Sample records for vector magnetic field

  1. Measuring magnetic field vector by stimulated Raman transitions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenli; Wei, Rong, E-mail:; Lin, Jinda; Wang, Yuzhu [Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Dong, Richang; Zou, Fan; Chen, Tingting [Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)


    We present a method for measuring the magnetic field vector in an atomic fountain by probing the line strength of stimulated Raman transitions. The relative line strength for a Λ-type level system with an existing magnetic field is theoretically analyzed. The magnetic field vector measured by our proposed method is consistent well with that by the traditional bias magnetic field method with an axial resolution of 6.1 mrad and a radial resolution of 0.16 rad. Dependences of the Raman transitions on laser polarization schemes are also analyzed. Our method offers the potential advantages for magnetic field measurement without requiring additional bias fields, beyond the limitation of magnetic field intensity, and extending the spatial measurement range. The proposed method can be widely used for measuring magnetic field vector in other precision measurement fields.

  2. The Evolution of Vector Magnetic Field Associated with Major Flares ...

    Indian Academy of Sciences (India)

    In this paper, we study the evolution of vector magnetic field of AR 10656 by using the observations of Huairou Solar Observing Station (HSOS, China) and Big Bear Solar Observatory (BBSO, USA). The magnetic flux emergence and cancellation, and thus, magnetic non-potential changes, are associated with the major ...

  3. The Evolution of Vector Magnetic Field Associated with Major Flares ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we study the evolution of vector magnetic field of AR 10656 by using the observations of Huairou Solar Observing. Station (HSOS, China) and Big Bear Solar Observatory (BBSO, USA). The magnetic flux emergence and cancellation, and thus, magnetic non- potential changes, are associated with the ...


    Energy Technology Data Exchange (ETDEWEB)

    Suárez, D. Orozco; Ramos, A. Asensio; Bueno, J. Trujillo, E-mail: [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)


    Proving the magnetic configuration of solar spicules has hitherto been difficult due to the lack of spatial resolution and image stability during off-limb ground-based observations. We report spectropolarimetric observations of spicules taken in the He i 1083 nm spectral region with the Tenerife Infrared Polarimeter II at the German Vacuum Tower Telescope of the Observatorio del Teide (Tenerife, Canary Islands, Spain). The data provide the variation with geometrical height of the Stokes I, Q, U, and V profiles, whose encoded information allows the determination of the magnetic field vector by means of the HAZEL inversion code. The inferred results show that the average magnetic field strength at the base of solar spicules is about 80 gauss, and then it decreases rapidly with height to about 30 gauss at a height of 3000 km above the visible solar surface. Moreover, the magnetic field vector is close to vertical at the base of the chromosphere and has mid-inclinations (about 50°) above 2 Mm height.

  5. Vector Magnetic Fields and Electric Currents From the Imaging Vector Magnetograph (United States)

    Li, Jing; van Ballegooijen, A. A.; Mickey, Don


    First, we describe a general procedure to produce high-quality vector magnetograms using the Imaging Vector Magnetograph (IVM) at Mees Solar Observatory. Two IVM effects are newly discussed and taken into account: (1) the central wavelength of the Fabry-Pérot is found to drift with time as a result of undiagnosed thermal or mechanical instabilities in the instrument; (2) the Stokes V-sign convention built into the IVM is found to be opposite to the conventional definition used in the study of radiative transfer of polarized radiation. At the spatial resolution 2'' × 2'', the Stokes Q, U, V uncertainty reaches ~1 × 10-3 to 5 × 10-4 in time-averaged data over 1 hr in the quiet Sun. When vector magnetic fields are inferred from the time-averaged Stokes spectral images of FeI 6302.5 Å, the resulting uncertainties are on the order of 10 G for the longitudinal fields (B par), 40 G for the transverse field strength (B bottom) and ~9° for the magnetic azimuth (phi). The magnetic field inversion used in this work is the "Triplet" code, which was developed and implemented in the IVM software package by the late B. J. LaBonte. The inversion code is described in detail in the Appendix. Second, we solve for the absolute value of the vertical electric current density, |Jz |, accounting for the above IVM problems, for two different active regions. One is a single sunspot region (NOAA 10001 observed on 2002 June 20) while the other is a more complex, quadrupolar region (NOAA10030 observed on 2002 July 15). We use a calculation that does not require disambiguation of 180° in the transverse field directions. The |Jz | uncertainty is on the order of ~7.0 mA m-2. The vertical current density increases with increasing vertical magnetic field. The rate of increase is about 1-2 times as large in the quadrupolar NOAA 10030 region as in the simple NOAA 10001, and it is more spatially variable over NOAA 10030 than over NOAA 10001.

  6. In-Flight spacecraft magnetic field monitoring using scalar/vector gradiometry

    DEFF Research Database (Denmark)

    Primdahl, Fritz; Risbo, Torben; Merayo, José M.G.


    Earth magnetic field mapping from planetary orbiting satellites requires a spacecraft magnetic field environment control program combined with the deployment of the magnetic sensors on a boom in order to reduce the measurement error caused by the local spacecraft field. Magnetic mapping missions...... the spacecraft centre-of-gravity. In line with the classical dual vector sensors technique for monitoring the spacecraft magnetic field, this paper proposes and demonstrates that a similar combined scalar/vector gradiometry technique is feasible by using the measurements from the boom-mounted scalar and vector...... sensors onboard the Oersted satellite. For Oersted, a large difference between the pre-flight determined spacecraft magnetic field and the in-flight estimate exists causing some concern about the general applicability of the dual sensors technique....

  7. Thermodynamic properties of a neutral vector boson gas in a constant magnetic field (United States)

    Angulo, G. Quintero; Martínez, A. Pérez; Rojas, H. Pérez


    The thermodynamical properties of a neutral vector boson gas in a constant magnetic field are studied starting from the spectrum given by Proca formalism. Bose-Einstein condensation (BEC) and magnetization are obtained in the limit of low temperature. In this limit, the condensation is reached not only by decreasing the temperature or augmenting the density but also by increasing the magnetic field. The magnetization turns out to be a positive quantity that increases with the field; under certain conditions self-magnetization is possible. The anisotropy in the pressures due to the axial symmetry imposed to the system by the magnetic field is also discussed. Astrophysical implications are commented.

  8. Spherical cap modelling of Orsted magnetic field vectors over southern Africa

    CSIR Research Space (South Africa)

    Kotze, PB


    Full Text Available Vector magnetic field observations by the Orsted satellite during geomagnetic quiet conditions around January 1, 2000, have been employed to derive a spherical cap harmonic model (Haines, 1985) over the southern African region between 10 degrees...

  9. Vector Magnetic Fields, Sub surface Stresses and Evolution of ...

    Indian Academy of Sciences (India)


    Arendt 1996). Bogdan (1984) found that flux tubes of the same sense of twist will merge if their relative velocities are slow enough to allow their magnetic fields to reconnect. Zweibel & Rhoads (1995) estimated an upper limit to the critical velocity and concluded that colliding twisted flux tubes may coalesce at the base of the ...

  10. First Use of Synoptic Vector Magnetograms for Global Nonlinear, Force-Free Coronal Magnetic Field Models (United States)

    Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.


    Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.


    Energy Technology Data Exchange (ETDEWEB)

    Kramar, M. [Physics Department, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); Lin, H. [Institute for Astronomy, University of Hawaii at Manoa, 34 Ohia Ku Street, Pukalani, Maui, HI 96768 (United States); Tomczyk, S., E-mail:, E-mail:, E-mail: [High Altitude Observatory, 3080 Center Green Drive, Boulder, CO 80301 (United States)


    We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments.

  12. Migration transformation of two-dimensional magnetic vector and tensor fields

    DEFF Research Database (Denmark)

    Zhdanov, Michael; Cai, Hongzhu; Wilson, Glenn


    We introduce a new method of rapid interpretation of magnetic vector and tensor field data, based on ideas of potential field migration which extends the general principles of seismic and electromagnetic migration to potential fields. 2-D potential field migration represents a direct integral...... transformation of the observed magnetic fields into a subsurface susceptibility distribution, which can be used for interpretation or as an a priori model for subsequent regularized inversion. Potential field migration is very stable with respect to noise in the observed data because the transform is reduced...... to the downward continuation of a well-behaved analytical function. We present case studies for imaging of SQUID-based magnetic tensor data acquired over a magnetite skarn at Tallawang, Australia. The results obtained from magnetic tensor field migration agree very well with both Euler deconvolution and the known...

  13. Interference of charged particles in a vector potential with vanishing magnetic field


    DURU, Ismail Hakki


    An interference experiment in a magnetic field free region with non vanishing vector potential created by two perpendicularly intersecting planes carrying uniform currents is discussed. The relation of this configuration to the Aharonov-Bohm potential is examined. An experimental set up which is finite in the direction of electronic motion is studied.

  14. Nanoscale electric and magnetic optical vector fields: mapping & injection

    NARCIS (Netherlands)

    le Feber, Boris; le Feber, Boris


    Nanophotonic structures, which offer a sub-wavelength control over light and nearby emitters, promise to advance, for example, our ability to harvest light, process information and detect (bio-) chemical compounds. In general, the optical field distributions near nanophotonic structures are much

  15. Constituent quark-light vector mesons effective couplings in a weak background magnetic field (United States)

    Braghin, Fábio L.


    Effective couplings between light SU(2) vector and axial mesons and constituent quarks are calculated in the presence of a background electromagnetic field by considering a one dressed gluon exchange quark-quark interaction. The effective coupling constants, obtained from a large quark mass expansion, are expressed in terms of the Lagrangian parameters of the initial model and of components of the quark and nonperturbative gluon propagators. In spite of many possible couplings, only a few coupling constants emerge. As a second step, constituent quark-vector and axial mesons effective coupling constants are redefined to show explicit dependence on a weak background magnetic field. Ratios between the effective coupling constants are found in the limit of large quark effective mass and numerical estimates are presented.

  16. Vacuum polarization in the model of Dirac fermions with anomalous magnetic moment interacting with background axial-vector condensate and magnetic field

    Directory of Open Access Journals (Sweden)

    Bubnov A.F.


    Full Text Available In this paper, we consider vacuum polarization effects in the model of charged fermions with anomalous magnetic moment and axial-vector interaction term in a uniform magnetic field. Nontrivial orrections to the effective Lagrangian from the anomalous moment and axial-vector term are calculated with account for various configurations of parameters of the model.

  17. A Novel Rotor and Stator Magnetic Fields Direct-Orthogonalized Vector Control Scheme for the PMSM Servo System

    Directory of Open Access Journals (Sweden)

    Shi-Xiong Zhang


    Full Text Available Permanent Magnet Synchronous motor (PMSM has received widespread acceptance in recent years. In this paper, a new rotor and stator Magnetic Fields Direct-Orthogonalized Vector Control (MFDOVC scheme is proposed for PMSM servo system. This method simplified the complex calculation of traditional vector control, a part of the system resource is economized. At the same time, through the simulation illustration validation, the performance of PMSM servo system with the proposed MFDOVC scheme can achieve the same with the complex traditional vector control method, but much simpler calculation is implemented using the proposed method.

  18. Influence of pulsed electromagnetic and pulsed vector magnetic potential field on the growth of tumor cells. (United States)

    Loja, Tomas; Stehlikova, Olga; Palko, Lukas; Vrba, Kamil; Rampl, Ivan; Klabusay, Martin


    Tumor diseases cause 20% of deaths in Europe and they are the second most common cause of death and morbidity after cardiovascular diseases. Thus, tumor cells are target of many therapeutic strategies and tumor research is focused on searching more efficient and specific drugs as well as new therapeutic approaches. One of the areas of tumor research is an issue of external fields. In our work, we tested influence of a pulsed electromagnetic field (PEMF) and a hypothetic field of the pulsed vector magnetic potential (PVMP) on the growth of tumor cells; and further the possible growth inhibition effect of the PVMP. Both unipolar and bipolar PEMF fields of 5 mT and PVMP fields of 0 mT at frequencies of 15 Hz, 125 Hz and 625 Hz were tested on cancer cell lines derived from various types of tumors: CEM/C2 (acute lymphoblastic leukemia), SU-DHL-4 (B-cell lymphoma), COLO-320DM (colorectal adenocarcinoma), MDA-BM-468 (breast adenocarcinoma), and ZR-75-1 (ductal carcinoma). Cell morphology was observed, proliferation activity using WST assay was measured and simultaneous proportion of live, early apoptotic and dead cells was detected using flow cytometry. A PEMF of 125 Hz and 625 Hz for 24 h-48 h increased proliferation activity in the 2 types of cancer cell lines used, i.e. COLO-320DM and ZR-75-1. In contrast, any of employed methods did not confirm a significant inhibitory effect of hypothetic PVMP field on tumor cells.

  19. Vector description of nonlinear magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Rysak, A. E-mail:; Korczak, S.Z


    The definition of the nonlinear magnetization, which is usually applied in investigating superconductors is discussed in this paper. The nonlinear magnetization of the superconductor, as the response to the alternating magnetic field, is a periodic time function and is determined by the sequence of complex numbers {chi}{sub n}={chi}{sub n}'+i{chi}{sub n}'', n=1,2,3,.... The sequence {chi}{sub n} is named harmonic susceptibility. Finding some limits in this definition we propose a new description, substituting the complex sequence {chi}{sub n} with the sequence of real covariant vectors. Such a definition of the nonlinear magnetization, allows to determine function M(t) of an investigated system for an arbitrary initial phase {theta}{sub o} of the inducing magnetic field H{sub ac}=h{sub ac} sin({omega}t+{theta}{sub o}). Vector description, in our opinion, is superior to the complex one in respect of explicitness, simplicity, and universality. Circular diagrams are used to illustrate the new vector description. We also show how the vectors of the harmonic susceptibility can be derived from both numeric calculations and experimental data.

  20. Complex Polynomial Vector Fields

    DEFF Research Database (Denmark)

    Dias, Kealey

    The two branches of dynamical systems, continuous and discrete, correspond to the study of differential equations (vector fields) and iteration of mappings respectively. In holomorphic dynamics, the systems studied are restricted to those described by holomorphic (complex analytic) functions...... or meromorphic (allowing poles as singularities) functions. There already exists a well-developed theory for iterative holomorphic dynamical systems, and successful relations found between iteration theory and flows of vector fields have been one of the main motivations for the recent interest in holomorphic...... vector fields. Since the class of complex polynomial vector fields in the plane is natural to consider, it is remarkable that its study has only begun very recently. There are numerous fundamental questions that are still open, both in the general classification of these vector fields, the decomposition...

  1. A mathematical model for calculating the vector magnetic field of a single muscle fiber. (United States)

    Wijesinghe, R S


    A mathematical model is described for calculating the volume-conducted magnetic field from active muscle fibers in an anisotropic bundle. With earlier models, the azimuthal magnetic field of a nerve bundle was calculated and the results were compared with the fields measured by toroidal pickup coils. The present model is capable of evaluating all three of the magnetic field components and is thus applicable for analyzing SQUID magnetometer recordings of fields from a muscle bundle. The component of the magnetic field parallel to the fiber axis is more than an order of magnitude smaller than either of the other two components. The amplitude of the magnetic signal is strongly dependent upon the anisotropy of the muscle bundle, the intracellular conductivity, the radius of the muscle fiber, the radius of the muscle bundle, and the location of the fiber in the muscle bundle. The peak-to-peak amplitude of the single-muscle-fiber action field increases linearly with increasing intracellular conductivity, as the square of the radius of the muscle fiber, and exponentially with the distance between the location of the fiber and the center of the bundle.

  2. Three dimensional magnetic fields in extra high speed modified Lundell alternators computed by a combined vector-scalar magnetic potential finite element method (United States)

    Demerdash, N. A.; Wang, R.; Secunde, R.


    A 3D finite element (FE) approach was developed and implemented for computation of global magnetic fields in a 14.3 kVA modified Lundell alternator. The essence of the new method is the combined use of magnetic vector and scalar potential formulations in 3D FEs. This approach makes it practical, using state of the art supercomputer resources, to globally analyze magnetic fields and operating performances of rotating machines which have truly 3D magnetic flux patterns. The 3D FE-computed fields and machine inductances as well as various machine performance simulations of the 14.3 kVA machine are presented in this paper and its two companion papers.

  3. Magnetoacoustic tomography with magnetic induction for high-resolution bioimepedance imaging through vector source reconstruction under the static field of MRI magnet. (United States)

    Mariappan, Leo; Hu, Gang; He, Bin


    Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging modality to reconstruct the electrical conductivity of biological tissue based on the acoustic measurements of Lorentz force induced tissue vibration. This study presents the feasibility of the authors' new MAT-MI system and vector source imaging algorithm to perform a complete reconstruction of the conductivity distribution of real biological tissues with ultrasound spatial resolution. In the present study, using ultrasound beamformation, imaging point spread functions are designed to reconstruct the induced vector source in the object which is used to estimate the object conductivity distribution. Both numerical studies and phantom experiments are performed to demonstrate the merits of the proposed method. Also, through the numerical simulations, the full width half maximum of the imaging point spread function is calculated to estimate of the spatial resolution. The tissue phantom experiments are performed with a MAT-MI imaging system in the static field of a 9.4 T magnetic resonance imaging magnet. The image reconstruction through vector beamformation in the numerical and experimental studies gives a reliable estimate of the conductivity distribution in the object with a ∼ 1.5 mm spatial resolution corresponding to the imaging system frequency of 500 kHz ultrasound. In addition, the experiment results suggest that MAT-MI under high static magnetic field environment is able to reconstruct images of tissue-mimicking gel phantoms and real tissue samples with reliable conductivity contrast. The results demonstrate that MAT-MI is able to image the electrical conductivity properties of biological tissues with better than 2 mm spatial resolution at 500 kHz, and the imaging with MAT-MI under a high static magnetic field environment is able to provide improved imaging contrast for biological tissue conductivity reconstruction.

  4. A combined vector potential-scalar potential method for FE computation of 3D magnetic fields in electrical devices with iron cores (United States)

    Wang, R.; Demerdash, N. A.


    A method of combined use of magnetic vector potential based finite-element (FE) formulations and magnetic scalar potential (MSP) based formulations for computation of three-dimensional magnetostatic fields is introduced. In this method, the curl-component of the magnetic field intensity is computed by a reduced magnetic vector potential. This field intensity forms the basic of a forcing function for a global magnetic scalar potential solution over the entire volume of the region. This method allows one to include iron portions sandwiched in between conductors within partitioned current-carrying subregions. The method is most suited for large-scale global-type 3-D magnetostatic field computations in electrical devices, and in particular rotating electric machinery.

  5. Magnetic Field

    DEFF Research Database (Denmark)

    Olsen, Nils


    of the fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced......he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics...... in the Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field...

  6. Condensation of Neutral Vector Bosons with Magnetic Moment (United States)

    Angulo, Gretel Quintero; Martínez, Aurora Pérez; Rojas, Hugo Pérez

    We study the equation of motion of neutral vector bosons bearing a magnetic moment (MM). The effective rest mass of vector bosons is a decreasing function of the magnetic field intensity. Consequently a diffuse condensation of the bosons appears below a critical value of the field. For typical values of densities and magnetic fields the magnetization is positive and the neutral boson system can maintain a magnetic field self-consistently. A discussion of the relevance in astrophysics is presented.

  7. Algorithms for Computing the Magnetic Field, Vector Potential, and Field Derivatives for a Thin Solenoid with Uniform Current Density

    Energy Technology Data Exchange (ETDEWEB)

    Walstrom, Peter Lowell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    A numerical algorithm for computing the field components Br and Bz and their r and z derivatives with open boundaries in cylindrical coordinates for radially thin solenoids with uniform current density is described in this note. An algorithm for computing the vector potential Aθ is also described. For the convenience of the reader, derivations of the final expressions from their defining integrals are given in detail, since their derivations are not all easily found in textbooks. Numerical calculations are based on evaluation of complete elliptic integrals using the Bulirsch algorithm cel. The (apparently) new feature of the algorithms described in this note applies to cases where the field point is outside of the bore of the solenoid and the field-point radius approaches the solenoid radius. Since the elliptic integrals of the third kind normally used in computing Bz and Aθ become infinite in this region of parameter space, fields for points with the axial coordinate z outside of the ends of the solenoid and near the solenoid radius are treated by use of elliptic integrals of the third kind of modified argument, derived by use of an addition theorem. Also, the algorithms also avoid the numerical difficulties the textbook solutions have for points near the axis arising from explicit factors of 1/r or 1/r2 in the some of the expressions.

  8. Combined magnetic vector-scalar potential finite element computation of 3D magnetic field and performance of modified Lundell alternators in Space Station applications. Ph.D. Thesis (United States)

    Wang, Ren H.


    A method of combined use of magnetic vector potential (MVP) based finite element (FE) formulations and magnetic scalar potential (MSP) based FE formulations for computation of three-dimensional (3D) magnetostatic fields is developed. This combined MVP-MSP 3D-FE method leads to considerable reduction by nearly a factor of 3 in the number of unknowns in comparison to the number of unknowns which must be computed in global MVP based FE solutions. This method allows one to incorporate portions of iron cores sandwiched in between coils (conductors) in current-carrying regions. Thus, it greatly simplifies the geometries of current carrying regions (in comparison with the exclusive MSP based methods) in electric machinery applications. A unique feature of this approach is that the global MSP solution is single valued in nature, that is, no branch cut is needed. This is again a superiority over the exclusive MSP based methods. A Newton-Raphson procedure with a concept of an adaptive relaxation factor was developed and successfully used in solving the 3D-FE problem with magnetic material anisotropy and nonlinearity. Accordingly, this combined MVP-MSP 3D-FE method is most suited for solution of large scale global type magnetic field computations in rotating electric machinery with very complex magnetic circuit geometries, as well as nonlinear and anisotropic material properties.

  9. Weaving Knotted Vector Fields with Tunable Helicity (United States)

    Kedia, Hridesh; Foster, David; Dennis, Mark R.; Irvine, William T. M.


    We present a general construction of divergence-free knotted vector fields from complex scalar fields, whose closed field lines encode many kinds of knots and links, including torus knots, their cables, the figure-8 knot, and its generalizations. As finite-energy physical fields, they represent initial states for fields such as the magnetic field in a plasma, or the vorticity field in a fluid. We give a systematic procedure for calculating the vector potential, starting from complex scalar functions with knotted zero filaments, thus enabling an explicit computation of the helicity of these knotted fields. The construction can be used to generate isolated knotted flux tubes, filled by knots encoded in the lines of the vector field. Lastly, we give examples of manifestly knotted vector fields with vanishing helicity. Our results provide building blocks for analytical models and simulations alike.

  10. Weaving Knotted Vector Fields with Tunable Helicity. (United States)

    Kedia, Hridesh; Foster, David; Dennis, Mark R; Irvine, William T M


    We present a general construction of divergence-free knotted vector fields from complex scalar fields, whose closed field lines encode many kinds of knots and links, including torus knots, their cables, the figure-8 knot, and its generalizations. As finite-energy physical fields, they represent initial states for fields such as the magnetic field in a plasma, or the vorticity field in a fluid. We give a systematic procedure for calculating the vector potential, starting from complex scalar functions with knotted zero filaments, thus enabling an explicit computation of the helicity of these knotted fields. The construction can be used to generate isolated knotted flux tubes, filled by knots encoded in the lines of the vector field. Lastly, we give examples of manifestly knotted vector fields with vanishing helicity. Our results provide building blocks for analytical models and simulations alike.

  11. Algorithms for Computing the Magnetic Field, Vector Potential, and Field Derivatives for Circular Current Loops in Cylindrical Coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Walstrom, Peter Lowell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    A numerical algorithm for computing the field components Br and Bz and their r and z derivatives with open boundaries in cylindrical coordinates for circular current loops is described. An algorithm for computing the vector potential is also described. For the convenience of the reader, derivations of the final expressions from their defining integrals are given in detail, since their derivations (especially for the field derivatives) are not all easily found in textbooks. Numerical calculations are based on evaluation of complete elliptic integrals using the Bulirsch algorithm cel. Since cel can evaluate complete elliptic integrals of a fairly general type, in some cases the elliptic integrals can be evaluated without first reducing them to forms containing standard Legendre forms. The algorithms avoid the numerical difficulties that many of the textbook solutions have for points near the axis because of explicit factors of 1=r or 1=r2 in the some of the expressions.

  12. ABCXYZ: vector potential (A) and magnetic field (B) code (C) for Cartesian (XYZ) geometry using general current elements. [In LRL TRAN for CDC > 600 computer

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.V.; Breazeal, J.; Finan, C.H.; Johnston, B.M.


    ABCXYZ is a computer code for obtaining the Cartesian components of the vector potential and the magnetic field on an observed grid from an arrangement of current-carrying wires. Arbitrary combinations of straight line segments, arcs, and loops are allowed in the specification of the currents. Arbitrary positions and orientations of the current-carrying elements are also allowed. Specification of the wire diameter permits the computation of well-defined fields, even in the interiors of the conductors. An optical feature generates magnetic field lines. Extensive graphical and printed output is available to the user including contour, grid-line, and field-line plots. 12 figures, 1 table.

  13. Deep-sea magnetic vector anomalies over the Hakurei hydrothermal field and the Bayonnaise knoll caldera, Izu-Ogasawara arc, Japan (United States)

    Honsho, Chie; Ura, Tamaki; Kim, Kangsoo


    We conducted deep-sea magnetic measurements using autonomous underwater vehicles in the Bayonnaise knoll caldera, the Izu-Ogasawara island arc, which hosts the large Hakurei hydrothermal field. We improved the conventional correction method applied for removing the effect of vehicle magnetization, thus greatly enhancing the precision of the resulting vector anomalies. The magnetization distribution obtained from the vector anomaly data shows a ˜2 km wide belt of high magnetization, trending NNW-SSE going through the caldera, and a low-magnetization zone ˜300 m by ˜500 m in area, extending over the Hakurei site. Comparison between the results obtained using the vector anomaly and the total intensity anomaly shows that the magnetic field is determined more accurately, especially in areas of sparse data distribution, when the vector anomaly rather than the total intensity anomaly is used. We suggest a geologically motivated model that basaltic volcanism associated with the back-arc rifting occurred after the formation of the caldera, resulting in the formation of the high-magnetization belt underneath the silicic caldera. The Hakurei hydrothermal field lies in the intersection of the basaltic volcanism belt and the caldera wall fault, suggesting a mechanism that hot water generated by the heat of the volcanic activity has been spouting out through the caldera wall fault. The deposit apparently extends beyond the low-magnetization zone, climbing up the caldera wall. This may indicate that hot water rising from the deep through the alteration zone is transported laterally when it comes near the seafloor along fissures and fractures in the caldera wall.

  14. Estimation of Motion Vector Fields

    DEFF Research Database (Denmark)

    Larsen, Rasmus


    This paper presents an approach to the estimation of 2-D motion vector fields from time varying image sequences. We use a piecewise smooth model based on coupled vector/binary Markov random fields. We find the maximum a posteriori solution by simulated annealing. The algorithm generate sample...

  15. Manipulation of p-wave scattering of cold atoms in low dimensions using the magnetic field vector. (United States)

    Peng, Shi-Guo; Tan, Shina; Jiang, Kaijun


    It is well known that the magnetic Feshbach resonances of cold atoms are sensitive to the magnitude of the external magnetic field. Much less attention has been paid to the direction of such a field. In this work we calculate the scattering properties of spin polarized fermionic atoms in reduced dimensions, near a p-wave Feshbach resonance. Because of the spatial anisotropy of the p-wave interaction, the scattering has a nontrivial dependence on both the magnitude and the direction of the magnetic field. In addition, we identify an inelastic scattering process which is impossible in the isotropic-interaction model; the rate of this process depends considerably on the direction of the magnetic field. Significantly, an Einstein-Podolsky-Rosen entangled pair of identical fermions may be produced during this inelastic collision. This work opens a new method to manipulate resonant cold atomic interactions.

  16. Stable piecewise polynomial vector fields

    Directory of Open Access Journals (Sweden)

    Claudio Pessoa


    Full Text Available Let $N={y>0}$ and $S={y<0}$ be the semi-planes of $mathbb{R}^2$ having as common boundary the line $D={y=0}$. Let $X$ and $Y$ be polynomial vector fields defined in $N$ and $S$, respectively, leading to a discontinuous piecewise polynomial vector field $Z=(X,Y$. This work pursues the stability and the transition analysis of solutions of $Z$ between $N$ and $S$, started by Filippov (1988 and Kozlova (1984 and reformulated by Sotomayor-Teixeira (1995 in terms of the regularization method. This method consists in analyzing a one parameter family of continuous vector fields $Z_{epsilon}$, defined by averaging $X$ and $Y$. This family approaches $Z$ when the parameter goes to zero. The results of Sotomayor-Teixeira and Sotomayor-Machado (2002 providing conditions on $(X,Y$ for the regularized vector fields to be structurally stable on planar compact connected regions are extended to discontinuous piecewise polynomial vector fields on $mathbb{R}^2$. Pertinent genericity results for vector fields satisfying the above stability conditions are also extended to the present case. A procedure for the study of discontinuous piecewise vector fields at infinity through a compactification is proposed here.

  17. Vector Fields European user group meeting

    CERN Multimedia


    The "Vector Fields European user group meeting" will take place at CERN on 26 and 27 September 2007. Within this framework two workshops are organized at the CERN Training Centre: 24 September 2007
 Modelling Magnets with Opera 25 September 2007
Modelling of Charged Particle Beam Devices with Opera If you are interested in attending the workshop or the user group meeting please contact Julie Shepherd (Vector Fields) or Pierre Baehler (CERN) directly at:, +44 (0) 1865 854933 or +44 (0) 1865 370151, 75016 / 160156.

  18. Magnetic Field Calculator (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...

  19. Vector fields on singular varieties

    CERN Document Server

    Brasselet, Jean-Paul; Suwa, Tatsuo


    Vector fields on manifolds play a major role in mathematics and other sciences. In particular, the Poincaré-Hopf index theorem gives rise to the theory of Chern classes, key manifold-invariants in geometry and topology. It is natural to ask what is the ‘good’ notion of the index of a vector field, and of Chern classes, if the underlying space becomes singular. The question has been explored by several authors resulting in various answers, starting with the pioneering work of M.-H. Schwartz and R. MacPherson. We present these notions in the framework of the obstruction theory and the Chern-Weil theory. The interplay between these two methods is one of the main features of the monograph.

  20. Strain and vector magnetic field tuning of the anomalous phase in Sr3Ru2O7. (United States)

    Brodsky, Daniel O; Barber, Mark E; Bruin, Jan A N; Borzi, Rodolfo A; Grigera, Santiago A; Perry, Robin S; Mackenzie, Andrew P; Hicks, Clifford W


    A major area of interest in condensed matter physics is the way electrons in correlated electron materials can self-organize into ordered states, and a particularly intriguing possibility is that they spontaneously choose a preferred direction of conduction. The correlated electron metal Sr3Ru2O7 has an anomalous phase at low temperatures that features strong susceptibility toward anisotropic transport. This susceptibility has been thought to indicate a spontaneous anisotropy, that is, electronic order that spontaneously breaks the point-group symmetry of the lattice, allowing weak external stimuli to select the orientation of the anisotropy. We investigate further by studying the response of Sr3Ru2O7 in the region of phase formation to two fields that lift the native tetragonal symmetry of the lattice: in-plane magnetic field and orthorhombic lattice distortion through uniaxial pressure. The response to uniaxial pressure is surprisingly strong: Compressing the lattice by ~0.1% induces an approximately 100% transport anisotropy. However, neither the in-plane field nor the pressure phase diagrams are qualitatively consistent with spontaneous symmetry reduction. Instead, both are consistent with a multicomponent order parameter that is likely to preserve the point-group symmetry of the lattice, but is highly susceptible to perturbation.

  1. The MAVEN Magnetic Field Investigation (United States)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.


    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.

  2. Fourier-transform terahertz near-field imaging of one-dimensional slit arrays : Mapping of electric-field-, magnetic-field-, and Poynting vectors

    NARCIS (Netherlands)

    Seo, M.A.; Adam, A.J.L.; Kang, J.H.; Lee, J.W.; Jeoung, S.C.; Park, Q.H.; Planken, P.C.M.; Kim, D.S.


    We present 2D measurements of the full THz electric field behind a sample consisting of multiple slits in a metal foil. Our measurements, which have a sub-wavelength spatial, and a sub-period temporal resolution, reveal electric field lines, electric field vortices and saddle points. From our

  3. Fourier-transform terahertz near-field imaging of one-dimensional slit arrays : Mapping of electric-field-, magnetic-field-, and Poynting vectors

    NARCIS (Netherlands)

    Seo, M.A.; Adam, A.J.L.; Kang, J.H.; Lee, J.W.; Jeoung, S.C.; Park, Q.H.; Planken, P.C.M.; Kim, D.S.

    We present 2D measurements of the full THz electric field behind a sample consisting of multiple slits in a metal foil. Our measurements, which have a sub-wavelength spatial, and a sub-period temporal resolution, reveal electric field lines, electric field vortices and saddle points. From our

  4. Analysis of regional crustal magnetization in Vector Cartesian Harmonics (United States)

    Gubbins, D.; Ivers, D. J.; Williams, S.


    We introduce a set of basis functions for analysing magnetization in a plane layer, called Vector Cartesian Harmonics, that separate the part of the magnetization responsible for generating the external potential field from the part that generates no observable field. They are counterparts of similar functions defined on a sphere, Vector Spherical Harmonics, which we introduced earlier for magnetization in a spherical shell. We expand four example magnetizations in these functions and determine which parts are responsible for the observed magnetic field above the layer. For a point dipole, the component of magnetization responsible for the external potential field is the sum of a point dipole of half strength and a distributed magnetization that gives the same field. The dipping prism has no magnetic field if magnetized along strike; otherwise it, like the point dipole, has the correct dipping structure but of half the correct intensity accompanied by a distributed magnetization producing the same magnetic field. Interestingly, the distributed magnetization has singularities at the edges of the dipping slab. The buried cube is done numerically and again only a fraction of the true magnetization appears along with distributed magnetizations, strongest at the edges of the cube, making up the rest of the field. The Bishop model, a model of magnetization often used to test analysis methods, behaves similarly. In cases where the magnetization is induced by a known, non-horizontal field it is always possible to recover the vertically averaged susceptibility except for its horizontal average. Simple damped inversion of magnetic data will return only the harmonics responsible for the external field, so the analysis gives a clear indication of how any combination of induced and remanent magnetization would be returned. In practice, most interpretations of magnetic surveys are done in combination with other geological data and insights. We propose using this prior

  5. Advection of vector fields by chaotic flows

    CERN Document Server

    Balmforth, N J; Spiegel, E A


    We have introduced a new transfer operator for chaotic flows whose leading eigenvalue yields the dynamo rate of the fast kinematic dynamo and applied cycle expansion of the Fredholm determinant of the new operator to evaluation of its spectrum. The theory hs been tested on a normal form model of the vector advecting dynamical flow. If the model is a simple map with constant time between two iterations, the dynamo rate is the same as the escape rate of scalar quantties. However, a spread in Poincaré section return times lifts the degeneracy of the vector and scalar advection rates, and leads to dynamo rates that dominate over the scalar advection rates. For sufficiently large time spreads we have even found repellers for which the magnetic field grows exponentially, even though the scalar densities are decaying exponentially.

  6. Cosmological magnetic fields (United States)

    Kunze, Kerstin E.


    Magnetic fields are observed on nearly all scales in the Universe, from stars and galaxies up to galaxy clusters and even beyond. The origin of cosmic magnetic fields is still an open question, however a large class of models puts its origin in the very early Universe. A magnetic dynamo amplifying an initial seed magnetic field could explain the present day strength of the galactic magnetic field. However, it is still an open problem how and when this initial magnetic field was created. Observations of the cosmic microwave background (CMB) provide a window to the early Universe and might therefore be able to tell us whether cosmic magnetic fields are of a primordial cosmological origin and at the same time constrain its parameters. We will give an overview of the observational evidence of large-scale magnetic fields, describe generation mechanisms of primordial magnetic fields and possible imprints in the CMB.

  7. Transversals of Complex Polynomial Vector Fields

    DEFF Research Database (Denmark)

    Dias, Kealey

    Vector fields in the complex plane are defined by assigning the vector determined by the value P(z) to each point z in the complex plane, where P is a polynomial of one complex variable. We consider special families of so-called rotated vector fields that are determined by a polynomial multiplied...... by rotational constants. Transversals are a certain class of curves for such a family of vector fields that represent the bifurcation states for this family of vector fields. More specifically, transversals are curves that coincide with a homoclinic separatrix for some rotation of the vector field. Given...... examples of rotated families to argue this. There will be discussed several open questions concerning the number of transversals that can appear for a certain degree d of a polynomial vector field, and furthermore how transversals are analyzed with respect to bifurcations around multiple equilibrium points....

  8. The Juno Magnetic Field Investigation (United States)

    Connerney, J. E. P.; Benn, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; Murphy, S.; Odom, J.; Oliversen, R.; Schnurr, R.; Sheppard, D.; Smith, E. J.


    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ˜20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 106 nT per axis) with a resolution of ˜0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of

  9. The Juno Magnetic Field Investigation (United States)

    Connerney, J. E. P.; Benn, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; Murphy, S.; Odom, J.; Oliversen, R.; Schnurr, R.; Sheppard, D.; Smith, E. J.


    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ˜20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 106 nT per axis) with a resolution of ˜0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of

  10. The Juno Magnetic Field Investigation (United States)

    Connerney, J. E. P.; Benna, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; hide


    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to approx. 20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 x 10(exp. 6) nT per axis) with a resolution of approx. 0.05 nT in the most sensitive dynamic range (+/-1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through

  11. Facility Measures Magnetic Fields (United States)

    Honess, Shawn B.; Narvaez, Pablo; Mcauley, James M.


    Partly automated facility measures and computes steady near magnetic field produced by object. Designed to determine magnetic fields of equipment to be installed on spacecraft including sensitive magnetometers, with view toward application of compensating fields to reduce interfernece with spacecraft-magnetometer readings. Because of its convenient operating features and sensitivity of its measurements, facility serves as prototype for similar facilities devoted to magnetic characterization of medical equipment, magnets for high-energy particle accelerators, and magnetic materials.

  12. Magnetic Field Grid Calculator (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Properties Calculator will computes the estimated values of Earth's magnetic field(declination, inclination, vertical component, northerly...

  13. Magnetization strucrure of thermal vent on island arc from vector magnetic anomlies using AUV (United States)

    Isezaki, N.; Matsuo, J.; Sayanagi, K.


    The geomagnetic anomaly measured by a scalar magnetometer,such as a proton precession magnetometer cannot be defined its direction, then it does not satisfy the Laplace's equation. Therefore physical formula describing the relation between magnetic field and magnetization cannot be established.Because the difference between results obtained from scalar data and from vector data is very significant, we must use vector magnetic field data for magnetization analyses to get the more reliable and exact solutions. The development program of fundamental tools for exploration of deep seabed resources started with the financial support of the Ministry of Education, Culture, Sports, Science & Technology (MEXT) in 2008 and will end in 2012. In this project, we are developing magnetic exploration tools for seabed resources using AUV (Autonomous Underwater Vehicle) and other deep-towed vehicles to measure not the scalar magnetic field but the vector magnetic field in order to estimate magnetization structure below the sea-floor exactly and precisely. We conducted AUV magnetic survey in 2010 at the thermal area called Hakurei deposit in the Bayonnaise submarine caldera at the southern end of Izu island arc, about 400km south of Tokyo. We analyzed the observed vector magnetic fields to get the vector magnetic anomaly Fields using the method of Isezaki(1984). We inverted these vector magnetic anomaly fields to magnetization structure. CONCLUSIONS 1.The scalar magnetic field TIA (Total Intensity Anomaly) has no physical formula describing the relation between M (Magnetization) and TIA because TIA does not satisfy the Laplace's equation. Then it is impossible to estimate M from TIA. 2.Anlyses of M using TIA have been done so far under assumption TIA=PTA (Projected Total Anomay on MF (Main Geomagnetic Field)), however, which caused the analysis error due to ɛT= TIA - PTA . 3.We succeeded to measure the vector magnetic anomaly fields using AUV despite the severe magnetic noises

  14. Organic magnetic field sensor (United States)

    McCamey, Dane; Boehme, Christoph


    An organic, spin-dependent magnetic field sensor (10) includes an active stack (12) having an organic material with a spin-dependence. The sensor (10) also includes a back electrical contact (14) electrically coupled to a back of the active stack (12) and a front electrical contact (16) electrically coupled to a front of the active stack (12). A magnetic field generator (18) is oriented so as to provide an oscillating magnetic field which penetrates the active stack (12).

  15. Equivalent magnetic vector potential model for low-frequency magnetic exposure assessment (United States)

    Diao, Y. L.; Sun, W. N.; He, Y. Q.; Leung, S. W.; Siu, Y. M.


    In this paper, a novel source model based on a magnetic vector potential for the assessment of induced electric field strength in a human body exposed to the low-frequency (LF) magnetic field of an electrical appliance is presented. The construction of the vector potential model requires only a single-component magnetic field to be measured close to the appliance under test, hence relieving considerable practical measurement effort—the radial basis functions (RBFs) are adopted for the interpolation of discrete measurements; the magnetic vector potential model can then be directly constructed by summing a set of simple algebraic functions of RBF parameters. The vector potentials are then incorporated into numerical calculations as the equivalent source for evaluations of the induced electric field in the human body model. The accuracy and effectiveness of the proposed model are demonstrated by comparing the induced electric field in a human model to that of the full-wave simulation. This study presents a simple and effective approach for modelling the LF magnetic source. The result of this study could simplify the compliance test procedure for assessing an electrical appliance regarding LF magnetic exposure.

  16. Solar Vector Magnetic Field Research

    National Research Council Canada - National Science Library

    Rust, David


    The principal effort was development and flight of the Flare Genesis Experiment (FGE). The FGE is a balloon borne solar telescope that can provide the sharpest view ever of the evolution of activity on the Sun...

  17. Meromorphic Vector Fields and Circle Packings

    DEFF Research Database (Denmark)

    Dias, Kealey

    of dynamical systems, continuous and discrete, correspond to the study of differential equations (vector fields) and iteration of mappings respectively. In holomorphic dynamics, the systems studied are restricted to those described by holomorphic (complex analytic) functions or meromorphic (allowing poles...... problems. Since the class of complex polynomial vector fields in the plane is natural to consider, it is remarkable that its study has only begun very recently. There are numerous fundamental questions that are still open, both in the general classification of these vector fields, the decomposition...

  18. Geoacoustic inversion using the vector field (United States)

    Crocker, Steven E.

    The main goal of this project was to study the use of the acoustic vector field, separately or in combination with the scalar field, to estimate the depth dependent geoacoustic properties of the seafloor via non-linear inversion. The study was performed in the context of the Sediment Acoustics Experiment 2004 (SAX04) conducted in the Northern Gulf of Mexico (GOM) where a small number of acoustic vector sensors were deployed in close proximity to the seafloor. A variety of acoustic waveforms were transmitted into the seafloor at normal incidence. The acoustic vector sensors were located both above and beneath the seafloor interface where they measured the acoustic pressure and the acoustic particle acceleration. Motion data provided by the buried vector sensors were affected by a suspension response that was sensitive to the mass properties of the sensor, the sediment density and sediment elasticity (e.g., shear wave speed). The suspension response for the buried vector sensors included a resonance within the analysis band of 0.4 to 2.0 kHz. The suspension resonance represented an unknown complex transfer function between the acoustic vector field in the seabed and data representing that field. Therefore, inverse methods developed for this study were required to 1) estimate dynamic properties of the sensor suspension resonance and 2) account for the associated corruption of vector field data. A method to account for the vector sensor suspense response function was integrated directly into the inversion methods such that vector channel data corruption was reduced and an estimate of the shear wave speed in the sediment was returned. Inversions of real and synthetic data sets indicated that information about sediment shear wave speed was carried by the suspension response of the buried sensors, as opposed to being contained inherently within the acoustic vector field.

  19. Large-angle magnetization dynamics investigated by vector-resolved magnetization-induced optical second-harmonic generation

    NARCIS (Netherlands)

    Gerrits, T.; Silva, T.J.; Nibarger, J.P.; Rasing, T.H.M.


    We examine the relationship between nonlinear magnetic responses and the change in the Gilbert damping parameter alpha for patterned and unpatterned thin Permalloy films when subjected to pulsed magnetic fields. An improved magnetization-vector-resolved technique utilizing magnetization-induced

  20. Constraints on primordial magnetic fields from inflation (United States)

    Green, Daniel; Kobayashi, Takeshi


    We present generic bounds on magnetic fields produced from cosmic inflation. By investigating field bounds on the vector potential, we constrain both the quantum mechanical production of magnetic fields and their classical growth in a model independent way. For classical growth, we show that only if the reheating temperature is as low as Treh lesssim 102 MeV can magnetic fields of 10-15 G be produced on Mpc scales in the present universe. For purely quantum mechanical scenarios, even stronger constraints are derived. Our bounds on classical and quantum mechanical scenarios apply to generic theories of inflationary magnetogenesis with a two-derivative time kinetic term for the vector potential. In both cases, the magnetic field strength is limited by the gravitational back-reaction of the electric fields that are produced simultaneously. As an example of quantum mechanical scenarios, we construct vector field theories whose time diffeomorphisms are spontaneously broken, and explore magnetic field generation in theories with a variable speed of light. Transitions of quantum vector field fluctuations into classical fluctuations are also analyzed in the examples.

  1. Electric & Magnetic Fields (United States)

    ... Reading Introduction Electric and magnetic fields (EMFs) are invisible areas of energy, often referred to as radiation , ... Abstract ] Staff Directory Freedom of Information Act OIG Web Policies Request Translation Services Employment Verification Contact Us ...

  2. Cosmic magnetic fields

    CERN Document Server

    Sánchez Almeida, Jorge


    Magnetic fields pervade the universe and play an important role in many astrophysical processes. However, they require specialised observational tools, and are challenging to model and understand. This volume provides a unified view of magnetic fields across astrophysical and cosmological contexts, drawing together disparate topics that are rarely covered together. Written by the lecturers of the XXV Canary Islands Winter School, it offers a self-contained introduction to cosmic magnetic fields on a range of scales. The connections between the behaviours of magnetic fields in these varying contexts are particularly emphasised, from the relatively small and close ranges of the Sun, planets and stars, to galaxies and clusters of galaxies, as well as on cosmological scales. Aimed at young researchers and graduate students, this up-to-date review uniquely brings together a subject often tackled by disconnected communities, conveying the latest advances as well as highlighting the limits of our current understandi...

  3. Cosmological magnetic fields - V

    Indian Academy of Sciences (India)

    The field tensor is observer-independent, while the electric and magnetic ... Thus the electric field in the particle frame vanishes: Щ = 0. In the observer's frame, with four velocity. Щ = Щ + Ъ , where Ъ is the relative velocity (Ъ Щ = 0) and we neglect ... The key equation is (8), which is the induction equation in covariant form.

  4. ISR Radial Field Magnet

    CERN Multimedia


    There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water

  5. Vector Fields and Flows on Differentiable Stacks

    DEFF Research Database (Denmark)

    A. Hepworth, Richard


    and uniqueness of flows on a manifold as well as the author's existing results for orbifolds. It sets the scene for a discussion of Morse Theory on a general proper stack and also paves the way for the categorification of other key aspects of differential geometry such as the tangent bundle and the Lie algebra......This paper introduces the notions of vector field and flow on a general differentiable stack. Our main theorem states that the flow of a vector field on a compact proper differentiable stack exists and is unique up to a uniquely determined 2-cell. This extends the usual result on the existence...

  6. Cosmic magnetic fields

    CERN Document Server

    Kronberg, Philipp P


    Magnetic fields are important in the Universe and their effects contain the key to many astrophysical phenomena that are otherwise impossible to understand. This book presents an up-to-date overview of this fast-growing topic and its interconnections to plasma processes, astroparticle physics, high energy astrophysics, and cosmic evolution. The phenomenology and impact of magnetic fields are described in diverse astrophysical contexts within the Universe, from galaxies to the filaments and voids of the intergalactic medium, and out to the largest redshifts. The presentation of mathematical formulae is accessible and is designed to add insight into the broad range of topics discussed. Written for graduate students and researchers in astrophysics and related disciplines, this volume will inspire readers to devise new ways of thinking about magnetic fields in space on galaxy scales and beyond.

  7. Linearization of germs of hyperbolic vector fields

    NARCIS (Netherlands)

    Bonckaert, P; Naudot, [No Value; Yang, JZ


    We develop a normal form to express asymptotically a conjugacy between a germ of resonant vector field and its linear part. We show that such an asymptotic expression can be written in terms of functions of the Logarithmic Mourtada type. To cite this article: P Bonckaert et al., C. R. Acad. Sci.

  8. Perturbations of ultralight vector field dark matter

    CERN Document Server

    Cembranos, J A R; Jareño, S J Núñez


    We study the dynamics of cosmological perturbations in models of dark matter based on ultralight coherent vector fields. Very much as for scalar field dark matter, we find two different regimes in the evolution: for modes with $k^2\\ll {\\cal H}ma$, we have a particle-like behaviour indistinguishable from cold dark matter, whereas for modes with $k^2\\gg {\\cal H}ma$, we get a wave-like behaviour in which the sound speed is non-vanishing and of order $c_s^2\\simeq k^2/m^2a^2$. This implies that, also in these models, structure formation could be suppressed on small scales. However, unlike the scalar case, the fact that the background evolution contains a non-vanishing homogeneous vector field implies that, in general, the evolution of the three kinds of perturbations (scalar, vector and tensor) can no longer be decoupled at the linear level. More specifically, in the particle regime, the three types of perturbations are actually decoupled, whereas in the wave regime, the three vector field perturbations generate o...

  9. Polynomial Vector Fields in One Complex Variable

    DEFF Research Database (Denmark)

    Branner, Bodil

    In recent years Adrien Douady was interested in polynomial vector fields, both in relation to iteration theory and as a topic on their own. This talk is based on his work with Pierrette Sentenac, work of Xavier Buff and Tan Lei, and my own joint work with Kealey Dias....

  10. Wave-vector dependence of magnetic-turbulence spectra in the solar wind. (United States)

    Narita, Y; Glassmeier, K-H; Sahraoui, F; Goldstein, M L


    Using four-point measurements of the Cluster spacecraft, the energy distribution was determined for magnetic field fluctuations in the solar wind directly in the three-dimensional wave-vector domain in the range |k|wave vector anisotropy is estimated with respect to directions parallel and perpendicular to the mean magnetic field, and the result suggests the dominance of quasi-two-dimensional turbulence toward smaller spatial scales.

