WorldWideScience

Sample records for vegetable oil fuels

  1. Vegetable oil as a diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    O' Callaghan, C.

    1982-05-01

    There are a wide range of vegetable oils which may be used in the diesel engine such as palm oil, soyabean oil, sunflower oil and rapeseed oil. This paper reports on preliminary work with rapeseed oil as a possible alternative to diesel. The oil was degummed by hydration. Physical and chemical properties of the oil are compared to diesel fuel. Three types of fuel were tested in a tractor: (a) pure diesel oil; (b) a 50:50 mixture of diesel oil and rapeseed oil; and (c) pure rapeseed oil. Power-speed curves were constructed for each fuel type and observations on nozzle cooking and smoke emissions made.

  2. Alternative diesel fuels from vegetable oils

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Y.; Hanna, M.A. [Nebraska Univ., lincoln, NE (United States). Dept. of Biological Systems Engineering

    1994-12-31

    This paper reviews the use of vegetable oils and animal fats as diesel fuel. Physical and chemical properties and structure of the vegetable oils are discussed. Fuel preparation by transesterification, pyrolysis, dilution, and microemulsion and the effects of these processes on the properties of the fuel and, in turn, their effects on the engines have been reviewed. Each of the processes give improved fuel properties over those of unprocessed vegetable oil. The performance of engines using triglyceride based fuels and their emission characteristics are also presented. (author)

  3. Straight Vegetable Oil as a Diesel Fuel?

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-01-01

    Biodiesel, a renewable fuel produced from animal fats or vegetable oils, is popular among many vehicle owners and fleet managers seeking to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with straight vegetable oil (SVO), or waste oils from cooking and other processes, without intermediate processing. But SVO and waste oils differ from biodiesel (and conventional diesel) in some important ways and are generally not considered acceptable vehicle fuels for large-scale or long-term use.

  4. Direct oxidation of waste vegetable oil in solid-oxide fuel cells

    Science.gov (United States)

    Zhou, Z. F.; Kumar, R.; Thakur, S. T.; Rudnick, L. R.; Schobert, H.; Lvov, S. N.

    Solid-oxide fuel cells with ceria, ceria-Cu, and ceria-Rh anode were demonstrated to generate stable electric power with waste vegetable oil through direct oxidation of the fuel. The only pre-treatment to the fuel was a filtration to remove particulates. The performance of the fuel cell was stable over 100 h for the waste vegetable oil without dilution. The generated power was up to 0.25 W cm -2 for ceria-Rh fuel cell. This compares favorably with previously studied hydrocarbon fuels including jet fuels and Pennsylvania crude oil.

  5. Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review

    Energy Technology Data Exchange (ETDEWEB)

    No, Soo-Young [Chungbuk National University, Department of Biosystems Engineering, Cheongju 361-763 (Korea, Republic of)

    2011-01-15

    The use of inedible vegetable oils as an alternative fuel for diesel engine is accelerated by the energy crisis due to depletion of resources and increased environmental problems including the great need for edible oil as food and the reduction of biodiesel production cost, etc. Of a lot of inedible vegetable oils which can be exploited for substitute fuel as diesel fuel, seven vegetable oils, i.e., jatropha, karanja, mahua, linseed, rubber seed, cottonseed and neem oils were selected for discussion in this review paper. The application of jatropha oil as a liquid fuel for CI engine can be classified with neat jatropha oil, engine modifications such as preheating, and dual fuelling, and fuel modifications such as jatropha oil blends with other fuels, mostly with diesel fuel, biodiesel, biodiesel blends and degumming. Therefore, jatropha oil is a leading candidate for the commercialization of non-edible vegetable oils. There exists a big difference in the fuel properties of seven inedible vegetable oils and its biodiesels considered in this review. It is clear from this review that biodiesel generally causes an increase in NOx emission and a decrease in HC, CO and PM emissions compared to diesel. It was reported that a diesel engine without any modification would run successfully on a blend of 20% vegetable oil and 80% diesel fuel without damage to engine parts. This trend can be applied to the biodiesel blends even though particular biodiesel shows 40% blend. In addition, the blends of biodiesel and diesel can replace the diesel fuel up to 10% by volume for running common rail direct injection system without any durability problems. (author)

  6. Diesel-like fuel obtained by pyrolysis of vegetable oils

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Daniela G.; Soares, Valerio C.D.; Ribeiro, Eric B.; Cardoso, Erika C.V.; Rassi, Flavia C.; Mundim, Kleber C.; Rubim, Joel C.; Suarez, Paulo A.Z. [Instituto de Quimica, Universidade de Brasilia, CP 4478, 70919-970 Brasilia-DF (Brazil); Carvalho, Daniel A. [CEPAT-ANP, Brasilia-DF (Brazil)

    2004-06-01

    The pyrolysis reactions of soybean, palm tree, and castor oils were studied. The pyrolytic products were analyzed by CG-FID, CG-MS, and FTIR, showing the formation of olefins, paraffins, carboxylic acids, and aldehydes. The adequate choice of distillation temperature (DT) ranges made it possible to isolate fuels with physical-chemical properties comparable to those specified for petroleum based fuels. The catalytic upgrading of the soybean pyrolytic fuel over HZSM-5 zeolite at 400C was also studied and has shown a partial deoxygenation of the pyrolytic products.

  7. Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production.

    Science.gov (United States)

    Wang, Yunpu; Dai, Leilei; Fan, Liangliang; Cao, Leipeng; Zhou, Yue; Zhao, Yunfeng; Liu, Yuhuan; Ruan, Roger

    2017-03-01

    In this study, a ZrO2-based polycrystalline ceramic foam catalyst was prepared and used in catalytic co-pyrolysis of waste vegetable oil and high density polyethylene (HDPE) for hydrocarbon fuel production. The effects of pyrolysis temperature, catalyst dosage, and HDPE to waste vegetable oil ratio on the product distribution and hydrocarbon fuel composition were examined. Experimental results indicate that the maximum hydrocarbon fuel yield of 63.1wt. % was obtained at 430°C, and the oxygenates were rarely detected in the hydrocarbon fuel. The hydrocarbon fuel yield increased when the catalyst was used. At the catalyst dosage of 15wt.%, the proportion of alkanes in the hydrocarbon fuel reached 97.85wt.%, which greatly simplified the fuel composition and improved the fuel quality. With the augment of HDPE to waste vegetable oil ratio, the hydrocarbon fuel yield monotonously increased. At the HDPE to waste vegetable oil ratio of 1:1, the maximum proportion (97.85wt.%) of alkanes was obtained. Moreover, the properties of hydrocarbon fuel were superior to biodiesel and 0# diesel due to higher calorific value, better low-temperature low fluidity, and lower density and viscosity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Climate design of vegetable oil fuels for agricultural equipment; Klimadesign von Pflanzenoelkraftstoffen fuer landwirtschaftliche Maschinen

    Energy Technology Data Exchange (ETDEWEB)

    Stoehr, Michael [B.A.U.M. Consult GmbH, Muenchen (Germany). International and Energy Projects; Pickel, Peter [John Deere European Technology Innovation Center, Kaiserslautern (Germany)

    2012-07-01

    The use of biofuels in agricultural machinery is an option for complying with climate protection requirements that are presently discussed to be placed on manufacturers of mobile off-road machinery by the European Commission. A mathematical model has been developed that allows calculating greenhouse gas emissions (GHGE) of biofuels for complex production paths in a straightforward, transparent manner and in pattern with the EU's Fuel Quality Directive (FQD). Therewith it has been shown that both rape seed and camelina sativa oil fuels can save more than 60 % GHGE. Key parameters have been identified and rules for a climate design of vegetable oil fuels have been formulated. (orig.)

  9. Processing Of Neem And Jatropha Methyl Esters -Alternative Fuels From Vegetable Oil

    Science.gov (United States)

    Ramasubramanian, S.; Manavalan, S.; Gnanavel, C.; Balakrishnan, G.

    2017-03-01

    Biodiesel is an alternative fuel for diesel engine. The methyl esters of vegetable oils, known as biodiesel are becoming increasingly popular because of their low environmental impact and potential as a green alternative fuel for diesel engine. This paper deals with the manufacturing process of Biodiesel from jatropha and neem oil. Biodiesel was prepared from neem oil and jatropha oil, the transestrified having kinematic viscosity of 3 & 2.6 centistokes, methanol ratio is 6:1 & 5.1respectively. The secondary solution is preheated at 65 C & 60 C and reaction temperature is maintained at 60C & 55 C and reaction time is 60 minutes approximately with NaOH catalyst and low viscosity oil is allowed to settle 24 hours. The average yield of neem and jatropha methyl esters was about 85%. These methyl esters shows excellent alternative under optimum condition for fossil fuels.

  10. Waste Vegetable Oil as an Alternative Fuel for Diesel Vehicles

    Science.gov (United States)

    2009-03-01

    gallon. Taxation of Alternative Fuels DESC includes the federal excise tax in its costs because the federal government is not exempt from taxation of...vehicle, or any internal combustion engine fuel tank (Helber, 2007). DESC pays the federal excise Tax to the government when it refines the fuel...Quarterly Federal Excise Tax Return. Just like petro-diesel refiners, the alternative fuel refiner is responsible to pay the tax. The IRS makes no

  11. Lipase-catalyzed production of biodiesel fuel from vegetable oils contained in waste activated bleaching earth

    Energy Technology Data Exchange (ETDEWEB)

    Pizarro, Ana V. Lara; Park, Enoch Y. [Shizuoka Univ., Dept. of Applied Biological Chemistry, Shizuoka (Japan)

    2003-02-28

    Waste bleaching earths from crude vegetable oil refining process contain approximately 40% of its weight as oil. Low valued oils are potential substrates for biodiesel fuel production. Vegetable oils from waste bleaching earth samples were organic-solvent extracted and identified as soybean, palm and rapeseed oil. Methanolysis was efficiently catalyzed by Rhizopus oryzae lipase in the presence of high water content, and by a single addition of methanol. R. oryzae lipase was not inactivated by methanol in concentrations lower than 4 milli-equivalents and 75% water content. Optimum conditions for methanolysis of extracted oils were 75% water content (by weight of substrate), an oil/methanol molar ratio of I:4, and 67 IU/g of substrate with agitation at 175 rpm for 96 h at 35 deg C. The highest conversion yield reached 55% (w/w) with palm oil after 96 h of reaction. Adverse viscosity conditions might have influenced methanolysis of extracted soybean and rapeseed oil in spite of high water or methanol concentrations. (Author)

  12. Transesterification of vegetable oils with ethanol and characterization of the key fuel properties of ethyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Anastopoulos, G.; Zannikou, Y.; Stournas, S. [National Technical University of Athens, School of Chemical Engineering, Laboratory of Fuels Technology and Lubricants, Iroon Polytechniou 9, Athens 15780 (Greece); Kalligeros, S. [Hellenic Organization for Standardization, Technical Committee 66, 67 Prevezis Street, Athens, 10444 (Greece)

    2009-07-01

    The transesterification reactions of four different vegetable oils (sunflower, rapeseed, olive oil and used frying oil) with ethanol, using sodium hydroxide as catalyst, were studied. The ester preparation involved a two-step transesterification reaction, followed by purification. The effects of the mass ratio of catalyst to oil (0.25 - 1.5%), the molar ratio of ethanol to oil (6:1 - 12:1), and the reaction temperature (35 - 90 {sup o}C) were studied for the conversion of sunflower oil to optimize the reaction conditions in both stages. The rest of the vegetable oils were converted to ethyl esters under optimum reaction parameters. The optimal conditions for first stage transesterification were an ethanol/oil molar ratio of 12:1, NaOH amount (1% wt/wt), and 80 {sup o}C temperature, whereas the maximum yield of ethyl esters reached 81.4% wt/wt. In the second stage, the yield of ethyl esters was improved by 16% in relation with the one-stage transesterification, which was obtained under the following optimal conditions: catalyst concentration 0.75% and ethanol/oil molar ratio 6:1. The fuel properties of the esters were measured according to EN test methods. Based on the experimental results one can see that the ethyl esters do not differ significantly from methyl esters. Moreover, the results showed that the values of density, viscosity, and higher heating value of ethyl esters were similar to those of automotive and heavy duty engine diesel fuel. However, the CFPP values were higher, which may contribute to potential difficulties in cold starts. On the other hand, the flash points, which were higher than those of diesel fuel constituted a safety guarantee from the point of view of handling and storage. (author)

  13. Transesterification of Vegetable Oils with Ethanol and Characterization of the Key Fuel Properties of Ethyl Esters

    Directory of Open Access Journals (Sweden)

    Stamoulis Stournas

    2009-06-01

    Full Text Available The transesterification reactions of four different vegetable oils (sunflower, rapeseed, olive oil and used frying oil with ethanol, using sodium hydroxide as catalyst, were studied. The ester preparation involved a two-step transesterification reaction, followed by purification. The effects of the mass ratio of catalyst to oil (0.25 – 1.5%, the molar ratio of ethanol to oil (6:1 – 12:1, and the reaction temperature (35 – 90 °C were studied for the conversion of sunflower oil to optimize the reaction conditions in both stages. The rest of the vegetable oils were converted to ethyl esters under optimum reaction parameters. The optimal conditions for first stage transesterification were an ethanol/oil molar ratio of 12:1, NaOH amount (1% wt/wt, and 80 °C temperature, whereas the maximum yield of ethyl esters reached 81.4% wt/wt. In the second stage, the yield of ethyl esters was improved by 16% in relation with the one-stage transesterification, which was obtained under the following optimal conditions: catalyst concentration 0.75% and ethanol/oil molar ratio 6:1. The fuel properties of the esters were measured according to EN test methods. Based on the experimental results one can see that the ethyl esters do not differ significantly from methyl esters. Moreover, the results showed that the values of density, viscosity, and higher heating value of ethyl esters were similar to those of automotive and heavy duty engine diesel fuel. However, the CFPP values were higher, which may contribute to potential difficulties in cold starts. On the other hand, the flash points, which were higher than those of diesel fuel constituted a safety guarantee from the point of view of handling and storage.

  14. Preliminary investigation of polynuclear aromatic hydrocarbon emissions from a diesel engine operating on vegetable oil-based alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mills, G.A.; Howard, A.G.

    1983-09-01

    Polynuclear aromatic hydrocarbon (PAH) exhaust emissions from a diesel engine operating on unmodified (sunflower, rapeseed, soyabean) and modified (ethyl-ester sunflower) vegetable oil were compared with emissions resulting from the combustion of diesel gas oil. Three engine load/speed conditions were assessed for each fuel and emission levels for 20 PAH compounds are presented for each test. PAH emission profiles arising from the combustion of unmodified oils were similar, with the total PAH exhaust concentrations generally being lower than the levels obtained using diesel fuel. Increasing engine load was found to increase greatly the production of carcinogenic PAH species in the exhaust from combusted unmodified vegetable oils. The formation of alkyl-substituted PAH, common in diesel exhaust emissions, was very limited using these fuels. Results obtained from operation of the engine on the ethyl-ester of sunflower oil indicated PAH emissions in between those obtained using diesel oil and the unmodified vegetable oils. 18 references.

  15. A preliminary investigation of polynuclear aromatic hydrocarbon emissions from a diesel engine operating on vegetable oil-based alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mills, G.A.; Howard, A.G.

    1983-09-01

    Polynuclear aromatic hydrocarbon (PAH) exhaust emissions from a diesel engine operating on unmodified (sunflower, rapeseed, soyabean) and modified (ethyl-ester sunflower) vegetable oil were compared with emissions resulting from the combustion of diesel gas oil. Three engine load/speed conditions were assessed for each fuel and emission levels for 20 PAH compounds are presented for each test. PAH emission profiles arising from the combustion of unmodified oils were similar, with the total PAH exhaust concentrations generally being lower than the levels obtained using diesel fuel. Increasing engine load was found to increase greatly the production of carcinogenic PAH species in the exhaust from combusted unmodified vegetable oils. The formation of alkyl-substituted PAH, common in diesel exhaust emissions, was very limited using these fuels. Results obtained from operation of the engine on the ethyl-ester of sunflower oil indicated PAH emissions in between those obtained using diesel oil and the unmodified vegetable oils

  16. Testing and preformance measurement of straight vegetable oils as an alternative fuel for diesel engines

    Science.gov (United States)

    Lakshminarayanan, Arunachalam

    Rising fuel prices, growing energy demand, concerns over domestic energy security and global warming from greenhouse gas emissions have triggered the global interest in bio-energy and bio-fuel crop development. Backlash from these concerns can result in supply shocks of traditional fossil fuels and create immense economic pressure. It is thus widely argued that bio-fuels would particularly benefit developing countries by off-setting their dependencies on imported petroleum. Domestically, the transportation sector accounts for almost 40% of liquid fuel consumption, while on-farm application like tractors and combines for agricultural purposes uses close to an additional 18%. It is estimated that 40% of the farm budget can be attributed to the fuel costs. With the cost of diesel continuously rising, farmers are now looking at using Straight Vegetable Oil (SVO) as an alternative fuel by producing their own fuel crops. This study evaluates conventional diesel compared to the use of SVO like Camelina, Canola and Juncea grown on local farms in Colorado for their performance and emissions on a John Deere 4045 Tier-II engine. Additionally, physical properties like density and viscosity, metal/mineral content, and cold flow properties like CFPP and CP of these oils were measured using ASTM standards and compared to diesel. It was found that SVOs did not show significant differences compared to diesel fuel with regards to engine emissions, but did show an increase in thermal efficiency. Therefore, this study supports the continued development of SVO production as a viable alternative to diesel fuels, particularly for on-farm applications. The need for providing and developing a sustainable, economic and environmental friendly fuel alternative has taken an aggressive push which will require a strong multidisciplinary education in the field of bio-energy. Commercial bio-energy development has the potential to not only alleviate the energy concerns, but also to give renewed

  17. Antioxidant Effect on Oxidation Stability of Blend Fish Oil Biodiesel with Vegetable Oil Biodiesel and Petroleum Diesel Fuel

    Directory of Open Access Journals (Sweden)

    M. Hossain

    2013-06-01

    Full Text Available Two different phenolic synthetic antioxidants were used to improve the oxidation stability of fish oil biodiesel blends with vegetable oil biodiesel and petroleum diesel. Butylhydroxytoluene (BHT most effective for improvement of the oxidation stability of petro diesel, whereas  tert-butylhydroquinone (TBHQ showed good performance in fish oil biodiesel. Fish oil/Rapeseed oil biodiesel mixed showed some acceptable results in higher concentration ofantioxidants. TBHQ showed better oxidation stability than BHT in B100 composition. In fish oil biodiesel/diesel mixed fuel, BHT was more effective antioxidant than TBHQ to increase oxidationstability because BHT is more soluble than TBHQ. The stability behavior of biodiesel/diesel blends with the employment of the modified Rancimat method (EN 15751. The performance ofantioxidants was evaluated for treating fish oil biodiesel/Rapeseed oil biodiesel for B100, and blends with two type diesel fuel (deep sulfurization diesel and automotive ultra-low sulfur or zero sulfur diesels. The examined blends were in proportions of 5, 10, 15, and 20% by volume of fish oilbiodiesel.

  18. Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice.

    Science.gov (United States)

    Diederichs, Gabriel Wilhelm; Ali Mandegari, Mohsen; Farzad, Somayeh; Görgens, Johann F

    2016-09-01

    In this study, a techno-economic comparison was performed considering three processes (thermochemical, biochemical and hybrid) for production of jet fuel from lignocellulosic biomass (2G) versus two processes from first generation (1G) feedstocks, including vegetable oil and sugar cane juice. Mass and energy balances were constructed for energy self-sufficient versions of these processes, not utilising any fossil energy sources, using ASPEN Plus® simulations. All of the investigated processes obtained base minimum jet selling prices (MJSP) that is substantially higher than the market jet fuel price (2-4 fold). The 1G process which converts vegetable oil, obtained the lowest MJSPs of $2.22/kg jet fuel while the two most promising 2G processes- the thermochemical (gasification and Fischer-Tropsch synthesis) and hybrid (gasification and biochemical upgrading) processes- reached MJSPs of $2.44/kg and $2.50/kg jet fuel, respectively. According to the economic sensitivity analysis, the feedstock cost and fixed capital investment have the most influence on the MJSP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Fuel vegetable oils under some economic considerations; Oleos vegetais combustiveis sob algumas consideracoes economicas

    Energy Technology Data Exchange (ETDEWEB)

    Mourad, Anna Lucia [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Energia]|[Instituto de Tecnologia de Alimentos (ITAL), Campinas, SP (Brazil)). Centro de Tecnologia de Embalagem]. E-mail: anna@ital.sp.gov.br

    2006-07-01

    The introduction of bio diesel in the Brazilian energy matrix has been mainly motivated by the governmental actions, which foresees social and economical development to the country in a program that allows the use of different oil seed crops as raw materials for bio fuel production. Cost estimates considering the average price received by the farmer and the oil content of each vegetable shows that the minimum cost of bio fuel was about 1.1(castor bean); 1.8(peanut); 2.0(soy beans); 3.3(corn) higher than the average cost of fossil diesel from 1975 to 2004. Among the evaluated raw materials, only the palm oil had inferior cost compared to the petroleum diesel (0.6%). The oleaginous plants that have a higher oil content and smaller agricultural production cost to produce bio fuels are economically most feasible and they should be prioritized in the Government Program so that it may become economically sustainable along the years, as well as generate adequate profit to the farmers of each culture. (author)

  20. Fatty acids composition as a means to estimate the high heating value (HHV) of vegetable oils and biodiesel fuels

    Energy Technology Data Exchange (ETDEWEB)

    Fassinou, Wanignon Ferdinand; Koua, Kamenan Blaise; Toure, Siaka [Laboratoire d' Energie Solaire, UFR-SSMT, Universite de Cocody (Cote d' Ivoire), 22BP582 Abidjan 22 (Ivory Coast); Sako, Aboubakar; Fofana, Alhassane [Laboratoire de Physique de l' Atmosphere et de Mecanique des Fluides, UFR-SSMT, Universite de Cocody (Cote d' Ivoire), 22BP582 Abidjan 22 (Ivory Coast)

    2010-12-15

    High heating value (HHV) is an important property which characterises the energy content of a fuel such as solid, liquid and gaseous fuels. The previous assertion is particularly important for vegetable oils and biodiesels fuels which are expected to replace fossil oils. Estimation of the HHV of vegetable oils and biodiesels by using their fatty acid composition is the aim of this paper. The comparison between the HHVs predicted by the method and those obtained experimentally gives an average bias error of -0.84% and an average absolute error of 1.71%. These values show the utility, the validity and the applicability of the method to vegetable oils and their derivatives. (author)

  1. Finding the food-fuel balance. Supply and demand dynamics in global vegetable oil markets

    Energy Technology Data Exchange (ETDEWEB)

    Savanti, P.

    2012-10-15

    Demand for vegetable oils for food and biofuel use is expected to increase by an additional 23 million tonnes by 2016; however supply is expected to struggle to keep up with this demand, according to this Rabobank report. Vegetable oil stocks have reached a 38 year low this year due in large part to constraints such as land availability and adverse weather.

  2. Antioxidant Effect on Oxidation Stability of Blend Fish Oil Biodiesel with Vegetable Oil Biodiesel and Petroleum Diesel Fuel

    OpenAIRE

    Hossain, M; Sujan, S.M.A; Jamal, M.S

    2013-01-01

    Two different phenolic synthetic antioxidants were used to improve the oxidation stability of fish oil biodiesel blends with vegetable oil biodiesel and petroleum diesel. Butylhydroxytoluene (BHT) most effective for improvement of the oxidation stability of petro diesel, whereas  tert-butylhydroquinone (TBHQ) showed good performance in fish oil biodiesel. Fish oil/Rapeseed oil biodiesel mixed showed some acceptable results in higher concentration ofantioxidants. TBHQ showed better oxidation s...

  3. Improving Vegetable Oil Fueled CI Engine Characteristics Through Diethyl Ether Blending

    KAUST Repository

    Vedharaj, S.

    2016-12-01

    In this research, the flow and ignition properties of vegetable oil (VO) are improved by blending it with diethyl ether (DEE). DEE, synthesized from ethanol, has lower viscosity than diesel and VO. When DEE is blended with VO, the resultant DEEVO mixtures have favorable properties for compression ignition (CI) engine operation. As such, DEEVO20 (20% DEE + 80% VO) and DEEVO40 (40% DEE + 60% VO) were initially considered in the current study. The viscosity of VO is 32.4*10−6 m2/s; the viscosity is reduced with the increase of DEE in VO. In this study, our blends were limited to a maximum of 40% DEE in VO. The viscosity of DEEVO40 is 2.1*10−6 m2/s, which is comparable to that of diesel (2.3*10−6 m2/s). The lower boiling point and flash point of DEE improves the fuel spray and evaporation for DEEVO mixtures. In addition to the improvement in physical properties, the ignition quality of DEEVO mixtures is also improved, as DEE is a high cetane fuel (DCN = 139). The ignition characteristics of DEEVO mixtures were studied in an ignition quality tester (IQT). There is an evident reduction in ignition delay time (IDT) for DEEVO mixtures compared to VO. The IDT of VO (4.5 ms), DEEVO20 (3.2 ms) and DEEVO40 (2.7 ms) was measured in IQT. Accordingly, the derived cetane number (DCN) of DEEVO mixtures increased with the increase in proportion of DEE. The reported mixtures were also tested in a single cylinder CI engine. The start of combustion (SOC) was advanced for DEEVO20 and DEEVO40 compared to diesel, which is attributed to the high DCN of DEEVO mixtures. On the other hand, the peak heat release rate decreased for DEEVO mixtures compared to diesel. Gaseous emissions such as nitrogen oxide (NOX), total hydrocarbon (THC) and smoke were reduced for DEEVO mixtures compared to diesel. The physical and ignition properties of VO are improved by the addition of DEE, and thus, the need for the trans-esterification process is averted. Furthermore, this blending strategy is simpler

  4. PERFORMANCE AND EMISSION CHARACTERISTICS OF A CI ENGINE OPERATED ON VEGETABLE OILS AS ALTERNATIVE FUELS

    Directory of Open Access Journals (Sweden)

    K. Rajagopal

    2011-12-01

    Full Text Available An experimental analysis was done using a four-stroke, single cylinder, constant speed, water-cooled diesel engine, which was interfaced with Engine software. Performance and emission characteristics were evaluated for three non-edible vegetable oils, i.e. thumba, jojoba, neem oil, as well as jojoba methyl ester, to study the effect of injection pressure at 205, 220, 240 and 260 bar with a variation in injection timing at 23°bTDC and 28°bTDC. The performance of jojoba methyl ester improved with an increase in injection pressure. A maximum brake thermal efficiency of 29.72% was obtained with lower emissions compared to the other vegetable oils; this might be explained by low viscosity and better combustion. Further investigations were carried out with a new lubricant, SAE 5W-30, which improved the performance of the CI engine by 1.59%. All of the abovementioned investigations were fruitful and these results are expected to lead to substantial contributions in the development of a viable vegetable oil engine.

  5. Ultrasound-assisted production of biodiesel fuel from vegetable oils in a small scale circulation process.

    Science.gov (United States)

    Thanh, Le Tu; Okitsu, Kenji; Sadanaga, Yasuhiro; Takenaka, Norimichi; Maeda, Yasuaki; Bandow, Hiroshi

    2010-01-01

    Biodiesel production from canola oil with methanol was performed in the presence of a base-catalyst by a circulation process at room temperature. In this process, the transesterification was accelerated by ultrasonic irradiation of low frequency (20 kHz) with an input capacity of 1 kW. The influences of various parameters on the transesterification reaction, including the amount of catalyst, the molar ratio of methanol to oil and the reaction time, were investigated. The objective of this work was to produce biodiesel satisfying the biodiesel-fuel standards of low energy consumption and material savings. The optimal conditions were: methanol/oil molar ratio of 5:1 and 0.7 wt.% catalyst in oil. Under these conditions, the conversion of triglycerides to fatty acid methyl esters was greater than 99% within the reaction time of 50 min. Crude biodiesel was purified by washing with tap water and drying at 70 degrees C under reduced pressure.

  6. Vegetable Oil-Biorefinery.

    Science.gov (United States)

    Pudel, Frank; Wiesen, Sebastian

    2017-03-07

    Conventional vegetable oil mills are complex plants, processing oil, fruits, or seeds to vegetable fats and oils of high quality and predefined properties. Nearly all by-products are used. However, most of the high valuable plant substances occurring in oil fruits or seeds besides the oil are used only in low price applications (proteins as animal feeding material) or not at all (e.g., phenolics). This chapter describes the state-of-the-art of extraction and use of oilseed/oil fruit proteins and phyto-nutrients in order to move from a conventional vegetable oil processing plant to a proper vegetable oil-biorefinery producing a wide range of different high value bio-based products.

  7. Canola Oil Fuel Cell Demonstration: Volume 2 - Market Availability of Agricultural Crops for Fuel Cell Applications

    National Research Council Canada - National Science Library

    Adams, John W; Cassarino, Craig; Spangler, Lee; Johnson, Duane; Lindstrom, Joel; Binder, Michael J; Holcomb, Franklin H; Lux, Scott M

    2006-01-01

    .... The reformation of vegetable oil crops for fuel cell uses is not well known; yet vegetable oils such as canola oil represent a viable alternative and complement to traditional fuel cell feedstocks...

  8. Comparative performance and emissions study of a direct injection Diesel engine using blends of Diesel fuel with vegetable oils or bio-diesels of various origins

    Energy Technology Data Exchange (ETDEWEB)

    Rakopoulos, C.D.; Antonopoulos, K.A.; Rakopoulos, D.C.; Hountalas, D.T.; Giakoumis, E.G. [Internal Combustion Engines Laboratory, Thermal Engineering Department, School of Mechanical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Street, Zografou Campus, 15780 Athens (Greece)

    2006-11-15

    An extended experimental study is conducted to evaluate and compare the use of various Diesel fuel supplements at blend ratios of 10/90 and 20/80, in a standard, fully instrumented, four stroke, direct injection (DI), Ricardo/Cussons 'Hydra' Diesel engine located at the authors' laboratory. More specifically, a high variety of vegetable oils or bio-diesels of various origins are tested as supplements, i.e. cottonseed oil, soybean oil, sunflower oil and their corresponding methyl esters, as well as rapeseed oil methyl ester, palm oil methyl ester, corn oil and olive kernel oil. The series of tests are conducted using each of the above fuel blends, with the engine working at a speed of 2000rpm and at a medium and high load. In each test, volumetric fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides (NO{sub x}), carbon monoxide (CO) and total unburned hydrocarbons (HC) are measured. From the first measurement, specific fuel consumption and brake thermal efficiency are computed. The differences in the measured performance and exhaust emission parameters from the baseline operation of the engine, i.e. when working with neat Diesel fuel, are determined and compared. This comparison is extended between the use of the vegetable oil blends and the bio-diesel blends. Theoretical aspects of Diesel engine combustion, combined with the widely differing physical and chemical properties of these Diesel fuel supplements against the normal Diesel fuel, are used to aid the correct interpretation of the observed engine behavior. (author)

  9. Feasibility of a Dual-Fuel Engine Fuelled with Waste Vegetable Oil and Municipal Organic Fraction for Power Generation in Urban Areas

    Directory of Open Access Journals (Sweden)

    L. De Simio

    2012-01-01

    Full Text Available Biomass, in form of residues and waste, can be used to produce energy with low environmental impact. It is important to use the feedstock close to the places where waste are available, and with the shortest conversion pathway, to maximize the process efficiency. In particular waste vegetable oil and the organic fraction of municipal solid waste represent a good source for fuel production in urban areas. Dual fuel engines could be taken into consideration for an efficient management of these wastes. In fact, the dual fuel technology can achieve overall efficiencies typical of diesel engines with a cleaner exhaust emission. In this paper the feasibility of a cogeneration system fuelled with waste vegetable oil and biogas is discussed and the evaluation of performance and emissions is reported on the base of experimental activities on dual fuel heavy duty engine in comparison with diesel and spark ignition engines. The ratio of biogas potential from MSW and biodiesel potential from waste vegetable oil was estimated and it results suitable for dual fuel fuelling. An electric power installation of 70 kW every 10,000 people could be achieved.

  10. Phenolation of vegetable oils

    Directory of Open Access Journals (Sweden)

    ZORAN S. PETROVIĆ

    2011-04-01

    Full Text Available Novel bio-based compounds containing phenols suitable for the syn­thesis of polyurethanes were prepared. The direct alkylation of phenols with different vegetable oils in the presence of superacids (HBF4, triflic acid as ca­talysts was studied. The reaction kinetics was followed by monitoring the de­crease of the double bond content (iodine value with time. In order to under­stand the mechanism of the reaction, phenol was alkylated with model com­pounds. The model compounds containing one internal double bond were 9-oc­tadecene and methyl oleate and those with three double bonds were triolein and high oleic safflower oil (82 % oleic acid. It was shown that the best structures for phenol alkylation are fatty acids with only one double bond (oleic acid. Fatty acids with two double bonds (linoleic acid and three double bonds (lino­lenic acid lead to polymerized oils by a Diels–Alder reaction, and to a lesser extent to phenol alkylated products. The reaction product of direct alkylation of phenol with vegetable oils is a complex mixture of phenol alkylated with poly­merized oil (30–60 %, phenyl esters formed by transesterification of phenol with triglyceride ester bonds (<10 % and unreacted oil (30 %. The phenolated vegetable oils are new aromatic–aliphatic bio-based raw materials suitable for the preparation of polyols (by propoxylation, ethoxylation, Mannich reactions for the preparation of polyurethanes, as intermediates for phenolic resins or as bio-based antioxidants.

  11. VEGETABLE OILS AS SUBSTITUTION FOR DIESEL OIL Test results ...

    African Journals Online (AJOL)

    Test results obtained on a Diesel Engine with direct injection. W. Scheer, Professor. Mechanical ... oils as diesel engine fuel had been conducted during the last three years in the .... Table 2. Performance, consumption, starting behaviour and smoke levels of the Daimler-Benz Diesel engine OM314 run with vegetable oils in ...

  12. Monitoring `Renewable resources`. Vegetable oils and other fuels from plants. Third status report; Monitoring `Nachwachsende Rohstoffe`. Pflanzliche Oele und andere Kraftstoffe aus Pflanzen. Dritter Sachstandsbericht

    Energy Technology Data Exchange (ETDEWEB)

    Roesch, C.

    1997-11-01

    The present status report `vegetable oils and other fuels from plants` deals with important developments on the utilization of biofuels in spark ignition engines and diesel engines since presentation of the report `growing raw materials` of the Enquete comission `Technikfolgenabschaetzung und -bewertung`. The report deals mainly with rapeseed oil and rape seed oil fatty acid methyl ester produced from this (mentioned short of biodiesel) as well as with bioethanol made from sugar beet and grain. (orig./SR) [Deutsch] Der vorliegende Sachstandsbericht `Pflanzliche Oele und andere Kraftstoffe aus Pflanzen` beschaeftigt sich mit den wichtigsten Entwicklungen beim Einsatz von Biokraftstoffen in Otto- und Dieselmotoren seit Vorlage des Berichts `Nachwachsende Rohstoffe` der Enquete-Kommission `Technikfolgenabschaetzung und -bewertung`. Der Bericht befasst sich schwerpunktmaessig mit Rapsoel und daraus hergestelltem Rapsoelfettsaeuremethylester (kurz Biodiesel genannt) sowie mit aus Zuckerrueben und Getreide erzeugtem Bioethanol. (orig./SR)

  13. Fuel conversional aspects of palm oil and sunflower oil

    Energy Technology Data Exchange (ETDEWEB)

    Demi-Rbas, A. [PK 216, Trabzon (Turkey)

    2003-05-15

    There are great differences between palm oil and palm kernel oil in physical and chemical characteristics. Palm oil contains mainly palmitic (16:0) and oleic (18:1) acids, the 2 common fatty acids and about 50% saturated, while palm kernel oil contains mainly lauric acid (12:0) and is more than 89% saturated. Palm is widely grown in Southeast Asia, and 90% of the palm oil produced is used for food, while the remaining 10% is used for nonfood consumption, such as production of oleo-chemicals. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. Compared to No. 2 diesel fuel, all of the vegetable oils are much more viscous, while methyl esters of vegetable oils are slightly more viscous. The methyl esters are more volatile than the vegetable oils. The soaps obtained from the vegetable oils can be pyrolyzed into hydrocarbon-rich products. The yield of conversion of the sunflower oil reached the maximum 78.3% at 660 K over ZnCl{sub 2} catalyst. (Author)

  14. Implementation and testing of the use of vegetable oils as fuel diesel generators in the Amazon isolated communities; Implantacao e testes de utilizacao de oleo vegetal como combustivel para diesel geradores em comunidades isoladas da Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Suani Teixeira; Silva, Orlando Cristiano da; Gonzalez Velaquez, Silvia Maria Stortini; Monteiro, Maria Beatriz C.A.; Silotto, Carlos Eduardo Grassi [Centro Nacional de Referencia em Biomassa (CENBIO), Sao Paulo, SP (Brazil)

    2004-07-01

    The project PROVEGAM 'Implantation and test of a unit demonstration of energetic utilization of vegetable oil', tested in operational conditions of field, the functioning of a conventional diesel engine, adapted to operate with palm oil 'in natura' in the community of Vila Soledade, city of Moju, Para State. The Vila Soledade is an isolated community that has, approximately, 700 inhabitants and it's located at one hundred kilometers from the city hall by car and more 30 minutes by boat. The electric energy of this community was previously generated, by a conventional diesel engine, obsolete and very expensive to the community, because the fuel price and the transport of the diesel oil from the city to the community. The PROVEGAM project, installed an electric generation group, MWM TD229, manufactured in Brazil, adapted with a conversion kit to operate with 'in natura' palm oil, working 6 hours per day. Because of the viscosity of the palm oil and its combustion point, it was necessary to heat the vegetable oil before its injection into the engine. The operation begins and finishes with diesel oil, in order to heat the palm oil and to clean possible residues deposited in the interior of the engine. The use of the palm oil justifies itself for being produced in the region, which means that it doesn't have to be imported. Currently, the generating group is working in the community during 5 hours per day with palm oil, and 1 hour per day with diesel oil and it already has more than 1600 hours of testing. The results of this project, so far, have confirmed the conceived premises, and this electric model of generating energy is already recommended to be implemented in other communities in the Amazon region. (author)

  15. Industrial uses of vegetable oils

    National Research Council Canada - National Science Library

    Erhan, Sevim Z

    2005-01-01

    ..., cotton, sunflower, flax, and rape. Although a major part of these oils are used for food products such as shortenings, salad and cooking oils and margarines, large quantities serve feed and industrial applications. Other vegetable oils widely used industrially include palm, palm kernel, coconut, castor, and tung. However, these are not of domestic or...

  16. Economic and technical considerations on the use of vegetable oils as fuel substitute for diesel oil; Consideracoes economicas e tecnicas sobre o uso de oleos vegetais combustiveis como substituto de oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Mourad, Anna Lucia [Universidade Estadual de Campinas (DE/FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Energia], Email: anna@ital.sp.gov.br

    2006-07-01

    The introduction of bio diesel in the Brazilian energy matrix has been mainly motivated by the governmental actions, which foresees social and economical development to the country in a program that allows the use of different oil seed crops as raw materials for biofuels production. Cost estimates considering the average price received by the farmer and the oil content of each vegetable shows that the minimum cost of bio fuel was about 1,1(castor bean); 1,8(peanut); 2,0(soy beans); 3,3(corn) higher than the average cost of fossil diesel from 1975 to 2004. Among the evaluated raw materials, only the palm oil had inferior cost compared to the petroleum diesel (0.6%). The oleaginous plants that have a higher oil content and smaller agricultural production cost to produce bio fuels are economically most feasible and they should be prioritized in the government program so that it may become economically sustainable along the years, as well as generate adequate profit to the farmers of each culture. The feasibility of National Program for Biofuels Use and Production and both economical and environmental aspects should also consider the destination of the main by-products of the biofuel productive chain such as the left over cakes after extraction of the oil and glycerine produced during the transesterification process. (author)

  17. Fuels and Oils

    Energy Technology Data Exchange (ETDEWEB)

    Bronshtein, L.A.; Kalinina, E.V.; Shekter, Y.N.; Shkol' nikov, V.M.

    1984-03-01

    This article describes procedures which can be used to calculate the quantity of information obtained in laboratory and test-stand evaluations of fuels and oils by various methods. The evaluation of the protective properties of oils by means of the methods of GOST 9.054-75 is compared to a system for the coordinated investigation of the protective properties (CIPP) of the oils. According to GOST 9.054-75, the protective properties of oils are determined by the percentage of corrosion-damaged surface on metal panels that have been coated with a film of the oil, after a certain test time under various conditions. In tests on oils by the CIPP system, each index is evaluated on a rating scale containing three classes: ''good,'' ''satisfactory,'' and ''poor.'' According to GOST 9.054-75, the protective properties of oils are evaluated by 5 methods: in a humidity cabinet, in a salt fog cabinet, in a sulfur dioxide cabinet, in sea water, and in a test for hydrobromic acid displacement. It is demonstrated that the tests by the CIPP system using the desirability scale give the highest level of informativity. The informativity of the methods, along with the repeatability and reproducibility of the results, can serve as quantitative characterization of the quality of the test methods. Includes 2 tables.

  18. Palm oil and derivatives: fuels or potential fuels?

    Directory of Open Access Journals (Sweden)

    Pioch Daniel

    2005-03-01

    Full Text Available Scientific and technical information including field trials about uses of palm oil as fuel has been available for more than half a century now. Several ways were investigated, from the simple mixture with petroleum Diesel fuel, to more sophisticated solutions. The quality of vegetable oils in natura as fuel is difficult to assess because of interferences between properties of the triacylglycerols – the main components – and those of the many minor components, their content varying significantly from sample to sample. A methodology set up at Cirad allowed to investigate separately natural triacylglycerols alone and the effect of minor components. In addition to these laboratory experiments, engine test at bench and field trials performed in palm oil producing countries, show that this oil is among the best oils as fuel; palm kernel oil whose chemical and physical properties are very close to those of the best of the series investigated, namely copra oil, should display also very interesting properties as Diesel biofuel. Both oils do require external adaptation of the engine when using an indirect injection type engine but even heavier adaptations for a direct injection model. Thus for use as Diesel fuel palm and palm kernel oils are suitable for captive fleets or for engine gensets, to balance the adaptation cost by a scale-up effect either on the number of identical engines or on the nominal vegetable oil consumption per set. Direct use of palm et palm kernel oils fits very well with technical and economical conditions encountered in remote areas. It is also possible to mix palm oil to Diesel fuel either as simple blend or as micro-emulsion. Out of the direct use, palm oil methyl or ethyl ester, often referred to as biodiesel, displays properties similar to those of petroleum Diesel fuel. This technical solution which is suitable to feed all kinds of standard compression ignited engines requires a chemical plant for carrying out the

  19. Technical aspects of biodiesel production from vegetable oils

    Directory of Open Access Journals (Sweden)

    Krishnakumar Janahiraman

    2008-01-01

    Full Text Available Biodiesel, a promising substitute as an alternative fuel has gained significant attention due to the finite nature of fossil energy sources and does not produce sulfur oxides and minimize the soot particulate in comparison with the existing one from petroleum diesel. The utilization of liquid fuels such as biodiesel produced from vegetable oil by transesterification process represents one of the most promising options for the use of conventional fossil fuels. In the first step of this experimental research, edible rice bran oil used as test material and converted into methyl ester and non-edible jatropha vegetable oil is converted into jatropha oil methyl ester, which are known as biodiesel and they are prepared in the presence of homogeneous acid catalyst and optimized their operating parameters like reaction temperature, quantity of alcohol and the catalyst requirement, stirring rate and time of esterification. In the second step, the physical properties such as density, flash point, kinematic viscosity, cloud point, and pour point were found out for the above vegetable oils and their methyl esters. The same characteristics study was also carried out for the diesel fuel for obtaining the baseline data for analysis. The values obtained from the rice bran oil methyl ester and jatropha oil methyl ester are closely matched with the values of conventional diesel and it can be used in the existing diesel engine without any hardware modification. In the third step the storage characteristics of biodiesel are also studied. .

  20. Vegetable oils in the agriculture. Experience reports; Pflanzenoel als Kraftstoff in der Landwirtschaft. Erfahrungsberichte

    Energy Technology Data Exchange (ETDEWEB)

    Kemnitz, Dietmar [Fachagentur Nachwachsende Rohstoffe e.V., Guelzow (Germany); Paul, Nicole [Fachagentur Nachwachsende Rohstoffe e.V., Guelzow (Germany); WPR COMMUNICATION GmbH und Co. KG, Koenigswinter/Bonn (Germany); Wichmann, Volker; Schuemann, Ulrike [Rostock Univ. (Germany); Maurer, Karl [Hohenheim Univ. (Germany); Remmele, Edgar [Technologie- und Foerderzentrum Straubing (Germany)

    2006-08-15

    In the agriculture, bio fuels increasingly meet with great interest. The use of bio diesel and vegetable oil as alternative fuels in diesel engines requires clear technical adjustments. The brochure under consideration reports on realizations of farmers who switched their tractors to an operation with vegetable oils. The brochure consists of the following contributions: (a) Employment of vegetable oil as fuel in the agriculture (empiric reports of farmers); (b) Re-equipment on operation with vegetable oil (empiric reports of reequipping persons); (c) Scientifically accompanying research of re-equipment (results of a 100-tractor-demonstration project); (d) Mixtures of plant oil and diesel fuel (results from engine test stand investigations); (e) Production of vegetable oil (experiences from an oil mill operator); (f) scientifically accompanying research for the production of vegetable oils (references to the production of rapeseed oil fuel according to the standard DIN 51605); (g) Hints and notes for the practice; (h) Fuel filling stations for self-consumers and storage of vegetable oil; (i) FNR funding programs bio fuels in the agriculture; (j) Adresses and contact persons.

  1. Nonisocyanate polyurethane materials, and their preparation from epoxidized soybean oils and related epoxidized vegetable oils, incorporation of carbon dioxide into soybean oil, and carbonation of vegetable oils

    OpenAIRE

    2004-01-01

    Novel carbonated vegetable oils (such as carbonated soybean oil) are made by reacting carbon dioxide with an epoxidized vegetable oil. The carbonated vegetable oils advantageously may be used for producing nonisocyanate polyurethane materials.

  2. Production of biodiesel fuel by transesterification of different vegetable oils with methanol using Al₂O₃ modified MgZnO catalyst.

    Science.gov (United States)

    Olutoye, M A; Hameed, B H

    2013-03-01

    An active heterogeneous Al2O3 modified MgZnO (MgZnAlO) catalyst was prepared and the catalytic activity was investigated for the transesterification of different vegetable oils (refined palm oil, waste cooking palm oil, palm kernel oil and coconut oil) with methanol to produce biodiesel. The catalyst was characterized by using X-ray diffraction, Fourier transform infrared spectra, thermo gravimetric and differential thermal analysis to ascertain its versatility. Effects of important reaction parameters such as methanol to oil molar ratio, catalyst dosage, reaction temperature and reaction time on oil conversion were examined. Within the range of studied variability, the suitable transesterification conditions (methanol/oil ratio 16:1, catalyst loading 3.32 wt.%, reaction time 6h, temperature 182°C), the oil conversion of 98% could be achieved with reference to coconut oil in a single stage. The catalyst can be easily recovered and reused for five cycles without significant deactivation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Fuel oil quality task force

    Energy Technology Data Exchange (ETDEWEB)

    Laisy, J.; Turk, V. [R.W. Beckett Corp., Elyria, OH (United States)

    1997-09-01

    In April, 1996, the R.W. Beckett Corporation became aware of a series of apparently unrelated symptoms that made the leadership of the company concerned that there could be a fuel oil quality problem. A task force of company employees and industry consultants was convened to address the topic of current No. 2 heating oil quality and its effect on burner performance. The task force studied changes in fuel oil specifications and trends in properties that have occurred over the past few years. Experiments were performed at Beckett and Brookhaven National Laboratory to understand the effect of changes in some fuel oil properties. Studies by other groups were reviewed, and field installations were inspected to gain information about the performance of fuel oil that is currently being used in the U.S. and Canada. There was a special concern about the use of red dye in heating oils and the impact of sulfur levels due to the October, 1993 requirement of low sulfur (<0.05%) for on-highway diesel fuel. The results of the task force`s efforts were published in July, 1996. The primary conclusion of the task force was that there is not a crisis or widespread general problem with fuel oil quality. Localized problems that were seen may have been related to refinery practices and/or non-traditional fuel sources. System cleanliness is very important and the cause of many oil burner system problems. Finally, heating oil quality should get ongoing careful attention by Beckett engineering personnel and heating oil industry groups.

  4. Biodiesel from plant seed oils as an alternate fuel for compression ignition engines-a review.

    Science.gov (United States)

    Vijayakumar, C; Ramesh, M; Murugesan, A; Panneerselvam, N; Subramaniam, D; Bharathiraja, M

    2016-12-01

    The modern scenario reveals that the world is facing energy crisis due to the dwindling sources of fossil fuels. Environment protection agencies are more concerned about the atmospheric pollution due to the burning of fossil fuels. Alternative fuel research is getting augmented because of the above reasons. Plant seed oils (vegetable oils) are cleaner, sustainable, and renewable. So, it can be the most suitable alternative fuel for compression ignition (CI) engines. This paper reviews the availability of different types of plant seed oils, several methods for production of biodiesel from vegetable oils, and its properties. The different types of oils considered in this review are cashew nut shell liquid (CNSL) oil, ginger oil, eucalyptus oil, rice bran oil, Calophyllum inophyllum, hazelnut oil, sesame oil, clove stem oil, sardine oil, honge oil, polanga oil, mahua oil, rubber seed oil, cotton seed oil, neem oil, jatropha oil, egunsi melon oil, shea butter, linseed oil, Mohr oil, sea lemon oil, pumpkin oil, tobacco seed oil, jojoba oil, and mustard oil. Several methods for production of biodiesel are transesterification, pre-treatment, pyrolysis, and water emulsion are discussed. The various fuel properties considered for review such as specific gravity, viscosity, calorific value, flash point, and fire point are presented. The review also portrays advantages, limitations, performance, and emission characteristics of engine using plant seed oil biodiesel are discussed. Finally, the modeling and optimization of engine for various biofuels with different input and output parameters using artificial neural network, response surface methodology, and Taguchi are included.

  5. Vegetable oil basestocks for lubricants

    Directory of Open Access Journals (Sweden)

    Garcés, Rafael

    2011-03-01

    Full Text Available The use of vegetable biodegradable basestocks for lubricant oils present several advantages over the much more extended mineral bases. These advantages refer to biodegradability, a renewable feedstock of local production, lubricant and viscosity index and lower costs than synthetic lubricant bases. Despite these benefits, their use in industry and motor vehicles is not yet extensive due their lower stability and higher pour points. Vegetable oils are esters of fatty acids and glycerol, and their physicochemical properties rely mainly on the composition of their acyl moieties. Thus, to assure the maximum levels of stability while maintaining acceptable behavior at low temperatures, monounsaturated fatty acids are preferred for this purpose. The presence of natural antioxidants also improves the properties of these vegetable based stocks as lubricants. These oils usually require additives to improve their viscosity value, oxidative stability and properties at low temperatures. In the present work, the different sources of vegetable oils appropriate for biolubricant production were reviewed. Their properties and the future improvement of the oil bases, oil based stock production, uses and additives are discussed.

    El uso de bases vegetales biodegradables para aceites lubricantes presenta varias ventajas sobre las mucho más extendidas bases minerales. Estas ventajas se centran sobre todo en su biodegradabilidad, en ser un recurso renovable de producción local, en su lubricidad y en su índice de viscosidad, presentando además costes más bajos que las bases sintéticas. Sin embargo, estas ventajas no han extendido el uso de bases vegetales ni en industria ni en automoción debido a su menor estabilidad y sus mayores puntos críticos de fluidez. Los aceites vegetales son ésteres de ácidos grasos y glicerol y sus propiedades físico-químicas dependen principalmente de su composición acílica. Así, para asegurar los máximos niveles de

  6. Green Diesel from Hydrotreated Vegetable Oil Process Design Study

    NARCIS (Netherlands)

    Hilbers, T.J.; Sprakel, Lisette Maria Johanna; van den Enk, L.B.J.; Zaalberg, B.; van den Berg, Henderikus; van der Ham, Aloysius G.J.

    2015-01-01

    A systematic approach was applied to study the process of hydrotreating vegetable oils. During the three phases of conceptual, detailed, and final design, unit operations were designed and sized. Modeling of the process was performed with UniSim Design®. Producing green diesel and jet fuel from

  7. Pyrolysis oil as diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gros, S. [Wartsila Diesel International Ltd., Vaasa (Finland). Diesel Technology

    1996-12-31

    Wood waste pyrolysis oil is an attractive fuel alternative for diesel engine operation. The main benefit is the sustainability of the fuel. No fossil reserves are consumed. The fact that wood waste pyrolysis oil does not contribute to CO{sub 2} emissions is of utmost importance. This means that power plants utilising pyrolysis oil do not cause additional global warming. Equally important is the reduced sulphur emissions that this fuel alternative implies. The sulphur content of pyrolysis oil is extremely low. The high water content and low heating value are also expected to result in very low NO{sub x} emissions. Utilisation of wood waste pyrolysis oil in diesel engines, however, involves a lot of challenges and problems to be solved. The low heating value requires a new injection system with high capacity. The corrosive characteristics of the fluid also underline the need for new injection equipment materials. Wood waste pyrolysis oil contains solid particles which can clog filters and cause abrasive wear. Wood waste pyrolysis oil has proven to have extremely bad ignition properties. The development of a reliable injection system which is able to cope with such a fuel involves a lot of optimisation tests, redesign and innovative solutions. Successful single-cylinder tests have already been performed and they have verified that diesel operation on wood pyrolysis oil is technically possible. (orig.)

  8. Review of Heterogeneous Catalysts for Catalytically Upgrading Vegetable Oils into Hydrocarbon Biofuels

    Directory of Open Access Journals (Sweden)

    Xianhui Zhao

    2017-03-01

    Full Text Available To address the issues of greenhouse gas emissions associated with fossil fuels, vegetable oilseeds, especially non-food oilseeds, are used as an alternative fuel resource. Vegetable oil derived from these oilseeds can be upgraded into hydrocarbon biofuel. Catalytic cracking and hydroprocessing are two of the most promising pathways for converting vegetable oil to hydrocarbon biofuel. Heterogeneous catalysts play a critical role in those processes. The present review summarizes current progresses and remaining challenges of vegetable oil upgrading to biofuel. The catalyst properties, applications, deactivation, and regeneration are reviewed. A comparison of catalysts used in vegetable oil and bio-oil upgrading is also carried out. Some suggestions for heterogeneous catalysts applied in vegetable oil upgrading to improve the yield and quality of hydrocarbon biofuel are provided for further research in the future.

  9. Ricinoleic acid in common vegetable oils and oil seeds.

    Science.gov (United States)

    Yamamoto, Kouhei; Kinoshita, Akemi; Shibahara, Akira

    2008-05-01

    An original gas chromatography/mass spectrometry method for quantifying trace amounts of ricinoleic acid (12-hydroxy-cis-9-octadecenoic acid) is detailed. Data are presented on trace amounts of ricinoleic acid found in several common vegetable oils and oils extracted from common oil seeds: e.g., ca. 30 ppm in commercial olive oil was the lowest amount; and ca. 2,690 ppm in oil extracted from cottonseeds was the highest amount.

  10. Vegetable oil based liquid nanocomposite dielectric

    OpenAIRE

    Leon Chetty; Isaac W. Serukenya; Nelson M. Ijumba

    2013-01-01

    Physically smaller dielectric materials would improve the optimisation of space for power systems. Development of nanotechnology provides an effective way to improve the performances of insulating oils used in power system applications. In this research study, we focused on the development of nanomodified vegetable oils to be used in power transformers. Higher conduction currents were observed in virgin linseed oil than in virgin castor oil. However, for both virgin linseed and virgin castor ...

  11. Main crops used to obtain fuel from vegetable oils in Brazil; Principais culturas para obtencao de oleos vegetais combustiveis no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Mourad, Anna Lucia [Universidade Estadual de Campinas (DE/FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Energia], Email: anna@ital.sp.gov.br

    2006-07-01

    This paper tries to identify how the National Program of Production and Use of Biodiesel may unfold itself in different geographical areas starting from the specific characteristics for each cultivation and volume production of each plant at present. By combining the production of palm, peanut, corn, soy beans, coconut, cotton, castor beans, sunflower and canola, of each geographical area, with the average oil yield as compared with the production of 2004, it has been calculated that the potential of oil production from areas in the South (32,9%) and Middle west (40,8%), having a high per capita income, are much higher than the areas the North (3,4%) and Northeast (10,1%), mainly due to the high soy bean and corn production. Considering the participation of all these oleaginous raw materials, it has been considered that it would be necessary to increase about 5% of the actual production of these plants for a later transformation in fuel to supply the bio diesel demand. This modest growth estimate requires caution on the part of the farmers and oil crushers and converters for they must project their investments correctly, so that their production can be absorbed by the market. The oil yield per hectare and the land use per bio fuel ton are indicators which have a great importance to be considered in the national program to evaluate aspects of economic, social and environmental feasibility. (author)

  12. Vegetable oil based liquid nanocomposite dielectric

    Directory of Open Access Journals (Sweden)

    Leon Chetty

    2013-01-01

    Full Text Available Physically smaller dielectric materials would improve the optimisation of space for power systems. Development of nanotechnology provides an effective way to improve the performances of insulating oils used in power system applications. In this research study, we focused on the development of nanomodified vegetable oils to be used in power transformers. Higher conduction currents were observed in virgin linseed oil than in virgin castor oil. However, for both virgin linseed and virgin castor oil, the DC conduction current increased approximately linearly with the applied DC voltage. In nanomodified linseed oil, the characteristic curve showed two distinct regions: a linear region (at lower applied voltage and a saturation region (at slightly higher voltage. Conversely, in nanomodified castor oil, the characteristic curve showed three distinct regions: a linear region (at lower applied voltage, a saturation region (at intermediate applied voltage and an exponential growth region (at higher applied voltage. The nanomodified linseed oil exhibited a better dielectric performance than the nanomodified castor oil. Overall, the addition of nanodielectrics to vegetable oils decreased the dielectric performance of the vegetable oils. The results of this study contribute to the understanding of the pre-breakdown phenomenon in liquid nanocomposite dielectrics.

  13. Production of biodiesel from vegetable oils

    Directory of Open Access Journals (Sweden)

    Luque, Susana

    2008-03-01

    Full Text Available Biodiesel is produced by transesterification of triglycerides present in animal fat or vegetable oils, by displacing glycerine with a low molar mass alcohol. This resulting ester mixture has physico-chemical properties similar to those of petroleum diesel. This paper reviews the synthetic paths that lead to biodiesel by means of the catalytic transesterification of vegetable oils. Although methyl esters are at present the only ones produced at industrial scale, the use of ethanol, which can also be obtained from renewable resources, has been considered, since it would generate a cleaner and more biocompatible fuel.El biodiésel se produce mediante la transesterificación de triglicéridos, presentes en grasas animales o aceites vegetales, en un proceso en el que un alcohol de bajo peso molecular desplaza a la glicerina. La mezcla de esteres así resultante posee unas propiedades físico-químicas similares a las del diésel procedente de petróleo. En este artículo se revisan las vías de síntesis de biodiésel mediante la transesterificación catalítica de aceites vegetales. Aunque actualmente a escala industrial solo se producen ésteres metílicos, también se ha considerado el uso de etanol, ya que éste se obtiene también de fuentes renovables, generando así un combustible más limpio y biocompatible.

  14. Vegetable oil based eco-friendly coating materials: A review article

    National Research Council Canada - National Science Library

    Alam, Manawwer; Akram, Deewan; Sharmin, Eram; Zafar, Fahmina; Ahmad, Sharif

    2014-01-01

    Vegetable oils (VO) constitute the single, largest, easily available, low cost, non-toxic, non-depletable, biodegradable family yielding materials that are capable of competing with fossil fuel derived petro-based products...

  15. Detection of argan oil adulterated with vegetable oils: New markers

    Energy Technology Data Exchange (ETDEWEB)

    Ourrach, I.; Rada, M.; Perez-Camino, M. C.; Benaissa, M.; Guinda, A

    2012-07-01

    This work aims to contribute to controlling the authenticity of pure argan oil, a valuable Moroccan product. Fatty acids, hydrocarbon fraction, 3,5-stigmastadiene, the alkyl esters of fatty acids, chlorophyllic pigments and physical properties such as viscosity, density and refractive index were studied in order to detect the adulteration of argan oil with edible vegetable oils. The results found in this study show that 3,5-stigmastadiene, kaurene and pheophytin-a can be used as possible new markers for argan oil blends of up to 5% with refined, sunflower and virgin olive oils. Due to the similarity of the fatty acid compositions of the edible oils studied and argan oil, fatty acids can be employed as markers for the detection of argan oil adulteration at levels higher than 10%. Among the physical properties studied, the refractive index shows significant differences for sunflower oil and its blend at 10% with argan oil. (Author) 35 refs.

  16. Vegetable Oils and Animal Fats

    Science.gov (United States)

    non-petroleum oils are also regulated under CFR 112. Like petroleum oils, they can cause devastating physical effects, be toxic, destroy food supplies and habitats, produce rancid odors, foul shorelines and treatment plants, be flammable, and linger.

  17. Vegetable oil as fuel for electric power generation at Rondonia, BR, small agglomerate as way of revenue generation; Oleo vegetal como combustivel para energia eletrica em pequenos aglomerados de Rondonia como forma de geracao de renda

    Energy Technology Data Exchange (ETDEWEB)

    Moret, Artur de Souza [Fundacao Universidade Federal de Rondonia (UNIR), Porto Velho, RO (Brazil)]. E-mail: amoret@unir.br

    2006-07-01

    This text approaches the question energy having as based alternative combustible reference in vegetal oils and the Decentralized Generation of Energy, for attendance of isolated systems and with small load, having as conceptual base the partner-economic-ambient sustain ability, being the economic chain of the entailed and conditional energy to the ambient, social aspects, technician, politicians, financiers and economics. This text intends to demonstrate to the mechanisms used in a research and development project (P and D) for the determination and domain of energy generation, electricity and power, from vegetal oils of suitable oleaginous to the State of Rondonia for a Extractive Reserve. Having as reference the contribution for the local and sustainable development of isolated localities, for the generation of job and income, for the energy self-sufficiency of isolated localities and to make available alternative to the companies of the electric sector of energy availability of isolated communities. (author)

  18. The density and cloud point of diesel oil mixtures with the straight vegetable oils (SVO): Palm, cabbage palm, cotton, groundnut, copra and sunflower

    Energy Technology Data Exchange (ETDEWEB)

    Abolle, Abolle; Loukou, Kouakou; Henri, Planche [Unite de Chimie et Procedes de l' Ecole Nationale Superieure des Techniques Avancees, 32 boulevard Victor, 75739 Paris Cedex 15 (France)

    2009-12-15

    The densities and cloud points of six vegetable oils mixed in variable proportions to diesel oils (commercial vehicle fuels) are measured. Simple correlations are reported between these properties and the fatty acids vegetable oil composition. A simple modelling summarises experimental data informations. (author)

  19. Vegetable oil feeding into modern diesel engines. Effects, regulation methods, limit values; Pflanzenoeleintrag in moderne Dieselmotoren. Auswirkungen, Bestimmungsmethoden, Grenzwerte

    Energy Technology Data Exchange (ETDEWEB)

    Heine, C.; Fischer, T.

