WorldWideScience

Sample records for vector boost vaccine

  1. Vector prime/protein boost vaccine that overcomes defects acquired during aging and cancer

    DEFF Research Database (Denmark)

    Tang, Y.; Akbulut, H.; Maynard, J.

    2006-01-01

    We showed that the Ad-sig-TAA/ecdCD40L vaccine induces a tumor suppressive immune response to the hMUC-1 and rH2N tumor-associated self Ags (TAA) and to the Annexin A1 tumor vascular Ag, even in mice in which anergy exists to these Ags. When the TAA/ecdCD40L protein is given s.c. as a boost...... following the Ad-sig-TAA/ecdCD40L vector, the levels of the TAA-specific CD8 T cells and Abs increase dramatically over that seen with vector alone, in young (2-mo-old) as well as old (18-mo-old) mice. The Abs induced against hMUC-1 react with human breast cancer. This vaccine also induces a 4-fold...... decrement of negative regulatory CD4CD25FOXP3-T cells in the tumor tissue of 18-mo-old mice. These results suggest that the Ad-sig-TAA/ecdCD40L vector prime-TAA/ecdCD40L protein boost vaccine platform may be valuable in reducing postsurgery recurrence in a variety of epithelial neoplasms....

  2. Heterologous prime-boost immunization of Newcastle disease virus vectored vaccines protected broiler chickens against highly pathogenic avian influenza and Newcastle disease viruses.

    Science.gov (United States)

    Kim, Shin-Hee; Samal, Siba K

    2017-07-24

    Avian Influenza virus (AIV) is an important pathogen for both human and animal health. There is a great need to develop a safe and effective vaccine for AI infections in the field. Live-attenuated Newcastle disease virus (NDV) vectored AI vaccines have shown to be effective, but preexisting antibodies to the vaccine vector can affect the protective efficacy of the vaccine in the field. To improve the efficacy of AI vaccine, we generated a novel vectored vaccine by using a chimeric NDV vector that is serologically distant from NDV. In this study, the protective efficacy of our vaccines was evaluated by using H5N1 highly pathogenic avian influenza virus (HPAIV) strain A/Vietnam/1203/2004, a prototype strain for vaccine development. The vaccine viruses were three chimeric NDVs expressing the hemagglutinin (HA) protein in combination with the neuraminidase (NA) protein, matrix 1 protein, or nonstructural 1 protein. Comparison of their protective efficacy between a single and prime-boost immunizations indicated that prime immunization of 1-day-old SPF chicks with our vaccine viruses followed by boosting with the conventional NDV vector strain LaSota expressing the HA protein provided complete protection of chickens against mortality, clinical signs and virus shedding. Further verification of our heterologous prime-boost immunization using commercial broiler chickens suggested that a sequential immunization of chickens with chimeric NDV vector expressing the HA and NA proteins following the boost with NDV vector expressing the HA protein can be a promising strategy for the field vaccination against HPAIVs and against highly virulent NDVs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parenteral Mycobacterium bovis BCG immunization against pulmonary tuberculosis.

    Science.gov (United States)

    Santosuosso, Michael; McCormick, Sarah; Zhang, Xizhong; Zganiacz, Anna; Xing, Zhou

    2006-08-01

    Parenterally administered Mycobacterium bovis BCG vaccine confers only limited immune protection from pulmonary tuberculosis in humans. There is a need for developing effective boosting vaccination strategies. We examined a heterologous prime-boost regimen utilizing BCG as a prime vaccine and our recently described adenoviral vector expressing Ag85A (AdAg85A) as a boost vaccine. Since we recently demonstrated that a single intranasal but not intramuscular immunization with AdAg85A was able to induce potent protection from pulmonary Mycobacterium tuberculosis challenge in a mouse model, we compared the protective effects of parenteral and mucosal booster immunizations following subcutaneous BCG priming. Protection by BCG prime immunization was not effectively boosted by subcutaneous BCG or intramuscular AdAg85A. In contrast, protection by BCG priming was remarkably boosted by intranasal AdAg85A. Such enhanced protection by intranasal AdAg85A was correlated to the numbers of gamma interferon-positive CD4 and CD8 T cells residing in the airway lumen of the lung. Our study demonstrates that intranasal administration of AdAg85A represents an effective way to boost immune protection by parenteral BCG vaccination.

  4. Priming T-cell responses with recombinant measles vaccine vector in a heterologous prime-boost setting in non-human primates.

    Science.gov (United States)

    Bolton, Diane L; Santra, Sampa; Swett-Tapia, Cindy; Custers, Jerome; Song, Kaimei; Balachandran, Harikrishnan; Mach, Linh; Naim, Hussein; Kozlowski, Pamela A; Lifton, Michelle; Goudsmit, Jaap; Letvin, Norman; Roederer, Mario; Radošević, Katarina

    2012-09-07

    Licensed live attenuated virus vaccines capable of expressing transgenes from other pathogens have the potential to reduce the number of childhood immunizations by eliciting robust immunity to multiple pathogens simultaneously. Recombinant attenuated measles virus (rMV) derived from the Edmonston Zagreb vaccine strain was engineered to express simian immunodeficiency virus (SIV) Gag protein for the purpose of evaluating the immunogenicity of rMV as a vaccine vector in rhesus macaques. rMV-Gag immunization alone elicited robust measles-specific humoral and cellular responses, but failed to elicit transgene (Gag)-specific immune responses, following aerosol or intratracheal/intramuscular delivery. However, when administered as a priming vaccine to a heterologous boost with recombinant adenovirus serotype 5 expressing the same transgene, rMV-Gag significantly enhanced Gag-specific T lymphocyte responses following rAd5 immunization. Gag-specific humoral responses were not enhanced, however, which may be due to either the transgene or the vector. Cellular response priming by rMV against the transgene was highly effective even when using a suboptimal dose of rAd5 for the boost. These data demonstrate feasibility of using rMV as a priming component of heterologous prime-boost vaccine regimens for pathogens requiring strong cellular responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Heterologous Prime-Boost HIV-1 Vaccination Regimens in Pre-Clinical and Clinical Trials

    Directory of Open Access Journals (Sweden)

    Julia L. Hurwitz

    2010-02-01

    Full Text Available Currently, there are more than 30 million people infected with HIV-1 and thousands more are infected each day. Vaccination is the single most effective mechanism for prevention of viral disease, and after more than 25 years of research, one vaccine has shown somewhat encouraging results in an advanced clinical efficacy trial. A modified intent-to-treat analysis of trial results showed that infection was approximately 30% lower in the vaccine group compared to the placebo group. The vaccine was administered using a heterologous prime-boost regimen in which both target antigens and delivery vehicles were changed during the course of inoculations. Here we examine the complexity of heterologous prime-boost immunizations. We show that the use of different delivery vehicles in prime and boost inoculations can help to avert the inhibitory effects caused by vector-specific immune responses. We also show that the introduction of new antigens into boost inoculations can be advantageous, demonstrating that the effect of ‘original antigenic sin’ is not absolute. Pre-clinical and clinical studies are reviewed, including our own work with a three-vector vaccination regimen using recombinant DNA, virus (Sendai virus or vaccinia virus and protein. Promising preliminary results suggest that the heterologous prime-boost strategy may possibly provide a foundation for the future prevention of HIV-1 infections in humans.

  6. Different levels of immunogenicity of two strains of Fowlpox virus as recombinant vaccine vectors eliciting T-cell responses in heterologous prime-boost vaccination strategies.