  11. Field Models in Electricity and Magnetism

    CERN Document Server

    Barba, Paolo Di; Wiak, S


    Covering the development of field computation in the past forty years, Field Models in Electricity and Magnetism intends to be a concise, comprehensive and up-to-date introduction to field models in electricity and magnetism, ranging from basic theory to numerical applications. The approach assumed throughout the whole book is to solve field problems directly from partial differential equations in terms of vector quantities. Theoretical issues are illustrated by practical examples. In particular, a single example is solved by different methods so that, by comparison of results, limitations and advantages of the various methods are made clear. The subjects of the synthesis of fields and of the optimal design of devices, which are growing in research and so far have not been adequately covered in textbooks, are developed in addition to more classical subjects of analysis. Topics covered include: vector fields: electrostatics, magnetostatics, steady conduction; analytical methods for solving boundary-value probl...

  12. ``Massless'' vector field in de Sitter universe (United States)

    Garidi, T.; Gazeau, J.-P.; Rouhani, S.; Takook, M. V.


    We proceed to the quantization of the massless vector field in the de Sitter (dS) space. This work is the natural continuation of a previous article devoted to the quantization of the dS massive vector field [J. P. Gazeau and M. V. Takook, J. Math. Phys. 41, 5920 (2000); T. Garidi et al., ibid. 43, 6379 (2002).] The term ``massless'' is used by reference to conformal invariance and propagation on the dS lightcone whereas ``massive'' refers to those dS fields which unambiguously contract to Minkowskian massive fields at zero curvature. Due to the combined occurrences of gauge invariance and indefinite metric, the covariant quantization of the massless vector field requires an indecomposable representation of the de Sitter group. We work with the gauge fixing corresponding to the simplest Gupta-Bleuler structure. The field operator is defined with the help of coordinate-independent de Sitter waves (the modes). The latter are simple to manipulate and most adapted to group theoretical approaches. The physical states characterized by the divergencelessness condition are, for instance, easy to identify. The whole construction is based on analyticity requirements in the complexified pseudo-Riemannian manifold for the modes and the two-point function.

  13. A vector model for off-axis hysteresis loops using anisotropy field

    Energy Technology Data Exchange (ETDEWEB)

    Jamali, Ali, E-mail: [Electrical and Computer Engineering Department, The George Washington University, Washington, D.C. 20052 (United States); Torre, Edward Della [Electrical and Computer Engineering Department, The George Washington University, Washington, D.C. 20052 (United States); Cardelli, Ermanno [Department of Engineering, University of Perugia, Perugia (Italy); ElBidweihy, Hatem [Electrical and Computer Engineering Department, United States Naval Academy, Annapolis, MD 21402 (United States); Bennett, Lawrence H. [Electrical and Computer Engineering Department, The George Washington University, Washington, D.C. 20052 (United States)


    A model for the off-axis vector magnetization of a distribution of uniaxial particles is presented. Recent work by the authors decomposed the magnetization into two components and modeled the total vector magnetization as their vector sum. In this paper, to account for anisotropy, the direction of the reversible magnetization component is specified by the vector sum of the applied field and an effective anisotropy field. The formulation of the new anisotropy field (AF) model is derived and its results are discussed considering (i) oscillation and rotational modes, (ii) lag angle, and (iii) unitary magnetization. The advantages of the AF model are outlined by comparing its results to the results of the classical Stoner–Wohlfarth model.

  14. Solar Force-free Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Thomas Wiegelmann


    Full Text Available The structure and dynamics of the solar corona is dominated by the magnetic field. In most areas in the corona magnetic forces are so dominant that all non-magnetic forces like plasma pressure gradient and gravity can be neglected in the lowest order. This model assumption is called the force-free field assumption, as the Lorentz force vanishes. This can be obtained by either vanishing electric currents (leading to potential fields or the currents are co-aligned with the magnetic field lines. First we discuss a mathematically simpler approach that the magnetic field and currents are proportional with one global constant, the so-called linear force-free field approximation. In the generic case, however, the relation between magnetic fields and electric currents is nonlinear and analytic solutions have been only found for special cases, like 1D or 2D configurations. For constructing realistic nonlinear force-free coronal magnetic field models in 3D, sophisticated numerical computations are required and boundary conditions must be obtained from measurements of the magnetic field vector in the solar photosphere. This approach is currently of large interests, as accurate measurements of the photospheric field become available from ground-based (for example SOLIS and space-born (for example Hinode and SDO instruments. If we can obtain accurate force-free coronal magnetic field models we can calculate the free magnetic energy in the corona, a quantity which is important for the prediction of flares and coronal mass ejections. Knowledge of the 3D structure of magnetic field lines also help us to interpret other coronal observations, e.g., EUV images of the radiating coronal plasma.

  15. Multifractal vector fields and stochastic Clifford algebra. (United States)

    Schertzer, Daniel; Tchiguirinskaia, Ioulia


    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.

  16. Magnetic fields in diffuse media

    CERN Document Server

    Pino, Elisabete; Melioli, Claudio


    This volume presents the current knowledge of magnetic fields in diffuse astrophysical media. Starting with an overview of 21st century instrumentation to observe astrophysical magnetic fields, the chapters cover observational techniques, origin of magnetic fields, magnetic turbulence, basic processes in magnetized fluids, the role of magnetic fields for cosmic rays, in the interstellar medium and for star formation. Written by a group of leading experts the book represents an excellent overview of the field. Nonspecialists will find sufficient background to enter the field and be able to appreciate the state of the art.

  17. Magnetic Fields And Star Formation (United States)

    Zhang, Qizhou


    Magnetic fields can have a significant effect on the formation and evolution of molecular clouds and the formation of stars. The presence of strong magnetic fields restricts the motion of gas along the magnetic field lines. Therefore, it resists gravitational collapse, hinders mass accretion and suppresses fragmentation. While magnetic fields are an integral part of modern theory of interstellar medium and star formation, their direct measurements have been challenging. In this talk, I'll review recent progress on the observational front of magnetic fields. The emphasis will be on linear polarization of interstellar dust to probe the plane of sky component of magnetic fields.

  18. Coronal Magnetic Field Models (United States)

    Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete


    Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.

  19. On Conformal Vector Fields Parallel to The Observer Field


    Dirmeier, Alexander; Plaue, Matthias; Scherfner, Mike


    We review a theorem by Hasse and Perlick establishing a result characterizing parallax-free cosmological models via three equivalent properties -- namely the existence of a redshift potential, the existence of a conformal vector field parallel to the observer field, and the vanishing of the shear of the observer field together with some integrability condition. We are able to provide a simplified proof using Noether's theorem to calculate a conserved quantity along lightlike geodesics that is...

  20. The Martian magnetic field (United States)

    Russell, C. T.


    The paper presents an overview of the Martian magnetic field measurements and the criticisms made of them. The measurements of the Mars 2, 3, and 5 spacecraft were interpreted by Dolginov et al. (1976, 1978) to be consistent with an intrinsic planetary magnetic moment of 2.5 times 10 to the 22nd power gauss cu cm, basing this result on the apparent size of the obstacle responsible for deflecting the solar wind and an apparent encounter of the spacecraft with the planetary field. It is shown that if the dependence of the Martian magnetic moment on the rotation rate was linear, the estimate of the moment would be far larger than reported by Dolginov et al. An upper limit of 250 km is calculated for the dynamo radius using the similarity law, compared with 500 km obtained by Dolginov et al. It is concluded that the possible strength of a Martian dynamo is below expectations, and it is likely that the Mars dynamo is not presently operative.

  1. Low field magnetic resonance imaging (United States)

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.


    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  2. Magnetic Field Topology in Jets (United States)

    Gardiner, T. A.; Frank, A.


    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  3. The magnetic universe through vector potential SPMHD simulations (United States)

    Stasyszyn, F. A.


    The use of Smoothed Particle Magneto Hydrodynamics (SPMHD) is getting nowadays more and more common in Astrophysics. From galaxy clusters to neutron starts, there are multiple applications already existing in the literature. I will review some of the common methods used and highlight the successful approach of using vector potentials to describe the evolution of the magnetic fields. The latter have some interesting advantages, and their results challenge previous findings, being the magnetic divergence problem naturally vanished. We select a few examples to discuss some areas of interest. First, we show some Galaxy Clusters from the MUSIC project. These cosmological simulations are done with the usual sub-grid recipes, as radiative cooling and star formation, being the first ones obtained with an SPH code in a self consistent way. This demonstrates the robustness of the new method in a variety of astrophysical scenarios.

  4. Delayed versus accelerated quarkonium formation in a magnetic field (United States)

    Suzuki, Kei; Lee, Su Houng


    Formation time of heavy quarkonia in a homogeneous magnetic field is analyzed by using a phenomenological ansatz of the vector current correlator. Because the existence of a magnetic field mixes vector quarkonia (J /ψ , ψ') and their pseudoscalar partners (ηc, ηc'), the properties of the quarkonia can be modified through such a spin mixing. This means that the formation time of quarkonia is also changed by the magnetic field. We show the formation time of vector quarkonia is delayed by an idealized constant magnetic field, where the formation time of the excited state becomes longer than that of the ground state. As a more realistic situation in heavy-ion collisions, effects by a time-dependent magnetic field are also discussed, where delayed formation of J /ψ and ψ' and very early formation of ηc and ηc' are found.

  5. The Heliospheric Magnetic Field

    Directory of Open Access Journals (Sweden)

    Mathew J. Owens


    Full Text Available The heliospheric magnetic field (HMF is the extension of the coronal magnetic field carried out into the solar system by the solar wind. It is the means by which the Sun interacts with planetary magnetospheres and channels charged particles propagating through the heliosphere. As the HMF remains rooted at the solar photosphere as the Sun rotates, the large-scale HMF traces out an Archimedean spiral. This pattern is distorted by the interaction of fast and slow solar wind streams, as well as the interplanetary manifestations of transient solar eruptions called coronal mass ejections. On the smaller scale, the HMF exhibits an array of waves, discontinuities, and turbulence, which give hints to the solar wind formation process. This review aims to summarise observations and theory of the small- and large-scale structure of the HMF. Solar-cycle and cycle-to-cycle evolution of the HMF is discussed in terms of recent spacecraft observations and pre-spaceage proxies for the HMF in geomagnetic and galactic cosmic ray records.

  6. Effect of magnetic field on the propagation of quasi-transverse ...

    Indian Academy of Sciences (India)

    neglecting the displacement current) of electromagnetic field are given by div B = 0,. (4) div D = 0,. (5) curl H = J,. (6) curl E = −Bt. (7) where B = magnetic induction vector, D = electric displacement vector, H = magnetic field vector, J = current density ...

  7. Convergence of Approximate Potential Functions for Vector Field in Electromagnetic Waveguides


    Kubo, Hiroshi; Yasumoto, Kiyotoshi


    The convergence of an approximate electric and an approximate magnetic potential function representing vector field in electromagnetic waveguides is discussed. The two potential functions are expressed in the form of integral of Green's functions and the boundary values of the vector field. Based on these expressions, it is proved that two approximate potential functions converge uniformly to their true potential functions, respectively, when the approximate field satisfies the boundary condi...

  8. Solar Flare Magnetic Fields and Plasmas

    CERN Document Server

    Fisher, George


    This volume is devoted to the dynamics and diagnostics of solar magnetic fields and plasmas in the Sun’s atmosphere. Five broad areas of current research in Solar Physics are presented: (1) New techniques for incorporating radiation transfer effects into three-dimensional magnetohydrodynamic models of the solar interior and atmosphere, (2) The connection between observed radiation processes occurring during flares and the underlying flare energy release and transport mechanisms, (3) The global balance of forces and momenta that occur during flares, (4) The data-analysis and theoretical tools needed to understand and assimilate vector magnetogram observations and (5) Connecting flare and CME phenomena to the topological properties of the magnetic field in the Solar Atmosphere. The role of the Sun’s magnetic field is a major emphasis of this book, which was inspired by a workshop honoring Richard C. (Dick) Canfield.  Dick has been making profound contributions to these areas of research over a long and pro...

  9. Magnetically modified biocells in constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, E.G.; Panina, L.K. [Saint Petersburg State University, St. Petersburg (Russian Federation); Kolikov, V.A., E-mail: [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Bogomolova, E.V. [Botanical Institute of the RAS after V.L.Komarov, St. Petersburg (Russian Federation); Snetov, V.N. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Cherepkova, I.A. [Saint Petersburg State Institute of Technology, St. Petersburg (Russian Federation); Kiselev, A.A. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation)


    Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell’ size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae. - Highlights: • The inverse problem was solved for finding zero velocity isolines of magnetically modified biological cells. • Solution of the inverse problem depends on the size of cells and the number of nanoparticles attached to the single cell. • The experimental data are in agreement with theoretical solution.

  10. Magnetic response to applied electrostatic field in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); University of Florida, Department of Physics, Gainesville, FL (United States); Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Shabad, A.E. [P. N. Lebedev Physics Institute, Moscow (Russian Federation)


    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics. (orig.)

  11. Multiscale vector fields for image pattern recognition (United States)

    Low, Kah-Chan; Coggins, James M.


    A uniform processing framework for low-level vision computing in which a bank of spatial filters maps the image intensity structure at each pixel into an abstract feature space is proposed. Some properties of the filters and the feature space are described. Local orientation is measured by a vector sum in the feature space as follows: each filter's preferred orientation along with the strength of the filter's output determine the orientation and the length of a vector in the feature space; the vectors for all filters are summed to yield a resultant vector for a particular pixel and scale. The orientation of the resultant vector indicates the local orientation, and the magnitude of the vector indicates the strength of the local orientation preference. Limitations of the vector sum method are discussed. Investigations show that the processing framework provides a useful, redundant representation of image structure across orientation and scale.

  12. Vector optical field generation based on birefringent phase plate. (United States)

    Wang, Jiazhou; Cao, Axiu; Pang, Hui; Zhang, Man; Wang, Guangyi; Chen, Jian; Shi, Lifang; Deng, Qiling; Hu, Song


    Vector optical field has recently gained interest in a variety of application fields due to its novel characteristics. Conventional approaches of generating vector optical fields have difficulties in forming highly continuous polarization and suffer from the issue of high energy utilization rates. In order to address these issues, in this study a single optical path was proposed to generate vector optical fields where the birefringent phase plate modulated a linear polarized light into a vector optical field, which was then demodulated to a non-uniform linear polarization distribution of the vector optical field by the polarization demodulation module. Both a theoretical model and numerical simulations of the vector optical field generator were developed, illustrating the relationship between the polarization distribution of the target vector optical field and the depth distribution of the birefringent phase plate. Furthermore, the birefringent phase plate with predefined surface distributions was fabricated by grayscale exposure and ion etching. The generated vector optical field was experimentally characterized, capable of producing continuous polarization with high light energy utilization ratio, consistent with simulations. This new approach may have the potential of being widely used in future studies of generating well-controlled vector optical fields.

  13. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy


    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  14. Magnetic Fields of Massive Stars


    Lundin, Andreas


    This paper is an introduction to the subject of magnetic fields on stars, with a focus on hotter stars. Basic astrophysical concepts are explained, including: spectroscopy, stellar classification, general structure and evolution of stars. The Zeeman effect and how absorption line splitting  is used to detect and measure magnetic fields is explained. The properties of a prominent type of magnetic massive star, Ap-stars, are delved into. These stars have very stable, global, roughly dipolar mag...

  15. Parallel Vector Fields and Einstein Equations of Gravity

    African Journals Online (AJOL)


    106. Parallel Vector Fields and. Einstein Equations of Gravity. By Isidore Mahara. National University of Rwanda. Department of Applied Mathematics. Abstract. In this paper, we prove that no nontrivial timelike or spacelike parallel vector field exists in a region where the gravitational field created by macroscopic bodies and.

  16. Parallel Vector Fields and Einstein Equations of Gravity | Mahara ...

    African Journals Online (AJOL)

    In this paper, we prove that no nontrivial timelike or spacelike parallel vector field exists in a region where the gravitational field created by macroscopic bodies and governed by Einstein's equations does not vanish. In other words, we prove that the existence of such vector fields in a region implies the vanishing of the ...

  17. IMP F and G phase 1 magnetic field analysis (United States)

    Mish, W. H.


    The program developed to analyze magnetic field data from the magnetic field experiment flown in IMP F is reported. The analysis converts the raw X, Y, Z sensor data as received on the magnetic field experiment tape into vector measurements of the ambient magnetic field observed by the experiment. These data are computed for four frames of reference -- apparent, payload, solar ecliptic and solar magnetospheric. In addition 20.45 second statistics are computed for the last three coordinate systems. Finally, a summary tape is produced containing detailed data and sequence statistics as well as the output from the autocorrelation computer, trajectory data and identification information.

  18. Magnetic Field Measurements in Beam Guiding Magnets

    CERN Document Server

    Henrichsen, K N


    Electromagnets used as beam guiding elements in particle accelerators and colliders require very tight tole-rances on their magnetic fields and on their alignment along the particle path. This article describes the methods and equipment used for magnetic measurements in beam transport magnets. Descriptions are given of magnetic resonance techniques, various induction coil methods, Hall generator measurements, the fluxgate magnetometer as well as the recently developed method of beam based alignment. References of historical nature as well as citations of recent work are given. The present commercial availability of the different sensors and asso-ciated equipment is indicated. Finally we shall try to analyze possible future needs for developments in those fields.

  19. Higher topological invariants of magnetic field lines: observational aspects (United States)

    Illarionov, Egor; Smirnov, Alexander; Georgoulis, Manolis K.; Sokoloff, Dmitry; Akhmet'ev, Peter

    Topology of magnetic field lines is directly involved in magnetohydrodynamic (MHD) theorems and equations. Being an invariant of motion in ideal MHD conditions, the magnetic field-line topology is a natural obstacle to the relaxation of magnetic field into a current-free (potential) field and contrariwise limits a dynamo generation. Usage of these conservational laws and writing of numerical relations require a quantification of topology. One of the simplest existing measures of magnetic topology is the mutual magnetic helicity, that expresses the combined action of interaction and linkage between different magnetic field lines. For practical purposes there exists the revised concept of relative magnetic helicity, that allows to estimate the complexity of field-line topology in case of open volume, i.e. when magnetic lines cross the boundaries of given 3D region. At the same time this concept remains a simple interpretation of linkage number in terms of individual lines. Our point however is that magnetic helicity is far from being unique or comprehensive quantification of magnetic field-line topology. To improve the situation we introduce a set of higher invariants which extends the idea of relative helicity and provides a new means to describe the magnetic field-line topology. To practically study the possibility of implementation of higher topological invariants we reconstruct several moments of mutual helicity from observed solar vector magnetograms with extrapolated magnetic field above the photosphere and discuss to what extent such knowledge could be instructive for understanding of the solar magnetic field evolution.

  20. Cosmological magnetic fields

    Indian Academy of Sciences (India)

    Magnetic fields are observed not only in stars, but in galaxies, clusters, and even high redshift Lyman- systems. In principle, these fields could play an important role in structure formation and also affect the anisotropies in the cosmic microwave background radiation (CMB). The study of cosmological magnetic fields aims ...

  1. High Magnetic Fields in Chemistry (United States)

    Steiner, U. E.; Gilch, P.

    Recent applications of large ( 1 T - 30 T) magnetic fields in modern chemical research are reviewed. Magnetic field effects of chemical relevance appear on the levels of quantum mechanics, thermodynamics, and oscopic forces. Quantum mechanical magnetic field effects are governed by the Zeeman interaction and are borne out as static and dynamic effects in spectroscopy and in chemical kinetics. Magnetic circular dichroism (MCD) spectroscopy and magnetic fluorescence quenching in the gas phase serve to illustrate the former, while radical pair spin chemistry is representative of the latter. The principles of the radical pair mechanism are outlined and high-field applications are illustrated in some detail for photo-induced electron transfer reactions of some transition metal complexes. Thermodynamic effects concern the magnetization of chemical samples, which is the focus of magnetochemistry or — more modern — molecular magnetism, and the equilibrium of chemical reactions. Representative examples of both aspects are described. Finally, the exploitation of orientational forces caused by the magnetic anisotropy of larger particles (from omolecules to micro-crystals) is exemplified. Crystal growth in a magnetic field may hold a potential for achieving better control of the quality of protein crystals for structural analysis.

  2. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields (United States)

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki


    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency a laboratory frame. The Fourier-encoded NMR signal is detected.

  3. Rotating superconductor magnet for producing rotating lobed magnetic field lines (United States)

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.


    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  4. Low Cost Magnetic Field Controller

    CERN Document Server

    Malafronte, Alexandre A


    The Physics Institute of the University of São Paulo (IFUSP) is building a continuous wave (cw) racetrack microtron. This machine has several dipole magnets, like the first and second stage recirculators, and a number of smaller ones in the transport line. These magnets must produce very stable magnetic fields to allow the beam to recirculate along very precise orbits and paths. Furthermore, the fields must be reproducible with great accuracy to allow an easier setup of the machine, though the effects of hysteresis tend to jeopardize the reproducibility. If the magnetic field is chosen by setting the current in the coils, temperature effects over the magnet and power supply tend to change the field. This work describes an inexpensive magnetic field controller that allows a direct measure of the magnetic field through an Hall probe. It includes a microcontroller running a feedback algorithm to control the power supply, in order to keep the field stable and reproducible. The controller can also execu...

  5. Resonant magnetic fields from inflation

    CERN Document Server

    Byrnes, Christian T; Jain, Rajeev Kumar; Urban, Federico R


    We propose a novel scenario to generate primordial magnetic fields during inflation induced by an oscillating coupling of the electromagnetic field to the inflaton. This resonant mechanism has two key advantages over previous proposals. First of all, it generates a narrow band of magnetic fields at any required wavelength, thereby allaying the usual problem of a strongly blue spectrum and its associated backreaction. Secondly, it avoids the need for a strong coupling as the coupling is oscillating rather than growing or decaying exponentially. Despite these major advantages, we find that the backreaction is still far too large during inflation if the generated magnetic fields are required to have a strength of ${\\cal O}(10^{-15}\\, \\Gauss)$ today on observationally interesting scales. We provide a more general no-go argument, proving that this problem will apply to any model in which the magnetic fields are generated on subhorizon scales and freeze after horizon crossing.

  6. Phenomenon of the time-reversal violating magnetic field generation by a static electric field in a medium and vacuum


    Baryshevsky, V. G.


    It is shown that the T- and P-odd weak interactions yield to the existence of both electric field and magnetic (directed along the electric field) field around an electric charge. Similarly the assotiated magnetic field is directed along the vector of strength of stationary gravitational field.

  7. Lagrangian vector field and Lagrangian formulation of partial differential equations

    Directory of Open Access Journals (Sweden)



    Full Text Available In this paper we consider the Lagrangian formulation of a system of second order quasilinear partial differential equations. Specifically we construct a Lagrangian vector field such that the flows of the vector field satisfy the original system of partial differential equations.

  8. Design of 2D Time-Varying Vector Fields

    KAUST Repository

    Chen, Guoning


    Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects. © 1995-2012 IEEE.

  9. Student difficulties regarding symbolic and graphical representations of vector fields

    Directory of Open Access Journals (Sweden)

    Laurens Bollen


    Full Text Available The ability to switch between various representations is an invaluable problem-solving skill in physics. In addition, research has shown that using multiple representations can greatly enhance a person’s understanding of mathematical and physical concepts. This paper describes a study of student difficulties regarding interpreting, constructing, and switching between representations of vector fields, using both qualitative and quantitative methods. We first identified to what extent students are fluent with the use of field vector plots, field line diagrams, and symbolic expressions of vector fields by conducting individual student interviews and analyzing in-class student activities. Based on those findings, we designed the Vector Field Representations test, a free response assessment tool that has been given to 196 second- and third-year physics, mathematics, and engineering students from four different universities. From the obtained results we gained a comprehensive overview of typical errors that students make when switching between vector field representations. In addition, the study allowed us to determine the relative prevalence of the observed difficulties. Although the results varied greatly between institutions, a general trend revealed that many students struggle with vector addition, fail to recognize the field line density as an indication of the magnitude of the field, confuse characteristics of field lines and equipotential lines, and do not choose the appropriate coordinate system when writing out mathematical expressions of vector fields.

  10. Student difficulties regarding symbolic and graphical representations of vector fields (United States)

    Bollen, Laurens; van Kampen, Paul; Baily, Charles; Kelly, Mossy; De Cock, Mieke


    The ability to switch between various representations is an invaluable problem-solving skill in physics. In addition, research has shown that using multiple representations can greatly enhance a person's understanding of mathematical and physical concepts. This paper describes a study of student difficulties regarding interpreting, constructing, and switching between representations of vector fields, using both qualitative and quantitative methods. We first identified to what extent students are fluent with the use of field vector plots, field line diagrams, and symbolic expressions of vector fields by conducting individual student interviews and analyzing in-class student activities. Based on those findings, we designed the Vector Field Representations test, a free response assessment tool that has been given to 196 second- and third-year physics, mathematics, and engineering students from four different universities. From the obtained results we gained a comprehensive overview of typical errors that students make when switching between vector field representations. In addition, the study allowed us to determine the relative prevalence of the observed difficulties. Although the results varied greatly between institutions, a general trend revealed that many students struggle with vector addition, fail to recognize the field line density as an indication of the magnitude of the field, confuse characteristics of field lines and equipotential lines, and do not choose the appropriate coordinate system when writing out mathematical expressions of vector fields.

  11. Classification of complex polynomial vector fields in one complex variable

    DEFF Research Database (Denmark)

    Branner, Bodil; Dias, Kealey


    This paper classifies the global structure of monic and centred one-variable complex polynomial vector fields. The classification is achieved by means of combinatorial and analytic data. More specifically, given a polynomial vector field, we construct a combinatorial invariant, describing...... the topology, and a set of analytic invariants, describing the geometry. Conversely, given admissible combinatorial and analytic data sets, we show using surgery the existence of a unique monic and centred polynomial vector field realizing the given invariants. This is the content of the Structure Theorem......, the main result of the paper. This result is an extension and refinement of Douady et al. (Champs de vecteurs polynomiaux sur C. Unpublished manuscript) classification of the structurally stable polynomial vector fields. We further review some general concepts for completeness and show that vector fields...

  12. On Discrete Killing Vector Fields and Patterns on Surfaces

    KAUST Repository

    Ben-Chen, Mirela


    Symmetry is one of the most important properties of a shape, unifying form and function. It encodes semantic information on one hand, and affects the shape\\'s aesthetic value on the other. Symmetry comes in many flavors, amongst the most interesting being intrinsic symmetry, which is defined only in terms of the intrinsic geometry of the shape. Continuous intrinsic symmetries can be represented using infinitesimal rigid transformations, which are given as tangent vector fields on the surface - known as Killing Vector Fields. As exact symmetries are quite rare, especially when considering noisy sampled surfaces, we propose a method for relaxing the exact symmetry constraint to allow for approximate symmetries and approximate Killing Vector Fields, and show how to discretize these concepts for generating such vector fields on a triangulated mesh. We discuss the properties of approximate Killing Vector Fields, and propose an application to utilize them for texture and geometry synthesis. Journal compilation © 2010 The Eurographics Association and Blackwell Publishing Ltd.

  13. Galactic and Intergalactic Magnetic Fields

    National Research Council Canada - National Science Library

    Klein, Ulrich; Fletcher, Andrew


    This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths...

  14. ISR split-field magnet

    CERN Multimedia

    CERN PhotoLab


    The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (experiment R406). The plastic scintillator telescopes are used for precise pulse-height and time-of-flight measurements.

  15. Nanometric alternating magnetic field generator. (United States)

    Espejo, A P; Tejo, F; Vidal-Silva, N; Escrig, J


    In this work we introduce an alternating magnetic field generator in a cylindrical nanostructure. This field appears due to the rotation of a magnetic domain wall located at some position, generating a magnetic region that varies its direction of magnetization alternately, thus inducing an alternating magnetic flux in its vicinity. This phenomenon occurs due to the competition between a spin-polarized current and a magnetic field, which allows to control both the angular velocity and the pinning position of the domain wall. As proof of concept, we study the particular case of a diameter-modulated nanowire with a spin-polarized current along its axis and the demagnetizing field produced by its modulation. This inhomogeneous field allows one to control the angular velocity of the domain wall as a function of its position along the nanowire allowing frequencies in the GHz range to be achieved. This generator could be used in telecommunications for devices in the range of radiofrequencies or, following Faraday's induction law, could also induce an electromotive force and be used as a movable alternate voltage source in future nanodevices.

  16. Mercury's Internal Magnetic Field: Modeling Core Fields with Smooth Inversions (United States)

    Uno, H.; Johnson, C. L.; Anderson, B. J.; Korth, H.; Purucker, M. E.; Solomon, S. C.


    MESSENGER's second flyby (M2) of Mercury on 6 October 2008 will provide significantly improved geographical sampling of the planet's internal magnetic field over previous measurements. Latitudinal coverage and spacecraft altitudes will be similar to those during MESSENGER's first encounter (M1), but the spacecraft trajectory will be displaced by about 180° in longitude, yielding the first magnetic measurements in the western hemisphere. We investigate spatial structure in Mercury's internal magnetic field by applying methods from inverse theory to construct low-degree-and-order spherical harmonic models. External fields predicted by a parameterized magnetospheric model are subtracted from the vector field observations. The approach takes into account noise contributions from long-wavelength uncertainties in the external field models, unexplained short-wavelength features, and spacecraft attitude errors. We investigate the effect of different regularization (smoothness) constraints on our inversions. Analyses of data from M1 and the two Mariner 10 flybys that penetrated the magnetosphere yield a preferred spherical harmonic solution to degree and order eight with the centered, axial dipole term g10 dominating. The model shows structure at low and mid-latitude regions near the flybys. Terms predicted by an analytical model for long- wavelength crustal fields - namely g10, g30 and g32 - are present, but their relative amplitudes are not consistent with such a field. We conclude that structure in our models is dominated by core, rather than by crustal, fields. We also investigate, through simulations, field morphologies that are recoverable while the spacecraft is in orbit about Mercury, under the assumption that the long-wavelength contributions from external sources can be accurately modeled and removed. Although the elliptical orbit of MESSENGER will impede the recovery of southern hemisphere structure, we obtain excellent recovery of the dipole field and of

  17. Three - dimensional magnetic field observation vessel using magnetic fluid


    櫻井, 勇良


    In this study, an observation vessel which could depict magnetic field distributions in threedimensionswas produced. The magnetic field observation vessel was made by putting magnetic fluid and water in a transparent square shaped glass container. Observation of both permanent magnet andelectromagnets was carried out. The movement of the magnetic fluid is different depending on the placement of the magnetic poles. The magnetic fluid showed a tendency to gather near each magnetic pole, when it...

  18. Magnetic fields and coronal heating (United States)

    Golub, L.; Maxson, C.; Rosner, R.; Vaiana, G. S.; Serio, S.


    General considerations concerning the scaling properties of magnetic-field-related coronal heating mechanisms are used to build a two-parameter model for the heating of closed coronal regions. The model predicts the way in which coronal temperature and electron density are related to photospheric magnetic field strength and the size of the region, using the additional constraint provided by the scaling law of Rosner, Tucker, and Vaiana. The model duplicates the observed scaling of total thermal energy content with total longitudinal flux; it also predicts a relation between the coronal energy density (or pressure) and the longitudinal field strength modified by the region scale size.

  19. Analytical Calculation of the Magnetic Field distribution in a Flux-Modulated Permanent-Magnet Brushless Motor

    DEFF Research Database (Denmark)

    Zhang, Xiaoxu; Liu, Xiao; Chen, Zhe


    This paper presents a rapid approach to compute the magnetic field distribution in a flux-modulated permanent-magnet brushless motor. Partial differential equations are used to describe the magnet field behavior in terms of magnetic vector potentials. The whole computational domain is divided...... into several regions, i.e., magnet, air-gaps, slot-openings, and slots. The numerical solution could be obtained by applying the boundary constraints on the interfaces between these regions. The accuracy of the proposed analytical model is verified by comparing the no-load magnetic field and armature reaction...... magnetic field with those calculated by finite element method....

  20. Study of marine magnetic field

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattacharya, G.C.

    ,000nT near the magnetic poles. The dip of the geomagnetic field in the northern hemisphere is downward (+ ve ) towards the north and in the southern hemisphere is upwards (- ve ). This dip is vertical at the magnetic poles and horizontal... synergistic attitude. Essentially, interpretation is a process of trying to reconcile various types of evidence into a complete geologically understandable picture. In practice, by integrating results of other methods, the interpreter derives a...

  1. Indoor localization using magnetic fields (United States)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing

  2. Magnetic field of the Earth (United States)

    Popov, Aleksey


    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  3. Polyethylenimine functionalized magnetic nanoparticles as a potential non-viral vector for gene delivery. (United States)

    Zhou, Yangbo; Tang, Zhaomin; Shi, Chunli; Shi, Shuai; Qian, Zhiyong; Zhou, Shaobing


    Polyethylenimine (PEI) functionalized magnetic nanoparticles were synthesized as a potential non-viral vector for gene delivery. The nanoparticles could provide the magnetic-targeting, and the cationic polymer PEI could condense DNA and avoid in vitro barriers. The magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction, dynamic light scattering measurements, transmission electron microscopy, vibrating sample magnetometer and atomic force microscopy. Agarose gel electrophoresis was used to asses DNA binding and perform a DNase I protection assay. The Alamar blue assay was used to evaluate negative effects on the metabolic activity of cells incubated with PEI modified magnetic nanoparticles and their complexes with DNA both in the presence or absence of an external magnetic field. Flow cytometry and fluorescent microscopy were also performed to investigate the transfection efficiency of the DNA-loaded magnetic nanoparticles in A549 and B16-F10 tumor cells with (+M) or without (-M) the magnetic field. The in vitro transfection efficiency of magnetic nanoparticles was improved obviously in a permanent magnetic field. Therefore, the magnetic nanoparticles show considerable potential as nanocarriers for gene delivery.

  4. Non-existence of limit cycles for planar vector fields

    Directory of Open Access Journals (Sweden)

    Jaume Gine


    Full Text Available This article presents sufficient conditions for the non-existence of limit cycles for planar vector fields. Classical methods for the nonexistence of limit cycles are connected with the theory developed here.

  5. Lipschitz estimates for convex functions with respect to vector fields

    Directory of Open Access Journals (Sweden)

    Valentino Magnani


    Full Text Available We present Lipschitz continuity estimates for a class of convex functions with respect to Hörmander vector fields. These results have been recently obtained in collaboration with M. Scienza, [22].

  6. Use of along-track magnetic field differences in lithospheric field modelling

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Finlay, Chris; Olsen, Nils


    We demonstrate that first differences of polar orbiting satellite magnetic data in the along-track direction can be used to obtain high resolution models of the lithospheric field. Along-track differences approximate the north–south magnetic field gradients for non-polar latitudes. In a test case......, using 2 yr of low altitude data from the CHAMP satellite, we show that use of along-track differences of vector field data results in an enhanced recovery of the small scale lithospheric field, compared to the use of the vector field data themselves. We show that the along-track technique performs....... Experiments in modelling the Earth's lithospheric magnetic field with along-track differences are presented here as a proof of concept. We anticipate that use of such along-track differences in combination with east–west field differences, as are now provided by the Swarm satellite constellation...

  7. Cheng Weyl vector field and its cosmological application (United States)

    Wei, Hao; Cai, Rong-Gen


    Weyl's idea on scale invariance was resurrected by Cheng in 1988. The requirement of local scale invariance leads to a completely new vector field, which we call the 'Cheng Weyl vector field'. The Cheng Weyl vector field couples only to a scalar field and the gravitational field naturally. It does not interact with other known matter in the standard model of particle physics. In the present work, the (generalized) Cheng Weyl vector field coupled with the scalar field and its cosmological application are investigated. A mixture of the scalar field and a so-called 'cosmic triad' of three mutually orthogonal Cheng Weyl vector fields is regarded as the dark energy in the universe. The cosmological evolution of this 'mixed' dark energy model is studied. We find that the effective equation-of-state parameter of the dark energy can cross the phantom divide wde = -1 in some cases; the first and second cosmological coincidence problems can be alleviated at the same time in this model.

  8. Attenuated Vector Tomography -- An Approach to Image Flow Vector Fields with Doppler Ultrasonic Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qiu; Peng, Qiyu; Huang, Bin; Cheryauka, Arvi; Gullberg, Grant T.


    The measurement of flow obtained using continuous wave Doppler ultrasound is formulated as a directional projection of a flow vector field. When a continuous ultrasound wave bounces against a flowing particle, a signal is backscattered. This signal obtains a Doppler frequency shift proportional to the speed of the particle along the ultrasound beam. This occurs for each particle along the beam, giving rise to a Doppler velocity spectrum. The first moment of the spectrum provides the directional projection of the flow along theultrasound beam. Signals reflected from points further away from the detector will have lower amplitude than signals reflected from points closer to the detector. The effect is very much akin to that modeled by the attenuated Radon transform in emission computed tomography.A least-squares method was adopted to reconstruct a 2D vector field from directional projection measurements. Attenuated projections of only the longitudinal projections of the vector field were simulated. The components of the vector field were reconstructed using the gradient algorithm to minimize a least-squares criterion. This result was compared with the reconstruction of longitudinal projections of the vector field without attenuation. Ifattenuation is known, the algorithm was able to accurately reconstruct both components of the full vector field from only one set of directional projection measurements. A better reconstruction was obtained with attenuation than without attenuation implying that attenuation provides important information for the reconstruction of flow vector fields.This confirms previous work where we showed that knowledge of the attenuation distribution helps in the reconstruction of MRI diffusion tensor fields from fewer than the required measurements. In the application of ultrasound the attenuation distribution is obtained with pulse wave transmission computed tomography and flow information is obtained with continuous wave Doppler.

  9. Magnetic vector rotation in response to the energetic electron beam during a flare (United States)

    Xu, Yan; Cao, Wenda; Kwangsu, Ahn; Jing, Ju; Liu, Chang; Chae, Jongchul; Huang, Nengyi; Deng, Na; Gary, Dale E.; Wang, Haimin


    As one of the most violent forms of eruption on the Sun, flares are believed to be powered by magnetic reconnection, by which stored magnetic energy is released. The fundamental physical processes involving the release, transfer and deposition of energy in multiple layers of the solar atmosphere have been studied extensively with significant progress. Taking advantage of recent developments in observing facilities, new phenomena are continually revealed, bringing new understanding of solar flares. Here we report the discovery of a transient rotation of vector magnetic fields associated with a flare observed by the 1.6-m New Solar Telescope at Big Bear Solar Observatory. After ruling out the possibility that the rotation is caused by line profile changes due to flare heating, our observation shows that the transverse field rotateded by about 12-20 degrees counterclockwise, and returned quickly to previous values after the flare ribbons swept through. More importantly, as a consequence of the rotation, the flare loops untwisted and became more potential. The vector magnetograms were obtained in the near infrared at 1560 nm, which is minimally affected by flare emission and no intensity profile change was detected. Therefore, we believe that these transient changes are real, and conclude the high energy electron beams play an crucial role in the field changes. A straightforward and instructive explanation is that the induced magnetic field of the electron beam superimposed on the pre-flare field leads to a transient rotation of the overall field.

  10. Magnetic fields around black holes (United States)

    Garofalo, David A. G.

    Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our

  11. Full vector spherical harmonic analysis of the Holocene geomagnetic field (United States)

    Richardson, Marcia

    High-quality time-series paleomagnetic measurements have been used to derive spherical harmonic models of Earth's magnetic field for the past 2,000 years. A newly-developed data compilation, PSVMOD2.0 consists of time-series directional and intensity records that significantly improve the data quality and global distribution used to develop previous spherical harmonic models. PSVMOD2.0 consists of 185 paleomagnetic time series records from 85 global sites, including 30 full-vector records (inclination, declination and intensity). It includes data from additional sites in the Southern Hemisphere and Arctic and includes globally distributed sediment relative paleointensity records, significantly improving global coverage over previous models. PSVMOD2.0 records have been assessed in a series of 7 regional intercomparison studies, four in the Northern Hemisphere and 3 in the southern hemisphere. Comparisons on a regional basis have improved the quality and chronology of the data and allowed investigation of spatial coherence and the scale length associated with paleomagnetic secular variation (PSV) features. We have developed a modeling methodology based on nonlinear inversion of the PSVMOD2.0 directional and intensity records. Models of the geomagnetic field in 100-year snapshots have been derived for the past 2,000 with the ultimate goal of developing models spanning the past 8,000 years. We validate the models and the methodology by comparing with the GUFM1 historical models during the 400-year period of overlap. We find that the spatial distribution of sites and quality of data are sufficient to derive models that agree with GUFM1 in the large-scale characteristics of the field. We use the the models derived in this study to downward continue the field to the core-mantle boundary and examine characteristics of the large-scale structure of the magnetic field at the source region. The derived models are temporally consistent from one epoch to the next and exhibit

  12. Magnetic Fields of Neutron Stars (United States)

    Konar, Sushan


    This article briefly reviews our current understanding of the evolution of magnetic fields in neutron stars, which basically defines the evolutionary pathways between different observational classes of neutron stars. The emphasis here is on the evolution in binary systems and the newly emergent classes of millisecond pulsars.

  13. The Juno Magnetic Field Investigation

    DEFF Research Database (Denmark)

    Connerney, J. E. P.; Benn, Mathias; Bjarnø, Jonas Bækby


    , and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of view and also provides a continuous record of radiation exposure. A spacecraft magnetic control program was implemented to provide...

  14. Magnetic fields in Neutron Stars

    NARCIS (Netherlands)

    Viganò, D.; Pons, J.A.; Miralles, J.A.; Rea, N.; Cenarro, A.J.; Figueras, F.; Hernández-Monteagudo, J.; Bueno, T.; Valdivielso, L.


    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing

  15. Spin waves in terbium. III. Magnetic anisotropy at zero wave vector

    DEFF Research Database (Denmark)

    Houmann, Jens Christian Gylden; Jensen, J.; Touborg, P.


    The energy gap at zero wave vector in the spin-wave dispersion relation of ferromagnetic. Tb has been studied by inelastic neutron scattering. The energy was measured as a function of temperature and applied magnetic field, and the dynamic anisotropy parameters were deduced from the results....... The axial anisotropy is found to depend sensitively on the orientation of the magnetic moments in the basal plane. This behavior is shown to be a convincing indication of considerable two-ion contributions to the magnetic anisotropy at zero wave vector. With the exception of the sixfold basal...... the effects of zero-point deviations from the fully aligned ground state, and we tentatively propose polarization-dependent two-ion couplings as their origin....

  16. Transcranial Magnetic Stimulation: An Automated Procedure to Obtain Coil-specific Models for Field Calculations

    DEFF Research Database (Denmark)

    Madsen, Kristoffer Hougaard; Ewald, Lars; Siebner, Hartwig R.


    Background: Field calculations for transcranial magnetic stimulation (TMS) are increasingly implemented online in neuronavigation systems and in more realistic offline approaches based on finite-element methods. They are often based on simplified and/or non-validated models of the magnetic vector...... potential of the TMS coils. Objective: To develop an approach to reconstruct the magnetic vector potential based on automated measurements. Methods: We implemented a setup that simultaneously measures the three components of the magnetic field with high spatial resolution. This is complemented by a novel...... approach to determine the magnetic vector potential via volume integration of the measured field. Results: The integration approach reproduces the vector potential with very good accuracy. The vector potential distribution of a standard figure-of-eight shaped coil determined with our setup corresponds well...

  17. Low-frequency fluctuations in plasma magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Cable, S.; Tajima, T.


    It is shown that even a non-magnetized plasma with temperature T sustains zero-frequency magnetic fluctuations in thermal equilibrium. Fluctuations in electric and magnetic fields, as well as in densities, are computed. Four cases are studied: a cold, gaseous, isotropic, non-magnetized plasma; a cold, gaseous plasma in a uniform magnetic field; a warm, gaseous plasma described by kinetic theory; and a degenerate electron plasma. For the simple gaseous plasma, the fluctuation strength of the magnetic field as a function of frequency and wavenumber is calculated with the aid of the fluctuation-dissipation theorem. This calculation is done for both collisional and collisionless plasmas. The magnetic field fluctuation spectrum of each plasma has a large zero-frequency peak. The peak is a Dirac {delta}-function in the collisionless plasma; it is broadened into a Lorentzian curve in the collisional plasma. The plasma causes a low frequency cutoff in the typical black-body radiation spectrum, and the energy under the discovered peak approximates the energy lost in this cutoff. When the imposed magnetic field is weak, the magnetic field were vector fluctuation spectra of the two lowest modes are independent of the strength of the imposed field. Further, these modes contain finite energy even when the imposed field is zero. It is the energy of these modes which forms the non-magnetized zero-frequency peak of the isotropic plasma. In deriving these results, a simple relationship between the dispersion relation and the fluctuation power spectrum of electromagnetic waves if found. The warm plasma is shown, by kinetic theory, to exhibit a zero-frequency peak in its magnetic field fluctuation spectrum as well. For the degenerate plasma, we find that electric field fluctuations and number density fluctuations vanish at zero frequency; however, the magnetic field power spectrum diverges at zero frequency.

  18. Elasticity of a magnetic fluid in a strong magnetic field (United States)

    Polunin, V. M.; Ryapolov, P. A.; Platonov, V. B.; Sheldeshova, E. V.; Karpova, G. V.; Aref'ev, I. M.


    Complex measurements of the following elastic-magnetic parameters of a magnetic fluid suspended by magnetic levitation within a horizontal tube in a strong magnetic field were performed: the oscillation frequency and decay coefficient; the static, ponderomotive, and dynamic elasticity coefficients; the fluid displacement under hydrostatic pressure; magnetization curve; and the magnetic field strength and gradient. Calculations based on a model of ponderomotive elasticity with correction for the resistance of a viscous fluid in motion and on the fluid column displacement for two magnetic fluid samples agree well with the experimental magnetization curve. The discussed technique holds promise for research into magnetophoresis and nanoparticle aggregation in magnetic colloids.

  19. Galactic and intergalactic magnetic fields

    CERN Document Server

    Klein, Ulrich


    This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible.In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later c

  20. A Lagrangian for Hamiltonian vector fields on singular Poisson manifolds (United States)

    Turki, Yahya


    On a manifold equipped with a bivector field, we introduce for every Hamiltonian a Lagrangian on paths valued in the cotangent space whose stationary points project onto Hamiltonian vector fields. We show that the remaining components of those stationary points tell whether the bivector field is Poisson or at least defines an integrable distribution-a class of bivector fields generalizing twisted Poisson structures that we study in detail.

  1. A Chargeless Complex Vector Matter Field in Supersymmetric Scenario

    Directory of Open Access Journals (Sweden)

    L. P. Colatto


    Full Text Available We construct and study a formulation of a chargeless complex vector matter field in a supersymmetric framework. To this aim we combine two nochiral scalar superfields in order to take the vector component field to build the chargeless complex vector superpartner where the respective field strength transforms into matter fields by a global U1 gauge symmetry. For the aim of dealing with consistent terms without breaking the global U1 symmetry we imposes a choice to the complex combination revealing a kind of symmetry between the choices and eliminates the extra degrees of freedom which is consistent with the supersymmetry. As the usual case the mass supersymmetric sector contributes as a complement to dynamics of the model. We obtain the equations of motion of the Proca’s type field for the chiral spinor fields and for the scalar field on the mass-shell which show the same mass as expected. This work establishes the first steps to extend the analysis of charged massive vector field in a supersymmetric scenario.

  2. The Juno Magnetic Field Investigation

    DEFF Research Database (Denmark)

    Connerney, J. E. P.; Benn, Mathias; Bjarnø, Jonas Bækby


    suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ∼20 arcsec on a spinning spacecraft) near...... the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of ’s three solar array assemblies. The magnetometer sensors are controlled by independent and functionally...... second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second...

  3. Properties of an axially periodic magnetic field in a betatron

    Energy Technology Data Exchange (ETDEWEB)

    Zvontsov, A.A.; Filinova, V.A.; Chakhlov, V.L.


    It is shown by solving an equation for the vector potential A (r, z) of the magnetic field that under appropriate conditions the focusing properties of a betatron magnetic field are periodic with respect to the z coordinate. Under these conditions there may be several equilibrium orbits lying in parallel planes z = 0, z = z/sub 01/ xxx, z = mz/sub 01/ in the accelerator. An equation is derived for the distance z/sub 01/ between the equilibrium orbit planes for a given orbit radius r/sub 0/ and field decay exponent n/sub 0/. The operation of such accelerators is described.

  4. Quantum Gravity Effects in Scalar, Vector and Tensor Field Propagation (United States)

    Dutta, Anindita

    Quantum theory of gravity deals with the physics of the gravitational field at Planck length scale (10-35 m). Even though it is experimentally hard to reach the Planck length scale, on can look for evidence of quantum gravity that is detectable in astrophysics. In this thesis, we try to find effects of loop quantum gravity corrections on observable phenomena. We show that the quantum fluctuation strain for LIGO data would be 10 -125 on the Earth. Th correction is, however, substantial near the black hole horizon. We discuss the effect of this for scalar field propagation followed by vector and tensor fields. For the scalar field, the correction introduces a new asymmetry; for the vector field, we found a new perturbation solution and for the tensor field, we found the corrected Einstein equations which are yet to solve. These will affect phenomena like Hawking radiation, black hole entropy and gravitational waves.

  5. Exchange coupling in hybrid anisotropy magnetic multilayers quantified by vector magnetometry

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, C., E-mail:; Miles, J. J.; Thomson, T. [School of Computer Science, University of Manchester, Manchester M13 9PL (United Kingdom); Anh Nguyen, T. N. [Materials Physics, School of ICT, KTH Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden); Spintronics Research Group, Laboratory for Nanotechnology (LNT), VNU-HCM, Ho Chi Minh City (Viet Nam); Fang, Y.; Dumas, R. K. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Åkerman, J. [Materials Physics, School of ICT, KTH Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden); Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden)


    Hybrid anisotropy thin film heterostructures, where layers with perpendicular and in-plane anisotropy are separated by a thin spacer, are novel materials for zero/low field spin torque oscillators and bit patterned media. Here, we report on magnetization reversal and exchange coupling in a archetypal Co/Pd (perpendicular)-NiFe (in-plane) hybrid anisotropy system studied using vector vibrating sample magnetometry. This technique allows us to quantify the magnetization reversal in each individual magnetic layer, and measure of the interlayer exchange as a function of non-magnetic spacer thickness. At large (>1 nm) spacer thicknesses Ruderman-Kittel-Kasuya-Yosida-like exchange dominates, with orange-peel coupling providing a significant contribution only for sub-nm spacer thickness.

  6. Interaction between two magnetic dipoles in a uniform magnetic field (United States)

    Ku, J. G.; Liu, X. Y.; Chen, H. H.; Deng, R. D.; Yan, Q. X.