    2008-01-15

    The need for a reliable method for the detection of the amount of fuel in engine oils is nearly as old as the first engine oil specification. An increased amount of conventional fuel in the engine oil can cause several problems up to a mechanical breakdown of the engine. Modern fuels and new concepts in the base oil technology of modern engine oils up to so called 'bio engine oils' are responsible for the intensification of the discussion about of the acceptable amount of fuel in the engine oil. Especially in Germany there is an increasing volume of vegetable oil in the market which is used as an alternative fuel for conventional diesel fuel. Actually we have the first engine manufacturers who offer engines for the use with rape oil as a fuel. Unfortunately, up to now, we don't have a proved European - or DIN standard (only the prestandard DIN V 51605) for vegetable oils as fuel. The DIN prestandard is only for rape oil. But in the field palm-oil, sunflower-oil and several more can be found in the tanks of the engines. Moreover, up to know no official information exists about the allowed amount of vegetable oil in the engine oil. Even of those manufacturers who now offer the engines for the use with rape oil. The main answer of some engine manufacturers sounds like 'We don't allow the use of vegetable oil so there is no need for a limit value'. That is logical - at the first moment. But it is well known that a lot of trucks and power units are fired with vegetable oil. Till today WEARCHECK analysed several thousand used engine oils which where used in diesel engines with vegetable oil as fuel. The presentation gives some examples of rape oil fuel dilution and the influence on the engine and engine oil. Moreover it will give an idea how to determine the vegetable oil in engine oils. At the end the presentation shall initiate a discussion about a recommendation for the max. amount of vegetable oil dilution in engine oils. (orig.)

  20. Fuel and fuel blending components from biomass derived pyrolysis oil

    Science.gov (United States)

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  1. Production of rapeseed oil fuel in decentralized oil extraction plants. Handbook. 2. new rev. and enl. ed.; Herstellung von Rapsoelkraftstoff in dezentralen Oelgewinnungsanlagen. Handbuch

    Energy Technology Data Exchange (ETDEWEB)

    Remmele, Edgar [Technologie- und Foerderzentrum (TFZ) im Kompetenzzentrum fuer Nachwachsende Rohstoffe, Straubing (Germany)

    2009-11-15

    Increasing oil prices, the dependence on petroleum imports and the desire to reduce the CO{sub 2} emissions, are arguments to accelerate the production and utilization of biofuels. In 2007, 3.3 million tons of biodiesel and 772,000 tons of vegetable oil were used as fuel. The technically and economically successful production of rapeseed oil fuel in decentralized oil mills requires a quality assurance. Specifically, the brochure under consideration reports on the following: (1) Oilseed processing; (2) Centralized oil production in Germany; (3) Design of a decentralized oil mill; (4) Production of rapeseed oil fuel in decentralized systems; (5) Quality assurance for rapeseed oil fuel in decentralized oil mills; (6) Properties of rapeseed oil fuel; (7) Quality of rapeseed oil fuel from decentralized oil mills; (8) Economic aspects of decentralized oil extraction; (9) Legal framework conditions.

  2. Fuel oil and kerosene sales 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The Fuel Oil and Kerosene Sales 1997 report provides information, illustrations and state-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. 24 tabs.

  3. 21 CFR 180.30 - Brominated vegetable oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Brominated vegetable oil. 180.30 Section 180.30... Brominated vegetable oil. The food additive brominated vegetable oil may be safely used in accordance with... used on an interim basis as a stabilizer for flavoring oils used in fruit-flavored beverages, for which...

  4. 19 CFR 10.56 - Vegetable oils, denaturing; release.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40, 1510...

  5. The viscosity of diesel oil and mixtures with straight vegetable oils: Palm, cabbage palm, cotton, groundnut, copra and sunflower

    Energy Technology Data Exchange (ETDEWEB)

    Abolle, Abolle; Kouakou, Loukou; Planche, Henri [Unite de Chimie et Procedes de l' Ecole Nationale Superieure des Techniques Avancees, 32 Boulevard Victor, 75739 Paris Cedex 15 (France)

    2009-09-15

    The feed back experience of using straight vegetable oil (SVO) as a fuel in the existing diesel engines evidences the need for fitting several physical properties, among them the fuel viscosity. An empirical modelling is proposed in order to interpolate viscosity to any kind of diesel oil/SVO blend. This model is fitted on an experimental viscosity database on blends, varying the SVO mass proportion in the blend, the blend temperature between cloud point and 353 K, and including six vegetable oils varying the fatty acids composition. Extrusion rheology was also checked by varying the pressure drop. Measurements show that blends behave Newtonian. (author)

  6. Experimental study on the performance characteristics and emission analysis of a diesel engine using vegetable oils

    Science.gov (United States)

    Saha, Anup; Ehite, Ekramul Haque; Alam, M. M.

    2016-07-01

    In this research, Vegetable oils derived from Sesame Seed and Rice Bran were used and experimented upon. Using Kerosene as the solvent in varying proportions (30%, 50%, 70% by volume) with the vegetables oils, different blends of Sesame and Rice Bran Oils were produced. The important characteristic properties were found by experimentation and compared with those of Straight Run Diesel. Subsequently, Straight Run Diesel, vegetable oils and their blends were used to run a diesel engine one-by-one and the performance analysis was conducted, followed by an investigation of the exhaust emissions. From the comparative performance analysis, it was found that Rice Bran oil showed better performance as a fuel than Sesame with regards to power production and specific fuel consumption and also resulted in less Carbon Monoxide (CO) emission than Sesame oil blends.

  7. Mathematical Modeling of Vegetable-Oil Crystallization

    DEFF Research Database (Denmark)

    Hjorth, Jeppe Lindegaard

    be desirable to enhance specific properties such as shelf life, viscosity, texture, sensory aspects and physical appearance. Vegetable oils and fats constitute a considerable part of many food products such as chocolate, margarine, bread, spreads and ice cream. Several attractive properties found...... and specialists drawing on many years of experience and knowledge. With this in mind, the aim of the present project was to develop a transient mathematical model, describing crystallization of vegetable fats and oils, based on physicochemical phenomena. The model itself can provide the industry with a valuable...... tool to design and optimize products. It can also serve as a fundament for testing proposed hypotheses and facilitate realizations with respect to oil and fat crystallization. The research carried out in this project is schematically described in Figure 2. The mathematical model is developed...

  8. Preparation of function-enhanced vegetable oils

    Directory of Open Access Journals (Sweden)

    Hiroshi Maeda

    2016-01-01

    Full Text Available Background: Previously, we (HM found that most commercially available edible oils, which were processed by hexane extraction followed by a number of purification steps, were extremely low in anti-peroxy radical (ROO., or radical scavenging activity. This is a great contrast to the respective virgin oils as exemplified by extra-virgin olive oil or crude rape seed oil [1-4] (Figure 1. Therefore, such highly purified oils will became prooxidant and less desirable food components in terms of health oriented diet. Oxidized oils may eventually cause DNA cleavages, modification of proteins, RNA, and lipids, as well as cellular damage, or promote inflammation and carcinogenesis at later time [5-9]. These commercial oils of low antioxidant activity may be improved by adding functionally effective antioxidative components, by using dried vegetable-waste such as tomato-juice-waste-residues and wine-ferment-waste-residues. Their antioxiative components will be transferred into the functionally poor grade edible oils, and consequently, one can improve the quality of such functionally poor oils and thereby contributing human health [2,8,9]. The purpose of this paper is to report a practical procedure to fortify functionally low grade conventional edible oils to functionally enriched edible oils using dried vegetable-waste residues such as tomato juice waste, and wine-ferment-residues, or other vegetable-waste residues. Methods: (1 Preparation and measurements of lycopene and carotenoid enriched oils. To 5.0g or 1.0g of the dried residue of tomato juice waste, 100ml of commercial rape seed (canola oil was added respectively. Each mixture was incubated at room temperature in dark for several weeks. Amount of lycopene and carotenoids extracted into the oil was monitored by increase of absorption (400-550nm and fluorescence at 470nm of carotenoid. Grape-juice ferment (wine waste was similarly prepared after hot air drying, and immersed in canola oil. (2

  9. Comparison of the use of sunflower, cotton and rape seed crude oils as fuels in a compression ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Balafoutis, A.; Melas, D.; Natsis, A.; Papadakis, G.; Papagiannopoulou, A. (Agricultural University of Athens (Greece))

    2007-07-01

    An investigation of using crude oils of sunflower, cottonseed and rapeseed origin produced in Greece as CI engine fuel has been conducted. These oils chemical and physical properties indicate a good potential as alternative diesel engine fuels. Blending and preheating of vegetable oils with conventional diesel before using them as fuels, have been proved to be effective methods to reduce engine malfunctions associated with high oil viscosity. Engine performance and respective gas emission at different load conditions were measured over the whole engine speed range. Increasing the percentage of the oil in the blends with diesel has generally indicated an increase of engine power and torque with a corresponding increase in brake specific fuel consumption. As for emission measurements, it was shown that NO and CO{sub 2} emissions were enhanced by increasing oil percentage in the blend. Comparing these three vegetable oils it was seen that in terms of power and torque output, rape oil based fuels have produced higher values than sunflower and cotton oil. As for brake specific fuel consumption, sunflower oil blends were consumed in a higher rate than blends of the other two vegetable oils. Finally, comparison of emissions has shown that NO, level was higher with sunflower oil blends. These blends produced elevated NO emission especially with the 70% blend in comparison to the 70% cotton and rape oil blends. CO{sub 2} production was higher with cotton oil, but with a minor difference from the rest of the vegetable oil fuels. (orig.)

  10. Utilisation des huiles végétales et de leurs produits de transestérification comme carburants Diesel Use of Vegetable Oils and Their Transesterification Products As Diesel Fuels

    Directory of Open Access Journals (Sweden)

    Gateau P.

    2006-11-01

    écautions soient prises au stade de leur préparation. L'IFP a mis au point un procédé de transestérification simple et économique, mais cependant précis et rigoureux, qui fournit un ester de très bonne qualité pour une application comme carburant. La distillation, toujours coûteuse, peut ici être évitée et le produit, testé en endurance, n'engendre pas de dépôts plus importants que ceux observés lors d'un fonctionnement au gazole. The use of vegetable oils and their derivatives as diesel fuels has been the subject of several studies, since 1981, financed by Agence Française pour la Maîtrise de l'Energie (APME and carried out by Institut Français du Pétrole (IFP in collaboration with Elf, Renault, Centre d'Etudes et d'Expérimentation du Machinisme Agricole Tropical (CEEMAT and Institut de Recherches pour les Huiles et Oléagineux (IRHO. This article reviews the test-bench results obtained with several types of engines representing a wide range of applications from the two-wheeled tractor used for African farming to conventional tractor or truck engines. Two types of fuels were examined: (i vegetable oils themselves, used pure or in a mixture with diesel fuel, and (ii methyl esters from these oils used as they are. During short operating times, both oils and esters lead to the generally satisfactory operating of the engine. Performance losses compared to diesel fuel remain moderate or even imperceptible. However, for their lower viscosity, we could prefer esters to oils. For endurance tests the major problem encountered with vegetable oils and their derivatives is the formation of deposits at injector nozzles. With unsophisticated prechamber engines (Hatz type this phenomenon remains limited in that a complete set of endurance tests was performed without any problem for 1100 hours with different types of pure oils (peanut, cotton, palm. In direct-injection engines the formation of deposits is a very serious constraint in that it almost prohibits the use of such

  11. Fuel oil and LPG; Fioul et GPL

    Energy Technology Data Exchange (ETDEWEB)

    Philippon, A. [UFIP, Union Francaise des Industries Petroliere, 75 - Paris (France)

    1997-12-31

    The impacts of new environmental regulations on the heavy fuel oil and refining French markets, are studied. Illustrated with numerous diagrams concerning oil price evolution, fuel price comparison, market shares, consumption data, etc., it is shown that a brutal elimination of high sulfur content oil fuels would cause an extremely negative impact for the refining industry and for the French economy. Sulfur content limits should be kept at their present levels and users should be free to select technical choices in order to keep within these limits, either through fume desulfurization either through fuel-natural gas mixed combustion

  12. Reduction of gaseous pollutants and particulate materials by using fuels derived from vegetable in substitution to diesel oil; Reducao de poluentes gasosos e de material particulado por meio do uso de combustiveis a base de oleos vegetais como substitutos ao oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Yazaki, Carlos Kazuaki [General Motors do Brasil, Sao Caetano do Sul, SP (Brazil). Engenharia de Chassis e Integracao Powertrain]. E-mail: carlos.yazaki@gm.com; Trielli, Mauricio Assumpcao [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mail: trielli@ipt.br

    2006-07-01

    The aim of this article is to present the contribution allowed by fuels derived from vegetable oils in substitution for the diesel oil. It especially emphasizes the vegetable oil esters potential as gaseous exhaust pollutant and particulate matter reduction produced by ignition compression engines, such a conclusion has been achieved through systematization and analysis of results of experimental tests performed by several researchers that applied natural vegetable oils and their esters to this class of engines. Once the vegetable oils are the base of formation of these fuels, their direct application in these engines is also analyzed showing the advantages and disadvantages of this alternative route. This article also includes an analysis of their physical and chemical properties which help the understanding of their performance in the engines. Due to better results obtained from esters use, their industrial processing, the special characteristics of the engineering materials which they will have contact in engine, principally those used in injection systems, as well as aspects related to their storages are discussed too. (author)

  13. Use of hazelnut kernel oil methyl ester and its blends as alternative fuels in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Guemues, M.; Atmaca, M. [Marmara Univ., Istanbul (Turkey). Mechanical Department

    2008-09-30

    Interest in vegetable oil as an alternative to diesel fuel in diesel engines has increased during the last few decades because reserves of petroleum fuel and its derivatives are diminishing rapidly, and because they have harmful effects on the environment. Numerous vegetable oil esters have been tried as alternatives to diesel fuel. Many researchers have reported that with the use of vegetable oil ester as a fuel in diesel engiens there is a decrease in harmful exhaust emissions and engine performance that is the equivalent of diesel fuel. Several studies have found that biodiesel emits far less of the most regulated pollutants than standard diesel fuel. Decreasing carbon dioxide (CO{sub 2}) emissions by using biodiesel contributes to reducing the greenhouse effect. Furthermore, diminishing carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NO{sub x}), and smoke density improves air quality. Essential oils that have been tested in diesel engines are soybean, sunflower, corn, safflower, cottonseed, and rapeseed, which are categorized as edible oils; however, some edible oils, such as neat hazelnut kernel oil, have not been comprehensively tested as alternative fuel in diesel engines. In this study, hazelnut (Corylus avellana L.) kernel oil was evaluated as an alternative fuel in diesel engines. Firstly, the optimum transesteri.cation reaction conditions for hazelnut kernel oil, with respect to reaction temperature, volumetric ratio of reactants, and catalyst, were investigated. Secondly, an experimental investigation was carried out to examine performance and emissions of a direct injection diesel engine running on hazelnut kernel oil methyl ester and its blends with diesel fuel. Results showed that hazelnut kernel oil methyl ester and its blends with diesel fuel are generally comparable to diesel fuel, according to engine performance and emissions.

  14. Effect of the use of waste vegetable oil based biodiesel on the landscape in diesel engines

    Directory of Open Access Journals (Sweden)

    Bereczky Akos

    2017-01-01

    Full Text Available Petroleum-based fuels are now widely known as environmentally unfriendly because of non-renewable supplies and its contribution to environmental pollution. The challenge, therefore is to ensure appropriate energy supplies at minimum cost. There is an increasing energy demand in the world and nowadays it can be fulfilled only on the basis of fossil fuels. Therefore, it is necessary to evolve a renewable energy source with lower environmental impact. One alternative solution can be oils of plant origin, like vegetable oils and non-edible oils. With waste vegetable oil methyl ester, biofuel dependency can be decreased. Therefore, the aim of this research paper is to analyze the economic and environmental effect of waste vegetable oil methyl ester compared to fossil fuels. In some cases only the age of vehicles could raise burdens to biofuel utilization in road vehicles. Transport and energy policy – on a large scale – can play an important role in fuel consumption. Author is aware that waste vegetable oil methyl ester can play only a limited role in biofuel substitution.

  15. Verification of Some Vegetable Oils as Cutting Fluid for Aluminium ...

    African Journals Online (AJOL)

    Vegetable oils (palm oil, groundnut oil, shear butter oil and cotton seed oil) have been used as lubricants in the turning operation of aluminum under varying spindle speeds, feed rates and depths of cut and the results compared with kerosene (due to the gummy nature of aluminium metal). The parameters investigated are ...

  16. Verification of Some Vegetable Oils as Cutting Fluid for Aluminium

    African Journals Online (AJOL)

    Akorede

    ABSTRACT: Vegetable oils (palm oil, groundnut oil, shear butter oil and cotton seed oil) have been used as lubricants in the turning operation of aluminum under varying spindle speeds, feed rates and depths of cut and the results compared with kerosene (due to the gummy nature of aluminium metal). The parameters ...

  17. Flash pyrolysis fuel oil: BIO-POK

    Energy Technology Data Exchange (ETDEWEB)

    Gust, S. [Neste Oy, Porvoo (Finland)

    1995-12-31

    Flash pyrolysis oil from Ensyn Tech., Canada and Union Fenosa, Spain was combusted with simple pressure atomisation equipment commonly used with light fuel oils in intermediate size (0.1-1 MW) boilers. With a number of modifications to the combustion system, carbon monoxide (CO) and nitrous oxide (NO{sub x}) could be reduced to acceptable levels: CO < 30 ppm and NO{sub x} < 140 ppm. Particulate emissions which were initially very high (Bacharach 4-5) were reduced (Bach. 2-3) by system changes but are still higher than from light fuel oil (Bach. <1). The modifications to the combustion system were: acid resistant progressive cavity pump, higher oil preheat temperature and higher oil pressure than for light fuel oils, refractory section between burner and boiler warmed up to at least 800 deg C. In addition, it was necessary to store pyrolysis oil samples under inert conditions to prevent oxidation and to rinse nozzles with alcohol after shutdown to prevent coking. The complexity and cost of these system modifications are considered to be too great for current grades of flash pyrolysis oil to be sold as a light fuel oil replacement. Improvements to fuel quality will be necessary. The main improvements are lowering of viscosity and improving of stability

  18. 77 FR 48177 - Fuel Oil Systems for Emergency Power Supplies

    Science.gov (United States)

    2012-08-13

    ... COMMISSION Fuel Oil Systems for Emergency Power Supplies AGENCY: Nuclear Regulatory Commission. ACTION: Draft... Regulatory Commission (NRC or the Commission) issued Draft Regulatory Guide, DG- 1282, ``Fuel Oil Systems for... ] requirements regarding fuel oil systems for safety-related emergency diesel generators and oil-fueled gas...

  19. Novel Bioplastics and biocomposites from Vegetable Oils

    Energy Technology Data Exchange (ETDEWEB)

    Henna, Phillip H. [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    there are three degrees of unsaturation. In addition, the double bonds are not in conjugation. Table 1 gives the fatty acid make-up of linseed oil. It can be seen that linseed oil has an average of 6.0 double bonds per triglyceride. Its fatty acid content consists of 5.4% palmitic acid (C16:0), 3.5% stearic acid (C18:0), 19% oleic acid (C18:1), 24 % linoleic acid (C18:2) and 47% linolenic (C18:3). Table 1 also gives the fatty acid composition and varying degrees of unsaturation for various other naturally-occurring natural vegetable oils. The regions of unsaturation in natural oils allow for interesting polymer chemistry to take place. Some of this interesting polymer science, however, involves chemical modification of the regions of unsaturation. Acrylated epoxidized soybean oil (AESO) is prepared by epoxidation of the double bonds, followed by ring opening with acrylic acid. The resulting oil has both acrylate groups and hydroxyl groups. Wool and colleagues have further reacted the hydroxyl groups within the oil with maleic anhydride to produce maleated acrylated epoxidized soybean oil (MAESO). The MAESO has been copolymerized with styrene free radically to produce promising thermosetting sheet molding resins. Petrovi? and co-workers have directly ring opened the epoxidized oil to produce polyols that produce promising polyurethanes through condensation polymerization with diisocyanates. Our group's work initially focused on direct cationic copolymerization of the double bonds or conjugated double bonds of natural oils with monomers, such as styrene and divinylbenzene, to produce promising thermosetting resins. The only modification of the oils that was carried out in these studies was conjugation of the double bonds to enhance the reactivity of the oil. This work has been expanded recently with the incorporation of glass fiber to produce promising composites. We have also explored thermal polymerization techniques to make novel thermosets. This dissertation is

  20. Computer solutions for fuel oil marketers

    Energy Technology Data Exchange (ETDEWEB)

    Berst, J.; Kall, J.

    1984-11-01

    Methods for upgrading computer systems for fuel oil marketers are discussed. A computer system that is free or nearly free of software is proposed. Five suggestions are given to help determine when a computer system is ready for replacement.

  1. Fuel oil and kerosene sales 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-29

    This publication contains the 1992 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the fourth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM for reference years 1984 through 1987. The 1992 edition marks the ninth annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

  2. Vegetable oils: a source of polyols for polyurethane materials

    Directory of Open Access Journals (Sweden)

    Maisonneuve Lise

    2016-09-01

    Full Text Available This manuscript is dedicated to the literature on vegetable oil-based polyurethanes via the isocyanate/alcohol route. A lot of efforts have been made to replace petroleum-based resources. Among renewable resources, vegetable oils present various advantages going from their availability to the large range of possible chemical modifications they permit. Firstly, the vegetable oil chemical composition and the main commercially available vegetable oil precursors are exposed. Concerning vegetable oils-based polyurethanes, research groups first focused on cross-linked systems directly from triglycerides then on thermoplastic ones from fatty acids or fatty acid methyl esters. This manuscript focuses on thermoplastic PUs and underlines the literature about the introduction of hydroxyl groups and isocyanate functions onto triglycerides and fatty acid derivatives. Besides, in a view to the isocyanate/alcohol approach, vegetable oil-based thermoplastic PUs and corresponding diols and diisocyanates are described in details.

  3. Viscosity of Common Seed and Vegetable Oils

    Science.gov (United States)

    Wes Fountain, C.; Jennings, Jeanne; McKie, Cheryl K.; Oakman, Patrice; Fetterolf, Monty L.

    1997-02-01

    Viscosity experiments using Ostwald-type gravity flow viscometers are not new to the physical chemistry laboratory. Several physical chemistry laboratory texts (1 - 3) contain at least one experiment studying polymer solutions or other well-defined systems. Several recently published articles (4 - 8) indicated the continued interest in using viscosity measurements in the teaching lab to illustrate molecular interpretation of bulk phenomena. Most of these discussions and teaching experiments are designed around an extensive theory of viscous flow and models of molecular shape that allow a full data interpretation to be attempted. This approach to viscosity experiments may not be appropriate for all teaching situations (e.g., high schools, general chemistry labs, and nonmajor physical chemistry labs). A viscosity experiment is presented here that is designed around common seed and vegetable oils. With the importance of viscosity to foodstuffs (9) and the importance of fatty acids to nutrition (10), an experiment using these common, recognizable oils has broad appeal.

  4. Genetically engineered plants with increased vegetative oil content

    Science.gov (United States)

    Benning, Christoph

    2017-05-23

    The invention relates to genetically modified agricultural plants with increased oil content in vegetative tissues, as well as to expression systems, plant cells, seeds and vegetative tissues related thereto.

  5. Sedimentation Of Oil-MIneral Aggregates For Remediation Of Vegetable Oil Spills

    Science.gov (United States)

    A response alternative for floating vegetable oil spills based on sedimentation of negatively buoyant oil-mineral aggregrates followed by anaerobic biodegradation in the sediments is under investigation. Sedimentation of floating canola oil by interaction with montmorillonite wa...

  6. Remediation of trichloroethylene-contaminated soils by star technology using vegetable oil smoldering.

    Science.gov (United States)

    Salman, Madiha; Gerhard, Jason I; Major, David W; Pironi, Paolo; Hadden, Rory

    2015-03-21

    Self-sustaining treatment for active remediation (STAR) is an innovative soil remediation approach based on smoldering combustion that has been demonstrated to effectively destroy complex hydrocarbon nonaqueous phase liquids (NAPLs) with minimal energy input. This is the first study to explore the smoldering remediation of sand contaminated by a volatile NAPL (trichloroethylene, TCE) and the first to consider utilizing vegetable oil as supplemental fuel for STAR. Thirty laboratory-scale experiments were conducted to evaluate the relationship between key outcomes (TCE destruction, rate of remediation) to initial conditions (vegetable oil type, oil: TCE mass ratio, neat versus emulsified oils). Several vegetable oils and emulsified vegetable oil formulations were shown to support remediation of TCE via self-sustaining smoldering. A minimum concentration of 14,000 mg/kg canola oil was found to treat sand exhibiting up to 80,000 mg/kg TCE. On average, 75% of the TCE mass was removed due to volatilization. This proof-of-concept study suggests that injection and smoldering of vegetable oil may provide a new alternative for driving volatile contaminants to traditional vapour extraction systems without supplying substantial external energy. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Detection of argan oil adulterated with vegetable oils: new markers

    Directory of Open Access Journals (Sweden)

    Ourrach, I.

    2012-10-01

    Full Text Available This work aims to contribute to controlling the authenticity of pure argan oil, a valuable Moroccan product. Fatty acids, hydrocarbon fraction, 3,5-stigmastadiene, the alkyl esters of fatty acids, chlorophyllic pigments and physical properties such as viscosity, density and refractive index were studied in order to detect the adulteration of argan oil with edible vegetable oils. The results found in this study show that 3,5-stigmastadiene, kaurene and pheophytin-a can be used as possible new markers for argan oil blends of up to 5% with refined, sunflower and virgin olive oils. Due to the similarity of the fatty acid compositions of the edible oils studied and argan oil, fatty acids can be employed as markers for the detection of argan oil adulteration at levels higher than 10%. Among the physical properties studied, the refractive index shows significant differences for sunflower oil and its blend at 10% with argan oil.

    El objetivo principal de este trabajo es contribuir al control de la autenticidad del aceite argán, un producto marroquí muy valorado. Con el fin de detectar la adulteración del aceite de argán con aceites vegetales comestibles, se han estudiado los siguientes parámetros: ácidos grasos, fracción de hidrocarburos, 3,5-estigmastadieno, ésteres alquílicos, pigmentos clorofílicos y propiedades físicas como la viscosidad, densidad e índice de refracción. Los resultados de este estudio muestran que el 3,5-estigmastadieno, kaureno y la feofitina-a podrían utilizarse como nuevos marcadores en la detección del aceite de argán adulterado con aceites refinados y aceite oliva virgen al 5%. La composición en ácidos grasos puede emplearse para la detección de la adulteración del aceite de argán a niveles superiores al 10%, debido a la similitud en la composición de los aceites estudiados. Entre las propiedades físicas analizadas, el índice de refracción mostró diferencias significativas entre el aceite de arg

  8. Computer solutions for fuel oil marketers

    Energy Technology Data Exchange (ETDEWEB)

    Berst, J.; Kinley, P.

    1985-03-01

    The use of computers in fuel oil marketing is discussed. A Maine company, Wright Express Corporation, is trying to increase interest in a new computer network that would cater to the needs of fuel oil and petroleum distribution centers. The company has launched a nationwide marketing campaign hoping to attract service stations and companies that operate large motor vehicle fleet operations such as heating oil dealers. Users would access the system in much the same way a bank's customers use electronic funds transfer systems.

  9. Determination of saturated aliphatic hydrocarbons in vegetable oils

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Coca, R.B.; Cert, R.; Perez Camino, M.C.; Moreda, W.

    2016-07-01

    The aim of this work is to inform about the development of a simple and reliable off-line method for the determination of saturated hydrocarbons (SH) in vegetable oils. SH can be used as markers for fuel or for mineral oil contamination in edible oils and fats. The method consists of the isolation of the fraction by LC on deactivated silver-silica gel and subsequent on-column GC-FID analysis. This stationary phase was prepared avoiding any kind of activation. The method was developed and validated through the participation in both a proficiency test organized by the Joint Research Centre of the European Commission, and a collaborative trial carried out with trained Spanish laboratories according to the standard ISO 5725. Results showed acceptable repeatability and reproducibility values, and Horrat index, being this protocol in use with satisfactory results ever since. The method’s LOQ is 15 mg·kg–1 and its LOD 5 mg·kg–1, which make it suitable to quantify the 50 mg·kg–1 limit established by the EU, and to detect mineral oil content within the 10–500 mg·kg–1 range. Although other procedures with lower LOD have been developed throughout the years, the use of just regular laboratory equipment such as GC-FID makes the proposed method appropriate for application on a routine basis. (Author)

  10. The Erika oil spill impact on land vegetation : main results of a five year monitoring program

    Energy Technology Data Exchange (ETDEWEB)

    Poncet, F. [Cedre, Brest (France); Ragot, R. [Conservatoir Botanique National de Brest, Brest (France); Tintilier, F. [Biotope, Bouguenais (France)

    2007-07-01

    An extensive environmental impact assessment was initiated by the French Ministry of the Environment following a spill of 20,000 tonnes of heavy fuel oil that occurred in December 1999 when the tanker Erica broke and sank off the coast of Brittany. The spill affected 400 km of coastline. Before the oil reached the shore, it had been drifting and weathering at sea for 12 days under harsh sea conditions, resulting in oil fragmentation and scattering. The oil then reached lichen communities and coastal plants of the splash zone on rocky shores, dune vegetation and salt marshes. The oil was composed of 90 per cent heavy distillation residue and 10 per cent light fraction. The type of oil is significant, since weathered crude oils are considered to be less toxic to marsh grass than lighter more penetrating oils. A large scale, 2.5 year clean-up operation was conducted under the POLMAR French national organization. Vegetation clean-up was undertaken depending on the degree of oiling, sensitivity of plant species or natural habitats. A 5 year monitoring program was also launched to determine the impact on vegetation and contamination of the plant tissues by aromatic hydrocarbons. The monitoring program established 175 permanent quadrats on all types of affected vegetation communities and followed a phyto-sociological method. It was determined that adequate removal of the bulk oil resulted in minimal impact on heavily oiled vegetation. Although there was light to moderate short and medium term damages, the composition of vegetation and cover did not evolve significantly in most quadrats monitored. There was a long-term impact on slow growing communities such as lichen, and grey dunes. Residual oil was still observed up to 2005. The adverse effects were linked to coating rather than to toxic effects. Fixed dunes, aerohaline grass and heath communities were found to be more vulnerable and have not yet recovered to pre-spill state. 15 refs., 10 tabs., 4 figs.

  11. FUEL CELL POWERED WITH CANOLA OIL EMULSION

    Directory of Open Access Journals (Sweden)

    Paweł Piotr Włodarczyk

    2017-08-01

    Full Text Available The paper presents possibility of using canola oil as active substance to fuel cell powering. For this purpose a prototype fuel cell was built. Cell was powered with canola oil emulsion. As a detergent Syntanol DS-10 was used. The mesh electrode with Pt catalyst was used as a anode, and mesh electrode with Ni-Co catalyst was used as a cathode. The measurements conducted in the temperature range 293-333K. The maximum current density reached the level of 2 mA/cm2, and maximum power reached the level of 21 mW (at temp. 333K. So, the possibility of delivery of canola oil (in emulsion form directly to the anode was shown. The obtain power is low, but was shown that it is possible to build the fuel cell powered with canola oil.

  12. Reaction Pathways for the Deoxygenation of Vegetable Oils and Related Model Compounds

    NARCIS (Netherlands)

    Gosselink, R.W.|info:eu-repo/dai/nl/326164081; Hollak, S.A.W.; Chang, S.W.; van Haveren, J.; de Jong, K.P.|info:eu-repo/dai/nl/06885580X; Bitter, J.H.|info:eu-repo/dai/nl/160581435; van Es, D.S.

    2013-01-01

    Vegetable oil-based feeds are regarded as an alternative source for the production of fuels and chemicals. Paraffins and olefins can be produced from these feeds through catalytic deoxygenation. The fundamentals of this process are mostly studied by using model compounds such as fatty acids, fatty

  13. Role of dispersion in fuel oil bioassay

    Energy Technology Data Exchange (ETDEWEB)

    Vanderhorst, J.R.; Gibson, C.I.; Moore, L.J.

    1976-01-01

    Three methods of oil-seawater contact were used to measure aqueous phase concentrations of No. 2 fuel oil and the resulting mortality of shrimp, PANDALUS DANAE. Oil--water entry methods included: (1) separate inflow below the water surface, (2) mixture inflow above the water surface, and (3) separate inflow above the water surface. The importance of standardizing the conditions under which oil and water are mixed prior to use in bioassay studies and the amount of dispersion that occurs during the exposure period was noted. Under the three sets of mixing conditions, identical volumes of oil and water resulted in significant differences in observed mortality and measured amounts of oil in the water column, as either total or soluble oil.

  14. 77 FR 39745 - Fuel Oil Systems for Emergency Power Supplies

    Science.gov (United States)

    2012-07-05

    ...] [FR Doc No: 2012-16426] NUCLEAR REGULATORY COMMISSION [NRC-2012-0159] Fuel Oil Systems for Emergency... comment draft regulatory guide (DG), DG-1282, ``Fuel Oil Systems for Emergency Power Supplies.'' This... Commission's requirements regarding fuel oil systems for safety-related emergency diesel generators and oil...

  15. Transesterification of vegetable oils: characterization by thin-layer cromatography and density

    OpenAIRE

    Sandro Froehner; Juliana Leithold; Luiz Fernando Lima Júnior

    2007-01-01

    We studied the transesterification of two vegetable oils: soybean and waste frying oil. The main problem of transesterification is related to the measurement of the ethyl ester content. In this work we used a quick analytical method for assessing the ethyl ester fraction of the purified fuel-grade transesterification products by applying a simple correlation with density. If the ester content is higher than 85% by weight the correlation allows the determination by a single density measurement...

  16. Genotoxicity of diesel engine emissions during combustion of vegetable oils, mineral oil, and their blends; Gentoxizitaet von Dieselmotoremissionen bei Verbrennung von Pflanzenoelen, Mineraloeldiesel und deren Mischkraftstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Buenger, Joern

    2013-07-09

    High particle emissions and strong mutagenic effects were observed after combustion of vegetable oil in diesel engines. This study tested the hypothesis that these results are affected by the amount of unsaturated or polyunsaturated fatty acids of vegetable oils and that blends of diesel fuel and vegetable oil are mutagenic. Three different vegetable oils (linseed oil, LO; palm tree oil, PO; rapeseed oil, RO), blends of 20% vegetable oil and 80% diesel fuel (B20) and 50% vegetable oil and 50% diesel fuel (B50) as well as common diesel fuel (DF) were combusted in a heavy duty diesel engine. The exhaust was investigated for particle emissions and its mutagenic effect in comparison to emissions of DF. The engine was operated using European Stationary Cycle. Particle mass was determined gravimetrically while mutagenicity was determined using the bacterial reverse mutation assay with tester strains TA98 and TA100. Combustion of LO caused the largest amount of total particulate matter (TPM). In comparison to DF it particularly raised the soluble organic fraction (SOF). RO presented second highest TPM and SOF, followed by PO which was scarcely above DF. B50 revealed the lowest amount of TPM while B20 reached as high as DF. RO revealed the highest number of mutations of the vegetable oils closely followed by LO. PO was less mutagenic, but still induced stronger effects than DF. B50 showed higher mutagenic potential than B20. While TPM and SOF were strongly correlated with the content of polyunsaturated fatty acids in the vegetable oils, mutagenicity had a significant correlation with the amount of total unsaturated fatty acids. Vegetable oil blends seem to be less mutagenic than the pure oils with a shifted maximum compared to blends with biodiesel and DF. This study supports the hypothesis that numbers of double bounds in unsaturated fatty acids of vegetable oils combusted in diesel engines influence the amount of emitted particles and the mutagenicity of the exhaust. And

  17. The Comparison of Hydrotreated Vegetable Oils With Respect to Petroleum Derived Fuels and the Effects of Transient Plasma Ignition in a Compression-Ignition Engine

    Science.gov (United States)

    2012-09-01

    ONR and serve as a proof of concept of maritime energy sustainability. On April 22, 2010, the Navy flew an F/A-18 3 Super Hornet on a 50/50 blend...of camelina-derived fuel and JP-5 in a craft nicknamed the “Green Hornet ” as reported by Wright [5]. 4. Diesel Engines in the Navy The Navy and...collect, and save data. It is driven by a wiring diagram that is also graphical. Wiring diagrams can and are nested in the following documentation

  18. Taxonomic perspective of plant species yielding vegetable oils used ...

    African Journals Online (AJOL)

    A search conducted to determine the plants yielding vegetable oils resulted in 78 plant species with potential use in cosmetics and skin care products. The taxonomic position of these plant species is described with a description of vegetable oils from these plants and their use in cosmetic and skin care products.

  19. Vegetable fats and oils as functional ingredients in meat products

    OpenAIRE

    Alfonso Totosaus

    2011-01-01

    Sausages are a widely consumed food in México, and due to their low fat content (ca. 10%) they can be employed to enrich diet by including functional or nutraceutic ingredients as vegetable fats and oils. The replace or incorporation of vegetable fats or oils in cooked sausages is a way to improve their nutritional profile to offer functional meat products.

  20. Vegetable-oil-based polymers as future polymeric biomaterials.

    Science.gov (United States)

    Miao, Shida; Wang, Ping; Su, Zhiguo; Zhang, Songping

    2014-04-01

    Vegetable oils are one of the most important classes of bio-resources for producing polymeric materials. The main components of vegetable oils are triglycerides - esters of glycerol with three fatty acids. Several highly reactive sites including double bonds, allylic positions and the ester groups are present in triglycerides from which a great variety of polymers with different structures and functionalities can be prepared. Vegetable-oil-based polyurethane, polyester, polyether and polyolefin are the four most important classes of polymers, many of which have excellent biocompatibilities and unique properties including shape memory. In view of these characteristics, vegetable-oil-based polymers play an important role in biomaterials and have attracted increasing attention from the polymer community. Here we comprehensively review recent developments in the preparation of vegetable-oil-based polyurethane, polyester, polyether and polyolefin, all of which have potential applications as biomaterials. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Preliminary evaluation of fuel oil produced from pyrolysis of waste ...

    African Journals Online (AJOL)

    The physical and structural properties of the fuel oil produced compared favorably with that of Aviation fuel JP-4 (a wide-cut US Air force fuel). Presently African countries are importing aviation fuels. The fuel oil produced from the pyrolysis of waste water sachets can therefore be used in place of JP–4, providing the aviation ...

  2. Preliminary evaluation of fuel oil produced from pyrolysis of low ...

    African Journals Online (AJOL)

    The physical and structural properties of the fuel oil produced compared favorably with that of Aviation fuel JP-4 (a wide-cut US Air force fuel). Presently African countries are importing aviation fuels. The fuel oil produced from the pyrolysis of waste water sachets can therefore be used in place of JP–4, providing the aviation ...

  3. Evaluation of Local Vegetable Oils as Quenchants for Hardening ...

    African Journals Online (AJOL)

    However, the wear resistance of the quenched grey cast iron developed in this group of local vegetable oils was superior to that of SAE40 engine oil. The potentials of these oils as quenching media for grey cast iron hardening process ranked in descending order as soya bean, shea butter, groundnut, and palm kernel, with ...

  4. Effects of Fe, Ni, and Fe/Ni metallic nanoparticles on power production and biosurfactant production from used vegetable oil in the anode chamber of a microbial fuel cell.

    Science.gov (United States)

    Liu, Jia; Vipulanandan, Cumaraswamy

    2017-08-01

    In this study, metallic nanoparticles (Fe, Ni, and Fe/Ni) were used as cathode catalysts to enhance power production and to improve the anode performance of a two-chambered microbial fuel cell (MFC). The metallic nanoparticles were rod-shaped and produced by the precipitation/co-precipitation method. A biosurfactant was produced in the anode chamber of the MFC from used vegetable oil by the bacteria Serratia sp. Overall cell voltage, power density, bacterial growth, and biosurfactant production were studied by applying different types of metallic nanoparticles to the cathode electrode. The influence of various types of nanoparticles on the impedance of the MFC was also investigated by electrochemical impedance spectroscopy (EIS), including analyses of anode impedance, cathode impedance, anode solution resistance, cathode solution resistance, and membrane resistance. The nanoparticles improved MFC performance in the following order: Fe>Ni>Fe/Ni. The addition of 1.5mg/cm2 Fe nanoparticles to the cathode surface enhanced power production by over 500% to 66.4mW/m3, promoted bacterial growth and biosurfactant production in the anode solution by 132.5% and 32.0%, respectively, and reduced anode impedance, cathode impedance, and membrane resistance by 26.8%, 81.6%, and 33.8% to 159.00Ω, 7.69Ω, and 261.09Ω, respectively. For the first time, biosurfacant production in the anode chamber of the MFC was promoted by using the metallic nanoparticles as cathode catalysts. By improving the cathode properties, this study showed a new way to manipulated the performance of the anode chamber of the MFC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Study of the co-deoxy-liquefaction of biomass and vegetable oil for hydrocarbon oil production.

    Science.gov (United States)

    Chen, Yigang; Wang, Chao; Lu, Weipeng; Yang, Zhengyu

    2010-06-01

    Hydrocarbon oil was obtained by co-deoxy-liquefaction of biomass and vegetable oil in the work. Results showed the weight ratio of biomass to vegetable oil exerted a great effect on the quality of obtained hydrocarbon oil. The optimum weight ratio of biomass to vegetable oil was 4.4:1, when alkanes with the content of 50.43% were detected in obtained hydrocarbon oil, with lower oxygen content of 2.52%, which resulted in higher calorific value-up to 43.36 MJ kg(-1). At the same time, removal rate of carbonyl group of vegetable oil in the mixture reached at least 75.11%. The overall efficiency of the deoxy-liquefaction of biomass and the decarboxylation of vegetable oil were both enhanced by adding vegetable oil into biomass. Compared with the oils obtained from vegetable oil and biomass, respectively, distribution of hydrocarbon oil obtained from the mixture was much more similar to that of diesel oil. (c) 2010 Elsevier Ltd. All rights reserved.

  6. [Efficiency evaluation of capsaicinoids to discriminate bio-waste oils from edible vegetable oils].

    Science.gov (United States)

    Mao, Lisha; Liu, Honghe; Kang, Li; Jiang, Jie; Liao, Shicheng; Liu, Guihua; Deng, Pingjian

    2014-07-01

    To evaluate the efficiency of capsaicinoids to discriminate bio-waste oil from edible vegetable oil. 14 raw vegetable oils, 24 fried waste oils, 34 kitchen-waste oils, 32 edible non-peanut vegetable oil, 32 edible peanuts oil, 16 edible oil add flavorand and 11 refined bio-waste oils were prepared and examined for capsaicinoids including capsaicin, dihydrocapsaicin and nonylic acid vanillylamide. The detection results of the above samples were statistically tested based on sample category to assessment identify the effectiveness of the bio-waste oils with capsaicinoids. As a indicator, capsaincin was possessed of high detection sensitivity and has the highest efficiency to discern kitchen-waste oils and refined bio-waste oils samples from edible non-peanut vegetable oil correctly. The accuracy rate of identification were 100% and 90.1% respectively. There is the background in peanut oil. CONCLUSION Capsaicin added in cooking process can be retained in the refining process and hardly be removed in the refining process. In the case of fully eliminating the background interference, capsaicinoids can effectively identify bio-waste oils and edible vegetable oil in combination.

  7. Vegetable, Fish and Mineral Oils Control Grapevine Powdery Mildew

    Directory of Open Access Journals (Sweden)

    B. Martín

    2005-08-01

    Full Text Available Laboratory, greenhouse and field experiments were performed on vegetable, fish and mineral oils to evaluate their phytotoxic effects on grapevine and their effectiveness in the control of grapevine powdery mildew. None of the oils tested showed detectable phytotoxic effects at concentrations of 2% or less applied up to 4 times per week. In greenhouse trials, the efficacy of paraffin oil, refined rapeseed oil and partially refined fish oil against powdery mildew was similar to that obtained with the standard fungicides (tebuconazole or colloidal sulphur. In field trials, the three oils tested (paraffin oil, crude soya oil, and fish oil: 1% in aqueous emulsion were at least as effective as the standard fungicide Quinoxifen, with crude soya oil being the most effective. The oils used in the field trials were also effective for controlling eriophyd mites such as Calepitrimerus vitis.

  8. [Composition of fatty acid in commercially available bottled vegetable oil].

    Science.gov (United States)

    Lu, Ying; Chen, Yuexiao; He, Mei; Yang, Yuexin

    2012-05-01

    To analyze the fatty acid composition of commercially available bottled vegetable oil, and to explore its characteristic composition and content and the proportion of specific fatty acids. A total of eight varieties of bottled vegetable oil which are popular in use or famous with local brand from eight districts of Beijing, Yunnan, Zhejiang, Hunan, Henan, Harbin, Jiangsu and Gansu were collected, and selected two different batches for each variety. After being saponified and methyl esterified, the fatty acids of vegetable oil samples were analyzed by Shimadzu GC2014 gas chromatography. The commercially available bottled vegetable oils were mainly consisted of palmitic acid, oleic acid, linoleic acid and alpha-linolenic acid. The average content of trans fatty acids was 1.05g/100g. The ratio of saturated fatty acids: monounsaturated fatty acids: polyunsaturated fatty acid (S: M: P) of vegetable oil samples was in the range of 1:1. 6-9. 4: 0.9-7.4; the ratio of polyunsaturated fatty acid n-6 : n-3 was in the range of 0.37-289.5 : 1. The content of trans fatty acid in commercially available bottled vegetable oil was low, however, most of the proportion of fatty acid did not meet the standards suggested by the Chinese Nutrition Society, and most of vegetable oils are lack of n-3 polyunsaturated fatty acids.

  9. 46 CFR 58.01-10 - Fuel oil.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Fuel oil. 58.01-10 Section 58.01-10 Shipping COAST GUARD... SYSTEMS General Requirements § 58.01-10 Fuel oil. (a) The following limits apply to the use of oil as fuel: (1) Except as otherwise permitted by this section, no fuel oil with a flashpoint of less than 60 °C...

  10. Comparison of the use of sunflower, cotton and rape seed crude oils as fuels in a compression ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Balafoutiso, A.; Melaso, D.; Natsis, A.; Papadakis, G. (Agricultural University of Athens, Athens (Greece)); Papagiannopouloe, A. (Institute of Agricultural Machinery and Constructions, Athens (Greece))

    2007-07-01

    An investigation of using crude oils of sunflower, cottonseed and rapeseed origin produced in Greece as CI engine fuel has been conducted. These oils chemical and physical properties indicate a good potential as alternative diesel engine fuels. Blending and preheating of vegetable oils with conventional diesel before using them as fuels, have been proved to be effective methods to reduce engine malfunctions associated with high oil viscosity. Engine performance and respective gas emission at different load conditions were measured over the whole engine speed range. Increasing the percentage of the oil in the blends with diesel has generally indicated an increase of engine power and torque with a corresponding increase in brake specific fuel consumption. As for emission measurements, it was shown that NO{sub x} and CO{sub 2} emissions were enhanced by increasing oil percentage in the blend. Comparing these three vegetable oils it was seen that in terms of power and torque output, rape oil based fuels have produced higher values than sunflower and cotton oil. As for brake specific fuel consumption, sunflower oil blends were consumed in a higher rate than blends of the other two vegetable oils. Finally, comparison of emissions has shown that NO{sub 2} level was higher with sunflower oil blends. These blends produced elevated NO emission especially with the 70% blend in comparison to the 70% cotton and rape oil blends. CO{sub 2} production was higher with cotton oil, but with a minor difference from the rest of the vegetable oil fuels. (orig.)

  11. 78 FR 36278 - Fuel Oil Systems for Emergency Power Supplies

    Science.gov (United States)

    2013-06-17

    ... COMMISSION Fuel Oil Systems for Emergency Power Supplies AGENCY: Nuclear Regulatory Commission. ACTION... Regulatory Guide (RG) 1.137, ``Fuel Oil Systems for Emergency Power Supplies.'' Revision 2 of RG 1.137 endorses ANSI/ANS- 59.51-1997, ``Fuel Oil Systems for Safety-Related Emergency Diesel Generators...

  12. Study of quality indices of functional vegetal oil mixture

    Directory of Open Access Journals (Sweden)

    Cristina POPOVICI

    2010-08-01

    Full Text Available Solution of the problem of alimentation structure improvement is related to creation of functional foodstuff with a balanced content of the major nutrient materials enriched in missing micronutrients and, at the same time, being daily products. Multicomponent structure of vegetable oils provides ample opportunities for developing of products preventing deficiency in essential fatty acids, vitamins andother physiologically functional ingredients. Grape-seed oil is of high bioavailability determined by a complex of biologically active substances, bioflavanoids, a group of vitamins, being the most important of them. Physiological effect of grape-seed oil includes anti-cholesterol property preventing cardio-vascular diseases.The thesis covers studies of vegetable oil mixtures made on the basis of sunflower and grape-seed oils. The study covers oxidative stability of vegetable oil mixture, based on determination of intensity of primary and secondary oxidation products formation.

  13. Applicability of Vegetable Oils as a Wood Preservative

    Directory of Open Access Journals (Sweden)

    Eylem Dizman Tomak

    2012-04-01

    Full Text Available Conventional heavy duty wood preservatives have been banned or restricted for some applications due to their mammalian toxicity and their adverse effect on the environment. New, eco-friendly, but nevertheless still effective protection systems, is needed to protect wood in outdoors. Non-toxic vegetable oils can form of a protective layer on the surface of the wood cells which decrease water uptake of wood. For that reason, oils have a good potential as being a wood preservative. However, impregnation with vegetable oils is insufficient to impart adequate biological decay and termite resistance, and indeed the treatment may increase wood’s propensity to burn. In addition, a high level of oil absorption required for good protection make the process impractical and uneconomic to use. The efficiency of the treatment can be improved with using the biocides and oils together. Beside this, usage of modified oils can decrease the retention levels in wood. In this study, applicability of vegetable oils being one of the environment-friendly, biodegradable water repellents on wood treatments was reported. Furthermore, problems related to the use of oils for wood protection, and possible solutions for the problems were discussed.In this study, applicability of vegetable oils as one of the environment-friendly, biodegradable water repellents was reported. Furthermore, problems related to the use of oils for wood protection and possible solutions for the problems were discussed

  14. Performance of vegetable oils as flotation collectors for the recovery of coal from coal fines wastes

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, M.I.; Castano, C.; Garcia, A.B. [CSIC, Instituto de Carboquimica, Oviedo (Spain)

    2000-07-01

    The objective of this work is to study the feasibility of using vegetable oils which are available, renewable and nonpolluting energy resources as flotation reagents for the recovery of coal from coal fines wastes. To comply with this objective, crude SOC soyabean oil and a used AB olive oil of household origin were used as collectors in the flotation of the fines fraction of a coal dump from Ponferrada in Spain, which is currently being reclaimed in a nearby preparation plant. The results were evaluated by the yield of flotation concentrate, the ash content of the concentrate and the reagents cost. These results were compared with those obtained when a commercial reagent of mineral origin was employed. Ready to burn coal fines fuels were recovered from the waste by flotation with used AB and original SOC vegetable oils. 9 refs., 3 figs., 2 tabs.

  15. [Three-Iindex-Value Method for Rapid Screening Unqualified Vegetable Oil].

    Science.gov (United States)

    He, Wen-xuan; Hong, Gui-shui; Fang, Run; Cai, Xian-chun; Huang, Sheng

    2015-04-01

    In the present study, by measuring the A3 005 (representing unsaturation), A985 (representing conjugated fatty acids), A960 + A985 (representing trans-fatty acid ) of southern common vegetable oils (peanut oil, corn oil, canola oil, soybean oil, sunflower oil, tea seed oil and olive oil), "waste oil" and overdue vegetable oils, the pass-setting-range of these three index values for the vegetable oils was obtained. On this basis, a method for rapid screening unqualified vegetable oil (expired, adding low-cost oil, adding "waste oil") was established. The method effectively improved the monitoring efficiency of vegetable oil. With this method of screening a number of suspected substandard oils were proved unqualified by determination of fatty acid composition and 11, 12, 13, 17 fatty acid content. Through the combination of several detection methods, the causes for disqualification of vegetable oils can be further inferred.

  16. Liquid transportation fuels from algal oils

    Science.gov (United States)

    Chen, Daichuan

    Liquid transportation fuels from renewable sources are becoming more prominent and important in modem society. Processing of hydrocarbon oils from algae has not been studied in detail in the past, so components which have been proposed for incorporation in algal oils via genetic engineering, such as cuparene, farnesene, phytol and squalene, have been subjected to processing via catalytic cracking in a pulse reactor at different temperatures. The cracking results showed that liquid products contained numerous high octane molecules which make it feasible for use in automobiles. Additionally, canola oil, chosen as an algal oil model compound, was studied as a feed for catalytic cracking in a fixed-bed reactor at atmospheric pressure over different types of zeolites. The results showed that MFI catalysts gave the highest yield of gasoline range products and lowest coke formation. Gallium loaded MFI zeolites increased the total aromatics yield for the canola oil cracking relative to the acid form of the zeolite. Finally, algal oils were cracked on several selected zeolites, and the results showed the same trend as canola oil cracking. MFI gave the highest gasoline yield (43.8 wt%) and lowest coke (4.7 wt%). The total aromatics yield from algae oil cracking is improved 7.8 wt% when MFI is loaded with gallium.

  17. Analysis of the Triglycerides of Some Vegetable Oils.

    Science.gov (United States)

    Farines, Marie; And Others

    1988-01-01

    Explains that triglycerides consist of a mixture of different compounds, depending on the total number of fatty acid constituents. Details the method and instrumentation necessary for students to analyze a vegetable oil for its triglyceride content. Describes sample results. (CW)

  18. Highly efficient procedure for the transesterification of vegetable oil

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xuezheng; Gao, Shan; He, Mingyuan [Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, Shanghai 200062 (China); Yang, Jianguo [Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, Shanghai 200062 (China); Energy Institute, Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2009-10-15

    The highly efficient procedure has been developed for the synthesis of biodiesel from vegetable oil and methanol. The KF/MgO has been selected as the most efficient catalyst for the reactions with the yield of 99.3%. Operational simplicity, without need of the purification of raw vegetable oil, low cost of the catalyst used, high activities, no saponification and reusability are the key features of this methodology. (author)

  19. Epoxy thermoset networks derived from vegetable oils and their blends

    Science.gov (United States)

    Ryu, Chang; Ravalli, Matthew

    2015-03-01

    Epoxidized vegetable oils (EVOs), such as epoxidized soybean oil and linseed oils were prepared by the partial oxidation of the unsaturated double bonds in vegetable oils and used as monomers for preparing epoxy thermoset materials based on the cationic polymerization. These EVOs have been used to prepare epoxy thermosets of different network densities by cationic polymerization using onium salt catalyst. The crosslinked epoxy thermosets provide an ideal platform to study the structure-property-relationships of networked polymers. In particular, rheological studies on the epoxidized vegetable oil thermosets have been performed to measure the molecular weights between crosslinks (Mx) in the epoxy thermosets and to ultimately elucidate the role of functionality of epoxy groups in EVO on the mechanical and thermophysical properties of the epoxy thermoset materials. NSF DMR POLYMERS 1308617.

  20. Flash pyrolysis fuel oil: bio-pok

    Energy Technology Data Exchange (ETDEWEB)

    Gust, S. [Neste Oy, Porvoo (Finland)

    1997-12-01

    Samples of flash pyrolysis liquid produced by Union Fenosa, Spain from pine and straw and samples produced by Ensyn of Canada from mixed hardwoods were combusted with simple pressure atomization equipment commonly used with light fuel oils in intermediate size (0.1-1 MW) boilers. With a number of modifications to the combustion system, carbon monoxide (CO) and nitrous oxide (NO{sub x}) could be reduced to acceptable levels: CO < 30 ppm and NO{sub x} < 140 ppm. Particulate emissions which were initially very high (Bacharach 4-5) were reduced (Bach. 2-3) by system improvements but are still higher than from light fuel oil (Bach. <1). The modifications to the combustion system were: refractory section between burner and boiler, acid resistant progressive cavity pump, higher liquid preheat temperature and higher pressure than for light fuel oils. The main problems with pyrolysis liquids concerns their instability or reactivity. At temperatures above 100 deg C they begin to coke, their viscosity increases during storage and oxygen from air causes skin formation. This requires that special handling procedures are developed for fuel storage, delivery and combustion systems. (orig.)

  1. Detection of argan oil adulterated with vegetable oils: new markers

    National Research Council Canada - National Science Library

    Ourrach, I; Rada, M; Pérez-Camino, M. C; Benaissa, M; Guinda, Á

    2012-01-01

    ... 5% with refined, sunflower and virgin olive oils. Due to the similarity of the fatty acid compositions of the edible oils studied and argan oil, fatty acids can be employed as markers for the detection...

  2. [Fast discrimination of edible vegetable oil based on Raman spectroscopy].

    Science.gov (United States)

    Zhou, Xiu-Jun; Dai, Lian-Kui; Li, Sheng

    2012-07-01

    A novel method to fast discriminate edible vegetable oils by Raman spectroscopy is presented. The training set is composed of different edible vegetable oils with known classes. Based on their original Raman spectra, baseline correction and normalization were applied to obtain standard spectra. Two characteristic peaks describing the unsaturated degree of vegetable oil were selected as feature vectors; then the centers of all classes were calculated. For an edible vegetable oil with unknown class, the same pretreatment and feature extraction methods were used. The Euclidian distances between the feature vector of the unknown sample and the center of each class were calculated, and the class of the unknown sample was finally determined by the minimum distance. For 43 edible vegetable oil samples from seven different classes, experimental results show that the clustering effect of each class was more obvious and the class distance was much larger with the new feature extraction method compared with PCA. The above classification model can be applied to discriminate unknown edible vegetable oils rapidly and accurately.

  3. Effect of vegetable oil (Brazil nut oil and mineral oil (liquid petrolatum on dental biofilm control

    Directory of Open Access Journals (Sweden)

    Cíntia de Fátima Buldrini Filogônio

    2011-12-01

    Full Text Available Dental biofilm control represents a basic procedure to prevent caries and the occurrence of periodontal diseases. Currently, toothbrushes and dentifrices are used almost universally, and the employment of good oral hygiene allows for appropriate biofilm removal by both mechanical and chemical control. The aim of this study was to evaluate the effectiveness of adding vegetable or mineral oil to a commercially available dentifrice in dental biofilm control. A comparison using the Oral Hygiene Index Simplified (OHI-S was performed in 30 individuals who were randomly divided into three groups. Group 1 (G1 received a commercially available dentifrice; the composition of this dentifrice was modified by addition of mineral oil (Nujol® for group 2 (G2 or a vegetable oil (Alpha Care® for group 3 (G3 at 10% of the total volume, respectively. The two-way repeated-measures analysis of variance (two-way ANOVA was used to test the effect of group (G1, G2 and G3 or time (baseline, 45 days and 90 days on the OHI-S index scores. Statistical analysis revealed a significant reduction in the OHI-S at day 90 in G2 (p < 0.05 and G3 (p < 0.0001 in comparison to G1. Therefore, the addition of a vegetable or a mineral oil to a commercially available dentifrice improved dental biofilm control, suggesting that these oils may aid in the prevention and/or control of caries and periodontal disease.

  4. Effect of vegetable oil (Brazil nut oil) and mineral oil (liquid petrolatum) on dental biofilm control.

    Science.gov (United States)

    Filogônio, Cíntia de Fátima Buldrini; Soares, Rodrigo Villamarim; Horta, Martinho Campolina Rebello; Penido, Cláudia Valéria de Sousa Resende; Cruz, Roberval de Almeida

    2011-01-01

    Dental biofilm control represents a basic procedure to prevent caries and the occurrence of periodontal diseases. Currently, toothbrushes and dentifrices are used almost universally, and the employment of good oral hygiene allows for appropriate biofilm removal by both mechanical and chemical control. The aim of this study was to evaluate the effectiveness of adding vegetable or mineral oil to a commercially available dentifrice in dental biofilm control. A comparison using the Oral Hygiene Index Simplified (OHI-S) was performed in 30 individuals who were randomly divided into three groups. Group 1 (G1) received a commercially available dentifrice; the composition of this dentifrice was modified by addition of mineral oil (Nujol®) for group 2 (G2) or a vegetable oil (Alpha Care®) for group 3 (G3) at 10% of the total volume, respectively. The two-way repeated-measures analysis of variance (two-way ANOVA) was used to test the effect of group (G1, G2 and G3) or time (baseline, 45 days and 90 days) on the OHI-S index scores. Statistical analysis revealed a significant reduction in the OHI-S at day 90 in G2 (p < 0.05) and G3 (p < 0.0001) in comparison to G1. Therefore, the addition of a vegetable or a mineral oil to a commercially available dentifrice improved dental biofilm control, suggesting that these oils may aid in the prevention and/or control of caries and periodontal disease.

  5. Vegetable oils as quenchants for hardening medium carbon steel ...

    African Journals Online (AJOL)

    Groundnut (Arachia hypoge) oil and palm (Elaeis guineeness) kernel oil were investigated as vegetable quench-ing media for carbon steel (0.45 % C) by determining the characteristic temperature-time cooling curves and rel-ated mechanical properties. The three stages of cooling examined during quenching were vapour ...

  6. Novel Synthesis of Vegetable Oil Derived Corrosion Inhibitors

    OpenAIRE

    Paul Rostron; Sonia Kasshanna

    2015-01-01

    Two different naturally occurring vegetable oils, Cress seed oil, and Linseed oil were chemically modified via novel one pot synthesis to produce fatty acid derived amides. These were characterized by their ability to prevent corrosion of carbon steel in vigorously stirred, aerated seawater, one of the most corrosive naturally occurring environments. Corrosion inhibitor efficiencies of up to 99.6% or a corrosion rate reduction factor of 250 in this medium is reported. The one pot synthetic st...

  7. Thermoplastic Starch Films with Vegetable Oils of Brazilian Cerrado

    Science.gov (United States)

    Schlemmer, D.; Sales, M. J. A.

    2008-08-01

    Biodegradable polymers are one of the most promising ways to replace non-degradable polymers. TPS films were prepared by casting from cassava starch and three different vegetable oils of Brazilian Cerrado as plasticizer: buriti, macaúba and pequi. In this preliminary work it was investigated materials thermal characteristics by TG and TMA. Thermal properties of oils depends on their chemical structures. Starch and vegetable oils are natural resources that can be used how alternative to producing materials that cause minor environmental impact.

  8. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization

    OpenAIRE

    M. Z. H. Khan; M. Sultana; M. R. Al-Mamun; M. R. Hasan

    2016-01-01

    The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330?490?C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards AS...

  9. Vegetable oil based eco-friendly coating materials: A review article

    OpenAIRE

    Alam, Manawwer; Akram, Deewan; Sharmin, Eram; Zafar, Fahmina; Ahmad, Sharif

    2014-01-01

    Vegetable oils (VO) constitute the single, largest, easily available, low cost, non-toxic, non-depletable, biodegradable family yielding materials that are capable of competing with fossil fuel derived petro-based products. The outstanding feature of VO is their unique chemical structure with to unsaturation sites, epoxies, hydroxyls, esters and other functional groups along with inherent fluidity characteristics. These enable them to undergo various chemical transformations producing low mol...

  10. Modelling consumer intakes of vegetable oils and fats.

    Science.gov (United States)

    Tennant, David; Gosling, John Paul

    2015-01-01

    Vegetable oils and fats make up a significant part of the energy intake in typical European diets. However, their use as ingredients in a diverse range of different foods means that their consumption is often hidden, especially when oils and fats are used for cooking. As a result, there are no reliable estimates of the consumption of different vegetable oils and fats in the diet of European consumers for use in, for example, nutritional assessments or chemical risk assessments. We have developed an innovative model to estimate the consumption of vegetable oils and fats by European Union consumers using the European Union consumption databases and elements of probabilistic modelling. A key feature of the approach is the assessment of uncertainty in the modelling assumptions that can be used to build user confidence and to guide future development.

  11. Problems of minority fuel-oil dealers

    Energy Technology Data Exchange (ETDEWEB)

    Kalt, Joseph P.; Lee, Henry

    1980-01-01

    Claims that minority fuel oil dealers are hampered by severe impediments in the competition for contracts for oil, loan funds from banks, and assistance from the Federal government are explored. Possible remedial actions are recommended. The study focused on the metropolitan areas of Boston, Providence, and New York City. Following the introductory section, the evolving role of minority oil retailers in the Northeast market is reviewed in the second section. The third section examines the specific problems confronting minority dealers, including obtaining start-up capital and finding sources of supply. The fourth section addresses the problems associated with serving the inner-city markets. The fifth section introduces specific recommendations to meet the problems outlined.