    Science.gov (United States)

    Cottingham, Matthew G; van Maurik, Andre; Zago, Manola; Newton, Angela T; Anderson, Richard J; Howard, M Keith; Schneider, Jörg; Skinner, Michael A

    2006-07-01

    The FP9 strain of F has been described as a more immunogenic recombinant vaccine vector than the Webster FPV-M (FPW) strain (R. J. Anderson et al., J. Immunol. 172:3094-3100, 2004). This study expands the comparison to include two separate recombinant antigens and multiple, rather than single, independent viral clones derived from the two strains. Dual-poxvirus heterologous prime-boost vaccination regimens using individual clones of recombinant FP9 or FPW in combination with recombinant modified V Ankara expressing the same antigen were evaluated for their ability to elicit T-cell responses against recombinant antigens from Plasmodium berghei (circumsporozoite protein) or human immunodeficiency virus type 1 (a Gag-Pol-Nef fusion protein). Gamma interferon enzyme-linked immunospot assay and fluorescence-activated cell sorting assays of the responses to specific epitopes confirmed the approximately twofold-greater cellular immunogenicity of FP9 compared to FPW, when given as the priming or boosting immunization. Equality of transgene expression in mouse cells infected with the two strains in vitro was verified by Western blotting. Directed partial sequence analysis and PCR analysis of FPW and comparison to available whole-genome sequences revealed that many loci that are mutated in the highly attenuated and culture-adapted FP9 strain are wild type in FPW, including the seven multikilobase deletions. These "passage-specific" alterations are hypothesized to be involved in determining the immunogenicity of fowlpox virus as a recombinant vaccine vector.

  7. A prime-boost vaccination strategy using attenuated Salmonella typhimurium and a replication-deficient recombinant adenovirus vector elicits protective immunity against human respiratory syncytial virus.

    Science.gov (United States)

    Fu, Yuan-Hui; He, Jin-Sheng; Wang, Xiao-Bo; Zheng, Xian-Xian; Wu, Qiang; Xie, Can; Zhang, Mei; Wei, Wei; Tang, Qian; Song, Jing-Dong; Qu, Jian-Guo; Hong, Tao

    2010-04-23

    Human respiratory syncytial virus (RSV), for which no clinically approved vaccine is available yet, is globally a serious pediatric pathogen of the lower respiratory tract. Several approaches have been used to develop vaccines against RSV, but none of these have been approved for use in humans. An efficient vaccine-enhancing strategy for RSV is still urgently needed. We found previously that oral SL7207/pcDNA3.1/F and intranasal FGAd/F were able to induce an effective protective immune response against RSV. The heterologous prime-boost immunization regime has been reported recently to be an efficient vaccine-enhancing strategy. Therefore, we investigated the ability of an oral SL7207/pcDNA3.1/F prime and intranasal (i.n.) FGAd/F boost regimen to generate immune responses to RSV. The SL7207/pcDNA3.1/F prime-FGAd/F boost regimen generated stronger RSV-specific humoral and mucosal immune responses in BALB/c mice than the oral SL7207/pcDNA3.1/F regimen alone, and stronger specific cellular immune responses than the i.n. FGAd/F regimen alone. Histopathological analysis showed an increased efficacy against RSV challenge by the heterologous prime-boost regimen. These results suggest that such a heterologous prime-boost strategy can enhance the efficacy of either the SL7207 or the FGAd vector regimen in generating immune responses in BALB/c mice. 2010 Elsevier Inc. All rights reserved.

  8. Vector choice determines immunogenicity and potency of genetic vaccines against Angola Marburg virus in nonhuman primates

    NARCIS (Netherlands)

    Geisbert, Thomas W.; Bailey, Michael; Geisbert, Joan B.; Asiedu, Clement; Roederer, Mario; Grazia-Pau, Maria; Custers, Jerome; Jahrling, Peter; Goudsmit, Jaap; Koup, Richard; Sullivan, Nancy J.

    2010-01-01

    The immunogenicity and durability of genetic vaccines are influenced by the composition of gene inserts and choice of delivery vector. DNA vectors are a promising vaccine approach showing efficacy when combined in prime-boost regimens with recombinant protein or viral vectors, but they have shown

  9. Recombinant vaccines against T. gondii: comparison between homologous and heterologous vaccination protocols using two viral vectors expressing SAG1.

    Science.gov (United States)

    Mendes, Érica Araújo; Fonseca, Flavio G; Casério, Bárbara M; Colina, Janaína P; Gazzinelli, Ricardo Tostes; Caetano, Braulia C

    2013-01-01

    The use of recombinant viral vectors expressing T. gondii antigens is a safe and efficient approach to induce immune response against the parasite and a valuable tool for vaccine development. We have previously protected mice from toxoplasmosis by immunizing the animals with an adenovirus expressing the protein SAG1 (AdSAG1) of T. gondii. We are now looking for ways to improve the vaccination strategy and enhance protection. One limitation of homologous vaccinations (sequential doses of the same vector) is induction of anti-vector immune response that blocks cell transduction, restricts transgene expression and, consequently, compromises the overall outcome of vaccination. One way to avert the effects of anti-vector response is to use different viruses in prime and boost (heterologous vaccination). Bearing this in mind, we generated a modified Vaccinia Virus Ankara encoding SAG1 (MVASAG1), to be tested as boost agent after prime with AdSAG1. Although minor differences were observed in the magnitude of the anti-SAG1 immune response induced by each vaccination protocol, the heterologous immunization with AdSAG1 followed by MVASAG1 resulted in improved capacity to control brain cyst formation in a model of chronic toxoplasmosis in C57BL/6 mice.

  10. Recombinant vaccines against T. gondii: comparison between homologous and heterologous vaccination protocols using two viral vectors expressing SAG1.

    Directory of Open Access Journals (Sweden)

    Érica Araújo Mendes

    Full Text Available The use of recombinant viral vectors expressing T. gondii antigens is a safe and efficient approach to induce immune response against the parasite and a valuable tool for vaccine development. We have previously protected mice from toxoplasmosis by immunizing the animals with an adenovirus expressing the protein SAG1 (AdSAG1 of T. gondii. We are now looking for ways to improve the vaccination strategy and enhance protection. One limitation of homologous vaccinations (sequential doses of the same vector is induction of anti-vector immune response that blocks cell transduction, restricts transgene expression and, consequently, compromises the overall outcome of vaccination. One way to avert the effects of anti-vector response is to use different viruses in prime and boost (heterologous vaccination. Bearing this in mind, we generated a modified Vaccinia Virus Ankara encoding SAG1 (MVASAG1, to be tested as boost agent after prime with AdSAG1. Although minor differences were observed in the magnitude of the anti-SAG1 immune response induced by each vaccination protocol, the heterologous immunization with AdSAG1 followed by MVASAG1 resulted in improved capacity to control brain cyst formation in a model of chronic toxoplasmosis in C57BL/6 mice.

  11. QA prime-boost vaccination strategy in prevent serotype O FMDV infection using a "single-cycle" alphavirus vector and empty capsid particles

    DEFF Research Database (Denmark)

    Gullberg, Maria; Lohse, Louise; Bøtner, Anette

    Introduction Foot-and-mouth disease (FMD) remains one of the most economically important infectious diseases of production animals globally. Vaccination can help to control this disease, however, current vaccines based on chemically inactivated FMDV, are imperfect and there is a need for new, safe...... and effective vaccines to control FMD. There is no cross protection between the 7 serotypes but serotype O is the most abundant globally. Material and methods The FMDV capsid protein precursor (P1-2A) of strain O1 Manisa has been expressed with the FMDV 3C protease (3Cpro) using a “single cycle” packaged...... alphavirus self-replicating RNA based on Semliki Forest virus (SFV). Purified O1 Manisa empty capsid particles (ECs) have been prepared using a recombinant vaccinia virus expression system. Cattle have been vaccinated with the SFV-FMDV vectors and boosted subsequently with the ECs and then challenged...