    A new formula for the interaction force between two magnetic dipoles in a uniform magnetic field is derived taking their mutual magnetic interaction into consideration and used to simulate their relative motion. Results show that when the angle β between the direction of external magnetic field and the centerline of two magnetic dipoles is 0 ° or 90 °, magnetic dipoles approach each other or move away from each other in a straight line, respectively. And the time required for them to contact each other from the initial position is related to the specific susceptibility and the diameter of magnetic particles, medium viscosity and magnetic field strength. When β is between 0 ° and 90 °, magnetic dipole pair performs approximate elliptical motion, and the motion trajectory is affected by the specific susceptibility, diameter and medium viscosity but not magnetic field strength. However, time required for magnetic dipoles to complete the same motion trajectory is shorter when adopting stronger magnetic field. Moreover, the subsequent motion trajectory of magnetic dipoles is ascertained once the initial position is set in a predetermined motion trajectory. Additionally, magnetic potential energy of magnetic dipole pairs is transformed into kinetic energy and friction energy during the motion.

  7. Interaction between two magnetic dipoles in a uniform magnetic field

    Directory of Open Access Journals (Sweden)

    J. G. Ku


    Full Text Available A new formula for the interaction force between two magnetic dipoles in a uniform magnetic field is derived taking their mutual magnetic interaction into consideration and used to simulate their relative motion. Results show that when the angle β between the direction of external magnetic field and the centerline of two magnetic dipoles is 0 ° or 90 °, magnetic dipoles approach each other or move away from each other in a straight line, respectively. And the time required for them to contact each other from the initial position is related to the specific susceptibility and the diameter of magnetic particles, medium viscosity and magnetic field strength. When β is between 0 ° and 90 °, magnetic dipole pair performs approximate elliptical motion, and the motion trajectory is affected by the specific susceptibility, diameter and medium viscosity but not magnetic field strength. However, time required for magnetic dipoles to complete the same motion trajectory is shorter when adopting stronger magnetic field. Moreover, the subsequent motion trajectory of magnetic dipoles is ascertained once the initial position is set in a predetermined motion trajectory. Additionally, magnetic potential energy of magnetic dipole pairs is transformed into kinetic energy and friction energy during the motion.

  8. Contributions in anomalous fermion momenta of neutral vector boson in plane-wave field

    CERN Document Server

    Klimenko, E Y


    The contributions of the neutral vector boson to the anomalous magnetic and electric momenta of the polarized fermion moving in the plane-wave electromagnetic field are considered in this paper. The contributions are divided by the fermion spin polarization states, which makes it possible to investigate the important problem on the contributions to the fermion anomalous momenta, coming from the the fermion transition to the intermediate state spin-nonflip or spin flip of fermion

  9. [Sensitivity of the diamagnetic condensed matter to weak magnetic fields]. (United States)

    Kartashov, Iu A; Popov, I V


    It is shown that, under the influence of magnetic field, rotational moments of the same direction appear for all charged particles having the same sign of their charge and freely moving in a thermal fluctuational electromagnetic field in a diamagnetic condensed matter. The magnitude of this rotational moment is proportional to the thermal energy kT and can be substantially increased when the conditions for cyclotron resonance are satisfied. The moments of positively charged particles are directed oppositely to the vector of the magnetic field induction. The so-called "kT problem" has been solved. The evidence for magnetosensitivity is the appearance of rotational moments acting on the particles from the thermal field in the presence of an external magnetic field as a small factor.

  10. Effects of magnetic fields on fibrinolysis (United States)

    Iwasaka, M.; Ueno, S.; Tsuda, H.


    In this study, we investigated the possible effects of magnetic fields on the fibrinolytic process. Fibrin dissolution was observed and the fibrinolytic activities were evaluated. First, fibrinolytic processes in magnetic fields were investigated by the fibrin plate method. We gathered solutions from the dissolved fibrin, and measured mean levels of fibrin degradation products (FDPs) in solutions. Mean levels of FDPs exposed to 8 T magnetic fields were higher than those not exposed to fields. Second, we carried out an experiment to understand how fibrin oriented in a magnetic field dissolves. FDPs in solutions of dissolved fibrins in fibrin plates were assayed. The result was that fibrin gels formed in a magnetic field at 8 T were more soluble than those not formed in a magnetic field. A model based on the diamagnetic properties of macromolecules was explained, and changes of protein concentrations in a solution in gradient magnetic fields were predicted.

  11. Parallel Vector Fields and Einstein Equations of Gravity

    African Journals Online (AJOL)


    107. This paper uses Einstein equations of General Relativity as presented for example in Landau and Lifchitz and standard theorems of Differential. Geometry as presented, for example in Sternberg [3]. 2. Parallel vector fields on Riemannian manifolds. Let M be an n-dimensional Riemannian manifold with metric tensor g.

  12. Desingularization strategies for three-dimensional vector fields

    CERN Document Server

    Torres, Felipe Cano


    For a vector field #3, where Ai are series in X, the algebraic multiplicity measures the singularity at the origin. In this research monograph several strategies are given to make the algebraic multiplicity of a three-dimensional vector field decrease, by means of permissible blowing-ups of the ambient space, i.e. transformations of the type xi=x'ix1, 2s. A logarithmic point of view is taken, marking the exceptional divisor of each blowing-up and by considering only the vector fields which are tangent to this divisor, instead of the whole tangent sheaf. The first part of the book is devoted to the logarithmic background and to the permissible blowing-ups. The main part corresponds to the control of the algorithms for the desingularization strategies by means of numerical invariants inspired by Hironaka's characteristic polygon. Only basic knowledge of local algebra and algebraic geometry is assumed of the reader. The pathologies we find in the reduction of vector fields are analogous to pathologies in the pro...

  13. Magnetic field measuring system for remapping the ORIC magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Mosko, S.W.; Hudson, E.D.; Lord, R.S.; Hensley, D.C.; Biggerstaff, J.A.


    The Holifield Heavy Ion Research Facility will integrate a new 25 MV tandem electrostatic acccelerator into the existing cyclotron laboratory which includes the Oak Ridge Isochronous Cyclotron (ORIC). Computations of ion paths for beam injection from the new tandem into ORIC require field mapping in the regions traversed by the beam. Additional field data is also desired for the higher levels (approx.19 kG) now used for most heavy ion beams. The magnetic field measurement system uses 39 flip coil/current integrator sets with computer controlled data scanning. The coils are spaced radially at 1 inch intervals in an arm which can be rotated azimuthally in 2 degree increments. The entire flip coil assembly can be shifted to larger radii to measure fields beyond the pole boundary. Temperature stabilization of electronic circuitry permits a measurement resolution of +-1 gauss over a dynamic range of +-25,000 gauss. The system will process a scan of 8000 points in about one hour.

  14. Interaction Forces Between Multiple Bodies in a Magnetic Field (United States)

    Joffe, Benjamin


    Some of the results from experiments to determine the interaction forces between multiple bodies in a magnetic field are presented in this paper. It is shown how the force values and the force directions depend on the configuration of the bodies, their relative positions to each other, and the vector of the primary magnetic field. A number of efficient new automatic loading and assembly machines, as well as manipulators and robots, have been created based on the relationship between bodies and magnetic fields. A few of these patented magnetic devices are presented. The concepts involved open a new way to design universal grippers for robot and other kinds of mechanisms for the manipulation of objects. Some of these concepts can be used for space applications.

  15. On the generation of 'strong' magnetic fields (United States)

    Vainshtein, S. I.; Parker, E. N.; Rosner, R.


    We rediscuss the nature of magnetic field generation in astrophysical systems. We show that as a result of ineffective three-dimensional turbulent diffusion in the presence of strong azimuthal magnetic fields, the standard dynamo equations are not likely to provide a reasonable description of magnetic dynamos in systems such as late-type stars and galaxies. Instead, we propose a new set of dynamo equations, which take into account the modifications of turbulent diffusion by strong magnetic fields.

  16. Off disk-center potential field calculations using vector magnetograms (United States)

    Venkatakrishnan, P.; Gary, G. Allen


    A potential field calculation for off disk-center vector magnetograms that uses all the three components of the measured field is investigated. There is neither any need for interpolation of grid points between the image plane and the heliographic plane nor for an extension or a truncation to a heliographic rectangle. Hence, the method provides the maximum information content from the photospheric field as well as the most consistent potential field independent of the viewing angle. The introduction of polarimetric noise produces a less tolerant extrapolation procedure than using the line-of-sight extrapolation, but the resultant standard deviation is still small enough for the practical utility of this method.

  17. Generating the optimal magnetic field for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Insinga, Andrea Roberto; Smith, Anders


    In a magnetic refrigeration device the magnet is the single most expensive component, and therefore it is crucially important to ensure that an effective magnetic field as possible is generated using the least amount of permanent magnets. Here we present a method for calculating the optimal...... remanence distribution for any desired magnetic field. The method is based on the reciprocity theorem, which through the use of virtual magnets can be used to calculate the optimal remanence distribution. Furthermore, we present a method for segmenting a given magnet design that always results...... in the optimal segmentation, for any number of segments specified. These two methods are used to determine the optimal magnet design of a 12-piece, two-pole concentric cylindrical magnet for use in a continuously rotating magnetic refrigeration device....

  18. Magnetic field imaging with nitrogen-vacancy ensembles

    Energy Technology Data Exchange (ETDEWEB)

    Pham, L M; Yeung, T K [School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States); Le Sage, D; Stanwix, P L; Glenn, D; Walsworth, R L [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Trifonov, A; Lukin, M D; Park, H; Yacoby, A [Physics Department, Harvard University, Cambridge, MA 02138 (United States); Cappellaro, P [Nuclear Science and Engineering Department, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Hemmer, P R, E-mail: [Electrical and Computer Engineering Department, Texas AM University, College Station, TX 77843 (United States)


    We demonstrate a method of imaging spatially varying magnetic fields using a thin layer of nitrogen-vacancy (NV) centers at the surface of a diamond chip. Fluorescence emitted by the two-dimensional NV ensemble is detected by a CCD array, from which a vector magnetic field pattern is reconstructed. As a demonstration, ac current is passed through wires placed on the diamond chip surface, and the resulting ac magnetic field patterns are imaged using an echo-based technique with sub-micron resolution over a 140 {mu}mx140 {mu}m field of view, giving single-pixel sensitivity {approx}100 nT/{radical}(Hz). We discuss ongoing efforts to further improve the sensitivity, as well as potential bioimaging applications such as real-time imaging of activity in functional, cultured networks of neurons.

  19. Deformation of Water by a Magnetic Field (United States)

    Chen, Zijun; Dahlberg, E. Dan


    After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

  20. Exploring Magnetic Fields with a Compass (United States)

    Lunk, Brandon; Beichner, Robert


    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…

  1. On the accuracy of palaeopole estimations from magnetic field measurements (United States)

    Vervelidou, F.; Lesur, V.; Morschhauser, A.; Grott, M.; Thomas, P.


    Various techniques have been proposed for palaeopole position estimation based on magnetic field measurements. Such estimates can offer insights into the rotational dynamics and the dynamo history of moons and terrestrial planets carrying a crustal magnetic field. Motivated by discrepancies in the estimated palaeopole positions among various studies regarding the Moon and Mars, we examine the limitations of magnetic field measurements as source of information for palaeopole position studies. It is already known that magnetic field measurements cannot constrain the null space of the magnetization nor its full spectral content. However, the extent to which these limitations affect palaeopole estimates has not been previously investigated in a systematic way. In this study, by means of the vector Spherical Harmonics formalism, we show that inferring palaeopole positions from magnetic field measurements necessarily introduces, explicitly or implicitly, assumptions about both the null space and the full spectral content of the magnetization. Moreover, we demonstrate through synthetic tests that if these assumptions are inaccurate, then the resulting palaeopole position estimates are wrong. Based on this finding, we make suggestions that can allow future palaeopole studies to be conducted in a more constructive way.

  2. Correct definition of the Poynting vector in electrically and magnetically polarizable medium reveals that negative refraction is impossible: comment. (United States)

    Marqués, R


    It is shown that, when all macroscopic currents associated with the electric and magnetic polarizability are properly accounted for, the standard expression for the Poynting vector and the average work exerted by the electric field on the electric charges provide exactly the same value for the heating rate. Therefore, there is no contradiction between negative refraction and thermodynamics.

  3. Improving the magnetic field homogeneity by varying magnetic field structure in a geophone (United States)

    Hong, Li; Wang, Wentao; Yao, Zhenjing; Gao, Qiang; Han, Zhiming


    The magnetic field structure is a key factor that affects performance of the magneto-electric geophone. In order to enhance the magnetic field homogeneity and magnetic induction intensity of the magnetic field structure, this paper proposes a new magnetic field structure. It consists of two cylindrical permanent magnets: an H-type magnetic boot and an external magnetic yoke. The proposed magnetic field structure can broaden the range of a uniform magnetic field and increase the magnetic field intensity of working air-gap. To confirm the validity of the design, the finite element analysis and real measurement experiments were conducted. The finite element simulations using the ANASYS Electromagnetics Suite 17.2.0 showed that the air-gap magnetic induction intensity is increased and the work space with a uniform magnetic field is broadened. Meanwhile, the output voltage of the coil is increased, and the harmonic distortion rate of output voltage is reduced. According to the real measurement experimental results, compared with the traditional magnetic field structure, the uniform range of the magnetic field is improved 23% in the entire air-gap path, and the magnetic induction intensity enhances 24% over the proposed new magnetic field structure.

  4. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence (United States)

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin


    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.

  5. New vector/scalar Overhauser DNP magnetometers POS-4 for magnetic observatories and directional oil drilling support

    Directory of Open Access Journals (Sweden)

    Sapunov V.A., Denisov A.Y., Saveliev D.V., Soloviev A.A., Khomutov S.Y., Borodin P.B., Narkhov E.D., Sergeev A.V., Shirokov A.N.


    Full Text Available This paper covers same results of the research directed at developing an absolute vector proton magnetometer POS-4 based on the switching bias magnetic fields methods. Due to the high absolute precision and stability magnetometer POS-4 found application not only for observatories and to directional drilling support of oi and gas well. Also we discuss the some basic errors of measurements and discuss the long-term experience in the testing of magnetic observatories ART and PARATUNKA.

  6. Dynamic shielding of the magnetic fields

    Directory of Open Access Journals (Sweden)

    RAU, M.


    Full Text Available The paper presents a comparative study of the methods used to control and compensate the direct and alternative magnetic fields. Two frequently used methods in the electromagnetic compatibility of the complex biomagnetism installations were analyzed. The two methods refer to the use of inductive magnetic field sensors (only for alternative fields and of fluxgate magnetometers as active transducers which measures both the direct and alternative components of the magnetic field. The applications of the dynamic control of the magnetic field are: control of the magnetic field of the military ships, control of parasite magnetic field produced by power transformers and the electrical networks, protection of the mass spectrometers, electronic microscopes, SQUID and optical pumping magnetometers for applications in biomagnetism.

  7. Demagnetizing fields in active magnetic regenerators

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Bahl, Christian R.H.; Smith, Anders


    A magnetic material in an externally applied magnetic field will in general experience a spatially varying internal magnetic field due to demagnetizing effects. When the performance of active magnetic regenerators (AMRs) is evaluated using numerical models the internal field is often assumed...... to be spatially constant and equal to the applied field, thus neglecting the demagnetizing field. Furthermore, the experimental magnetocaloric properties used (adiabatic temperature change, isothermal entropy change and specific heat) are often not corrected for demagnetization. The demagnetizing field in an AMR...... is in general both a function of the overall shape of the regenerator and its morphology (packed particles, parallel plates etc.) as well as the magnetization of the material. Due to the pronounced temperature dependence of the magnetization near the Curie temperature, the demagnetization field is also...

  8. Field free line magnetic particle imaging

    CERN Document Server

    Erbe, Marlitt


    Marlitt Erbe provides a detailed introduction into the young research field of Magnetic Particle Imaging (MPI) and field free line (FFL) imaging in particular. She derives a mathematical description of magnetic field generation for FFL imaging in MPI. To substantiate the simulation studies on magnetic FFL generation with a proof-of-concept, the author introduces the FFL field demonstrator, which provides the world's first experimentally generated rotated and translated magnetic FFL field complying with the requirements for FFL reconstruction. Furthermore, she proposes a scanner design of consi

  9. Surface vector mapping of magnetic anomalies over the Moon using Kaguya and Lunar Prospector observations (United States)

    Tsunakawa, Hideo; Takahashi, Futoshi; Shimizu, Hisayoshi; Shibuya, Hidetoshi; Matsushima, Masaki


    We have provided preliminary global maps of three components of the lunar magnetic anomaly on the surface applying the surface vector mapping (SVM) method. The data used in the present study consist of about 5 million observations of the lunar magnetic field at 10-45 km altitudes by Kaguya and Lunar Prospector. The lunar magnetic anomalies were mapped at 0.2° equi-distance points on the surface by the SVM method, showing the highest intensity of 718 nT in the Crisium antipodal region. Overall features on the SVM maps indicate that elongating magnetic anomalies are likely to be dominant on the Moon except for the young large basins with the impact demagnetization. Remarkable demagnetization features suggested by previous studies are also recognized at Hertzsprung and Kolorev craters on the farside. These features indicate that demagnetized areas extend to about 1-2 radii of the basins/craters. There are well-isolated central magnetic anomalies at four craters: Leibnitz, Aitken, Jules Verne, and Grimaldi craters. Their magnetic poles through the dipole source approximation suggest occurrence of the polar wander prior to 3.3-3.5 Ga. When compared with high-albedo markings at several magnetic anomalies such as the Reiner Gamma anomalies, three-dimensional structures of the magnetic field on/near the surface are well correlated with high-albedo areas. These results indicate that the global SVM maps are useful for the study of the lunar magnetic anomalies in comparison with various geological and geophysical data.

  10. Magnetic field mapper based on rotating coils

    CERN Document Server

    AUTHOR|(CDS)2087244; Arpaia, Pasquale

    This thesis presents a magnetic field mapper based on rotating coils. The requirements, the architecture, the conceptual design, and the prototype for straight magnets were shown. The proposed system is made up of a rotating coil transducer and a train-like system for longitudinal motion and positioning inside magnet bore. The mapper allows a localized measurement of magnetic fields and the variation of the harmonic multipole content in the magnet ends. The proof-of-principle demonstration and the experimental characterization of the rotating-coil transducer specifically conceived for mapping validated the main objective of satisfying the magnetic measurement needs of the next generation of compact accelerators.

  11. Electric field vector measurements in a surface ionization wave discharge (United States)

    Goldberg, Benjamin M.; Böhm, Patrick S.; Czarnetzki, Uwe; Adamovich, Igor V.; Lempert, Walter R.


    This work presents the results of time-resolved electric field vector measurements in a short pulse duration (60 ns full width at half maximum), surface ionization wave discharge in hydrogen using a picosecond four-wave mixing technique. Electric field vector components are measured separately, using pump and Stokes beams linearly polarized in the horizontal and vertical planes, and a polarizer placed in front of the infrared detector. The time-resolved electric field vector is measured at three different locations across the discharge gap, and for three different heights above the alumina ceramic dielectric surface, ~100, 600, and 1100 μm (total of nine different locations). The results show that after breakdown, the discharge develops as an ionization wave propagating along the dielectric surface at an average speed of 1 mm ns-1. The surface ionization wave forms near the high voltage electrode, close to the dielectric surface (~100 μm). The wave front is characterized by significant overshoot of both vertical and horizontal electric field vector components. Behind the wave front, the vertical field component is rapidly reduced. As the wave propagates along the dielectric surface, it also extends further away from the dielectric surface, up to ~1 mm near the grounded electrode. The horizontal field component behind the wave front remains quite significant, to sustain the electron current toward the high voltage electrode. After the wave reaches the grounded electrode, the horizontal field component experiences a secondary rise in the quasi-dc discharge, where it sustains the current along the near-surface plasma sheet. The measurement results indicate presence of a cathode layer formed near the grounded electrode with significant cathode voltage fall, ≈3 kV, due to high current density in the discharge. The peak reduced electric field in the surface ionization wave is 85-95 Td, consistent with dc breakdown field estimated from the Paschen curve for

  12. Preparation and characterization of magnetic gene vectors for targeting gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, S.W.; Liu, G. [College of Chemistry, Chemical Engineering and Materials Science and Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, SIP, Suzhou 215123 (China); Hong, R.Y., E-mail: [College of Chemistry, Chemical Engineering and Materials Science and Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, SIP, Suzhou 215123 (China); State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080 (China); Li, H.Z. [State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080 (China); Li, Y.G., E-mail: [Department of radiology, the First Affiliated Hospital of Soochow University, Suzhou 215007 (China); Wei, D.G., E-mail: [Center for Nanoscale Systems, School of Engineering and Applied Science, Harvard University, 11 Oxford Street, Cambridge, MA 02139 (United States)


    Highlights: Black-Right-Pointing-Pointer PEI is ideal candidate polymer for the design of gene delivery systems. Black-Right-Pointing-Pointer PEI-CMD-MNPs exhibited a typical superparamagnetic behavior. Black-Right-Pointing-Pointer PEI-CMD-MNPs were well stable over the entire range of pH and NaCl concentration. Black-Right-Pointing-Pointer DNA-PEI-CMD-MNPs transfected cells by a magnet have higher transfection efficiency and gene expression efficiency. - Abstract: The PEI-CMD-MNPs were successfully prepared by the surface modification of magnetic Fe{sub 3}O{sub 4} nanoparticles with carboxymethyl dextran (CMD) and polyethyleneimine (PEI). The PEI-CMD-MNPs polyplexes exhibited a typical superparamagnetic behavior and were well stable over the entire range of pH and NaCl concentration. These PEI-CMD-MNPs were used as magnetic gene vectors for targeting gene delivery. The prepared MNPs at different surface modification stages were characterized using Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), field emissions canning electron microscopy (FE-SEM), powder X-ray diffraction (XRD) and dynamic laser light scattering (DLS) analysis. The magnetic properties were studied by vibrating sample magnetometer (VSM). To evaluate the performance of the magnetic nanoparticles as gene transfer vector, the PEI-CMD-MNPs were used to delivery green fluorescent protein (GFP) gene into BHK21 cells. The expression of GFP gene was detected by fluorescence microscope. DNA-PEI-CMD-MNPs polyplexes absorbed by the cells were also monitored by Magnetic resonance imaging (MRI). The transfection efficiency and gene expression efficiency of that transfected with a magnet were much higher than that of standard transfection.

  13. Strongly interacting matter in magnetic fields

    CERN Document Server

    Landsteiner, Karl; Schmitt, Andreas; Yee, Ho-Ung


    The physics of strongly interacting matter in an external magnetic field is presently emerging as a topic of great cross-disciplinary interest for particle, nuclear, astro- and condensed matter physicists. It is known that strong magnetic fields are created in heavy ion collisions, an insight that has made it possible to study a variety of surprising and intriguing phenomena that emerge from the interplay of quantum anomalies, the topology of non-Abelian gauge fields, and the magnetic field. In particular, the non-trivial topological configurations of the gluon field induce a non-dissipative electric current in the presence of a magnetic field. These phenomena have led to an extended formulation of relativistic hydrodynamics, called chiral magnetohydrodynamics. Hitherto unexpected applications in condensed matter physics include graphene and topological insulators. Other fields of application include astrophysics, where strong magnetic fields exist in magnetars and pulsars. Last but not least, an important ne...

  14. High magnetic fields science and technology

    CERN Document Server

    Miura, Noboru


    This three-volume book provides a comprehensive review of experiments in very strong magnetic fields that can only be generated with very special magnets. The first volume is entirely devoted to the technology of laboratory magnets: permanent, superconducting, high-power water-cooled and hybrid; pulsed magnets, both nondestructive and destructive (megagauss fields). Volumes 2 and 3 contain reviews of the different areas of research where strong magnetic fields are an essential research tool. These volumes deal primarily with solid-state physics; other research areas covered are biological syst

  15. DC-based magnetic field controller (United States)

    Kotter, D.K.; Rankin, R.A.; Morgan, J.P.


    A magnetic field controller is described for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a Hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage. 1 fig.

  16. DC-based magnetic field controller (United States)

    Kotter, Dale K.; Rankin, Richard A.; Morgan, John P,.


    A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

  17. Rotation invariants of vector fields from orthogonal moments

    Czech Academy of Sciences Publication Activity Database

    Yang, B.; Kostková, Jitka; Flusser, Jan; Suk, Tomáš; Bujack, R.


    Roč. 74, č. 1 (2018), s. 110-121 ISSN 0031-3203 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Vector field * Total rotation * Invariants * Gaussian–Hermite moments * Zernike moments * Numerical stability Subject RIV: JD - Computer Applications, Robotics Impact factor: 4.582, year: 2016 http:// library

  18. Lovelock vacua with a recurrent null vector field

    Czech Academy of Sciences Publication Activity Database

    Ortaggio, Marcello


    Roč. 97, č. 4 (2018), č. článku 044051. ISSN 2470-0010 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : Lovelock gravity * recurrent null vector field Subject RIV: BA - General Mathematics Impact factor: 4.568, year: 2016

  19. Synchrotron Applications of High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)



    This workshop aims at discussing the scientific potential of X-ray diffraction and spectroscopy in magnetic fields above 30 T. Pulsed magnetic fields in the range of 30 to 40 T have recently become available at Spring-8 and the ESRF (European synchrotron radiation facility). This document gathers the transparencies of the 6 following presentations: 1) pulsed magnetic fields at ESRF: first results; 2) X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transition and frustrated magnet; 3) R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}: an ideal system to be studied in X-ray under high magnetic field?; 4) high field studies at the Advanced Photon Source: present status and future plans; 5) synchrotron X-ray diffraction studies under extreme conditions; and 6) projects for pulsed and steady high magnetic fields at the ESRF.

  20. Construction of Solar-Wind-Like Magnetic Fields (United States)

    Roberts, Dana Aaron


    Fluctuations in the solar wind fields tend to not only have velocities and magnetic fields correlated in the sense consistent with Alfven waves traveling from the Sun, but they also have the magnitude of the magnetic field remarkably constant despite their being broadband. This paper provides, for the first time, a method for constructing fields with nearly constant magnetic field, zero divergence, and with any specified power spectrum for the fluctuations of the components of the field. Every wave vector, k, is associated with two polarizations the relative phases of these can be chosen to minimize the variance of the field magnitude while retaining the\\random character of the fields. The method is applied to a case with one spatial coordinate that demonstrates good agreement with observed time series and power spectra of the magnetic field in the solar wind, as well as with the distribution of the angles of rapid changes (discontinuities), thus showing a deep connection between two seemingly unrelated issues. It is suggested that using this construction will lead to more realistic simulations of solar wind turbulence and of the propagation of energetic particles.

  1. Non-force-free solar magnetic fields in magnetohydrostatic equilibrium (United States)

    Comfort, R. H.; Tandberg-Hanssen, E.; Wu, S. T.


    The objective of the paper is to examine a class of non-force-free fields analytically. Specifically, magnetic fields in magnetohydrostatic equilibrium with a plasma in a gravitational field are treated in an approximation of two independent variables but three vector components. Spherical coordinates are emphasized, although the formal results for cylindrical and Cartesian coordinates are presented in the appendices. Formal solutions for the magnetic-field components are obtained in terms of the plasma variables, and field line equations are derived. A final equation governing the plasma variables is then obtained. Procedures are developed for analyzing this equation and obtaining sets of self-consistent particular solutions to the governing equations; a number of such sets of solutions are presented. As an example, one solution set is examined, illustrating the application of the results to the analysis of solar observational data.

  2. Dynamics of magnetic bubbles in acoustic and magnetic fields. (United States)

    Zhao, Xue; Quinto-Su, Pedro A; Ohl, Claus-Dieter


    We report on shelled bubbles that can be manipulated with magnetic fields. The magnetic shell consists of self-assembled magnetic nanoparticles. The magnetic susceptibility of the bubbles is proportional to the surface area, chi_{b}=(9+/-3x10;{-6} m)r;{2} where r is the radius. Magnetic bubbles are compressible in moderate acoustic fields. A bubble with a radius of 121 mum oscillates in resonance in a sound field of 27 kHz with a peak-to-peak radial amplitude of 1.7 mum. The bubble oscillations induce a microstreaming flow with a toroidal vortex at the upper pole of the bubble. Further findings are the longevity of the magnetic bubbles and the ease of manipulation with standard magnets.

  3. Poynting vector analysis for wireless power transfer between magnetically coupled coils with different loads. (United States)

    Guo, Yunsheng; Li, Jiansheng; Hou, Xiaojuan; Lv, Xiaolong; Liang, Hao; Zhou, Ji; Wu, Hongya


    Wireless power transfer is a nonradiative type of transmission that is performed in the near-field region. In this region, the electromagnetic fields that are produced by both the transmitting and receiving coils are evanescent fields, which should not transmit energy. This then raises the question of how the energy can be transferred. Here we describe a theoretical study of the two evanescent field distributions at different terminal loads. It is shown that the essential principle of wireless energy transfer is the superposition of the two evanescent fields, and the resulting superimposed field is mediated through the terminal load. If the terminal load is either capacitive or inductive, then the superimposed field cannot transfer the energy because its Poynting vector is zero; in contrast, if the load is resistive, energy can then be conveyed from the transmitting coil to the receiving coil. The simulation results for the magnetic field distributions and the time-domain current waveforms agree very well with the results of the theoretical analysis. This work thus provides a comprehensive understanding of the energy transfer mechanism involved in the magnetic resonant coupling system.

  4. Magnetic field measurements and mapping techniques

    CERN Multimedia

    CERN. Geneva


    These lectures will present an overview of the most common techniques used for the measurement of magnetic field in accelerator magnets. The formalism for a harmonic description of the magnetic field will be presented, including a discussion of harmonics allowed under various types of symmetries in the magnet. The harmonic coil technique for measurement of field harmonics will be covered in depth. Using examples from recent projects, magnetic measurements will be shown to be a powerful tool for monitoring magnet production. Measurements of magnetic axis using extensions of the harmonic coil technique, as well as other techniques, such as the colloidal cell and stretched wire, will be covered. Topics of interest in superconducting magnets, such as time decay and snapback, requiring relatively fast measurements of the harmonics, will also be described.

  5. Operating a magnetic nozzle helicon thruster with strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kazunori, E-mail:; Komuro, Atsushi; Ando, Akira [Department of Electrical Engineering, Tohoku University, Sendai 980-8579 (Japan)


    A pulsed axial magnetic field up to ∼2.8 kG is applied to a 26-mm-inner-diameter helicon plasma thruster immersed in a vacuum chamber, and the thrust is measured using a pendulum target. The pendulum is located 30-cm-downstream of the thruster, and the thruster rf power and argon flow rate are fixed at 1 kW and 70 sccm (which gives a chamber pressure of 0.7 mTorr). The imparted thrust increases as the applied magnetic field is increased and saturates at a maximum value of ∼9.5 mN for magnetic field above ∼2 kG. At the maximum magnetic field, it is demonstrated that the normalized plasma density, and the ion flow energy in the magnetic nozzle, agree within ∼50% and of 10%, respectively, with a one-dimensional model that ignores radial losses from the nozzle. This magnetic nozzle model is combined with a simple global model of the thruster source that incorporates an artificially controlled factor α, to account for radial plasma losses to the walls, where α = 0 and 1 correspond to zero losses and no magnetic field, respectively. Comparison between the experiments and the model implies that the radial losses in the thruster source are experimentally reduced by the applied magnetic field to about 10% of that obtained from the no magnetic field model.

  6. Magnetic field evolution in tidal disruption events (United States)

    Bonnerot, Clément; Price, Daniel J.; Lodato, Giuseppe; Rossi, Elena M.


    When a star gets tidally disrupted by a supermassive black hole, its magnetic field is expected to pervade its debris. In this paper, we study this process via smoothed particle magnetohydrodynamical simulations of the disruption and early debris evolution including the stellar magnetic field. As the gas stretches into a stream, we show that the magnetic field evolution is strongly dependent on its orientation with respect to the stretching direction. In particular, an alignment of the field lines with the direction of stretching induces an increase of the magnetic energy. For disruptions happening well within the tidal radius, the star compression causes the magnetic field strength to sharply increase by an order of magnitude at the time of pericentre passage. If the disruption is partial, we find evidence for a dynamo process occurring inside the surviving core due to the formation of vortices. This causes an amplification of the magnetic field strength by a factor of ˜10. However, this value represents a lower limit since it increases with numerical resolution. For an initial field strength of 1 G, the magnetic field never becomes dynamically important. Instead, the disruption of a star with a strong 1 MG magnetic field produces a debris stream within which magnetic pressure becomes similar to gas pressure a few tens of hours after disruption. If the remnant of one or multiple partial disruptions is eventually fully disrupted, its magnetic field could be large enough to magnetically power the relativistic jet detected from Swift J1644+57. Magnetized streams could also be significantly thickened by magnetic pressure when it overcomes the confining effect of self-gravity.

  7. The Magnetic Field of the Earth's Lithosphere (United States)

    Thébault, Erwan; Purucker, Michael; Whaler, Kathryn A.; Langlais, Benoit; Sabaka, Terence J.


    The lithospheric contribution to the Earth's magnetic field is concealed in magnetic field data that have now been measured over several decades from ground to satellite altitudes. The lithospheric field results from the superposition of induced and remanent magnetisations. It therefore brings an essential constraint on the magnetic properties of rocks of the Earth's sub-surface that would otherwise be difficult to characterize. Measuring, extracting, interpreting and even defining the magnetic field of the Earth's lithosphere is however challenging. In this paper, we review the difficulties encountered. We briefly summarize the various contributions to the Earth's magnetic field that hamper the correct identification of the lithospheric component. Such difficulties could be partially alleviated with the joint analysis of multi-level magnetic field observations, even though one cannot avoid making compromises in building models and maps of the magnetic field of the Earth's lithosphere at various altitudes. Keeping in mind these compromises is crucial when lithospheric field models are interpreted and correlated with other geophysical information. We illustrate this discussion with recent advances and results that were exploited to infer statistical properties of the Earth's lithosphere. The lessons learned in measuring and processing Earth's magnetic field data may prove fruitful in planetary exploration, where magnetism is one of the few remotely accessible internal properties.

  8. Magnetic field changes associated with a sub-flare and surge (United States)

    Hagyard, M. J.; West, E. A.; Smith, J. E.


    A sub-flare and surge were observed on June 13, 1990, with the Marshall Space Flight Center vector magnetograph and coaligned H-alpha telescope. This activity occurred at the site of a parasitic polarity near a large, mature sunspot. Analysis of the vector magnetic field showed that while flux emergence and other field changes occurred sporadically throughout a period of four days, the sub-flare and surge only took place after an increase in magnetic shear in the field of the parasitic polarity. This event also provided an example of relaxation of magnetic shear following the flare and surging.

  9. The strongest magnetic fields in the universe

    CERN Document Server

    Balogh, A; Falanga, M; Lyutikov, M; Mereghetti, S; Piran, T; Treumann, RA


    This volume extends the ISSI series on magnetic fields in the Universe into the domain of what are by far the strongest fields in the Universe, and stronger than any field that could be produced on Earth. The chapters describe the magnetic fields in non-degenerate strongly magnetized stars, degenerate stars (such as white dwarfs and neutron stars), exotic members called magnetars, and in their environments, as well as magnetic fields in the environments of black holes. These strong fields have a profound effect on the behavior of matter, visible in particular in highly variable processes like radiation in all known wavelengths, including Gamma-Ray bursts. The generation and structure of such strong magnetic fields and effects on the environment are also described.

  10. Magnetic field optimization of permanent magnet undulators for arbitrary polarization (United States)

    Bahrdt, J.; Frentrup, W.; Gaupp, A.; Scheer, M.; Englisch, U.


    Techniques for improving the magnetic field quality of APPLE II undulators are discussed. Individual block characterization including the inhomogeneities of the magnetization permits a precise prediction of field integrals as required for sorting. Specific shimming procedures adapted to the magnetic design of APPLE II undulators have to be employed in order to meet the stringent requirements of insertion devices in third generation synchrotron radiation sources as demonstrated for BESSY.

  11. Reducing Field Distortion in Magnetic Resonance Imaging (United States)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob


    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  12. Magnetic field disturbances in the sheath region of a super-sonic interplanetary magnetic cloud

    Directory of Open Access Journals (Sweden)

    E. Romashets


    Full Text Available It is well-known that interplanetary magnetic clouds can cause strong geomagnetic storms due to the high magnetic field magnitude in their interior, especially if there is a large negative Bz component present. In addition, the magnetic disturbances around such objects can play an important role in their "geo-effectiveness". On the other hand, the magnetic and flow fields in the CME sheath region in front of the body and in the rear of the cloud are important for understanding both the dynamics and the evolution of the interplanetary cloud. The "eventual" aim of this work is to calculate the magnetic field in this CME sheath region in order to evaluate the possible geo-efficiency of the cloud in terms of the maximum |Bz|-component in this region. In this paper we assess the potential of this approach by introducing a model with a simplified geometry. We describe the magnetic field between the CME shock surface and the cloud's boundary by means of a vector potential. We also apply our model and present the magnetic field distribution in the CME sheath region in front of the body and in the rear of the cloud formed after the event of 20 November 2003.

  13. Magnetic field disturbances in the sheath region of a super-sonic interplanetary magnetic cloud

    Directory of Open Access Journals (Sweden)

    E. Romashets


    Full Text Available It is well-known that interplanetary magnetic clouds can cause strong geomagnetic storms due to the high magnetic field magnitude in their interior, especially if there is a large negative Bz component present. In addition, the magnetic disturbances around such objects can play an important role in their "geo-effectiveness". On the other hand, the magnetic and flow fields in the CME sheath region in front of the body and in the rear of the cloud are important for understanding both the dynamics and the evolution of the interplanetary cloud. The "eventual" aim of this work is to calculate the magnetic field in this CME sheath region in order to evaluate the possible geo-efficiency of the cloud in terms of the maximum |Bz|-component in this region. In this paper we assess the potential of this approach by introducing a model with a simplified geometry. We describe the magnetic field between the CME shock surface and the cloud's boundary by means of a vector potential. We also apply our model and present the magnetic field distribution in the CME sheath region in front of the body and in the rear of the cloud formed after the event of 20 November 2003.

  14. Localization of vector field on dynamical domain wall

    Directory of Open Access Journals (Sweden)

    Masafumi Higuchi


    Full Text Available In the previous works (arXiv:1202.5375 and arXiv:1402.1346, the dynamical domain wall, where the four dimensional FRW universe is embedded in the five dimensional space–time, has been realized by using two scalar fields. In this paper, we consider the localization of vector field in three formulations. The first formulation was investigated in the previous paper (arXiv:1510.01099 for the U(1 gauge field. In the second formulation, we investigate the Dvali–Shifman mechanism (arXiv:hep-th/9612128, where the non-abelian gauge field is confined in the bulk but the gauge symmetry is spontaneously broken on the domain wall. In the third formulation, we investigate the Kaluza–Klein modes coming from the five dimensional graviton. In the Randall–Sundrum model, the graviton was localized on the brane. We show that the (5,μ components (μ=0,1,2,3 of the graviton are also localized on the domain wall and can be regarded as the vector field on the domain wall. There are, however, some corrections coming from the bulk extra dimension if the domain wall universe is expanding.

  15. The Local Stellar Velocity Field via Vector Spherical Harmonics (United States)

    Makarov, V. V.; Murphy, D. W.


    We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism.We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) = (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) = (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star...

  16. Magnetization dynamics under electromagnetic fields in the wavepacket methods (United States)

    Xiong, Bangguo; Chen, Hua; Li, Xiao; Niu, Qian

    In this work we try to understand the magnetization dynamics in magnetic materials with electrons described by the semiclasscial wavepacket methods. Using the Lagrangian of electron wavepackets under slowly varying magnetization, we can explicitly write down the dynamic equations for both electrons and magnetization order, where the mutual interplay between the two presents itself naturally. It turns out that, more general than LLG equation, the magnetization dynamics is written as a first order differential equation as for a general vector, which allows a detailed discussion on physical process studied before, such as spin transfer torque, spin orbital torque and damping mechanism, and also gives the vortex-like torques that can pump energy into the system. Since electrons are easy to control by electromagnetic fields, we expect a theory that electromagnetic fields through coupling to electrons can be used to manipulate the magnetization. It is interesting that this formalism on magnetization dynamics can be used to study the electromagnetic response of bulk electrons, from which the current and magnetization expressions are extracted that match well with previous studies.

  17. Observations of Cool-Star Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Ansgar Reiners


    Full Text Available Cool stars like the Sun harbor convection zones capable of producing substantial surface magnetic fields leading to stellar magnetic activity. The influence of stellar parameters like rotation, radius, and age on cool-star magnetism, and the importance of the shear layer between a radiative core and the convective envelope for the generation of magnetic fields are keys for our understanding of low-mass stellar dynamos, the solar dynamo, and also for other large-scale and planetary dynamos. Our observational picture of cool-star magnetic fields has improved tremendously over the last years. Sophisticated methods were developed to search for the subtle effects of magnetism, which are difficult to detect particularly in cool stars. With an emphasis on the assumptions and capabilities of modern methods used to measure magnetism in cool stars, I review the different techniques available for magnetic field measurements. I collect the analyses on cool-star magnetic fields and try to compare results from different methods, and I review empirical evidence that led to our current picture of magnetic fields and their generation in cool stars and brown dwarfs.

  18. Control of magnetism by electric fields. (United States)

    Matsukura, Fumihiro; Tokura, Yoshinori; Ohno, Hideo


    The electrical manipulation of magnetism and magnetic properties has been achieved across a number of different material systems. For example, applying an electric field to a ferromagnetic material through an insulator alters its charge-carrier population. In the case of thin films of ferromagnetic semiconductors, this change in carrier density in turn affects the magnetic exchange interaction and magnetic anisotropy; in ferromagnetic metals, it instead changes the Fermi level position at the interface that governs the magnetic anisotropy of the metal. In multiferroics, an applied electric field couples with the magnetization through electrical polarization. This Review summarizes the experimental progress made in the electrical manipulation of magnetization in such materials, discusses our current understanding of the mechanisms, and finally presents the future prospects of the field.

  19. Observing Interstellar and Intergalactic Magnetic Fields (United States)

    Han, J. L.


    Observational results of interstellar and intergalactic magnetic fields are reviewed, including the fields in supernova remnants and loops, interstellar filaments and clouds, Hii regions and bubbles, the Milky Way and nearby galaxies, galaxy clusters, and the cosmic web. A variety of approaches are used to investigate these fields. The orientations of magnetic fields in interstellar filaments and molecular clouds are traced by polarized thermal dust emission and starlight polarization. The field strengths and directions along the line of sight in dense clouds and cores are measured by Zeeman splitting of emission or absorption lines. The large-scale magnetic fields in the Milky Way have been best probed by Faraday rotation measures of a large number of pulsars and extragalactic radio sources. The coherent Galactic magnetic fields are found to follow the spiral arms and have their direction reversals in arms and interarm regions in the disk. The azimuthal fields in the halo reverse their directions below and above the Galactic plane. The orientations of organized magnetic fields in nearby galaxies have been observed through polarized synchrotron emission. Magnetic fields in the intracluster medium have been indicated by diffuse radio halos, polarized radio relics, and Faraday rotations of embedded radio galaxies and background sources. Sparse evidence for very weak magnetic fields in the cosmic web is the detection of the faint radio bridge between the Coma cluster and A1367. Future observations should aim at the 3D tomography of the large-scale coherent magnetic fields in our Galaxy and nearby galaxies, a better description of intracluster field properties, and firm detections of intergalactic magnetic fields in the cosmic web.

  20. Low-degree Structure in Mercury's Planetary Magnetic Field (United States)

    Anderson, Brian J.; Johnson, Catherine L.; Korth, Haje; Winslow, Reka M.; Borovsky, Joseph E.; Purucker, Michael E.; Slavin, James A.; Solomon, Sean C.; Zuber, Maria T.; McNutt, Ralph L. Jr.


    The structure of Mercury's internal magnetic field has been determined from analysis of orbital Magnetometer measurements by the MESSENGER spacecraft. We identified the magnetic equator on 531 low-altitude and 120 high-altitude equator crossings from the zero in the radial cylindrical magnetic field component, Beta (sub rho). The low-altitude crossings are offset 479 +/- 6 km northward, indicating an offset of the planetary dipole. The tilt of the magnetic pole relative to the planetary spin axis is less than 0.8 deg.. The high-altitude crossings yield a northward offset of the magnetic equator of 486 +/- 74 km. A field with only nonzero dipole and octupole coefficients also matches the low-altitude observations but cannot yield off-equatorial Beta (sub rho) = 0 at radial distances greater than 3520 km. We compared offset dipole and other descriptions of the field with vector field observations below 600 km for 13 longitudinally distributed, magnetically quiet orbits. An offset dipole with southward directed moment of 190 nT-R-cube (sub M) yields root-mean-square (RMS) residuals below 14 nT, whereas a field with only dipole and octupole terms tuned to match the polar field and the low-altitude magnetic equator crossings yields RMS residuals up to 68 nT. Attributing the residuals from the offset-dipole field to axial degree 3 and 4 contributions we estimate that the Gauss coefficient magnitudes for the additional terms are less than 4% and 7%, respectively, relative to the dipole. The axial alignment and prominent quadrupole are consistent with a non-convecting layer above a deep dynamo in Mercury's fluid outer core.

  1. Two-Point Correlators of Fermionic Currents in External Magnetic Field (United States)

    Dobrynina, Alexandra; Karabanov, Ilya; Parkhomenko, Alexander; Vassilevskaya, Lubov


    We study the two-point correlation functions under an influence of the constant homogeneous magnetic field. In addition to the correlators of scalar, pseudoscalar, vector and axial-vector fermionic currents, we calculate the non-diagonal one including the tensor and pseudoscalar currents. The tensor current is a fermionic part of the Pauli Lagrangian relevant for the electromagnetic interaction of fermions through the anomalous magnetic moment. Its contribution to the photon polarization operator is briefly discussed.

  2. DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)

    DEFF Research Database (Denmark)

    Swierczynski, Dariusz; Kazmierkowski, Marian P.; Blaabjerg, Frede


    DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)......DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)...

  3. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Soto-Aquino, D. [ERC Incorporated, Air Force Research Laboratory, 10 E. Saturn Blvd., Edwards AFB, CA 93524 (United States); Rinaldi, C., E-mail: [J. Crayton Pruitt Family Department of Biomedical Engineering and Department of Chemical Engineering, University of Florida, PO Box 116131, Gainesville, FL 32611-6131 (United States)


    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given. - Highlights: • Rosensweig's model for SAR was extended to high fields. • The MRSh relaxation equation was used to predict SAR at high fields. • Rotational Brownian dynamics simulations were used to predict SAR. • The results of these models were compared. • Predictions of effect of size and field conditions on SAR are presented.

  4. Earth magnetism a guided tour through magnetic fields

    CERN Document Server

    Campbell, Wallace H


    An introductory guide to global magnetic field properties, Earth Magnetism addresses, in non-technical prose, many of the frequently asked questions about Earth''s magnetic field. Magnetism surrounds and penetrates our Earth in ways basic science courses can rarely address. It affects navigation, communication, and even the growth of crystals. As we observe and experience an 11-year solar maximum, we may witness spectacular satellite-destroying solar storms as they interact with our magnetic field. Written by an acknowledged expert in the field, this book will enrich courses in earth science, atmospheric science, geology, meteorology, geomagnetism, and geophysics. Contains nearly 200 original illustrations and eight pages of full-color plates.* Largely mathematics-free and with a wide breadth of material suitable for general readers* Integrates material from geomagnetism, paleomagnetism, and solar-terrestrial space physics.* Features nearly 200 original illustrations and 4 pages of colour plates

  5. Duality between magnetic field and rotation

    Energy Technology Data Exchange (ETDEWEB)

    Dzhunushaliev, V. [Department of Physics and Microelectric Engineering, KRSU, Kievskaya Str. 44, Bishkek 720021 (Kyrgyzstan)]. E-mail:


    It is shown that in 5D Kaluza-Klein theory there are everywhere regular wormhole-like solutions in which the magnetic field at the center is the origin of a rotation on the peripheral part of these solutions. The time on the peripheral part is topologically non-trivial and magnetic field is suppressed in comparison with the electric one.

  6. Helical Magnetic Fields in AGN Jets

    Indian Academy of Sciences (India)

    We establish a simple model to describe the helical magnetic fields in AGN jets projected on the sky plane and the line-of-sight. This kind of profile has been detected in the polarimetric VLBI observation of many blazar objects, suggesting the existence of helical magnetic fields in these sources.

  7. Magnetic Fields at the Center of Coils (United States)

    Binder, Philippe; Hui, Kaleonui; Goldman, Jesse


    In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

  8. Classical theory of electric and magnetic fields

    CERN Document Server

    Good, Roland H


    Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma

  9. On the non-Gaussian correlation of the primordial curvature perturbation with vector fields

    DEFF Research Database (Denmark)

    Kumar Jain, Rajeev; Sloth, Martin Snoager


    We compute the three-point cross-correlation function of the primordial curvature perturbation generated during inflation with two powers of a vector field in a model where conformal invariance is broken by a direct coupling of the vector field with the inflaton. If the vector field is identified...

  10. Magnetic Helicity and Large Scale Magnetic Fields: A Primer (United States)

    Blackman, Eric G.


    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. Here I discuss how magnetic helicity has come to help us understand the saturation of and sustenance of large scale dynamos, the need for either local or global helicity fluxes to avoid dynamo quenching, and the associated observational consequences. I also discuss how magnetic helicity acts as a hindrance to turbulent diffusion of large scale fields, and thus a helper for fossil remnant large scale field origin models in some contexts. I briefly discuss the connection between large scale fields and accretion disk theory as well. The goal here is to provide a conceptual primer to help the reader efficiently penetrate the literature.

  11. Magnetic Fields in the Solar Convection Zone

    Directory of Open Access Journals (Sweden)

    Fan Yuhong


    Full Text Available Recent studies of the dynamic evolution of magnetic flux tubes in the solar convection zone are reviewed with focus on emerging flux tubes responsible for the formation of solar active regions. The current prevailing picture is that active regions on the solar surface originate from strong toroidal magnetic fields generated by the solar dynamo mechanism at the thin tachocline layer at the base of the solar convection zone. Thus the magnetic fields need to traverse the entire convection zone before they reach the photosphere to form the observed solar active regions. This review discusses results with regard to the following major topics: 1. the equilibrium properties of the toroidal magnetic fields stored in the stable overshoot region at the base of the convection zone, 2. the buoyancy instability associated with the toroidal magnetic fields and the formation of buoyant magnetic flux tubes, 3. the rise of emerging flux loops through the solar convective envelope as modeled by the thin flux tube calculations which infer that the field strength of the toroidal magnetic fields at the base of the solar convection zone is significantly higher than the value in equipartition with convection, 4. the minimum twist needed for maintaining cohesion of the rising flux tubes, 5. the rise of highly twisted kink unstable flux tubes as a possible origin of d -sunspots, 6. the evolution of buoyant magnetic flux tubes in 3D stratified convection, 7. turbulent pumping of magnetic flux by penetrative compressible convection, 8. an alternative mechanism for intensifying toroidal magnetic fields to significantly super-equipartition field strengths by conversion of the potential energy associated with the superadiabatic stratification of the solar convection zone, and finally 9. a brief overview of our current understanding of flux emergence at the surface and post-emergence evolution of the subsurface magnetic fields.

