correlation were investigated and used to build regression models where crop yield deviation from technological trend was accepted as a dependent and VHI as independent variables The models were developed for several major crops including wheat corn and soybeans

  15. Vegetable Cultivation Hydroponics System In Community Economic Zone KEM Kanagarian Tikalak Subdistrict X Koto Singkarak Districts Solok

    Directory of Open Access Journals (Sweden)

    I Ketut Budaraga

    2017-05-01

    Full Text Available Current conditions especially in urban agricultural land is getting narrower due to the rapid development. If left untreated it can lead to food security and environmental problems. One solution to allow the fulfillment of foodstuffs such as vegetables can be fulfilled for the people to exploit the potential of the narrow yard with continuous production of hydroponic systems. Interest dedication to the community to find ways to introduce a hydroponic vegetable crops that can supplement the family income of farmers. Benefits of the service is expected to increase peoples income and the public generally in Community Economic Zone KEM Kanagarian Tikalak in particular and can provide lucrative benefits for the environment. Devotion execution method implemented by a lecture and demonstration. The materials used such as husks seeds of vegetables kale collards caisin hydroponic media such as slug biogas rope bamboo to place the plants grow. The results of this activity the community has been able to make a hydroponic vegetable cultivation system and has been applied to plant vegetables such as kale collards and caisin.

  16. Rangelands Vegetation under Different Management Systems and Growth Stages in North Darfur State, Sudan (Range Attributes

    Directory of Open Access Journals (Sweden)

    Mohamed AAMA Mohamed

    2014-09-01

    Full Text Available This study was conducted at Um Kaddada, North Darfur State, Sudan, at two sites (closed and open for two consecutive seasons 2008 and 2009 during flowering and seed setting stages to evaluate range attributes at the locality. A split plot design was used to study vegetation attributes. Factors studied were management systems (closed and open and growth stages (flowering and seed setting. Vegetation cover, plant density, carrying capacity, and biomass production were assessed. Chemical analyses were done for selected plants to determine their nutritive values. The results showed high significant differences in vegetation attributes (density, cover and biomass production between closed and open areas. Closed areas had higher carrying capacity compared to open rangelands. Crude protein (CP and ash contents of range vegetation were found to decrease while Crude fiber (CF and Dry matter yield (DM had increased with growth. The study concluded that closed rangelands are better than open rangelands because it fenced and protected. Erosion index and vegetation degradation rate were very high. Future research work is needed to assess rangelands characteristics and habitat condition across different ecological zones in North Darfur State, Sudan.DOI: http://dx.doi.org/10.3126/ije.v3i3.11093 International Journal of Environment Vol.3(3 2014: 332-343

  17. Role of submerged vegetation in the retention processes of three plant protection products in flow-through stream mesocosms.

    Science.gov (United States)

    Stang, Christoph; Wieczorek, Matthias Valentin; Noss, Christian; Lorke, Andreas; Scherr, Frank; Goerlitz, Gerhard; Schulz, Ralf

    2014-07-01

    Quantitative information on the processes leading to the retention of plant protection products (PPPs) in surface waters is not available, particularly for flow-through systems. The influence of aquatic vegetation on the hydraulic- and sorption-mediated mitigation processes of three PPPs (triflumuron, pencycuron, and penflufen; logKOW 3.3-4.9) in 45-m slow-flowing stream mesocosms was investigated. Peak reductions were 35-38% in an unvegetated stream mesocosm, 60-62% in a sparsely vegetated stream mesocosm (13% coverage with Elodea nuttallii), and in a similar range of 57-69% in a densely vegetated stream mesocosm (100% coverage). Between 89% and 93% of the measured total peak reductions in the sparsely vegetated stream can be explained by an increase of vegetation-induced dispersion (estimated with the one-dimensional solute transport model OTIS), while 7-11% of the peak reduction can be attributed to sorption processes. However, dispersion contributed only 59-71% of the peak reductions in the densely vegetated stream mesocosm, where 29% to 41% of the total peak reductions can be attributed to sorption processes. In the densely vegetated stream, 8-27% of the applied PPPs, depending on the logKOW values of the compounds, were temporarily retained by macrophytes. Increasing PPP recoveries in the aqueous phase were accompanied by a decrease of PPP concentrations in macrophytes indicating kinetic desorption over time. This is the first study to provide quantitative data on how the interaction of dispersion and sorption, driven by aquatic macrophytes, influences the mitigation of PPP concentrations in flowing vegetated stream systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Accounting for co-products in energy use, greenhouse gas emission savings and land use of biodiesel production from vegetable oils

    NARCIS (Netherlands)

    Corré, W.J.; Conijn, J.G.; Meesters, K.P.H.; Bos, H.L.

    2016-01-01

    Accounting for co-products of vegetable oil production is essential in reviewing the sustainability of biodiesel production, especially since oil crops produce valuable protein-rich co-products in different quantities and qualities. Two accounting methods, allocation on the basis of energy

  19. Effective ways of decrease in the maintenance of heavy metals in soils and vegetative production

    International Nuclear Information System (INIS)

    Komarova, N.A.; Komarov, V.I.; Grishina, A.V.; Akanova, N.I.

    2008-01-01

    Receptions detoxication of heavy metals and reception vegetative production adequating to sanitary-and-hygienic norms are developed and scientifically proved. Correlation dependence between pH, concentration of heavy metals in vegetative production and level of productivity of agricultural crops is established. The most essential factor reducing till 8-10 of time receipt in plants Cu, Cd, Zn and Pb, level of reaction of environment in soil is. Dynamics of migration of heavy metals from the soil polluted water-soluble form of heavy metals is investigated

  20. Spatial and Temporal Variation in Primary Productivity (NDVI) of Coastal Alaskan Tundra: Decreased Vegetation Growth Following Earlier Snowmelt

    Science.gov (United States)

    Gamon, John A.; Huemmrich, K. Fred; Stone, Robert S.; Tweedie, Craig E.

    2015-01-01

    In the Arctic, earlier snowmelt and longer growing seasons due to warming have been hypothesized to increase vegetation productivity. Using the Normalized Difference Vegetation Index (NDVI) from both field and satellite measurements as an indicator of vegetation phenology and productivity, we monitored spatial and temporal patterns of vegetation growth for a coastal wet sedge tundra site near Barrow, Alaska over three growing seasons (2000-2002). Contrary to expectation, earlier snowmelt did not lead to increased productivity. Instead, productivity was associated primarily with precipitation and soil moisture, and secondarily with growing degree days, which, during this period, led to reduced growth in years with earlier snowmelt. Additional moisture effects on productivity and species distribution, operating over a longer time scale, were evident in spatial NDVI patterns associated with microtopography. Lower, wetter regions dominated by graminoids were more productive than higher, drier locations having a higher percentage of lichens and mosses, despite the earlier snowmelt at the more elevated sites. These results call into question the oft-stated hypothesis that earlier arctic growing seasons will lead to greater vegetation productivity. Rather, they agree with an emerging body of evidence from recent field studies indicating that early-season, local environmental conditions, notably moisture and temperature, are primary factors determining arctic vegetation productivity. For this coastal arctic site, early growing season conditions are strongly influenced by microtopography, hydrology, and regional sea ice dynamics, and may not be easily predicted from snowmelt date or seasonal average air temperatures alone. Our comparison of field to satellite NDVI also highlights the value of in-situ monitoring of actual vegetation responses using field optical sampling to obtain detailed information on surface conditions not possible from satellite observations alone.

  1. Effects of Freeze-Dried Vegetable Products on the Technological Process and the Quality of Dry Fermented Sausages.

    Science.gov (United States)

    Eisinaite, Viktorija; Vinauskiene, Rimante; Viskelis, Pranas; Leskauskaite, Daiva

    2016-09-01

    The aim of this study was to compare the chemical composition of freeze-dried vegetable powders: celery, celery juice, parsnip and leek. The effect of different freeze-dried vegetables onto the ripening process and the properties of dry fermented sausages was also evaluated. Vegetable products significantly (p products contained higher amounts of nitrates, total phenolic compounds and lower amounts of sucrose, parsnip had higher concentration of proteins, leek was rich in fat. The analysis of pH, water activity, lactic acid bacteria, coagulase-positive staphylococci and coliforms content showed that the incorporation of freeze-dried vegetables had no negative effect on the fermentation and ripening process of dry fermented sausages. In addition, the color parameters for sausages with the added lyophilised celery products were considerable (p products and control. Freeze-dried celery, celery juice, parsnip and leek have some potential for the usage as a functional ingredient or as a source for indirect addition of nitrate in the production of fermented sausages. © 2016 Institute of Food Technologists®

  2. Vegetable Cultivation Hydroponics System In Community Economic Zone KEM Kanagarian Tikalak Subdistrict X Koto Singkarak Districts Solok

    OpenAIRE

    I Ketut Budaraga; Ramaiyulis; Ellyza nurdin

    2017-01-01

    Current conditions especially in urban agricultural land is getting narrower due to the rapid development. If left untreated it can lead to food security and environmental problems. One solution to allow the fulfillment of foodstuffs such as vegetables can be fulfilled for the people to exploit the potential of the narrow yard with continuous production of hydroponic systems. Interest dedication to the community to find ways to introduce a hydroponic vegetable crops that can supplement the fa...

  3. Plant-based fertilizers for organic vegetable production

    DEFF Research Database (Denmark)

    Sørensen, Jørn Nygaard; Thorup-Kristensen, Kristian

    2011-01-01

    To ensure high yield and quality in organic vegetable production, crops often require additional fertilizer applied during the season. Due to the risk of contamination of edible plant products from slurry, plant-based fertilizers may be used as an alternative. The purpose of our work was to develop...... fertility, the term “mobile green manures” is used for green-manure crops that are harvested in one field and then moved as a whole and used as fertilizer in other fields. To further investigate mobile-green-manure crops for use as efficient fertilizers, pot and field experiments were conducted...... with cauliflower (Brassica oleracea botrytis) and kale (Brassica oleracea sabellica) supplied with organic matter consisting of a wide range of plant species with varying nutrient concentrations. Further, field experiments were conducted with leek (Allium porrum) and celery (Apium graveolens dulce) supplied...

  4. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Vegetation Health and Drought Products (VHDP) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The VIIRS Vegetation Health and Drought Products (VHDP) from NDE algorithm provides weekly estimates of the Vegetation Condition Index (VCI), Temperature Condition...

  5. Forest Vegetation Simulator translocation techniques with the Bureau of Land Management's Forest Vegetation Information system database

    Science.gov (United States)

    Timothy A. Bottomley

    2008-01-01

    The BLM uses a database, called the Forest Vegetation Information System (FORVIS), to store, retrieve, and analyze forest resource information on a majority of their forested lands. FORVIS also has the capability of easily transferring appropriate data electronically into Forest Vegetation Simulator (FVS) for simulation runs. Only minor additional data inputs or...

  6. Exploring options for sustainable farming systems development for vegetable family farmers in Uruguay using a modeling toolkit

    NARCIS (Netherlands)

    Casagrande, M.; Dogliotti, S.; Groot, J.C.J.; Aguerre, V.; Abbas, A.; Albin, A.; Claassen, G.D.H.; Chilibroste, P.; Rossing, W.A.H.

    2010-01-01

    Economic and environmental sustainability of family-based vegetable production systems in south Uruguay are seriously compromised after two decades of net decreasing prices and strategies based on specialization and intensification. This paper presents a model-based exploration of alternative

  7. Functional Trait Changes, Productivity Shifts and Vegetation Stability in Mountain Grasslands during a Short-Term Warming.

    Science.gov (United States)

    Debouk, Haifa; de Bello, Francesco; Sebastià, Maria-Teresa

    2015-01-01

    Plant functional traits underlie vegetation responses to environmental changes such as global warming, and consequently influence ecosystem processes. While most of the existing studies focus on the effect of warming only on species diversity and productivity, we further investigated (i) how the structure of community plant functional traits in temperate grasslands respond to experimental warming, and (ii) whether species and functional diversity contribute to a greater stability of grasslands, in terms of vegetation composition and productivity. Intact vegetation turves were extracted from temperate subalpine grassland (highland) in the Eastern Pyrenees and transplanted into a warm continental, experimental site in Lleida, in Western Catalonia (lowland). The impacts of simulated warming on plant production and diversity, functional trait structure, and vegetation compositional stability were assessed. We observed an increase in biomass and a reduction in species and functional diversity under short-term warming. The functional structure of the grassland communities changed significantly, in terms of functional diversity and community-weighted means (CWM) for several traits. Acquisitive and fast-growing species with higher SLA, early flowering, erect growth habit, and rhizomatous strategy became dominant in the lowland. Productivity was significantly positively related to species, and to a lower extent, functional diversity, but productivity and stability after warming were more dependent on trait composition (CWM) than on diversity. The turves with more acquisitive species before warming changed less in composition after warming. Results suggest that (i) the short-term warming can lead to the dominance of acquisitive fast growing species over conservative species, thus reducing species richness, and (ii) the functional traits structure in grassland communities had a greater influence on the productivity and stability of the community under short-term warming

  8. Functional Trait Changes, Productivity Shifts and Vegetation Stability in Mountain Grasslands during a Short-Term Warming.

    Directory of Open Access Journals (Sweden)

    Haifa Debouk

    Full Text Available Plant functional traits underlie vegetation responses to environmental changes such as global warming, and consequently influence ecosystem processes. While most of the existing studies focus on the effect of warming only on species diversity and productivity, we further investigated (i how the structure of community plant functional traits in temperate grasslands respond to experimental warming, and (ii whether species and functional diversity contribute to a greater stability of grasslands, in terms of vegetation composition and productivity. Intact vegetation turves were extracted from temperate subalpine grassland (highland in the Eastern Pyrenees and transplanted into a warm continental, experimental site in Lleida, in Western Catalonia (lowland. The impacts of simulated warming on plant production and diversity, functional trait structure, and vegetation compositional stability were assessed. We observed an increase in biomass and a reduction in species and functional diversity under short-term warming. The functional structure of the grassland communities changed significantly, in terms of functional diversity and community-weighted means (CWM for several traits. Acquisitive and fast-growing species with higher SLA, early flowering, erect growth habit, and rhizomatous strategy became dominant in the lowland. Productivity was significantly positively related to species, and to a lower extent, functional diversity, but productivity and stability after warming were more dependent on trait composition (CWM than on diversity. The turves with more acquisitive species before warming changed less in composition after warming. Results suggest that (i the short-term warming can lead to the dominance of acquisitive fast growing species over conservative species, thus reducing species richness, and (ii the functional traits structure in grassland communities had a greater influence on the productivity and stability of the community under short

  9. Vegetative biomass predicts inflorescence production along a CO2 concentration gradient in mesic grassland

    Science.gov (United States)

    Fay, P. A.; Collins, H.; Polley, W.

    2016-12-01

    Atmospheric CO2 concentration will likely exceed 500 µL L-1 by 2050, often increasing plant community productivity in part by increasing abundance of species favored by increased CA . Whether increased abundance translates to increased inflorescence production is poorly understood, and is important because it indicates the potential effects of CO2 enrichment on genetic variability and the potential for evolutionary change in future generations. We examined whether the responses of inflorescence production to CO2 enrichment in four C4 grasses and a C3 forb were predicted their vegetative biomass, and by soil moisture, soil nitrogen, or light availability. Inflorescence production was studied in a long-term CO2 concentration gradient spanning pre-industrial to anticipated mid-21st century values (250 - 500 µL L-1) maintained on clay, silty clay and sandy loam soils common in the U.S. Southern Plains. We expected that CO2 enrichment would increase inflorescence production, and more so with higher water, nitrogen, or light availability. However, structural equation modeling revealed that vegetative biomass was the single consistent direct predictor of flowering for all species (p grass) and Solidago canadensis (C3 forb), direct CO2 effects on flowering were only weakly mediated by indirect effects of soil water content and soil NO3-N availability. For the decreasing species (Bouteloua curtipendula, C4 grass), the negative CO2-flowering relationship was cancelled (p = 0.39) by indirect effects of increased SWC and NO3-N on clay and silty clay soils. For the species with no CO2 response, inflorescence production was predicted only by direct water content (p grass) or vegetative biomass (p = 0.0009, Tridens albescens, C4 grass) effects. Light availability was unrelated to inflorescence production. Changes in inflorescence production are thus closely tied to direct and indirect effects of CO2 enrichment on vegetative biomass, and may either increase, decrease, or leave

  10. Assessing the relationship between microwave vegetation optical depth and gross primary production

    Science.gov (United States)

    Teubner, Irene E.; Forkel, Matthias; Jung, Martin; Liu, Yi Y.; Miralles, Diego G.; Parinussa, Robert; van der Schalie, Robin; Vreugdenhil, Mariette; Schwalm, Christopher R.; Tramontana, Gianluca; Camps-Valls, Gustau; Dorigo, Wouter A.

    2018-03-01

    At the global scale, the uptake of atmospheric carbon dioxide by terrestrial ecosystems through photosynthesis is commonly estimated through vegetation indices or biophysical properties derived from optical remote sensing data. Microwave observations of vegetated areas are sensitive to different components of the vegetation layer than observations in the optical domain and may therefore provide complementary information on the vegetation state, which may be used in the estimation of Gross Primary Production (GPP). However, the relation between GPP and Vegetation Optical Depth (VOD), a biophysical quantity derived from microwave observations, is not yet known. This study aims to explore the relationship between VOD and GPP. VOD data were taken from different frequencies (L-, C-, and X-band) and from both active and passive microwave sensors, including the Advanced Scatterometer (ASCAT), the Soil Moisture Ocean Salinity (SMOS) mission, the Advanced Microwave Scanning Radiometer for Earth Observation System (AMSR-E) and a merged VOD data set from various passive microwave sensors. VOD data were compared against FLUXCOM GPP and Solar-Induced chlorophyll Fluorescence (SIF) from the Global Ozone Monitoring Experiment-2 (GOME-2). FLUXCOM GPP estimates are based on the upscaling of flux tower GPP observations using optical satellite data, while SIF observations present a measure of photosynthetic activity and are often used as a proxy for GPP. For relating VOD to GPP, three variables were analyzed: original VOD time series, temporal changes in VOD (ΔVOD), and positive changes in VOD (ΔVOD≥0). Results show widespread positive correlations between VOD and GPP with some negative correlations mainly occurring in dry and wet regions for active and passive VOD, respectively. Correlations between VOD and GPP were similar or higher than between VOD and SIF. When comparing the three variables for relating VOD to GPP, correlations with GPP were higher for the original VOD time

  11. COMPETITIVE PRESSURE AND PRODUCTIVITY GROWTH: THE CASE OF THE FLORIDA VEGETABLE INDUSTRY

    OpenAIRE

    Kalaitzandonakes, Nicholas G.; Taylor, Timothy G.

    1990-01-01

    The relationship between the degree of competitive market pressure and the rate of productivity growth is empirically investigated with a case study of the Florida fresh winter vegetable industry. The results indicate that crops which faced considerable competitive pressure exhibited significant productivity growth while the crops that faced minimal competitive pressure generally exhibited little growth in productivity. Thus, the hypothesis that competitive pressure is positively related to p...

  12. Transitions in high-Arctic vegetation growth patterns and ecosystem productivity tracked with automated cameras from 2000 to 2013

    DEFF Research Database (Denmark)

    Westergaard-Nielsen, Andreas; Lund, Magnus; Pedersen, Stine Højlund

    2017-01-01

    Climate-induced changes in vegetation phenology at northern latitudes are still poorly understood. Continued monitoring and research are therefore needed to improve the understanding of abiotic drivers. Here we used 14 years of time lapse imagery and climate data from high-Arctic Northeast...... days, resulting in an unchanged growing season length. Vegetation greenness, derived from the imagery, was correlated to primary productivity, showing that the imagery holds valuable information on vegetation productivity....

  13. The Impact of the Rise in Vegetable Prices on Vegetable Producer Behavior–Based on the survey of vegetable producers in Jiayu, Hubei Province

    Directory of Open Access Journals (Sweden)

    Liu Pan

    2015-01-01

    Full Text Available In order to study the impact of the rise in prices of vegetables on vegetable producers, and to increase the revenue of vegetable producers, this paper does a survey by anonymous sampling questionnaire. Results shows that: most vegetable growers think that vegetable prices should rise and would continue to rise, and that vegetable prices would increase their revenue, thus in the coming year they would expand the planting scale of vegetable variety whose increase rate is the largest in this year. But because of the increase of logistics costs and production costs, some farmers benefit very little from the rising trend of vegetable prices. Most farmers expect too much in the trend estimation of the prices of vegetables and also lack of planning and forward-looking in production, thus the planting area of single variety is often decided by the market of previous year. According to analysis of the impact of the rise in vegetable prices on vegetable producer behavior, this paper gives the following suggestions to increase revenue of vegetable producers: change the mode of thinking, improve rural information platform, and increase capital investment for vegetable production base.

  14. Machine Vision-Based Measurement Systems for Fruit and Vegetable Quality Control in Postharvest.

    Science.gov (United States)

    Blasco, José; Munera, Sandra; Aleixos, Nuria; Cubero, Sergio; Molto, Enrique

    Individual items of any agricultural commodity are different from each other in terms of colour, shape or size. Furthermore, as they are living thing, they change their quality attributes over time, thereby making the development of accurate automatic inspection machines a challenging task. Machine vision-based systems and new optical technologies make it feasible to create non-destructive control and monitoring tools for quality assessment to ensure adequate accomplishment of food standards. Such systems are much faster than any manual non-destructive examination of fruit and vegetable quality, thus allowing the whole production to be inspected with objective and repeatable criteria. Moreover, current technology makes it possible to inspect the fruit in spectral ranges beyond the sensibility of the human eye, for instance in the ultraviolet and near-infrared regions. Machine vision-based applications require the use of multiple technologies and knowledge, ranging from those related to image acquisition (illumination, cameras, etc.) to the development of algorithms for spectral image analysis. Machine vision-based systems for inspecting fruit and vegetables are targeted towards different purposes, from in-line sorting into commercial categories to the detection of contaminants or the distribution of specific chemical compounds on the product's surface. This chapter summarises the current state of the art in these techniques, starting with systems based on colour images for the inspection of conventional colour, shape or external defects and then goes on to consider recent developments in spectral image analysis for internal quality assessment or contaminant detection.

  15. Improving dynamic global vegetation model (DGVM) simulation of western U.S. rangelands vegetation seasonal phenology and productivity

    Science.gov (United States)

    Kerns, B. K.; Kim, J. B.; Day, M. A.; Pitts, B.; Drapek, R. J.

    2017-12-01

    Ecosystem process models are increasingly being used in regional assessments to explore potential changes in future vegetation and NPP due to climate change. We use the dynamic global vegetation model MAPSS-Century 2 (MC2) as one line of evidence for regional climate change vulnerability assessments for the US Forest Service, focusing our fine tuning model calibration from observational sources related to forest vegetation. However, there is much interest in understanding projected changes for arid rangelands in the western US such as grasslands, shrublands, and woodlands. Rangelands provide many ecosystem service benefits and local rural human community sustainability, habitat for threatened and endangered species, and are threatened by annual grass invasion. Past work suggested MC2 performance related to arid rangeland plant functional types (PFT's) was poor, and the model has difficulty distinguishing annual versus perennial grasslands. Our objectives are to increase the model performance for rangeland simulations and explore the potential for splitting the grass plant functional type into annual and perennial. We used the tri-state Blue Mountain Ecoregion as our study area and maps of potential vegetation from interpolated ground data, the National Land Cover Data Database, and ancillary NPP data derived from the MODIS satellite. MC2 historical simulations for the area overestimated woodland occurrence and underestimated shrubland and grassland PFT's. The spatial location of the rangeland PFT's also often did not align well with observational data. While some disagreement may be due to differences in the respective classification rules, the errors are largely linked to MC2's tree and grass biogeography and physiology algorithms. Presently, only grass and forest productivity measures and carbon stocks are used to distinguish PFT's. MC2 grass and tree productivity simulation is problematic, in particular grass seasonal phenology in relation to seasonal patterns

  16. Annual Gross Primary Production from Vegetation Indices: A Theoretically Sound Approach

    Directory of Open Access Journals (Sweden)

    María Amparo Gilabert

    2017-02-01

    Full Text Available A linear relationship between the annual gross primary production (GPP and a PAR-weighted vegetation index is theoretically derived from the Monteith equation. A semi-empirical model is then proposed to estimate the annual GPP from commonly available vegetation indices images and a representative PAR, which does not require actual meteorological data. A cross validation procedure is used to calibrate and validate the model predictions against reference data. As the calibration/validation process depends on the reference GPP product, the higher the quality of the reference GPP, the better the performance of the semi-empirical model. The annual GPP has been estimated at 1-km scale from MODIS NDVI and EVI images for eight years. Two reference data sets have been used: an optimized GPP product for the study area previously obtained and the MOD17A3 product. Different statistics show a good agreement between the estimates and the reference GPP data, with correlation coefficient around 0.9 and relative RMSE around 20%. The annual GPP is overestimated in semiarid areas and slightly underestimated in dense forest areas. With the above limitations, the model provides an excellent compromise between simplicity and accuracy for the calculation of long time series of annual GPP.

  17. Catalytic cracking of vegetable oil with metal oxides for biofuel production

    International Nuclear Information System (INIS)

    Yigezu, Zerihun Demrew; Muthukumar, Karuppan

    2014-01-01

    Highlights: • Biofuel was synthesized from vegetable oil by catalytic cracking. • Performance of six different metal catalysts was studied. • Influence of temperature and reaction time on the process was evaluated. • Methyl and ethyl esters are the major components of the biofuel synthesized. - Abstract: This study presents the utilization of metal oxides for the biofuel production from vegetable oil. The physical and chemical properties of the diesel-like products obtained, and the influence of reaction variables on the product distribution were investigated. Six different metal oxides (Co 3 O 4 , KOH, MoO 3 , NiO, V 2 O 5 , and ZnO) were employed as catalysts and the results indicated that the metal oxides are suitable for catalyzing the conversion of oil into organic liquid products (OLPs). The maximum conversion (87.6%) was obtained with V 2 O 5 at 320 °C in 40 min whereas a minimum conversion (55.1%) was obtained with MoO 3 at 390 °C in 30 min. The physical characteristics of the product obtained (density, specific gravity, higher heat value, flash point and kinematic viscosity), were in line with ASTM D6751 (B100) standards. The hydrocarbons majorly present in the product were found to be methyl and ethyl esters. Furthermore, OLPs obtained were distilled and separated into four components. The amount of light hydrocarbons, gasoline, kerosene and heavy oil like components obtained were 18.73%, 33.62%, 24.91% and 90.93%, respectively

  18. Vegetation-climate feedback causes reduced precipitation in CMIP5 regional Earth system model simulation over Africa

    Science.gov (United States)

    Wu, Minchao; Smith, Benjamin; Schurgers, Guy; Lindström, Joe; Rummukainen, Markku; Samuelsson, Patrick

    2013-04-01

    Terrestrial ecosystems have been demonstrated to play a significant role within the climate system, amplifying or dampening climate change via biogeophysical and biogeochemical exchange with the atmosphere and vice versa (Cox et al. 2000; Betts et al. 2004). Africa is particularly vulnerable to climate change and studies of vegetation-climate feedback mechanisms on Africa are still limited. Our study is the first application of A coupled Earth system model at regional scale and resolution over Africa. We applied a coupled regional climate-vegetation model, RCA-GUESS (Smith et al. 2011), over the CORDEX Africa domain, forced by boundary conditions from a CanESM2 CMIP5 simulation under the RCP8.5 future climate scenario. The simulations were from 1961 to 2100 and covered the African continent at a horizontal grid spacing of 0.44°. RCA-GUESS simulates changes in the phenology, productivity, relative cover and population structure of up to eight plant function types (PFTs) in response to forcing from the climate part of the model. These vegetation changes feedback to simulated climate through dynamic adjustments in surface energy fluxes and surface properties. Changes in the net ecosystem-atmosphere carbon flux and its components net primary production (NPP), heterotrophic respiration and emissions from biomass burning were also simulated but do not feedback to climate in our model. Constant land cover was assumed. We compared simulations with and without vegetation feedback switched "on" to assess the influence of vegetation-climate feedback on simulated climate, vegetation and ecosystem carbon cycling. Both positive and negative warming feedbacks were identified in different parts of Africa. In the Sahel savannah zone near 15°N, reduced vegetation cover and productivity, and mortality caused by a deterioration of soil water conditions led to a positive warming feedback mediated by decreased evapotranspiration and increased sensible heat flux between vegetation and

  19. Effect of Pulp mill sludge on soil characteristics, microbial diversity and vegetal production of Lollium perene

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, F.; Cea, M.; Diez, M. C.

    2009-07-01

    The Chemical properties of the sludge (High organic matter content, pH, buffer capacity, nitrogen and phosphorous level, and low concentration of trace heavy metals and organic pollutants) suggest that this material may represent a valuable resource as soil amendment, improving soil characteristics, microbial diversity and vegetal production of mill sludge addition to volcanic soil (Andisol) on soil characteristics, microbial diversity and vegetal production of Lollium perenne, in field assays. (Author)

  20. Effects of gamma radiation on biomass production of ground vegetation under broadleaved forests of northern Wisconsin

    International Nuclear Information System (INIS)

    Zavitkovski, J.; Salmonson, B.J.

    1977-01-01

    Effects of gamma irradiation (10,000-Ci 137 Cs source) for one growing season on biomass production of ground vegetation under northern Wisconsin aspen and maple-aspen-birch forests and on an abandoned logging road were evaluated during and 1 year after irradiation. No significant changes in production were determined during the irradiation year. One year later three distinct zones--semidevastated, herbaceous, and original forest--developed along the radiation gradient. Biomass production under forest canopies decreased significantly in the semidevastated zone, increased significantly in the herbaceous zone (primarily responding to additional light), and remained unchanged under the original forest. Logging-road vegetation responded similarly, but the changes were restricted within higher radiation doses. At comparable levels of radiation, production of species of the logging-road vegetation was affected less than that of species under forest canopies. Such a trend was predictable from the generally smaller interphase chromosome volumes of the species on the logging road and from their ability to survive in severe habitats

  1. Controls of vegetation structure and net primary production in restored grasslands

    Science.gov (United States)

    Munson, Seth M.; Lauenroth, William K.

    2014-01-01

    1. Vegetation structure and net primary production (NPP) are fundamental properties of ecosystems. Understanding how restoration practices following disturbance interact with environmental factors to control these properties can provide insight on how ecosystems recover and guide management efforts. 2. We assessed the relative contribution of environmental and restoration factors in controlling vegetation structure, above- and below-ground investment in production across a chronosequence of semiarid Conservation Reserve Program (CRP) fields recovering from dryland wheat cropping relative to undisturbed grassland. Importantly, we determined the role of plant diversity and how seeding either native or introduced perennial grasses influenced the recovery of vegetation properties. 3. Plant basal cover increased with field age and was highest in CRP fields seeded with native perennial grasses. In contrast, fields seeded with introduced perennial grasses had tall-growing plants with relatively low basal cover. These vegetation structural characteristics interacted with precipitation, but not soil characteristics, to influence above-ground NPP (ANPP). Fields enrolled in the CRP program for >7 years supported twice as much ANPP as undisturbed shortgrass steppe in the first wet year of the study, but all CRP fields converged on a common low amount of ANPP in the following dry year and invested less than half as much as the shortgrass steppe in below-ground biomass. 4. ANPP in CRP fields seeded with native perennial grasses for more than 7 years was positively related to species richness, whereas ANPP in CRP fields seeded with introduced perennial grasses were controlled more by dominant species. 5. Synthesis and applications. Seeding with introduced, instead of native, perennial grasses had a strong direct influence on vegetation structure, including species richness, which indirectly affected NPP through time. However, the effects of restoring either native or introduced

  2. The need for integration in the supply chain of vegetable production

    DEFF Research Database (Denmark)

    Deleuran, Lise Christina; Jelsøe, Erling; Boelt, Birte

    2008-01-01

    of quality seed. Quality seed also creates the base for quality products which is of increasing interest for the conscious consumers. In all, varying reasons for looking further into how supply chains function. The supply chain within vegetables is represented by seed producers, seed companies, salad...

  3. Assessment of vegetable production practices in Qwaqwa within ...

    African Journals Online (AJOL)

    In this study, the information such as biographical information of the vegetable farmers, information about the vegetable gardens or farms, the current vegetable farming practices, irrigation practices on the vegetable soil and the farmers' physical and financial records were assessed. The assessment was conducted through ...

  4. Vegetation responses to sagebrush-reduction treatments measured by satellites

    Science.gov (United States)

    Johnston, Aaron; Beever, Erik; Merkle, Jerod A.; Chong, Geneva W.

    2018-01-01

    Time series of vegetative indices derived from satellite imagery constitute tools to measure ecological effects of natural and management-induced disturbances to ecosystems. Over the past century, sagebrush-reduction treatments have been applied widely throughout western North America to increase herbaceous vegetation for livestock and wildlife. We used indices from satellite imagery to 1) quantify effects of prescribed-fire, herbicide, and mechanical treatments on vegetative cover, productivity, and phenology, and 2) describe how vegetation changed over time following these treatments. We hypothesized that treatments would increase herbaceous cover and accordingly shift phenologies towards those typical of grass-dominated systems. We expected prescribed burns would lead to the greatest and most-prolonged effects on vegetative cover and phenology, followed by herbicide and mechanical treatments. Treatments appeared to increase herbaceous cover and productivity, which coincided with signs of earlier senescence − signals expected of grass-dominated systems, relative to sagebrush-dominated systems. Spatial heterogeneity for most phenometrics was lower in treated areas relative to controls, which suggested treatment-induced homogenization of vegetative communities. Phenometrics that explain spring migrations of ungulates mostly were unaffected by sagebrush treatments. Fire had the strongest effect on vegetative cover, and yielded the least evidence for sagebrush recovery. Overall, treatment effects were small relative to those reported from field-based studies for reasons most likely related to sagebrush recovery, treatment specification, and untreated patches within mosaicked treatment applications. Treatment effects were also small relative to inter-annual variation in phenology and productivity that was explained by temperature, snowpack, and growing-season precipitation. Our results indicated that cumulative NDVI, late-season phenometrics, and spatial

  5. Inter-relações entre a anatomia vegetal e a produção vegetal Interrelations between plant anatomy and plant production

    Directory of Open Access Journals (Sweden)

    Lenir Maristela Silva

    2005-03-01

    Full Text Available É realizada uma revisão de literatura que procura aproximar a anatomia vegetal do contexto da produção vegetal. O principal objetivo é o de contribuir para que o professor de Botânica possa proporcionar aos alunos dos cursos de Agronomia compreensão da diversidade da organização estrutural do vegetal.A literature revision is accomplished to approach the plant anatomy within the context of the plant production. The main objective is to contribute so that the Botany teacher will be able to make it provide for the students of the Agronomy courses to understand the diversity of behaviors in the structural organization of the plant.

  6. The impact of the quality of coal mine stockpile soils on sustainable vegetation growth and productivity

    CSIR Research Space (South Africa)

    Mushia, NM

    2016-06-01

    Full Text Available , chemical, and biological properties, limiting their capability for sustainable vegetation growth. The aim of the study was to evaluate the impact of stockpile soils of differing depth and quality on vegetation growth and productivity. Soils were collected...

  7. CONTRIBUTION OF URBAN VEGETABLE PRODUCTION TO FARMERS' LIVELIHOOD: A CASE OF THE KUMASI METROPOLIS OF ASHANTI REGION OF GHANA

    Directory of Open Access Journals (Sweden)

    Solomon Kodjo DARKEY

    2014-04-01

    Full Text Available The number of urban poor is rapidly increasing as urban population grows. Urban vegetable production is therefore a response to the available market demand and the challenges of unemployment and food insecurity resulting from the urbanisation. The study examined the contribution of urban vegetable production to farmers’ livelihoods in the Kumasi Metropolis of Ashanti Region of Ghana. Descriptive survey design was used for the study. Based on a simple random sampling technique, 300 urban vegetable farmers were selected and interviewed. Cronbach alpha coefficient values showed high reliability and consistency of the farmers’ livelihood subscales. The study that the contribution of urban vegetable production to farmers’ livelihoods differed significantly regarding different livelihood subscales (ANOVA. Post-hoc multiple comparisons test (Dunnett’s T3 result revealed that the contribution of urban vegetable production to farmers’ mean livelihoods was generally ‘low’. However, it contributed ‘moderately high’ to their natural and physical capitals. The strength of association between farmers’ mean livelihood subscales also showed that urban vegetable production impacted differently and significantly on their livelihoods. It is recommended that Farmer Based Organisations (FBOs should be formed to help empower and protect farmers’ from the exploitation of prospective buyers. It would also help address common challenges confronting members including high input cost, lack of credit facilities and inadequate marketing avenues.

  8. THERMAL CALCULATION FOR THE PRODUCTION OF VEGETABLES GREENHOUSE

    Directory of Open Access Journals (Sweden)

    Ancuţa JURCO

    2013-01-01

    Full Text Available This paper presents the calculation regarding thermic transmision through the closing elements made for a greenhouse designed for salat production, pea, spinach and cabbage, D.M. greenhouse type, with medium and large openings (12...30m having a light roof with spatial structure from bars and thin walls made from galvanized steel or aluminium and designed at the Technique University from Cluj-Napoca. The greenhouse opening is 15.90 m, the total lenght is 40.50m and 669.53 sqm surface with 643.95 sqm usable area. After analyzing the thermal calculations for the production of vegetables greenhouse show that the heat losses are insignificant, advantage is given by the light roof with spatial structure from bars and thin walls made from galvanized steel or aluminium.

  9. The Rangeland Vegetation Simulator: A user-driven system for quantifying production, succession, disturbance and fuels in non-forest environments

    Science.gov (United States)

    Matt Reeves; Leonardo Frid

    2016-01-01

    Rangeland landscapes occupy roughly 662 million acres in the coterminous U.S. (Reeves and Mitchell 2011) and their vegetation responds quickly to climate and management, with high relative growth rates and inter-annual variability. Current national decision support systems in the U.S. such as the Interagency Fuels Treatment Decision Support System (IFT-DSS) require...

  10. JUSTIFICATION DIRECTIONS OF DEVELOPMENT OF VEGETABLE PRODUCTION IN DEHKAN FARMS OF THE REPUBLIC OF TAJIKISTAN

    Directory of Open Access Journals (Sweden)

    Mahira Ergasheva

    2015-09-01

    Full Text Available In article directions of development of vegetable production on the basis of an assessment of the growth dynamics of cultivated areas of vegetables in dehkan farms of the Republic of Tajikistan. In particular, factor analysis, index method, and found that the growth of the gross harvest of vegetables mainly driven by growth in acreage and yield growth, and therefore it is justified as the development direction of the necessity of transition to an additive method of management.

  11. Vegetation-climate feedback causes reduced precipitation and tropical rainforest cover in CMIP5 regional Earth system model simulation over Africa

    Science.gov (United States)

    Wu, M.; Smith, B.; Samuelsson, P.; Rummukainen, M.; Schurgers, G.

    2012-12-01

    We applied a coupled regional climate-vegetation model, RCA-GUESS (Smith et al. 2011), over the CORDEX Africa domain, forced by boundary conditions from a CanESM2 CMIP5 simulation under the RCP8.5 future climate scenario. The simulations were from 1961 to 2100 and covered the African continent at a horizontal grid spacing of 0.44°. RCA-GUESS simulates changes in the phenology, productivity, relative cover and population structure of up to eight plant function types (PFTs) in response to forcing from the climate part of the model. These vegetation changes feed back to simulated climate through dynamic adjustments in surface energy fluxes and surface properties. Changes in the net ecosystem-atmosphere carbon flux and its components net primary production (NPP), heterotrophic respiration and emissions from biomass burning were also simulated but do not feed back to climate in our model. Constant land cover was assumed. We compared simulations with and without vegetation feedback switched "on" to assess the influence of vegetation-climate feedback on simulated climate, vegetation and ecosystem carbon cycling. Both positive and negative warming feedbacks were identified in different parts of Africa. In the Sahel savannah zone near 15°N, reduced vegetation cover and productivity, and mortality caused by a deterioration of soil water conditions led to a positive warming feedback mediated by decreased evapotranspiration and increased sensible heat flux between vegetation and the atmosphere. In the equatorial rainforest stronghold region of central Africa, a feedback syndrome characterised by reduced plant production and LAI, a dominance shift from tropical trees to grasses, reduced soil water and reduced rainfall was identified. The likely underlying mechanism was a decline in evaporative water recycling associated with sparser vegetation cover, reminiscent of Earth system model studies in which a similar feedback mechanism was simulated to force dieback of tropical

  12. The Effect of Vegetation Productivity on Millet Prices in the Informal Markets of Mali, Burkina Faso and Niger

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.E. [Department of Geography, University of Maryland, NASA Goddard Space Flight Center, Code 923, Greenbelt, MD 20771 (United States); Pinzon, J.E. [Science Systems and Applications Inc., NASA Goddard Space Flight Center, Code 923, Greenbelt, MD (United States); Prince, S.D. [Department of Geography, University of Maryland, College Park, MD (United States)

    2006-09-15

    Systematic evaluation of food security throughout the Sahel has been attempted for nearly two decades. Food security analyses have used both food prices to determine the ability of the population to access food, and satellite-derived vegetation indices that measure vegetation production to establish how much food is available each year. The relationship between these two food security indicators is explored here using correspondence analysis and through the use of Markov chain models. Two sources of quantitative data were used: 8 km normalized difference vegetation index (NDVI) data from the Advanced Very High Resolution Radiometers (AVHRR) carried on the NOAA series of satellites, and monthly millet prices from 445 markets in Mali, Niger and Burkina Faso. The results show that the growing season vegetation production is related to the price of millet at the annual and the seasonal time scales. If the growing season was characterized by erratic, sparse rainfall, it resulted in higher prices, and well-distributed, abundant rainfall resulted in lower prices. The correspondence between vegetation production and millet prices is used to produce maps of millet prices for West Africa.

  13. Methanol production from Eucalyptus wood chips. Working Document 2. Vegetative propagation of Eucalypts

    Energy Technology Data Exchange (ETDEWEB)

    Fishkind, H.H.

    1982-04-01

    The feasibility of large-scale plantation establishment by various methods was examined, and the following conclusions were reached: seedling plantations are limited in potential yield due to genetic variation among the planting stock and often inadequate supplies of appropriate seed; vegetative propagation by rooted cuttings can provide good genetic uniformity of select hybrid planting stock; however, large-scale production requires establishment and maintenance of extensive cutting orchards. The collection of shoots and preparation of cuttings, although successfully implemented in the Congo and Brazil, would not be economically feasible in Florida for large-scale plantations; tissue culture propagation of select hybrid eucalypts offers the only opportunity to produce the very large number of trees required to establish the energy plantation. The cost of tissue culture propagation, although higher than seedling production, is more than off-set by the increased productivity of vegetative plantations established from select hybrid Eucalyptus.

  14. Small scale production of vegetal coal in the state of Amazonas, Brazil: legal and social-economical aspects; Producao de carvao vegetal em pequena escala no Amazonas: aspectos legais e socio-ambientais

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Roberto Ferreira de; Souza, Rubem Cesar Rodrigues de [Amazonas Univ., Manaus, AM (Brazil). Nucleo de Eficiencia Energetica (NEFEN)]. E-mail: nefen_ua@objetivomao.br

    2000-07-01

    Being a form of cheap energy, abundant and accessible, the vegetable coal is quite often used generally in the urban and rural areas in the Amazonas state, domestic and commercial use as well. Several families live of the production activity and commercialization of vegetable coal inside the State of Amazonas. However, actions of government organs of the environment area turn more and more difficult the exercise of those activities, creating a situation of clandestine production and in some cases making unfeasible the only form of subsistence of several families. Besides the legal aspect there exist the low technological level, being the production of vegetable coal done in ovens of the type 'hot tail', which cause problems for the users health. The mentioned subjects are discussed in that work based on the study accomplished at three places producing the vegetable coal in the the State of Amazonas hinter side, in the proximities of Manaus. Through the information obtained in the communities a proposal is presented for the small scale production of vegetable coal in a economical, social and environmentally self sustainable way. (author)

  15. Effect of the food production chain from farm practices to vegetable processing on outbreak incidence.

    Science.gov (United States)

    Jung, Yangjin; Jang, Hyein; Matthews, Karl R

    2014-11-01

    The popularity in the consumption of fresh and fresh-cut vegetables continues to increase globally. Fresh vegetables are an integral part of a healthy diet, providing vitamins, minerals, antioxidants and other health-promoting compounds. The diversity of fresh vegetables and packaging formats (spring mix in clamshell container, bagged heads of lettuce) support increased consumption. Unfortunately, vegetable production and processing practices are not sufficient to ensure complete microbial safety. This review highlights a few specific areas that require greater attention and research. Selected outbreaks are presented to emphasize the need for science-based 'best practices'. Laboratory and field studies have focused on inactivation of pathogens associated with manure in liquid, slurry or solid forms. As production practices change, other forms and types of soil amendments are being used more prevalently. Information regarding the microbial safety of fish emulsion and pellet form of manure is limited. The topic of global climate change is controversial, but the potential effect on agriculture cannot be ignored. Changes in temperature, precipitation, humidity and wind can impact crops and the microorganisms that are associated with production environments. Climate change could potentially enhance the ability of pathogens to survive and persist in soil, water and crops, increasing human health risks. Limited research has focused on the prevalence and behaviour of viruses in pre and post-harvest environments and on vegetable commodities. Globally, viruses are a major cause of foodborne illnesses, but are seldom tested for in soil, soil amendments, manure and crops. Greater attention must also be given to the improvement in the microbial quality of seeds used in sprout production. Human pathogens associated with seeds can result in contamination of sprouts intended for human consumption, even when all appropriate 'best practices' are used by sprout growers. © 2014 The

  16. Data-model integration to interpret connectivity between biogeochemical cycling, and vegetation phenology and productivity in mountainous ecosystems under changing hydrologic regimes

    Science.gov (United States)

    Brodie, E.; Arora, B.; Beller, H. R.; Bill, M.; Bouskill, N.; Chakraborty, R.; Conrad, M. E.; Dafflon, B.; Enquist, B. J.; Falco, N.; Henderson, A.; Karaoz, U.; Polussa, A.; Sorensen, P.; Steltzer, H.; Wainwright, H. M.; Wang, S.; Williams, K. H.; Wilmer, C.; Wu, Y.

    2017-12-01

    In mountainous systems, snow-melt is associated with a large pulse of nutrients that originates from under-snow microbial mineralization of organic matter and microbial biomass turnover. Vegetation phenology in these systems is regulated by environmental cues such as air temperature ranges and photoperiod, such that, under typical conditions, vegetation greening and nutrient uptake occur in sync with microbial biomass turnover and nutrient release, closing nutrient cycles and enhancing nutrient retention. However, early snow-melt has been observed with increasing frequency in the mountainous west and is hypothesized to disrupt coupled plant-microbial behavior, potentially resulting in a temporal discontinuity between microbial nutrient release and vegetation greening. As part of the Watershed Function Scientific Focus Area (SFA) at Berkeley Lab we are quantifying below-ground biogeochemistry and above-ground phenology and vegetation chemistry and their relationships to hydrologic events at a lower montane hillslope in the East River catchment, Crested Butte, CO. This presentation will focus on data-model integration to interpret connectivity between biogeochemical cycling of nitrogen and vegetation nitrogen demand. Initial model results suggest that early snow-melt will result in an earlier accumulation and leaching loss of nitrate from the upper soil depths but that vegetation productivity may not decline as traits such as greater rooting depth and resource allocation to stems are favored.

  17. Fruit and vegetable by-products as novel ingredients to improve the nutritional quality of baked goods.

    Science.gov (United States)

    Gómez, Manuel; Martinez, Mario M

    2017-03-31

    The industrial manufacturing of fruits and vegetables generates approximately 50% by-product waste, causing a negative environmental impact and significant expenses. Nevertheless, fruit and vegetable by-products (FVB) are rich nutrients and extranutritional compounds that contribute to bowel health, weight management, lower blood cholesterol levels and improved control of glycemic and insulin responses. Due to the positive influence of FVB fibers and bioactive compounds during the digestion of glycemic carbohydrates, such as starch, baked goods are ideal food systems to accommodate FVB, since most of them have a high glycemic index. Therefore, this is an area of recent interest with critical environmental, economic and health implications worldwide. However, the utilization of FVB in baked goods leads to the loss of acceptability, in many cases caused by a lack of understanding of the physical structure and composition of FVB and their effects on food quality. The objective of this review is to provide a mechanistic understanding of the impact of the physical structure and composition of FVB on common baked goods and their influence on the nutritional and physical quality of the resulting product. This review will support the use of FVB as ideal ingredients while improving the added value of waste streams.

  18. Identifying N fertilizer regime and vegetable production system in tropical Brazil using (15) N natural abundance.

    Science.gov (United States)

    Inácio, Caio T; Urquiaga, Segundo; Chalk, Phillip M; Mata, Maria Gabriela F; Souza, Paulo O

    2015-12-01

    This study was conducted in areas of vegetable production in tropical Brazil, with the objectives of (i) measuring the variation in δ(15)  N in soils, organic N fertilizer sources and lettuce (Lactuca sativa L.) from different farming systems, (ii) measuring whether plant δ(15)  N can differentiate organic versus conventional lettuce and (iii) identifying the factors affecting lettuce δ(15)  N. Samples of soil, lettuce and organic inputs were taken from two organic, one conventional and one hydroponic farm. The two organic farms had different N-sources with δ(15)  N values ranging from 0.0 to +14.9‰ (e.g. leguminous green manure and animal manure compost, respectively), and differed significantly (P hydroponic lettuce δ(15)  N (+4.5 ± 0.2‰) due to manure inputs. The N from leguminous green manure made a small contribution to the N nutrition of lettuce in the multi-N-source organic farm. To differentiate organic versus conventional farms using δ(15)  N the several subsets of mode of fertilization should be considered. Comparisons of δ(15)  N of soil, organic inputs and lettuce allowed a qualitative analysis of the relative importance of different N inputs. © 2015 Society of Chemical Industry.

  19. Does gender affect the quality of soil and vegetable amaranth under ...

    African Journals Online (AJOL)

    Consumption of vegetables has been established to prevent cancer, hypertension and many other diseases. Cultivation of vegetables around cities is a lucrative venture and amaranth is fact becoming a leading leafy vegetable for commercial production under peri-urban in Nigeria. The system is a source of economic ...

  20. ECOLOGICAL CONTROL EQUIPMENT AND TECHNOLOGY OF UNDERWATER VEGETATION DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    V. TITINSCHNEIDER

    2008-10-01

    Full Text Available The excess of aquatic submerse vegetation development carries to the reduction of the real rearing area for the piscicultural material from the production farms and allow nestling of the ichthyophages bird species that decrease the fish production. Aquatic submerse vegetation stumble the utilization of aquatic zones for recreation and also wright function of basins utilized for the electric energy production, of micro electricity works through obstruction of the dams grid. The control of the aquatic submerse vegetation development, for Myriophyllum verticillatum, Ceratophyllum submersum, Urticularia vulgaris, Potamogeton natans, Nimphoides peltata species it is accomplish through the removing of some parts of these, preferably with all the stump system. Usually, these its accomplish with the floating equipments fit up with the thermic engines and the propulsion and governating elements who have harm over the fish and some others aquatic organisms through the noise, the displacing a large quality of water caused of propulsion systems and through the noxes elimination (flue, carburant trails, etc.. These technologies reside from the evacuation of the aquatic submerse vegetation and the stump systems of these with the help of an adjustable rake, hang up from the coast by a rope, wrapped to a drummer, who is trained by a motto-propeller group with a small installed power.

  1. Characteristics of nitrogen balance in open-air and greenhouse vegetable cropping systems of China.

    Science.gov (United States)

    Ti, Chaopu; Luo, Yongxia; Yan, Xiaoyuan

    2015-12-01

    Nitrogen (N) loss from vegetable cropping systems has become a significant environmental issue in China. In this study, estimation of N balances in both open-air and greenhouse vegetable cropping systems in China was established. Results showed that the total N input in open-air and greenhouse vegetable cropping systems in 2010 was 5.44 and 2.60 Tg, respectively. Chemical fertilizer N input in the two cropping systems was 201 kg N ha(-1) per season (open-air) and 478 kg N ha(-1) per season (greenhouse). The N use efficiency (NUE) was 25.9 ± 13.3 and 19.7 ± 9.4% for open-air and greenhouse vegetable cropping systems, respectively, significantly lower than that of maize, wheat, and rice. Approximately 30.6% of total N input was accumulated in soils and 0.8% was lost by ammonia volatilization in greenhouse vegetable system, while N accumulation and ammonia volatilization accounted for 19.1 and 11.1%, respectively, of total N input in open-air vegetable systems.