  12. Optimizing HIV-1-specific CD8+ T-cell induction by recombinant BCG in prime-boost regimens with heterologous viral vectors.

    Science.gov (United States)

    Hopkins, Richard; Bridgeman, Anne; Bourne, Charles; Mbewe-Mvula, Alice; Sadoff, Jerald C; Both, Gerald W; Joseph, Joan; Fulkerson, John; Hanke, Tomáš

    2011-12-01

    The desire to induce HIV-1-specific responses soon after birth to prevent breast milk transmission of HIV-1 led us to propose a vaccine regimen which primes HIV-1-specific T cells using a recombinant Mycobacterium bovis bacillus Calmette-Guérin (rBCG) vaccine. Because attenuated live bacterial vaccines are typically not sufficiently immunogenic as stand-alone vaccines, rBCG-primed T cells will likely require boost immunization(s). Here, we compared modified Danish (AERAS-401) and Pasteur lysine auxotroph (222) strains of BCG expressing the immunogen HIVA for their potency to prime HIV-1-specific responses in adult BALB/c mice and examined four heterologous boosting HIVA vaccines for their immunogenic synergy. We found that both BCG.HIVA(401) and BCG.HIVA(222) primed HIV-1-specific CD8(+) T-cell-mediated responses. The strongest boosts were delivered by human adenovirus-vectored HAdV5.HIVA and sheep atadenovirus-vectored OAdV7.HIVA vaccines, followed by poxvirus MVA.HIVA; the weakest was plasmid pTH.HIVA DNA. The prime-boost regimens induced T cells capable of efficient in vivo killing of sensitized target cells. We also observed that the BCG.HIVA(401) and BCG.HIVA(222) vaccines have broadly similar immunologic properties, but display a number of differences mainly detected through distinct profiles of soluble intercellular signaling molecules produced by immune splenocytes in response to both HIV-1- and BCG-specific stimuli. These results encourage further development of the rBCG prime-boost regimen. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Safety and Immunogenicity of a Recombinant Adenovirus Serotype 35-Vectored HIV-1 Vaccine in Adenovirus Serotype 5 Seronegative and Seropositive Individuals.

    Science.gov (United States)

    Fuchs, Jonathan D; Bart, Pierre-Alexandre; Frahm, Nicole; Morgan, Cecilia; Gilbert, Peter B; Kochar, Nidhi; DeRosa, Stephen C; Tomaras, Georgia D; Wagner, Theresa M; Baden, Lindsey R; Koblin, Beryl A; Rouphael, Nadine G; Kalams, Spyros A; Keefer, Michael C; Goepfert, Paul A; Sobieszczyk, Magdalena E; Mayer, Kenneth H; Swann, Edith; Liao, Hua-Xin; Haynes, Barton F; Graham, Barney S; McElrath, M Juliana

    2015-05-01

    Recombinant adenovirus serotype 5 (rAd5)-vectored HIV-1 vaccines have not prevented HIV-1 infection or disease and pre-existing Ad5 neutralizing antibodies may limit the clinical utility of Ad5 vectors globally. Using a rare Ad serotype vector, such as Ad35, may circumvent these issues, but there are few data on the safety and immunogenicity of rAd35 directly compared to rAd5 following human vaccination. HVTN 077 randomized 192 healthy, HIV-uninfected participants into one of four HIV-1 vaccine/placebo groups: rAd35/rAd5, DNA/rAd5, and DNA/rAd35 in Ad5-seronegative persons; and DNA/rAd35 in Ad5-seropositive persons. All vaccines encoded the HIV-1 EnvA antigen. Antibody and T-cell responses were measured 4 weeks post boost immunization. All vaccines were generally well tolerated and similarly immunogenic. As compared to rAd5, rAd35 was equally potent in boosting HIV-1-specific humoral and cellular immunity and responses were not significantly attenuated in those with baseline Ad5 seropositivity. Like DNA, rAd35 efficiently primed rAd5 boosting. All vaccine regimens tested elicited cross-clade antibody responses, including Env V1/V2-specific IgG responses. Vaccine antigen delivery by rAd35 is well-tolerated and immunogenic as a prime to rAd5 immunization and as a boost to prior DNA immunization with the homologous insert. Further development of rAd35-vectored prime-boost vaccine regimens is warranted.

  14. Emerging Cancer Vaccines: The Promise of Genetic Vectors

    International Nuclear Information System (INIS)

    Aurisicchio, Luigi; Ciliberto, Gennaro

    2011-01-01

    Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs) as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad)-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP) is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost) are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost

  15. Ability of herpes simplex virus vectors to boost immune responses to DNA vectors and to protect against challenge by simian immunodeficiency virus

    International Nuclear Information System (INIS)

    Kaur, Amitinder; Sanford, Hannah B.; Garry, Deirdre; Lang, Sabine; Klumpp, Sherry A.; Watanabe, Daisuke; Bronson, Roderick T.; Lifson, Jeffrey D.; Rosati, Margherita; Pavlakis, George N.; Felber, Barbara K.; Knipe, David M.; Desrosiers, Ronald C.

    2007-01-01

    The immunogenicity and protective capacity of replication-defective herpes simplex virus (HSV) vector-based vaccines were examined in rhesus macaques. Three macaques were inoculated with recombinant HSV vectors expressing Gag, Env, and a Tat-Rev-Nef fusion protein of simian immunodeficiency virus (SIV). Three other macaques were primed with recombinant DNA vectors expressing Gag, Env, and a Pol-Tat-Nef-Vif fusion protein prior to boosting with the HSV vectors. Robust anti-Gag and anti-Env cellular responses were detected in all six macaques. Following intravenous challenge with wild-type, cloned SIV239, peak and 12-week plasma viremia levels were significantly lower in vaccinated compared to control macaques. Plasma SIV RNA in vaccinated macaques was inversely correlated with anti-Rev ELISPOT responses on the day of challenge (P value < 0.05), anti-Tat ELISPOT responses at 2 weeks post challenge (P value < 0.05) and peak neutralizing antibody titers pre-challenge (P value 0.06). These findings support continued study of recombinant herpesviruses as a vaccine approach for AIDS

  16. First-in-Human Evaluation of the Safety and Immunogenicity of an Intranasally Administered Replication-Competent Sendai Virus–Vectored HIV Type 1 Gag Vaccine: Induction of Potent T-Cell or Antibody Responses in Prime-Boost Regimens

    Science.gov (United States)

    Nyombayire, Julien; Anzala, Omu; Gazzard, Brian; Karita, Etienne; Bergin, Philip; Hayes, Peter; Kopycinski, Jakub; Omosa-Manyonyi, Gloria; Jackson, Akil; Bizimana, Jean; Farah, Bashir; Sayeed, Eddy; Parks, Christopher L.; Inoue, Makoto; Hironaka, Takashi; Hara, Hiroto; Shu, Tsugumine; Matano, Tetsuro; Dally, Len; Barin, Burc; Park, Harriet; Gilmour, Jill; Lombardo, Angela; Excler, Jean-Louis; Fast, Patricia; Laufer, Dagna S.; Cox, Josephine H.