  12. Orienting Paramecium with intense static magnetic fields (United States)

    Valles, James M., Jr.; Guevorkian, Karine; Quindel, Carl


    Recent experiments on cell division suggest the application of intense static magnetic fields as a novel tool for the manipulation of biological systems [1]. The magnetic field appears to couple to the intrinsic anisotropies in the diamagnetic components of the cells. Here, we present measurements of the intrinsic average diamagnetic anisotropy of the whole single celled ciliate, Paramecium Caudatum. Magnetic fields, 2.5 T Paramecium Caudatum that were suspended in a density matched medium. The organisms align with their long axis parallel to the applied magnetic field. Their intrinsic diamagnetic anisotropy is 3x10-11 in cgs units. We will discuss the implications of these results for employing magnetic fields to probe the behavior of swimming Paramecium. [1] J. M. Valles, Jr. et al., Expt. Cell Res.274, 112-118 (2002).

  13. Probing Magnetic Fields of Early Galaxies (United States)

    Kohler, Susanna


    How do magnetic fields form and evolve in early galaxies? A new study has provided some clever observations to help us answer this question.The Puzzle of Growing FieldsDynamo theory is the primary model describing how magnetic fields develop in galaxies. In this picture, magnetic fields start out as weak seed fields that are small and unordered. These fields then become ordered and amplified by large-scale rotation and turbulence in galaxy disks and halos, eventually leading to the magnetic fields we observe in galaxies today.Schematic showinghow to indirectly measure protogalactic magnetic fields. The measured polarization of a background quasar is altered by the fields in a foreground protogalaxy. Click for a closer look! [Farnes et al. 2017/Adolf Schaller/STSCI/NRAO/AUI/NSF]To test this model, we need observations of the magnetic fields in young protogalaxies. Unfortunately, we dont have the sensitivity to be able to measure these fields directly but a team of scientists led by Jamie Farnes (Radboud University in the Netherlands) have come up with a creative alternative.The key is to find early protogalaxies that absorb the light of more distant background objects. If a protogalaxy lies between us and a distant quasar, then magnetic fields of the protogalaxy if present will affect the polarization measurements of the background quasar.Observing Galactic Building BlocksTop: Redshift distribution for the background quasars in the authors sample. Bottom: Redshift distribution for the foreground protogalaxies the authors are exploring. [Farnes et al. 2017]Farnes and collaborators examined two types of foreground protogalaxies: Damped Lyman-Alpha Absorbers (DLAs) and Lyman Limit Systems (LLSs). They obtained polarimetric data for a sample of 114 distant quasars with nothing in the foreground (the control sample), 19 quasars with DLAs in the foreground, and 27 quasars with LLSs in the foreground. They then used statistical analysis techniques to draw conclusions about

  14. Two populations of the solar magnetic field (United States)

    Obridko, V. N.; Livshits, I. M.; Sokoloff, D. D.


    Dynamo theory suggests that there are two types of solar dynamo, namely the conventional mean-field dynamo, which produces large- and small-scale magnetic fields involved in the activity cycle, and also the small-scale dynamo, which produces a cycle independent small-scale magnetic field. The relative contribution of the two mechanisms to solar magnetism remains a matter of scientific debate, which includes the opinion that the contribution of the small-scale dynamo is negligible. Here, we consider several tracers of magnetic activity that separate cycle-dependent contributions to the background solar magnetic field from those that are independent of the cycle. We call background fields the magnetic fields outside active regions and give further development of this concept. The main message of our paper is that background fields include two relative separate populations. The background fields with a strength up to 100 Mx cm-2 are very poorly correlated with the sunspot numbers and vary little with the phase of the cycle. In contrast, stronger magnetic fields demonstrate pronounced cyclic behaviour. We discuss how this result can be included in the above-mentioned concepts of solar dynamo studies.

  15. Formation of magnetically anisotropic composite films at low magnetic fields (United States)

    Ghazi Zahedi, Maryam; Ennen, Inga; Marchi, Sophie; Barthel, Markus J.; Hütten, Andreas; Athanassiou, Athanassia; Fragouli, Despina


    We present a straightforward two-step technique for the fabrication of poly (methyl methacrylate) composites with embedded aligned magnetic chains. First, ferromagnetic microwires are realized in a poly (methyl methacrylate) solution by assembling iron nanoparticles in a methyl methacrylate solution under heat in an external magnetic field of 160 mT. The simultaneous thermal polymerization of the monomer throughout the wires is responsible for their permanent linkage and stability. Next, the polymer solution containing the randomly dispersed microwires is casted on a solid substrate in the presence of a low magnetic field (20-40 mT) which induces the final alignment of the microwires into long magnetic chains upon evaporation of the solvent. We prove that the presence of the nanoparticles assembled in the form of microwires is a key factor for the formation of the anisotropic films under low magnetic fields. In fact, such low fields are not capable of driving and assembling dispersed magnetic nanoparticles in the same type of polymer solutions. Hence, this innovative approach can be utilized for the synthesis of magnetically anisotropic nanocomposite films at low magnetic fields.

  16. Magnetic fields of HgMn stars

    DEFF Research Database (Denmark)

    Hubrig, S.; González, J. F.; Ilyin, I.


    Context. The frequent presence of weak magnetic fields on the surface of spotted late-B stars with HgMn peculiarity in binary systems has been controversial during the two last decades. Recent studies of magnetic fields in these stars using the least-squares deconvolution (LSD) technique have...... failed to detect magnetic fields, indicating an upper limit on the longitudinal field between 8 and 15G. In these LSD studies, assumptions were made that all spectral lines are identical in shape and can be described by a scaled mean profile. Aims. We re-analyse the available spectropolarimetric material...

  17. Magnetic-field-controlled reconfigurable semiconductor logic. (United States)

    Joo, Sungjung; Kim, Taeyueb; Shin, Sang Hoon; Lim, Ju Young; Hong, Jinki; Song, Jin Dong; Chang, Joonyeon; Lee, Hyun-Woo; Rhie, Kungwon; Han, Suk Hee; Shin, Kyung-Ho; Johnson, Mark


    Logic devices based on magnetism show promise for increasing computational efficiency while decreasing consumed power. They offer zero quiescent power and yet combine novel functions such as programmable logic operation and non-volatile built-in memory. However, practical efforts to adapt a magnetic device to logic suffer from a low signal-to-noise ratio and other performance attributes that are not adequate for logic gates. Rather than exploiting magnetoresistive effects that result from spin-dependent transport of carriers, we have approached the development of a magnetic logic device in a different way: we use the phenomenon of large magnetoresistance found in non-magnetic semiconductors in high electric fields. Here we report a device showing a strong diode characteristic that is highly sensitive to both the sign and the magnitude of an external magnetic field, offering a reversible change between two different characteristic states by the application of a magnetic field. This feature results from magnetic control of carrier generation and recombination in an InSb p-n bilayer channel. Simple circuits combining such elementary devices are fabricated and tested, and Boolean logic functions including AND, OR, NAND and NOR are performed. They are programmed dynamically by external electric or magnetic signals, demonstrating magnetic-field-controlled semiconductor reconfigurable logic at room temperature. This magnetic technology permits a new kind of spintronic device, characterized as a current switch rather than a voltage switch, and provides a simple and compact platform for non-volatile reconfigurable logic devices.

  18. Regularities of axially-periodical magnetic field of a betatron

    Energy Technology Data Exchange (ETDEWEB)

    Zvontsov, A.A.; Filinova, V.A.; Chakhlov, V.L. (Tomskij Politekhnicheskij Inst. (USSR). Nauchno-Issledovatel' skij Inst. Ehlektronnoj Introskopii)


    Consideration is being given to the possibility of increasing the stability region of particle motion in a betatron with an axially-periodic magnetic field. The damping of radial betatron oscillations is accomplished by variation of the index guiding magnetic field drop-off according to z-coordinate and the instability effect is reduced by the beam separation when separate beams, are being accelerated in ''proper'' equilibrium orbits, organized in parallel z-planes. It is shown on the base of solution of the equation for vector potential of magnetic field that under certain conditions focusing properties of betatron magnetic field have spacing character according to z-coordinate. The expression for the determination of the distance between equilibrium orbit planes for the given orbit radius and the of field drop-off was obtained. Peculiarities of operation of such accelerator were described. Betatrons with axially-periodic guiding field can generate one intense pulse of radiation or several pulses of lower density with regulated time intervals between them and can be used, for example, for film-roentgenography of rapid processes.

  19. Modelling the Earth's Main Magnetic Field by the spinning Astrid-2 satellite

    DEFF Research Database (Denmark)

    Merayo, Jose Maria Garcia; Jørgensen, Peter Siegbjørn; Risbo, T.


    The Swedish micro-satellite Astrid-2 was successfully launched into a near polar orbit last December 98. Despite the fact that its primary mission was the research of Auroral phenomena, the magnetic instrumentation has been designed to accomplish high resolution vector field magnetic measurements...

  20. The spinning Astrid-2 satellite used for modeling the Earth's main magnetic field

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Jørgensen, P.S.; Risbo, T.


    The Swedish micro-satellite Astrid-2 was successfully launched into a near polar orbit in December 1998. Despite the fact that the primary science mission was auroral research, the magnetic instrument was designed to accomplish high-resolution and high-precision vector field magnetic measurements...

  1. Protein detection with magnetic nanoparticles in a rotating magnetic field (United States)

    Dieckhoff, Jan; Lak, Aidin; Schilling, Meinhard; Ludwig, Frank


    A detection scheme based on magnetic nanoparticle (MNP) dynamics in a rotating magnetic field for a quantitative and easy-to-perform detection of proteins is illustrated. For the measurements, a fluxgate-based setup was applied, which measures the MNP dynamics, while a rotating magnetic field is generated. The MNPs exhibit single iron oxide cores of 25 nm and 40 nm diameter, respectively, as well as a protein G functionalized shell. IgG antibodies were utilized as binding target molecules for the physical proof-of-concept. The measurement results were fitted with a theoretical model describing the magnetization dynamics in a rotating magnetic field. The established detection scheme allows quantitative determination of proteins even at a concentration lower than of the particles. The observed differences between the two MNP types are discussed on the basis of logistic functions.

  2. Creating superfluid vortex rings in artificial magnetic fields

    CERN Document Server

    Sachdeva, Rashi


    Artificial gauge fields are versatile tools that allow to influence the dynamics of ultracold atoms in Bose-Einstein condensates. Here we discuss a method of artificial gauge field generation stemming from the evanescent fields of the curved surface of an optical nanofibre. The exponential decay of the evanescent fields leads to large gradients in the generalized Rabi frequency and therefore to the presence of geometric vector and scalar potentials. By solving the Gross-Pitaevskii equation in the presence of the artificial gauge fields originating from the fundamental HE$_{11}$ mode of the fibre, we show that vortex rings can be created in a controlled manner. We also calculate the magnetic fields resulting from the higher order HE$_{21}$, TE$_{01}$, and TM$_{01}$ modes and compare them to the fundamental HE$_{11}$ mode.

  3. Hyperfine magnetic fields in substituted Finemet alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brzózka, K., E-mail: [University of Technology and Humanities in Radom, Department of Physics (Poland); Sovák, P. [P.J. Šafárik University, Institute of Physics (Slovakia); Szumiata, T.; Gawroński, M.; Górka, B. [University of Technology and Humanities in Radom, Department of Physics (Poland)


    Transmission Mössbauer spectroscopy was used to determine the hyperfine fields of Finemet-type alloys in form of ribbons, substituted alternatively by Mn, Ni, Co, Al, Zn, V or Ge of various concentration. The comparative analysis of magnetic hyperfine fields was carried out which enabled to understand the role of added elements in as-quenched as well as annealed samples. Moreover, the influence of the substitution on the mean direction of the local hyperfine magnetic field was examined.

  4. Manipulating Cells with Static Magnetic Fields (United States)

    Valles, J. M.; Guevorkian, K.


    We review our investigations of the use of static magnetic fields, B, for manipulating cells and cellular processes. We describe how B fields modify the cell division pattern of frog embryos and consequently can be used to probe the pattern determinants. We also observe that magnetic fields modify the swimming behavior of Paramecium Caudatum. We describe these modifications and their potential application to investigations of their swimming behavior.

  5. Write field asymmetry in perpendicular magnetic recording (United States)

    Li, Zhanjie; Bai, Daniel Z.; Lin, Ed; Mao, Sining


    We present a systematic study of write field asymmetry by using micromagnetic modeling for a perpendicular magnetic recording (PMR) writer structure. Parameters investigated include initial magnetization condition, write current amplitude, write current frequency, and initial write current polarity. It is found that the write current amplitude and frequency (data rate) are the dominant factors that impact the field asymmetry. Lower write current amplitude and higher write current frequency will deteriorate the write field asymmetry, causing recording performance (such as bit error rate) degradation.

  6. Solar magnetic fields measurements with a magneto-optical filter (United States)

    Cacciani, A.; Ricci, D.; Rosati, P.; Rhodes, E. J.; Smith, E.


    The presence of a magnetic field at different levels inside the sun has crucial implications for helioseismology. The solar oscillation observing program carried out since 1983 at Mt. Wilson with Cacciani magneto-optical filter has recently been modified to acquire full-disk magnetograms with 2 arcsec spatial resolution. A method for the correct determination of magnetic maps which are free of contamination by velocity signal is presented. It is shown that no cross-talk exists between the Doppler and Zeeman shifts of the Na D lines, provided that instrumental polarization effects are taken into account. The observed line-of-sight photospheric field was used to map the vector field in the inner corona, above active regions, in the current free approximation.

  7. MICE Spectrometer Solenoid Magnetic Field Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Leonova, M. [Fermilab


    The Muon Ionization Cooling Experiment (MICE) is designed to demonstrate ionization cooling in a muon beam. Its goal is to measure a 10% change in transverse emittance of a muon beam going through a prototype Neutrino Factory cooling channel section with an absolute measurement accuracy of 0.1%. To measure emittances, MICE uses two solenoidal spectrometers, with Solenoid magnets designed to have 4 T fields, uniform at 3 per mil level in the tracking volumes. Magnetic field measurements of the Spectrometer Solenoid magnet SS2, and analysis of coil parameters for input into magnet models will be discussed.

  8. Tuning bacterial hydrodynamics with magnetic fields (United States)

    Pierce, C. J.; Mumper, E.; Brown, E. E.; Brangham, J. T.; Lower, B. H.; Lower, S. K.; Yang, F. Y.; Sooryakumar, R.


    Magnetotactic bacteria are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nanoparticles called magnetosomes. This study exploits their innate magnetism to investigate previously unexplored facets of bacterial hydrodynamics at surfaces. Through use of weak, uniform, external magnetic fields and local, micromagnetic surface patterns, the relative strength of hydrodynamic, magnetic, and flagellar force components is tuned through magnetic control of the bacteria's orientation. The resulting swimming behaviors provide a means to experimentally determine hydrodynamic parameters and offer a high degree of control over large numbers of living microscopic entities. The implications of this controlled motion for studies of bacterial motility near surfaces and for micro- and nanotechnology are discussed.

  9. Efficient magnetic fields for supporting toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Landreman, Matt, E-mail: [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Boozer, Allen H. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)


    The magnetic field that supports tokamak and stellarator plasmas must be produced by coils well separated from the plasma. However, the larger the separation, the more difficult it is to produce a given magnetic field in the plasma region, so plasma configurations should be chosen that can be supported as efficiently as possible by distant coils. The efficiency of an externally generated magnetic field is a measure of the field's shaping component magnitude at the plasma compared to the magnitude near the coils; the efficiency of a plasma equilibrium can be measured using the efficiency of the required external shaping field. Counterintuitively, plasma shapes with low curvature and spectral width may have low efficiency, whereas plasma shapes with sharp edges may have high efficiency. Two precise measures of magnetic field efficiency, which correctly identify such differences in difficulty, will be examined. These measures, which can be expressed as matrices, relate the externally produced normal magnetic field on the plasma surface to the either the normal field or current on a distant control surface. A singular value decomposition (SVD) of either matrix yields an efficiency ordered basis for the magnetic field distributions. Calculations are carried out for both tokamak and stellarator cases. For axisymmetric surfaces with circular cross-section, the SVD is calculated analytically, and the range of poloidal and toroidal mode numbers that can be controlled to a given desired level is determined. If formulated properly, these efficiency measures are independent of the coordinates used to parameterize the surfaces.

  10. 2D Vector Field Simplification Based on Robustness

    KAUST Repository

    Skraba, Primoz


    Vector field simplification aims to reduce the complexity of the flow by removing features in order of their relevance and importance, to reveal prominent behavior and obtain a compact representation for interpretation. Most existing simplification techniques based on the topological skeleton successively remove pairs of critical points connected by separatrices, using distance or area-based relevance measures. These methods rely on the stable extraction of the topological skeleton, which can be difficult due to instability in numerical integration, especially when processing highly rotational flows. These geometric metrics do not consider the flow magnitude, an important physical property of the flow. In this paper, we propose a novel simplification scheme derived from the recently introduced topological notion of robustness, which provides a complementary view on flow structure compared to the traditional topological-skeleton-based approaches. Robustness enables the pruning of sets of critical points according to a quantitative measure of their stability, that is, the minimum amount of vector field perturbation required to remove them. This leads to a hierarchical simplification scheme that encodes flow magnitude in its perturbation metric. Our novel simplification algorithm is based on degree theory, has fewer boundary restrictions, and so can handle more general cases. Finally, we provide an implementation under the piecewise-linear setting and apply it to both synthetic and real-world datasets. © 2014 IEEE.

  11. Electric-field guiding of magnetic skyrmions

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyaya, Pramey; Yu, Guoqiang; Amiri, Pedram Khalili; Wang, Kang L.


    We theoretically study equilibrium and dynamic properties of nanosized magnetic skyrmions in thin magnetic films with broken inversion symmetry, where an electric field couples to magnetization via spin-orbit coupling. Based on a symmetry-based phenomenology and micromagnetic simulations we show that this electric-field coupling, via renormalizing the micromagnetic energy, modifies the equilibrium properties of the skyrmion. This change, in turn, results in a significant alteration of the current-induced skyrmion motion. Particularly, the speed and direction of the skyrmion can be manipulated by designing a desired energy landscape electrically, which we describe within Thiele's analytical model and demonstrate in micromagnetic simulations including electric-field-controlled magnetic anisotropy. We additionally use this electric-field control to construct gates for controlling skyrmion motion exhibiting a transistorlike and multiplexerlike function. The proposed electric-field effect can thus provide a low-energy electrical knob to extend the reach of information processing with skyrmions.

  12. Magnetic field evolution in neutron stars (United States)

    Castillo, F.; Reisenegger, A.; Valdivia, J. A.


    Neutron stars contain the strongest magnetic fields known in the Universe. Using numerical simulations restricted to axially symmetric geometry, we study the long-term evolution of the magnetic field in the interior of an isolated neutron star under the effect of ambipolar diffusion, i.e. the drift of the magnetic field and the charged particles relative to the neutrons. We model the stellar interior as an electrically neutral fluid composed of neutrons, protons and electrons; these species can be converted into each other by weak interactions (beta decays), suffer binary collisions, and be affected by each other's macroscopic electromagnetic fields. We show that, in the restricted case of pure ambipolar diffusion, neglecting weak interactions, the magnetic fields evolves towards a stable MHD equilibria configuration, in the timescales analytically expected.

  13. Primordial magnetic fields in hybrid inflation

    CERN Document Server

    Davis, A C; Davis, Anne Christine; Dimopoulos, Konstantinos


    We show that, during hybrid inflation, a primordial magnetic field can be created, sufficiently strong to seed the galactic dynamo and generate the observed galactic magnetic fields. Considering the inflaton dominated regime, our field is produced by the Higgs--field gradients, resulting from a grand unified phase transition. The evolution of the field is followed from its creation through to the epoch of structure formation, subject to the relevant constraints. We find that it is always possible to create a magnetic field of sufficient magnitude, provided the phase transition occurs during the final 15 e-foldings of the inflationary period. the achieved field can be coherent over large distances and, for some parameter space, it is strong enough to dispense with the galactic dynamo.

  14. Magnetic Field Control of Combustion Dynamics

    Directory of Open Access Journals (Sweden)

    Barmina I.


    Full Text Available Experimental studies and mathematical modelling of the effects of magnetic field on combustion dynamics at thermo-chemical conversion of biomass are carried out with the aim of providing control of the processes developing in the reaction zone of swirling flame. The joint research of the magnetic field effect on the combustion dynamics includes the estimation of this effect on the formation of the swirling flame dynamics, flame temperature and composition, providing analysis of the magnetic field effects on the flame characteristics. The results of experiments have shown that the magnetic field exerts the influence on the flow velocity components by enhancing a swirl motion in the flame reaction zone with swirl-enhanced mixing of the axial flow of volatiles with cold air swirl, by cooling the flame reaction zone and by limiting the thermo-chemical conversion of volatiles. Mathematical modelling of magnetic field effect on the formation of the flame dynamics confirms that the electromagnetic force, which is induced by the electric current surrounding the flame, leads to field-enhanced increase of flow vorticity by enhancing mixing of the reactants. The magnetic field effect on the flame temperature and rate of reactions leads to conclusion that field-enhanced increase of the flow vorticity results in flame cooling by limiting the chemical conversion of the reactants.

  15. Environmental magnetic fields: Influences on early embryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, I.L.; Hardman, W.E.; Winters, W.D.; Zimmerman, S.; Zimmerman, A.M. (Univ. of Texas Health Science Center, San Antonio (United States))


    A 10-mG, 50 to 60-Hz magnetic field is in the intensity and frequency range that people worldwide are often exposed to in homes and in the workplace. Studies about the effects of 50- to 100-Hz electromagnetic fields on various species of animal embryos (fish, chick, fly, sea urchin, rat, and mouse) indicate that early stages of embryonic development are responsive to fluctuating magnetic fields. Chick, sea urchin, and mouse embryos are responsive to magnetic field intensities of 10-100 mG. Results from studies on sea urchin embryos indicate that exposure to conditions of rotating 60-Hz magnetic fields, e.g., similar to those in our environment, interferes with cell proliferation at the morula stage in a manner dependent on field intensity. The cleavage stages, prior to the 64-cell stage, were not delayed by this rotating 60-Hz magnetic field suggesting that the ionic surges, DNA replication, and translational events essential for early cleavage stages were not significantly altered. Studies of histone synthesis in early sea urchin embryos indicated that the rotating 60-Hz magnetic field decreased zygotic expression of early histone genes at the morula stage and suggests that this decrease in early histone production was limiting to cell proliferation. Whether these comparative observations from animal development studies will be paralleled by results from studies of human embryogenesis, as suggested by some epidemiology studies, has yet to be established. 38 refs.

  16. Oscillations of Magnetic Fluid Column in Strong Magnetic Field (United States)

    Polunin, V. M.; Storozhenko, A. M.; Platonov, V. B.; Lobova, O. V.; Ryapolov, P. A.


    The paper considers the results of measuring the elastic parameters (ponderomotive elasticity coefficient, oscillation frequency, attenuation coefficient) of the oscillatory system with an inertial element that is a magnetic fluid column retained in a tube due to magnetic levitation in a strong magnetic field. Elasticity is provided by the ponderomotive force which affects the upper and lower thin layers of the fluid column. Measurement results of vibration parameters of the oscillatory system can be useful for the investigations of magnetophoresis and aggregation of nanoparticles in magnetic fluids.

  17. Radiation dosimetry in magnetic fields with Farmer-type ionization chambers: determination of magnetic field correction factors for different magnetic field strengths and field orientations. (United States)

    Spindeldreier, C K; Schrenk, O; Bakenecker, A; Kawrakow, I; Burigo, L; Karger, C P; Greilich, S; Pfaffenberger, A


    The aim of this work was to determine magnetic field correction factors that are needed for dosimetry in hybrid devices for MR-guided radiotherapy for Farmer-type ionization chambers for different magnetic field strengths and field orientations. The response of six custom-built Farmer-type chambers irradiated at a 6 MV linac was measured in a water tank positioned in a magnet with magnetic field strengths between 0.0 T and 1.1 T. Chamber axis, beam and magnetic field were perpendicular to each other and both magnetic field directions were investigated. EGSnrc Monte Carlo simulations were compared to the measurements and simulations with different field orientations were performed. For all geometries, magnetic field correction factors, [Formula: see text], and perturbation factors were calculated. A maximum increase of 8.8% in chamber response was measured for the magnetic field perpendicular to chamber and beam axis. The measured chamber response could be reproduced by adjusting the dead volume layer near the chamber stem in the Monte Carlo simulations. For the magnetic field parallel to the chamber axis or parallel to the beam, the simulated response increased by 1.1% at maximum for field strengths up to 1.1 T. A complex dependence of the response was found on chamber radius, magnetic field strength and orientation of beam, chamber axis and magnetic field direction. Especially for magnetic fields perpendicular to beam and chamber axis, the exact sensitive volume has to be considered in the simulations. To minimize magnetic field correction factors and the influence of dead volumes on the response of Farmer chambers, a measurement set-up with the magnetic field parallel to the chamber axis or parallel to the beam is recommended for dosimetry.

  18. Effect of magnetic field inhomogeneity on ion cyclotron motion coherence at high magnetic field. (United States)

    Vladimirov, Gleb; Kostyukevich, Yury; Hendrickson, Christopher L; Blakney, Greg T; Nikolaev, Eugene


    A three-dimensional code based on the particle-in-cell algorithm modified to account for the inhomogeneity of the magnetic field was applied to determine the effect of Z(1), Z(2), Z(3), Z(4), X, Y, ZX, ZY, XZ(2) YZ(2), XY and X(2)-Y(2) components of an orthogonal magnetic field expansion on ion motion during detection in an FT-ICR cell. Simulations were performed for magnetic field strengths of 4.7, 7, 14.5 and 21 Tesla, including experimentally determined magnetic field spatial distributions for existing 4.7 T and 14.5 T magnets. The effect of magnetic field inhomogeneity on ion cloud stabilization ("ion condensation") at high numbers of ions was investigated by direct simulations of individual ion trajectories. Z(1), Z(2), Z(3) and Z(4) components have the largest effect (especially Z(1)) on ion cloud stability. Higher magnetic field strength and lower m/z demand higher relative magnetic field homogeneity to maintain cloud coherence for a fixed time period. The dependence of mass resolving power upper limit on Z(1) inhomogeneity is evaluated for different magnetic fields and m/z. The results serve to set the homogeneity requirements for various orthogonal magnetic field components (shims) for future FT-ICR magnet design.

  19. Vector-valued spherical Slepian functions for lithospheric-field analysis (United States)

    Plattner, A.; Simons, F. J.


    One of the mission objectives of Swarm is to resolve and model the lithospheric magnetic field with maximal resolution and accuracy, even in the presence of contaminating signals from secondary sources. In addition, and more generally, lithospheric-field data analysis will have to successfully merge information from the global to the regional scale. In the past decade or so, a variety of global-to-regional modeling techniques have come of age that have, however, been met with mixed feelings by the geomagnetics community. In particular, the theory of scalar Slepian functions has been developed for applications mostly in geodesy, but support from within geomagnetism has been tepid. In the Proceedings of the First Swarm International Science Meeting, now six years ago, it was written with reference to Slepian localization analysis that these methods are theoretically powerful but still need to find their way from the applied mathematician's desk to the geophysicist practitioners'. In the intervening six years "these methods" have done just that, and thereby enjoyed much use in a variety of fields: but the root cause of their slow adoption for lithospheric-field analysis had not been remediated. To this date, only the theory of scalar Slepian functions on the sphere has been completely worked out. In this contribution we report on the development, at last, of a complete vectorial spherical Slepian basis, suited for applications specifically of geomagnetic data analysis, representation, and model inversion. We have designed a basis of vector functions on the sphere that are simultaneously bandlimited to a chosen maximum spherical harmonic degree, while optimally focused on an arbitrarily shaped region of interest. The construction of these bases of vector functions is achieved by solving Slepian's spatiospectral optimization problem in the vector case, as has been done before for scalar functions on the sphere. Scalar Slepian functions have proven to be very useful in

  20. Analysis of vector magnetic anomalies over the Bayonnaise Knoll caldera obtained from a deep-sea magnetic exploration by AUV (United States)

    Sayanagi, K.; Isezaki, N.; Matsuo, J.; Harada, M.; Kasaya, T.


    Bayonnaise Knoll is a submarine caldera with an outer rim of 2.5-3 km and a floor of 840-920 m, which is located in the Izu-Ogasawara arc. A large hydrothermal deposit, Hakurei deposit, lies in the southeast part of the caldera. In the R/V Bosei-maru cruise, we observed three components of magnetic anomalies at depths of 400-570 m along SE-NW and WE tracks across the caldera. In the R/V Yokosuka YK10-17 cruise, we observed three components and total intensity of magnetic anomalies at altitudes of 60-100 m around the Hakurei deposit and at depth of 500 m above the caldera. The analysis of these data is now energetically pushed forward. A 3D gridded data set of the vector magnetic anomaly in the latter cruise was made by solving the Laplace's equation in the areas where observation data were not available, which is the unique procedure for analysis of the vector anomalies. Several magnetization solutions have been so far obtained by successive approximation and inversion methods. We will here present the measurement of the geomagnetic field and analysis of magnetization structure in Bayonnaise Knoll caldera. Note that this study has been supported by the Ministry of Education, Culture, Sports, Science & Technology (MEXT).

  1. Magnetic monopoles in field theory and cosmology. (United States)

    Rajantie, Arttu


    The existence of magnetic monopoles is predicted by many theories of particle physics beyond the standard model. However, in spite of extensive searches, there is no experimental or observational sign of them. I review the role of magnetic monopoles in quantum field theory and discuss their implications for particle physics and cosmology. I also highlight their differences and similarities with monopoles found in frustrated magnetic systems.

  2. High Field Pulse Magnets with New Materials (United States)

    Li, L.; Lesch, B.; Cochran, V. G.; Eyssa, Y.; Tozer, S.; Mielke, C. H.; Rickel, D.; van Sciver, S. W.; Schneider-Muntau, H. J.


    High performance pulse magnets using the combination of CuNb conductor and Zylon fiber composite reinforcement with bore sizes of 24, 15 and 10 mm have been designed, manufactured and tested to destruction. The magnets successfully reached the peak fields of 64, 70 and 77.8 T respectively with no destruction. Failures occurred near the end flanges at the layer. The magnet design, manufacturing and testing, and the mode of the failure are described and analyzed.

  3. Light Polarization Using Ferrofluids and Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Alberto Tufaile


    Full Text Available We are presenting an experimental setup based on polarized light, enabling the visualization of the magnetic field of magnetic assemblies using a Hele-Shaw cell filled with ferrofluids. We have simulated the observed patterns with hypergeometric polynomials.

  4. Internal and external potential-field estimation from regional vector data at varying satellite altitude (United States)

    Plattner, Alain; Simons, Frederik J.


    When modelling satellite data to recover a global planetary magnetic or gravitational potential field, the method of choice remains their analysis in terms of spherical harmonics. When only regional data are available, or when data quality varies strongly with geographic location, the inversion problem becomes severely ill-posed. In those cases, adopting explicitly local methods is to be preferred over adapting global ones (e.g. by regularization). Here, we develop the theory behind a procedure to invert for planetary potential fields from vector observations collected within a spatially bounded region at varying satellite altitude. Our method relies on the construction of spatiospectrally localized bases of functions that mitigate the noise amplification caused by downward continuation (from the satellite altitude to the source) while balancing the conflicting demands for spatial concentration and spectral limitation. The `altitude-cognizant' gradient vector Slepian functions (AC-GVSF) enjoy a noise tolerance under downward continuation that is much improved relative to the `classical' gradient vector Slepian functions (CL-GVSF), which do not factor satellite altitude into their construction. Furthermore, venturing beyond the realm of their first application, published in a preceding paper, in the present article we extend the theory to being able to handle both internal and external potential-field estimation. Solving simultaneously for internal and external fields under the limitation of regional data availability reduces internal-field artefacts introduced by downward-continuing unmodelled external fields, as we show with numerical examples. We explain our solution strategies on the basis of analytic expressions for the behaviour of the estimation bias and variance of models for which signal and noise are uncorrelated, (essentially) space- and band-limited, and spectrally (almost) white. The AC-GVSF are optimal linear combinations of vector spherical harmonics

  5. Magnetic Field Amplification and Blazar Flares

    National Research Council Canada - National Science Library

    Chen, Xuhui; Chatterjee, Ritaban; Fossati, Giovanni; Pohl, Martin


    .... On the other hand, recent advances in SNRs observations and plasma simulations both reveal that magnetic field downstream of astrophysical shocks can be largely amplified beyond simple shock compression...

  6. Ferroelectric Cathodes in Transverse Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch


    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.

  7. Derivative self-interactions for a massive vector field

    Energy Technology Data Exchange (ETDEWEB)

    Beltrán Jiménez, Jose, E-mail: [CPT, Aix Marseille Université, UMR 7332, 13288 Marseille (France); Heisenberg, Lavinia, E-mail: [Institute for Theoretical Studies, ETH Zurich, Clausiusstrasse 47, 8092 Zurich (Switzerland)


    In this work we revisit the construction of theories for a massive vector field with derivative self-interactions such that only the 3 desired polarizations corresponding to a Proca field propagate. We start from the decoupling limit by constructing healthy interactions containing second derivatives of the Stueckelberg field with itself and also with the transverse modes. The resulting interactions can then be straightforwardly generalized beyond the decoupling limit. We then proceed to a systematic construction of the interactions by using the Levi–Civita tensors. Both approaches lead to a finite family of allowed derivative self-interactions for the Proca field. This construction allows us to show that some higher order terms recently introduced as new interactions trivialize in 4 dimensions by virtue of the Cayley–Hamilton theorem. Moreover, we discuss how the resulting derivative interactions can be written in a compact determinantal form, which can also be regarded as a generalization of the Born-Infeld lagrangian for electromagnetism. Finally, we generalize our results for a curved background and give the necessary non-minimal couplings guaranteeing that no additional polarizations propagate even in the presence of gravity.

  8. Proton imaging of stochastic magnetic fields (United States)

    Bott, A. F. A.; Graziani, C.; Tzeferacos, P.; White, T. G.; Lamb, D. Q.; Gregori, G.; Schekochihin, A. A.


    Recent laser-plasma experiments (Fox et al., Phys. Rev. Lett., vol. 111, 2013, 225002; Huntington et al., Nat. Phys., vol. 11(2), 2015, 173-176 Tzeferacos et al., Phys. Plasmas, vol. 24(4), 2017a, 041404; Tzeferacos et al., 2017b, arXiv:1702.03016 [physics.plasm-ph]) report the existence of dynamically significant magnetic fields, whose statistical characterisation is essential for a complete understanding of the physical processes these experiments are attempting to investigate. In this paper, we show how a proton-imaging diagnostic can be used to determine a range of relevant magnetic-field statistics, including the magnetic-energy spectrum. To achieve this goal, we explore the properties of an analytic relation between a stochastic magnetic field and the image-flux distribution created upon imaging that field. This `Kugland image-flux relation' was previously derived (Kugland et al., Rev. Sci. Instrum. vol. 83(10), 2012, 101301) under simplifying assumptions typically valid in actual proton-imaging set-ups. We conclude that, as with regular electromagnetic fields, features of the beam's final image-flux distribution often display a universal character determined by a single, field-scale dependent parameter - the contrast parameter s/{\\mathcal{M}}lB$ - which quantifies the relative size of the correlation length B$ of the stochastic field, proton displacements s$ due to magnetic deflections and the image magnification . For stochastic magnetic fields, we establish the existence of four contrast regimes, under which proton-flux images relate to their parent fields in a qualitatively distinct manner. These are linear, nonlinear injective, caustic and diffusive. The diffusive regime is newly identified and characterised. The nonlinear injective regime is distinguished from the caustic regime in manifesting nonlinear behaviour, but as in the linear regime, the path-integrated magnetic field experienced by the beam can be extracted uniquely. Thus, in the linear and

  9. Split-Field Magnet facility upgraded

    CERN Multimedia

    CERN PhotoLab


    The Split Field Magnet (SFM) was the largest spectrometer for particles from beam-beam collisions in the ISR. It could determine particle momenta in a large solid angle, but was designed mainly for the analysis of forward travelling particles.As the magnet was working on the ISR circulating beams, its magnetic field had to be such as to restore the correct proton orbit.The SFM, therefore, produced zero field at the crossing point and fields of opposite signs upstream and downstream of it and was completed by 2 large and 2 small compensator magnets. The gradient effects were corrected by magnetic channels equipped with movable flaps. The useful magnetic field volume was 28 m3, the induction in the median plane 1.14 T, the gap heigth 1.1 m, the length 10.5 m, the weight about 1000 ton. Concerning the detectors, the SFM was the first massive application of multiwire proportional chambers (about 70000 wires) which filled the main and the large compensator magnets. In 1976 an improved programme was started with tw...

  10. Precise measurements and shimming of magnetic field gradients in the low field regime

    Energy Technology Data Exchange (ETDEWEB)

    Allmendinger, Fabian; Schmidt, Ulrich [Physikalisches Institut, Universitaet Heidelberg (Germany); Grasdijk, Olivier; Jungmann, Klaus; Willmann, Lorenz [University of Groningen (Netherlands); Heil, Werner; Karpuk, Sergei; Repetto, Maricel; Sobolev, Yuri; Zimmer, Stefan [Institut fuer Physik, Universitaet Mainz (Germany); Krause, Hans-Joachim; Offenhaeuser, Andreas [Peter Gruenberg Institut, Forschungszentrum Juelich (Germany); Collaboration: MIXed-Collaboration


    For many experiments at the precision frontier of fundamental physics, the accurate measurement and knowledge of magnetic field gradients in particular in the low field regime (<μT) is a necessity: On the one hand, in the search for an Electric Dipole Moment (EDM) of free neutrons or atoms, field gradients contribute to geometric-phase-induced false EDM signals for particles in traps. On the other hand, clock comparison experiments like the {sup 3}He/{sup 129}Xe spin clock experiment suffer from gradients, since the coherent T{sub 2}*-time of free spin precession, and thus the measurement sensitivity, scales ∝ ∇ vector B{sup -2}. Here we report on a new and very effective method, to shim and to measure tiny magnetic field gradients in the range of pT/cm by using effective T{sub 2}*-measurement sequences in varying the currents of trim coils of known geometry.

  11. Development of marine magnetic vector measurement system using AUV and deep-towed vehicle (United States)

    Sayanagi, K.; Isezaki, N.; Matsuo, J.; Harada, M.; Kasaya, T.; Nishimura, K.; Baba, H.


    Marine magnetic survey is one of useful methods in order to investigate the nature of the oceanic crust. Most of the data are, however, intensity of the geomagnetic field without its direction. Therefore we cannot properly apply a physical formula describing the relation between magnetic field and magnetization to analyses of the data. With this problem, Isezaki (1986) developed a shipboard three-component magnetometer which measures the geomagnetic vector at the sea. On the other hand, geophysical surveys near the seafloor have been more and more necessary in order to show the details of the oceanic crust. For instance, development of seabed resources like hydrothermal deposits needs higher resolution surveys compared with conventional surveys at the sea for accurate estimation of abundance of the resources. From these viewpoints, we have been developing a measurement system of the deep-sea geomagnetic vector using AUV and deep-towed vehicle. The measurement system consists of two 3-axis flux-gate magnetometers, an Overhauser magnetometer, an optical fiber gyro, a main unit (control, communication, recording), and an onboard unit. These devices except for the onboard unit are installed in pressure cases (depth limit: 6000m). Thus this measurement system can measure three components and intensity of the geomagnetic field in the deep-sea. In 2009, the first test of the measurement system was carried out in the Kumano Basin using AUV Urashima and towing vehicle Yokosuka Deep-Tow during the R/V Yokosuka YK09-09 cruise. In this test, we sank a small magnetic target to the seafloor, and examined how the system worked. As a result, we successfully detected magnetic anomaly of the target to confirm the expected performance of that in the sea. In 2010, the measurement system was tested in the Bayonnaise Knoll area both using a titanium towing frame during the R/V Bosei-maru cruise and using AUV Urashima during the R/V Yokosuka YK10-17 cruise. The purpose of these tests was

  12. Core Processes: Earth's eccentric magnetic field

    DEFF Research Database (Denmark)

    Finlay, Chris


    Earth’s magnetic field is characterized by a puzzling hemispheric asymmetry. Calculations of core dynamo processes suggest that lopsided growth of the planet’s inner core may be part of the cause.......Earth’s magnetic field is characterized by a puzzling hemispheric asymmetry. Calculations of core dynamo processes suggest that lopsided growth of the planet’s inner core may be part of the cause....

  13. Magnetic fields and massive star formation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Girart, Josep M.; Juárez, Carmen [Institut de Ciències de l' Espai, (CSIC-IEEC), Campus UAB, Facultat de Ciències, C5p 2, E-08193 Bellaterra, Catalonia (Spain); Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Li, Zhi-Yun [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Frau, Pau [Observatorio Astronómico Nacional, Alfonso XII, 3 E-28014 Madrid (Spain); Li, Hua-Bai [Department of Physics, The Chinese University of Hong Kong, Hong Kong (China); Padovani, Marco [Laboratoire de Radioastronomie Millimétrique, UMR 8112 du CNRS, École Normale Supérieure et Observatoire de Paris, 24 rue Lhomond, F-75231 Paris Cedex 05 (France); Bontemps, Sylvain [OASU/LAB-UMR5804, CNRS, Université Bordeaux 1, F-33270 Floirac (France); Csengeri, Timea, E-mail: [Max Planck Institute for Radioastronomy, Auf dem Hügel 69, D-53121 Bonn (Germany)


    Massive stars (M > 8 M {sub ☉}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  14. Do magnetic fields enhance turbulence at low magnetic Reynolds number? (United States)

    Pothérat, Alban; Klein, Rico


    Imposing a magnetic field on a turbulent flow of electrically conducting fluid incurs the Joule effect. A current paradigm is that the corresponding dissipation increases with the intensity of the magnetic field and as a result turbulent fluctuations are all the more damped as the magnetic field is strong. While this idea finds apparent support in the phenomenology of decaying turbulence, measurements of turbulence in duct flows and other, more complex configurations have produced seemingly contradicting results. The root of the controversy is that magnetic fields promote sufficient scale-dependent anisotropy to profoundly reorganize the structure of turbulence, so their net effect cannot be understood in terms of the additional dissipation only. Here we show that when turbulence is forced in a magnetic field that acts on turbulence itself rather than on the mechanisms that generate it, the field promotes large, nearly two-dimensional structures capturing sufficient energy to offset the loss due to Joule dissipation, with the net effect of increasing the intensity of turbulent fluctuations. This change of paradigm potentially carries important consequences for systems as diverse as the liquid cores of planets, accretion disks, and a wide range of metallurgical and nuclear engineering applications.

  15. Electric and magnetic fields in cryopreservation. (United States)

    Wowk, Brian


    Electromagnetic warming has a long history in cryobiology as a preferred method for recovering large tissue masses from cryopreservation, especially from cryopreservation by vitrification. It is less well-known that electromagnetic fields may be able to influence ice formation during cryopreservation by non-thermal mechanisms. Both theory and published data suggest that static and oscillating electric fields can respectively promote or inhibit ice formation under certain conditions. Evidence is less persuasive for magnetic fields. Recent claims that static magnetic fields smaller than 1 mT can improve cryopreservation by freezing are specifically questioned. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Reconstructing magnetic fields of spiral galaxies from radiopolarimetric observations

    NARCIS (Netherlands)

    Shneider, Carl


    We live in a magnetic universe with magnetic fields spanning an enormous range of spatial and temporal scales. In particular, magnetic fields at the scale of a galaxy are known as galactic magnetic fields and are the focus of this PhD thesis. These galactic magnetic fields are very important since

  17. Postaccretion magnetic field evolution of neutron stars (United States)

    Young, E. J.; Chanmugam, G.


    We present the first calculations of magnetic field evolution following accretion-induced field reduction which demonstrate the possibility of subsequent surface magnetic field growth. Assuming the preaccretion field is pushed down or advected below the accreting material, we show that significant diffusion of the suppressed field back to the surface can occur within a Galactic age approximately 10(exp 10) yr. This produces surface fields characteristic of standard pulsars if the total mass transferred is below a critical value delta M(sub c) approximately 0.04 solar masses. We then show how this provides a natural explanation for the existence of old pulsars with high inferred surface dipole fields which are still observable. Using our results in conjunction with a model for accretion-induced field reduction we predict the evolution of a binary pulsar's spin and magnetic field through its postaccretion lifetime. This analysis also provides a qualitative explanation for a recent suggestion that the magnetic fields and spins of recycled pulsars have a bimodal distribution.

  18. Combustion instability mitigation by magnetic fields (United States)

    Jocher, Agnes; Pitsch, Heinz; Gomez, Thomas; Bonnety, Jérôme; Legros, Guillaume


    The present interdisciplinary study combines electromagnetics and combustion to unveil an original and basic experiment displaying a spontaneous flame instability that is mitigated as the non-premixed sooting flame experiences a magnetic perturbation. This magnetic instability mitigation is reproduced by direct numerical simulations to be further elucidated by a flow stability analysis. A key role in the stabilization process is attributed to the momentum and thermochemistry coupling that the magnetic force, acting mainly on paramagnetic oxygen, contributes to sustain. The spatial local stability analysis based on the numerical simulations shows that the magnetic field tends to reduce the growth rates of small flame perturbations.

  19. Wuhan pulsed high magnetic field center


    Li, Liang; Peng, Tao; Ding, Honfa; Han, Xiaotao; Ding, Tonghai; Chen, Jin; Wang, Junfeng; Xie, Jianfeng; Wang, Shaoliang; Duan, Xianzhong; Wang, Cheng; Herlach, Fritz; Vanacken, Johan; Pan, Yuan


    Wuhan pulsed high magnetic field facility is under development. Magnets of bore sizes from 12 to 34 mm with the peak field in the range of 50 to 80 T have been designed. The pulsed power supplies consists of a 12 MJ, 25 kV capacitor bank and a 100 MVA/100 MJ flywheel pulse generator. A prototype 1 MJ, 25 kV capacitor bank is under construction. Five magnets wound with CuNb wire and copper wire reinforced internally with Zylon fiber composites and externally with stainless steel shells have be...

  20. Superfluid 3He in a Magnetic Field (United States)

    Hasegawa, Y.


    The exact self-consistent solutions of the p-wave, spin triplet pairing hamiltonian in a magnetic field of arbitrary strength are found by applying the method of the 5-dimensional spin. The solutions are of non-unitary type and reduce to the ABM state and the BW state in the weak limit of the magnetic field. The unitary transformation which diagonalizes the hamiltonian including Zeeman energy is given explicitly. We get the formulae of the magnetization of 3He-A and 3He-B. The results are valid at any temperature.

  1. Tracing Magnetic Fields with Spectroscopic Channel Maps (United States)

    Lazarian, A.; Yuen, Ka Ho


    We identify velocity channel map intensities as a new way to trace magnetic fields in turbulent media. This work makes use of both the modern theory of magnetohydrodynamic (MHD) turbulence, which predicts that magnetic eddies are aligned with the local direction of the magnetic field, and also the theory of spectral line position–position–velocity (PPV) statistics, which describes how velocity and density fluctuations are mapped onto PPV space. In particular, we use the fact that the fluctuations of the intensity of thin channel maps are mostly affected by the turbulent velocity, while the thick maps are dominated by density variations. We study how contributions of the fundamental MHD modes affect the Velocity Channel Gradients (VChGs), and demonstrate that the VChGs arising from Alfvén and slow modes are aligned perpendicular to the local direction of the magnetic field, while the VChGs produced by the fast mode are aligned parallel to the magnetic field. The dominance of Alfvén and slow modes in interstellar media will therefore allow reliable magnetic field tracing using the VChGs. We explore ways of identifying self-gravitating regions that do not require polarimetric information. In addition, we also introduce a new measure, termed “Reduced Velocity Centroids” (RVCGs), and compare its abilities with those of VChGs. We employed VChGs in analyzing GALFA 21 cm data and successfully compared the magnetic field directions with the Planck polarization observations. The applications of the suggested techniques include both tracing the magnetic field in diffuse interstellar media and star-forming regions, and removing the galactic foreground in the framework of cosmological polarization studies.

  2. Vectors

    DEFF Research Database (Denmark)

    Boeriis, Morten; van Leeuwen, Theo


    This article revisits the concept of vectors, which, in Kress and van Leeuwen’s Reading Images (2006), plays a crucial role in distinguishing between ‘narrative’, action-oriented processes and ‘conceptual’, state-oriented processes. The use of this concept in image analysis has usually focused...... on the most salient vectors, and this works well, but many images contain a plethora of vectors, which makes their structure quite different from the linguistic transitivity structures with which Kress and van Leeuwen have compared ‘narrative’ images. It can also be asked whether facial expression vectors...... should be taken into account in discussing ‘reactions’, which Kress and van Leeuwen link only to eyeline vectors. Finally, the question can be raised as to whether actions are always realized by vectors. Drawing on a re-reading of Rudolf Arnheim’s account of vectors, these issues are outlined...

  3. Simulating magnetic nanoparticle behavior in low-field MRI under transverse rotating fields and imposed fluid flow (United States)

    Cantillon-Murphy, P.; Wald, L. L.; Adalsteinsson, E.; Zahn, M.


    transverse rotating magnetic field in the presence of B0 are investigated to demonstrate the effect of Ω, the rotating field frequency, and the magnetic field amplitude on the fluid suspension magnetization. The transverse magnetization due to the rotating transverse field shows strong dependence on the characteristic time constant of the fluid suspension, τ. The analysis shows that as the rotating field frequency increases so that Ωτ approaches unity, the transverse fluid magnetization vector is significantly non-aligned with the applied rotating field and the magnetization's magnitude is a strong function of the field frequency. In this frequency range, the fluid's transverse magnetization is controlled by the applied field which is determined by the operator. The phenomenon, which is due to the physical rotation of the magnetic nanoparticles in the suspension, is demonstrated analytically when the nanoparticles are present in high concentrations (1-3% solid volume fractions) more typical of hyperthermia rather than in clinical imaging applications, and in low MRI field strengths (such as open MRI systems), where the magnetic nanoparticles are not magnetically saturated. The effect of imposed Poiseuille flow in a planar channel geometry and changing nanoparticle concentration is examined. The work represents the first known attempt to analyze the dynamic behavior of magnetic nanoparticles in the MRI environment including the effects of the magnetic nanoparticle spin-velocity. It is shown that the magnitude of the transverse magnetization is a strong function of the rotating transverse field frequency. Interactive fluid magnetization effects are predicted due to non-uniform fluid magnetization in planar Poiseuille flow with high nanoparticle concentrations.