  2. Extrusion Cooking Systems and Textured Vegetable Proteins

    Directory of Open Access Journals (Sweden)

    2015-02-01

    Full Text Available Many fabricated foods are cooked industrially and are given desired textures, shapes, density and rehydration characteristics by an extrusion cooking process. This relatively new process is used in the preparation of “engineered” convenience foods: textured vegetable proteins, breakfast cereals, snacks, infant foods, dry soup mixes, breading, poultry stuffing, croutons, pasta products, beverage powders, hot breakfast gruels, and in the gelatinization of starch or the starchy component of foods.

  3. Microbiological Spoilage of Fruits and Vegetables

    Science.gov (United States)

    Barth, Margaret; Hankinson, Thomas R.; Zhuang, Hong; Breidt, Frederick

    Consumption of fruit and vegetable products has dramatically increased in the United States by more than 30% during the past few decades. It is also estimated that about 20% of all fruits and vegetables produced is lost each year due to spoilage. The focus of this chapter is to provide a general background on microbiological spoilage of fruit and vegetable products that are organized in three categories: fresh whole fruits and vegetables, fresh-cut fruits and vegetables, and fermented or acidified vegetable products. This chapter will address characteristics of spoilage microorganisms associated with each of these fruit and vegetable categories including spoilage mechanisms, spoilage defects, prevention and control of spoilage, and methods for detecting spoilage microorganisms.

  4. VEGETATIVE GROWTH AND EARLY PRODUCTION OF SIX OLIVE CULTIVARS, IN SOUTHERN ATACAMA DESERT, CHILE

    Directory of Open Access Journals (Sweden)

    Freddy MORA

    2007-12-01

    Full Text Available Tree survival, early fruit production, vegetative growth and alternate bearing were examined in six different olive cultivars (Barnea, Biancolilla, Coratina, Empeltre, Koroneiki and Leccino under intensive agronomic conditions i southern Atacama Desert, in the Coquimbo Region of Chile. The cultivars were evaluated over four successive years and had a high survival rate (93% confi rming their potential for these dry-lands. Fruit production (recorded over the growing seasons 2002-2003, vegetative growth (2000-2003 and alternate bearing differed signifi cantly among cultivars. Olive selection in intensively managed planting at the southern part of the Atacama Desert depends on matching specifi c cultivars to sites on which they perform the best.

  5. INFORMATION-ANALYTICAL SYSTEM OF FORECAST VEGETATION FIRES IN NATURAL CONDITIONS

    Directory of Open Access Journals (Sweden)

    R. M. Kogan

    2015-01-01

    Full Text Available A system for spatial prediction for fire danger as function of weather and pyrological vegetation characteristics was constructed. The method of calculating the time conducted vegetable combustible materials in fire condition of each month of the season was suggested. Calculate the probability of fires and danger periods of plant formations in a monsoon climate. The geographic information system was developed, it was tested in the Middle Amur region in the Russian Far East.

  6. Irradiation of dehydrated vegetables

    International Nuclear Information System (INIS)

    Esterhuyse, A; Esterhuizen, T.

    1985-01-01

    The reason for radurization was to decreased the microbial count of dehydrated vegetables. The average absorbed irradiation dose range between 2kGy and 15kGy. The product catagories include a) Green vegetables b) White vegetables c) Powders of a) and b). The microbiological aspects were: Declining curves for the different products of T.P.C., Coliforms, E. Coli, Stap. areus, Yeast + Mold at different doses. The organoleptical aspects were: change in taste, flavour, texture, colour and moisture. The aim is the marketing of irradiated dehydrated vegetables national and international basis

  7. Vegetation types and forest productivity, west part of Syncrude's Lease 17, Alberta. Environmental Research Monography 1977-6. [Tar sands

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, E B; Levinsohn, A G

    1977-01-01

    The vegetation that existed in August 1977 on the western half of Syncrude's Lease 17 near Fort McMurray, Alberta is described. Eight vegetation types were identified and are mapped at a scale if 1 : 24,000. Black Spruce--Labrador Tea was the dominant vegetation type, making up 35.0% of the 9250 hectare study area. The second most abundant vegetation type was Aspen--White Spruce (26.0%) and the third was White Spruce--Aspen (18.0%). The remaining 21.0% of the area was occupied by the Aspen--Birch vegetation type (7.5%), Balsam Poplar--Alder (6.0%) along the McKay River, Sedge--Reed Grass (4.0%) mainly around bodies of standing water created by beaver dams, Willow--Reed Grass (3.0%) along stream courses, and Black Spruce--Feathermoss (0.5%). The White Spruce--Aspen type is best developed in the southern part of the lease. It is the only vegetation type that contains some white spruce stands approaching the present lower limits of merchantable forest in Alberta. The Aspen--White Spruce type was less productive. In terms of mean annual increment and site index, the two vegetation types with the greatest potential for fibre production (White Spruce--Aspen and Aspen--White Spruce types) are average or below average productivity when compared to data from similar stands elsewhere in Alberta and Saskatchewan.

  8. Generating Vegetation Leaf Area Index Earth System Data Record from Multiple Sensors. Part 1; Theory

    Science.gov (United States)

    Ganguly, Sangram; Schull, Mitchell A.; Samanta, Arindam; Shabanov, Nikolay V.; Milesi, Cristina; Nemani, Ramakrishna R.; Knyazikhin, Yuri; Myneni, Ranga B.

    2008-01-01

    The generation of multi-decade long Earth System Data Records (ESDRs) of Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) from remote sensing measurements of multiple sensors is key to monitoring long-term changes in vegetation due to natural and anthropogenic influences. Challenges in developing such ESDRs include problems in remote sensing science (modeling of variability in global vegetation, scaling, atmospheric correction) and sensor hardware (differences in spatial resolution, spectral bands, calibration, and information content). In this paper, we develop a physically based approach for deriving LAI and FPAR products from the Advanced Very High Resolution Radiometer (AVHRR) data that are of comparable quality to the Moderate resolution Imaging Spectroradiometer (MODIS) LAI and FPAR products, thus realizing the objective of producing a long (multi-decadal) time series of these products. The approach is based on the radiative transfer theory of canopy spectral invariants which facilitates parameterization of the canopy spectral bidirectional reflectance factor (BRF). The methodology permits decoupling of the structural and radiometric components and obeys the energy conservation law. The approach is applicable to any optical sensor, however, it requires selection of sensor-specific values of configurable parameters, namely, the single scattering albedo and data uncertainty. According to the theory of spectral invariants, the single scattering albedo is a function of the spatial scale, and thus, accounts for the variation in BRF with sensor spatial resolution. Likewise, the single scattering albedo accounts for the variation in spectral BRF with sensor bandwidths. The second adjustable parameter is data uncertainty, which accounts for varying information content of the remote sensing measurements, i.e., Normalized Difference Vegetation Index (NDVI, low information content), vs. spectral BRF (higher

  9. Impacts of the seasonal distribution of rainfall on vegetation productivity across the Sahel

    Science.gov (United States)

    Zhang, Wenmin; Brandt, Martin; Tong, Xiaoye; Tian, Qingjiu; Fensholt, Rasmus

    2018-01-01

    Climate change in drylands has caused alterations in the seasonal distribution of rainfall including increased heavy-rainfall events, longer dry spells, and a shifted timing of the wet season. Yet the aboveground net primary productivity (ANPP) in drylands is usually explained by annual-rainfall sums, disregarding the influence of the seasonal distribution of rainfall. This study tested the importance of rainfall metrics in the wet season (onset and cessation of the wet season, number of rainy days, rainfall intensity, number of consecutive dry days, and heavy-rainfall events) for growing season ANPP. We focused on the Sahel and northern Sudanian region (100-800 mm yr-1) and applied daily satellite-based rainfall estimates (CHIRPS v2.0) and growing-season-integrated normalized difference vegetation index (NDVI; MODIS) as a proxy for ANPP over the study period: 2001-2015. Growing season ANPP in the arid zone (100-300 mm yr-1) was found to be rather insensitive to variations in the seasonal-rainfall metrics, whereas vegetation in the semi-arid zone (300-700 mm yr-1) was significantly impacted by most metrics, especially by the number of rainy days and timing (onset and cessation) of the wet season. We analysed critical breakpoints for all metrics to test if vegetation response to changes in a given rainfall metric surpasses a threshold beyond which vegetation functioning is significantly altered. It was shown that growing season ANPP was particularly negatively impacted after > 14 consecutive dry days and that a rainfall intensity of ˜ 13 mm day-1 was detected for optimum growing season ANPP. We conclude that the number of rainy days and the timing of the wet season are seasonal-rainfall metrics that are decisive for favourable vegetation growth in the semi-arid Sahel and need to be considered when modelling primary productivity from rainfall in the drylands of the Sahel and elsewhere.

  10. Production of vegetation samples containing radionuclides gamma emitters to attend the interlaboratory programs

    International Nuclear Information System (INIS)

    Souza, Poliana Santos de

    2016-01-01

    The production of environmental samples such as soil, sediment, water and vegetation with radionuclides for intercomparison tests is a very important contribution to environmental monitoring. Laboratories that carry out such monitoring need to demonstrate that their results are reliable. The IRD National Intercomparison Program (PNI) produces and distributes environmental samples containing radionuclides used to check the laboratories performance. This work demonstrates the feasibility of producing vegetation (grass) samples containing 60 Co, 65 Zn, 134 Cs, and 137 Cs by the spike sample method for the PNI. The preparation and the statistical tests followed the ISO guides 34 and 35 recommendations. The grass samples were dried, ground and passed through a sieve of 250 μm. 500 g of vegetation was treated in each procedure. Samples were treated by two different procedures:1) homogenizing of the radioactive solution containing vegetation by hand and drying in an oven and 2) homogenizing of the radioactive solution containing the vegetation in a rotatory evaporator and drying in an oven. The theoretical activity concentration of the radionuclides in the grass had a range of 593 Bq/kg to 683 Bq/kg. After gamma spectrometry analysis the results of both procedures were compared as accuracy, precision, homogeneity and stability. The accuracy, precision and short time stability from both methods were similar but the homogeneity test of the evaporation method was not approved for the radionuclides 60 Co and 134 Cs. Based on comparisons between procedures was chosen the manual agitation procedure for the grass sample for the PNI. The accuracy of the procedure, represented by the uncertainty and based on theoretical value had a range between -1.1 and 5.1% and the precision between 0.6 a 6.5 %. This result show is the procedure chosen for the production of grass samples for PNI. (author)

  11. Development and validation of extensive growth and growth boundary models for psychrotolerant pseudomonads in seafood, meat and vegetable products

    DEFF Research Database (Denmark)

    Martinez Rios, Veronica; Dalgaard, Paw

    Extensive growth and growth boundary models were developed and validated for psychrotolerant pseudomonads growing in seafood, meat and vegetable products. The new models were developed by expanding anexisting cardinal parameter-type model for growth of pseudomonads in milk (Martinez-Rios et al......, when observed and predicted μmax -values were compared. Thus, on average μmax -values for seafood and meat products were overestimated by 14%. Additionally, the reference growth rate parameter μref25˚C was calibrated by fitting the model to 21 μmax -values in vegetable products. This resulted in a μref......25˚C -value of 0.54 1/h. The calibrated vegetable model wassuccessfully validated using 51 μmax -values for psychrotolerant pseudomonads in vegetables. Average bias and accuracy factor values of 1.24 and 1.38 were obtained, respectively. Lag time models were developed by using relative lag times from...

  12. Innovative solutions in traceability to improve the competitiveness of a local fruit and vegetable retailing system

    Directory of Open Access Journals (Sweden)

    Miklós Pakurár

    2015-05-01

    Full Text Available The aim of the research is to investigate the network of local fruit and vegetable products from “farm to fork”, to uncover the hidden processes in traceability and to advise innovations in the retailing system to improve the competitiveness of the sector. Traceability is an ability to track any food that will be consumed throughout the processes of production, processing and distribution. The research investigates what the customer knows about the origin and treatments of purchased products and what further information would satisfy the consumer. The study explores the flow of information amongst the chain members: producers, wholesalers, small-scale retailers, and customers. Based on interviews and questionnaires, regression analysis and ordinal regression procedure were performed. Innovative solutions to make the retailing competitive should be aligned with the precise knowledge of the consumer. The results of the research show that deficiencies in data collection, data erosion, low level of cooperation of supply chain partners, not paying more attention for more detailed information, and inadequate control are the main problems of the traceability in fruit and vegetable chains.

  13. Listeria monocytogenes - Danger for health safety vegetable production.

    Science.gov (United States)

    Kljujev, Igor; Raicevic, Vera; Jovicic-Petrovic, Jelena; Vujovic, Bojana; Mirkovic, Milica; Rothballer, Michael

    2018-04-22

    The microbiologically contaminated vegetables represent a risk for consumers, especially vegetables without thermal processing. It is known that human pathogen bacteria, such as Listeria monocytogenes, could exist on fresh vegetables. The fresh vegetables could become Listeria-contaminated if they come in touch with contaminated soil, manure, irrigation water. The aim of this work was to investigate the presence of Listeria spp. and L. monocytogenes in different kind of vegetables grown in field and greenhouse condition as well as surface and endophytic colonization plant roots of different vegetables species by L. monocytogenes in laboratory conditions. The detection of Listeria spp. and L. monocytogenes in vegetable samples was done using ISO and PCR methods. The investigation of colonization vegetable roots and detection Listeria-cells inside plant root tissue was done using Fluorescence in situ hybridization (FISH) method in combination with confocal laser scanning microscopy (CLSM). The results showed that 25.58% vegetable samples were positive for Listeria spp. and only one sample (carrot) was positive for L. monocytogenes out of 43 samples in total collected from field and greenhouse. The strain L. monocytogenes EGD-E surface and endophytic colonized carrot root in highest degree while strain L. monocytogenes SV4B was the most represented at leafy vegetable plants, such at lettuce (1.68 × 10 6  cells/mm 3 absolutely dry root) and spinach (1.39 × 10 6  cells/mm 3 absolutely dry root) root surface. The cells of L. monocytogenes SV4B were visible as single cells in interior tissue of plant roots (celery and sweet corn roots) as well as in the interior of the plant root cell at sweet corn root. The cells of L. monocytogenes EGD-E bind to the surface of the plant root and they were less commonly found out on root hair. In the inner layers of the root, those bacterial cells were inhabited intercellular spaces mainly as single cells very close to the

  14. Leaf vegetables for use in integrated hydroponics and aquaculture systems: Effects of root flooding on growth, mineral composition and nutrient uptake

    DEFF Research Database (Denmark)

    Trang, Ngo Thuy Diem; Schierup, Hans-Henrik; Brix, Hans

    2010-01-01

    In recirculating aquaculture and hydroponics systems, the waste products from fish production are used to produce vegetables or other crops of economic value, and the water is recirculated to the fish tanks. We studied growth, productivity and nutrient uptake of four leaf vegetable species (Lactuca...... sativa, Ipomoea aquatica, Brassica rapa var. chinensis and Brassica rapa var. parachinensis) in a controlled growth experiment with three root flooding treatments (drained, half-flooded and flooded) to assess their preferred hydroponic growth requirements, biomass production and nutrient removal......, respectively. The two Brassica varieties produced much less aerial biomass (50-54 g DW/m2 during a 60-day period). Both I. aquatica and L. sativa are promising species to be included in integrated hydroponic and aquaculture facilities, with I. aquatica showing the most promise because of its higher growth...

  15. Productive and vegetative behavior of olive cultivars in super high-density olive grove

    Directory of Open Access Journals (Sweden)

    Primo Proietti

    2015-02-01

    Full Text Available In recent years, there has been an increase in interest in super high-density (SHD olive (Olea europaea L. groves because they offer early entry into production, increased productivity and the possibility of using modified mechanical vine harvesters. This study was carried out in a young SHD olive grove to examine vegetative, histo-anatomical and productive characteristics and oil quality of the Spanish Arbequina and Italian Maurino and Leccino cultivars, characterized by low, low-to-medium and high vigor, respectively. Arbequina had low vigor and limited development in height and width, as well as a high leaf/wood ratio. Maurino had a canopy volume similar to that of Arbequina and, despite a great tendency to grow in height, had low vigor, a rather compact vegetative habitus, but good lighting in the canopy and high production efficiency. In Maurino, a greater palisade parenchyma height and a larger exposed lateral surface area of the palisade parenchyma cells were observed. In the fourth year after planting, fruit production of Arbequina was about 30 % less than Leccino and Maurino. The oil content on a dry weight basis was slightly higher in Arbequina and Maurino than in Leccino. Oil quality was good for all cultivars.

  16. Chemical and physicochemical characterisation of co-products from the vegetable food and agro industries

    DEFF Research Database (Denmark)

    Serena, Anja; Bach Knudsen, Knud Erik

    2007-01-01

    was responsible for the relatively low EDOM. There was a variation from year to year in the concentration of ash (Pprotein (P=0.04) and EDOM (P=0.003) in pea hull. In conclusion, co-products from the vegetable food and agro industries are characterised by a high......Six co-products from the vegetable food and agro industres in Denmark - brewer's spent grain, pea hull, seed residue (rye grass), potato pulp, sugar beet pulp and pectin residue - were collected eight times during two seasons (four samples from each season) (n = 8; N = 48). The samples were...... analysed for dry matter (DM), ash, sand, protein, amino acids, ether extract (EE), carbohydrate constituents, enzyme digestible organic matter (EDOM) and physicochemical properties-water binding capacity (WBC) and swelling. The co-products in general had a low DM (142-216 g/kg as is), EE (6-54 g/kg DM...

  17. Production of Biodiesel from Vegetable Oil Using Microware Irradiation

    Directory of Open Access Journals (Sweden)

    N. Kapilan

    2012-01-01

    Full Text Available The petroleum oil supply crisis, the increase in demand and the price eruption have led to a search for an alternative fuel of bio-origin in India. Among the alternative fuels, biodiesel is considered as a sustainable renewable alternative fuel to fossil diesel. Non-edible jatropha oil has considerable potential for the production of biodiesel in India. The production of biodiesel from jatropha oil using a conventional heating method takes more than 1h. In this work, microwave irradiation has been used as a source of heat for the transesterification reaction. A domestic microwave oven was modified and used for microwave heating of the reactants. The time taken for biodiesel production using microwave irradiation was 1 min. The fuel property analysis shows that the properties of jatropha oil biodiesel satisfy the biodiesel standards, and are close to the fossil diesel standards. From this work, it is concluded that biodiesel can be produced from vegetable oil using microwave irradiation, with a significant reduction in production time.

  18. EFFECT OF FARMERS FIELD SCHOOL ON VEGETABLES PRODUCTION IN DISTRICT PESHAWAR KHYBER PAKHTUNKHWA

    Directory of Open Access Journals (Sweden)

    Muhammad Zafarullah KHAN

    2013-01-01

    Full Text Available The Farmers Field School (FFS aims at benefiting poor farmers by improving their knowledge of existing agricultural technologies and integrated crop management to become independent and confident in their decision. The study on effect of farmer’s field school on vegetables production before and after FFS implementation in district Peshawar in four selected villages on each crop in 2011 was conducted from 80 farmers. The results were compared by using paired t-test. It was observed that 80% of the respondents were satisfied with FFS approach as there was a significant increase in vegetable production. The seed rate of tomato and cucumber decreased from 0.185kg/kanal to 0.1 kg/ kanal and 0.120kg/kanal to 0.01kg/kanal while production of tomato and cucumber were increased from 8158.75kgs/kanal to 1030.25kgs/kanal and 3230kgs/kanal to 5340kgs/kanal, respectively after the activities of FFS. FFS brought a positive effect on vegetable production and technology adoption improving their income, skills and knowledge ultimately lead farmers towards empowerment. The input cost including seed, crop management, FYM, and weedicides for tomato were reduced by Rs.28, Rs. 3170 and Rs.658 and cucumber reduced by Rs.35, Rs.570 and Rs.430. Only fertilizers cost was increased by Rs. 2200 in case of tomato and 465 in case of cucumber. FFS facilitator and coordinator should be more skilled and practical oriented to facilitate poor farmers. In light of the above study, more FFS should be planned so that the more farmers should be benefited.

  19. PRODUCT NEEM AZAL T/S - BROAD-SPECTRUM PHYPOPESTICIDE FOR CONTROL OF PESTS ON VEGETABLE CROPS

    Directory of Open Access Journals (Sweden)

    Vinelina Yankova

    2016-09-01

    Full Text Available Experiments for determination of the effectiveness of product Neem Azal T/S (a. i. azadirachtin were conducted at a concentration of 0,3% against some major pests in vegetable crops grown in greenhouses at the Maritsa Vegetable Crops research Institute, Plovdiv during the period 2010-2016. It was established very good insecticidal and acaricidal action of phytopesticide against: cotton aphid (Aphis gossypii Glov.; green peach aphid (Myzus persicae Sulz.; western flower trips (Frankliniella occidentalis Perg.; cotton bollworm (Helicoverpa armigera Hubn.; tomato borer (Tuta absoluta Meyrick and two-spotted spider mite (Tetranichus urticae Koch.. This product is a successful alternative to using chemical insecticides and acaricides.

  20. CONSIDERATIONS ON ROMANIA’S VEGETABLE MARKET

    Directory of Open Access Journals (Sweden)

    Agatha POPESCU

    2013-12-01

    Full Text Available The paper aimed to present the situation of Romania’s vegetable market in the period 2007-2011 based on the statistical data regarding the main vegetables: tomatoes, onion, garlic, cabbage, green peppers and melons. The vegetable production increased by 33.99 from 3,166.8 tons in 2007 to 4,176.3 tons in 2011.This was due to the yield gain as follows: 58.55 % for melons, 27.62 % for green peppers, 27.05 % for tomatoes, 25.99 % for dry garlic, 24.96 % for dry onion, 12.61 % for white cabbage. In 2011, the contribution of various categories of vegetables to production was: 24.55 % white cabbage, 21.81 % tomatoes, 15.45 % melons, 9.44 % onion, 6.06 % green pepper, 1.59 % garlic and 21.1 % other vegetables. The contribution of the micro regions to vegetable production in 2011 was: 19.46 % South Muntenia, 18.95 % South East Romania, 17.30 % South West Oltenia, 15.92 % North East Romania, 10.43 % West Romania, 8.47 % North West Romania, 6.54 % Central Romania, 2.93 % Bucharest Ilfov. Vegetable production per inhabitant is higher in Romania compared to the average production per capita in the EU. The average consumption increased as a postive aspect reflecting the obtained production and import. Vegetable production should increase in order to cover much better the doestic market needs and support export to the EU market.

  1. Review of Fruit & Vegetable Food System in South Dakota: Application and Policy Suggestions for Other Rural States

    Directory of Open Access Journals (Sweden)

    Suzanne Stluka

    2015-10-01

    Full Text Available Insufficient intake of fruits and vegetables has been recognized as a possible reason for dietary deficiencies that contribute to rising chronic health issues and medical costs. Based on data generated by the 2011 Behavioral Risk Factor Surveillance System (BRFSS, South Dakota was listed as one of five states with the lowest daily adult vegetable intake (1.5 times per day. To continue the effort to promote a healthy diet, three independent surveys were developed and distributed to consumers, grocers, and growers (producers to investigate factors that affected low consumption of fruits and vegetables and to identify opportunities to increase future consumption. To highlight the influences of geographic and socioeconomic disadvantages on fruit and vegetable consumption, the surveys specifically included the consideration of consumers’ income; access and preparation of available fruits and vegetables; preparation skills and available time; perceptions of fresh, canned, and frozen products; and knowledge and role fruits and vegetables play in prevention of chronic disease in the sample selection and data analysis. Survey respondents were divided into two regions: non-food desert (Region 1 and food desert (Region 2. This paper provides a summary of the survey results and policy suggestions generated based on our findings.

  2. Drought footprint on European ecosystems between 1999 and 2010 assessed by remotely sensed vegetation phenology and productivity

    DEFF Research Database (Denmark)

    Ivits, Eva; Horion, Stéphanie Marie Anne F; Fensholt, Rasmus

    2014-01-01

    bioclimatic zones. The Standardized Precipitation and Evapotranspiration Index (SPEI) was used as drought indicator whereas changes in growing season length and vegetation productivity were assessed using remote sensing time-series of Normalized Difference Vegetation Index (NDVI). Drought spatio...... length, indicating that these ecosystems did not buffer the effects of drought well. In a climate change perspective, increase in drought frequency or intensity may result in larger impacts over these ecosystems, thus management and adaptation strategies should be strengthened in these areas of concerns.......Drought affects more people than any other natural disaster but there is little understanding of how ecosystems react to droughts. This study jointly analyzed spatio-temporal changes of drought patterns with vegetation phenology and productivity changes between 1999 and 2010 in major European...

  3. Opportunities and constraints in the subsistence production and marketing of indigenous vegetables in East and Central Africa

    OpenAIRE

    Schippers, Rudy; Fereday, Nicholas

    1998-01-01

    This report summarises the results of market and production surveys carried out in both the dry and wet seasons in Cameroon and Uganda during 1997/98 as part of the DFID fimded project "Opportunities and constraints in the subsistence production and marketing of indigenous vegetables in East and Central Africa (A0699)". The main objective of the study was to establish the socio-economic significance of indigenous vegetables compared to exotic ones. This project is a follow up to the strategy ...

  4. Monitoring psychrotrophic lactic acid bacteria contamination in a ready-to-eat vegetable salad production environment.

    Science.gov (United States)

    Pothakos, Vasileios; Snauwaert, Cindy; De Vos, Paul; Huys, Geert; Devlieghere, Frank

    2014-08-18

    A study monitoring lactic acid bacteria contamination was conducted in a company producing fresh, minimally processed, packaged and ready-to-eat (RTE) vegetable salads (stored at 4°C) in order to investigate the reason for high psychrotrophic LAB levels in the products at the end of shelf-life. Initially, high microbial counts exceeding the established psychrotrophic thresholds (>10(7)-10(8)CFU/g) and spoilage manifestations before the end of the shelf-life (7days) occurred in products containing an assortment of sliced and diced vegetables, but within a one year period these spoilage defects became prevalent in the entire processing plant. Environmental sampling and microbiological analyses of the raw materials and final products throughout the manufacturing process highlighted the presence of high numbers of Leuconostoc spp. in halved and unseeded, fresh sweet bell peppers provided by the supplier. A combination of two DNA fingerprinting techniques facilitated the assessment of the species diversity of LAB present in the processing environment along with the critical point of their introduction in the production facility. Probably through air mediation and surface adhesion, mainly members of the strictly psychrotrophic species Leuconostoc gelidum subsp. gasicomitatum and L. gelidum subsp. gelidum were responsible for the cross-contamination of every vegetable handled within the plant. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Production Guides for Meat and Vegetable Entrees and Desserts Developed for Use in the Frozen Foil Pack Feeding System, F.E. Warren Air Force Base

    Science.gov (United States)

    1976-02-01

    crurbs, dry 2,32 1,053 Note: At. no time shall Nonfat dry milk 2.32 1,053 temperature of uncooked Eggs , whole, beaten 1.31 595 meatballs be over 500 F...Listing 94-99 Meat 94 Dairy, Egg , Condiment 96 Vegetables 98 Production Guide Index 100-103 Meat Entree 100 Vegetable Entree 102 Desserts 103 2...Filling Eggs , whole, beaten 2.75 1,249 6. Combine all filling Cheese, cottage, drained 6.50 2,951 ingredients, mix thoroughly Cheese, grated parmesan

  6. Heavy Metals Levels in Soil and Vegetables in Different Growing Systems

    Directory of Open Access Journals (Sweden)

    Hura C.

    2013-04-01

    Full Text Available The current project deals with an issue of actuality and scientific/technical necessity and aims to assess the factors contributing to the vulnerability of ecological systems and therefore endangering/compromising food safety. The goals of this ongoing study are to address the main risk factors on ecological system with particular regards to fresh growing vegetables and to establish technical monitoring system(s with a view to increase food safety. Herein, the authors present the research results obtained in 2011 in SIECOLEG Project regarding the assessment of some heavy metals (mainly lead, cadmium, cooper, and manganese of 80 samples soils and 25 samples vegetables from some ecological system. The concentrations of heavy metals were measured by Atomic absorption spectrometer (AAS Schimadzu 6300 - with graphite furnace atomizer and autosampler. In soil: lead and cadmium concentrations ranged from 4.51 to 6.58 mg/kg and from 0.14 to 0.4 mg/kg, respectively. Cooper and manganese concentrations ranged from 20.73 to 6.58 mg/kg and from 218.1 to 298.3 mg/kg, respectively. In vegetables (tomatoes, cucumber, peppers, eggplant, cabbage: lead concentrations ranged from 0.0 (tomatoes to 4.35 mg/kg (cabbage; cooper concentrations ranged from 0.2 mg/kg (cucumber to 0.80 mg/kg (eggplant; manganese concentrations ranged from 0.0 mg/kg (tomatoes to 0.60 mg/kg (eggplant. Cadmium was not detected in any of analysed vegetable samples. Under these circumstances, the project intends to demonstrate the extent of this vulnerability and to elaborate measures for controlling and diminishing the effects of the involved factors in order to increase food safety and security for ecological fresh vegetables

  7. Could small scale vegetable production contribute to a green economy in South Africa?

    CSIR Research Space (South Africa)

    Musvoto, Constansia D

    2015-02-01

    Full Text Available and produces for sale. Some of the practices on these farms are compatible with a green economy, and with interventions that improve alignment with green economy principles, small scale vegetable production could contribute to a green economy and open up...

  8. Recent advances in drying and dehydration of fruits and vegetables: a review

    OpenAIRE

    Sagar, V. R.; Suresh Kumar, P.

    2010-01-01

    Fruits and vegetables are dried to enhance storage stability, minimize packaging requirement and reduce transport weight. Preservation of fruits and vegetables through drying based on sun and solar drying techniques which cause poor quality and product contamination. Energy consumption and quality of dried products are critical parameters in the selection of drying process. An optimum drying system for the preparation of quality dehydrated products is cost effective as it shortens the drying ...

  9. Development of high productive technology for vegetables. Performance of a test plant and experiments of spinach cultivation. Kounouritsu yasai seisan gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sekiyama, Tetsuo; Okano, Toshiaki; Hoshi, Takehiko; Kosakai, Kazuyoshi; Okabe, Katsumi; Hanyu, Hiromichi

    1987-02-01

    Technology of a system using both sunlight and artificial light was developed, and a vegetable plant with the system was developed to study the use of low-cost off-peak electricity for the improvement of vegetable productivity and quality. A test plant of 340m/sup 2/ was constructed. The greenhouse was designed in a pellette house style where light is controlled through grains of styrofoam by blowing. To use low-cost offpeak electricity, heat reservoir facility for cold (ice) and hot water was provided. An environment measuring system was provided for the analysis of the relationship between the environmental conditions, growth of vegetables and consumption of electricity. Four cultivation experiments were carried out, and the yield of spinach increased by 6 to 7 times (10 kg/m/sup 2/) in summer season, and the period of growth in winter time was shortened to 1/2 to 1/3 (25 days). Results of the study on the performance of the facilities such as cultivation room, light environment, CO/sub 2/ environment, hydroponic device, etc. are also reported. (32 figs, 5 tabs)

  10. Temporal Changes in Coupled Vegetation Phenology and Productivity are Biome-Specific in the Northern Hemisphere

    Directory of Open Access Journals (Sweden)

    Lanhui Wang

    2017-12-01

    Full Text Available Global warming has greatly stimulated vegetation growth through both extending the growing season and promoting photosynthesis in the Northern Hemisphere (NH. Analyzing the combined dynamics of such trends can potentially improve our current understanding on changes in vegetation functioning and the complex relationship between anthropogenic and climatic drivers. This study aims to analyze the relationships (long-term trends and correlations of length of vegetation growing season (LOS and vegetation productivity assessed by the growing season NDVI integral (GSI in the NH (>30°N to study any dependency of major biomes that are characterized by different imprint from anthropogenic influence. Spatial patterns of converging/diverging trends in LOS and GSI and temporal changes in the coupling between LOS and GSI are analyzed for major biomes at hemispheric and continental scales from the third generation Global Inventory Monitoring and Modeling Studies (GIMMS Normalized Difference Vegetation Index (NDVI dataset for a 32-year period (1982–2013. A quarter area of the NH is covered by converging trends (consistent significant trends in LOS and GSI, whereas diverging trends (opposing significant trends in LOS and GSI cover about 6% of the region. Diverging trends are observed mainly in high latitudes and arid/semi-arid areas of non-forest biomes (shrublands, savannas, and grasslands, whereas forest biomes and croplands are primarily characterized by converging trends. The study shows spatially-distinct and biome-specific patterns between the continental land masses of Eurasia (EA and North America (NA. Finally, areas of high positive correlation between LOS and GSI showed to increase during the period of analysis, with areas of significant positive trends in correlation being more widespread in NA as compared to EA. The temporal changes in the coupled vegetation phenology and productivity suggest complex relationships and interactions that are induced

  11. Drip Irrigation for Commercial Vegetable and Fruit Production

    OpenAIRE

    Maughn, Tiffany; Allen, Niel; Drost, Dan

    2017-01-01

    Drip irrigation is a highly efficient irrigation method well suited to many fruit and vegetable row crops. Drip tubing or tape discharges water to the soil through emitters positioned close to the plant. The drip tubing can be placed uncovered on the soil surface, under plastic mulch, buried in the soil, or suspended above the ground (e.g., on a trellis system). Water application rate is relatively low and irrigations are usually frequent. Properly designed and maintained drip-irrigation syst...

  12. Relishes: The new pickled vegetables

    Directory of Open Access Journals (Sweden)

    Tepić Aleksandra N.

    2006-01-01

    Full Text Available There have been an increasing interest of consumers for a ide variety of pickled vegetable products worldwide. Regarding the regional vegetable supplies and relatively poor assortment of ready-to-use products, the need to broaden the offer of domestic pickled vegetables at the market came out. In this work recipes for different vegetables, spices and condiments were developed. The best graded samples were analyzed for their main chemical composition (dry matter, proteins, oils and fats, total acidity, total sugars, sucrose, starch, cellulose, pH and energy- values.

  13. THE CURRENT STATE OF SEED PRODUCTION OF VEGETABLES AND GOURDS IN RUSSIAN FEDERATION; NATIONAL FOOD SAFETY

    Directory of Open Access Journals (Sweden)

    S. M. Sirota

    2017-01-01

    Full Text Available The current state of seed market of vegetable and gourds in Russian Federation in the frame of national food safety program is given in the article. Russia as a country with well-developed  seed production  in the last century has now  ceded  its  position,  and according  to  last experts’ association estimations the 80%  of  required volume of seeds of vegetables and gourds, amounting from 8 to 12 thousand per year is imported.  Not  less than 15 thousands  of  hectares  are  needed  to  be  necessary  for demand  of  Russian seed  production  sector,  however, presently only 2 thousands of hectares is a total certified land used for seed production.  Moreover, the seed production sector of some countries that export seeds rises becoming a profitable branch of agriculture, and providing local employment. The lack of competitiveness in Russia causes that many foreign companies increase annually purchasing prices for seeds and their production services. Therefore, now the total volume of seeds imported  in  Russian Federation has nearly been  twice less for the last years than in 2012, but in currency earnings in exporting countries the insignificant changes can be seen, where deviation is only 19-25%  from  average annual value, that means 1675 thousand dollars per year. Besides, for the Russian budget in the ruble currency the total cost of imported seeds has become 2.5 times more expensive since 2012, but the increase of combined cost of  marketable  vegetables  has been  over  2.7  billion  of rubles.  The  main  idea  that  the  seed  production  is  a process requiring the participation of breeders, seed producers and seed companies is main factor to succeed in recovering seed production sector. Exception of any participant or ignoring his interests may destroy all process. For instance, there is a chronic problem of plagiarism and royalty nonpayment causes the break between the business and

  14. Colonization of plants by human pathogenic bacteria in the course of organic vegetable production

    Directory of Open Access Journals (Sweden)

    Andreas eHofmann

    2014-05-01

    Full Text Available In recent years, increasing numbers of outbreaks caused by the consumption of vegetables contaminated with human pathogenic bacteria were reported. The application of organic fertilizers during vegetable production is one of the possible reasons for contamination with those pathogens. In this study laboratory experiments in axenic and soil systems following common practices in organic farming were conducted to identify the minimal dose needed for bacterial colonization of plants and to identify possible factors like bacterial species or serovariation, plant species or organic fertilizer types used, influencing the success of plant colonization by human pathogenic bacteria. Spinach and corn salad were chosen as model plants and were inoculated with different concentrations of Salmonella enterica sv. Weltevreden, Listeria monocytogenes sv. 4b and EGD-E sv. 1/2a either directly (axenic system or via agricultural soil amended with spiked organic fertilizers (soil system. In addition to PCR- and culture-based detection methods, fluorescence in situ hybridization (FISH was applied in order to localize bacteria on or in plant tissues. Our results demonstrate that shoots were colonized by the pathogenic bacteria at inoculation doses as low as 4x10CFU/ml in the axenic system or 4x105CFU/g in the soil system. In addition, plant species dependent effects were observed. Spinach was colonized more often and at lower inoculation doses compared to corn salad. Differential colonization sites on roots, depending on the plant species could be detected using FISH-CLSM analysis. Furthermore, the transfer of pathogenic bacteria to plants via organic fertilizers was observed more often and at lower initial inoculation doses when fertilization was performed with inoculated slurry compared to inoculated manure. Finally, it could be shown that by introducing a simple washing step, the bacterial contamination was reduced in most cases or even was removed completely in

  15. Interactions among hydrogeomorphology, vegetation, and nutrient biogeochemistry in floodplain ecosystems

    Science.gov (United States)

    Noe, G.B.

    2013-01-01

    Hydrogeomorphic, vegetative, and biogeochemical processes interact in floodplains resulting in great complexity that provides opportunities to better understand linkages among physical and biological processes in ecosystems. Floodplains and their associated river systems are structured by four dimensional gradients of hydrogeomorphology: longitudinal, lateral, vertical, and temporal components. These four dimensions create dynamic hydrologic and geomorphologic mosaics that have a large imprint on the vegetation and nutrient biogeochemistry of floodplains. Plant physiology, population dynamics, community structure, and productivity are all very responsive to floodplain hydrogeomorphology. The strength of this relationship between vegetation and hydrogeomorphology is evident in the use of vegetation as an indicator of hydrogeomorphic processes. However, vegetation also influences hydrogeomorphology by modifying hydraulics and sediment entrainment and deposition that typically stabilize geomorphic patterns. Nitrogen and phosphorus biogeochemistry commonly influence plant productivity and community composition, although productivity is not limited by nutrient availability in all floodplains. Conversely, vegetation influences nutrient biogeochemistry through direct uptake and storage as well as production of organic matter that regulates microbial biogeochemical processes. The biogeochemistries of nitrogen and phosphorus cycling are very sensitive to spatial and temporal variation in hydrogeomorphology, in particular floodplain wetness and sedimentation. The least studied interaction is the direct effect of biogeochemistry on hydrogeomorphology, but the control of nutrient availability over organic matter decomposition and thus soil permeability and elevation is likely important. Biogeochemistry also has the more documented but indirect control of hydrogeomorphology through regulation of plant biomass. In summary, the defining characteristics of floodplain ecosystems

  16. EUCLID: Leveraging IPM for sustainable production of fruit and vegetable crops in partnership with China

    OpenAIRE

    Nicot , Philippe C.; Bardin , Marc; Leyronas , Christel; Desneux , Nicolas

    2016-01-01

    EUCLID: Leveraging IPM for sustainable production of fruit and vegetable crops in partnership with China. 13. IOBC-WPRS Meeting of the working group "Biological control of fungal and bacterial plant pathogens. .

  17. A Land Product Characterization System for Comparative Analysis of Satellite Data and Products

    Directory of Open Access Journals (Sweden)

    Kevin Gallo

    2017-12-01

    Full Text Available A Land Product Characterization System (LPCS has been developed to provide land data and products to the community of individuals interested in validating space-based land products by comparing them with similar products available from other sensors or surface-based observations. The LPCS facilitates the application of global multi-satellite and in situ data for characterization and validation of higher-level, satellite-derived, land surface products (e.g., surface reflectance, normalized difference vegetation index, and land surface temperature. The LPCS includes data search, inventory, access, and analysis functions that will permit data to be easily identified, retrieved, co-registered, and compared statistically through a single interface. The system currently includes data and products available from Landsat 4 through 8, Moderate Resolution Imaging Spectroradiometer (MODIS Terra and Aqua, Suomi National Polar-Orbiting Partnership (S-NPP/Joint Polar Satellite System (JPSS Visible Infrared Imaging Radiometer Suite (VIIRS, and simulated data for the Geostationary Operational Environmental Satellite (GOES-16 Advanced Baseline Imager (ABI. In addition to the future inclusion of in situ data, higher-level land products from the European Space Agency (ESA Sentinel-2 and -3 series of satellites, and other high and medium resolution spatial sensors, will be included as available. When fully implemented, any of the sensor data or products included in the LPCS would be available for comparative analysis.

  18. Utilization of byproducts from potatoes and vegetables for value-added products; Perunan ja vihannesten sivuvirtojen arvokomponenttien hyoetykaeyttoe

    Energy Technology Data Exchange (ETDEWEB)

    Ahokas, M.; Valimaa, A.-L.; Kankaala, A.; Lotjonen, T.; Virtanen, E.

    2012-07-01

    In this report, by-products are defined as the fractions produced in processing of potatoes and vegetables in addition to the main products. These by-products include peels, potato pulp, potato fruit juice, leftovers from cutting processes and under-sized potatoes left in the field. The amount of the by-products varies depending on the process. For example, in peeling processes the amount of by-products can be as much as 50-100% compared to that of the peeled product. The disposal of the by-products is strictly regulated by the national biowaste strategy, the landfill directive and the new waste legislation. For example, the landfill directive requires a gradual reduction in the amount of biodecomposable community waste. This means that in 2016, an maximum of 25% of the estimated biodecomposable community waste produced can be placed in landfill sites. Moreover, the EU aims at increasing the amount of the renewable traffic fuels to 10% by the year 2020. The utilization of the by-products in an effective and holistic way is not necessary only due to the tight legislative demands, but also n order to make the production economically profitable. For example, it is possible to separate from by-products of potatoes and vegetables commercially valuable biocomponents, such as starch, proteins and fiber, and to produce bioethanol and biogas in biorefinery plants. In the biorefinery plants, chemicals, biofuels and energy are produced sustainably using mechanical, chemical and biological processes. However, in a conventional refinery process usually only one component is utilized, for example potato starch. The North Ostrobothnia region is lacking the biorefinery that utilizes the by-products of potatoes and vegetables. This study was carried out in 2011-2012 by MTT Agrifood Research Finland Oulu. The objective was to develop a biorefinery concept in which by-products from potato and vegetables industry are manufactured to value-added products efficiently utilizing the

  19. Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: Biotechnology and scopes.

    Science.gov (United States)

    Panda, Sandeep K; Mishra, Swati S; Kayitesi, Eugenie; Ray, Ramesh C

    2016-04-01

    Wastes generated from fruits and vegetables are organic in nature and contribute a major share in soil and water pollution. Also, green house gas emission caused by fruit and vegetable wastes (FVWs) is a matter of serious environmental concern. This review addresses the developments over the last one decade on microbial processing technologies for production of enzymes and organic acids from FVWs. The advances in genetic engineering for improvement of microbial strains in order to enhance the production of the value added bio-products as well as the concept of zero-waste economy have been briefly discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Baseline vegetation inventory and productivity assessment for the Syncrude Aurora Mine EIA local study area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This report presented an inventory and assessment of vegetation communities and forest covers within the proposed Aurora Mine local study area. A field inventory was conducted in the summer of 1995 to ground-truth air photo interpretations and to collect data. The inventory includes a classification of vegetation, forest covers and wetlands. It also includes the documentation of uncommon plants and the vegetation productivity estimates of tree, shrub and herbaceous plants. The study area is located east of the Athabasca River about 35 km northeast of Mildred Lake Oil Sands Plant. The area includes portions of Oil Sands Leases 10, 12, 13, 31, and 34 which includes much of the Muskeg River drainage and all of Kearl Lake. 24 refs., 7 tabs., 3 figs.

  1. Hyperspectral and in situ data fusion for the steering of plant production systems

    Science.gov (United States)

    Verstraeten, W. W.; Coppin, P.

    2009-04-01

    Plant production systems are governed by biotic and a-biotic factors and by management practices. Some of the relevant parameters have already been identified and incorporated as inputs into existing models for production assessment, early-warning, and process management. These parameters originate nowadays primarily from in-situ measurements and observations. Non-invasive remotely sensed data, the diagnostic tools of excellence where it concerns the interaction of solar energy with biomass, have seldom been included and if so, mostly to support yield assessment and harvest monitoring only. The availability of new-generation hyperspectral/hypertemporal signatures will greatly facilitate their integration into full-fledged plant production model either via direct use, forcing, assimilation or re-initialization strategies. The main objective of IS-HS (Integration of In Situ data and HyperSpectral remote sensing for plant production modeling) is to set up a multidisciplinary research platform to deepen our system understanding and to develop production-oriented schemes to steer capital-intensive vegetation scenarios. Real-time steering in a 10-15 year timeframe is envisaged, where current system state is monitored, and steered towards an ideal state in terms of production quantity and quality. IS-HS focuses on hyperspectral sensor design, time series analysis tools for remote sensing data of vegetation systems, on the establishment of two stream communication between satellite and ground sensors, on the development of citrus plant production systems, and on the design of in-situ data sensor networks. The general framework of this system approach will be presented. In time, this integration should allow to cross the bridge from post-harvest assessment to near real-time potential and actual yield monitoring in terms of crop.

  2. Greenhouse vegetable production in The Netherlands and Switzerland: A grounded look at sector competitiveness

    NARCIS (Netherlands)

    Mann, S.; Breukers, A.; Schweiger, J.; Mack, G.

    2011-01-01

    Purpose – The purpose of this paper is to develop a theory that is sufficiently adapted to sector competitiveness. The case of greenhouse vegetable production in The Netherlands and Switzerland is used to explain differences in sector competitiveness. Design/methodology/approach – Interviews

  3. Cooling parameters for fruits and vegetables of different sizes in a hydrocooling system

    Directory of Open Access Journals (Sweden)

    Teruel Bárbara

    2004-01-01

    Full Text Available The cooling of fruits and vegetables in hydrocooling system can be a suitable technique. This work aimed to define cooling time for fruits and vegetables of different sizes, presenting practical indexes that could be used to estimate cooling time for produce with similar characteristics. Fruits (orange melon-Cucumis melo, mango-Mangifera indica, guava-Psidium guajava, orange-Citrus sinensis Osbeck, plum-Prunus domestica, lime-Citrus limon, and acerola-Prunus cerasus and vegetables (cucumber-Cucumis sativus, carrot-Daucus carota, and green bean-Phaseolus vulgaris, were cooled in a hydrocooling system at 1°C. The volume of fruits and vegetables ranged between 8.18 cm³ and 1,150.35 cm³, and between 13.06 cm³ and 438.4 cm³, respectively. Cooling time varied proportionally to produce volume (from 8.5 to 124 min for fruits, and from 1.5 to 55 min, for vegetables. The relationship between volume and time needed to cool fruits (from 1.03 min cm-3 to 0.107 min cm-3 and vegetables (from 0.06 min cm-3 to 0.12 min cm-3 is an index that could be used to estimate cooling time for fruits and vegetables with similar dimensions as those presented in this work.

  4. GigaUnit Transplant System: A New Mechanical Tool for Transplanting Submerged Aquatic Vegetation

    National Research Council Canada - National Science Library

    Shafer, Deborah J

    2008-01-01

    Submerged aquatic vegetation (SAV) performs many important ecosystem functions, including wave attenuation and sediment stabilization, water quality improvement, primary production, food web support for secondary consumers...

  5. A description of the lactic acid bacteria microbiota associated with the production of traditional fermented vegetables in Vietnam.

    Science.gov (United States)

    Nguyen, Doan Thi Lam; Van Hoorde, Koenraad; Cnockaert, Margo; De Brandt, Evie; Aerts, Maarten; Binh Thanh, Le; Vandamme, Peter

    2013-04-15

    An important part of the daily nourishment in Vietnam constitutes of fermented vegetables. Bacteria and especially lactic acid bacteria play a central role in the production of many fermented vegetables. The current study was conducted to investigate the diversity of native lactic acid bacteria (LAB) populations in 'dua muoi' (mustard and beet fermentation) and 'ca muoi' (eggplant fermentation), three types of popular traditional fermented vegetables of Vietnamese origin. To this end a polyphasic approach combining matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and pheS gene sequence analysis was used. In addition, denaturing gradient gel electrophoresis was performed as a culture-independent method to complement the observed culturable diversity data. A total of 881 LAB isolates were recovered from 21 different samples. Predominant LAB associated with 'dua muoi' and 'ca muoi' were identified as Lactobacillus fermentum (56.6%), Lactobacillus pentosus (24.4%) and Lactobacillus plantarum (17.1%). Less abundant species were Pediococcus pentosaceus (1.0%) and Lactobacillus brevis (0.5%). Species present less than 0.1% included Lactobacillus paracasei, Lactobacillus pantheris and Pediococcus acidilactici. In contrast to fermented mustard and beet with the highest prevalence of L. fermentum, the species most recovered from fermented eggplant samples was L. pentosus. In addition, an important degree of genetic variability within the different predominant species was observed and strain dependency correlating with the type of fermented vegetable or location of production could be demonstrated using multivariate statistics. This research gives an extensive and detailed inventory of the LAB diversity associated with the production of diverse Vietnamese fermented vegetables and demonstrates the influence of type of raw material and/or production location and conditions on this diversity. Copyright © 2013 Elsevier B.V. All rights

  6. Chromatography in authenticity and traceability tests of vegetable oils and dairy products: a review

    Czech Academy of Sciences Publication Activity Database

    Cserháti, T.; Forgács, E.; Deyl, Zdeněk; Mikšík, Ivan

    2005-01-01

    Roč. 19, č. 3 (2005), s. 183-190 ISSN 0269-3879 Grant - others:CZ-HU(CZ) Cooperation programme Institutional research plan: CEZ:AV0Z50110509 Keywords : chromatography * dairy products * vegetable oils Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.218, year: 2005

  7. Semi-Dried Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Gamze Uysal Seçkin

    2015-12-01

    Full Text Available Since ancient times, the preservation of fruit and vegetables is an ancient method of drying. Sun drying method has been used more widely. In general, consumer-ready products are dried fruits, while the dried vegetables are the foods subjected to the rehydration processes such as boiling, heating and baking before consumption. In recent years, new products with high eating quality have been attempted to achieve without losing characteristic of raw material. With the improving of food technology, using developed methods (pH reduction with reducing aw, slight heating, preservatives use etc. as protective agent, and using a combination of a low rate as an alternative to traditional food preservation process, products have been obtained without changing original characteristics of food. ‘Semi-dried 'or 'medium moist 'products with little difference between the taste and texture of the product with a damp have gained importance in recent years in terms of consumer preferences. Vegetables or fruits, which have water activity levels between 0.50 and 0.95 and the moisture content of between 26% and 60%, are called 'medium moist fruit or vegetables'. Two different manufacturing process to obtain a semi-dried or intermediate moisture products are applied. First, fully dried fruits and vegetables to be rehydrated with water are brought to the desired level of their moisture content. Second, in the first drying process, when the product moisture content is reduced to the desired level, the drying process is finished. The semi-dried products are preferred by consumers because they have a softer texture in terms of eating quality and like fresh products texture.