  12. Maximizing the stability of pyrolysis oil/diesel fuel emulsions

    Science.gov (United States)

    Several emulsions consisting of biomass pyrolysis oil (bio-oil) in diesel fuel were produced and analyzed for stability over time. An ultrasonic probe was used to generate microscopic droplets of bio-oil suspended in diesel fuel, and this emulsion was stabilized using surfactant chemicals. The most...

  13. Performance and emission evaluation of a CI engine fueled with preheated raw rapeseed oil (RRO)-diesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Hazar, Hanbey [Department of Automotive, Faculty of Technical Education, Firat University, Elazig 23119 (Turkey); Aydin, Hueseyin [Department of Automotive, Faculty of Technical Education, Batman University, Batman 72060 (Turkey)

    2010-03-15

    Many studies are still being carried out to find out surplus information about how vegetable based oils can efficiently be used in compression ignition engines. Raw rapeseed oil (RRO) was used as blended with diesel fuel (DF) by 50% oil-50% diesel fuel in volume (O50) also as blended with diesel fuel by 20% oil-80% diesel fuel in volume (O20). The test fuels were used in a single cylinder, four stroke, naturally aspirated, direct injection compression ignition engine. The effects of fuel preheating to 100 C on the engine performance and emission characteristics of a CI engine fueled with rapeseed oil diesel blends were clarified. Results showed that preheating of RRO was lowered RRO's viscosity and provided smooth fuel flow Heating is necessary for smooth flow and to avoid fuel filter clogging. It can be achieved by heating RRO to 100 C. It can also be concluded that preheating of the fuel have some positive effects on engine performance and emissions when operating with vegetable oil. (author)

  14. Identification of vegetable oil botanical speciation in refined vegetable oil blends using an innovative combination of chromatographic and spectroscopic techniques.

    Science.gov (United States)

    Osorio, Maria Teresa; Haughey, Simon A; Elliott, Christopher T; Koidis, Anastasios

    2015-12-15

    European Regulation 1169/2011 requires producers of foods that contain refined vegetable oils to label the oil types. A novel rapid and staged methodology has been developed for the first time to identify common oil species in oil blends. The qualitative method consists of a combination of a Fourier Transform Infrared (FTIR) spectroscopy to profile the oils and fatty acid chromatographic analysis to confirm the composition of the oils when required. Calibration models and specific classification criteria were developed and all data were fused into a simple decision-making system. The single lab validation of the method demonstrated the very good performance (96% correct classification, 100% specificity, 4% false positive rate). Only a small fraction of the samples needed to be confirmed with the majority of oils identified rapidly using only the spectroscopic procedure. The results demonstrate the huge potential of the methodology for a wide range of oil authenticity work. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Eco-Friendly Multipurpose Lubricating Greases from Vegetable Residual Oils

    Directory of Open Access Journals (Sweden)

    Ponnekanti Nagendramma

    2015-10-01

    Full Text Available Environmentally friendly multipurpose grease formulation has been synthesized by using Jatropha vegetable residual oil with lithium soap and multifunctional additive. The thus obtained formulation was evaluated for its tribological performance on a four-ball tribo-tester. The anti-friction and anti-wear performance characteristics were evaluated using standard test methods. The biodegradability and toxicity of the base oil was assessed. The results indicate that the synthesized residual oil grease formulation shows superior tribological performance when compared to the commercial grease. On the basis of physico-chemical characterization and tribological performance the vegetable residual oil was found to have good potential for use as biodegradable multipurpose lubricating grease. In addition, the base oils are biodegradable and non toxic.

  16. Chemically Modifying Vegetable Oils to Prepare Green Lubricants

    Directory of Open Access Journals (Sweden)

    Gobinda Karmakar

    2017-11-01

    Full Text Available Chemically modifying vegetable oils to produce an alternative to petroleum-based materials is one of the most important emerging industrial research areas today because of the adverse effects of petroleum products on the environment and the shortage of petroleum resources. Biolubricants, bioplasticizers, non-isocyanate polyurethanes, biofuel, coating materials, biocomposites, and other value-added chemicals can easily be produced by chemically modifying vegetable oils. This short review discusses using vegetable oils or their derivatives to prepare lubricants that are environmentally safe. Chemically modified vegetable oils are generally used as base fluids to formulate environmentally friendly lubricants. Reports of their application as sustainable additives have attracted special attention recently because of their enhanced multifunctional performances (single additives perform several functions, i.e., viscosity index improver, pour point depressant, antiwear products and biodegradability compared with commercial additives. Here, we have reviewed the use of chemically modified vegetable oils as base fluids and additives to prepare a cost-effective and environmentally friendly lubricant composition.

  17. 46 CFR 196.15-55 - Requirements for fuel oil.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Requirements for fuel oil. 196.15-55 Section 196.15-55... Test, Drills, and Inspections § 196.15-55 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log to be made of each supply of fuel oil received on board...

  18. 46 CFR 97.15-55 - Requirements for fuel oil.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Requirements for fuel oil. 97.15-55 Section 97.15-55... OPERATIONS Tests, Drills, and Inspections § 97.15-55 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log to be made of each supply of fuel oil received on...

  19. Results of industrial tests of carbonate additive to fuel oil

    Science.gov (United States)

    Zvereva, E. R.; Dmitriev, A. V.; Shageev, M. F.; Akhmetvalieva, G. R.

    2017-08-01

    Fuel oil plays an important role in the energy balance of our country. The quality of fuel oil significantly affects the conditions of its transport, storage, and combustion; release of contaminants to atmosphere; and the operation of main and auxiliary facilities of HPPs. According to the Energy Strategy of Russia for the Period until 2030, the oil-refining ratio gradually increases; as a result, the fraction of straight-run fuel oil in heavy fuel oils consistently decreases, which leads to the worsening of performance characteristics of fuel oil. Consequently, the problem of the increase in the quality of residual fuel oil is quite topical. In this paper, it is suggested to treat fuel oil by additives during its combustion, which would provide the improvement of ecological and economic indicators of oil-fired HPPs. Advantages of this method include simplicity of implementation, low energy and capital expenses, and the possibility to use production waste as additives. In the paper, the results are presented of industrial tests of the combustion of fuel oil with the additive of dewatered carbonate sludge, which is formed during coagulation and lime treatment of environmental waters on HPPs. The design of a volume delivery device is developed for the steady additive input to the boiler air duct. The values are given for the main parameters of the condition of a TGM-84B boiler plant. The mechanism of action of dewatered carbonate sludge on sulfur oxides, which are formed during fuel oil combustion, is considered. Results of industrial tests indicate the decrease in the mass fraction of discharged sulfur oxides by 36.5%. Evaluation of the prevented damage from sulfur oxide discharged into atmospheric air shows that the combustion of the fuel oil of 100 brand using carbonate sludge as an additive (0.1 wt %) saves nearly 6 million rubles a year during environmental actions at the consumption of fuel oil of 138240 t/year.

  20. Optimization of Refining Craft for Vegetable Insulating Oil

    Science.gov (United States)

    Zhou, Zhu-Jun; Hu, Ting; Cheng, Lin; Tian, Kai; Wang, Xuan; Yang, Jun; Kong, Hai-Yang; Fang, Fu-Xin; Qian, Hang; Fu, Guang-Pan

    2016-05-01

    Vegetable insulating oil because of its environmental friendliness are considered as ideal material instead of mineral oil used for the insulation and the cooling of the transformer. The main steps of traditional refining process included alkali refining, bleaching and distillation. This kind of refining process used in small doses of insulating oil refining can get satisfactory effect, but can't be applied to the large capacity reaction kettle. This paper using rapeseed oil as crude oil, and the refining process has been optimized for large capacity reaction kettle. The optimized refining process increases the acid degumming process. The alkali compound adds the sodium silicate composition in the alkali refining process, and the ratio of each component is optimized. Add the amount of activated clay and activated carbon according to 10:1 proportion in the de-colorization process, which can effectively reduce the oil acid value and dielectric loss. Using vacuum pumping gas instead of distillation process can further reduce the acid value. Compared some part of the performance parameters of refined oil products with mineral insulating oil, the dielectric loss of vegetable insulating oil is still high and some measures are needed to take to further optimize in the future.

  1. Development of continuous processes for vegetable oil alcoholysis in microfluidic devices

    Directory of Open Access Journals (Sweden)

    Richard Romain

    2013-01-01

    Full Text Available Biodiesel can be produced from vegetable oils, animal fats, and waste cooking oils by transesterification with ethanol (also called ethanolysis in order to substitute fossil fuels. In this work, we were interested in the transesterification reaction of sunflower oil with ethanol, which leads to ethyl esters, used to date for applications principally in food and cosmetic industry. To open the application field to biofuels (to substitute current fuels resulting from fossil resources, the process efficiency has to be developed to be economically profitable. The batch reaction of vegetable oil ethanolysis was transposed to a micro-scaled continuous device (PFA tube of 508 μm internal diameter, inducing better heat and mass transfer. Study of the influence of the operational conditions (reactants flow, initial ethanol to oil molar ratio, temperature. . . revealed the favourable reaction parameters necessary to reach high conversions and yields. In these conditions, it is possible to acquire kinetics data at the first seconds of the reaction, which was not feasible in a conventional batch process. These data were used to model occurring phenomena and to determine kinetic constants and transfer coefficients. The model was subsequently used to simulate reactions with other operational conditions. To acquire these data in microreactors, an on-line analysis method by Near InfraRed (NIR spectroscopy was developed by using gas chromatography as a reference method. PLS models were then set up to quantify on-line the major compounds contents during the reaction.

  2. Wet scrubbing of biomass producer gas tars using vegetable oil

    Science.gov (United States)

    Bhoi, Prakashbhai Ramabhai

    The overall aims of this research study were to generate novel design data and to develop an equilibrium stage-based thermodynamic model of a vegetable oil based wet scrubbing system for the removal of model tar compounds (benzene, toluene and ethylbenzene) found in biomass producer gas. The specific objectives were to design, fabricate and evaluate a vegetable oil based wet scrubbing system and to optimize the design and operating variables; i.e., packed bed height, vegetable oil type, solvent temperature, and solvent flow rate. The experimental wet packed bed scrubbing system includes a liquid distributor specifically designed to distribute a high viscous vegetable oil uniformly and a mixing section, which was designed to generate a desired concentration of tar compounds in a simulated air stream. A method and calibration protocol of gas chromatography/mass spectroscopy was developed to quantify tar compounds. Experimental data were analyzed statistically using analysis of variance (ANOVA) procedure. Statistical analysis showed that both soybean and canola oils are potential solvents, providing comparable removal efficiency of tar compounds. The experimental height equivalent to a theoretical plate (HETP) was determined as 0.11 m for vegetable oil based scrubbing system. Packed bed height and solvent temperature had highly significant effect (p0.05) effect on the removal of model tar compounds. The packing specific constants, Ch and CP,0, for the Billet and Schultes pressure drop correlation were determined as 2.52 and 2.93, respectively. The equilibrium stage based thermodynamic model predicted the removal efficiency of model tar compounds in the range of 1-6%, 1-4% and 1-2% of experimental data for benzene, toluene and ethylbenzene, respectively, for the solvent temperature of 30° C. The NRTL-PR property model and UNIFAC for estimating binary interaction parameters are recommended for modeling absorption of tar compounds in vegetable oils. Bench scale

  3. Improved Soybean Oil for Biodiesel Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tom Clemente; Jon Van Gerpen

    2007-11-30

    lead to job creation in rural areas of the country and help stimulate the agricultural economy. Moreover, production of soybean with enhanced oil quality for biodiesel may increase the attractiveness of this renewable, environmentally friendly fuel.

  4. Fundamental Studies on Development of Environment Friendly Vegetable Oil Filled Transformer

    National Research Council Canada - National Science Library

    Masami Shinke; Kenji Miyazato; Toshiharu Tada; Yasuo Takeuchi; Yoshitake Nakagami; Rumiko Shimizu; Masaaki Kosaka; Motoo Wada

    2003-01-01

      In order to develop the environment-friendly transformer, the rapeseed ester oil which is vegetable oil was selected as the new insulating oil and various characteristics of rapeseed ester oil were...

  5. Effect of traditional Chinese cooking methods on fatty acid profiles of vegetable oils.

    Science.gov (United States)

    Cui, Yamin; Hao, Pengfei; Liu, Bingjie; Meng, Xianghong

    2017-10-15

    The effect of four frying processes (vegetable salad, stir frying, pan frying, and deep frying) on fatty acid composition of ten vegetable oils (peanut oil, soybean oil, rapeseed oil, corn oil, sunflower seed oil, rice bran oil, olive oil, sesame oil, linseed oil, and peony seed oil) was investigated using GC-MS. The result showed that trans-fatty acid (TFA) was produced during all processes. Rapeseed oil had the highest TFA content in vegetable salad oil with 2.88% of total fatty acid. The TFA content of sunflower seed oil was 0.00% in vegetable salad oil, however, after stir frying and pan frying, it increased to 1.53% and 1.29%, respectively. Peanut oil had the lowest TFA content after deep frying for 12h with 0.74mg/g. It was concluded that a healthy cooking process could be acquired by a scientific collocation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Evaluation of emissions in gas powered electric generator engine with vegetable oil; Avaliacao das emissoes de gases em motor gerador eletrico alimentado com oleo vegetal

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Thalita C. de; Cunha, Joao Paulo Barreto; Cotrim, Suzane Santana; Brito, Gustavo Mendes; Delmond, Josue Gomes [Universidade Estadual de Goias (UNUCET/UEG), Anapolis, GO (Brazil). Unidade Universitaria de Ciencias Exatas e Tecnologicas], E-mail: thalitacarrijo@gmail.com

    2012-11-01

    The use of vegetable oils as fuel in diesel engines is a good alternative to reduce emissions of greenhouse gases in the atmosphere from the use of fossil fuels, either in pure form or as biodiesel. The soybean, oilseed single high-availability in Brazil, is the most viable feedstock for the production of oil and its use as a fuel because of the structure of production, distribution and grain crushing. This study aimed to evaluate the performance of a duty diesel generator fueled with blends of diesel and soybean oil at concentrations of 10%, 25%, 50% and 75%, and soybean oil pure, 100%. During the tests we evaluated the energy consumption of the generator and the emission of greenhouse gases (O{sub 2}, CO, CO{sub 2}, NO{sub x} and SO{sub 2}), according to the demand of electric charges (0, 500, 1000, 1500 and 2000 Watts) connected to the group generator. The results, using the F test, showed that the hourly consumption of fuel increased with increasing concentration in the mixture of diesel fuel and engine load demand from the generator. It follows that in the environment, increasing the oil concentration in the mixture caused a reduction in emissions, except for the emission of oxygen. The best choice for the operation for the engine generator using vegetable oil soya be provided for up to 60 % oil in the mixture and load demand up to 1000W, in which occurred lower emissions of carbon monoxide (CO) and therefore improved efficiency in the combustion process. (author)

  7. Vegetable oil from fruits of forest species

    Energy Technology Data Exchange (ETDEWEB)

    Razzaque, M.A.; Sayeed, M.; Das, S.C.

    1983-01-01

    Seeds were collected from species in various areas of Bangladesh to assess their potential for production of industrial (e.g. for paint, varnish, soap) and edible oils: Aleurites montana; Amoora spp.; Amoora spectabilis; Aphanamixis (Ricinocarpodendron) polystachya; Calophyllum inophyllum; Elaeis guineensis; Garcinia cowa; Hydnocarpus kurzii; Mallotus philippinensis; Mesua ferrea; Mimusops elengi; Pongamia pinnata; Schleichera oleosa; Shorea robusta; and Zanthoxylum budrunga. In cases where the seed coat could be detached, the weight ratio of seed coat to kernel was calculated. Oil contents of kernel, pulp or whole seed were determined by solvent extraction depending on the ease of separation of the seed coat. Free fatty acid contents and saponification and iodine values of the oil samples were determined. High percentages of oil were obtained from most species. 10 references.

  8. Microbial Deterioration of Marine Diesel Fuel from Oil Shale.

    Science.gov (United States)

    1981-04-09

    eesar mnd Identify by block rumlber) Microbial deterioration DFM Cladosporium resinae Oil shale Synthetic fuel *QNjd&Sp. ACoal Fungi Seawater Petroleum...well in the synthetic fuel as in fuel derived from petroleum. Growth of certain strains of the fungus, Cladosporium resinae , was initially... resina ., and a yeast (Candida sp.) but no inhibition was noted with another shale oil fuel from which the nitrogen constituents ware almost completely

  9. The efficacy of essential oils as natural preservatives in vegetable oil.

    Science.gov (United States)

    Mahboubi, Mohaddese; Kazempour, Nastaran; Mahboubi, Atefeh

    2014-12-01

    The efforts for finding the natural preservatives with nontoxicity and nonirritancy have encouraged the scientists to research among the medicinal plants. The preservative efficacy of Daucus carota, Ferula gummosa, Eugenium caryophyllata, Oliveria decumbens, Pelargonium graveolens, Ziziphora tenuir, Acorus calamus, and Trachyspermum ammi essential oils on challenge test's pathogens and on pathogen's inoculated vegetable oil was evaluated by antimicrobial effectiveness test. Carotol (46%), β-pinene (62.7%), eugenol (78.4%), thymol (50.6%), cis-asarone (27.5%), thymol (50.1%), and α-terpineol (19.5%) were the primary main components of D. carota, F. gummosa, E. caryophyllata, T. ammi, A. calamus, O. decumbens, and Z. tenuir essential oils, respectively. A. niger was more sensitive microorganism to oils. The antimicrobial activity of O. decumbens oil was the highest. Different concentrations of essential oils were added to the vegetable oil. The results of test on the vegetable oil showed that the combination of O. decumbens and P. graveolens oils (0.5:0.5%) had enough efficacies as natural preservative in vegetable oil.

  10. Determination of saturated aliphatic hydrocarbons in vegetable oils

    Directory of Open Access Journals (Sweden)

    Gómez-Coca, R. B.

    2016-06-01

    Full Text Available The aim of this work is to inform about the development of a simple and reliable off-line method for the determination of saturated hydrocarbons (SH in vegetable oils. SH can be used as markers for fuel or for mineral oil contamination in edible oils and fats. The method consists of the isolation of the fraction by LC on deactivated silver-silica gel and subsequent on-column GC-FID analysis. This stationary phase was prepared avoiding any kind of activation. The method was developed and validated through the participation in both a proficiency test organized by the Joint Research Centre of the European Commission, and a collaborative trial carried out with trained Spanish laboratories according to the standard ISO 5725. Results showed acceptable repeatability and reproducibility values, and Horrat index, being this protocol in use with satisfactory results ever since. The method’s LOQ is 15 mg.kg–1 and its LOD 5 mg.kg–1, which make it suitable to quantify the 50 mg.kg–1 limit established by the EU, and to detect mineral oil content within the 10–500 mg.kg–1 range. Although other procedures with lower LOD have been developed throughout the years, the use of just regular laboratory equipment such as GC-FID makes the proposed method appropriate for application on a routine basis.El objetivo de este trabajo es el de dar cuenta del desarrollo de un método sencillo y fiable para la determinación de hidrocarburos saturados (HS en aceites vegetales. Los HS pueden utilizarse como marcadores de contaminación de aceites y grasas comestibles con fuel-oil y aceites minerales El procedimiento consiste en el aislamiento de la fracción correspondiente por cromatografía en columna de gel de sílice argentada sin activar y posterior análisis mediante GC (on-column-FID. El método se desarrolló y validó mediante la participación en una prueba de competencia organizada por el Joint Research Centre de la Comisión Europea, además de con un

  11. Verification of Some Vegetable Oils as Cutting Fluid for Aluminium

    Directory of Open Access Journals (Sweden)

    A. I. Obi

    2013-06-01

    Full Text Available Vegetable oils (palm oil, groundnut oil, shear butter oil and cotton seed oil have been used as lubricants in the turning operation of aluminum under varying spindle speeds, feed rates and depths of cut and the results compared with kerosene (due to the gummy nature of aluminium metal. The parameters investigated are the chip thickness ratio, surface finish and surface temperature. Their performances when compared with the conventional soluble oil have shown that they can perform the same functions as imported ones in the machining of aluminum. They reduced chip thickness ratio, improved surface finish and exhibited good cooling behaviour at the work piece-tool interface. This performance is due to their high viscosities and the presence of surface active agents such as stearic acid and halogens, such as chlorine which help to reduce surface energy of a liquid and increase its wetting ability or oiliness.

  12. Vanadium in fuel oil - a new solution

    Energy Technology Data Exchange (ETDEWEB)

    Czech, N. [Siemens, Muelheim (Germany); Finckh, H. [Siemens, Erlangen (Germany)

    1998-11-01

    Hot corrosion of the hot-gas-path components due to vanadium contamination is one of the hazards associated with heavy residual oil combustion in heavy-duty gas turbines. This economically attractive oil combustion process has benefited from the recently developed vanadium inhibition technique, which is currently being tested at the Valladolid 220 MWe combined cycle plant in Mexico. The method uses atomization of a dilute aqueous solution of Epsom salt (MgSO{sub 7},7H{sub 2}O) into very small droplets which are then injected onto the flame where intensive mixing takes place. The successful use of this new technique promises extended operating periods between cleanup operations, and cost reductions from the use of inexpensive materials, as well as the ability to operate advanced gas turbines on difficult fuels, not previously feasible. (UK)

  13. Production of gaseous fuel from jatropha oil by cerium oxide based catalytic fuel reactor and its utilisation on diesel engine

    Directory of Open Access Journals (Sweden)

    Mylswamy Thirunavukkarasu

    2016-01-01

    Full Text Available In this study, an attempt is made to produce a hydrocarbon fuel from jatropha vegetable oil for Diesel engine applications. The “catalytic cracking” a process recently introduced by the researchers is chosen as an alternative method to trans-esterification process to match the fuel properties to diesel. Jatropha vegetable oil was cracked into a gas using the cerium oxide catalyst in a fixed bed catalytic reactor. The produced gas is introduced at constant rate into the inlet manifold of the Diesel engine. The experimental work was carried out in single cylinder water cooled direct injection Diesel engine coupled with eddy current dynamometer. The combustion parameters are measured by AVL combustion analyser. From the experimental results, the increase in brake thermal efficiency of the engine for full load was observed to be 10% (relative compared with diesel. Notably, emissions such as HC, CO, and smoke are reduced by 18%, 61%, and 18%, respectively, when compared with diesel.

  14. Enzymatic transesterification of waste vegetable oil to produce biodiesel.

    Science.gov (United States)

    Lopresto, C G; Naccarato, S; Albo, L; De Paola, M G; Chakraborty, S; Curcio, S; Calabrò, V

    2015-11-01

    An experimental study on enzymatic transesterification was performed to produce biodiesel from waste vegetable oils. Lipase from Pseudomonas cepacia was covalently immobilized on a epoxy-acrylic resin support. The immobilized enzyme exhibited high catalytic specific surface and allowed an easy recovery, regeneration and reutilisation of biocatalyst. Waste vegetable oils - such as frying oils, considered not competitive with food applications and wastes to be treated - were used as a source of glycerides. Ethanol was used as a short chain alcohol and was added in three steps with the aim to reduce its inhibitory effect on lipase activity. The effect of biocatalyst/substrate feed mass ratios and the waste oil quality have been investigated in order to estimate the process performances. Biocatalyst recovery and reuse have been also studied with the aim to verify the stability of the biocatalyst for its application in industrial scale. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Remote Sensing Systems to Detect and Analyze Oil Spills on the U.S. Outer Continental Shelf - A State of the Art Assessment

    Science.gov (United States)

    2016-08-18

    Number of Classes Oil Type Class: Any Oil Crude Oil Fuel Oil Gasoline Vegetable Oil Heavy Crude Heavy Fuel Gas (Natural, LPG) Mineral Oil...Oil Type Class: Any Oil Vegetable Oil Mineral Oil Mean Thickness ADIOS Type Crude Oil Heavy Crude Medium Crude Light Crude Fuel Oil Heavy Fuel...implies that a variable observed over a given distance span is resolved only if the pixel size or beam footprint of a sensor is at most half the size

  16. VEGETABLE OILS AS SUBSTITUTION FOR DIESEL OIL Test results ...

    African Journals Online (AJOL)

    initially felt necessary to preheat the fuel before it enters the fuel system of the engine. An one meter long single pipe heat exchanger t.o be heated by hot water circulated and controlled by a thermostat had been arranged for this purpose. But this arrangement had not been used as all the tests could be conducted without.

  17. Sustainability aspects of biobased products : comparison of different crops and products from the vegetable oil platform

    NARCIS (Netherlands)

    Meesters, K.P.H.; Corré, W.J.; Conijn, J.G.; Patel, M.K.; Bos, H.L.

    2012-01-01

    This study focusses on the production of vegetable oil based products. A limited number of aspacts of the sustainability of the full chain (from agriculture to product at the factory gate) was evaluated. Three different vegetable oils were taken into account: palm oil, soy oil and rapeseed oil. Also

  18. The comparison of engine performance and exhaust emission characteristics of sesame oil-diesel fuel mixture with diesel fuel in a direct injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Altun, Sehmus [Technical Education Faculty, Automotive Division, Batman University, Batman (Turkey); Bulut, Huesamettin [Department of Mechanical Engineering, Osmanbey Campus, Harran University, 63100 Sanliurfa (Turkey); Oener, Cengiz [Technical Education Faculty, Automotive Division, Firat University, Elazig (Turkey)

    2008-08-15

    The use of vegetable oils as a fuel in diesel engines causes some problems due to their high viscosity compared with conventional diesel fuel. Various techniques and methods are used to solve the problems resulting from high viscosity. One of these techniques is fuel blending. In this study, a blend of 50% sesame oil and 50% diesel fuel was used as an alternative fuel in a direct injection diesel engine. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power and torque of the mixture of sesame oil-diesel fuel are close to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that blend of sesame oil and diesel fuel can be used as an alternative fuel successfully in a diesel engine without any modification and also it is an environmental friendly fuel in terms of emission parameters. (author)

  19. Experimental investigations of a four-stroke single cylinder direct injection diesel engine operated on dual fuel mode with producer gas as inducted fuel and Honge oil and its methyl ester (HOME) as injected fuels

    Energy Technology Data Exchange (ETDEWEB)

    Banapurmath, N.R.; Tewari, P.G. [Department of Mechanical Engineering, B.V.B. College of Engineering and Technology, Hubli 580031, Karnataka (India); Hosmath, R.S. [Department of Mechanical Engineering, K.L.E Society' s College of Engineering and Technology, Belgaum, Karnataka (India)

    2008-09-15

    In order to meet the energy requirements, there has been growing interest in alternative fuels like biodiesels, methyl alcohol, ethyl alcohol, biogas, hydrogen and producer gas to provide a suitable diesel oil substitute for internal combustion engines. Vegetable oils present a very promising alternative to diesel oil since they are renewable and have similar properties. Vegetable oils offer almost the same power output with slightly lower thermal efficiency when used in diesel engine [Srivastava A, Prasad R. Triglycerides-based diesel fuels. Renew Sustain Energy Rev 2000;4:111-33.; Vellguth G. Performance of vegetable oils and their monoesters as fuels for diesel engines. SAE 831358, 1983.; Demirbas A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Int J Prog Energy Combust Sci 2005;31:466-87.; Jajoo BN, Keoti RS. Evaluation of vegetable oils as supplementary fuels for diesel engines. In: Proceedings of the XV national conference on IC engines and combustion, Anna University Chennai, 1997.; Altin R, Cetinkaya S, Yucesu HS. The potential of using vegetable oil fuels as fuel for diesel engines. Int J Energy Convers Manage 2000;42:529-38, 248.; Gajendra Babu MK, Chandan Kumar Das LM. Experimental investigations on a Karanja oil methyl ester fuelled DI diesel engine. SAE 2006-01-0238, 2006.; Agarwal D, Kumar Agarwal A. Performance and emission characteristics of a Jatropha oil (preheated and blends) in a direct injection compression ignition engine. Int J Appl Therm Eng 2007;27:2314-23. ]. Research in this direction with edible oils have yielded encouraging results, but their use as fuel for diesel engine has limited applications due to higher domestic requirement [Scholl Kyle W, Sorenson Spencer C. Combustion Analysis of soyabean oil methyl ester in a direct injection diesel engine. SAE 930934, 1993.; Nwafor OMI. Effect of advanced injection timing on the performance of rapeseed oil in

  20. Cleaning oiled shores: laboratory experiments testing the potential use of vegetable oil biodiesels.

    Science.gov (United States)

    Pereira, M Glória; Mudge, Stephen M

    2004-01-01

    A series of laboratory experiments were carried out to test the potential of vegetable oil biodiesel for the cleaning of oiled shorelines. In batch experiments, biodiesel was shown to have a considerable capacity to dissolve crude oil, which appears to be dependent on the type of biodiesel used. Pure vegetable oil biodiesels (rapeseed and soybean) were significantly more effective in the cleanup of oiled sands (up to 96%) than recycled waste cooking oil biodiesel (70%). In microcosm and mesocosm experiments, oiled sediments were sprayed with biodiesel and subjected to simulated tides. Microcosm experiments revealed that, of those tested, the highest ratio of biodiesel to crude oil, had the highest effectiveness for cleaning fine sands, with ratios of 2:1 (biodiesel:crude oil) giving the best results. In the mesocosm experiments a ratio 1:1 of soybean biodiesel to crude oil removed 80% of the oil in cobbles and fine sands, 50% in coarse sand and 30% in gravel. Most of the oil was removed with the surface water, with only a small amount being flushed through the sediments. Particle size and pore size were important determinants in the cleanup and mobility of crude oil in the sediments in these static systems. It is expected that the biodiesel effectiveness should improve in the natural environment particularly in exposed beaches with strong wave action. However, more laboratory and field trials are required to confirm the operational use of biodiesel as a shoreline cleaner.

  1. Determination of Calorific Ability of Fuel Briquettes on the Basis of Oil and Oil Slimes

    Science.gov (United States)

    Fedyaeva, O. A.; Poshelyuzhnaya, E. G.; Rakhmatulina, E. M.; Zakharov, V. A.; Fisenko, T. E.

    2018-01-01

    Utilization and neutralization of oil slimes is one of important environmental problems of the oil-extracting, oil-processing and petrochemical industry. The easiest and economic way of utilization of oil slimes is their use as a part of the bricketed boiler fuel. In this work the highest calorific ability of crude oil, the oil slimes and fuel briquettes made on their basis is defined. A research problem was carrying out the technical analysis of oil fuels on the content in them analytical moisture, the cindery rest and volatiles. It is established that in comparison with oil slimes crude oil possesses bigger highest calorific ability, has smaller humidity and an ash-content. The highest calorific abilities of the boiler briquettes made of samples of crude oil, oil slimes and peat made 14 – 26 MJ/kg.

  2. Modification of thermal and oxidative properties of biodiesel produced from vegetable oils

    Energy Technology Data Exchange (ETDEWEB)

    El Diwani, G.; El Rafie, S. [National Research Center, Cairo (Egypt). Chemical Engineering and Pilot Plant Dept.

    2008-07-01

    Although biodiesel cannot entirely replace petroleum based diesel fuels, there are at least five reasons that justify its development. It provides a market for excess production of vegetable oils, it decreases the dependence on imported petroleum, it does not contribute to global warming due to its closed carbon cycle, the exhaust emissions of carbon monoxide, unburned hydrocarbons, and particulate emissions from biodiesel are lower than with regular diesel fuel, when added to regular diesel fuel in an amount up to 20% it can convert fuel into an acceptable fuel. Transesterification reaction is the most commonly applied technique to produce biodiesel. Transesterification of three vegetable oils, sunflower oil, linseed oil and mixed oils as; sunflower-soyabean and olein were carried out using methanol, and potasium hydroxide as catalyst. The methyl esters of the corresponding oils were separated from the crude glycerol and characterized by physical-chemical methods to evaluate their thermal properties. This methods are determination of densities, cloud points, pour points, flash points, kinematic viscosities, hydrogen/carbon ratios, sulfur contents, ash contents and triglycerides. The physico-chemical characteristic of biodiesel treated with ozone showed improvement of pour point and flash point indicating higher degree of safety for fuel. Methyl esters mixed with their corresponding ozonated oil were subjected to comparison and evaluation for their thermal properties by the thermo gravimetric analysis differential thermal analysis from which the calculated heat of enthalpy and comparison with the heat of conventional diesel. The results showed that the oxygen content of biodiesel samples treated with ozone increased weight % and resulted in more extensive chemical reaction, promoted combustion characteristics and less carbon residue was produced. Gas chromatography appeared more suitable to address the problem of determining/verifying biodiesel methyl ester and

  3. Process Parameters Optimization of Potential SO42-/ZnO Acid Catalyst for Heterogeneous Transesterification of Vegetable Oil to Biodiesel

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2012-12-01

    Full Text Available Among the possible renewable energy resources, diesel fuels derived from triglycerides of vegetable oils and animal fats have shown potential as substitutes for petroleum-based diesel fuels. The biodiesel could be produced from vegetable oils over homogeneous catalyst, heterogeneous catalyst, or enzymatic catalyst. In this study, the synthesized SO42-/ZnO catalyst was explored to be used in the heterogeneous biodiesel production by using the vegetable oils and methanol. The study began with the preparation of SO42-/ZnO catalyst followed by the transesterification reaction between vegetable oil with methanol. The independent variables (reaction time and the weight ratio of catalyst/oil were optimized to obtain the optimum biodiesel (fatty acid methyl ester yield. The results of this study showed that the acid catalyst SO42-/ZnO was potential to be used as catalyst for biodiesel production through heterogeneous transesterification of vegetable oils. Optimum operating condition for this catalytic reaction was the weight ratio of catalyst/oil of 8:1 and reaction time of 2.6 h with respect to 75.5% yield of methyl ester products. The biodiesel product was also characterized to identify the respected fatty acid methyl ester components. Copyright © 2012 by BCREC UNDIP. All rights reserved. (Selected Paper from International Conference on Chemical and Material Engineering (ICCME 2012Received: 23rd October 2012, Revised: 25th November 2012, Accepted: 25th November 2012[How to Cite: I. Istadi, Didi D. Anggoro, Luqman Buchori, Inshani Utami, Roikhatus Solikhah, (2012. Process Parameters Optimization of Potential SO42-/ZnO Acid Catalyst for Heterogeneous Transesterification of Vegetable Oil to Biodiesel. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 150-157. (doi:10.9767/bcrec.7.2.4064.150-157][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.4064.150-157 ] | View in 

  4. Margarine from organogel of healthy vegetable oils and plant wax

    Science.gov (United States)

    Organogelator that can turn vegetable oil into a gel with a small quantity has drawn a lot of interests as a potential alternative for saturated fats and trans fat-containing solid fats in margarine and spread products. However, it is not practically used in those products yet. This research shows...

  5. Heterogeneous hydrogenation of vegetable oils : A literature review

    NARCIS (Netherlands)

    Veldsink, JW; Bouma, MJ; Schoon, NH; Beenackers, AACM

    1997-01-01

    Hardening of vegetable oils is reviewed from an engineering point of view. The present review focuses on kinetics of the hydrogenation and relevant transport and adsorption steps. It aims to contribute to accelerate new research to improve substantially on selectivities in general and a decrease of

  6. The use of antioxidants in vegetable oils – A review

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... The shelf life of vegetable oils in food uses and their applicability in industrial situations is greatly dependent on their oxidative stabilities. Methods of improving oxidative stability values currently available include genetic modifications, compositional changes via chemical means, as well as the inhibition of ...

  7. EFFICACY OF VEGETABLE OILS AGAINST DRY BEAN BEETLES ...

    African Journals Online (AJOL)

    ACSS

    African Crop Science Journal, Vol. 22, No. 3, pp. ... 2 International Centre of Insect Physiology and Ecology (ICIPE), P. O. Box 30772-00100, Nairobi, Kenya ..... International Research Journal of. Biological Sciences 2(8):59-65. Schoonhoven, A.V. 1978. The use of vegetable oils to protect stored beans from bruchid attack.

  8. Chemical qualities of oils from some fresh and market vegetable ...

    African Journals Online (AJOL)

    JTEkanem

    Chemical qualities of oils from some fresh and market vegetable crops within Kwara. State of Nigeria. Israel Sunmola AFOLABI. Covenant University, College of Science and Technology, Department of Biological Sciences,. Canaan land, Km 10, Idiroko road, ... An international journal published by the. Nigerian Society for ...

  9. Responses of selected biota after biostimulation of a vegetable oil ...

    African Journals Online (AJOL)

    An investigation on the effect of a vegetable oil spill was conducted on the biological diversity of the Con Joubert Bird Sanctuary wetland in South Africa before and after biostimulation with different concentrations of fertilizer during 2008. Biostimulation responses were analyzed 30 days after different concentrations of ...

  10. ANAEROBIC BIODEGRADATION OF VEGETABLE OIL AND ITS METABOLIC INTERMEDIATES IN OIL-ENRICHED FRESHWATER SEDIMENTS

    Science.gov (United States)

    Anaerobic biodegradation of vegetable oil in freshwater sediments is strongly inhibited by high concentrations of oil, but the presence of ferric hydroxide relieves the inhibition. The effect of ferric hydroxide is not due to physical or chemical interactions with long-chain fatt...

  11. New antioxidants and antioxidant systems for improvement of the stability of vegetable oils and fish oils

    Science.gov (United States)

    Most vegetable oils and fish oils contain polyunsaturated fatty acids ranging from 18 carbons with two to three double bonds, to 22 or 24 carbons, and up to six double bonds. Nutritional research over the years has indicated that individual fatty acids from the diet play a complex role in nutrition ...

  12. Synthesis of hydroxy thio-ether derivatives of vegetable oil.

    Science.gov (United States)

    Sharma, Brajendra K; Adhvaryu, A; Erhan, S Z

    2006-12-27

    Bio-based additives are desirable commodities due to their eco-friendly nature. These additives can demonstrate physical and chemical properties comparable to those of conventional mineral oil-based products. Sulfur incorporated triacylglycerol can function as an antiwear/antifriction additive for lubricants. The synthesis of four useful hydroxy thio-ether derivatives of vegetable oils, from commercially available epoxidized soybean oil and common organic thiols, is reported in this paper. The common thiols used herein were 1-butanethiol, 1-decanethiol, 1-octadecanethiol, and cyclohexyl mercaptan. Currently, there is no reported literature describing the synthesis of hydroxy thio-ether derivatives of vegetable oil. The reaction was monitored, and products were confirmed by NMR and FTIR spectroscopies. Experimental conditions involving various thiols, solvent, catalyst amount, time, and temperature were optimized for research quantity and laboratory scale-up. The synthetic process retains the vegetable oil structure, eliminates polyunsaturation in the molecule, and adds polar functional groups on triacylglycerol. These products can be used as agriculturally-based antiwear additives for lubricant applications.

  13. Vegetable oil based emulsions in milk

    Directory of Open Access Journals (Sweden)

    Veronika Mikulcová

    2014-07-01

    Full Text Available Milk and dairy products represent an important part of functional food in the market. Based on their positive health and nutritional benefits, they have gained popularity and their consumption as well as production is on the rise in the last few decades. As a result of this trend, milk-based products are being used for the delivery of bioactive food ingredients. This study is devoted to the formulation of stable emulsions containing grape seed oil dispersed with several emulsifiers (Tween 80, monocaprylin, and lecithin in milk. Photon correlation spectroscopy was used to evaluate the characteristics of the emulsions in terms of mean droplet size, droplet size distribution and polydispersity index. Emulsions were prepared using 2% and 5% w/w grape seed oil, and 3%, 5%, or 8% w/w emulsifier, and these were homogenized at two different rates of 1050 and 13400 rpm. Parameters influencing emulsion particle size and particle size distribution were identified, which included emulsifier type, its HLB value, oil type (virgin, refined, homogenization rate and the fat content in the milk. Homogenization at 13400 rpm for 10 min. produced fine emulsions with small mean particle sizes and monomodal distribution of droplets. Regarding emulsifier type, the smallest droplet sizes were obtained with formulations containing Tween 80 (250-315 nm, whereas lecithin primarily accounted for the monomodal particle size distributions.

  14. A STUDY PROTOCOL ON COMMUNITY ACCEPTABILITY OF VEGETABLE OIL BLENDS WITH RED PALMOLEIN- A SEMIRANDOMIZED STUDY

    OpenAIRE

    Sankar, Uma V.; , Dr.Nisha.P2

    2017-01-01

    Vegetable oils are the rich source of vitamins and various essential fatty acids. The blending of the vegetable oils gave double benefit to health. Among the vegetable oils, red palm olein is the richest source of carotenoids and prevent the hyper cholesteremia. Prevalence of hyper cholesterolemia was 56.4% in Kerala. Availability and consumption of blended vegetable oil help to prevent the hyper cholesteremia in a way. In this study, we aimed to know the acceptability of the blended vegetabl...

  15. Biodiesel production from vegetable oil and waste animal fats in a pilot plant.

    Science.gov (United States)

    Alptekin, Ertan; Canakci, Mustafa; Sanli, Huseyin

    2014-11-01

    In this study, corn oil as vegetable oil, chicken fat and fleshing oil as animal fats were used to produce methyl ester in a biodiesel pilot plant. The FFA level of the corn oil was below 1% while those of animal fats were too high to produce biodiesel via base catalyst. Therefore, it was needed to perform pretreatment reaction for the animal fats. For this aim, sulfuric acid was used as catalyst and methanol was used as alcohol in the pretreatment reactions. After reducing the FFA level of the animal fats to less than 1%, the transesterification reaction was completed with alkaline catalyst. Due to low FFA content of corn oil, it was directly subjected to transesterification. Potassium hydroxide was used as catalyst and methanol was used as alcohol for transesterification reactions. The fuel properties of methyl esters produced in the biodiesel pilot plant were characterized and compared to EN 14214 and ASTM D6751 biodiesel standards. According to the results, ester yield values of animal fat methyl esters were slightly lower than that of the corn oil methyl ester (COME). The production cost of COME was higher than those of animal fat methyl esters due to being high cost biodiesel feedstock. The fuel properties of produced methyl esters were close to each other. Especially, the sulfur content and cold flow properties of the COME were lower than those of animal fat methyl esters. The measured fuel properties of all produced methyl esters met ASTM D6751 (S500) biodiesel fuel standards. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Manufacturing of environment friendly biolubricants from vegetable oils

    Directory of Open Access Journals (Sweden)

    Ebtisam K. Heikal

    2017-03-01

    Full Text Available Environment friendly products such as fuels and lubricants are among the candidates which are studied in several countries including Egypt. The purpose of this work was to utilize commercially available palm oil and Jatropha oil for the production of biolubricants, through two stages of Transesterification. The first stage is the process of using methanol in the presence of potassium hydroxide to produce biodiesel. The second stage is the reaction of biodiesel with trimethylolpropane using sodium methoxide as catalyst to yield palm or Jatropha oil base trimethylolpropane esters (biolubricants. Palm oil based trimethylolpropane esters with yield of 97.8% was obtained after 4 h of reaction at 130 °C. Under similar reaction conditions, Jatropha oil based trimethylolpropane esters with a yield of 98.2% was obtained. The resulting products were confirmed by FTIR and evaluated by ASTM analyses. The obtained Jatropha oil based trimethylolpropane esters exhibited high viscosity indices (140, low pour point temperature (−3 °C, and moderate thermal stabilities and met the requirement of commercial industrial oil ISO VG46 grade. In spite of the high pour point of Palm oil based trimethylolpropane esters (5 °C, which needs pour point depressant to reduce the pour point, other lubrication properties such as viscosity, viscosity indices and flash point are comparable to commercial industrial oil ISO VG32 and VG46.

  17. Light and Heavy Tactical Wheeled Vehicle Fuel Consumption Evaluations Using Fuel Efficient Gear Oils (FEGO)

    Science.gov (United States)

    2016-05-01

    UNCLASSIFIED LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL...HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL REPORT TFLRF No. 477 by Adam C... subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO

  18. 21 CFR 172.736 - Glycerides and polyglycides of hydrogenated vegetable oils.

    Science.gov (United States)

    2010-04-01

    ... vegetable oils. 172.736 Section 172.736 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... polyglycides of hydrogenated vegetable oils. The food additive glycerides and polyglycides of hydrogenated vegetable oils may be safely used in food in accordance with the following prescribed conditions: (a) The...

  19. A note on the combustion of blends of diesel and soya, sunflower and rapeseed vegetable oils in a light boiler

    Energy Technology Data Exchange (ETDEWEB)

    San Jose Alonso, J.; Lopez, E. [Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, Paseo del Cauce s/n, 47011 Valladolid (Spain); Lopez Sastre, J.A.; Romero-Avila, C. [Dpto. Quimica Organica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, Paseo del Cauce s/n, 47011 Valladolid (Spain)

    2008-09-15

    This paper deals with the study of the vegetable oils (VO) used as fuel for heating. The properties of sunflower, rape and soya oils are studied and these are compared with the properties of C-diesel fuel (used for heating domestic purposes in Spain). The mixtures of VO and diesel are studied and characterized and, finally, the results of a series of combustion trials of the mixtures in a conventional heating installation with a mechanical pulverization burner are presented. The results show that viscosity of VO limits the use of blends up to 40% of them, and the oxygen present in their structures contributes to an efficiency gain. (author)

  20. The recuperation of the fuel oil of the Prestige; Recuperacion del fuel oil del Prestige

    Energy Technology Data Exchange (ETDEWEB)

    Remon, M. A.

    2003-07-01

    It is not lacking to remember the catastrophe of the PRESTIGE, because it has been object of the constant attention of communication media form the month of November of the year 2002. when it was produced the sinking. The purpose of this article is to deal with an aspect very concrete of this sinister, the recuperation of the fuel-oil that still remains in the sunken boat. (Author)

  1. Variables affecting the reactivity of acid-catalyzed transesterification of vegetable oil with methanol.

    Science.gov (United States)

    Furukawa, Shigeki; Uehara, Yoshihiro; Yamasaki, Hiroshi

    2010-05-01

    The dominant factors affecting the reactivity of acid-catalyzed transesterification of vegetable oil with methanol have been investigated. Effects of varying the acid catalyst species, surface active agent type and content were studied. Also, the effect of the type of oil was examined. Biodiesel fuel yields increased with the addition of sodium dodecylsulfonate as surface active agent because the mass transfer rates of protons and methanol to the oil phase through the oil-methanol interface were increased with increasing interfacial area. Evaluation of the reaction kinetics, based on changes in parent oils containing triglyceride or diglyceride showed that the activation energies were almost no change, but the frequency factors were 2210 and 9827mol(-1)min(-1), respectively. Therefore, it was concluded that a lower reactivity during acid-catalyzed transesterification with methanol was caused by a lower contact probability for oil, methanol and acid catalyst in the presence of an oil-methanol interface during the reaction. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Fundamental Studies on Development of Environment Friendly Vegetable Oil Filled Transformer

    Science.gov (United States)

    Shinke, Masami; Miyazato, Kenji; Tada, Toshiharu; Takeuchi, Yasuo; Nakagami, Yoshitake; Shimizu, Rumiko; Kosaka, Masaaki; Wada, Motoo

    In order to develop the environment-friendly transformer, the rapeseed ester oil which is vegetable oil was selected as the new insulating oil and various characteristics of rapeseed ester oil were investigated experimentally. These results showed that the basic characteristics of rapeseed ester oil surpasses as compared with mineral oil.

  3. Highly effective ionic liquids for biodiesel production from waste vegetable oils

    Directory of Open Access Journals (Sweden)

    Fathy A. Yassin

    2015-03-01

    Full Text Available As conventional energy sources deplete, the need for developing alternative energy resources which are environment friendly becomes more imperative. Vegetable oils are attracting increased interest in this purpose. The methanolysis of vegetable oil to produce a fatty acid methyl ester (FAME, i.e., biodiesel fuel was catalyzed by commercial ionic liquid and its chloride modification. The imidazolium chloride ionic liquid was frequently chosen for the synthesis of biodiesel. The dual-functionalized’ ionic liquid is prepared by a direct combination reaction between imidazolium cation and various metal chlorides such as CoCl2, CuCl2, NiCl2, FeCl3 and AlCl3. Imidazolium tetrachloroferrate was proved to be a selective catalyst for the methanolysis reaction at a yield of 97% when used at 1:10, catalyst: oil ratio for 8 h at 55 °C. Operational simplicity, reusability of the used catalyst for 8 times at least, high yields and no saponification are the key features of this methodology. The dynamic viscosity and density of the upgraded vegetable oil decreased from 32.1 cP and 0.9227 g/cm3 to 10.2 cP and 0.9044 g/cm3 respectively, compared to those of the base vegetable oil. The objective of this study was the synthesis and characterization of biodiesel using commercial ionic liquid and its chloride modification. The ionic liquid catalysts were characterized using FTIR, Raman spectroscopy, DSC, TG and UV.

  4. Effect of selected vegetable oils on the cyanide content of cassava ...

    African Journals Online (AJOL)

    Tropical Manoic Selection 1 and Tropical Manoic Selection 91954) treated with palm oil, groundnut oil and coconut oil were determined enzymically. Results obtained from the study revealed that treatment of cassava mash with the vegetable ...

  5. High-performance, fuel-economy oils applying a new base oil technology

    Energy Technology Data Exchange (ETDEWEB)

    Zander, J.

    1981-10-01

    The necessity for energy conservation has great influence on the further development of road vehicles. Thus improvement of fuel economy is a major issue in this field. Fuel economy oils, i. e. low viscosity oils, can contribute to fuel economy by reduction of internal friction in the engine. Such engine oils must have special features, which cannot be met by conventional engine oils. Methods for evaluation and classification of fuel economy oils are worked at in Europe (CEC) and USA (ASTM). By applying a new base oil technology which makes use of an improved hydrocracking process, Shell has developed two Fuel Economy Oils, one for passenger cars, the other for commercial vehicles which entirely meet forthcoming requirements. The special properties of the XHVI (extra high viscosity index) base oil, e.g. high viscosity index and low evaporation loss make possible the manufacture of low viscosity multigrade oils with absolute shear stability and excellent overall performance. Besides the necessary engine tests (ASTM API, CCMC, inhouse-tests etc.), the new oils were evaluated in field/fleet-tests, one of which was conducted with 280 cars over 6 months, comparing the new 10 W/30 Fuel Economy Oil API SF/CC with a conventional 15 W/50 multigrade oil resulting in an average improvement of fuel economy of 3.1%. The evaluation of the 15 W/30 Fuel Economy Oil API CD for commercial vehicles in comparison to a conventional 15 W/40 engine oil showed an improvement in fuel economy of 2.6%. The statistical significance in both cases was above 99%.

  6. Comparison of Dissolved Gases in Mineral and Vegetable Insulating Oils under Typical Electrical and Thermal Faults

    OpenAIRE

    Chenmeng Xiang; Quan Zhou; Jian Li; Qingdan Huang; Haoyong Song; Zhaotao Zhang

    2016-01-01

    Dissolved gas analysis (DGA) is attracting greater and greater interest from researchers as a fault diagnostic tool for power transformers filled with vegetable insulating oils. This paper presents experimental results of dissolved gases in insulating oils under typical electrical and thermal faults in transformers. The tests covered three types of insulating oils, including two types of vegetable oil, which are camellia insulating oil, Envirotemp FR3, and a type of mineral insulating oil, to...

  7. Emission and Performance Analysis of ZrO2 And CeO2 Coated Piston Using Refined Vegetable Oils

    Science.gov (United States)

    Hemanandh, J.; Narayanan, K. V.; Manoj, Vemuri

    2017-05-01

    Increase in global warming and pollution leads to look for an alternative fuel. The aim of this paper to improve the performance and to reduce the emissions in DI diesel engine. The 80% of ZrO2 and 20% of CeO2 were mixed and coated on the piston head using plasma spray method. The B10 fuel of various refined vegetable oil methyl esters were used as fuel. The test was conducted in the 4-stroke DI diesel engine at a constant speed of 1500 rpm. The results show that the brake thermal efficiency, NOx and BSFC was increased. The CO and HC were decreased.

  8. Utilisation of vegetable oils in the production of lovastatin by Aspergillus terreus ATCC 20542 in submerged cultivation

    OpenAIRE

    Pattana Sripalakit

    2011-01-01

    The effect of vegetable oils as a supplementary carbon source during the production of lovastatin by Aspergillus terreus ATCC 20542 in submerged culture was investigated. The six vegetable oils tested were sesame oil, sunflower oil, soya bean oil, corn oil, palm oil and olive oil. Lovastatin concentration and biomass were measured. Lovastatin production was higher in several oil-containing media compared to control medium. In particular, palm oil and soya bean oil significantly improved lovas...

  9. New research progress of vegetable oil-based polyurethanes

    Directory of Open Access Journals (Sweden)

    Hongjie LIU

    2016-10-01

    Full Text Available This paper summarizes the latest progress for vegetable oil-based polyurethanes mainly from the view of thermoset and thermoplastic. Firstly, the modification methods for traditional thermoset polyurethane are introduced, including physical modification methods (filling and alloying and chemical modification methods (copolymerization grafting, crosslinking and interpenetrating polymer network. Materials used for physical modification mainly contain inorganic materials such as SiO2 and organic substances such as cellulose. Grafting copolymerization of styrene, acrylate and other monomers with polyurethane is the main method of chemical modification. The characteristics, preparations and application fields of thermoplastic polyurethane are reviewed, and the preparations, performances and applications of oleic acid-based thermoplastic polyurethane are chiefly presented. The development prospects of vegetable oil-based polyurethane are put forward. Surface-initiated living polymerization and other methods are used to controllable chemical modification of the traditional thermoset polyurethane and click chemistry method is uesd to promote multi-functionalization of the thermoplastic polyurethane.

  10. First stage of bio-jet fuel production: non-food sunflower oil extraction using cold press method

    Directory of Open Access Journals (Sweden)

    Xianhui Zhao

    2014-06-01

    Full Text Available As a result of concerning petroleum price increasing and environmental impact, more attention is attracted to renewable resources for transportation fuels. Because not conflict with human and animal food resources, non-food vegetable oils are promising sources for developing bio-jet fuels. Extracting vegetable oil from oilseeds is the first critical step in the pathway of bio-jet fuel production. When sunflower seeds are de-hulled, there are always about 5%–15% broken seed kernels (fine meat particles left over as residual wastes with oil content up to 48%. However, the oil extracted from these sunflower seed residues is non-edible due to its quality not meeting food standards. Genetically modified sunflower grown on margin lands has been identified one of sustainable biofuel sources since it doesn't compete to arable land uses. Sunflower oils extraction from non-food sunflower seeds, sunflower meats, and fine sunflower meats (seed de-hulling residue was carried out using a cold press method in this study. Characterization of the sunflower oils produced was performed. The effect of cold press rotary frequency on oil recovery and quality was discussed. The results show that higher oil recovery was obtained at lower rotary frequencies. The highest oil recovery for sunflower seeds, sunflower meats, and fine sunflower meats in the tests were 75.67%, 89.74% and 83.19% respectively. The cold press operating conditions had minor influence on the sunflower oil quality. Sunflower meat oils produced at 15 Hz were preliminarily upgraded and distilled. The properties of the upgraded sunflower oils were improved. Though further study is needed for the improvement of processing cost and oil recovery, cold press has shown promising to extract oil from non-food sunflower seeds for future bio-jet fuel production.

  11. Performances of cutting fluids in turning. Vegetable based oil - RV

    DEFF Research Database (Denmark)

    Axinte, Dragos Aurelian; Belluco, Walter

    1999-01-01

    Scope of the present measurement campaign is the evaluation of the cutting fluid performance. The report presents the standard routine and the results obtained when turning stainless steel and brass with a commercial vegetable based oil called RV. The methods were developed to be applicable...... in normal workshop conditions using common equipment for turning as well as in a test laboratory. The evaluation tests can be carried out using the desired number of repetitions in terms of workpiece materials and tools....

  12. Fuel dynamics and fire behaviour in Australian mallee and heath vegetation

    Science.gov (United States)

    Juanita Myers; Jim Gould; Miguel Cruz; Meredith Henderson

    2007-01-01

    In southern Australia, shrubby heath vegetation together with woodlands dominated by multistemmed eucalypts (mallee) comprise areas of native vegetation with important biodiversity values. These vegetation types occur in semiarid and mediterranean climates and can experience large frequent fires. This study is investigating changes in the fuel complex with time, fuel...

  13. Evaluation of microbial fuel cells for electricity generation from oil-contaminated wastewater.

    Science.gov (United States)

    Hamamoto, Kazuhiro; Miyahara, Morio; Kouzuma, Atsushi; Matsumoto, Akiteru; Yoda, Minoru; Ishiguro, Takashi; Watanabe, Kazuya

    2016-11-01

    Large quantities of oils and fats are discharged into wastewater from food industries. We evaluated the possibility of using microbial fuel cells (MFCs) for the generation of electricity from food-industry wastewater containing vegetable oils. Single-chamber MFCs were supplied with artificial wastewater containing soybean oil, and oil removal and electric output were examined under several different conditions. We found that MFC performance could be improved by supplementing wastewater with an emulsifier, inoculating MFCs with oil-contaminated soil, and coating the graphite-felt anodes with carbon nanotubes, resulting in a power output of more than 2 W m(-2) (based on the projected area of the anode). Sequencing of polymerase chain reaction (PCR)-amplified 16S rRNA gene fragments detected abundant amount of Burkholderiales bacteria (known to include oil degraders) in the oil-contaminated soil and anode biofilm, whereas those affiliated with the genus Geobacter were only detected in the anode biofilm. These results suggest that MFCs can be used for energy recovery from food industry wastewater containing vegetable oils. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Environmental Impacts and Costs of Hydrotreated Vegetable Oils, Transesterified Lipids and Woody BTL—A Review

    Directory of Open Access Journals (Sweden)

    Andreas Brekke

    2011-05-01

    Full Text Available This article reviews and compares assessments of three biodiesel fuels: (1 transesterified lipids, (2 hydrotreated vegetable oils (HVO, and (3 woody biomass-to-liquid (BTL Fischer-Tropsch diesel and selected feedstock options. The article attempts to rank the environmental performance and costs of fuel and feedstock combinations. Due to inter-study differences in goal and study assumptions, the ranking was mostly qualitative and intra-study results are emphasized. Results indicate that HVO made from wastes or by-products such as tall oil, tallow or used cooking oil outperform transesterified lipids and BTL from woody material, both with respect to environmental life cycle impacts and costs. These feedstock options are, however, of limited availability, and to produce larger volumes of biofuels other raw materials must also be used. BTL from woody biomass seems promising with good environmental performance and the ability not to compete with food production. Production of biofuels from agricultural feedstock sources requires much energy and leads to considerable emissions due to agrochemical inputs. Thus, such biodiesel fuels are ranked lowest in this comparison. Production of feedstock is the most important life cycle stage. Avoiding detrimental land use changes and maintaining good agricultural or forestry management practices are the main challenges to ensure that biofuels can be a sustainable option for the future transport sector.

  15. Investigation of Performance and Emissions Effects of Waste Vegetable Oil Methyl Ester in A Diesel Engine

    Directory of Open Access Journals (Sweden)

    Yahya ULUSOY

    2016-12-01

    Full Text Available In this study engine and emission performance of a 4-stroke, 4 cylinder, direct injection 62,5 kW engine, with three different biodiesel blends (B25, B50, B75,  was compared with those obtained with use of normal diesel (B0 through a 8-mode experimental test procedure, in convention with ISO 8178-C1. The results of the study showed that, performance and emission values of biodiesel fuels produced from vegetable oil and those obtained with diesel fuel (B0 are very close to each other.  In this context, the waste cooking oil, which is a serious risk to the environment and should be collected according to related legistlative measures,  could be processed to and used as biodiesel without creating any significant loss in terms of engine performance, while providing significant advantages in terms of engine emissions. These results revealed that, waste frying oils can be used as diesel fuel and to create an adding value for the economy instead of being potential environmental risk. 

  16. Effects of engine oil viscosity and composition on fuel efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Clevenger, J.E.; Carlson, D.C.; Kleiser, W.M.

    1984-01-01

    A 2.3l engine dynamometer test procedure that measures the effects of engine oils on fuel efficiency has been developed that a) generally agrees with the ASTM five-car test, b) has good test repeatability and c) is capable of detecting small differences among test oils with high statistical confidence. Factors in a lubricant affecting fuel efficiency such as SAE viscosity grade, VI improver, detergent-inhibitor (DI) package and friction modifier selection were investigated in the 2.3l engine dynamometer test. A general trend of improved fuel efficiency was found with reduction in single-grade and multigrade oil viscosity. VI improver selection was found to have a significant effect on the fuel efficiency of multigrade oils. In some cases the difference in fuel efficiency among multigrade oils containing different VI improvers was about the same as the gain in fuel efficiency from reducing SAE grade from an SAE 10w-40 to an SAE 5w-30. Results show that by careful selection of the VI improver and DI package it is possible to formulate multigrade oils that exceed the requirements of the current ASTM energy-conserving engine oil classification.

  17. Application of game theory in decision making strategy: Does gas fuel industry need to kill oil based fuel industry?

    Science.gov (United States)

    Azmi, Abdul Luky Shofi'ul; Prabandari, Dyah Lusiana; Hakim, Muhammad Lintang Islami

    2017-03-01

    Even though conversion of oil based fuel (Bahan Bakar Minyak) into gas fuel (Bahan Bakar Gas) for transportation (both land and sea) is one of the priority programs of the government of Indonesia, rules that have been established merely basic rules of gas fuel usage license for transportation, without discussing position of gas fuel related to oil based fuel in detail. This paper focus on possible strategic behavior of the key players in the oil-gas fuel conversion game, who will be impacted by the position of gas fuel as complement or substitution of oil based fuel. These players include industry of oil based fuel, industry of gas fuel, and the government. Modeling is made based on two different conditions: government plays a passive role and government plays an active role in legislating additional rules that may benefit industry of gas fuel. Results obtained under a passive government is that industry of oil based fuel need to accommodate the presence of industry of gas fuel, and industry of gas fuel does not kill/ eliminate the oil based fuel, or gas fuel serves as a complement. While in an active government, the industry of oil based fuel need to increase its negotiation spending in the first phase so that the additional rule that benefitting industry of gas fuel would not be legislated, while industry of gas fuel chooses to indifferent; however, in the last stage, gas fuel turned to be competitive or choose its role to be substitution.

  18. Correlation of basic oil quality indices and electrical properties of model vegetable oil systems.

    Science.gov (United States)

    Prevc, Tjaša; Cigić, Blaž; Vidrih, Rajko; Poklar Ulrih, Nataša; Šegatin, Nataša

    2013-11-27

    Model vegetable oil mixtures with significantly different basic oil quality indices (free fatty acid, iodine, and Totox values) were prepared by adding oleic acids, synthetic saturated triglycerides, or oxidized safflower oil ( Carthamus tinctorius ) to the oleic type of sunflower oil. Dielectric constants, dielectric loss factors, quality factors, and electrical conductivities of model lipids were determined at frequencies from 50 Hz to 2 MHz and at temperatures from 293.15 to 323.15 K. The dependence of these dielectric parameters on basic oil quality indices was investigated. Adding oleic acids to sunflower oil resulted in lower dielectric constants and conductivities and higher quality factors. Reduced iodine values resulted in increased dielectric constants and quality factors and decreased conductivities. Higher Totox values resulted in higher dielectric constants and conductivities at high frequencies and lower quality factors. Dielectric constants decreased linearly with temperature, whereas conductivities followed the Arrhenius law.

  19. Vegetable Oils Consumption as One of the Leading Cause of Cancer and Heart Disease

    OpenAIRE

    Somayeh Zaminpira; Sorush Niknamian

    2017-01-01

    This review takes a deep look at increases in the incidence of cancer and heart disease after the introduction of industrial vegetable oils in the world. Most vegetable oils are highly processed and refined products, which completely lack the essential nutrients. Omega-6 Linoleic acid from vegetable oils increases oxidative stress in the body of humans, contributing to endothelial dysfunction and heart disease. The consumption of these harmful oils which are high in mega-6 polyunsaturated fat...