    2017-01-01

    Background. We report the first-in-human safety and immunogenicity assessment of a prototype intranasally administered, replication-competent Sendai virus (SeV)–vectored, human immunodeficiency virus type 1 (HIV-1) vaccine. Methods. Sixty-five HIV-1–uninfected adults in Kenya, Rwanda, and the United Kingdom were assigned to receive 1 of 4 prime-boost regimens (administered at 0 and 4 months, respectively; ratio of vaccine to placebo recipients, 12:4): priming with a lower-dose SeV-Gag given intranasally, followed by boosting with an adenovirus 35–vectored vaccine encoding HIV-1 Gag, reverse transcriptase, integrase, and Nef (Ad35-GRIN) given intramuscularly (SLA); priming with a higher-dose SeV-Gag given intranasally, followed by boosting with Ad35-GRIN given intramuscularly (SHA); priming with Ad35-GRIN given intramuscularly, followed by boosting with a higher-dose SeV-Gag given intranasally (ASH); and priming and boosting with a higher-dose SeV-Gag given intranasally (SHSH). Results. All vaccine regimens were well tolerated. Gag-specific IFN-γ enzyme-linked immunospot–determined response rates and geometric mean responses were higher (96% and 248 spot-forming units, respectively) in groups primed with SeV-Gag and boosted with Ad35-GRIN (SLA and SHA) than those after a single dose of Ad35-GRIN (56% and 54 spot-forming units, respectively) or SeV-Gag (55% and 59 spot-forming units, respectively); responses persisted for ≥8 months after completion of the prime-boost regimen. Functional CD8+ T-cell responses with greater breadth, magnitude, and frequency in a viral inhibition assay were also seen in the SLA and SHA groups after Ad35-GRIN boost, compared with those who received either vaccine alone. SeV-Gag did not boost T-cell counts in the ASH group. In contrast, the highest Gag-specific antibody titers were seen in the ASH group. Mucosal antibody responses were sporadic. Conclusions. SeV-Gag primed functional, durable HIV-specific T

  17. First-in-Human Evaluation of the Safety and Immunogenicity of an Intranasally Administered Replication-Competent Sendai Virus-Vectored HIV Type 1 Gag Vaccine: Induction of Potent T-Cell or Antibody Responses in Prime-Boost Regimens.

    Science.gov (United States)

    Nyombayire, Julien; Anzala, Omu; Gazzard, Brian; Karita, Etienne; Bergin, Philip; Hayes, Peter; Kopycinski, Jakub; Omosa-Manyonyi, Gloria; Jackson, Akil; Bizimana, Jean; Farah, Bashir; Sayeed, Eddy; Parks, Christopher L; Inoue, Makoto; Hironaka, Takashi; Hara, Hiroto; Shu, Tsugumine; Matano, Tetsuro; Dally, Len; Barin, Burc; Park, Harriet; Gilmour, Jill; Lombardo, Angela; Excler, Jean-Louis; Fast, Patricia; Laufer, Dagna S; Cox, Josephine H

    2017-01-01

     We report the first-in-human safety and immunogenicity assessment of a prototype intranasally administered, replication-competent Sendai virus (SeV)-vectored, human immunodeficiency virus type 1 (HIV-1) vaccine.  Sixty-five HIV-1-uninfected adults in Kenya, Rwanda, and the United Kingdom were assigned to receive 1 of 4 prime-boost regimens (administered at 0 and 4 months, respectively; ratio of vaccine to placebo recipients, 12:4): priming with a lower-dose SeV-Gag given intranasally, followed by boosting with an adenovirus 35-vectored vaccine encoding HIV-1 Gag, reverse transcriptase, integrase, and Nef (Ad35-GRIN) given intramuscularly (S L A); priming with a higher-dose SeV-Gag given intranasally, followed by boosting with Ad35-GRIN given intramuscularly (S H A); priming with Ad35-GRIN given intramuscularly, followed by boosting with a higher-dose SeV-Gag given intranasally (AS H ); and priming and boosting with a higher-dose SeV-Gag given intranasally (S H S H ).  All vaccine regimens were well tolerated. Gag-specific IFN-γ enzyme-linked immunospot-determined response rates and geometric mean responses were higher (96% and 248 spot-forming units, respectively) in groups primed with SeV-Gag and boosted with Ad35-GRIN (S L A and S H A) than those after a single dose of Ad35-GRIN (56% and 54 spot-forming units, respectively) or SeV-Gag (55% and 59 spot-forming units, respectively); responses persisted for ≥8 months after completion of the prime-boost regimen. Functional CD8 + T-cell responses with greater breadth, magnitude, and frequency in a viral inhibition assay were also seen in the S L A and S H A groups after Ad35-GRIN boost, compared with those who received either vaccine alone. SeV-Gag did not boost T-cell counts in the AS H group. In contrast, the highest Gag-specific antibody titers were seen in the AS H group. Mucosal antibody responses were sporadic.  SeV-Gag primed functional, durable HIV-specific T-cell responses and boosted antibody

  18. Immunogenicity of heterologous recombinant adenovirus prime-boost vaccine regimens is enhanced by circumventing vector cross-reactivity

    NARCIS (Netherlands)

    Thorner, Anna R.; Lemckert, Angelique A. C.; Goudsmit, Jaap; Lynch, Diana M.; Ewald, Bonnie A.; Denholtz, Matthew; Havenga, Menzo J. E.; Barouch, Dan H.

    2006-01-01

    The high prevalence of preexisting immunity to adenovirus serotype 5 (Ad5) in human populations has led to the development of recombinant adenovirus (rAd) vectors derived from rare Ad serotypes as vaccine candidates for human immunodeficiency virus type 1 and other pathogens. Vaccine vectors have

  19. New gorilla adenovirus vaccine vectors induce potent immune responses and protection in a mouse malaria model.

    Science.gov (United States)

    Limbach, Keith; Stefaniak, Maureen; Chen, Ping; Patterson, Noelle B; Liao, Grant; Weng, Shaojie; Krepkiy, Svetlana; Ekberg, Greg; Torano, Holly; Ettyreddy, Damodar; Gowda, Kalpana; Sonawane, Sharvari; Belmonte, Arnel; Abot, Esteban; Sedegah, Martha; Hollingdale, Michael R; Moormann, Ann; Vulule, John; Villasante, Eileen; Richie, Thomas L; Brough, Douglas E; Bruder, Joseph T

    2017-07-03

    A DNA-human Ad5 (HuAd5) prime-boost malaria vaccine has been shown to protect volunteers against a controlled human malaria infection. The potency of this vaccine, however, appeared to be affected by the presence of pre-existing immunity against the HuAd5 vector. Since HuAd5 seroprevalence is very high in malaria-endemic areas of the world, HuAd5 may not be the most appropriate malaria vaccine vector. This report describes the evaluation of the seroprevalence, immunogenicity and efficacy of three newly identified gorilla adenoviruses, GC44, GC45 and GC46, as potential malaria vaccine vectors. The seroprevalence of GC44, GC45 and GC46 is very low, and the three vectors are not efficiently neutralized by human sera from Kenya and Ghana, two countries where malaria is endemic. In mice, a single administration of GC44, GC45 and GC46 vectors expressing a murine malaria gene, Plasmodium yoelii circumsporozoite protein (PyCSP), induced robust PyCSP-specific T cell and antibody responses that were at least as high as a comparable HuAd5-PyCSP vector. Efficacy studies in a murine malaria model indicated that a prime-boost regimen with DNA-PyCSP and GC-PyCSP vectors can protect mice against a malaria challenge. Moreover, these studies indicated that a DNA-GC46-PyCSP vaccine regimen was significantly more efficacious than a DNA-HuAd5-PyCSP regimen. These data suggest that these gorilla-based adenovectors have key performance characteristics for an effective malaria vaccine. The superior performance of GC46 over HuAd5 highlights its potential for clinical development.