  4. NIST Undulator Magnetic Field Characterization (United States)

    Johnson, L. E.; Denbeaux, G.; Madey, J. M. J.; Straub, K. D.


    A 3.64 m undulator was constructed by the Brobeck Division of Maxwell Laboratories for FEL experiments at NIST in Washington, DC. The Duke University FEL Lab has since acquired the undulator for use as a soft x-ray source. We report on our effort to transform the undulator into a high performance soft x-ray insertion device through careful characterization of the existing magnet blocks, sorting and trimming.

  5. Modeling and Measurement of Ocean Generated Magnetic Fields (United States)

    Liang, R.; Avera, W. E.; Nelson, J.; Brozena, J. M.


    Motion of conductive seawater through the earth's magnetic field will produce magnetic fields. Magnetic fields from motions such as ocean waves and swells are detectable near the ocean's surface but decay rapidly with distance. Non-linear internal waves (NLIWs) generated by mechanisms such as tides over bathymetric features have been predicted to produce magnetic anomalies of .1-1 nT at altitudes of ~ 100 m above the surface (Chave, 1986) due to the large volumes of coherently moving water. An experiment was performed in 2009 by the Defense Research and Development Canada (DRDC) and the US Naval Research Laboratory (NRL) to see if magnetic signatures predicted from oceanographic measurements could be detected by airborne and ocean bottom mounted magnetometers. The test was conducted near the shelf-break off the coast of New Jersey where NLIWs have been observed. Oceanographic measurements were collected by a set of bottom-mounted ADCPs, towed C-T sensors mounted on a "SCANFISH" tow-body, and a hull-mounted ADCP. Magnetic measurements consisted of total-field magnetometers co-located with the bottom mounted ADCPs, three magnetic base-stations (total field and vector) in New Jersey for geomagnetic noise cancellation, and magnetometers aboard two aircraft ( a Canadian National Research Council Convair 580 and the NRL P-3) flown simultaneously with a 20-30 second separation ( corresponding to 2-3 km) along a repeat track over the bottom-mounted sensors. The multiple aircraft and repeat tracks were intended to remove the spatially stationary geologic component. The time-varying geomagnetic signal was extrapolated from the magnetic base-stations to the aircraft measurements. Both aircraft had high quality magnetometers and magnetic-field compensation systems based on co-located vector magnetometers and kinematic GPS. The Convair had two magnetometer and compensation systems mounted in wing-pods with a base-line of ~ 32 m that allowed the calculation of a cross

  6. Superconductivity in Strong Magnetic Field (Greater Than Upper Critical Field)

    Energy Technology Data Exchange (ETDEWEB)

    Tessema, G.X.; Gamble, B.K.; Skove, M.J.; Lacerda, A.H.; Mielke, C.H.


    The National High Magnetic Field Laboratory, funded by the National Science Foundation and other US federal Agencies, has in recent years built a wide range of magnetic fields, DC 25 to 35 Tesla, short pulse 50 - 60 Tesla, and quasi-continuous 60 Tesla. Future plans are to push the frontiers to 45 Tesla DC and 70 to 100 Tesla pulse. This user facility, is open for national and international users, and creates an excellent tool for materials research (metals, semiconductors, superconductors, biological systems ..., etc). Here we present results of a systematic study of the upper critical field of a novel superconducting material which is considered a promising candidate for the search for superconductivity beyond H{sub c2} as proposed by several new theories. These theories predict that superconductors with low carrier density can reenter the superconducting phase beyond the conventional upper critical field H{sub c2}. This negates the conventional thinking that superconductivity and magnetic fields are antagonistic.

  7. Comparison of adjustable permanent magnetic field sources

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders


    A permanent magnet assembly in which the flux density can be altered by a mechanical operation is often significantly smaller than comparable electromagnets and also requires no electrical power to operate. In this paper five permanent magnet designs in which the magnetic flux density can...... and the direction of the magnetic field are measured and compared with numerical simulation and a good agrement is found....... be altered are analyzed using numerical simulations, and compared based on the generated magnetic flux density in a sample volume and the amount of magnet material used. The designs are the concentric Halbach cylinder, the two half Halbach cylinders, the two linear Halbach arrays and the four and six rod...

  8. Can Primordial Magnetic Fields Seeded by Electroweak Strings Cause an Alignment of Quasar Axes on Cosmological Scales? (United States)

    Poltis, Robert; Stojkovic, Dejan


    The decay of nontopological electroweak strings may leave an observable imprint in the Universe today in the form of primordial magnetic fields. Protogalaxies preferentially tend to form with their axis of rotation parallel to an external magnetic field, and, moreover, an external magnetic field produces torque which tends to align the galaxy axis with the magnetic field. We demonstrate that the shape of a magnetic field left over from two looped electroweak strings can explain the observed nontrivial alignment of quasar polarization vectors and make predictions for future observations.

  9. Characterization of the in situ magnetic architecture of oceanic crust (Hess Deep) using near-source vector magnetic data


    Tominaga, Masako; Tivey, Maurice A.; MacLeod, Christopher John; Morris, Antony; Lissenberg, Johan Cornelis; Shillington, Donna J.; Ferrini, Vicki


    Marine magnetic anomalies are a powerful tool for detecting geomagnetic polarity reversals, lithological boundaries, topographic contrasts, and alteration fronts in the oceanic lithosphere. Our aim here is to detect lithological contacts in fast-spreading lower crust and shallow mantle by characterizing magnetic anomalies and investigating their origins. We conducted a high-resolution, near-bottom, vector magnetic survey of crust exposed in the Hess Deep “tectonic window” using the remotely o...

  10. Magnetic Field Response Measurement Acquisition System (United States)

    Woodward, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)


    Magnetic field response sensors designed as passive inductor- capacit or circuits produce magnetic field responses whose harmonic frequenci es correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induc tion. A radio frequency antenna produces the time varying magnetic fi eld used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for disce rning changes in sensor's response frequency, resistance and amplitud e is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminat ing the need to have a data acquisition channel dedicated to each se nsor. The method does not require the sensors to be in proximity to a ny form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

  11. Magnetic Field Amplification in Supernova Remnants (United States)

    Xu, Siyao; Lazarian, Alex


    Based on the new findings on the turbulent dynamo in Xu & Lazarian, we examine the magnetic field amplification in the context of supernova remnants. Due to the strong ion-neutral collisional damping in the weakly ionized interstellar medium, the dynamo in the preshock turbulence remains in the damping kinematic regime, which leads to a linear-in-time growth of the magnetic field strength. The resultant magnetic field structure enables effective diffusion upstream and shock acceleration of cosmic rays to energies above the “knee.” Differently, the nonlinear dynamo in the postshock turbulence leads to a linear-in-time growth of the magnetic energy due to the turbulent magnetic diffusion. Given a weak initial field strength in the postshock region, the magnetic field saturates at a significant distance from the shock front as a result of the inefficiency of the nonlinear dynamo. This result is in a good agreement with existing numerical simulations and well explains the X-ray spots detected far behind the shock front.

  12. Magnetic nanoparticles for applications in oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Peeraphatdit, Chorthip [Iowa State Univ., Ames, IA (United States)


    Enzymatic and thermochemical catalysis are both important industrial processes. However, the thermal requirements for each process often render them mutually exclusive: thermochemical catalysis requires high temperature that denatures enzymes. One of the long-term goals of this project is to design a thermocatalytic system that could be used with enzymatic systems in situ to catalyze reaction sequences in one pot; this system would be useful for numerous applications e.g. conversion of biomass to biofuel and other commodity products. The desired thermocatalytic system would need to supply enough thermal energy to catalyze thermochemical reactions, while keeping the enzymes from high temperature denaturation. Magnetic nanoparticles are known to generate heat in an oscillating magnetic field through mechanisms including hysteresis and relaxational losses. We envisioned using these magnetic nanoparticles as the local heat source embedded in sub-micron size mesoporous support to spatially separate the particles from the enzymes. In this study, we set out to find the magnetic materials and instrumental conditions that are sufficient for this purpose. Magnetite was chosen as the first model magnetic material in this study because of its high magnetization values, synthetic control over particle size, shape, functionalization and proven biocompatibility. Our experimental designs were guided by a series of theoretical calculations, which provided clues to the effects of particle size, size distribution, magnetic field, frequency and reaction medium. Materials of theoretically optimal size were synthesized, functionalized, and their effects in the oscillating magnetic field were subsequently investigated. Under our conditions, the materials that clustered e.g. silica-coated and PNIPAM-coated iron oxides exhibited the highest heat generation, while iron oxides embedded in MSNs and mesoporous iron oxides exhibited the least bulk heating. It is worth noting that the specific

  13. Magnetic vortex nucleation modes in static magnetic fields

    Directory of Open Access Journals (Sweden)

    Marek Vaňatka


    Full Text Available The magnetic vortex nucleation process in nanometer- and micrometer-sized magnetic disks undergoes several phases with distinct spin configurations called the nucleation states. Before formation of the final vortex state, small submicron disks typically proceed through the so-called C-state while the larger micron-sized disks proceed through the more complicated vortex-pair state or the buckling state. This work classifies the nucleation states using micromagnetic simulations and provides evidence for the stability of vortex-pair and buckling states in static magnetic fields using magnetic imaging techniques and electrical transport measurements. Lorentz Transmission Electron Microscopy and Magnetic Transmission X-ray Microscopy are employed to reveal the details of spin configuration in each of the nucleation states. We further show that it is possible to unambiguously identify these states by electrical measurements via the anisotropic magnetoresistance effect. Combination of the electrical transport and magnetic imaging techniques confirms stability of a vortex-antivortex-vortex spin configuration which emerges from the buckling state in static magnetic fields.

  14. Electric/magnetic field sensor (United States)

    Schill, Jr., Robert A.; Popek, Marc [Las Vegas, NV


    A UNLV novel electric/magnetic dot sensor includes a loop of conductor having two ends to the loop, a first end and a second end; the first end of the conductor seamlessly secured to a first conductor within a first sheath; the second end of the conductor seamlessly secured to a second conductor within a second sheath; and the first sheath and the second sheath positioned adjacent each other. The UNLV novel sensor can be made by removing outer layers in a segment of coaxial cable, leaving a continuous link of essentially uncovered conductor between two coaxial cable legs.

  15. Magnetic fields, radicals and cellular activity. (United States)

    Montoya, Ryan D


    Some effects of low-intensity magnetic fields on the concentration of radicals and their influence on cellular functions are reviewed. These fields have been implicated as a potential modulator of radical recombination rates. Experimental evidence has revealed a tight coupling between cellular function and radical pair chemistry from signaling pathways to damaging oxidative processes. The effects of externally applied magnetic fields on biological systems have been extensively studied, and the observed effects lack sufficient mechanistic understanding. Radical pair chemistry offers a reasonable explanation for some of the molecular effects of low-intensity magnetic fields, and changes in radical concentrations have been observed to modulate specific cellular functions. Applied external magnetic fields have been shown to induce observable cellular changes such as both inhibiting and accelerating cell growth. These and other mechanisms, such as cell membrane potential modulation, are of great interest in cancer research due to the variations between healthy and deleterious cells. Radical concentrations demonstrate similar variations and are indicative of a possible causal relationship. Radicals, therefore, present a possible mechanism for the modulation of cellular functions such as growth or regression by means of applied external magnetic fields.

  16. A complete linear discretization for calculating the magnetic field using the boundary element method. (United States)

    Ferguson, A S; Zhang, X; Stroink, G


    An analytic solution is derived for the magnetic field generated by current sources located in a piecewise homogeneous volume conductor. A linear discretization approach is used, whereby the surface potential is assumed to be a piecewise linear function over each tessellated surface defining the regions of differing conductivity. The magnetic field is shown to be a linear combination of vector functions which are strictly dependent on the geometry of the problem, the surface tesselation, and the observation point.

  17. A deep dynamo generating Mercury's magnetic field. (United States)

    Christensen, Ulrich R


    Mercury has a global magnetic field of internal origin and it is thought that a dynamo operating in the fluid part of Mercury's large iron core is the most probable cause. However, the low intensity of Mercury's magnetic field--about 1% the strength of the Earth's field--cannot be reconciled with an Earth-like dynamo. With the common assumption that Coriolis and Lorentz forces balance in planetary dynamos, a field thirty times stronger is expected. Here I present a numerical model of a dynamo driven by thermo-compositional convection associated with inner core solidification. The thermal gradient at the core-mantle boundary is subadiabatic, and hence the outer region of the liquid core is stably stratified with the dynamo operating only at depth, where a strong field is generated. Because of the planet's slow rotation the resulting magnetic field is dominated by small-scale components that fluctuate rapidly with time. The dynamo field diffuses through the stable conducting region, where rapidly varying parts are strongly attenuated by the skin effect, while the slowly varying dipole and quadrupole components pass to some degree. The model explains the observed structure and strength of Mercury's surface magnetic field and makes predictions that are testable with space missions both presently flying and planned.

  18. Solar Magnetic Fields J. O. Stenflo

    Indian Academy of Sciences (India)

    how magnetic fields break the symmetry of coherently superposed quantum states. (Schrödinger cat states) and cause partial decoherence that increases with the strength of the field. This discovery played a key role in clarifying and understanding the central concept of linear superposition of quantum states in the early ...

  19. Teaching Representation Translations with Magnetic Field Experiments (United States)

    Tillotson, Wilson Andrew; McCaskey, Timothy; Nasser, Luis


    We have developed a laboratory exercise designed to help students translate between different field representations. It starts with students qualitatively mapping field lines for various bar magnet configurations and continues with a Hall probe experiment in which students execute a series of scaffolded tasks, culminating in the prediction and…

  20. Magnetic Field Strength Evaluation Yu. S. Yefimov

    Indian Academy of Sciences (India)

    A great number of articles are devoted to the study of mag- netic field in cosmic objects. Important contributions to the study of magnetic fields .... However, the flare activity (especially periodical) presents some difficulties in this model. To eliminate these problems, Camenzind & Krockenberger (1992) suggested.

  1. Opening the cusp. [using magnetic field topology (United States)

    Crooker, N. U.; Toffoletto, F. R.; Gussenhoven, M. S.


    This paper discusses the magnetic field topology (determined by the superposition of dipole, image, and uniform fields) for mapping the cusp to the ionosphere. The model results are compared to both new and published observations and are then used to map the footprint of a flux transfer event caused by a time variation in the merging rate. It is shown that the cusp geometry distorts the field lines mapped from the magnetopause to yield footprints with dawn and dusk protrusions into the region of closed magnetic flux.

  2. Acceleration of superparamagnetic particles with magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Stange, R., E-mail:; Lenk, F.; Bley, T.; Boschke, E.


    High magnetic capture efficiency in the context of Biomagnetic Separation (BMS) using superparamagnetic particles (SMPs) requires efficient mixing and high relative velocities between cellular and other targets and SMPs. For this purpose, batch processes or microfluidic systems are commonly used. Here, we analyze the characteristics of an in-house developed batch process experimental setup, the Electromagnetic Sample Mixer (ESM) described earlier. This device uses three electromagnets to increase the relative velocity between SMPs and targets. We carry out simulations of the magnetic field in the ESM and in a simpler paradigmatic setup, and thus were able to calculate the force field acting on the SMPs and to simulate their relative velocities and fluid dynamics due to SMP movement. In this way we were able to show that alternate charging of the magnets induces a double circular stream of SMPs in the ESM, resulting in high relative velocities of SMPs to the targets. Consequently, due to the conservation of momentum, the fluid experiences an acceleration induced by the SMPs. We validated our simulations by microscopic observation of the SMPs in the magnetic field, using a homemade apparatus designed to accommodate a long working-distance lens. By comparing the results of modeling this paradigmatic setup with the experimental observations, we determined that the velocities of the SMPs corresponded to the results of our simulations. - Highlights: • Investigation of a batch process setup for complex forming at Biomagnetic Separation. • Simulation of fluid flow characteristics in this Electro Magnetic Samplemixer. • Simulation of relative velocities between magnetic particles and fluid in the setup. • Simulation of fluid flow induced by the acceleration of magnet particles. • Validation of magnetic fields and flow characteristics in paradigmatic setups. • Reached relative velocity is higher than the sedimentation velocity of the particles • Alternating

  3. The apparent decay of pulsar magnetic fields (United States)

    Biryukov, A.; Astashenok, A.; Karpov, S.; Beskin, G.


    Neutron stars are extremely strong cosmic magnets which fields are expected to decay with time. Here we report on the simple test of this process. Adopting a novel approach, we have estimated surface magnetic fields B for 76 radiopulsars (the most numerous subclass of the known isolated neutron stars) which ages t are known independently. Focusing on the accurate evaluation of the precision of both quantities, we determined a significant power-law trend B(t) ∝ t ‑β with index β = 0.19 - 0.06 + 0.05 at 95% C.L. The effects of the observational selection turn this value into the upper limit for the intrinsic field decay rate. If so, then neutron star crusts are close to the “impurity-free crystals”, which results in a relatively slow magnetic fields decay.

  4. Magnetic fields in superconducting neutron stars. (United States)

    Lander, S K


    The interior of a neutron star is likely to be predominantly a mixture of superfluid neutrons and superconducting protons. This results in the quantization of the star's magnetic field into an array of thin flux tubes, producing a macroscopic force very different from the Lorentz force of normal matter. We show that in an axisymmetric superconducting equilibrium the behavior of a magnetic field is governed by a single differential equation. Solving this, we present the first self-consistent superconducting neutron star equilibria with poloidal and mixed poloidal-toroidal fields and also give the first quantitative results for the corresponding magnetically induced distortions to the star. The poloidal component is dominant in all our configurations. We suggest that the transition from normal to superconducting matter in a young neutron star may cause a large-scale field rearrangement.

  5. Neutron Scattering and High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Winn, Barry L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stone, Matthew B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    The workshop “Neutron Scattering and High Magnetic Fields” was held September 4-5, 2014 at the Oak Ridge National Laboratory (ORNL). The workshop was held in response to a recent report by the National Research Council of the National Academy of Sciences entitled “High Magnetic Field Science and Its Application in the United States: Current Status and Future Directions.”1 This report highlights the fact that neutron scattering measurements carried out in high magnetic fields provide important opportunities for new science. The workshop explored the range of the scientific discoveries that could be enabled with neutron scattering measurements at high fields (25 Tesla or larger), the various technologies that might be utilized to build specialized instruments and sample environment equipment to enable this research at ORNL, and possible routes to funding and constructing these facilities and portable high field sample environments.

  6. Intermittent character of interplanetary magnetic field fluctuations (United States)

    Bruno, Roberto; Carbone, Vincenzo; Chapman, Sandra; Hnat, Bogdan; Noullez, Alain; Sorriso-Valvo, Luca


    Interplanetary magnetic field magnitude fluctuations are notoriously more intermittent than velocity fluctuations in both fast and slow wind. This behavior has been interpreted in terms of the anomalous scaling observed in passive scalars in fully developed hydrodynamic turbulence. In this paper, the strong intermittent nature of the interplanetary magnetic field is briefly discussed comparing results performed during different phases of the solar cycle. The scaling properties of the interplanetary magnetic field magnitude show solar cycle variation that can be distinguished in the scaling exponents revealed by structure functions. The scaling exponents observed around the solar maximum coincide, within the errors, to those measured for passive scalars in hydrodynamic turbulence. However, it is also found that the values are not universal in the sense that the solar cycle variation may be reflected in dependence on the structure of the velocity field.

  7. Initial Results from the Vector Electric Field Investigation on the C/NOFS Satellite (United States)

    Pfaff, R.; Rowland, D.; Acuna, M.; Le, G.; Farrell, W.; Holzworth, R.; Wilson, G.; Burke, W.; Freudenreich, H.; Bromund, K.; Liebrecht, C.; Martin, S.; Kujawski, J.; Uribe, P.; Fourre, R.; McCarthy, M.; Maynard, N.; Berthelier, J.; Steigies, C.


    Initial results are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. The VEFI instrument includes a vector DC electric field detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux gate magnetometer, an optical lightning detector, and associated electronics including a burst memory. The DC electric field detector has revealed zonal and meridional electric fields that undergo a diurnal variation, typically displaying eastward and outward-directed fields during the day and westward and downward-directed fields at night. In general, the measured DC electric field amplitudes are in the 0.5-2 mV/m range, corresponding to E x B drifts of the order of 30-150 m/s. What is surprising is the high degree of large-scale (10's of km to > 500 km) structure in the DC electric field, particularly at night, regardless of whether well-defined spread-F plasma density depletions are present. The spread-F density depletions and corresponding electric fields that have been detected thus far have displayed a preponderance to appear between midnight and dawn. Associated with the narrow plasma depletions that are detected are broad spectra of electric field and plasma density irregularities for which a full vector set of measurements is available for detailed study. On some occasions, localized regions of low frequency (< 8 Hz) magnetic field irregularities have been detected, suggestive of filamentary currents. Finally, the data set includes a wide range of ELF/VLF/HF waves corresponding to a variety of plasma waves, in particular banded ELF hiss, whistlers, and lower hybrid wave turbulence triggered by lightning-induced sferics. The VEFI data set represents a treasure trove of measurements that are germane to numerous fundamental aspects of the

  8. Modeling, Analysis, and Realization of Permanent Magnet Synchronous Motor Current Vector Control by MATLAB/Simulink and FPGA

    Directory of Open Access Journals (Sweden)

    Chiu-Keng Lai


    Full Text Available In this paper, we present the modeling, analysis, and realization of current vector control for a permanent magnet synchronous motor (PMSM drive using MATLAB/Simulink and a field programmable gate array (FPGA. In AC motor drive systems, most of the current vector controls are realized by digital signal processors (DSPs because of their complete and compact hardware functions. However, the performances of drive systems realized by low-cost DSP are limited by the hardware structure and computation capacity, which may lead to the difficulty of reaching a fast enough response, above all, for those motors with a small electrical time constant. Therefore, we use FPGA to speed up the calculation about the current vector control to attain a fast response. Simulations and practical experimental results are used to verify the correctness and performance of the designed full hardware system.

  9. Nonlinear force-free magnetic fields: Calculation and applicatin to astrophysics. Ph.D. Thesis (United States)

    Yang, Wei-Hong


    The problem concerned in this work is that of calculating magnetic field configurations in which the Lorentz force (vector)j x (vector)B is everywhere zero, subject to specified boundary conditions. The magnetic field is represented in terms of Clebsch variables in the form (vector)B = del alpha x del beta. These variables are constant on any field line. The most appropriate choice of boundary conditions is to specify the values of alpha and beta on the bounding surface. It is proposed that the field lines move in the direction of local Lorentz force and relax towards a force-free field configuration. This concept leads to an iteration procedure for modifying the variables alpha and beta that tends asymptotically towards the force-free state. This method is first applied to a simple problem in two rectangular dimensions; the calculation shows that the convergence of magnetic field energy to a minimum state (force-free) is close to exponential. This method is then applied to study some astrophysical force-free magnetic fields, such as the structures and evolution of magnetic fields of rotating sunspots and accretion disks. The implication of the results, as related to the mechanisms of solar flares, extragalactic radio sources and radio jets, are discussed.

  10. Magnetic field strength and reproducibility of neodymium magnets useful for transcranial static magnetic field stimulation of the human cortex. (United States)

    Rivadulla, Casto; Foffani, Guglielmo; Oliviero, Antonio


    The application of transcranial static magnetic field stimulation (tSMS) in humans reduces the excitability of the motor cortex for a few minutes after the end of stimulation. However, when tSMS is applied in humans, the cortex is at least 2 cm away, so most of the strength of the magnetic field will not reach the target. The main objective of the study was to measure the strength and reproducibility of static magnetic fields produced by commercial neodymium magnets. We measured the strength and reproducibility of static magnetic fields produced by four different types of neodymium cylindrical magnets using a magnetic field-to-voltage transducer. Magnetic field strength depended on magnet size. At distances magnetic field strength was affected by the presence of central holes (potentially useful for recording electroencephalograms). At distances >1.5 cm, the measurements made on the cylinder axis and 1.5 cm off the axis were comparable. The reproducibility of the results (i.e., the consistency of the field strength across magnets of the same size) was very high. These measurements offer a quantitative empirical reference for developing devices useful for tSMS protocols in both humans and animals. © 2013 International Neuromodulation Society.

  11. Magnetic Fields in the Interstellar Medium (United States)

    Clark, Susan


    The Milky Way is magnetized. Invisible magnetic fields thread the Galaxy on all scales and play a vital but still poorly understood role in regulating flows of gas in the interstellar medium and the formation of stars. I will present highlights from my thesis work on magnetic fields in the diffuse interstellar gas and in accretion disks. At high Galactic latitudes, diffuse neutral hydrogen is organized into an intricate network of slender linear features. I will show that these neutral hydrogen “fibers” are extremely well aligned with the ambient magnetic field as traced by both starlight polarization (Clark et al. 2014) and Planck 353 GHz polarized dust emission (Clark et al. 2015). The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. Because the orientation of neutral hydrogen is an independent predictor of the local dust polarization angle, our work provides a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination. Magnetic fields also drive accretion in astrophysical disks via the magnetorotational instability (MRI). I analytically derive the behavior of this instability in the weakly nonlinear regime and show that the saturated state of the instability depends on the geometry of the background magnetic field. The analytical model describes the behavior of the MRI in a Taylor-Couette flow, a set-up used by experimentalists in the ongoing quest to observe MRI in the laboratory (Clark & Oishi 2016a, 2016b).

  12. Induction of cell death by magnetic particles in response to a gradient magnetic field inside a uniform magnetic field (United States)

    Amaya-Jaramillo, Carlos David; Pérez-Portilla, Adriana Patricia; Serrano-Olmedo, José Javier; Ramos-Gómez, Milagros


    A new instrument based on a magnetic force produced by an alternating magnetic field gradient, which is obtained through Maxwell coils, inside a constant field magnet has been designed and used to produce cell death. We have determined the interaction of microparticles and cells under different conditions such as incubation time with microparticles, particle size, magnetic field exposition time, and different current waveforms at different frequencies to produce a magnetic field gradient. We determined that the highest rate of cell death occurs at a frequency of 1 Hz with a square waveform and 1 h of irradiation. This method could be of great interest to remove cancer cells due mainly to the alterations in stiffness observed in the membranes of the tumor cells. Cancer cells can be eliminated in response to the forces caused by the movement of magnetic nanoparticles of the appropriate size under the application of a specific magnetic field. [Figure not available: see fulltext.

  13. Plasma Equilibria With Stochastic Magnetic Fields (United States)

    Krommes, J. A.; Reiman, A. H.


    Plasma equilibria that include regions of stochastic magnetic fields are of interest in a variety of applications, including tokamaks with ergodic limiters and high-pressure stellarators. Such equilibria are examined theoretically, and a numerical algorithm for their construction is described.^2,3 % The balance between stochastic diffusion of magnetic lines and small effects^2 omitted from the simplest MHD description can support pressure and current profiles that need not be flattened in stochastic regions. The diffusion can be described analytically by renormalizing stochastic Langevin equations for pressure and parallel current j, with particular attention being paid to the satisfaction of the periodicity constraints in toroidal configurations with sheared magnetic fields. The equilibrium field configuration can then be constructed by coupling the prediction for j to Amp'ere's law, which is solved numerically. A. Reiman et al., Pressure-induced breaking of equilibrium flux surfaces in the W7AS stellarator, Nucl. Fusion 47, 572--8 (2007). J. A. Krommes and A. H. Reiman, Plasma equilibrium in a magnetic field with stochastic regions, submitted to Phys. Plasmas. J. A. Krommes, Fundamental statistical theories of plasma turbulence in magnetic fields, Phys. Reports 360, 1--351.

  14. Magnetic field effect on spoke behaviour (United States)

    Hnilica, Jaroslav; Slapanska, Marta; Klein, Peter; Vasina, Petr


    The investigations of the non-reactive high power impulse magnetron sputtering (HiPIMS) discharge using high-speed camera imaging, optical emission spectroscopy and electrical probes showed that plasma is not homogeneously distributed over the target surface, but it is concentrated in regions of higher local plasma density called spokes rotating above the erosion racetrack. Magnetic field effect on spoke behaviour was studied by high-speed camera imaging in HiPIMS discharge using 3 inch titanium target. An employed camera enabled us to record two successive images in the same pulse with time delay of 3 μs between them, which allowed us to determine the number of spokes, spoke rotation velocity and spoke rotation frequency. The experimental conditions covered pressure range from 0.15 to 5 Pa, discharge current up to 350 A and magnetic fields of 37, 72 and 91 mT. Increase of the magnetic field influenced the number of spokes observed at the same pressure and at the same discharge current. Moreover, the investigation revealed different characteristic spoke shapes depending on the magnetic field strength - both diffusive and triangular shapes were observed for the same target material. The spoke rotation velocity was independent on the magnetic field strength. This research has been financially supported by the Czech Science Foundation in frame of the project 15-00863S.

  15. Magnetic field generation in relativistic shocks

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, J.; Achterberg, A. [Utrecht Univ., Utrecht (Germany). Sterrekundig Instituut


    Linear theory of the Weibel instability cannot explain magnetic field generation in relativistic shock fronts in electron-proton plasmas. The fireball model far Gamma-ray Burst afterglows requires a magnetic field in similar shock fronts between the fireball and the surrounding matter to explain the detected nonthermal afterglow radiation. We consider an analytical model of post-shock protons penetrating the hot post-shock electron plasma. The linear Weibel instability produces magnetic fields through self-enhancing current channels. Perturbations with a length-scale comparable to the electron skin depth reach the high est magnetic field before the linear theory breaks down. The electrons quench the linear proton instability so that it cannot randomize the proton velocity distribution and only converts a small fraction of the available kinetic energy of the protons into magnetic fields. We conclude that the linear Weibel instability that dominates in pair plasmas is relatively unimportant in electron-proton plasmas and that non-linear processes are probably much more important.

  16. Reducing blood viscosity with magnetic fields. (United States)

    Tao, R; Huang, K


    Blood viscosity is a major factor in heart disease. When blood viscosity increases, it damages blood vessels and increases the risk of heart attacks. Currently, the only method of treatment is to take drugs such as aspirin, which has, however, several unwanted side effects. Here we report our finding that blood viscosity can be reduced with magnetic fields of 1 T or above in the blood flow direction. One magnetic field pulse of 1.3 T lasting ~1 min can reduce the blood viscosity by 20%-30%. After the exposure, in the absence of magnetic field, the blood viscosity slowly moves up, but takes a couple of hours to return to the original value. The process is repeatable. Reapplying the magnetic field reduces the blood viscosity again. By selecting the magnetic field strength and duration, we can keep the blood viscosity within the normal range. In addition, such viscosity reduction does not affect the red blood cells' normal function. This technology has much potential for physical therapy.

  17. Magnetic Field Observations at Purcell, Oklahoma Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Chi, P. J. [Univ. of California, Los Angeles, CA (United States); Gibson, J. P. [Univ. of Oklahoma, Norman, OK (United States)


    The campaign “Magnetic Field Observations at Purcell, Oklahoma” installed a ground-based magnetometer at Purcell’s U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility boundary installation at the Kessler Atmospheric and Ecological Field Station, University of Oklahoma, to measure local magnetic field variations. It is a part of the nine stations of the Mid-continent MAgnetoseismic Chain (McMAC) placed as close to the 330° magnetic longitude as possible. This is the meridian in the world where land covers the greatest continuous range in magnetic latitude. Figure 1 shows the map of the magnetometer stations along the 330th magnetic meridian, including the Purcell (PCEL) station. The main scientific objective of the campaign is to detect the field line resonance (FLR) frequencies of the magnetic field line connected to the Purcell station. This magnetic field line extends from Purcell to the outer space at distances as far as 2 Earth radii (RE). To accurately identify FLR frequencies, however, simultaneous measurements at slightly different latitudes along the same meridian are necessary to allow the use of the cross-phase technique. This consideration explains the arrangement to operate magnetometers at the Americus (AMER) and Richardson (RICH) stations nearby. The measured resonant frequency can infer the plasma mass density along the field line through the method of normal-mode magnetoseismology. The magnetometer at the Purcell station can detect many other types of magnetic field fluctuations associated with the changes in the electric currents in the ionosphere and the magnetosphere, which by large are affected by the solar activity. In other words, the magnetic field data collected by this campaign are also useful for understanding space weather phenomena. The magnetometer was installed at Purcell’s ARM boundary facility in March 27, 2006. The construction of the triaxial fluxgate magnetometer used by the

  18. Primordial magnetic fields from metric perturbations

    CERN Document Server

    Maroto, A L


    We study the amplification of electromagnetic vacuum fluctuations induced by the evolution of scalar metric perturbations at the end of inflation. Such perturbations break the conformal invariance of Maxwell equations in Friedmann-Robertson-Walker backgrounds and allow the growth of magnetic fields on super-Hubble scales. We estimate the strength of the fields generated by this mechanism on galactic scales and compare the results with the present bounds on the galactic dynamo seed fields.

  19. Non-potential Field Formation in the X-shaped Quadrupole Magnetic Field Configuration (United States)

    Kawabata, Y.; Inoue, S.; Shimizu, T.


    Some types of solar flares are observed in X-shaped quadrupolar field configuration. To understand the magnetic energy storage in such a region, we studied non-potential field formation in an X-shaped quadrupolar field region formed in the active region NOAA 11967, which produced three X-shaped M-class flares on 2014 February 2. Nonlinear force-free field modeling was applied to a time series of vector magnetic field maps from the Solar Optical Telescope on board Hinode and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Our analysis of the temporal three-dimensional magnetic field evolution shows that the sufficient free energy had already been stored more than 10 hr before the occurrence of the first M-class flare and that the storage was observed in a localized region. In this localized region, quasi-separatrix layers (QSLs) started to develop gradually from 9 hr before the first M-class flare. One of the flare ribbons that appeared in the first M-class flare was co-spatial with the location of the QSLs, suggesting that the formation of the QSLs is important in the process of energy release. These QSLs do not appear in the potential field calculation, indicating that they were created by the non-potential field. The formation of the QSLs was associated with the transverse photospheric motion of the pre-emerged flux and the emergence of a new flux. This observation indicates that the occurrence of the flares requires the formation of QSLs in the non-potential field in which free magnetic energy is stored in advance.

  20. Mechanism of magnetic field effect in cryptochrome

    CERN Document Server

    Solov'yov, Ilia A


    Creatures as varied as mammals, fish, insects, reptiles, and migratory birds have an intriguing `sixth' sense that allows them to distinguish north from south by using the Earth's intrinsic magnetic field. Yet despite decades of study, the physical basis of this magnetic sense remains elusive. A likely mechanism is furnished by magnetically sensitive radical pair reactions occurring in the retina, the light-sensitive part of the eyes. A photoreceptor, cryptochrome, has been suggested to endow birds with magnetoreceptive abilities as the protein has been shown to exhibit the biophysical properties required for an animal magnetoreceptor to operate properly. Here, we propose a concrete light-driven reaction cycle in cryptochrome that lets a magnetic field influence the signaling state of the photoreceptor. The reaction cycle ties together transient absorption and electron-spin-resonance observations with known facts on avian magnetoreception. Our analysis establishes the feasibility of cryptochrome to act as a g...

  1. Three-dimensional solidification and melting using magnetic field control (United States)

    Dulikravich, George S.; Ahuja, Vineet


    A new two-fluid mathematical model for fully three dimensional steady solidification under the influence of an arbitrary acceleration vector and with or without an arbitrary externally applied steady magnetic field have been formulated and integrated numerically. The model includes Joule heating and allows for separate temperature dependent physical properties within the melt and the solid. Latent heat of phase change during melting/solidification was incorporated using an enthalpy method. Mushy region was automatically captured by varying viscosity orders of magnitude between liquidus and solidus temperature. Computational results were obtained for silicon melt solidification in a parallelepiped container cooled from above and from a side. The results confirm that the magnetic field has a profound influence on the solidifying melt flow field thus changing convective heat transfer through the boundaries and the amount and shape of the solid accrued. This suggests that development of a quick-response algorithm for active control of three dimensional solidification is feasible since it would require low strength magnetic fields.

  2. Linear force-free magnetic fields for solar extrapolation and interpretation (United States)

    Gary, G. Allen


    This paper discusses the interconnection of the various linear force-free magnetic field formulations, the specific phenomenological and topological parameters of these formulations, and their usefulness. Particularly, the limitations and usefulness of linear force-free fields are discussed. Specific field configurations are related to magnetographic interpretation. The relationship of the integral and Fourier procedures is shown explicitly. The physical interpretation of linear force-free fields is shown by analytic models and from the Marshall Space Flight Center solar vector magnetograms.

  3. Free magnetic energy and relative magnetic helicity diagnostics for the quality of NLFF field extrapolations (United States)

    Moraitis, Kostas; Archontis, Vasilis; Tziotziou, Konstantinos; Georgoulis, Manolis K.

    We calculate the instantaneous free magnetic energy and relative magnetic helicity of solar active regions using two independent approaches: a) a non-linear force-free (NLFF) method that requires only a single photospheric vector magnetogram, and b) well known semi-analytical formulas that require the full three-dimensional (3D) magnetic field structure. The 3D field is obtained either from MHD simulations, or from observed magnetograms via respective NLFF field extrapolations. We find qualitative agreement between the two methods and, quantitatively, a discrepancy not exceeding a factor of 4. The comparison of the two methods reveals, as a byproduct, two independent tests for the quality of a given force-free field extrapolation. We find that not all extrapolations manage to achieve the force-free condition in a valid, divergence-free, magnetic configuration. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.

  4. Multivariable integrated evaluation of model performance with the vector field evaluation diagram (United States)

    Xu, Zhongfeng; Han, Ying; Fu, Congbin


    This paper develops a multivariable integrated evaluation (MVIE) method to measure the overall performance of climate model in simulating multiple fields. The general idea of MVIE is to group various scalar fields into a vector field and compare the constructed vector field against the observed one using the vector field evaluation (VFE) diagram. The VFE diagram was devised based on the cosine relationship between three statistical quantities: root mean square length (RMSL) of a vector field, vector field similarity coefficient, and root mean square vector deviation (RMSVD). The three statistical quantities can reasonably represent the corresponding statistics between two multidimensional vector fields. Therefore, one can summarize the three statistics of multiple scalar fields using the VFE diagram and facilitate the intercomparison of model performance. The VFE diagram can illustrate how much the overall root mean square deviation of various fields is attributable to the differences in the root mean square value and how much is due to the poor pattern similarity. The MVIE method can be flexibly applied to full fields (including both the mean and anomaly) or anomaly fields depending on the application. We also propose a multivariable integrated evaluation index (MIEI) which takes the amplitude and pattern similarity of multiple scalar fields into account. The MIEI is expected to provide a more accurate evaluation of model performance in simulating multiple fields. The MIEI, VFE diagram, and commonly used statistical metrics for individual variables constitute a hierarchical evaluation methodology, which can provide a more comprehensive evaluation of model performance.

  5. High magnetic field magnetization of a new triangular lattice antiferromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, H. D. [Univ. of Tennessee, Knoxville, TN (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States). National High Magnetic Field Lab. (MagLab); Stritzinger, Laurel Elaine Winter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harrison, Neil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    In CsV(MoO4)2, the magnetic V3+ ions with octahedral oxygen-coordination form a geometrically frustrated triangular lattice. So fare, there is no magnetic properties reported on it. Recently, we successfully grew single crystals of CsV(MoO4)2 by using flux method. The susceptibility shows a sharp drop around 24 K, representing a long range magnetic ordering. To understand the physical properties of this new triangular lattice antiferromagnet (TLAF), we pursued high field magnetization measurements to answer two questions: (i) what is the saturation field, which will be very useful to calculate the exchange interaction of the system? (ii) Will it exhibit spin state transition, such as the up up down phase with 1/3-saturation moment as other TLAFs? Recently, we performed VSM measurements in Cell 8, Tallahassee, NHMFL, the results show that the magnetization reaches 0.38 MuB at 34 T, which is just 19% of the full moment of 2 MuB for V3+ (3d2) ions. Apparently we need higher field to reach 1/3 value or full moment.

  6. Streaming flows produced by oscillating interface of magnetic fluid adsorbed on a permanent magnet in alternating magnetic field (United States)

    Sudo, S.; Ito, M.; Ishimoto, Y.; Nix, S.


    This paper describes microstreaming flows generated by oscillating interface of magnetic fluid adsorbed on a circular cylindrical permanent magnet in alternating magnetic field. The interface of magnetic fluid adsorbed on the NdFeB magnet responds to the external alternating magnetic flied as harmonic oscillation. The directions of alternating magnetic field are parallel and antiparallel to the magnetic field of permanent magnet. The oscillation of magnetic fluid interface generates streaming flow around the magnet-magnetic fluid element in water. Microstreaming flows are observed with a high-speed video camera analysis system. The flow pattern generated by magnetic fluid motion depends on the Keulegan-Carpenter number and the Reynolds number.

  7. Tests of a 3D Self Magnetic Field Solver in the Finite Element Gun Code MICHELLE

    CERN Document Server

    Nelson, Eric M


    We have recently implemented a prototype 3d self magnetic field solver in the finite-element gun code MICHELLE. The new solver computes the magnetic vector potential on unstructured grids. The solver employs edge basis functions in the curl-curl formulation of the finite-element method. A novel current accumulation algorithm takes advantage of the unstructured grid particle tracker to produce a compatible source vector, for which the singular matrix equation is easily solved by the conjugate gradient method. We will present some test cases demonstrating the capabilities of the prototype 3d self magnetic field solver. One test case is self magnetic field in a square drift tube. Another is a relativistic axisymmetric beam freely expanding in a round pipe.

  8. All optical vector magnetometer Project (United States)

    National Aeronautics and Space Administration — This Phase I research project will investigate a novel method of operating an atomic magnetometer to simultaneously measure total magnetic fields and vector magnetic...

  9. Magnetic resonance signal moment determination using the Earth's magnetic field

    KAUST Repository

    Fridjonsson, Einar Orn


    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth\\'s magnetic field system.

  10. Consistency relation for cosmic magnetic fields

    DEFF Research Database (Denmark)

    Jain, R. K.; Sloth, M. S.


    to be extremely useful to test some recent calculations in the literature. Apart from primordial non-Gaussianity induced by the curvature perturbations, such a cross correlation might provide a new observational probe of inflation and can in principle reveal the primordial nature of cosmic magnetic fields. DOI......If cosmic magnetic fields are indeed produced during inflation, they are likely to be correlated with the scalar metric perturbations that are responsible for the cosmic microwave background anisotropies and large scale structure. Within an archetypical model of inflationary magnetogenesis, we show...... that there exists a new simple consistency relation for the non-Gaussian cross correlation function of the scalar metric perturbation with two powers of the magnetic field in the squeezed limit where the momentum of the metric perturbation vanishes. We emphasize that such a consistency relation turns out...

  11. Lunar magnetic permeability, magnetic fields, and electrical conductivity temperature (United States)

    Parkin, C. W.


    In the time period 1969-1972 a total of five magnetometers were deployed on the lunar surface during four Apollo missions. Data from these instruments, along with simultaneous measurements from other experiments on the moon and in lunar orbit, were used to study properties of the lunar interior and the lunar environment. The principal scientific results from analyses of the magnetic field data are discussed. The results are presented in the following main categories: (1) lunar electrical conductivity, temperature, and structure; (2) lunar magnetic permeability, iron abundance, and core size limits; (3) the local remnant magnetic fields, their interaction with the solar wind, and a thermoelectric generator model for their origin. Relevant publications and presented papers are listed.

  12. Uniform magnetic fields in density-functional theory. (United States)

    Tellgren, Erik I; Laestadius, Andre; Helgaker, Trygve; Kvaal, Simen; Teale, Andrew M


    We construct a density-functional formalism adapted to uniform external magnetic fields that is intermediate between conventional density functional theory and Current-Density Functional Theory (CDFT). In the intermediate theory, which we term linear vector potential-DFT (LDFT), the basic variables are the density, the canonical momentum, and the paramagnetic contribution to the magnetic moment. Both a constrained-search formulation and a convex formulation in terms of Legendre-Fenchel transformations are constructed. Many theoretical issues in CDFT find simplified analogs in LDFT. We prove results concerning N-representability, Hohenberg-Kohn-like mappings, existence of minimizers in the constrained-search expression, and a restricted analog to gauge invariance. The issue of additivity of the energy over non-interacting subsystems, which is qualitatively different in LDFT and CDFT, is also discussed.

  13. Uniform magnetic fields in density-functional theory (United States)

    Tellgren, Erik I.; Laestadius, Andre; Helgaker, Trygve; Kvaal, Simen; Teale, Andrew M.


    We construct a density-functional formalism adapted to uniform external magnetic fields that is intermediate between conventional density functional theory and Current-Density Functional Theory (CDFT). In the intermediate theory, which we term linear vector potential-DFT (LDFT), the basic variables are the density, the canonical momentum, and the paramagnetic contribution to the magnetic moment. Both a constrained-search formulation and a convex formulation in terms of Legendre-Fenchel transformations are constructed. Many theoretical issues in CDFT find simplified analogs in LDFT. We prove results concerning N-representability, Hohenberg-Kohn-like mappings, existence of minimizers in the constrained-search expression, and a restricted analog to gauge invariance. The issue of additivity of the energy over non-interacting subsystems, which is qualitatively different in LDFT and CDFT, is also discussed.

  14. Magnetic field homogeneity for neutron EDM experiment (United States)

    Anderson, Melissa


    The neutron electric dipole moment (nEDM) is an observable which, if non-zero, would violate time-reversal symmetry, and thereby charge-parity symmetry of nature. New sources of CP violation beyond those found in the standard model of particle physics are already tightly constrained by nEDM measurements. Our future nEDM experiment seeks to improve the precision on the nEDM by a factor of 30, using a new ultracold neutron (UCN) source that is being constructed at TRIUMF. Systematic errors in the nEDM experiment are driven by magnetic field inhomogeneity and instability. The goal field inhomogeneity averaged over the experimental measurement cell (order of 1 m) is 1 nT/m, at a total magnetic field of 1 microTesla. This equates to roughly 10-3 homogeneity. A particularly challenging aspect of the design problem is that nearby magnetic materials will also affect the magnetic inhomogeneity, and this must be taken into account in completing the design. This poster will present the design methodology and status of the main coil for the experiment where we use FEA software (COMSOL) to simulate and analyze the magnetic field. Natural Sciences and Engineering Research Council.

  15. High Field Magnetization of Tb Single Crystals

    DEFF Research Database (Denmark)

    Roeland, L. W.; Cock, G. J.; Lindgård, Per-Anker


    The magnetization of Tb single crystals was measured in magnetic fields to 34T along the hard direction at temperature of 1.8, 4.2, 65.5 and 77K, and along with easy direction at 4.2 and 77K. The data are compared with the results of a self-consistent spin wave calculation using a phenomenologica...... data on Tb. The conduction-electron polarization at zero field and temperature is (0.33+or-0.05) mu B/ion, and the susceptibility is greater than the Pauli susceptibility calculated from the band-structure.......The magnetization of Tb single crystals was measured in magnetic fields to 34T along the hard direction at temperature of 1.8, 4.2, 65.5 and 77K, and along with easy direction at 4.2 and 77K. The data are compared with the results of a self-consistent spin wave calculation using a phenomenological...... Hamiltonian including isotropic exchange interactions, effective single-ion anisotropy and magnetoelastic contributions. The parameters of this Hamiltonian were determined by fitting the theoretical results for the spin wave dispersion and energy gap as a function of temperature and magnetic field to existing...

  16. High magnetic field ohmically decoupled non-contact technology (United States)

    Wilgen, John [Oak Ridge, TN; Kisner, Roger [Knoxville, TN; Ludtka, Gerard [Oak Ridge, TN; Ludtka, Gail [Oak Ridge, TN; Jaramillo, Roger [Knoxville, TN


    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  17. Building Magnetic Fields in White Dwarfs (United States)

    Kohler, Susanna


    White dwarfs, the compact remnants left over at the end of low- and medium-mass stars lifetimes, are often found to have magnetic fields with strengths ranging from thousands to billions of times that of Earth. But how do these fields form?MultiplePossibilitiesAround 1020% of white dwarfs have been observed to have measurable magnetic fields with a wide range of strengths. There are several theories as to how these fields might be generated:The fields are fossil.The original weak magnetic fields of the progenitor stars were amplified as the stars cores evolved into white dwarfs.The fields are caused by binary interactions.White dwarfs that formed in the merger of a binary pair might have had a magnetic field amplified as a result of a dynamo that was generated during the merger.The fields were produced by some other internal physical mechanism during the cooling of the white dwarf itself.In a recent publication, a team of authors led by Jordi Isern (Institute of Space Sciences, CSIC, and Institute for Space Studies of Catalonia, Spain) explored this third possibility.Dynamos from CrystallizationThe inner and outer boundaries of the convective mantle of carbon/oxygen white dwarfs of two different masses (top vs. bottom panel) as a function of luminosity. As the white dwarf cools (toward the right), the mantle grows thinner due to the crystallization and settling of material. [Isern et al. 2017]As white dwarfs have no nuclear fusion at their centers, they simply radiate heat and gradually cool over time. The structure of the white dwarf undergoes an interesting change as it cools, however: though the object begins as a fluid composed primarily of an ionized mixture of carbon and oxygen (and a few minor species like nickel and iron), it gradually crystallizes as its temperature drops.The crystallized phase of the white dwarf is oxygen-rich which is denser than the liquid, so the crystallized material sinks to the center of the dwarf as it solidifies. As a result, the

  18. A model of Earth’s magnetic field derived from 2 years of Swarm satellite constellation data

    DEFF Research Database (Denmark)

    Olsen, Nils; Finlay, Chris; Kotsiaros, Stavros


    dependence for n=7–15, demonstrates the possibility to determine high-quality field models from only 2 years of Swarm data, thanks to the unique constellation aspect of Swarm. To account for the magnetic signature caused by ionospheric electric currents at polar latitudes we co-estimate, together......More than 2 years of magnetic field data taken by the three-satellite constellation mission Swarm are used to derive a model of Earth’s magnetic field and its time variation. This model is called SIFMplus. In addition to the magnetic field observations provided by each of the three Swarm satellites......, explicit advantage is taken of the constellation aspect of Swarm by including East–West magnetic intensity and vector field gradient information from the lower satellite pair. Along-track differences of the magnetic intensity as well as of the vector components provide further information concerning...

  19. Boulder Magnetic Observatory (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are vector and scalar component values of the Earth's magnetic field for 2004 recorded at the Boulder Magnetic Observatory in Colorado. Vector values are...

  20. The Magnetic Field of Planet Earth

    DEFF Research Database (Denmark)

    Hulot, G.; Finlay, Chris; Constable, C. G.


    The magnetic field of the Earth is by far the best documented magnetic field of all known planets. Considerable progress has been made in our understanding of its characteristics and properties, thanks to the convergence of many different approaches and to the remarkable fact that surface rocks...... yr) to the longest (virtually the age of the Earth) time scales are finally reviewed, underlining the respective roles of the magnetohydodynamics at work in the core, and of the slow dynamic evolution of the planet as a whole....