  20. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization

    Directory of Open Access Journals (Sweden)

    M. Z. H. Khan

    2016-01-01

    Full Text Available The authors introduced waste plastic pyrolysis oil (WPPO as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330–490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%, and carbon residue of 0.5 (wt%, and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel.

  1. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization.

    Science.gov (United States)

    Khan, M Z H; Sultana, M; Al-Mamun, M R; Hasan, M R

    2016-01-01

    The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330-490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C) of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%), and carbon residue of 0.5 (wt%), and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel.

  2. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization

    Science.gov (United States)

    Sultana, M.; Al-Mamun, M. R.; Hasan, M. R.

    2016-01-01

    The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330–490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C) of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%), and carbon residue of 0.5 (wt%), and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel. PMID:27433168

  3. Ozonized vegetable oils and therapeutic properties: A review

    Directory of Open Access Journals (Sweden)

    Nathália R. Almeida

    2013-01-01

    Full Text Available Derived from ozonetherapy, the ozonized oils represent an Ozonized oils represent an interesting pharmaceutical approach to the management of a variety of dermatological pathologies. Ozone reacts with carbon-carbon double bonds of unsaturated fatty acids according to the mechanism described by Criegee, forming ozonides or 1,2,4 trioxolane rings and peroxides as the most important products, responsible for the antimicrobial activity and stimulating tissue repair and regeneration properties. The ozonized vegetable oils can be liquids or semisolids at room temperature and have stability periods that may be adequate for commercial distribuition. Ozonized sunflower oil (Oleozon®, a drug registered nationally and developed in the Ozone Research Center in Cuba has been tested and it was found to have valuable antimicrobial activity against bacteria, fungi and virus. FT-IR and NMR technics are used to confirm the structural changes undergone by oil during the ozonation. For determining the quality of ozonized oils, analytical methods such as peroxide, acidity and iodine values are usually carried out. Products are available for an alternative use of available resources, natural and renewable sources, simple technology, low cost and with extensive biological activity with reduced collateral effects. DOI: http://dx.doi.org/10.17807/orbital.v4i4.467

  4. Pyrolysis bio-oil upgrading to renewable fuels.

    Science.gov (United States)

    2014-01-01

    This study aims to upgrade woody biomass pyrolysis bio-oil into transportation fuels by catalytic hydrodeoxygenation : (HDO) using nanospring (NS) supported catalyst via the following research objectives: (1) develop nanospring-based : catalysts (nan...

  5. Cottonseed oil as a diesel-engine fuel. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Staph, H.E.; Staudt, J.J.

    1982-07-31

    If diesel fuel becomes unavailable for any reason, can diesel powered farm equipment function on alternate fuels from energy crops that are available on the farm. This project sought to gain some insight into this question through the use of once-refined cottonseed oil as fuel in a typical unmodified agricultural diesel engine. The engine used for test was an International Harvester Model DT-436B 6 cylinder, inline, direct injection, turbocharged engine of approximately 175 brake horsepower at 2500 rpm. The engine was run on a stationary stand using blends of reference diesel fuel (DF-2), once-refined cottonseed oil (CSO), and transesterified cottonseed oil (ESCO). The latter is cottonseed oil which has been processed to give a methyl ester instead of a glyceride. The volume percent blends of fuels used in the tests ranged from 100% DF-2, to 20/80 DF-2/CSO, 50/50 DF-2/ESCO, 50/50 CSO/ESCO, and 100% ESCO. The test procedures and results are presented in this volume. The results suggest that ESCO would probably be a satisfactory substitute for diesel fuel, but more testing is required. None of the fuels tested is a cost effective alternative to diesel fuels. ESCO presently costs four to five times as much as commercial diesel fuel.

  6. A detection method of vegetable oils in edible blended oil based on three-dimensional fluorescence spectroscopy technique.

    Science.gov (United States)

    Xu, Jing; Liu, Xiao-Fei; Wang, Yu-Tian

    2016-12-01

    Edible blended vegetable oils are made from two or more refined oils. Blended oils can provide a wider range of essential fatty acids than single vegetable oils, which helps support good nutrition. Nutritional components in blended oils are related to the type and content of vegetable oils used, and a new, more accurate, method is proposed to identify and quantify the vegetable oils present using cluster analysis and a Quasi-Monte Carlo integral. Three-dimensional fluorescence spectra were obtained at 250-400nm (excitation) and 260-750nm (emission). Mixtures of sunflower, soybean and peanut oils were used as typical examples to validate the effectiveness of the method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Disinfection of vegetable seed by treatment with essential oils, organic acids and plant extract

    NARCIS (Netherlands)

    Wolf, van der J.M.; Birnbaum, Y.E.; Zouwen, van der P.S.; Groot, S.P.C.

    2008-01-01

    Various essential oils, organic acids, Biosept, (grapefruit extract), Tillecur and extracts of stinging nettle and golden rod were tested for their antimicrobial properties in order to disinfect vegetable seed. In in vitro assays, thyme oil, oregano oil, cinnamon oil, clove oil and Biosept had the

  8. Large scale fuel oil production experiments

    Energy Technology Data Exchange (ETDEWEB)

    1943-08-04

    The effect of the coal throughput and the composition of the pasting oil, in particular the effect of different middle oil contents in the pasting oil, was previously tested in small scale experiments of hydrogenation of coal. Possibilities of increasing the throughput through the converter when producing heavy oil together with middle oil is shown in this work. The proper industrial detail for the production of heavy oil had to be developed first on a semi-commercial plant. The Upper Silesian coal was used to study the production of gasoline, middle oil, and heavy oil at 700 atm in a 1.6 m/sup 3/ converter and to relate the results with the small scale experiments (10-liter converter). Paste heat exchange was carried out successfully. The following experiments, among others, were carried out: mixed coals were hydrogenated to 100% gasoline plus middle oil, to 65% gasoline and middle oil and 35% heavy oil, as well as 50% gasoline and middle oil plus 50% heavy oil, in part with the usual iron catalyst combination and in part with the sulfurated Bayer mass together with the iron sulfate and sulfigran. The Heinity coal had been hydrogenated with the usual iron catalyst to 65% gasoline and middle oil plus 35% heavy oil. The important results were summarized in a table. Details of the experiments and processes used were given in 3 graphs and 42 tables.

  9. LANDFIRE: A nationally consistent vegetation, wildland fire, and fuel assessment

    Science.gov (United States)

    Rollins, Matthew G.

    2009-01-01

    LANDFIRE is a 5-year, multipartner project producing consistent and comprehensive maps and data describing vegetation, wildland fuel, fire regimes and ecological departure from historical conditions across the United States. It is a shared project between the wildland fire management and research and development programs of the US Department of Agriculture Forest Service and US Department of the Interior. LANDFIRE meets agency and partner needs for comprehensive, integrated data to support landscape-level fire management planning and prioritization, community and firefighter protection, effective resource allocation, and collaboration between agencies and the public. The LANDFIRE data production framework is interdisciplinary, science-based and fully repeatable, and integrates many geospatial technologies including biophysical gradient analyses, remote sensing, vegetation modelling, ecological simulation, and landscape disturbance and successional modelling. LANDFIRE data products are created as 30-m raster grids and are available over the internet at www.landfire.gov, accessed 22 April 2009. The data products are produced at scales that may be useful for prioritizing and planning individual hazardous fuel reduction and ecosystem restoration projects; however, the applicability of data products varies by location and specific use, and products may need to be adjusted by local users.

  10. Comparative Study on Accelerated Thermal Ageing of Vegetable Insulating Oil-paperboard and Mineral Oil-paperboard

    Science.gov (United States)

    Zhou, Zhu-Jun; Hu, Ting; Cheng, Lin; Tian, Kai; Yang, Jun; Wang, Xuan; Fang, Fu-Xin; Kong, Hai-Yang; Qian, Hang

    2016-05-01

    To comparatively study the insulation ageing life of vegetable insulating oil-paperboard and mineral oil-paperboard, we conducted accelerated thermal ageing experiments at 170°C. Then according to the temperature rise of vegetable insulating oil transformer, we conducted accelerated thermal ageing experiments at 150°C for vegetable insulating oil-paperboard and at 140°C for mineral oil-paperboard. The appearance, polymerization degree, and SEM microstructure of the paperboard after different ageing experiments were comparative analyzed. The results show that after the oil-paperboard system is accelerated ageing for 1 000 h at 170°C, that is equivalent to 20 years natural ageing, the structure of paperboard in vegetable insulating oil is damaged severely, which indicates that the lifetime of transformer are in the late stage; while the structure of paperboard in mineral oil maintain complete, and the polymerization degree is still above 500, which indicate that the lifetime of transformer are in the middle stage. The accelerated ageing rate of the vegetable insulating oil-paperboard system at 150°C is slower than that of the mineral oil-paperboard system, which indicates that the lifetime of the vegetable insulating oil-paperboard is longer than that of the mineral oil-paperboard.

  11. Characterization of a Treated Palm Oil Fuel Ash | Hassan | Science ...

    African Journals Online (AJOL)

    Palm oil fuel ash (POFA) has been known to possess a pozzolanic property. The abundance of POFA as an agricultural waste makes it a promising candidate to be used as a supplementary cementations material in palm oil producing countries. This paper presents structural analysis and surface morphology of a treated ...

  12. Transformation of soil and vegetable conditions at oil production territories

    Science.gov (United States)

    Gatina, Evgeniia

    2017-04-01

    On the territory of modern oil production soil, vegetation, ecosystem conditions of the environment are significantly transformed. Researches have been conducted on the oil production territories located in a boreal coniferous forest natural zone from 2005 to 2015. Standard geobotanical and soil methods are used. Mechanical destruction of a plant cover, change of the water conditions, intake of oil products and salty waters in ecosystems, pollution of the atmosphere are considered as the major technology-related factors defining transformation of land ecosystems at operation of the oil field. Under the mechanical destruction of a plant cover the pioneer plant communities are formed. These communities are characterized by most reduced specific wealth with prevalence of types of meadow groups of plants and presence of types of wetland groups of plants. The biodiversity of biocenosis which are affected linear infrastructure facilities of oil production territories and change of the water conditions, decreases. It is observed decrease in species wealth, simplification of structure of communities. Under the salting of soils in ecosystems there is a decrease species diversity of communities to prevalence nitrophilous and meadow plant species. At the increased content of organic substances in the soils that is a consequence of intake of oil products, is characteristic increase in specific richness of communities, introduction of types of wetland and oligotrophic groups of plants in forest communities. Influence depends on distance to an influence source. In process of removal from a source of atmospheric pollution in forest communities there is a decrease in species diversity and complication of structure of community. It is caused by introduction of types of meadow groups of plants in ecotone sites of the forest communities located near a source of influence and restoration of structural features of forest communities in process of removal from an influence source

  13. Liquid Biofuels: Vegetable Oils and Bioethanol; Biocombustibles Liquidos: aceites Vegetales y Bioetanol

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, M.; Ballesteros, I.; Oliva, J.M.; Navarro, A.A.

    1998-12-01

    The European energy policy has defined clear objectives to reduce the high dependency on fossil petroleum imports, and to increase the security of sustainable energy supply for the transport sector. Moreover, the European environmental policy is requesting clean fuels that reduce environmental risks. Liquid Biofuels (vegetable oils and bioethanol) appear to be in a good position to contribute to achieve these goals expressed by the established objective of European Union to reach for biofuels a market share of 5% of motor vehicle consumption. This work presents the current state and perspectives of the production and utilisation of liquid fuels from agricultural sources by reviewing agricultural feedstocks for energy sector, conversion technologies and different ways to use biofuels. Environmental and economical aspects are also briefly analysed. (Author) 10 refs.

  14. Fuel properties of bituminous coal and pyrolytic oil mixture

    Science.gov (United States)

    Hamdan, Hazlin; Sharuddin, Munawar Zaman; Daud, Ahmad Rafizan Mohamad; Syed-Hassan, Syed Shatir A.

    2014-10-01

    Investigation on the thermal decomposition kinetics of coal-biooil slurry (CBS) fuel prepared at different ratios (100:0,70:30,60:40,0:100) was conducted using a Thermogravimetric Analyzer (TGA). The materials consisted of Clermont bituminous coal (Australia) and bio-oil (also known as pyrolytic oil) from the source of Empty Fruit Bunch (EFB) that was thermally converted by means of pyrolysis. Thermal decomposition of CBS fuel was performed in an inert atmosphere (50mL/min nitrogen) under non-isothermal conditions from room temperature to 1000°C at heating rate of 10°C/min. The apparent activation energy (Ea.) and pre-exponential factor (A) were calculated from the experimental results by using an Arrhenius-type kinetic model which first-order decomposition reaction was assumed. All kinetic parameters were tabulated based on the TG data obtained from the experiment. It was found that, the CBS fuel has higher reactivity than Clermont coal fuel during pyrolysis process, as the addition of pyrolytic oil will reduce the Ea values of the fuel. The thermal profiles of the mixtures showed potential trends that followed the characteristics of an ideal slurry fuel where high degradation rate is desirable. Among the mixture, the optimum fuel was found at the ratio of 60:40 of pyrolytic oil/coal mixtures with highest degradation rate. These findings may contribute to the development of a slurry fuel to be used in the vast existing conventional power plants.

  15. Assessing food allergy risks from residual peanut protein in highly refined vegetable oil

    NARCIS (Netherlands)

    Blom, W.M.; Kruizinga, A.G.; Rubingh, C.M.; Remington, B.C.; Crevel, R.W.R.; Houben, G.F.

    2017-01-01

    Refined vegetable oils including refined peanut oil are widely used in foods. Due to shared production processes, refined non-peanut vegetable oils can contain residual peanut proteins. We estimated the predicted number of allergic reactions to residual peanut proteins using probabilistic risk

  16. Bio-oil fueled diesel power plant; Biooeljyllae toimiva dieselvoimala

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, A. [Modigen Oy, Helsinki (Finland)

    1995-12-31

    The project mission is to develop a diesel power plant which is capable of using liquid bio-oils as the main fuel of the power plant. The applicable bio-oils are rape seed oils and pyrolysis oils. The project was started in 1994 by installing a 1.5 MW Vasa 4L32 engine in VTT Energy laboratory in Otaniemi. During 1995 the first tests with the rape seed oils were made. The tests show that the rape seed oil can be used in Vasa 32 engines without difficulties. In the second phase of the project during 1996 and 1997 pyrolysis oil made of wood will be tested. Finally a diesel power plant concept with integrated pyrolysis oil, electricity and heat production will be developed

  17. Energy analysis of cold-pressed vegetable oil technology with granulated oil cake producing

    Directory of Open Access Journals (Sweden)

    V. N. Vasilenko

    2013-01-01

    Full Text Available Through energy analysis evaluated the thermodynamic efficiency of cold pressed vegetable oils production lines. The following indicators were considered: degree of use of different types of energy used in production processes, the properties of raw materials, work carried out on the system and the total number of all types of energy, attracted from the outside.

  18. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites

    Science.gov (United States)

    Deka, Harekrishna; Karak, Niranjan

    2009-07-01

    The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications. Mesua ferrea L. seed oil-based hyperbranched polyurethane (HBPU)/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 °C of melting point, and 111 °C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96-99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance.

  19. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Deka Harekrishna

    2009-01-01

    Full Text Available Abstract The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications.Mesua ferreaL. seed oil-based hyperbranched polyurethane (HBPU/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 °C of melting point, and 111 °C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96–99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance.

  20. PERFORMANCE, EMISSION, AND COMBUSTION CHARACTERISTICS OF A CI ENGINE USING LIQUID PETROLEUM GAS AND NEEM OIL IN DUAL FUEL MODE

    OpenAIRE

    Palanimuthu Vijayabalan; Govindan Nagarajan

    2010-01-01

    Increased environmental awareness and depletion of resources are driving the industries to develop viable alternative fuels like vegetable oils, compresed natural gas, liquid petroleum gas, producer gas, and biogas in order to provide suitable substitute to diesel for compression ignition engine. In this investigation, a single cylinder, vertical, air-cooled diesel engine was modified to use liquid petroleum gas in dual fuel mode. The liquefied petroleum gas, was mixed with air and supplied t...

  1. Effect of vegetable oils on fatty acid composition and cholesterol content of chicken frankfurters

    Science.gov (United States)

    Belichovska, D.; Pejkovski, Z.; Belichovska, K.; Uzunoska, Z.; Silovska-Nikolova, A.

    2017-09-01

    To study the effect of pork adipose tissue substitution with vegetable oils in chicken frankfurters, six frankfurter formulations were produced: control; with pork backfat; with olive oil; with rapeseed oil; with sunflower oil; with palm oil, and; with a mixture of 12% rapeseed oil and 8% palm oil. Fatty acid composition and cholesterol content and some oxides thereof were determined in the final products. The use of vegetable oils resulted in improvement of the fatty acid composition and nutritional of frankfurters. Frankfurters with vegetable oils contained significantly less cholesterol and some of its oxides, compared to the frankfurters with pork fat. The formulation with palm oil had the least favourable fatty acid composition. The use of 12% rapeseed oil improved the ratio of fatty acids in frankfurters with a mixture of rapeseed and palm oils. Complete pork fat replacement with vegetable oils in chicken frankfurter production is technologically possible. The mixture of 12% rapeseed oil and 8% palm oil is a good alternative to pork fat from health aspects. Further research is needed to find the most appropriate mixture of vegetable oils, which will produce frankfurters with good sensory characteristics, a more desirable fatty acid ratio and high nutritional value.

  2. Study Of The Physicochemical Analysis Of Biodiesel Produced From Waste Vegetable Oil.

    Directory of Open Access Journals (Sweden)

    C. O. Okpanachi

    2017-07-01

    Full Text Available The study of the physicochemical analysis of biodiesel produced from waste vegetable oil in Sedi Minna Nigeria was carried out in order to ascertain the quality of the biodiesel produced as regards physical and chemical parameters which include visual appearance colour cloud point flash point and cetane index diesel index kinematic velocity calorific value. Biodiesel is a renewable resource that can replace petroleum diesel which comes from fossil fuels that are limited and will be exhausted in the near future. Biodiesel can be made from the transesterification of vegetable oils animal fat greases and oil crops such as soybean and it is biodegradable. The biodiesel produced was subjected to physicochemical analysis and results of cetane index was established to be 52 the flash point using pensky martens close cup was determine to be 1600C diesel index using IP21 0.3411 kinematic viscosity at 400C to be 4.12 and calorific value of 10867calg. The investigated physicochemical parameters show that the biodiesel produced is suitable for use in diesel engines without modifications and is cheaper to produce compared to petroleum diesel.

  3. Utilization of coal-water liquid fuel mixtures in heavy fuel oil burning boiler installations

    Energy Technology Data Exchange (ETDEWEB)

    Vuletic, V. (Rudarski Institut, Belgrade (Yugoslavia). Zavod za Termotehniku)

    1989-01-01

    Describes preliminary laboratory tests carried out to assess the feasibility of a project to be organized by the Mining Institute of Belgrade on construction of a pilot semi-industrial plant to investigate substitution of heavy fuel oil used in many thermal power plants with a coal/water or coal/water/oil mix. Tests were conducted using brown coal from the Kolubara surface mine made up in three formats: coal powder/water, coal powder/fuel oil and coal powder/water/fuel oil. Thermodynamic computations were made on each mix in order to predict their effectiveness when used to fuel TE-101 and TE-106 steam generating boilers that would normally consume 1 and 5 t fuel oil per hour respectively. Results are presented in tabular form. Concludes that the coal/oil and coal/oil/water mixes could be used as a substitute fuel with only minor modifications necessary to the boilers. Recommends proceeding with pilot plant construction. 4 refs.

  4. Fuels and Petroleum, Oil & Lubricants (POL) Laboratories

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuels and Lubricants Technology Team operates and maintains the Fuels and POL Labs at TARDEC. Lab experts adhere to standardized American Society for Testing and...

  5. Vegetable oils as hydraulic fluids for agricultural applications

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, G.; Igartua, A.; Fernandez-Diaz, B.; Urquiola, F.; Vivanco, S.; Arguizoniz, R.

    2011-07-01

    The formulation of environmentally friendly lubricants following the criterion of the European EcoLabel is expensive owing to the lack of technological development in this area. The present work deals with the development of lubricant formulations from vegetable oils, in particular using high oleic sunflower oil as base fluid. These new biolubricants have to perform as good as the reference lubricants used in the real application (an agricultural tractor) but with the additional condition and value of their biodegradability without toxicity. Formulation development has been performed by Verkol Lubricantes, involving the selection of the base oil and the design of the additive package. The investigation performed by Tekniker in the laboratory has covered different aspects, characterizing the most important physicochemical properties of the lubricants, including their behavior at low temperatures and their resistance to oxidation. The ribological properties of the new biolubricants have also been studied, analyzing their ability to protect the interacting surface from wear, as well as the level of friction generated during sliding. Moreover, the compatibility of the new formulated oil with all the seals present in the real application has been taken into consideration. The selected lubricant is now being tested in agricultural machinery from AGRIA. (Author).

  6. Natural (Mineral, Vegetable, Coconut, Essential) Oils and Contact Dermatitis.

    Science.gov (United States)

    Verallo-Rowell, Vermén M; Katalbas, Stephanie S; Pangasinan, Julia P

    2016-07-01

    Natural oils include mineral oil with emollient, occlusive, and humectant properties and the plant-derived essential, coconut, and other vegetable oils, composed of triglycerides that microbiota lipases hydrolyze into glycerin, a potent humectant, and fatty acids (FAs) with varying physico-chemical properties. Unsaturated FAs have high linoleic acid used for synthesis of ceramide-I linoleate, a barrier lipid, but more pro-inflammatory omega-6:-3 ratios above 10:1, and their double bonds form less occlusive palisades. VCO FAs have a low linoleic acid content but shorter and saturated FAs that form a more compact palisade, more anti-inflammatory omega-6:-3 ratio of 2:1, close to 7:1 of olive oil, which disrupts the skin barrier, otherwise useful as a penetration enhancer. Updates on the stratum corneum illustrate how this review on the contrasting actions of NOs provide information on which to avoid and which to select for barrier repair and to lower inflammation in contact dermatitis genesis.

  7. Development of building blocks using vegetable oil and recycled aggregate

    Directory of Open Access Journals (Sweden)

    Attia Mohamed I.

    2017-01-01

    Full Text Available The primary objective of this research was to contribute towards greater sustainability of the construction industry in the Qatar by proposing methods to reduce its dependency on primary imported materials. In this investigation, recycled and secondary aggregates (RSA were combined with non-traditional binders to develop a unique method of manufacturing construction and building blocks. Following an extensive phase of laboratory trials and experimentation, it was realised that many types of graded mineral aggregates, when mixed with vegetable oils (virgin or waste at optimal proportions, then compacted and thermally cured at elevated temperatures can readily generate hardened composites that have the mechanical characteristics of conventional building blocks. The resultant blocks have been named “Vegeblocks” and are viewed as viable alternatives to conventional concrete blocks. Furthermore, the research has demonstrated the feasibility of producing Vegeblocks composed of 100% recycled aggregate and discarded waste cooking oil. Based on physical and mineralogical properties, each type of aggregate has an optimum oil content for maximum compressive strength, beyond which, any additional oil will result in reduction in mechanical properties. Acceptable compressive strength values were achieved by thermally curing Vegeblocks at of 170 °C for 24 hours.

  8. [Effect of five kinds of vegetable seed oil on serum lipid and lipid peroxidation in rats].

    Science.gov (United States)

    Guo, Y; Cai, X; Zhao, X; Shi, R

    2001-01-01

    The effects of vegetable seed oil on hyperlipidemia induced by high lipid diet in rats. Male adult Wistar rats were fed on the test diet containing 94% high lipid diet and 6% lard pinon seed oil, perilla seed oil, blackcurrent seed oil, borage seed oil and evening primrose seed oil respectively for 3 weeks. The results showed that the vale of trilyceride(TG), total cholesterol(TC), low density lipoprotein cholesterol (LDL-C), LDL-C/HDL-C(high density lipoprotein cholesterol) ratio increased and the vale of HDL-C/TC ratio and lecithin-cholesterol acyltransferase(LCAT) activity decreased in the groups with vegetable seed oil were less than that of the control group. The results suggested that all the five kinds of vegetable seed oil had the effect of regulating lipid metabolism of hyperlipidemia rats to some extent. Pinon seed oil and borage seed oil may be well suited for the prevention of atherosclerosis.

  9. Tariff Impact on the Domestic Price of Vegetable Oil in Iran and the Associated Issues

    Directory of Open Access Journals (Sweden)

    omid gilanpour

    2015-05-01

    Full Text Available This study uses vector error correction model to examine the effects of oilseeds, crude oil and vegetable oil tariffs on vegetable oil consumer price. Monthly data sets for the years 2004-2013 and VAR and VECM models were applied for this study. Research findings indicates only a long term equilibrium relation between the study variables .The effect of vegetable oil tariffs on consumer and producer price index are 0.4 and 0.07, respectively. Furthermore, one percent increase in the oil seeds and crude oil tariff, will increase consumer prices by 2.35, 0.19percent. The huge gap between the impacts of the two tariffs –e.g. oilseeds and crude oil tariffs- on consumer price shows that oil industries work with low efficiency. This practically doubles the impact of tariff on consumers. Accordingly, structural reform in the oil industry can develop oil production and prevent additional burden upon the consumer price.

  10. Kolkhoung (Pistacia khinjuk Hull Oil and Kernel Oil as Antioxidative Vegetable Oils with High Oxidative Stability and Nutritional Value

    Directory of Open Access Journals (Sweden)

    Maryam Asnaashari

    2015-01-01

    Full Text Available In this study, in order to introduce natural antioxidative vegetable oil in food industry, the kolkhoung hull oil and kernel oil were extracted. To evaluate their antioxidant efficiency, gas chromatography analysis of the composition of kolkhoung hull and kernel oil fatty acids and high–performance liquid chromatography analysis of tocopherols were done. Also, the oxidative stability of the oil was considered based on the peroxide value and anisidine value during heating at 100, 110 and 120 °C. Gas chromatography analysis showed that oleic acid was the major fatty acid of both types of oil (hull and kernel and based on a low content of saturated fatty acids, high content of monounsaturated fatty acids, and the ratio of ω-6 and ω-3 polyunsaturated fatty acids, they were nutritionally well-balanced. Moreover, both hull and kernel oil showed high oxidative stability during heating, which can be attributed to high content of tocotrienols. Based on the results, kolkhoung hull oil acted slightly better than its kernel oil. However, both of them can be added to oxidation–sensitive oils to improve their shelf life.

  11. EXPERIMENTAL RESEARCH ON DIESEL ENGINE WORKING ON A MIXTURE OF DIESEL FUEL AND FUSEL OILS

    Directory of Open Access Journals (Sweden)

    Sviatoslav KRYSHTOPA

    2017-06-01

    Full Text Available This article considers the possibility of spirit fusel oil being used as an addition to agile fuels. Results of experimental research on diesel engines working on mixtures of diesel fuel and fusel oils are given. The fuel economy and ecological indexes of engines working on mixtures of diesel fuel and fusel oils were improved.

  12. EXPERIMENTAL RESEARCH ON DIESEL ENGINE WORKING ON A MIXTURE OF DIESEL FUEL AND FUSEL OILS

    OpenAIRE

    Sviatoslav KRYSHTOPA; Liudmyla KRYSHTOPA; Vasyl MELNYK; Bohdan DOLISHNII; Igor PRUNKO; Yaroslav DEMIANCHUK

    2017-01-01

    This article considers the possibility of spirit fusel oil being used as an addition to agile fuels. Results of experimental research on diesel engines working on mixtures of diesel fuel and fusel oils are given. The fuel economy and ecological indexes of engines working on mixtures of diesel fuel and fusel oils were improved.

  13. Delivery of Vegetable Oil Suspensions in a Shear Thinning Fluid for Enhanced Bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Lirong; Truex, Michael J.; Kananizadeh, Negin; Li, Yusong; Lea, Alan S.; Yan, Xiulan

    2015-04-01

    In situ anaerobic biological processes are widely applied for dechlorination of chlorinated solvents in groundwater. A wide range of organic substrates have been tested and applied to support the dechlorination processes. Vegetable oils are a promising substrate and have been shown to induce effective dechlorination, have limited geochemical impacts, and good longevity. Distribution of vegetable oil in the subsurface, because it is a non-aqueous phase material, has typically been addressed by creating emulsified oil solutions. In this study, inexpensive waste vegetable oils were suspended in a xanthan gum solution, a shear-thinning fluid, as an alternative oil delivery mechanism. The stability, oil droplet size and distribution, and rheological behavior of the oil suspensions that are created in the xanthan solutions were studied in batch experiments. The injectability of the suspensions and oil distribution in porous medium were evaluated in column tests. Numerical modeling of the oil droplet transport and distribution in porous media was conducted to help interpret the column-test data. Batch studies showed that simple mixing of vegetable oil and xanthan solution produced stable suspensions of the oil as micron-size droplets. The mixture rheology retains shear-thinning properties that facilitate improved uniformity of substrate distribution in heterogeneous aquifers. Column tests demonstrated successful injection of the vegetable oil suspension into porous medium. This study provided evidence that vegetable oil suspensions in xanthan are a potential substrate to support in situ anaerobic bioremediation with favorable injection properties.

  14. LIQUID-LIQUID EQUILIBRIUM FOR TERNARY SYSTEMS CONTAINING ETHYLIC BIODIESEL + ANHYDROUS ETHANOL + REFINED VEGETABLE OIL (SUNFLOWER OIL, CANOLA OIL AND PALM OIL: EXPERIMENTAL DATA AND THERMODYNAMIC MODELING

    Directory of Open Access Journals (Sweden)

    T. P. V. B. Dias

    2015-09-01

    Full Text Available AbstractPhase equilibria of the reaction components are essential data for the design and process operations of biodiesel production. Despite their importance for the production of ethylic biodiesel, the reaction mixture, reactant (oil and ethanol and the product (fatty acid ethyl esters up to now have received less attention than the corresponding systems formed during the separation and purification phases of biodiesel production using ethanol. In this work, new experimental measurements were performed for the liquid-liquid equilibrium (LLE of the system containing vegetable oil (sunflower oil and canola oil + ethylic biodiesel of refined vegetable oil + anhydrous ethanol at 303.15 and at 323.15 K and the system containing refined palm oil + ethylic biodiesel of refined palm oil + ethanol at 318.15 K. The experimental data were successfully correlated by the nonrandom two-liquid (NRTL model; the average deviations between calculated and experimental data were smaller than 1.00%.

  15. Self-propelled oil droplets consuming "fuel" surfactant

    DEFF Research Database (Denmark)

    Toyota, Taro; Maru, Naoto; Hanczyc, Martin M

    2009-01-01

    A micrometer-sized oil droplet of 4-octylaniline containing 5 mol % of an amphiphilic catalyst exhibited a self-propelled motion, producing tiny oil droplets, in an aqueous dispersion of an amphiphilic precursor of 4-octylaniline. The tiny droplets on the surface of the self-propelled droplet were...... conveyed to the posterior surface and released to the aqueous solution. Thus the persistent movement becomes possible in this chemical system, because the processing of chemical energy to mechanical movement proceeds by consuming exogenous fuel, not consuming the oil droplet itself. The mechanism...... of the unidirectional motion is hypothesized in terms of an asymmetric interfacial tension around the surface of the oil droplet....

  16. Preventive effect of cinnamon essential oil on lipid oxidation of vegetable oil

    Science.gov (United States)

    Keshvari, Mahtab; Asgary, Sedigheh; Jafarian-dehkordi, Abbas; Najafi, Somayeh; Ghoreyshi-Yazdi, Seyed Mojtaba

    2013-01-01

    BACKGROUND Lipid oxidation is the main deterioration process that occurs in vegetable oils. This process was effectively prevented by natural antioxidants. Cinnamomum zeylanicum (Cinnamon) is rich with antioxidants. The present study was conducted to evaluate the effect of cinnamon on malondialdehyde (MDA) rate production in two high consumption oils in Iranian market. METHODS Chemical composition of cinnamon essential oil was analyzed by gas chromatography-mass spectroscopy (GC-MS). 200 µl each oil, 50 µl tween 20, and 2 ml of 40 Mm AAPH solutions were mixed and the prepared solution was divided into four glass vials. Respectively, 50 µl of 500, 1000 and 2000 ppm of cinnamon essential oil were added to three glass vials separately and one of the glass vials was used as the control. All of the glass vials were incubated at 37° C water bath. Rate of MDA production was measured by thiobarbituric acid (TBA) test at the baseline and after the 0.5, 1, 2, 3 and 5 hours. RESULTS Compounds of cinnamon essential oil by GC-MS analysis such as cinnamaldehyde (96.8%), alpha-capaene (0.2%), alpha-murolene (0.11%), para-methoxycinnamaldehyde (0.6%) and delta-cadinen (0.4%) were found to be the major compounds. For both oils, maximum rate of MDA production was achieved in 5th hours of heating. Every three concentrations of cinnamon essential oil significantly decreased MDA production (P < 0.05) in comparison with the control. CONCLUSION Essential oil of cinnamon considerably inhibited MDA production in studied oils and can be used with fresh and heated oils for reduction of lipid peroxidation and adverse free radicals effects on body. PMID:24302936

  17. Preventive effect of cinnamon essential oil on lipid oxidation of vegetable oil.

    Science.gov (United States)

    Keshvari, Mahtab; Asgary, Sedigheh; Jafarian-Dehkordi, Abbas; Najafi, Somayeh; Ghoreyshi-Yazdi, Seyed Mojtaba

    2013-09-01

    Lipid oxidation is the main deterioration process that occurs in vegetable oils. This process was effectively prevented by natural antioxidants. Cinnamomum zeylanicum (Cinnamon) is rich with antioxidants. The present study was conducted to evaluate the effect of cinnamon on malondialdehyde (MDA) rate production in two high consumption oils in Iranian market. Chemical composition of cinnamon essential oil was analyzed by gas chromatography-mass spectroscopy (GC-MS). 200 µl each oil, 50 µl tween 20, and 2 ml of 40 Mm AAPH solutions were mixed and the prepared solution was divided into four glass vials. Respectively, 50 µl of 500, 1000 and 2000 ppm of cinnamon essential oil were added to three glass vials separately and one of the glass vials was used as the control. All of the glass vials were incubated at 37° C water bath. Rate of MDA production was measured by thiobarbituric acid (TBA) test at the baseline and after the 0.5, 1, 2, 3 and 5 hours. Compounds of cinnamon essential oil by GC-MS analysis such as cinnamaldehyde (96.8%), alpha-capaene (0.2%), alpha-murolene (0.11%), para-methoxycinnamaldehyde (0.6%) and delta-cadinen (0.4%) were found to be the major compounds. For both oils, maximum rate of MDA production was achieved in 5th hours of heating. Every three concentrations of cinnamon essential oil significantly decreased MDA production (P oil of cinnamon considerably inhibited MDA production in studied oils and can be used with fresh and heated oils for reduction of lipid peroxidation and adverse free radicals effects on body.

  18. Fourier transform infrared and fluorescence spectroscopy for analysis of vegetable oils

    OpenAIRE

    Nigri S.; Oumeddour R.

    2013-01-01

    Fourier transform infrared (FTIR) and fluorescence spectroscopy, combined with chemometric approaches have been developed to analysis of extra virgin olive oil adulterated with pomace olive oil. The measurements were made on pure vegetable oils: extra virgin oil, pomace olive oil and that adulterated with varying concentration of pomace olive oil. Today, the application of FTIR spectroscopy has increased in food studied, and particularly has become a powerful analytical tool in the study of e...

  19. Injection of heavy fuel oil into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Paloposki, T. [Helsinki Univ. of Technology, Otaniemi (Finland); Hakala, J.; Mannila, P.; Laukkanen, J. [Oulu Univ. (Finland)

    1996-12-31

    This study deals with the injection and combustion of heavy fuel oil in blast furnaces. The injection of the oil was studied experimentally in a small-scale test rig. The combustion of the oil was analysed with a commercial computer program for flow and combustion simulations. Results from computer simulations show that the combustion of the oil can be improved by decreasing the size of the oil drops and by enhancing the mixing between the oil drops and the hot blast. The devolatilization rate of the oil mainly depends on the size of the oil drops. The combustion rate of the volatiles mainly depends on the effectiveness of turbulent mixing with combustion air. Methods to decrease the size of the oil drops were sought in the experimental part of the study. Experimental results show that the size of the oil drops increases with increasing mass flow rate of the oil and decreases with increasing velocity of the hot blast. Methods to improve the mixing between the oil drops and the hot blast are suggested but have not yet been experimentally tested. (author) (4 refs.)

  20. Review of the stability of biodiesel produced from less common vegetable oils of African origin

    Directory of Open Access Journals (Sweden)

    Thomas Kivevele

    2015-09-01

    Full Text Available The stability of biodiesel is dependent on storage conditions such as contact with ambient air and metals, exposure to sunlight and high temperature conditions which accelerate oxidation reactions. In addition, biodiesels are more susceptible to degradation when compared to fossil diesel because of the presence of unsaturated fatty acid chains which are prone to oxidation. The stability of biodiesel is categorised according to oxidation stability, storage stability and thermal stability. Oxidation instability can led to the formation of oxidation products such as aldehydes, alcohols, shorter chain carboxylic acids, insolubles, gums and sediments in the biodiesel. Thermal instability is concerned with the increased rate of oxidation at higher temperature, which in turn increases the weight of oil and fat due to the formation of insolubles. Storage stability is the ability of liquid fuel to resist change to its physical and chemical characteristics brought about by its interaction with its storage environment, such as contamination with metals. These fuel instabilities give rise to the formation of undesirable substances in biodiesel beyond acceptable limits as per global biodiesel standards such as those of the American Society for Testing and Materials (ASTM D6751 and European Standards (EN 14214. When such fuel is used in the engine, it impairs engine performance through fuel filter plugging, injector fouling, and deposit formation in the engine combustion chamber and various components of the fuel system. We review the stability of biodiesel made from less common vegetable oils of African origin and synthetic antioxidants used in improving the stability of produced biodiesels.

  1. Changes occurring in vegetable oils composition due to microwave heating

    Directory of Open Access Journals (Sweden)

    Hassan El-Mallah, M.

    2003-12-01

    Full Text Available The effect of microwave heating on three vegetable oils having different lipid compositions was studied. Sunflower, soybean and peanut oils in comparison with oil admixture of soybean and peanut oil (1:1, w/w, were selected for this study. Each oil was heated for 2, 4, 6, 8, 10, 12, 15 and 18 minutes in microwave oven. Peroxide value, free acidity and colour absorbance (at 420 nm were proportionally increasing with the increase of heating period. Colour absorption threw light on the formation of browning products arising from phospholipids during microwave heating. Total tocopherol contents were determined by preparative thin layer chromatography, whereas the fatty acid compositions and formed epoxy acid were analyzed by capillary gas liquid chromatography. The formed conjugated dienes and trienes were determined by UV spectrophotometry. It was found that the total tocopherols of the microwave heated oils, decreased depending on the type of the predominating tocopherols. Also a relation of peroxide formation, during microwave heating, with changes in total tocopherol composition was discussed. It was found that polyunsaturated fatty acids generally decreased by increasing the heating period. The results obtained from the heated oil admixture helped interpret the results obtained from other heated individual oils.Se estudia el efecto del calentamiento en horno de microondas sobre aceites de diferente composición en ácidos grasos. Aceites de girasol, soja, cacahuete y una mezcla de soja y cacahuete al 50%, se calentaron durante 2, 4, 6, 8 10, 12, 15 y 18 minutos. Los valores de índice de peróxidos, acidez libre y absorbancia a 420 nm fueron proporcionales al tiempo de calentamiento. Otras determinaciones incluyeron el contenido total en tocoferoles mediante cromatografía en capa fina, la composición en ácidos grasos y en epoxiácidos mediante cromatografía gas líquido, y la formación de dienos y trienos conjugados mediante

  2. Biodegradation and toxicity of vegetable oils in contaminated aquatic environments: Effect of antioxidants and oil composition.

    Science.gov (United States)

    Salam, Darine A; Suidan, Makram T; Venosa, Albert D

    2016-03-15

    Antioxidants may affect the oxidative rate of vegetable oils determining their fate and impact in contaminated aquatic media. In previous studies, we demonstrated the effectiveness of butylated hydroxytoluene (BHT), one of the most used antioxidants in edible oils, in enhancing the biodegradation of glyceryl trilinoleate, a pure triacylglycerol of cis,cis-9,12-octadecadienoic acid (C18:2 delta), through retarding its oxidative polymerization relatively to the oil with no added antioxidant. In this study, the effect of BHT on the biodegradation and toxicity of purified canola oil, a mixed-acid triacylglycerol with high C18:1 content, was investigated in respirometric microcosms and by use of the Microtox® assay. Investigations were carried out in the absence and presence (200 mg kg(-1)) of the antioxidant, and at an oil loading of 0.31 L m(-2) (333 gal acre(-1)). Substantial oil mineralization was achieved after 16 weeks of incubation (>77%) and was not significantly different (p>0.05) between the two BHT treatments, demonstrating an important role of the oil fatty acid composition in determining the potency of antioxidants and, consequently, the fate of spilled vegetable oils. Furthermore, for both treatments, toxicity was measured at early stages of the experiments and disappeared at a later stage of incubation. The observed transient toxicity was associated with the combined effect of toxic biodegradation intermediates and autoxidation products. These results were supported by the gradual disappearance of BHT in the microcosms initially supplemented with the antioxidant, reaching negligible amounts after only 2 weeks of incubation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. First Brazilian patent for dielectric vegetable oil for transformers; Primeira patente brasileira de oleo dieletrico vegetal para transformadores

    Energy Technology Data Exchange (ETDEWEB)

    Carioca, Jose O.B.; Carvalho, Paulo C.M.; Correa, Raimundo G.C.; Bernardo, Francisco A.B. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil); Coelho Junior, Luiz G. [2 Companhia Energetica do Ceara (COELCE), Fortaleza, CE (Brazil); Abreu, Rosa F.A. [Universidade Estadual do Ceara (UECE), Fortaleza, CE (Brazil)

    2008-07-01

    The present paper discuss the development of different insulating oils for electric power transformers during the last hundred years and analyze comparatively the potential for the use of vegetable oils as a source for green dielectric oils, due to its high level of biodegradability, nontoxic, material compatibility, good electric strength and insulation properties, long-term oxidative and thermal stability, relatively low pour point and reasonable cost. Based on these premises, the authors developed a new type of insulating fluid based on Brazilian vegetable oils never used before for this purpose. This product is competitive with similar and patented products developed from canola and soya vegetable oils. Recently a new patent related with the process for the production of this fluid was submitted to the World Industrial Property Organization - WIPO. (author)

  4. Do Oil Exports Fuel Defense Spending?

    Science.gov (United States)

    2010-02-01

    Nigeria is rapidly becoming one of the world’s leading oil producers. Washington has great interest in the Nigerian government’s political...oil exploration. Pollution has destroyed fisheries and agricultural lands. Economic returns from oil have largely bypassed these residents...crime, and border disputes. Military-led coups have strained relations among the civil government, the public, and military members. The Nigerian

  5. Characterization of Fatty Acid Profile of Argan Oil and Other Edible Vegetable Oils by Gas Chromatography and Discriminant Analysis

    Directory of Open Access Journals (Sweden)

    Ascensión Rueda

    2014-01-01

    Full Text Available Virgin argan oil is an emergent oil that is being introduced into specialized international markets as a healthy and luxury food. In order to compare the fatty acid composition of argan oil with that of the eleven other vegetable edible oils, a combination of gas chromatography as analytical technique and multivariate discriminant analysis was applied. This analysis takes into account the conjoint effect of all the variables analyzed in the discrimination between oils and also shows the contribution of each variable to oils characterization. The model correctly classified 100% oil samples. According to the fatty acid composition, argan oil showed closest similarity firstly with sesame oil and secondly with high oleic sunflower oil. Olive oil was close to avocado oil and almond oil, followed by argan oil. Thus, similarities and differences between vegetable oils based on their fatty acid profile were established by the application of multivariate discriminant analysis. This method was proven to be a useful tool to study the relationships between oils according to the fat composition and to determine the importance of the fatty acid variables on the oils classification.

  6. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    Science.gov (United States)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  7. Quality Improvement of an Acid Treated Fuel Oil

    Directory of Open Access Journals (Sweden)

    Elizabeth Jumoke ETERIGHO

    2008-06-01

    Full Text Available The work on the quality improvement of fuel oil using acid treatment was carried out. The improvement of the fuel oil was done using sulphuric acid to remove contaminants. Sulphuric acid at different concentrations were mixed with the oil and kept at 45°C for four hours in the agitator vessel to allow reaction to take place. Acidic sludge was then drained off from the agitator and the oil was neutralized with sodium hydroxide. Centrifugation operation was used to extract the sulphonate dispersed in the oil. The treated and untreated oils were characterized for various properties and the results showed that the viscosity, total sulphur of fuel oil decreased from 6.0 to before 5.0 cst after acid treatment and 2.57 to 1.2225% w/w respectively while the flash point increased from 248 to 264°F. The water and sediment content increased from trace before to 0.6 after treatment. In addition, the calorific value increased from initial value of 44,368 to 44,805 and 44,715 kJ/kg at 50% and 75% conc. H2SO4 while decreasing with 85% and 90% conc. H2SO4. However, both carbon residue and ash content decreases with an increase in acid concentration.

  8. A novel quantitative analysis method of three-dimensional fluorescence spectra for vegetable oils contents in edible blend oil

    Science.gov (United States)

    Xu, Jing; Wang, Yu-Tian; Liu, Xiao-Fei

    2015-04-01

    Edible blend oil is a mixture of vegetable oils. Eligible blend oil can meet the daily need of two essential fatty acids for human to achieve the balanced nutrition. Each vegetable oil has its different composition, so vegetable oils contents in edible blend oil determine nutritional components in blend oil. A high-precision quantitative analysis method to detect the vegetable oils contents in blend oil is necessary to ensure balanced nutrition for human being. Three-dimensional fluorescence technique is high selectivity, high sensitivity, and high-efficiency. Efficiency extraction and full use of information in tree-dimensional fluorescence spectra will improve the accuracy of the measurement. A novel quantitative analysis is proposed based on Quasi-Monte-Carlo integral to improve the measurement sensitivity and reduce the random error. Partial least squares method is used to solve nonlinear equations to avoid the effect of multicollinearity. The recovery rates of blend oil mixed by peanut oil, soybean oil and sunflower are calculated to verify the accuracy of the method, which are increased, compared the linear method used commonly for component concentration measurement.

  9. Effects of vegetable oils on biochemical and biophysical properties of membrane retinal pigment epithelium cells.

    Science.gov (United States)

    Said, Toihiri; Tremblay-Mercier, Jennifer; Berrougui, Hicham; Rat, Patrice; Khalil, Abdelouahed

    2013-10-01

    The aim of this study was to investigate the effect of vegetable oil enrichment of retinal pigment epithelial (RPE) cells on their biochemical and biophysical properties. For this, RPE cells were incubated with 4 different vegetables oils (olive oil, corn oil, argan oil, and camelina oil). The cytotoxicity of these vegetable oils was assessed in vivo on 8-week-old mice and in vitro by using the neutral red and YO-PRO-1 tests. Membrane fluidity was evaluated by fluorescence anisotropy using the fluorescent probe diphenylhexatriene, and membrane fatty acid composition was assessed by gas chromatography. None of the oils tested displayed cytotoxic effects. In vitro, omega-3 rich oils improved membrane fluidity by 47% compared with the control cells. The omega-3 PUFA content within membranes decreased by 38% to 55% when cells were incubated separately with olive oil, corn oil, or argan oil, and increased when cells were incubated with a mixture of those oils, or with camelina oil alone (50% and 103% increase, respectively). Our results show that the fatty acids in vegetable oil incorporate into retinal cells and increase the plasma membrane fluidity.

  10. Biodiesel production from vegetable oil: Process design, evaluation and optimization

    Directory of Open Access Journals (Sweden)

    Kianimanesh Hamid Reza

    2017-09-01

    Full Text Available To investigate the effect of reactor performance/configuration of biodiesel production on process parameters (mass & energy consumption, required facilities etc., two diverse production processes (from vegetable oil were implemented/designed using Aspen HYSYS V7.2. Two series reactors were taken into account where overall conversion was set to be 97.7% and 70% in first and second processes respectively. Comparative analysis showed that an increase in conversion yield caused to consumption reduction of oil, methanol, cold energy and hot energy up to 9.1%, 22%, 67.16% and 60.28% respectively; further, a number of facilities (e.g. boiler, heat exchanger, distillation tower were reduced. To reduce mass & energy consumption, mass/heat integration method was employed. Applying integration method showed that in the first design, methanol, cold and hot energy were decreased by 49.81%, 17.46% and 36.17% respectively; while in the second design, oil, methanol, cold and hot energy were decreased by 9%, 60.57% 19.62% and 36.58% respectively.

  11. Substitution of fuel oil in the Kosjeric cement factory

    Energy Technology Data Exchange (ETDEWEB)

    Vuletic, V.

    1985-01-01

    Results are discussed of an investigation accomplished by the Department of Thermal Technology of the Mining Institute of Belgrade in order to substitute crude oil in the process of cement production at the Kosjeric cement factory by lignite powder from the Kolubara coal mine. Data related to available and necessary coal quality and main characteristics of fuel required in cement production are given. The substitution of fuel oil by lignite powder requires coal storage, blending, crushing and the improvement or reconstruction of cement kilns and improvement of electric filters for desulfurization of smoke. It was found that fuel oil consumption may be reduced by 85% by burning lignite powder with a calorific value of 8,216 kJ/kg and moisture content of 10%. A flowsheet of the coal preparation plant necessary for the realization of this project is given. 5 references.

  12. [Application of fluorescence spectra and parallel factor analysis in the classification of edible vegetable oils].

    Science.gov (United States)

    Wu, Xi-jun; Pan, Zhao; Zhao, Yan-peng; Liu, Hai-long; Zheng, Long-jiang

    2014-08-01

    The fluorescence spectra of 22 samples of 8 kinds of edible vegetable oils (soybean oil, maize oil, olive oil, rice oil, peanut oil, walnut oil, sunflower oil and sesame oil) were measured with FS920 fluorescence spectrometer and the fluorescence matrixs (EEMs) were analyzed with parallel factor (PARAFAC) analysis model. To synthesize the capabilities of material characterization and component identification, fluorescence spectra combined with PARAFAC fulfill the classification of vegetable oils. The map feature (peak position, peak value and peak number) was obtained by analyzing three dimensional spectra and con tour maps in the range of emission wavelength from 260 to 750 nm, and excitation wavelengths from 250 to 550 nm. The fluorescent substances (unsaturated fatty acids, vitamin E and its derivatives, chlorophyll and carotenoid) corresponding to spectrum peaks were determined. The factor-number was selected and the components (vitamin E and its derivatives, linoleic acid and linolenic acid, fatty acid oxidation products, vegetable oil oxidation products) corresponding to each factor were ascertained. The four-factor excitation and emission profiles and projection score plots of PARAFAC model were plotted. Different vegetable oils can be characterized and distinguished with the map features of fluorescence spectra and sample projection plots of PARAFAC model. The results demonstrate the capability of the combination of fluorescence spectra technology and four-factor PARAFAC model for differentiating and characterizing vegetable oils.

  13. Comparison of Dissolved Gases in Mineral and Vegetable Insulating Oils under Typical Electrical and Thermal Faults

    Directory of Open Access Journals (Sweden)

    Chenmeng Xiang

    2016-04-01

    Full Text Available Dissolved gas analysis (DGA is attracting greater and greater interest from researchers as a fault diagnostic tool for power transformers filled with vegetable insulating oils. This paper presents experimental results of dissolved gases in insulating oils under typical electrical and thermal faults in transformers. The tests covered three types of insulating oils, including two types of vegetable oil, which are camellia insulating oil, Envirotemp FR3, and a type of mineral insulating oil, to simulate thermal faults in oils from 90 °C to 800 °C and electrical faults including breakdown and partial discharges in oils. The experimental results reveal that the content and proportion of dissolved gases in different types of insulating oils under the same fault condition are different, especially under thermal faults due to the obvious differences of their chemical compositions. Four different classic diagnosis methods were applied: ratio method, graphic method, and Duval’s triangle and Duval’s pentagon method. These confirmed that the diagnosis methods developed for mineral oil were not fully appropriate for diagnosis of electrical and thermal faults in vegetable insulating oils and needs some modification. Therefore, some modification aiming at different types of vegetable oils based on Duval Triangle 3 were proposed in this paper and obtained a good diagnostic result. Furthermore, gas formation mechanisms of different types of vegetable insulating oils under thermal stress are interpreted by means of unimolecular pyrolysis simulation and reaction enthalpies calculation.

  14. Effect of fuel oil source on the preparation of coal-oil dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Grint, A.; Veal, C.J.

    1985-08-01

    British Petroleum has devised a preparative route to stable coal-oil dispersions (COD's) which involves the fine grinding of coal in oil. This paper investigates how COD preparation and properties are affected by oil composition. COD's were prepared using a range of fuel oils from different crude sources or refineries and containing straight run or cracked components. Wide variations in sedimentation stability-milling time profiles were measured and attempts have been made to correlate these data with fuel oil analytical parameters. The tendency of the asphaltenes in the oil to flocculate is thought to be an important parameter in determining stability for a given milling time. A preliminary explanation of the observed trends is proposed. 15 references.

  15. Crude oil and finished fuel storage stability: An annotated review

    Energy Technology Data Exchange (ETDEWEB)

    Whisman, M.L.; Anderson, R.P.; Woodward, P.W.; Giles, H.N.

    1991-01-01

    A state-of-the-art review and assessment of storage effects on crude oil and product quality was undertaken through a literature search by computer accessing several data base sources. Pertinent citations from that literature search are tabulated for the years 1980 to the present. This 1990 revision supplements earlier reviews by Brinkman and others which covered stability publications through 1979 and an update in 1983 by Goetzinger and others that covered the period 1952--1982. For purposes of organization, citations are listed in the current revision chronologically starting with the earliest 1980 publications. The citations have also been divided according to primary subject matter. Consequently 11 sections appear including: alternate fuels, gasoline, distillate fuel, jet fuel, residual fuel, crude oil, biodegradation, analyses, reaction mechanisms, containment, and handling and storage. Each section contains a brief narrative followed by all the citations for that category.

  16. Biodiesel fuels from palm oil, palm oil methylester and ester-diesel ...

    African Journals Online (AJOL)

    Because of increasing cost and environmental pollution effects of fossil fuels, palm oil, its methylester and ester-diesel blends were analyzed comparatively with diesel for their fuel properties that will make them serve as alternatives to diesel in diesel engines. Equally, the samples were comparatively analyzed for their trace ...

  17. Evaluating potential benefits of burning lower quality fuel oils using the oil burn optimization model

    Energy Technology Data Exchange (ETDEWEB)

    Babilonia, P.

    1995-09-01

    As a result of a 1987 New York State Public Service Commission Audit of Niagara Mohawk`s Fuel Supply operations, Niagara Mohawk (NMPC) became interested in analyzing the plant performance impacts of burning fuels of differing qualities at its various generating stations. Black & Veatch (B&V) had previously developed a computer model for EPRI that analyzed coal quality impacts (i.e., Coal Quality Impact Model). As a result of B&V`s work, NMPC contracted with B&V to first develop custom-designed software for its coal stations (Coal Burn Optimization Model (CBOM)). Subsequently, B&V was retained to develop a similar designed software for its oil stations, Oswego and Albany Steam Stations. The Oil Burn Optimization Model (OBOM) was, therefore, developed. OBOM was designed to be used to evaluate residual fuel oil supply options by predicting their fuel-related plant operating and maintenance costs. Fuel oil-related costs can also be compared to natural gas-related costs. Costs are estimated by predicting performance of various plant equipment. Predictions focus on combustion calculations, material flows, auxiliary power, boiler efficiency, precipitator and fan performance, fuel pumping and preheating requirements, and corrosion considerations. Total costs at the busbar attributed to fuel are calculated from these predictions. OBOM is a PC-based system operating under MS-DOS. The model produces hard copy results for quick comparison of fuels and their potential effects on plant operating and maintenance costs.

  18. United States Air Force Shale Oil to Fuels. Phase II.

    Science.gov (United States)

    1981-11-01

    There is no attempt to recover propane , and the light end hydrocarbons are taken to the fuel gas system for feed to the hydrogen plant. Part of the...shale oil charged from the high pressure hydro- treater separator. The hydrotreated shale oil charge stock is combined with the recycle hydrogen rich gas...sulfide and ammonia are steam stripped from the water. The clean water is returned to the refinery and the gas is sent to the amine treater for

  19. Diesel Fuel from Used Frying Oil

    Directory of Open Access Journals (Sweden)

    Bronislaw Buczek

    2014-01-01

    Full Text Available New conversion technologies of used edible oils and waste animal fats into a biofuel appropriate for use in standard diesel engines have been developed, taking into consideration environmental requirements and improvement in the economics of current trans-esterification technologies. The variation in the properties of substrates made from used rape oil after treatment with mixed adsorbents (active carbon, magnesium silicate was studied in this work. The obtained results are compared with the quality requirements for the substrates used in Vogel & Noot GmbH technology for transesterification of oils and fats.

  20. An overview of the fire and fuels extension to the forest vegetation simulator

    Science.gov (United States)

    Sarah J. Beukema; Elizabeth D. Reinhardt; Werner A. Kurz; Nicholas L. Crookston

    2000-01-01

    The Fire and Fuels Extension (FFE) to the Forest Vegetation Simulator (FVS) has been developed to assess the risk, behavior, and impact of fire in forest ecosystems. This extension to the widely-used stand-dynamics model FVS simulates the dynamics of snags and surface fuels as they are affected by stand management (of trees or fuels), live tree growth and mortality,...

  1. Evaluation of Palm Oil as a Suitable Vegetable Oil for Vitamin A Fortification Programs.

    Science.gov (United States)

    Pignitter, Marc; Hernler, Natalie; Zaunschirm, Mathias; Kienesberger, Julia; Somoza, Mark Manuel; Kraemer, Klaus; Somoza, Veronika

    2016-06-21

    Fortification programs are considered to be an effective strategy to mitigate vitamin A deficiency in populations at risk. Fortified vegetable oils rich in polyunsaturated fatty acids were shown to be prone to oxidation, leading to limited vitamin A stability. Thus, it was hypothesized that fortified oils consisting of mainly saturated fatty acids might enhance the stability of vitamin A. Mildly (peroxide value: 1.0 meq O₂/kg) and highly (peroxide value: 7.5 meq O₂/kg) oxidized palm oil was stored, after fortification with 60 International Units/g retinyl palmitate, in 0.5 L transparent polyethylene terephthalate bottles under cold fluorescent lighting (12 h/day) at 32 °C for 57 days. An increase of the peroxide value by 15 meq O₂/kg, which was also reflected by a decrease of α-tocopherol congener by 15%-18%, was determined independent of the initial rancidity. The oxidative deterioration of the highly oxidized palm oil during storage was correlated with a significant 46% decline of the vitamin A content. However, household storage of mildly oxidized palm oil for two months did not induce any losses of vitamin A. Thus, mildly oxidized palm oil may be recommended for vitamin A fortification programs, when other sources of essential fatty acids are available.

  2. Thermal Cracking of Jatropha Oil with Hydrogen to Produce Bio-Fuel Oil

    Directory of Open Access Journals (Sweden)

    Yi-Yu Wang

    2016-11-01

    Full Text Available This study used thermal cracking with hydrogen (HTC to produce bio-fuel oil (BFO from jatropha oil (JO and to improve its quality. We conducted HTC with different hydrogen pressures (PH2; 0–2.07 MPa or 0–300 psig, retention times (tr; 40–780 min, and set temperatures (TC; 623–683 K. By applying HTC, the oil molecules can be hydrogenated and broken down into smaller molecules. The acid value (AV, iodine value, kinematic viscosity (KV, density, and heating value (HV of the BFO produced were measured and compared with the prevailing standards for oil to assess its suitability as a substitute for fossil fuels or biofuels. The results indicate that an increase in PH2 tends to increase the AV and KV while decreasing the HV of the BFO. The BFO yield (YBFO increases with PH2 and tr. The above properties decrease with increasing TC. Upon HTC at 0.69 MPa (100 psig H2 pressure, 60 min time, and 683 K temperature, the YBFO was found to be 86 wt%. The resulting BFO possesses simulated distillation characteristics superior to those of boat oil and heavy oil while being similar to those of diesel oil. The BFO contains 15.48% light naphtha, 35.73% heavy naphtha, 21.79% light gas oil, and 27% heavy gas oil and vacuum residue. These constituents can be further refined to produce gasoline, diesel, lubricants, and other fuel products.

  3. Analysis of biodiesel and frying vegetable oils by means of FTIR photoacoustic spectroscopy

    Science.gov (United States)

    Lima, S. M.; Izida, T.; Figueiredo, M. S.; Andrade, L. H. C.; Del Ré, P. V.; Jorge, N.; Buba, E.; Aristone, F.

    2008-01-01

    Fourier Transform Infrared Photoacoustic Spectroscopy was used to determine the mid-infrared vibrational modes of biodiesel and vegetable oils. Our results indicate that this method can contribute significantly to the biodiesel wash process during the sample preparation. Besides, by analyzing the spectra of vegetable oils used to fry snacks we could to monitor the degradation in function of the fried time.

  4. Analysis of Brand Preference for Vegetable Oil in Abia State, Nigeria ...

    African Journals Online (AJOL)

    This study examined the consumer brand preference for vegetable oil in Abia State. It specifically focused on the determining factors that influenced consumer preference between branded and unbranded vegetable oil. This study adopted multistage sampling technique in the selection of a total sample of 150 respondents.

  5. New Bio-Based Materials From Vegetable Oil: Amination and Click Reactions

    Science.gov (United States)

    For some time we have been interested in utilizing vegetable oils as cheap and bio-renewable raw materials. We have found derivatization reactions with nitrogen-containing reagents to be good pathways to achieve a range of new vegetable oil-based products. One of our approaches is to derivatize ep...

  6. Properties of cookies made with natural wax-vegetable oil organogels

    Science.gov (United States)

    Organogels prepared with a natural wax and a vegetable oil were examined as alternatives to a commercial margarine in cookie. To investigate effects of wax and vegetable oil on properties of cookie dough and cookies, organogels prepared from four different waxes including sunflower wax, rice bran wa...

  7. Levels of vitamin A fortification in flour and vegetable oils sold in ...

    African Journals Online (AJOL)

    This paper assessed the levels of compliance with vitamin A fortification by the manufacturers of flour and vegetable oils. This was carried out by the determination of vitamin A in the flour and vegetable oil samples which were purchased from retail outlets in Kano metropolis. The levels of vitamin A were determined ...

  8. Fast-HPLC Fingerprinting to Discriminate Olive Oil from Other Edible Vegetable Oils by Multivariate Classification Methods.

    Science.gov (United States)

    Jiménez-Carvelo, Ana M; González-Casado, Antonio; Pérez-Castaño, Estefanía; Cuadros-Rodríguez, Luis

    2017-03-01

    A new analytical method for the differentiation of olive oil from other vegetable oils using reversed-phase LC and applying chemometric techniques was developed. A 3 cm short column was used to obtain the chromatographic fingerprint of the methyl-transesterified fraction of each vegetable oil. The chromatographic analysis took only 4 min. The multivariate classification methods used were k-nearest neighbors, partial least-squares (PLS) discriminant analysis, one-class PLS, support vector machine classification, and soft independent modeling of class analogies. The discrimination of olive oil from other vegetable edible oils was evaluated by several classification quality metrics. Several strategies for the classification of the olive oil were used: one input-class, two input-class, and pseudo two input-class.