  20. A heterologous prime-boosting strategy with replicating Vaccinia virus vectors and plant-produced HIV-1 Gag/dgp41 virus-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Meador, Lydia R. [Ira A. Fulton School of Engineering, Arizona State University, Tempe, AZ (United States); Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); Kessans, Sarah A. [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States); Kilbourne, Jacquelyn; Kibler, Karen V. [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); Pantaleo, Giuseppe [Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne (Switzerland); Swiss Vaccine Research Institute, Lausanne (Switzerland); Roderiguez, Mariano Esteban [Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia – CSIC, Madrid (Spain); Blattman, Joseph N. [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States); Jacobs, Bertram L., E-mail: bjacobs@asu.edu [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States); Mor, Tsafrir S., E-mail: tsafrir.mor@asu.edu [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States)

    2017-07-15

    Showing modest efficacy, the RV144 HIV-1 vaccine clinical trial utilized a non-replicating canarypox viral vector and a soluble gp120 protein boost. Here we built upon the RV144 strategy by developing a novel combination of a replicating, but highly-attenuated Vaccinia virus vector, NYVAC-KC, and plant-produced HIV-1 virus-like particles (VLPs). Both components contained the full-length Gag and a membrane anchored truncated gp41 presenting the membrane proximal external region with its conserved broadly neutralizing epitopes in the pre-fusion conformation. We tested different prime/boost combinations of these components in mice and showed that the group primed with NYVAC-KC and boosted with both the viral vectors and plant-produced VLPs have the most robust Gag-specific CD8 T cell responses, at 12.7% of CD8 T cells expressing IFN-γ in response to stimulation with five Gag epitopes. The same immunization group elicited the best systemic and mucosal antibody responses to Gag and dgp41 with a bias towards IgG1. - Highlights: • We devised a prime/boost anti HIV-1 vaccination strategy modeled after RV144. • We used plant-derived virus-like particles (VLPs) consisting of Gag and dgp41. • We used attenuated, replicating vaccinia virus vectors expressing the same antigens. • The immunogens elicited strong cellular and humoral immune responses.

  1. Listeria-vectored vaccine expressing the Mycobacterium tuberculosis 30 kDa major secretory protein via the constitutively active prfA* regulon boosts BCG efficacy against tuberculosis.

    Science.gov (United States)

    Jia, Qingmei; Dillon, Barbara Jane; Masleša-Galić, Saša; Horwitz, Marcus A

    2017-06-19

    A potent vaccine against tuberculosis, one of the world's deadliest diseases, is needed to enhance the immunity of people worldwide, most of whom have been vaccinated with the partially effective BCG vaccine. Here we investigate novel live attenuated recombinant Listeria monocytogenes (rLm) vaccines expressing the Mycobacterium tuberculosis (Mtb) 30 kDa major secretory protein (r30/Ag85B) (rLm30) as heterologous booster vaccines in animals primed with BCG. Using three attenuated Lm vectors, rLm Δ actA (LmI), rLm Δ actA Δ inlB (LmII), and rLm Δ actA Δ inlB prfA * (LmIII), we constructed five rLm30 vaccine candidates expressing the r30 linked in-frame to the Lm Listeriolycin O signal sequence and driven by the hly promoter (h30) or linked in-frame to the ActA N-terminus and driven by the actA promoter (a30). All five rLm30 vaccines secreted r30 in broth and macrophages; while rLm expressing r30 via a constitutively active prfA * regulon (rLmIII/a30) expressed the greatest amount of r30 in broth culture, all five rLm vaccines expressed equivalent amounts of r30 in infected macrophages. In comparative studies, boosting BCG-immunized mice with rLmIII/a30 induced the strongest antigen-specific T-cell responses, including splenic and lung polyfunctional CD4+ T-cells expressing the three cytokines of interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and interleukin-2 (IL-2) ( P vaccines were generally more potent booster vaccines than r30 in adjuvant and a recombinant adenovirus vaccine expressing r30. In a setting in which BCG alone was highly immunoprotective, boosting mice with rLmIII/a30, the most potent of the vaccines, significantly enhanced protection against aerosolized Mtb ( P <0.01). Copyright © 2017 American Society for Microbiology.

  2. Virus-Vectored Influenza Virus Vaccines

    Science.gov (United States)

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278

  3. Priming-boosting vaccination with recombinant Mycobacterium bovis bacillus Calmette-Guérin and a nonreplicating vaccinia virus recombinant leads to long-lasting and effective immunity.

    Science.gov (United States)

    Ami, Yasushi; Izumi, Yasuyuki; Matsuo, Kazuhiro; Someya, Kenji; Kanekiyo, Masaru; Horibata, Shigeo; Yoshino, Naoto; Sakai, Koji; Shinohara, Katsuaki; Matsumoto, Sohkichi; Yamada, Takeshi; Yamazaki, Shudo; Yamamoto, Naoki; Honda, Mitsuo

    2005-10-01

    Virus-specific T-cell responses can limit immunodeficiency virus type 1 (HIV-1) transmission and prevent disease progression and so could serve as the basis for an affordable, safe, and effective vaccine in humans. To assess their potential for a vaccine, we used Mycobacterium bovis bacillus Calmette-Guérin (BCG)-Tokyo and a replication-deficient vaccinia virus strain (DIs) as vectors to express full-length gag from simian immunodeficiency viruses (SIVs) (rBCG-SIVgag and rDIsSIVgag). Cynomolgus macaques were vaccinated with either rBCG-SIVgag dermally as a single modality or in combination with rDIsSIVgag intravenously. When cynomologus macaques were primed with rBCG-SIVgag and then boosted with rDIsSIVgag, high levels of gamma interferon (IFN-gamma) spot-forming cells specific for SIV Gag were induced. This combination regimen elicited effective protective immunity against mucosal challenge with pathogenic simian-human immunodeficiency virus for the 1 year the macaques were under observation. Antigen-specific intracellular IFN-gamma activity was similarly induced in each of the macaques with the priming-boosting regimen. Other groups receiving the opposite combination or the single-modality vaccines were not effectively protected. These results suggest that a recombinant M. bovis BCG-based vector may have potential as an HIV/AIDS vaccine when administered in combination with a replication-deficient vaccinia virus DIs vector in a priming-boosting strategy.

  4. A boosting skin vaccination with dissolving microneedle patch encapsulating M2e vaccine broadens the protective efficacy of conventional influenza vaccines.