  1. Ultracold plasma dynamics in a magnetic field (United States)

    Zhang, Xianli

    Plasmas, often called the fourth state of matter and the most common one in the universe, have parameters varying by many orders of magnitude, from temperature of a few hundred kelvin in the Earth's ionosphere to 10 16 K in the magnetosphere of a pulsar. Ultracold plasmas, produced by photoionizing a sample of laser-cooled and trapped atoms near the ionization limit, have extended traditional neutral plasma parameters by many orders of magnitude, to electron temperatures below 1 K and ion temperatures in the tens of muK to a few Kelvin, and densities of 105 cm -3 to 1010 cm-3. These plasmas thus provide a testing ground to study basic plasma theory in a clean and simple system with or without a magnetic field. Previous studies of ultracold plasmas have primarily concentrated on temperature measurements, collective modes and expansion dynamics in the absence of magnetic fields. This thesis presents the first study of ultracold plasma dynamics in a magnetic field. The presence of a magnetic field during the expansion can initiate various phenomena, such as plasma confinement and plasma instabilities. While the electron temperatures are very low in ultracold plasmas, we need only tens of Gauss of magnetic field to observe significant effects on the expansion dynamics. To probe the ultraocold plasma dynamics in a magnetic field, we developed a new diagnostic - projection imaging, which images the ion distribution by extracting the ions with a high voltage pulse onto a position-sensitive detector. Early in the lifetime of the plasma (explosion of the dense ion cloud. For later times, we measure the 2-D Gaussian width of the ion image, obtaining the transverse expansion velocity as a function of magnetic field (up to 70 G), and observe that the transverse expansion velocity scales as B-1/2, explained by a nonlinear ambipolar diffusion model that involes anisotropic diffusion in two different directions. We also present the first observation of a plasma instability in an

  2. Reduction of a Ship's Magnetic Field Signatures

    CERN Document Server

    Holmes, John


    Decreasing the magnetic field signature of a naval vessel will reduce its susceptibility to detonating naval influence mines and the probability of a submarine being detected by underwater barriers and maritime patrol aircraft. Both passive and active techniques for reducing the magnetic signatures produced by a vessel's ferromagnetism, roll-induced eddy currents, corrosion-related sources, and stray fields are presented. Mathematical models of simple hull shapes are used to predict the levels of signature reduction that might be achieved through the use of alternate construction materials. Al

  3. Magnetic fields of HgMn stars⋆ (United States)

    Hubrig, S.; González, J. F.; Ilyin, I.; Korhonen, H.; Schöller, M.; Savanov, I.; Arlt, R.; Castelli, F.; Lo Curto, G.; Briquet, M.; Dall, T. H.


    Context. The frequent presence of weak magnetic fields on the surface of spotted late-B stars with HgMn peculiarity in binary systems has been controversial during the two last decades. Recent studies of magnetic fields in these stars using the least-squares deconvolution (LSD) technique have failed to detect magnetic fields, indicating an upper limit on the longitudinal field between 8 and 15 G. In these LSD studies, assumptions were made that all spectral lines are identical in shape and can be described by a scaled mean profile. Aims: We re-analyse the available spectropolarimetric material by applying the moment technique on spectral lines of inhomogeneously distributed elements separately. Furthermore, we present new determinations of the mean longitudinal magnetic field for the HgMn star HD 65949 and the hotter analog of HgMn stars, the PGa star HD 19400, using FORS 2 installed at the VLT. We also give new measurements of the eclipsing system AR Aur with a primary star of HgMn peculiarity, which were obtained with the SOFIN spectropolarimeter installed at the Nordic Optical Telescope. Methods: We downloaded from the European Southern Observatory (ESO) archive the publically available HARPS spectra for eight HgMn stars and one normal and one superficially normal B-type star obtained in 2010. Out of this sample, three HgMn stars belong to spectroscopic double-lined systems. The application of the moment technique to the HARPS and SOFIN spectra allowed us to study the presence of the longitudinal magnetic field, the crossover effect, and quadratic magnetic fields. Results for the HgMn star HD 65949 and the PGa star HD 19400 are based on a linear regression analysis of low-resolution spectra obtained with FORS 2 in spectropolarimetric mode. Results: Our measurements of the magnetic field with the moment technique using spectral lines of several elements separately reveal the presence of a weak longitudinal magnetic field, a quadratic magnetic field, and the

  4. Magnetic Fields and Galactic Star Formation Rates (United States)

    Van Loo, Sven; Tan, Jonathan C.; Falle, Sam A. E. G.


    The regulation of galactic-scale star formation rates (SFRs) is a basic problem for theories of galaxy formation and evolution: which processes are responsible for making observed star formation rates so inefficient compared to maximal rates of gas content divided by dynamical timescale? Here we study the effect of magnetic fields of different strengths on the evolution of giant molecular clouds (GMCs) within a kiloparsec patch of a disk galaxy and resolving scales down to ≃ 0.5 pc. Including an empirically motivated prescription for star formation from dense gas ({{n}H}\\gt {{10}5} c{{m}-3}) at an efficiency of 2% per local free-fall time, we derive the amount of suppression of star formation by magnetic fields compared to the nonmagnetized case. We find GMC fragmentation, dense clump formation, and SFR can be significantly affected by the inclusion of magnetic fields, especially in our strongest investigated B-field case of 80 μG. However, our chosen kiloparsec-scale region, extracted from a global galaxy simulation, happens to contain a starbursting cloud complex that is only modestly affected by these magnetic fields and likely requires internal star formation feedback to regulate its SFR.

  5. A magnetic field compatible graphene transmon (United States)

    Kroll, James G.; Uilhoorn, Willemijn; de Jong, Damaz; Borsoi, Francesco; van der Enden, Kian; Goswami, Srijit; Cassidy, Maja; Kouwenhoven, Leo. P.

    Hybrid circuit QED is a key tool for readout and scaling of both semiconductor-based spin and topological quantum computing schemes. However, traditional approaches to circuit QED are incompatible with the strong external magnetic fields required for these qubits. Here we present measurements of a hybrid graphene-based transmon operating at 1 T. The device consists of coplanar waveguide resonators where the NbTiN thin film is patterned with a dense anti-dot lattice to trap Abriskov vortices, resulting in internal quality factors Qi >10^5 up to 6 T. Furthermore, the atomically thin nature of graphene in combination with the high critical field of its superconducting contacts makes it an ideal system for tolerating strong parallel magnetic fields. We combine these circuit elements to realize a magnetic field compatible transmon qubit. An external gate allows us to change the Josephson energy, and study the corresponding change in the resonator-qubit interaction in the dispersive regime. Two tone spectroscopy reveals a gate-tunable qubit peak at 1T. These experiments open up the possibility of fast charge parity measurements in high magnetic fields for readout of Majorana qubits..

  6. Skyrmion motion driven by oscillating magnetic field. (United States)

    Moon, Kyoung-Woong; Kim, Duck-Ho; Je, Soong-Geun; Chun, Byong Sun; Kim, Wondong; Qiu, Z Q; Choe, Sug-Bong; Hwang, Chanyong


    The one-dimensional magnetic skyrmion motion induced by an electric current has attracted much interest because of its application potential in next-generation magnetic memory devices. Recently, the unidirectional motion of large (20 μm in diameter) magnetic bubbles with two-dimensional skyrmion topology, driven by an oscillating magnetic field, has also been demonstrated. For application in high-density memory devices, it is preferable to reduce the size of skyrmion. Here we show by numerical simulation that a skyrmion of a few tens of nanometres can also be driven by high-frequency field oscillations, but with a different direction of motion from the in-plane component of the tilted oscillating field. We found that a high-frequency field for small skyrmions can excite skyrmion resonant modes and that a combination of different modes results in a final skyrmion motion with a helical trajectory. Because this helical motion depends on the frequency of the field, we can control both the speed and the direction of the skyrmion motion, which is a distinguishable characteristic compared with other methods.

  7. Magnetic clouds and force-free fields with constant alpha (United States)

    Burlaga, L. F.


    Magnetic clouds observed at 1 AU are modeled as cylindrically symmetric, constant alpha force-free magnetic fields. The model satisfactorily explains the types of variations of the magnetic field direction that are observed as a magnetic cloud moves past a spacecraft in terms of the possible orientations of the axis of a magnetic cloud. The model also explains why the magnetic field strength is observed to be higher inside a magnetic cloud than near its boundaries. However, the model predicts that the magnetic field strength profile should be symmetric with respect to the axis of the magnetic cloud, whereas observations show that this is not generally the case.

  8. Biomaterials and Magnetic fields for Cancer Therapy (United States)

    Ramachandran, Narayanan; Mazuruk, Konstanty


    The field of biomaterials has emerged as an important topic in the purview of NASA s new vision of research activities in the Microgravity Research Division. Although this area has an extensive track record in the medical field as borne out by the routine use of polymeric sutures, implant devices, and prosthetics, novel applications such as tissue engineering, artificial heart valves and controlled drug delivery are beginning to be developed. Besides the medical field, biomaterials and bio-inspired technologies are finding use in a host of emerging interdisciplinary fields such as self-healing and self-assembling structures, biosensors, fuel systems etc. The field of magnetic fluid technology has several potential applications in medicine. One of the emerging fields is the area of controlled drug delivery, which has seen its evolution from the basic oral delivery system to pulmonary to transdermal to direct inoculations. In cancer treatment by chemotherapy for example, targeted and controlled drug delivery has received vast scrutiny and substantial research and development effort, due to the high potency of the drugs involved and the resulting requirement to keep the exposure of the drugs to surrounding healthy tissue to a minimum. The use of magnetic particles in conjunction with a static magnetic field allows smart targeting and retention of the particles at a desired site within the body with the material transport provided by blood perfusion. Once so located, the therapeutical aspect (radiation, chemotherapy, hyperthermia, etc.) of the treatment, now highly localized, can be implemented.

  9. Magnetic resonance imaging without field cycling at less than earth's magnetic field (United States)

    Lee, Seong-Joo; Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min


    A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π / 2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.

  10. Magnetic resonance imaging without field cycling at less than earth's magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seong-Joo, E-mail:; Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min [Center for Biosignals, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 305-340 (Korea, Republic of)


    A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π/2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.

  11. Magnetic field measurements on the sun and implications for stellar magnetic field observations

    Energy Technology Data Exchange (ETDEWEB)

    Sun, W.H.; Giampapa, M.S.; Worden, S.P.


    Results of solar magnetic field measurements in plages, sunspot umbrae, and sunspot penumbrae using high spectral resolution, unpolarized infrared H band spectral data are presented. A Fourier deconvolution analysis scheme similar to that utilized for stellar magnetic field measurements is adopted. As an example, a field strength of 3240 + or - 450 G is determined in a sunspot umbra combined with a value of 2000 + or - 180 G in the associated penumbra. These values are compared with a direct measurement of the spot umbra and penumbra field strengths based on the observed separation of the Zeeman components of the magnetically sensitive lines. Possible origins for the discrepancy between the results inferred by these two different techniques are discussed. The Fourier analysis results confirm the widespread occurrence of kilogauss level fields in the solar photosphere. The implications of the solar results for stellar magnetic field measurements are considered. 45 references.

  12. Magnetic and Electric Field Polarizations of Oblique Magnetospheric Chorus Waves (United States)

    Verkhoglyadova, Olga; Tsurutani, Bruce T.; Lakhina, Gurbax S.


    A theory was developed to explain the properties of the chorus magnetic and electric field components in the case of an arbitrary propagation angle. The new theory shows that a whistler wave has circularly polarized magnetic fields for oblique propagation. This theoretical result is verified by GEOTAIL observations. The wave electric field polarization plane is not orthogonal to the wave vector, and in general is highly elliptically polarized. A special case of the whistler wave called the Gendrin mode is also discussed. This will help to construct a detailed and realistic picture of wave interaction with magnetosphere electrons. It is the purpose of this innovation to study the magnetic and electric polarization properties of chorus at all frequencies, and at all angles of propagation. Even though general expressions for electromagnetic wave polarization in anisotropic plasma are derived in many textbooks, to the knowledge of the innovators, a detailed analysis for oblique whistler wave mode is lacking. Knowledge of the polarization properties is critical for theoretical calculations of resonant wave-particle interactions.


    Energy Technology Data Exchange (ETDEWEB)

    Davidson, J. A. [University of Western Australia, School of Physics, 35 Stirling Highway, Crawley, WA 6009 (Australia); Li, Z.-Y. [Astronomy Department, University of Virginia, Charlottesville, VA 22904 (United States); Hull, C. L. H.; Plambeck, R. L. [Astronomy Department and Radio Astronomy Laboratory, University of California, Berkeley, CA 94720-3411 (United States); Kwon, W. [SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD, Groningen (Netherlands); Crutcher, R. M.; Looney, L. W. [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Novak, G.; Chapman, N. L. [Northwestern University, Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and the Department of Physics and Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Matthews, B. C. [Herzberg Astronomy and Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Stephens, I. W. [Boston University, Institute for Astrophysical Research, Boston, MA 02215 (United States); Tobin, J. J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Jones, T. J., E-mail: [University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States)


    For the Class 0 protostar L1527 we compare 131 polarization vectors from SCUPOL/JCMT, SHARP/CSO, and TADPOL/CARMA observations with the corresponding model polarization vectors of four ideal-MHD, nonturbulent, cloud core collapse models. These four models differ by their initial magnetic fields before collapse; two initially have aligned fields (strong and weak) and two initially have orthogonal fields (strong and weak) with respect to the rotation axis of the L1527 core. Only the initial weak orthogonal field model produces the observed circumstellar disk within L1527. This is a characteristic of nearly all ideal-MHD, nonturbulent, core collapse models. In this paper we test whether this weak orthogonal model also has the best agreement between its magnetic field structure and that inferred from the polarimetry observations of L1527. We found that this is not the case; based on the polarimetry observations, the most favored model of the four is the weak aligned model. However, this model does not produce a circumstellar disk, so our result implies that a nonturbulent, ideal-MHD global collapse model probably does not represent the core collapse that has occurred in L1527. Our study also illustrates the importance of using polarization vectors covering a large area of a cloud core to determine the initial magnetic field orientation before collapse; the inner core magnetic field structure can be highly altered by a collapse, and so measurements from this region alone can give unreliable estimates of the initial field configuration before collapse.

  14. Measurement of 3-axis magnetic fields induced by current wires using a smartphone in magnetostatics experiments (United States)

    Setiawan, B.; Septianto, R. D.; Suhendra, D.; Iskandar, F.


    This paper describes the use of an inexpensive smartphone’s magnetic sensor to measure magnetic field components (B x , B y and B z ) induced by current wires in magnetostatic experiments. The variable parameters used to measure the magnetic sensor’s capabilities were: the geometrical shapes of the wire, current flow, and the distance between wire and observation point. The experimental results are in good agreement with the results obtained from calculations using an analytical and numerical approach. In addition, the 2D vectors and magnitude of the magnetic field have been successfully illustrated. This study confirmed that the inexpensive smartphone’s magnetic sensor had a good ability to accurately measure the components of a magnetic field in a magnetostatic experiment, which is especially suitable for undergraduate students.

  15. A Note on the First Integrals of Vector Fields with Integrating Factors and Normalizers

    Directory of Open Access Journals (Sweden)

    Jaume Llibre


    Full Text Available We prove a sufficient condition for the existence of explicit first integrals for vector fields which admit an integrating factor. This theorem recovers and extends previous results in the literature on the integrability of vector fields which are volume preserving and possess nontrivial normalizers. Our approach is geometric and coordinate-free and hence it works on any smooth orientable manifold.

  16. Magnetic Fields in the Solar Convection Zone

    Directory of Open Access Journals (Sweden)

    Yuhong Fan


    Full Text Available Active regions on the solar surface are generally thought to originate from a strong toroidal magnetic field generated by a deep seated solar dynamo mechanism operating at the base of the solar convection zone. Thus the magnetic fields need to traverse the entire convection zone before they reach the photosphere to form the observed solar active regions. Understanding this process of active region flux emergence is therefore a crucial component for the study of the solar cycle dynamo. This article reviews studies with regard to the formation and rise of active region scale magnetic flux tubes in the solar convection zone and their emergence into the solar atmosphere as active regions.

  17. Magnetic fields and density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Salsbury Jr., Freddie [Univ. of California, Berkeley, CA (United States)


    A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.

  18. Super-strong Magnetic Field in Sunspots (United States)

    Okamoto, Takenori J.; Sakurai, Takashi


    Sunspots are the most notable structure on the solar surface with strong magnetic fields. The field is generally strongest in a dark area (umbra), but sometimes stronger fields are found in non-dark regions, such as a penumbra and a light bridge. The formation mechanism of such strong fields outside umbrae is still puzzling. Here we report clear evidence of the magnetic field of 6250 G, which is the strongest field among Stokes I profiles with clear Zeeman splitting ever observed on the Sun. The field was almost parallel to the solar surface and located in a bright region sandwiched by two opposite-polarity umbrae. Using a time series of spectral data sets, we discuss the formation process of the super-strong field and suggest that this strong field region was generated as a result of compression of one umbra pushed by the horizontal flow from the other umbra, such as the subduction of the Earth’s crust in plate tectonics.

  19. Physics of semiconductors in high magnetic fields

    CERN Document Server

    Miura, Noboru


    This book summarizes most of the fundamental physical phenomena which semiconductors and their modulated structures exhibit in high magnetic fields. Readers can learn not only the basic theoretical background but also the present state of the art from the most advanced data in this rapidly growing research area.

  20. Manifestations of Magnetic Field Inhomogeneities Lawrence Rudnick

    Indian Academy of Sciences (India)

    Abstract. Both observations and simulations reveal large inhomo- geneities in magnetic field distributions in diffuse plasmas. Incorporating these inhomogeneities into various calculations can significantly change the inferred physical conditions. In extragalactic sources, e.g., these can compromise analyses of spectral ...

  1. Passive levitation in alternating magnetic fields (United States)

    Romero, Louis [Albuquerque, NM; Christenson, Todd [Albuquerque, NM; Aronson, Eugene A [Albuquerque, NM


    Stable levitation of an object in an alternating magnetic field can be achieved by eliminating coupling between the rotational and translational forces acting on the object. Stable levitation can also be achieved by varying the coupling between the rotational and translational forces acting on the object, while maintaining one or more of the rotational and translational forces steady in time.

  2. Strain sensors for high field pulse magnets

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Christian [Los Alamos National Laboratory; Zheng, Yan [Los Alamos National Laboratory; Easton, Daniel [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory


    In this paper we present an investigation into several strain sensing technologies that are being considered to monitor mechanical deformation within the steel reinforcement shells used in high field pulsed magnets. Such systems generally operate at cryogenic temperatures to mitigate heating issues that are inherent in the coils of nondestructive, high field pulsed magnets. The objective of this preliminary study is to characterize the performance of various strain sensing technologies at liquid nitrogen temperatures (-196 C). Four sensor types are considered in this investigation: fiber Bragg gratings (FBG), resistive foil strain gauges (RFSG), piezoelectric polymers (PVDF), and piezoceramics (PZT). Three operational conditions are considered for each sensor: bond integrity, sensitivity as a function of temperature, and thermal cycling effects. Several experiments were conducted as part of this study, investigating adhesion with various substrate materials (stainless steel, aluminum, and carbon fiber), sensitivity to static (FBG and RFSG) and dynamic (RFSG, PVDF and PZT) load conditions, and sensor diagnostics using PZT sensors. This work has been conducted in collaboration with the National High Magnetic Field Laboratory (NHMFL), and the results of this study will be used to identify the set of sensing technologies that would be best suited for integration within high field pulsed magnets at the NHMFL facility.

  3. Cylindrical isentropic compression by ultrahigh magnetic field (United States)

    Gu, Zhuowei; Luo, Hao; Zhang, Hengdi; Zhao, Shichao; Tang, Xiaosong; Tong, Yanjin; Song, Zhenfei; Tan, Fuli; Zhao, Jianheng; Sun, Chengwei


    The cylindrical isentropic compression by ultrahigh magnetic field (MC-1) is a kind of unique high energy density technique. It has characters like ultrahigh pressure and low temperature rising, and would have widely used in areas like high pressure physics, new material synthesis and ultrahigh magnetic field physics. The Institute of Fluid Physics, Chinese Academy of Engineering Physics (IFP, CAEP) has begun the experiment since 2011 and a primary experimental device had been set-up. In the experiments, a seed magnetic field of 5 Tesla were set-up first and compressed by a stainless steel liner which is driven by high explosive initiated synchronously. The internal diameter of the liner is 97 mm, and its thickness is 1.5 mm. The movement of liner was recorded optically and a typical turnaround phenomenon was observed. From the photography results the liner was compressed smoothly and evenly and its average velocity was about 5-6 km/s. In the experiment a axial magnetic field of over 1400 Tesla has been recorded. The MC-1 process was numerical simulated by 1D MHD code MC11D and the simulations are in accord with the experiments.

  4. Field modeling for transcranial magnetic stimulation

    DEFF Research Database (Denmark)

    Thielscher, Axel; Antunes, Andre; Saturnino, Guilherme B


    Electric field calculations based on numerical methods and increasingly realistic head models are more and more used in research on Transcranial Magnetic Stimulation (TMS). However, they are still far from being established as standard tools for the planning and analysis in practical applications...

  5. Magnetic Fields inside Extremely Fast Shock Waves

    NARCIS (Netherlands)

    Wiersma, J.


    The aim of my research on magnetic fields in extremely fast shock waves has been to predict the properties of shock waves that move almost with the speed of light. These shocks are created in the tenuous interstellar medium by catastrophic events such as the explosion of stars many times

  6. ATLAS Barrel Toroid magnet reached nominal field

    CERN Multimedia


     On 9 November the barrel toroid magnet reached its nominal field of 4 teslas, with an electrical current of 21 000 amperes (21 kA) passing through the eight superconducting coils as shown on this graph

  7. Historic Methods for Capturing Magnetic Field Images (United States)

    Kwan, Alistair


    I investigated two late 19th-century methods for capturing magnetic field images from iron filings for historical insight into the pedagogy of hands-on physics education methods, and to flesh out teaching and learning practicalities tacit in the historical record. Both methods offer opportunities for close sensory engagement in data-collection…

  8. Enhanced microactuation with magnetic field curing of ...

    Indian Academy of Sciences (India)

    The incorporation of nanoparticles of iron in a natural rubber matrix leads to flexible magnetorheolog- ical (MR) materials. Rod-shaped MR elastomers based on natural rubber and nanosized iron have been moulded both with and without the application of an external magnetic field during curing. These MR elastomer rods ...

  9. Enhanced microactuation with magnetic field curing of ...

    Indian Academy of Sciences (India)

    The incorporation of nanoparticles of iron in a natural rubber matrix leads to flexible magnetorheological (MR) materials. Rod-shaped MR elastomers based on natural rubber and nanosized iron have been moulded both with and without the application of an external magnetic field during curing. These MR elastomer rods ...

  10. Magnetic Field Structure in Relativistic Jets

    Directory of Open Access Journals (Sweden)

    Jermak Helen


    Full Text Available Relativistic jets are ubiquitous when considering an accreting black hole. Two of the most extreme examples of these systems are blazars and gamma-ray bursts (GRBs, the jets of which are thought to be threaded with a magnetic field of unknown structure. The systems are made up of a black hole accreting matter and producing, as a result, relativistic jets of plasma from the poles of the black hole. Both systems are viewed as point sources from Earth, making it impossible to spatially resolve the jet. In order to explore the structure of the magnetic field within the jet we take polarisation measurements with the RINGO polarimeters on the world’s largest fully autonomous, robotic optical telescope: The Liverpool Telescope. Using the polarisation degree and angle measured by the RINGO polarimeters it is possible to distinguish between global magnetic fields created in the central engine and random tangled magnetic fields produced locally in shocks. We also monitor blazar sources regularly during quiescence with periods of flaring monitored more intensively. Reported here are the early polarisation results for GRBs 060418 and 090102, along with future prospects for the Liverpool Telescope and the RINGO polarimeters.

  11. Rotational Rectification of an Alternating Magnetic Field

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 5. Rotational Rectification of an Alternating Magnetic Field. N Kumar. Classroom Volume 18 Issue 5 May 2013 pp 458-467. Fulltext. Click here to view fulltext PDF. Permanent link: ...

  12. New techniques for the scientific visualization of three-dimensional multi-variate and vector fields

    Energy Technology Data Exchange (ETDEWEB)

    Crawfis, Roger A. [Univ. of California, Davis, CA (United States)


    Volume rendering allows us to represent a density cloud with ideal properties (single scattering, no self-shadowing, etc.). Scientific visualization utilizes this technique by mapping an abstract variable or property in a computer simulation to a synthetic density cloud. This thesis extends volume rendering from its limitation of isotropic density clouds to anisotropic and/or noisy density clouds. Design aspects of these techniques are discussed that aid in the comprehension of scientific information. Anisotropic volume rendering is used to represent vector based quantities in scientific visualization. Velocity and vorticity in a fluid flow, electric and magnetic waves in an electromagnetic simulation, and blood flow within the body are examples of vector based information within a computer simulation or gathered from instrumentation. Understand these fields can be crucial to understanding the overall physics or physiology. Three techniques for representing three-dimensional vector fields are presented: Line Bundles, Textured Splats and Hair Splats. These techniques are aimed at providing a high-level (qualitative) overview of the flows, offering the user a substantial amount of information with a single image or animation. Non-homogenous volume rendering is used to represent multiple variables. Computer simulations can typically have over thirty variables, which describe properties whose understanding are useful to the scientist. Trying to understand each of these separately can be time consuming. Trying to understand any cause and effect relationships between different variables can be impossible. NoiseSplats is introduced to represent two or more properties in a single volume rendering of the data. This technique is also aimed at providing a qualitative overview of the flows.

  13. Autonomous dynamic obstacle avoidance for bacteria-powered microrobots (BPMs) with modified vector field histogram (United States)

    Kim, Hoyeon; Cheang, U. Kei


    In order to broaden the use of microrobots in practical fields, autonomous control algorithms such as obstacle avoidance must be further developed. However, most previous studies of microrobots used manual motion control to navigate past tight spaces and obstacles while very few studies demonstrated the use of autonomous motion. In this paper, we demonstrated a dynamic obstacle avoidance algorithm for bacteria-powered microrobots (BPMs) using electric field in fluidic environments. A BPM consists of an artificial body, which is made of SU-8, and a high dense layer of harnessed bacteria. BPMs can be controlled using externally applied electric fields due to the electrokinetic property of bacteria. For developing dynamic obstacle avoidance for BPMs, a kinematic model of BPMs was utilized to prevent collision and a finite element model was used to characteristic the deformation of an electric field near the obstacle walls. In order to avoid fast moving obstacles, we modified our previously static obstacle avoidance approach using a modified vector field histogram (VFH) method. To validate the advanced algorithm in experiments, magnetically controlled moving obstacles were used to intercept the BPMs as the BPMs move from the initial position to final position. The algorithm was able to successfully guide the BPMs to reach their respective goal positions while avoiding the dynamic obstacles. PMID:29020016

  14. Periodic perturbations of quadratic planar polynomial vector fields

    Directory of Open Access Journals (Sweden)



    Full Text Available In this work are studied periodic perturbations, depending on two parameters, of quadratic planar polynomial vector fields having an infinite heteroclinic cycle, which is an unbounded solution joining two saddle points at infinity. The global study envolving infinity is performed via the Poincaré compactification. The main result obtained states that for certain types of periodic perturbations, the perturbed system has quadratic heteroclinic tangencies and transverse intersections between the local stable and unstable manifolds of the hyperbolic periodic orbits at infinity. It implies, via the Birkhoff-Smale Theorem, in a complex dynamical behavior of the solutions of the perturbed system, in a finite part of the phase plane.Neste trabalho são estudadas perturbações periódicas, dependendo de dois parâmetros, de campos vetoriais polinomiais planares que possuem um ciclo heteroclínico infinito, que consiste de uma solução ilimitada, que conecta dois pontos de sela no infinito. O estudo global do campo vetorial, envolvendo o infinito, foi elaborado utilizando-se a compactificação de Poincaré. O resultado principal estabelece que, para certo tipo de perturbação periódica, o sistema apresenta tangências heteroclínicas e intersecção transversal das variedades invariantes de órbitas periódicas no infinito, o que implica, via o Teorema de Birkhoff-Smale, em um comportamento dinâmico bastante complexo das soluções do sistema perturbado, em uma região finita do plano de fase.

  15. Crystal Fields and the Magnetic Properties of Praseodymium and Neodymium

    DEFF Research Database (Denmark)

    Johansson, Torben; Lebech, Bente; Nielsen, Mourits


    The magnetic properties of Pr and Nd single crystals have been studied by neutron-diffraction and susceptibility measurements. In contrast to earlier results on polycrystals, monocrystalline Pr is found not to be magnetically ordered, because of crystal field effects, but a magnetic field induces...... a large moment. Anisotropic effective exchange results in a large magnetic anisotropy. The complex magnetic structure of Nd is substantially modified by a magnetic field....

  16. The effects of high magnetic field on the morphology and microwave electromagnetic properties of MnO 2 powder (United States)

    Zhang, Jia; Yuping, Duan; Shuqing, Li; Xiaogang, Li; Shunhua, Liu


    MnO 2 with a sea urchin-like ball chain shape was first synthesized in a high magnetic field via a simple chemical process, and a mechanism for the formation of this grain shape was discussed. The as-synthesized samples were characterized by XRD, SEM, TEM, and vector network analysis. The dielectric constant and the loss tangent clearly decreased under a magnetic field. The magnetic loss tangent and the imaginary part of the magnetic permeability increased substantially. Furthermore, the theoretically calculated values of reflection loss showed that the absorption peaks shifted to a higher frequency with increases in the magnetic field strength.

  17. Predicting Solar Flares Using SDO/HMI Vector Magnetic Data Product and Random Forest Algorithm (United States)

    Liu, Chang; Deng, Na; Wang, Jason; Wang, Haimin


    Adverse space weather effects can often be traced to solar flares, prediction of which has drawn significant research interests. Many previous forecasting studies used physical parameters derived from photospheric line-of-sight field or ground-based vector field observations. The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory produces full-disk vector magnetograms with continuous high-cadence, while flare prediction efforts utilizing this unprecedented data source are still limited. Here we report results of flare prediction using physical parameters provided by the Space-weather HMI Active Region Patches (SHARP) and related data products. We survey X-ray flares occurred from 2010 May to 2016 December, and categorize their source regions into four classes (B, C, M, and X) according to the maximum GOES magnitude of flares they generated. We then retrieve SHARP related parameters for each selected region at the beginning of its flare date to build a database. Finally, we train a machine-learning algorithm, called random forest (RF), to predict the occurrence of a certain class of flares in a given active region within 24 hours, evaluate the classifier performance using the 10-fold cross validation scheme, and characterize the results using standard performace metrics. Compared to previous works, our experiments indicate that using the HMI parameters and RF is a valid method for flare forecasting with fairly reasonable prediction performance. We also find that the total unsigned quantities of vertical current, current helicity, and flux near polarity inversion line are among the most important parameters for classifying flaring regions into different classes.

  18. A Linear Magnetic Field Scan Driver. (United States)

    Quine, Richard W; Czechowski, Tomasz; Eaton, Gareth R


    A linear magnetic field scan driver was developed to provide a rapidly scanning magnetic field for use in electron paramagnetic resonance (EPR) spectroscopy. The driver consists of two parts: a digitally synthesized ramp waveform generator and a power amplifier to drive the magnetic field coils. Additionally, the driver provides a trigger signal to a data collection digitizer that is synchronized to the ramp waveform. The driver can also drive an arbitrary current waveform supplied from an external source. The waveform generator is computer controlled through a serial data interface. Additional functions are controlled by the user from the driver front panel. The frequency and amplitude of the waveform are each separately controlled with 12-bit resolution (one part in 4,096). Several versions of the driver have been built with different frequency and amplitude ranges. Frequencies range from 500 to 20,000 Hz. Field sweep amplitudes range up to 80 G(pp). This article also gives a brief description of the field coils that are driven by the driver.

  19. Dynamic nuclear polarization at high magnetic fields. (United States)

    Maly, Thorsten; Debelouchina, Galia T; Bajaj, Vikram S; Hu, Kan-Nian; Joo, Chan-Gyu; Mak-Jurkauskas, Melody L; Sirigiri, Jagadishwar R; van der Wel, Patrick C A; Herzfeld, Judith; Temkin, Richard J; Griffin, Robert G


    Dynamic nuclear polarization (DNP) is a method that permits NMR signal intensities of solids and liquids to be enhanced significantly, and is therefore potentially an important tool in structural and mechanistic studies of biologically relevant molecules. During a DNP experiment, the large polarization of an exogeneous or endogeneous unpaired electron is transferred to the nuclei of interest (I) by microwave (microw) irradiation of the sample. The maximum theoretical enhancement achievable is given by the gyromagnetic ratios (gamma(e)gamma(l)), being approximately 660 for protons. In the early 1950s, the DNP phenomenon was demonstrated experimentally, and intensively investigated in the following four decades, primarily at low magnetic fields. This review focuses on recent developments in the field of DNP with a special emphasis on work done at high magnetic fields (> or =5 T), the regime where contemporary NMR experiments are performed. After a brief historical survey, we present a review of the classical continuous wave (cw) DNP mechanisms-the Overhauser effect, the solid effect, the cross effect, and thermal mixing. A special section is devoted to the theory of coherent polarization transfer mechanisms, since they are potentially more efficient at high fields than classical polarization schemes. The implementation of DNP at high magnetic fields has required the development and improvement of new and existing instrumentation. Therefore, we also review some recent developments in microw and probe technology, followed by an overview of DNP applications in biological solids and liquids. Finally, we outline some possible areas for future developments.

  20. Amplification of large scale magnetic fields in a decaying MHD system (United States)

    Park, Kiwan


    Dynamo theory explains the amplification of magnetic fields in the conducting fluids (plasmas) driven by the continuous external energy. It is known that the nonhelical continuous kinetic or magnetic energy amplifies the small scale magnetic field; and the helical energy, the instability, or the shear with rotation effect amplifies the large scale magnetic field. However, recently it was reported that the decaying magnetic energy independent of helicity or instability could generate the large scale magnetic field. This phenomenon may look somewhat contradictory to the conventional dynamo theory. But it gives us some clues to the fundamental mechanism of energy transfer in the magnetized conducting fluids. It also implies that an ephemeral astrophysical event emitting the magnetic and kinetic energy can be a direct cause of the large scale magnetic field observed in space. As of now the exact physical mechanism is not yet understood in spite of several numerical results. The plasma motion coupled with a nearly conserved vector potential in the magnetohydrodynamic (MHD) system may transfer magnetic energy to the large scale. Also the intrinsic property of the scaling invariant MHD equation may decide the direction of energy transfer. In this paper we present the simulation results of inversely transferred helical and nonhelical energy in a decaying MHD system. We introduce a field structure model based on the MHD equation to show that the transfer of magnetic energy is essentially bidirectional depending on the plasma motion and initial energy distribution. And then we derive α coefficient algebraically in line with the field structure model to explain how the large scale magnetic field is induced by the helical energy in the system regardless of an external forcing source. And for the algebraic analysis of nonhelical magnetic energy, we use the eddy damped quasinormalized Markovian approximation to show the inverse transfer of magnetic energy.

  1. Crystal field interactions studied by high-field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Radwanski, R.J.; Franse, J.J.M. (Van der Waals-Zeeman Lab., Univ. Amsterdam (Netherlands))


    The effect of crystalline electric field (CEF) interactions of the 4f ions on the magnetization process is reviewed for some intermetallic compounds. Special emphasis is given to metamagnetic transitions. The transitions in Ho{sub 2}Co{sub 17} are exchange-driven transitions associated with the formation of a non-collinear magnetic structure in contrast to the transition found in DyCo{sub 2}Si{sub 2} that is of a level-crossing type. The transition found in Pr{sub 2}Fe{sub 14}B results from a competition between lower and higher order crystal field terms. The formation of the rare earth moment under the action of CEF and exchange interactions as well as of external fields is analyzed. (orig.).

  2. The equatorial asymmetry of a magnetic field (United States)

    Reshetnyak, M. Yu.


    Solution of the inverse problem for Parker's one-dimensional mean-field dynamo model in a thin spherical layer is considered. The method allows the spatial distribution of energy sources, the α- and Ω-effects, to be found provided specified constraints occur on the solution. The highest ratio of the magnetic energies for the Northern and Southern hemispheres is discussed as such a constraint. The method is a modification of the Monte-Carlo technique; it is convenient for parallel computations and based on minimization of the cost function that characterizes the deviation of the model solution properties from the desired ones. The calculations show that the ratio of the energies in the hemispheres may exceed an order of magnitude for both poloidal and toroidal components of the magnetic energy. The ratio depends on the distance of the effective zone of the generation of the magnetic field from the equator and the number of harmonics in the spectrum. The greater this distance is and the higher the number of harmonics is, the stronger the magnetic field asymmetry can be.

  3. Navigation: Bat orientation using Earth's magnetic field

    DEFF Research Database (Denmark)

    Holland, Richard A.; Thorup, Kasper; Vonhof, Maarten J.


    Bats famously orientate at night by echolocation 1 , but this works over only a short range, and little is known about how they navigate over longer distances 2 . Here we show that the homing behaviour of Eptesicus fuscus, known as the big brown bat, can be altered by artificially shifting...... the Earth's magnetic field, indicating that these bats rely on a magnetic compass to return to their home roost. This finding adds to the impressive array of sensory abilities possessed by this animal for navigation in the dark....

  4. Topological insulator in a helicoidal magnetization field (United States)

    Stagraczyński, S.; Chotorlishvili, L.; Dugaev, V. K.; Jia, C.-L.; Ernst, A.; Komnik, A.; Berakdar, J.


    A key feature of topological insulators is the robustness of the electron energy spectrum. At a surface of a topological insulator, the Dirac point is protected by the characteristic symmetry of the system. The breaking of the symmetry opens a gap in the energy spectrum. Therefore, topological insulators are very sensitive to magnetic fields, which can open a gap in the electronic spectrum. Concerning "internal" magnetic effects, for example, the situation with doped magnetic impurities, is not trivial. A single magnetic impurity is not enough to open the band gap, while in the case of a ferromagnetic chain of deposited magnetic impurities the Dirac point is lifted. However, a much more interesting case is when localized magnetic impurities form a chiral spin order. Our first principle density functional theory calculations have shown that this is the case for Fe deposited on the surface of a Bi2Se3 topological insulator. But not only magnetic impurities can form a chiral helicoidal spin texture. An alternative way is to use chiral multiferroics (prototype material is LiCu2O2 ) that induce a proximity effect. The theoretical approach we present here is valid for both cases. We observed that opposite to a ferromagnetically ordered case, a chiral spin order does not destroy the Dirac point. We also observed that the energy gap appears at the edges of the new Brillouin zone. Another interesting result concerns the spin dynamics. We derived an equation for the spin density dynamics with a spin current and relaxation terms. We have shown that the motion of the conductance electron generates a magnetic torque and exerts a certain force on the helicoidal texture.

  5. Validation of the CMS Magnetic Field Map

    CERN Document Server

    INSPIRE-00096921; Amapane, N.; Ball, A.; Curé, B.; Gaddi, A.; Gerwig, H.; Mulders, M.; Calvelli, V.; Hervé, A.; Loveless, R.


    The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4-T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10,000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. To measure the field in and around the steel, a system of 22 flux loops and 82 three-dimensional (3-D) Hall sensors is installed on the return yoke blocks. A TOSCA 3-D model of the CMS magnet is developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. The magnetic field description is compared with the measurements and discussed.

  6. Measurement of the CMS Magnetic Field

    CERN Document Server

    INSPIRE-00096921; Bergsma, F.; Campi, D.; Cure, B.; Gaddi, A.; Gerwig, H.; Herve, A.; Korienek, J.; Linde, F.; Lindenmeyer, C.; Loveless, R.; Mulders, M.; Nebel, T.; Smith, R.P.; Stickland, D.; Teafoe, G.; Veillet, L.; Zimmerman, J.K.


    The measurement of the magnetic field in the tracking volume inside the superconducting coil of the Compact Muon Solenoid (CMS) detector under construction at CERN is done with a fieldmapper designed and produced at Fermilab. The fieldmapper uses 10 3-D B-sensors (Hall probes) developed at NIKHEF and calibrated at CERN to precision 0.05% for a nominal 4 T field. The precise fieldmapper measurements are done in 33840 points inside a cylinder of 1.724 m radius and 7 m long at central fields of 2, 3, 3.5, 3.8, and 4 T. Three components of the magnetic flux density at the CMS coil maximum excitation and the remanent fields on the steel-air interface after discharge of the coil are measured in check-points with 95 3-D B-sensors located near the magnetic flux return yoke elements. Voltages induced in 22 flux-loops made of 405-turn installed on selected segments of the yoke are sampled online during the entire fast discharge (190 s time-constant) of the CMS coil and integrated offline to provide a measurement of the...

  7. Magnetic Fields in Population III Star Formation

    Energy Technology Data Exchange (ETDEWEB)

    Turk, Matthew J.; Oishi, Jeffrey S.; Abel, Tom; Bryan, Greg


    We study the buildup of magnetic fields during the formation of Population III star-forming regions, by conducting cosmological simulations from realistic initial conditions and varying the Jeans resolution. To investigate this in detail, we start simulations from identical initial conditions, mandating 16, 32 and 64 zones per Jeans length, and studied the variation in their magnetic field amplification. We find that, while compression results in some amplification, turbulent velocity fluctuations driven by the collapse can further amplify an initially weak seed field via dynamo action, provided there is sufficient numerical resolution to capture vortical motions (we find this requirement to be 64 zones per Jeans length, slightly larger than, but consistent with previous work run with more idealized collapse scenarios). We explore saturation of amplification of the magnetic field, which could potentially become dynamically important in subsequent, fully-resolved calculations. We have also identified a relatively surprising phenomena that is purely hydrodynamic: the higher-resolved simulations possess substantially different characteristics, including higher infall-velocity, increased temperatures inside 1000 AU, and decreased molecular hydrogen content in the innermost region. Furthermore, we find that disk formation is suppressed in higher-resolution calculations, at least at the times that we can follow the calculation. We discuss the effect this may have on the buildup of disks over the accretion history of the first clump to form as well as the potential for gravitational instabilities to develop and induce fragmentation.

  8. Electric breakdown potentials under longitudinal magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Aparicio V, L.F.; Soberon V P, F. [Pontificia Universidad Catolica del Peru, Lima (Peru). Seccion Fisica. Grupo de Investigacion en Plasmas. E-mail:


    A study of a DC ionization potential with longitudinal magnetic fields in a parallel plate configuration is presented. A variation of the well known Paschen curve is studied for two different separation distances (2.0 and 6.7 cm) between the electrodes; more than orders of magnitude in pressures (1.4 x 10{sup -2} to 40 mbar); and magnetic fields up to 250 Gauss. The differences between the curves with and without B field are explained by the fluid model only by means of perpendicular mobility ({mu}) and diffusion (D) coefficients, cyclotron frequencies ({omega}{sub c}), Larmor radii (r-L) and collision frequencies v{sup =}{pi}{sup -1} with neutrals, independently of whether they produce ionization or not. Some inversions or crossings of the electric behavior between the right and left branch of different modified Paschen curves are due to the increasing collision frequencies and anomalous coefficients producing lower ionization potentials than the established ones in the absence of magnetic fields. (author)

  9. On turbulent diffusion of magnetic fields and the loss of magnetic flux from stars (United States)

    Vainshtein, Samuel I.; Rosner, Robert


    The turbulent diffusion of magnetic fields in astrophysical objects, and the processes leading to magnetic field flux loss from such objects are discussed with attention to the suppression of turbulent diffusion by back-reaction of magnetic fields on small spatial scales, and on the constraint imposed on magnetic flux loss by flux-freezing within stars. Turbulent magnetic diffusion can be suppressed even for very weak large-scale magnetic fields, so that 'standard' turbulent diffusion is incapable of significant magnetic flux destruction within a star. Finally, magnetic flux loss via winds is shown to be generally ineffective, no matter what the value of the effective magnetic Reynolds number is.

  10. Magnetic field generation by intermittent convection (United States)

    Chertovskih, R.; Rempel, E. L.; Chimanski, E. V.


    Magnetic field generation in three-dimensional Rayleigh-Bénard convection of an electrically conducting fluid is studied numerically by fixing the Prandtl number at P = 0.3 and varying the Rayleigh number (Ra) as a control parameter. A recently reported route to hyperchaos involving quasiperiodic regimes, crises and chaotic intermittent attractors is followed, and the critical magnetic Prandtl number (Pmc) for dynamo action is determined as a function of Ra. A mechanism for the onset of intermittency in the magnetic energy is described, the most beneficial convective regimes for dynamo action in this transition to weak turbulence are identified, and the impact of intermittency on the dependence of Pmc on Ra is discussed.

  11. Magnetic field generation by intermittent convection

    CERN Document Server

    Chertovskih, R; Chimanski, E V


    Magnetic field generation by convective flows in transition to weak turbulence is studied numerically. By fixing the Prandtl number at P=0.3 and varying the Rayleigh number (Ra) as a control parameter in three-dimensional Rayleigh-Benard convection of an electrically conducting fluid, a recently reported route to hyperchaos involving quasiperiodic regimes, crises and chaotic intermittent attractors is followed, and the critical magnetic Prandtl number ($P_m^c$) for dynamo action is determined as a function of Ra. A mechanism for the onset of on-off intermittency in the magnetic energy is described, the most beneficial convective regimes for dynamo action are identified, and how intermittency affects the dependence of $P_m^c$ on Ra is discussed.

  12. Motion of a charged particle in the field of a magnetic monopole

    CERN Document Server

    Sivardiere, J


    The author treats 2 cases: the motion of a charge in the field of an electrically neutral magnetic monopole and the motion of a charge in the field of a charged magnetic monopole (dyon). In the first case the author studies the movement of the particle on the Poincare's cone and describes the projection of the movement on the cone axis. The problem is simplified if we consider the rotating frame of Sommerfeld. In the second case, the author shows that if we add an 1/r sup 2 term to the dyon's Coulomb potential, a dynamical symmetry appears and it becomes easy to get the invariant Poincare vector and a second invariant vector that is similar to the Laplace vector in the Kepler problem. (A.C.)

  13. Observability of the effects of curl-free magnetic vector potential on ...

    Indian Academy of Sciences (India)

    We discuss here the prediction, based on a formalism by the author, on the observable effects of a curl-free magnetic vector potential on the macroscale as against the microscale of the Aharonov–Bohm effect. A new quantum concept – the 'transition amplitude wave' – postulated in the formalism has already been shown to ...

  14. Feynman's Proof and Non-Elastic Displacement Fields: Relationship Between Magnetic Field and Defects Field (United States)

    Nakamura, Nozomu; Yamasaki, Kazuhito


    We consider the relationship between the magnetic field and the non-elastic displacement field including defects, from the viewpoints of non-commutativity of the positions and non-commutativity of the derivatives. The former non-commutativity is related to the magnetic field by Feynman's proof (1948), and the latter is related to the defect fields by the continuum theory of defects. We introduce the concept of differential geometry to the non-elastic displacement field and derive an extended relation that includes basic equations, such as Gauss's law for magnetism and the conservation law for dislocation density. The relation derived in this paper also extends the first Bianchi identity in linear approximation to include the effect of magnetism. These findings suggest that Feynman's approach with a non-elastic displacement field is useful for understanding the relationship between magnetism and non-elastic mechanics.

  15. Numerical assessment of low-frequency dosimetry from sampled magnetic fields. (United States)

    Freschi, Fabio; Giaccone, Luca; Cirimele, Vincenzo; Canova, Aldo


    Low-frequency dosimetry is commonly assessed by evaluating the electric field in the human body using the scalar potential finite dif- ference method. This method is effective only when the sources of the magnetic field are completely known and the magnetic vector po- tential can be analytically computed. The aim of the paper is to present a rigorous method to characterize the source term when only the magnetic flux density is available at discrete points, e.g. in case of field measurements. The method is based on the solution of the discrete magnetic curl equation. The system is restricted to the in- dependent set of magnetic fluxes and circulations of magnetic vec- tor potential using the topological information of the computational mesh. The solenoidality of the magnetic flux density is preserved using a divergence-free interpolator based on vector radial basis functions. The analysis of a benchmark problem shows that the complexity of the proposed algorithm is linearly dependent on the number of elements with a controllable accuracy. The method proposed in this paper also proves to be useful and effective when applied to a real world scenario, where the magnetic flux density is measured in proximity of a power transformer. A 8-million voxel body model is then used for the nu- merical dosimetric analysis. The complete assessment is completed in less than 5 minutes, that is more than acceptable for these problems. © 2017 Institute of Physics and Engineering in Medicine.

  16. Spin tunnelling of trigonal and hexagonal ferromagnets in an arbitrarily directed magnetic field (United States)

    Lü, Rong; Zhu, Jia-Lin; Liu, Zhi-Rong; Chang, Lee; Gu, Bing-Lin


    The quantum tunnellings of the magnetization vector in single-domain ferromagnetic nanoparticles placed in an external magnetic field at an arbitrarily directed angle in the ZX-plane are studied theoretically. We consider magnetocrystalline anisotropies with trigonal and hexagonal crystal symmetry. By applying the instanton technique in the spin-coherent-state path-integral representation, we calculate the tunnel splittings, the tunnelling rates, and the crossover temperatures in the low-barrier limit for different angle ranges of the external magnetic field (θH = π/2, π/2crossover temperatures depend distinctly on the orientation of the external magnetic field, which provides a possible experimental test for magnetic quantum tunnelling in nanometre-scale single-domain ferromagnets.

  17. Improving Magnet Designs With High and Low Field Regions

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders


    A general scheme for increasing the difference in magnetic flux density between a high and a low magnetic field region by removing unnecessary magnet material is presented. This is important in, e.g., magnetic refrigeration where magnet arrays have to deliver high field regions in close proximity...... to low field regions. Also, a general way to replace magnet material with a high permeability soft magnetic material where appropriate is discussed. As an example, these schemes are applied to a two dimensional concentric Halbach cylinder design resulting in a reduction of the amount of magnet material...

  18. Ferrofluid drops in rotating magnetic fields

    CERN Document Server

    Lebedev, A V; Morozov, K I; Bauke, H


    Drops of a ferrofluid floating in a non-magnetic liquid of the same density and spun by a rotating magnetic field are investigated experimentally and theoretically. The parameters for the experiment are chosen such that different stationary drop shapes including non-axis-symmetric configurations could be observed. Within an approximate theoretical analysis the character of the occurring shape bifurcations, the different stationary drop forms, as well as the slow rotational motion of the drop is investigated. The results are in qualitative, and often quantitative agreement, with the experimental findings. It is also shown that a small eccentricity of the rotating field may have a substantial impact on the rotational motion of the drop.