  8. Biological Control of Diseases of Vegetables Grown Hydroponically in Thailand: Challenge and Opportunity.

    Science.gov (United States)

    Kanjanamaneesathian, Mana

    2015-01-01

    In Thailand, yield loss due to plant diseases in vegetables grown hydroponically is very high as a result of the growers` lack of knowledge for controlling diseases and their un- willingness to invest in setting-up the proper hydroponic system from the beginning. Severe root rot disease caused by Pythium spp. is frequent and can be anticipated in the hot climate in Thailand. This review focuses on the diseases in temperate lettuces which have been produced hydroponically and have been attacked by plant pathogens, particularly Pythium spp. Biological control of vegetable diseases grown hydroponically has been investigated in Thailand. Research is being carried out to identify effective strains of the antagonists, formulating the applicable products and delivering them appropriately to control the disease. Products of Bacillus subtilis, Chaetomium globosom and Trichoderma harzianum have been recommended for use to control diseases in vegetables grown hydroponically. Control efficacy of these products is varied as the biological products have been used by the growers in the paradigm of using chemical fungicide for disease control in hydroponic production system, overlooking the intrinsic characteristics of the biological control products. The recent patent, which minimizes the effects of sunlight and heat on the nutrient solution without the use of an external energy for cooling the nutrient, should be applied in producing hydroponic vegetables to mitigate poor plant growth and root rot disease outbreak in Thailand.

  9. Nitrate removal from polluted water by using a vegetated floating system.

    Science.gov (United States)

    Bartucca, Maria Luce; Mimmo, Tanja; Cesco, Stefano; Del Buono, Daniele

    2016-01-15

    Nitrate (NO3(-)) water pollution is one of the most prevailing and relevant ecological issues. For instance, the wide presence of this pollutant in the environment is dramatically altering the quality of superficial and underground waters. Therefore, we set up a floating bed vegetated with a terrestrial herbaceous species (Italian ryegrass) with the aim to remediate hydroponic solutions polluted with NO3(-). The floating bed allowed the plants to grow and achieve an adequate development. Ryegrass was not affected by the treatments. On the contrary, plant biomass production and total nitrogen content (N-K) increased proportionally to the amount of NO3(-) applied. Regarding to the water cleaning experiments, the vegetated floating beds permitted to remove almost completely all the NO3(-) added from the hydroponic solutions with an initial concentration of 50, 100 and 150 mg L(-1). Furthermore, the calculation of the bioconcentration factor (BCF) indicated this species as successfully applicable for the remediation of solutions polluted by NO3(-). In conclusion, the results highlight that the combination of ryegrass and the floating bed system resulted to be effective in the remediation of aqueous solutions polluted by NO3(-). Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Measurements of nitrous oxide emissions from vegetable production in China

    Science.gov (United States)

    Xiong, Zhengqin; Xie, Yingxin; Xing, Guangxi; Zhu, Zhaoliang; Butenhoff, Chris

    Nitrous oxide (N 2O) emissions resulting from Chinese vegetable production were measured. A site in suburban Nanjing (East coast; Jiangsu Province) was monitored from November 2001 to January 2003, in which five consecutive vegetable crops were sown. The crops consisted of radish, baby bok choy, lettuce, second planting of baby bok choy, and finally celery. Results suggested that N 2O emission events occur in pulses. The average N 2O-N flux for all five crops was 148±9 μg N m -2 h -1 and the average emission rate was 12±0.7 kg N ha -1. The average seasonal emission fluxes ranged from 37 μg N m -2 h -1 in the radish plot to 300 μg N m -2 h -1 in the celery plot. The celery field produced the greatest cumulative emission of 5.8 kg N ha -1 while the baby bok choy field had the lowest rate of 0.96-1.0 kg N ha -1. In total, 0.73% of applied fertilizer N was emitted as N 2O-N as a whole. The lettuce field had the largest emission factor of 2.2%. Results indicate that emissions from vegetable field are a potential source of national N 2O inventory. Temporal variation is much greater than spatial variation and the corresponding CV averaged 115% and 22%, respectively. Under the same total sampling quantity, increasing sampling frequency is more important than increasing spatial replicates.

  11. 9 CFR 319.311 - Chow mein vegetables with meat, and chop suey vegetables with meat.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Chow mein vegetables with meat, and chop suey vegetables with meat. 319.311 Section 319.311 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY...

  12. Vegetable, livestock and agroindustrial products and byproducts: An alternative tilapia feeding

    Directory of Open Access Journals (Sweden)

    González Salas, R.

    2014-01-01

    Full Text Available In the culture of tilapia limited supply and high cost of fish meal have forced nutritionists to consider alternative sources of protein. Due to the importance of the products and by-products in fish feed, this paper aims to show the alternatives that have been used to partially or totally replace fish meal and soybean meal in tilapia growing. This paper showsthe maximum or optimal use of vegetable by-products for tilapia as cottonseed meal, sunflower, canola, soybean and Leucaena. It also deals with the inclusion with agro-industrial by-product such as corn, sorghum, coffee pulp, cocoa, wheat and citrus. The present study also deals with the use of aquatic plants such as Lemna and Azolla, single-celled plant protein source as antibiotics and probiotics. Finally, this paper also refers to animal by-products as silage, manure and earthworm usage. There is a high potential for using plant, livestock and agro-industrial by-products in fresh and processed food for the tilapia, but depending on the product, pretreatment to improve its balance of nutrients or eliminate anti-nutritional factors may be required.

  13. Sensitivity of vegetation indices and gross primary production of tallgrass prairie to severe drought

    Energy Technology Data Exchange (ETDEWEB)

    Wagle, Pradeep; Xiao, Xiangming; Torn, Margaret S.; Cook, David R.; Matamala, Roser; Fischer, Marc L.; Jin, Cui; Dong, Jinwei; Biradar, Chandrashekhar

    2014-09-01

    Drought affects vegetation photosynthesis and growth.Many studies have used the normalized difference vegetation index (NDVI), which is calculated as the normalized ratio between near infrared and red spectral bands in satellite images, to evaluate the response of vegetation to drought. In this study, we examined the impacts of drought on three vegetation indices (NDVI, enhanced vegetation index, EVI, and land surface water index, LSWI) and CO2 flux from three tallgrass prairie eddy flux tower sites in the U.S. Gross primary production (GPP) was also modeled using a satellite-based Vegetation Photosynthesis Model (VPM), and the modeled GPP (GPPVPM) was compared with the GPP (GPPEC) derived from eddy covariance measurements. Precipitation at two sites in Oklahoma was 30% below the historical mean in both years of the study period (2005–2006), while the site in Illinois did not experience drought in the 2005–2007 study period. The EVI explained the seasonal dynamics of GPP better than did NDVI. The LSWI dropped below zero during severe droughts in the growing season, showing its potential to track drought. The result shows that GPP was more sensitive to drought than were vegetation indices, and EVI and LSWI were more sensitive than NDVI. We developed a modified function (Wscalar), calculated as a function of LSWI, to account for the effect of severe droughts on GPP in VPM. The GPPVPM from the modified VPM accounted for the rapid reduction in GPP during severe droughts and the seasonal dynamics of GPPVPM agreed reasonably well with GPPEC. Our analysis shows that 8-day averaged values (temperature, vapor-pressure deficit) do not reflect the short-term extreme climate events well, suggesting that satellite based models may need to be run at daily or hourly scales, especially under unfavorable climatic conditions.

  14. Growing Degree Vegetation Production Index (GDVPI): A Novel and Data-Driven Approach to Delimit Season Cycles

    Science.gov (United States)

    Graham, W. D.; Spruce, J.; Ross, K. W.; Gasser, J.; Grulke, N.

    2014-12-01

    Growing Degree Vegetation Production Index (GDVPI) is a parametric approach to delimiting vegetation seasonal growth and decline cycles using incremental growing degree days (GDD), and NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) 8-day composite cumulative integral data. We obtain a specific location's daily minimum and maximum temperatures from the nearest National Oceanic and Atmospheric Administration (NOAA) weather stations posted on the National Climate Data Center (NCDC) Climate Data Online (CDO) archive and compute GDD. The date range for this study is January 1, 2000 through December 31, 2012. We employ a novel process, a repeating logistic product (RLP), to compensate for short-term weather variability and data drops from the recording stations and fit a curve to the median daily GDD values, adjusting for asymmetry, amplitude, and phase shift that minimize the sum of squared errors when comparing the observed and predicted GDD. The resulting curve, here referred to as the surrogate GDD, is the time-temperature phasing parameter used to convert Cartesian NDVI values into polar coordinate pairs, multiplying the NDVI values as the radial by the cosine and sine of the surrogate GDD as the angular. Depending on the vegetation type and the original NDVI curve, the polar NDVI curve may be nearly circular, kidney-shaped, or pear-shaped in the case of conifers, deciduous, or agriculture, respectively. We examine the points of tangency about the polar coordinate NDVI curve, identifying values of 1, 0, -1, or infinity, as each of these represent natural inflection points. Lines connecting the origin to each tangent point illustrate and quantify the parametrically segmentation of the growing season based on the GDD and NDVI ostensible dependency. Furthermore, the area contained by each segment represents the apparent vegetation production. A particular benefit is that the inflection points are determined

  15. Production of animal and vegetable proteins: an integrated thermal approach

    Energy Technology Data Exchange (ETDEWEB)

    Kesari, J P; Bonvehi, F; De Saint-Salvy, A; Miquel, J F

    1984-01-01

    For the optimization of our integrated farm, theoretical models using a microcomputer and experimental tests to verify these models were carried out on two research units. A test cell integrated with a greenhouse and a rock bed and a standard rock bed coupled with solar air collectors. A complete wooden house has been constructed and experimented in a remote village 200 km north of Toulouse as part of a demonstration unit. The geese and the Lemna minor (duckweed) have been selected as an animal and as a vegetable for the protein production. Some of the experimental results are reported.

  16. QUALITY MANAGEMENT OF FOOD SYSTEMS WITH THE PREDICTED BIOPOTENTIAL ON THE BASIS OF PRODUCTS OF PROCESSING OF DOMESTIC LOW-OLIVE RAW MATERIALS

    Directory of Open Access Journals (Sweden)

    T. V. Alekseeva

    2015-01-01

    Full Text Available Summary. This receiving the vegetable complex food system (VCFS on the basis of the cake of germs of wheat (CGW is presented. The review of composition of vegetable oils from low-olive raw materials is given, prospects of its application for creation of food systems of the balanced structure on PNZС are analyzed. It is established that the ratio of -6 и -3 of fatty acids in oil of germs of wheat doesn't correspond to recommendations of scientific research institute of food of the Russian Academy of Medical Science. For the purpose of establishment of necessary balance of -6 и -3 in food system, the blend with oils of an amaranth and pumpkin is carried out. The review of composition of vegetable oils from low-olive raw materials is given. The optimum ratio the entered oil of an amaranth and pumpkin according to recommendations of scientific research institute of food of the Russian Academy of Medical Science, by means of the developed software products written on in the Python 2.6 language and in the imperative, structured, object-oriented programming language – Delphi 7.0 is picked up. On the basis of the obtained data, the mass fraction of the components entering a compounding of vegetable food system is defined. The technological process of production of a product including the following stages is described: reception and preparation of raw materials and materials, dispensing and mixing of components, crushing and packing. Physical and chemical indicators of the received product, a chemical composition of RKPS and an organoleptic assessment of an innovative product are given. Calculation of satisfaction of daily need of an organism for feedstuffs and energy of vegetable food system is made. The composition of protein of an innovative product is analyzed: the amino-acid structure of food system, biological value, and also following indicators is counted: utility coefficient, coefficient of comparable redundancy, coefficient of

  17. Production of Biodiesel from Waste Vegetable Oil via KM Micromixer

    Directory of Open Access Journals (Sweden)

    M. F. Elkady

    2015-01-01

    Full Text Available The production of biodiesel from waste vegetable oils through its pretreatment followed by transesterification process in presence of methanol was investigated using a KM micromixer reactor. The parameters affecting biodiesel production process such as alcohol to oil molar ratio, catalyst concentration, the presence of tetrahydrofuran (THF as a cosolvent, and the volumetric flow rates of inlet fluids were optimized. The properties of the produced biodiesel were compared with its parent waste oil through different characterization techniques. The presence of methyl ester groups at the produced biodiesel was confirmed using both the gas chromatography-mass spectrometry (GC-MS and the infrared spectroscopy (FT-IR. Moreover, the thermal analysis of the produced biodiesel and the comparable waste oil indicated that the product after the transesterification process began to vaporize at 120°C which makes it lighter than its parent oil which started to vaporize at around 300°C. The maximum biodiesel production yield of 97% was recorded using 12 : 1 methanol to oil molar ratio in presence of both 1% NaOH and THF/methanol volume ratio 0.3 at 60 mL/h flow rate.

  18. Baseline levels of melamine in food items sold in Canada. II. Egg, soy, vegetable, fish and shrimp products.

    Science.gov (United States)

    Tittlemier, Sheryl A; Lau, Benjamin P-Y; Ménard, Cathie; Corrigan, Catherine; Sparling, Melissa; Gaertner, Dean; Cao, Xu-Liang; Dabeka, Bob; Hilts, Carla

    2010-01-01

    A variety of egg-containing, soy-based, fish, shrimp and vegetable products sold in Canada were analysed for melamine (MEL) using a sensitive solid-phase extraction LC-MS/MS analytical method. MEL was detected above the method quantification limit of 0.004 mg/kg in 98 of the 378 samples analysed. Concentrations in the various food product groups ranged 0.00507-0.247 mg/kg (egg-containing items), 0.00408-0.0479 mg/kg (soy-based meat substitutes), 0.00409-1.10 mg/kg (fish and shrimp products), and 0.00464-0.688 mg/kg (vegetable products). MEL was detected less frequently in egg- and soy-containing products. The presence of MEL in most of the Canadian Total Diet Study shrimp composites collected after 2001 suggested the residues in shrimp were caused by a relatively recent exposure to MEL. All concentrations of MEL reported were lower than the 2.5 mg/kg interim standard established for MEL in items containing milk and milk-derived ingredients and the respective maximum residue limits for cyromazine and its metabolite, melamine, in vegetables set by the Canadian Government (2009; http://www.hc-sc.gc.ca/fn-an/securit/chem-chim/melamine/qa-melamine-qr-eng.php#8 ). The consumption of foods containing these low levels of MEL does not constitute a health risk for consumers.

  19. New developments of a knowledge based system (VEG) for inferring vegetation characteristics

    Science.gov (United States)

    Kimes, D. S.; Harrison, P. A.; Harrison, P. R.

    1992-01-01

    An extraction technique for inferring physical and biological surface properties of vegetation using nadir and/or directional reflectance data as input has been developed. A knowledge-based system (VEG) accepts spectral data of an unknown target as input, determines the best strategy for inferring the desired vegetation characteristic, applies the strategy to the target data, and provides a rigorous estimate of the accuracy of the inference. Progress in developing the system is presented. VEG combines methods from remote sensing and artificial intelligence, and integrates input spectral measurements with diverse knowledge bases. VEG has been developed to (1) infer spectral hemispherical reflectance from any combination of nadir and/or off-nadir view angles; (2) test and develop new extraction techniques on an internal spectral database; (3) browse, plot, or analyze directional reflectance data in the system's spectral database; (4) discriminate between user-defined vegetation classes using spectral and directional reflectance relationships; and (5) infer unknown view angles from known view angles (known as view angle extension).

  20. Nutrient balances in Field vegetable production systems

    NARCIS (Netherlands)

    Neeteson, J.J.; Langeveld, J.W.A.; Smit, A.L.; Haan, de J.J.

    2003-01-01

    In this review paper an overview of the nitrogen (N) and phosphorus (P) cycles in agricultural systems is presented. The information summarized provides general information on the important processes involved as they relate to losses from agricultural systems. Such background information is a

  1. Furan levels in fruit and vegetables juices, nutrition drinks and bakery products.

    Science.gov (United States)

    Wegener, Jan-Willem; López-Sánchez, Patricia

    2010-07-05

    Furan, an oxygen containing monocyclic aromatic hydrocarbon, is considered possibly carcinogenic to humans. In the framework of the EU-project "Role of Genetic and Non-Genetic Mechanisms in Furan Risk", furan levels in food have been collected from the literature. Three food type categories have been selected on the basis of the collected data for sampling and analysis on furan with headspace GC-MS. This paper describes the results for the selected food categories, fruit and vegetables juices, nutrition drinks and bakery products. An attempt has been made to correlate the furan levels with the ingredients of the products. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Coastwide Reference Monitoring System (CRMS) Vegetation Volume Index: An assessment tool for marsh habitat focused on the three-dimensional structure at CRMS vegetation monitoring stations

    Science.gov (United States)

    Wood, William B.; Visser, Jenneke M.; Piazza, Sarai C.; Sharp, Leigh A.; Hundy, Laura C.; McGinnis, Tommy E.

    2015-12-04

    A Vegetation Volume (VV) variable and Vegetation Volume Index (VVI) have been developed for the Coastwide Reference Monitoring System (CRMS). The VV is a measure of the amount of three-dimensional vegetative structure present at each CRMS site and is based on vegetation data collected annually. The VV uses 10 stations per CRMS site to quantify four vegetation layers: carpet, herbaceous, shrub, and tree. For each layer an overall live vegetation percent cover and height are collected to create a layer volume; the individual layer volumes are then summed to generate a site vegetation volume profile. The VV uses the two-dimensional area of live vegetative cover (in square meters) multiplied by the height (in meters) of each layer to produce a volume (in cubic meters) for each layer present in a 2-meter by 2-meter station. These layers are additive, yielding a total volume for each of the 10 herbaceous vegetation stations and an overall CRMS marsh site average.

  3. Chemical Composition of Selected Beetroot Juices in Relation to Beetroot Production System and Processing Technology

    OpenAIRE

    Renata KAZIMIERCZAK; Agata SIŁAKIEWICZ; Ewelina HALLMANN; Dominika ŚREDNICKA-TOBER; Ewa REMBIAŁKOWSKA

    2016-01-01

    Market offer of vegetable juices in Europe is growing, and the vegetable species and processing technologies used become more diversified resulting in a large range of juice types. At the same time consumers look for natural and safe products with pro-health properties. The aim of this study was to evaluate the nutritional composition of selected juices based on beetroots coming from different agricultural systems and processed according to different technologies. Research material consisted ...

  4. Microscale vegetation-soil feedback boosts hysteresis in a regional vegetation-climate system

    NARCIS (Netherlands)

    Janssen, R.H.H.; Meinders, M.B.J.; Nes, van E.H.; Scheffer, M.

    2008-01-01

    It has been hypothesized that a positive feedback between vegetation cover and monsoon circulation may lead to the existence of two alternative stable states in the Sahara region: a vegetated state with moderate precipitation and a desert state with low precipitation. This could explain the sudden

  5. PRODUCTION OF HYBRID SEEDS OF THE VEGETABLE MARROW AT FREE POLLINATION

    Directory of Open Access Journals (Sweden)

    S. V. Kuzmin

    2018-01-01

    introduction of new vegetable marrow hybrids in production is cost-effective and in demand.

  6. Use of Different Vegetable Products to Increase Preschool-Aged Children's Preference for and Intake of a Target Vegetable

    NARCIS (Netherlands)

    Wild, de Victoire W.T.; Graaf, de Kees; Jager, Gerry

    2017-01-01

    Background: Children's low vegetable consumption requires effective strategies to enhance preference for and intake of vegetables. Objective: The study compared three preparation practices for a target vegetable (spinach) on their effectiveness in increasing preschool-aged children's preference

  7. New options for conversion of vegetable oils to alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A.; Kara, H. [Selcuk University, Konya (Turkey). Department of Chemical Engineering

    2006-05-15

    Biodiesel from transesterification of vegetable oils is an excellent alternative fuel. There is, however, a need to develop a direct process for conversion of vegetable oils into gasoline-competitive biodiesel and other petroleum products. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The purpose of the transesterification process is to lower the viscosity of vegetable oil. Compared to No. 2 diesel fuel, all of the vegetable oils are much more viscous, whereas methyl esters of vegetable oils are slightly more viscous. The methyl esters are more volatile than those of the vegetable oils. Conversion of vegetable oils to useful fuels involves the pyrolysis and catalytic cracking of the oils into lower molecular products. Pyrolysis produces more biogasoline than biodiesel fuel. Soap pyrolysis products of vegetable oils can be used as alternative diesel engine fuel. The soaps obtained from the vegetable oils can be pyrolyzed into hydrocarbon-rich products. Zinc chloride catalyst contributed greatly to high amounts of hydrocarbons in the liquid product. The yield of ZnCl2 catalytic conversion of the soybean oil reached the maximum 79.9% at 660 K. (author)

  8. Comparison of transesterification methods for production of biodiesel from vegetable oils and fats

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2008-01-01

    Comparative studies on transesterification methods were presented in this work. Biodiesel is obtained from a chemical reaction called transesterification (ester exchange). The reaction converts esters from long chain fatty acids into mono alkyl esters. Chemically, biodiesel commonly is a fatty acid methyl ester. Vegetable oils can be transesterified by heating them with a large excess of anhydrous methanol and an acidic or basic reagent as catalyst. A catalyst is usually used to improve the reaction rate and yield. In a transesterification reaction, a larger amount of methanol was used to shift the reaction equilibrium to the right side and produce more methyl esters as the proposed product. Several aspects including the type of catalyst (alkaline, acid or enzyme), alcohol/vegetable oil molar ratio, temperature, purity of the reactants (mainly water content) and free fatty acid content have an influence on the course of the transesterification. A non-catalytic biodiesel production route with supercritical methanol has been developed that allows a simple process and high yield because of the simultaneous transesterification of triglycerides and methyl esterification of fatty acids. In the catalytic supercritical methanol transesterification method, the yield of conversion rises to 60-90% for the first 1 min

  9. A vital link: water and vegetation in the Anthropocene

    Directory of Open Access Journals (Sweden)

    D. Gerten

    2013-10-01

    Full Text Available This paper argues that the interplay of water, carbon and vegetation dynamics fundamentally links some global trends in the current and conceivable future Anthropocene, such as cropland expansion, freshwater use, and climate change and its impacts. Based on a review of recent literature including geographically explicit simulation studies with the process-based LPJmL global biosphere model, it demonstrates that the connectivity of water and vegetation dynamics is vital for water security, food security and (terrestrial ecosystem dynamics alike. The water limitation of net primary production of both natural and agricultural plants – already pronounced in many regions – is shown to increase in many places under projected climate change, though this development is partially offset by water-saving direct CO2 effects. Natural vegetation can to some degree adapt dynamically to higher water limitation, but agricultural crops usually require some form of active management to overcome it – among them irrigation, soil conservation and eventually shifts of cropland to areas that are less water-limited due to more favourable climatic conditions. While crucial to secure food production for a growing world population, such human interventions in water–vegetation systems have, as also shown, repercussions on the water cycle. Indeed, land use changes are shown to be the second-most important influence on the terrestrial water balance in recent times. Furthermore, climate change (warming and precipitation changes will in many regions increase irrigation demand and decrease water availability, impeding rainfed and irrigated food production (if not CO2 effects counterbalance this impact – which is unlikely at least in poorly managed systems. Drawing from these exemplary investigations, some research perspectives on how to further improve our knowledge of human–water–vegetation interactions in the Anthropocene are outlined.

  10. Performance Evaluation and Field Application of Porous Vegetation Concrete Made with By-Product Materials for Ecological Restoration Projects

    Directory of Open Access Journals (Sweden)

    Hwang-Hee Kim

    2016-03-01

    Full Text Available The purpose of this study was to evaluate the performance of porous vegetation concrete block made from blast furnace slag cement containing industrial by-products such as blast furnace slag aggregate and powder. The blocks were tested for void ratio, compressive strength and freeze-thaw resistance to determine the optimal mixing ratio for the porous vegetation block. An economic analysis of the mixing ratio showed that the economic efficiency increased when blast furnace slag aggregate and cement were used. Porous vegetation concrete blocks for river applications were designed and produced. Hydraulic safety, heavy metal elution and vegetation tests were completed after the blocks were applied in the field. The measured tractive force ranged between 7.0 kg/m2 for fascine revetment (vegetation revetment and 16.0 kg/m2 for stone pitching (hard revetment, which ensured sufficient hydraulic stability in the field. Plant growth was measured after the porous vegetation concrete block was placed in the field. Seeds began to sprout one week after seeding; after six weeks, the plant length exceeded 300 mm. The average coverage ratio reached as high as 90% after six weeks of vegetation. These results clearly indicated that the porous vegetation concrete block was suitable for environmental restoration projects.

  11. Spatiotemporal variability and predictability of Normalized Difference Vegetation Index (NDVI) in Alberta, Canada.

    Science.gov (United States)

    Jiang, Rengui; Xie, Jiancang; He, Hailong; Kuo, Chun-Chao; Zhu, Jiwei; Yang, Mingxiang

    2016-09-01

    As one of the most popular vegetation indices to monitor terrestrial vegetation productivity, Normalized Difference Vegetation Index (NDVI) has been widely used to study the plant growth and vegetation productivity around the world, especially the dynamic response of vegetation to climate change in terms of precipitation and temperature. Alberta is the most important agricultural and forestry province and with the best climatic observation systems in Canada. However, few studies pertaining to climate change and vegetation productivity are found. The objectives of this paper therefore were to better understand impacts of climate change on vegetation productivity in Alberta using the NDVI and provide reference for policy makers and stakeholders. We investigated the following: (1) the variations of Alberta's smoothed NDVI (sNDVI, eliminated noise compared to NDVI) and two climatic variables (precipitation and temperature) using non-parametric Mann-Kendall monotonic test and Thiel-Sen's slope; (2) the relationships between sNDVI and climatic variables, and the potential predictability of sNDVI using climatic variables as predictors based on two predicted models; and (3) the use of a linear regression model and an artificial neural network calibrated by the genetic algorithm (ANN-GA) to estimate Alberta's sNDVI using precipitation and temperature as predictors. The results showed that (1) the monthly sNDVI has increased during the past 30 years and a lengthened growing season was detected; (2) vegetation productivity in northern Alberta was mainly temperature driven and the vegetation in southern Alberta was predominantly precipitation driven for the period of 1982-2011; and (3) better performances of the sNDVI-climate relationships were obtained by nonlinear model (ANN-GA) than using linear (regression) model. Similar results detected in both monthly and summer sNDVI prediction using climatic variables as predictors revealed the applicability of two models for

  12. Production of vegetal oil for energetic purposes; Producao de oleo vegetal com fins energeticos a partir de oleoginosas perenes

    Energy Technology Data Exchange (ETDEWEB)

    Andrade Pinto, R. de [Companhia Paranaense de Energia (COPEL), Curitiba, PQ (Brazil)

    1987-12-31

    The technology to obtain vegetable oil from trans esterification is already dominated. However, the oil grain`s cultures of annual cycle (soy-beans, peanuts, sunflowers) demand fertile and plain lands, which actually ought to be destined for food production, The utilization of slope wise areas, which are often destroyed by means of burning, for the reforestation with perennial oily trees which will be subject for further experimental researches, is studied. Particularly, the studies involves the cultivation of avocado`s varieties, which present pulps with a high oil concentration, in regions of temperate climates. It also involves an analysis of the high productivity and various difficulties to be surpassed, since the development of a simple procedure for thr oils and by-products extraction (in rural properties), until genetic developments of new avocado`s kinds, in order to achieve a better adaptation to the regions climate and to contain a higher oil concentration. 7 refs., 1 tab.

  13. An input-output energy analysis in greenhouse vegetable production: a case study for Antalya region of Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ozkan, Burhan; Akcaoz, Handan [Akdeniz Univ., Dept. of Agricultural Economics, Antalya (Turkey); Kurklu, Ahmet [Akdeniz Univ., Dept. of Agricultural Machinery, Antalya (Turkey)

    2004-01-01

    The aim of this research was to examine the energy equivalents of inputs and output in greenhouse vegetable production in the Antalya province of Turkey. For this purpose, the data for the production of four greenhouse crops (tomato, cucumber, eggplant and pepper) were collected in eighty-eight greenhouse farms by questionnaire. The results revealed that cucumber production was the most energy intensive of among the four crops investigated. Cucumber production consumed a total of 134.77 GJha{sup -1} followed by tomato with 127.32 GJha{sup -1}. The consumption of energy by eggplants and pepper were 98.68 and 80.25 GJha{sup -1}, respectively. The output-input energy ratio for greenhouse tomato, pepper, cucumber and eggplant were estimated to be 1.26, 0.99, 0.76 and 0.61, respectively. This indicated an intensive use of inputs in greenhouse vegetable production not accompanied by increase in the final product. This can lead to problems associated with these inputs such as global warming, nutrient loading and pesticide pollution. Therefore, there is a need to pursue a new policy to force producers to undertake energy efficient practices to increase the yield without diminishing natural resources. (Author)

  14. Comparison and Validation of Long Time Serial Global GEOV1 and Regional Australian MODIS Fractional Vegetation Cover Products Over the Australian Continent

    Directory of Open Access Journals (Sweden)

    Yanling Ding

    2015-05-01

    Full Text Available Fractional vegetation cover (FVC is one of the most critical parameters in monitoring vegetation status. Comprehensive assessment of the FVC products is critical for their improvement and use in land surface models. This study investigates the performances of two major long time serial FVC products: GEOV1 and Australian MODIS. The spatial and temporal consistencies of these products were compared during the 2000–2012 period over the main biome types across the Australian continent. Their accuracies were validated by 443 FVC in-situ measurements during the 2011–2012 period. Our results show that there are strong correlations between the GEOV1 and Australian MODIS FVC products over the main Australian continent while they exhibit large differences and uncertainties in the coastal regions covered by dense forests. GEOV1 and Australian MODIS describe similar seasonal variations over the main biome types with differences in magnitude, while Australian MODIS exhibit unstable temporal variations over grasslands and shifted seasonal variations over evergreen broadleaf forests. The GEOV1 and Australian MODIS products overestimate FVC values over the biome types with high vegetation density and underestimate FVC in sparsely vegetated areas and grasslands. Overall, the GEOV1 and Australian MODIS FVC products agree with in-situ FVC values with a RMSE around 0.10 over the Australian continent.

  15. Developing a Dynamic SPARROW Water Quality Decision Support System Using NASA Remotely-Sensed Products

    Science.gov (United States)

    Al-Hamdan, M. Z.; Smith, R. A.; Hoos, A.; Schwarz, G. E.; Alexander, R. B.; Crosson, W. L.; Srikishen, J.; Estes, M., Jr.; Cruise, J.; Al-Hamdan, A.; Ellenburg, W. L., II; Flores, A.; Sanford, W. E.; Zell, W.; Reitz, M.; Miller, M. P.; Journey, C. A.; Befus, K. M.; Swann, R.; Herder, T.; Sherwood, E.; Leverone, J.; Shelton, M.; Smith, E. T.; Anastasiou, C. J.; Seachrist, J.; Hughes, A.; Graves, D.

    2017-12-01

    The USGS Spatially Referenced Regression on Watershed Attributes (SPARROW) surface water quality modeling system has been widely used for long term, steady state water quality analysis. However, users have increasingly requested a dynamic version of SPARROW that can provide seasonal estimates of nutrients and suspended sediment to receiving waters. The goal of this NASA-funded project is to develop a dynamic decision support system to enhance the southeast SPARROW water quality model and finer-scale dynamic models for selected coastal watersheds through the use of remotely-sensed data and other NASA Land Information System (LIS) products. The spatial and temporal scale of satellite remote sensing products and LIS modeling data make these sources ideal for the purposes of development and operation of the dynamic SPARROW model. Remote sensing products including MODIS vegetation indices, SMAP surface soil moisture, and OMI atmospheric chemistry along with LIS-derived evapotranspiration (ET) and soil temperature and moisture products will be included in model development and operation. MODIS data will also be used to map annual land cover/land use in the study areas and in conjunction with Landsat and Sentinel to identify disturbed areas that might be sources of sediment and increased phosphorus loading through exposure of the bare soil. These data and others constitute the independent variables in a regression analysis whose dependent variables are the water quality constituents total nitrogen, total phosphorus, and suspended sediment. Remotely-sensed variables such as vegetation indices and ET can be proxies for nutrient uptake by vegetation; MODIS Leaf Area Index can indicate sources of phosphorus from vegetation; soil moisture and temperature are known to control rates of denitrification; and bare soil areas serve as sources of enhanced nutrient and sediment production. The enhanced SPARROW dynamic models will provide improved tools for end users to manage water

  16. Camera derived vegetation greenness index as proxy for gross primary production in a low Arctic wetland area

    DEFF Research Database (Denmark)

    Westergaard-Nielsen, Andreas; Lund, Magnus; Hansen, Birger Ulf

    2013-01-01

    vegetation index (NDVI) product derived from the WorldView-2 satellite. An object-based classification based on a bi-temporal image composite was used to classify the study area into heath, copse, fen, and bedrock. Temporal evolution of vegetation greenness was evaluated and modeled with double sigmoid...... and GPP (R-2 = 0.85, p remote Arctic regions....... (C) 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved....

  17. Vegetable Grafting: The Implications of a Growing Agronomic Imperative for Vegetable Fruit Quality and Nutritive Value

    Directory of Open Access Journals (Sweden)

    Marios C. Kyriacou

    2017-05-01

    Full Text Available Grafting has become an imperative for intensive vegetable production since chlorofluorocarbon-based soil fumigants were banned from use on grounds of environmental protection. Compelled by this development, research into rootstock–scion interaction has broadened the potential applications of grafting in the vegetable industry beyond aspects of soil phytopathology. Grafting has been increasingly tapped for cultivation under adverse environs posing abiotic and biotic stresses to vegetable crops, thus enabling expansion of commercial production onto otherwise under-exploited land. Vigorous rootstocks have been employed not only in the open field but also under protected cultivation where increase in productivity improves distribution of infrastructural and energy costs. Applications of grafting have expanded mainly in two families: the Cucurbitaceae and the Solanaceae, both of which comprise major vegetable crops. As the main drives behind the expansion of vegetable grafting have been the resistance to soilborne pathogens, tolerance to abiotic stresses and increase in yields, rootstock selection and breeding have accordingly conformed to the prevailing demand for improving productivity, arguably at the expense of fruit quality. It is, however, compelling to assess the qualitative implications of this growing agronomic practice for human nutrition. Problems of impaired vegetable fruit quality have not infrequently been associated with the practice of grafting. Accordingly, the aim of the current review is to reassess how the practice of grafting and the prevalence of particular types of commercial rootstocks influence vegetable fruit quality and, partly, storability. Physical, sensorial and bioactive aspects of quality are examined with respect to grafting for watermelon, melon, cucumber, tomato, eggplant, and pepper. The physiological mechanisms at play which mediate rootstock effects on scion performance are discussed in interpreting the

  18. Recent advances in drying and dehydration of fruits and vegetables: a review.

    Science.gov (United States)

    Sagar, V R; Suresh Kumar, P

    2010-01-01

    Fruits and vegetables are dried to enhance storage stability, minimize packaging requirement and reduce transport weight. Preservation of fruits and vegetables through drying based on sun and solar drying techniques which cause poor quality and product contamination. Energy consumption and quality of dried products are critical parameters in the selection of drying process. An optimum drying system for the preparation of quality dehydrated products is cost effective as it shortens the drying time and cause minimum damage to the product. To reduce the energy utilization and operational cost new dimensions came up in drying techniques. Among the technologies osmotic dehydration, vacuum drying, freeze drying, superheated steam drying, heat pump drying and spray drying have great scope for the production of quality dried products and powders.

  19. Development of a Dynamic Web Mapping Service for Vegetation Productivity Using Earth Observation and in situ Sensors in a Sensor Web Based Approach

    Directory of Open Access Journals (Sweden)

    Sytze de Bruin

    2009-03-01

    Full Text Available This paper describes the development of a sensor web based approach which combines earth observation and in situ sensor data to derive typical information offered by a dynamic web mapping service (WMS. A prototype has been developed which provides daily maps of vegetation productivity for the Netherlands with a spatial resolution of 250 m. Daily available MODIS surface reflectance products and meteorological parameters obtained through a Sensor Observation Service (SOS were used as input for a vegetation productivity model. This paper presents the vegetation productivity model, the sensor data sources and the implementation of the automated processing facility. Finally, an evaluation is made of the opportunities and limitations of sensor web based approaches for the development of web services which combine both satellite and in situ sensor sources.

  20. Impact of vegetation variability on potential predictability and skill of EC-Earth simulations

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Martina; Hurk, Bart van den; Haarsma, Reindert; Hazeleger, Wilco [Royal Netherlands Meteorological Institute (KNMI), De Bilt (Netherlands)

    2012-12-15

    Climate models often use a simplified and static representation of vegetation characteristics to determine fluxes of energy, momentum and water vapour between surface and lower atmosphere. In order to analyse the impact of short term variability in vegetation phenology, we use remotely-sensed leaf area index and albedo products to examine the role of vegetation in the coupled land-atmosphere system. Perfect model experiments are carried out to determine the impact of realistic temporal variability of vegetation on potential predictability of evaporation and temperature, as well as model skill of EC-Earth simulations. The length of the simulation period is hereby limited by the availability of satellite products to 2000-2010. While a realistic representation of vegetation positively influences the simulation of evaporation and its potential predictability, a positive impact on 2 m temperature is of smaller magnitude, regionally confined and more pronounced in climatically extreme years. (orig.)

  1. Genes encoding novel lipid transporters and their use to increase oil production in vegetative tissues of plants

    Science.gov (United States)

    Xu, Changcheng; Fan, Jilian; Yan, Chengshi; Shanklin, John

    2017-12-26

    The present invention discloses a novel gene encoding a transporter protein trigalactosyldiacylglycerol-5 (TGD5), mutations thereof and their use to enhance TAG production and retention in plant vegetative tissue.

  2. Identification of Distribution Channels to Create Sustainable Vegetable Prices

    Directory of Open Access Journals (Sweden)

    Aflit Nuryulia Praswati

    2017-12-01

    Full Text Available The price of vegetables has a role as a contributor to the rate of inflation. Currently the number of vegetable production in Boyolali region can no longer meet the needs of local communities. The limited amount of vegetable production and the inhibition of the vegetable distribution channel creates a scarcity of vegetables that result in price increases. This study aims to identify the distribution channel and the formation of vegetable prices derived from Boyolali area. The method used in this research is quantitative and qualitative. Respondents from this study consisted of farmers, wholesalers, small trader and end consumers. The type of distribution channel prevailing in Boyolali area are traditional and modern distribution channels. Intermediate distribution channels play a greater role in determining vegetable prices. If farmers want to improve their economic condition, it needs innovation and creativity in the process of planting, harvesting, packaging and marketing vegetable products.

  3. Gelled vegetable desserts containing pea protein, k-carrageenan and starch

    OpenAIRE

    Sousa, Isabel; Nunes, M.C.; Raymundo, Anabela

    2006-01-01

    Due to recent animal diseases, cholesterol in take worries and strong demand for healthy food, there is a greater pressure for the direct consumption of vegetable proteins in food products. In this work, the objective is to develop alternative of strictly vegetable origin desserts based on gelled systems with required physical structure and perceived texture. For this reason, it is important to control the properties of the biopolymer mixtures and understand the phase separation beha...

  4. Sustainable irrigation and nitrogen management of fertigated vegetable crops

    NARCIS (Netherlands)

    Thompson, R.B.; Incrocci, L.; Voogt, W.; Pardossi, A.; Magán, J.J.

    2017-01-01

    Fertigation in combination with drip irrigation is being increasingly used in vegetable crop production. From a nutrient management perspective, this combination provides the technical capacity for precise nitrogen (N) nutrition, both spatially and temporally. With these systems, N and other

  5. Attribution of trends in global vegetation greenness from 1982 to 2011

    Science.gov (United States)

    Zhu, Z.; Xu, L.; Bi, J.; Myneni, R.; Knyazikhin, Y.

    2012-12-01

    Time series of remotely sensed vegetation indices data provide evidence of changes in terrestrial vegetation activity over the past decades in the world. However, it is difficult to attribute cause-and-effect to vegetation trends because variations in vegetation productivity are driven by various factors. This study investigated changes in global vegetation productivity first, and then attributed the global natural vegetation with greening trend. Growing season integrated normalized difference vegetation index (GSI NDVI) derived from the new GIMMS NDVI3g dataset (1982-2011was analyzed. A combined time series analysis model, which was developed from simper linear trend model (SLT), autoregressive integrated moving average model (ARIMA) and Vogelsang's t-PST model shows that productivity of all vegetation types except deciduous broadleaf forest predominantly showed increasing trends through the 30-year period. The evolution of changes in productivity in the last decade was also investigated. Area of greening vegetation monotonically increased through the last decade, and both the browning and no change area monotonically decreased. To attribute the predominant increase trend of productivity of global natural vegetation, trends of eight climate time series datasets (three temperature, three precipitation and two radiation datasets) were analyzed. The attribution of trends in global vegetation greenness was summarized as relaxation of climatic constraints, fertilization and other unknown reasons. Result shows that nearly all the productivity increase of global natural vegetation was driven by relaxation of climatic constraints and fertilization, which play equally important role in driving global vegetation greenness.; Area fraction and productivity change fraction of IGBP vegetation land cover classes showing statistically significant (10% level) trend in GSI NDVIt;

  6. Economics of Dry Season Vegetable Production by Women Farmers ...

    African Journals Online (AJOL)

    The study was designed to analyze the economics of dry season vegetable farming among women farmers in Owerri West local government area of Imo State, South Eastern Nigeria. Data were collected with structured questionnaire from 50 randomly selected dry season women vegetable farmers. Data were analyzed ...

  7. Effect of the partial replacement of fish meal and oil by vegetable products on performance and quality traits of juvenile shi drum (Umbrina cirrosa L.

    Directory of Open Access Journals (Sweden)

    Igino Andrighetto

    2010-01-01

    Full Text Available A four-month growth trial was carried out in order to evaluate performance and quality traits of juvenile shi drum fedwith two isonitrogenous and isoenergetic diets having different amounts of vegetable products (Vegetable diet vs. Controldiet. Compared to the Control diet, the Vegetable diet was formulated by increasing the replacement of fish meal (14%with soybean and cereal products, and fish oil (12% with a mixture of vegetable oil. On June, 4 groups of 225 fish (2replicates per dietary treatment were sorted according to live weight and reared in fibreglass tanks over a four- monthlong experimental period. Fish were hand fed to apparent satiety. Offered feed, growth parameters and feed efficiencywere recorded as productive performance. At the end of the trial (October biometric, chemical and reological traits wereexamined to assess fish quality. The dietary treatments showed similar productive performance. The relatively high inclusionof vegetable sources led to a significant modification of body shape, mesenteric fat and viscera weight. Among qualitytraits, Vegetable diet-fed fish demonstrated a significantly lower whole body and fillet crude protein content.Yellowness value of the cooked fillet was significantly lower in the Control diet-fed fish, whereas fillet texture was similar.The results of this research showed that shi drum is a suitable candidate for Mediterranean marine aquaculture andits dietary formulation might include at least the amount of vegetable sources used in this trial.

  8. Classification of dried vegetables using computer image analysis and artificial neural networks

    Science.gov (United States)

    Koszela, K.; Łukomski, M.; Mueller, W.; Górna, K.; Okoń, P.; Boniecki, P.; Zaborowicz, M.; Wojcieszak, D.

    2017-07-01

    In the recent years, there has been a continuously increasing demand for vegetables and dried vegetables. This trend affects the growth of the dehydration industry in Poland helping to exploit excess production. More and more often dried vegetables are used in various sectors of the food industry, both due to their high nutritional qualities and changes in consumers' food preferences. As we observe an increase in consumer awareness regarding a healthy lifestyle and a boom in health food, there is also an increase in the consumption of such food, which means that the production and crop area can increase further. Among the dried vegetables, dried carrots play a strategic role due to their wide application range and high nutritional value. They contain high concentrations of carotene and sugar which is present in the form of crystals. Carrots are also the vegetables which are most often subjected to a wide range of dehydration processes; this makes it difficult to perform a reliable qualitative assessment and classification of this dried product. The many qualitative properties of dried carrots determining their positive or negative quality assessment include colour and shape. The aim of the research was to develop and implement the model of a computer system for the recognition and classification of freeze-dried, convection-dried and microwave vacuum dried products using the methods of computer image analysis and artificial neural networks.

  9. Recent developments in microbial oils production: a possible alternative to vegetable oils for biodiesel without competition with human food?

    Directory of Open Access Journals (Sweden)

    Gwendoline Christophe

    2012-02-01

    Full Text Available Since centuries vegetable oils are consumed as human food but it also finds applications in biodiesel production which is attracting more attention. But due to being in competition with food it could not be sustainable and leads the need to search for alternative. Nowdays microbes-derived oils (single cell oils seem to be alternatives for biodiesel production due to their similar composition to that of vegetable oils. However, the cold flow properties of the biodiesel produced from microbial oils are unacceptable and have to be modified by an efficient transesterification. Glycerol which is by product of transesterification can be valorised into some more useful products so that it can also be utilised along with biodiesel to simplify the downstream processing. The review paper discusses about various potent microorganisms for biodiesel production, enzymes involved in the lipid accumulation, lipid quantification methods, catalysts used in transesterification (including enzymatic catalyst and valorisation of glycerol.

  10. In vitro preliminary cytotoxicity testing of vegetal extracts, using colorimetric methods

    Directory of Open Access Journals (Sweden)

    Claudia Patricia Cordero Camacho

    2002-01-01

    Full Text Available To advance in the study of the Colombian vegetal biodiversity, considered as a potential source of pharmacologically active products, the establishment of biological activity evaluation systems is necessary, which allow the detection of active products against pathologies with high social and economical impact, such as cancer. This work describes the implementation of a preliminary in vitro methodology for the determination of potential anticancer activity in vegetal extracts, by cytotoxicity testing upon human tumor cell lines, measuring the cellular mass indirectly with the colorimetric assays of MTT (methyl tetrazolium tiazole reduction and SRB (sulforhodamine Bstaining. HT-29, MCF-7, SiHa and HEp-2 cell lines cultures were adapted, MTT concentration, cellular density and treatment period parameters for the cytotoxicity assay were selected. Cell lines sensitivity to the chemotherapeutic agent Doxorubicin HCl was determined. Colombian vegetal species extracts cytotoxicity was tested and usefulness of the assay as a tool to bioguide the search of active products was evidenced.

  11. In vitro preliminary cytotoxicity testing of vegetal extracts, using colorimetric methods

    Directory of Open Access Journals (Sweden)

    Claudia Patricia Cordero Camacho

    2011-12-01

    Full Text Available To advance in the study of the Colombian vegetal biodiversity, considered as a potential source of pharmacologically active products, the establishment of biological activity evaluation systems is necessary, which allow the detection of active products against pathologies with high social and economical impact, such as cancer. This work describes the implementation of a preliminary in vitro methodology for the determination of potential anticancer activity in vegetal extracts, by cytotoxicity testing upon human tumor cell lines, measuring the cellular mass indirectly with the colorimetric assays of MTT (methyl tetrazolium tiazole reduction and SRB (sulforhodamine Bstaining. HT-29, MCF-7, SiHa and HEp-2 cell lines cultures were adapted, MTT concentration, cellular density and treatment period parameters for the cytotoxicity assay were selected. Cell lines sensitivity to the chemotherapeutic agent Doxorubicin HCl was determined. Colombian vegetal species extracts cytotoxicity was tested and usefulness of the assay as a tool to bioguide the search of active products was evidenced.

  12. Intensity of competition in the market of greenhouse vegetables

    Directory of Open Access Journals (Sweden)

    Oleg Ivanovich Botkin

    2012-03-01

    Full Text Available This paper reviews the competitive environment of the market greenhouse vegetables. Revealed specific features of the industry, determining the level of intensity of competition in the market greenhouse vegetables. Classified factors internal and external environment, identify indicators that affect the state of the market. The factors that determine the intensity of competition in the market greenhouse vegetables.The main competitors on the Russian market of greenhouse production.Identified indicators of the intensity level of competition, in particular: the level of monopolization of the market greenhouse vegetables, the level of concentration of production in the industry, the generalized index of the intensity of the competitive environment.Shows a comparative analysis of competitors’ market greenhouse vegetables in Udmurtia.Revealed competitive advantages which can help local producers to reduce the pressure of competition and intra-industry to occupy a leading position in the Russian market of greenhouse vegetable production.The dynamics of economic performance of Russian producers. Ways of improving the competitiveness of enterprises for the production of greenhouse vegetables

  13. Overall Quality of Fruits and Vegetables Products Affected by the Drying Processes with the Assistance of Vacuum-Microwaves

    Directory of Open Access Journals (Sweden)

    Adam Figiel

    2016-12-01

    Full Text Available The seasonality of fruits and vegetables makes it impossible to consume and use them throughout the year, thus numerous processing efforts have been made to offer an alternative to their fresh consumption and application. To prolong their availability on the market, drying has received special attention as currently this method is considered one of the most common ways for obtaining food and pharmaceutical products from natural sources. This paper demonstrates the weakness of common drying methods applied for fruits and vegetables and the possible ways to improve the quality using different drying techniques or their combination with an emphasis on the microwave energy. Particular attention has been drawn to the combined drying with the assistance of vacuum-microwaves. The quality of the dried products was ascribed by chemical properties including the content of polyphenols, antioxidant capacity and volatiles as well as physical parameters such as color, shrinkage, porosity and texture. Both these fields of quality classification were considered taking into account sensory attributes and energy aspects in the perspective of possible industrial applications. In conclusion, the most promising way for improving the quality of dried fruit and vegetable products is hybrid drying consisting of osmotic dehydration in concentrated fruit juices followed by heat pump drying and vacuum-microwave finish drying.

  14. Overall Quality of Fruits and Vegetables Products Affected by the Drying Processes with the Assistance of Vacuum-Microwaves.

    Science.gov (United States)

    Figiel, Adam; Michalska, Anna

    2016-12-30

    The seasonality of fruits and vegetables makes it impossible to consume and use them throughout the year, thus numerous processing efforts have been made to offer an alternative to their fresh consumption and application. To prolong their availability on the market, drying has received special attention as currently this method is considered one of the most common ways for obtaining food and pharmaceutical products from natural sources. This paper demonstrates the weakness of common drying methods applied for fruits and vegetables and the possible ways to improve the quality using different drying techniques or their combination with an emphasis on the microwave energy. Particular attention has been drawn to the combined drying with the assistance of vacuum-microwaves. The quality of the dried products was ascribed by chemical properties including the content of polyphenols, antioxidant capacity and volatiles as well as physical parameters such as color, shrinkage, porosity and texture. Both these fields of quality classification were considered taking into account sensory attributes and energy aspects in the perspective of possible industrial applications. In conclusion, the most promising way for improving the quality of dried fruit and vegetable products is hybrid drying consisting of osmotic dehydration in concentrated fruit juices followed by heat pump drying and vacuum-microwave finish drying.

  15. Minimally processed vegetable salads: microbial quality evaluation.

    Science.gov (United States)

    Fröder, Hans; Martins, Cecília Geraldes; De Souza, Katia Leani Oliveira; Landgraf, Mariza; Franco, Bernadette D G M; Destro, Maria Teresa

    2007-05-01

    The increasing demand for fresh fruits and vegetables and for convenience foods is causing an expansion of the market share for minimally processed vegetables. Among the more common pathogenic microorganisms that can be transmitted to humans by these products are Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella. The aim of this study was to evaluate the microbial quality of a selection of minimally processed vegetables. A total of 181 samples of minimally processed leafy salads were collected from retailers in the city of Sao Paulo, Brazil. Counts of total coliforms, fecal coliforms, Enterobacteriaceae, psychrotrophic microorganisms, and Salmonella were conducted for 133 samples. L. monocytogenes was assessed in 181 samples using the BAX System and by plating the enrichment broth onto Palcam and Oxford agars. Suspected Listeria colonies were submitted to classical biochemical tests. Populations of psychrotrophic microorganisms >10(6) CFU/g were found in 51% of the 133 samples, and Enterobacteriaceae populations between 10(5) and 106 CFU/g were found in 42% of the samples. Fecal coliform concentrations higher than 10(2) CFU/g (Brazilian standard) were found in 97 (73%) of the samples, and Salmonella was detected in 4 (3%) of the samples. Two of the Salmonella-positive samples had minimally processed vegetables had poor microbiological quality, and these products could be a vehicle for pathogens such as Salmonella and L. monocytogenes.

  16. Soil organic carbon and physical properties in vegetable farms in South Uruguay

    International Nuclear Information System (INIS)

    Garcia de Souza, M.; Dogliotti, S.; Alliaume, F.; Mancassola, V.