    Science.gov (United States)

    Zhu, Wandi; Pewin, Winston; Wang, Chao; Luo, Yuan; Gonzalez, Gilbert X; Mohan, Teena; Prausnitz, Mark R; Wang, Bao-Zhong

    2017-09-10

    The biodegradable microneedle patch (MNP) is a novel technology for vaccine delivery that could improve the immunogenicity of vaccines. To broaden the protective efficiency of conventional influenza vaccines, a new 4M2e-tFliC fusion protein construct containing M2e sequences from different subtypes was generated. Purified fusion protein was encapsulate into MNPs with a biocompatible polymer for use as a boosting vaccine. The results demonstrated that mice receiving a conventional inactivated vaccine followed by a skin-applied dissolving 4M2e-tFliC MNP boost could better maintain the humoral antibody response than that by the conventional vaccine-prime alone. Compared with an intramuscular injection boost, mice receiving the MNP boost showed significantly enhanced cellular immune responses, hemagglutination-inhibition (HAI) titers, and neutralization titers. Increased frequency of antigen-specific plasma cells and long-lived bone marrow plasma cells was detected in the MNP boosted group as well, indicating that skin vaccination with 4M2e-tFliC facilitated a long-term antibody-mediated immunity. The 4M2e-tFliC MNP-boosted group also possessed enhanced protection against high lethal dose challenges against homologous A/PR/8/34 and A/Aichi/2/68 viruses and protection for a majority of immunized mice against a heterologous A/California/07/2009 H1N1 virus. High levels of M2e specific immune responses were observed in the 4M2e-tFliC MNP-boosted group as well. These results demonstrate that a skin-applied 4M2e-tFliC MNP boosting immunization to seasonal vaccine recipients may be a rapid approach for increasing the protective efficacy of seasonal vaccines in response to a significant drift seen in circulating viruses. The results also provide a new perspective for future exploration of universal influenza vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A novel multi-antigen virally vectored vaccine against Mycobacterium avium subspecies paratuberculosis.

    Directory of Open Access Journals (Sweden)

    Tim J Bull

    Full Text Available BACKGROUND: Mycobacterium avium subspecies paratuberculosis causes systemic infection and chronic intestinal inflammation in many species including primates. Humans are exposed through milk and from sources of environmental contamination. Hitherto, the only vaccines available against Mycobacterium avium subspecies paratuberculosis have been limited to veterinary use and comprised attenuated or killed organisms. METHODS: We developed a vaccine comprising a fusion construct designated HAV, containing components of two secreted and two cell surface Mycobacterium avium subspecies paratuberculosis proteins. HAV was transformed into DNA, human Adenovirus 5 (Ad5 and Modified Vaccinia Ankara (MVA delivery vectors. Full length expression of the predicted 95 kDa fusion protein was confirmed. PRINCIPAL FINDINGS: Vaccination of naïve and Mycobacterium avium subspecies paratuberculosis infected C57BL/6 mice using DNA-prime/MVA-boost or Ad5-prime/MVA-boost protocols was highly immunogenic resulting in significant IFN-gamma ELISPOT responses by splenocytes against recombinant vaccine antigens and a range of HAV specific peptides. This included strong recognition of a T-cell epitope GFAEINPIA located near the C-terminus of the fusion protein. Antibody responses to recombinant vaccine antigens and HAV specific peptides but not GFAEINPIA, also occurred. No immune recognition of vaccine antigens occurred in any sham vaccinated Mycobacterium avium subspecies paratuberculosis infected mice. Vaccination using either protocol significantly attenuated pre-existing Mycobacterium avium subspecies paratuberculosis infection measured by qPCR in spleen and liver and the Ad5-prime/MVA-boost protocol also conferred some protection against subsequent challenge. No adverse effects of vaccination occurred in any of the mice. CONCLUSIONS/SIGNIFICANCE: A range of modern veterinary and clinical vaccines for the treatment and prevention of disease caused by Mycobacterium avium

  6. A novel multi-antigen virally vectored vaccine against Mycobacterium avium subspecies paratuberculosis.

    Science.gov (United States)

    Bull, Tim J; Gilbert, Sarah C; Sridhar, Saranya; Linedale, Richard; Dierkes, Nicola; Sidi-Boumedine, Karim; Hermon-Taylor, John

    2007-11-28

    Mycobacterium avium subspecies paratuberculosis causes systemic infection and chronic intestinal inflammation in many species including primates. Humans are exposed through milk and from sources of environmental contamination. Hitherto, the only vaccines available against Mycobacterium avium subspecies paratuberculosis have been limited to veterinary use and comprised attenuated or killed organisms. We developed a vaccine comprising a fusion construct designated HAV, containing components of two secreted and two cell surface Mycobacterium avium subspecies paratuberculosis proteins. HAV was transformed into DNA, human Adenovirus 5 (Ad5) and Modified Vaccinia Ankara (MVA) delivery vectors. Full length expression of the predicted 95 kDa fusion protein was confirmed. Vaccination of naïve and Mycobacterium avium subspecies paratuberculosis infected C57BL/6 mice using DNA-prime/MVA-boost or Ad5-prime/MVA-boost protocols was highly immunogenic resulting in significant IFN-gamma ELISPOT responses by splenocytes against recombinant vaccine antigens and a range of HAV specific peptides. This included strong recognition of a T-cell epitope GFAEINPIA located near the C-terminus of the fusion protein. Antibody responses to recombinant vaccine antigens and HAV specific peptides but not GFAEINPIA, also occurred. No immune recognition of vaccine antigens occurred in any sham vaccinated Mycobacterium avium subspecies paratuberculosis infected mice. Vaccination using either protocol significantly attenuated pre-existing Mycobacterium avium subspecies paratuberculosis infection measured by qPCR in spleen and liver and the Ad5-prime/MVA-boost protocol also conferred some protection against subsequent challenge. No adverse effects of vaccination occurred in any of the mice. A range of modern veterinary and clinical vaccines for the treatment and prevention of disease caused by Mycobacterium avium subspecies paratuberculosis are needed. The present vaccine proved to be highly

  7. Role of complement and antibodies in controlling infection with pathogenic simian immunodeficiency virus (SIV in macaques vaccinated with replication-deficient viral vectors

    Directory of Open Access Journals (Sweden)

    Strasak Alexander

    2009-06-01

    Full Text Available Abstract Background We investigated the interplay between complement and antibodies upon priming with single-cycle replicating viral vectors (SCIV encoding SIV antigens combined with Adeno5-SIV or SCIV pseudotyped with murine leukemia virus envelope boosting strategies. The vaccine was applied via spray-immunization to the tonsils of rhesus macaques and compared with systemic regimens. Results Independent of the application regimen or route, viral loads were significantly reduced after challenge with SIVmac239 (p Conclusion The heterologous prime-boost strategy with replication-deficient viral vectors administered exclusively via the tonsils did not induce any neutralizing antibodies before challenge. However, after challenge, comparable SIV-specific humoral immune responses were observed in all vaccinated animals. Immunization with single cycle immunodeficiency viruses mounts humoral immune responses comparable to live-attenuated immunodeficiency virus vaccines.

  8. Prime-boost vaccination using DNA and whole inactivated virus vaccines provides limited protection against virulent feline immunodeficiency virus.

    Science.gov (United States)

    Dunham, Stephen P; Bruce, Jennifer; Klein, Dieter; Flynn, J Norman; Golder, Matthew C; MacDonald, Susan; Jarrett, Oswald; Neil, James C

    2006-11-30

    Protection against feline immunodeficiency virus (FIV) has been achieved using a variety of vaccines notably whole inactivated virus (WIV) and DNA. However protection against more virulent isolates, typical of those encountered in natural infections, has been difficult to achieve. In an attempt to improve protection against virulent FIV(GL8), we combined both DNA and WIV vaccines in a "prime-boost" approach. Thirty cats were divided into four groups receiving vaccinations and one unvaccinated control group. Following viral challenge, two vaccinated animals, one receiving DNA alone and one the prime-boost vaccine remained free of viraemia, whilst all controls became viraemic. Animals vaccinated with WIV showed apparent early enhancement of infection at 2 weeks post challenge (pc) with higher plasma viral RNA loads than control animals or cats immunised with DNA alone. Despite this, animals vaccinated with WIV or DNA alone showed significantly lower proviral loads in peripheral blood mononuclear cells and mesenteric lymph node cells, whilst those receiving the DNA-WIV prime-boost vaccine showed significantly lower proviral loads in PBMC, than control animals, at 35 weeks pc. Therefore both DNA and WIV vaccines conferred limited protection against viral challenge but the combination of WIV and DNA in a prime-boost approach appeared to offer no significant advantage over either vaccine alone.