  9. Thermally decomposed ricebran oil as a diesel fuel

    Directory of Open Access Journals (Sweden)

    Megahed, O. A.

    1998-04-01

    Full Text Available Ricebran oil; a non edible oil, was thermally decomposed using different loads of calcium oxide as catalyst. The fuel properties of the cracked product were evaluated as compared to those of diesel fuel. The considered properties included the calorific value, flash point, viscosity, pour point, distillation characteristics, cetane number in addition to some other fuel properties. The results had shown that the fuel properties of the decomposed oil were quite similar to those of standard diesel fuel. The calorific value was 80-90% that of diesel fuel and the viscosity was sligthy higher. The prepared fuel was advantageous over diesel fuel as the former was completely free from sulfur, which on fuel combustion produces corrosive gases of sulfur oxides.

    Aceite de germen de arroz, un aceite no comestible, fue descompuesto térmicamente usando diferentes cantidades de óxido cálcico como catalizador. Las propiedades combustibles del producto craqueado fueron evaluadas comparándolas con las del gasóleo. Las propiedades consideradas incluyeron el poder calorífico, punto de inflamación, viscosidad, temperatura de fluidez crítica, características de destilación, número de cetano y otras propiedades de los combustibles. Los resultados han mostrado que las propiedades combustibles del aceite descompuesto fueron bastantes similares a la de los gasóleos estándar. El poder calorífico fue del 80-90% de la del gasóleo y la viscosidad ligeramente mayor. El combustible preparado fue ventajoso sobre el gasóleo ya que el primero estaba completamente libre de sulfuro, el cual produce en la combustión del carburante gases corrosivos de óxido de azufre.

  10. Vegetable oil blends with α-linolenic acid rich Garden cress oil modulate lipid metabolism in experimental rats.

    Science.gov (United States)

    Umesha, S S; Naidu, K Akhilender

    2012-12-15

    Vegetable oil blends with modified fatty acid profile are being developed to improve n-6/n-3 polyunsaturated fatty acid (PUFAs) ratio in edible oils. The objective of this study is to develop vegetable oil blends with α-linolenic acid (ALA) rich Garden cress oil (GCO) and assess their modulatory effect on lipid metabolism. Sunflower oil (SFO), Rice bran oil (RBO), Sesame oil (SESO) were blended with GCO at different ratios to obtain n-6/n-3 PUFA ratio of 2.3-2.6. Native and GCO blended oils were fed to Wistar rats at 10% level in the diet for 60 days. Serum and liver lipids showed significant decrease in Total cholesterol (TC), Triglyceride (TG), LDL-C levels in GCO and GCO blended oil fed rats compared to native oil fed rats. ALA, EPA, DHA contents were significantly increased while linoleic acid (LA), arachidonic acid (AA) levels decreased in different tissues of GCO and GCO blended oils fed rats. In conclusion, blending of vegetable oils with GCO increases ALA, decreases n-6 to n-3 PUFA ratio and beneficially modulates lipid profile. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Physicochemical properties and potential food applications of Moringa oleifera seed oil blended with other vegetable oils.

    Science.gov (United States)

    Dollah, Sarafhana; Abdulkarim, Sabo Muhammad; Ahmad, Siti Hajar; Khoramnia, Anahita; Ghazali, Hasanah Mohd

    2014-01-01

    Blends (30:70, 50:50 and 70:30 w/w) of Moringa oleifera seed oil (MoO) with palm olein (PO), palm stearin (PS), palm kernel oil (PKO) and virgin coconut oil (VCO) were prepared. To determine the physicochemical properties of the blends, the iodine value (IV), saponication value (SV), fatty acid (FA) composition, triacylglycerol (TAG) composition, thermal behaviour (DSC) and solid fat content (SFC) tests were analysed. The incorporation of high oleic acid (81.73%) MoO into the blends resulted in the reduction of palmitic acid content of PO and PS from 36.38% to 17.17% and 54.66% to 14.39% and lauric acid content of PKO and VCO from 50.63% to 17.70% and 51.26% to 26.05% respectively while oleic acid and degree of unsaturation were increased in all blends. Changes in the FA composition and TAG profile have significantly affected the thermal behavior and solid fat content of the oil blends. In MoO/PO blends the melting temperature of MoO decreased while, in MoO/PS, MoO/PKO and MoO/VCO blends, it increased indicating produce of zero-trans harder oil blends without use of partial hydrogenation. The spreadability of PS, PKO and VCO in low temperatures was also increased due to incorporation of MoO. The melting point of PS significantly decreased in MoO/PS blends which proved to be suitable for high oleic bakery shortening and confectionary shortening formulation. The finding appears that blending of MoO with other vegetable oils would enable the initial properties of the oils to be modified or altered and provide functional and nutritional attributes for usage in various food applications, increasing the possibilities for the commercial use of these oils.

  12. Combustion of hydrotreated vegetable oil and jatropha methyl ester in a heavy duty engine: emissions and bacterial mutagenicity.

    Science.gov (United States)

    Westphal, Götz A; Krahl, Jürgen; Munack, Axel; Rosenkranz, Nina; Schröder, Olaf; Schaak, Jens; Pabst, Christoph; Brüning, Thomas; Bünger, Jürgen

    2013-06-04

    Research on renewable fuels has to assess possible adverse health and ecological risks as well as conflicts with global food supply. This investigation compares the two newly developed biogenic diesel fuels hydrotreated vegetable oil (HVO) and jatropha methyl ester (JME) with fossil diesel fuel (DF) and rapeseed methyl ester (RME) for their emissions and bacterial mutagenic effects. Samples of exhaust constituents were compared after combustion in a Euro III heavy duty diesel engine. Regulated emissions were analyzed as well as particle size and number distributions, carbonyls, polycyclic aromatic hydrocarbons (PAHs), and bacterial mutagenicity of the exhausts. Combustion of RME and JME resulted in lower particulate matter (PM) compared to DF and HVO. Particle numbers were about 1 order of magnitude lower for RME and JME. However, nitrogen oxides (NOX) of RME and JME exceeded the Euro III limit value of 5.0 g/kWh, while HVO combustion produced the smallest amount of NOX. RME produced the lowest emissions of hydrocarbons (HC) and carbon monoxide (CO) followed by JME. Formaldehyde, acetaldehyde, acrolein, and several other carbonyls were found in the emissions of all investigated fuels. PAH emissions and mutagenicity of the exhausts were generally low, with HVO revealing the smallest number of mutations and lowest PAH emissions. Each fuel showed certain advantages or disadvantages. As proven before, both biodiesel fuels produced increased NOX emissions compared to DF. HVO showed significant toxicological advantages over all other fuels. Since jatropha oil is nonedible and grows in arid regions, JME may help to avoid conflicts with the food supply worldwide. Hydrogenated jatropha oil should now be investigated if it combines the benefits of both new fuels.

  13. Operation variables in transesterification of vegetable oil: an enzymatic catalysis review

    Directory of Open Access Journals (Sweden)

    Andrés Felipe Rojas González

    2010-01-01

    Full Text Available This paper presents the results of a literature review regarding how operating conditions influence vegetable oil enzymatic transesterification yield. The following parameters were studied: temperature and time reaction, alcohol: oil molar ratio, alcohol type, biocatalyst type and concentration, solvent, mixed intensity, reagent purity and free fatty acid and moisture concentration. Yields greater than 90% can be achieved in the enzymatic catalyst of vegetable oil using 35-50°C temperatures, long time reactions (7- 90h and a 3:1alcohol: vegetable oil molar ratio; however, such values would intrinsically depend on the type of lipase and oil u- sed. It was also found that free fatty acid and moisture concentration were parameters which did not require rigorous control due to high enzyme specificity. Lipases immobilised from Pseudomona cepacia bacteria and Rhizopus orizae fungi were most used in vegetable oil enzymatic transesterification.

  14. Thermal and Fluid Dynamic Analysis within a Batch Micro-Reactor for Biodiesel Production from Waste Vegetable Oil

    Directory of Open Access Journals (Sweden)

    Maurizio Carlini

    2017-12-01

    Full Text Available Biofuels represent an alternative solution to petroleum-based fuels. In particular, biodiesel is very interesting, especially if it is produced from waste vegetable oil. Biodiesel can be used in diesel engines. The aim of this work is to implement a 2D numerical analysis in Comsol Multiphysics in order to verify an uniform temperature field within a non-isothermal batch mixed micro-reactor. An immersion heater system has been studied as a suitable solution to increase the temperature of WVO (Waste Vegetable Oil before the start of the transesterification reaction. Thus, the efficiency of the immersion heating system has been investigated. The results show that the temperature field is not uniform within the fluid domain, because of the convective flux with the external environment. These conditions could lead to a low overall conversion rate.

  15. Determination of lipid oxidation products in vegetable oils and marine omega-3 supplements

    Directory of Open Access Journals (Sweden)

    Rune Blomhoff

    2011-06-01

    Full Text Available Background : There is convincing evidence that replacing dietary saturated fats with polyunsaturated fats (PUFA decreases risk of cardiovascular diseases. Therefore, PUFA rich foods such as vegetable oils, fatty fish, and marine omega-3 supplements are recommended. However, PUFA are easily oxidizable and there is concern about possible negative health effects from intake of oxidized lipids. Little is known about the degree of lipid oxidation in such products. Objective : To assess the content of lipid oxidation products in a large selection of vegetable oils and marine omega-3 supplements available in Norway. Both fresh and heated vegetable oils were studied. Design : A large selection of commercially available vegetable oils and marine omega-3 supplements was purchased from grocery stores, pharmacies, and health food stores in Norway. The content of lipid oxidation products were measured as peroxide value and alkenal concentration. Twelve different vegetable oils were heated for a temperature (225°C and time (25 minutes resembling conditions typically used during cooking. Results : The peroxide values were in the range 1.04–10.38 meq/kg for omega-3 supplements and in the range 0.60–5.33 meq/kg for fresh vegetable oils. The concentration range of alkenals was 158.23–932.19 nmol/mL for omega-3 supplements and 33.24–119.04 nmol/mL for vegetable oils. After heating, a 2.9–11.2 fold increase in alkenal concentration was observed for vegetable oils. Conclusions : The contents of hydroperoxides and alkenals in omega-3 supplements are higher than in vegetable oils. After heating vegetable oils, a large increase in alkenal concentration was observed.

  16. Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.; Lewis, Samuel A.; Keiser, James R.; Gaston, Katherine

    2016-08-18

    Bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 degrees C, and properties in the wetted and dried states were measured. Exposure to bio-oil produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.

  17. Compatibility Assessment of Fuel System Infrastructure Plastics with Bio-oil and Diesel Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kass, Michael D. [Fuels,; Janke, Christopher J. [Fuels,; Connatser, Raynella M. [Fuels,; Lewis, Samuel A. [Fuels,; Keiser, James R. [Fuels,; Gaston, Katherine [National

    2017-12-22

    Bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with 18 plastic types was evaluated using neat diesel fuel as the baseline. The plastic materials included polyphenylene sulfide (PPS), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyoxymethylene (POM), POM copolymer, high density polyethylene (HDPE), polybutylene terephthalate (PBT), polypropylene (PP), polyethylene terephthalate glycol (PETG), polythiourea (PTU), four nylon grades, and four thermosetting resins. Specimens of each material were immersed in the test fuels for a period of 16 weeks to achieve full saturation. Except for PP and HDPE, the plastic materials underwent higher volume expansion in bio-oil than in the baseline diesel (which was negligible in most cases). This volume increase corresponds to the higher polarity of the bio-oil. PPS, PET, and PTFE were unaffected by bio-oil exposure, but modest swelling (between 2 and 5%) occurred for the two acetals (POM and POM copolymer), Nylon-12, PBT, PETG, and the four resin grades. More moderate swelling (8-15%) was noted for Nylon-6, Nylon-6/6, and Nylon-11, and excessive swell (>40%) occurred for PTU. The nonpolar nature of PP and HDPE matches that of diesel, leading to higher solubility (swell) in this fuel type. The relatively low volume expansion following exposure indicates that many of the existing infrastructure plastics (excluding PTU) should be suitable for use with bio-oil.

  18. 76 FR 44506 - Petition Requesting Non-See-Through Packaging for Torch Fuel and Lamp Oil

    Science.gov (United States)

    2011-07-26

    ... clear plastic bottle. While torch fuel and lamp oil are already subject to child- resistant packaging... Commission initiate rulemaking to require special packaging for torch fuel and lamp oil to make it impossible... we initiate rulemaking to require torch fuel and lamp oil to be ] packaged in containers that are not...

  19. Laser induced fluorescence measurements of the mixing of fuel oil with air

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, A.; Bombach, R.; Hubschmid, W.; Kaeppeli, B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    We report on measurements of the mixing of fuel oil with air at atmospheric pressure in an industrial premixed gas turbine burner. The concentration of the vaporized fuel oil was measured with laser induced fluorescence. We reason that the fuel oil concentration can be considered with good accuracy as proportional to the fluorescence intensity. (author) 6 fig., 3 refs.

  20. TRANSESTERIFICATION OF VEGETABLES OIL USING SUBAND SUPERCRITICAL METHANOL

    Directory of Open Access Journals (Sweden)

    Nyoman Puspa Asri

    2012-11-01

    Full Text Available A benign process, non catalytic transesterification in sub and supercritical methanol method was usedto prepare biodiesel from vegetables oil. The experiment was carried out in batch type reactor (8.8 mlcapacity, stainless steel, AKICO, JAPAN by changing the reaction condition such as reactiontemperature (from 210°C in subcritical condition to 290°C in supercritical state with of 20°Cinterval, molar ratio oil to methanol (1:12-1:42 and time of reaction (10-90 min. The fatty acidmethyl esters (FAMEs content was analyzed by gas chromatography-flame ionization detector (GCFID.Such analysis can be used to determine the biodiesel yield of the transesterification. The resultsshowed that the yield of biodiesel increases gradually with the increasing of reaction time atsubcritical state (210-230oC. However, it was drastically increased at the supercritical state (270-290oC. Similarly, the yield of biodiesel sharply increased with increasing the ratio molar of soy oilmethanolup to 1:24. The maximum yield 86 and 88% were achieved at 290oC, 90 min of reaction timeand molar ratio of oil to methanol 1:24, for soybean oil and palm oil, respectively.Proses transesterifikasi non katalitik dengan metanol sub dan superkritis,merupakan proses yang ramah lingkungan digunakan untuk pembuatan biodiesel dari minyak nabati.Percobaan dilakukan dalam sebuah reaktor batch (kapasitas 8,8 ml, stainless steel, AKICO, JAPAN,dengan variabel kondisi reaksi seperti temperatur reaksi (dari kondisi subkritis 210°C-kondisisuperkritis 290°C dengan interval 20°C, rasio molar minyak-metanol (1:12-1:42 dan waktu reaksi(10-90 menit. Kandungan metil ester asam lemak (FAME dianalisis dengan kromatografi gasdengan detektor FID (GC-FID. Hasil Analisis tersebut dapat digunakan untuk menentukan yieldbiodiesel dari proses transesterifikasi. Hasil penelitian menunjukkan bahwa yield biodiesel meningkatsecara perlahan dengan meningkatnya waktu reaksi pada keadaan subkritis (210-230oC. Namun

  1. Combusting vegetable oils in diesel engines: the impact of unsaturated fatty acids on particle emissions and mutagenic effects of the exhaust.

    Science.gov (United States)

    Bünger, Jürgen; Bünger, Jörn F; Krahl, Jürgen; Munack, Axel; Schröder, Olaf; Brüning, Thomas; Hallier, Ernst; Westphal, Götz A

    2016-06-01

    High particle emissions and strong mutagenic effects were observed after combustion of vegetable oil in diesel engines. This study tested the hypothesis that these results are affected by the amount of unsaturated or polyunsaturated fatty acids of vegetable oils. Four different vegetable oils (coconut oil, CO; linseed oil, LO; palm tree oil, PO; and rapeseed oil, RO) and common diesel fuel (DF) were combusted in a heavy-duty diesel engine. The exhausts were investigated for particle emissions and mutagenic effects in direct comparison with emissions of DF. The engine was operated using the European Stationary Cycle. Particle masses were measured gravimetrically while mutagenicity was determined using the bacterial reverse mutation assay with tester strains TA98 and TA100. Combustion of LO caused the largest amount of total particulate matter (TPM). In comparison with DF, it particularly raised the soluble organic fraction (SOF). RO presented second highest TPM and SOF, followed by CO and PO, which were scarcely above DF. RO revealed the highest number of mutations of the vegetable oils closely followed by LO. PO was less mutagenic, but still induced stronger effects than DF. While TPM and SOF were strongly correlated with the content of polyunsaturated fatty acids in the vegetable oils, mutagenicity had a significant correlation with the amount of total unsaturated fatty acids. This study supports the hypothesis that numbers of double bounds in unsaturated fatty acids of vegetable oils combusted in diesel engines influence the amount of emitted particles and the mutagenicity of the exhaust. Further investigations have to elucidate the causal relationship.

  2. CHARACTERIZATION OF A TREATED PALM OIL FUEL ASH

    African Journals Online (AJOL)

    This paper presents structural analysis and surface morphology of a treated Palm oil fuel ash (POFA) ... particles. This study implies that POFA is a good candidate for various applications by ceramic industries. Keywords: POFA, Morphology, SEM, XRD, XRF .... the particles were irregular in shape and having porous texture.

  3. The use of antioxidants in vegetable oils – A review

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... Canola oil is a type of rapeseed oil with reduced erucic acid content (Applewhite, 1978). It is a stable oil used in salad dressings, margarine and shortenings. Soybean oil is an important oil with numerous increasing applications in the modern day world. It is classed as a linolenic acid oil since it contains.

  4. Replacing Fish Oil with Vegetable Oils in Salmon Feed Increases Hepatic Lipid Accumulation and Reduces Insulin Sensitivity in Mice

    DEFF Research Database (Denmark)

    Midtbø, Lisa Kolden

    Background: Due to a growing global aquaculture production, fish oil (FO) and fish meal (FM) are partly replaced with vegetable ingredients in aqua feed for Atlantic salmon. These replacements in the feed lead to an altered fatty acid composition in the salmon fillet. We aimed to investigate how...... levels of diacylglycerol (DAG), ceramides and arachidonic acid (AA)-derived oxylipins compared with mice fed WD-FO. In addition, C57BL/6J mice were fed fish oil-enriched diets with different carbohydrate sources, and we observed that sucrose dose-dependently abrogate the antiobesity effect of fish oil......%) of FO with different vegetable oils (VOs); rape seed oil (WDRO), olive oil (WD-OO) or soybean oil (WD-SO). These diets were given to C57BL/6J mice, and mice had higher hepatic lipid accumulation and lower insulin sensitivity when given WD-SO compared with WD-FO. Mice given WD-SO had higher hepatic...

  5. Delivery of vegetable oil suspensions in a shear thinning fluid for enhanced bioremediation.

    Science.gov (United States)

    Zhong, L; Truex, M J; Kananizadeh, N; Li, Y; Lea, A S; Yan, X

    2015-01-01

    In situ anaerobic biological processes are widely applied for dechlorination of chlorinated solvents in groundwater. A wide range of organic substrates have been tested and applied to support the dechlorination processes. Vegetable oils are a promising type of substrate and have been shown to induce effective dechlorination, have limited geochemical impacts, and maintain good longevity. Because they are non-aqueous phase liquids, distribution of vegetable oils in the subsurface has typically been approached by creating emulsified oil solutions for injection into the aquifer. In this study, inexpensive waste vegetable oils were suspended in a shear-thinning xanthan gum solution as an alternative approach for delivery of vegetable oil to the subsurface. The stability, oil droplet size distribution, and rheological behavior of the oil suspensions that are created in the xanthan solutions were studied in batch experiments. The injectability of the suspensions and the oil distribution in a porous medium were evaluated in column tests. Numerical modeling of oil droplet transport and distribution in porous media was conducted to help interpret the column-test data. Batch studies showed that simple mixing of vegetable oil with xanthan solution produced stable suspensions of the oil as micron-size droplets. The mixture rheology retains shear-thinning properties that facilitate improved uniformity of substrate distribution in heterogeneous aquifers. Column tests demonstrated successful injection of the vegetable oil suspension into a porous medium. This study provides evidence that vegetable oil suspensions in xanthan gum solutions have favorable injection properties and are a potential substrate for in situ anaerobic bioremediation. Published by Elsevier B.V.

  6. Delivery of vegetable oil suspensions in a shear thinning fluid for enhanced bioremediation

    Science.gov (United States)

    Zhong, L.; Truex, M. J.; Kananizadeh, N.; Li, Y.; Lea, A. S.; Yan, X.

    2015-04-01

    In situ anaerobic biological processes are widely applied for dechlorination of chlorinated solvents in groundwater. A wide range of organic substrates have been tested and applied to support the dechlorination processes. Vegetable oils are a promising type of substrate and have been shown to induce effective dechlorination, have limited geochemical impacts, and maintain good longevity. Because they are non-aqueous phase liquids, distribution of vegetable oils in the subsurface has typically been approached by creating emulsified oil solutions for injection into the aquifer. In this study, inexpensive waste vegetable oils were suspended in a shear-thinning xanthan gum solution as an alternative approach for delivery of vegetable oil to the subsurface. The stability, oil droplet size distribution, and rheological behavior of the oil suspensions that are created in the xanthan solutions were studied in batch experiments. The injectability of the suspensions and the oil distribution in a porous medium were evaluated in column tests. Numerical modeling of oil droplet transport and distribution in porous media was conducted to help interpret the column-test data. Batch studies showed that simple mixing of vegetable oil with xanthan solution produced stable suspensions of the oil as micron-size droplets. The mixture rheology retains shear-thinning properties that facilitate improved uniformity of substrate distribution in heterogeneous aquifers. Column tests demonstrated successful injection of the vegetable oil suspension into a porous medium. This study provides evidence that vegetable oil suspensions in xanthan gum solutions have favorable injection properties and are a potential substrate for in situ anaerobic bioremediation.

  7. Comparative studies on rabbit plasma lipid profile fed with Silybum marianum oil, sunflower oil and vegetable ghee.

    Science.gov (United States)

    Lutfullah, Ghosia; Rahman, Azizur; Ahmad, Aftab; Ahmad, Taufiq; Ali, Amjad; Alam, Jan

    2017-05-01

    Present work is aimed to compare the physicochemical characterization and biochemical effects of oil extracted from Silybum Marianum and Sunflower oil, collected from Peshawar (Pakistan). To investigate the comparative effects on the body weight, organ weight and lipid profile, the crude oil of Silybum marianum, edible sunflower oil and vegetable ghee were given to three groups of rabbits under study. Percent proximate composition and food consumption of all rabbits were determined which showed no significant statistical variation. There is no data available about Silybum marianum oil on animal model in literature. This study clearly revealed that oil from Silybum marianum significantly reduces plasma cholesterol level in rabbits. A threefold higher Triglyceride levels was observed in vegetable ghee feeding groups compared with the sunflower and Silybum marianum oil feeding groups. The crude oil of Silybum marianum was found to be safe in rabbits compared with sunflower oil and vegetable ghee. The results of these studies revealed most valuable information and also support the refining and purification to convert this non-edible oil to edible oil.

  8. Cottonseed oil as a diesel-engine fuel. Part 2. Appendices. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Staph, H.E.; Staudt, J.J.

    1982-07-31

    This appendix, Volume 2 of a 2 volume report, contains the original data and the methods used to reduce the data obtained in performance tests on diesel engines fueled by diesel fuel, cottonseed oil, and mixtures of these fuels. (LCL)

  9. Effect on Particulate and Gas Emissions by Combusting Biodiesel Blend Fuels Made from Different Plant Oil Feedstocks in a Liquid Fuel Burner

    National Research Council Canada - National Science Library

    Abdul Rahim, Norwazan; Mohd Jaafar, Mohammad; Sapee, Syazwan; Elraheem, Hazir

    2016-01-01

    .... The biodiesel blend fuel combustion experiments were carried out using a liquid fuel burner and biodiesel fuel made from various plant oil feedstocks, including jatropha, palm and coconut oils...

  10. A COMPREHENSIVE STUDY OF DI DIESEL ENGINE PERFORMANCE WITHVEGETABLE OIL: AN ALTERNATIVE BIO-FUEL SOURCE OF ENERGY

    Directory of Open Access Journals (Sweden)

    A. K. Azad

    2012-06-01

    Full Text Available This study offers comprehensive details on the use of bio-fuel as a viable and alternative source of energy. The bio-fuel was prepared from vegetable oil, i.e., mustard oil and tested in a diesel engine in both pure form and as a diesel blend. The mustard oil blend proportions were 20%, 30%, 40% and 50% and named as bio-diesel blends B20, B30, B40 and B50. A fuel-testing laboratory determined the properties of the pure mustard oil fuel and its blends, i.e., density, viscosity, dynamic viscosity, carbon residue, flash point, fire point and calorific value. An assessment of engine performance, i.e., brake horsepower (bhp, brake specific fuel consumption (bsfc, brake thermal efficiency (bte and brake mean effective pressure (bmep etc., was carried out for pure diesel, pure mustard and the blends, both in laboratory conditions and under British Standard (BS conditions. Finally, an analysis and comparison was made of the effects of the various fuels on the different engine properties.

  11. Experimental investigation and performance evaluation of DI diesel engine fueled by waste oil-diesel mixture in emulsion with water

    Directory of Open Access Journals (Sweden)

    Nanthagopal Kasianantham

    2009-01-01

    Full Text Available Exploitation of the natural reserves of petroleum products has put a tremendous onus on the automotive industry. Increasing pollution levels and the depletion of the petroleum reserves have lead to the search for alternate fuel sources for internal combustion engines. Usage of vegetable oils poses some challenges like poor spray penetration, valve sticking and clogging of injector nozzles. Most of these problems may be solved by partial substitution of diesel with vegetable oil. In this work, the performance and emission characteristics of a direct injection diesel engine fueled by waste cooking oil-diesel emulsion with different water contents are evaluated. The use of waste cooking oil-diesel emulsion lowers the peak temperature, which reduces the formation of NOx. Moreover the phenomenon of micro explosion that results during the combustion of an emulsified fuel finely atomizes the fuel droplets and thus enhances combustion. Experiments show that CO concentration is reduced as the water content is increased and it is seen that 20% water content gives optimum results. Also, there is a significant reduction in NOx emissions.

  12. Using pre-heated sunflower oil as fuel in a diesel cycle engine

    Energy Technology Data Exchange (ETDEWEB)

    Delalibera, H.C.; Neto, P.H.W.; Martini, J. [State Univ. of Ponta Grossa (Brazil)

    2010-07-01

    This paper reported on a study in which 100 per cent sunflower oil was used in a tractor to compare its performance with petroleum diesel. Work trials were carried out for 50 hours on a single cylinder direct injection micro-tractor. In the first trial (E-1), the temperature of the vegetable oil was the same as the air temperature of the engine, while in the second trial (E-2), the oil was heated to a temperature of about 90 degrees C. Only petrodiesel was used in the third (E-3) trial. The head gasket burned in the first test after 50 hours of operation. An increase in compression was noted during trials E-1 and E-2. The carbonized mass in the nozzle of the E-2 trial was 81.5 per cent lower than in the E-1 trial. The carbonized mass in the intake system of the E-2 trial was 51.7 per cent lower than in the E-1 trial. The exhaust system of the E-2 trial was 33.4 per cent lower than that of the E-1 trial. For the combustion chamber, the carbonization of the E-1 trial was nearly the same as in the E-2 trial. The hourly fuel consumption of the E-1 trial was 2.3 per cent higher than petrodiesel, while E-2 trial was 0.7 per cent higher than petrodiesel. In the first 2 tests, the lubricating oil was contaminated by vegetable oil fuel. In general, results from the first trial were better than results from the second trial.

  13. Bio-oils and other bio fuels used in heat- and power generation; Flytande biobraenslen foer el- och vaermeproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Sandgren, Annamaria; Ekdahl, Emma; Sernhed, Kerstin; Lindstroem, Erica

    2010-05-15

    bio fuels. The types of liquid bio fuels that have been studied are different qualities of bio-oils and glycerol that is a residual from biodiesel production. Vegetable bio-oils are the most commonly used in Swedish heat and power production amongst the liquid bio fuels. Vegetable oils can be extracted from a variety of different crops that grows all over the world. Due to today's fuel prices, the bio-oil that is used for heat and power production is mainly residue or by-products from industrial production of food, feed manufacturing, pharmaceuticals and cosmetics. The most abundant bio-oils that have been encountered during the interview process have come from oil palm or rapeseed or a mix of different residues from which the biological origin is difficult to trace. Tall oil pitch, which is a by-product in the pulp industry, has held a non-negligible share in Swedish heat production. Experiments on combustion of glycerol have recently been carried out and these indicate that glycerol does have a potential. According to the district heating companies that were interviewed, they did not experience that lack of availability of bio-oils was a problem, although the quality of the bio-oils could vary greatly. Most district heating companies have developed specifications for the fuel to be purchased. All parties benefit from a good specification where the purchasing managers and the operational staff have consistent requirements. The liquid bio fuels used in Swedish heat production are, except for possibly the PFAD, not accepted products, but different types of residues or by-products. There is no commodity exchange where the products are traded and there are a variety of factors affecting the price formation, making the pricing very complex. The study discusses various aspects of the use of bio-oils with a focus on a few crops of particular interest. These are soybean, oil palm, rapeseed and jatropha. The first three are interesting because of their large production

  14. Effect of orange peel oil addition on the performance of cottonseed oil fuelled DI diesel enginen

    OpenAIRE

    Leenus Jesu Martin. M, Edwin Geo. V, Prithviraj. D

    2011-01-01

    The world petroleum situation due to rapid depletion of fossil fuels and the degradation of the environment due to the combustion of fossil fuels have caused a resurgence of interest in finding alternative fuel. Vegetable oil based fuels are biodegradable, non-toxic and significantly reduce pollution. Cottonseed oil, which is considered, is not suitable as a fuel for diesel engines straight because of its high viscosity. Addition of a small quantity of another light vegetable oil, Orange Peel...

  15. Bioefficacy of essential and vegetable oils of Zanthoxylum xanthoxyloides seeds against Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae).

    Science.gov (United States)

    Fogang, Hervet Paulain Dongmo; Womeni, Hilaire Macaire; Piombo, Georges; Barouh, Nathalie; Tapondjou, Léon Azefack

    2012-03-01

    Experiments were conducted in the laboratory to evaluate the bioefficacy of essential and vegetable oils of Zanthoxylum xanthoxyloides (Rutaceae) against Acanthoscelides obtectus (Coleoptera: Bruchidae). The chemical composition of the essential oil and the fatty acid composition of the vegetable oil extracted from the seeds of Z. xanthoxyloides were determined. The insecticidal activities of these oils and the associated aromatized clay powder were evaluated against A. obtectus. Both oils were strongly repellent (100% repellency at 0.501 μl/cm² essential oil and 3.144 μl/cm² vegetable oil) and highly toxic (LC₅₀ = 0.118 μl/cm² for essential oil) to this beetle after contact on filter paper. The vapors of the essential oil were highly toxic to adult insects (LC₅₀ = 0.044 μl/cm³), and the aromatized powder made from clay and essential oil was more toxic (LD₅₀ = 0.137 μl/g) than the essential oil alone (LD₅₀ = 0.193 μl/g) after 2 days of exposure on a common bean. Both oils greatly reduced the F₁ insect production and bean weight loss and did not adversely affect the bean seed viability. In general, the results obtained indicate that these plant oils can be used for control of A. obtectus in stored beans.

  16. 78 FR 20613 - Ochoco National Forest, Paulina Ranger District; Oregon; Wolf Creek Vegetation and Fuels...

    Science.gov (United States)

    2013-04-05

    ... analyze the effects of managing vegetation and fuels within the 24,506 acre Wolf project area, which is... INFORMATION CONTACT: Jeffrey Marszal, Project Leader at 3160 NE Third Street, Prineville, Oregon 97754, or at...

  17. Studies on the nutrition of brackish water catfish - Chrysichthys nigrodigitatus . 1. Preliminary investigations on the probable use of vegetable oil in catfish feeds

    OpenAIRE

    Igbinosun, J.E.; Talabi, S.O.

    1983-01-01

    Four groups of brackishwater catfish were fed four diets: N.F. (NIOMR formula 1 feed), A. B. and C. for seven weeks. Feeds N.F., A., B and C. contained 1.21% fish oil + 5.59% vegetable oil; 1.21% fish oil + 7.39% vegetable oil; 1.21% fish oil + 9.09% vegetable oil; 1.21% fish oil + 10.89% vegetable oil respectively. Results of feeding trial showed that growth was best in the group fed diets containing 10.89% vegetable oil and least in those containing 9.09% vegetable oil

  18. Encapsulation of vegetable oils as source of omega-3 fatty acids for enriched functional foods.

    Science.gov (United States)

    Ruiz Ruiz, Jorge Carlos; Ortiz Vazquez, Elizabeth De La Luz; Segura Campos, Maira Rubi

    2017-05-03

    Polyunsaturated omega-3 fatty acids (PUFAs), a functional component present in vegetable oils, are generally recognized as being beneficial to health. Omega-3 PUFAs are rich in double bonds and unsaturated in nature; this attribute makes them highly susceptible to lipid oxidation and unfit for incorporation into long shelf life foods. The microencapsulation of oils in a polymeric matrix (mainly polysaccharides) offers the possibility of controlled release of the lipophilic functional ingredient and can be useful for the supplementation of foods with PUFAs. The present paper provides a literature review of different vegetable sources of omega-3 fatty acids, the functional effects of omega-3 fatty acids, different microencapsulation methods that can possibly be used for the encapsulation of oils, the properties of vegetable oil microcapsules, the effect of encapsulation on oxidation stability and fatty acid composition of vegetable oils, and the incorporation of long-chain omega-3 polyunsaturated fatty acids in foods.

  19. A gas chromatography-tandem quadrupole mass spectrometric analysis of policosanols in commercial vegetable oils.

    Science.gov (United States)

    Jung, Dong Min; Lee, Mi Jin; Yoon, Suk Hoo; Jung, Mun Yhung

    2011-08-01

    Reportedly policosanols (PCs) have various beneficial functionalities on health. A gas chromatography-tandem mass spectrometry (GC-MS/MS) with a low limit of detection (LOD), and high specificity, recovery, and precision was successfully established for the PC analysis in vegetable oils. The LODs for the PCs were in the range of 0.002 to 0.016 μg/mL. The relative standard deviation (RSD) for the repeated analysis of PCs was less than 3.356%. The mean recoveries for spiked heptacosanol and octacosanol in vegetable oil were 102.3% and 106.3%, respectively. The total PC contents in the vegetable oils varied from 3.01 to 427.83 mg/kg oil. Perilla seed, grape seed, and rice bran oils were found to be highly rich sources of PCs, containing 427.83, 245.15, and 171.17 mg PCs/kg oil, respectively. Corn, sesame, and soybean oils contained only a negligible quantity of PCs. The PC composition in vegetable oils was greatly source dependent. In perilla seed oil, octacosanol was the single most predominant component, representing 55.93% of the total PC. In grape seed oil, however, hexacosanol is the most abundant PC, followed by octacosanol, tetracosanol, and triacontanol in a decreasing order. The major PCs in rice bran oil were triacontanol, octacosanol, hexacosanol, and tetracosanol, which constituted over 87.3% of the total PC. This represents the 1st report on the composition and contents of PC in most vegetable oils analyzed here. The information might be used for the development of vegetable oil products with beneficial functionality. © 2011 Institute of Food Technologists®

  20. Effect of Replacing Pork Fat with Vegetable Oils on Quality Properties of Emulsion-type Pork Sausages

    OpenAIRE

    Lee, Hyun-Jin; Jung, Eun-Hee; Lee, Sang-Hwa; Kim, Jong-Hee; Lee, Jae-Joon; Choi, Yang-II

    2015-01-01

    This study was conducted to evaluate the quality properties of emulsion-type pork sausages when pork fat is replaced with vegetable oil mixtures during processing. Pork sausages were processed under six treatment conditions: T1 (20% pork fat), T2 (10% pork fat + 2% grape seed oil + 4% olive oil + 4% canola oil), T3 (4% grape seed oil + 16% canola oil), T4 (4% grape seed oil + 4% olive oil + 12% canola oil), T5 (4% grape seed oil + 8% olive oil + 8% canola oil), and T6 (4% grape seed oil + 12%...

  1. Electrocatalytic upgrading of biomass pyrolysis oils to chemical and fuel

    Science.gov (United States)

    Lam, Chun Ho

    The present project's aim is to liquefy biomass through fast pyrolysis and then upgrade the resulting "bio-oil" to renewable fuels and chemicals by intensifying its energy content using electricity. This choice reflects three points: (a) Liquid hydrocarbons are and will long be the most practical fuels and chemical feedstocks because of their energy density (both mass and volume basis), their stability and relative ease of handling, and the well-established infrastructure for their processing, distribution and use; (b) In the U.S., the total carbon content of annually harvestable, non-food biomass is significantly less than that in a year's petroleum usage, so retention of plant-captured carbon is a priority; and (c) Modern technologies for conversion of sunlight into usable energy forms---specifically, electrical power---are already an order of magnitude more efficient than plants are at storing solar energy in chemical form. Biomass fast pyrolysis (BFP) generates flammable gases, char, and "bio-oil", a viscous, corrosive, and highly oxygenated liquid consisting of large amounts of acetic acid and water together with hundreds of other organic compounds. With essentially the same energy density as biomass and a tendency to polymerize, this material cannot practically be stored or transported long distances. It must be upgraded by dehydration, deoxygenation, and hydrogenation to make it both chemically and energetically compatible with modern vehicles and fuels. Thus, this project seeks to develop low cost, general, scalable, robust electrocatalytic methods for reduction of bio-oil into fuels and chemicals.

  2. Fatty Acid Digestibility in Lactating Cows Fed Increasing Amounts of Protected Vegetable Oil, Fish Oil or Saturated Fat

    DEFF Research Database (Denmark)

    Børsting, Christian Friis; Weisbjerg, Martin Riis; Hvelplund, Torben

    1992-01-01

    Fatty acid digestion was studied in three dairy cows cannulated in the rumen, duodenum and ileum. Cows were fed encapsulated fat sources (vegetable oil, saturated fat and fish oil). A preperiod diet was fed with no added fat. In a graeco-latin design nine diets comprising three levels of each of ...

  3. Vegetable oils as hydraulic fluids for agricultural applications

    Directory of Open Access Journals (Sweden)

    Mendoza, G.

    2011-03-01

    Full Text Available The formulation of environmentally friendly lubricants following the criterion of the European EcoLabel is expensive owing to the lack of technological development in this area. The present work deals with the development of lubricant formulations from vegetable oils, in particular using high oleic sunflower oil as base fluid. These new biolubricants have to perform as good as the reference lubricants used in the real application (an agricultural tractor but with the additional condition and value of their biodegradability without toxicity. Formulation development has been performed by Verkol Lubricantes, involving the selection of the base oil and the design of the additive package. The investigation performed by Tekniker in the laboratory has covered different aspects, characterizing the most important physicochemical properties of the lubricants, including their behavior at low temperatures and their resistance to oxidation. The tribological properties of the new biolubricants have also been studied, analyzing their ability to protect the interacting surface from wear, as well as the level of friction generated during sliding. Moreover, the compatibility of the new formulated oil with all the seals present in the real application has been taken into consideration. The selected lubricant is now being tested in agricultural machinery from AGRIA.

    La formulación de lubricantes amigables con el medioambiente siguiendo los criterios Europeos de la EcoLabel resulta cara debido a la falta de desarrollo tecnológico en esta área. En el presente trabajo se han desarrollado formulaciones de lubricantes a partir de aceites de origen vegetal, en particular empleando como aceite base el GAO (Girasol de Alto Oleico. Estos nuevos lubricantes deben presentar un comportamiento tan bueno como el de los lubricantes de referencia empleados en la aplicación real (un tractor agrícola, pero con la condición y valor añadido de ser biodegradables y no t

  4. Assessing food allergy risks from residual peanut protein in highly refined vegetable oil.

    Science.gov (United States)

    Blom, W Marty; Kruizinga, Astrid G; Rubingh, Carina M; Remington, Ben C; Crevel, René W R; Houben, Geert F

    2017-08-01

    Refined vegetable oils including refined peanut oil are widely used in foods. Due to shared production processes, refined non-peanut vegetable oils can contain residual peanut proteins. We estimated the predicted number of allergic reactions to residual peanut proteins using probabilistic risk assessment applied to several scenarios involving food products made with vegetable oils. Variables considered were: a) the estimated production scale of refined peanut oil, b) estimated cross-contact between refined vegetable oils during production, c) the proportion of fat in representative food products and d) the peanut protein concentration in refined peanut oil. For all products examined the predicted risk of objective allergic reactions in peanut-allergic users of the food products was extremely low. The number of predicted reactions ranged depending on the model from a high of 3 per 1000 eating occasions (Weibull) to no reactions (LogNormal). Significantly, all reactions were predicted for allergen intakes well below the amounts reported for the most sensitive individual described in the clinical literature. We conclude that the health risk from cross-contact between vegetable oils and refined peanut oil is negligible. None of the food products would warrant precautionary labelling for peanut according to the VITAL(®) programme of the Allergen Bureau. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Synthesis and applications of vegetable oil-based fluorocarbon water repellent agents on cotton fabrics.

    Science.gov (United States)

    Zhao, Tao; Zheng, Junzhi; Sun, Gang

    2012-06-05

    Vegetable oil-based fluorocarbon water repellent agents were prepared by chemical modifications of different vegetable oils - soybean and linseed oils through several reactions, including saponification, acidification, acylation of vegetable oil and trans-esterification with 2,2,2-trifluoroethanol and 2,2,3,3-tetrafluoropropanol. The resulted fluorocarbon agents were then copolymerized with styrene. The structures of the vegetable oil based agents were characterized by FT-IR and NMR. By evaluating water contact angle and time of water disappearance on cotton fabrics, as well as whiteness and breaking strength of cotton fabrics that were treated by these agents, optimum fabric finishing conditions were explored. The cotton fabrics finished with the vegetable oil-based fluorocarbon agents showed excellent water repellency, while other properties of the cotton fabrics declined to certain level. The linseed oil-based tetrafluoropropanol water repellent agent displayed the highest water repellency among all modified oils. All the treated fabrics exhibited good durability of water repellency. The linseed oil-based tetrafluoropropanol water repellent agent demonstrated the best durability among all repellent agents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Oil Price Uncertainty, Transport Fuel Demand and Public Health

    Science.gov (United States)

    He, Ling-Yun; Yang, Sheng; Chang, Dongfeng

    2017-01-01

    Based on the panel data of 306 cities in China from 2002 to 2012, this paper investigates China’s road transport fuel (i.e., gasoline and diesel) demand system by using the Almost Ideal Demand System (AIDS) and the Quadratic AIDS (QUAIDS) models. The results indicate that own-price elasticities for different vehicle categories range from −1.215 to −0.459 (by AIDS) and from −1.399 to −0.369 (by QUAIDS). Then, this study estimates the air pollution emissions (CO, NOx and PM2.5) and public health damages from the road transport sector under different oil price shocks. Compared to the base year 2012, results show that a fuel price rise of 30% can avoid 1,147,270 tonnes of pollution emissions; besides, premature deaths and economic losses decrease by 16,149 cases and 13,817.953 million RMB yuan respectively; while based on the non-linear health effect model, the premature deaths and total economic losses decrease by 15,534 and 13,291.4 million RMB yuan respectively. Our study combines the fuel demand and health evaluation models and is the first attempt to address how oil price changes influence public health through the fuel demand system in China. Given its serious air pollution emission and substantial health damages, this paper provides important insights for policy makers in terms of persistent increasing in fuel consumption and the associated health and economic losses. PMID:28257076

  7. Oil Price Uncertainty, Transport Fuel Demand and Public Health.

    Science.gov (United States)

    He, Ling-Yun; Yang, Sheng; Chang, Dongfeng

    2017-03-01

    Based on the panel data of 306 cities in China from 2002 to 2012, this paper investigates China's road transport fuel (i.e., gasoline and diesel) demand system by using the Almost Ideal Demand System (AIDS) and the Quadratic AIDS (QUAIDS) models. The results indicate that own-priceelasticitiesfordifferentvehiclecategoriesrangefrom-1.215to-0.459(byAIDS)andfrom -1.399 to-0.369 (by QUAIDS). Then, this study estimates the air pollution emissions (CO, NOx and PM2.5) and public health damages from the road transport sector under different oil price shocks. Compared to the base year 2012, results show that a fuel price rise of 30% can avoid 1,147,270 tonnes of pollution emissions; besides, premature deaths and economic losses decrease by 16,149 cases and 13,817.953 million RMB yuan respectively; while based on the non-linear health effect model, the premature deaths and total economic losses decrease by 15,534 and 13,291.4 million RMB yuan respectively. Our study combines the fuel demand and health evaluation models and is the first attempt to address how oil price changes influence public health through the fuel demand system in China. Given its serious air pollution emission and substantial health damages, this paper provides important insights for policy makers in terms of persistent increasing in fuel consumption and the associated health and economic losses.

  8. Thermal properties and burning efficiency of crude oils and refined fuel oil

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Alva, Wilson Ulises Rojas; Mindykowski, Pierrick Anthony

    2017-01-01

    -90% were obtained for heat fluxes of 40-50 kW/m2 for the crude oils and 80% at 30 kW/m2 for IFO 180. The heat feedback in large scale fires, however, was estimated to be about 17 kW/m2, for which the burning efficiencies were indicate that the increased heat feedback to the fuel......The thermal properties and burning efficiencies of fresh and weathered crude oils and a refined fuel oil were studied in order to improve the available input data for field ignition systems for the in-situ burning of crude oil on water. The time to ignition, surface temperature upon ignition, heat...... release rate, burning rate and burning efficiency of two fresh crude oils (DUC, a light crude and Grane, a heavy crude), one fresh refined fuel oil (IFO 180) and weathered DUC (30-40 wt% evaporated and 40 wt% evaporated with 40 vol% water) were tested. Experiments were conducted in a newly designed water...

  9. LARGE EDDY SIMULATION FOR TRANSESTERIFICATION OF WASTE VEGETABLE OIL

    Directory of Open Access Journals (Sweden)

    A K M Mohiuddin

    2015-05-01

    Full Text Available The paper provides detailed information involved in the numerical simulation of transesterification of waste vegetable oil (WVO.  The main objective of this work is to perform mixing study based on large eddy simulation particle image Velocimetry (LES-PIV which resolved the turbulent scale. Reynolds stress model (RSM was subsequently used to validate the result using a multiple reference frame (MRF approach for the impeller-vessel geometry. Experimental FAME yield and liquid velocities were found to be dependent on stirrer speeds, impeller bottom distance and bulk flow pattern. Thermodynamic properties of the reaction components were incorporated as user defined function (UDF for the mixing models. FAME yield were predicted in terms of species concentration and compared fairly well with experimental condition for 1 and 2-L STR, where yield from the numerical model varied by about 18 and 23 % for 1 and 2-L STR respectively. The characteristic time scales were used to show the relevant mixing scale to describe the process.

  10. EXPERIMENTAL COMBUSTION ANALYSIS OF A HSDI DIESEL ENGINE FUELLED WITH PALM OIL BIODIESEL-DIESEL FUEL BLENDS

    Directory of Open Access Journals (Sweden)

    JOHN AGUDELO

    2009-01-01

    Full Text Available Differences in the chemical nature between petroleum diesel fuels and vegetable oils-based fuels lead to differences in their physical properties affecting the combustion process inside the engine. In this work a detailed combustion diagnosis was applied to a turbocharged automotive diesel engine operating with neat palm oil biodiesel (POB, No. 2 diesel fuel and their blends at 20 and 50% POB by volume (B20 and B50 respectively. To isolate the fuel effect, tests were executed at constant power output without carrying out any modification of the engine or its fuel injection system. As the POB content in the blend increased, there was a slight reduction in the fuel/air equivalence ratio from 0.39 (B0 to 0.37 (B100, an advance of injection timing and of start of combustion. Additionally, brake thermal efficiency, combustion duration, maximum mean temperature, temperature at exhaust valve opening and exhaust gas efficiency decreased; while the peak pressure, exergy destruction rate and specific fuel consumption increased. With diesel fuel and the blends B20 and B50 the same combustion stages were noticed. However, as a consequence of the differences pointed out, the thermal history of the process was affected. The diffusion combustion stage became larger with POB content. For B100 no premixed stage was observed.

  11. Fuel system for diesel engine with multi-stage heated

    Science.gov (United States)

    Ryzhov, Yu N.; Kuznetsov, Yu A.; Kolomeichenko, A. V.; Kuznetsov, I. S.; Solovyev, R. Yu; Sharifullin, S. N.

    2017-09-01

    The article describes a fuel system of a diesel engine with a construction tractor multistage heating, allowing the use of pure rapeseed oil as a diesel engine fuel. The paper identified the kinematic viscosity depending on the temperature and composition of the mixed fuel, supplemented by the existing recommendations on the use of mixed fuels based on vegetable oils and developed the device allowing use as fuel for diesel engines of biofuels based on vegetable oils.

  12. Asphaltenes in Mexican fuel oils; Asfaltenos en combustoleos mexicanos

    Energy Technology Data Exchange (ETDEWEB)

    Longoria Ramirez, Rigoberto [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    In this article the main aspects in which the Instituto de Investigaciones Electricas (IIE) has worked to contribute to the solution of problems due to the presence of asphaltenes in national fuel oils, are emphasized. The increment of these compounds, that concentrate harmful elements, in the last ten years has reached 22% by weight of the fuel oil. It is demonstrated that the quantification of asphaltenes depends on the type of solvent employed. [Espanol] En este articulo se subrayan los principales aspectos en los que el Instituto de Investigaciones Electricas (IIE) ha trabajado para contribuir a la solucion de problemas debidos a la presencia de asfaltenos en combustoleos nacionales. El incremento de estos compuestos, que concentran elementos nocivos, en los ultimos diez anos ha llegado hasta un 22% del peso del combustoleo. Se demuestra que la cuantificacion de los asfaltenos depende del tipo de solvente utilizado.

  13. Effect of vegetable oil oxidation on the hydrogenation reaction process

    OpenAIRE

    Kalantari, Faranak; Bahmaei, Manochehr; Ameri, Majid; Shoaei, Ehsan

    2010-01-01

    Hydrogenation has been carried out in a batch reactor with three different oxidized bleached oils in order to discover the effect of oxidation on the hydrogenation reaction process. Specifications of hydrogenated oils such as melting point, Iodine value, solid fat content and fatty acid composition of the oxidized oils were compared with their un-oxidized reference oils. Oxidized bleached sunflower oil was hydrogenated to target melting points (34, 39 and 42°C) at higher iodine values vs. its...

  14. Solvent Extraction for Vegetable Oil Production: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    Science.gov (United States)

    The EPA has identified solvent extraction for vegetable oil production processes as major sources of a single hazardous air pollutant (HAP), n-hexane. Learn more about the rule requirements and regulations, as well as find compliance help

  15. ZETA POTENTIAL AND COLOR INVESTIGATIONS OF VEGETABLE OIL BASED EMULSIONS AS ECO-FRIENDLY LUBRICANTS

    Directory of Open Access Journals (Sweden)

    ROMICĂ CREŢU

    2017-06-01

    Full Text Available In the past 10 years, the need for biodegradable lubricants has been more and more emphasized. The use of vegetable oils as lubricants offers several advantages. The vegetable oils are biodegradable; thus, the environmental pollution is minimal either during or after their use. The aim of this paper is to presents a preliminary study concerning the influence of some preparation conditions on the stability of vegetable oil-in-water (O/W emulsions as eco-friendly lubricants stabilized by nonionic surfactant. In this context, vegetable oil-in-water emulsions characteristics where assessed using microscopically observation and zeta potential. In addition, the color of these emulsions can be evaluated. It can be observed that the emulsions tend to stabilize in time.

  16. Production of vegetal oil for energetic purposes; Producao de oleo vegetal com fins energeticos a partir de oleoginosas perenes

    Energy Technology Data Exchange (ETDEWEB)

    Andrade Pinto, R. de [Companhia Paranaense de Energia (COPEL), Curitiba, PQ (Brazil)

    1987-12-31

    The technology to obtain vegetable oil from trans esterification is already dominated. However, the oil grain`s cultures of annual cycle (soy-beans, peanuts, sunflowers) demand fertile and plain lands, which actually ought to be destined for food production, The utilization of slope wise areas, which are often destroyed by means of burning, for the reforestation with perennial oily trees which will be subject for further experimental researches, is studied. Particularly, the studies involves the cultivation of avocado`s varieties, which present pulps with a high oil concentration, in regions of temperate climates. It also involves an analysis of the high productivity and various difficulties to be surpassed, since the development of a simple procedure for thr oils and by-products extraction (in rural properties), until genetic developments of new avocado`s kinds, in order to achieve a better adaptation to the regions climate and to contain a higher oil concentration. 7 refs., 1 tab.

  17. Organohalogen compounds in present day vegetable oils sourced from the Middle East

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, M. [Univ. of Surrey, Guildford (United Kingdom); Covaci, A. [Univ. of Antwerp (Belgium)

    2004-09-15

    Organohalogen chemicals such as hexachlorohexanes (HCHs), hexachlorobenzene (HCBs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are persistent, hydrophobic and thus accumulate in the food chain. The relevance of fish and dairy products as source for human contamination with these pollutants is widely recognized and as a result, routine monitoring programs of fish and dairy products are used to monitor exposure. Monitoring of vegetable oils for organohalogen contaminants is more on an ad hoc basis vegetable oils are generally far less contaminated than animal fats. Where monitoring is undertaken, samples originating from or entering the European and US market are generally analysed and data are available in the published literature. However, little data is available in the public domain for other major producers, particularly the Middle East. Olive oil is integral to Middle Eastern cooking and is widely consumed in relatively large quantities. Rich in monounsaturated fatty acids, nutritionally olive oil is considered to impart important health benefits as observed in southern Mediterranean diet studies. Here we report the levels of PCBs, organochlorine pesticides (OCPs) and PBDEs in eight olive oil and three vegetable oil samples from the Middle East obtained in 2003 and in three additional olive oil samples from the Mediterranean countries (Turkey, Greece and Egypt). The present study provides an extension of our previous study on organohalogen contaminant data in historic olive and ground nut oil from Palestine and gives a preliminary indication of dietary exposure to organohalogen contaminants from vegetable oils.

  18. A new method to determine oxidative stability of vegetable fats and oils at simulated frying temperature

    Directory of Open Access Journals (Sweden)

    Gertz Christian

    2001-01-01

    Full Text Available A new procedure at simulated frying conditions in our laboratory was developed to monitor frying stability of fats and oils. Water-conditioned silica was prepared and added to the fresh vegetable oil, which was heated for two hours at 170°C. The oil stability at frying temperature was then evaluated by determining the amount of formed dimeric triglycerides The results obtained showed that the stability of the vegetable oils at frying temperature could not be explained by the fatty acid composition alone. Corn oil was observed to be more stable than soybean oil, and rapeseed oil was better than olive oil. It was also observed that crude, non-refined oils were found to have a better heat stability than refin-ed oils. To estimate the effectiveness of synthetic and naturally occurring antioxidants, namely various tocopherols, tocopherol acetate and phytosterol fractions, phenolic compounds like quercetin, oryzanol, ferulic acid, gallates, BHT, BHA and other compounds like ascorbic acid 6-palmitate and squalene were added to refined sunflower and rape seed oil, and their oxidative stability at elevated temperature (OSET values determined. Both linoleic and oleic rich oils gave comparable results for the activity of the various compounds. alpha-tocopherol, tocopherol esters and BHA had low effects on oil stability at frying temperature, while ascorbyl palmitate and some phytosterol fractions were found to have the most stabilizing activity under frying conditions.

  19. United States Gulf of Mexico Coastal Marsh Vegetation Responses and Sensitivities to Oil Spill: A Review

    Directory of Open Access Journals (Sweden)

    S. Reza Pezeshki

    2015-12-01

    Full Text Available The present review summarizes the literature on the effects of oil spill on the U.S. Gulf of Mexico coastal vegetation including freshwater-, brackish-, and salt-marshes. When in contact with plant tissues, oil may have adverse impacts via physical and chemical effects. Oil may also become detrimental to plants by covering soil surfaces, leading to root oxygen stress and/or penetrate into the soil where it becomes in contact with the roots. The affected vegetation may survive the impact by producing new leaves, however, an episode of oil spill may impose severe stress. Oil spills may lead to partial or complete plant death but in many situations plants recover by regenerating new shoots. Plant sensitivity to oil varies among species; plants from salt marshes appear to be more sensitive than freshwater species. In addition, sensitivity appears to be dependent on the oil characteristics and the quantity of oil being spilled, repeated oiling events, season of spill, greenhouse vs. field conditions, and plant age are among the many factors that interact simultaneously. Many aspects of coastal plant responses to oiling remain in need of additional research, including the possibility that differences in oil sensitivity may interact with changes in the environment, and contribution to additional wetland losses through coastal erosion. Environmental stressors such as drought and salinity may also interact with oil, leading to the observed changes in plant species community composition following an oil spill.

  20. Recent developments in microbial oils production: a possible alternative to vegetable oils for biodiesel without competition with human food?

    Directory of Open Access Journals (Sweden)

    Gwendoline Christophe

    2012-02-01

    Full Text Available Since centuries vegetable oils are consumed as human food but it also finds applications in biodiesel production which is attracting more attention. But due to being in competition with food it could not be sustainable and leads the need to search for alternative. Nowdays microbes-derived oils (single cell oils seem to be alternatives for biodiesel production due to their similar composition to that of vegetable oils. However, the cold flow properties of the biodiesel produced from microbial oils are unacceptable and have to be modified by an efficient transesterification. Glycerol which is by product of transesterification can be valorised into some more useful products so that it can also be utilised along with biodiesel to simplify the downstream processing. The review paper discusses about various potent microorganisms for biodiesel production, enzymes involved in the lipid accumulation, lipid quantification methods, catalysts used in transesterification (including enzymatic catalyst and valorisation of glycerol.

  1. Bacterial degradation of heavy fuel oil in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Gunkel, W. (Biologische Anstalt Helgoland, Helgoland (Germany, F. R.)); Dahlmann, G. (Deutsche Hydrographisches Institut, Hamburg (Germany, F.R.). Labor Suelldorf)

    1987-01-01

    By means of the glass capillary - gas chromatography method, the degradation of heavy fuel oil/Bunker C in seawater, as well as in seawater supplemented with N and P salts, could be determined. The investigations were carried out with incubation at 4 deg C and 18 deg C for varying length of time. Simultaneously the number of oil degrading bacteria and ordinary saprophytes were also determined. The greatest degradation occurs at 18 deg C with added supplements. At this treatment the numbers of oil degrading bacteria increase 10 million-fold within one week. The glass capillary - gas chromatography method also allows for quantitatively determining the decrease of individual components during the incubation. As an example, the degradation of naphthalene, of naphthalene, 1-methyl and of naphthalene, 2-methyl are presented.

  2. Production of Renewable Diesel Fuel

    Science.gov (United States)

    2012-06-01

    Vegetable oils have been investigated as a way to provide a renewable source for diesel fuel. A successful approach to using : vegetable oils in diesel engines has been transesterification of the oils with simple alcohols to produce mono-alkyl esters...

  3. Esters of Sunflower oil as an alternative fuel for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Zaher, F. [National Research Center, Fats and Oils Dept., Cairo (Egypt)

    2003-10-15

    An alternative fuel to solar used in diesel engines was prepared from sunflower oil. Since the oil was too viscous to be used efficiently as fuel, it was chemically modified to reduce its viscosity. Chemical modification of the oil was made by catalyzed esterification with short chain alcohols being methyl and ethyl alcohols. The modified products were then evaluated according to their fuel properties as compared to diesel fuel. The fuel properties considered were viscosity, pour point, calorific value, flash point, and cetane number in addition to some other properties. In addition, the performance of a diesel engine was tested when fueled with a 50% blend of diesel oil and the oil methyl ester, and when fueled with diesel oil. The tested parameters were the brake-specific fuel consumption and brake thermal efficiency. The results of engine testing have proved that the engine performance was best using a 50% blend of diesel oil and the oil methyl ester. The brake-specific fuel consumption using this blend was 0.24 kg/BHp compared to 0.26 kg/BHp using diesel oil. The brake thermal efficiency using that oil blend was 37.6% compared to 31% with diesel oil. (Author)

  4. Influence of top land deposits, fuel sulphur and lubricating oil viscosity on oil consumption and bore polishing in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Raddatz, J.; McGeehan, J.A.

    1984-06-01

    The subject of this paper is the description of factors which cause high oil consumption and cylinder bore polishing. The investigation focused on top land deposits, the influence of fuel sulphur and the oil viscosity in a series of direct injection diesel engines of U.S. and European origin. In these diesel engine tests it was demonstrated that particularly excessive top land deposits cause high oil consumption and cylinder bore polishing. But cylinder bore polishing can also be caused by chemical corrosion when high sulphur fuels and oils of low alcalinity are used at the same time. In addition to the top land deposits and fuel sulphur factors, multigrade oils showed significant oil control advantages. The correlation between deposits and oil sulfated ash as well as between oil dispersant type and bore polishing is demonstrated and analyses of polished cylinder liners and piston deposits are presented.

  5. A review of catalytic upgrading of bio-oil to engine fuels

    DEFF Research Database (Denmark)

    Mortensen, Peter Mølgaard; Grunwaldt, Jan-Dierk; Jensen, Peter Arendt

    2011-01-01

    As the oil reserves are depleting the need of an alternative fuel source is becoming increasingly apparent. One prospective method for producing fuels in the future is conversion of biomass into bio-oil and then upgrading the bio-oil over a catalyst, this method is the focus of this review articl...

  6. Canola Oil Fuel Cell Demonstration: Volume 3 - Technical, Commercialization, and Application Issues Associated with Harvested Biomass

    Science.gov (United States)

    2006-08-17

    series of steam- heated drum or stack-type cookers . Cooking serves to thermally rup- ture oil cells that have survived flaking; to reduce oil viscosity...temperature fuel cell systems. SOFCo-EFS has carried out an extensive investigation of distillate fuel processing ( Jet -A, JP-8, and diesel fuels with 7

  7. Experimental plan for the fuel-oil study

    Energy Technology Data Exchange (ETDEWEB)

    Ternes, M.P.; Levins, W.P.; Brown, M.A.

    1992-01-01

    An up-to-date assessment of the Weatherization Assistance Program (WAP) is being performed by the US Department of Energy WAP Division and the Oak Ridge National Laboratory. Five studies form the evaluation. Major goals of the Fuel-Oil Study are to estimate the fuel oil saved by the WAP in the Northeast during the 1990 and 1991 program years, identify and quantify non-energy impacts of the WAP, assess the cost effectiveness of the WAP within this submarket, and assess factors which may cause savings and cost effectiveness to vary. The study will only analyze single-family houses in the nine states in the Northeast census region and will be carried out over two heating seasons (1990 and 1991 WAP program years). A split-winter, pre- and post-weatherization experimental design with a control group will be used. Houses will be monitored over one winter. Energy conservation measures will be installed in the weatherized houses in January of each winter by the local WAP subgrantee. One hundred twenty five weatherized houses and 75 control houses will be monitored over the 1990--1991 winter; a different set of 200 houses will be monitored over the 1991--1992 winter. The houses will be evenly distributed among 25 subgrantees. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature data will be collected for all houses. Fuel-oil delivery data will be collected for each house monitored over the 1990--1991 winter for at least a year before weatherization. The delivery data will be analyzed to determine if the accuracy of the study can be improved by collecting fuel-oil delivery data on a larger sample of houses over the 1991--1992 winter. Detailed survey information will be obtained on all the houses. This information includes descriptive details of the house and its mechanical systems, details on household size and other demographics, and occupant answers to questions regarding comfort, safety, and operation of their space-heating system and house.