    2011-01-01

    The South of Uruguay is the area of the country most severely affected by soil erosion and where the most important vegetable production area is located. Soil degradation has been aggravated by a process of intensification and specialization of the vegetable production due to an unfavorable socio-economic context and lack of adequate planning of the production systems. The objectives of this work were the description of current soil quality (Typic Hapluderts, Paquic (vertic) Argiudolls, and Abruptic Argiudolls) in 16 vegetable farms in the region, and the evaluation of the impact of improved management techniques on soil quality. We evaluated soil organic carbon (SOC), soil structure stability and the evolution of SOC in time. We found a degradation of soil quality under vegetable cropping compared to the reference sites, given by an average loss of SOC of 31 to 44% and 0.4 mm in structure stability. A linear regression model was fitted to explain the change in SOC content observed in fields under vegetable cultivation during the period under study. The change in SOC content was explained by the organic matter inputs by green manures and chicken bed, the initial SOC content and length of the period in years. This model is a simple tool to estimate the effect of soil organic amendments on SOC balance in soils under vegetable cropping in this region

  17. Monitoring of nitrate content of vegetable crops in Uzhgorod district

    Directory of Open Access Journals (Sweden)

    I.I. Mykaylo

    2013-09-01

    maximum permissible concentration in 9 kinds of vegetables out of the 11 selected for the investigation, which composes 82% of total production. In particular, among the selected vegetables an excess of nitrate content, above MPC was recorded in 100% of cucumbers, 92% of carrots, 40% samples of green onions, 40% of radishes, 40% of tomatoes, 28% bell peppers, and 16% of early white cabbages. However, the most significant nitrate excess, which was more than double the MPC, was observed in 56% of cucumbers, 20% of tomatoes, 8% of radishes in the early spring period and 4% of tomatoes in the summer period. Consequently, it has been established that the consumption of early vegetable production contributes to the ingestion by humans of significant amounts of nitrates. The application of an agrochemical system based upon sound measurement of the nitrate content would allow us to solve the task of increasing soil fertility and to form a deficit-free and positive balance of biogenic elements and humus in the "soil – plant – fertilizer" system and develop a system of crop production which is balanced in its chemical composition and nutritional value. To sum up, detailed determination of the factors that lead to the accumulation of nitrates in vegetable crops and the development of methods to reduce nitrate concentrations in crop production require further investigation.

  18. COMPARISON OF BIODIESEL PRODUCTIVITIES OF DIFFERENT VEGETABLE OILS BY ACIDIC CATALYSIS

    Directory of Open Access Journals (Sweden)

    AYTEN SAGIROGLU

    2011-03-01

    Full Text Available Biodiesel has become a subject which increasingly attracts worldwide attention because of its environmental benefits, biodegradability and renewability. Biodiesel production typically involves the transesterification of a triglyceride feedstock with methanol or other short-chain alcohols. This paper presents a study of transesterification of various vegetable oils, sunflower, safflower, canola, soybean, olive, corn, hazelnut and waste sunflower oils, with the acidic catalyst. Under laboratory conditions, fatty acid methyl esters (FAME were prepared by using methanol in the presence of 1.85% hydrochloric acid at 100 °C for 1 h and 25 °C for 3 h. The analyses of biodiesel were carried out by gas chroma¬tography and thin layer chromatography. Also, biodiesel productivities (% were determined on basis of the ratio of ester to oil content (w/w. The biodiesel productivities for all oils were found to be about 80% and about 90% at 25 and 100 °C, respectively. Also, the results showed that the yield of biodiesel depended on temperature for some oils, including canola, sunflower, safflower oils, but it was not found significant differences among all of the oil types on biodiesel productivities.

  19. Effects of Telecoupling on Global Vegetation Dynamics

    Science.gov (United States)

    Viña, A.; Liu, J.

    2016-12-01

    With the ever increasing trend in telecoupling processes, such as international trade, all countries around the world are becoming more interdependent. However, the effects of this growing interdependence on vegetation (e.g., shifts in the geographic extent and distribution) remain unknown even though vegetation dynamics are crucially important for food production, carbon sequestration, provision of other ecosystem services, and biodiversity conservation. In this study we evaluate the effects of international trade on the spatio-temporal trajectories of vegetation at national and global scales, using vegetation index imagery collected over more than three decades by the Advanced Very High Resolution Radiometer (AVHRR) satellite sensor series together with concurrent national and international data on international trade (and its associated movement of people, goods, services and information). The spatio-temporal trajectories of vegetation are obtained using the scale of fluctuation technique, which is based on the decomposition of the AVHRR image time series to obtain information on its spatial dependence structure over time. Similar to the correlation length, the scale of fluctuation corresponds to the range over which fluctuations in the vegetation index are spatially correlated. Results indicate that global vegetation has changed drastically over the last three decades. These changes are not uniform across space, with hotspots in active trading countries. This study not only has direct implications for understanding global vegetation dynamics, but also sheds important insights on the complexity of human-nature interactions across telecoupled systems.

  20. Spatiotemporal Dynamics in Vegetation GPP over the Great Khingan Mountains Using GLASS Products from 1982 to 2015

    Directory of Open Access Journals (Sweden)

    Ling Hu

    2018-03-01

    Full Text Available Gross primary productivity (GPP is an important parameter that represents the productivity of vegetation and responses to various ecological environments. The Greater Khingan Mountain (GKM is one of the most important state-owned forest bases, and boreal forests, including the largest primeval cold-temperature bright coniferous forest in China, are widely distributed in the GKM. This study aimed to reveal spatiotemporal vegetation variations in the GKM on the basis of GPP products that were generated by the Global LAnd Surface Satellite (GLASS program from 1982 to 2015. First, we explored the spatiotemporal distribution of vegetation across the GKM. Then we analyzed the relationships between GPP variation and driving factors, including meteorological elements, growing season length (GSL, and Fraction of Photosynthetically Active Radiation (FPAR, to investigate the dominant factor for GPP dynamics. Results demonstrated that (1 the spatial distribution of accumulated GPP (AG in spring, summer, autumn, and the growing season varied due to three main reasons: understory vegetation, altitude, and land cover; (2 interannual AG in summer, autumn, and the growing season significantly increased at the regional scale during the past 34 years under climate warming and drying; (3 interannual changes of accumulated GPP in the growing season (AGG at the pixel scale displayed a rapid expansion in areas with a significant increasing trend (p < 0.05 during the period of 1982–2015 and this trend was caused by the natural forest protection project launched in 1998; and finally, (4 an analysis of driving factors showed that daily sunshine duration in summer was the most important factor for GPP in the GKM and this is different from previous studies, which reported that the GSL plays a crucial role in other areas.

  1. Investigating the Relationship between the Inter-Annual Variability of Satellite-Derived Vegetation Phenology and a Proxy of Biomass Production in the Sahel

    Directory of Open Access Journals (Sweden)

    Michele Meroni

    2014-06-01

    Full Text Available In the Sahel region, moderate to coarse spatial resolution remote sensing time series are used in early warning monitoring systems with the aim of detecting unfavorable crop and pasture conditions and informing stakeholders about impending food security risks. Despite growing evidence that vegetation productivity is directly related to phenology, most approaches to estimate such risks do not explicitly take into account the actual timing of vegetation growth and development. The date of the start of the season (SOS or of the peak canopy density can be assessed by remote sensing techniques in a timely manner during the growing season. However, there is limited knowledge about the relationship between vegetation biomass production and these variables at the regional scale. This study describes the first attempt to increase our understanding of such a relationship through the analysis of phenological variables retrieved from SPOT-VEGETATION time series of the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR. Two key phenological variables (growing season length (GSL; timing of SOS and the maximum value of FAPAR attained during the growing season (Peak are analyzed as potentially related to a proxy of biomass production (CFAPAR, the cumulative value of FAPAR during the growing season. GSL, SOS and Peak all show different spatial patterns of correlation with CFAPAR. In particular, GSL shows a high and positive correlation with CFAPAR over the whole Sahel (mean r = 0.78. The negative correlation between delays in SOS and CFAPAR is stronger (mean r = −0.71 in the southern agricultural band of the Sahel, while the positive correlation between Peak FAPAR and CFAPAR is higher in the northern and more arid grassland region (mean r = 0.75. The consistency of the results and the actual link between remote sensing-derived phenological parameters and biomass production were evaluated using field measurements of aboveground herbaceous biomass

  2. Innovation in vegetable seed production and the role of consumers in the organic and conventional babyleaf chains: The case of Denmark

    DEFF Research Database (Denmark)

    Deleuran, Lise Christina

    2011-01-01

    In this study, the focus is on babyleaf products and the potentials that an increased interest in these products might bring to vegetable seed growers. Case studies on babyleaf products illustrate how consumers perceive babyleaf products and which parameters they give preference to. In addition, ...

  3. Review of Vegetable Market Development in China

    Institute of Scientific and Technical Information of China (English)

    Chaoping; LUO; Yuandong; NI; Qiong; ZHAI

    2013-01-01

    This paper has reviewed vegetable market development from vegetable circulation system, the develop history of the liberalize vegetable market and the growth of the vegetable wholesale market in China. From the development of vegetables market in China and its characteristics: the development of vegetable market in China is related to vegetable market system, the change of institution, some technology development and infrastructure. this paper has put forward some related measures to perfect the vegetable market and improve the vegetable circulation efficiency in China.

  4. Performance Evaluation and Field Application of Porous Vegetation Concrete Made with By-Product Materials for Ecological Restoration Projects

    OpenAIRE

    Hwang-Hee Kim; Chan-Gi Park

    2016-01-01

    The purpose of this study was to evaluate the performance of porous vegetation concrete block made from blast furnace slag cement containing industrial by-products such as blast furnace slag aggregate and powder. The blocks were tested for void ratio, compressive strength and freeze-thaw resistance to determine the optimal mixing ratio for the porous vegetation block. An economic analysis of the mixing ratio showed that the economic efficiency increased when blast furnace slag aggregate and c...

  5. A minimal model of fire-vegetation feedbacks and disturbance stochasticity generates alternative stable states in grassland–shrubland–woodland systems

    International Nuclear Information System (INIS)

    Batllori, Enric; Ackerly, David D; Moritz, Max A

    2015-01-01

    Altered disturbance regimes in the context of global change are likely to have profound consequences for ecosystems. Interactions between fire and vegetation are of particular interest, as fire is a major driver of vegetation change, and vegetation properties (e.g., amount, flammability) alter fire regimes. Mediterranean-type ecosystems (MTEs) constitute a paradigmatic example of temperate fire-prone vegetation. Although these ecosystems may be heavily impacted by global change, disturbance regime shifts and the implications of fire-vegetation feedbacks in the dynamics of such biomes are still poorly characterized. We developed a minimal modeling framework incorporating key aspects of fire ecology and successional processes to evaluate the relative influence of extrinsic and intrinsic factors on disturbance and vegetation dynamics in systems composed of grassland, shrubland, and woodland mosaics, which characterize many MTEs. In this theoretical investigation, we performed extensive simulations representing different background rates of vegetation succession and disturbance regime (fire frequency and severity) processes that reflect a broad range of MTE environmental conditions. Varying fire-vegetation feedbacks can lead to different critical points in underlying processes of disturbance and sudden shifts in the vegetation state of grassland–shrubland–woodland systems, despite gradual changes in ecosystem drivers as defined by the environment. Vegetation flammability and disturbance stochasticity effectively modify system behavior, determining its heterogeneity and the existence of alternative stable states in MTEs. Small variations in system flammability and fire recurrence induced by climate or vegetation changes may trigger sudden shifts in the state of such ecosystems. The existence of threshold dynamics, alternative stable states, and contrasting system responses to environmental change has broad implications for MTE management. (letter)

  6. Status of compost usage and its performance on vegetable production in Monga areas of Bangladesh

    Directory of Open Access Journals (Sweden)

    G.K.M.M. Rahman

    2014-12-01

    Full Text Available The present study was carried out to assess the existing status of compost usage on vegetable production and determine the overall effect of household waste compost (HWC on growth and yield of vegetables and enhancement of soil fertility in the monga areas of Bangladesh. A field survey was conducted on 152 sampled farmers during 2010 to 2011. Questionnaire containing both closed and open-ended questions were used to assess existing production practices of vegetables using compost in both homestead and field conditions. Three field trials at Badargonj and Kawnia upazilas of Rangpur district were conducted taking four treatments i.e. control, recommended doses (RD of fertilizers, HWC at the rate of 10 tha-1, and HWC 10 t ha-1 plus RD as IPNS based with Lal shak, Palong shak, Pui shak and Tomato. Base line survey results indicated inadequate knowledge of the farmers on use and preparation of the household waste compost. Yield data of all vegetables i.e. Tomato, Lal shak, Palong shak and Pui shak indicated that the combined application of nutrients using organic and inorganic sources were significantly better than that of solitary application of inorganic fertilizers. The potential of household waste compost applied @ 10 t ha-1 along with inorganic fertilizers applied was found highly satisfactory in producing Tomato, where yield was recorded 75 t ha-1 in the study area. The fresh yield of Palong shak was found 16 t ha-1 when recommended doses of inorganic fertilizers were applied, but it was about 19 t ha-1 under combined application of HWC @ 10 t ha-1 and inorganic fertilizers following IPNS concept. The fresh yield of Pui shak was found about 49 t ha-1 under combined application of organic and inorganic nutrients. Considering the availability and costs of different composts, it is evinced that HWC contained good amount of NPK which indicates its potentiality to be used as a soil amendment, improving soil fertility and crop productivity. It can be

  7. Production of Basella plants resistant to rust by irradiation of seeds and vegetative tissue

    International Nuclear Information System (INIS)

    Makambila, C.

    1997-01-01

    Basella is classified in the family Chenopodiaceae or Basellaceae. Also known as African spinach, this plant is consumed in Central Africa and several other African countries. There are two types of varieties grown in Congo: i. a local variety characterized by red leaves and stalks in which the principal way of propagation is from cuttings; ii. a group of varieties which have green or purple leaves and stalks. These varieties are called Basella alba and Basella rubra. These varieties have sexual reproduction. Among the two groups of varieties, the local variety is propagated vegetatively but is resistant to rust, while varieties with green leaves or with purple leaves (B. alba and B. rubra) that are propagated from seed are susceptible to rust. Since hybrid cannot be made by conventional crossing, the following procedures have been adopted to produce plants with disease tolerance: 1. production of resistant variants by irradiation of Basella alba seeds with Cesium 137; 2. production of resistant variants by irradiation of vegetative tissues obtained by culture of meristematic cells of B alba; and 3. obtaining resistant plants through somaclonal variation. 1 tab

  8. Production of Basella plants resistant to rust by irradiation of seeds and vegetative tissue

    Energy Technology Data Exchange (ETDEWEB)

    Makambila, C [Laboratory of Phytopathology, Faculty of Sciences, Univ. of Brazzaville, Brazzaville (Congo)

    1997-12-01

    Basella is classified in the family Chenopodiaceae or Basellaceae. Also known as African spinach, this plant is consumed in Central Africa and several other African countries. There are two types of varieties grown in Congo: i. a local variety characterized by red leaves and stalks in which the principal way of propagation is from cuttings; ii. a group of varieties which have green or purple leaves and stalks. These varieties are called Basella alba and Basella rubra. These varieties have sexual reproduction. Among the two groups of varieties, the local variety is propagated vegetatively but is resistant to rust, while varieties with green leaves or with purple leaves (B. alba and B. rubra) that are propagated from seed are susceptible to rust. Since hybrid cannot be made by conventional crossing, the following procedures have been adopted to produce plants with disease tolerance: 1. production of resistant variants by irradiation of Basella alba seeds with Cesium 137; 2. production of resistant variants by irradiation of vegetative tissues obtained by culture of meristematic cells of B alba; and 3. obtaining resistant plants through somaclonal variation. 1 tab.

  9. Conversion of by-products from the vegetable oil industry into biodiesel and its use in internal combustion engines: a review

    Directory of Open Access Journals (Sweden)

    R. Piloto-Rodríguez

    2014-06-01

    Full Text Available Biodiesel produced from by-products and waste materials can be an economical way of reducing traditional oil consumption and environmental problems. The by-products from the vegetable oil refining industry such as soapstock, acid oil and fatty acid distillates are suitable for producing biodiesel. The present work is a survey related to the use of these by-products to obtain biodiesel, covering not only the traditional and most widely used acid/base catalysis, but also solid and enzymatic catalysis. Details of the techniques are presented and compared. The advantages and drawbacks of the different approaches are mentioned and analyzed. The synthesis and use of by-products from the vegetable oil refining industry are covered in this work. The use of the obtained biodiesel in diesel engines is also included, demonstrating the disparity between the number of papers related to biodiesel production and engine performance assessment.

  10. Scale-dependent performances of CMIP5 earth system models in simulating terrestrial vegetation carbon

    Science.gov (United States)

    Jiang, L.; Luo, Y.; Yan, Y.; Hararuk, O.

    2013-12-01

    Mitigation of global changes will depend on reliable projection for the future situation. As the major tools to predict future climate, Earth System Models (ESMs) used in Coupled Model Intercomparison Project Phase 5 (CMIP5) for the IPCC Fifth Assessment Report have incorporated carbon cycle components, which account for the important fluxes of carbon between the ocean, atmosphere, and terrestrial biosphere carbon reservoirs; and therefore are expected to provide more detailed and more certain projections. However, ESMs are never perfect; and evaluating the ESMs can help us to identify uncertainties in prediction and give the priorities for model development. In this study, we benchmarked carbon in live vegetation in the terrestrial ecosystems simulated by 19 ESMs models from CMIP5 with an observationally estimated data set of global carbon vegetation pool 'Olson's Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation: An Updated Database Using the GLC2000 Land Cover Product' by Gibbs (2006). Our aim is to evaluate the ability of ESMs to reproduce the global vegetation carbon pool at different scales and what are the possible causes for the bias. We found that the performance CMIP5 ESMs is very scale-dependent. While CESM1-BGC, CESM1-CAM5, CESM1-FASTCHEM and CESM1-WACCM, and NorESM1-M and NorESM1-ME (they share the same model structure) have very similar global sums with the observation data but they usually perform poorly at grid cell and biome scale. In contrast, MIROC-ESM and MIROC-ESM-CHEM simulate the best on at grid cell and biome scale but have larger differences in global sums than others. Our results will help improve CMIP5 ESMs for more reliable prediction.

  11. Impacts of vegetation onset time on the net primary productivity in a mountainous island in Pacific Asia

    International Nuclear Information System (INIS)

    Chang, Chung-Te; Wang, Hsueh-Ching; Huang, Cho-ying

    2013-01-01

    Vegetation phenology reflects the response of a terrestrial ecosystem to climate change. In this study, we attempt to evaluate the El Niño/La Niña-Southern Oscillation (ENSO)-associated temporal dynamics of the vegetation onset and its influence on the net primary productivity (NPP) in a subtropical island (Taiwan) of Pacific Asia. We utilized a decade-long (2001–2010) time series of photosynthetically active vegetation cover (PV) data, which were derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data, to delineate the vegetation phenology. These data served as inputs for the phenological analysis toolbox TIMESAT. The results indicated that the delayed vegetation onset time was directly influenced by a dry spring (February and March) in which less than 40 mm of rainfall was received. This seasonal drought impeded vegetation growth in the subsequent growing season, most likely due to delayed impacts of moisture stress related to the preceding ENSO events. The significant correlations obtained between the annual MODIS NPP and both the vegetation onset time and the length of the growing season may imply that the accumulated rainfall in the spring season governs the annual NPP. The model simulations revealed that the frequency and intensity of the ENSO-related spring droughts might increase, which would result in cascading effects on the ecosystem metabolism. (letter)

  12. Development of Vegetation-Pervious Concrete in Grid Beam System for Soil Slope Protection

    Science.gov (United States)

    Bao, Xiaohua; Liao, Wenyu; Dong, Zhijun; Wang, Shanyong; Tang, Waiching

    2017-01-01

    One of the most efficient and environmentally friendly methods for preventing a landslide on a slope is to vegetate it. Vegetation-pervious concretes have a promising potential for soil protection. In this study, the vegetation-pervious concrete with low alkalinity was developed and studied. Combined with a grid beam structure system, the stability and strength between the vegetation-pervious concrete and base soil are believed to be enhanced effectively. For improving plant adaptability, the alkalinity of concrete can be decreased innovatively by adding a self-designed admixture into the cement paste. The effects of the admixture content on alkalinity and compressive strength of the hardened pervious concrete were investigated using X-ray diffraction (XRD) and compression test, respectively. Meanwhile, the permeability of the vegetation-pervious concrete was studied as well. Through comparing with ordinary pervious concrete, the effect of low alkaline pervious concrete on vegetation growth was investigated in a small-scale field for ten weeks. The test results indicated that the alkalinity of the cement samples decreased with the increase of admixture content, and the vegetation grew successfully on previous concrete. By increasing the admixture content to approximately 3.6%, the compressive strength of pervious concrete was more than 25 MPa. PMID:28772454

  13. [Monitoring of contamination of foodstuffs with elements noxious to human health. Part I. Wheat cereal products, vegetable products, confectionery and products for infants and children (2004 year)].

    Science.gov (United States)

    Wojciechowska-Mazurek, Maria; Starska, Krystyna; Brulińska-Ostrowska, Elzbieta; Plewa, Monika; Biernat, Urszula; Karłowski, Kazimierz

    2008-01-01

    The testing of products of wheat cereal (310 samples), vegetable (418 samples), confectionery (439 samples) and 952 samples of products for infants and children has initiated the 5-years cycle of monitoring investigations on food contamination with elements noxious to human health planned to perform in 2004-2008. The parties involved in testing were: laboratories of State Sanitary Inspection collecting samples on all over the territory of Poland, both from retail market (of domestic origin as well as imported) and directly from producers; the national reference laboratory of the Department of Food and Consumer Articles Research of National Institute of Public Health - National Institute of Hygiene responsible for elaboration of official food control and monitoring plans to be approved by Chief Sanitary Inspectorate and for the substantive supervising of tests performance. The reported metals contents were not of health concern and generally below the levels set forth in food legislation. The health hazard assessment was performed taking into account the mean contamination obtained and average domestic consumption of these food products groups in Poland. The highest intake expressed as the percentage of provisional tolerable weekly intake (PTWI) was obtained for cadmium, which has reached 9.4% PTWI for cereal based products and 4.7% PTWI for vegetables. The cadmium content in chocolate and derived products due to contamination of cocoa beans and the levels of this element in products for infants and children originated from contamination of cereal and soybeans row materials should not be ignored. The decrease of lead contamination comparing to those reported in 1990 studies was observed.

  14. The Role of Vegetation and Mulch in Mitigating the Impact of Raindrops on Soils in Urban Vegetated Green Infrastructure Systems

    Science.gov (United States)

    Alizadehtazi, B.; Montalto, F. A.; Sjoblom, K.

    2014-12-01

    Raindrop impulses applied to soils can break up larger soil aggregates into smaller particles, dispersing them from their original position. The displaced particles can self-stratify, with finer particles at the top forming a crust. Occurrence of this phenomenon reduces the infiltration rate and increases runoff, contributing to downstream flooding, soil erosion, and non point source pollutant loads. Unprotected soil surfaces (e.g. without vegetation canopies, mulch, or other materials), are more susceptible to crust formation due to the higher kinetic energy associated with raindrop impact. By contrast, soil that is protected by vegetation canopies and mulch layers is less susceptible to crust formation, since these surfaces intercept raindrops, dissipating some of their kinetic energy prior to their impact with the soil. Within this context, this presentation presents preliminary laboratory work conducted using a rainfall simulator to determine the ability of new urban vegetation and mulch to minimize soil crust formation. Three different scenarios are compared: a) bare soil, b) soil with mulch cover, and c) soil protected by vegetation canopies. Soil moisture, surface penetration resistance, and physical measurements of the volume of infiltrate and runoff are made on all three surface treatments after simulated rainfall events. The results are used to develop recommendations regarding surface treatment in green infrastructure (GI) system designs, namely whether heavily vegetated GI facilities require mulching to maintain infiltration capacity.

  15. Lactic acid production from acidogenic fermentation of fruit and vegetable wastes.

    Science.gov (United States)

    Wu, Yuanyuan; Ma, Hailing; Zheng, Mingyue; Wang, Kaijun

    2015-09-01

    This work focused on the lactic acid production from acidogenic fermentation of fruit and vegetable wastes treatment. A long term completely stirred tank reactor (CSTR) lasting for 50 days was operated at organic loading rate (OLR) of 11 gVS/(L d) and sludge retention time (SRT) of 3 days with pH controlled at 4.0 (1-24 day) and 5.0 (25-50 day). The results indicated that high amount of approximately 10-20 g/L lactic acid was produced at pH of 4.0 and the fermentation type converted from coexistence of homofermentation and heterofermentation into heterofermentation. At pH of 5.0, the hydrolysis reaction was improved and the total concentration of fermentation products increased up to 29.5 g COD/L. The heterofermentation was maintained, however, bifidus pathway by Bifidobacterium played an important role. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Enhancing biohydrogen production through sewage supplementation of composite vegetable based market waste

    International Nuclear Information System (INIS)

    Mohanakrishna, G.; Kannaiah Goud, R.; Venkata Mohan, S.; Sarma, P.N.

    2010-01-01

    The function of domestic sewage supplementation as co-substrate with composite vegetable based market waste was studied during the process of fermentative hydrogen (H 2 ) production. Significant improvement in H 2 production and substrate degradation were noticed upon supplementing the waste with domestic sewage. Maximum H 2 production (cummulative) was observed at 5.2 kg COD/m 3 with pulp operation and 4.8 kg COD/m 3 with non-pulp operation accounting for improvement of 51 and 55% respectively after sewage upplementation. Substrate degradation was also found to improve with respect to both carbohydrates [8% (with pulp); 5% (non-pulp)] and chemical oxygen demand [COD, 12% (with pulp); 13% (non-pulp)] after adding domestic sewage. Specific H 2 yield improved especially at lower concentrations. Supplementation of waste with co-substrate helps to maintain good buffering microenvironment supports fermentation process and in addition provides micro-nutrients, organic matter and microbial biomass. Variation in the outlet pH was less in supplementation experiments compared to normal operation. (author)

  17. Normalization of NDVI from Different Sensor System using MODIS Products as Reference

    International Nuclear Information System (INIS)

    Wenxia, Gan; Liangpei, Zhang; Wei, Gong; Huanfeng, Shen

    2014-01-01

    Medium Resolution NDVI(Normalized Difference Vegetation Index) from different sensor systems such as Landsat, SPOT, ASTER, CBERS and HJ-1A/1B satellites provide detailed spatial information for studies of ecosystems, vegetation biophysics, and land cover. Limitation of sensor designs, cloud contamination, and sensor failure highlighted the need to normalize and integrate NDVI from multiple sensor system in order to create a consistent, long-term NDVI data set. In this paper, we used a reference-based method for NDVI normalization. And present an application of this approach which covert Landsat ETM+ NDVI calculated by digital number (NDVI DN ) to NDVI calculated by surface reflectance (NDVI SR ) using MODIS products as reference, and different cluster was treated differently. Result shows that this approach can produce NDVI with highly agreement to NDVI calculated by surface reflectance from physical approaches based on 6S (Second Simulation of the satellite Signal in the Solar Spectrum). Although some variability exists, the cluster specified reference based approach shows considerable potential for NDVI normalization. Therefore, NDVI products in MODIS era from different sources can be combined for time-series analysis, biophysical parameter retrievals, and other downstream analysis

  18. Biodiesel production from vegetable oil: Process design, evaluation and optimization

    Directory of Open Access Journals (Sweden)

    Kianimanesh Hamid Reza

    2017-09-01

    Full Text Available To investigate the effect of reactor performance/configuration of biodiesel production on process parameters (mass & energy consumption, required facilities etc., two diverse production processes (from vegetable oil were implemented/designed using Aspen HYSYS V7.2. Two series reactors were taken into account where overall conversion was set to be 97.7% and 70% in first and second processes respectively. Comparative analysis showed that an increase in conversion yield caused to consumption reduction of oil, methanol, cold energy and hot energy up to 9.1%, 22%, 67.16% and 60.28% respectively; further, a number of facilities (e.g. boiler, heat exchanger, distillation tower were reduced. To reduce mass & energy consumption, mass/heat integration method was employed. Applying integration method showed that in the first design, methanol, cold and hot energy were decreased by 49.81%, 17.46% and 36.17% respectively; while in the second design, oil, methanol, cold and hot energy were decreased by 9%, 60.57% 19.62% and 36.58% respectively.

  19. Treatment of chronic portal--systemic encephalopathy with vegetable and animal protein diets. A controlled crossover study.

    Science.gov (United States)

    Uribe, M; Márquez, M A; Garcia Ramos, G; Ramos-Uribe, M H; Vargas, F; Villalobos, A; Ramos, C

    1982-12-01

    A controlled crossover clinical comparison of 40-g/day and 80-g/day vegetable protein diets vs a 40-g/day meat protein diet plus neomycin-milk of magnesia (as control therapy) was performed on 10 cirrhotic patients with mild chronic portal-systemic encephalopathy. The 40-g vegetable protein diet had a high fiber volume and contained low methionine and low aromatic amino acids. The 80-g vegetable protein diet was rich in branched-chain amino acids and fiber, with a similar content of sulfur-containing amino acids as compared to the 40-g meat protein diet. Serial semiquantitative assessments were done, including mental state, asterixis, number connection tests, electroencephalograms and blood ammonia levels. No patient developed deep coma while ingesting either vegetable protein diet or neomycin-milk of magnesia plus 40-g meat protein diet. A significant improvement in the number connection test times was observed during the 40-g vegetable protein diet (P less than 0.05) and during the 80-g vegetable protein diet (P less than 0.05) as compared to their previous 40-g meat protein--neomycin periods. In addition, during the period of 80-g vegetable protein diet, the patients showed a significant improvement in their electroencephalograms (P less than 0.05). The frequency of bowel movements significantly increased (P less than 0.05) during the 80-g vegetable protein diet period. During the 40-g vegetable protein diet, two cirrhotic--diabetic patients experienced hypoglycemia. Three patients complained of the voluminous 80-g vegetable protein diet. Patients with mild portal--systemic encephalopathy may be adequately controlled with vegetable protein diets as a single therapy.

  20. Solvent-free lipase-catalyzed preparation of diglycerides from co-products of vegetable oil refining

    Directory of Open Access Journals (Sweden)

    Tangkam, Kamol

    2008-09-01

    Full Text Available Co-products of vegetable oil refining such as a mixed deodorizer distillate resulting from the refining of various vegetable oils, a crude distillate resulting from the physical refining of coconut oil and commercial mixtures of distilled sunflower and coconut fatty acids were used as starting materials for the enzymatic preparation of diglycerides. Reaction conditions (temperature, pressure, molar ratio for the formation of diglycerides by lipase-catalyzed esterification/transesterification were studied using the mixed deodorizer distillate and glycerol as starting materials. The best results were obtained with the immobilized lipase B from Candida antarctica (Novozym 435 in vacuo at 60 °C leading to moderate proportions (~52% of diglycerides. The proportion of diglycerides increased when residual acylglycerides of the co-products of vegetable oil refining were hydrolyzed prior to esterification. Thus, the esterification of hydrolyzed co-products of vegetable oil refining with glycerol led to high formation (62-72% of diglycerides. Short-path vacuum distillation of the esterification products yielded distillation residues containing from 70% to 94% diglycerides. The proportions of fatty acids and monoglycerides in the distilled residues were quite low (Subproductos del refinado de los aceites vegetales tales como el destilado obtenido en el desodorizador al refinar distintos aceites vegetales, el destilado crudo resultante de la refinación física del aceite de coco, y mezclas comerciales de los ácidos grasos obtenidos en la destilación de aceites de girasol y coco fueron utilizados como materiales de partida para la preparación enzimática de diglicéridos. Se estudiaron las condiciones de reacción (temperatura, presión, relación molar para la formación de diglicéridos mediante esterificación/ transesterificación catalizada por lipasas usando la mezcla obtenida del desodorizador y glicerol como materiales de partida. Los mejores

  1. Assessment of farmers’ knowledge on fertilizer usage for peri-urban vegetable production in the Sunyani Municipality, Ghana

    DEFF Research Database (Denmark)

    Obour, Peter Bilson; Dadzie, Frederick Asankom; Kristensen, Hanne Lakkenborg

    2015-01-01

    How to optimize fertilizer application (i.e. by choosing the best fertilizer types, dosage, time of application, and application methods) to sustain and increase crop production and quality in intensively cropped weathered soils in Ghana is understudied. The purpose of the study was to assess...... services, the media, and at the point of sales are recommended to improve sustainable use of fertilizers for peri-urban vegetable production....

  2. Yield and Quality of Lettuce and Rocket Grown in Floating Culture System

    OpenAIRE

    Spyridon Alexandros PETROPOULOS; Eleni CHATZIEUSTRATIOU; Eleni CONSTANTOPOULOU; Georgios KAPOTIS

    2016-01-01

    In recent years, there has been a growing trend towards cultivating leafy vegetables in hydroponic systems. Floating system is an alternative hydroponic system suitable for the production of baby vegetable products, ready-to eat salads and minimally processed leafy vegetables. However, the implementation of this system for the production of fully grown leafy vegetables is not sufficiently studied. The aim of the present study was to examine the potential of floating system as an alternative g...

  3. Extraction methods and test techniques for detection of vegetable proteins in meat products. I. Qualitative detection of soya derivatives.

    Science.gov (United States)

    Hyslop, N S

    1976-06-01

    Extracts of 3 soya bean preparations, used commercially in certain countries to replace part of the meat in popular meat products, were made by treatment with (i) sodium dodecyl sulphate, (ii) Triton-X100 or (iii) n-Butanol. Similar extracts were made from beef and pork. All extracts were examined by electrophoretic and immunological techniques. Stained polyacrylamide gels revealed distinctive protein bands after electrophoresis. The migration rates of corresponding bands differed between beef and pork extracts. However, the migration rates of vegetable bands revealed certain similarities, but differed very greatly from those of animal origin. Characteristic fast-migrating S-bands were distinguishable only in extracts of vegetable protein. Immunodiffusion tests, using antisera produced in rabbits against each extract, revealed varying degrees of similarity between extracts of vegetable origin, but the antisera were specific for either vegetable or animal protein.

  4. Radium and uranium levels in vegetables grown using different farming management systems

    Energy Technology Data Exchange (ETDEWEB)

    Lauria, D.C. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN), Av. Salvador Allende s/n, Recreio dos Bandeirantes, Rio de Janeiro, RJ, CEP 22780-160 (Brazil)], E-mail: dejanira@ird.gov.br; Ribeiro, F.C.A. [Centro Regional de Ciencias Nucleares (CRCN/CNEN), Av. Prof. Luiz Freire 200, Cidade Universitaria Recife, PE, CEP 50740-540 (Brazil); Conti, C.C. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN), Av. Salvador Allende s/n, Recreio dos Bandeirantes, Rio de Janeiro, RJ, CEP 22780-160 (Brazil); Loureiro, F.A. [Estacao Experimental de Nova Friburgo, Empresa de Pesquisa Agropecuaria do Estado do Rio de Janeiro, Pesagro (Brazil)

    2009-02-15

    Vegetables grown with phosphate fertilizer (conventional management), with bovine manure fertilization (organic management) and in a mineral nutrient solution (hydroponic) were analyzed and the concentrations of {sup 238}U, {sup 226}Ra and {sup 228}Ra in lettuce, carrots, and beans were compared. Lettuce from hydroponic farming system showed the lowest concentration of radionuclides 0.51 for {sup 226}Ra, 0.55 for {sup 228}Ra and 0.24 for {sup 238}U (Bq kg{sup -1} dry). Vegetables from organically and conventionally grown farming systems showed no differences in the concentration of radium and uranium. Relationships between uranium content in plants and exchangeable Ca and Mg in soil were found, whereas Ra in vegetables was inversely correlated to the cation exchange capacity of soil, leading to the assumption that by supplying carbonate and cations to soil, liming may cause an increase of U and a decrease of radium uptake by plants. The soil to plant transfer varied from 10{sup -4} to 10{sup -2} for {sup 238}U and from 10{sup -2} to 10{sup -1} for {sup 228}Ra.

  5. Radium and uranium levels in vegetables grown using different farming management systems

    International Nuclear Information System (INIS)

    Lauria, D.C.; Ribeiro, F.C.A.; Conti, C.C.; Loureiro, F.A.

    2009-01-01

    Vegetables grown with phosphate fertilizer (conventional management), with bovine manure fertilization (organic management) and in a mineral nutrient solution (hydroponic) were analyzed and the concentrations of 238 U, 226 Ra and 228 Ra in lettuce, carrots, and beans were compared. Lettuce from hydroponic farming system showed the lowest concentration of radionuclides 0.51 for 226 Ra, 0.55 for 228 Ra and 0.24 for 238 U (Bq kg -1 dry). Vegetables from organically and conventionally grown farming systems showed no differences in the concentration of radium and uranium. Relationships between uranium content in plants and exchangeable Ca and Mg in soil were found, whereas Ra in vegetables was inversely correlated to the cation exchange capacity of soil, leading to the assumption that by supplying carbonate and cations to soil, liming may cause an increase of U and a decrease of radium uptake by plants. The soil to plant transfer varied from 10 -4 to 10 -2 for 238 U and from 10 -2 to 10 -1 for 228 Ra

  6. Radium and uranium levels in vegetables grown using different farming management systems.

    Science.gov (United States)

    Lauria, D C; Ribeiro, F C A; Conti, C C; Loureiro, F A

    2009-02-01

    Vegetables grown with phosphate fertilizer (conventional management), with bovine manure fertilization (organic management) and in a mineral nutrient solution (hydroponic) were analyzed and the concentrations of (238)U, (226)Ra and (228)Ra in lettuce, carrots, and beans were compared. Lettuce from hydroponic farming system showed the lowest concentration of radionuclides 0.51 for (226)Ra, 0.55 for (228)Ra and 0.24 for (238)U (Bq kg(-1) dry). Vegetables from organically and conventionally grown farming systems showed no differences in the concentration of radium and uranium. Relationships between uranium content in plants and exchangeable Ca and Mg in soil were found, whereas Ra in vegetables was inversely correlated to the cation exchange capacity of soil, leading to the assumption that by supplying carbonate and cations to soil, liming may cause an increase of U and a decrease of radium uptake by plants. The soil to plant transfer varied from 10(-4) to 10(-2) for (238)U and from 10(-2) to 10(-1) for (228)Ra.

  7. Institutional economic analysis of vegetable production and marketing in northern Philippines: social capital, institutions and governance

    NARCIS (Netherlands)

    Milagrosa, A.

    2007-01-01

    This study examines vegetable production and marketing among indigenous communities in northernPhilippinesusing an institutional economics approach. It develops a framework that analyses the four levels of

  8. 21 CFR 101.77 - Health claims: fruits, vegetables, and grain products that contain fiber, particularly soluble...

    Science.gov (United States)

    2010-04-01

    ..., many studies have shown that diets high in plant foods are associated with reduced risk of coronary... increased consumption of fiber-rich foods to help lower blood LDL-cholesterol levels. Results of numerous studies have shown that fiber-containing fruits, vegetables, and grain products can help lower blood LDL...

  9. Fresh Vegetables in the food service Industry its purchasing system; Gaishoku sangyo ni okeru seisen seikabutsu no chotatsu shisutemu

    Energy Technology Data Exchange (ETDEWEB)

    Oda, K. [Food Service Industry Survey and Research Center, Tokyo (Japan)

    1999-09-05

    The environment which surrounds production, distribution, consumption of vegetables changes. A demand for the business a household economy demand of vegetables stagnates by the increase of eating out and lunches demand in the food consumption as a long-term tendency, and the tendency as vigorousness continues. In addition, a demand for domestic organic and special cultivation vegetables from the increase of the healthy and safe orientation of the consumer heightens. In this paper, what kind of new movement occurs in environmental change which surrounds these vegetables is arranged. (NEDO)

  10. Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool

    Science.gov (United States)

    McKellip, Rodney; Prados, Donald; Ryan, Robert; Ross, Kenton; Spruce, Joseph; Gasser, Gerald; Greer, Randall

    2008-01-01

    The Time Series Product Tool (TSPT) is software, developed in MATLAB , which creates and displays high signal-to- noise Vegetation Indices imagery and other higher-level products derived from remotely sensed data. This tool enables automated, rapid, large-scale regional surveillance of crops, forests, and other vegetation. TSPT temporally processes high-revisit-rate satellite imagery produced by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by other remote-sensing systems. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution. To improve cloud statistics, the TSPT combines MODIS data from multiple satellites (Aqua and Terra). The TSPT produces MODIS products as single time-frame and multitemporal change images, as time-series plots at a selected location, or as temporally processed image videos. Using the TSPT program, MODIS metadata is used to remove and/or correct bad and suspect data. Bad pixel removal, multiple satellite data fusion, and temporal processing techniques create high-quality plots and animated image video sequences that depict changes in vegetation greenness. This tool provides several temporal processing options not found in other comparable imaging software tools. Because the framework to generate and use other algorithms is established, small modifications to this tool will enable the use of a large range of remotely sensed data types. An effective remote-sensing crop monitoring system must be able to detect subtle changes in plant health in the earliest stages, before the effects of a disease outbreak or other adverse environmental conditions can become widespread and devastating. The integration of the time series analysis tool with ground-based information, soil types, crop types, meteorological data, and crop growth models in a Geographic Information System, could provide the foundation for a large-area crop-surveillance system that could identify

  11. Color Shade Nets Improve Vegetables Quality at Harvest and Maintain Quality During Storage

    Directory of Open Access Journals (Sweden)

    Ilić Zoran S.

    2018-03-01

    Full Text Available The photoselective, light-dispersive shade nets can be used as an alternative to protect crops from adverse environmental conditions such as; excessive solar radiation, heat and drought stress, wind and hail, birds, flying pests, thus improving crop’s production, yield and quality. The physiological parameters discussed in the review include: vegetable growth parameters (leaf area, leaf chlorophyll, tissue structure, fruit ripening, physiological disorders, pest and disease incidence, fruit quality parameters (soluble solids content and titratable acidity, bioactive compounds (antioxidant activity, ascorbic acid, carotenoid and flavonoid contents and aroma volatile compounds at harvest. Also, it is evident in the reviewed literature that light quality influences the biosynthesis, accumulation and retention of vegetable phytochemicals, as well as the decay development during storage. These new strategies to modulate light quality should be conveyed to vegetable producing farmers, thus allowing them to preserve the freshness and post-harvest quality of vegetables for an extended period of time, and to meet the consumers demand for vegetables with high nutritional value all year round. Research on light manipulation in horticultural systems is necessary for a sustainable and market-oriented open field and greenhouse vegetable production in the future.

  12. Marketing System of Fresh Friut and Vegetable: The Role of Modern and Wholesale Market in Jakarta and the Vicinity

    Directory of Open Access Journals (Sweden)

    Togar A. Napitupulu

    2010-05-01

    Full Text Available Marketing system of fresh fruits and vegetable in the context of the rapidly growing dynamic markets in Jakarta and the vicinity was studied. Unstructured interviews and observations of key persons, and panels were conducted, primarily in three main wholesale markets in Jakarta and the vicinity and some supermarkets. It was found that the availability of management services and associated facilities are not yet fully compatible with modern markets. Their role, therefore, in catering to the supermarkets is limited, in particular for vegetables due to requirements on quality and delivery schedules. In general, supermarkets procure their supply directly from production centers through special/dedicated suppliers, which currently amounts to about 1% to 5% of total production from production centers. If policy and conducive economic incentive are available, wholesale markets are not only domain of public investment anymore, but also private investments alike. The newly established wholesale markets show that they now have a higher rate of utilization than in the years before. It is therefore for the local government and the central government to furthers devise conducive policy and regulatory measures, and for the private to take this opportunity in terms of investment in developing the economy of the region. 

  13. Effectiveness of solar heating systems for the regeneration of adsorbents in recessed fruit and vegetable storages

    International Nuclear Information System (INIS)

    Khuzhakulov, S.M.; Uzakov, G.N.; Vardiyashvili, A.B

    2013-01-01

    A new method for the regeneration of adsorbents using solar heating systems is proposed. It provides energy saving through the control of the gas composition and humidity in recessed fruit and vegetable storages. The effectiveness of solar heating systems, such as a 'hot box' for the regeneration of adsorbents in fruit and vegetable storages is shown. (author)

  14. Study of Wetland Ecosystem Vegetation Using Satellite Data

    Science.gov (United States)

    Dyukarev, E. A.; Alekseeva, M. N.; Golovatskaya, E. A.

    2017-12-01

    The normalized difference vegetation index (NDVI) is used to estimate the aboveground net production (ANP) of wetland ecosystems for the key area at the South Taiga zone of West Siberia. The vegetation index and aboveground production are related by linear dependence and are specific for each wetland ecosystem. The NDVI grows with an increase in the ANP at wooded oligotrophic ecosystems. Open oligotrophic bogs and eutrophic wetlands are characterized by an opposite relation. Maps of aboveground production for wetland ecosystems are constructed for each study year and for the whole period of studies. The average aboveground production for all wetland ecosystems of the key area, which was estimated with consideration for the area they occupy and using the data of satellite measurements of the vegetation index, is 305 g C/m2/yr. The total annual carbon accumulation in aboveground wetland vegetation in the key area is 794600 t.

  15. Anaerobic digestion of fruit and vegetable processing wastes for biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Viswanath, P.; Sumithra Devi, S.; Nand, K. (Central Food Technological Research Inst., Mysore (IN))

    1992-01-01

    The effect of feeding different fruit and vegetable wastes, mango, pineapple, tomato, jackfruit, banana and orange, was studied in a 60-litre digester by cycling each waste every fifth day in order to operate the digester as and when there was supply of feed. The characteristics of the anaerobically digested fluid and digester performance in terms of biogas production were determined at different loading rates (LR) and at different hydraulic retention times (HRT) and the maximum biogas yield of 0.6 m{sup 3}/kg VS added was achieved at a 20-day HRT and 40 kg TS m{sup -3}day{sup -1} loading rate. The hourly gas production was observed in the digesters operated at 16 and 24 days HRT. The major yield (74.5%) of gas was produced within 12h of feeding at a 16-day HRT whereas at a 24-day HRT only 59.03% of the total gas could be obtained at this time. (author).

  16. Consequences of buffelgrass pasture development for primary productivity, perennial plant richness, and vegetation structure in the drylands of Sonora, Mexico.

    Science.gov (United States)

    Franklin, Kimberly; Molina-Freaner, Francisco

    2010-12-01

    In large parts of northern Mexico native plant communities are being converted to non-native buffelgrass (Pennisetum ciliare) pastures, and this conversion could fundamentally alter primary productivity and species richness. In Sonora, Mexico land conversion is occurring at a regional scale along a rainfall-driven gradient of primary productivity, across which native plant communities transition from desert scrub to thorn scrub. We used a paired sampling design to compare a satellite-derived index of primary productivity, richness of perennial plant species, and canopy-height profiles of native plant communities with buffelgrass pastures. We sampled species richness across a gradient of primary productivity in desert scrub and thorn scrub vegetation to examine the influence of site productivity on the outcomes of land conversion. We also examined the influence of pasture age on species richness of perennial plants. Index values of primary productivity were lower in buffelgrass pastures than in native vegetation, which suggests a reduction in primary productivity. Land conversion reduced species richness by approximately 50% at local and regional scales, reduced tree and shrub cover by 78%, and reduced canopy height. Land conversion disproportionately reduced shrub species richness, which reflects the common practice among Sonoran ranchers of conserving certain tree and cactus species. Site productivity did not affect the outcomes of land conversion. The age of a buffelgrass pasture was unrelated to species richness within the pasture, which suggests that passive recovery of species richness to preconversion levels is unlikely. Our findings demonstrate that land conversion can result in large losses of plant species richness at local and regional scales and in substantial changes to primary productivity and vegetation structure, which casts doubt on the feasibility of restoring native plant communities without active intervention on the part of land managers.

  17. Evolution of the vegetation system in the Heihe River basin in the last 2000 years

    Directory of Open Access Journals (Sweden)

    S. Li

    2017-08-01

    Full Text Available The response of vegetation systems to the long-term changes in climate, hydrology, and social–economic conditions in river basins is critical for sustainable river basin management. This study aims to investigate the evolution of natural and crop vegetation systems in the Heihe River basin (HRB over the past 2000 years. Archived Landsat images, historical land use maps and hydrological records were introduced to derive the long-term spatial distribution of natural and crop vegetation and the corresponding biomass levels. The major findings are that (1 both natural and crop vegetation experienced three development stages: a pre-development stage (before the Republic of China, a rapid development stage (Republic of China – 2000, and a post-development stage (after 2000. Climate and hydrological conditions did not show significant impacts over crop vegetation, while streamflow presented synchronous changes with natural vegetation in the first stage. For the second stage, warmer temperature and increasing streamflow were found to be important factors for the increase in both natural and crop vegetation in the middle reaches of the HRB. For the third stage, positive climate and hydrological conditions, together with policy interventions, supported the overall vegetation increase in both the middle and lower HRB; (2 there was a significantly faster increase in crop biomass than that of native vegetation since 1949, which could be explained by the technological development; and (3 the ratio of natural vegetation to crop vegetation decreased from 16 during the Yuan Dynasty to about 2.2 since 2005. This ratio reflects the reaction of land and water development to a changing climate and altering social–economic conditions at the river basin level; therefore, it could be used as an indicator of water and land management at river basins.

  18. Evaporative cooling system for storage of fruits and vegetables - a review.

    Science.gov (United States)

    Lal Basediya, Amrat; Samuel, D V K; Beera, Vimala

    2013-06-01

    Horticultural produce are stored at lower temperature because of their highly perishable nature. There are many methods to cool the environment. Hence, preserving these types of foods in their fresh form demands that the chemical, bio-chemical and physiological changes are restricted to a minimum by close control of space temperature and humidity. The high cost involved in developing cold storage or controlled atmosphere storage is a pressing problem in several developing countries. Evaporative cooling is a well-known system to be an efficient and economical means for reducing the temperature and increasing the relative humidity in an enclosure and this effect has been extensively tried for increasing the shelf life of horticultural produce in some tropical and subtropical countries. In this review paper, basic concept and principle, methods of evaporative cooling and their application for the preservation of fruits and vegetables and economy are also reported. Thus, the evaporative cooler has prospect for use for short term preservation of vegetables and fruits soon after harvest. Zero energy cooling system could be used effectively for short-duration storage of fruits and vegetables even in hilly region. It not only reduces the storage temperature but also increases the relative humidity of the storage which is essential for maintaining the freshness of the commodities.

  19. Consumer attitudes towards vegetable attributes: potential buyers of pesticide-free vegetables in Accra and Kumasi, Ghana.

    Science.gov (United States)

    Probst, Lorenz; Aigelsperger, Lisa; Hauser, Michael

    2010-01-01

    Considering the inappropriate use of synthetic pesticides on vegetables in West Africa, the rationale behind this research was to assess the extent to which consumers can function as demanders of risk reduced vegetables and hence act as innovators towards vegetable safety. Using the cases of Kumasi and Accra in Ghana, the study examined possible consumer responses to product certification that communicates freedom from pesticides (e.g., organic certification). Generally, search attributes such as the fresh and healthy appearance of a vegetable were found to be central to consumer choice. While consumers stress the importance of health value, they are mostly unaware of agro-chemical risks related to vegetable consumption.

  20. The marsh vegetation of Kleinmond Lagoon

    Directory of Open Access Journals (Sweden)

    M. O'Callaghan

    1994-10-01

    Full Text Available The vegetation of Kleinmond Lagoon suggests that this system is in transition from an estuary to a coastal lake. Two major types of vegetation were recognized, one which is subjected to soil and water conditions of marine origin and the other which is subjected to conditions of terrestrial origin. These vegetation types are discussed and compared to the vegetation of other estuarine systems. Artificial manipulations of the mouth seem to have resulted in sediment deposition and a freshening of the system. These unseasonable manipulations also threaten the continued existence of a number of species in the system.

  1. The Impact of the Quality of Coal Mine Stockpile Soils on Sustainable Vegetation Growth and Productivity

    Directory of Open Access Journals (Sweden)

    Nicky M Mushia

    2016-06-01

    Full Text Available Stockpiled soils are excavated from the ground during mining activities, and piled on the surface of the soil for rehabilitation purposes. These soils are often characterized by low organic matter (SOM content, low fertility, and poor physical, chemical, and biological properties, limiting their capability for sustainable vegetation growth. The aim of the study was to evaluate the impact of stockpile soils of differing depth and quality on vegetation growth and productivity. Soils were collected at three different depths (surface, mid, and deep as well as mixed (equal proportion of surface, mid and deep from two stockpiles (named Stockpile 1: aged 10 and Stockpile 2: 20 years at the coal mine near Witbank in the Mpumalanga province of South Africa. Soils were amended with different organic and inorganic fertilizer. A 2 × 4 × 5 factorial experiment in a completely randomized blocked design with four replications was established under greenhouse conditions. A grass species (Digiteria eriantha was planted in the pots with unamended and amended soils under greenhouse conditions at 26–28 °C during the day and 16.5–18.5 °C at night. Mean values of plant height, plant cover, total fresh biomass (roots, stems and leaves, and total dry biomass were found to be higher in Stockpile 1 than in Stockpile 2 soils. Plants grown on soils with no amendments had lower mean values for major plant parameters studied. Soil amended with poultry manure and lime was found to have higher growth rate compared with soils with other soil amendments. Mixed soils had better vegetation growth than soil from other depths. Stockpiled soils in the study area cannot support vegetation growth without being amended, as evidenced by low grass growth and productivity in this study.