  9. Multiserotype protection elicited by a combinatorial prime-boost vaccination strategy against bluetongue virus.

    Directory of Open Access Journals (Sweden)

    Eva Calvo-Pinilla

    Full Text Available Bluetongue virus (BTV belongs to the genus Orbivirus within the family Reoviridae. The development of vector-based vaccines expressing conserved protective antigens results in increased immune activation and could reduce the number of multiserotype vaccinations required, therefore providing a cost-effective product. Recent recombinant DNA technology has allowed the development of novel strategies to develop marker and safe vaccines against BTV. We have now engineered naked DNAs and recombinant modified vaccinia virus Ankara (rMVA expressing VP2, VP7 and NS1 proteins from BTV-4. IFNAR((-/- mice inoculated with DNA/rMVA-VP2,-VP7-NS1 in an heterologous prime boost vaccination strategy generated significant levels of antibodies specific of VP2, VP7, and NS1, including those with neutralizing activity against BTV-4. In addition, vaccination stimulated specific CD8(+ T cell responses against these three BTV proteins. Importantly, the vaccine combination expressing NS1, VP2 and VP7 proteins of BTV-4, elicited sterile protection against a lethal dose of homologous BTV-4 infection. Remarkably, the vaccine induced cross-protection against lethal doses of heterologous BTV-8 and BTV-1 suggesting that the DNA/rMVA-VP2,-VP7,-NS1 marker vaccine is a promising multiserotype vaccine against BTV.

  10. Heterologous prime-boost vaccinations for poverty-related diseases: advantages and future prospects.

    Science.gov (United States)

    Radosević, Katarina; Rodriguez, Ariane; Lemckert, Angelique; Goudsmit, Jaap

    2009-05-01

    Classical vaccination approaches, based on a single vaccine administered in a homologous prime-boost schedule and optimized to induce primarily neutralizing antibodies, are unlikely to be sufficiently efficacious to prevent TB, malaria or HIV infections. Novel vaccines, capable of inducing a more powerful immune response, in particular T-cell immunity, are desperately needed. Combining different vaccine modalities that are able to complement each other and induce broad and sustainable immunity is a promising approach. This review provides an overview of heterologous prime-boost vaccination modalities currently in development for the 'big three' poverty-related diseases and emphasizes the need for innovative vaccination approaches.

  11. Safety and immunogenicity of an HIV adenoviral vector boost after DNA plasmid vaccine prime by route of administration: a randomized clinical trial.

    Directory of Open Access Journals (Sweden)

    Beryl A Koblin

    Full Text Available In the development of HIV vaccines, improving immunogenicity while maintaining safety is critical. Route of administration can be an important factor.This multicenter, open-label, randomized trial, HVTN 069, compared routes of administration on safety and immunogenicity of a DNA vaccine prime given intramuscularly at 0, 1 and 2 months and a recombinant replication-defective adenovirus type 5 (rAd5 vaccine boost given at 6 months by intramuscular (IM, intradermal (ID, or subcutaneous (SC route. Randomization was computer-generated by a central data management center; participants and staff were not blinded to group assignment. The outcomes were vaccine reactogenicity and humoral and cellular immunogenicity. Ninety healthy, HIV-1 uninfected adults in the US and Peru, aged 18-50 were enrolled and randomized. Due to the results of the Step Study, injections with rAd5 vaccine were halted; thus 61 received the booster dose of rAd5 vaccine (IM: 20; ID:21; SC:20. After the rAd5 boost, significant differences by study arm were found in severity of headache, pain and erythema/induration. Immune responses (binding and neutralizing antibodies, IFN-γ ELISpot HIV-specific responses and CD4+ and CD8+ T-cell responses by ICS at four weeks after the rAd5 booster were not significantly different by administration route of the rAd5 vaccine boost (Binding antibody responses: IM: 66.7%; ID: 70.0%; SC: 77.8%; neutralizing antibody responses: IM: 11.1%; ID: 0.0%; SC 16.7%; ELISpot responses: IM: 46.7%; ID: 35.3%; SC: 44.4%; CD4+ T-cell responses: IM: 29.4%; ID: 20.0%; SC: 35.3%; CD8+ T-cell responses: IM: 29.4%; ID: 16.7%; SC: 50.0%.This study was limited by the reduced sample size. The higher frequency of local reactions after ID and SC administration and the lack of sufficient evidence to show that there were any differences in immunogenicity by route of administration do not support changing route of administration for the rAd5 boost.ClinicalTrials.gov NCT00384787.

  12. Comparison of the immunogenicity and protection against bovine tuberculosis following immunization by BCG-priming and boosting with adenovirus or protein based vaccines.

    Science.gov (United States)

    Dean, G; Whelan, A; Clifford, D; Salguero, F J; Xing, Z; Gilbert, S; McShane, H; Hewinson, R G; Vordermeier, M; Villarreal-Ramos, B

    2014-03-05

    There is a requirement for vaccines or vaccination strategies that confer better protection against TB than the current live attenuated Mycobacterium bovis Bacillus Calmette-Guerin (BCG) vaccine for use in cattle. Boosting with recombinant viral vectors expressing mycobacterial proteins, such as Ag85A, has shown a degree of promise as a strategy for improving on the protection afforded by BCG. Experiments in small animal models have indicated that broadening the immune response to include mycobacterial antigens other than Ag85A, such as Rv0288, induced by boosting with Ad5 constructs has a direct effect on the protection afforded against TB. Here, we compared the immunogenicity and protection against challenge with M. bovis afforded by boosting BCG-vaccinated cattle with a human type 5 (Ad5)-based vaccine expressing the mycobacterial antigens Ag85A (Ad5-85A); or Ag85A, Rv0251, Rv0287 and Rv0288 (Ad5-TBF); or with protein TBF emulsified in adjuvant (Adj-TBF). Boosting with TBF broaden the immune response. The kinetics of Ad5-TBF and Adj-TBF were shown to be different, with effector T cell responses from the latter developing more slowly but being more durable than those induced by Ad5-TBF. No increase in protection compared to BCG alone was afforded by Ad5-TBF or Adj-TBF by gross pathology or bacteriology. Using histopathology, as a novel parameter of protection, we show that boosting BCG vaccinated cattle with Ad5-85A induced significantly better protection than BCG alone. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  13. DNA prime/Adenovirus boost malaria vaccine encoding P. falciparum CSP and AMA1 induces sterile protection associated with cell-mediated immunity.

    Directory of Open Access Journals (Sweden)

    Ilin Chuang

    Full Text Available BACKGROUND: Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. METHODOLOGY/PRINCIPAL FINDINGS: The vaccine regimen was three monthly doses of two DNA plasmids (DNA followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad. The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP and apical membrane antigen-1 (AMA1. The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea, possibly related to immunization, was severe (Grade 3, preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27% were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44-817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5-102 and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13-408; AMA1 348, range 88-1270 and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019. Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. SIGNIFICANCE: The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%. Protection

  14. Heterologous prime-boost regimens with a recombinant chimpanzee adenoviral vector and adjuvanted F4 protein elicit polyfunctional HIV-1-specific T-Cell responses in macaques.