  8. Biodiesel classification by base stock type (vegetable oil) using near infrared spectroscopy data

    Energy Technology Data Exchange (ETDEWEB)

    Balabin, Roman M., E-mail: balabin@org.chem.ethz.ch [Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich (Switzerland); Safieva, Ravilya Z. [Gubkin Russian State University of Oil and Gas, 119991 Moscow (Russian Federation)

    2011-03-18

    The use of biofuels, such as bioethanol or biodiesel, has rapidly increased in the last few years. Near infrared (near-IR, NIR, or NIRS) spectroscopy (>4000 cm{sup -1}) has previously been reported as a cheap and fast alternative for biodiesel quality control when compared with infrared, Raman, or nuclear magnetic resonance (NMR) methods; in addition, NIR can easily be done in real time (on-line). In this proof-of-principle paper, we attempt to find a correlation between the near infrared spectrum of a biodiesel sample and its base stock. This correlation is used to classify fuel samples into 10 groups according to their origin (vegetable oil): sunflower, coconut, palm, soy/soya, cottonseed, castor, Jatropha, etc. Principal component analysis (PCA) is used for outlier detection and dimensionality reduction of the NIR spectral data. Four different multivariate data analysis techniques are used to solve the classification problem, including regularized discriminant analysis (RDA), partial least squares method/projection on latent structures (PLS-DA), K-nearest neighbors (KNN) technique, and support vector machines (SVMs). Classifying biodiesel by feedstock (base stock) type can be successfully solved with modern machine learning techniques and NIR spectroscopy data. KNN and SVM methods were found to be highly effective for biodiesel classification by feedstock oil type. A classification error (E) of less than 5% can be reached using an SVM-based approach. If computational time is an important consideration, the KNN technique (E = 6.2%) can be recommended for practical (industrial) implementation. Comparison with gasoline and motor oil data shows the relative simplicity of this methodology for biodiesel classification.

  9. Biodiesel classification by base stock type (vegetable oil) using near infrared spectroscopy data.

    Science.gov (United States)

    Balabin, Roman M; Safieva, Ravilya Z

    2011-03-18

    The use of biofuels, such as bioethanol or biodiesel, has rapidly increased in the last few years. Near infrared (near-IR, NIR, or NIRS) spectroscopy (>4000cm(-1)) has previously been reported as a cheap and fast alternative for biodiesel quality control when compared with infrared, Raman, or nuclear magnetic resonance (NMR) methods; in addition, NIR can easily be done in real time (on-line). In this proof-of-principle paper, we attempt to find a correlation between the near infrared spectrum of a biodiesel sample and its base stock. This correlation is used to classify fuel samples into 10 groups according to their origin (vegetable oil): sunflower, coconut, palm, soy/soya, cottonseed, castor, Jatropha, etc. Principal component analysis (PCA) is used for outlier detection and dimensionality reduction of the NIR spectral data. Four different multivariate data analysis techniques are used to solve the classification problem, including regularized discriminant analysis (RDA), partial least squares method/projection on latent structures (PLS-DA), K-nearest neighbors (KNN) technique, and support vector machines (SVMs). Classifying biodiesel by feedstock (base stock) type can be successfully solved with modern machine learning techniques and NIR spectroscopy data. KNN and SVM methods were found to be highly effective for biodiesel classification by feedstock oil type. A classification error (E) of less than 5% can be reached using an SVM-based approach. If computational time is an important consideration, the KNN technique (E=6.2%) can be recommended for practical (industrial) implementation. Comparison with gasoline and motor oil data shows the relative simplicity of this methodology for biodiesel classification. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Vegetable Oil Intake and Breast Cancer Risk: a Meta-analysis.

    Science.gov (United States)

    Xin, Yue; Li, Xiao-Yu; Sun, Shi-Ran; Wang, Li-Xia; Huang, Tao

    2015-01-01

    Total fat intake may be associated with increased risk of breast cancer, and fish oil has been suggested as a protection factor to breast cancer. But the effect of vegetable oils is inconclusive. We aimed to investigate the association with high vegetable oils consumption and breast cancer risk, and evaluated their dose-response relationship. We systematically searched the MEDLINE, EMBASE, Cochrane databases, and CNKI updated to December 2014, and identified all observational studies providing quantitative estimates between breast cancer risk and different vegetable oils consumption. Fixed or random effect models were used to estimate summary odds ratios for the highest vs. lowest intake, and dose-response relationship was assessed by restricted cubic spline model and generalized least-squares trend (GLST) model. Five prospective cohort studies and 11 retrospective case-control studies, involving 11,161 breast cancer events from more than 150,000 females, met the inclusion criteria. Compared with the lowest vegetable oils consumption, higher intake didn't increased the risk of breast cancer with pooled OR of 0.88 (95% CIs:0.77-1.01), and the result from dose- response analyses didn't show a significant positive or negative trend on the breast cancer risk for each 10 g vegetable oil/day increment (OR=0.98, 95% CIs: 0.95-1.01). In the subgroup analyses, the oils might impact on females with different strata of BMI. Higher olive oil intake showed a protective effect against breast cancer with OR of 0.74 (95% CIs: 0.60-0.92), which was not significant among the three cohort studies. This meta-analyses suggested that higher intake of vegetable oils is not associated with the higher risk of breast cancer. Olive oil might be a protective factor for the cancer occurrence among case-control studies and from the whole. Recall bias and imbalance in study location and vegetable oils subtypes shouldn't be ignored. More prospective cohort studies are required to confirm the

  11. Unilever food safety assurance system for refined vegetable oils and fats

    Directory of Open Access Journals (Sweden)

    van Duijn Gerrit

    2010-03-01

    Full Text Available The Unilever Food Safety Assurance system for refined oils and fats is based on risk assessments for the presence of contaminants or pesticide residues in crude oils, and refining process studies to validate the removal of these components. Crude oil risk assessments were carried out by combining supply chain visits, and analyses of the contaminant and pesticide residue levels in a large number of crude oil samples. Contaminants like poly-aromatic hydrocarbons and hydrocarbons of mineral origin, and pesticide residues can largely be removed by refining. For many years, this Food Safety Assurance System has proven to be effective in controlling contaminant levels in refined vegetable oils and fats.

  12. Fast quality screening of vegetable oils by HPLC-thermal lens spectrometric detection

    NARCIS (Netherlands)

    Luterotti, S.; Franko, M.; Bicanic, D.

    2002-01-01

    Isocratic reversed-phase HPLC with thermal lens spectrometric (TLS) detection enabled identification of linseed, olive, sesame, and wheat germ vegetable oils to control the authenticity of the oils based on characteristic carotenoid/carotene profiles. Four characteristic regions of carotenoids

  13. Is it true that polymerization of vegetable oil occurs through Diels-Alder reaction?

    Science.gov (United States)

    Diels-Alder reaction mechanism is known to be one of the major reaction mechanisms to produce dimers and polymers during heating process of vegetable oil. However, our NMR study showed no evidence for Diels-Alder products. Soybean oil oxidized at 180 °C for 24 hrs with 1.45 surface area-to-volume ...

  14. Organogels of vegetable oil with plant wax – trans/saturated fat replacements

    Science.gov (United States)

    This featured article reviews recent advances on the development of trans fat-free, low saturated fat food products from organogels formed by a plant wax in a vegetable oil. Plant waxes are of great interest in this research area because they are obtained as by-products during the oil refining proce...

  15. Incorporating different vegetable oils into an aqueous dispersion of hybrid organic nanoparticles

    Science.gov (United States)

    Samyn, Pieter; Schoukens, Gustaaf; Stanssens, Dirk; Vonck, Leo; Van den Abbeele, Henk

    2012-08-01

    Different vegetable oils including soy oil, high-oleic sunflower oil, corn oil, castor oil (CO), rapeseed oil, and hydrogenated CO were added to the imidization reaction of poly(styrene-maleic anhydride) or SMA, with ammonium hydroxide in aqueous medium. The oils favorably reduce viscosity during ammonolysis of the anhydride moieties and increase the maximum solid content of the dispersed imidized SMA to at least 50 wt%, compared to a maximum of 35 wt% for pure imidized SMA. The viscosity of imidized SMA with polyunsaturated oils was generally larger than for monosaturated oils, but it was highest for COs due to high contents of hydroxyl groups. Depending on the oil reactivity, homogeneous or core-shell nanoparticles with 20-60 nm diameters formed. The interactions of oil and organic phase were studied by Fourier-transform infrared spectroscopy, indicating qualitative variances between different oils, the fraction imidized SMA and remaining fraction of ammonolyzed SMA without leakage of oil upon diluting the dispersion and precipitation at low pH. A quantitative analysis with calculation of imide contents, amounts of reacted oil and chemical interactions was made by Fourier-transform-Raman spectroscopy suggesting that most interactions take place around the unsaturated oil moieties and ammonolyzed anhydride.

  16. Incorporating different vegetable oils into an aqueous dispersion of hybrid organic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Samyn, Pieter, E-mail: Pieter.Samyn@fobawi.uni-freiburg.de [Albert-Luedwigs-University Freiburg, Institute for Forest Utilization (Germany); Schoukens, Gustaaf [Ghent University, Department of Textiles (Belgium); Stanssens, Dirk; Vonck, Leo; Van den Abbeele, Henk [Topchim N.V. (Belgium)

    2012-08-15

    Different vegetable oils including soy oil, high-oleic sunflower oil, corn oil, castor oil (CO), rapeseed oil, and hydrogenated CO were added to the imidization reaction of poly(styrene-maleic anhydride) or SMA, with ammonium hydroxide in aqueous medium. The oils favorably reduce viscosity during ammonolysis of the anhydride moieties and increase the maximum solid content of the dispersed imidized SMA to at least 50 wt%, compared to a maximum of 35 wt% for pure imidized SMA. The viscosity of imidized SMA with polyunsaturated oils was generally larger than for monosaturated oils, but it was highest for COs due to high contents of hydroxyl groups. Depending on the oil reactivity, homogeneous or core-shell nanoparticles with 20-60 nm diameters formed. The interactions of oil and organic phase were studied by Fourier-transform infrared spectroscopy, indicating qualitative variances between different oils, the fraction imidized SMA and remaining fraction of ammonolyzed SMA without leakage of oil upon diluting the dispersion and precipitation at low pH. A quantitative analysis with calculation of imide contents, amounts of reacted oil and chemical interactions was made by Fourier-transform-Raman spectroscopy suggesting that most interactions take place around the unsaturated oil moieties and ammonolyzed anhydride.

  17. Stability of traditionally processed vegetable oils and their blends ...

    African Journals Online (AJOL)

    The objective of the study was to investigate the stability of traditionally processed palm oil (PO), sunflower oil (SO) and sesame oil (SSO) and their blends as function of storage conditions by analysing their physicochemical properties which included acid value, saponification value, peroxide value, iodine value and ...

  18. 33 CFR 154.1240 - Specific requirements for animal fats and vegetable oils facilities that could reasonably be...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Specific requirements for animal fats and vegetable oils facilities that could reasonably be expected to cause substantial harm to the... Animal Fats and Vegetable Oils Facilities § 154.1240 Specific requirements for animal fats and vegetable...

  19. Composition of fatty acids in selected vegetable oils

    Directory of Open Access Journals (Sweden)

    Helena Frančáková

    2015-12-01

    Full Text Available Plant oils and fats are important and necessary components of the human nutrition. They are energy source and also contain fatty acids - compounds essential for human health. The aim of this study was to evaluate nutritional quality of selected plant oil - olive, rapeseed, pumpkin, flax and sesame; based on fatty acid composition in these oils. Fatty acids (MUFA, PUFA, SFA were analyzed chromatography using system Agilent 6890 GC, injector multimode, detector FID. The highest content of saturated fatty acids was observed in pumpkinseed oil (19.07%, the lowest content was found in rapeseed oil (7.03%, with low level of palmitic and stearic acids and high level of behenic acid (0.32% among the evaluated oils. The highest content of linoleic acid was determined in pumpkinseed (46.40% and sesame oil (40.49%; in these samples was also found lowest content of α-linolenic acid. These oils have important antioxidant properties and are not subject to oxidation. The richest source of linolenic acid was flaxseed oil which, which is therefore more difficult to preserve and process in food industry. In olive oil was confirmed that belongs to the group of oils with a predominantly monosaturated oleic acid (more than 70% and a small amount of polysaturated fatty acid. The most commonly used rapeseed oil belongs to the group of oils with the medium content of linolenic acid (8.76%; this oil also showed a high content of linoleic acid (20.24%. The group of these essentially fatty acids showed a suitable ratio ∑n3/n6 in the rapessed oil (0.44.

  20. The effect of various vegetable oils on pollutant emissions of biodiesel blends with gasoil in a furnace

    Directory of Open Access Journals (Sweden)

    Heravi Hamid Momahedi

    2015-01-01

    Full Text Available In this paper the effect of various vegetable oils on pollutant emissions of biodiesel blends with gasoil in a furnace is studied experimentally. The exhaust gas temperature and emissions of CO, NOx and SO2 are measured by an R-type thermocouple and TESTO 350-XL gas analyzer respectively. The oil of soybean, sunflower, canola and corn are used in transesterification process of biodiesel. The results show that maximum of temperature, NOx emission and SO2 emission are achieved for the combustion of sunflower methyl ester and corn methyl ester blends with gasoil in contrast with combustion of soybean methyl ester and canola methyl ester blends with gasoil. Also the minimum of CO emission is reached for combustion of these fuels.

  1. Optical characterization of pure vegetable oils and their biodiesels using Raman spectroscopy

    Science.gov (United States)

    Firdous, S.; Anwar, S.; Waheed, A.; Maraj, M.

    2016-04-01

    Great concern regarding energy resources and environmental polution has increased interest in the study of alternative sources of energy. Biodiesels as an alternative fuel provide a suitable diesel oil substitute for internal combustion engines. The Raman spectra of pure biodiesels of soybean oil, olive oil, coconut oil, animal fats, and petroleum diesel are optically characterized for quality and biofuel as an alternative fuel. The most significant spectral differences are observed in the frequency range around 1457 cm-1 for pure petroleum diesel, 1427 for fats biodiesel, 1670 cm-1 for pure soybean oil, 1461 cm-1 for soybean oil based biodiesel, 1670 cm-1 for pure olive oil, 1666 cm-1 for olive oil based biodiesel, 1461 cm-1 for pure coconut oil, and 1460 cm-1 for coconut oil based biodiesel, which is used for the analysis of the phase composition of oils. A diode pump solid-state laser with a 532 nm wavelength is used as an illuminating light. It is demonstrated that the peak positions and relative intensities of the vibrations of the oils can be used to identify the biodiesel quality for being used as biofuel.

  2. Quality evaluation of rapeseed oils used as engine fuels

    Directory of Open Access Journals (Sweden)

    Marek Světlík

    2012-01-01

    Full Text Available Samples from six reference decentralised facilities and one industrial production unit of rapeseed oils were taken for the evaluation of the influence of production processes to the properties specified in the technical standard; in the laboratories, the properties limited by the standard for rapeseed oils were determined. In addition, long-term monitoring of changes in the oxidation stability in the storage test of rapeseed oils additived in the quantities of 200, 400 and 600 mg.kg−1 of the Baynox antioxidant was started. The results confirmed that the critical points in the rapeseed oil production process consist in the contamination with ash-forming elements, such as phosphorus, magnesium, calcium and overall impurities. Not only in the case of hot pressing, but also in two-step cold pressing of rapeseed it is necessary to reduce the content of ash-forming elements using additional processes, such as degumming, neutralisation and whitening. The safety step consisting of filtration down to maximum particle size of 1 μm must be always in place before the oil distribution. A positive effect of the Baynox antioxidant was clearly proved. As 200 mg.kg−1 of Baynox was added, the oxidation stability value increased from 8 to 9.05 hrs immediately after the pressing with a consequent decrease to 6 hrs after 270 days. With using of addition 400 ppm Baynox decreased oxidation stability under 6 hours not until after 390 days of storage. With addition 600 ppm Baynox the oxidation stability of rapeseed oil even after 510 days of storage makes 6.5 hours. The quality monitoring brought about necessary findings and knowledge for the optimisation of the rapeseed oil production and distribution as engine fuels. In addition, it serves as an initial supporting document for the creation of the necessary quality control system.

  3. A systematic review of high-oleic vegetable oil substitutions for other fats and oils on cardiovascular disease risk factors: implications for novel high-oleic soybean oils.

    Science.gov (United States)

    Huth, Peter J; Fulgoni, Victor L; Larson, Brian T

    2015-11-01

    High-oleic acid soybean oil (H-OSBO) is a trait-enhanced vegetable oil containing >70% oleic acid. Developed as an alternative for trans-FA (TFA)-containing vegetable oils, H-OSBO is predicted to replace large amounts of soybean oil in the US diet. However, there is little evidence concerning the effects of H-OSBO on coronary heart disease (CHD)(6) risk factors and CHD risk. We examined and quantified the effects of substituting high-oleic acid (HO) oils for fats and oils rich in saturated FAs (SFAs), TFAs, or n-6 (ω-6) polyunsaturated FAs (PUFAs) on blood lipids in controlled clinical trials. Searches of online databases through June 2014 were used to select studies that defined subject characteristics; described control and intervention diets; substituted HO oils compositionally similar to H-OSBO (i.e., ≥70% oleic acid) for equivalent amounts of oils high in SFAs, TFAs, or n-6 PUFAs for ≥3 wk; and reported changes in blood lipids. Studies that replaced saturated fats or oils with HO oils showed significant reductions in total cholesterol (TC), LDL cholesterol, and apolipoprotein B (apoB) (P fats and oils high in SFAs or TFAs with either H-OSBO or oils high in n-6 PUFAs would have favorable and comparable effects on plasma lipid risk factors and overall CHD risk. © 2015 American Society for Nutrition.

  4. United States Gulf of Mexico Coastal Marsh Vegetation Responses and Sensitivities to Oil Spill: A Review

    OpenAIRE

    S. Reza. Pezeshki; DeLaune, Ronald D.

    2015-01-01

    The present review summarizes the literature on the effects of oil spill on the U.S. Gulf of Mexico coastal vegetation including freshwater-, brackish-, and salt-marshes. When in contact with plant tissues, oil may have adverse impacts via physical and chemical effects. Oil may also become detrimental to plants by covering soil surfaces, leading to root oxygen stress and/or penetrate into the soil where it becomes in contact with the roots. The affected vegetation may survive the impact by pr...

  5. Determination of vegetable oils and fats adulterants in diesel oil by high performance liquid chromatography and multivariate methods.

    Science.gov (United States)

    Brandão, Luiz Filipe Paiva; Braga, Jez Willian Batista; Suarez, Paulo Anselmo Ziani

    2012-02-17

    The current legislation requires the mandatory addition of biodiesel to all Brazilian road diesel oil A (pure diesel) marketed in the country and bans the addition of vegetable oils for this type of diesel. However, cases of irregular addition of vegetable oils directly to the diesel oil may occur, mainly due to the lower cost of these raw materials compared to the final product, biodiesel. In Brazil, the situation is even more critical once the country is one of the largest producers of oleaginous products in the world, especially soybean, and also it has an extensive road network dependent on diesel. Therefore, alternatives to control the quality of diesel have become increasingly necessary. This study proposes an analytical methodology for quality control of diesel with intention to identify and determine adulterations of oils and even fats of vegetable origin. This methodology is based on detection, identification and quantification of triacylglycerols on diesel (main constituents of vegetable oils and fats) by high performance liquid chromatography in reversed phase with UV detection at 205nm associated with multivariate methods. Six different types of oils and fats were studied (soybean, frying oil, corn, cotton, palm oil and babassu) and two methods were developed for data analysis. The first one, based on principal component analysis (PCA), nearest neighbor classification (KNN) and univariate regression, was used for samples adulterated with a single type of oil or fat. In the second method, partial least square regression (PLS) was used for the cases where the adulterants were mixtures of up to three types of oils or fats. In the first method, the techniques of PCA and KNN were correctly classified as 17 out of 18 validation samples on the type of oil or fat present. The concentrations estimated for adulterants showed good agreement with the reference values, with mean errors of prediction (RMSEP) ranging between 0.10 and 0.22% (v/v). The PLS method was

  6. Evaluating lubricating capacity of vegetal oils using Abbott-Firestone curve

    Science.gov (United States)

    Georgescu, C.; Cristea, G. C.; Dima, C.; Deleanu, L.

    2017-02-01

    The paper presents the change of functional parameters defined on the Abbott-Firestone curve in order to evaluate the surface quality of the balls from the four ball tester, after tests done with several vegetable oils. The tests were done using two grades of rapeseed oil (degummed and refined) and two grades of soybean oil (coarse and degummed) and a common transmission oil (T90). Test parameters were 200 N and 0.576 m/s (1500 rpm) for 60 minutes. For the refined rapeseed oil, the changes in shape of the Abbott-Firestone curves are more dramatic, these being characterized by high values of Spk (the average value for the wear scars on the three balls), thus being 40% of the sum Svk + Sk + Spk, percentage also obtained for the soybean oil, but the value Spk being lower. For the degummed soybean oil, the profile height of the wear scars are taller than those obtained after testing the coarse soybean oil, meaning that the degumming process has a negative influence on the worn surface quality and the lubricating capacity of this oil. Comparing the surface quality of the wear scars on fixed tested balls is a reliable method to point out the lubricant properties of the vegetable oils, especially if they are compared to a “classical” lubricant as a non-additivated transmission mineral oil T90. The best surface after testing was obtained for the soybean oil, followed by T90 oil and the degummed grades of the soybean oil and rapeseed oil (these three giving very close values for the functional parameters), but the refined rapeseed oil generated the poorest quality of the wear scars on the balls, under the same testing conditions.

  7. Extraction of Cu(II) from aqueous solutions by vegetable oil-based organic solvents.

    Science.gov (United States)

    Chang, Siu Hua; Teng, Tjoon Tow; Ismail, Norli

    2010-09-15

    Various types of vegetable oil-based organic solvents (VOS), i.e. vegetable oils (corn, canola, sunflower and soybean oils) with and without extractants (di-2-ethylhexylphosphoric acid (D2EHPA) and tributylphosphate (TBP)), were investigated into their potentiality as greener substitutes for the conventional petroleum-based organic solvents to extract Cu(II) from aqueous solutions. The pH-extraction isotherms of Cu(II) using various vegetable oils loaded with both D2EHPA and TBP were investigated and the percentage extraction (%E) of Cu(II) achieved by different types of VOS was determined. Vegetable oils without extractants and those loaded with TBP alone showed a poor extractability for Cu(II). Vegetable oils loaded with both D2EHPA and TBP were found to be the most effective VOS for Cu(II) extraction and, thus, are potential greener substitutes for the conventional petroleum-based organic solvents. Copyright 2010 Elsevier B.V. All rights reserved.

  8. A rapid method to authenticate vegetable oils through surface-enhanced Raman scattering

    Science.gov (United States)

    Lv, Ming Yang; Zhang, Xin; Ren, Hai Rui; Liu, Luo; Zhao, Yong Mei; Wang, Zheng; Wu, Zheng Long; Liu, Li Min; Xu, Hai Jun

    2016-03-01

    Vegetable oils are essential in our daily diet. Among various vegetable oils, the major difference lies in the composition of fatty acids, including unsaturated fatty acids (USFA) and saturated fatty acids (SFA). USFA include oleic acid (OA), linoleic acid (LA), and α-linolenic acid (ALA), while SFA are mainly palmitic acid (PA). In this study, the most typical and abundant USFA present with PA in vegetable oils were quantified. More importantly, certain proportional relationships between the integrated intensities of peaks centered at 1656 cm-1 (S1656) in the surface-enhanced Raman scattering spectra of different USFA were confirmed. Therefore, the LA or ALA content could be converted into an equivalent virtual OA content enabling the characterization of the USFA content in vegetable oils using the equivalent total OA content. In combination with the S1656 of pure OA and using peanut, sesame, and soybean oils as examples, the ranges of S1656 corresponding to the National Standards of China were established to allow the rapid authentication of vegetable oils. Gas chromatograph-mass spectrometer analyses verified the accuracy of the method, with relative errors of less than 5%. Moreover, this method can be extended to other detection fields, such as diseases.

  9. Vegetable Oil Deodorizer Distillate: A Rich Source of the Natural Bioactive Components.

    Science.gov (United States)

    Hussain Sherazi, Syed Tufail; Mahesar, Sarfaraz Ahmed; Sirajuddin

    2016-12-01

    Deodorizer distillates are waste products of edible oil processing industries obtained during deodorization process of vegetable oils. It is very cheap source of several health beneficial components such as tocopherols, sterols, squalene as well as free fatty acids which have numerous industrial applications. These valuable components are being used in different foods, pharmaceutical formulations and cosmetics. Traditional sources of these useful components are vegetable oils, fruits, vegetables and nuts. Global need of these important components has been exceeded than their availability. The deodorizer distillates of various vegetable oils are considered to be a rich source of several valuable components. Present review will cover brief introduction of common processing stages involved in all vegetable oil processing, analytical methods for characterization of deodorizer distillates by instrumental techniques, importance and commercial value of deodorizer distillates. Future prospective of current field may leads to cost efficient processes and increased attention on the nutritional quality of deodorized oil and commercial applications of deodorizer distillates as well as their valuable components.

  10. Performance of hybrid ball bearings in oil and jet fuel

    Science.gov (United States)

    Schrader, Stephen M.; Pfaffenberger, Eugene E.

    1992-07-01

    A 308-size hybrid ball bearing, with ceramic balls and steel rings, was tested using a diester oil and gas turbine fuel as lubricants at several speeds and loads. Heat generation data from this test work was then correlated with the heat generation model from a widely used computer code. The ability of this hybrid split inner ring bearing design to endure thrust reversals, which are expected in many turbine applications, was demonstrated. Finally, the bearing was successfully endurance tested in JP-10 fuel for 25 hours at 7560 N axial load and 36,000 rpm. This work has successfully demonstrated the technology necessary to use fuel-lubricated hybrid bearings in limited-life gas turbine engine applications such as missiles, drones, and other unmanned air vehicles (UAVs). In addition, it has provided guidance for use in designing such bearing systems. As a result, the benefits of removing the conventional oil lubricant system, i.e., design simplification and reduced maintenance, can be realized.

  11. The use of Brazilian vegetable oils in nanoemulsions: an update on preparation and biological applications

    Directory of Open Access Journals (Sweden)

    Lisiane Bajerski

    Full Text Available ABSTRACT Vegetable oils present important pharmacological properties, which gained ground in the pharmaceutical field. Its encapsulation in nanoemulsions is considered a promising strategy to facilitate the applicability of these natural compounds and to potentiate the actions. These formulations offer several advantages for topical and systemic delivery of cosmetic and pharmaceutical agents including controlled droplet size, protection of the vegetable oil to photo, thermal and volatilization instability and ability to dissolve and stabilize lipophilic drugs. For these reasons, the aim of this review is to report on some characteristics, preparation methods, applications and especially analyze recent research available in the literature concerning the use of vegetable oils with therapeutic characteristics as lipid core in nanoemulsions, specially from Brazilian flora, such as babassu (Orbignya oleifera, aroeira (Schinus molle L., andiroba (Carapa guaianiensis, casca-de-anta (Drimys brasiliensis Miers, sucupira (Pterodon emarginatus Vogel and carqueja doce (Stenachaenium megapotamicum oils.

  12. Study of the influences of the zeolites physical and chemical characteristics in the soya oil cracking; Estudo das influencias das caracteristicas fisico-quimicas de zeolitas no craqueamento do oleo de soja

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Frances Regiane dos

    1995-10-01

    Vegetable oils have been studied as raw materials to yield fuel hydrocarbons. The catalytic and thermal transformations of these oils have been presented as being able to generate hydrocarbons from which diesel oil and vegetable gasoline may be obtained. (author)

  13. Application of data mining methods for classification and prediction of olive oil blends with other vegetable oils.

    Science.gov (United States)

    Ruiz-Samblás, Cristina; Cadenas, José M; Pelta, David A; Cuadros-Rodríguez, Luis

    2014-04-01

    The aim of this article is to study tree-based ensemble methods, new emerging modelling techniques, for authentication of samples of olive oil blends to check their suitability for classifying the samples according to the type of oil used for the blend as well as for predicting the amount of olive oil in the blend. The performance of these methods has been investigated in chromatographic fingerprint data of olive oil blends with other vegetable oils without needing either to identify or to quantify the chromatographic peaks. Different data mining methods-classification and regression trees, random forest and M5 rules-were tested for classification and prediction. In addition, these classification and regression tree approaches were also used for feature selection prior to modelling in order to reduce the number of attributes in the chromatogram. The good outcomes have shown that these methods allow one to obtain interpretable models with much more information than the traditional chemometric methods and provide valuable information for detecting which vegetable oil is mixed with olive oil and the percentage of oil used, with a single chromatogram.

  14. Determination of trigonelline in seeds and vegetable oils by capillary electrophoresis as a novel marker for the detection of adulterations in olive oils.

    Science.gov (United States)

    Sánchez-Hernández, Laura; Puchalska, Patrycja; García-Ruiz, Carmen; Crego, Antonio L; Marina, Maria Luisa

    2010-07-14

    A capillary electrophoresis method with UV detection was developed for the first time for the determination of the pyridine betaine trigonelline (N-methylnicotinic acid) in seeds and vegetable oils. Analytical characteristics of the method showed its good performance in terms of linearity (r > 0.999), precision (relative standard deviations oils). The developed method was applied to the analysis of soy and sunflower seeds, three varieties of olives, and sunflower, soy, and extra virgin olive oils. Trigonelline was determined in soy and sunflower seeds and their respective oils, whereas it was not detected in olives or olive oils. Different mixtures of extra virgin olive oil with seed oils were analyzed, detecting up to 10% of soy oil in olive oil. As a consequence, trigonelline is proposed in this work as a novel marker for the detection of adulterations of olive oils with other vegetable oils such as soy and sunflower oils.

  15. Evaluation of antioxidants stability by thermal analysis and its protective effect in heated edible vegetable oil

    Directory of Open Access Journals (Sweden)

    Seme Youssef Reda

    2011-06-01

    Full Text Available In this work, through the use of thermal analysis techniques, the thermal stabilities of some antioxidants were investigated, in order to evaluate their resistance to thermal oxidation in oils, by heating canola vegetable oil, and to suggest that antioxidants would be more appropriate to increase the resistance of vegetable oils in the thermal degradation process in frying. The techniques used were: Thermal Gravimetric (TG and Differential Scanning Calorimetry (DSC analyses, as well as an allusion to a possible protective action of the vegetable oils, based on the thermal oxidation of canola vegetable oil in the laboratory under constant heating at 180 ºC/8 hours for 10 days. The studied antioxidants were: ascorbic acid, sorbic acid, citric acid, sodium erythorbate, BHT (3,5-di-tert-butyl-4-hydroxytoluene, BHA (2, 3-tert-butyl-4-methoxyphenol, TBHQ (tertiary butyl hydroquinone, PG (propyl gallate - described as antioxidants by ANVISA and the FDA; and also the phytic acid antioxidant and the SAIB (sucrose acetate isobutyrate additive, which is used in the food industry, in order to test its behavior as an antioxidant in vegetable oil. The following antioxidants: citric acid, sodium erythorbate, BHA, BHT, TBHQ and sorbic acid decompose at temperatures below 180 ºC, and therefore, have little protective action in vegetable oils undergoing frying processes. The antioxidants below: phytic acid, ascorbic acid and PG, are the most resistant and begin their decomposition processes at temperatures between 180 and 200 ºC. The thermal analytical techniques have also shown that the SAIB antioxidant is the most resistant to oxidative action, and it can be a useful choice in the thermal decomposition prevention of edible oils, improving stability regarding oxidative processes.

  16. Preparation of margarines from organogels of sunflower wax and vegetable oils.

    Science.gov (United States)

    Hwang, Hong-Sik; Singh, Mukti; Winkler-Moser, Jill K; Bakota, Erica L; Liu, Sean X

    2014-10-01

    It was previously reported that sunflower wax (SW) had high potential as an organogelator for soybean oil-based margarine and spread products. In this study, 12 other vegetable oils were evaluated in a margarine formulation to test feasibility of utilization of SW as an alternative to solid fats in margarine and spread products containing these oils. The minimum quantity of SW required to form a gel with these oils ranged from 0.3% to 1.0% (wt.). Organogels were prepared from the vegetable oils with 3%, 5% and 7% SW and were tested for firmness as well as melting behaviors using differential scanning calorimetry. These organogels were also incorporated into a margarine formulation. All of the vegetable oil organogels produced relatively firm margarines. The margarines prepared from organogels containing 3% (wt.) SW had greater firmness than commercial spreads, whereas margarines made from 7% SW were softer than commercial stick margarines. However, dropping points of the margarine samples were higher than those of commercial spread and margarine products. Margarine firmness was modestly inversely correlated with the amount of polar compounds in the oils and did not correlate with fatty acid compositions. This study demonstrates the feasibility of using a number of healthy vegetable oils rich in polyunsaturated fatty acids to make healthy margarine and spread products by utilizing SW as an organogelator. This study showed that sunflower wax could be used as an alternative to traditional solid fats for the development of new margarine and spread products from a variety of healthy vegetable oils. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  17. Assessment of energy return on energy investment (EROEI of oil bearing crops for renewable fuel production

    Directory of Open Access Journals (Sweden)

    A. Restuccia

    2013-09-01

    Full Text Available As reported in literature the production of biodiesel should lead to a lower energy consumption than those obtainable with its use. So, to justify its consumption, a sustainable and “low input” production should be carried out. In order to assess the sustainability of Linum usitatissimum, Camelina sativa and Brassica carinata cultivation for biodiesel production in terms of energy used compared to that obtained, the index EROEI (Energy Return On Energy Invested has been used. At this aim, an experimental field was realised in the south-eastern Sicilian land. During the autumn-winter crop cycle, no irrigation was carried out and some suitable agricultural practices have been carried out taking into account the peculiarity of each type of used seeds. The total energy consumed for the cultivation of oil bearing crops from sowing to the production of biodiesel represents the Input of the process. In particular, this concerned the energy embodied in machinery and tools utilized, in seed, chemical fertilizer and herbicide but also the energy embodied in diesel fuels and lubricant oils. In addition, the energy consumption relating to machines and reagents required for the processes of extraction and transesterification of the vegetable oil into biodiesel have been calculated for each crops. The energy obtainable from biodiesel production, taking into account the energy used for seed pressing and for vegetable oil transesterification into biodiesel, represents the Output of the process. The ratio Output/Input gets the EROEI index which in the case of Camelina sativa and Linum usatissimum is greater than one. These results show that the cultivation of these crops for biofuels production is convenient in terms of energy return on energy investment. The EROEI index for Brassica carinata is lower than one. This could means that some factors, concerning mechanisation and climatic

  18. PERFORMANCE, EMISSION, AND COMBUSTION CHARACTERISTICS OF A CI ENGINE USING LIQUID PETROLEUM GAS AND NEEM OIL IN DUAL FUEL MODE

    Directory of Open Access Journals (Sweden)

    Palanimuthu Vijayabalan

    2010-01-01

    Full Text Available Increased environmental awareness and depletion of resources are driving the industries to develop viable alternative fuels like vegetable oils, compresed natural gas, liquid petroleum gas, producer gas, and biogas in order to provide suitable substitute to diesel for compression ignition engine. In this investigation, a single cylinder, vertical, air-cooled diesel engine was modified to use liquid petroleum gas in dual fuel mode. The liquefied petroleum gas, was mixed with air and supplied through intake manifold. The liquid fuel neem oil or diesel was injected into the combustion chamber. The performance, emission, and combustion characteristics were studied and compared for neat fuel and dual fuel mode. The experimental results on dual fuel engine show a reduction in oxides of nitrogen up to 70% of the rated power and smoke in the entire power range. However the brake thermal efficiency was found decreased in low power range due to lower calorific value of liquid petroleum gas, and increase in higher power range due to the complete burning of liquid petroleum gas. Hydrocarbon and carbon monoxide emissions were increased significantly at lower power range and marginal variation in higher power range.

  19. Effects of mixing energy on the sedimentation of vegetable oil spills by clay.

    Science.gov (United States)

    Wrenn, B A; Downer, R J; Venosa, A D

    2010-11-01

    The effects of clay dose and mixing energy on the efficiency of vegetable oil sedimentation by clay are investigated. The sedimentation efficiency increased with increasing clay dose to a maximum of about 80% of added oil. The maximum sedimentation efficiency was achieved at a lower clay dose, and the sedimentation efficiency was greater for a given clay dose when the oil was present as a thick oil film rather than as a thinner film. Sedimentation efficiency was relatively constant for mixing energies less than about 0.01 m2 s(-3) (0.01 W kg(-1)) but decreased dramatically at higher energy dissipation rates. Mixing energy may not be an important factor in determining the effectiveness of this response alternative because energy dissipation rates in natural surface water bodies under most typical conditions are less than 0.01 m2 s(-3). The effects of oil film thickness and mixing energy on the efficiency of vegetable oil sedimentation suggests that vegetable oil-mineral aggregates (VOMA) form through a different mechanism to that of petroleum oil-mineral aggregates (OMA). One consequence of the different formation mechanisms is that VOMA are much larger than petroleum OMA.

  20. Upgrading of waste oils into transportation fuels using hydrotreating technologies

    Directory of Open Access Journals (Sweden)

    Sudipta De

    2014-12-01

    Full Text Available The generation of organic waste continues to increase, causing severe environmental pollution. Waste valorization is currently an emerging technology that can address this problem with an extra benefit of producing a range of valued products. In this contribution, we report the current developments in hydrotreating technologies for upgrading waste oil fractions into usable transportation fuels. Particular focus is given on the catalysts selection for a general hydroprocessing technique as well as the competitive role of those catalysts in hydrotreating and hydrocracking processes.

  1. Poly-nitrogen strong bases as immobilized catalysts for the trans-esterification of vegetable oils; Bases fortes polyazotees: catalyseurs immobilises pour la transesterification des huiles vegetales

    Energy Technology Data Exchange (ETDEWEB)

    Gelbard, G.; Vielfaure-Joly, F. [Institut de Recherches sur la Catalyse, CNRS, 69 - Villeurbanne (France)

    2000-07-01

    To fulfill the requirements of using renewable resources for fuels and raw materials for the chemical industry, vegetable oils appeared rapidly as excellent candidates. The cultivation of rapeseed, sunflower and soybean are now widely developed for the primary transformation of their oils into methyl esters through trans-esterification reactions with light alcohols. The essential production of rapeseed oil is devoted to the making of fatty acid methyl esters (FAME), a mixture used as fuels for diesel engines or as feedstock for specialty chemicals such as lubricants and surfactants. It is shown here that the non-ionic poly-nitrogen organic bases, related to guanidines and bi-guanidines, are strong enough to perform such trans-esterification reactions. New syntheses of bi-guanidines were devised for such purposes and applied for the preparation of recyclable polymer-supported catalysts.

  2. Toxicity of water-soluble fractions of biodiesel fuels derived from castor oil, palm oil, and waste cooking oil.

    Science.gov (United States)

    Leite, Maria Bernadete Neiva Lemos; de Araújo, Milena Maria Sampaio; Nascimento, Iracema Andrade; da Cruz, Andrea Cristina Santos; Pereira, Solange Andrade; do Nascimento, Núbia Costa

    2011-04-01

    Concerns over the sustained availability of fossil fuels and their impact on global warming and pollution have led to the search for fuels from renewable sources to address worldwide rising energy demands. Biodiesel is emerging as one of the possible solutions for the transport sector. It shows comparable engine performance to that of conventional diesel fuel, while reducing greenhouse gas emissions. However, the toxicity of products and effluents from the biodiesel industry has not yet been sufficiently investigated. Brazil has a very high potential as a biodiesel producer, in view of its climatic conditions and vast areas for cropland, with consequent environmental risks because of possible accidental biodiesel spillages into water bodies and runoff to coastal areas. This research determined the toxicity to two marine organisms of the water-soluble fractions (WSF) of three different biodiesel fuels obtained by methanol transesterification of castor oil (CO), palm oil (PO), and waste cooking oil (WCO). Microalgae and sea urchins were used as the test organisms, respectively, for culture-growth-inhibition and early-life-stage-toxicity tests. The toxicity levels of the analyzed biodiesel WSF showed the highest toxicity for the CO, followed by WCO and the PO. Methanol was the most prominent contaminant; concentrations increased over time in WSF samples stored up to 120 d. Copyright © 2010 SETAC.

  3. Vitamin A--fortified vegetable oil exported from Malaysia and Indonesia can significantly contribute to vitamin A intake worldwide.

    Science.gov (United States)

    Laillou, Arnaud; Panagides, Dora; Garrett, Greg S; Moench-Pfanner, Regina

    2013-06-01

    Vitamin A deficiency is a public health problem worldwide, affecting approximately 190 million preschool-aged children and 19.1 million pregnant women. Fortification of vegetable oils with vitamin A is an effective, low-cost technology to improve vitamin A intake. To examine the potential contribution of fortification of vegetable oils with vitamin A in Indonesia and Malaysia to increasing vitamin A consumption in these two countries and in countries to which oil is exported. Detailed interviews were administered and a desk review was conducted. We also estimated potential vitamin A intakes from fortified vegetable oil. Malaysia and Indonesia are two of the largest producers and exporters of vegetable oil. Fortification of vegetable oil in both countries has the potential to be used as a tool for control of vitamin A deficiency. Both countries have the capacity to export fortified vegetable oil. Vegetable oil fortified at a level of 45 IU/g could provide 18.8% of the Estimated Average Requirement (EAR) for an Ethiopian woman, 30.9% and 46.9% of the EAR for a Bangladeshi child and woman, respectively, and 17.5% of the EAR for a Cambodian woman. Although concerns about obesity are valid, fortification of existing vegetable oil supplies does not promote overconsumption of oil but rather promotes consumption of vegetable oil of higher nutrient quality. Fortifying vegetable oil on a large scale in Malaysia and Indonesia can reach millions of people globally, including children less than 5 years old. The levels of fortification used are far from reaching the Tolerable Upper Intake Level (UL). Vegetable oil fortification has the potential to become a global public health intervention strategy.

  4. Effects of different vegetable oils on rumen fermentation and conjugated linoleic acid concentration in vitro

    Directory of Open Access Journals (Sweden)

    Amitava Roy

    2017-01-01

    Full Text Available Aim: The objective of this study was to investigate the effect of different vegetable oils on rumen fermentation and concentrations of beneficial cis-9 trans-11 C18:2 conjugated linoleic acid (CLA and trans-11 C18:1 fatty acid (FA in the rumen fluid in an in vitro condition. Materials and Methods: Six vegetable oils including sunflower, soybean, sesame, rice bran, groundnut, and mustard oils were used at three dose levels (0%, 3% and 4% of substrate dry matter [DM] basis in three replicates for each treatment in a completely randomized design using 6 × 3 factorial arrangement. Rumen fluid for microbial culture was collected from four goats fed on a diet of concentrate mixture and berseem hay at a ratio of 60:40 on DM basis. The in vitro fermentation was performed in 100 ml conical flakes containing 50 ml of culture media and 0.5 g of substrates containing 0%, 3% and 4% vegetable oils. Results: Oils supplementation did not affect (p>0.05 in vitro DM digestibility, and concentrations of total volatile FAs and ammonia-N. Sunflower oil and soybean oil decreased (p0.05 on protozoal numbers. Both trans-11 C18:1 FA and cis-9, trans-11 CLA concentrations were increased (p0.05 increase the trans-11 C18:1 FA and cis-9, trans-11 CLA concentrations as compared to the control. The concentrations of stearic, oleic, linoleic, and linolenic acids were not altered (p>0.05 due to the addition of any vegetable oils. Conclusion: Supplementation of sunflower and soybean oils enhanced beneficial trans-11 C18:1 FA and cis-9, trans-11 CLA concentrations in rumen fluid, while sesame, rice bran, groundnut, and mustard oils were ineffective in this study.

  5. enhancing the potency of vegetable oils by combining with ...

    African Journals Online (AJOL)

    after treated seeds had been stor for (i days. Presumably, with storage the oils were absorbed by grains» therey reducing its availability for pick up by the beetles (Temho and Merritt, i95); Furthermore, the oils could also act as antifeedants or modify the storage micro-environment thereby discouraging insect penetration and ...

  6. An environmentally benign soybean derived fuel as a blending stock or replacement for home heating oil.

    Science.gov (United States)

    Mushrush, G; Beal, E J; Spencer, G; Wynne, J H; Lloyd, C L; Hughes, J M; Walls, C L; Hardy, D R

    2001-05-01

    The use of bio-derived materials both as fuels and/or as blending stocks becomes more attractive as the price of middle distillate fuels, especially home heating oil, continues to rise. Historically, many biomass and agricultural derived materials have been suggested. One of the most difficult problems encountered with home heating oil is that of storage stability. High maintenance costs associated with home heating oil are, in large part, because of this stability problem. In the present research, Soygold, a soybean derived fuel, was added in concentrations of 10%-20% to both a stable middle distillate fuel and an unstable home heating oil. Fuel instability in this article will be further related to the organo-nitrogen compounds present. The soy-fuel mixtures proved stable, and the addition of the soy liquid enhanced both the combustion properties, and dramatically improved the stability of the unstable home heating oil.

  7. Trans and conjugated fatty acids in milk from cows and goats consuming pasture or receiving vegetable oils or seeds

    National Research Council Canada - National Science Library

    Chilliard, Yves; Ferlay, Anne; Loor, Juan; Rouel, Jacques; Martin, Bruno

    2010-01-01

    ...:1 and conjugated linoleic acids (CLA) in milk fat from dairy cows and goats. Main dietary factors taken into account are the nature of for- ages and pasture, and supplementation with oil seeds, vegetable or marine oils...

  8. Alkyl amine and vegetable oil mixture-a viable candidate for CO2 capture and utilization.

    Science.gov (United States)

    Uma Maheswari, A; Palanivelu, K

    2017-02-01

    In this present work, the absorption of CO2 in alkyl amines and vegetable oil mixture has been evaluated. The results showed that the absorption is higher in alkyl amines and vegetable oil mixture compared with the aqueous alkyl amines. In addition to that, by employing the greener and non-toxic vegetable oil media, the CO2 gas has been captured as well as converted into value-added products, such as carbamates of ethylenediamine, diethylenetriamine, and triethylenetetramine. The carbamates have been isolated and characterized by Fourier transform infrared and (1)H and (13)C nuclear magnetic resonance spectroscopic techniques. The formation of these products in precipitate form has not been observed in the case of aqueous medium. Among the various alkyl amine and vegetable oil combinations, triethylenetetramine in coconut oil medium showed the maximum CO2 capture capacity of 72%. The coconut oil used for the process has been recovered, recycled, and reused for 3 cycles. Thus, this novel scheme seems to be a better alternative to conquer the drawback of aqueous amine-based CO2 capture as well as for the capture and utilization of the CO2 gas to gain the value-added products.

  9. Vegetable oil based eco-friendly coating materials: A review article

    Directory of Open Access Journals (Sweden)

    Manawwer Alam

    2014-09-01

    Full Text Available Vegetable oils (VO constitute the single, largest, easily available, low cost, non-toxic, non-depletable, biodegradable family yielding materials that are capable of competing with fossil fuel derived petro-based products. The outstanding feature of VO is their unique chemical structure with to unsaturation sites, epoxies, hydroxyls, esters and other functional groups along with inherent fluidity characteristics. These enable them to undergo various chemical transformations producing low molecular weight polymeric materials with versatile applications, particularly as chief ingredients in paints and coatings. In this manuscript, we have briefly described important VO derived materials such as alkyds, polyesteramides, polyetheramides, polyurethanes, epoxies, polyols, along with their preparation and applications as protective coatings. A small portion of the review is also dedicated to the future perspectives in the field. Inspite of their extensive utilization in the world of coatings, literature survey revealed that in the past (from 1990s to date no review has come up describing the chemistry and applications of VO polymer based coating materials.

  10. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Bambang Tri Nugroho

    2009-06-01

    Full Text Available Biodiesel production has received considerable attention in the recent past as a renewable fuel. The production of biodiesel by conventional transesterification process employs alkali or acid catalyst and has been industrially accepted for its high conversion and reaction rates. However for alkali catalyst, there may be risk of free acid or water contamination and soap formation is likely to take place which makes the separation process difficult. Although yield is high, the acids, being corrosive, may cause damage to the equipment and the reaction rate was also observed to be low. This research focuses on empirical modeling and optimization for the biodiesel production over plasma reactor. The plasma reactor technology is more promising than the conventional catalytic processes due to the reducing reaction time and easy in product separation. Copyright (c 2009 by BCREC. All Rights reserved.[Received: 10 August 2009, Revised: 5 September 2009, Accepted: 12 October 2009][How to Cite: I. Istadi, D.D. Anggoro, P. Marwoto, S. Suherman, B.T. Nugroho (2009. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 4(1: 23-31. doi:10.9767/bcrec.4.1.23.23-31][How to Link/ DOI: http://dx.doi.org/10.9767/bcrec.4.1.23.23-31

  11. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2009-06-01

    Full Text Available Biodiesel production has received considerable attention in the recent past as a renewable fuel. The production of biodiesel by conventional transesterification process employs alkali or acid catalyst and has been industrially accepted for its high conversion and reaction rates. However for alkali catalyst, there may be risk of free acid or water contamination and soap formation is likely to take place which makes the separation process difficult. Although yield is high, the acids, being corrosive, may cause damage to the equipment and the reaction rate was also observed to be low. This research focuses on empirical modeling and optimization for the biodiesel production over plasma reactor. The plasma reactor technology is more promising than the conventional catalytic processes due to the reducing reaction time and easy in product separation. Copyright (c 2009 by BCREC. All Rights reserved.[Received: 10 August 2009, Revised: 5 September 2009, Accepted: 12 October 2009][How to Cite: I. Istadi, D.D. Anggoro, P. Marwoto, S. Suherman, B.T. Nugroho (2009. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 4(1: 23-31.  doi:10.9767/bcrec.4.1.7115.23-31][How to Link/ DOI: http://dx.doi.org/10.9767/bcrec.4.1.7115.23-31 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/7115

  12. Breads Fortified with Freeze-Dried Vegetables: Quality and Nutritional Attributes. Part II: Breads Not Containing Oil as an Ingredient.

    Science.gov (United States)

    Ranawana, Viren; Campbell, Fiona; Bestwick, Charles; Nicol, Phyllis; Milne, Lesley; Duthie, Garry; Raikos, Vassilios

    2016-09-08

    The present article describes the second part of a study investigating the effect of adding vegetables on the nutritional, physico-chemical, and oxidative properties of wheat bread, and specifically focuses on bread that does not contain oil as an added ingredient. Wheat flour breads fortified with freeze-dried carrot, tomato, beetroot or broccoli were developed and assessed for their nutritional composition, antioxidant potential, oxidative stability, and storage properties. Using a simulated in vitro model, the study also examined the impact of vegetable addition on the oxidative stability of macronutrients during gastro-intestinal digestion. Adding vegetables improved the nutritional and functional attributes of the oil-free breads. However, they demonstrated a lower antioxidant potential compared to their oil-containing counterparts. Similarly, the textural and storage properties of the oil-free vegetable breads were poorer compared to the oil-containing breads. As expected, in the absence of oil the oil-free breads were associated with lower lipid oxidation both in their fresh form and during gastro-intestinal digestion. Adding vegetables reduced protein oxidation in the fresh oil-free breads but had no effect during gastro-intestinal digestion. The impact of vegetables on macronutrient oxidation in the oil-free breads during digestion appears to be vegetable-specific with broccoli exacerbating it and the others having no effect. Of the evaluated vegetables, beetroot showed the most promising nutritional and physico-chemical benefits when incorporated into bread that does not contain added oil.

  13. Breads Fortified with Freeze-Dried Vegetables: Quality and Nutritional Attributes. Part II: Breads Not Containing Oil as an Ingredient

    Science.gov (United States)

    Ranawana, Viren; Campbell, Fiona; Bestwick, Charles; Nicol, Phyllis; Milne, Lesley; Duthie, Garry; Raikos, Vassilios

    2016-01-01

    The present article describes the second part of a study investigating the effect of adding vegetables on the nutritional, physico-chemical, and oxidative properties of wheat bread, and specifically focuses on bread that does not contain oil as an added ingredient. Wheat flour breads fortified with freeze-dried carrot, tomato, beetroot or broccoli were developed and assessed for their nutritional composition, antioxidant potential, oxidative stability, and storage properties. Using a simulated in vitro model, the study also examined the impact of vegetable addition on the oxidative stability of macronutrients during gastro-intestinal digestion. Adding vegetables improved the nutritional and functional attributes of the oil-free breads. However, they demonstrated a lower antioxidant potential compared to their oil-containing counterparts. Similarly, the textural and storage properties of the oil-free vegetable breads were poorer compared to the oil-containing breads. As expected, in the absence of oil the oil-free breads were associated with lower lipid oxidation both in their fresh form and during gastro-intestinal digestion. Adding vegetables reduced protein oxidation in the fresh oil-free breads but had no effect during gastro-intestinal digestion. The impact of vegetables on macronutrient oxidation in the oil-free breads during digestion appears to be vegetable-specific with broccoli exacerbating it and the others having no effect. Of the evaluated vegetables, beetroot showed the most promising nutritional and physico-chemical benefits when incorporated into bread that does not contain added oil. PMID:28231157

  14. Breads Fortified with Freeze-Dried Vegetables: Quality and Nutritional Attributes. Part II: Breads Not Containing Oil as an Ingredient

    Directory of Open Access Journals (Sweden)

    Viren Ranawana

    2016-09-01

    Full Text Available The present article describes the second part of a study investigating the effect of adding vegetables on the nutritional, physico-chemical, and oxidative properties of wheat bread, and specifically focuses on bread that does not contain oil as an added ingredient. Wheat flour breads fortified with freeze-dried carrot, tomato, beetroot or broccoli were developed and assessed for their nutritional composition, antioxidant potential, oxidative stability, and storage properties. Using a simulated in vitro model, the study also examined the impact of vegetable addition on the oxidative stability of macronutrients during gastro-intestinal digestion. Adding vegetables improved the nutritional and functional attributes of the oil-free breads. However, they demonstrated a lower antioxidant potential compared to their oil-containing counterparts. Similarly, the textural and storage properties of the oil-free vegetable breads were poorer compared to the oil-containing breads. As expected, in the absence of oil the oil-free breads were associated with lower lipid oxidation both in their fresh form and during gastro-intestinal digestion. Adding vegetables reduced protein oxidation in the fresh oil-free breads but had no effect during gastro-intestinal digestion. The impact of vegetables on macronutrient oxidation in the oil-free breads during digestion appears to be vegetable-specific with broccoli exacerbating it and the others having no effect. Of the evaluated vegetables, beetroot showed the most promising nutritional and physico-chemical benefits when incorporated into bread that does not contain added oil.

  15. Soil TPH concentration estimation using vegetation indices in an oil polluted area of eastern China.

    Directory of Open Access Journals (Sweden)

    Linhai Zhu

    Full Text Available Assessing oil pollution using traditional field-based methods over large areas is difficult and expensive. Remote sensing technologies with good spatial and temporal coverage might provide an alternative for monitoring oil pollution by recording the spectral signals of plants growing in polluted soils. Total petroleum hydrocarbon concentrations of soils and the hyperspectral canopy reflectance were measured in wetlands dominated by reeds (Phragmites australis around oil wells that have been producing oil for approximately 10 years in the Yellow River Delta, eastern China to evaluate the potential of vegetation indices and red edge parameters to estimate soil oil pollution. The detrimental effect of oil pollution on reed communities was confirmed by the evidence that the aboveground biomass decreased from 1076.5 g m(-2 to 5.3 g m(-2 with increasing total petroleum hydrocarbon concentrations ranging from 9.45 mg kg(-1 to 652 mg kg(-1. The modified chlorophyll absorption ratio index (MCARI best estimated soil TPH concentration among 20 vegetation indices. The linear model involving MCARI had the highest coefficient of determination (R(2 = 0.73 and accuracy of prediction (RMSE = 104.2 mg kg(-1. For other vegetation indices and red edge parameters, the R(2 and RMSE values ranged from 0.64 to 0.71 and from 120.2 mg kg(-1 to 106.8 mg kg(-1 respectively. The traditional broadband normalized difference vegetation index (NDVI, one of the broadband multispectral vegetation indices (BMVIs, produced a prediction (R(2 = 0.70 and RMSE = 110.1 mg kg(-1 similar to that of MCARI. These results corroborated the potential of remote sensing for assessing soil oil pollution in large areas. Traditional BMVIs are still of great value in monitoring soil oil pollution when hyperspectral data are unavailable.

  16. Soil TPH Concentration Estimation Using Vegetation Indices in an Oil Polluted Area of Eastern China

    Science.gov (United States)

    Zhu, Linhai; Zhao, Xuechun; Lai, Liming; Wang, Jianjian; Jiang, Lianhe; Ding, Jinzhi; Liu, Nanxi; Yu, Yunjiang; Li, Junsheng; Xiao, Nengwen; Zheng, Yuanrun; Rimmington, Glyn M.

    2013-01-01

    Assessing oil pollution using traditional field-based methods over large areas is difficult and expensive. Remote sensing technologies with good spatial and temporal coverage might provide an alternative for monitoring oil pollution by recording the spectral signals of plants growing in polluted soils. Total petroleum hydrocarbon concentrations of soils and the hyperspectral canopy reflectance were measured in wetlands dominated by reeds (Phragmites australis) around oil wells that have been producing oil for approximately 10 years in the Yellow River Delta, eastern China to evaluate the potential of vegetation indices and red edge parameters to estimate soil oil pollution. The detrimental effect of oil pollution on reed communities was confirmed by the evidence that the aboveground biomass decreased from 1076.5 g m−2 to 5.3 g m−2 with increasing total petroleum hydrocarbon concentrations ranging from 9.45 mg kg−1 to 652 mg kg−1. The modified chlorophyll absorption ratio index (MCARI) best estimated soil TPH concentration among 20 vegetation indices. The linear model involving MCARI had the highest coefficient of determination (R2 = 0.73) and accuracy of prediction (RMSE = 104.2 mg kg−1). For other vegetation indices and red edge parameters, the R2 and RMSE values ranged from 0.64 to 0.71 and from 120.2 mg kg−1 to 106.8 mg kg−1 respectively. The traditional broadband normalized difference vegetation index (NDVI), one of the broadband multispectral vegetation indices (BMVIs), produced a prediction (R2 = 0.70 and RMSE = 110.1 mg kg−1) similar to that of MCARI. These results corroborated the potential of remote sensing for assessing soil oil pollution in large areas. Traditional BMVIs are still of great value in monitoring soil oil pollution when hyperspectral data are unavailable. PMID:23342066

  17. Soil TPH concentration estimation using vegetation indices in an oil polluted area of eastern China.

    Science.gov (United States)

    Zhu, Linhai; Zhao, Xuechun; Lai, Liming; Wang, Jianjian; Jiang, Lianhe; Ding, Jinzhi; Liu, Nanxi; Yu, Yunjiang; Li, Junsheng; Xiao, Nengwen; Zheng, Yuanrun; Rimmington, Glyn M

    2013-01-01

    Assessing oil pollution using traditional field-based methods over large areas is difficult and expensive. Remote sensing technologies with good spatial and temporal coverage might provide an alternative for monitoring oil pollution by recording the spectral signals of plants growing in polluted soils. Total petroleum hydrocarbon concentrations of soils and the hyperspectral canopy reflectance were measured in wetlands dominated by reeds (Phragmites australis) around oil wells that have been producing oil for approximately 10 years in the Yellow River Delta, eastern China to evaluate the potential of vegetation indices and red edge parameters to estimate soil oil pollution. The detrimental effect of oil pollution on reed communities was confirmed by the evidence that the aboveground biomass decreased from 1076.5 g m(-2) to 5.3 g m(-2) with increasing total petroleum hydrocarbon concentrations ranging from 9.45 mg kg(-1) to 652 mg kg(-1). The modified chlorophyll absorption ratio index (MCARI) best estimated soil TPH concentration among 20 vegetation indices. The linear model involving MCARI had the highest coefficient of determination (R(2) = 0.73) and accuracy of prediction (RMSE = 104.2 mg kg(-1)). For other vegetation indices and red edge parameters, the R(2) and RMSE values ranged from 0.64 to 0.71 and from 120.2 mg kg(-1) to 106.8 mg kg(-1) respectively. The traditional broadband normalized difference vegetation index (NDVI), one of the broadband multispectral vegetation indices (BMVIs), produced a prediction (R(2) = 0.70 and RMSE = 110.1 mg kg(-1)) similar to that of MCARI. These results corroborated the potential of remote sensing for assessing soil oil pollution in large areas. Traditional BMVIs are still of great value in monitoring soil oil pollution when hyperspectral data are unavailable.

  18. Minimizing fuel and environmental costs for a variable-load power plant (co-)firing fuel oil and natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Kaewboonsong, W.; Kuprianov, V.I.; Chovichien, N. [School of Manufacturing Systems and Mechanical Engineering, Sirindhorn International Institute of Technology, Thammasat University, P.O. Box 22, Thammasat Rangsit Post Office, Pathum Thani 12121 (Thailand)

    2006-12-15

    This work was aimed at modeling of major gaseous emissions (NO{sub x}, SO{sub 3}, SO{sub 2}, CO{sub 2}) from boiler units of a power plant firing (or co-firing) fuel oil and natural gas for variable operating conditions (load and load-related variables: excess air, flue gas recirculation, etc.). The emission rate of the pollutants for the co-firing was estimated for a particular boiler using these characteristics for the burning of each fuel in the boiler on its own and taking into account energy fractions (contributions) of fuel oil and natural gas to the boiler heat input. The gaseous emissions (in terms of emission concentrations, emission rates and specific emissions) from a 200-MW boiler unit firing low-S fuel oil and from a 310-MW boiler unit firing (or co-firing) medium-S fuel oil and natural gas were estimated and compared for 50-100% unit loads based on actual fuel properties and load-related operating variables of these units. Upper limit for the energy fraction of medium-S fuel oil was determined for the 310-MW boiler unit co-firing the two fuels with the aim to meet the national emission standard for SO{sub 2}. (author)

  19. Co-deoxy-liquefaction of biomass and vegetable oil to hydrocarbon oil: Influence of temperature, residence time, and catalyst.

    Science.gov (United States)

    Chen, Yigang; Yang, Fan; Wu, Libin; Wang, Chao; Yang, Zhengyu

    2011-01-01

    Co-deoxy-liquefaction of biomass and vegetable oil was investigated under the conditions of different temperatures (350-500 °C) and residence time as well as catalyst using HZSM-5. Results suggested low temperature was favorable for the formation of diesel-like products, while high temperature caused more gasoline-like products. By the addition of HZSM-5, at 450 °C alkanes content of the obtained oil with low oxygen content of 2.28%, reached a maximum of 56.27%, resulting in the highest HHV of 43.8 MJ kg(-1). High temperature favored cracking activity of HZSM-5 which reduced the char formation and contributed to the removal of carbonyl. Compared to temperature, the effect of residence time on products was relatively less; experiments indicated the optimum residence time was 15 min at which obtained oil with the highest yield of 17.78%, had better properties. Preliminary analysis of mechanisms showed biomass provided hydrogen for vegetable oil, facilitating hydrogenation of CC bonds of vegetable oil. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Contribution of the Ratio of Tocopherol Homologs to the Oxidative Stability of Commercial Vegetable Oils

    Directory of Open Access Journals (Sweden)

    Mathias Zaunschirm

    2018-01-01

    Full Text Available The antioxidant activity of tocopherols in vegetable oils was shown to chiefly depend on the amount and the tocopherol homolog present. However, the most effective ratio of tocopherol homologs with regard to the antioxidant capacity has not been elucidated so far. The present study analyzed the effect of different tocopherol concentrations, homologs and ratios of homologs on markers of lipid oxidation in the most commonly consumed vegetable oils (canola, sunflower, soybean oil stored in a 12 h light/dark cycle at 22 ± 2 °C for 56 days under retail/household conditions. After 56 days of storage, the α-tocopherol-rich canola and sunflower oil showed the strongest rise in lipid peroxides, yielding 25.1 ± 0.03 meq O2/kg (+25.3-fold and 24.7 ± 0.05 meq O2/kg (+25.0-fold, respectively. ESR experiments, excluding effects of the oils’ matrices and other minor constituents, confirmed that a food representative tocopherol ratio of (γ + δ/α = 4.77, as represented in soybean oil, led to a more pronounced delay of lipid oxidation than a lower ratio in canola (1.39 and sunflower oil (0.06. An optimum (γ + δ/α -tocopherol ratio contributing to the oxidative quality of vegetable oils extending their shelf life has to be investigated.