  2. [Treatment effect of biological filtration and vegetable floating-bed combined system on greenhouse turtle breeding wastewater].

    Science.gov (United States)

    Chen, Chong-Jun; Zhang, Rui; Xiang, Kun; Wu, Wei-Xiang

    2014-08-01

    Unorganized discharge of greenhouse turtle breeding wastewater has brought several negative influences on the ecological environment in the rural area of Yangtze River Delta. Biological filtration and vegetable floating-bed combined system is a potential ecological method for greenhouse turtle breeding wastewater treatment. In order to explore the feasibility of this system and evaluate the contribution of vegetable uptake of nitrogen (N) and phosphorus (P) in treating greenhouse turtle breeding wastewater, three types of vegetables, including Ipomoea aquatica, lettuce and celery were selected in this study. Results showed the combined system had a high capacity in simultaneous removal of organic matter, N and P. The removal efficiencies of COD, NH4(+)-N, TN and TP from the wastewater reached up to 93.2%-95.6%, 97.2%-99.6%, 73.9%-93.1% and 74.9%-90.0%, respectively. System with I. aquatica had the highest efficiencies in N and P removal, followed by lettuce and celery. However, plant uptake was not the primary pathway for TN arid TP removal in the combined system. The vegetable uptake of N and P accounted for only 9.1%-25.0% of TN and TP removal from the wastewater while the effect of microorganisms would be dominant for N and P removal. In addition, the highest amounts of N and P uptake in I. aquatica were closely related with the biomass of plant. Results from the study indicated that the biological filtration and vegetable floating-bed combined system was an effective approach to treating greenhouse turtle breeding wastewater in China.

  3. Risk elements in selected types of vegetables

    Directory of Open Access Journals (Sweden)

    Ľuboš Harangozo

    2016-12-01

    Full Text Available Vegetable has an important role in human nutrition. Various parts of the plants have been part of the human diet since the beginning. Vegetables have a number of properties that make its consumption very healthful. It not only is a good source of vitamins, minerals and fiber but also contains protective components so called phytonutrients, has an antioxidant and antimicrobial effects. Daily intake of vegetables offers many health benefits, helps to improve health for example the function of digestive and immune system, reduces the risk of various diseases and so we should take care to its regular consumption. It is widely used, except that it is the basic raw material for the preparation of foods and is also an important raw material for the processing industry. Nowadays has become environmental pollution by heavy metals as a big problem. The contamination of water, soil as well as air pollution by heavy metals negatively affects agricultural production and production of non-harmful to health, safe and quality food, which may be adverse effects on human health. Therefore, it is important that we devote this issue more attention. The aim of this work was to identify and determine content of heavy metals in selected vegetables. Defined objectives have been achieved by analyzing of selected species samples of root from brassica vegetables: carrot (Daucus carota L. ssp. sativus, parsley (Petroselinum hortesne HOFFM conv. radicosum, kohlrabi (Brassica oleracea L. var. gongylodes, celery (Apium graveolens L. var. rapaceum and beetroot (Beta vulgaris L. var. conditiva ssp. vulgaris. The crops were bought in local market. The obtained results were compared with the results obtained from analyzes of vegetables that were grown in home conditions respectively from markets of local growers. All crops were grown in Slovak Republic. By using Varian AA 240FS and AAS method were analyzed the contents of risk metals in selected vegetables. It was confirmed that

  4. Analysis of Trends in Vegetation Avhrr-Ndvi Data Across Sokoto ...

    African Journals Online (AJOL)

    The current situation in vegetation productivity across Nigeria and indeed in Sokoto State is being affected by climatic change and other unfavourable environmental conditions. Time-series Remotely Sensed data within Geographic Information System (GIS) environment can be utilized to timely monitor the trajectory in ...

  5. Renewable products, towards a new golden age of plants?; Produits renouvelables, vers un nouvel age d'or du vegetal?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    Our industrial civilization was built on the use of fossil materials. It has only 3 centuries of existence, but the use of these non-renewable resources will necessary come to an end in a near future. However alternate ways already exist through the use of biomass-derived products. These proceedings summarize the main discussions that took place during the different round tables of this colloquium. The first round table makes a status of the shortage of fossil energy reserves and of the new challenges and solutions offered by plants and bio-energies. The second round table presents the reality of the market, products and consumption of todays renewable vegetal resources (environmental advantages, economic aspect and competitiveness of markets). The last round table deals with the role of governments in the political sustain of renewable vegetal products development (genetic research, financial aspects, incentives, competition with food agriculture). (J.S.)

  6. Sustainable Production of Underutilized Vegetables to Enhance ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... Research Fund (CIFSRF), a joint program of IDRC and the Canadian International Development Agency (CIDA) - aims to increase the food security and economic empowerment of resource-poor rural women farmers in Nigeria through the cultivation, processing, consumption and marketing of underutilized vegetables.

  7. Vegetated Treatment Systems for Removing Contaminants Associated with Surface Water Toxicity in Agriculture and Urban Runoff.

    Science.gov (United States)

    Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Cahn, Michael

    2017-05-15

    Urban stormwater and agriculture irrigation runoff contain a complex mixture of contaminants that are often toxic to adjacent receiving waters. Runoff may be treated with simple systems designed to promote sorption of contaminants to vegetation and soils and promote infiltration. Two example systems are described: a bioswale treatment system for urban stormwater treatment, and a vegetated drainage ditch for treating agriculture irrigation runoff. Both have similar attributes that reduce contaminant loading in runoff: vegetation that results in sorption of the contaminants to the soil and plant surfaces, and water infiltration. These systems may also include the integration of granulated activated carbon as a polishing step to remove residual contaminants. Implementation of these systems in agriculture and urban watersheds requires system monitoring to verify treatment efficacy. This includes chemical monitoring for specific contaminants responsible for toxicity. The current paper emphasizes monitoring of current use pesticides since these are responsible for surface water toxicity to aquatic invertebrates.

  8. Transition of the GOES Evapotranspiration and Drought Product System (GET-D) into Operations at NOAA/NESDIS

    Science.gov (United States)

    Hain, C.; Anderson, M. C.; Fang, L.; Zhan, X.; Otkin, J.

    2016-12-01

    Abnormally dry conditions can adversely affect the health of agricultural crops if the dryness persists for an extended period of time or if it occurs at a sensitive stage of crop development. Depending on its severity and timing, drought can result in significant yield loss, with impacts on both local and global markets as signified by reduced economic output and higher grain and food prices. Due to changing climate conditions, we are moving into a regime where processes controlling drought evolution are becoming more variable and are shifting in intensity, frequency and duration. The unusually rapid increase in water stress during some of these drought events are not well predicted by standard drought indicators. Different remote sensing indicators sample moisture and vegetation conditions occurring on different time scales during the typical evolution of agricultural drought. It has been shown that the thermal-based Evaporative Stress Index (ESI), based on land surface temperature, has an early warning component where vegetation stress manifested through decreased root-zone soil moisture leads to detectable vegetation stress in the LST signal before degradation in vegetation health is observed in VIS/NIR drought indices (e.g., NDVI). To provide this data to a larger user community and address the needs of our project stakeholders, the GOES Evapotranspiration and Drought Product System (GET-D) has been developed to operationally generate daily ET and ESI maps over the North America. The core model in GET-D is the Atmosphere-Land Exchange Inverse model (ALEXI), which is built on the two-source energy (TSEB) approach and partitions the GOES land surface temperature into characteristic soil and canopy temperatures, based on the fraction of vegetation cover. The primary operational data products of the GET-D system include the daily clear-sky ET and daily 2, 4, 8 and 12 week composites of the Evaporative Stress Index (ESI) computed from the ET daily estimates over

  9. Plant Atrium System for Food Production in NASA's Deep Space Habitat Tests

    Science.gov (United States)

    Massa, Gioia D.; Simpson, Morgan; Wheeler, Raymond M.; Newsham, Gerald; Stutte, Gary W.

    2013-01-01

    In preparation for future human exploration missions to space, NASA evaluates habitat concepts to assess integration issues, power requirements, crew operations, technology, and system performance. The concept of a Food Production System utilizes fresh foods, such as vegetables and small fruits, harvested on a continuous basis, to improve the crew's diet and quality of life. The system would need to fit conveniently into the habitat and not interfere with other components or operations. To test this concept, a plant growing "atrium" was designed to surround the lift between the lower and upper modules of the Deep Space Habitat and deployed at NASA Desert Research and Technology Studies (DRATS) test site in 2011 and at NASA Johnson Space Center in 2012. With this approach, no-utilized volume provided an area for vegetable growth. For the 2011 test, mizuna, lettuce, basil, radish and sweetpotato plants were grown in trays using commercially available red I blue LED light fixtures. Seedlings were transplanted into the atrium and cared for by the. crew. Plants were then harvested two weeks later following completion of the test. In 2012, mizuna, lettuce, and radish plants were grown similarly but under flat panel banks of white LEDs. In 2012, the crew went through plant harvesting, including sanitizing tlie leafy greens and radishes, which were then consumed. Each test demonstrated successful production of vegetables within a functional hab module. The round red I blue LEDs for the 2011 test lighting cast a purple light in the hab, and were less uniformly distributed over the plant trays. The white LED panels provided broad spectrum light with more uniform distribution. Post-test questionnaires showed that the crew enjoyed tending and consuming the plants and that the white LED light in 2012 provided welcome extra light for the main HAB AREA.

  10. Catastrophic shifts in vegetation-soil systems may unfold rapidly or slowly independent of the rate of change in the system driver

    Science.gov (United States)

    Karssenberg, Derek; Bierkens, Marc

    2014-05-01

    Complex systems may switch between contrasting stable states under gradual change of a driver. Such critical transitions often result in considerable long-term damage because strong hysteresis impedes reversion, and the transition becomes catastrophic. Critical transitions largely reduce our capability of forecasting future system states because it is hard to predict the timing of their occurrence [2]. Moreover, for many systems it is unknown how rapidly the critical transition unfolds when the tipping point has been reached. The rate of change during collapse, however, is important information because it determines the time available to take action to reverse a shift [1]. In this study we explore the rate of change during the degradation of a vegetation-soil system on a hillslope from a state with considerable vegetation cover and large soil depths, to a state with sparse vegetation and a bare rock or negligible soil depths. Using a distributed, stochastic model coupling hydrology, vegetation, weathering and water erosion, we derive two differential equations describing the vegetation and the soil system, and their interaction. Two stable states - vegetated and bare - are identified by means of analytical investigation, and it is shown that the change between these two states is a critical transition as indicated by hysteresis. Surprisingly, when the tipping point is reached under a very slow increase of grazing pressure, the transition between the vegetated and the bare state can either unfold rapidly, over a few years, or gradually, occurring over decennia up to millennia. These differences in the rate of change during the transient state are explained by differences in bedrock weathering rates. This finding emphasizes the considerable uncertainty associated with forecasting catastrophic shifts in ecosystems, which is due to both difficulties in forecasting the timing of the tipping point and the rate of change when the transition unfolds. References [1] Hughes

  11. Assessment of water availability and its relationship with vegetation distribution over a tropical montane system

    Science.gov (United States)

    Streher, A. S.; Sobreiro, J. F. F.; Silva, T. S. F.

    2017-12-01

    Water availability is one of the main drivers of vegetation distribution, but assessing it over mountainous regions is difficult given the effects of rugged topography on hydroclimatic dynamics (orographic rainfall, soil water, and runoff). We assessed how water availability may influence the distribution of vegetation types in the Espinhaço Range, a South American tropical mountain landscape comprised of savannas, grasslands, rock outcrops, cloud forests, and semi-deciduous/deciduous forests. For precipitation, we used CHIRPS monthly and daily products (1981- 2016) and 112 rain gauge ground stations, and assessed potential evapotranspiration (PET) using the MODIS MOD16A3 (2000-2013) product. Vegetation types were classified according to the Global Ecoregions by WWF. We show that rainfall has well-defined rainy and dry seasons with a strong latitudinal pattern, there is evidence for local orographic effects. Dry forests (907 mm/yr; 8% cv) and caatinga vegetation (795 mm/yr; 7% cv) had the lowest average annual precipitation and low variance, whilst Atlantic tropical forest in the southeast (1267 mm/yr; 15% cv), cerrado savanna vegetation in the west (1086 mm/yr; 15% cv) and rupestrian grasslands above 800m (1261 mm/yr; 20% cv) received the highest annual precipitation, with the largest observed variance due to their wide latitudinal distribution. Forests and rupestrian grasslands in the windward side of the mountain had a higher frequency of intense rainfall events (> 20mm), accounting for 6% of the CHIRPS daily time series, suggesting orographic effects on precipitation. Annual average PET was highest for dry forests (2437 mm/yr) and caatinga (2461 mm/yr), intermediate for cerrado (2264 mm/yr) and lowest for Atlantic tropical forest (2083 mm/yr) and rupestrian grasslands (2136 mm/yr). All vegetation types received less rainfall than its PET capacity based on yearly data, emphasizing the need for ecophysiological adaptations to water use. Climate change threatens

  12. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska

    Science.gov (United States)

    Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; McGuire, A. David

    2018-01-01

    Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10–100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km2) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999–2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.

  13. National Park Service Vegetation Inventory Program, Cuyahoga Valley National Park, Ohio

    Science.gov (United States)

    Hop, Kevin D.; Drake, J.; Strassman, Andrew C.; Hoy, Erin E.; Menard, Shannon; Jakusz, J.W.; Dieck, J.J.

    2013-01-01

    information systems (GIS). The interpreted data were digitally and spatially referenced, thus making the spatial database layers usable in GIS. Polygon units were mapped to either a 0.5 ha or 0.25 ha minimum mapping unit, depending on vegetation type.A geodatabase containing various feature-class layers and tables shows the locations of vegetation types and general land cover (vegetation map), vegetation plot samples, verification sites, AA sites, project boundary extent, and aerial photographic centers. The feature-class layer and relate tables for the CUVA vegetation map provides 4,640 polygons of detailed attribute data covering 13,288.4 ha, with an average polygon size of 2.9 ha.Summary reports generated from the vegetation map layer show map classes representing natural/semi-natural types in the NVCS apply to 4,151 polygons (89.4% of polygons) and cover 11,225.0 ha (84.5%) of the map extent. Of these polygons, the map layer shows CUVA to be 74.4% forest (9,888.8 ha), 2.5% shrubland (329.7 ha), and 7.6% herbaceous vegetation cover (1,006.5 ha). Map classes representing cultural types in the NVCS apply to 435 polygons (9.4% of polygons) and cover 1,825.7 ha (13.7%) of the map extent. Map classes representing non-NVCS units (open water) apply to 54 polygons (1.2% of polygons) and cover 237.7 ha (1.8%) of the map extent.A thematic AA study was conducted of map classes representing natural/semi-natural types in the NVCS. Results present an overall accuracy of 80.7% (kappa index of 79.5%) based on data from 643 of the 647 AA sites. Most individual map-class themes exceed the NPS VIP standard of 80% with a 90% confidence interval.The CUVA vegetation mapping project delivers many geospatial and vegetation data products in hardcopy and/or digital formats. These products consist of an in-depth project report discussing methods and results, which include descriptions and a dichotomous key to vegetation types, map classification and map-class descriptions, and a contingency table

  14. Vegetable Oils as Alternative Solvents for Green Oleo-Extraction, Purification and Formulation of Food and Natural Products.

    Science.gov (United States)

    Yara-Varón, Edinson; Li, Ying; Balcells, Mercè; Canela-Garayoa, Ramon; Fabiano-Tixier, Anne-Sylvie; Chemat, Farid

    2017-09-05

    Since solvents of petroleum origin are now strictly regulated worldwide, there is a growing demand for using greener, bio-based and renewable solvents for extraction, purification and formulation of natural and food products. The ideal alternative solvents are non-volatile organic compounds (VOCs) that have high dissolving power and flash point, together with low toxicity and less environmental impact. They should be obtained from renewable resources at a reasonable price and be easy to recycle. Based on the principles of Green Chemistry and Green Engineering, vegetable oils could become an ideal alternative solvent to extract compounds for purification, enrichment, or even pollution remediation. This review presents an overview of vegetable oils as solvents enriched with various bioactive compounds from natural resources, as well as the relationship between dissolving power of non-polar and polar bioactive components with the function of fatty acids and/or lipid classes in vegetable oils, and other minor components. A focus on simulation of solvent-solute interactions and a discussion of polar paradox theory propose a mechanism explaining the phenomena of dissolving polar and non-polar bioactive components in vegetable oils as green solvents with variable polarity.

  15. Vegetation patterns and nutrients in relation to grazing pressure and ...

    African Journals Online (AJOL)

    A major challenge confronting managers of extensive grazing systems is uneven use of erbaceous forage plants by livestock. The concentration of grazing in preferred areas or around foci points (e.g. water points) eventually results in adverse impacts in soil nutrients, vegetation structure, production and composition.

  16. A production planning model considering uncertain demand using two-stage stochastic programming in a fresh vegetable supply chain context.

    Science.gov (United States)

    Mateo, Jordi; Pla, Lluis M; Solsona, Francesc; Pagès, Adela

    2016-01-01

    Production planning models are achieving more interest for being used in the primary sector of the economy. The proposed model relies on the formulation of a location model representing a set of farms susceptible of being selected by a grocery shop brand to supply local fresh products under seasonal contracts. The main aim is to minimize overall procurement costs and meet future demand. This kind of problem is rather common in fresh vegetable supply chains where producers are located in proximity either to processing plants or retailers. The proposed two-stage stochastic model determines which suppliers should be selected for production contracts to ensure high quality products and minimal time from farm-to-table. Moreover, Lagrangian relaxation and parallel computing algorithms are proposed to solve these instances efficiently in a reasonable computational time. The results obtained show computational gains from our algorithmic proposals in front of the usage of plain CPLEX solver. Furthermore, the results ensure the competitive advantages of using the proposed model by purchase managers in the fresh vegetables industry.

  17. Transfer of tracers and pesticides in lab scale wetland systems: the role of vegetation

    Science.gov (United States)

    Durst, R.; Imfeld, G.; Lange, J.

    2012-04-01

    between the vegetated and the non-vegetated column. In a second phase, vegetation transpiration progressively increased, as inferred from lower volumes of effluent water in the vegetated system. Overall, the behavior of pesticides and tracers, as inferred from the BTC's, were similar. This suggests that fluorescent tracers may be used as a reference for pesticides when studying the surface-groundwater interface. Both pesticides and tracers showed larger recovery rates (UR: 81.7 to 78.6%; SRB: 65.6 to 55.9%; IPU: 76.6 to 79.7%; MTX: 39.5 to 37.5%) and lower retention in the vegetated system. We attribute this finding to preferential flow paths along plant roots. Overall, our study suggests that wetland vegetation and rhizosheric processes may have a dual role in wetland pollutant transfer: while wetland vegetation may enhance retention and bio-degradation of contaminants in surface water, it may also generate preferential flow paths and hence facilitate pollutant transfer to groundwater. Acknowledgment: This study has been funded by the European Union (INTERREG) in the framework of the PhytoRet Project.

  18. LiDAR Vegetation Investigation and Signature Analysis System (LVISA)

    Science.gov (United States)

    Höfle, Bernhard; Koenig, Kristina; Griesbaum, Luisa; Kiefer, Andreas; Hämmerle, Martin; Eitel, Jan; Koma, Zsófia

    2015-04-01

    lacks behind. We propose a novel concept, the LiDAR Vegetation Investigation and Signature Analysis System (LVISA), which shall enhance sharing of i) reference datasets of single vegetation objects with rich reference data (e.g., plant species, basic plant morphometric information) and ii) approaches for information extraction (e.g., single tree detection, tree species classification based on waveform LiDAR features). We will build an extensive LiDAR data repository for supporting the development and benchmarking of LiDAR-based object information extraction. The LiDAR Vegetation Investigation and Signature Analysis System (LVISA) uses international web service standards (Open Geospatial Consortium, OGC) for geospatial data access and also analysis (e.g., OGC Web Processing Services). This will allow the research community identifying plant object specific vegetation features from LiDAR data, while accounting for differences in LiDAR systems (e.g., beam divergence), settings (e.g., point spacing), and calibration techniques. It is the goal of LVISA to develop generic 3D information extraction approaches, which can be seamlessly transferred to other datasets, timestamps and also extraction tasks. The current prototype of LVISA can be visited and tested online via http://uni-heidelberg.de/lvisa. Video tutorials provide a quick overview and entry into the functionality of LVISA. We will present the current advances of LVISA and we will highlight future research and extension of LVISA, such as integrating low-cost LiDAR data and datasets acquired by highly temporal scanning of vegetation (e.g., continuous measurements). Everybody is invited to join the LVISA development and share datasets and analysis approaches in an interoperable way via the web-based LVISA geoportal.

  19. First Brazilian patent for dielectric vegetable oil for transformers; Primeira patente brasileira de oleo dieletrico vegetal para transformadores

    Energy Technology Data Exchange (ETDEWEB)

    Carioca, Jose O.B.; Carvalho, Paulo C.M.; Correa, Raimundo G.C.; Bernardo, Francisco A.B. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil); Coelho Junior, Luiz G. [2 Companhia Energetica do Ceara (COELCE), Fortaleza, CE (Brazil); Abreu, Rosa F.A. [Universidade Estadual do Ceara (UECE), Fortaleza, CE (Brazil)

    2008-07-01

    The present paper discuss the development of different insulating oils for electric power transformers during the last hundred years and analyze comparatively the potential for the use of vegetable oils as a source for green dielectric oils, due to its high level of biodegradability, nontoxic, material compatibility, good electric strength and insulation properties, long-term oxidative and thermal stability, relatively low pour point and reasonable cost. Based on these premises, the authors developed a new type of insulating fluid based on Brazilian vegetable oils never used before for this purpose. This product is competitive with similar and patented products developed from canola and soya vegetable oils. Recently a new patent related with the process for the production of this fluid was submitted to the World Industrial Property Organization - WIPO. (author)

  20. Using VEGETATION satellite data and the crop model STICS-Prairie to estimate pasture production at the national level in France

    Science.gov (United States)

    Di Bella, C.; Faivre, R.; Ruget, F.; Seguin, B.

    In France, pastures constitute an important land cover type, sustaining principally husbandry production. The absence of low-cost methods applicable to large regions has conducted to the use of simulation models, as in the ISOP system. Remote sensing data may be considered as a potential tool to improve a correct diagnosis in a real time framework. Thirteen forage regions (FR) of France, differing in their soil, climatic and productive characteristics were selected for this purpose. SPOT4-VEGETATION images have been used to provide, using subpixel estimation models, the spectral signature corresponding to pure pasture conditions. This information has been related with some growth variables estimated by STICS-Prairie model (inside ISOP system). Beyond the good general agreement between the two types of data, we found that the best relations were observed between NDVI middle infrared based index (SWVI) and leaf area index. The results confirm the capacities of the satellite data to provide complementary productive variables and help to identify the spatial and temporal differences between satellite and model information, mainly during the harvesting periods. This could contribute to improve the evaluations of the model on a regional scale.

  1. Lipid production in aquatic plant Azolla at vegetative and reproductive stages and in response to abiotic stress.

    Science.gov (United States)

    Miranda, Ana F; Liu, Zhiqian; Rochfort, Simone; Mouradov, Aidyn

    2018-03-01

    The aquatic plant Azolla became increasingly popular as bioenergy feedstock because of its high growth rate, production of biomass with high levels of biofuel-producing molecules and ability to grow on marginal lands. In this study, we analysed the contribution of all organs of Azolla to the total yield of lipids at vegetative and reproductive stages and in response to stress. Triacylglycerol-containing lipid droplets were detected in all (vegetative and reproductive) organs with the highest level in the male microsporocarps and microspores. As a result, significantly higher total yields of lipids were detected in Azolla filiculoides and Azolla pinnata at the reproductive stage. Starving changed the yield and composition of the fatty acid as a result of re-direction of carbon flow from fatty acid to anthocyanin pathways. The composition of lipids, in regard the length and degree of unsaturation of fatty acids, in Azolla meets most of the important requirements for biodiesel standards. The ability of Azolla to grow on wastewaters, along with their high productivity rate, makes it an attractive feedstock for the production of biofuels. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Evaporative cooling over the Tibetan Plateau induced by vegetation growth

    Science.gov (United States)

    Shen, Miaogen; Piao, Shilong; Jeong, Su-Jong; Zhou, Liming; Zeng, Zhenzhong; Ciais, Philippe; Chen, Deliang; Huang, Mengtian; Jin, Chun-Sil; Li, Laurent Z. X.; Li, Yue; Myneni, Ranga B.; Yang, Kun; Zhang, Gengxin; Zhang, Yangjian; Yao, Tandong

    2015-01-01

    In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system. PMID:26170316

  3. Generating Vegetation Leaf Area Index Earth System Data Record from Multiple Sensors. Part 2; Implementation, Analysis and Validation

    Science.gov (United States)

    Ganguly, Sangram; Samanta, Arindam; Schull, Mitchell A.; Shabanov, Nikolay V.; Milesi, Cristina; Nemani, Ramajrushna R,; Knyazikhin, Yuri; Myneni, Ranga B.

    2008-01-01

    The evaluation of a new global monthly leaf area index (LAI) data set for the period July 1981 to December 2006 derived from AVHRR Normalized Difference Vegetation Index (NDVI) data is described. The physically based algorithm is detailed in the first of the two part series. Here, the implementation, production and evaluation of the data set are described. The data set is evaluated both by direct comparisons to ground data and indirectly through inter-comparisons with similar data sets. This indirect validation showed satisfactory agreement with existing LAI products, importantly MODIS, at a range of spatial scales, and significant correlations with key climate variables in areas where temperature and precipitation limit plant growth. The data set successfully reproduced well-documented spatio-temporal trends and inter-annual variations in vegetation activity in the northern latitudes and semi-arid tropics. Comparison with plot scale field measurements over homogeneous vegetation patches indicated a 7% underestimation when all major vegetation types are taken into account. The error in mean values obtained from distributions of AVHRR LAI and high-resolution field LAI maps for different biomes is within 0.5 LAI for six out of the ten selected sites. These validation exercises though limited by the amount of field data, and thus less than comprehensive, indicated satisfactory agreement between the LAI product and field measurements. Overall, the intercomparison with short-term LAI data sets, evaluation of long term trends with known variations in climate variables, and validation with field measurements together build confidence in the utility of this new 26 year LAI record for long term vegetation monitoring and modeling studies.

  4. An ecological vegetation-activated sludge process (V-ASP) for decentralized wastewater treatment: system development, treatment performance, and mathematical modeling.

    Science.gov (United States)

    Yuan, Jiajia; Dong, Wenyi; Sun, Feiyun; Li, Pu; Zhao, Ke

    2016-05-01

    An environment-friendly decentralized wastewater treatment process that is comprised of activated sludge process (ASP) and wetland vegetation, named as vegetation-activated sludge process (V-ASP), was developed for decentralized wastewater treatment. The long-term experimental results evidenced that the vegetation sequencing batch reactor (V-SBR) process had consistently stable higher removal efficiencies of organic substances and nutrients from domestic wastewater compared with traditional sequencing batch reactor (SBR). The vegetation allocated into V-SBR system could not only remove nutrients through its vegetation transpiration ratio but also provide great surface area for microorganism activity enhancement. This high vegetation transpiration ratio enhanced nutrients removal effectiveness from wastewater mainly by flux enhancement, oxygen and substrate transportation acceleration, and vegetation respiration stimulation. A mathematical model based on ASM2d was successfully established by involving the specific function of vegetation to simulate system performance. The simulation results on the influence of operational parameters on V-ASP treatment effectiveness demonstrated that V-SBR had a high resistance to seasonal temperature fluctuations and influent loading shocking.

  5. Vegetation mapping with satellite data of the Forsmark and Tierp regions

    Energy Technology Data Exchange (ETDEWEB)

    Boresjoe-Bronge, Laine; Wester, Kjell [SwedPower, Stockholm (Sweden)

    2002-04-01

    SKB (Swedish Nuclear Fuel and Waste Management Co) performs a siting program for deep repository of spent nuclear fuel that includes survey of three potential sites. The SKB siting process has now reached the site investigation phase. There are several fields of investigations performed in this phase. One of them is description of the surface ecosystems. The surface ecosystems are mapped both on a regional (50-100 km{sup 2} ) and a local level (1 km{sup 2} ). Two inventory methods are used, remote sensing (satellite data/aerial photographs) for the regional level, and field inventory for the detailed level. As a part of the surface ecosystem characterisation on the regional level vegetation mapping using satellite data has been performed over the three potential deep depository sites, Forsmark, Tierp and Oskarshamn. The user requirements for the vegetation mapping of the potential sites are the following: Dominated species in the tree layer, shrub layer, field layer and ground layer shall be described both on regional and local level; Dominated species in all layers shall be quantified regarding share and percentage of ground cover, or absence of cover (vegetation free ground); The regional and the local inventory shall have identical or comparable classification systems; The classification system and the method used shall make it possible to scale the results from local to regional level and vice versa; The produced layers shall be presented in digital form and make it possible to model biomass and turnover of organic matter (carbon, nutrients, water); The produced information shall in a first phase be of use for planning and for making nature and environmental considerations. Data sources used in the study include geo-referenced SPOT4 XI data (20 m ground resolution), geo-referenced Landsat TM data (30 m ground resolution), soil type data, topographic map data and colour infrared aerial photographs. The production of vegetation layers has been carried out in two

  6. Vegetation mapping with satellite data of the Forsmark and Tierp regions

    International Nuclear Information System (INIS)

    Boresjoe-Bronge, Laine; Wester, Kjell

    2002-04-01

    SKB (Swedish Nuclear Fuel and Waste Management Co) performs a siting program for deep repository of spent nuclear fuel that includes survey of three potential sites. The SKB siting process has now reached the site investigation phase. There are several fields of investigations performed in this phase. One of them is description of the surface ecosystems. The surface ecosystems are mapped both on a regional (50-100 km 2 ) and a local level (1 km 2 ). Two inventory methods are used, remote sensing (satellite data/aerial photographs) for the regional level, and field inventory for the detailed level. As a part of the surface ecosystem characterisation on the regional level vegetation mapping using satellite data has been performed over the three potential deep depository sites, Forsmark, Tierp and Oskarshamn. The user requirements for the vegetation mapping of the potential sites are the following: Dominated species in the tree layer, shrub layer, field layer and ground layer shall be described both on regional and local level; Dominated species in all layers shall be quantified regarding share and percentage of ground cover, or absence of cover (vegetation free ground); The regional and the local inventory shall have identical or comparable classification systems; The classification system and the method used shall make it possible to scale the results from local to regional level and vice versa; The produced layers shall be presented in digital form and make it possible to model biomass and turnover of organic matter (carbon, nutrients, water); The produced information shall in a first phase be of use for planning and for making nature and environmental considerations. Data sources used in the study include geo-referenced SPOT4 XI data (20 m ground resolution), geo-referenced Landsat TM data (30 m ground resolution), soil type data, topographic map data and colour infrared aerial photographs. The production of vegetation layers has been carried out in two steps. In

  7. Transmission System Vegetation Management Program. Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1999-01-01

    Bonneville is responsible for maintaining a network of 24,000 kilometers (km) or 15,000 miles (mi.) of electric transmission lines and 350 substations in a region of diverse vegetation. This vegetation can interfere with electric power flow, pose safety problems for Bonneville and the public, and interfere with their ability to maintain these facilities. They need to (1) keep vegetation away from the electric facilities; (2) increase their program efficiency and consistency; (3) review herbicide use (under increased public scrutiny); and (4) maximize the range of tools they can use while minimizing environmental impact (Integrated Vegetation Management). This DEIS establishes Planning Steps for managing vegetation for specific projects (to be tiered to this EIS). In addition to No Action (current practice), alternatives are presented for Rights-of-way, Electric Yards, and Non-electric Facilities (landscaping, work yards). Four vegetation control methods are analyzed: manual, mechanical, herbicide, and biological. Also evaluated are 24 herbicide active ingredients and 4 herbicide application techniques (spot, localized, broadcast, and aerial). For rights-of-way, they consider three sets of alternatives: alternative management approaches (time-driven or establishing low-growing plant communities); alternative method packages; and, if herbicides are in a methods package, alternative vegetation selections (noxious weeds, deciduous, or any vegetation). For electric yards, one herbicide-use alternative is considered. For non-electric facilities, two method package alternatives are considered. For rights-of-way, the environmentally preferred alternative(s) would use manual, mechanical, and biological control methods, as well as spot and localized herbicide applications for noxious and deciduous plant species; the BPA-preferred alternative(s) would add broadcast and aerial herbicide applications, and would use herbicides on any vegetation. Both would favor a management

  8. A comparison of multi-resource remote sensing data for vegetation indices

    International Nuclear Information System (INIS)

    Cao, Liqin; Wei, Lifei; Liu, Tingting

    2014-01-01

    With the development of the satellite sensor, multi-resource observation systems have become widely used. However, there is a huge difference between quantitative remote sensing products because of the different sensing observations and the quantitative retrieval algorithms. In this paper, the quantitative relationships between the normalized difference vegetation index (NDVI), the soil-adjusted vegetation index (SAVI) and the vegetation index based on the universal pattern decomposition method (VIUPD) of Landsat ETM+ and ASTER sensors are investigated. The difference in observations was examined between the two sensors, based on a pair of images. The results showed that: 1) There was a strong correlation between the different vegetation indices for the same sensor, with the coefficient of determination being greater than 0.9. 2) Whether for ASTER or Landsat, the information of VIUPD was richer than that of NDVI and SAVI. Furthermore, in dense vegetation areas, the values of NDVI and SAVI could easily reach saturation. 3) The values of SAVI were higher than NDVI in the areas of water or bare soil, while this was the opposite in areas of lush vegetation

  9. Vegetation classification and distribution mapping report Mesa Verde National Park

    Science.gov (United States)

    Thomas, Kathryn A.; McTeague, Monica L.; Ogden, Lindsay; Floyd, M. Lisa; Schulz, Keith; Friesen, Beverly A.; Fancher, Tammy; Waltermire, Robert G.; Cully, Anne

    2009-01-01

    during photointerpretation, and non-vegetated land cover, such as infrastructure, land use, and geological land cover. The base map classes consist of 5,007 polygons in the project area. A field-based accuracy assessment of the base map classes showed overall accuracy to be 43.5%. Seven map classes comprise 89.1% of the park vegetated land cover. The group map classes represent aggregations of the base map classes, approximating the group level of the National Vegetation Classification Standard, version 2 (Federal Geographic Data Committee 2007), and reflecting physiognomy and floristics. Terrestrial ecological systems, as described by NatureServe (Comer et al. 2003), were used as the fi rst approximation of the group level. The project team identified 14 group map classes for this project. The overall accuracy of the group map classes was determined using the same accuracy assessment data as for the base map classes. The overall accuracy of the group representation of vegetation was 80.3%. In consultation with park staff , the team developed management map classes, consisting of park-defined groupings of base map classes intended to represent a balance between maintaining required accuracy and providing a focus on vegetation of particular interest or import to park managers. The 23 management map classes had an overall accuracy of 73.3%. While the main products of this project are the vegetation classification and the vegetation map database, a number of ancillary digital geographic information system and database products were also produced that can be used independently or to augment the main products. These products include shapefiles of the locations of field-collected data and relational databases of field-collected data.

  10. Comparison of vegetation roughness descriptions

    NARCIS (Netherlands)

    Augustijn, Dionysius C.M.; Huthoff, Freek; van Velzen, E.H.; Altinakar, M.S.; Kokpinar, M.A.; Aydin, I.; Cokgor, S.; Kirkgoz, S.

    2008-01-01

    Vegetation roughness is an important parameter in describing flow through river systems. Vegetation impedes the flow, which affects the stage-discharge curve and may increase flood risks. Roughness is often used as a calibration parameter in river models, however when vegetation is allowed to

  11. Variations in Vegetation Net Primary Production in the Qinghai-Xizang Plateau, China, from 1982 to 1999

    Energy Technology Data Exchange (ETDEWEB)

    Piao, S.; Fang, J.; He, J. [Department of Ecology, College of Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871 (China)

    2006-01-15

    Vegetation net primary production (NPP) derived from a carbon model (Carnegie-Ames-Stanford Approach, CASA) and its interannual change in the Qinghai-Xizang (Tibetan) Plateau were investigated in this study using 1982-1999 time series data sets of normalized difference vegetation index (NDVI) and paired ground-based information on vegetation, climate, soil, and solar radiation. The 18-year averaged annual NPP over the plateau was 125 g C m-2 yr-1, decreasing from the southeast to the northwest, consistent with precipitation and temperature patterns. Total annual NPP was estimated between 0.183 and 0.244 Pg C over the 18 years, with an average of 0.212 Pg C (1 Pg = 1015 g). Two distinct periods (1982-1990 and 1991-1999) of NPP variation were observed, separated by a sharp reduction during 1990-1991. From 1982 to 1990, annual NPP did not show a significant trend, while from 1991 to 1999 a marked increase of 0.007 Pg C yr-2 was observed. NPP trends for most vegetation types resembled that of the whole plateau. The largest annual NPP increase during 1991-1999 appeared in alpine meadows, accounting for 32.3% of the increment of the whole region. Changes in solar radiation and temperature significantly influenced NPP variation, suggesting that solar radiation may be one of the major factors associated with changes in NPP.

  12. [Variation trends of natural vegetation net primary productivity in China under climate change scenario].

    Science.gov (United States)

    Zhao, Dong-sheng; Wu, Shao-hong; Yin, Yun-he

    2011-04-01

    Based on the widely used Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ) for climate change study, and according to the features of natural environment in China, the operation mechanism of the model was adjusted, and the parameters were modified. With the modified LPJ model and taking 1961-1990 as baseline period, the responses of natural vegetation net primary productivity (NPP) in China to climate change in 1991-2080 were simulated under the Special Report on Emissions Scenarios (SRES) B2 scenario. In 1961-1990, the total NPP of natural vegetation in China was about 3.06 Pg C a(-1); in 1961-2080, the total NPP showed a fluctuant decreasing trend, with an accelerated decreasing rate. Under the condition of slight precipitation change, the increase of mean air temperature would have definite adverse impact on the NPP. Spatially, the NPP decreased from southeast coast to northwest inland, and this pattern would have less variation under climate change. In eastern China with higher NPP, especially in Northeast China, east of North China, and Loess Plateau, the NPP would mainly have a decreasing trend; while in western China with lower NPP, especially in the Tibetan Plateau and Tarim Basin, the NPP would be increased. With the intensive climate change, such a variation trend of NPP would be more obvious.

  13. Self-crafting vegetable snacks

    NARCIS (Netherlands)

    Raghoebar, Sanne; Kleef, van Ellen; Vet, de Emely

    2017-01-01

    Purpose: The purpose of this paper is to test whether the IKEA-effect (Norton et al., 2012) – better liking for self-crafted products than for identical products crafted by others – can be exploited to increase liking and consumption of vegetable snacks in children. Design/methodology/approach: A

  14. Systemic allergic dermatitis caused by Apiaceae root vegetables

    DEFF Research Database (Denmark)

    Paulsen, Evy; Petersen, Thomas H; Fretté, Xavier C

    2014-01-01

    Immediate hypersensitivity reactions to root vegetables of the Umbelliferae plant family (Apiaceae) is well known. Delayed-type hypersensitivity is rarely reported.......Immediate hypersensitivity reactions to root vegetables of the Umbelliferae plant family (Apiaceae) is well known. Delayed-type hypersensitivity is rarely reported....

  15. Renewable products, towards a new golden age of plants?; Produits renouvelables, vers un nouvel age d'or du vegetal?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    Our industrial civilization was built on the use of fossil materials. It has only 3 centuries of existence, but the use of these non-renewable resources will necessary come to an end in a near future. However alternate ways already exist through the use of biomass-derived products. These proceedings summarize the main discussions that took place during the different round tables of this colloquium. The first round table makes a status of the shortage of fossil energy reserves and of the new challenges and solutions offered by plants and bio-energies. The second round table presents the reality of the market, products and consumption of todays renewable vegetal resources (environmental advantages, economic aspect and competitiveness of markets). The last round table deals with the role of governments in the political sustain of renewable vegetal products development (genetic research, financial aspects, incentives, competition with food agriculture). (J.S.)

  16. The Potential Research of Catch Crop in Decrease Soil Nitrate Under Greenhouse Vegetable Production

    Directory of Open Access Journals (Sweden)

    YIN Xing

    2015-06-01

    Full Text Available In order to clarify the impact of catch crops on greenhouse vegetable soil nitrate, explore the mechanism of barrier and controll soil nitrogen leaching losses in greenhouse, and provide a theoretical basis for control nitrogen leaching and prevention of groundwater pollution, this study selected the traditional greenhouse vegetable rotation system in North China plain as research subjects, using field situ remediation technologies on deep-root planting catch crops in the vegetable fallow period by sweet corn, Achyranthes bidentata and white Chrysanthemum. The results showed that: nitrogen content and nitrogen uptake of sweet corn and sweet corn with Achyranthes bidentata intercropping were the highest, respectively 20.11 t·hm-2, 19.62 t·hm-2 and 240.34 kg·hm-2, 287.56 kg·hm-2, significantly higher than white Chrysanthemum. The density of root length and root dry weight decreased with soil depth in the profiles, root length density was demonstrated in order as: intercropping sweet corn> sweet corn> white Chrysanthemum> intercropping Achyranthes bidentata blume. The reduction of NO3--N of sweet corn reached 907.87 kg·hm-2 in soil profile 0~200 cm, significantly higher than sweet corn and hyssop intercropping and white Chrysanthemums. In the interim period of vegetable crop rotation, planting catch crops could effectively reduce nitrate accumulation in the soil, control the soil profile nitrate leaching down.

  17. Market problems of agricultural products in Albania

    Directory of Open Access Journals (Sweden)

    Merita Marku

    2017-03-01

    Full Text Available The production of fruits and vegetables in our country still faces challenges, including informality in sector of planting material, high costs of inputs purchased and fuel (especially affecting the green houses with heating, low productivity and high losses of post-harvest, especially in the case of fruit. Fresh fruit and vegetable marketing is different in many respects from the marketing of other agricultural and nonagricultural products. Hundreds of individual commodities comprise the total group. Each product has its own special requirements for growing and handling, with its own quality attributes, merchandising methods, and standards of consumer acceptance (How, R. B. 2012, 1. Food safety standards of fruits and vegetables their compliance with key standards and certification as a prerequisite and a challenge to be addressed in order to increase Albanian exports of agricultural products to European markets. Concerning vegetables and fruits, Albanian farmers face important marketing problems. Such problems are encountered at all stages of the production system-provision of inputs, both in terms of processing, promotion and other market incentives, which directly assist in the efficient realization of the sale of fruits and vegetables.

  18. ESTRUTUTURA DA COMUNIDADE VEGETAL ARBÓREO-ARBUSTIVA DE UM SISTEMA AGROSSILVIPASTORIL, EM SOBRAL - CE

    Directory of Open Access Journals (Sweden)

    MÔNICA MATOSO CAMPANHA

    2011-01-01

    Full Text Available "Caatinga", dominant vegetation in Brazilian semiarid, has suffered severe degradation process, triggered, among other reasons, by the traditional agricultural and extractive activities. The need to conserve the environment and natural resources in agricultural and forestry activities, led to search for alternatives to conventional production. In this context, agroforestry systems, that integrate trees with crops and livestock, are an alternative operating sustainably. With the aim of studying the potential for preservation tree species of the "Caatinga" in an agrosilvopasture system in semiarid, in Sobral-CE, was evaluated the relatives density, frequency and dominance, the importance value index and the Shannon e Wiener index, of the woody component of this system. It was found that the vegetation management practices of trees and shrubs used in the system decrease density, and interfered in height and diameter distribution of individuals in relation to the original vegetation of the Caatinga. However, these practices were effective in preserving the wealth of flora species of trees and shrubs, similar to the area of native vegetation reserve. Cordia oncocalyx was the species with the highest number of individuals in the system, also showing highest importance value, followed by Mimosa caesalpiniifolia. The family Leguminosae was the most representative. The Shannon index shows that this agrosilvopasture system has the potential to promote an intermediate level of conservation among the "Caatinga" vegetation remnants and disturbed areas in this biome.

  19. Vegetation index anomaly response to varying lengths of drought across vegetation and climatic gradients in Hawaii

    Science.gov (United States)

    Lucas, M.; Miura, T.; Trauernicht, C.; Frazier, A. G.

    2017-12-01

    A drought which results in prolonged and extended deficit in naturally available water supply and creates multiple stresses across ecosystems is classified as an ecological drought. Detecting and understanding the dynamics and response of such droughts in tropical systems, specifically across various vegetation and climatic gradients is fairly undetermined, yet increasingly important for better understandings of the ecological effects of drought. To understanding the link between what lengths and intensities of known meteorological drought triggers detectable ecological vegetation responses, a landscape scale regression analysis evaluating the response (slope) and relationship strength (R-squared) of several cumulative SPI (standard precipitation index) lengths(1, 3, 6, 12, 18, 24, 36, 48, and 60 month), to various satellite derived monthly vegetation indices anomalies (NDVI, EVI, EVI2, and LSWI) was performed across a matrix of dominant vegetation covers (grassland, shrubland, and forest) and climatic moisture zones (arid, dry, mesic, and wet). The nine different SPI lags across these climactic and vegetation gradients was suggest that stronger relationships and steeper slopes were found in dryer climates (across all vegetation covers) and finer vegetation types (across all moisture zones). Overall NDVI, EVI and EVI2 showed the best utility in these dryer climatic zones across all vegetation types. Within arid and dry areas "best" fits showed increasing lengths of cumulative SPI were with increasing vegetation coarseness respectively. Overall these findings suggest that rainfall driven drought may have a stronger impact on the ecological condition of vegetation in water limited systems with finer vegetation types ecologically responding more rapidly to meteorological drought events than coarser woody vegetation systems. These results suggest that previously and newly documented trends of decreasing rainfall and increasing drought in Hawaiian drylands may have

  20. Self-crafting vegetable snacks: testing the IKEA-effect in children.

    Science.gov (United States)

    Raghoebar, Sanne; van Kleef, Ellen; de Vet, Emely

    2017-01-01

    The purpose of this paper is to test whether the IKEA-effect (Norton et al. , 2012) - better liking for self-crafted products than for identical products crafted by others - can be exploited to increase liking and consumption of vegetable snacks in children. A between-subjects experiment was conducted at an after school care facility. In total, 86 children aged four to six either crafted a peacock with vegetables or with non-food objects following an example. After the task, children ate snack vegetables ad libitum, and rated their liking for the vegetables and pride in crafting the peacock. No significant main effect of the vegetable snack creation on consumption and liking was observed. Also, perceived pride did not mediate the effect of self-crafting vegetable snacks on consumption of and liking for vegetables. Vegetable consumption did not differ between children who were either simply exposed to vegetable snacks while crafting or those who were crafting the vegetable snacks themselves. The equal consumption might suggest that this is caused by simple exposure, but more research is needed comparing self-crafting and exposure to a condition where there is no initial exposure to vegetables. Although the IKEA-effect has been demonstrated in adults, this is one of the first studies evaluating the IKEA-effect in children and as a means to increase liking for a generally disliked product in this target group, i.e. vegetables. The IKEA-effect could not be replicated under these more stringent conditions, where the experimental set-up enabled disentangling exposure and crafting effects.

  1. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    Science.gov (United States)

    Chen, J. M.; Chen, X.; Ju, W.

    2013-07-01

    Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modelled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI) and elevation have small and additive effects on improving the spatial scaling

  2. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    Directory of Open Access Journals (Sweden)

    J. M. Chen

    2013-07-01

    Full Text Available Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE in NPP modelled at the 1 km resolution is reduced from 14.8 g C m−2 yr−1 to 4.8 g C m−2 yr−1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m−2 yr−1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI and elevation have small and additive effects on improving

  3. Semi-determinate growth habit adjusts the vegetative-to-reproductive balance and increases productivity and water-use efficiency in tomato (Solanum lycopersicum).

    Science.gov (United States)

    Vicente, Mateus Henrique; Zsögön, Agustin; de Sá, Ariadne Felicio Lopo; Ribeiro, Rafael V; Peres, Lázaro E P

    2015-04-01

    Tomato (Solanum lycopersicum) shows three growth habits: determinate, indeterminate and semi-determinate. These are controlled mainly by allelic variation in the self-pruning (SP) gene family, which also includes the "florigen" gene single flower TRUSS (SFT). Determinate cultivars have synchronized flower and fruit production, which allows mechanical harvesting in the tomato processing industry, whereas indeterminate ones have more vegetative growth with continuous flower and fruit formation, being thus preferred for fresh market tomato production. The semi-determinate growth habit is poorly understood, although there are indications that it combines advantages of determinate and indeterminate growth. Here, we used near-isogenic lines (NILs) in the cultivar Micro-Tom (MT) with different growth habit to characterize semi-determinate growth and to determine its impact on developmental and productivity traits. We show that semi-determinate genotypes are equivalent to determinate ones with extended vegetative growth, which in turn impacts shoot height, number of leaves and either stem diameter or internode length. Semi-determinate plants also tend to increase the highly relevant agronomic parameter Brix × ripe yield (BRY). Water-use efficiency (WUE), evaluated either directly as dry mass produced per amount of water transpired or indirectly through C isotope discrimination, was higher in semi-determinate genotypes. We also provide evidence that the increases in BRY in semi-determinate genotypes are a consequence of an improved balance between vegetative and reproductive growth, a mechanism analogous to the conversion of the overly vegetative tall cereal varieties into well-balanced semi-dwarf ones used in the Green Revolution. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Biohydrogen from thermophilic co-fermentation of swine manure with fruit and vegetable waste: maximizing stable production without pH control.

    Science.gov (United States)

    Tenca, A; Schievano, A; Perazzolo, F; Adani, F; Oberti, R

    2011-09-01

    Hydrogen production by dark fermentation may suffer of inhibition or instability due to pH deviations from optimality. The co-fermentation of promptly degradable feedstock with alkali-rich materials, such as livestock wastes, may represent a feasible and easy to implement approach to avoid external adjustments of pH. Experiments were designed to investigate the effect of the mixing ratio of fruit-vegetable waste with swine manure with the aim of maximizing biohydrogen production while obtaining process stability through the endogenous alkalinity of manure. Fruit-vegetable/swine manure ratio of 35/65 and HRT of 2d resulted to give the highest production rate of 3.27 ± 0.51 L(H2)L(-1)d(-1), with a corresponding hydrogen yield of 126 ± 22 mL(H2)g(-1)(VS-added) and H2 content in the biogas of 42 ± 5%. At these operating conditions the process exhibited also one of the highest measured stability, with daily productions deviating for less than 14% from the average. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Historical and current forest landscapes in eastern Oregon and Washington Part II: Linking vegetation characteristics to potential fire behavior and related smoke production.

    Science.gov (United States)

    Mark H. Huff; Roger D. Ottmar; Ernesto Alvarado; Robert E. Vihnanek; John F. Lehmkuhl; Paul F. Hessburg; Richard L. Everett

    1995-01-01

    We compared the potential fire behavior and smoke production of historical and current time periods based on vegetative conditions in forty-nine 5100- to 13 5OO-hectare watersheds in six river basins in eastern Oregon and Washington. Vegetation composition, structure, and patterns were attributed and mapped from aerial photographs taken from 1932 to 1959 (historical)...

  6. Product Service Systems

    DEFF Research Database (Denmark)

    Departing from Product Development models based on physical artefacts. Moving towards integrated Product Development and System Operations models suited Product/Service-systems......Departing from Product Development models based on physical artefacts. Moving towards integrated Product Development and System Operations models suited Product/Service-systems...

  7. Vegetation extraction from high-resolution satellite imagery using the Normalized Difference Vegetation Index (NDVI)

    Science.gov (United States)

    AlShamsi, Meera R.