  19. Inflating Kahler moduli and primordial magnetic fields

    Directory of Open Access Journals (Sweden)

    Luis Aparicio


    Full Text Available We study the production of primordial magnetic fields in inflationary models in type IIB string theory where the role of the inflaton is played by a Kahler modulus. We consider various possibilities to realise the Standard Model degrees of freedom in this setting and explicitly determine the time dependence of the inflaton coupling to the Maxwell term in the models. Using this we determine the strength and scale dependence of the magnetic fields generated during inflation. The usual “strong coupling problem” for primordial magnetogenesis manifests itself by cycle sizes approaching the string scale; this appears in a certain class of fibre inflation models where the standard model is realised by wrapping D7-branes on cycles in the geometric regime.

  20. Inflating Kahler moduli and primordial magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Aparicio, Luis, E-mail: [Abdus Salam ICTP, Strada Costiera 11, Trieste 34014 (Italy); Maharana, Anshuman, E-mail: [Harish Chandra Research Institute, HBNI, Chattnag Road, Jhunsi, Allahabad 211019 (India)


    We study the production of primordial magnetic fields in inflationary models in type IIB string theory where the role of the inflaton is played by a Kahler modulus. We consider various possibilities to realise the Standard Model degrees of freedom in this setting and explicitly determine the time dependence of the inflaton coupling to the Maxwell term in the models. Using this we determine the strength and scale dependence of the magnetic fields generated during inflation. The usual “strong coupling problem” for primordial magnetogenesis manifests itself by cycle sizes approaching the string scale; this appears in a certain class of fibre inflation models where the standard model is realised by wrapping D7-branes on cycles in the geometric regime.

  1. Magnetic Resonance Imaging at Ultrahigh Fields (United States)

    Uğurbil, Kamil


    Since the introduction of 4 T human systems in three academic laboratories circa 1990, rapid progress in imaging and spectroscopy studies in humans at 4 T and animal model systems at 9.4 T have led to the introduction of 7 T and higher magnetic fields for human investigation at about the turn of the century. Work conducted on these platforms has demonstrated the existence of significant advantages in SNR and biological information content at these ultrahigh fields, as well as the presence of numerous challenges. Primary difference from lower fields is the deviation from the near field regime; at the frequencies corresponding to hydrogen resonance conditions at ultrahigh fields, the RF is characterized by attenuated traveling waves in the human body, which leads to image nonuniformities for a given sample-coil configuration because of interferences. These nonuniformities were considered detrimental to the progress of imaging at high field strengths. However, they are advantageous for parallel imaging for signal reception and parallel transmission, two critical technologies that account, to a large extend, for the success of ultrahigh fields. With these technologies, and improvements in instrumentation and imaging methods, ultra-high fields have provided unprecedented gains in imaging of brain function and anatomy, and started to make inroads into investigation of the human torso and extremities. As extensive as they are, these gains still constitute a prelude to what is to come given the increasingly larger effort committed to ultrahigh field research and development of ever better instrumentation and techniques. PMID:24686229

  2. Mitigated-force carriage for high magnetic field environments (United States)

    Ludtka, Gerard M.; Ludtka, Gail M.; Wilgen, John B.; Murphy, Bart L.


    A carriage for high magnetic field environments includes a plurality of work-piece separators disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla for supporting and separating a plurality of work-pieces by a preselected, essentially equal spacing, so that, as a first work-piece is inserted into the magnetic field, a second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.

  3. Frictional Coulomb drag in strong magnetic fields

    DEFF Research Database (Denmark)

    Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang


    ) is evaluated using diagrammatic techniques. The transresistivity is given by an integral over energy and momentum transfer weighted by the product of the screened interlayer interaction and the phase space for scattering events. We demonstrate, by a numerical analysis of the transresistivity, that for well......-resolved Landau levels the interplay between these two factors leads to characteristic features in both the magnetic field and the temperature dependence of rho(21). Numerical results are compared with recent experiments....

  4. Flatland Electrons in High Magnetic Fields (United States)

    Shayegan, M.

    This paper provides a review of recent developments in the physics of two-dimensional carrier systems in perpendicular magnetic fields. The emphasis is on many-body phenomena in very clean GaAs/AlGaAs heterostructures, probed via magnetotransport measurements. Topics that are discussed include the integer and fractional quantum Hall effects, Wigner crystallization, composite Fermions, Skyrmions, stripe and bubble phases in single layer systems, and electron-hole pairing and Bose-Einstein condensation in interacting bilayer systems.

  5. Ground Vehicle Navigation Using Magnetic Field Variation (United States)


    grid of magnetic field intensities at an altitude of five kilometers above mean sea level. 3 1.1.3 Storms. Storms adeptly applied a terrain navigation...the multi-magnetometer platform is non-ferrous (i.e., plastic , wood, aluminum, etc.) such that the platform interferes with the calibration as little as...birds, loggerhead turtles , and lobsters, the ability is part of their anatomy. In humans however, the ability is not innate and has been learned and

  6. Electron transport in argon in crossed electric and magnetic fields (United States)

    Ness; Makabe


    An investigation of electron transport in argon in the presence of crossed electric and magnetic fields is carried out over a wide range of values of electric and magnetic field strengths. Values of mean energy, ionization rate, drift velocity, and diffusion tensor are reported here. Two unexpected phenomena arise; for certain values of electric and magnetic field we find regions where the swarm mean energy decreases with increasing electric fields for a fixed magnetic field and regions where swarm mean energy increases with increasing magnetic field for a fixed electric field.

  7. Rational first integrals for polynomial vector fields on algebraic hypersurfaces of R^N 1


    Llibre, Jaume


    Using sophisticated techniques of Algebraic Geometry Jouanolou in 1979 showed that if the number of invariant algebraic hypersurfaces of a polynomial vector field in Rn of degree m is at least n+m−1 n+ n, then the vector field has a rational first integral. Llibre and Zhang used only Linear Algebra provided a shorter and easier proof of the result given by Jouanolou. We use ideas of Llibre and Zhang to extend the Jouanolou result to polynomial vector fields defined on algebraic regular hypers...

  8. Reversible electric-field-eriven magnetic domain-wall motion


    Franke, Kévin; Van de Wiele, Ben; Shirahata, Yasuhiro; Hämäläinen, Sampo; Taniyama, Tomoyasu; van Dijken, Sebastiaan


    Control of magnetic domain-wall motion by electric fields has recently attracted scientific attention because of its potential for magnetic logic and memory devices. Here, we report on a new driving mechanism that allows for magnetic domain-wall motion in an applied electric field without the concurrent use of a magnetic field or spin-polarized electric current. The mechanism is based on elastic coupling between magnetic and ferroelectric domain walls in multiferroic heterostructures. Pure el...

  9. Study on the temperature characteristics of LPFG magnetic field sensor based on magnetic fluid (United States)

    Li, Yaocheng; Wang, Haitong; Xin, Zhao


    This paper carries out theoretical research and numerical simulation on the temperature characteristics of LPFG magnetic field sensor based on magnetic fluids. The simulation results show that the change of ambient temperature can make coupling resonance wavelength of the long period fiber grating drift, change the refractive index of magnetic fluids, which affects the measurement precision of the magnetic field. Our research has a certain significance for the practical application of LPFG magnetic field sensor based on magnetic fluids.

  10. Field-ball milling induced anisotropy in magnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Poudyal, Narayan [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Altuncevahir, Baki [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Chakka, Vamsi [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Chen Kanghua [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Black, Truman D [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Liu, J Ping [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Ding, Yong [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Wang Zhonglin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)


    Nd{sub 2}Fe{sub 14}B and Sm{sub 2}Co{sub 17} particles of submicrometre sizes have been prepared by ball milling in a magnetic field. Structural and magnetic characterization reveal that these submicrometre particles milled in a magnetic field, consisting of nanosize grains, exhibit strong magnetic anisotropy compared with the particles milled without a magnetic field. Based on in situ observations of the field-ball milling in a transparent container, the mechanism of field-induced anisotropy in the nanostructured hard magnetic particles is discussed. (rapid communication)

  11. Titan's magnetic field signature during the first Cassini encounter. (United States)

    Backes, Heiko; Neubauer, Fritz M; Dougherty, Michele K; Achilleos, Nicholas; André, Nicolas; Arridge, Christopher S; Bertucci, Cesar; Jones, Geraint H; Khurana, Krishan K; Russell, Christopher T; Wennmacher, Alexandre


    The magnetic field signature obtained by Cassini during its first close encounter with Titan on 26 October 2004 is presented and explained in terms of an advanced model. Titan was inside the saturnian magnetosphere. A magnetic field minimum before closest approach marked Cassini's entry into the magnetic ionopause layer. Cassini then left the northern and entered the southern magnetic tail lobe. The magnetic field before and after the encounter was approximately constant for approximately 20 Titan radii, but the field orientation changed exactly at the location of Titan's orbit. No evidence of an internal magnetic field at Titan was detected.

  12. A hand-held sensor for analyses of local distributions of magnetic fields and losses

    CERN Document Server

    Krismanic, G; Baumgartinger, N


    The paper describes a novel sensor for non-destructive analyses of local field and loss distributions in laminated soft magnetic cores, such as transformer cores. It was designed for rapid information on comparative local degrees of inhomogeneity, e.g., for the estimation of local building factors. Similar to a magnifying glass with handle, the compact hand-held sensor contains extremely sharp needle electrodes for the detection of the induction vector B as well as double-field coils for the vector H. Losses P are derived from the Poynting law. Applied to inner -- or also outer -- core regions, the sensor yields instantaneous computer displays of local H, B, and P.

  13. Concerning the extrapolation of solar nonlinear force-free magnetic fields (United States)

    Gary, G. Allen


    This paper contains a review and discussion of the mathematical basis of the extrapolation techniques involved in using photospheric vector magnetograms to obtain the coronal field above the surface. The two basic techniques employing the Cauchy initial value problem and the variational techniques are reviewed in terms of the mathematical and practical applications. A short review is presented of the current research on numerical modeling techniques in the area of extrapolating vector magnetograms; specifically, algorithms to extrapolate nonlinear force-free magnetic fields from the photosphere are considered.

  14. Magnetic fields and wind variability in massive stars

    NARCIS (Netherlands)

    Schnerr, R.S.; Henrichs, H.F.; Hamann, W.-R.; Feldmeier, A.; Oskinova, L.


    This paper describes the thesis work of Schnerr (2007) entitled "Magnetic fields and mass loss in massive stars", which aimed at a better understanding of the impact of magnetic fields on the winds of massive stars.

  15. Physics in Strong Magnetic Fields Near Neutron Stars. (United States)

    Harding, Alice K.


    Discussed are the behaviors of particles and energies in the magnetic fields of neutron stars. Different types of possible research using neutron stars as a laboratory for the study of strong magnetic fields are proposed. (CW)

  16. A Magnetic Resonance Measurement Technique for Rapidly Switched Gradient Magnetic Fields in a Magnetic Resonance Tomograph

    Directory of Open Access Journals (Sweden)

    K. Bartušek


    Full Text Available This paper describes a method for measuring of the gradient magnetic field in Nuclear Magnetic Resonance (NMR tomography, which is one of the modern medical diagnostic methods. A very important prerequisite for high quality imaging is a gradient magnetic field in the instrument with exactly defined properties. Nuclear magnetic resonance enables us to measure the pulse gradient magnetic field characteristics with high accuracy. These interesting precise methods were designed, realised, and tested at the Institute of Scientific Instruments (ISI of the Academy of Sciences of the Czech Republic. The first of them was the Instantaneous Frequency (IF method, which was developed into the Instantaneous Frequency of Spin Echo (IFSE and the Instantaneous Frequency of Spin Echo Series (IFSES methods. The above named methods are described in this paper and their a comparison is also presented.

  17. Achieving Consistent Doppler Measurements from SDO/HMI Vector Field Inversions (United States)

    Schuck, Peter W.; Antiochos, S. K.; Leka, K. D.; Barnes, Graham


    NASA's Solar Dynamics Observatory is delivering vector magnetic field observations of the full solar disk with unprecedented temporal and spatial resolution; however, the satellite is in a highly inclined geosynchronous orbit. The relative spacecraft-Sun velocity varies by +/-3 kms-1 over a day, which introduces major orbital artifacts in the Helioseismic Magnetic Imager (HMI) data. We demonstrate that the orbital artifacts contaminate all spatial and temporal scales in the data. We describe a newly developed three-stage procedure for mitigating these artifacts in the Doppler data obtained from the Milne-Eddington inversions in the HMI pipeline. The procedure ultimately uses 32 velocity-dependent coefficients to adjust 10 million pixels-a remarkably sparse correction model given the complexity of the orbital artifacts. This procedure was applied to full-disk images of AR 11084 to produce consistent Dopplergrams. The data adjustments reduce the power in the orbital artifacts by 31 dB. Furthermore, we analyze in detail the corrected images and show that our procedure greatly improves the temporal and spectral properties of the data without adding any new artifacts. We conclude that this new procedure makes a dramatic improvement in the consistency of the HMI data and in its usefulness for precision scientific studies.

  18. Detection of the change of a magnetic field in the environment by magnetic fluid (United States)

    Zyatkov, D.; Yurchenko, A.; Yurchenko, V.


    The experimental results of the magnetic field sensor based on various materials are presented. In article the possibility of use of magnetic fluid as a sensitive element of the magnetic field sensor is considered. The importance of current tasks deals with the search of the perspective magnetic substances susceptible to weak magnetic field. The operation principle of the sensor is based on change in the capacity of the condenser with magnetic active medium caused by the magnetic field. The complex organization of magnetic particles into chain aggregates was considered. The principle of measuring the condenser capacity is described. The experimental results are promising for future application.

  19. Three-dimensional magnetization structures revealed with X-ray vector nanotomography (United States)

    Donnelly, Claire; Guizar-Sicairos, Manuel; Scagnoli, Valerio; Gliga, Sebastian; Holler, Mirko; Raabe, Jörg; Heyderman, Laura J.


    In soft ferromagnetic materials, the smoothly varying magnetization leads to the formation of fundamental patterns such as domains, vortices and domain walls. These have been studied extensively in thin films of thicknesses up to around 200 nanometres, in which the magnetization is accessible with current transmission imaging methods that make use of electrons or soft X-rays. In thicker samples, however, in which the magnetization structure varies throughout the thickness and is intrinsically three dimensional, determining the complex magnetic structure directly still represents a challenge. We have developed hard-X-ray vector nanotomography with which to determine the three-dimensional magnetic configuration at the nanoscale within micrometre-sized samples. We imaged the structure of the magnetization within a soft magnetic pillar of diameter 5 micrometres with a spatial resolution of 100 nanometres and, within the bulk, observed a complex magnetic configuration that consists of vortices and antivortices that form cross-tie walls and vortex walls along intersecting planes. At the intersections of these structures, magnetic singularities—Bloch points—occur. These were predicted more than fifty years ago but have so far not been directly observed. Here we image the three-dimensional magnetic structure in the vicinity of the Bloch points, which until now has been accessible only through micromagnetic simulations, and identify two possible magnetization configurations: a circulating magnetization structure and a twisted state that appears to correspond to an ‘anti-Bloch point’. Our imaging method enables the nanoscale study of topological magnetic structures in systems with sizes of the order of tens of micrometres. Knowledge of internal nanomagnetic textures is critical for understanding macroscopic magnetic properties and for designing bulk magnets for technological applications.

  20. (H,Ti)-diagram of magnetic transformations induced by a pulsed magnetic field in antiferromagnetic LiCoPO4 (United States)

    Khrustalyov, V. M.; Savytsky, V. N.; Kharchenko, M. F.


    A study of the differential magnetic susceptibility and electric polarization of an antiferromagnetic LiCoPO4 crystal in a pulsed magnetic field with an intensity of up to 290 kOe, directed along the antiferromagnetism vector of the spin-ordering main mode (Hǁb), at initial sample temperatures between 1.6 and 20.8 K. An adiabatic (H, Ti)-diagram of magnetic phase transitions is constructed. In addition to the three transitions that were discovered earlier at helium temperatures, higher temperatures revealed singularities that indicate the existence of a first-order phase transition line in the high-field phase II, which ends at a critical point. The coordinates of the critical point at which the lines of the phase transitions bordering the region of existence of high-field phase III converge with the line of the phase transitions from phase II to the saturated paramagnetic phase, are also determined.

  1. Magnetic Field Amplification and Blazar Flares

    Directory of Open Access Journals (Sweden)

    Chen Xuhui


    Full Text Available Recent multiwavelength observations of PKS 0208-512 by SMARTS, Fermi, and Swift revealed that γ-ray and optical light curves of this flat spectrum radio quasars are highly correlated, but with an exception of one large optical flare having no corresponding gamma-ray activity or even detection. On the other hand, recent advances in SNRs observations and plasma simulations both reveal that magnetic field downstream of astrophysical shocks can be largely amplified beyond simple shock compression. These amplifications, along with their associated particle acceleration, might contribute to blazar flares, including the peculiar flare of PKS 0208-512. Using our time dependent multizone blazar emission code, we evaluate several scenarios that may represent such phenomena. This code combines Monte Carlo method that tracks the radiative processes including inverse Compton scattering, and Fokker-Planck equation that follows the cooling and acceleration of particles. It is a comprehensive time dependent code that fully takes into account the light travel time effects. In this study, both the changes of the magnetic field and acceleration efficiency are explored as the cause of blazar flares. Under these assumption, synchrotron self-Compton and external Compton scenarios produce distinct features that favor the external Compton scenario. The optical flares with/without gamma-ray counterparts can be explained by different allocations of energy between the magnetization and particle acceleration, which in turn can be affected by the relative orientation between the magnetic field and the shock flow. We compare the details of the observations and simulation, and highlight what implications this study has on our understanding of relativistic jets.

  2. Spin polarization in high density quark matter under a strong external magnetic field

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; Da Providência, João; Providência, Constança


    In high density quark matter under a strong external magnetic field, possible phases are investigated by using the two-flavor Nambu-Jona-Lasinio (NJL) model with tensor-type four-point interaction between quarks, as well as the axial-vector-type four-point interaction. In the tensor......-type interaction under the strong external magnetic field, it is shown that a quark spin polarized phase is realized in all regions of the quark chemical potential under consideration within the lowest Landau level approximation. In the axial-vector-type interaction, it is also shown that the quark spin polarized...... phase appears in the wide range of the quark chemical potential. In both the interactions, the quark mass in zero and small chemical potential regions increases which indicates that the chiral symmetry breaking is enhanced, namely the magnetic catalysis occurs....

  3. Introduction to the solar magnetic field measurements in China (United States)

    Deng, Yuanyong


    The solar magnetic field measurement is always an enormous challenge to the solar community. We firstly overview the history of solar magnetic field measurement since last early century and analyze the difficulty and progress of pratical methods. Then we introduce an infrared system for the accurate measurement of solar magnetic field (AIMS) under development, which is supported by National Natural Science Foundation of China and also the current ongoing space & Ground based projects to measure the solar magnetic field in China.

  4. Interaction of Mutually Perpendicular Magnetic Fields in HTSC

    Directory of Open Access Journals (Sweden)

    Vasilyev Aleksandr Fedorovich


    Full Text Available In this article a problem of interaction of the crossed magnetic fields in superconductors is considered. Superconducting materials have nonlinear magnetic properties. It allows using a non-linear magnetic susceptibility for measurement of feeble magnetic fields. We place a wire of superconducting material in a constant parallel uniform magnetic field. Then we let through a wire the alternating current leak. Interaction of mutual and perpendicular variation magnetic fields, with adequate accuracy is described by Ginzburg-Landau's equations. Approximate solution of the written equations is received. The component of a magnetic field parallel to a wire contains a variable component. Frequency of a variable component of the magnetic field is equal to the doubled current frequency. Amplitude of the variable component of the magnetic field is proportional to strength of the constant magnetic field. The experimental installation for research of interaction of mutually perpendicular magnetic fields is created. The cylinder from HTSC of ceramics of the YBa2Cu3O7-x was used as a sensor. Dependence of amplitude of the second harmonica of a variation magnetic field on strength of a constant magnetic field is received.

  5. Effective field theory and unitarity in vector boson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sekulla, Marco [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany); Kilian, Wolfgang [Siegen Univ. (Germany); Ohl, Thorsten [Wuerzburg Univ. (Germany); Reuter, Juergen [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group


    Weak vector boson scattering at high energies will be one of the key measurements in current and upcoming LHC runs. It is most sensitive to any new physics associated with electroweak symmetry breaking. However, a conventional EFT analysis will fail at high energies. To address this problem, we present a parameter-free prescription valid for arbitrary perturbative and non-perturbative models: the T-matrix unitarization. We describe its implementation as an asymptotically consistent reference model matched to the low-energy effective theory. We show examples of typical observables of vector-boson scattering at the LHC in our unitarized framework. For many strongly-coupled models like composite Higgs models, dimension-8 operators might be actually the leading operators. In addition to those longitudinal and transversal dimension eight EFT operators, the effects of generic tensor and scalar resonances within simplified models are considered.

  6. Pressure, Chaotic Magnetic Fields and MHD Equilibria

    Energy Technology Data Exchange (ETDEWEB)

    S.R. Hudson & N. Nakajima


    Analyzes of plasma behavior often begin with a description of the ideal magnetohydrodynamic equilibrium, this being the simplest model capable of approximating macroscopic force balance. Ideal force balance is when the pressure gradient is supported by the Lorentz force, ∇p = j x B. We discuss the implications of allowing for a chaotic magnetic field on the solutions to this equation. We argue that the solutions are pathological and not suitable for numerical calculations. If the pressure and magnetic Field are continuous, the only non-trivial solutions have an uncountable infinity of discontinuities in the pressure gradient and current. The problems arise from the arbitrarily small length scales in the structure of the field, and the consequence of ideal force balance that the pressure is constant along the Field-lines, B • ∇p = 0. A simple method to ameliorate the singularities is to include a small but Finite perpendicular diffusion. A self-consistent set of equilibrium equations is described and some algorithmic approaches aimed at solving these equations are discussed.

  7. Suppressing drift chamber diffusion without magnetic field

    CERN Document Server

    Martoff, C J; Ohnuki, T; Spooner, N J C; Lehner, M


    The spatial resolution in drift chamber detectors for ionizing radiation is limited by diffusion of the primary electrons. A strong magnetic field along the drift direction is often applied (Fancher et al., Nucl. Instr. and Meth. A 161 (1979) 383) because it suppresses the transverse diffusion, improving the resolution but at considerable increase in cost and complexity. Here we show that transverse track diffusion can be strongly suppressed without any magnetic field. This is achieved by using a gas additive which reversibly captures primary ionization electrons, forming negative ions. The ions drift with thermal energies even at very high drift fields and low pressures (E/P=28.5 V/cm torr), and the diffusion decreases with increasing drift field. Upon arrival at the avalanche region of the chamber the negative ions are efficiently stripped and ordinary avalanche gain is obtained. Using this technique, r.m.s. transverse diffusion less than 200 mu m has been achieved over a 15 cm drift path at 40 torr with ze...

  8. Coronal rain in magnetic bipolar weak fields (United States)

    Xia, C.; Keppens, R.; Fang, X.


    Aims: We intend to investigate the underlying physics for the coronal rain phenomenon in a representative bipolar magnetic field, including the formation and the dynamics of coronal rain blobs. Methods: With the MPI-AMRVAC code, we performed three dimensional radiative magnetohydrodynamic (MHD) simulation with strong heating localized on footpoints of magnetic loops after a relaxation to quiet solar atmosphere. Results: Progressive cooling and in-situ condensation starts at the loop top due to radiative thermal instability. The first large-scale condensation on the loop top suffers Rayleigh-Taylor instability and becomes fragmented into smaller blobs. The blobs fall vertically dragging magnetic loops until they reach low-β regions and start to fall along the loops from loop top to loop footpoints. A statistic study of the coronal rain blobs finds that small blobs with masses of less than 1010 g dominate the population. When blobs fall to lower regions along the magnetic loops, they are stretched and develop a non-uniform velocity pattern with an anti-parallel shearing pattern seen to develop along the central axis of the blobs. Synthetic images of simulated coronal rain with Solar Dynamics Observatory Atmospheric Imaging Assembly well resemble real observations presenting dark falling clumps in hot channels and bright rain blobs in a cool channel. We also find density inhomogeneities during a coronal rain "shower", which reflects the observed multi-stranded nature of coronal rain. Movies associated to Figs. 3 and 7 are available at

  9. From the Gyration of Electrons to Cosmic Magnetic Fields (United States)

    Wang, Xia-Wei


    Employing Bohr's quantum theory, the author deduces three limits, which correspond to the magnetic fields of white dwarfs, neutron stars and the strongest in the universe. The author discusses the possible origins of magnetic fields due to collapse of stars, which produces a magnetic field of 10[superscript 8] T. Although the complete analysis…

  10. Fluorescent lamp with static magnetic field generating means (United States)

    Moskowitz, Philip E.; Maya, Jakob


    A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed.

  11. Magnetic Field in the Gravitationally Stratified Coronal Loops

    Indian Academy of Sciences (India)


    Jan 27, 2016 ... We study the effect of gravitational stratification on the estimation of magnetic fields in the coronal loops. By using the method of MHD seismology of kink waves for the estimation of magnetic field of coronal loops, we derive a new formula for the magnetic field considering the effect of gravitational ...

  12. NASA Computational Case Study: Modeling Planetary Magnetic and Gravitational Fields (United States)

    Simpson, David G.; Vinas, Adolfo F.


    In this case study, we model a planet's magnetic and gravitational fields using spherical harmonic functions. As an exercise, we analyze data on the Earth's magnetic field collected by NASA's MAGSAT spacecraft, and use it to derive a simple magnetic field model based on these spherical harmonic functions.

  13. Superconducting Sphere in an External Magnetic Field Revisited (United States)

    Sazonov, Sergey N.


    The purpose of this article is to give the intelligible procedure for undergraduate students to grasp proof of the fact that the magnetic field outside the hollow superconducting sphere (superconducting shell) coincides with the field of a point magnetic dipole both when an uniform external magnetic field is applied as when a ferromagnetic sphere…

  14. Josephson tunnel junctions in a magnetic field gradient

    DEFF Research Database (Denmark)

    Monaco, R.; Mygind, Jesper; Koshelets, V.P.


    We measured the magnetic field dependence of the critical current of high-quality Nb-based planar Josephson tunnel junctions in the presence of a controllable nonuniform field distribution. We found skewed and slowly changing magnetic diffraction patterns quite dissimilar from the Fraunhofer-like...... be suppressed by an asymmetric magnetic field profile. © 2011 American Institute of Physics....


    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna


    Full Text Available Operation of electric and hybrid vehicles demands real time magnetic field control, for instance, for fire and electromagnetic safety. The article deals with a method of magnetic field measurements onboard electric cars taking into account peculiar features of these fields. The method is based on differential methods of measurements, and minimizes the quantity of magnetic sensors.

  16. Fluorescent lamp with static magnetic field generating means (United States)

    Moskowitz, P.E.; Maya, J.


    A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed. 2 figs.

  17. Molecular structure and motion in zero field magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Jarvie, T.P.


    Zero field magnetic resonance is well suited for the determination of molecular structure and the study of motion in disordered materials. Experiments performed in zero applied magnetic field avoid the anisotropic broadening in high field nuclear magnetic resonance (NMR) experiments. As a result, molecular structure and subtle effects of motion are more readily observed.

  18. Evolution of the magnetic field in neutron stars (United States)

    Gusakov, M. E.; Kantor, E. M.; Ofengeim, D. D.


    We propose a general method to self-consistently study the quasistationary evolution of the magnetic field in the cores of neutron stars. The traditional approach to this problem is critically revised. Our results are illustrated by calculation of the typical timescales for the magnetic field dissipation as functions of temperature and the magnetic field strength.

  19. Seismic Study of Magnetic Field in the Solar Interior

    Indian Academy of Sciences (India)

    Magnetic field in the solar interior contributes to the even order splitting coefficients, but it is not possible to separate the effect of magnetic field from those due to other deviations from spherical symmetry. Results obtained using GONG and MDI data are discussed. Limits on possible magnetic field in the solar core and in the ...

  20. Suppression of matter couplings with a vector field in generalized Proca theories (United States)

    Nakamura, Shintaro; Kase, Ryotaro; Tsujikawa, Shinji


    In the context of generalized Proca theories, we derive the profile of a vector field Aμ whose squared AμAμ is coupled to the trace T of matter on a static and spherically symmetric background. The cubic Galileon self-interaction leads to the suppression of a longitudinal vector component due to the operation of the Vainshtein mechanism. For quartic and sixth-order derivative interactions, the solutions consistent with those in the continuous limit of small derivative couplings correspond to the branch with the vanishing longitudinal mode. We compute the corrections to gravitational potentials outside a compact body induced by the vector field in the presence of cubic, quartic, and sixth-order derivative couplings, and show that the models can be consistent with local gravity constraints under mild bounds on the temporal vector component. The quintic vector Galileon does not allow regular solutions of the longitudinal mode for a rapidly decreasing matter density outside the body.

  1. Nonlinear force-free field extrapolation of the coronal magnetic field using the data obtained by the Hinode satellite (United States)

    He, Han; Wang, Huaning; Yan, Yihua


    The Hinode satellite can obtain high-quality photospheric vector magnetograms of solar active regions and the simultaneous coronal loop images in soft X-ray and extreme ultraviolet (EUV) bands. In this paper, we continue the work of He and Wang (2008) and apply the newly developed upward boundary integration computational scheme for the nonlinear force-free field (NLFFF) extrapolation of the coronal magnetic field to the photospheric vector magnetograms acquired by the Spectro-Polarimeter of the Solar Optical Telescope aboard Hinode. Three time series vector magnetograms of the same solar active region, NOAA 10930, are selected for the NLFFF extrapolations, which were observed within the time interval of 26 h during 10-11 December 2006 when the active region crossed the central area of the Sun's disk. Parallel computation of the NLFFF extrapolation code was realized through OpenMP multithreaded, shared memory parallelism and Fortran 95 programming language for the extrapolation calculations. The comparison between the extrapolated field lines and the coronal loop images obtained by the X-Ray Telescope and the EUV Imaging Spectrometer of Hinode shows that, in the central area of the active region, the field line configurations generally agree with the coronal images, and the orientations of the field lines basically coincide with the coronal loop observations for all three successive magnetograms. This result supports the NLFFF model being used for tracing the time series evolution of the 3-D coronal magnetic structures as the responses of the quasi-equilibrium solar atmosphere to the vector magnetic field changes in the photosphere.

  2. Control techniques of thrust vector for magnetic nozzle in laser fusion rocket

    Energy Technology Data Exchange (ETDEWEB)

    Kajimura, Yoshihiro [Department of Advanced Energy Engineering Science, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University (Japan)]. E-mail:; Kawabuchi, Ryo [Department of Advanced Energy Engineering Science, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University (Japan); Nakashima, Hideki [Department of Advanced Energy Engineering Science, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University (Japan)


    An analysis of plasma behavior in a magnetic nozzle would be very useful for designing plasma propulsion systems using a laser fusion. We examine by using a three-dimensional (3D) hybrid code how a thrust vector varies with changing positions of the fusion explosion (off-axis explosion) for the one-coil system of a laser fusion rocket. Furthermore, we investigate plasma behaviors and the thrust efficiency, and optimize the thrust efficiency by changing the current and the position of a rear coil for two-coil system. We also discuss the possibility of control techniques of the thrust vector for a two-coil system.

  3. A priori estimates for nonvariational operators modeled on Hörmander's vector fields with drift

    Directory of Open Access Journals (Sweden)

    Marco Bramanti


    Full Text Available For a nonvariational operator structured on Hörmander's vector fields with drift, where the matrix of coffiecients is real, symmetric and uniformly positive, we prove local a priori estimates on the second order derivatives with respect to the vector fields, in Hölder spaces if the coecients are Holder continuous, in Lp spaces if the coefficients are bounded, measurable and locally VMO.

  4. Cobordism Obstructions to Vector Fields and a Generalization of Lin's Theorem

    DEFF Research Database (Denmark)

    Svane, Anne Marie

    Atiyah and Dupont have studied the existence of linearly independent vector fields on manifolds by means of K-theory. They obtained the complete conditions for up to three independent vector fields. In the thesis, we try to copy their approach using certain spectra related to cobordism theory. We...... that it generalizes Lin's inverse system in compact cases, while it behaves completely differently in the universal case....

  5. Search for a Signature of Twist-removal in the Magnetic Field of Sunspots in Relation with Major Flares (United States)

    Burtseva, Olga; Gosain, Sanjay; Pevtsov, Alexei A.


    We investigate the restructuring of the magnetic field in sunspots associated with two flares: the X6.5 flare on 2006 December 6 and the X2.2 flare on 2011 February 15. The observed changes were evaluated with respect to the so-called twist-removal model, in which helicity (twist) is removed from the corona as the result of an eruption. Since no vector magnetograms were available for the X6.5 flare, we applied the azimuthal symmetry approach to line-of-sight magnetograms to reconstruct the pseudo-vector magnetic field and investigate the changes in average twist and inclination of magnetic field in the sunspot around the time of the flare. For the X2.2 flare, results from the full vector magnetograms were compared with the pseudo-vector field data. For both flares, the data show changes consistent with the twist-removal scenario. We also evaluate the validity of the azimuthal symmetry approach on simple isolated round sunspots. In general, the derivations based on the azimuthal symmetry approach agree with true-vector field data though we find that even for symmetric sunspots the distribution of the magnetic field may deviate from an axially symmetric distribution.

  6. Axial magnetic field injection in magnetized liner inertial fusion (United States)

    Gourdain, P.-A.; Adams, M. B.; Davies, J. R.; Seyler, C. E.


    MagLIF is a fusion concept using a Z-pinch implosion to reach thermonuclear fusion. In current experiments, the implosion is driven by the Z-machine using 19 MA of electrical current with a rise time of 100 ns. MagLIF requires an initial axial magnetic field of 30 T to reduce heat losses to the liner wall during compression and to confine alpha particles during fusion burn. This field is generated well before the current ramp starts and needs to penetrate the transmission lines of the pulsed-power generator, as well as the liner itself. Consequently, the axial field rise time must exceed hundreds of microseconds. Any coil capable of being submitted to such a field for that length of time is inevitably bulky. The space required to fit the coil near the liner, increases the inductance of the load. In turn, the total current delivered to the load decreases since the voltage is limited by driver design. Yet, the large amount of current provided by the Z-machine can be used to produce the required 30 T field by tilting the return current posts surrounding the liner, eliminating the need for a separate coil. However, the problem now is the field penetration time, across the liner wall. This paper discusses why skin effect arguments do not hold in the presence of resistivity gradients. Numerical simulations show that fields larger than 30 T can diffuse across the liner wall in less than 60 ns, demonstrating that external coils can be replaced by return current posts with optimal helicity.

  7. Study on the Electronic Magnetic Field Oriented Control Based on D-axis Current

    Directory of Open Access Journals (Sweden)

    Hongyu Feng


    Full Text Available In order to improve the magnetic field orientation accuracy and system performance, the electronic field oriented control has been a hot research field of the induction motor speed control. Although the vector control of AC machines has many excellent properties, the researchers have been attempting to simplify the calculating steps and the structure of the control system to improve the accuracy of filed-oriented and the performance of AC machine drives. Based on the analysis of the conventional induction motor magnetic field oriented control, this paper puts forward a novel method of stator magnetic field orientation control. By analytical methods, the given current of d-axis can be calculated directly, and the stator flux can be controlled precisely. This method has a fast flux and torque response, and the control performance is unaffected by the rotor parameters.

  8. Magnetic fields in turbulent quark matter and magnetar bursts (United States)

    Dvornikov, Maxim

    We analyze the magnetic field evolution in dense quark matter with unbroken chiral symmetry, which can be found inside quark and hybrid stars. The magnetic field evolves owing to the chiral magnetic effect in the presence of the electroweak interaction between quarks. In our study, we also take into account the magnetohydrodynamic turbulence effects in dense quark matter. We derive the kinetic equations for the spectra of the magnetic helicity density and the magnetic energy density as well as for the chiral imbalances. On the basis of the numerical solution of these equations, we find that turbulence effects are important for the behavior of small scale magnetic fields. It is revealed that, under certain initial conditions, these magnetic fields behave similarly to the electromagnetic flashes of some magnetars. We suggest that fluctuations of magnetic fields, described in frames of our model, which are created in the central regions of a magnetized compact star, can initiate magnetar bursts.

  9. Electric field controlled magnetic anisotropy in a single molecule. (United States)

    Zyazin, Alexander S; van den Berg, Johan W G; Osorio, Edgar A; van der Zant, Herre S J; Konstantinidis, Nikolaos P; Leijnse, Martin; Wegewijs, Maarten R; May, Falk; Hofstetter, Walter; Danieli, Chiara; Cornia, Andrea


    We have measured quantum transport through an individual Fe(4) single-molecule magnet embedded in a three-terminal device geometry. The characteristic zero-field splittings of adjacent charge states and their magnetic field evolution are observed in inelastic tunneling spectroscopy. We demonstrate that the molecule retains its magnetic properties and, moreover, that the magnetic anisotropy is significantly enhanced by reversible electron addition/subtraction controlled with the gate voltage. Single-molecule magnetism can thus be electrically controlled.

  10. submitter Generalized Harmonic Analysis of Computed and Measured Magnetic Fields

    CERN Document Server

    Auchmann, B; Petrone, C; Russenschuck, S


    In this paper, we present a generalized approach for the harmonic analysis of the magnetic field in accelerator magnets. This analysis is based on the covariant components of the computed or measured magnetic flux density. The multipole coefficients obtained in this way can be used for magnet optimization and field reconstruction in the interior of circular and elliptical boundaries in the bore of straight magnets.

  11. Influence of magnetization on the applied magnetic field in various AMR regenerators

    DEFF Research Database (Denmark)

    Mira, A.; de Larochelambert, T.; Espanet, C.


    of less than 2% in the calculation of internal magnetic fields at temperatures above the Curie point of gadolinium. Below the Curie point, a stronger magnetization of the cylinders and spheres leads to a larger deviation which can reach 8% when using uniform demagnetizing factors for internal magnetic......The aim of this work is to assess the influence of a magnetic sample on the applied magnetic field inside the air gap of a magnetic circuit. Different magnetic sources including an electromagnet, a permanent magnet in a soft ferromagnetic toroidal yoke, as well as 2D and 3D Halbach cylinders...... field calculations....


    Directory of Open Access Journals (Sweden)

    J. Gerlici


    Full Text Available Purpose. To carry out research the influence of magnetic system configuration (shape and size of the permanent magnets on magnetic field spatial distribution in working area of new structure design magnetic separator with active front surface by numerical methods. Methodology. We have applied the magnetic field numerical simulation for permanent magnets system in absence of electrical current in magnetostatic approximation. We have solved the problem by using finite element method. Research of permanent magnets cross-sectional shape influence made in the two-dimensional formulation using software package Elcut. Research of magnetic field induction spatial (three-dimensional distribution in new construction magnetic separator working area is conducted using software package COMSOL Multiphysics 3.5a. Results. Magnetic flux density maximum in the immediate vicinity of permanent magnet surface provide magnets with spherical and trapezoidal cross-sectional shape. At a distance from pole surface, where the separation process working, magnetic field density produced by trapezoidal and spherical cross section magnets, substantially lower in comparison with rectangular magnets. Rectangular and rectangular with beveled corners cross-section shape magnets create approximately same magnetic field intensity not significantly different in weight. Analysis of the spatial distribution of magnetic field induction in the working area of a new construction magnetic separator has shown that a strong magnetic field with high magnetic flux density gradient value is formed in the interpolar working volume. Originality. For the first time research of magnetic flux density distribution in working area of new construction magnetic separator is conducted. Developed device feature is complex spatial distribution of magnetic field. Practical value. Results of research can be used for selection of rational parameters of separator magnetic system. Received results also can be

  13. Magnetic Fields Induced in the Solid Earth and Oceans

    DEFF Research Database (Denmark)

    Kuvshinov, Alexei; Olsen, Nils

    Electromagnetic induction in the Earth's interior is an important contributor to the near-Earth magnetic field. Oceans play a special role in the induction, due to their relatively high conductance of large lateral variability. Electric currents that generate secondary magnetic fields are induced...... in the oceans by two different sources: by time varying external magnetic fields, and by motion of the conducting ocean water through the Earth's main magnetic field. Significant progress in the accurate and detailed prediction of magnetic fields induced by these sources has been achieved during the last years...


    Directory of Open Access Journals (Sweden)

    V. K. Polevikov


    Full Text Available A combined method of finite differences and boundary elements is applied to solve a nonlinear conjugate problem of magnetostatics describing, the interaction of a uniform magnetic field with a cylindrical magnetic fluid layer. Magnetic permeability of the fluid is considered to be a non-linearly dependent on the magnetic field intensity. Shielding properties of a cylindrical thick-walled magneticfluid layer, depending on the external magnetic field intensity, are investigated. A shielding effectiveness factor is calculated.

  15. Focus on Materials Analysis and Processing in Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Yoshio Sakka, Noriyuki Hirota, Shigeru Horii and Tsutomu Ando


    Full Text Available Recently, interest in the applications of feeble (diamagnetic and paramagnetic magnetic materials has grown, whereas the popularity of ferromagnetic materials remains steady and high. This trend is due to the progress of superconducting magnet technology, particularly liquid-helium-free superconducting magnets that can generate magnetic fields of 10 T and higher. As the magnetic energy is proportional to the square of the applied magnetic field, the magnetic energy of such 10 T magnets is in excess of 10 000 times that of conventional 0.1 T permanent magnets. Consequently, many interesting phenomena have been observed over the last decade, such as the Moses effect, magnetic levitation and the alignment of feeble magnetic materials. Researchers in this area are widely spread around the world, but their number in Japan is relatively high, which might explain the success of magnetic field science and technology in Japan.Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. The 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3, which was held on 14–16 May 2008 at the University of Tokyo, Japan, focused on various topics including magnetic field effects on chemical, physical, biological, electrochemical, thermodynamic and hydrodynamic phenomena; magnetic field effects on the crystal growth and processing of materials; diamagnetic levitation, the magneto-Archimedes effect, spin chemistry, magnetic orientation, control of structure by magnetic fields, magnetic separation and purification, magnetic-field-induced phase transitions, properties of materials in high magnetic fields, the development of NMR and MRI, medical applications of magnetic fields, novel magnetic phenomena, physical property measurement by magnetic fields, and the generation of high magnetic fields.This focus issue compiles 13 key papers selected from the proceedings

  16. Measurement of the ATLAS solenoid magnetic field

    CERN Document Server

    Aleksa, M; Giudici, P-A; Kehrli, A; Losasso, M; Pons, X; Sandaker, H; Miyagawa, P S; Snow, S W; Hart, J C; Chevalier, L


    ATLAS is a general purpose detector designed to explore a wide range of physics at the Large Hadron Collider. At the centre of ATLAS is a tracking detector in a 2 T solenoidal magnetic field. This paper describes the machine built to map the field, the data analysis methods, the final results, and their estimated uncertainties. The remotely controlled mapping machine used pneumatic motors with feedback from optical encoders to scan an array of Hall probes over the field volume and log data at more than 20 000 points in a few hours. The data were analysed, making full use of the physical constraints on the field and of our knowledge of the solenoid coil geometry. After a series of small corrections derived from the data itself, the resulting maps were fitted with a function obeying Maxwell's equations. The fit residuals had an r.m.s. less than 0.5 mT and the systematic error on the measurement of track sagitta due to the field uncertainty was estimated to be in the range 0.02 % to 0.12 % depending on the track...

  17. The magnetic field investigation on the Ulysses mission - Instrumentation and preliminary scientific results (United States)

    Balogh, A.; Beek, T. J.; Forsyth, R. J.; Hedgecock, P. C.; Marquedant, R. J.; Smith, E. J.; Southwood, D. J.; Tsurutani, B. T.


    A fundamental feature of the heliosphere is the three-dimensional structure of the interplanetary magnetic field. The magnetic field investigation on Ulysses, the first space probe to explore the out-of-ecliptic and polar heliosphere, aims at determining the large-scale features and gradients of the field, as well as the heliolatitude dependence of interplanetary phenomena so far only observed near the ecliptic plane. The Ulysses magnetometer uses two sensors, one a Vector Helium Magnetometer, the other a Fluxgate Magnetometer. Onboard data processing yields measurements of the magnetic field vector with a time resolution up to 2 vectors/second and a sensitivity of about 10 pT. Since the switch-on of the instrument in flight on 25 October 1990, a steady stream of observations has been made, indicating that at this phase of the solar cycle the field is generally disturbed: several shock waves and a large number of discontinuities have been observed, as well as several periods with apparently intense wave activity. The paper gives a brief summary of the scientific objectives of the investigation, followed by a detailed description of the instrument and its characteristics. Examples of wave bursts, interplanetary shocks and crossings of the heliospheric current sheet are given to illustrate the observations made with the instrument.

  18. Anisotropic vector Preisach particle

    CERN Document Server

    Fuezi, J


    The static 2D vector magnetic behaviour of an anisotropic silicon iron sheet is modelled by a particle which depicts its space-averaged behaviour. The magnitude of magnetization is governed by a classical Preisach operator with the projection of field strength on the magnetization direction as input. Its orientation is determined by the equilibrium between the field strength orientation and the anisotropy of the sheet.

  19. A 77 K MOS magnetic field detector

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, R S; Torres, A. [Instituto Nacional de Astrofisica Optica y Electronica, Puebla (Mexico); Garcia, P.J. [Universidad Veracruzana, Veracruz (Mexico); Gutierrez, E.A. [Motorola, Puebla (Mexico)


    An integrated MOS (metal-oxide-semiconductor)-compatible magnetic field detector (split-drain MAGFET) for operation at liquid-nitrogen temperature LNT (77 K) is presented. The measured relative magnetic sensibility (S{sub a}) is approximately 14%/T (double the value ever reported) using a non-optimized MAGFET structure (W/L) = (100 mm/125 mm). The cryo-magnetic structure was tested without a built-in preamplifier. It presents a power consumption of the order of mW. [Spanish] A traves de este articulo se presenta un detector de campo magnetico (split-drain MAGFET), basado en el transistor de efecto de campo MOS (metal-oxido-semiconductor), y totalmente compatible con procesos de fabricacion de circuitos integrados CMOS. La operacion optima de este detector es a temperaturas criogenicas. Aqui se presentan los resultados experimentales de la caracterizacion de una estructura no optimizada con dimensiones (W / L) = (100 mm/125 mm) a la temperatura del nitrogeno liquido (77 K). La sensibilidad relativa medida es de cerca del 14 % T, casi el doble del valor maximo antes reportado en la literatura. El dispositivo se midio sin un pre-amplificador integrado, mostrando un consumo de potencia del orden de microwatts.

  20. Random magnetic field and quasiparticle transport in the mixed state of high- Tc cuprates. (United States)

    Ye, J


    By a singular gauge transformation, the quasiparticle transport in the mixed state of high- Tc cuprates is mapped into a charge-neutral Dirac moving in short-range correlated random scalar and long-range correlated vector potential. A fully quantum mechanical approach to longitudinal and transverse thermal conductivities is presented. The semiclassical Volovik effect is presented in a quantum mechanical way. The quasiparticle scattering from the random magnetic field which was completely missed in all the previous semiclassical approaches is the dominant scattering mechanism at sufficient high magnetic field. The implications for experiments are discussed.

  1. The mechanisms of the effects of magnetic fields on cells (United States)

    Kondrachuk, A.

    The evolution of organisms in conditions of the Earth magnetism results in close dependence of their functioning on the properties of the Earth magnetic field. The magnetic conditions in space flight differ from those on the Earth (e.g. much smaller values of magnetic filed) that effect various processes in living organisms. Meanwhile the mechanisms of interaction of magnetic fields with cell structures are poorly understood and systemized. The goal of the present work is to analyze and estimate the main established mechanisms of "magnetic fields - cell" interaction. Due to variety and complexity of the effects the analysis is mainly restricted to biological effects of the static magnetic field at a cellular level. 1) Magnetic induction. Static magnetic fields exert forces on moving ions in solution (e.g., electrolytes), giving rise to induced electric fields and currents. This effect may be especially important when the currents changed due to the magnetic field application are participating in some receptor functions of cells (e.g. plant cells). 2) Magneto-mechanical effect of reorientation. Uniform static magnetic fields produce torques on certain molecules with anisotropic magnetic properties, which results in their reorientation and spatial ordering. Since the structures of biological cells are magnetically and mechanically inhomogeneous, the application of a homogeneous magnetic field may cause redistribution of stresses within cells, deformation of intracellular structures, change of membrane permeability, etc. 3) Ponderomotive effects. Spatially non-uniform magnetic field exerts ponderomotive force on magnetically non-uniform cell structures. This force is proportional to the gradient of the square of magnetic field and the difference of magnetic susceptibilities of the component of the cell and its environment. 4) Biomagnetic effects. Magnetic fields can exert torques and translational forces on ferromagnetic structures, such as magnetite and ferritins

  2. A direct torque control scheme for permanent magnet synchronous motors based on space vector modulation (United States)

    Su, Xiao-hui; Xu, Shu-Ping


    In order to solve the problem of direct torque control (DTC) for permanent magnet synchronous motor (PMSM) related to the flux and the torque ripple and the uncertainty of switching frequency, A novel direct torque control system based on space vector modulation(SVM-DTC) for permanent magnet synchronous motor was proposed. In this method flux and torque are controlled through stator voltage components in stator flux linkage coordinate axes and space vector modulation is used to control inverters. Therefore, the errors of torque and flux linkage could be compensated accurately. The whole system has only one easily adjustable PI adjuster and needs no high for hardware and easy for realize. The simulation results verify the feasibility of this method, reduction of the flux and the torque ripple, and the good performance of DTC.

  3. Calculation of the magnetic vector potential in the TJ-II; Calculo del Potencial Magnetico Vector en el TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Fraguas, A.; Lopez Bruna, D.; Romero, J. A.


    The properties of the vector magnetic potential and its usefulness to calculate magnetic fluxes in both stationary and time-dependent conditions are p revised in this report. We have adapted to the TJ-II Flexible Heliac efficient numerical expressions to calculate the vector potential, calculating in addition the magnetic flux with this formalism in circumstances whose complexity makes very convenient the use of the vector potential. The result on induced voltages offer theoretical support to the measurements of induced voltage due to the OH coils in the plasma, like the measurements provided by the loop voltage diagnostic installed in the TJ-II, as well as to the cylindrical approximation of the plasma often used to interpret experimental data. (Author) 11 refs.

  4. Influence of magnetization on the applied magnetic field in various AMR regenerators

    DEFF Research Database (Denmark)

    Mira, A.; de Larochelambert, T.; Espanet, C.