  1. Aerosol emissions of a ship diesel engine operated with diesel fuel or heavy fuel oil.

    Science.gov (United States)

    Streibel, Thorsten; Schnelle-Kreis, Jürgen; Czech, Hendryk; Harndorf, Horst; Jakobi, Gert; Jokiniemi, Jorma; Karg, Erwin; Lintelmann, Jutta; Matuschek, Georg; Michalke, Bernhard; Müller, Laarnie; Orasche, Jürgen; Passig, Johannes; Radischat, Christian; Rabe, Rom; Reda, Ahmed; Rüger, Christopher; Schwemer, Theo; Sippula, Olli; Stengel, Benjamin; Sklorz, Martin; Torvela, Tiina; Weggler, Benedikt; Zimmermann, Ralf

    2017-04-01

    Gaseous and particulate emissions from a ship diesel research engine were elaborately analysed by a large assembly of measurement techniques. Applied methods comprised of offline and online approaches, yielding averaged chemical and physical data as well as time-resolved trends of combustion by-products. The engine was driven by two different fuels, a commonly used heavy fuel oil (HFO) and a standardised diesel fuel (DF). It was operated in a standardised cycle with a duration of 2 h. Chemical characterisation of organic species and elements revealed higher concentrations as well as a larger number of detected compounds for HFO operation for both gas phase and particulate matter. A noteworthy exception was the concentration of elemental carbon, which was higher in DF exhaust aerosol. This may prove crucial for the assessment and interpretation of biological response and impact via the exposure of human lung cell cultures, which was carried out in parallel to this study. Offline and online data hinted at the fact that most organic species in the aerosol are transferred from the fuel as unburned material. This is especially distinctive at low power operation of HFO, where low volatility structures are converted to the particulate phase. The results of this study give rise to the conclusion that a mere switching to sulphur-free fuel is not sufficient as remediation measure to reduce health and environmental effects of ship emissions.

  2. Analysis of polycyclic aromatic hydrocarbons in vegetable oils combining gel permeation chromatography with solid-phase extraction clean-up

    DEFF Research Database (Denmark)

    Fromberg, Arvid; Højgård, A.; Duedahl-Olesen, Lene

    2007-01-01

    of benzo[a]pyrene levels in foods laid down by the Commission of the European Communities. A survey of 69 vegetable oils sampled from the Danish market included olive oil as well as other vegetable oils such as rapeseed oil, sunflower oil, grape seed oil and sesame oil. Levels of benzo[a]pyrene in all......A semi-automatic method for the determination of polycyclic aromatic hydrocarbons (PAHs) in edible oils using a combined gel permeation chromatography/solid-phase extraction (GPC/SPE) clean-up is presented. The method takes advantage of automatic injections using a Gilson ASPEC XL sample handling...... system equipped with a GPC column (S-X3) and pre-packed silica SPE columns for the subsequent clean-up and finally gas chromatography-mass spectrometry (GC-MS) determination. The method was validated for the determination of PAHs in vegetable oils and it can meet the criteria for the official control...

  3. Effect of vegetable oil oxidation on the hydrogenation reaction process

    Directory of Open Access Journals (Sweden)

    Kalantari, Faranak

    2010-12-01

    Full Text Available Hydrogenation has been carried out in a batch reactor with three different oxidized bleached oils in order to discover the effect of oxidation on the hydrogenation reaction process. Specifications of hydrogenated oils such as melting point, Iodine value, solid fat content and fatty acid composition of the oxidized oils were compared with their un-oxidized reference oils. Oxidized bleached sunflower oil was hydrogenated to target melting points (34, 39 and 42°C at higher iodine values vs. its reference oil with the same reaction time. Oxidized bleached soybean and canola oils were hydrogenated to target melting points (34, 39 and 42°C at higher iodine values as well, but reaction times were longer than their reference oils. The resulting solid fat content and total trans fatty acids of all hydrogenated oils were less than their references. A peroxide value above 0.5meq O2/kg for non auto-oxidized oils and above 5meq O2/kg for auto-oxidized oils will significantly change the hydrogenation process.

    La hidrogenación fue llevada cabo en un reactor discontinuo con tres aceites decoloradas y oxidadas con objeto de estudiar el efecto de la oxidación en el proceso de hidrogenación. Las especificaciones de los aceites hidrogenados tales como el punto de fusión, índice de yodo, contenido de grasa sólida y composición de ácidos grasos de los aceites oxidados fueron comparados con sus correspondientes aceites de referencia sin oxidar. El aceite de girasol decolorado y oxidado fue hidrogenado hasta alcanzar un punto de fusión (34, 39 and 42°C con altos índices de yodo versus su aceite de referencia con el mismo tiempo de reacción. Aceites decolorado y oxidado de soja y de canola fueron hidrogenados hasta alcanzar puntos de fusión (34,39 y 42°C con altos valores de yodo, pero los tiempo de reacción fueron más largos que en sus aceites de referencia. Los resultados del contenido de grasa sólida y ácidos grasos

  4. Using mixtures of diesel and sunflower oil as fuel for heating purposes in Castilla y Leon

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, J.F.S.J.; Sastre, J.A.L.; Romero-Avila, C.; Romero-Avila, E.L.; Iglesias, C.I. [Universidad de Valladolid (Spain). ETS de Ingenieros Industriales

    2005-04-01

    Using blends of vegetable oils with petroleum derivatives for heating purposes has several advantages over other energy applications for vegetable oils. These advantages are presented in this paper, using the results obtained from the installation of conventional heat generation using diesel and sunflower oil mixtures and the possibilities this holds for Castilla y Leon. Castilla y Leon is the biggest region of Spain; its main activity is the agriculture, with a continental climate. (author)

  5. Ozonized vegetable oils and therapeutic properties: A review

    OpenAIRE

    Nathália R. Almeida; Adilson Beatriz; Ana Camila Micheletti; Eduardo José de Arruda

    2013-01-01

    Derived from ozonetherapy, the ozonized oils represent an Ozonized oils represent an interesting pharmaceutical approach to the management of a variety of dermatological pathologies. Ozone reacts with carbon-carbon double bonds of unsaturated fatty acids according to the mechanism described by Criegee, forming ozonides or 1,2,4 trioxolane rings and peroxides as the most important products, responsible for the antimicrobial activity and stimulating tissue repair and regeneration properties. Th...

  6. LANDFIRE - A national vegetation/fuels data base for use in fuels treatment, restoration, and suppression planning

    Science.gov (United States)

    Kevin C. Ryan; Tonja S. Opperman

    2013-01-01

    LANDFIRE is the working name given to the Landscape Fire and Resource Management Planning Tools Project (http://www.landfire.gov). The project was initiated in response to mega-fires and the need for managers to have consistent, wall-to-wall (i.e., all wildlands regardless of agency/ownership), geospatial data, on vegetation, fuels, and terrain to support use of fire...

  7. Mapping vegetation and fuels for fire management on the Gila National Forest Complex, New Mexico

    Science.gov (United States)

    Robert E. Keane; Scott A. Mincemoyer; Kirsten M. Schmidt; Donald G. Long; Janice L. Garner

    2000-01-01

    (Please note: This PDF is part of a CD-ROM package only and was not printed on paper.) Fuels and vegetation spatial data layers required by the spatially explicit fire growth model FARSITE were developed for all lands in and around the Gila National Forest in New Mexico. Satellite imagery, terrain modeling, and biophysical simulation were used to create the three...

  8. Understory vegetation response to mechanical mastication and other fuels treatments in a ponderosa pine forest

    Science.gov (United States)

    Jeffrey M. Kane; J. Morgan Varner; Eric E. Knapp

    2010-01-01

    Questions: What influence does mechanical mastication and other fuel treatments have on: (1) canopy and forest floor response variables that influence understory plant development; (2) initial understory vegetation cover, diversity, and composition; and (3) shrub and non-native species density in a secondgrowth ponderosa pine forest....

  9. Development of Vegetation and Surface Fuels Following Fire Hazard Reduction Treatment

    Directory of Open Access Journals (Sweden)

    Scott L. Stephens

    2012-08-01

    Full Text Available In dry western Unites States forests where past resource management has altered the ecological role of fire and stand characteristics alike, mechanical thinning and prescribed burning are commonly applied in wildfire hazard abatement. The reduced surface fuel loads and stand structures resulting from fuels modifications are temporary, yet few studies have assessed the lifespan of treatment effects. We sampled forest fuels and vegetation following fuels reduction in a chronosequence of time since treatment in the northern Sierra Nevada and southern Cascade regions of California. Treatments altered overstory characteristics including stand density, basal area, and species composition. These effects were still present on the oldest treatment sites (8–15 years post-treatment. Other stand characteristics, particularly timelag fuel loads, seedling density, and shrub cover, exhibited substantial variability, and differences between treatment age classes and between treatment and control groups were not statistically significant.

  10. Diesel fuel oil for increasing mountain pine beetle mortality in felled logs

    Science.gov (United States)

    S. A. Mata; J. M. Schmid; D. A. Leatherman

    2002-01-01

    Diesel fuel oil was applied to mountain pine beetle (Dendroctonus ponderosae Hopkins) infested bolts of ponderosa pine (Pinus ponderosa Lawson) in early June. Just prior to the fuel oil application and 6 weeks later, 0.5 ft2 bark samples were removed from each bolt and the numbers of live beetles counted....

  11. Acute aquatic toxicity of heavy fuel oils. Summary of relevant test data

    Energy Technology Data Exchange (ETDEWEB)

    Comber, M.I.H.; Den Haan, K.; Djemel, N.; Eadsforth, C.V.; King, D.; Parkerton, T.; Paumen, M.L.; Dmytrasz, B.

    2011-12-15

    This report describes the experimental procedures and results obtained in acute ecotoxicity tests on several heavy fuel oil (HFO) samples. Water accommodated fractions (WAFs) of these samples were tested for toxicity to the rainbow trout (Oncorhynchus mykiss), the crustacean zooplankter (Daphnia magna) and green algae (Selenastrum capricornutum). These results assist in determining the environmental hazard from heavy fuel oil.

  12. THE INFLUENCE OF CARBON BURNOUT ON SUBMICRON PARTICLE FORMATION FROM EMULSIFIED FUEL OIL COMBUSTION

    Science.gov (United States)

    The paper gives results of an examination of particle behavior and particle size distributions from the combustion of different fuel oils and emulsified fuels in three experimental combusators. Results indicate that improved carbon (C) burnout from fule oil combustion, either by...

  13. Comparative study of oxidation in canned foods with a combination of vegetables and covering oils

    Directory of Open Access Journals (Sweden)

    E. Bravi

    2015-06-01

    Full Text Available The effects of sunflower (SFO, extra-virgin olive (EVO, and soybean oils (SBO, in combination with canned aubergins and dried tomatoes were studied during an accelerated shelf-life trial. Hydrolytic and oxidative quality parameters was determined and a sensorial test was run. For both canned vegetables, the SBO showed greater resistance to the oxidation at the end of the shelflife trial. The SBO in both vegetables yielded similar results for peroxide formation, whereas a reduced formation of secondary oxidation products was observed in aubergins. The results highlighted a higher oxidation stability of canned vegetables in SBO and EVO than those in SFO. The sensorial test underlined differences between the oils, in aubergins and dried tomatoes, after 30 days of accelerated storage (corresponding to the sell-by date. Flavour and texture were judged better for vegetables in SBO.

  14. Vegetation diversity and biomass : response to oil sand tailings disposal in Fort McMurray, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Roy, M.C.; Foote, L. [Alberta Univ., Edmonton, AB (Canada)

    2010-07-01

    While covering the bottom of constructed wetlands with a layer of oil sands tailings has been proposed as a means of disposal, the salts and naphthenic acids (NA) in tailings may have negative impacts on wetland vegetation development. This study was conducted to determine if wetlands constructed with oil sands tailings have a lower vegetation diversity and biomass than constructed wetlands that are not amended with tailings. The effects of NA and salinity on the vegetation in natural, constructed, and tailings-impacted wetlands were evaluated in 30 sites in the Fort McMurray region. Results of the study indicate that the presence of tailings negatively impacted both vegetation diversity and biomass. Salinity was identified as the primary causal factor.

  15. Noncatalytic biodiesel fuel production from croton megalocarpus oil

    Energy Technology Data Exchange (ETDEWEB)

    Kafuku, G.; Mbarawa, M. [Department of Mechanical Engineering, Tshwane University of Technology, Pretoria (South Africa); Tan, K.T.; Lee, K.T. [School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, Nibong Tebal, Pulau Pinang (Malaysia)

    2011-11-15

    Biodiesel is currently considered as the most promising substitute for diesel fuel because of its similar properties to diesel. This study presents the use of the supercritical methanol method in the production of biodiesel from Croton megalocarpus oil. The reaction parameters such as methanol-to-oil ratio, reaction temperature and reaction time were varied to obtain the optimal reaction conditions by design of experiment, specifically, response surface methodology based on three-variable central composite design with {alpha}=2. It has been shown that it is possible to achieve methyl ester yields as high as 74.91 % with reaction conditions such as 50:1 methanol-to-oil molar ratio, 330 C reaction temperature and a reaction period of 20 min. However, Croton-based biodiesel did not sustain higher temperatures due to decomposition of polyunsaturated methyl linoleate, which is dominant in biodiesel. Lower yields were observed when higher temperatures were used during the optimization process. The supercritical methanol method showed competitive biodiesel yields when compared with catalytic methods. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Type of vegetable oils used in cooking and risk of metabolic syndrome among Asian Indians.

    Science.gov (United States)

    Lakshmipriya, Nagarajan; Gayathri, Rajagopal; Praseena, Kallingal; Vijayalakshmi, Parthasarathy; Geetha, Gunasekaran; Sudha, Vasudevan; Krishnaswamy, Kamala; Anjana, Ranjit Mohan; Henry, Jeyakumar; Mohan, Viswanathan

    2013-03-01

    There is little data on the type of vegetable oil used and the prevalence of metabolic syndrome (MS) in Asian Indians. Food frequency questionnaire was used to document the type of cooking oil in 1875 adults in Chennai city. MS was assessed by new harmonizing criteria. The prevalence of MS was higher among sunflower oil users (30.7%) than palmolein (23.2%) and traditional oil (17.1%, p < 0.001) users. The higher prevalence of MS in sunflower oil group persisted even when stratified according to body mass index, except in obese groups. The risk of MS was further compounded by quantity of refined cereals consumed. Higher LA%E and linoleic acid/alpha-linolenic acid ratio in sunflower oil probably contributes to increased risk of MS.

  17. Determination of betaines in vegetable oils by capillary electrophoresis tandem mass spectrometry--application to the detection of olive oil adulteration with seed oils.

    Science.gov (United States)

    Sánchez-Hernández, Laura; Castro-Puyana, María; Luisa Marina, María; Crego, Antonio L

    2011-06-01

    A CE-tandem mass spectrometry (MS²) methodology enabling the simultaneous determination of betaines (glycine betaine, trigonelline, proline betaine and total content of carnitines) in vegetable oils was developed. Betaines were derivatized with butanol previous to their baseline separation in 10 min using a 0.1 M formic acid buffer at pH 2.0. Ion trap conditions were optimized in order to maximize the selectivity and sensitivity. Analytical characteristics of the proposed method were established by evaluating its selectivity, linearity, precision (RSDs ranged from 4.8 to 10.7% for corrected peak areas) and accuracy by means of recovery studies (from 80 to 99%) and LODs and LOQs at 0.1 ppb level. The method was applied for the determination of the selected betaines in seed oils and extra virgin olive oils. MS² experiments provided the fingerprint fragmentation for the betaines identified in vegetable oils. In extra virgin olive oils, carnitines were not detected, making it possible to propose them as a feasible novel marker for the detection of adulterations of olive oils. Application of the developed method for the analysis of different mixtures of extra virgin olive oil with seed oil (between 2 and 10%) enabled the detection and quantitation of the total content of carnitines. The results obtained show the high potential of the developed method for the authentication and quality control of olive oils. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Dietary factors in relation to rheumatoid arthritis: a role for olive oil and cooked vegetables?

    Science.gov (United States)

    Linos, A; Kaklamani, V G; Kaklamani, E; Koumantaki, Y; Giziaki, E; Papazoglou, S; Mantzoros, C S

    1999-12-01

    Although several studies showed that risk of rheumatoid arthritis (RA) is inversely associated with consumption of n-3 fatty acids, the one study showing that olive oil may have a protective role has not yet been confirmed. We examined the relation between dietary factors and risk of RA in persons from southern Greece. We studied 145 RA patients and 188 control subjects who provided information on demographic and socioeconomic variables, prior medical and family history, and present disease status. Subjects responded to an interviewer-administered, validated, food-frequency questionnaire that assessed the consumption of >100 food items. We calculated chi-square statistics for linear trend and odds ratios (ORs) for the development of RA in relation to the consumption of olive oil, fish, vegetables, and a series of food groups classified in quartiles. Risk of developing RA was inversely and significantly associated only with cooked vegetables (OR: 0.39) and olive oil (OR: 0.39) by univariate analysis. A significant trend was observed with increasing olive oil (chi-square: 4.28; P = 0.03) and cooked vegetable (chi-square: 10. 48; P = 0.001) consumption. Multiple logistic regression analysis models confirmed the independent and inverse association between olive oil or cooked vegetable consumption and risk of RA (OR: 0.38 and 0.24, respectively). Consumption of both cooked vegetables and olive oil was inversely and independently associated with risk of RA in this population. Further research is needed to elucidate the underlying mechanisms of this finding, which may include the antioxidant properties or the high n-9 fatty acid content of the olive oil.

  19. The effect of nanoparticle surfactant polarization on trapping depth of vegetable insulating oil-based nanofluids

    Science.gov (United States)

    Li, Jian; Du, Bin; Wang, Feipeng; Yao, Wei; Yao, Shuhan

    2016-02-01

    Nanoparticles can generate charge carrier trapping and reduce the velocity of streamer development in insulating oils ultimately leading to an enhancement of the breakdown voltage of insulating oils. Vegetable insulating oil-based nanofluids with three sizes of monodispersed Fe3O4 nanoparticles were prepared and their trapping depths were measured by thermally stimulated method (TSC). It is found that the nanoparticle surfactant polarization can significantly influence the trapping depth of vegetable insulating oil-based nanofluids. A nanoparticle polarization model considering surfactant polarization was proposed to calculate the trapping depth of the nanofluids at different nanoparticle sizes and surfactant thicknesses. The results show the calculated values of the model are in a fairly good agreement with the experimental values.

  20. The national Fire and Fire Surrogate study: Effects of fuel reduction methods on forest vegetation structure and fuels

    Science.gov (United States)

    Schwilk, D.W.; Keeley, J.E.; Knapp, E.E.; Mciver, J.; Bailey, J. D.; Fettig, C.J.; Fiedler, C.E.; Harrod, R.J.; Moghaddas, J.J.; Outcalt, K.W.; Skinner, C.N.; Stephens, S.L.; Waldrop, T.A.; Yaussy, D.A.; Youngblood, A.

    2009-01-01

    Changes in vegetation and fuels were evaluated from measurements taken before and after fuel reduction treatments (prescribed fire, mechanical treatments, and the combination of the two) at 12 Fire and Fire Surrogate (FFS) sites located in forests with a surface fire regime across the conterminous United States. To test the relative effectiveness of fuel reduction treatments and their effect on ecological parameters we used an informationtheoretic approach on a suite of 12 variables representing the overstory (basal area and live tree, sapling, and snag density), the understory (seedling density, shrub cover, and native and alien herbaceous species richness), and the most relevant fuel parameters for wildfire damage (height to live crown, total fuel bed mass, forest floor mass, and woody fuel mass). In the short term (one year after treatment), mechanical treatments were more effective at reducing overstory tree density and basal area and at increasing quadratic mean tree diameter. Prescribed fire treatments were more effective at creating snags, killing seedlings, elevating height to live crown, and reducing surface woody fuels. Overall, the response to fuel reduction treatments of the ecological variables presented in this paper was generally maximized by the combined mechanical plus burning treatment. If the management goal is to quickly produce stands with fewer and larger diameter trees, less surface fuel mass, and greater herbaceous species richness, the combined treatment gave the most desirable results. However, because mechanical plus burning treatments also favored alien species invasion at some sites, monitoring and control need to be part of the prescription when using this treatment. ?? 2009 by the Ecological Society of America.

  1. Effect of Replacing Pork Fat with Vegetable Oils on Quality Properties of Emulsion-type Pork Sausages.

    Science.gov (United States)

    Lee, Hyun-Jin; Jung, Eun-Hee; Lee, Sang-Hwa; Kim, Jong-Hee; Lee, Jae-Joon; Choi, Yang-Ii

    2015-01-01

    This study was conducted to evaluate the quality properties of emulsion-type pork sausages when pork fat is replaced with vegetable oil mixtures during processing. Pork sausages were processed under six treatment conditions: T1 (20% pork fat), T2 (10% pork fat + 2% grape seed oil + 4% olive oil + 4% canola oil), T3 (4% grape seed oil + 16% canola oil), T4 (4% grape seed oil + 4% olive oil + 12% canola oil), T5 (4% grape seed oil + 8% olive oil + 8% canola oil), and T6 (4% grape seed oil + 12% olive oil + 4% canola oil). Proximate analysis showed significant (poil mixtures significantly decreased the ash content (poil mixtures replacement. On the contrary, cohesiveness and springiness in the T4 group were similar to those of group T1. The unsaturated fatty acid content in emulsion-type pork sausages was increased by vegetable oil mixtures replacement. Replacement of pork fat with mixed vegetable oils had no negative effects on the quality properties of emulsion-type pork sausages, and due to its reduced saturated fatty acid composition, the product had the quality characteristics of the healthy meat products desired by consumers.

  2. EFFECT OF VARIOUS VEGETABLE OILS ON THE LIPID PROFILE AND ANTIOXIDANT STATUS IN HYPERCHOLESTEROLAEMIC WISTAR RATS- A COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    Prasad Ravindra Manjeshwar

    2017-02-01

    Full Text Available BACKGROUND Various vegetable oils are used for cooking foods in India. Controversies have been created that consumption of certain vegetable oils cause atherogenesis. A little is known about the effect of vegetable oils in hypercholesterolaemic conditions. Hypercholesterolaemia, mainly the increased plasma Low-Density Lipoprotein (LDL cholesterol levels and Reactive Oxygen Species (ROS has been implicated in the early development and progression of atherosclerosis and Coronary Heart Diseases (CHD. Current study is designed to assess the effect of various vegetable oils such as coconut, sunflower, palm, olive oil and vanaspati on lipid profile and oxidative stress parameters in rats fed on a high-cholesterol diet. MATERIALS AND METHODS Hypercholesterolaemia is induced by supplementing cholesterol with the basal diet. Reference dose of various vegetable oils were administered once daily for 90 days. After the treatment period of 90 days, triacylglycerol, total cholesterol, HDL cholesterol, LDL cholesterol, VLDL cholesterol and oxidative stress parameters are estimated and analysed. RESULTS In the present study, we observed the lipid-lowering effect of various vegetable oils in rats fed with high-cholesterol diet. Administration of cholesterol showed increased level of lipid profile. Concurrent administration of various vegetable oils with high-cholesterol diet caused a significant decrease in serum total cholesterol, LDL and VLDL cholesterol. This conclusion is made based on the observation that the vegetable oils were able to restore, at least partially, the lipid profile of hypercholesterolaemic rats. A decline of antioxidant status associated with an increase in lipid peroxidation was observed in all the vegetable oil treated groups. Among the oils, coconut oil showed a mild increase in High-Density Lipoprotein (HDL and least increase in lipid peroxidation compared to other vegetable oils treated groups. CONCLUSION Results suggest that the

  3. Evaluation of the use of a vegetable oil in distribution transformers

    OpenAIRE

    Fernando-Navas,Diego; Echeverry-Ibarra,Diego Fernando; Cadavid-Ramírez,Héctor

    2012-01-01

    Since the start of transformers immersed in refrigerating liquid, the fluid traditionally used has been mineral oil. However, in recent decades, efforts have been joined in the search for alternatives with a lower environmental impact and which also satisfy the technical requirements of insulation and refrigeration in the transformers. Currently, insulating vegetable oils are available in the market, which may have lower environmental impact during their use and final disposition; nevertheles...

  4. The effects of heated vegetable oils on blood pressure in rats

    Directory of Open Access Journals (Sweden)

    Kamsiah Jaarin

    2011-01-01

    Full Text Available OBJECTIVES: The goal of this study was to determine the possible mechanism that is involved in the blood pressureraising effect of heated vegetable oils. METHODS: Adult male Sprague-Dawley rats were divided into 11 groups; the control group was fed with rat chow, and the other groups were fed with chow that was mixed with 15% weight/weight palm or soy oils, which were either in a fresh form or heated once, twice, five, or ten times. Blood pressures were measured at the baseline and throughout the 24-week study. Plasma nitric oxide levels were assessed prior to treatment and at the end of the study. Following 24 weeks, the rats were sacrificed to investigate their vascular reactivity using the thoracic aorta. RESULTS: Palm and soy oils had no detrimental effects on blood pressure, and they significantly elevated the nitric oxide contents and reduced the contractile responses to phenylephrine. However, trials using palm and soy oils that were repeatedly heated showed an increase in blood pressure, enhanced phenylephrine-induced contractions, reduced acetylcholine- and sodium nitroprusside-induced relaxations relative to the control and rats that were fed fresh vegetable oils. CONCLUSIONS: The blood pressure-raising effect of the heated vegetable cooking oils is associated with increased vascular reactivity and a reduction in nitric oxide levels. The chronic consumption of heated vegetable oils leads to disturbances in endogenous vascular regulatory substances, such as nitric oxide. The thermal oxidation of the cooking oils promotes the generation of free radicals and may play an important contributory role in the pathogenesis of hypertension in rats.

  5. Use of Mass Spectrometry with Electrospray Ionization and Exploratory Analysis for Classification of Extra Virgin Olive Oil Adulterated with Vegetable Oils

    OpenAIRE

    Hery Mitsutake; Universidade Federal de Uberlândia; Lucas C. Gontijo; Universidade Federal de Uberlândia; Felipe B. Santana; Universidade Federal de Uberlândia; Eloiza Guimarães; Universidade Federal de Uberlândia; Lilian Lúcia da Rocha; Universidade Federal de Juiz de Fora; Waldomiro Borges Neto; Universidade Federal de Uberlândia

    2015-01-01

    Due to the economic value and health benefits of the extra virgin olive oil (EVOO), this product is mainly the subject of adulteration by addition of cheaper vegetable oils. Thus, this study evaluated the detection of extra virgin olive samples oil adulterated with oils of canola, sunflower, corn and soybeans through exploratory multivariate analysis. The oil fingerprints were obtained by mass spectrometry with electrospray ionization in positive ion mode (ESI(+)-MS). The mass spectrometry da...

  6. Greenhouse Gas Emissions from Peat Soils Cultivated to Rice Field, Oil Palm and Vegetable

    Directory of Open Access Journals (Sweden)

    Rosenani Abu Bakar

    2012-05-01

    Full Text Available Presently, about 20% of oil palm (Elaeis guineensis Jacq fields in Indonesia are on peat soil, in addition to that otherarea of peat soil has been conventionally used for rice field and vegetables. To elucidate the global warmingpotentials of peat soils cultivated to oil palm, vegetable or rice field, field experiment has been carried out in SouthKalimantan. Air samples were taken from rice field, oil palm and vegetable fields in weekly basis for six month periodand analyzed for concentrations of N2O, CH4 and CO2. The global warming potentials (GWP of the three gases werecalculated by multiplying the emission of each gas with their respective mole warming potential. This step wasfollowed by the addition of the three gases’ GWP to have the total GWP. The results showed that the emissions ofgreenhouse gases from peat soils changed seasonally and varied with the crops cultivated. Oil palm has resultedthe highest GWP, mostly contributed by N2O. There was no statistical different in total GWP of paddy andvegetable fields. The annual N2O emission from oil palm field was 4,582 g N ha-1 yr-1. Water, nutrients and organicmatter managements are among the potential techniques to minimize gas emissions from oil palm field which needfield trials.

  7. Removal of estrogenic hormones from manure-containing water by vegetable oil capture.

    Science.gov (United States)

    Dodgen, Laurel K; Wiles, Kelsey N; Deluhery, Jennifer; Rajagopalan, Nandakishore; Holm, Nancy; Zheng, Wei

    2018-02-05

    Manure-containing water (MCW) is frequently used for agricultural amendment, a practice that introduces natural and synthetic hormones to the environment. Advanced treatment processes are not practical for most animal operations, so inexpensively removing hormones from MCW by capture with vegetable oils was evaluated. Estrone (E1) and 17β-estradiol (E2) were used as model hormones due to their high biological activity and prevalence in MCW. Eight vegetable-based oils were able to remove >94% of E1 and >87% of E2 from nanopure water (NPW), and tested oils had log10Koil-water values of 1.96-2.66 for E1 and 1.51-2.47 for E2. System parameters were optimized at 3min of shaking time and 1:10 corn oil:water (v/v). Removal from real MCW and NPW was assessed at several initial concentrations of E1 and E2. While E1 removal was comparable across all initial concentrations and both water types (>93%), E2 removal exhibited concentration-dependent interaction with MCW matrix. Treatment capacity was assessed by using the same oil for multiple batches of NPW or MCW. After 18 cycles, removal dropped to 50-64% of E1 and 35-37% for E2. Treating MCW with vegetable oils may be a promising approach to inexpensively remove microcontaminants before MCW is used for land application. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Proposition to use 'in natura' vegetable oil and biodiesel from castor oil in thermal power plants; Proposicao de uso de oleo vegetal in natura e biodiesel de mamona em termeletricas

    Energy Technology Data Exchange (ETDEWEB)

    Soares, B.F.; Tahan, C.M.V.; Pelegrini, M.A.; Polizel, L.H. [Universidade de Sao Paulo (ENERQ/USP), SP (Brazil). Centro de Estudo em Regulacao e Qualidade de Energia; Vandelli, M.V.M. [Termocabo Ltda., Recife, PE (Brazil); Takeno, H.K. [Companhia Energetica de Petrolina (CEP), PE (Brazil)

    2006-07-01

    This paper proposes the adoption of renewable fuels on thermal power plants using diesel or high sulfur fuel oil generator sets. The renewable fuels proposed to partially or fully replace the fossil fuels are castor oil in natura or transesterified (biodiesel). Physical and chemical analyses were carried out on laboratory, establishing the energetic performance of each sample. The results showed that mixtures of bio diesel-fossil fuel offers similar performance when compared to the conventional fuels, allowing its use on thermal power plants in a satisfactory basis. (author)

  9. Comparison of Chemical Characteristics of High Oleic Acid Fraction of Moringa oleifera Oil with Some Vegetable Oils

    Directory of Open Access Journals (Sweden)

    F. Rahman1

    2014-06-01

    Full Text Available Chemical characteristics of High oleic acid fraction (HOF of Moringa oleifera oil (MOO was compared with sunflower, soybean and canola oils. HOF of MOO was obtained by dry fractionation at 0oC. Iodine value and C18:1 in HOF increased from 61.55 to 82.47 points and 70.29% to 81.15%, respectively. Cloud point of HOF was 1.1oC as compared to 10.2oC in MOO. The induction period of HOF was greater than all the vegetable oils tested in this investigation. HOF can be used as a source of edible oil with better health attributes and superior storage stability.

  10. THE THEORETICAL CRITERIA ON THE VAPORIZATION AND COMBUSTION RATES OF EMULSIONS WATER IN HEAVY FUEL OIL

    Directory of Open Access Journals (Sweden)

    Corneliu MOROIANU

    2012-05-01

    Full Text Available The vaporization and combustion characteristics of a heavy oil-water emulsion droplet are investigated with graphological method. The combustion graphology of fuel oils is defined as a new technical and scientific field which deals with the graphic transposition of the processes of fuels combustion development in a simulator. Thus, it is easy to establish the ignition-combustion characteristics, including the laws that govern their changes depending on the combustion conditions and fuel specifications

  11. Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil

    Directory of Open Access Journals (Sweden)

    Li Benkai

    2016-08-01

    Full Text Available Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL. This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM–III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type thermocouple was used to determine grinding temperature. The grinding force, grinding temperature, and energy ratio coefficient of MQL grinding were compared among the seven vegetable oil types. Results revealed that (1 castor oil-based MQL grinding yields the lowest grinding force but exhibits the highest grinding temperature and energy ratio coefficient; (2 palm oil-based MQL grinding generates the second lowest grinding force but shows the lowest grinding temperature and energy ratio coefficient; (3 MQL grinding based on the five other vegetable oils produces similar grinding forces, grinding temperatures, and energy ratio coefficients, with values ranging between those of castor oil and palm oil; (4 viscosity significantly influences grinding force and grinding temperature to a greater extent than fatty acid varieties and contents in vegetable oils; (5 although more viscous vegetable oil exhibits greater lubrication and significantly lower grinding force than less viscous vegetable oil, high viscosity reduces the heat exchange capability of vegetable oil and thus yields a high grinding temperature; (6 saturated fatty acid is a more efficient lubricant than unsaturated fatty acid; and (7 a short carbon chain transfers heat more effectively than a long carbon chain. Palm oil is the optimum base oil of MQL grinding, and this base oil yields 26.98 N tangential grinding force, 87.10 N normal grinding force, 119.6 °C grinding temperature, and 42.7% energy

  12. [Effects of vegetal oil supplementation on the lipid profile of Wistar rats ].

    Science.gov (United States)

    Poveda, Elpidia; Ayala, Paola; Milena, Rodríguez; Ordóñez, Edgar; Baracaldo, Cesar; Delgado, Willman; Guerra, Martha

    2005-03-01

    Dietary tocopherols, tocotrienols and saturated, mono and polyunsaturated fatty acids have been reported to have an effect on blood lipid profiles. In Colombia, vegetable oils (palm, soy, corn, sunflower, and canola) are a common dietary constituent and consumed in high quantities. In the current study, the effects of vegetable oil consumption was examined by measuring blood concentrations of triglycerides (TG), total cholesterol (TC) and HDL cholesterol (HDL-C) in male Wistar rats. The concentrations of tocopherols, tocotrienols, and fatty acids in each oil was quantified by High Performance Liquid Chromatography (HPLC). Each rat diet was supplemented with 0.2 ml/day with one oil type. Over a 4-week period, groups of animals were sacrificed weekly and blood samples were obtained to quantify TC, TG and HDL-C for each oil class. Statistical analyses included mean, standard deviation, ANOVA and Bonferroni comparisons tests. Triglyceride content was not affected except in the control and the soy group in the third treatment week, although a tendency for decreased TG was noted in the palm oil group and for increased TG in the sunflower oil and canola oil groups. No significant differences in total cholesterol were observed. In HDL-C, significant differences were present for every treatment week (p = 0.005); this represented a decreasing trend in palm oil group and an increasing trend in the sunflower and corn oil groups. The oils effected changes in the blood lipid profile. A small amount of saturated fatty acids (tocopherol and tocotrienol) were favourable for the HDL-C increase. The presenct of tocorienols tended to decrease the TG and probably helped attenuate the unfavorable effects of the saturated fatty acids.

  13. Production of biodiesel from mixed waste vegetable oil using an aluminium hydrogen sulphate as a heterogeneous acid catalyst.

    Science.gov (United States)

    Ramachandran, Kasirajan; Sivakumar, Pandian; Suganya, Tamilarasan; Renganathan, Sahadevan

    2011-08-01

    Al(HSO(4))(3) heterogeneous acid catalyst was prepared by the sulfonation of anhydrous AlCl(3). This catalyst was employed to catalyze transesterification reaction to synthesis methyl ester when a mixed waste vegetable oil was used as feedstock. The physical and chemical properties of aluminum hydrogen sulphate catalyst were characterized by scanning electron microscopy (SEM) measurements, energy dispersive X-ray (EDAX) analysis and titration method. The maximum conversion of triglyceride was achieved as 81 wt.% with 50 min reaction time at 220°C, 16:1 molar ratio of methanol to oil and 0.5 wt.% of catalyst. The high catalytic activity and stability of this catalyst was related to its high acid site density (-OH, Brönsted acid sites), hydrophobicity that prevented the hydration of -OH group, hydrophilic functional groups (-SO(3)H) that gave improved accessibility of methanol to the triglyceride. The fuel properties of methyl ester were analyzed. The fuel properties were found to be observed within the limits of ASTM D6751. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil.

    Science.gov (United States)

    Kumar, Ashavani; Vemula, Praveen Kumar; Ajayan, Pulickel M; John, George

    2008-03-01

    Developing bactericidal coatings using simple green chemical methods could be a promising route to potential environmentally friendly applications. Here, we describe an environmentally friendly chemistry approach to synthesize metal-nanoparticle (MNP)-embedded paint, in a single step, from common household paint. The naturally occurring oxidative drying process in oils, involving free-radical exchange, was used as the fundamental mechanism for reducing metal salts and dispersing MNPs in the oil media, without the use of any external reducing or stabilizing agents. These well-dispersed MNP-in-oil dispersions can be used directly, akin to commercially available paints, on nearly all kinds of surface such as wood, glass, steel and different polymers. The surfaces coated with silver-nanoparticle paint showed excellent antimicrobial properties by killing both Gram-positive human pathogens (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). The process we have developed here is quite general and can be applied in the synthesis of a variety of MNP-in-oil systems.

  15. Stability of traditionally processed vegetable oils and their blends ...

    African Journals Online (AJOL)

    inter/trans-esterification, hydrogenation or combinations of these processes (Myat et al., 2009; Abdulkarim et al., 2010). Blending is the simplest and the most feasible method used to modify oils and fats for enhancing their oxidative stability and other functionalities for optimizing their application in food products without ...

  16. Efficacy of vegetable oils against dry bean beetles Acanthoscelides ...

    African Journals Online (AJOL)

    Acanthoscelides obtectus (Say) is a major pest of stored dry beans (Phaseolus vulgaris L.) and other legumes world wide. The objective of this study was to assess the efficacy of castor (Ricinus communis L.) and cottonseed (Gossypium hirsutum) oils against A. obtectus on stored dry beans under laboratory conditions.

  17. Palm Oil Consumption Increases LDL Cholesterol Compared with Vegetable Oils Low in Saturated Fat in a Meta-Analysis of Clinical Trials.

    Science.gov (United States)

    Sun, Ye; Neelakantan, Nithya; Wu, Yi; Lote-Oke, Rashmi; Pan, An; van Dam, Rob M

    2015-07-01

    Palm oil contains a high amount of saturated fat compared with most other vegetable oils, but studies have reported inconsistent effects of palm oil on blood lipids. We systematically reviewed the effect of palm oil consumption on blood lipids compared with other cooking oils using data from clinical trials. We searched PubMed and the Cochrane Library for trials of at least 2 wk duration that compared the effects of palm oil consumption with any of the predefined comparison oils: vegetable oils low in saturated fat, trans fat-containing partially hydrogenated vegetable oils, and animal fats. Data were pooled by using random-effects meta-analysis. Palm oil significantly increased LDL cholesterol by 0.24 mmol/L (95% CI: 0.13, 0.35 mmol/L; I(2) = 83.2%) compared with vegetable oils low in saturated fat. This effect was observed in randomized trials (0.31 mmol/L; 95% CI: 0.20, 0.42 mmol/L) but not in nonrandomized trials (0.03 mmol/L; 95% CI: -0.15, 0.20 mmol/L; P-difference = 0.02). Among randomized trials, only modest heterogeneity in study results remained after considering the test oil dose and the comparison oil type (I(2) = 27.5%). Palm oil increased HDL cholesterol by 0.02 mmol/L (95% CI: 0.01, 0.04 mmol/L; I(2) = 49.8%) compared with vegetable oils low in saturated fat and by 0.09 mmol/L (95% CI: 0.06, 0.11 mmol/L; I(2) = 47.8%) compared with trans fat-containing oils. Palm oil consumption results in higher LDL cholesterol than do vegetable oils low in saturated fat and higher HDL cholesterol than do trans fat-containing oils in humans. The effects of palm oil on blood lipids are as expected on the basis of its high saturated fat content, which supports the reduction in palm oil use by replacement with vegetable oils low in saturated and trans fat. This systematic review was registered with the PROSPERO registry at http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42012002601#.VU3wvSGeDRZ as CRD42012002601. © 2015 American Society for Nutrition.

  18. Separation of steroids using vegetable oils in microemulsion electrokinetic capillary chromatography.

    Science.gov (United States)

    Sirén, Heli; Vesanen, Sari; Suomi, Johanna

    2014-01-15

    The steroids, hydrocortisone, androstenedione, 17-α-hydroxyprogesterone, testosterone, 17-α-methyltestosterone, and progesterone were separated with microemulsion electrokinetic chromatography (MEEKC) and detected with UV absorption. The microemulsion phases were prepared from both artificial and vegetable oils, from them the first was made of alkane and alcohol and the latter from colza, olive, linseed, and walnut oils. The electrolyte solutions were made to emulsions using sodium dodecyl sulfate and alkaline tetraborate. The solution mixtures made from ethyl acetate, sodium dodecyl sulfate, 1-butanol, acetonitrile, and sodium tetraborate were used as the reference solutions to evaluate the performance of the vegetable oil emulsions. Our study showed that the lipophilic organic phase in the microemulsion did provide resolution improvements but not selectivity changes. The results also correlate with real interactions of the steroids with the lipophilic organic microemulsion phase. The quality of the oils between the manufacturers did not have importance, which was noticed from the equal behavior of the steroids in the vegetable oil emulsions. Detection limits of the steroids in vegetable oil emulsions were at the level of 0.20-0.43μg/L. Thus, they were 2-10 times higher than the concentrations in the partial filling micellar electrokinetic chromatography (PF-MEKC), which we have obtained earlier. The repeatability (RSD%) of the electrophoretic mobilities of the steroids was between 0.50 and 3.70. The RSD% values between the inter-day separations were below 1%, but when walnut and olive oils were used the values exceeded even 10%. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Influence of Brazilian vegetable oils on mechanical resistence of hair fiber

    Directory of Open Access Journals (Sweden)

    Maria Valéria Velasco

    2015-02-01

    Full Text Available Associating the global trend of incorporating active compounds and plants in cosmetic formulations and the vast Brazilian biodiversity, the present work aimed to study the incorporation of Brazilian vegetable oils in hair conditioner formulations, evaluating the mechanical resistance of hair fibers. The following oils were incorporated into base formulations at 5.0 % (w/w: babassu, buriti, andiroba and pequi. The formulations were applied to samples of Caucasian hair, followed by several washing steps, then the evaluation of mechanical strength. It was found that there was no statistically significant difference in mechanical resistance between samples treated with oils and the control between the first and seventh wash cycles. This fact can be explained by the possible low penetration of oils into the cortex, a region responsible for the mechanical properties of the hair fiber, since the grease composition disfavors its diffusion. The common effects of vegetable oils on the cuticle, such as filling in cracks or cavities, lubrication, and increased protein hydrophobicity cannot be excluded. The oils tested in this work were not able to raise or protect hair tresses. However, additional studies are required in order to establish the effects of oil treatments, particularly in damaged hair.

  20. Sensor and methodology for dielectric analysis of vegetal oils submitted to thermal stress.

    Science.gov (United States)

    Stevan, Sergio Luiz; Paiter, Leandro; Galvão, José Ricardo; Roque, Daniely Vieira; Chaves, Eduardo Sidinei

    2015-10-16

    Vegetable oils used in frying food represent a social problem as its destination. The residual oil can be recycled and returned to the production line, as biodiesel, as soap, or as putty. The state of the residual oil is determined according to their physicochemical characteristics whose values define its economically viable destination. However, the physicochemical analysis requires high costs, time and general cost of transporting. This study presents the use of a capacitive sensor and a quick and inexpensive method to correlate the physicochemical variables to the dielectric constant of the material undergoing oil samples to thermal cycling. The proposed method allows reducing costs in the characterization of residual oil and the reduction in analysis time. In addition, the method allows an assessment of the quality of the vegetable oil during use. The experimental results show the increasing of the dielectric constant with the temperature, which facilitates measurement and classification of the dielectric constant at considerably higher temperatures. The results also confirm a definitive degradation in used oil and a correlation between the dielectric constant of the sample with the results of the physicochemical analysis (iodine value, acid value, viscosity and refractive index).

  1. Chemical and spectroscopic characterization of a vegetable oil used as dielectric coolant in distribution transformers

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Neffer A.; Abonia, Rodrigo, E-mail: rodrigo.abonia@correounivalle.edu.co [Departamento de Quimica, Escuela de Ingenieria Electrica, Universidad del Valle, Cali (Colombia); Cadavid, Hector [Grupo GRALTA, Escuela de Ingenieria Electrica, Universidad del Valle, Cali (Colombia); Vargas, Ines H. [Area de Ingenieria de Distribucion, Empresas Publicas de Medellin (EPM), Medellin (Colombia)

    2011-09-15

    In this work, a complete UV-Vis, IR and (1H, 13C and DEPT) NMR spectroscopic analysis was performed for a FR3 vegetable oil sample used as dielectric coolant in an experimental distribution transformer. The same spectroscopic analysis was performed for three used FR3 oil samples (i.e., 4 months in use, 8 months in use and 7 years in use), removed from several operating distribution transformers. Comparison of the data indicated that no significant spectroscopic changes, and hence, no structural changes occurred to the oils by the use. Chemical transformations like catalytic hydrogenation (hardening) and hydrolysis were performed to the FR3 oil sample and the obtained products were analyzed by spectroscopic methods in order to collect further structural information about the FR3 oil. Accelerated aging tests in laboratory were also performed for three FR3 oil samples affording interesting information about the structure of the degradation products. These findings would be valuable to search for a spectroscopy-based technique for monitoring the lifetime and performance of this insulating vegetable oil. (author)

  2. Sensor and Methodology for Dielectric Analysis of Vegetal Oils Submitted to Thermal Stress

    Directory of Open Access Journals (Sweden)

    Sergio Luiz Stevan

    2015-10-01

    Full Text Available Vegetable oils used in frying food represent a social problem as its destination. The residual oil can be recycled and returned to the production line, as biodiesel, as soap, or as putty. The state of the residual oil is determined according to their physicochemical characteristics whose values define its economically viable destination. However, the physicochemical analysis requires high costs, time and general cost of transporting. This study presents the use of a capacitive sensor and a quick and inexpensive method to correlate the physicochemical variables to the dielectric constant of the material undergoing oil samples to thermal cycling. The proposed method allows reducing costs in the characterization of residual oil and the reduction in analysis time. In addition, the method allows an assessment of the quality of the vegetable oil during use. The experimental results show the increasing of the dielectric constant with the temperature, which facilitates measurement and classification of the dielectric constant at considerably higher temperatures. The results also confirm a definitive degradation in used oil and a correlation between the dielectric constant of the sample with the results of the physicochemical analysis (iodine value, acid value, viscosity and refractive index.

  3. 77 FR 8254 - Notice of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS...

    Science.gov (United States)

    2012-02-14

    ... AGENCY Notice of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS... Produced From Palm Oil Under the RFS Program'' (the notice is herein referred to as the ``palm oil NODA... of palm oil used as a feedstock to produce biodiesel and renewable diesel under the Renewable Fuel...

  4. Physicochemical characterizations of nano-palm oil fuel ash

    Energy Technology Data Exchange (ETDEWEB)

    Rajak, Mohd Azrul Abdul, E-mail: azrulrajak88@gmail.com [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru (Malaysia); Preparatory Centre of Science and Technology, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah (Malaysia); Majid, Zaiton Abdul, E-mail: zaiton@kimia.fs.utm.my [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru (Malaysia); Ismail, Mohammad [Department of Structure and Material, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru (Malaysia)

    2015-07-22

    Palm Oil Fuel Ash (POFA) is known as a good supplementary cementing material due to its siliceous-rich content. The application of nanotechnology in the pozzolanic materials could invent new functions in the efficiency of physical and chemical properties of materials. Thus, the present study aims to generate nano-sized POFA and characterize the physicochemical properties of nano-palm oil fuel ash (nPOFA). The nPOFA was prepared by mechanically grinding micro POFA using a high intensity ball milling for 6 hours. The physicochemical properties of nPOFA were characterized via X-Ray Fluoresence (XRF), Scanning Emission microscopy- Energy Dispersive X-Ray (SEM-EDX), Transmission Electron Microscope (TEM) and X-Ray Diffraction (XRD). The particle size of nPOFA acquired from TEM analysis was in the range of 20 nm to 90 nm, while the average crystallite size calculated from XRD diffractogram was 61.5 nm. The resulting nPOFA has a BET surface area of 145.35 m{sup 2}/g, which is more than 85% increment in surface area compared to micro-sized POFA. The morphology and elemental studies showed the presence of spherical as well as irregularly shaped and fine nPOFA particles contains with high silicon content. The presence of α-quartz as the major phase of the nPOFA was identified through XRD analysis. The study concludes that nPOFA has the potential as a supplementary cementing material due to the high silica content, high surface area and the unique behaviors of nano-structured particles.

  5. Melon oil methyl ester: an environmentally friendly fuel

    Directory of Open Access Journals (Sweden)

    S.K. Fasogbon

    2015-06-01

    Full Text Available Demand for energy is growing across the globe due to the direct relationship between the well-being and prosperity of people and energy usage. However, meeting this growing energy demand in a safe and environmentally friendly manner is a key challenge. To this end, methyl esters (biodiesels have been and are being widely investigated as alternatives to fossil fuels in compression ignition engines. In this study, melon (Colocynthis Citrullus Lanatus oil was used to synthesize biodiesel (methyl ester using the transesterification method in the presence of a sodium hydroxide promoter. The emissions profile of the biodiesel was investigated by setting up a single-cylinder four-stroke air-cooled CI engine connected to a TD115-hydraulic dynamometer and an Eclipse Flue Gas Analyzer (FGA with model number EGA4 flue gas analyzer. The engine was run at engine speeds of 675, 1200 and 1900rpm for biodiesel/diesel blends at 21°C on a volume basis of 0/100(B0, 10/90(B10, 20/80(B20, 30/70(B30, 40/60(B40 and 50/50(B50. The test showed a downward trend in the emissions profile of the biodiesel, with remarkable reductions of about 55% in the dangerous-carbon monoxide exhaust gas pollutant and 33.3% in the unfriendly SOX from 100% diesel to B30-biodiesel concentration. Increasing the speed from 675 to 1200 and then to 1900 rpm also afforded further reductions in CO and SOX exhaust emissions. NOX however increased marginally by 2.1% from the same 100% diesel to the B30-biodiesel composition. Based on the remarkable reduction in CO and SOX and the marginal increase in NOX as the concentration of the biodiesel increased in the blends, the study concludes that melon oil methyl ester is an environmentally friendly fuel.

  6. Characteristics of Palm Fatty Acid Ester (PFAE), a New Vegetable Based Insulating Oil for Transformers

    Science.gov (United States)

    Suzuki, Takashi; Kanoh, Takaaki; Koide, Hidenobu; Hikosaka, Tomoyuki

    We have developed new vegetable based insulating oil for transformers called PFAE (Palm Fatty Acid Ester). PFAE has 0.6 times less viscosity and 1.3 times higher dielectric constant compared to mineral oil. The oxidative stability, biodegradability and acute toxicity to fish of PFAE has also been determined to be superior to mineral oil. In this paper, in order to optimize the characteristics of fatty acid esters originating from palm oil, several kinds of fatty acid alkyl esters were first synthesized in the laboratory by the molecular design technique and the transesterification from fatty acid methyl esters and alkyl alcohols. Next the electro-chemical characteristics of the fatty acid alkyl esters as insulating oil were analyzed.

  7. IODINATION OF VEGETABLE OIL AS A METHOD FOR CORRECTING IODINE DEFFICIENCY

    Directory of Open Access Journals (Sweden)

    Rodica Sturza

    2006-06-01

    Full Text Available The aim of this work is the study made for obtaining iodized oil that would satisfy the requirements in iodine for human body. The sunflower oil is a product with the most important value, thus the production of oil fortified with iodine would be a cheap and accessible option. These studies indicate that lipids present an important vehicle for the fortification with iodine. Eradication of the iodine deficiency may be realized not only by injection of the iodinated oil, but also by its use as an ingredient for the formulation of different food compositions. This method, complementary with the iodinated salt, would allow the increase of the efficiency of the prophylactic undertaken measures, because is based on the use of vegetal material – sunflower oil; it is cost-efficient and does not require substantial investments.

  8. Study of the oxidative stability of oils vegetables for production of Biodiesel

    Directory of Open Access Journals (Sweden)

    Marco Aurélio R Melo

    2014-04-01

    Full Text Available Biodiesel is technological and estrategical Brazilian oportunity once this country has abundant vegetable species which oils are extracted to produce this biofuel. Oleaginous viability depends on its technical, economical and social-environmental competitiviness. Fatty acid variety determines its thermal and oxidative stability, mainly polyunsaturated ones. In this point of view, this papers aims evaluate oxidative stability and resistence to thermal decomposition of pequi, buriti and macauba oils. These fatty acids profiles are in agreement with literature data. Comparing thermal and oxidative stability of these oils, it can be seen pequi oil is more easily to oxidate than buriti and macauba oils when PetroOXY and Rancimat methods are employed.

  9. Willingness to pay for safety label on sugar and vegetable oil among ...

    African Journals Online (AJOL)

    This study investigates willingness to pay for safety label on sugar and vegetable oil among households in South – Western Nigeria. In all, 390 consumers comprising 180 from Oyo and 210 from Lagos were sampled. Data collected include socio-economic, market and food safety information variables using structured ...

  10. Developmental toxicity study of vegetable oil-derived stanol fatty acid esters

    NARCIS (Netherlands)

    Slesinski, R.S.; Turnbull, D.; Frankos, V.H.; Wolterbeek, A.P.M.; Waalkens-Berendsen, D.H.

    1999-01-01

    In a standard developmental toxicity study, a mixture of vegetable oil- derived stanol fatty acid esters was administered in the diet to groups of 28 mated female HsdCpb:WU Wistar rats at concentrations that provided 0, 1, 2.5, and 5% total stanols (equivalent to 0, 1.75, 4.38, and 8.76% plant

  11. Lipid recovery from a vegetable oil emulsion using microbial enrichment cultures

    NARCIS (Netherlands)

    Tamis, J.; Sorokin, D.Y.; Jiang, Y.; Van Loosdrecht, M.C.M.; Kleerebezem, R.

    2015-01-01

    Background Many waste streams have a relatively high vegetable oil content, which is a potential resource that should be recovered. Microbial storage compound production for the recovery of lipids from lipid-water emulsions with open (unsterilized) microbial cultures was investigated in a sequencing

  12. [Determination of gossypol in edible vegetable oil with high performance liquid chromatography-tandem mass spectrometry].

    Science.gov (United States)

    Zhang, Wenhua; Huang, Chaoqun; Xie, Wen; Shen, Li

    2014-06-01

    A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the determination of gossypol in edible vegetable oil. The sample was extracted with ethyl alcohol by vortex-excited oscillation. The extract was cleaned up by 0.22 microm filter membrane and centrifuged for 5 min at 4 000 r/min after standing in a fridge at 4 degrees C for 30 min. The compound was separated on a C18 column (100 mm x 2.1 mm, 3.5 microm) with acetonitrile and 1% (v/v) formic acid aqueous solution as mobile phase. The detection of gossypol was carried out by LC-MS/MS with positive electrospray ionization under multiple reaction monitoring (MRM) mode using external standard method. The limits of quantification (S/N > 10) of gossypol in edible vegetable oil was 1 mg/kg. The recoveries were from 87.4% to 100% at the spiked levels of 1, 2, 200 mg/kg of gossypol in edible vegetable oil with the relative standard deviations (RSDs) between 3.9% and 12.2%. The method, with high sensitivity, good precision and high recovery, was suitable for the confirmation and quantification of gossypol residue in edible vegetable oil.

  13. Fish sauce, soy sauce, and vegetable oil fortification in Cambodia: where do we stand to date?

    Science.gov (United States)

    Theary, Chan; Panagides, Dora; Laillou, Arnaud; Vonthanak, Saphoon; Kanarath, Chheng; Chhorvann, Chhea; Sambath, Pol; Sowath, Sol; Moench-Pfanner, Regina

    2013-06-01

    The prevalence of micronutrient deficiencies in Cambodia is among the highest in Southeast Asia. Fortification of staple foods and condiments is considered to be one of the most cost-effective strategies for addressing micronutrient deficiencies at the population level. The Government of Cambodia has recognized the importance of food fortification as one strategy for improving the nutrition security of its population. This paper describes efforts under way in Cambodia for the fortification of fish sauce, soy sauce, and vegetable oil. Data were compiled from a stability test of Cambodian fish sauces fortified with sodium iron ethylenediaminetetraacetate (NaFeEDTA); analysis of fortified vegetable oils in the Cambodian market; a Knowledge, Attitudes, and Practices (KAP) study of fortified products; and food fortification program monitoring documents. At different levels of fortification of fish sauce with NaFeEDTA, sedimentation and precipitation were observed. This was taken into consideration in the government-issued standards for the fortification of fish sauce. All major brands of vegetable oil found in markets at the village and provincial levels are imported, and most are nonfortified. Fish sauce, soy sauce, and vegetable oil are widely consumed throughout Cambodia and are readily available in provincial and village markets. Together with an effective regulatory monitoring system, the government can guarantee that these commodities, whether locally produced or imported, are adequately fortified. A communications campaign would be worthwhile, once fortified commodities are available, as the KAP study found that Cambodians had a positive perception of fortified sauces.

  14. Genotoxicity evaluation of wood-derived and vegetable oil-derived stanol esters

    NARCIS (Netherlands)

    Turnbull, D.; Frankos, V.H.; Delft, J.H.M. van; Vogel, N. de

    1999-01-01

    Plant stanol esters from wood and vegetable oil sources were tested for genotoxicity in bacterial (Salmonella typhimurium) and mammalian cell (L5178Y) gene mutation assays and in a mammalian cell chromosome aberration assay (CHO cells). The two stanol ester formulations were tested separately at

  15. Synthesis of epoxidized cardanol and its antioxidative properties for vegetable oils and biodiesel

    Science.gov (United States)

    A novel antioxidant epoxidized cardanol (ECD), derived from cardanol, was synthesized and characterized by FT-IR, 1H-NMR and 13C-NMR. Oxidative stability of ECD used in vegetable oils and biodiesel was evaluated by pressurized differential scanning calorimetry (PDSC) and the Rancimat method, respect...

  16. A novel cardanol-based antioxidant and its application in vegetable oils and biodiesel

    Science.gov (United States)

    A novel antioxidant, epoxidized cardanol (ECD), derived from cardanol has been synthesized and characterized by FT-IR, 1H-NMR and 13C-NMR. Oxidative stability of ECD in vegetable oils and biodiesel was evaluated by the pressurized differential scanning calorimetry and Rancimat methods, respectively....

  17. Effects of sub-lethal concentrations of a vegetable oil mill effluent on ...

    African Journals Online (AJOL)

    Effects of sub-lethal concentrations of a vegetable oil mill effluent on growth of Clarius gariepinus. JA Adakole, E Alabi. Abstract. No Abstract. Nigerian Journal of Fisheries Vol. 4 (2) 2007: pp. 182-189. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  18. Chemical qualities of oils from some fresh and market vegetable ...

    African Journals Online (AJOL)

    vegetables. Moisture content of 5.006, 3.500, 4.870, 37.002, 9.147, and 63.650%; crude fat of 59.195, 67.807, 33.490, 32.303, and 12.511, and 0.939%; and ash levels of 4.605, 2.833, 1.903, 1.728, and 1.305% were reported for seeds obtained from almond, castor, palm kernel, groundnut, mango and kola nuts respectively.

  19. Kolkhoung (Pistacia khinjuk) Hull Oil and Kernel Oil as Antioxidative Vegetable Oils with High Oxidative Stability 
and Nutritional Value.

    Science.gov (United States)

    Asnaashari, Maryam; Hashemi, Seyed Mohammad Bagher; Mehr, Hamed Mahdavian; Yousefabad, Seyed Hossein Asadi

    2015-03-01

    In this study, in order to introduce natural antioxidative vegetable oil in food industry, the kolkhoung hull oil and kernel oil were extracted. To evaluate their antioxidant efficiency, gas chromatography analysis of the composition of kolkhoung hull and kernel oil fatty acids and high-performance liquid chromatography analysis of tocopherols were done. Also, the oxidative stability of the oil was considered based on the peroxide value and anisidine value during heating at 100, 110 and 120 °C. Gas chromatography analysis showed that oleic acid was the major fatty acid of both types of oil (hull and kernel) and based on a low content of saturated fatty acids, high content of monounsaturated fatty acids, and the ratio of ω-6 and ω-3 polyunsaturated fatty acids, they were nutritionally well--balanced. Moreover, both hull and kernel oil showed high oxidative stability during heating, which can be attributed to high content of tocotrienols. Based on the results, kolkhoung hull oil acted slightly better than its kernel oil. However, both of them can be added to oxidation-sensitive oils to improve their shelf life.

  20. Kolkhoung (Pistacia khinjuk) Hull Oil and Kernel Oil as Antioxidative Vegetable Oils with High Oxidative Stability 
and Nutritional Value

    Science.gov (United States)

    Asnaashari, Maryam; Mehr, Hamed Mahdavian; Yousefabad, Seyed Hossein Asadi

    2015-01-01

    Summary In this study, in order to introduce natural antioxidative vegetable oil in food industry, the kolkhoung hull oil and kernel oil were extracted. To evaluate their antioxidant efficiency, gas chromatography analysis of the composition of kolkhoung hull and kernel oil fatty acids and high–performance liquid chromatography analysis of tocopherols were done. Also, the oxidative stability of the oil was considered based on the peroxide value and anisidine value during heating at 100, 110 and 120 °C. Gas chromatography analysis showed that oleic acid was the major fatty acid of both types of oil (hull and kernel) and based on a low content of saturated fatty acids, high content of monounsaturated fatty acids, and the ratio of ω-6 and ω-3 polyunsaturated fatty acids, they were nutritionally well--balanced. Moreover, both hull and kernel oil showed high oxidative stability during heating, which can be attributed to high content of tocotrienols. Based on the results, kolkhoung hull oil acted slightly better than its kernel oil. However, both of them can be added to oxidation–sensitive oils to improve their shelf life. PMID:27904335

  1. El Niño southern oscillation and its effects on world vegetable oil prices: assessing asymmetries using smooth transition models

    National Research Council Canada - National Science Library

    Ubilava, David; Holt, Matt

    2013-01-01

    .... These nonlinearities yield the history‐specific asymmetries in the vegetable oil price dynamics, wherein effects of ENSO shocks on the ENSO dynamics and the vegetable oil prices vary considerably between different ENSO regimes...