    2016-10-01

    Over the past years, there has been various urban development all over the UAE. Dubai is one of the cities that experienced rapid growth in both development and population. That growth can have a negative effect on the surrounding environment. Hence, there has been a necessity to protect the environment from these fast pace changes. One of the major impacts this growth can have is on vegetation. As technology is evolving day by day, there is a possibility to monitor changes that are happening on different areas in the world using satellite imagery. The data from these imageries can be utilized to identify vegetation in different areas of an image through a process called vegetation detection. Being able to detect and monitor vegetation is very beneficial for municipal planning and management, and environment authorities. Through this, analysts can monitor vegetation growth in various areas and analyze these changes. By utilizing satellite imagery with the necessary data, different types of vegetation can be studied and analyzed, such as parks, farms, and artificial grass in sports fields. In this paper, vegetation features are detected and extracted through SAFIY system (i.e. the Smart Application for Feature extraction and 3D modeling using high resolution satellite ImagerY) by using high-resolution satellite imagery from DubaiSat-2 and DEIMOS-2 satellites, which provide panchromatic images of 1m resolution and spectral bands (red, green, blue and near infrared) of 4m resolution. SAFIY system is a joint collaboration between MBRSC and DEIMOS Space UK. It uses image-processing algorithms to extract different features (roads, water, vegetation, and buildings) to generate vector maps data. The process to extract green areas (vegetation) utilize spectral information (such as, the red and near infrared bands) from the satellite images. These detected vegetation features will be extracted as vector data in SAFIY system and can be updated and edited by end-users, such as

  8. Influence of animal fat substitution by vegetal fat on Mortadella-type products formulated with different hydrocolloids

    Directory of Open Access Journals (Sweden)

    Erick Saldaña

    2015-12-01

    Full Text Available Meat has played a crucial role in human evolution and is an important component of a healthy and well-balanced diet on account of its nutritional properties, its high biological value as a source of protein, and the vitamins and minerals it supplies. We studied the effects of animal fat reduction and substitution by hydrogenated vegetal fat, sodium alginate and guar gum. Fatty acid composition, lipid oxidation, color and instrumental texture as well as the sensorial difference between low, substituted-fat and the traditional formulations for mortadella-type products were analyzed. Both substitution and reduction of animal fat decreased the saturated fatty acids percentage from 40% down to 31%. A texture profile analysis showed differences between the formulations. Furthermore, lipid oxidation values were not significant for treatments as regards the type and quantity of fat used while the use of sodium alginate and guar gum reduced the amounts of liquid released after cooking. Animal fat substitution does cause, however, a difference in overall sensorial perception compared with non-substituted products. The results confirm the viability of substituting vegetal fat for animal fat.

  9. A qualitative and quantitative analysis of vegetable pricing in supermarket

    Science.gov (United States)

    Miranda, Suci

    2017-06-01

    The purpose of this study is to analyze the variables affecting the determination of the sale price of vegetable which is constant over time in a supermarket qualitatively and quantitavely. It focuses on the non-organic vegetable with a fixed selling price over time such as spinach, beet, and parsley. In qualitative analysis, the sale price determination is influenced by the vegetable characteristics: (1) vegetable segmentation (low to high daily consumed); (2) vegetable age (how long it can last related to freshness); which both characteristic relates to the inventory management and ultimately to the sale price in supermarket. While quantitatively, the vegetables are divided into two categories: the leaf vegetable group that the leaves are eaten as a vegetable with the aging product (a) = 0 and the shelf life (t) = 0, and the non-leafy vegetable group with the aging group (a) = a+1 and the shelf life (t) = t+1. The vegetable age (a) = 0 means they only last for one day when they are ordered then they have to terminate. Whereas a+1 is that they have a longer life for more than a day such as beet, white radish, and string beans. The shelf life refers to how long it will be placed in a shelf in supermarket in line with the vegetable age. According to the cost plus pricing method using full price costing approach, production costs, non-production costs, and markup are adjusted differently for each category. There is a holding cost added to the sale price of the non-leafy vegetable, yet it is assumed a 0 holding cost for the leafy vegetable category. The amount of expected margin of each category is correlated to the vegetable characteristics.

  10. Calibration of UAS imagery inside and outside of shadows for improved vegetation index computation

    Science.gov (United States)

    Bondi, Elizabeth; Salvaggio, Carl; Montanaro, Matthew; Gerace, Aaron D.

    2016-05-01

    Vegetation health and vigor can be assessed with data from multi- and hyperspectral airborne and satellite- borne sensors using index products such as the normalized difference vegetation index (NDVI). Recent advances in unmanned aerial systems (UAS) technology have created the opportunity to access these same image data sets in a more cost effective manner with higher temporal and spatial resolution. Another advantage of these systems includes the ability to gather data in almost any weather condition, including complete cloud cover, when data has not been available before from traditional platforms. The ability to collect in these varied conditions, meteorological and temporal, will present researchers and producers with many new challenges. Particularly, cloud shadows and self-shadowing by vegetation must be taken into consideration in imagery collected from UAS platforms to avoid variation in NDVI due to changes in illumination within a single scene, and between collection flights. A workflow is presented to compensate for variations in vegetation indices due to shadows and variation in illumination levels in high resolution imagery collected from UAS platforms. Other calibration methods that producers may currently be utilizing produce NDVI products that still contain shadow boundaries and variations due to illumination, whereas the final NDVI mosaic from this workflow does not.

  11. Radiation and the vegetable industry

    International Nuclear Information System (INIS)

    Roberts, P.B.

    1984-01-01

    The possible uses of irradiation in the vegetable industry are considered. Interest has been increasing because of possible bans on chemical fumigants and clearance of irradiation as an acceptable process, up to certain dose limits, by Codex Alimentarius and the US FDA. Inhibition of sprouting in potatoes and onions would be one possibility for exploitation. However, the main incentive for vegetable irradiation would be as a quarantine treatment for exported products. The shelf-life of a few vegetables could also be increased by combining radiation with heat treatments. Costs in New Zealand and consumer attitudes are briefly considered

  12. Estimation of Surface Soil Moisture in Irrigated Lands by Assimilation of Landsat Vegetation Indices, Surface Energy Balance Products, and Relevance Vector Machines

    Directory of Open Access Journals (Sweden)

    Alfonso F. Torres-Rua

    2016-04-01

    Full Text Available Spatial surface soil moisture can be an important indicator of crop conditions on farmland, but its continuous estimation remains challenging due to coarse spatial and temporal resolution of existing remotely-sensed products. Furthermore, while preceding research on soil moisture using remote sensing (surface energy balance, weather parameters, and vegetation indices has demonstrated a relationship between these factors and soil moisture, practical continuous spatial quantification of the latter is still unavailable for use in water and agricultural management. In this study, a methodology is presented to estimate volumetric surface soil moisture by statistical selection from potential predictors that include vegetation indices and energy balance products derived from satellite (Landsat imagery and weather data as identified in scientific literature. This methodology employs a statistical learning machine called a Relevance Vector Machine (RVM to identify and relate the potential predictors to soil moisture by means of stratified cross-validation and forward variable selection. Surface soil moisture measurements from irrigated agricultural fields in Central Utah in the 2012 irrigation season were used, along with weather data, Landsat vegetation indices, and energy balance products. The methodology, data collection, processing, and estimation accuracy are presented and discussed.

  13. PREFERENCES OF CONSUMERS IN CHOSING ALTERNATIVE VEGETABLES IN PAPUA PROVINCE (Case in Ditrict of Jayapura

    Directory of Open Access Journals (Sweden)

    Afrizal Malik

    2016-01-01

    Full Text Available Assesment aim to represent information about preferences of consumption in decided chosing of farming system of vegetables. Methode: combination of desk study assesment and QSA (Quick Simple Assessment, July 2015. Getting datas rendomizely at traditional market in Sentani and super market, 25 respondes at each market. Observations to: (i taste/preference; (ii product price; (iii long natural freshment security; (iv Amount/nutrition value/vitamine, (v quality. Main Parameter done by producer; (i product price degree ; (ii opportunity of benefit; (iii Risk of failure; (iv applicated of technology; (v Needed for capital/cost of pruduction; (vi degree of viability of culture. Analize data of scoring system and completed with describetively analize.Assesment result: main choice vegetables by comsumer in Sentani: (1 egg plants, spinachs, kangkungs, cucumbers; (2 tomatoes, stringbean, hot chilis, sawi and cabbages; (3 onions and big chilies. Main factors decided of choice kind of vegetables planted: (i easy culivating, (ii needed capital or low input relatively;(iii low risk of failure (iv good price relatively. Kinds of vegetables priority cultivated:(1 longbeans,egg plants,cucumbers,kangkung and spinachs (2 sawis, hot chilies, tomatoes, straightbeans. All kind others vegetable ,even if high price and high benefit, but farmers don’t like cultivate because needs high capital and high risk. Farmers vegetabels with weakness capital need regulation: (i fund finnacial credit, (ii giving credit selectively.

  14. Dynamics of climatic characteristics influencing vegetation in Siberia

    International Nuclear Information System (INIS)

    Shulgina, Tamara M; Genina, Elena Yu; Gordov, Evgeny P

    2011-01-01

    The spatiotemporal pattern of the dynamics of surface air temperature and precipitation and those bioclimatic indices that are based upon factors which control vegetation cover are investigated. Surface air temperature and precipitation data are retrieved from the ECMWF ERA Interim reanalysis and APHRODITE JMA datasets, respectively, which were found to be the closest to the observational data. We created an archive of bioclimatic indices for further detailed studies of interrelations between local climate and vegetation cover changes, which include carbon uptake changes related to changes of vegetation types and amount, as well as with spatial shifts of vegetation zones. Meanwhile, analysis reveals significant positive trends of the growing season length accompanied by a statistically significant increase of the sums of the growing degree days and precipitation over the south of West Siberia. The trends hint at a tendency for an increase of vegetation ecosystems' productivity across the south of West Siberia (55°–60°N, 59°–84°E) in the past several decades and (if sustained) may lead to a future increase of vegetation productivity in this region.

  15. Effects of Solar Geoengineering on Vegetation: Implications for Biodiversity and Conservation

    Science.gov (United States)

    Dagon, K.; Schrag, D. P.

    2017-12-01

    Climate change will have significant impacts on vegetation and biodiversity. Solar geoengineering has potential to reduce the climate effects of greenhouse gas emissions through albedo modification, yet more research is needed to better understand how these techniques might impact terrestrial ecosystems. Here we utilize the fully coupled version of the Community Earth System Model to run transient solar geoengineering simulations designed to stabilize radiative forcing starting mid-century, relative to the Representative Concentration Pathway 6 (RCP6) scenario. Using results from 100-year simulations, we analyze model output through the lens of ecosystem-relevant metrics. We find that solar geoengineering improves the conservation outlook under climate change, but there are still potential impacts on biodiversity. Two commonly used climate classification systems show shifts in vegetation under solar geoengineering relative to RCP6, though we acknowledge the associated uncertainties with these systems. We also show that rates of warming and the climate velocity are minimized globally under solar geoengineering by the end of the century, while trends persist over land in the Northern Hemisphere. Shifts in the amplitude of temperature and precipitation seasonal cycles are observed in the results, and have implications for vegetation phenology. Different metrics for vegetation productivity also show decreases under solar geoengineering relative to RCP6, but could be related to the model parameterization of nutrient cycling. Vegetation water cycling is found to be an important mechanism for understanding changes in ecosystems under solar geoengineering.

  16. Production of biodiesel from vegetable oils

    Directory of Open Access Journals (Sweden)

    Luque, Susana

    2008-03-01

    Full Text Available Biodiesel is produced by transesterification of triglycerides present in animal fat or vegetable oils, by displacing glycerine with a low molar mass alcohol. This resulting ester mixture has physico-chemical properties similar to those of petroleum diesel. This paper reviews the synthetic paths that lead to biodiesel by means of the catalytic transesterification of vegetable oils. Although methyl esters are at present the only ones produced at industrial scale, the use of ethanol, which can also be obtained from renewable resources, has been considered, since it would generate a cleaner and more biocompatible fuel.El biodiésel se produce mediante la transesterificación de triglicéridos, presentes en grasas animales o aceites vegetales, en un proceso en el que un alcohol de bajo peso molecular desplaza a la glicerina. La mezcla de esteres así resultante posee unas propiedades físico-químicas similares a las del diésel procedente de petróleo. En este artículo se revisan las vías de síntesis de biodiésel mediante la transesterificación catalítica de aceites vegetales. Aunque actualmente a escala industrial solo se producen ésteres metílicos, también se ha considerado el uso de etanol, ya que éste se obtiene también de fuentes renovables, generando así un combustible más limpio y biocompatible.

  17. Taxonomic perspective of plant species yielding vegetable oils used ...

    African Journals Online (AJOL)

    A search conducted to determine the plants yielding vegetable oils resulted in 78 plant species with potential use in cosmetics and skin care products. The taxonomic position of these plant species is described with a description of vegetable oils from these plants and their use in cosmetic and skin care products.

  18. Technical aspects of biodiesel production from vegetable oils

    Directory of Open Access Journals (Sweden)

    Krishnakumar Janahiraman

    2008-01-01

    Full Text Available Biodiesel, a promising substitute as an alternative fuel has gained significant attention due to the finite nature of fossil energy sources and does not produce sulfur oxides and minimize the soot particulate in comparison with the existing one from petroleum diesel. The utilization of liquid fuels such as biodiesel produced from vegetable oil by transesterification process represents one of the most promising options for the use of conventional fossil fuels. In the first step of this experimental research, edible rice bran oil used as test material and converted into methyl ester and non-edible jatropha vegetable oil is converted into jatropha oil methyl ester, which are known as biodiesel and they are prepared in the presence of homogeneous acid catalyst and optimized their operating parameters like reaction temperature, quantity of alcohol and the catalyst requirement, stirring rate and time of esterification. In the second step, the physical properties such as density, flash point, kinematic viscosity, cloud point, and pour point were found out for the above vegetable oils and their methyl esters. The same characteristics study was also carried out for the diesel fuel for obtaining the baseline data for analysis. The values obtained from the rice bran oil methyl ester and jatropha oil methyl ester are closely matched with the values of conventional diesel and it can be used in the existing diesel engine without any hardware modification. In the third step the storage characteristics of biodiesel are also studied. .

  19. Assessment of anthropogenic vegetation productivity decline in the Volta basin from 1982 to 2003

    Science.gov (United States)

    Vlek, Quang Bao Le, Lulseged Tamene, Paul L. G.

    2009-04-01

    Primary productivity decline is causing loss of ecosystem services which in turn influences not only the water cycle, but also the livelihoods of millions of inhabitants worldwide. Climate change or other natural events may be responsible for land degradation, but the phenomenon is mainly due to human actions. Therefore, it would be important to identify those areas in which the pressure on land needs to be alleviated. In this study, we conducted a step-wise analysis using a series of databases to identify the extent of land under anthropogenic threats. We processed time-series NDVI (Normalized Difference Vegetation Index) products for the period 1982 - 2003 to analyse long-term trends in biomass productivity changes over the Volta basin. To distinguish human-induced biomass trends from climate-driven vegetation dynamics, we excluded those areas that had shown a strong biomass response to inter-annual rainfall variation. Pixels with NDVI changes in accordance with rainfall (positive correlation) were considered due to climate change or variation. Pixels not affected by rainfall (no or negative correlation) are those where green biomass change could be interpreted to reflect areas with strictly human induced land degradation. Spatial data of soil constraints, land-use/cover and population density within the study period were used to interpret possible underlying factors of land productivity decline. The results of the study show that about 31 thousands km2 (8% of the basin land mass), which is the living space of over 1.3 million people, was land that is losing its ability to produce green biomass due to human actions. The degradation areas for the various land cover types are 12.2 thousands km2 for woodland, 8.3 thousands km2 for agriculture, 7.3 thousands km2 for shrubland, and 1.6 thousands km2 for evergreen forest. The relatively low population density in the degraded areas (averagely 43 pers.km-2) would suggest that these are marginal areas with limited

  20. Improving availability, promotion and purchase of fruit and vegetable and non sugar-sweetened drink products at community sporting clubs: a randomised trial.

    Science.gov (United States)

    Wolfenden, Luke; Kingsland, Melanie; Rowland, Bosco C; Dodds, Pennie; Gillham, Karen; Yoong, Sze Lin; Sidey, Maree; Wiggers, John

    2015-03-10

    Amateur sporting clubs represent an attractive setting for health promotion. This study assesses the impact of a multi-component intervention on the availability, promotion and purchase of fruit and vegetable and non sugar -sweetened drink products from community sporting club canteens. We also assessed the impact the intervention on sporting club revenue from the sale of food and beverages. A repeat cross-sectional, parallel group, cluster randomized controlled trial was undertaken with amateur community football clubs in New South Wales, Australia. The intervention was conducted over 2.5 winter sporting seasons and sought to improve the availability and promotion of fruit and vegetables and non sugar-sweetened drinks in sporting club canteens. Trial outcomes were assessed via telephone surveys of sporting club representatives and members. Eighty five sporting clubs and 1143 club members participated in the study. Relative to the control group, at follow-up, clubs allocated to the intervention were significantly more likely to have fruit and vegetable products available at the club canteen (OR = 5.13; 95% CI 1.70-15.38), were more likely to promote fruit and vegetable selection using reduced pricing and meal deals (OR = 34.48; 95% CI 4.18-250.00) and members of intervention clubs were more likely to report purchase of fruit and vegetable (OR = 2.58 95% CI; 1.08-6.18) and non sugar -sweetened drink (OR = 1.56; 95% CI 1.09-2.25) products. There was no significant difference between groups in the annual club revenue from food and non-alcoholic beverage sales. The findings demonstrate that the intervention can improve the nutrition environment of sporting clubs and the purchasing behaviour of members. Australian New Zealand Clinical Trials Registry: ACTRN12609000224224 .

  1. Impacts of Climate Change Induced Vegetation Responses on BVOC Emissions from Subarctic Heath Ecosystems

    DEFF Research Database (Denmark)

    Valolahti, Hanna Maritta

    The role of biogenic volatile organic compounds (BVOCs) affecting Earths’ climate system is one of the greatest uncertainties when modelling the global climate change. BVOCs presence in the atmosphere can have both positive and negative climate feedback mechanisms when they involve atmospheric...... chemistry and physics. Vegetation is the main source of BVOCs. Their production is directly linked to temperature and the foliar biomass. On global scale, vegetation in subarctic and arctic regions has been modeled to have only minor contribution to annual total BVOC emissions. In these regions cold...... temperature has been regulating annual plant biomass production, but ongoing global warming is more pronounced in these regions than what the global average is. This may increase the importance of subarctic and arctic vegetation as a source of BVOC emissions in near future. This thesis aims to increase...

  2. Commodity Systems Assessment Methodology of Postharvest Losses in Vegetable Amaranths: The Case of Tamale, Ghana

    Directory of Open Access Journals (Sweden)

    Mildred Osei-Kwarteng

    2017-01-01

    Full Text Available A semistructured questionnaire based on the commodity system assessment methodology (CSAM was used to determine postharvest losses in vegetable amaranths (VA. Fifty producers and retailers were randomly selected from five and four major VA producing areas and markets, respectively, and interviewed. Data obtained were subjected to descriptive statistical analyses. The survey revealed that absence of laws, regulation, incentives, and inadequate technical information affected the production of VA. The utmost preproduction challenge was poor quality seeds with poor seed yield (35%, low viability (19%, and nontrueness (46%. It was noted that some cultural practices including planting pattern and density, irrigation, and fertiliser use had effects on postharvest losses. Some postharvest practices used were cleaning with water, trimming, sorting, and grading. Usually the produce was transported to marketing centers by cars and motor cycle trailers. Generally poor temperature management after harvest was a big challenge for the postharvest handling of VA. The potential of vegetable amaranths as a commodity in the study area can be enhanced by providing the necessary institutional support, incentives, and use of good management practices along the value chain. An interdisciplinary approach and quantification of losses along the chain are recommended for any future study.

  3. Monitoring natural vegetation in Southern Greenland using NOAA AVHRR and field measurements

    DEFF Research Database (Denmark)

    Hansen, Birger Ulf

    1991-01-01

    vegetation, sheep farming, biomass production, Remote Sensing, NOAA AVHRR, Southern Greenland, NDVI......vegetation, sheep farming, biomass production, Remote Sensing, NOAA AVHRR, Southern Greenland, NDVI...

  4. Mathematical Modeling of Vegetable-Oil Crystallization

    DEFF Research Database (Denmark)

    Hjorth, Jeppe Lindegaard

    be desirable to enhance specific properties such as shelf life, viscosity, texture, sensory aspects and physical appearance. Vegetable oils and fats constitute a considerable part of many food products such as chocolate, margarine, bread, spreads and ice cream. Several attractive properties found......In recent years the food sector has experienced a great boost in demand for tailor-made fats and oils to produce so-called functional foods, where ingredients have been carefully modified to yield products with specific, valuable properties. Depending on market segment and product, it may...... in these products, including flavor release, melting profile and appearance, are governed by the oils and fats added. Consequently, altering the fat phase may lead to enhanced properties of the products. The primary focus of the present work is vegetable oils and fats originating from different sources covering...

  5. Vegetable Genetic Resources in China

    Directory of Open Access Journals (Sweden)

    Haiping WANG

    2018-03-01

    Full Text Available China is recognized as an important region for plant biodiversity based on its vast and historical collection of vegetable germplasm. The aim of this review is to describe the exploration status of vegetable genetic resources in China, including their collection, preservation, evaluation, and utilization. China has established a number of national-level vegetable genetic resources preservation units, including the National Mid-term Genebank for Vegetable Germplasm Resources, the National Germplasm Repository for Vegetatively-Propagated Vegetables, and the National Germplasm Repository for Aquatic Vegetables. In 2015, at least 36 000 accessions were collected and preserved in these units. In the past decade, 44 descriptors and data standards for different species have been published, and most accessions have been evaluated for screening the germplasms for specific important traits such as morphological characteristics, disease resistance, pest resistance, and stress tolerance. Moreover, the genetic diversity and evolution of some vegetable germplasms have been evaluated at the molecular level. Recently, more than 1 000 accessions were distributed to researchers and breeders each year by various means for vegetable research and production. However, additional wild-relative and abroad germplasms from other regions need to be collected and preserved in the units to expand genetic diversity. Furthermore, there is a need to utilize advanced techniques to better understand the background and genetic diversity of a wide range of vegetable genetic resources. This review will provide agricultural scientists’ insights into the genetic diversity in China and provide information on the distribution and potential utilization of these valuable genetic resources. Keywords: vegetable, genetic resource, preservation, evaluation, utilization

  6. Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method

    Science.gov (United States)

    Song, Wanjuan; Mu, Xihan; Ruan, Gaiyan; Gao, Zhan; Li, Linyuan; Yan, Guangjian

    2017-06-01

    Normalized difference vegetation index (NDVI) of highly dense vegetation (NDVIv) and bare soil (NDVIs), identified as the key parameters for Fractional Vegetation Cover (FVC) estimation, are usually obtained with empirical statistical methods However, it is often difficult to obtain reasonable values of NDVIv and NDVIs at a coarse resolution (e.g., 1 km), or in arid, semiarid, and evergreen areas. The uncertainty of estimated NDVIs and NDVIv can cause substantial errors in FVC estimations when a simple linear mixture model is used. To address this problem, this paper proposes a physically based method. The leaf area index (LAI) and directional NDVI are introduced in a gap fraction model and a linear mixture model for FVC estimation to calculate NDVIv and NDVIs. The model incorporates the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) model parameters product (MCD43B1) and LAI product, which are convenient to acquire. Two types of evaluation experiments are designed 1) with data simulated by a canopy radiative transfer model and 2) with satellite observations. The root-mean-square deviation (RMSD) for simulated data is less than 0.117, depending on the type of noise added on the data. In the real data experiment, the RMSD for cropland is 0.127, for grassland is 0.075, and for forest is 0.107. The experimental areas respectively lack fully vegetated and non-vegetated pixels at 1 km resolution. Consequently, a relatively large uncertainty is found while using the statistical methods and the RMSD ranges from 0.110 to 0.363 based on the real data. The proposed method is convenient to produce NDVIv and NDVIs maps for FVC estimation on regional and global scales.

  7. Evaluation of used vegetable oil for biogas production in Spain; Evaluacion del potencial de aceite vegetal usado para la obtencion de biogasoleo en la Comunidad de Castilla y Leon

    Energy Technology Data Exchange (ETDEWEB)

    Antolin, G.; Tinaut, F. V.; Saez, A. R.; Vegas, L.; Briceno, Y. [Universidad de Valladolid (Spain)

    2002-07-01

    This work studies the potential of the residual vegetal oil that is generated in the Community of Castilla and Leon, evaluating the one that could be destined for the production of biogas. Also, it sets out a management model that will allow to establish a suitable collection and processing of this oil. (Author) 10 refs.

  8. Optimization of biodiesel production process using recycled vegetable oil

    Science.gov (United States)

    Lugo, Yarely

    Petro diesel toxic emissions and its limited resources have created an interest for the development of new energy resources, such as biodiesel. Biodiesel is traditionally produced by a transesterification reaction between vegetable oil and an alcohol in the presence of a catalyst. However, this process is slow and expensive due to the high cost of raw materials. Low costs feedstock oils such as recycled and animal fats are available but they cannot be transesterified with alkaline catalysts due to high content of free fatty acids, which can lead to undesirable reactions such as saponification. In this study, we reduce free fatty acids content by using an acid pre-treatment. We compare sulfuric acid, hydrochloric acid and ptoluenesulfonic acid (PTSA) to pre-treat recycled vegetable oil. PTSA removes water after 60 minutes of treatment at room temperature or within 15 minutes at 50°C. The pretreatment was followed by a transesterification reaction using alkaline catalyst. To minimize costs and accelerate reaction, the pretreatment and transesterification reaction of recycle vegetable oil was conducted at atmospheric pressure in a microwave oven. Biodiesel was characterized using a GC-MS method.

  9. Sustainability assessment of greenhouse vegetable farming practices from environmental, economic, and socio-institutional perspectives in China.

    Science.gov (United States)

    Yang, Lanqin; Huang, Biao; Mao, Mingcui; Yao, Lipeng; Niedermann, Silvana; Hu, Wenyou; Chen, Yong

    2016-09-01

    To provide growing population with sufficient food, greenhouse vegetable production has expanded rapidly in recent years in China and sustainability of its farming practices is a major concern. Therefore, this study assessed the sustainability of greenhouse vegetable farming practices from environmental, economic, and socio-institutional perspectives in China based on selected indicators. The empirical data were collected through a survey of 91 farm households from six typical greenhouse vegetable production bases and analysis of environmental material samples. The results showed that heavy fertilization in greenhouse vegetable bases of China resulted in an accumulation of N, P, Cd, Cu, Pb, and Zn in soil, nutrient eutrophication in irrigation water, and high Cd in some leaf vegetables cultivated in acidic soil. Economic factors including decreased crop yield in conventional farming bases, limited and site-dependent farmers' income, and lack of complete implementation of subsidy policies contributed a lot to adoption of heavy fertilization by farmers. Also, socio-institutional factors such as lack of unified management of agricultural supplies in the bases operated in cooperative and small family business models and low agricultural extension service efficiency intensified the unreasonable fertilization. The selection of cultivated vegetables was mainly based on farmers' own experience rather than site-dependent soil conditions. Thus, for sustainable development of greenhouse vegetable production systems in China, there are two key aspects. First, it is imperative to reduce environmental pollution and subsequent health risks through integrated nutrient management and the planting strategy of selected low metal accumulation vegetable species especially in acidic soil. Second, a conversion of cooperative and small family business models of greenhouse vegetable bases to enterprises should be extensively advocated in future for the unified agricultural supplies

  10. Food design strategies to increase vegetable intake

    NARCIS (Netherlands)

    Oliviero, Teresa; Fogliano, Vincenzo

    2016-01-01

    Background: Public campaigns promoting consumption of fruits and vegetables had limited results as consumers habits are difficult to modify. The incorporation of fruits and vegetables into regularly eaten products is a food design strategy that leads to several advantages. Pasta is a staple food

  11. Development of vegetables with improved consumer quality : a case study in Brussels sprouts

    NARCIS (Netherlands)

    Doorn, van J.E.

    1999-01-01

    In the last decade the vegetable production chain has changed from being production- driven into customer-driven, with special attention for consumer preferences. The current consumers want vegetables with additional value and demand convenient healthy vegetables with improved flavour and

  12. Monoterpenes released from fruit, plant, and vegetable systems.

    Science.gov (United States)

    Iqbal, Mohammad Asif; Kim, Ki-Hyun; Ahn, Jeong Hyeon

    2014-09-29

    To quantify the emission rate of monoterpenes (MTs) from diverse natural sources, the sorbent tube (ST)-thermal desorption (TD) method was employed to conduct the collection and subsequent detection of MTs by gas chromatography. The calibration of MTs, when made by both mass spectrometric (MS) and flame ionization detector (FID), consistently exhibited high coefficient of determination values (R2 > 0.99). This approach was employed to measure their emission rate from different fruit/plant/vegetable (F/P/V) samples with the aid of an impinger-based dynamic headspace sampling system. The results obtained from 10 samples (consisting of carrot, pine needle (P. sylvestris), tangerine, tangerine peel, strawberry, sepals of strawberry, plum, apple, apple peel, and orange juice) marked α-pinene, β-pinene, myrcene, α-terpinene, R-limonene, γ-terpinene, and p-cymene as the most common MTs. R-limonene was the major species emitted from citrus fruits and beverages with its abundance exceeding 90%. In contrast, α-pinene was the most abundant MT (37%) for carrot, while it was myrcene (31%) for pine needle. The overall results for F/P/V samples confirmed α-pinene, β-pinene, myrcene, α-terpinene, and γ-terpinene as common MTs. Nonetheless, the types and magnitude of MTs released from fruits were distinguished from those of vegetables and plants.

  13. Terrestrial Water Storage and Vegetation Resilience to Drought

    Science.gov (United States)

    Meyer, V.; Reager, J. T., II; Konings, A. G.

    2017-12-01

    The expected increased occurrences of hydrologic extreme events such as droughts in the coming decades motivates studies to better understand and predict the response of vegetation to such extreme conditions. Previous studies have addressed vegetation resilience to drought, defined as its ability to recover from a perturbation (Hirota et al., 2011; Vicente-Serrano et al., 2012), but appear to only focus on precipitation and a couple of vegetation indices, hence lacking a key element: terrestrial water storage (TWS). In this study, we combine and compare multiple remotely-sensed hydro-ecological datasets providing information on climatic and hydrological conditions (Tropical Rainfall Measuring Mission (TRMM), Gravity Recovery and Climate Experiment (GRACE)) and indices characterizing the state of the vegetation (vegetation water content using Vegetation Optical Depth (VOD) from SMAP (Soil Moisture Active and Passive), Gross Primary Production (GPP) from FluxCom and Specific Fluorescence Intensity (SFI, from GOSat)) to assess the ability of vegetation to face and recover from droughts across the globe. Our results suggest that GRACE hydrological data bridge the knowledge gap between precipitation deficit and vegetation response. All products are aggregated at a 0.5º spatial resolution and a monthly temporal resolution to match the GRACE Mascon product. Despite these coarse spatiotemporal resolutions, we find that the relationship between existing remotely-sensed eco-hydrologic data varies spatially, both in terms of strength of relationship and time lag, showing the response time of vegetation characteristics to hydrological changes and highlighting the role of water storage. A special attention is given to the Amazon river basin, where two well documented droughts occurred in 2005 and 2010, and where a more recent drought occurred in 2015/2016. References : Hirota, Marina, et al. "Global resilience of tropical forest and savanna to critical transitions." Science

  14. The effects of the vegetable prices insurance on the fluctuation of price: Based on Shanghai evidences

    Science.gov (United States)

    Qu, Chunhong; Li, Huishang; Hao, Shuai; Zhang, Xuebiao; Yang, Wei

    2017-10-01

    Taking Shanghai as an example, the influence of the vegetable price insurance on the fluctuation of prices was analyzed in the article. It was found that the sequence of seasonal fluctuations characteristics of leafy vegetable prices was changed by the vegetable cost-price insurance, the period of price fluctuation was elongated from 12-to-18 months to 37 months, and the influence of random factors on the price fluctuations was reduced in some degree. There was still great space for innovation of the vegetable prices insurance system in Shanghai. Some countermeasures would be suggested to develop the insurance system to better to play the role of insurance and promote the market running more smoothly in Shanghai such as prolonging the insurance cycle, improving the price information monitoring mechanism and innovating income insurance products and so on.

  15. Establishing riparian vegetation through use of a self-cleaning siphon system

    Science.gov (United States)

    Mark D. Ankeny; L. Bradford Sumrall; Kuo-Chin Hsu

    1999-01-01

    Storm water or overland flow can be captured and injected into a soil trench or infiltration gallery attached to a siphon and emplaced adjacent to a stream or arroyo bank. This injected soil water can be used by stream side vegetation for wildlife habitat, bank stabilization or other purposes. The siphon system has three hydrologically-distinct flow regimes: (1)...

  16. Glycoalkaloids and phenolic compounds in gamma irradiated potatoes; a food irradiation study on radiation induced stress in vegetable products

    NARCIS (Netherlands)

    Bergers, W.W.A.

    1980-01-01

    Irradiation is a recent preservation method. With the aid of ionizing radiation microorganisms in food can be killed or specific physiological processes in vegetable products can be influenced.

    In order to study the effects of metabolic radiation stress on quantitative chemical changes in

  17. A review of perchlorate (ClO4-) occurrence in fruits and vegetables.

    Science.gov (United States)

    Calderón, R; Godoy, F; Escudey, M; Palma, P

    2017-02-01

    Since the 1990s, a large number of studies around the world have reported the presence of perchlorate in different types of environmental matrices. In view of their inherent characteristics, such as high solubility, mobility, persistence, and low affinity for the surface of soil, perchlorates are mobilized through the water-soil system and accumulate in edible plant species of high human consumption. However, the ingestion of food products containing perchlorate represents a potential health risk to people due to their adverse effects on thyroid, hormone, and neuronal development, mainly in infants and fetuses. At present, research has been centered on determining sources, fates, and remediation methods and not on its real extension in vegetables under farming conditions. This review presents a comprehensive overview and update of the frequent detection of perchlorate in fruits and vegetables produced and marketed around the world. Additionally, the impact of fertilizer on the potential addition of perchlorate to soil and its mobility in the water-soil-plant system is discussed. This review is organized into the following sections: sources of perchlorate, mobility in the water-soil system, presence in fruits and vegetables in different countries, international regulations, and toxicological studies. Finally, recommendations for future studies concerning perchlorate in fruits and vegetables are presented.

  18. Time-delay-induced dynamical behaviors for an ecological vegetation growth system driven by cross-correlated multiplicative and additive noises.

    Science.gov (United States)

    Wang, Kang-Kang; Ye, Hui; Wang, Ya-Jun; Li, Sheng-Hong

    2018-05-14

    In this paper, the modified potential function, the stationary probability distribution function (SPDF), the mean growth time and the mean degeneration time for a vegetation growth system with time delay are investigated, where the vegetation system is assumed to be disturbed by cross-correlated multiplicative and additive noises. The results reveal some fact that the multiplicative and additive noises can both reduce the stability and speed up the decline of the vegetation system, while the strength of the noise correlation and time delay can both enhance the stability of the vegetation and slow down the depression process of the ecological system. On the other hand, with regard to the impacts of noises and time delay on the mean development and degeneration processes of the ecological system, it is discovered that 1) in the development process of the vegetation population, the increase of the noise correlation strength and time delay will restrain the regime shift from the barren state to the boom one, while the increase of the additive noise can lead to the fast regime shift from the barren state to the boom one. 2) Conversely, in the depression process of the ecological system, the increase of the strength of the correlation noise and time delay will prevent the regime shift from the boom state to the barren one. Comparatively, the increase of the additive and multiplicative noises can accelerate the regime shift from the boom state to the barren state.

  19. Accuracy assessment of the vegetation continuous field tree cover product using 3954 ground plots in the southwestern USA

    Science.gov (United States)

    M. A. White; J. D. Shaw; R. D. Ramsey

    2005-01-01

    An accuracy assessment of the Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation continuous field (VCF) tree cover product using two independent ground-based tree cover databases was conducted. Ground data included 1176 Forest Inventory and Analysis (FIA) plots for Arizona and 2778 Southwest Regional GAP (SWReGAP) plots for Utah and western Colorado....

  20. Tundra vegetation effects on pan-Arctic albedo

    International Nuclear Information System (INIS)

    Loranty, Michael M; Goetz, Scott J; Beck, Pieter S A

    2011-01-01

    Recent field experiments in tundra ecosystems describe how increased shrub cover reduces winter albedo, and how subsequent changes in surface net radiation lead to altered rates of snowmelt. These findings imply that tundra vegetation change will alter regional energy budgets, but to date the effects have not been documented at regional or greater scales. Using satellite observations and a pan-Arctic vegetation map, we examined the effects of shrub vegetation on albedo across the terrestrial Arctic. We included vegetation classes dominated by low shrubs, dwarf shrubs, tussock-dominated graminoid tundra, and non-tussock graminoid tundra. Each class was further stratified by bioclimate subzones. Low-shrub tundra had higher normalized difference vegetation index values and earlier albedo decline in spring than dwarf-shrub tundra, but for tussock tundra, spring albedo declined earlier than for low-shrub tundra. Our results illustrate how relatively small changes in vegetation properties result in differences in albedo dynamics, regardless of shrub growth, that may lead to differences in net radiation upwards of 50 W m -2 at weekly time scales. Further, our findings imply that changes to the terrestrial Arctic energy budget during this important seasonal transition are under way regardless of whether recent satellite observed productivity trends are the result of shrub expansion. We conclude that a better understanding of changes in vegetation productivity and distribution in Arctic tundra is essential for accurately quantifying and predicting carbon and energy fluxes and associated climate feedbacks.

  1. Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-142- KeelerOregon City #2)

    Energy Technology Data Exchange (ETDEWEB)

    Barndt, Shawn L. [Bonneville Power Administration, Portland, OR (United States)

    2003-04-04

    Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-142- KeelerOregon #2). Bonneville Power Administration proposes to remove vegetation alongside Transmission Right-of-Ways

  2. Measurement Of Technical Efficiency In Irrigated Vegetable ...

    African Journals Online (AJOL)

    This study measured technical efficiency and identified its determinants in irrigated vegetable production in Nasarawa State of Nigeria using a stochastic frontier model. A complete enumeration of 193 NADP-registered vegetable farmers was done. The predicted farm technical efficiency ranges from 25.94 to 96.24 per cent ...

  3. Assessment and source identification of trace metals in the soils of greenhouse vegetable production in eastern China.

    Science.gov (United States)

    Yang, Lanqin; Huang, Biao; Hu, Wenyou; Chen, Yong; Mao, Mingcui

    2013-11-01

    Worldwide concern about the occurrence of trace metals in greenhouse vegetable production soils (GVPS) is growing. In this study, a total of 385 surface GVPS samples were collected in Shouguang and four vegetable production bases in Nanjing, Eastern China, for the determination of As and Hg using atomic fluorescence spectrometry and Pb, Cu, Cd, and Zn using inductively coupled plasma-mass spectrometry. Geo-accumulation indices and factor analysis were used to investigate the accumulation and sources of the trace metals in soils in Eastern China. The results revealed that greenhouse production practices increased accumulation of the trace metals, particularly Cd, Zn, and Cu in soils and their accumulation became significant with increasing years of cultivation. Accumulation of Cd and Zn was also found in soils from organic greenhouses. The GVPS was generally less polluted or moderately polluted by As, Cu, Zn, and Pb but heavily polluted by Cd and Hg in some locations. Overall, accumulation of Cd, Zn, and Cu in GVPS was primarily associated with anthropogenic activities, particularly, application of manure. The high level of Hg found in some sites was related to historical heavy application of Hg containing pesticides. However, further identification of Hg sources is needed. To reduce accumulation of the trace metals in GVPS, organic fertilizer application should be suggested through development and implementation of reasonable and sustainable strategies. © 2013 Elsevier Inc. All rights reserved.

  4. Multi-residue determination of pharmaceutical and personal care products in vegetables.

    Science.gov (United States)

    Wu, Xiaoqin; Conkle, Jeremy Landon; Gan, Jay

    2012-09-07

    Treated wastewater irrigation and biosolid amendment are increasingly practiced worldwide and contamination of plants, especially produces that may be consumed raw by humans, by pharmaceutical and personal care products (PPCPs), is an emerging concern. A sensitive method was developed for the simultaneous measurement of 19 frequently-occurring PPCPs in vegetables using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) for detection, combined with ultrasonic extraction and solid phase extraction (SPE) cleanup for sample preparation. Deuterated standards were used as surrogates to quantify corresponding analytes. The corrected recoveries ranged between 87.1 and 123.5% for iceberg lettuce, with intra- and inter-day variations less than 20%, and the method detection limits (MDLs) in the range of 0.04-3.0 ng g⁻¹ dry weight (dw). The corrected recoveries were equally good when the method was used on celery, tomato, carrot, broccoli, bell pepper and spinach. The method was further applied to examine uptake of PPCPs by iceberg lettuce and spinach grown in hydroponic solutions containing each PPCP at 500 ng L⁻¹. Twelve PPCPs were detected in lettuce leaves with concentrations from 0.2 to 28.7 ng g⁻¹ dw, while 11 PPCPs were detected in spinach leaves at 0.04-34.0 ng g⁻¹ dw. Given the diverse chemical structures of PPCPs considered in this study, this method may be used for screening PPCP residues in vegetables and other plants impacted by treated wastewater or biosolids, and to estimate potential human exposure via dietary uptake. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Efficiency of a novel "Food to waste to food" system including anaerobic digestion of food waste and cultivation of vegetables on digestate in a bubble-insulated greenhouse.

    Science.gov (United States)

    Stoknes, K; Scholwin, F; Krzesiński, W; Wojciechowska, E; Jasińska, A

    2016-10-01

    At urban locations certain challenges are concentrated: organic waste production, the need for waste treatment, energy demand, food demand, the need for circular economy and limited area for food production. Based on these factors the project presented here developed a novel technological approach for processing organic waste into new food. In this system, organic waste is converted into biogas and digester residue. The digester residue is being used successfully as a stand-alone fertilizer as well as main substrate component for vegetables and mushrooms for the first time - a "digeponics" system - in a closed new low energy greenhouse system with dynamic soap bubble insulation. Biogas production provides energy for the process and CO2 for the greenhouse. With very limited land use highly efficient resource recycling was established at pilot scale. In the research project it was proven that a low energy dynamic bubble insulated greenhouse can be operated continuously with 80% energy demand reduction compared to conventional greenhouses. Commercial crop yields were achieved based on fertilization with digestate; in individual cases they were even higher than the control yields of vegetables such as tomatoes, cucumber and lettuce among others. For the first time an efficient direct use of digestate as substrate and fertilizer has been developed and demonstrated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Global Validation of MODIS C6 and C6.1 Merged Aerosol Products over Diverse Vegetated Surfaces

    Directory of Open Access Journals (Sweden)

    Muhammad Bilal

    2018-03-01

    Full Text Available In this study, the MODerate resolution Imaging Spectroradiometer (MODIS Collections 6 and 6.1 merged Dark Target (DT and Deep Blue (DB aerosol products (DTBC6 and DTBC6.1 at 0.55 µm were validated from 2004–2014 against Aerosol Robotic Network (AERONET Version 2 Level 2.0 AOD obtained from 68 global sites located over diverse vegetated surfaces. These surfaces were categorized by static values of monthly Normalized Difference Vegetation Index (NDVI observations obtained for the same time period from the MODIS level-3 monthly NDVI product (MOD13A3, i.e., partially/non–vegetated (NDVIP ≤ 0.3, moderately–vegetated (0.3 < NDVIM ≤ 0.5 and densely–vegetated (NDVID > 0.5 surfaces. The DTBC6 and DTBC6.1 AOD products are accomplished by the NDVI criteria: (i use the DT AOD retrievals for NDVI > 0.3, (ii use the DB AOD retrievals for NDVI < 0.2, and (iii use an average of the DT and DB AOD retrievals or the available one with highest quality assurance flag (DT: QAF = 3; DB: QAF ≥ 2 for 0.2 ≤ NDVI ≤ 0.3. For comparison purpose, the DTBSMS AOD retrievals were included which were accomplished using the Simplified Merge Scheme, i.e., use an average of the DTC6.1 and DBC6.1 AOD retrievals or the available one for all the NDVI values. For NDVIP surfaces, results showed that the DTBC6 and DTBC6.1 AOD retrievals performed poorly over North and South America in terms of the agreement with AERONET AOD, and over Asian region in terms of retrievals quality as the small percentage of AOD retrievals were within the expected error (EE = ± (0.05 + 0.15 × AOD. For NDVIM surfaces, retrieval errors and poor quality in DTBC6 and DTBC6.1 were observed for Asian, North American and South American sites, whereas good performance, was observed for European and African sites. For NDVID surfaces, DTBC6 does not perform well over the Asian and North American sites, although it contains retrievals only from the DT algorithm which was developed for dark surfaces

  7. Sustainable crop models for fruit, vegetable and flower quality productions.

    Directory of Open Access Journals (Sweden)

    Inglese Paolo

    2011-02-01

    Full Text Available Sustainable development is a paradigm that has evolved over the time, since the ideas of socially acceptable and compatible development, on which it was originally based, are now supported by the more recent notions of ecological equilibria and production process economy, both of which need to be also preserved. Environmental and health safety, rational use of the natural resources and technological tools, upkeep of high social growth rates and respect of a social equity are the basis of the sustainability for any production process, including the agriculture. The new globalization framework has penalized small farms and, at the same time, has put serious constraints to the development of stronger economic systems (medium/large farms, as well. As consequence, the EU has outlined several strategic programs to support small agricultural systems in marginal areas by: 1 strengthening all the quality- related aspects of agricultural production, including nutritional and cultural traits associated to local, typical and in some cases to neglected crops; 2 improving traditional cultural practices by adapting the cropping cycles and fomenting new partnerships between the different parts of the production chain, as for example; promotion of small horticultural chains. Specific political actions for the horticultural production sector have also been developed. Some of these policies are specifically addressed to preserve the biodiversity and to create quality labels certifying typical and/or organic products. All of these are possible strategies that may counteract and cope with the globalization process and increase the competitiveness of many production systems especially those performed by local and small entrepreneurs. New sustainable development models are required by both the market and the implicit requirements of the production system, inside a context on which Europe must face with new emerging economies with lower production costs, by increasing

  8. Quality determination of vegetable oils used as an addition to fermented meat products with different starter cultures

    Directory of Open Access Journals (Sweden)

    Hana Šulcerová

    2017-01-01

    Full Text Available There were developed samples of fermented meat products of „Mettwurst" with an addition of a starter culture pentosacceus AS-3/100 or probiotic culture Lactobacillus casei Lc-01 and its combinations for this thesis. A part of animal fat was replaced with vegetable oils - sunflower oil and rapeseed oil. For comparison, there was also used a sample without an addition of vegetable oil. There were determined the characteristics of fats in samples: saponification value, acidity value, esteric, iodine and peroxide value. The samples were determined on the day of production and always once a week in a period of three following weeks. Every single sample was hereby determined 3 times. According to the results, it is more advantageous to use the samples with sunflower oil with an addition of specific cultures Lactobacillus casei Lc-01 and Pediococcus pentosaceus AS-3/100. The saponification value when adding sunflower oil detects that the quality of fat remains stable till the 14th day of storage (p <0.05. The comparison of acid value detects that a sample with sunflower oil and culture Pediococcus pentosaceus AS-3/100 is more advantageous due to fast acidification in the first half of storage period. Good results of iodine and peroxide value had the variation of a sample with sunflower oil and a combination of both cultures. The variation of peroxide value maintained the lowest values. By using the samples with sunflower oil and unispecific cultures L. casei Lc-01 and P. pentosaceus AS-3/100, the culture P. pentosaceus AS-3/100, which remained stable till the 14th day of production, reached the best values of peroxide value. The sunflower oil is in spite of high content of PUFA more stable to which also contributes the increased content of vitamin E that works as an antioxidant here. The disadvantage of rapeseed oil is its higher susceptibility to oxidation. For reasons of faster decomposition of vegetable oils would be essential to cut down on the

  9. Cruciferous Vegetables and Human Cancer Risk: Epidemiologic Evidence and Mechanistic Basis

    OpenAIRE

    Higdon, Jane V.; Delage, Barbara; Williams, David E.; Dashwood, Roderick H.

    2007-01-01

    Cruciferous vegetables are a rich source of glucosinolates and their hydrolysis products, including indoles and isothiocyanates, and high intake of cruciferous vegetables has been associated with lower risk of lung and colorectal cancer in some epidemiological studies. Glucosinolate hydrolysis products alter the metabolism or activity of sex hormones in ways that could inhibit the development of hormone-sensitive cancers, but evidence of an inverse association between cruciferous vegetable in...

  10. 95 YEARS OF SERVICE OF THE NATIONAL VEGETABLE GROWING INDUSTRY

    Directory of Open Access Journals (Sweden)

    S. M. Sirota

    2015-01-01

    Full Text Available Main achievements and progress of VNIISSOK’s scientists in field of vegetable breeding and seed production are presented in the article. More than 900 varieties of vegetable and flower crops were developed, among them 561 varieties were included into the State Register of selection inventions of Russia. The seed production of main vegetable and flower crops is carried out. Presales pretreatment of seeds and its sale are improved.

  11. Implications of climate variability for the detection of multiple equilibria and for rapid transitions in the atmosphere-vegetation system

    Energy Technology Data Exchange (ETDEWEB)

    Bathiany, S. [Max Planck Institute for Meteorology, Hamburg (Germany); Claussen, M. [Max Planck Institute for Meteorology, Hamburg (Germany); Universitaet Hamburg, Meteorologisches Institut, Hamburg (Germany); Fraedrich, K. [Universitaet Hamburg, Meteorologisches Institut, Hamburg (Germany)

    2012-05-15

    Paleoclimatic records indicate a decline of vegetation cover in the Western Sahara at the end of the African Humid Period (about 5,500 years before present). Modelling studies have shown that this phenomenon may be interpreted as a critical transition that results from a bifurcation in the atmosphere-vegetation system. However, the stability properties of this system are closely linked to climate variability and depend on the climate model and the methods of analysis. By coupling the Planet Simulator (PlaSim), an atmosphere model of intermediate complexity, with the simple dynamic vegetation model VECODE, we assess previous methods for the detection of multiple equilibria, and demonstrate their limitations. In particular, a stability diagram can yield misleading results because of spatial interactions, and the system's steady state and its dependency on initial conditions are affected by atmospheric variability and nonlinearities. In addition, we analyse the implications of climate variability for the abruptness of a vegetation decline. We find that a vegetation collapse can happen at different locations at different times. These collapses are possible despite large and uncorrelated climate variability. Because of the nonlinear relation between vegetation dynamics and precipitation the green state is initially stabilised by the high variability. When precipitation falls below a critical threshold, the desert state is stabilised as variability is then also decreased. (orig.)

  12. Water–Soil–Vegetation Dynamic Interactions in Changing Climate

    Directory of Open Access Journals (Sweden)

    Xixi Wang

    2017-09-01

    Full Text Available Previous studies of land degradation, topsoil erosion, and hydrologic alteration typically focus on these subjects individually, missing important interrelationships among these important aspects of the Earth’s system. However, an understanding of water–soil–vegetation dynamic interactions is needed to develop practical and effective solutions to sustain the globe’s eco-environment and grassland agriculture, which depends on grasses, legumes, and other fodder or soil-building crops. This special issue is intended to be a platform for a discussion of the relevant scientific findings based on experimental and/or modeling studies. Its 12 peer-reviewed articles present data, novel analysis/modeling approaches, and convincing results of water–soil–vegetation interactions under historical and future climates. Two of the articles examine how lake/pond water quality is related to human activity and climate. Overall, these articles can serve as important references for future studies to further advance our understanding of how water, soil, and vegetation interactively affect the health and productivity of the Earth’s ecosystem.

  13. Non-conventional use of vegetable oils: Possibilities and prospects

    International Nuclear Information System (INIS)

    Pellizzi, G.