    The aim of this work is to assess the influence of a magnetic sample on the applied magnetic field inside the air gap of a magnetic circuit. Different magnetic sources including an electromagnet, a permanent magnet in a soft ferromagnetic toroidal yoke, as well as 2D and 3D Halbach cylinders...


    Energy Technology Data Exchange (ETDEWEB)

    Schwadron, N. A.; Moebius, E. [University of New Hampshire, Durham, NH 03824 (United States); Richardson, J. D. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Burlaga, L. F. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); McComas, D. J. [Southwest Research Institute, San Antonio, TX 78228 (United States)


    Determining the direction of the local interstellar magnetic field (LISMF) is important for understanding the heliosphere’s global structure, the properties of the interstellar medium, and the propagation of cosmic rays in the local galactic medium. Measurements of interstellar neutral atoms by Ulysses for He and by SOHO/SWAN for H provided some of the first observational insights into the LISMF direction. Because secondary neutral H is partially deflected by the interstellar flow in the outer heliosheath and this deflection is influenced by the LISMF, the relative deflection of H versus He provides a plane—the so-called B–V plane in which the LISMF direction should lie. Interstellar Boundary Explorer (IBEX) subsequently discovered a ribbon, the center of which is conjectured to be the LISMF direction. The most recent He velocity measurements from IBEX and those from Ulysses yield a B–V plane with uncertainty limits that contain the centers of the IBEX ribbon at 0.7–2.7 keV. The possibility that Voyager 1 has moved into the outer heliosheath now suggests that Voyager 1's direct observations provide another independent determination of the LISMF. We show that LISMF direction measured by Voyager 1 is >40° off from the IBEX ribbon center and the B–V plane. Taking into account the temporal gradient of the field direction measured by Voyager 1, we extrapolate to a field direction that passes directly through the IBEX ribbon center (0.7–2.7 keV) and the B–V plane, allowing us to triangulate the LISMF direction and estimate the gradient scale size of the magnetic field.

  6. Triangulation of the Interstellar Magnetic Field (United States)

    Schwadron, N. A.; Richardson, J. D.; Burlaga, L. F.; McComas, D. J.; Moebius, E.


    Determining the direction of the local interstellar magnetic field (LISMF) is important for understanding the heliosphere’s global structure, the properties of the interstellar medium, and the propagation of cosmic rays in the local galactic medium. Measurements of interstellar neutral atoms by Ulysses for He and by SOHO/SWAN for H provided some of the first observational insights into the LISMF direction. Because secondary neutral H is partially deflected by the interstellar flow in the outer heliosheath and this deflection is influenced by the LISMF, the relative deflection of H versus He provides a plane—the so-called B-V plane in which the LISMF direction should lie. Interstellar Boundary Explorer (IBEX) subsequently discovered a ribbon, the center of which is conjectured to be the LISMF direction. The most recent He velocity measurements from IBEX and those from Ulysses yield a B-V plane with uncertainty limits that contain the centers of the IBEX ribbon at 0.7-2.7 keV. The possibility that Voyager 1 has moved into the outer heliosheath now suggests that Voyager 1's direct observations provide another independent determination of the LISMF. We show that LISMF direction measured by Voyager 1 is >40° off from the IBEX ribbon center and the B-V plane. Taking into account the temporal gradient of the field direction measured by Voyager 1, we extrapolate to a field direction that passes directly through the IBEX ribbon center (0.7-2.7 keV) and the B-V plane, allowing us to triangulate the LISMF direction and estimate the gradient scale size of the magnetic field.

  7. The Noether symmetry approach in a 'cosmic triad' vector field scenario (United States)

    Zhang, Yi; Gong, Yun-gui; Zhu, Zong-Hong


    To realize the accelerations in the early and late periods of our universe, we need to specify potentials for the dominant fields. In this paper, by using the Noether symmetry approach, we try to find suitable potentials in the 'cosmic triad' vector field scenario. Because the equation of state parameter of dark energy has been constrained in the range of -1.21 <= ω <= -0.89 by observations, we derive the Noether conditions for the vector field in quintessence, phantom and quintom models, respectively. In the first two cases, constant potential solutions have been obtained. What is more, a fast decaying point-like solution with power-law potential is also found for the vector field in the quintessence model. For the quintom case, we find an interesting constraint \\tilde{C}V_{p}^{\\prime }=-CV_{q}^{\\prime } on the field potentials, where C and \\tilde{C} are constants related to the Noether symmetry.

  8. Estimation of the Influence on the LHC Beam of Parasitic Magnetic Fields Resulting from Magnet Interconnections

    CERN Document Server

    Völlinger, C


    The Large Hadron Collider (LHC) is equipped with 1232 main superconducting dipole magnets, 474 superconducting quadrupole magnets and more than 7400 superconducting corrector magnets that are distributed around the eight sectors of the accelerator. Each of the magnets is powered via superconducting power cables, the so-called main busbars for the main magnets and auxiliary busbars for the corrector magnets. Within the main magnets, the field produced by the superconducting busbars is shielded by the magnet's iron yoke. However, in the numerous magnet interconnections, the busbars are magnetically unshielded with respect to the beam pipes and produce parasitic fields that can affect the beam. Extensive analyses have been carried out in the past to assess the field quality of the individual magnets and its influence on the two counter-rotating beams. However, no detailed evaluation of the influence of the parasitic fields of the main and auxiliary busbars and their effect on beam optics had been performed so fa...

  9. Split Field magnet at the I4 ISR intersection

    CERN Multimedia


    The Split-Field Magnet (SFM) at I4 had an unconventional topology, consisting of two dipole magnets of opposite polarity. It formed the heart of the first general facility at the ISR. It had a useful magnetic field volume of 28 m3 and a field in the median plane of 1.14 T. With a gap height of 1.1 m and length of 10.5 m, the magnet weighed about 1000 t. The SFM spectrometer featured the first large-scale application of MWPCs (about 70,000 wires), which filled the main magnet, visible here in 1974, and the two large compensator magnets.

  10. Plasma opening switch with extrinsic magnetic field

    CERN Document Server

    Dolgachev, G; Maslennikov, D


    Summary form only given, as follows. We have demonstrated in series of experiments that plasma opening switch (POS) switching voltage (UPOS) is defined by energy density (w) deposited in the POS plasma. If we then consider a plasma erosion mainly responsible for the effect of POS switching (the erosion effect could be described by Hall or Child-Langmuir models) the energy density (w) could be measured as a function of a system "macro-parameter" such as the initial charging voltage of the capacity storage system (the Marx pulsed voltage generator) UMarx. The POS voltage in this case could be given by UPOS"aw=aUMarx4/7, where a is a constant. This report demonstrates that for the high-impedance POS which has limited charge density transferred through the POS plasma a"2.5 (MV3/7) with no external magnetic field applied. The use of the extrinsic magnetic field allows to increase a up to 3.6 (MV3/7) and to achieve higher voltages at the opening phase - UPOS=3.6UMarx4/7. To verify this approach set of experimental ...

  11. Reversible electric-field control of magnetization at oxide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cuellar, F. A.; Liu, Y. H.; Salafranca, J.; Nemes, N.; Iborra, E.; Sanchez-Santolino, G.; Varela, M.; Hernandez, M. Garcia; Freeland, J. W.; Zhernenkov, M.; Fitzsimmons, M. R.; Okamoto, S.; Pennycook, S. J.; Bibes, M.; Barthélémy, A.; te Velthuis, S. G. E.; Sefrioui, Z.; Leon, C.; Santamaria, J.


    Electric field control of magnetism has remained a major challenge which would greatly impact data storage technology. Although progress in this direction has been recently achieved, reversible magnetization switching by an electric field requires the assistance of a bias magnetic field. In this work, we take advantage of the novel electronic phenomena emerging at interfaces between correlated oxides and demonstrate reversible, voltage-driven magnetization switching without magnetic field. Sandwiching a (non superconducting) cuprate between two manganese oxide layers, we find a novel form of magnetoelectric coupling arising from the orbital reconstruction at the interface between interfacial Mn spins and localized states in the CuO2 planes. This results in a ferromagnetic coupling between the manganite layers that can be controlled by a voltage. Consequently, the devices can be electrically toggled between two magnetization states (and corresponding spin-dependent resistance states in magnetic tunnel junctions) in the absence of a magnetic field.

  12. Reversible electric-field control of magnetization at oxide interfaces. (United States)

    Cuellar, F A; Liu, Y H; Salafranca, J; Nemes, N; Iborra, E; Sanchez-Santolino, G; Varela, M; Garcia Hernandez, M; Freeland, J W; Zhernenkov, M; Fitzsimmons, M R; Okamoto, S; Pennycook, S J; Bibes, M; Barthélémy, A; te Velthuis, S G E; Sefrioui, Z; Leon, C; Santamaria, J


    Electric-field control of magnetism has remained a major challenge which would greatly impact data storage technology. Although progress in this direction has been recently achieved, reversible magnetization switching by an electric field requires the assistance of a bias magnetic field. Here we take advantage of the novel electronic phenomena emerging at interfaces between correlated oxides and demonstrate reversible, voltage-driven magnetization switching without magnetic field. Sandwiching a non-superconducting cuprate between two manganese oxide layers, we find a novel form of magnetoelectric coupling arising from the orbital reconstruction at the interface between interfacial Mn spins and localized states in the CuO2 planes. This results in a ferromagnetic coupling between the manganite layers that can be controlled by a voltage. Consequently, magnetic tunnel junctions can be electrically toggled between two magnetization states, and the corresponding spin-dependent resistance states, in the absence of a magnetic field.

  13. Electric field control of Skyrmions in magnetic nanodisks (United States)

    Nakatani, Y.; Hayashi, M.; Kanai, S.; Fukami, S.; Ohno, H.


    The control of magnetic Skyrmions confined in a nanometer scale disk using electric field pulses is studied by micromagnetic simulation. A stable Skyrmion can be created and annihilated by an electric field pulse depending on the polarity of the electric field. Moreover, the core direction of the Skyrmion can be switched using the same electric field pulses. Such creation and annihilation of Skyrmions, and its core switching do not require any magnetic field and precise control of the pulse length. This unconventional manipulation of magnetic texture using electric field pulses allows a robust way of controlling magnetic Skyrmions in nanodiscs, a path toward building ultralow power memory devices.

  14. Modeling of electron cyclotron resonance acceleration in a stationary inhomogeneous magnetic field

    Directory of Open Access Journals (Sweden)

    Valeri D. Dougar-Jabon


    Full Text Available In this paper, the cyclotron autoresonance acceleration of electrons in a stationary inhomogeneous magnetic field is studied. The trajectory and energy of electrons are found through a numerical solution of the relativistic Newton-Lorentz equation by a finite difference method. The electrons move along a TE_{112} cylinder cavity in a steady-state magnetic field whose axis coincides with the cavity axis. The magnetic field profile is such that it keeps the phase difference between the electric microwave field and the electron velocity vector within the acceleration phase band. The microwaves amplitude of 6  kV/cm is used for numerical calculations. It is shown that an electron with an initial longitudinal energy of 8 keV can be accelerated up to 260 keV by 2.45 GHz microwaves at a distance of 17 cm.

  15. FOREWORD: Focus on Materials Analysis and Processing in Magnetic Fields Focus on Materials Analysis and Processing in Magnetic Fields (United States)

    Sakka, Yoshio; Hirota, Noriyuki; Horii, Shigeru; Ando, Tsutomu


    Recently, interest in the applications of feeble (diamagnetic and paramagnetic) magnetic materials has grown, whereas the popularity of ferromagnetic materials remains steady and high. This trend is due to the progress of superconducting magnet technology, particularly liquid-helium-free superconducting magnets that can generate magnetic fields of 10 T and higher. As the magnetic energy is proportional to the square of the applied magnetic field, the magnetic energy of such 10 T magnets is in excess of 10 000 times that of conventional 0.1 T permanent magnets. Consequently, many interesting phenomena have been observed over the last decade, such as the Moses effect, magnetic levitation and the alignment of feeble magnetic materials. Researchers in this area are widely spread around the world, but their number in Japan is relatively high, which might explain the success of magnetic field science and technology in Japan. Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. The 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3), which was held on 14-16 May 2008 at the University of Tokyo, Japan, focused on various topics including magnetic field effects on chemical, physical, biological, electrochemical, thermodynamic and hydrodynamic phenomena; magnetic field effects on the crystal growth and processing of materials; diamagnetic levitation, the magneto-Archimedes effect, spin chemistry, magnetic orientation, control of structure by magnetic fields, magnetic separation and purification, magnetic-field-induced phase transitions, properties of materials in high magnetic fields, the development of NMR and MRI, medical applications of magnetic fields, novel magnetic phenomena, physical property measurement by magnetic fields, and the generation of high magnetic fields. This focus issue compiles 13 key papers selected from the proceedings of MAP3. Other

  16. The origin of the strongest magnetic fields in dwarfs

    Indian Academy of Sciences (India)

    Abstract. White dwarfs have frozen in magnetic fields ranging from below the measurable limit of about 3 × 103 to 109 G. White dwarfs with surface magnetic fields in excess of 1 MG are found as isolated single stars and relatively more often in magnetic cataclysmic variables. Some 1253 white dwarfs with a detached ...

  17. Linear electric field effects in magnetic anisotropy and ferromagnetic resonance (United States)

    Rado, George T.


    The concept, theory and measurement of electric-field-dependent macroscopic magnetic anisotropy energies are reviewed with examples involving magnetite and lithium ferrite. Also discussed are applications to the elucidation of magnetization processes, the determination of magnetic symmetry and the shifting of a ferromagnetic resonance with an applied electric field.

  18. Water flow patterns induced by bridge oscillation of magnetic fluid between two permanent magnets subjected to alternating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, Seiichi, E-mail: [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan); Yamamoto, Kazuki [Graduate School of Engineering, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577 (Japan); Ishimoto, Yukitaka; Nix, Stephanie [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan)


    This paper describes the characteristics of water flow induced by the bridge oscillation of magnetic fluid between two permanent magnets subject to an external alternating magnetic field. The magnetic fluid bridge is formed in the space between a pair of identical coaxial cylindrical permanent magnets submerged in water. The direction of alternating magnetic field is parallel /antiparallel to the magnetic field produced by two permanent magnets. The magnetic fluid bridge responds to the external alternating magnetic field with harmonic oscillation. The oscillation of magnetic fluid bridge generates water flow around the bridge. Water flow is visualized using a thin milk film at the container bottom. Water flows are observed with a high-speed video camera analysis system. The experimental results show that the flow pattern induced by the bridge oscillation depends on the Keulegan–Carpenter number.

  19. Quantum diffusion of magnetic fields in a numerical worldline approach

    CERN Document Server

    Gies, Holger; Gies, Holger; Langfeld, Kurt


    We propose a numerical technique for calculating effective actions of electromagnetic backgrounds based on the worldline formalism. As a conceptually simple example, we consider scalar electrodynamics in three dimensions to one-loop order. Beyond the constant-magnetic-field case, serving as a benchmark test, we analyze the effective action of a step-function-like magnetic field -- a configuration that is inaccessible to derivative expansions. We observe magnetic-field diffusion, i.e., nonvanishing magnetic action density at space points near the magnetic step where the classical field vanishes.

  20. Control of the magnetoelectric domain-wall stability by a magnetic field in a multiferroic MnWO4. (United States)

    Taniguchi, K; Abe, N; Umetsu, H; Katori, H Aruga; Arima, T


    The relation between the orientation of the magnetic field and the flopped ferroelectric polarization has been investigated for multiferroic MnWO4. The ferroelectric single-domain state is retained across the polarization flop process when the direction of the applied magnetic field slightly deviates from the b axis within the ab plane. Furthermore, the electric polarization in the high-field P parallela phase is reversed when the P parallelb-to-P parallela transition takes place while decreasing and increasing the magnetic fields oppositely canted from the b axis. These results indicate that the symmetry breaking induced by a canted magnetic field determines the direction of the polarization flop, which corresponds to the direction of the vector spin chirality. The stability of the magnetoelectric domain walls in a canted magnetic field play a key role in the directional control of the electric polarization flop phenomenon.

  1. Magnetic field topology and chemical spot distributions of the Ap star HD 119419 (United States)

    Rusomarov, N.; Kochukhov, O.; Lundin, A.


    Context. Analysis of high-resolution spectropolarimetric time-series observations of early-type magnetic stars is currently the most advanced method of obtaining detailed information on their surface magnetic field topologies and horizontal spot distributions. Aims: In this study we analyse a new set of high-quality full Stokes vector observations of the magnetic Ap star HD 119419 - a member of the 14 Myr old Lower Cen-Cru association - for the purpose of studying the surface field topology and mapping the chemical abundance spots. Methods: We made use of the circular and linear polarisation data collected for HD 119419 with the HARPSpol instrument at the ESO 3.6-m telescope. These observations were analysed with a multi-line magnetic diagnostic technique and modelled in detail with a Magnetic Doppler imaging (MDI) code. Results: We present a new set of high-precision mean longitudinal magnetic field measurements and derive a revised stellar rotational period by comparing our measurements with the literature data. We also redetermine the basic stellar atmospheric parameters. Our four Stokes parameter magnetic inversions reveal a moderately complex surface field topology with a mean field strength of 18 kG and a maximum local strength of 24 kG. A poloidal dipolar component dominates the magnetic energy spectrum of the surface field in HD 119419. However, significant contributions of the higher-order spherical harmonic components are also present. We show that the dipole plus quadrupole part of the reconstructed field geometry is incapable of reproducing the observed amplitudes and shapes of the Stokes Q and U profiles. The chemical abundance distributions of Fe, Cr, Ti, and Nd, derived self-consistently with the magnetic field geometry, are characterised by large abundance gradients and a lack of clear correlation with the magnetic field structure. Conclusions: This full Stokes vector analysis of HD 119419 extends the modern hot-star magnetic mapping investigations

  2. Application of Magnetic Markers for Precise Measurement of Magnetic Fields in Ramped Accelerators

    CERN Document Server

    Benedikt, Michael; Lindroos, M


    For precise measurements of the magnetic field in ramped machines, different magnetic markers are in use. The best known are peaking strips, Nuclear Magnetic Resonance (NMR) probes and Electron Spin Resonance (ESR) probes. Their operational principles and limitations are explained and some examples of recent and new applications are given. A fuller theoretical description is given of the lesser-known Ferrimagnetic Resonance (FMR) probe and its practical application. The essential purpose of these magnetic markers is the in situ calibration of either on-line magnetic field measurements (e.g. via a magnetic pick-up coil) or field predictions (e.g. using a magnet model).

  3. Optical investigation of effective permeability of dilute magnetic dielectrics with magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Ananya, E-mail:; Sarkar, A. [Dept. of Physics, Bijoy Krishna Girls’ College, 5/3 M.G. Road, Howrah 711101, W.B. (India)


    The prime objective of this paper is to investigate the magnetic nature of dilute magnetic dielectrics (DMD) under variation of external magnetic field. The said variation is studied over developed nano-sized Gadolinium Oxide as a DMD system. The observed experimental field variation of the effective magnetic permeability is analyzed results of optical experiment. The experiment records the variation of Brewster angle of incident polarized LASER beam from the surface of developed DMD specimen with applied out of plane external magnetic field. The effective refractive index and hence relative magnetic permeability were estimated following electro-magnetic theory. The overall results obtained and agreement between theory and experiment are good.

  4. Features of electron-phonon interactions in nanotubes with chiral symmetry in magnetic field

    CERN Document Server

    Kibis, O V


    Interaction of the electrons with acoustic phonons in the nanotube with chiral symmetry by availability of the magnetic field, parallel to the nanotube axis, is considered. It is shown that the electron energy spectrum is asymmetric relative to the electron wave vector inversion and for that reason the electron-phonon interaction appears to be different for similar phonons with mutually contrary directions of the wave vector. This phenomenon leads to origination of the electromotive force by the spatially uniform electron gas heating and to appearance of the quadrupole component in the nanotube volt-ampere characteristics

  5. An active antenna for ELF magnetic fields (United States)

    Sutton, John F.; Spaniol, Craig


    The work of Nikola Tesla, especially that directed toward world-wide electrical energy distribution via excitation of the earth-ionosphere cavity resonances, has stimulated interest in the study of these resonances. Not only are they important for their potential use in the transmission of intelligence and electrical power, they are important because they are an integral part of our natural environment. This paper describes the design of a sensitive, untuned, low noise active antenna which is uniquely suited to modern earth-ionosphere cavity resonance measurements employing fast-Fourier transform techniques for near-real-time data analysis. It capitalizes on a little known field-antenna interaction mechanism. Recently, the authors made preliminary measurements of the magnetic fields in the earth-ionosphere cavity. During the course of this study, the problem of designing an optimized ELF magnetic field sensor presented itself. The sensor would have to be small, light weight (for portable use), and capable of detecting the 5-50 Hz picoTesla-level signals generated by the natural excitations of the earth-ionosphere cavity resonances. A review of the literature revealed that past researchers had employed very large search coils, both tuned and untuned. Hill and Bostick, for example, used coils of 30,000 turns wound on high permeability cores of 1.83 m length, weighing 40 kg. Tuned coils are unsuitable for modern fast-Fourier transform data analysis techniques which require a broad spectrum input. 'Untuned' coils connected to high input impedance voltage amplifiers exhibit resonant responses at the resonant frequency determined by the coil inductance and the coil distributed winding capacitance. Also, considered as antennas, they have effective areas equal only to their geometrical areas.

  6. Dynamic Elasticity of a Magnetic Fluid Column in a Strong Magnetic Field (United States)

    Polunin, V. M.; Ryapolov, P. A.; Shel'deshova, E. V.; Kuz'ko, A. E.; Aref'ev, I. M.


    The elastomagnetic parameters of a magnetic fluid kept by magnetic levitation in a tube placed horizontally in a strong magnetic field are measured, including the oscillation frequency, the ponderomotive and dynamic elasticity coefficients, the magnetization curve, and the magnetic field strength and its gradient. Results of calculations for the model of ponderomotive elasticity for the examined sample of the magnetic fluid corrected for the resistance of the moving viscous fluid are in good agreement with the experimental magnetization curve. The described method is of interest for a study of magnetophoresis, nanoparticle aggregations, viscosity, and their time dependences in magnetic colloids.

  7. Dissipation of Magnetic Fields in Neutron Stars




    Neutron stars are the smallest, densest stars in the universe, and are the strongest known magnets. There are more than 2000 known neutron stars in our galaxy, and the oldest ones are much weaker magnets than their younger counterparts. It is thought that neutron stars can become less magnetized over long periods of time, just like regular magnets can wear out, and lose their magnetism. This thesis uses numerical simulations to model how neutron stars can lose their magnetism, and compares th...

  8. On the effects of grid ill-conditioning in three dimensional finite element vector potential magnetostatic field computations (United States)

    Wang, R.; Demerdash, N. A.


    The effects of finite element grid geometries and associated ill-conditioning were studied in single medium and multi-media (air-iron) three dimensional magnetostatic field computation problems. The sensitivities of these 3D field computations to finite element grid geometries were investigated. It was found that in single medium applications the unconstrained magnetic vector potential curl-curl formulation in conjunction with first order finite elements produce global results which are almost totally insensitive to grid geometries. However, it was found that in multi-media (air-iron) applications first order finite element results are sensitive to grid geometries and consequent elemental shape ill-conditioning. These sensitivities were almost totally eliminated by means of the use of second order finite elements in the field computation algorithms. Practical examples are given in this paper to demonstrate these aspects mentioned above.

  9. Magnetostructural transitions in a frustrated magnet at high fields. (United States)

    Tsurkan, V; Zherlitsyn, S; Felea, V; Yasin, S; Skourski, Yu; Deisenhofer, J; von Nidda, H-A Krug; Lemmens, P; Wosnitza, J; Loidl, A


    Ultrasound and magnetization studies of bond-frustrated ZnCr(2)S(4) spinel are performed in static magnetic fields up to 18 T and in pulsed fields up to 62 T. At temperatures below the antiferromagnetic transition at T(N1)≈14  K, the sound velocity as a function of the magnetic field reveals a sequence of steps followed by plateaus indicating a succession of crystallographic structures with constant stiffness. At the same time, the magnetization evolves continuously with a field up to full magnetic polarization without any plateaus in contrast to geometrically frustrated chromium oxide spinels. The observed high-field magnetostructural states are discussed within a H-T phase diagram taking into account the field and temperature evolution of three coexisting spin structures and subsequent lattice transformations induced by the magnetic field.

  10. A permanent magnet device for producing variable high magnetic field in three dimensions

    CERN Document Server

    Hwang, C S; Chang, P C; Chen, H H; Chang, C H; Huang Ming Hsiung


    By combining four parallel rows of permanent magnet blocks, a magnet device that can produce variable high magnetic field in three dimensions has been designed. In this device, the magnetic field direction and strength can be varied by shifting the four rows along their longitudinal direction and by varying the magnet gap between the top and bottom rows. With a magnet gap of 10 mm, the magnetic field strength at the center of the device is about 1.4 T along the longitudinal and two transverse directions. This device can be utilized in X-ray magnetic circular dichroism and X-ray magnetic linear dichroism experiments as well as in other applications where a variable high magnetic field in three dimensions is needed.

  11. Fluxgate vector magnetometers: Compensated multi-sensor devices for ground, UAV and airborne magnetic survey for various application in near surface geophysics (United States)

    Gavazzi, Bruno; Le Maire, Pauline; Munschy, Marc; Dechamp, Aline


    Fluxgate 3-components magnetometer is the kind of magnetometer which offers the lightest weight and lowest power consumption for the measurement of the intensity of the magnetic field. Moreover, vector measurements make it the only kind of magnetometer allowing compensation of magnetic perturbations due to the equipment carried with it. Unfortunately, Fluxgate magnetometers are quite uncommon in near surface geophysics due to the difficulty to calibrate them precisely. The recent advances in calibration of the sensors and magnetic compensation of the devices from a simple process on the field led Institut de Physique du Globe de Strasbourg to develop instruments for georeferenced magnetic measurements at different scales - from submetric measurements on the ground to aircraft-conducted acquisition through the wide range offered by unmanned aerial vehicles (UAVs) - with a precision in the order of 1 nT. Such equipment is used for different kind of application: structural geology, pipes and UXO detection, archaeology.

  12. Alignment of molecular materials in high magnetic fields

    NARCIS (Netherlands)

    Christianen, P.C.M.; Shklyarevskiy, O.I.; Boamfa, M.I.; Maan, J.C.


    The potential of using high magnetic fields to align functional molecular materials is discussed, illustrated by magnetic orientation of two different types of materials. Alignment of side chain polymer liquid crystals leads to macroscopically ordered, transparant and strongly birefringent material.

  13. Science in a Box. Magnets III: Force Fields. (United States)

    Learning, 1992


    Presents ideas to help elementary school educators teach their students about magnetic force fields by observing how iron filings line up around magnets. The article lists materials needed and offers a student page with suggested student activities. (SM)

  14. A late time accelerated FRW model with scalar and vector fields via Noether symmetry

    Directory of Open Access Journals (Sweden)

    Babak Vakili


    Full Text Available We study the evolution of a three-dimensional minisuperspace cosmological model by the Noether symmetry approach. The phase space variables turn out to correspond to the scale factor of a flat Friedmann–Robertson–Walker (FRW model, a scalar field with potential function V(ϕ with which the gravity part of the action is minimally coupled and a vector field of its kinetic energy is coupled with the scalar field by a coupling function f(ϕ. Then, the Noether symmetry of such a cosmological model is investigated by utilizing the behavior of the corresponding Lagrangian under the infinitesimal generator of the desired symmetry. We explicitly calculate the form of the coupling function between the scalar and the vector fields and also the scalar field potential function for which such symmetry exists. Finally, by means of the corresponding Noether current, we integrate the equations of motion and obtain exact solutions for the scale factor, scalar and vector fields. It is shown that the resulting cosmology is an accelerated expansion universe for which its expansion is due to the presence of the vector field in the early times, while the scalar field is responsible of its late time expansion.

  15. A late time accelerated FRW model with scalar and vector fields via Noether symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Vakili, Babak, E-mail:


    We study the evolution of a three-dimensional minisuperspace cosmological model by the Noether symmetry approach. The phase space variables turn out to correspond to the scale factor of a flat Friedmann–Robertson–Walker (FRW) model, a scalar field with potential function V(ϕ) with which the gravity part of the action is minimally coupled and a vector field of its kinetic energy is coupled with the scalar field by a coupling function f(ϕ). Then, the Noether symmetry of such a cosmological model is investigated by utilizing the behavior of the corresponding Lagrangian under the infinitesimal generator of the desired symmetry. We explicitly calculate the form of the coupling function between the scalar and the vector fields and also the scalar field potential function for which such symmetry exists. Finally, by means of the corresponding Noether current, we integrate the equations of motion and obtain exact solutions for the scale factor, scalar and vector fields. It is shown that the resulting cosmology is an accelerated expansion universe for which its expansion is due to the presence of the vector field in the early times, while the scalar field is responsible of its late time expansion.

  16. Numerical modeling of Bridgman growth of PbSnTe in a magnetic field (United States)

    Yao, Minwu; Chait, Arnon; Fripp, Archibald L.; Debnam, William J.


    In this work we study heat and mass transport, fluid motion, and solid/liquid phase change in the process of steady Bridgman growth of Pb(.8)Sn(.2)Te (LTT) in an axially-imposed uniform magnetic field under terrestrial and microgravity conditions. In particular, this research is concerned with the interrelationships among segregation, buoyancy-driven convection, and magnetic damping in the LTT melt. The main objectives are to provide a quantitative understanding of the complex transport phenomena during solidification of the nondilute binary of LTT, to provide estimates of the strength of magnetic field required to achieve the desired diffusion-dominated growth, and to assess the role of magnetic damping for space and earth based control of the buoyancy-induced convection. The problem was solved by using FIDAP and numerical results for both vertical and horizontal growth configurations with respect to the acceleration of gravity vector are presented.

  17. Accretion and magnetic field structure in AM Herculis systems (United States)

    Wickramasinghe, D. T.; Ferrario, Lilia


    Detailed spectroscopic studies of the magnetic white dwarfs in the AM Herculis type systems have shown that in most systems the magnetic white dwarf has two dominant poles with field strengths that differ by a factor ˜1.5-2 indicating non dipolar field structures. In all but the highest field system AR UMa, phase locking appears to be maintained through magneto-static interactions between the magnetic field of the white dwarf and the dynamo generated magnetic field of the secondary star.

  18. Parametric Resonances of a Conductive Pipe Driven by an Alternating Magnetic Field in the Presence of a Static Magnetic Field (United States)

    Donoso, Guillermo; Ladera, Celso L.


    The parametric oscillations of an oscillator driven electromagnetically are presented. The oscillator is a conductive pipe hung from a spring, and driven by the oscillating magnetic field of a surrounding coil in the presence of a static magnetic field. It is an interesting case of parametric oscillations since the pipe is neither a magnet nor a…

  19. A New Method for Coronal Magnetic Field Reconstruction (United States)

    Yi, Sibaek; Choe, Gwang-Son; Cho, Kyung-Suk; Kim, Kap-Sung


    A precise way of coronal magnetic field reconstruction (extrapolation) is an indispensable tool for understanding of various solar activities. A variety of reconstruction codes have been developed so far and are available to researchers nowadays, but they more or less bear this and that shortcoming. In this paper, a new efficient method for coronal magnetic field reconstruction is presented. The method imposes only the normal components of magnetic field and current density at the bottom boundary to avoid the overspecification of the reconstruction problem, and employs vector potentials to guarantee the divergence-freeness. In our method, the normal component of current density is imposed, not by adjusting the tangential components of A, but by adjusting its normal component. This allows us to avoid a possible numerical instability that on and off arises in codes using A. In real reconstruction problems, the information for the lateral and top boundaries is absent. The arbitrariness of the boundary conditions imposed there as well as various preprocessing brings about the diversity of resulting solutions. We impose the source surface condition at the top boundary to accommodate flux imbalance, which always shows up in magnetograms. To enhance the convergence rate, we equip our code with a gradient-method type accelerator. Our code is tested on two analytical force-free solutions. When the solution is given only at the bottom boundary, our result surpasses competitors in most figures of merits devised by Schrijver et al. (2006). We have also applied our code to a real active region NOAA 11974, in which two M-class flares and a halo CME took place. The EUV observation shows a sudden appearance of an erupting loop before the first flare. Our numerical solutions show that two entwining flux tubes exist before the flare and their shackling is released after the CME with one of them opened up. We suggest that the erupting loop is created by magnetic reconnection between

  20. The force analysis for superparamagnetic nanoparticles-based gene delivery in an oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiajia [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an, Shaanxi Province 710049 (China); Shi, Zongqian, E-mail: [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an, Shaanxi Province 710049 (China); Jia, Shenli [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an, Shaanxi Province 710049 (China); Zhang, Pengbo [Department of Anesthesiology, Second Affiliated Hospital of Xi’an Jiaotong University School of Medicine, No.157 West 5 Road, Xi’an, Shaanxi Province 710004 (China)


    Due to the peculiar magnetic properties and the ability to function in cell-level biological interaction, superparamagnetic nanoparticles (SMNP) have been being the attractive carrier for gene delivery. The superparamagnetic nanoparticles with surface-bound gene vector can be attracted to the surface of cells by the Kelvin force provided by external magnetic field. In this article, the influence of the oscillating magnetic field on the characteristics of magnetofection is studied in terms of the magnetophoretic velocity. The magnetic field of a cylindrical permanent magnet is calculated by equivalent current source (ECS) method, and the Kelvin force is derived by using the effective moment method. The results show that the static magnetic field accelerates the sedimentation of the particles, and drives the particles inward towards the axis of the magnet. Based on the investigation of the magnetophoretic velocity of the particle under horizontally oscillating magnetic field, an oscillating velocity within the amplitude of the magnet oscillation is observed. Furthermore, simulation results indicate that the oscillating amplitude plays an important role in regulating the active region, where the particles may present oscillating motion. The analysis of the magnetophoretic velocity gives us an insight into the physical mechanism of the magnetofection. It's also helpful to the optimal design of the magnetofection system. - Highlights: • We compare the results of the ECS method and FEA method with the commercial software, Ansys. • We analyze the physic mechanism of the oscillating motion of the particles in the presence of an oscillating magnet. • We discuss the influence of the oscillating amplitude of the magnet on the behavior of the particle.

  1. Reversible Electric-Field-Driven Magnetic Domain-Wall Motion

    Directory of Open Access Journals (Sweden)

    Kévin J. A. Franke


    Full Text Available Control of magnetic domain-wall motion by electric fields has recently attracted scientific attention because of its potential for magnetic logic and memory devices. Here, we report on a new driving mechanism that allows for magnetic domain-wall motion in an applied electric field without the concurrent use of a magnetic field or spin-polarized electric current. The mechanism is based on elastic coupling between magnetic and ferroelectric domain walls in multiferroic heterostructures. Pure electric-field-driven magnetic domain-wall motion is demonstrated for epitaxial Fe films on BaTiO_{3} with in-plane and out-of-plane polarized domains. In this system, magnetic domain-wall motion is fully reversible and the velocity of the walls varies exponentially as a function of out-of-plane electric-field strength.

  2. Phase conjugation of vector fields by degenerate four-wave mixing in a Fe-doped LiNbO₃. (United States)

    Qian, Sheng-Xia; Li, Yongnan; Kong, Ling-Jun; Tu, Chenghou; Wang, Hui-Tian


    We propose a method to generate the phase-conjugate wave of the vector field by degenerate four-wave mixing in a c-cut Fe-doped LiNbO3 crystal. We demonstrate experimentally that the phase-conjugate wave of the vector field can be generated. In particular, the phase-conjugate vector field has also the peculiar function of compensating the polarization distortion, as the traditional phase-conjugate scaler field can compensate the phase distortion.

  3. Measurement of magnetic field fluctuations and diamagnetic currents within a laser ablation plasma interacting with an axial magnetic field (United States)

    Ikeda, S.; Horioka, K.; Okamura, M.


    The guiding of laser ablation plasmas with axial magnetic fields has been used for many applications, since its effectiveness has been proven empirically [L. Gray et al., J. Appl. Phys. 53(10), 6628 (1982); J. Wolowski, Laser Part. Beams 20(01), 113 (2002); M. Okamura et al., Rev. Sci. Instrum. 81, 02A510 (2010); Y. Tsui et al., Appl. Phys. Lett. 70(15), 1953 (1997); C. Pagano and J. Lunney, J. Phys. D: Appl. Phys. 43(30), 305202 (2010)]. For more sophisticated and complicated manipulations of the plasma flow, the behavior of the magnetic field during the interaction and the induced diamagnetic current in the plasma plume needs to be clearly understood. To achieve the first milestone for establishing magnetic plasma manipulation, we measured the spatial and temporal fluctuations of the magnetic field caused by the diamagnetic current. We showed that the small fluctuations of the magnetic field can be detected by using a simple magnetic probe. We observed that the field penetrates to the core of the plasma plume. The diamagnetic current estimated from the magnetic field had temporal and spatial distributions which were confirmed to be correlated with the transformation of the plasma plume. Our results show that the measurement by the magnetic probe is an effective method to observe the temporal and spatial distributions of the magnetic field and diamagnetic current. The systematic measurement of the magnetic field variations is a valuable method to establish the magnetic field manipulation of the laser ablation plasma.

  4. Theory of electrolyte crystallization in magnetic field

    DEFF Research Database (Denmark)

    Madsen, Hans Erik Lundager


    is negligible, if not absent, the key property is likely to be the spin of protons which, by virtue of their half-integral spin, are fermions. An effect on crystal growth kinetics has been demonstrated, and the apparent effect on nucleation concerns the growth rate of nuclei. We are thus dealing with surface...... to a neighbouring anion, which then becomes doubly protonized. If the two protons are in the same spin state, the Pauli principle requires that one of them enter a state of higher energy, which enhances the activation energy and reduces the rate of the process, but even with opposite spins the incoming proton must...... enter an excited state due to its momentum. Spin relaxation in magnetic field may remove hindrances to proton transfer. The theory is supported by numerical results from model calculations....

  5. Magnetic field response sensor for conductive media (United States)

    Woodard, Stanley E. (Inventor); Taylor, Bryant Douglas (Inventor)


    A magnetic field response sensor comprises an inductor placed at a fixed separation distance from a conductive surface to address the low RF transmissivity of conductive surfaces. The minimum distance for separation is determined by the sensor response. The inductor should be separated from the conductive surface so that the response amplitude exceeds noise level by a recommended 10 dB. An embodiment for closed cavity measurements comprises a capacitor internal to said cavity and an inductor mounted external to the cavity and at a fixed distance from the cavity's wall. An additional embodiment includes a closed cavity configuration wherein multiple sensors and corresponding antenna are positioned inside the cavity, with the antenna and inductors maintained at a fixed distance from the cavity's wall.

  6. The review of cellular effects of a static magnetic field

    Directory of Open Access Journals (Sweden)

    Junji Miyakoshi


    Full Text Available The effects of static magnetic fields at the cellular level are reviewed. Past studies have shown that a static magnetic field alone does not have a lethal effect on the basic properties of cell growth and survival under normal culture conditions, regardless of its magnetic density. It has also been shown that cell cycle distribution is not influenced by extremely strong static magnetic fields (up to a maximum of 10 tesla (T. A further area of interest is whether static magnetic fields cause DNA damage, which can be evaluated by determination of the frequency of micronucleus formation. The presence or absence of such micronuclei can confirm whether a particular treatment damages cellular DNA. This method has been used to confirm that a static magnetic field alone has no such effect. However, the frequency of micronucleus formation changes significantly when certain treatments (for example, X-irradiation and mitomycin C are given during exposure to a strong static magnetic field. It has also been reported that treatment with trace amounts of ferrous ions in the cell culture medium and exposure to a static magnetic field increases DNA damage, which is detected using the comet assay. Several reports suggest that a strong static magnetic field may affect the ion transport and the gene expression. In addition, many studies have found a strong magnetic field can induce orientation phenomena in cell culture.

  7. First Computation of Parasitic Fields in LHC Dipole Magnet Interconnects

    CERN Document Server

    Devred, Arnaud; Boncompagni, Yann; Ferapontov, V; Koutchouk, Jean-Pierre; Russenschuck, Stephan; Sahner, T; Völlinger, C


    The Large Hadron Collider (LHC), now under construction at CERN, will rely on about 1600 main superconducting dipole and quadrupole magnets and over 7400 superconducting corrector magnets distributed around the eight sectors of the machine. Each magnet type is powered by dedicated superconducting busbars running along the sectors and mounted on the iron yokes of the main dipole and quadruple magnets. In the numerous magnet interconnects, the busbars are not magnetically shielded from the beam pipes and produce parasitic fields that can affect beam optics. We review the 3-D models that have been developed with ROXIE to compute the parasitic fields and we discuss their potential impacts on machine performance.

  8. Examination of Biological Effects of Magnetic Field Concealed by Gravity (United States)

    Yamashita, M.; Tomita-Yokotani, K.; Hashimoto, H.; Nakamura, T.

    Response of biological systems against combined environment of zero-gravity and zero-magnetic field should be examined as the baseline to investigate biological effects of magnetic field that might be concealed by gravity. Space offers unique opportunities to conduct such study because long term microgravity is available for the scientific use. However, magnetic environment has been neither well controlled nor documented both in space and ground based experiments. Biological specimen is exposed to the various magnetic field of Earth during the revolutions in orbit. The profile of magnetic field varying in time depends on the orbital parameters and attitude of the space platform. Furthermore, the onboard 1 G control group is subjected to centrifugation spinning where magnetic field varies differently from the microgravity experiment group. It can not be accepted as the 1 G control in terms of magnetic environment. We propose experiment set up to shield exotic magnetic field experienced in orbiting space experiment platform. Thin film of amorphous metal or alloys has shielding capability, and is feasible to implement for space experimentation. In order to simulate zero-gravity and zero-magnetic field on ground, we developed a 3D- clinostat that equips a magnetic shielding layer for specimen. In order to evaluate effects of normal magnetic field of Earth, steady magnetic field is induced at the site of specimen inside the shield layer either in orbit or on 3D-clinostat. To fill the matrix of experimental design, 1 G control under the magnetic shielded condition, and 1 G control that is exposed to the normal field should be taken. Degree of magnetic shielding magnitude required for plant studies and other issues were examined by the preliminary experiments using a 3D-clinostat for the studies of etiolated seedlings.

  9. Transient Simulation of a Rotating Conducting Cylinder in a Transverse Magnetic Field (United States)


    UNCLASSIFIED UNCLASSIFIED AD-E403 795 Technical Report ARMET-TR-15078 TRANSIENT SIMULATION OF A ROTATING CONDUCTING CYLINDER IN...TITLE AND SUBTITLE TRANSIENT SIMULATION OF A ROTATING CONDUCTING CYLINDER IN A TRANSVERSE MAGNETIC FIELD 5a. CONTRACT NUMBER 5b. GRANT NUMBER...vector detected within the projectile are affected by the spinning of the projectile. To study this, transient finite element analyses were conducted to

  10. Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation. (United States)

    Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing


    A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system.

  11. Particle simulation in stochastic magnetic fields at tokamak edge (United States)

    Chang, C. C.; Nishimura, Y.; Cheng, C. Z.


    An orbit following simulation code is developed incorporating magnetic perturbation. While magnetic field lines can exhibit stochastic behavior in the presence of incommensurate magnetic perturbations, the particle motions are also influenced by the mirror force and the perturbed electric fields. Remnants of lowest order magnetic islands can also play an important role in regulating the particle and heat transport. Effective perpendicular transport can be enhanced in the presence of trapped particles; how the mirror force influences the transport in stochastic magnetic fields is examined. This work is supported by National Science Council of Taiwan, NSC 100-2112-M-006-021-MY3 and NCKU Top University Project.

  12. Measurements of Magnetic Field Convection in Spherical Liquid Sodium Flows (United States)

    Luh, W. J.; Reighard, A. B.; Trucksess, C. D.; Brown, M. R.


    We have performed magnetic field measurements both inside and outside a 0.15 m diameter sphere of flowing liquid sodium. Experiments have been conducted in both smooth (laminar flow) and corrugated (turbulent flow) Pyrex spheres. A teflon stirrer generates a non-axisymmetric MHD flow with a magnetic Reynold's number boxcar averager with pick-up loops are used to measure magnetic fields in the flow. Preliminary results indicate evidence of both toroidal and poloidal convection of the magnetic field (internally and externally); total magnetic flux remains approximately fixed. Results will be compared with TRIM MHD computer simulations.

  13. Mechanism and Simulation of Generating Pulsed Strong Magnetic Field (United States)

    Yang, Xian-Jun; Wang, Shuai-Chuang; Deng, Ai-Dong; Gu, Zhuo-Wei; Luo, Hao


    A strong magnetic field (over 1000 T) was recently experimentally produced at the Academy of Engineering Physics in China. The theoretical methods, which include a simple model and MHD code, are discussed to investigate the physical mechanism and dynamics of generating the strong magnetic field. The analysis and simulation results show that nonlinear magnetic diffusion contributes less as compared to the linear magnetic diffusion. This indicates that the compressible hydrodynamic effect and solid imploding compression may have a large influence on strong magnetic field generation.

  14. Homogeneous Magnetic Field Source For Attenuated Total Reflection

    Directory of Open Access Journals (Sweden)

    Lesňák Michal


    Full Text Available The paper is focused on the study of two-dimensional magnetic field distribution used for an analysis of samples containing magnetically active films by means of the Attenuated Total Reflection (ATR method. The design of a proposed electromagnet and the magnetic field model computation are presented together with the results obtained from magnetic field distribution measurement. The ATR method can provide information about a thin film thickness, refractive index, and attenuation in addition to the perfunctory coupling of an optical wave into and off a waveguide [1, 2]. The prism coupling conditions are determined for magnetic structures with induced anisotropy.

  15. Magnetic fields, special relativity and potential theory elementary electromagnetic theory

    CERN Document Server

    Chirgwin, B H; Kilmister, C W


    Magnetic Fields, Special Relativity and Potential Theory is an introduction to electromagnetism, special relativity, and potential theory, with emphasis on the magnetic field of steady currents (magnetostatics). Topics covered range from the origin of the magnetic field and the magnetostatic scalar potential to magnetization, electromagnetic induction and magnetic energy, and the displacement current and Maxwell's equations. This volume is comprised of five chapters and begins with an overview of magnetostatics, followed by a chapter on the methods of solving potential problems drawn from elec

  16. Localized magnetic fields in arbitrary directions using patterned nanomagnets

    DEFF Research Database (Denmark)

    McNeil, Robert P G; Schneble, Jeff; Kataoka, Masaya


    Control of the local magnetic fields desirable for spintronics and quantum information technology is not well developed. Existing methods produce either moderately small local fields or one held orientation. We present designs of patterned magnetic elements that produce remanent fields of 50 mT (...

  17. Dynamics of paramagnetic squares in uniform magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Du, Di; He, Peng; Zeng, Yongchao; Biswal, Sibani Lisa, E-mail:


    The magnetic forces between paramagnetic squares cannot be calculated using a classic dipolar model because the magnetic field distribution is not uniform within square particles. Here, we present the calculation of magnetic forces and torques on paramagnetic squares in a uniform 2-D magnetic field using a Laplace's equation solver. With these calculations, we simulate the variations in equilibrium configurations as a function of number of interacting squares. For example, a single square orients with its diagonal directed to the external field while a system of multiple squares will assemble into chain-like structures with their edges directed to the external field. Unlike chains of spherical magnetic particles, that easily stagger themselves to aggregate, chains consisting of magnetic squares are unable to aggregate due to interchain repulsion. - Highlights: • Numerical calculations demonstrate that the orientation dynamics of a magnetic square or rectangle is highly dependent on the magnetic field distribution within the particle and its interactions with neighboring particles. • A paramagnetic square acquires an asymmetric field distribution that results in a torque that rotates it so that its diagonal aligns with the magnetic field. • Chains of magnetic square particles will not combine into bundles as observed in chains of magnetic disk particles.

  18. Granular cells in the presence of magnetic field (United States)

    Jurčák, J.; Lemmerer, B.; van Noort, M.


    We present a statistical study of the dependencies of the shapes and sizes of the photospheric convective cells on the magnetic field properties. This analysis is based on a 2.5 hour long SST observations of active region NOAA 11768. We have blue continuum images taken with a cadence of 5.6 sec that are used for segmentation of individual granules and 270 maps of spectropolarimetric CRISP data allowing us to determine the properties of the magnetic field along with the line-of-sight velocities. The sizes and shapes of the granular cells are dependent on the the magnetic field strength, where the granules tend to be smaller in regions with stronger magnetic field. In the presence of highly inclined magnetic fields, the eccentricity of granules is high and we do not observe symmetric granules in these regions. The mean up-flow velocities in granules as well as the granules intensities decrease with increasing magnetic field strength.

  19. The origin, evolution and signatures of primordial magnetic fields. (United States)

    Subramanian, Kandaswamy


    The universe is magnetized on all scales probed so far. On the largest scales, galaxies and galaxy clusters host magnetic fields at the micro Gauss level coherent on scales up to ten kpc. Recent observational evidence suggests that even the intergalactic medium in voids could host a weak  ∼  10(-16) Gauss magnetic field, coherent on Mpc scales. An intriguing possibility is that these observed magnetic fields are a relic from the early universe, albeit one which has been subsequently amplified and maintained by a dynamo in collapsed objects. We review here the origin, evolution and signatures of primordial magnetic fields. After a brief summary of magnetohydrodynamics in the expanding universe, we turn to magnetic field generation during inflation and phase transitions. We trace the linear and nonlinear evolution of the generated primordial fields through the radiation era, including viscous effects. Sensitive observational signatures of primordial magnetic fields on the cosmic microwave background, including current constraints from Planck, are discussed. After recombination, primordial magnetic fields could strongly influence structure formation, especially on dwarf galaxy scales. The resulting signatures on reionization, the redshifted 21 cm line, weak lensing and the Lyman-α forest are outlined. Constraints from radio and γ-ray astronomy are summarized. Astrophysical batteries and the role of dynamos in reshaping the primordial field are briefly considered. The review ends with some final thoughts on primordial magnetic fields.

  20. Computation of magnetic fields within source regions of ionospheric and magnetospheric currents

    DEFF Research Database (Denmark)

    Engels, U.; Olsen, Nils


    A general method of computing the magnetic effect caused by a predetermined three-dimensional external current density is presented. It takes advantage of the representation of solenoidal vector fields in terms of toroidal and poloidal modes expressed by two independent series of spherical...... harmonics. In order to rest the method, it is applied to two ionospheric-magnetospheric model current densities. The first example assumes a special large-scale current system which has an analytical solution for the magnetic field everywhere. In the second example, the results for a model current...... distribution that is of small-scale at high latitudes are compared with a direct integration using Biot-Savart's law. It is demonstrated that the method provides a fast and numerically stable determination of the magnetic field both outside and inside the current density....