  2. Recovery of different waste vegetable oils for biodiesel production: a pilot experience in Bahia State, Brazil.

    Science.gov (United States)

    Torres, Ednildo Andrade; Cerqueira, Gilberto S; Tiago, M Ferrer; Quintella, Cristina M; Raboni, Massimo; Torretta, Vincenzo; Urbini, Giordano

    2013-12-01

    In Brazil, and mainly in the State of Bahia, crude vegetable oils are widely used in the preparation of food. Street stalls, restaurants and canteens make a great use of palm oil and soybean oil. There is also some use of castor oil, which is widely cultivated in the Sertão Region (within the State of Bahia), and widely applied in industry. This massive use in food preparation leads to a huge amount of waste oil of different types, which needs either to be properly disposed of, or recovered. At the Laboratorio Energia e Gas-LEN (Energy & Gas lab.) of the Universidade Federal da Bahia, a cycle of experiments were carried out to evaluate the recovery of waste oils for biodiesel production. The experiences were carried out on a laboratory scale and, in a semi-industrial pilot plant using waste oils of different qualities. In the transesterification process, applied waste vegetable oils were reacted with methanol with the support of a basic catalyst, such as NaOH or KOH. The conversion rate settled at between 81% and 85% (in weight). The most suitable molar ratio of waste oils to alcohol was 1:6, and the amount of catalyst required was 0.5% (of the weight of the incoming oil), in the case of NaOH, and 1%, in case of KOH. The quality of the biodiesel produced was tested to determine the final product quality. The parameters analyzed were the acid value, kinematic viscosity, monoglycerides, diglycerides, triglycerides, free glycerine, total glycerine, clearness; the conversion yield of the process was also evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. The Protective Effect of Hippophae Rhamnoides Carotenoid Extract Against Lipid Peroxidation in Crude Vegetable Oils

    Directory of Open Access Journals (Sweden)

    Sanda Andrei

    2014-11-01

    Full Text Available Vegetable oils are important elements of the human diet because they contain essential nutritional factors. Due to the manufacturing processes or inadequate conditions of storage, they may also contain lipid oxidation products that are toxic to the body. The purpose of this paper is to test the protective effect of carotenoid-rich extracts obtained from the fruits of Hippophae rhamnoides on crude sunflower, pumpkin and olive oils oxidative processes. In order to evaluate the effect of antioxidant carotenoids, three stages were followed: thermal induction of lipid peroxidation in the presence of AAPH (2,2'-Azobis(2-amidinopropane dihydrochloride; determination of the level of lipid peroxidation in oxidized oils in the presence and absence of antioxidants, by quantifying the concentration of conjugated dienes and malonyl dialdehyde (MDA; determination of the level of lipid peroxidation by evaluating the profile of the fatty acids and the ratio between the saturated and unsaturated fatty acids (UFA / SFA, using an GC-MS method. In the case of sunflower oil, it was observed that sea buckthorn fruit extract significantly decreased MDA concentration but does not significantly reduce the concentration of conjugated dienes. The protective effect of carotenoids is more evident in the case of oil from pumpkin seeds. In the olive oil, unlike the first two types of oils, the carotenoids extract inhibits both the MDA and the conjugated dienes formation to a lesser extent, statistically insignificant. Overall, the ratio UFA / SFA decreases in crude oxidized oils. In the oils in which carotenoids were added was observed an increase in the UFA / SFA ratio. Carotenoids fraction from sea buckthorn fruits, rich in xanthophylls’ esters, possess a good antioxidant effect, protecting vegetable oils against peroxidation processes induced in the presence of AAPH

  4. Fortification of Indonesian unbranded vegetable oil: public-private initiative, from pilot to large scale.

    Science.gov (United States)

    Soekirman; Soekarjo, Damayanti; Martianto, Drajat; Laillou, Arnaud; Moench-Pfanner, Regina

    2012-12-01

    Despite improved economic conditions, vitamin A deficiency remains a public health problem in Indonesia. This paper aims to describe the development of the Indonesian unbranded cooking oil fortification program and to discuss lessons learned to date and future steps necessary for implementation of mandatory, large-scale oil fortification with vitamin A. An historic overview of the steps involved in developing the Indonesian unbranded cooking oil fortification program is given, followed by a discussion of lessons learned and next steps needed. Indonesia's low-income groups generally consume unbranded vegetable oil, with an average consumption of approximately 25 g/day. Unbranded oil constitutes approximately 70% of the total oil traded in the country. In 2007-10, a pilot project to fortify unbranded vegetable oil was carried out in Makassar, and an effectiveness study found that the project significantly improved the serum retinol concentrations of schoolchildren. In 2010, the pilot was expanded to two provinces (West Java and North Sumatra) involving the biggest two national refineries. In 2011, a draft national standard for fortified oil was developed, which is currently under review by the National Standard Body and is expected to be mandated nationally in 2013 as announced officially by the Government of Indonesia in national and international meetings. Indonesia is a leading world supplier of cooking oil. With stakeholder support, the groundwork has been laid and efforts are moving forward to implement mandatory fortification. This project could encourage Indonesian industry to fortify more edible oils for export, thus expanding their market potential and potentially reducing vitamin A deficiency in the region.

  5. Transesterified milkweed (Asclepias) seed oil as a biodiesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Alan Holser; Rogers Harry-O' Kurua [United States Department of Agriculture, Peoria, IL (United States). Agricultural Research Service, National Center for Utilization Research

    2006-10-15

    The methyl and ethyl esters of milkweed (Asclepias) seed oil were prepared and compared to soybean esters in laboratory tests to determine biodiesel fuel performance properties. The pour points of the methyl and ethyl milkweed esters measured -6{sup o}C and -10{sup o}C, respectively, which is consistent with the high levels of unsaturation characteristic of milkweed seed oil. The oxidative stabilities measured by OSI at 100{sup o}C were between 0.8 and 4.1 h for all samples tested. The kinematic viscosities determined at 40{sup o}C by ASTM D 445 averaged 4.9 mm{sup 2}/s for milkweed methyl esters and 4.2 mm{sup 2}/s for soybean methyl esters. Lubricity values determined by ASTM D 6079 at 60{sup o}C were comparable to the corresponding soybean esters with average ball wear scar values of 118 {mu}m for milkweed methyl esters and 200 {mu}m for milkweed ethyl esters.

  6. Biosynthesis of medium chain length poly(3-hydroxyalkanoates) (mcl-PHAs) by Comamonas testosteroni during cultivation on vegetable oils

    Energy Technology Data Exchange (ETDEWEB)

    Thakor, N.; Trivedi, U.; Patel, K.C. [Sardar Patel Univ., Vallabh Vidyanagar (India). Dept. of Biosciences

    2005-11-15

    Comamonas testosteroni has been studied for its ability to synthesize and accumulate medium chain length poly(3-hydroxyalkanoates) (mcl-PHAs) during cultivation on vegetable oils available in the local market. Castor seed oil, coconut oil, mustard oil, cotton seed oil, groundnut oil, olive oil and sesame oil were supplemented in the mineral medium as a sole source of carbon for growth and PHAs accumulation. The composition of PHAs was analysed by a coupled gas chromatography/mass spectroscopy (GC/MS). PHAs contained C{sub 6} to C{sub 14} 3-hydroxy acids, with a strong presence of 3-hydroxyoctanoate when coconut oil, mustard oil, cotton seed oil and groundnut oil were supplied. 3-Hydroxydecanoate was incorporated at higher concentrations when castor seed oil, olive oil and sesame oil were the substrates. Purified PHAs samples were characterized by Fourier Transform Infrared (FTIR) and {sup 13}C NMR analysis. During cultivation on various vegetable oils, C. testosteroni accumulated PHAs up to 78.5-87.5% of the cellular dry material (CDM). The efficiency of the culture to convert oil to PHAs ranged from 53.1% to 58.3% for different vegetable oils. Further more, the composition of the PHAs formed was not found to be substrate dependent as PHAs obtained from C. testosteroni during growth on variety of vegetable oils showed similar compositions; 3-hydroxyoctanoic acid and/or 3-hydroxydecanoic acid being always predominant. The polymerizing system of C. testosteroni showed higher preference for C{sub 8} and C{sub 10} monomers as longer and smaller monomers were incorporated less efficiently. (author)

  7. MD 1544 - the new diesel engine oil - a tribological contribution to fuel economy

    Energy Technology Data Exchange (ETDEWEB)

    Bolten, P.

    1984-11-01

    The type of engine oil is a major factor in the economic efficiency of diesel engine operation. A detailed description of experiments aimed at a scientific study of this influence in various engine types for a newly-developed multigrade oil (all-season oil, viscosity category SAE-15 W/40), and a comparison with a single-grade oil, is given in this report. First, the main properties of the multigrade oil with regard to its technical application are listed, (viscosity-temperature rating), followed by a diagrammatic presentation of the experiment results obtained from the test stand and a commentary on them. The experiments were: Friction loss and fuel measurements, determining the oil consumption, and engine operating experiments under practical running conditions. The results showed the advantage of using the multigrade oil for reducing fuel consumption, lowering the loss mean pressure, increasing the output potential and decreasing oil consumption.

  8. Enhancing the potency of vegetable oils by combining with ...

    African Journals Online (AJOL)

    The cowpea beetle Callosobruchus maculatus (Fab.) is a major insect pest of stored cowpea in Ghana. The efficacy of coconut, groundnut and soybean oils applied at 1, 2, 5 and 10 ml kg-1 and pirimiphos-methyl at 2.5, 5.0 and 10 ml active ingredient in 2 ml of water kg-1 of grain (1/16, 1/8 and 1/4 of the recommended ...

  9. Composition of vegetable oil from seeds of native halophytes

    Science.gov (United States)

    D. J. Weber; B. Gul; A. Khan; T. Williams; N. Williams; P. Wayman; S. Warner

    2001-01-01

    Of the world’s land area, about 7 percent is salt affected. Irrigated land is more susceptible to salinity and it is estimated that over 1/3 of the irrigated soils are becoming saline. Certain plants (halophytes) grow well on high saline soils. One approach would be to grow halophytes on high saline soils and harvest their seeds. The oil in the seeds would be extracted...

  10. The effect of nanoparticle surfactant polarization on trapping depth of vegetable insulating oil-based nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian, E-mail: lijian@cqu.edu.cn; Du, Bin; Wang, Feipeng; Yao, Wei; Yao, Shuhan

    2016-02-05

    Nanoparticles can generate charge carrier trapping and reduce the velocity of streamer development in insulating oils ultimately leading to an enhancement of the breakdown voltage of insulating oils. Vegetable insulating oil-based nanofluids with three sizes of monodispersed Fe{sub 3}O{sub 4} nanoparticles were prepared and their trapping depths were measured by thermally stimulated method (TSC). It is found that the nanoparticle surfactant polarization can significantly influence the trapping depth of vegetable insulating oil-based nanofluids. A nanoparticle polarization model considering surfactant polarization was proposed to calculate the trapping depth of the nanofluids at different nanoparticle sizes and surfactant thicknesses. The results show the calculated values of the model are in a fairly good agreement with the experimental values. - Highlights: • Three different sized Fe{sub 3}O{sub 4} vegetable-oil based nanofluids was successfully prepared. • The trapping depth of the Fe{sub 3}O{sub 4} nanofluids was investigated. • A new model considering surfactant polarization was proposed to calculate the trapping depth of the nanofluids.

  11. Fourier transform infrared and fluorescence spectroscopy for analysis of vegetable oils

    Directory of Open Access Journals (Sweden)

    Nigri S.

    2013-09-01

    Full Text Available Fourier transform infrared (FTIR and fluorescence spectroscopy, combined with chemometric approaches have been developed to analysis of extra virgin olive oil adulterated with pomace olive oil. The measurements were made on pure vegetable oils: extra virgin oil, pomace olive oil and that adulterated with varying concentration of pomace olive oil. Today, the application of FTIR spectroscopy has increased in food studied, and particularly has become a powerful analytical tool in the study of edible oils and fats. The spectral regions where the variations were observed chosen for developing models and cross validation was used. The synchronous fluorescence spectrometry takes advantage of the hardware capability to vary both the excitation and emission wavelengths during the analysis with constant wavelength difference is maintained between the two. The region between 300 and 400 nm is attributed to the tocopherols and phenols, the derivatives of vitamin E are associated with the region 400–600 nm and the bands in the region of 600–700 nm are attributed to the chlorophyll and peophytin pigments. The results presented in this study suggest that FTIR and fluorescence may be a useful tool for analysis and detecting adulteration of extra virgin olive oil with pomace oil.

  12. Catalytic cracking of fatty oils and fatty acids. A novel route towards bio-jet fuel

    Energy Technology Data Exchange (ETDEWEB)

    Heil, Volker; Kraft, Axel; Menne, Andreas; Unger, Christoph A. [Fraunhofer-Institut fuer Umwelt-, Sicherheits- und Energietechnik UMSICHT, Oberhausen (Germany)

    2013-06-01

    Components for bio-jet fuel production can be achieved by catalytic cracking of fatty oils and fatty acids over activated carbon catalyst. At reaction temperatures of about 450 C, mainly C15- and C16-n-Alkanes that can be isomerized for jet fuel-usage are produced. They can be used for bio-kerosene after isomerization. Introducing high-oleic feedstock like HO-sunflower-oil and slightly raising the reaction temperature leads to high amounts of n-alkanes in the jet-fuel boiling range. The process proves to be very robust concerning feedstock compositions and impurities. Therefore, catalytic cracking over activated carbon is an ideal pathway to transform not only bio-based oils, but also their wastes and fatty acid-containing by-products from plant oil processing into high-quality fuel components. Using alternative catalysts leads to an enhanced production of alkylated benzenes which are indispensable for aviation jet fuel. (orig.)

  13. Effects of fats and oils on the bioaccessibility of carotenoids and vitamin E in vegetables.

    Science.gov (United States)

    Nagao, Akihiko; Kotake-Nara, Eiichi; Hase, Megumi

    2013-01-01

    The low bioavailability of lipophilic micronutrients is mainly caused by their limited solubilization to an aqueous micelle, which hinders their ability to be taken up by the intestines. Bioaccessibility is the ratio of the solubilized portion to the whole amount ingested. We evaluated in this study the effects of individual fats and oils and their constituents on the bioaccessibility of carotenoids and vitamin E in vegetables by simulated digestion. Various fats and oils and long-chain triacylglycerols enhanced the bioaccessibility of β-carotene present in spinach, but not of lutein and α-tocopherol, which are less hydrophobic than β-carotene. Free fatty acid, monoacylglycerol, and diacylglycerol also enhanced the bioaccessibility of β-carotene present in spinach. In addition to the long-chain triacylglycerols, their hydrolyzates formed during digestion would facilitate the dispersion and solubilization of β-carotene into mixed micelles. Dietary fats and oils would therefore enhance the bioaccessibility of hydrophobic carotenes present in vegetables.

  14. Interaction between vegetable oil based plasticizer molecules and polyvinyl chloride, and their plasticization effect

    Science.gov (United States)

    Haryono, Agus; Triwulandari, Evi; Jiang, Pingping

    2017-01-01

    Plasticizer molecules are low molecular weight compounds that are widely used in polymer industries especially in polyvinyl chloride (PVC) resin. As an additive in PVC resin, the important role of plasticizer molecules is to improve the flexibility and processability of PVC by lowering the glass transition temperature (Tg). However, the commercial plasticizer like di(2-ethylhexyl)phthalate (DEHP) is known to cause liver cancer, at least in laboratory rats. DEHP can leach out from PVC into blood, certain drug solutions and fatty foods, which has been detected in the bloodstream of patients undergoing transfusion. Vegetable oil based plasticizers have some attractive properties such as non-toxic, bio-degradable, good heat and light stability, renewable resources, and environmentally friendly. Here we discussed the main results and development of vegetable oil based plasticizer, and especially palm oil based plasticizer. The interaction between plasticizer and polymer was discussed from the properties of the plasticized polymeric material.

  15. Vegetation structure and fire weather influence variation in burn severity and fuel consumption during peatland wildfires

    Science.gov (United States)

    Davies, G. M.; Domènech, R.; Gray, A.; Johnson, P. C. D.

    2016-01-01

    Temperate peatland wildfires are of significant environmental concern but information on their environmental effects is lacking. We assessed variation in burn severity and fuel consumption within and between wildfires that burnt British moorlands in 2011 and 2012. We adapted the composite burn index (pCBI) to provide semi-quantitative estimates of burn severity. Pre- and post-fire surface (shrubs and graminoids) and ground (litter, moss, duff) fuel loads associated with large wildfires were assessed using destructive sampling and analysed using a generalised linear mixed model (GLMM). Consumption during wildfires was compared with published estimates of consumption during prescribed burns. Burn severity and fuel consumption were related to fire weather, assessed using the Canadian Fire Weather Index System (FWI System), and pre-fire vegetation type. pCBI varied 1.6 fold between, and up to 1.7 fold within, wildfires. pCBI was higher where moisture codes of the FWI System indicated drier fuels. Spatial variation in pre- and post-fire fuel load accounted for a substantial proportion of the variance in fuel loads. Average surface fuel consumption was a linear function of pre-fire fuel load. Average ground fuel combustion completeness could be predicted by the Buildup Index. Carbon release ranged between 0.36 and 1.00 kg C m-2. The flammability of ground fuel layers may explain the higher C release-rates seen for wildfires in comparison to prescribed burns. Drier moorland community types appear to be at greater risk of severe burns than blanket-bog communities.

  16. Effect of subsidies to fossil fuel companies on United States crude oil production

    Science.gov (United States)

    Erickson, Peter; Down, Adrian; Lazarus, Michael; Koplow, Doug

    2017-11-01

    Countries in the G20 have committed to phase out `inefficient' fossil fuel subsidies. However, there remains a limited understanding of how subsidy removal would affect fossil fuel investment returns and production, particularly for subsidies to producers. Here, we assess the impact of major federal and state subsidies on US crude oil producers. We find that, at recent oil prices of US50 per barrel, tax preferences and other subsidies push nearly half of new, yet-to-be-developed oil investments into profitability, potentially increasing US oil production by 17 billion barrels over the next few decades. This oil, equivalent to 6 billion tonnes of CO2, could make up as much as 20% of US oil production through 2050 under a carbon budget aimed at limiting warming to 2 °C. Our findings show that removal of tax incentives and other fossil fuel support policies could both fulfil G20 commitments and yield climate benefits.

  17. A Study of Ignition Delay of Marine Fuel Oil Containing Liquidized Waste Plastic

    OpenAIRE

    Takaaki, Hashimoto; Sen-ichi, Sasaki; Nobuhiro, Baba; Research Institute, Research Center; Research Institute, Research Center; Machinery Department

    2000-01-01

    Waste plastics are recycled in many ways. One of these consists of liquidizing such plastics and using the resulting material as a component in marine fuel oils. This paper reports on a study of the combustion characteristics, including ignition delay, maximum pressure, and time to Pmax., of marine fuels containing two liquidized waste plastics affect lighter ISO-F-DMA class fuel, but does not have any noticeable affect on the combustion characteristics of the heavier class fuel, ISO-F-RME25.

  18. 77 FR 61281 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Science.gov (United States)

    2012-10-09

    ... at least 80 percent mono-alkyl esters of long chain fatty acids derived from vegetable oils or animal... fuel must contain at least 80 percent mono-alkyl esters of long chain fatty acids derived from... the fuel oil producer and the final end user for the legal transfer of title or custody of a specific...

  19. 77 FR 61313 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Science.gov (United States)

    2012-10-09

    ... contains at least 80 percent mono-alkyl esters of long chain fatty acids derived from vegetable oils or..., the fuel must contain at least 80 percent mono-alkyl esters of long chain fatty acids derived from... and the final end user for the legal transfer of title or custody of a specific volume of fuel oil...

  20. Model for the calculation of pressure loss through heavy fuel oil transfer pipelines

    Directory of Open Access Journals (Sweden)

    Hector Luis Laurencio-Alfonso,

    2012-10-01

    Full Text Available Considering the limitations of methodologies and empirical correlations in the evaluation of simultaneous effects produced by viscous and mix strength during the transfer of fluids through pipelines, this article presents the functional relationships that describe the pressure variations for the non-Newtonian fuel oil flowrate. The experimental study was conducted based on a characterization of the rheological behavior of fuel oil and modeling for a pseudoplastic behavior. The resulting model describes temperature changes, viscous friction effects and the effects of blending flow layers; which is therefore the basis of calculation for the selection, evaluation and rationalization of transport of heavy fuel oil by pipelines.

  1. Effect Of Iron On The Sensitivity Of Hydrogen, Acetate, And Butyrate Metabolism To Inhibition By Long-Chain Fatty Acids In Vegetable-Oil-Enriched Freshwater Sediments

    Science.gov (United States)

    Freshwater sediment microbial communities enriched by growth on vegetable oil in the presence of a substoichiometric amount of ferric hydroxide (sufficient to accept about 12% of the vegetable-oil-derived electrons) degrade vegetable oil to methane faster than similar microbial c...

  2. Comparative studies on the performance and emissions of a direct injection diesel engine fueled with neem oil and pumpkin seed oil biodiesel with and without fuel preheater.

    Science.gov (United States)

    Ramakrishnan, Muneeswaran; Rathinam, Thansekhar Maruthu; Viswanathan, Karthickeyan

    2018-02-01

    In the present experimental analysis, two non-edible oils namely neem oil and pumpkin seed oil were considered. They are converted into respective biodiesels namely neem oil methyl ester (B1) and pumpkin seed oil methyl ester (B2) through transesterification process and their physical and chemical properties were examined using ASTM standards. Diesel was used as a baseline fuel in Kirloskar TV1 model direct injection four stroke diesel engine. A fuel preheater was designed and fabricated to operate at various temperatures (60, 70, and 80 °C). Diesel showed higher brake thermal efficiency (BTE) than biodiesel samples. Lower brake specific fuel consumption (BSFC) was obtained with diesel than B1 sample. B1 exhibited lower BSFC than B2 sample without preheating process. High preheating temperature (80 °C) results in lower fuel consumption for B1 sample. The engine emission characteristics like carbon monoxide (CO), hydrocarbon (HC), and smoke were found lower with B1 sample than diesel and B2 except oxides of nitrogen (NOx) emission. In preheating of fuel, B1 sample with high preheating temperature showed lower CO, HC, and smoke emission (except NOx) than B2 sample.

  3. Estimation of Herbaceous Fuel Moisture Content Using Vegetation Indices and Land Surface Temperature from MODIS Data

    Directory of Open Access Journals (Sweden)

    Rasmus Fensholt

    2013-05-01

    Full Text Available The monitoring of herbaceous fuel moisture content is a crucial activity in order to assess savanna fire risks. Faced with the difficulty of managing wide areas of vegetated surfaces, remote sensing appears an attractive alternative for terrestrial measurements because of its advantages related to temporal resolution and spatial coverage. Earth observation (EO-based vegetation indices (VIs and the ratio between Normalized Difference Vegetation Index (NDVI and surface temperature (ST were used for assessment of herbaceous fuel moisture content estimates and validated against herbaceous data collected in 2010 at three open savanna sites located in Senegal, West Africa. EO-based estimates of water content were more consistent with the use of VI as compared to the ratio NDVI/ST. Different VIs based on near-infrared (NIR and shortwave infrared (SWIR reflectance were tested and a consistent relationship was found between field measurements of leaf equivalent water thickness (EWT from all test sites and Normalized Difference Infrared Index (NDII, Global Vegetation Moisture Index (GVMI and Moisture Stress Index (MSI. Also, strong relationships were found between fuel moisture content (FMC and VIs for the sites separately; however, they were weaker for the pooled data. The correlations between EWT/FMC and VIs were found to decrease progressively as the woody cover increased. Although these results suggest that NIR and SWIR reflectance can be used for the estimation of herbaceous water content, additional validation from an increased number of study sites is necessary to study the robustness of such indices for a larger variety of savanna vegetation types.

  4. Emulsions of crude glycerin from biodiesel processing with fuel oil for industrial heating.

    Science.gov (United States)

    Mize, Hannah E; Lucio, Anthony J; Fhaner, Cassie J; Pratama, Fredy S; Robbins, Lanny A; Karpovich, David S

    2013-02-13

    There is considerable interest in using crude glycerin from biodiesel production as a heating fuel. In this work crude glycerin was emulsified into fuel oil to address difficulties with ignition and sustained combustion. Emulsions were prepared with several grades of glycerin and two grades of fuel oil using direct and phase inversion emulsification. Our findings reveal unique surfactant requirements for emulsifying glycerin into oil; these depend on the levels of several contaminants, including water, ash, and components in MONG (matter organic non-glycerin). A higher hydrophile-lipophile balance was required for a stable emulsion of crude glycerin in fuel oil compared to water in fuel oil. The high concentration of salts from biodiesel catalysts generally hindered emulsion stability. Geometric close-packing of micelles was carefully balanced to mechanically stabilize emulsions while also enabling low viscosity for pumping and fuel injection. Phase inversion emulsification produced more stable emulsions than direct emulsification. Emulsions were tested successfully as fuel for a waste oil burner.

  5. Mechanism of formation of 3-chloropropan-1,2-diol (3-MCPD) esters under conditions of the vegetable oil refining.

    Science.gov (United States)

    Šmidrkal, Jan; Tesařová, Markéta; Hrádková, Iveta; Berčíková, Markéta; Adamčíková, Aneta; Filip, Vladimír

    2016-11-15

    3-MCPD esters are contaminants that can form during refining of vegetable oils in the deodorization step. It was experimentally shown that their content in the vegetable oil depends on the acid value of the vegetable oil and the chloride content. 3-MCPD esters form approximately 2-5 times faster from diacylglycerols than from monoacylglycerols. It has been proved that the higher fatty acids content in the oil caused higher 3-MCPD esters content in the deodorization step. Neutralization of free fatty acids in the vegetable oil before the deodorization step by alkaline carbonates or hydrogen carbonates can completely suppress the formation of 3-MCPD esters. Potassium salts are more effective than sodium salts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Plasticizer contamination in edible vegetable oil in a U.S. retail market.

    Science.gov (United States)

    Bi, Xiaolong; Pan, Xiaojun; Yuan, Shoujun; Wang, Qiquan

    2013-10-02

    With the wide application of plastics, the contamination of plasticizers migrating from plastic materials in the environment is becoming ubiquitous. The presence of phthalates, the major group of plasticizers, in edible items has gained increasingly more concern due to their endocrine disrupting property. In this study, 15 plasticizers in 21 edible vegetable oils purchased from a U.S. retail market were analyzed using gas chromatograph-mass spectrometry. Di(2-ethylhexyl) phthalate (DEHP) and diisobutyl phthalate (DiBP) were detected in all oil samples. Benzylbutyl phthalate (BzBP), dibutyl phthalate (DBP), and diethyl phthalate (DEP) were detected at a rate of 95.2, 90.5, and 90.5%, respectively. The detection rates for all other plasticizers ranged from 0 to 57.1%. The content of total plasticizers in oil samples was determined to be 210-7558 μg/kg, which was comparable to the content range in oil marketed in Italy. Although no significant difference (p = 0.05) in the total content of plasticizer was observed among oil species (soybean, canola, corn, and olive), the wider range and higher average of total content of plasticizers in olive oil than other oil species indicated the inconsistence of plasticizer contamination in olive oil and a possible priority for quality monitoring. No significant difference (p = 0.05) in the total content of plasticizers was found among glass-bottle (n = 4), plastic-bottle (n = 14), and metal-can (n = 3) packaging, implying that oil packaging is not the major cause of plasticizer contamination. The daily intake amount of plasticizers contained in edible oil on this U.S. retail market constituted only a minimum percentage of reference dose established by US EPA, thus no obvious toxicological effect might be caused. However, the fact that DEHP content in two olive oils exceeded relevant special migration limits (SMLs) of Europe and China might need attention.

  7. Industrial vegetable oil by-products increase the ductility of polylactide

    Directory of Open Access Journals (Sweden)

    A. Ruellan

    2015-12-01

    Full Text Available The use of industrial by-products of the vegetable oil industry as ductility increasing additives of polylactide (PLA was investigated. Vegetable oil deodorization condensates were melt-blended by twin-screw extrusion up to a maximum inclusion quantity of 20 wt% without preliminary purification. Sample films were obtained by single screw cast extrusion. Compounded PLA films featured largely improved ductility in tensile testing with an elongation at break up to 180%. The glass transition temperature remained higher than room temperature. The native mixture of molecules, which composed the deodorization condensates, had superior performance compared to a synthetic mixture of main compounds. The investigation of the correlation between composition of the additives and the ductility of the PLA blends by Principal Component Analysis showed synergy in property improvement between fatty acids having a melting point below and beyond the room temperature. Furthermore, a compatibilizing effect of molecules present in the native mixture was evidenced. Oil deodorization condensates, which are a price competitive by-product of the vegetable oil industry, are therefore a very promising biobased and biodegradable additive for improving the ductility of PLA.

  8. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol–methanol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar, E-mail: gude@cee.msstate.edu

    2014-12-15

    Highlights: • Pulse sonication effect on transesterification of waste vegetable oil was studied. • Effects of ethanol, methanol, and alcohol mixtures on FAMEs yield were evaluated. • Effect of ultrasonic intensity, power density, and its output rates were evaluated. • Alcohol mixtures resulted in higher biodiesel yields due to better solubility. - Abstract: This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol–methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol–methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1–2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol–methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions.

  9. Relaxation dynamics and thermophysical properties of vegetable oils using time-domain reflectometry.

    Science.gov (United States)

    Sonkamble, Anil A; Sonsale, Rahul P; Kanshette, Mahesh S; Kabara, Komal B; Wananje, Kunal H; Kumbharkhane, Ashok C; Sarode, Arvind V

    2017-04-01

    Dielectric relaxation studies of vegetable oils are important for insights into their hydrogen bonding and intermolecular dynamics. The dielectric relaxation and thermo physical properties of triglycerides present in some vegetable oils have been measured over the frequency range of 10 MHz to 7 GHz in the temperature region 25 to 10 °C using a time-domain reflectometry approach. The frequency and temperature dependence of dielectric constants and dielectric loss factors were determined for coconut, peanut, soya bean, sunflower, palm, and olive oils. The dielectric permittivity spectra for each of the studied vegetable oils are explained using the Debye model with their complex dielectric permittivity analyzed using the Havriliak-Negami equation. The dielectric parameters static permittivity (ε 0), high-frequency limiting static permittivity (ε ∞), average relaxation time (τ 0), and thermodynamic parameters such as free energy (∆F τ), enthalpy (∆H τ), and entropy of activation (∆S τ) were also measured. Calculation and analysis of these thermodynamic parameters agrees with the determined dielectric parameters, giving insights into the temperature dependence of the molecular dynamics of these systems.

  10. Operations variables in the transesterification process of vegetable oil: a review - chemical catalysis

    Directory of Open Access Journals (Sweden)

    Andrés Felipe Rojas González

    2010-05-01

    Full Text Available This article describes the results of a bibliographic review of the effects of operation conditions on process yield in the chemical transesterification of vegetable oil. The parameters studied were: temperature and time reaction, alcohol:oil molar ratio, catalyst and alcohol type, catalyst concentration, mixed intensity and free fatty acid and water concentration. It also reports that this pro- cess has been carried out with basic and acid catalysts using homogeneous and heterogeneous catalytic processes for a wide va- riety of oils. It was found that reaction yield increased when temperature and time reaction increased; however this parameter de- creased at low catalyst concentration ( 1% w/w and water (> 3% w/w concentration in oil.

  11. Usability of food industry waste oils as fuel for diesel engines.

    Science.gov (United States)

    Winfried, Russ; Roland, Meyer-Pittroff; Alexander, Dobiasch; Jürgen, Lachenmaier-Kölch

    2008-02-01

    Two cogeneration units were each fitted with a prechamber (IDI) diesel engine in order to test the feasibility of using waste oils from the food industry as a fuel source, and additionally to test emissions generated by the combustion of these fuels. Esterified waste oils and animal fats as well as mustard oil were tested and compared to the more or less "common" fuels: diesel, rapeseed oil and rapeseed methyl ester. The results show that, in principle, each of these fuels is suitable for use in a prechamber diesel engine. Engine performance can be maintained at a constant level. Without catalytic conversion, the nitrogen oxides emissions were comparable. A significant reduction in NO(x) was achieved through the injection of urea. Combining a urea injection with the SCR catalytic converter reduced NO(x) emissions between 53% and 67%. The carbon monoxide emissions from waste oils are not significantly different from those of "common" fuels and can be reduced the same way as of hydrocarbon emissions, through utilization of a catalytic converter. The rate of carbon monoxide reduction by catalytic conversion was 84-86%. A lower hydrocarbon concentration was associated with fuels of agricultural origin. With the catalytic converter a reduction of 29-42% achieved. Each prechamber diesel engine exhibited its own characteristic exhaust, which was independent of fuel type. The selective catalytic reduction of the exhaust emissions can be realized without restriction using fuels of agricultural origin.

  12. [The rapid analysis of fatty acids in vegetable oils by near infrared spectrum].

    Science.gov (United States)

    Yu, Yan-Bo; Zang, Peng; Fu, Yuan-Hua; Zhang, Lu-Da; Yan, Yan-Lu; Chen, Bin

    2008-07-01

    In this research, The functional components of vegetable oils were analyzed by near infrared (NIR) spectral technology. The optimum conditions of mathematics model of four components (C16 : 0, C18 : 0, C18 : 1, C18 : 2) were studied, including the sample set selection, chemical value analysis, the detection methods and condition. Chemical value was analyzed by HPLC. 52 samples were selected, 41 for modeling set and 11 for testing set. All samples were placed in 5mm thick sample pools and swept by near infrared (NIR) with discrimination factor 8 cm(-1) without any other disposal. Using PLS methods sated model. Data were processed by first derivative method and centering method. 5 000-9 000 cm(-1) spectral region was analyzed. Correlating index (r), RMSECV and RMSEP were chose as evaluation index. The result demonstrated that the correlation between the reference value of the modeling sample set and the near infrared predictive value were r(C16 : 0) = 0.891, r(C18 : 0) = 0.837, r(C18 : 1) = 0.982, r(C18 : 2) = 0.971, respectively. And the correlation between the reference value of the testing sample set and the near infrared predictive value were 0.921, 0.891, 0.946 and 0.949, respectively. It proved that the near infrared predictive value was linear with chemical value and the mathematical model established for components of vegetable oils was feasible. For validation, 8 unknown samples were selected to be analysis by infrared (NIR). The result demonstrated that error between predict value and chemical value was less than 10%. That was to say infrared (NIR) had a good veracity in analysis components of vegetable oil. Because infrared (NIR) spectral technology is convenient, rapid than HPLC in oil components analysis, moreover, infrared (NIR) can analyze many components at the same time. It must have great application prospect in vegetable oil components analysis.

  13. Effect of vegetable oils applied over acquired enamel pellicle on initial erosion

    Science.gov (United States)

    IONTA, Franciny Querobim; de ALENCAR, Catarina Ribeiro Barros; VAL, Poliana Pacifico; BOTEON, Ana Paula; JORDÃO, Maisa Camillo; HONÓRIO, Heitor Marques; BUZALAF, Marília Afonso Rabelo; RIOS, Daniela

    2017-01-01

    Abstract Objective The prevalence of dental erosion has been recently increasing, requiring new preventive and therapeutic approaches. Vegetable oils have been studied in preventive dentistry because they come from a natural, edible, low-cost, and worldwide accessible source. This study aimed to evaluate the protective effect of different vegetable oils, applied in two concentrations, on initial enamel erosion. Material and Methods Initially, the acquired pellicle was formed in situ for 2 hours. Subsequently, the enamel blocks were treated in vitro according to the study group (n=12/per group): GP5 and GP100 – 5% and pure palm oil, respectively; GC5 and GC100 – 5% and pure coconut oil; GSa5 and GSa100 – 5% and pure safflower oil; GSu5 and GSu100 – 5% and pure sunflower oil; GO5 and GO100 – 5% and pure olive oil; CON− – Deionized Water (negative control) and CON+ – Commercial Mouthwash (Elmex® Erosion Protection Dental Rinse, GABA/positive control). Then, the enamel blocks were immersed in artificial saliva for 2 minutes and subjected to short-term acid exposure in 0.5% citric acid, pH 2.4, for 30 seconds, to promote enamel surface softening. The response variable was the percentage of surface hardness loss [((SHi - SHf) / SHf )×100]. Data were analyzed by one-way ANOVA and Tukey’s test (p0.05) and less than the other groups (p<0.05). There was no difference between GP5, GC5, GC100, GSa5, GSu100, GSa100, GSu5, GO5, GO100, CON− and CON+. Conclusion Palm oil seems to be a promising alternative for preventing enamel erosion. However, further studies are necessary to evaluate a long-term erosive cycling. PMID:28877281

  14. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  15. Evaluation of fuel economy differences on a 1978 Volvo for two different motor oils. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Penninga, T.J.; Lawrence, D.

    1980-11-01

    This report presents the results which were gathered to determine the fuel economy difference between a low viscosity multigrade, synthetic motor oil and a straight 30 weight motor oil. The test vehicle was a 1978 Volvo which was modified to give consistent vehicle emissions and fuel economy. The car was tested with each oil at ambient temperatures of 40 degrees F, 75 degrees F and 90 degrees F. The low viscosity synthetic showed no improvement on the Federal Test Procedure (FTP) at 40 degrees F and 90 degrees F and a .74% increase in fuel economy for the 75 degrees F tests. The Highway Fuel Economy Tests (HFET) showed a 2.13% increase at 40 degrees F, 2.48% increase at 75 degrees F, and 2.71% at 90 degrees F for the low viscosity synthetic multigrade oil.

  16. 76 FR 49525 - Advisory Circular 20-24C, Approval of Propulsion Fuels and Lubricating Oils

    Science.gov (United States)

    2011-08-10

    ... procedures and practices have essentially relied on fuels and oils grade or brand designations that were... experience with these projects. Therefore, the final AC does not contain guidance on these new and novel...

  17. SRS 2010 Vegetation Inventory GeoStatistical Mapping Results for Custom Reaction Intensity and Total Dead Fuels.

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Lloyd A. [Leading Solutions, LLC.; Paresol, Bernard [U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR.

    2014-09-01

    This report of the geostatistical analysis results of the fire fuels response variables, custom reaction intensity and total dead fuels is but a part of an SRS 2010 vegetation inventory project. For detailed description of project, theory and background including sample design, methods, and results please refer to USDA Forest Service Savannah River Site internal report “SRS 2010 Vegetation Inventory GeoStatistical Mapping Report”, (Edwards & Parresol 2013).

  18. A novel approach to the rapid assignment of (13)C NMR spectra of major components of vegetable oils such as avocado, mango kernel and macadamia nut oils.

    Science.gov (United States)

    Retief, Liezel; McKenzie, Jean M; Koch, Klaus R

    2009-09-01

    Assignment of (13)C nuclear magnetic resonance (NMR) spectra of major fatty acid components of South African produced vegetable oils was attempted using a method in which the vegetable oil was spiked with a standard triacylglycerol. This proved to be inadequate and therefore a new rapid and potentially generic graphical linear correlation method is proposed for assignment of the (13)C NMR spectra of major fatty acid components of apricot kernel, avocado pear, grapeseed, macadamia nut, mango kernel and marula vegetable oils. In this graphical correlation method, chemical shifts of fatty acids present in a known standard triacylglycerol is plotted against the corresponding chemical shifts of fatty acids present in the vegetable oils. This new approach (under carefully defined conditions and concentrations) was found especially useful for spectrally crowded regions where significant peak overlap occurs and was validated with the well-known (13)C NMR spectrum of olive oil which has been extensively reported in the literature. In this way, a full assignment of the (13)C{1H} NMR spectra of the vegetable oils, as well as tripalmitolein was readily achieved and the resonances belonging to the palmitoleic acid component of the triacylglycerols in the case of macadamia nut and avocado pear oil resonances were also assigned for the first time in the (13)C NMR spectra of these oils. Copyright (c) 2009 John Wiley & Sons, Ltd.

  19. Synthesis of 1,2,4 trioxolanes from vegetable oils for pharmaceutical and veterinary application

    Directory of Open Access Journals (Sweden)

    Nathália R. Almeida

    2012-06-01

    Full Text Available Vegetable oils are rich in mono-and poly-unsaturated fatty acids, and these compounds contain carbon-carbon double bonds available for chemical/structural modification, especially via oxidative processes. Sunflower oil obtained from seed of sunflower (Helianthus annuus contains a large amount of these acids, such as linoleic (48-74% and oleic (14-39% acids, proving to be an ideal starting material for these changes [1]. Ozone is an oxidizing agent that reacts with double bonds of fatty acids present in vegetable oils to form ozonides or 1,2,4 trioxolanes,  and peroxidic species such as hydroperoxides, hydrogen peroxide, polymeric peroxides and other organic peroxides. These compounds are of great pharmaceutical interest for the treatment of various dermatological diseases, due to their antimicrobial properties and stimulating action on tissue repair and regeneration [2]. In this work, the sunflower oil was ozonized, and the ideal conditions, as reaction time, ozone concentration and temperature, were determined. The IR and 1H and 13C NMR of ozonized oils confirm the formation of 1,2,4 trioxolane ring according to the mechanism proposed by Criegee [3]. The ozonolysis reaction was performed under different conditions and the product is in the process of knowledge protection or patent.

  20. Emulsification of waste cooking oils and fatty acid distillates as diesel engine fuels: An attractive alternative

    Directory of Open Access Journals (Sweden)

    Eliezer Ahmed Melo Espinosa

    2016-06-01

    Full Text Available The scope of this paper is to analyze the possibility and feasibility of the use of emulsification method applied to waste cooking oils and fatty acid distillates as diesel engine fuels, compared with other commonly used methods. These waste products are obtained from the refining oil industry, food industry and service sector, mainly. They are rarely used as feedstock to produce biofuels and other things, in spite of constitute a potential source of environmental contamination. From the review of the state of arts, significant decreases in exhaust emissions of nitrogen oxides, cylinder pressure as well as increases of the ignition delay, brake specific fuel consumption, hydrocarbon, smoke opacity, carbon monoxide, particulate matters to emulsified waste cooking oils and fatty acid distillates compared with diesel fuel are reported. In some experiments the emulsified waste cooking oils achieved better performance than neat fatty acid distillates, neat waste cooking oils and their derivatives methyl esters.

  1. Chemical and spectroscopic characterization of a vegetable oil used as dielectric coolant in distribution transformers

    OpenAIRE

    Gomez,Neffer A.; Abonia,Rodrigo; Cadavid, Hector; Vargas,Ines H.

    2011-01-01

    In this work, a complete UV-Vis, IR and (¹H, 13C and DEPT) NMR spectroscopic analysis was performed for a FR3® vegetable oil sample used as dielectric coolant in an experimental distribution transformer. The same spectroscopic analysis was performed for three used FR3® oil samples (i.e., 4 months in use, 8 months in use and 7 years in use), removed from several operating distribution transformers. Comparison of the data indicated that no significant spectroscopic changes, and hence, no struct...

  2. Technological aspects of vegetable oils epoxidation in the presence of ion exchange resins: a review

    Directory of Open Access Journals (Sweden)

    Milchert Eugeniusz

    2016-09-01

    Full Text Available A review paper of the technology basics of vegetable oils epoxidation by means of peracetic or performic acid in the presence of acidic ion exchange resins has been presented. The influence of the following parameters: temperature, molar ratio of acetic acid and hydrogen peroxide to ethylenic unsaturation, catalyst loading, stirring intensity and the reaction time on a conversion of ethylenic unsaturation, the relative percentage conversion to oxirane and the iodine number was discussed. Optimal technological parameters, mechanism of epoxidation by carboxylic peracids and the possibilities of catalyst recycling have been also discussed. This review paper shows the application of epoxidized oils.

  3. Profiling and quantification of phenolic compounds in Camellia seed oils: Natural tea polyphenols in vegetable oil.

    Science.gov (United States)

    Wang, Xiaoqin; Zeng, Qiumei; Del Mar Contreras, María; Wang, Lijuan

    2017-12-01

    In Asia, tea seed oils (seed oils from Camellia oleifera, C. chekiangoleosa, and C. sinensis) are used in edible, medicinal, and cosmetic applications. However, these oils differ in their fatty acid contents, and there is little known about their phenolic compounds. Here we analyzed the phenolic compounds of seed oils from three species gathered from 15 regions of China. Twenty-four phenolic compounds were characterized by HPLC-Q-TOF-MS, including benzoic acids (6), cinnamic acids (6), a hydroxyphenylacetic acid, flavanols (4), flavonols (3), flavones (2), and dihydroflavonoids (2). Some of these phenolic compounds had not previously been reported from C. sinensis (20), C. oleifera (15), and C. chekiangoleosa (24) seed oils. Quantification was done by HPLC-QqQ-MS using 24 chemical standards. The total concentrations in the studied samples ranged from 20.56 to 88.56μg/g. Phenolic acids were the most abundant class, accounting for 76.2-90.4%, with benzoic acid, found at up to 18.87μg/g. The concentration of catechins, typical of tea polyphenols, ranged between 2.1% and 9.7%, while the other flavonoids varied from 4.2% to 17.8%. Although the cultivation region affected the phenolic composition of the Camellia seed oils, in our hierarchical clustering analysis, the samples clustered according to species. The phenolic composition of the seed oils from C. oleifera and C. chekiangoelosa were similar. We found that the phenolic categories in Camellia seed oils were similar to tea polyphenols, thereby identifying a source of liposoluble tea polyphenols and potentially accounting for some of the reported activities of these oils. In addition, this work provides basic data that allows distinction of various Camellia seed oils, as well as improvements to be made in their quality standards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. COMPARISON OF BIODIESEL PRODUCTIVITIES OF DIFFERENT VEGETABLE OILS BY ACIDIC CATALYSIS

    Directory of Open Access Journals (Sweden)

    AYTEN SAGIROGLU

    2011-03-01

    Full Text Available Biodiesel has become a subject which increasingly attracts worldwide attention because of its environmental benefits, biodegradability and renewability. Biodiesel production typically involves the transesterification of a triglyceride feedstock with methanol or other short-chain alcohols. This paper presents a study of transesterification of various vegetable oils, sunflower, safflower, canola, soybean, olive, corn, hazelnut and waste sunflower oils, with the acidic catalyst. Under laboratory conditions, fatty acid methyl esters (FAME were prepared by using methanol in the presence of 1.85% hydrochloric acid at 100 °C for 1 h and 25 °C for 3 h. The analyses of biodiesel were carried out by gas chroma¬tography and thin layer chromatography. Also, biodiesel productivities (% were determined on basis of the ratio of ester to oil content (w/w. The biodiesel productivities for all oils were found to be about 80% and about 90% at 25 and 100 °C, respectively. Also, the results showed that the yield of biodiesel depended on temperature for some oils, including canola, sunflower, safflower oils, but it was not found significant differences among all of the oil types on biodiesel productivities.

  5. Influence of deep frying on the unsaponifiable fraction of vegetable edible oils enriched with natural antioxidants.

    Science.gov (United States)

    Orozco, Mara I; Priego-Capote, Feliciano; Luque de Castro, Maria D

    2011-07-13

    The influence of deep frying, mimicked by 20 heating cycles at 180 °C (each cycle from ambient temperature to 180 °C maintained for 5 min), on the unsaponifiable fraction of vegetable edible oils represented by three characteristic families of compounds (namely, phytosterols, aliphatic alcohols, and triterpenic compounds) has been studied. The target oils were extra virgin olive oil (with intrinsic content of phenolic antioxidants), refined sunflower oil enriched with antioxidant phenolic compounds isolated from olive pomace, refined sunflower oil enriched with an autoxidation inhibitor (dimethylpolysiloxane), and refined sunflower oil without enrichment. Monitoring of the target analytes as a function of both heating cycle and the presence of natural antioxidants was also evaluated by comparison of the profiles after each heating cycle. Identification and quantitation of the target compounds were performed by gas cromatography-mass spectrometry in single ion monitoring mode. Analysis of the heated oils revealed that the addition of natural antioxidants could be an excellent strategy to decrease degradation of lipidic components of the unsaponifiable fraction with the consequent improvement of stability.

  6. Durability Properties of Palm Oil Fuel Ash Self Compacting Concrete

    Directory of Open Access Journals (Sweden)

    T. Ofuyatan

    2015-02-01

    Full Text Available Self Compacting Concrete (SCC is a new innovation in technology that can flow readily into place under its own self weight and fill corner areas of reinforcement structures without the need to vibrate and without segregation of its constitute. The problem of durability of concrete structures due to inadequate compaction by skilled workers has become a source of concern globally. The shortage of skilled manpower, noise and vibration of equipment on construction sites has led to the development of self compacting concrete. This paper presents an experimental study on the durability properties of Self Compacting Concrete with partial placement of Palm Oil Fuel Ash (POFA. Twelve POFA self-compacting concretes of various strength grades were designed at varying percentages of 0, 5, 10, 15, 20, 25 and 30%. The concrete with no placement of ash served as control. Conplast SP432MS was used as superplasticiser in the mix. The experiments are carried out by adopting a water-powder ratio of 0.36. Workability of the fresh concrete is determined by using tests such as: slump flow, T50, V-funnel and L-Box tests. The durability of concrete is tested by acid resistance, sulphate attack and saturated water absorption at the age of 14, 28, 56 and 90 days.

  7. Production Costs of Alternative Transportation Fuels. Influence of Crude Oil Price and Technology Maturity

    Energy Technology Data Exchange (ETDEWEB)

    Cazzola, Pierpaolo; Morrison, Geoff; Kaneko, Hiroyuki; Cuenot, Francois; Ghandi, Abbas; Fulton, Lewis

    2013-07-01

    This study examines the production costs of a range of transport fuels and energy carriers under varying crude oil price assumptions and technology market maturation levels. An engineering ''bottom-up'' approach is used to estimate the effect of the input cost of oil and of various technological assumptions on the finished price of these fuels. In total, the production costs of 20 fuels are examined for crude oil prices between USD 60 and USD 150 per barrel. Some fuel pathways can be competitive with oil as their production, transport and storage technology matures, and as oil price increases. Rising oil prices will offer new opportunities to switch to alternative fuels for transport, to diversify the energy mix of the transport sector, and to reduce the exposure of the whole system to price volatility and potential distuption of supply. In a time of uncertainty about the leading vehicle technology to decarbonize the transport sector, looking at the fuel cost brings key information to be considered to keep mobility affordable yet sustainable.

  8. Organic vegetable proteins and oil in feed for organic rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Lund, Ivar; Dalsgaard, Anne Johanne Tang; Jokumsen, Alfred

    not allow addition of artificial amino acids to the feed, and optimization of the amino acid profile of organically based diets must therefore derive from the protein sources alone. The aim of this study was to evaluate the digestibility and growth performance of organic vegetable dietary ingredients...... % and replaced by a matrix of organic horse bean, pea and rape in the proportion of 1:1:0.7. In the last two diets, the inclusion of fish oil was reduced by 50 and 100 %, respectively and replaced by flax seed oil high in omega-3 fatty acids. Digestibility was measured directly using a modified, flow......The demand for organic trout is increasing, stressing the need for organic, vegetable feed ingredients as replacement for fish meal, as the principles of organic aquaculture encourage the development of feed that do not deplete global fish stocks. In addition, the organic code of practice does...

  9. Inward Processing Regime Promotion System in Vegetable Oil Industry: A Case Study of Turkey

    Directory of Open Access Journals (Sweden)

    Sinan Duru

    2017-04-01

    Full Text Available This study was conducted to determine applicability of the Inward Processing Regime (IPR in enterprises which are vegetable oil producers and exporters. The data was obtained from 26 vegetable oil producer and exporter enterprises by using survey method. Frequency tables, indices, and percentage calculating were used to analyse Data. Also, SWOT analysis was used to determine the strengths, weaknesses, opportunities and threats in the sector, and relationship among some variables were examined with correlation coefficient. According to research findings, 25 of the enterprises (96% utilised the IPR. Since the enterprises started to use that system; availability of cheap raw material, rate of capacity utilisation, market share, and export value all have increased. In addition, raw material was found as an important expense item, and the most important problems were qualified as raw material inadequacy and high input prices.

  10. Comparison on tribological properties of vegetable oil upon addition of carbon based nanoparticles

    Science.gov (United States)

    Kiu, S. S. K.; Yusup, S.; Chok, V. S.; Taufiq, A.; Kamil, R. N. M.; Syahrullail, S.; Chin, B. L. F.

    2017-06-01

    Carbon-based nanoparticles have gained much interest as lubricant additive due to their remarkable properties in mechanical, chemical and electrical field. In this research, graphene nanosheets (GN), carbon nanotubes (CNT), and graphene oxide (GO) were used as lubricant additives to investigate their effect on tribological properties. Friction coefficient and wear scar diameter were studied as parameters to determine the effectiveness of lubricant. In this study, vegetable oil (VO) was used as base fluid lubricant. GN, CNT and GO were added at 50ppm and 100ppm respectively to VO to study their optimum concentration when compared to pure VO. All nanoparticles were well dispersed by using a homogenizer. Results showed that addition of 50ppm GN has the most positive effect in improving the tribological properties of vegetable oil.

  11. EXPERIMENTAL STUDY OF PALM OIL MILL EFFLUENT AND OIL PALM FROND WASTE MIXTURE AS AN ALTERNATIVE BIOMASS FUEL

    Directory of Open Access Journals (Sweden)

    S. HASSAN, L. S. KEE

    2013-12-01

    Full Text Available Palm oil mill effluent (POME sludge generated from palm oil mill industry and oil palm frond (OPF from oil palm plantation are considered biomass wastes that can be fully utilized as a renewable energy sources. In this study, an attempt has been made to convert these residues into solid biomass fuel. The study was conducted by developing experimental testing on the POME and OPF mixture. The performance of each sample with different weight percentage was investigated using standard tests. The biomass mixture was converted into compressed form of briquette through a simple process. The properties of the briquettes were observed and compared at different weight percentage following standard testing methods included ultimate and proximate analyses, burning characteristics, dimensional stability and crack analysis. Experimental results showed that POME sludge and OPF mixture is feasible as an alternative biomass fuel, with briquette of 90:10 POME sludge to OPF ratio has a good combination of properties as an overall.

  12. Influence of Blending Canola, Palm, Soybean, and Sunflower Oil Methyl Esters on Fuel Properties of Bioiesel

    Science.gov (United States)

    Single, binary, ternary, and quaternary mixtures of canola (low erucic acid rapeseed), palm, soybean, and sunflower (high oleic acid) oil methyl esters (CME, PME, SME, and SFME, respectively) were prepared and important fuel properties measured, such as oil stability index (OSI), cold filter pluggin...

  13. Aviation Turbine Fuels from Tar Sands Bitumen and Heavy Oils. Part 3. Laboratory Sample Production.

    Science.gov (United States)

    1987-12-01

    OF temperature, degrees Fahrenheit FCC fluid catalytic cracker or cracking FOE fuel oil equivalent gm gram Hg mercury Hr hour IBP initial boiling...DILUENT PREPARATION - BLENDED GAS OIL/BITUMEN CRACKING RESULTS.........8 3. DILUENT PREPARATION HYDROTREATING SUMMARY..................10 4. LOOP 1...18 10. LOOP 2 HYDROTREATER RESULTS SUMMARY. .......... 19 11. DIOLEFIN SATURATION - HYDROTREATMENT OF THE LIGHT NAPHTHA ........... 23 12. JP-8

  14. Methanol-unleaded gasoline blends containing fusel oil fraction as spark ignition engine fuel

    Energy Technology Data Exchange (ETDEWEB)

    Karaosmanoglu, F.; Isigiguer, A.; Aksoy, H.A. [Istanbul Technical Univ. (Turkey). Chemical Engineering Dept.

    1997-07-01

    In the search for fuel alternatives for spark ignition engines, alcohol-gasoline blends draw considerable attention. For a successful application of gasoline-methanol mixtures as motor fuel, the realization of a stable homogeneous liquid phase is one of the major problems. In this work, phase separation problems of methanol-gasoline mixtures, which were prepared by adding 15% methanol to unleaded gasoline, were solved by using a fusel oil fraction as the new blending agent. The stable fuel alternatives thus prepared were then tested for fuel properties and performance in the engine, and fuel alternatives for the spark ignition engines were proposed.

  15. Effect of methanol extracts of rosemary and olive vegetable water on the stability of olive oil and sunflower oil

    Directory of Open Access Journals (Sweden)

    Gamel, T. H.

    1999-10-01

    Full Text Available Effect of methanol extracts of rosemary and olive vegetable water on the stability of olive oil and sunflower oil. Methanol phenolic extracts of dry rosemary leaves and olive vegetable water filtrate, in combination with BHA, were added to olive oil (blend of refined and virgin olive oil, 3 to 1 and to sunflower oil and their antioxidant effects under accelerated conditions were evaluated. Accelerated conditions included the oven test (at 63 °C and the conductivity method (Rancimat at 120 °C. Frying process at 180 °C was also applied. The methanol phenolic extracts and the BHA were added to each oil at the following concentrations: 200 ppm rosemary extract; 200 ppm olive vegetable water extract; 100 ppm rosemary extract + 100 ppm BHA; 100 ppm vegetable water extract + 100 ppm BHA and 200 ppm BHA. In general, antioxidant effect of phenolic additives of rosemary and of BHA was in the following order: 200 ppm rosemary extract > 100 ppm rosemary extract + 100 ppm BHA > and 200 ppm BHA. The addition of 200 ppm vegetable water extract and 100 ppm vegetable water extract + 100 ppm BHA exhibited similar antioxidant effect to that of 200 ppm BHA.

    Extractos metanólicos de fenoles de hojas secas de romero y filtrados de agua de vegetación de la aceituna, en combinación con BHA, se añadieron al aceite de oliva (mezcla de aceite de oliva refinado y virgen, 3 a 1 y al aceite de girasol, evaluándose sus efectos antioxidantes usando condiciones aceleradas. Estas condiciones incluyeron el test del horno de oxidación (a 63 °C y el método de conductividad (Rancimat a 120 °C. También se aplicó al proceso de fritura a 180 °C. Los extractos metanólicos de fenoles y el BHA se añadieron a cada aceite en las siguientes concentraciones: 200 ppm de extracto de romero, 200 ppm de extracto de agua de vegetación de la aceituna, 100 ppm de extracto de romero + 100 ppm de BHA, 100 ppm de extracto de agua de vegetación + 100 ppm de BHA y 200 ppm de BHA

  16. Enzymatic interesterification of vegetable oil/ fish oil blend for margarine production

    DEFF Research Database (Denmark)

    Ibrahim, Nuzul Amri Bin; Xu, Xuebing

    In margarine formulation, oils of different melting points are blended to make a product that is spreadable at room temperature. Usually, the blend would be subjected to modification process, either by interesterification (chemical or enzymatic) or partial hydrogenation in order to achieve...... the desired properties. In this study, palm stearin (PS), palm kernel oil (PKO) and fish oil (FO) are blended and modified by enzymatic interesterification. PS functioned as the hard stock, PKO as the soft oil and FO as a source for eicosapentaenoic acid (EPA)/ docosahexaenoic acid (DHA). The purpose...... they are consumed as a quick source of energy. The remaining 2-monoacyl- glycerol becomes a source of essential fatty acid, after being absorbed through the intestinal wall. This would enhance the nutritional value of the enzymatically interesterified product. However, the incorporation of FO into the blend would...

  17. Vegetable Oil-Loaded Nanocapsules: Innovative Alternative for Incorporating Drugs for Parenteral Administration.

    Science.gov (United States)

    Venturinil, C G; Bruinsmann, A; Oliveira, C P; Contri, R V; Pohlmann, A R; Guterres, S S

    2016-02-01

    An innovative nanocapsule formulation for parenteral administration using selected vegetable oils (mango, jojoba, pequi, oat, annatto, calendula, and chamomile) was developed that has the potential to encapsulate various drugs. The vegetable oil-loaded nanocapsules were prepared by interfacial deposition and compared with capric/caprylic triglyceride-loaded lipid core nanocapsules. The major objective was to investigate the effect of vegetable oils on particle size distribution and physical stability and to determine the hemolytic potential of the nanocapsules, considering their applicability for intravenous administration. Taking into account the importance of accurately determining particle size for the selected route of administration, different size characterization techniques were employed, such as Laser Diffraction, Dynamic Light Scattering, Multiple Light Scattering, Nanoparticle Tracking Analysis, and Transmission Electronic Microscopy. Laser diffraction studies indicated that the mean particle size of all nanocapsules was below 300 nm. For smaller particles, the laser diffraction and multiple light scattering data were in agreement (D[3,2]-130 nm). Dynamic light scattering and nanoparticle tracking analysis, two powerful techniques that complement each other, exhibited size values between 180 and 259 nm for all nanoparticles. Stability studies demonstrated a tendency of particle creaming for jojoba-nanocapsules and sedimentation for the other nanoparticles; however, no size variation occurred over 30 days. The hemolysis test proved the hemocompatibility of all nanosystems, irrespective of the type of oil. Although all developed nanocapsules presented the potential for parenteral administration, jojoba oil-loaded nanocapsules were selected as the most promising nanoformulation due to their low average size and high particle size homogeneity.

  18. Carotenoid bioavailability from raw vegetables and a moderate amount of oil in human subjects is greatest when the majority of daily vegetables are consumed at one meal.

    Science.gov (United States)

    Goltz, Shellen R; Sapper, Teryn N; Failla, Mark L; Campbell, Wayne W; Ferruzzi, Mario G

    2013-05-01

    While the impact of food composition and processing on carotenoid bioavailability has been the subject of several investigations, the effect of meal patterning remains unknown. The aim of this pilot study was to assess the impact of select consumption patterns on the bioavailability of carotenoids from vegetables. On three randomized testing days, subjects consumed raw salad vegetables and 8 g canola oil over a two meal period in three meal patterns. Meal patterns included consumption of 100% of vegetables and oil in the first meal and 0% in the second, 75% in the first meal and 25% in the second, and 50% in the first meal and 50% in the second. Additional protein-rich "chef's salad" ingredients were distributed equally between meals. We hypothesized that carotenoid absorption would be highest when 50% of vegetables and oil were consumed at each meal and lowest when 100% were consumed at once. Blood was collected 0 to 12 hours postprandially and triacylglycerol-rich lipoprotein fractions (TRL) were isolated by ultracentrifugation. TRL carotenoid concentrations were analyzed by high performance liquid chromatography-diode array detector. Considering all carotenoids, absorption expressed as area under the curve was greatest when ≥75% of vegetables were consumed in a single meal (P vegetables in one meal increased absorption compared to intake of 50% at each meal (P vegetables are consumed in one meal compared to smaller doses over multiple meals. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Effect of worldwide oil price fluctuations on biomass fuel use and child respiratory health: evidence from Guatemala.

    Science.gov (United States)

    Venkataramani, Atheendar S; Fried, Brian J

    2011-09-01

    We examined the effect of worldwide oil price fluctuations on household fuel use and child respiratory health in Guatemala. We regressed measures of household fuel use and child respiratory health on the average worldwide oil price and a rich set of covariates. We leveraged variation in oil prices over the 6-month period of the survey to identify associations between fuel prices, fuel choice, and child respiratory outcomes. A $1 (3.4% point) increase in worldwide fuel prices was associated with a 2.8% point decrease in liquid propane gasoline use (P oil prices and the fuel choice indicators was largest for households in the middle of the income distribution. Fluctuations in worldwide fuel prices affected household fuel use and, consequently, child health. Policies to help households tide over fuel price shocks or reduce pollution from biomass sources would confer positive health benefits. Such policies would be most effective if they targeted both poor and middle-income households.

  20. Home use of vegetable oils, markers of systemic inflammation, and endothelial dysfunction among women.

    Science.gov (United States)

    Esmaillzadeh, Ahmad; Azadbakht, Leila

    2008-10-01

    Most knowledge about adverse health effects of trans fats was mainly derived from studies done in Western populations of European or American origins; few data are available in the understudied region of the Middle East. We assessed the association between consumption of partially hydrogenated vegetable oils (PHVOs) and non-HVOs and circulating concentrations of inflammatory markers among Tehrani women aged 40-60 y. Usual dietary intakes were assessed with a food-frequency questionnaire among 486 apparently healthy women. PHVOs (commonly used for cooking in Iran) were considered as PHVOs category. Sunflower oil, corn oil, canola oil, soybean oil, and olive oil were defined as non-HVOs. Anthropometric measurements were done, and fasting blood samples were taken to measure inflammatory markers. The energy-adjusted daily intakes (mean +/- SD) of PHVOs and non-HVOs were 23 +/- 11 and 22 +/- 10 g/d, respectively. After control for potential confounders, women in the highest quintile of PHVO intake had higher plasma concentrations of C-reactive protein (CRP; percentage difference from lowest quintile: 45%; P for trend: bottom quintiles: -23%; P for trend: 0.05), TNF-alpha (-29%; P for trend: intakes of PHVOs are associated with elevated concentrations of inflammatory biomarkers, whereas higher intakes of non-HVOs are associated with lower plasma concentrations of these biomarkers.