    1992-01-01

    This paper examines the feasibility, relative to the specific capabilities of the Italian agricultural industry, of the production of biomass fuels and lubricating oils. A comparative cost benefit analysis is made to determine the technical and economic convenience of the production of grain or vegetable oil derived biomass for direct use as lubricants, fuel oils or for conversion into ethanol fuels. The suitability of different types of engines is examined for the direct combustion of vegetable oils and for the combustion of ethanol fuels. The study also has a look at what should be the suitable mix of Italian Government agricultural, environmental and fiscal strategies to support and encourage the production and use of industrial vegetable fuel oils and lubricants

  14. Application-Ready Expedited MODIS Data for Operational Land Surface Monitoring of Vegetation Condition

    Directory of Open Access Journals (Sweden)

    Jesslyn F. Brown

    2015-12-01

    Full Text Available Monitoring systems benefit from high temporal frequency image data collected from the Moderate Resolution Imaging Spectroradiometer (MODIS system. Because of near-daily global coverage, MODIS data are beneficial to applications that require timely information about vegetation condition related to drought, flooding, or fire danger. Rapid satellite data streams in operational applications have clear benefits for monitoring vegetation, especially when information can be delivered as fast as changing surface conditions. An “expedited” processing system called “eMODIS” operated by the U.S. Geological Survey provides rapid MODIS surface reflectance data to operational applications in less than 24 h offering tailored, consistently-processed information products that complement standard MODIS products. We assessed eMODIS quality and consistency by comparing to standard MODIS data. Only land data with known high quality were analyzed in a central U.S. study area. When compared to standard MODIS (MOD/MYD09Q1, the eMODIS Normalized Difference Vegetation Index (NDVI maintained a strong, significant relationship to standard MODIS NDVI, whether from morning (Terra or afternoon (Aqua orbits. The Aqua eMODIS data were more prone to noise than the Terra data, likely due to differences in the internal cloud mask used in MOD/MYD09Q1 or compositing rules. Post-processing temporal smoothing decreased noise in eMODIS data.

  15. Monoterpenes Released from Fruit, Plant, and Vegetable Systems

    Directory of Open Access Journals (Sweden)

    Mohammad Asif Iqbal

    2014-09-01

    Full Text Available To quantify the emission rate of monoterpenes (MTs from diverse natural sources, the sorbent tube (ST-thermal desorption (TD method was employed to conduct the collection and subsequent detection of MTs by gas chromatography. The calibration of MTs, when made by both mass spectrometric (MS and flame ionization detector (FID, consistently exhibited high coefficient of determination values (R2 > 0.99. This approach was employed to measure their emission rate from different fruit/plant/vegetable (F/P/V samples with the aid of an impinger-based dynamic headspace sampling system. The results obtained from 10 samples (consisting of carrot, pine needle (P. sylvestris, tangerine, tangerine peel, strawberry, sepals of strawberry, plum, apple, apple peel, and orange juice marked α-pinene, β-pinene, myrcene, α-terpinene, R-limonene, γ-terpinene, and p-cymene as the most common MTs. R-limonene was the major species emitted from citrus fruits and beverages with its abundance exceeding 90%. In contrast, α-pinene was the most abundant MT (37% for carrot, while it was myrcene (31% for pine needle. The overall results for F/P/V samples confirmed α-pinene, β-pinene, myrcene, α-terpinene, and γ-terpinene as common MTs. Nonetheless, the types and magnitude of MTs released from fruits were distinguished from those of vegetables and plants.

  16. Mutation breeding in vegetable crops

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Takashi

    1984-03-01

    Vegetables breed by seeds and vegetative organs. In main vegetables, the differentiation of clopping types, the adoption of monoculture and year-round production and shipment are carried out, adapting to various socio-economic and cultivation conditions. Protected agriculture has advanced mainly for fruit vegetables, and the seeds for sale have become almost hybrid varieties. Reflecting this situation, the demand for breeding is diversified and characteristic. The present status of mutation breeding of vegetables is not yet well under way, but reports of about 40 raised varieties have been published in the world. The characters introduced by induced mutation and irradiation are compact form, harvesting aptitude, the forms and properties of stems and leaves, anti-lodging property, the size, form and uniformity of fruits, male sterility and so on. The radiation sources used were mostly gamma ray or X-ray, but sometimes, combined irradiation was used. Results obtained in Japan include: burdocks as an example to gamma ray irradiation of seeds; tomatoes as an example of inducing compound resistance against disease injury; and lettuce as an example of internal beta irradiation. (Kako, I.).

  17. PRODUCTION AND ECONOMIC ANALYSIS OF MOUNTAIN GRASSLANDS IN LOW-INPUT FARMING SYSTEM

    Directory of Open Access Journals (Sweden)

    Ivan Holubek

    2013-09-01

    Full Text Available Ecological management of semi natural grassland was evaluated in three year long vegetative cycle in locality Chvojnica Strazovska vrchovina. Experimental treatments were studied in variant 1 unfertilized, variant 2 30 kg*ha 1 of P and 60 kg*ha 1 of K, treatment 3 PK + 90kg*ha 1 of N. Vegetation in all treatments of fertilization was cut three times in haymaking time of ripening. The aim of research was to find changes in phytocenology, production, nutrition and economy under different treatments of fertilization, cutting and experimental years. In the structure of semi natural grass vegetation, grasses dominated in the first cuttings, clovers dominated in the second cuttings and other meadow herbs dominated in the third cuttings. Application of fertilizers increases production of dry mass. Non fertilized grass vegetation produced 3.43 5.16 t*ha 1 of dry mass, vegetation with added PK fertilizers 4.71 5.91 t*ha 1 of dry mass and vegetation 7.12 7.97 t*ha of dry mass. Costs per 1 ha and 1 ton of hay and sales per 1 ha increased in the following sequence: var. 1 ? var. 2 ? var. 3. As for the profit, the most effective variants were variant 1 (256.79 EUR per ha and variant 3 (227.34 EUR per ha. The least effective variant was the variant fertilized by PK (180.62 EUR per ha.

  18. Laser Sensing of Vegetation Based on Dual Spectrum Measurements of Reflection Coefficients

    Directory of Open Access Journals (Sweden)

    M. L. Belov

    2017-01-01

    Full Text Available Currently, a promising trend in remote sensing of environment is to monitor the vegetative cover: evaluate the productivity of agricultural crops; evaluate the moisture content of soils and the state of ecosystems; provide mapping the sites of bogging, desertification, drought, etc.; control the phases of vegetation of crops, etc.Development of monitoring systems for remote detection of vegetation sites being under unfavorable conditions (low or high temperature, excess or lack of water, soil salinity, disease, etc. is of relevance. Optical methods are the most effective for this task. These methods are based on the physical features of reflection spectra in the visible and near infrared spectral range for vegetation under unfavorable conditions and vegetation under normal conditions.One of the options of optoelectronic equipment for monitoring vegetation condition is laser equipment that allows remote sensing of vegetation from the aircraft and mapping of vegetation sites with abnormal (inactive periods of vegetation reflection spectra with a high degree of spatial resolution.The paper deals with development of a promising dual-spectrum method for laser remote sensing of vegetation. Using the experimentally measured reflection spectra of different vegetation types, mathematical modeling of probability for appropriate detection and false alarms to solve a problem of detecting the vegetation under unfavorable conditions (with abnormal reflection spectra is performed based on the results of dual-spectrum measurements of the reflection coefficient.In mathematical modeling, the lidar system was supposed to provide sensing at wavelengths of 0.532 μm and 0.85 μm. The noise of the measurement was supposed to be normal with zero mean value and mean-square value of 1% -10%.It is shown that the method of laser sensing of vegetation condition based on the results of dual-spectrum measurement of the reflection coefficient at wavelengths of 0.532 μm and 0

  19. Researches on thermal and rheological properties of cream- and vegetable spread

    Directory of Open Access Journals (Sweden)

    A. N. Ostrikov

    2016-01-01

    Full Text Available Researches of thermal and rheological properties of cream- and vegetable spread are necessary for the scientific substantiation of their obtaining process, namely mixing and crystallization processes. As the object of research, we chose a cream- and vegetable spread, with the following composition: peanut butter 10%; wheat germ oil 10%; linseed oil 20%; butter 59.8%; emulsifier 0.2%. With the data obtained in the course of research of the rheological properties of cream- and vegetable spread, one can subsequently generate recommendations for optimization of technological modes of production. In particular, one can solve problems of intensification of hydro-mechanical and thermal processes by carrying them out at such a temperature and speed when the maximum preservation of the produced product structure will be achieved. Determination of thermal characteristics was carried out in the apparatus for the study of thermal and rheological properties of viscoelastic liquids Coesfeld RT-1394H. Rheological researches of cream- and vegetable spread were carried out on a series of viscometers SV-10 and PB-8m. The graphs of spread dynamic viscosity dependence on the temperature, and the dependence of the effective viscosity of the spread and vegetable oils on the shear rate were built according to experimental data. The data obtained is rational to choose the equipment for processing and production of cream- and vegetable spread, to simulate processes taking place in the production process, to solve problems of intensification of thermal and hydro-mechanical processes reasonably, by conducting the production process at temperatures that do not cause the destruction of the product structure.

  20. Prevalence of Parasitic Contamination of Salad Vegetables in Ilorin ...

    African Journals Online (AJOL)

    EBUBE AMAECHICHARLES

    Keywords: Parasitic, Salad vegetables, Contamination, Ilorin, Nigeria. 1. ... domestic animal origin as fertilizer, and the habit of eating vegetables raw or undercooked are ..... for cleaning the farm products before they are offered for sale.

  1. Effects of ozone-vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks

    Science.gov (United States)

    Sadiq, Mehliyar; Tai, Amos P. K.; Lombardozzi, Danica; Martin, Maria Val

    2017-02-01

    Tropospheric ozone is one of the most hazardous air pollutants as it harms both human health and plant productivity. Foliage uptake of ozone via dry deposition damages photosynthesis and causes stomatal closure. These foliage changes could lead to a cascade of biogeochemical and biogeophysical effects that not only modulate the carbon cycle, regional hydrometeorology and climate, but also cause feedbacks onto surface ozone concentration itself. In this study, we implement a semi-empirical parameterization of ozone damage on vegetation in the Community Earth System Model to enable online ozone-vegetation coupling, so that for the first time ecosystem structure and ozone concentration can coevolve in fully coupled land-atmosphere simulations. With ozone-vegetation coupling, present-day surface ozone is simulated to be higher by up to 4-6 ppbv over Europe, North America and China. Reduced dry deposition velocity following ozone damage contributes to ˜ 40-100 % of those increases, constituting a significant positive biogeochemical feedback on ozone air quality. Enhanced biogenic isoprene emission is found to contribute to most of the remaining increases, and is driven mainly by higher vegetation temperature that results from lower transpiration rate. This isoprene-driven pathway represents an indirect, positive meteorological feedback. The reduction in both dry deposition and transpiration is mostly associated with reduced stomatal conductance following ozone damage, whereas the modification of photosynthesis and further changes in ecosystem productivity are found to play a smaller role in contributing to the ozone-vegetation feedbacks. Our results highlight the need to consider two-way ozone-vegetation coupling in Earth system models to derive a more complete understanding and yield more reliable future predictions of ozone air quality.

  2. Interactions of Vegetation and Climate: Remote Observations, Earth System Models, and the Amazon Forest

    Science.gov (United States)

    Quetin, Gregory R.

    The natural composition of terrestrial ecosystems can be shaped by climate to take advantage of local environmental conditions. Ecosystem functioning, e.g. interaction between photosynthesis and temperature, can also acclimate to different climatological states. The combination of these two factors thus determines ecological-climate interactions. The ecosystem functioning also plays a key role in predicting the carbon cycle, hydrological cycle, terrestrial surface energy balance, and the feedbacks in the climate system. Predicting the response of the Earth's biosphere to global warming requires the ability to mechanistically represent the processes controlling ecosystem functioning through photosynthesis, respiration, and water use. The physical environment in a place shapes the vegetation there, but vegetation also has the potential to shape the environment, e.g. increased photosynthesis and transpiration moisten the atmosphere. These two-way ecoclimate interactions create the potential for feedbacks between vegetation at the physical environment that depend on the vegetation and the climate of a place, and can change throughout the year. In Chapter 1, we derive a global empirical map of the sensitivity of vegetation to climate using the response of satellite-observed greenness to interannual variations in temperature and precipitation. We infer mechanisms constraining ecosystem functioning by analyzing how the sensitivity of vegetation to climate varies across climate space. Our analysis yields empirical evidence for multiple physical and biological mediators of the sensitivity of vegetation to climate at large spatial scales. In hot and wet locations, vegetation is greener in warmer years despite temperatures likely exceeding thermally optimum conditions. However, sunlight generally increases during warmer years, suggesting that the increased stress from higher atmospheric water demand is offset by higher rates of photosynthesis. The sensitivity of vegetation

  3. Nonlinear Variations of Net Primary Productivity and Its Relationship with Climate and Vegetation Phenology, China

    Directory of Open Access Journals (Sweden)

    Jian Yang

    2017-09-01

    Full Text Available Net primary productivity (NPP is an important component of the terrestrial carbon cycle. In this study, NPP was estimated based on two models and Moderate Resolution Imaging Spaectroradiometer (MODIS data. The spatiotemporal patterns of NPP and the correlations with climate factors and vegetation phenology were then analyzed. Our results showed that NPP derived from MODIS performed well in China. Spatially, NPP decreased from the southeast toward the northwest. Temporally, NPP showed a nonlinear increasing trend at a national scale, but the magnitude became slow after 2004. At a regional scale, NPP in Northern China and the Tibetan Plateau showed a nonlinear increasing trend, while the NPP decreased in most areas of Southern China. The decreases in NPP were more than offset by the increases. At the biome level, all vegetation types displayed an increasing trend, except for shrub and evergreen broad forests (EBF. Moreover, a turning point year occurred for all vegetation types, except for EBF. Generally, climatic factors and Length of Season were all positively correlated with the NPP, while the relationships were much more diverse at a regional level. The direct effect of solar radiation on the NPP was larger (0.31 than precipitation (0.25 and temperature (0.07. Our results indicated that China could mitigate climate warming at a regional and/or global scale to some extent during the time period of 2001–2014.

  4. Vegetation inventory, mapping, and classification report, Fort Bowie National Historic Site

    Science.gov (United States)

    Studd, Sarah; Fallon, Elizabeth; Crumbacher, Laura; Drake, Sam; Villarreal, Miguel

    2013-01-01

    A vegetation mapping and characterization effort was conducted at Fort Bowie National Historic Site in 2008-10 by the Sonoran Desert Network office in collaboration with researchers from the Office of Arid lands studies, Remote Sensing Center at the University of Arizona. This vegetation mapping effort was completed under the National Park Service Vegetation Inventory program which aims to complete baseline mapping inventories at over 270 national park units. The vegetation map data was collected to provide park managers with a digital map product that met national standards of spatial and thematic accuracy, while also placing the vegetation into a regional and even national context. Work comprised of three major field phases 1) concurrent field-based classification data collection and mapping (map unit delineation), 2) development of vegetation community types at the National Vegetation Classification alliance or association level and 3) map accuracy assessment. Phase 1 was completed in late 2008 and early 2009. Community type descriptions were drafted to meet the then-current hierarchy (version 1) of the National Vegetation Classification System (NVCS) and these were applied to each of the mapped areas. This classification was developed from both plot level data and censused polygon data (map units) as this project was conducted as a concurrent mapping and classification effort. The third stage of accuracy assessment completed in the fall of 2010 consisted of a complete census of each map unit and was conducted almost entirely by park staff. Following accuracy assessment the map was amended where needed and final products were developed including this report, a digital map and full vegetation descriptions. Fort Bowie National Historic Site covers only 1000 acres yet has a relatively complex landscape, topography and geology. A total of 16 distinct communities were described and mapped at Fort Bowie NHS. These ranged from lush riparian woodlands lining the

  5. Assessing the impact of time of spring vegetation renewal on growth, development and productivity of soft winter wheat varieties

    Directory of Open Access Journals (Sweden)

    О. Л. Уліч

    2014-12-01

    Full Text Available Results of study focusing on impact of environmental factor – time of spring vegetation renewal (TSVR of soft winter wheat on growth and development of plants, crop productivity and modern varieties response are presented. It is found that in the central part of the Right-Bank of Forest-Steppe of Ukraine this factor is important and it should be considered in planning of spring and summer care techniques, fertilizer system, especially at spring fertilizing, use of pesticides and growth regulators, in taking a decision on reseeding or underseeding of space plants. At the same time, it was determined that the environmental effect of TSVR was not occurred every year, thus it is not always possible to forecast the type of plant development. But in such years it is possible to influence the processes of plants growth, development and survival in spring and summer periods and the formation of their productivity by introducing such intensive technologies as differential crop tending, mineral nutrition optimization, the use of plant growth regulators, trace nutrients, weed, pest and disease control agents.

  6. Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice.

    Science.gov (United States)

    Diederichs, Gabriel Wilhelm; Ali Mandegari, Mohsen; Farzad, Somayeh; Görgens, Johann F

    2016-09-01

    In this study, a techno-economic comparison was performed considering three processes (thermochemical, biochemical and hybrid) for production of jet fuel from lignocellulosic biomass (2G) versus two processes from first generation (1G) feedstocks, including vegetable oil and sugar cane juice. Mass and energy balances were constructed for energy self-sufficient versions of these processes, not utilising any fossil energy sources, using ASPEN Plus® simulations. All of the investigated processes obtained base minimum jet selling prices (MJSP) that is substantially higher than the market jet fuel price (2-4 fold). The 1G process which converts vegetable oil, obtained the lowest MJSPs of $2.22/kg jet fuel while the two most promising 2G processes- the thermochemical (gasification and Fischer-Tropsch synthesis) and hybrid (gasification and biochemical upgrading) processes- reached MJSPs of $2.44/kg and $2.50/kg jet fuel, respectively. According to the economic sensitivity analysis, the feedstock cost and fixed capital investment have the most influence on the MJSP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Plant functional diversity affects climate-vegetation interaction

    Science.gov (United States)

    Groner, Vivienne P.; Raddatz, Thomas; Reick, Christian H.; Claussen, Martin

    2018-04-01

    We present how variations in plant functional diversity affect climate-vegetation interaction towards the end of the African Humid Period (AHP) in coupled land-atmosphere simulations using the Max Planck Institute Earth system model (MPI-ESM). In experiments with AHP boundary conditions, the extent of the green Sahara varies considerably with changes in plant functional diversity. Differences in vegetation cover extent and plant functional type (PFT) composition translate into significantly different land surface parameters, water cycling, and surface energy budgets. These changes have not only regional consequences but considerably alter large-scale atmospheric circulation patterns and the position of the tropical rain belt. Towards the end of the AHP, simulations with the standard PFT set in MPI-ESM depict a gradual decrease of precipitation and vegetation cover over time, while simulations with modified PFT composition show either a sharp decline of both variables or an even slower retreat. Thus, not the quantitative but the qualitative PFT composition determines climate-vegetation interaction and the climate-vegetation system response to external forcing. The sensitivity of simulated system states to changes in PFT composition raises the question how realistically Earth system models can actually represent climate-vegetation interaction, considering the poor representation of plant diversity in the current generation of land surface models.

  8. Vegetation height and cover fraction between 60° S and 60° N from ICESat GLAS data

    Directory of Open Access Journals (Sweden)

    S. O. Los

    2012-03-01

    Full Text Available We present new coarse resolution (0.5° × 0.5° vegetation height and vegetation-cover fraction data sets between 60° S and 60° N for use in climate models and ecological models. The data sets are derived from 2003–2009 measurements collected by the Geoscience Laser Altimeter System (GLAS on the Ice, Cloud and land Elevation Satellite (ICESat, the only LiDAR instrument that provides close to global coverage. Initial vegetation height is calculated from GLAS data using a development of the model of Rosette et al. (2008 with with further calibration on desert sites. Filters are developed to identify and eliminate spurious observations in the GLAS data, e.g. data that are affected by clouds, atmosphere and terrain and as such result in erroneous estimates of vegetation height or vegetation cover. Filtered GLAS vegetation height estimates are aggregated in histograms from 0 to 70 m in 0.5 m intervals for each 0.5° × 0.5°. The GLAS vegetation height product is evaluated in four ways. Firstly, the Vegetation height data and data filters are evaluated using aircraft LiDAR measurements of the same for ten sites in the Americas, Europe, and Australia. Application of filters to the GLAS vegetation height estimates increases the correlation with aircraft data from r = 0.33 to r = 0.78, decreases the root-mean-square error by a factor 3 to about 6 m (RMSE or 4.5 m (68% error distribution and decreases the bias from 5.7 m to −1.3 m. Secondly, the global aggregated GLAS vegetation height product is tested for sensitivity towards the choice of data quality filters; areas with frequent cloud cover and areas with steep terrain are the most sensitive to the choice of thresholds for the filters. The changes in height estimates by applying different filters are, for the main part, smaller than the overall uncertainty of 4.5–6 m established from the site measurements. Thirdly, the GLAS global vegetation height product is compared with a

  9. Online hyperspectral imaging system for evaluating quality of agricultural products

    Science.gov (United States)

    Mo, Changyeun; Kim, Giyoung; Lim, Jongguk

    2017-06-01

    The consumption of fresh-cut agricultural produce in Korea has been growing. The browning of fresh-cut vegetables that occurs during storage and foreign substances such as worms and slugs are some of the main causes of consumers' concerns with respect to safety and hygiene. The purpose of this study is to develop an on-line system for evaluating quality of agricultural products using hyperspectral imaging technology. The online evaluation system with single visible-near infrared hyperspectral camera in the range of 400 nm to 1000 nm that can assess quality of both surfaces of agricultural products such as fresh-cut lettuce was designed. Algorithms to detect browning surface were developed for this system. The optimal wavebands for discriminating between browning and sound lettuce as well as between browning lettuce and the conveyor belt were investigated using the correlation analysis and the one-way analysis of variance method. The imaging algorithms to discriminate the browning lettuces were developed using the optimal wavebands. The ratio image (RI) algorithm of the 533 nm and 697 nm images (RI533/697) for abaxial surface lettuce and the ratio image algorithm (RI533/697) and subtraction image (SI) algorithm (SI538-697) for adaxial surface lettuce had the highest classification accuracies. The classification accuracy of browning and sound lettuce was 100.0% and above 96.0%, respectively, for the both surfaces. The overall results show that the online hyperspectral imaging system could potentially be used to assess quality of agricultural products.

  10. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic data from Landsat and MODIS BRDF/albedo product

    Science.gov (United States)

    Climate warming over the past half century has led to observable changes in vegetation phenology and growing season length; which can be measured globally using remote sensing derived vegetation indices. Previous studies in mid- and high northern latitude systems show temperature driven earlier spri...

  11. Importance of vegetation dynamics for future terrestrial carbon cycling

    International Nuclear Information System (INIS)

    Ahlström, Anders; Smith, Benjamin; Xia, Jianyang; Luo, Yiqi; Arneth, Almut

    2015-01-01

    Terrestrial ecosystems currently sequester about one third of anthropogenic CO 2 emissions each year, an important ecosystem service that dampens climate change. The future fate of this net uptake of CO 2 by land based ecosystems is highly uncertain. Most ecosystem models used to predict the future terrestrial carbon cycle share a common architecture, whereby carbon that enters the system as net primary production (NPP) is distributed to plant compartments, transferred to litter and soil through vegetation turnover and then re-emitted to the atmosphere in conjunction with soil decomposition. However, while all models represent the processes of NPP and soil decomposition, they vary greatly in their representations of vegetation turnover and the associated processes governing mortality, disturbance and biome shifts. Here we used a detailed second generation dynamic global vegetation model with advanced representation of vegetation growth and mortality, and the associated turnover. We apply an emulator that describes the carbon flows and pools exactly as in simulations with the full model. The emulator simulates ecosystem dynamics in response to 13 different climate or Earth system model simulations from the Coupled Model Intercomparison Project Phase 5 ensemble under RCP8.5 radiative forcing. By exchanging carbon cycle processes between these 13 simulations we quantified the relative roles of three main driving processes of the carbon cycle; (I) NPP, (II) vegetation dynamics and turnover and (III) soil decomposition, in terms of their contribution to future carbon (C) uptake uncertainties among the ensemble of climate change scenarios. We found that NPP, vegetation turnover (including structural shifts, wild fires and mortality) and soil decomposition rates explained 49%, 17% and 33%, respectively, of uncertainties in modelled global C-uptake. Uncertainty due to vegetation turnover was further partitioned into stand-clearing disturbances (16%), wild fires (0%), stand

  12. Structure, root systems and periodicity of savanna plants and vegetations in Northern Surinam

    NARCIS (Netherlands)

    Donselaar-ten Bokkel Huinink, van W.A.E.

    1966-01-01

    From July 1958 to May 1959 an investigation was carried out of the relation between physiognomic characteristics of the vegetation and the habitat on some savannas in the vicinity of Zanderij, Surinam. Root systems, structure, periodicity and characteristics of the leaves were considered, both of

  13. Big data system for disaster warning of solar greenhouse vegetables

    OpenAIRE

    Li, M; Zhao, L; Chen, M; Wen, D; Liu, R; Yang, X

    2017-01-01

    Background: Solar greenhouses are very popular in the north of China as a way of meeting the demand for fresh local winter vegetables. Nonetheless, they are more susceptible to biological and meteorological disasters, such as diseases, pests, fog, haze and cold temperatures. Although we have deployed many record keeping equipment and weather stations, we have lower efficiency of usage on data. Big data has great potential in the future. Thus, our aim is to investigate a big data system for di...

  14. Vegetable Charcoal and Pyroligneous Acid: Technological, Economical and Legal Aspects of its Production and Commerce

    Directory of Open Access Journals (Sweden)

    Doriana Daroit

    2013-04-01

    Full Text Available The production of vegetable charcoal generates atmospheric emissions, which can be controlled by the instalation of collectors for the condensation of such emissions, forming the pyroligneous acid. The development of collectors for the condensations and characterization of the acid for commerce can contribute with the local sustainable development. This study intends to investigate the technological, economical and legal aspects of the production and commerce of the pyroligneous acid. The chosen method was case study in Presidente Lucena/RS, Brazil, with use of surveys, interviews with producers and responsible government sectors’ representatives. The results indicate that the pyroligneous acid extraction technique is little-known and little used by the producers, that the current market does not absorb the pyroligneous acid offering and the ruling is not relevant.

  15. Treeline advances and associated shifts in the ground vegetation alter fine root dynamics and mycelia production in the South and Polar Urals.

    Science.gov (United States)

    Solly, Emily F; Djukic, Ika; Moiseev, Pavel A; Andreyashkina, Nelly I; Devi, Nadezhda M; Göransson, Hans; Mazepa, Valeriy S; Shiyatov, Stepan G; Trubina, Marina R; Schweingruber, Fritz H; Wilmking, Martin; Hagedorn, Frank

    2017-02-01

    Climate warming is shifting the elevational boundary between forests and tundra upwards, but the related belowground responses are poorly understood. In the pristine South and Polar Urals with shifts of the treeline ecotone documented by historical photographs, we investigated fine root dynamics and production of extramatrical mycorrhizal mycelia (EMM) along four elevational transects reaching from the closed forest to the treeless tundra. In addition, we analysed elevational differences in climate and vegetation structure, and excavated trees to estimate related changes in the partitioning between below- and aboveground biomass. Fine root biomass of trees (<2 mm) increased by 13-79% with elevation, paralleled by a 35-72% increase in ground vegetation fine roots from the closed forest to the tundra. During the first year of decomposition, mass loss of fine root litter from different vegetation types was greater at lower elevations in the forest-tundra ecotone. The ratio between fine roots of trees and stem biomass largely increased with elevation in both regions, but these increases were not accompanied by a distinct production of EMM. Production of EMM, however, increased with the presence of ectomycorrhizal trees at the transition from the tundra to the forest. Our results imply that the recorded upward expansion of forest into former tundra in the Ural Mountains by 4-8 m per decade is decreasing the partitioning of plant biomass to fine roots. They further suggest that climate-driven forest advances will alter EMM production rates with potential feedbacks on soil carbon and nutrient cycling in these ecosystems.

  16. ESIAC: A data products system for ERTS imagery (time-lapse viewing and measuring)

    Science.gov (United States)

    Evans, W. E.; Serebreny, S. M.

    1974-01-01

    An Electronic Satellite Image Analysis Console (ESIAC) has been developed for visual analysis and objective measurement of earth resources imagery. The system is being employed to process imagery for use by USGS investigators in several different disciplines studying dynamic hydrologic conditions. The ESIAC provides facilities for storing registered image sequences in a magnetic video disc memory for subsequent recall, enhancement, and animated display in monochrome or color. The unique feature of the system is the capability to time-lapse the ERTS imagery and/or analytic displays of the imagery. Data products have included quantitative measurements of distances and areas, brightness profiles, and movie loops of selected themes. The applications of these data products are identified and include such diverse problem areas as measurement of snowfield extent, sediment plumes from estuary dicharge, playa inventory, phreatophyte and other vegetation changes. A comparative ranking of the electronic system in terms of accuracy, cost effectiveness and data output shows it to be a viable means of data analysis.

  17. Demand Analysis of Selected Fruits and Vegetables in Oman

    Directory of Open Access Journals (Sweden)

    A. Omezzine

    1998-01-01

    Full Text Available Consumer behavior and prospective changes in demand of food product have a significant impact on production and distribution decisions. Consumer responsiveness to changes in prices, income and other demand determinants is very important to production and market decision-makers. The present study estimates demand responses for selected fruits and vegetables in Oman using consumer aggregated national data. The main objective is to generate information needed for making public as well as private decisions. Results indicate that most fruit and vegetable consumers respond to price, and income changes in the expected manner. Responses are different from one commodity to another depending on its nature and importance in the consumer's diet habits. In a few cases income is not a significant determinant of the demand. Moreover, many fruits and vegetables have shown a relationship of substitution and complementary consistent with Omani diet. These results are useful in farmers and distributers to allow them to adjust their production and marketing services according to the consumer’s response.

  18. Grazing effects on forage production and botanical composition in a Quercus ithaburensis subs. macrolepis silvopastoral system

    Science.gov (United States)

    Pantera, A.; Papanastasis, V. P.

    2009-04-01

    Grazing is considered as a major factor affecting forage production as well as botanical composition of many silvopastoral systems. In order to study these effects, three pairs of grazed and protected plots were established in a Quercus ithaburensis subsp. macrolepis silvopastoral system. The experiment was carried out in western Greece, 15 km west of the city of Agrinion. Data were collected for two continuous years and included the determination of palatable and unpalatable to animals plant species as well as the botanical composition. The results suggest that heavy grazing decreased biomass production approximately threefold. Grazing also affected number of acorns, botanical composition as well as vegetation cover whereas had no effect on natural regeneration in the study period.

  19. Food legume production in China

    Directory of Open Access Journals (Sweden)

    Ling Li

    2017-04-01

    Full Text Available Food legumes comprise all legumes grown for human food in China as either dry grains or vegetables, except for soybean and groundnut. China has a vast territory with complex ecological conditions. Rotation, intercropping, and mixed cropping involving pulses are normal cropping systems in China. Whether indigenous or introduced crops, pulses have played an important role in Chinese cropping systems and made an important contribution to food resources for humans since ancient times. The six major food legume species (pea, faba bean, common bean, mung bean, adzuki bean, and cowpea are the most well-known pulses in China, as well as those with more local distributions; runner bean, lima bean, chickpea, lentil, grass pea, lupine, rice bean, black gram, hyacinth bean, pigeon pea, velvet bean, winged bean, guar bean, sword bean, and jack bean. China has remained the world's leading producer of peas, faba beans, mung beans, and adzuki beans in recent decades, as documented by FAO statistics and China Agriculture Statistical Reports. The demand for food legumes as a healthy food will markedly increase with the improvement of living standards in China. Since China officially joined the World Trade Organization (WTO in 2001, imports of pea from Canada and Australia have rapidly increased, resulting in reduced prices for dry pea and other food legumes. With reduced profits for food legume crops, their sowing area and total production has decreased within China. At the same time, the rising consumer demand for vegetable food legumes as a healthy food has led to attractive market prices and sharp production increases in China. Vegetable food legumes have reduced growing duration and enable flexibility in cropping systems. In the future, production of dry food legumes will range from stable to slowly decreasing, while production of vegetable food legumes will continue to increase.

  20. Artichoke (Cynara scolymus L. as cash-cover crop in an organic vegetable system

    Directory of Open Access Journals (Sweden)

    Anna LENZI

    2015-11-01

    Full Text Available In organic vegetable systems green manure crops play an important role as a nitrogen source, but they cover the soil for several months without producing a direct income. Globe artichoke (Cynara scolymus L. provides both heads to be harvested and particularly abundant plant residues to be possibly incorporated into the soil, so it may play a double role of cash and cover crop. This paper describes an on-farm study in which seed-propagated artichoke, cultivated as an annual crop, preceded zucchini squash and lettuce cultivated in sequence within a vegetable organic system. Artichoke produced about 7 t ha-1 of saleable heads and left, after harvest, 50.3 t ha-1 of fresh biomass usable as green manure. Zucchini squash and lettuce following artichoke showed a significant increase in yield when artichoke residues were incorporated into the soil. Furthermore, a residual positive effect of green manure on soil fertility was detected after lettuce harvest. 

  1. Produção segura e rastreabilidade de hortaliças Safe production and traceability of vegetables

    Directory of Open Access Journals (Sweden)

    Leonora M Mattos

    2009-12-01

    haja perda de seu valor nutritivo e com qualidade sensorial ótima.Consumers all over the world are aware about the strict relation among health and the necessity of a balanced diet, based on safe products. Nevertheless, interest in food functional properties and, especially, in its antioxidant activity has been increasing. However, the consumption of in natura food may present some risks, which are mainly related to chemical and microbiological contamination during the crop growing season. Considering the high competitiveness of the different productive chains, growers are working to offer products with superior value and quality, with emphasis in food safety and traceability. The hazards in food chain can be managed by monitoring the whole process, from production to distribution, so, in order to minimize the possibility of contamination, ,the implementation of traceability systems and procedures of quality assurance, such as HACCP (Hazard Analysis and Critical Control Points is necessary,. The application of Good Agricultural Practices (GAP to the fruit and vegetable production is a prerequisite for the success of HACCP and, in this context, the Integrated Production Program main objective is to increase quality and competitiveness of Brazilian agribusiness in order to reach the levels required by international market. Its main focus are the preservation of vegetable functional properties and the utilization of techniques that ensure food safety and traceability, ensuring the previously guaranteed quality levels. The present work focuses on technologies that allow consumers to have a safe and traceable product, to prevent nutritional content wastes and to ensure maximum food sensory quality.

  2. CHARACTERISING VEGETATED SURFACES USING MODIS MULTIANGULAR SATELLITE DATA

    Directory of Open Access Journals (Sweden)

    G. McCamley

    2012-07-01

    Full Text Available Bidirectional Reflectance Distribution Functions (BRDF seek to represent variations in surface reflectance resulting from changes in a satellite's view and solar illumination angles. BRDF representations have been widely used to assist in the characterisation of vegetation. However BRDF effects are often noisy, difficult to interpret and are the spatial integral of all the individual surface features present in a pixel. This paper describes the results of an approach to understanding how BRDF effects can be used to characterise vegetation. The implementation of the Ross Thick Li Sparse BRDF model using MODIS is a stable, mature data product with a 10 year history and is a ready data source. Using this dataset, a geometric optical model is proposed that seeks to interpret the BRDF effects in terms of Normalised Difference Vegetation Index (NDVI and a height-to-width ratio of the vegetation components. The height-to-width ratio derived from this model seeks to represent the dependence of NDVI to changes in view zenith angle as a single numeric value. The model proposed within this paper has been applied to MODIS pixels in central Australia for areas in excess of 18,000 km2. The study area is predominantly arid and sparsely vegetated which provides a level of temporal and spatial homogeneity. The selected study area also minimises the effects associated with mutual obscuration of vegetation which is not considered by the model. The results are represented as a map and compared to NDVI derived from MODIS and NDVI derived from Landsat mosaics developed for Australia's National Carbon Accounting System (NCAS. The model reveals additional information not obvious in reflectance data. For example, the height-to-width ratio is able to reveal vegetation features in arid areas that do not have an accompanying significant increase in NDVI derived from MODIS, i.e. the height-to-width ratio reveals vegetation which is otherwise only apparent in NDVI derived

  3. Mutation breeding in vegetable crops

    International Nuclear Information System (INIS)

    Yamaguchi, Takashi

    1984-01-01

    Vegetables breed by seeds and vegetative organs. In main vegetables, the differentiation of clopping types, the adoption of monoculture and year-round production and shipment are carried out, adapting to various socio-economic and cultivation conditions. Protected agriculture has advanced mainly for fruit vegetables, and the seeds for sale have become almost hybrid varieties. Reflecting the situation like this, the demand for breeding is diversified and characteristic, and the case of applying mutation breeding seems to be many. The present status of the mutation breeding of vegetables is not yet well under way, but about 40 raised varieties have been published in the world. The characters introduced by induced mutation and irradiation were compact form, harvesting aptitude, the forms and properties of stems and leaves, anti-lodging property, the size, form and uniformity of fruits, male sterility and so on. The radiation sources used were mostly gamma ray or X-ray, but sometimes, combined irradiation was used. As the results obtained in Japan, burdocks as an example of gamma ray irradiation to seeds, tomatoes as an example of inducing the compound resistance against disease injury and lettuces as an example of internal beta irradiation are reported. (Kako, I.)

  4. Concept for Sustained Plant Production on ISS Using VEGGIE Capillary Mat Rooting System

    Science.gov (United States)

    Stutte, Gary W.; Newsham, Gerard; Morrow, Robert M.; Wheeler, Raymond M.

    2011-01-01

    Plant growth in microgravity presents unique challenges associated with maintaining appropriate conditions for seed germination, seedling establishment, maturation and harvest. They include maintaining appropriate soil moisture content, nutrient balance, atmospheric mixing and containment. Sustained production imposes additional challenges of harvesting, replanting, and safety. The VEGGIE is a deployable (collapsible) plant growth chamber developed as part of a NASA SBIR Phase II by Orbitec, Madison, WI. The intent of VEGGIE is to provide a low-resource system to produce fresh vegetables for the crew on long duration missions. The VEGGIE uses and LED array for lighting, an expandable bellows for containment, and a capillary matting system for nutrient and water delivery. The project evaluated a number of approaches to achieve sustained production, and repeated plantings, using the capillary rooting system. A number of different root media, seed containment, and nutrient delivery systems were evaluated and effects on seed germination and growth were evaluated. A number of issues limiting sustained production, such as accumulation of nutrients, uniform water, elevated vapor pressure deficit, and media containment were identified. A concept using pre-planted rooting packs shown to effectively address a number of those issues and is a promising approach for future development as a planting system for microgravity conditions.

  5. Dynamics of global vegetation biomass simulated by the integrated Earth System Model

    Science.gov (United States)

    Mao, J.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.; Piao, S.; Yang, X.; Truesdale, J. E.; Bond-Lamberty, B. P.; Chini, L. P.; Thomson, A. M.; Hurtt, G. C.; Collins, W.; Edmonds, J.

    2014-12-01

    The global vegetation biomass stores huge amounts of carbon and is thus important to the global carbon budget (Pan et al., 2010). For the past few decades, different observation-based estimates and modeling of biomass in the above- and below-ground vegetation compartments have been comprehensively conducted (Saatchi et al., 2011; Baccini et al., 2012). However, uncertainties still exist, in particular for the simulation of biomass magnitude, tendency, and the response of biomass to climatic conditions and natural and human disturbances. The recently successful coupling of the integrated Earth System Model (iESM) (Di Vittorio et al., 2014; Bond-Lamberty et al., 2014), which links the Global Change Assessment Model (GCAM), Global Land-use Model (GLM), and Community Earth System Model (CESM), offers a great opportunity to understand the biomass-related dynamics in a fully-coupled natural and human modeling system. In this study, we focus on the systematic analysis and evaluation of the iESM simulated historical (1850-2005) and future (2006-2100) biomass changes and the response of the biomass dynamics to various impact factors, in particular the human-induced Land Use/Land Cover Change (LULCC). By analyzing the iESM simulations with and without the interactive LULCC feedbacks, we further study how and where the climate feedbacks affect socioeconomic decisions and LULCC, such as to alter vegetation carbon storage. References Pan Y et. al: A large and persistent carbon sink in the World's forests. Science 2011, 333:988-993. Saatchi SS et al: Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 2011, 108:9899-9904. Baccini A et al: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Clim Change 2012, 2:182-185. Di Vittorio AV et al: From land use to land cover: restoring the afforestation signal in a coupled integrated assessment-earth system model and the implications for

  6. Vegetative, productive and qualitative performance of grapevine "Cabernet Sauvignon" according to the use of winter cover crops

    OpenAIRE

    Bettoni, Jean Carlos; Feldberg, Nelson Pires; Nava, Gilberto; Veiga, Milton da; Wildner, Leandro do Prado

    2016-01-01

    ABSTRACT To study the effect of winter cover crops on the vegetative, productive and qualitative behavior of "Cabernet Sauvignon" grapevines, an experiment was conducted in two wine harvests by sowing different species of winter cover crops and additional treatments with manual weeding and mechanical mowing in an experimental vineyard located at the Experimental Station of Epagri in Videira, state of Santa Catarina, Brazil. Plant attributes of the grapevine, such as number of rods and weight ...

  7. Analysis of glycolipids in vegetable lecithin with HPLC-ELSD

    OpenAIRE

    Nguyen Tuyet, Mai; De Vrieze, Mike; Van de Walle, Davy; Van Hoed, Vera; Lynen, Frederic; Dewettinck, Koen

    2014-01-01

    Vegetable lecithins play an important role in the microstructural and macroscopic properties of food and cosmetic products. They are widely used as a natural emulsifier. As lecithin is a by-product of the vegetable oil refining industry, its composition is quite variable and rather complex. Therefore, a more complete view on the chemical composition of lecithin would assist in elucidating its functionality. This study focused on the separation and quantification of several glycolipid...

  8. Diesel fuel from vegetable oil via transesterification and soap pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A.

    2002-09-15

    Transesterifications of 6 vegetable oil samples in supercritical methanol (SC MeOH) were studied without using any catalyst. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The variables affecting the methyl ester yielded during the transesterification reaction, such as the molar ratio of alcohol to vegetable oil and reaction temperature, were investigated. Compared to No. 2 diesel fuel, all of the vegetable oils are much more viscous, while methyl esters of vegetable oils are the slightly more viscous. The methyl esters are more volatile than those of the vegetable oils. The soaps obtained from the vegetable oils can be pyrolyzed into hydrocarbon-rich products. (author)

  9. Co-cultivation of microalgae in aquaponic systems.

    Science.gov (United States)

    Addy, Min M; Kabir, Faryal; Zhang, Renchuan; Lu, Qian; Deng, Xiangyuan; Current, Dean; Griffith, Richard; Ma, Yiwei; Zhou, Wenguang; Chen, Paul; Ruan, Roger

    2017-12-01

    Aquaponics is a sustainable system for the future farming. In aquaponic systems, the nutrient-rich wastewater generated by the fish provides nutrients needed for vegetable growth. In the present study, the role of microalgae of Chlorella sp. in the floating-raft aquaponic system was evaluated for ammonia control. The yields of algal biomass, vegetable, and removal of the key nutrients from the systems were monitored during the operation of the aquaponic systems. When the systems were in full operation, the algae production was about 4.15±0.19g/m 2 ·day (dry basis) which is considered low because the growth conditions are primarily tailored to fish and vegetable production. However, it was found that algae had a positive effect on balancing pH drop caused by nitrifying bacteria, and the ammonia could be controlled by algae since algae prefer for ammonia nitrogen over nitrate nitrogen. The algae are more efficient for overall nitrogen removal than vegetables. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Participatory approach to identify interventions to improve the health, safety, and work productivity of smallholder women vegetable farmers in the Gambia.

    Science.gov (United States)

    Vanderwal, Londa; Rautiainen, Risto; Ramirez, Marizen; Kuye, Rex; Peek-Asa, Corinne; Cook, Thomas; Culp, Kennith; Donham, Kelley

    2011-03-01

    This paper describes the qualitative, community-based participatory approach used to identify culturally-acceptable and sustainable interventions to improve the occupational health, safety, and productivity of smallholder women vegetable farmers in The Gambia (West Africa). This approach was used to conduct: 1) analysis of the tasks and methods traditionally used in vegetable production, and 2) selection of interventions. The most arduous garden tasks that were amenable to interventions were identified, and the interventions were selected through a participatory process for further evaluation. Factors contributing to the successful implementation of the participatory approach used in this study included the following: 1) ensuring that cultural norms were respected and observed; 2) working closely with the existing garden leadership structure; and 3) research team members working with the subjects for an extended period of time to gain first-hand understanding of the selected tasks and to build credibility with the subjects.

  11. Evaluation of vegetation cover using the normalized difference vegetation index (NDVI

    Directory of Open Access Journals (Sweden)

    Gabriela Camargos Lima

    2013-08-01

    Full Text Available Soil loss by water erosion is the main cause of soil degradation in Brazil. However, erosion can be reduced by the presence of vegetation. The Normalized Difference Vegetation Index (NDVI makes it possible to identify the vegetative vigor of crops or natural vegetation which facilities the identification of areas with vegetation covers. This information is very important in identifying the phenomena which might be occurring in a particular area, especially those related to soil degradation by water erosion. Thus, the aim of this work was to assess the canopy cover by using NDVI, checking the image accuracy using the Coverage Index (CI based on the Stocking method, in the Sub-basin of Posses, which belongs to the Cantareira System, located in the Extrema municipality, Minas Gerais, Brazil. Landsat-5 TM images were used. The sub-basin of Posses was very altered in comparison to the surrounding areas. The NDVI technique proved to be a suitable tool to assess the uses that occur in the sub-basin of Posses, as validated by the Stocking methodology. The map derived from NDVI allowed the geographic distribution of different land uses to be observed and allowed for the identification of critical areas in relation to vegetation cover as well. This finding can be used to optimize efforts to recover and protect soil in areas with bare soil and degraded pasture, in order to reduce environmental degradation. The CI has not exceeded 40% for land use classes that occur in the majority of the sub-basin (91%, except in areas of woody vegetation.

  12. Banana production systems: identification of alternative systems for more sustainable production.

    Science.gov (United States)

    Bellamy, Angelina Sanderson

    2013-04-01

    Large-scale, monoculture production systems dependent on synthetic fertilizers and pesticides, increase yields, but are costly and have deleterious impacts on human health and the environment. This research investigates variations in banana production practices in Costa Rica, to identify alternative systems that combine high productivity and profitability, with reduced reliance on agrochemicals. Farm workers were observed during daily production activities; 39 banana producers and 8 extension workers/researchers were interviewed; and a review of field experiments conducted by the National Banana Corporation between 1997 and 2002 was made. Correspondence analysis showed that there is no structured variation in large-scale banana producers' practices, but two other banana production systems were identified: a small-scale organic system and a small-scale conventional coffee-banana intercropped system. Field-scale research may reveal ways that these practices can be scaled up to achieve a productive and profitable system producing high-quality export bananas with fewer or no pesticides.

  13. Partitioning of the variance in the growth parameters of Erwinia carotovora on vegetable products.

    Science.gov (United States)

    Shorten, P R; Membré, J-M; Pleasants, A B; Kubaczka, M; Soboleva, T K

    2004-06-01

    The objective of this paper was to estimate and partition the variability in the microbial growth model parameters describing the growth of Erwinia carotovora on pasteurised and non-pasteurised vegetable juice from laboratory experiments performed under different temperature-varying conditions. We partitioned the model parameter variance and covariance components into effects due to temperature profile and replicate using a maximum likelihood technique. Temperature profile and replicate were treated as random effects and the food substrate was treated as a fixed effect. The replicate variance component was small indicating a high level of control in this experiment. Our analysis of the combined E. carotovora growth data sets used the Baranyi primary microbial growth model along with the Ratkowsky secondary growth model. The variability in the microbial growth parameters estimated from these microbial growth experiments is essential for predicting the mean and variance through time of the E. carotovora population size in a product supply chain and is the basis for microbiological risk assessment and food product shelf-life estimation. The variance partitioning made here also assists in the management of optimal product distribution networks by identifying elements of the supply chain contributing most to product variability. Copyright 2003 Elsevier B.V.

  14. Comparing Profitability and Efficiency of Resource Use in Vegetable ...

    African Journals Online (AJOL)

    This study compared resource allocation, yield, net farm income and resource use efficiency under private and government controlled vegetable irrigation schemes. Production data covering three vegetable enterprises were collected from 280 respondents. This consisted of 141 from private and 139 from government ...

  15. Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery

    Science.gov (United States)

    Richardson, Andrew D.; Hufkens, Koen; Milliman, Tom; Aubrecht, Donald M.; Chen, Min; Gray, Josh M.; Johnston, Miriam R.; Keenan, Trevor F.; Klosterman, Stephen T.; Kosmala, Margaret; Melaas, Eli K.; Friedl, Mark A.; Frolking, Steve

    2018-03-01

    Vegetation phenology controls the seasonality of many ecosystem processes, as well as numerous biosphere-atmosphere feedbacks. Phenology is also highly sensitive to climate change and variability. Here we present a series of datasets, together consisting of almost 750 years of observations, characterizing vegetation phenology in diverse ecosystems across North America. Our data are derived from conventional, visible-wavelength, automated digital camera imagery collected through the PhenoCam network. For each archived image, we extracted RGB (red, green, blue) colour channel information, with means and other statistics calculated across a region-of-interest (ROI) delineating a specific vegetation type. From the high-frequency (typically, 30 min) imagery, we derived time series characterizing vegetation colour, including “canopy greenness”, processed to 1- and 3-day intervals. For ecosystems with one or more annual cycles of vegetation activity, we provide estimates, with uncertainties, for the start of the “greenness rising” and end of the “greenness falling” stages. The database can be used for phenological model validation and development, evaluation of satellite remote sensing data products, benchmarking earth system models, and studies of climate change impacts on terrestrial ecosystems.

  16. Production system and harvesting stage influence on nitrate content and quality of butterhead lettuce

    Directory of Open Access Journals (Sweden)

    Siti Fairuz Yosoff

    2015-01-01

    Full Text Available Leafy vegetables such as lettuce grown under different production systems may accumulate different concentrations of nitrate which may reach to the levels potentially toxic to humans. Moreover, nitrate accumulation varies in various plant parts and physiological age of the plant. Therefore, to determine the effect of production system and harvesting stage on nitrate accumulation and quality of butterhead lettuce, a study was conducted considering two lettuce production systems namely hydroponic and organic, and four different harvesting stages such as 35, 38, 41 and 44 days after transplanting (DAT. The experimental design was complete randomized design (CRD with four replications. Hydroponic and organic systems performed similar in terms of yield, quality and nitrate content of butterhead lettuce. Delaying harvesting can not only increase yield but also can minimize nitrate accumulation and health hazard risk as well. Delay in harvesting stage may result in quality deterioration of lettuce and increased production cost. Thus, a compromise is necessary to consider 41 DAT as the optimum stage to harvest butterhead lettuce with significantly higher reduction of nitrate content in both outer adult leaf blades and young leaves of hydroponic lettuce. Fresh weight, firmness and color of butterhead lettuce at this stage were still acceptable.

  17. Endosulfan in water soils and fruits usage impact in a production intensive rural area of vegetables

    International Nuclear Information System (INIS)

    Carrion, R.; Stapff, M.; Mandl, B.; Franchi, S.; Enrich, N.; Campelo, E.

    2007-01-01

    The first phase of a project aimed to detect agrochemical remainders in soil, fruits and groundwater was carried out in four rural properties located in the vegetable and fruit production region of Salto. The presence of endosulfan was tracked because the alert was given from Europe about the withdrawal of this chemical from the authorized product list, considering that it may be a potencial threat with long persistence for human health. From this first sampling phase was concluded that there is a high persistence in soil, in harvested fruit the remainings found stay below the Maximum Limits for Residuum of the Alimentarius Codex, and it is not detected at all in groundwater. The advantages of working with an interdisciplinary approach were highly valuable to perform this study of the impact of the remainings of one of the chemicals currently used for the agricultural production in our country

  18. Model Development of Cold Chains for Fresh Fruits and Vegetables Distribution: A Case Study in Bali Province

    Science.gov (United States)

    Waisnawa, I. N. G. S.; Santosa, I. D. M. C.; Sunu, I. P. W.; Wirajati, IGAB

    2018-01-01

    In developing countries such as Indonesia, as much as 40% of total vegetables and fruits production becomes waste because of lack refrigeration. This condition also contributes a food crisis problem besides other factor such as, climate change and number of population. Cold chain system that will be modelled in this study is for vegetables and fruits and refrigeration system as the main devices. In future, this system will play an important role for the food crisis solution where fresh food can be distributed very well with significant low waste. The fresh food also can be kept with good quality and hygienist (bacteria contaminated). Cold Chain model will be designed using refrigeration components including, pre cooling chiller, cold room, and truck refrigeration. This study will be conducted by survey and observation di around Bali Province focus on vegetables and fruits production center. Interviews and questionnaire will be also done to get some information about the conventional distribution obstacles and problem. Distribution mapping will be developed and created. The data base of the storage characteristic of the fruits and vegetable also collected through experiment and secondary data. Depend on the mapping and data base can be developed a cold chain model that has the best performance application. The model will be can directly apply in Bali to get eligible cold chain in Bali. The cold chain model will be compared with the conventional distribution system using ALCC/LCC method and also others factor and will be weighted to get better results.

  19. The problem of sustainability within the complexity of agricultural production systems

    International Nuclear Information System (INIS)

    Cotes Torres, Alejandro; Cotes Torres, Jose Miguel

    2005-01-01

    The problem of sustainability is a topic that since the end of the XX century has been worrying more the different sectors of society; becoming one of the topics of greatest interest for managers, consumers, academics and investigators that conform the different agricultural food chains of the world. This paper presents from the general systems theory point of view some elements of critical reflection, approaching the problem of sustainability from the complexity of agricultural production systems, beginning with the original philosophical conception of agricultural and ending by outlining some considerations that should be kept in mind for the development of scientific and technological advances concordant with the agricultural food chain needs of the XX century; which permit an orientation of not only work by profession is who lead the processes of animal and vegetable production, but also creates a sense of pertinence in all of the participants in the chain, highlighting the importance of studying by means of systemic thought, agronomy and animal science, as disciplines that approach to complexities of agriculture which is the angular stone of civilization, such as we know it at the moment

  20. Co-evolution of Riparian Vegetation and Channel Dynamics in an Aggrading Braided River System, Mount Pinatubo, Philippines

    Science.gov (United States)

    Gran, K. B.; Michal, T.

    2014-12-01

    Increased bank stability by riparian vegetation in braided rivers can decrease bed reworking rates and focus the flow. The magnitude of influence and resulting channel morphology are functions of vegetation strength vs. channel dynamics, a concept encapsulated in a dimensionless ratio between timescales for vegetation growth and channel reworking known as T*. We investigate this relationship in an aggrading braided river at Mount Pinatubo, Philippines, and compare results to numerical and physical models. Gradual reductions in post-eruption sediment loads have reduced bed reworking rates, allowing vegetation to persist year-round and impact channel dynamics on the Pasig-Potrero and Sacobia Rivers. From 2009-2011, we collected data detailing vegetation extent, type, density, and root strength. Incorporating these data into RipRoot and BSTEM models shows cohesion due to roots increased from zero in unvegetated conditions to >10.2 kPa in densely-growing grasses. Field-based parameters were incorporated into a cellular model comparing vegetation growth and sediment mobility effects on braided channel dynamics. The model shows that both low sediment mobility and high vegetation strength lead to less active systems, reflecting trends observed in the field. An estimated T* between 0.8 - 2.3 for the Pasig-Potrero River suggests channels were mobile enough to maintain the braidplain width clear of vegetation and even experience slight gains in area through annual removal of existing vegetation. However, persistent vegetation focused flow and thus aggradation over the unvegetated fraction of braidplain, leading to an aggradational imbalance and transition to a more avulsive state. While physical models predict continued narrowing of the active braidplain as T* declines, the future trajectory of channel-vegetation interactions at Pinatubo as sedimentation rates decline appears more complicated due to strong seasonal variability in precipitation and sediment loads. By 2011

  1. Microbiological quality of selected ready-to-eat leaf vegetables, sprouts and non-pasteurized fresh fruit-vegetable juices including the presence of Cronobacter spp.

    Science.gov (United States)

    Berthold-Pluta, Anna; Garbowska, Monika; Stefańska, Ilona; Pluta, Antoni

    2017-08-01

    Bacteria of the genus Cronobacter are emerging food-borne pathogens. Foods contaminated with Cronobacter spp. may pose a risk to infants or adults with suppressed immunity. This study was aimed at determining the microbiological quality of ready-to-eat (RTE) plant-origin food products available on the Polish market with special emphasis on the prevalence of Cronobacter genus bacteria. Analyses were carried out on 60 samples of commercial RTE type plant-origin food products, including: leaf vegetables (20 samples), sprouts (20 samples) and non-pasteurized vegetable, fruit and fruit-vegetable juices (20 samples). All samples were determined for the total count of aerobic mesophilic bacteria (TAMB) and for the presence of Cronobacter spp. The isolates of Cronobacter spp. were subjected to genetic identification and differentiation by 16S rDNA sequencing, PCR-RFLP analysis and RAPD-PCR and evaluation of antibiotic susceptibility by the disk diffusion assay. The TAMB count in samples of lettuces, sprouts and non-pasteurized fruit, vegetable and fruit-vegetable juices was in the range of 5.6-7.6, 6.7-8.4 and 2.9-7.7 log CFU g -1 , respectively. The presence of Cronobacter spp. was detected in 21 (35%) samples of the products, including in 6 (30%) samples of leaf vegetables (rucola, lamb's lettuce, endive escarola and leaf vegetables mix) and in 15 (75%) samples of sprouts (alfalfa, broccoli, small radish, lentil, sunflower, leek and sprout mix). No presence of Cronobacter spp. was detected in the analyzed samples of non-pasteurized fruit, vegetable and fruit-vegetable juices. The 21 strains of Cronobacter spp. isolated from leaf vegetable and sprouts included: 13 strains of C. sakazakii, 4 strains of C. muytjensii, 2 strains of C. turicensis, one strain of C. malonaticus and one strain of C. condimenti. All isolated C. sakazakii, C. muytjensii, C. turicensis and C. malonaticus strains were sensitive to ampicillin, cefepime, chloramphenicol, gentamycin

  2. Approaches to the production and use of microbial transglutaminase in emulsified meat and vegetable systems

    Directory of Open Access Journals (Sweden)

    I. A. Glotova

    2017-01-01

    Full Text Available In the technology of traditional and new forms of food, the modification of structure of proteins is carry out in two opposite directions: the hydrolytic destruction of high-molecular polymers and the artificial creation of polymeric structures of high molecular mass. The transglutaminase preparations (protein-glutamine (-glutamyltransferase, EC 2.3.2.13, TG are used in practical work for realization of the second direction. The main mechanisms of action are polymerization reactions, which lead to a change in the hydrophobicity of protein molecules. The main catalyzed reactions are acyl transfer, binding between glutamine and lysine residues of proteins and deamination. The authors analyzed the approaches to the preparation, properties and studied the joint effect of temperature and pH on the activity of the commercial preparation Revada TG 11 with the application of an enzymatic colorimetric test. The authors studied combined stuffing systems based on beef, pork, poultry mechanical deboning, as well as replacing part of the raw material with protein-carbohydrate compositions with Revada TG 11. The results were used to develop simulated meat systems of biopolymer compositions (SMSBC, approximate in structure and properties to the gels formed by actin and myosin during extraction from myofibrils under the traditional technological processes of meat products production - maturation, salt curing, fine meat grinding. SMSBC includes lupine flour bio-activated by germination, a preparations of dietary fiber as well as a preparation of transglutaminase Revada TG 11. The protein components of the secondary raw materials during the processing of milk such as sodium caseinate, and also whey were used to balance the amino acid composition of the food systems. For practical use, the following options for SMSBC introducing into the composition of minced meat emulsions were recommended by the authors: in the form of hydrated biopolymer dispersion at cutting

  3. Production of Modularised Product Systems

    DEFF Research Database (Denmark)

    Jacobsen, Peter

    2004-01-01

    but a solution. Modularisation is one tool used in designing the products. Designing and controlling a production system making customized products in an economical way is not an easy task. In order to fulfil the Lean and Agile manufacturing philosophies the production is often carried out in networks. Here...

  4. Temporal analysis of vegetation indices related to biophysical parameters using Sentinel 2A images to estimate maize production

    Science.gov (United States)

    Macedo, Lucas Saran; Kawakubo, Fernando Shinji

    2017-10-01

    Agricultural production is one of the most important Brazilian economic activities accounting for about 21,5% of total Gross Domestic Product. In this scenario, the use of satellite images for estimating biophysical parameters along the phenological development of agricultural crops allows the conclusion about the sanity of planting and helps the projection on design production trends. The objective of this study is to analyze the temporal patterns and variation of six vegetion indexes obtained from the bands of Sentinel 2A satellite, associated with greenness (NDVI and ClRE), senescence (mARI and PSRI) and water content (DSWI and NDWI) to estimate maize production. The temporal pattern of the indices was analyzed in function of productivity data collected in-situ. The results obtained evidenced the importance of the SWIR and Red Edge ranges with Pearson correlation values of the temporal mean for NDWI 0.88 and 0.76 for CLRE.

  5. Abundance and fate of antibiotics and hormones in a vegetative treatment system receiving cattle feedlot runoff

    Science.gov (United States)

    Vegetative treatment systems (VTS) have been developed and built as an alternative to conventional holding pond systems for managing run-off from animal feeding operations. Initially developed to manage runoff nutrients via uptake by grasses, their effectiveness at removing other runoff contaminant...

  6. Highly effective ionic liquids for biodiesel production from waste vegetable oils

    Directory of Open Access Journals (Sweden)

    Fathy A. Yassin

    2015-03-01

    Full Text Available As conventional energy sources deplete, the need for developing alternative energy resources which are environment friendly becomes more imperative. Vegetable oils are attracting increased interest in this purpose. The methanolysis of vegetable oil to produce a fatty acid methyl ester (FAME, i.e., biodiesel fuel was catalyzed by commercial ionic liquid and its chloride modification. The imidazolium chloride ionic liquid was frequently chosen for the synthesis of biodiesel. The dual-functionalized’ ionic liquid is prepared by a direct combination reaction between imidazolium cation and various metal chlorides such as CoCl2, CuCl2, NiCl2, FeCl3 and AlCl3. Imidazolium tetrachloroferrate was proved to be a selective catalyst for the methanolysis reaction at a yield of 97% when used at 1:10, catalyst: oil ratio for 8 h at 55 °C. Operational simplicity, reusability of the used catalyst for 8 times at least, high yields and no saponification are the key features of this methodology. The dynamic viscosity and density of the upgraded vegetable oil decreased from 32.1 cP and 0.9227 g/cm3 to 10.2 cP and 0.9044 g/cm3 respectively, compared to those of the base vegetable oil. The objective of this study was the synthesis and characterization of biodiesel using commercial ionic liquid and its chloride modification. The ionic liquid catalysts were characterized using FTIR, Raman spectroscopy, DSC, TG and UV.

  7. Water and vegetation indices by using MODIS products for eucalyptus, pasture, and natural ecosystems in the eastern São Paulo state, Southeast Brazil

    Science.gov (United States)

    de C. Teixeira, Antônio H.; Leivas, Janice F.; Ronquim, Carlos C.; Garçon, Edlene A. M.; Bayma-Silva, Gustavo

    2017-10-01

    Eucalyptus (Ec) and pasture (Pt) are expanding while natural vegetation (Nv) are losing space in the Paraíba Valley, eastern side of the São Paulo state, Southeast Brazil. For quantification of water and vegetation conditions, the MODIS product MOD13Q1 was used together with a net of weather stations and vegetation land masks during the year 2015. The SAFER algorithm was applied to retrieve the actual evapotranspiration (ET), which was combined with the Monteith's radiation use efficiency (RUE) model to estimate the biomass production (BIO). Three moisture indices were applied, the climatic water balance ratio (WBr), the ratio of precipitation (P) to ET, the water balance deficit (WBd), the difference between P and ET, and the evapotranspiration ratio (ETr), the ratio of ET to the reference evapotranspiration (ET0). On the one hand, the highest ET rates for the Ec ecosystem should be a negative aspect under water scarcity conditions; however, it presented the best water productivity. Although the Ec ecosystem presenting the lowest WBr and WBd values, it had the highest ETr, averaging 0.92, when comparing to those for Nv (0.88) and Pt (0.79). These results indicated that eucalyptus plants have greater ability of conserving soil moisture in their root zones, increasing WP, when comparing with Pt and Nv ecosystems. These water relationships are relevant issues under the land-use change conditions in the Paraiba Valley, confirming the suitability of using the MODIS products together with weather stations to study the ecosystem dynamics.

  8. THE USAGE OF ANIMAL AND VEGETABLE ORIGIN RAW MATERIALS COMBINATORICS IN MEAT PRODUCTS OF “HALAL†CATEGORY DEVELOPMENT

    OpenAIRE

    Ivan F. Gorlov; Oksana B. Gelunova; Tatiana M. Giro; Ekaterina P. Mirzayanova

    2014-01-01

    Integrated researches aimed to develop technologies and recipes for meat products of “Halal†category using seed fat and Milk Protein-Carbohydrate Concentrate (MPCC) represent a new generation of scientific and practical interest. In this connection, the authors propose technologies and recipes for meat products of “Halal†category, designed on the basis of rational combinatorics of animal and vegetable origin raw materials, that l...

  9. The Determinants of Organic Vegetable Purchasing in Jabodetabek Region, Indonesia

    Science.gov (United States)

    Slamet, Alim Setiawan; Nakayasu, Akira; Bai, Hu

    2016-01-01

    Over the last few years, the global market of organic vegetables has grown. This is due to increased consumer concern regarding environmental and health issues, especially for food products. This study aims to examine factors that influence consumer behavior in purchasing organic vegetables. In this study, data were obtained from household surveys conducted in the Jabodetabek region (Greater Jakarta) from February to March 2015. Descriptive analysis, factor analysis, and a binary logit model were used to analyze the data. Subsequently, the results show that consumers with fewer family members and have a higher income, and are price tolerant, are more likely to purchase organic vegetables. Meanwhile, female consumers are less likely to buy organic vegetables. Another important finding is that positive attitude towards organic products, safety and health, environmental concerns, as well as degree of trust in organic attributes, are the determinants of organic vegetable purchasing among consumers. Therefore, based on the study results, the following recommendations are needed for organic vegetable development in Indonesia: (a) implementing an appropriate pricing strategy; (b) encouraging organic labeling and certification for vegetables; and (c) intensively promoting organic food with respect to consumers’ motives and concerns on health, safety, as well as environmental sustainability. PMID:28231181

  10. The Determinants of Organic Vegetable Purchasing in Jabodetabek Region, Indonesia.

    Science.gov (United States)

    Slamet, Alim Setiawan; Nakayasu, Akira; Bai, Hu

    2016-12-07

    Over the last few years, the global market of organic vegetables has grown. This is due to increased consumer concern regarding environmental and health issues, especially for food products. This study aims to examine factors that influence consumer behavior in purchasing organic vegetables. In this study, data were obtained from household surveys conducted in the Jabodetabek region (Greater Jakarta) from February to March 2015. Descriptive analysis, factor analysis, and a binary logit model were used to analyze the data. Subsequently, the results show that consumers with fewer family members and have a higher income, and are price tolerant, are more likely to purchase organic vegetables. Meanwhile, female consumers are less likely to buy organic vegetables. Another important finding is that positive attitude towards organic products, safety and health, environmental concerns, as well as degree of trust in organic attributes, are the determinants of organic vegetable purchasing among consumers. Therefore, based on the study results, the following recommendations are needed for organic vegetable development in Indonesia: (a) implementing an appropriate pricing strategy; (b) encouraging organic labeling and certification for vegetables; and (c) intensively promoting organic food with respect to consumers' motives and concerns on health, safety, as well as environmental sustainability.

  11. The Determinants of Organic Vegetable Purchasing in Jabodetabek Region, Indonesia

    Directory of Open Access Journals (Sweden)

    Alim Setiawan Slamet

    2016-12-01

    Full Text Available Over the last few years, the global market of organic vegetables has grown. This is due to increased consumer concern regarding environmental and health issues, especially for food products. This study aims to examine factors that influence consumer behavior in purchasing organic vegetables. In this study, data were obtained from household surveys conducted in the Jabodetabek region (Greater Jakarta from February to March 2015. Descriptive analysis, factor analysis, and a binary logit model were used to analyze the data. Subsequently, the results show that consumers with fewer family members and have a higher income, and are price tolerant, are more likely to purchase organic vegetables. Meanwhile, female consumers are less likely to buy organic vegetables. Another important finding is that positive attitude towards organic products, safety and health, environmental concerns, as well as degree of trust in organic attributes, are the determinants of organic vegetable purchasing among consumers. Therefore, based on the study results, the following recommendations are needed for organic vegetable development in Indonesia: (a implementing an appropriate pricing strategy; (b encouraging organic labeling and certification for vegetables; and (c intensively promoting organic food with respect to consumers’ motives and concerns on health, safety, as well as environmental sustainability.

  12. Global changes in dryland vegetation dynamics (1988–2008 assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data

    Directory of Open Access Journals (Sweden)

    N. Andela

    2013-10-01

    Full Text Available Drylands, covering nearly 30% of the global land surface, are characterized by high climate variability and sensitivity to land management. Here, two satellite-observed vegetation products were used to study the long-term (1988–2008 vegetation changes of global drylands: the widely used reflective-based Normalized Difference Vegetation Index (NDVI and the recently developed passive-microwave-based Vegetation Optical Depth (VOD. The NDVI is sensitive to the chlorophyll concentrations in the canopy and the canopy cover fraction, while the VOD is sensitive to vegetation water content of both leafy and woody components. Therefore it can be expected that using both products helps to better characterize vegetation dynamics, particularly over regions with mixed herbaceous and woody vegetation. Linear regression analysis was performed between antecedent precipitation and observed NDVI and VOD independently to distinguish the contribution of climatic and non-climatic drivers in vegetation variations. Where possible, the contributions of fire, grazing, agriculture and CO2 level to vegetation trends were assessed. The results suggest that NDVI is more sensitive to fluctuations in herbaceous vegetation, which primarily uses shallow soil water, whereas VOD is more sensitive to woody vegetation, which additionally can exploit deeper water stores. Globally, evidence is found for woody encroachment over drylands. In the arid drylands, woody encroachment appears to be at the expense of herbaceous vegetation and a global driver is interpreted. Trends in semi-arid drylands vary widely between regions, suggesting that local rather than global drivers caused most of the vegetation response. In savannas, besides precipitation, fire regime plays an important role in shaping trends. Our results demonstrate that NDVI and VOD provide complementary information and allow new insights into dryland vegetation dynamics.

  13. Vegetable oils in the agriculture. Experience reports; Pflanzenoel als Kraftstoff in der Landwirtschaft. Erfahrungsberichte

    Energy Technology Data Exchange (ETDEWEB)

    Kemnitz, Dietmar [Fachagentur Nachwachsende Rohstoffe e.V., Guelzow (Germany); Paul, Nicole [Fachagentur Nachwachsende Rohstoffe e.V., Guelzow (Germany); WPR COMMUNICATION GmbH und Co. KG, Koenigswinter/Bonn (Germany); Wichmann, Volker; Schuemann, Ulrike [Rostock Univ. (Germany); Maurer, Karl [Hohenheim Univ. (Germany); Remmele, Edgar [Technologie- und Foerderzentrum Straubing (Germany)

    2006-08-15

    In the agriculture, bio fuels increasingly meet with great interest. The use of bio diesel and vegetable oil as alternative fuels in diesel engines requires clear technical adjustments. The brochure under consideration reports on realizations of farmers who switched their tractors to an operation with vegetable oils. The brochure consists of the following contributions: (a) Employment of vegetable oil as fuel in the agriculture (empiric reports of farmers); (b) Re-equipment on operation with vegetable oil (empiric reports of reequipping persons); (c) Scientifically accompanying research of re-equipment (results of a 100-tractor-demonstration project); (d) Mixtures of plant oil and diesel fuel (results from engine test stand investigations); (e) Production of vegetable oil (experiences from an oil mill operator); (f) scientifically accompanying research for the production of vegetable oils (references to the production of rapeseed oil fuel according to the standard DIN 51605); (g) Hints and notes for the practice; (h) Fuel filling stations for self-consumers and storage of vegetable oil; (i) FNR funding programs bio fuels in the agriculture; (j) Adresses and contact persons.

  14. Merits of the fat-tailed Barbarine sheep raised in different production systems in Tunisia: digestive, productive and reproductive characteristics.

    Science.gov (United States)

    Ben Salem, Hichem; Lassoued, Narjess; Rekik, Mourad

    2011-10-01

    Barbarine sheep is the dominant breed in Tunisia. This fat-tailed breed present in all production systems is characterised by metabolic and digestive adaptation to the contrasting environment conditions prevailing in the country (heat stress, water deprivation, salinity etc.). The fat tail (1.5 to 7 kg) is an energy reservoir that is used in periods of feed scarcity. Moreover, the rumen of this breed harbours a microflora enabling it to valorize low-quality roughages and native range vegetation. Barbarine sheep could make benefit from a wide range of local feed resources like fodder shrubs (e.g. cactus and oldman saltbushes), tannin-containing shrubs (e.g. Acacia cyanophylla) and agro-industrial by-products (e.g. olive cake, bran etc. conserved in the form of feed blocks or pellets). It has a very shallow anoestrous, the intensity of which is dependant upon nutrition conditions rather than day length as temperate breeds. Productive and reproductive performances of late pregnant-early suckling, pre-mating ewes and also rams of this breed are not affected when some alternative feed resources replace common feedstuffs which are expensive and cannot afford regularly to smallholders. In brief, the merits of the Barbarine sheep in the production systems and other main adaptive mechanisms of this breed are discussed in this paper. The prospective of Barbarine sheep husbandry in the system dynamics, climate change and the evolution of the socioeconomic context are also envisaged.

  15. Effects of waste water irrigation on soil properties and soil fauna of spinach fields in a West African urban vegetable production system.

    Science.gov (United States)

    Stenchly, Kathrin; Dao, Juliane; Lompo, Désiré Jean-Pascal; Buerkert, Andreas

    2017-03-01

    The usage of inadequately processed industrial waste water (WW) can lead to strong soil alkalinity and soil salinization of agricultural fields with negative consequences on soil properties and biota. Gypsum as a soil amendment to saline-sodic soils is widely used in agricultural fields to improve their soil physical, chemical and hence biological properties. This study aimed at analysing the effects of intensive WW irrigation on the structure and composition of soil-dwelling arthropods on spinach fields (Spinacia oleracea L.) in a West African urban vegetable production system. We used gypsum as a soil amendment with the potential to alleviate soil chemical stress resulting in a potentially positive impact on soil arthropods. A total of 32 plots were established that showed a gradient in soil pH ranging from slight to strong soil alkalinity and that were irrigated with WW (n = 12) or clean water (CW; n = 20), including eight plots into which gypsum was incorporated. Our study revealed a high tolerance of soil-dwelling arthropods for alkaline soils, but spinach fields with increased soil electrical conductivity (EC) showed a reduced abundance of Hymenoptera, Diptera and Auchenorrhyncha. Arthropod abundance was positively related to a dense spinach cover that in turn was not affected by WW irrigation or soil properties. Gypsum application reduced soil pH but increased soil EC. WW irrigation and related soil pH affected arthropod composition in the investigated spinach fields which may lead to negative effects on agronomical important arthropod groups such as pollinators and predators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Handling Procedures of Vegetable Crops

    Science.gov (United States)

    Perchonok, Michele; French, Stephen J.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) is working towards future long duration manned space flights beyond low earth orbit. The duration of these missions may be as long as 2.5 years and will likely include a stay on a lunar or planetary surface. The primary goal of the Advanced Food System in these long duration exploratory missions is to provide the crew with a palatable, nutritious, and safe food system while minimizing volume, mass, and waste. Vegetable crops can provide the crew with added nutrition and variety. These crops do not require any cooking or food processing prior to consumption. The vegetable crops, unlike prepackaged foods, will provide bright colors, textures (crispy), and fresh aromas. Ten vegetable crops have been identified for possible use in long duration missions. They are lettuce, spinach, carrot, tomato, green onion, radish, bell pepper, strawberries, fresh herbs, and cabbage. Whether these crops are grown on a transit vehicle (e.g., International Space Station) or on the lunar or planetary surface, it will be necessary to determine how to safely handle the vegetables while maintaining acceptability. Since hydrogen peroxide degrades into water and oxygen and is generally recognized as safe (GRAS), hydrogen peroxide has been recommended as the sanitizer. The objective of th is research is to determine the required effective concentration of hydrogen peroxide. In addition, it will be determined whether the use of hydrogen peroxide, although a viable sanitizer, adversely affects the quality of the vegetables. Vegetables will be dipped in 1 % hydrogen peroxide, 3% hydrogen peroxide, or 5% hydrogen peroxide. Treated produce and controls will be stored in plastic bags at 5 C for up to 14 days. Sensory, color, texture, and total plate count will be measured. The effect on several vegetables including lettuce, radish, tomato and strawberries has been completed. Although each vegetable reacts to hydrogen peroxide differently, the

  17. Phytochemical phenolics in organically grown vegetables.

    Science.gov (United States)

    Young, Janice E; Zhao, Xin; Carey, Edward E; Welti, Ruth; Yang, Shie-Shien; Wang, Weiqun

    2005-12-01

    Fruit and vegetable intake is inversely correlated with risks for several chronic diseases in humans. Phytochemicals, and in particular, phenolic compounds, present in plant foods may be partly responsible for these health benefits through a variety of mechanisms. Since environmental factors play a role in a plant's production of secondary metabolites, it was hypothesized that an organic agricultural production system would increase phenolic levels. Cultivars of leaf lettuce, collards, and pac choi were grown either on organically certified plots or on adjacent conventional plots. Nine prominent phenolic agents were quantified by HPLC, including phenolic acids (e. g. caffeic acid and gallic acid) and aglycone or glycoside flavonoids (e. g. apigenin, kaempferol, luteolin, and quercetin). Statistically, we did not find significant higher levels of phenolic agents in lettuce and collard samples grown organically. The total phenolic content of organic pac choi samples as measured by the Folin-Ciocalteu assay, however, was significantly higher than conventional samples (p lettuce and collards, the organic system provided an increased opportunity for insect attack, resulting in a higher level of total phenolic agents in pac choi.

  18. Oscillations in a simple climate–vegetation model

    Directory of Open Access Journals (Sweden)

    J. Rombouts

    2015-05-01

    Full Text Available We formulate and analyze a simple dynamical systems model for climate–vegetation interaction. The planet we consider consists of a large ocean and a land surface on which vegetation can grow. The temperature affects vegetation growth on land and the amount of sea ice on the ocean. Conversely, vegetation and sea ice change the albedo of the planet, which in turn changes its energy balance and hence the temperature evolution. Our highly idealized, conceptual model is governed by two nonlinear, coupled ordinary differential equations, one for global temperature, the other for vegetation cover. The model exhibits either bistability between a vegetated and a desert state or oscillatory behavior. The oscillations arise through a Hopf bifurcation off the vegetated state, when the death rate of vegetation is low enough. These oscillations are anharmonic and exhibit a sawtooth shape that is characteristic of relaxation oscillations, as well as suggestive of the sharp deglaciations of the Quaternary. Our model's behavior can be compared, on the one hand, with the bistability of even simpler, Daisyworld-style climate–vegetation models. On the other hand, it can be integrated into the hierarchy of models trying to simulate and explain oscillatory behavior in the climate system. Rigorous mathematical results are obtained that link the nature of the feedbacks with the nature and the stability of the solutions. The relevance of model results to climate variability on various timescales is discussed.

  19. Oscillations in a simple climate-vegetation model

    Science.gov (United States)

    Rombouts, J.; Ghil, M.

    2015-05-01

    We formulate and analyze a simple dynamical systems model for climate-vegetation interaction. The planet we consider consists of a large ocean and a land surface on which vegetation can grow. The temperature affects vegetation growth on land and the amount of sea ice on the ocean. Conversely, vegetation and sea ice change the albedo of the planet, which in turn changes its energy balance and hence the temperature evolution. Our highly idealized, conceptual model is governed by two nonlinear, coupled ordinary differential equations, one for global temperature, the other for vegetation cover. The model exhibits either bistability between a vegetated and a desert state or oscillatory behavior. The oscillations arise through a Hopf bifurcation off the vegetated state, when the death rate of vegetation is low enough. These oscillations are anharmonic and exhibit a sawtooth shape that is characteristic of relaxation oscillations, as well as suggestive of the sharp deglaciations of the Quaternary. Our model's behavior can be compared, on the one hand, with the bistability of even simpler, Daisyworld-style climate-vegetation models. On the other hand, it can be integrated into the hierarchy of models trying to simulate and explain oscillatory behavior in the climate system. Rigorous mathematical results are obtained that link the nature of the feedbacks with the nature and the stability of the solutions. The relevance of model results to climate variability on various timescales is discussed.

  20. Vegetation Fraction Mapping with High Resolution Multispectral Data in the Texas High Plains

    Science.gov (United States)

    Oshaughnessy, S. A.; Gowda, P. H.; Basu, S.; Colaizzi, P. D.; Howell, T. A.; Schulthess, U.

    2010-12-01

    Land surface models use vegetation fraction to more accurately partition latent, sensible and soil heat fluxes from a partially vegetated surface as it affects energy and moisture exchanges between the earth’s surface and atmosphere. In recent years, there is interest to integrate vegetation fraction data into intelligent irrigation scheduling systems to avoid false positive signals to irrigate. Remote sensing can facilitate the collection of vegetation fraction information on individual fields over large areas in a timely and cost-effective manner. In this study, we developed and evaluated a set of vegetation fraction models using least square regression and artificial neural network (ANN) techniques using RapidEye satellite data (6.5 m spatial resolution and on-demand temporal resolution). Four images were acquired during the 2010 summer growing season, covering bare soil to full crop cover conditions, over the USDA-ARS-Conservation and Production Research Laboratory in Bushland, Texas [350 11' N, 1020 06' W; 1,170 m elevation MSL]. Spectral signatures were extracted from 25 ground truth locations with geographic coordinates. Vegetation fraction information was derived from digital photos taken at the time of image acquisition using a supervised classification technique. Comparison of performance statistics indicate that ANN performed slightly better than least square regression models.

  1. Transformation of soil and vegetable conditions at oil production territories

    Science.gov (United States)

    Gatina, Evgeniia

    2017-04-01

    On the territory of modern oil production soil, vegetation, ecosystem conditions of the environment are significantly transformed. Researches have been conducted on the oil production territories located in a boreal coniferous forest natural zone from 2005 to 2015. Standard geobotanical and soil methods are used. Mechanical destruction of a plant cover, change of the water conditions, intake of oil products and salty waters in ecosystems, pollution of the atmosphere are considered as the major technology-related factors defining transformation of land ecosystems at operation of the oil field. Under the mechanical destruction of a plant cover the pioneer plant communities are formed. These communities are characterized by most reduced specific wealth with prevalence of types of meadow groups of plants and presence of types of wetland groups of plants. The biodiversity of biocenosis which are affected linear infrastructure facilities of oil production territories and change of the water conditions, decreases. It is observed decrease in species wealth, simplification of structure of communities. Under the salting of soils in ecosystems there is a decrease species diversity of communities to prevalence nitrophilous and meadow plant species. At the increased content of organic substances in the soils that is a consequence of intake of oil products, is characteristic increase in specific richness of communities, introduction of types of wetland and oligotrophic groups of plants in forest communities. Influence depends on distance to an influence source. In process of removal from a source of atmospheric pollution in forest communities there is a decrease in species diversity and complication of structure of community. It is caused by introduction of types of meadow groups of plants in ecotone sites of the forest communities located near a source of influence and restoration of structural features of forest communities in process of removal from an influence source

  2. Role of native and exotic woody vegetation in soil restoration in active gully systems (southern Ecuador)

    Science.gov (United States)

    Borja Ramon, Pablo; Alvarado Moncayo, Dario; Vanacker, Veerle; Cisneros, Pedro; Molina, Armando; Govers, Gerard

    2015-04-01

    Revegetation projects in degraded lands have the potential to recover essential soil functions. If vegetation restoration is combined with bioengineering techniques, such as the construction of retention dams in active gully systems, soil restoration could be enhanced. One important aspect of this process is the role of vegetation on restoration of soil chemical and physical properties. There is currently a lack of knowledge on the potential of soil restoration in active badland systems, as most studies have concentrated on the direct and visible effect of revegetation on erosion control. The aim of this study is to evaluate the role of revegetation and bioengineering works on the restoration of soil physical and chemical properties. The analyses are realized in a highly degraded area of 3 km2, located in the lower part of the Loreto catchment (Southern Ecuadorian Andes). First, the soil physical and/or chemical parameters that are most sensitive to track environmental change were evaluated. Second, the role of vegetation on soil restoration was quantified. . Soil samples were taken in sites with different vegetation cover, land use and physiographic position. The following physical and chemical parameters were measured: volumetric water content (θsat, θact), bulk density, pH, texture, organic matter, C and N content. Our first results do not show a clear relationship between volumetric water content at saturation (θsat), bulk density, or C content. The saturation water content does not vary significantly between different sites, or land use types. However, significant differences are found between sites at different stages of restoration; and this for most chemical and physical soil properties. Vegetation cover (%) appears to exert a strong control on the C content in the mineral soils. The highest C values are found in soils of forest plantations with Eucalyptus and Pinus species. These plantations are located in areas that were previously affected by active

  3. Drought impact on vegetation growth and mortality

    Science.gov (United States)

    Xu, C.; Wang, M.; Allen, C. D.; McDowell, N. G.; Middleton, R. S.

    2017-12-01

    Vegetation is a key regulator of the global carbon cycle via CO2 absorption through photosynthesis and subsequent growth; however, low water availability, heat stress, and disturbances associated with droughts could substantially reduce vegetation growth and increase vegetation mortality. As far as we know, there are few studies have assessed the drought impact on vegetation growth and mortality at regional and global scales. In this study, we analyzed 13 Earth System models (ESMs) to quantify the impact of drought on GPP and linked the remote-sensing based tree mortality to observed drought indices to assess the drought impact on tree mortality in continental US (CONUS). Our analysis of 13 Earth System models (ESMs) shows that the average global gross primary production (GPP) reduction per year associated with extreme droughts over years 2075-2099 is predicted to be 3-5 times larger than that over years 1850-1999. The annual drought-associated reduction in GPP over years 2075-2099 could be 52 and 74 % of annual fossil fuel carbon emission during years 2000-2007. Increasing drought impacts on GPP are driven primarily by the increasing drought frequency. The risks of drought-associated GPP reduction are particularly high for temperate and tropical regions. The consistent prediction of higher drought-associated reduction in NPP across 13 ESMs suggests increasing impacts of drought on the global carbon cycle with atmospheric warming. Our analysis of drought impact on tree mortality showed that drought-associated carbon loss accounts for 12% of forest carbon loss in CONUS for 2000-2014, which is about one-fifth of that resulting from timber harvesting and 1.35 % of average annual fossil fuel emissions in the U.S. for the same period. The carbon stock loss from natural disturbances for 2000-2014 is approximately 75% of the total carbon loss from anthropogenic disturbance (timber harvesting), suggesting that natural disturbances play a very important role on forest

  4. Labeling the finished products as a part of information support of marketing activities at vegetable-food enterprises

    Directory of Open Access Journals (Sweden)

    Anna Petrenko

    2016-03-01

    Full Text Available The article describes the influence of labeling food-vegetable subcomplex, as part of marketing activities provide information on consumer behavior, the choice of consumers and an increase in sales of enterprises. This article's aims -are to estimate estimate consumer response to the information received from various kinds of labels and labeling products, and analysis of the impact of such information on the final consumer choices. The article analizyng the needness of the front and rear panels of information on labels of product, differentiation methods of marking. The importance of product information on the impact on the environment, and the associated benefits this consumer preference. Analyzed the importance of providing consumers information about the components and their usefulness for each product, and method of presentation data in full or abbreviated form. The conclusion of the obvious dependence providing consumer preferences on the type of labeling goods of food-vegitable subcomplex and according the final choice of the consumer, which in turn affects the increase in factory production and will allow the enterprises to consolidate their positions on international markets.

  5. The evaluation of the microbial safety of fresh ready-to-eat vegetables produced by different technologies in Italy.

    Science.gov (United States)

    De Giusti, M; Aurigemma, C; Marinelli, L; Tufi, D; De Medici, D; Di Pasquale, S; De Vito, C; Boccia, A

    2010-09-01

    The study was performed to evaluate the safety of whole and RTE vegetables and to investigate the effectiveness of different preventive strategies for the quality assurance of RTE vegetables collected from three Italian production systems. Producer 1, applied a strict system in compliance with GAP- GMP - HACCP, Producer 2 used chlorine disinfection at a second washing step, and Producer 3 using a physical microbial stabilization. During the period 2005-2007, a total of 964 samples including whole vegetables and RTE salads, collected from three different producers in central Italy, were analysed to quantify the aerobic mesophilic count (AMC) and Escherichia coli, and for the presence of Salmonella spp, Listeria monocytogenes, E. coli O157:H7, hepatitis A virus and Norovirus (NoV). None of the whole vegetable samples were positive for L. monocytogenes, E. coli O157:H7, HAV and NoV; however, a low prevalence of Salmonella was found. No pathogens were detected with cultural methods in any of the RTE vegetables analysed, only two RTE samples were positive for L. monocytogenes with PCR, but were not confirmed by the cultural method. The median values of AMC in RTE vegetables measured 24 h after packaging were statistically different among the 3 producers (5·4 × 10(6), 1·5 × 10(7) and 3·7 × 10(7) CFU g(-1), respectively; P=0·011). The lowest level was detected in Producer 1. The products that were processed applying rigorously GAP, GMP and HACCP showed a better microbiological quality than those processed with chemical or physical stabilization. STUDY SIGNIFICANCE AND IMPACT: The results of the study evidenced the efficacy of GAP, GMP and HACCP in improving microbiological quality of whole and RTE vegetables. © 2010 The Authors. Journal compilation © 2010 The Society for Applied Microbiology.

  6. Potential Applications of the Cyclic Peptide Enterocin AS-48 in the Preservation of Vegetable Foods and Beverages.

    Science.gov (United States)

    Abriouel, Hikmate; Lucas, Rosario; Omar, Nabil Ben; Valdivia, Eva; Gálvez, Antonio

    2010-06-01

    Bacteriocins are antimicrobial peptides produced by bacteria. Among them, the enterococcal bacteriocin (enterocin) AS-48 stands for its peculiar characteristics and broad-spectrum antimicrobial activity. AS-48 belongs to the class of circular bacteriocins and has been studied in depth in several aspects: peptide structure, genetic determinants, and mode of action. Recently, a wealth of knowledge has accumulated on the antibacterial activity of this bacteriocin against foodborne pathogenic and spoilage bacteria in food systems, especially in vegetable foods and drinks. This work provides a general overview on the results from tests carried out with AS-48 in different vegetable food categories (such as fruit juices, ciders, sport and energy drinks, fresh fruits and vegetables, pre-cooked ready to eat foods, canned vegetables, and bakery products). Depending on the food substrate, the bacteriocin has been tested alone or as part of hurdle technology, in combination with physico-chemical treatments (such as mild heat treatments or high-intensity pulsed electric fields) and other antimicrobial substances (such as essential oils, phenolic compounds, and chemical preservatives). Since the work carried out on bacteriocins in preservation of vegetable foods and drinks is much more limited compared to meat and dairy products, the results reported for AS-48 may open new possibilities in the field of bacteriocin applications.

  7. Quantifying the Vegetation Health Based on the Resilience in an Arid System

    Directory of Open Access Journals (Sweden)

    Ranjbar Abolfazl

    2018-03-01

    Full Text Available Proper management of natural ecosystems is not possible without the knowledge of the health status of its components. Vegetation, as the main component of the ecosystem, plays an important role in its health. One of the key determinants of vegetation health is its resilience in the face of environmental disorders. This research was conducted in parts of the Namakzar-e Khaf watershed in Northeast of South Khorasan Province with the aim of quantifying the vegetative resilience on behalf of the ecosystem health in response to long-term precipitation changes. First, the annual precipitation standardization was performed during a thirty-year period by the SPI method. Then, the average variation in TNDVI index obtained from the Landsat satellite images was examined and the resilience was tested by calculating the four effective factors (amplitude, malleability, damping and hysteresis. According to the results, the amplitude in the survey period was 6.04% and the vegetation has had different values of damping over the years. The most prominent example of vegetation resilience occurred between 1986 and 1996, with malleability of 0.7 and damping of zero. Vegetation in this period, after the elimination of drought effects (1986, has not only returned to the amount of vegetation of reference year with severe precipitation (1996 but also increased by 0.25%. This increase, as the index of hysteresis, has been presented for the first time in the ecosystem health discussion quantitatively in the present study. A set of quantitative calculations showed that despite reduced annual precipitation and drought events, the vegetation has been able to maintain its resilience, which indicates the health of vegetation in the studied ecosystem.

  8. Technical aspects of biodiesel production from vegetable oils

    OpenAIRE

    Krishnakumar Janahiraman; Venkatachalapathy Karuppannan V.S.; Elancheliyan Sellappan

    2008-01-01

    Biodiesel, a promising substitute as an alternative fuel has gained significant attention due to the finite nature of fossil energy sources and does not produce sulfur oxides and minimize the soot particulate in comparison with the existing one from petroleum diesel. The utilization of liquid fuels such as biodiesel produced from vegetable oil by transesterification process represents one of the most promising options for the use of conventional fossil fuels. In the first step of this experim...

  9. METHANE PHYTOREMEDIATION BY VEGETATIVE LANDFILL COVER SYSTEMS

    Science.gov (United States)

    Landfill gas, consisting of methane and other gases, is produced from organic compounds degrading in landfills, contributes to global climate change, is toxic to various types of vegetation, and may pose a combustion hazard at higher concentrations. New landfills are required to ...

  10. Effects of nitrogen fertilization and nitrification inhibitor product on vegetative growth, production and oil quality in ‘Arbequina’ hedgerow and ‘Picual’ vase-trained orchards

    International Nuclear Information System (INIS)

    Centeno, A.; García, J.M.; Gómez-del-Campo, M.

    2017-01-01

    Two experiments were carried out in olive orchards in the center of Spain over a three-year period. In this cold and dry area, growers traditionally apply large amounts of N with no experimental knowledge. An ‘Arbequina’ hedgerow and ‘Picual’ vase orchards were fertilized with two N-doses applied to the soil in spring with or without the nitrification inhibitor (DMPP). Vegetative growth, fruit and oil characteristics were evaluated. These variables were affected by the N-treatment during the 3rd year. The lowest N-application increased vegetative growth, while when N-leaf composition was higher than 2%, fruit dry weight, oil content and oil phenol content were reduced. ‘Picual’ did not respond to N-applications. The effect of DMPP on growth or production was not consistent and a lower phenolic content was obtained for ‘Arbequina’. Our results demonstrated that in this dry land, N-fertilization is not always necessary and oil quality can be negatively affected with high doses. [es

  11. Tree species composition in areas of Atlantic Forest in southeastern Brazil is consistent with a new system for classifying the vegetation of South America

    Directory of Open Access Journals (Sweden)

    Pedro Vasconcellos Eisenlohr

    2014-06-01

    Full Text Available Rigorous and well-defined criteria for the classification of vegetation constitute a prerequisite for effective biodiversity conservation strategies. In 2009, a new classification system was proposed for vegetation types in extra-Andean tropical and subtropical South America. The new system expanded upon the criteria established in the existing Brazilian Institute of Geography and Statistics classification system. Here, we attempted to determine whether the tree species composition of the formations within the Atlantic Forest Biome of Brazil is consistent with this new classification system. We compiled floristic surveys of 394 sites in southeastern Brazil (between 15º and 25ºS; and between the Atlantic coast and 55ºW. To assess the floristic consistency of the vegetation types, we performed non-metric multidimensional scaling (NMDS ordination analysis, followed by multifactorial ANOVA. The vegetation types, especially in terms of their thermal regimes, elevational belts and top-tier vegetation categories, were consistently discriminated in the first NMDS axis, and all assessed attributes showed at least one significant difference in the second axis. As was expected on the basis of the theoretical background, we found that tree species composition, in the areas of Atlantic Forest studied, was highly consistent with the new system of classification. Our findings not only help solidify the position of this new classification system but also contribute to expanding the knowledge of the patterns and underlying driving forces of the distribution of vegetation in the region.

  12. EVALUATING THE TECHNICAL EFFICIENCY OF SMALLHOLDER VEGETABLE FARMS IN DIVERSE AGROECOLOGICAL REGIONS OF NEPAL

    Directory of Open Access Journals (Sweden)

    Rudra Bahadur Shrestha

    2017-01-01

    Full Text Available Enhancing the efficiency of vegetable farms is crucial to increase the vegetable outputs for meeting the demand for growing population. This study evaluated the technical efficiency and explored factors determining the efficiencies of smallholder vegetable farms in diversified agro-ecological regions using Stochastic Frontier Analysis (SFA with cross-section data collected in 2013. The results revealed that average technical efficiency was found to be 0.77 and the variance parameters were highly significant indicating that the inefficiency existed in vegetable farms. The inefficiency gap could improve by operating the farms at the frontier level. The input variables consisting of land, labor, animal power, fertilizer, compost, pesticide, and capital were proved to be the important factors in determining the level of outputs. Meanwhile, the major sources of the inefficiencies identified were: age of farmer, training to the farmers, and infrastructure development. The efficiency in vegetable production can be improved by allocating input resources at the optimum levels, encouraging younger farmers in vegetable production, increasing training and extension activities, enhancing market access to the farmers, and developing infrastructures with regard to vegetable production.

  13. Impact of Practice Change on Runoff Water Quality and Vegetable Yield—An On-Farm Case Study

    Directory of Open Access Journals (Sweden)

    Gunasekhar Nachimuthu

    2017-03-01

    Full Text Available Intensive agricultural practices in farming systems in eastern Australia have been identified as a contributor to the poor runoff water quality entering the Great Barrier Reef (GBR. A field investigation was carried out to measure the off-farm water quality and productivity in a coastal farming system in northeastern Australia. Two vegetable crops (capsicum and zucchini were grown in summer 2010–2011 and winter 2011 respectively using four different management practices (Conventional—plastic mulch, bare inter-row conventional tillage and commercial fertilizer inputs; Improved—improved practice with plastic mulch, inter-row vegetative mulch, zonal tillage and reduced fertilizer rates; Trash mulch—improved practice with cane-trash or forage-sorghum mulch with reduced fertilizer rates, minimum or zero tillage; and Vegetable only—improved practice with Rhodes grass or forage-sorghum mulch, minimum or zero tillage, reduced fertilizer rates. Results suggest improved and trash mulch systems reduced sediment and nutrient loads by at least 50% compared to conventional systems. The residual nitrate nitrogen in soil accumulated at the end-of-break crop cycle was lost by deep drainage before the subsequent sugarcane crop could utilize it. These results suggest that future research into establishing the linkages between deep drainage, groundwater quality and lateral movement into adjacent streams is needed. The improvement in runoff water quality was accompanied by yield reductions of up to 55% in capsicum and 57% in zucchini under trash mulch systems, suggesting a commercially unacceptable trade-off between water quality and productivity for a practice change. The current study has shown that variations around improved practice (modified nutrient application strategies under plastic mulch, but with an inter-space mulch to minimize runoff and sediment loss may be the most practical solution to improve water quality and maintain productivity

  14. Nigerian women reap benefits from indigenous vegetables

    International Development Research Centre (IDRC) Digital Library (Canada)

    Working in four administrative states in south- western Nigeria, the Sustainable Production and Utilization of Underutilized Nigerian. Vegetables to Enhance Rural .... children's school fees and health care needs of the family. This will continue to sustain their use of improved production and cultivation once the project has ...

  15. Optimization of lamp spectrum for vegetable growth

    Energy Technology Data Exchange (ETDEWEB)

    Prikupets, L.B.; Tikhomirov, A.A. [Institute of Biophysics, Krasnoyarsk (Russian Federation)

    1994-12-31

    Commmercial light sources were evaluated as to the optimum conditions for the production of tomatoes and cucumbers. Data is presented which corresponds to the maximum productivity and optimal spectral ratios. It is suggested that the commercial light sources evaluated were not efficient for the growing of the vegetables.

  16. Soil-vegetation-atmosphere transfer modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, J P; Sucksdorff, Y [Finnish Environment Agency, Helsinki (Finland)

    1997-12-31

    In this study the soil/vegetation/atmosphere-model based on the formulation of Deardorff was refined to hour basis and applied to a field in Vihti. The effect of model parameters on model results (energy fluxes, temperatures) was also studied as well as the effect of atmospheric conditions. The estimation of atmospheric conditions on the soil-vegetation system as well as an estimation of the effect of vegetation parameters on the atmospheric climate was estimated. Areal surface fluxes, temperatures and moistures were also modelled for some river basins in southern Finland. Land-use and soil parameterisation was developed to include properties and yearly variation of all vegetation and soil types. One classification was selected to describe the hydrothermal properties of the soils. Evapotranspiration was verified against the water balance method

  17. Soil-vegetation-atmosphere transfer modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, J.P.; Sucksdorff, Y. [Finnish Environment Agency, Helsinki (Finland)

    1996-12-31

    In this study the soil/vegetation/atmosphere-model based on the formulation of Deardorff was refined to hour basis and applied to a field in Vihti. The effect of model parameters on model results (energy fluxes, temperatures) was also studied as well as the effect of atmospheric conditions. The estimation of atmospheric conditions on the soil-vegetation system as well as an estimation of the effect of vegetation parameters on the atmospheric climate was estimated. Areal surface fluxes, temperatures and moistures were also modelled for some river basins in southern Finland. Land-use and soil parameterisation was developed to include properties and yearly variation of all vegetation and soil types. One classification was selected to describe the hydrothermal properties of the soils. Evapotranspiration was verified against the water balance method

  18. Unilever food safety assurance system for refined vegetable oils and fats

    Directory of Open Access Journals (Sweden)

    van Duijn Gerrit

    2010-03-01

    Full Text Available The Unilever Food Safety Assurance system for refined oils and fats is based on risk assessments for the presence of contaminants or pesticide residues in crude oils, and refining process studies to validate the removal of these components. Crude oil risk assessments were carried out by combining supply chain visits, and analyses of the contaminant and pesticide residue levels in a large number of crude oil samples. Contaminants like poly-aromatic hydrocarbons and hydrocarbons of mineral origin, and pesticide residues can largely be removed by refining. For many years, this Food Safety Assurance System has proven to be effective in controlling contaminant levels in refined vegetable oils and fats.

  19. Advances on Modelling Riparian Vegetation-Hydromorphology Interactions

    NARCIS (Netherlands)

    Solari, L.; Van Oorschot, M.; Belletti, B.; Hendriks, D.; Rinaldi, M.; Vargas-Luna, A.

    2016-01-01

    Riparian vegetation actively interacts with fluvial systems affecting river hydrodynamics, morphodynamics and groundwater. These interactions can be coupled because both vegetation and hydromorphology (i.e. the combined scientific study of hydrology and fluvial geomorphology) involve dynamic

  20. Effects of vegetation structure on biomass accumulation in a Balanced Optimality Structure Vegetation Model (BOSVM v1.0

    Directory of Open Access Journals (Sweden)

    Z. Yin

    2014-05-01

    Full Text Available A myriad of interactions exist between vegetation and local climate for arid and semi-arid regions. Vegetation function, structure and individual behavior have large impacts on carbon–water–energy balances, which consequently influence local climate variability that, in turn, feeds back to the vegetation. In this study, a conceptual vegetation structure scheme is formulated and tested in the new Balanced Optimality Structure Vegetation Model (BOSVM to explore the importance of vegetation structure and vegetation adaptation to water stress on equilibrium biomass states. Surface energy, water and carbon fluxes are simulated for a range of vegetation structures across a precipitation gradient in West Africa and optimal vegetation structures that maximize biomass for each precipitation regime are determined. Two different strategies of vegetation adaptation to water stress are included. Under dry conditions vegetation tries to maximize the water use efficiency and leaf area index as it tries to maximize carbon gain. However, a negative feedback mechanism in the vegetation–soil water system is found as the vegetation also tries to minimize its cover to optimize the surrounding bare ground area from which water can be extracted, thereby forming patches of vertical vegetation. Under larger precipitation, a positive feedback mechanism is found in which vegetation tries to maximize its cover as it then can reduce water loss from bare soil while having maximum carbon gain due to a large leaf area index. The competition between vegetation and bare soil determines a transition between a "survival" state to a "growing" state.