    Science.gov (United States)

    Lorin, Clarisse; Vanloubbeeck, Yannick; Baudart, Sébastien; Ska, Michaël; Bayat, Babak; Brauers, Geoffroy; Clarinval, Géraldine; Donner, Marie-Noëlle; Marchand, Martine; Koutsoukos, Marguerite; Mettens, Pascal; Cohen, Joe; Voss, Gerald

    2015-01-01

    HIV-1-specific CD4+ and CD8+ T lymphocytes are important for HIV-1 replication control. F4/AS01 consists of F4 recombinant fusion protein (containing clade B Gag/p24, Pol/RT, Nef and Gag/p17) formulated in AS01 Adjuvant System, and was shown to induce F4-specific polyfunctional CD4+ T-cell responses in humans. While replication-incompetent recombinant HIV-1/SIV antigen-expressing human adenoviral vectors can elicit high-frequency antigen-specific CD8+ T-cell responses, their use is hampered by widespread pre-existing immunity to human serotypes. Non-human adenovirus serotypes associated with lower prevalence may offer an alternative strategy. We evaluated the immunogenicity of AdC7-GRN ('A'), a recombinant chimpanzee adenovirus type 7 vector expressing clade B Gag, RT and Nef, and F4/AS01 ('P'), when delivered intramuscularly in homologous (PP or AA) and heterologous (AAPP or PPAA) prime-boost regimens, in macaques and mice. Vaccine-induced HIV-1-antigen-specific T cells in peripheral blood (macaques), liver, spleen, and intestinal and genital mucosa (mice) were characterized by intracellular cytokine staining. Vaccine-specific IgG antibodies (macaques) were detected using ELISA. In macaques, only the heterologous prime-boost regimens induced polyfunctional, persistent and balanced CD4+ and CD8+ T-cell responses specific to each HIV-1 vaccine antigen. AdC7-GRN priming increased the polyfunctionality of F4/AS01-induced CD4+ T cells. Approximately 50% of AdC7-GRN-induced memory CD8+ T cells exhibited an effector-memory phenotype. HIV-1-specific antibodies were detected with each regimen. In mice, antigen-specific CD4+ and CD8+ T-cell responses were detected in the mucosal and systemic anatomical compartments assessed. When administered in heterologous prime-boost regimens, AdC7-GRN and F4/AS01 candidate vaccines acted complementarily in inducing potent and persistent peripheral blood HIV-1-specific CD4+ and CD8+ T-cell responses and antibodies in macaques. Besides

  15. On the efficacy of malaria DNA vaccination with magnetic gene vectors.

    Science.gov (United States)

    Nawwab Al-Deen, Fatin; Ma, Charles; Xiang, Sue D; Selomulya, Cordelia; Plebanski, Magdalena; Coppel, Ross L

    2013-05-28

    We investigated the efficacy and types of immune responses from plasmid malaria DNA vaccine encoding VR1020-PyMSP119 condensed on the surface of polyethyleneimine (PEI)-coated SPIONs. In vivo mouse studies were done firstly to determine the optimum magnetic vector composition, and then to observe immune responses elicited when magnetic vectors were introduced via different administration routes. Higher serum antibody titers against PyMSP119 were observed with intraperitoneal and intramuscular injections than subcutaneous and intradermal injections. Robust IgG2a and IgG1 responses were observed for intraperitoneal administration, which could be due to the physiology of peritoneum as a major reservoir of macrophages and dendritic cells. Heterologous DNA prime followed by single protein boost vaccination regime also enhanced IgG2a, IgG1, and IgG2b responses, indicating the induction of appropriate memory immunity that can be elicited by protein on recall. These outcomes support the possibility to design superparamagnetic nanoparticle-based DNA vaccines to optimally evoke desired antibody responses, useful for a variety of diseases including malaria. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Viral vector-based influenza vaccines

    Science.gov (United States)

    de Vries, Rory D.; Rimmelzwaan, Guus F.

    2016-01-01

    ABSTRACT Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors. PMID:27455345

  17. Preclinical assessment of viral vectored and protein vaccines targeting the Duffy-binding protein region II of Plasmodium vivax

    Directory of Open Access Journals (Sweden)

    Simone C de Cassan

    2015-07-01

    Full Text Available Malaria vaccine development has largely focused on Plasmodium falciparum; however a reawakening to the importance of P. vivax has spurred efforts to develop vaccines against this difficult to treat and at times severe form of relapsing malaria, which constitutes a significant proportion of human malaria cases worldwide. The almost complete dependence of P. vivax red blood cell invasion on the interaction of the P. vivax Duffy-binding protein region II (PvDBP_RII with the human Duffy antigen receptor for chemokines (DARC, makes this antigen an attractive vaccine candidate against blood-stage P. vivax. Here, we generated both preclinical and clinically-compatible adenoviral and poxviral vectored vaccine candidates expressing the Salvador I allele of PvDBP_RII – including human adenovirus serotype 5 (HAdV5, chimpanzee adenovirus serotype 63 (ChAd63 and modified vaccinia virus Ankara (MVA vectors. We report on the antibody and T cell immunogenicity of these vaccines in mice or rabbits, either used alone in a viral vectored prime-boost regime, or in ‘mixed-modality’ adenovirus prime – protein-in-adjuvant boost regimes (using a recombinant protein PvDBP_RII protein antigen formulated in Montanide®ISA720 or Abisco®100 adjuvants. Antibodies induced by these regimes were found to bind to native parasite antigen from P. vivax infected Thai patients and were capable of inhibiting the binding of PvDBP_RII to its receptor DARC using an in vitro binding inhibition assay. In recent years, recombinant ChAd63 and MVA vectors have been quickly translated into human clinical trials for numerous antigens from P. falciparum as well as a growing number of other pathogens. The vectors reported here are immunogenic in small animals, elicit antibodies against PvDBP_RII and have recently entered clinical trials which will provide the first assessment of the safety and immunogenicity of the PvDBP_RII antigen in humans.

  18. Use of adenoviral vectors as veterinary vaccines.

    Science.gov (United States)

    Ferreira, T B; Alves, P M; Aunins, J G; Carrondo, M J T

    2005-10-01

    Vaccines are the most effective and inexpensive prophylactic tool in veterinary medicine. Ideally, vaccines should induce a lifelong protective immunity against the target pathogen while not causing clinical or pathological signs of diseases in the vaccinated animals. However, such ideal vaccines are rare in the veterinary field. Many vaccines are either of limited effectiveness or have harmful side effects. In addition, there are still severe diseases with no effective vaccines. A very important criterion for an ideal vaccine in veterinary medicine is low cost; this is especially important in developing countries and even more so for poultry vaccination, where vaccines must sell for a few cents a dose. Traditional approaches include inactivated vaccines, attenuated live vaccines and subunit vaccines. Recently, genetic engineering has been applied to design new, improved vaccines. Adenovirus vectors are highly efficient for gene transfer in a broad spectrum of cell types and species. Moreover, adenoviruses often induce humoral, mucosal and cellular immune responses to antigens encoded by the inserted foreign genes. Thus, adenoviruses have become a vector of choice for delivery and expression of foreign proteins for vaccination. Consequently, the market requirements for adenovirus vaccines are increasing, creating a need for production methodologies of concentrated vectors with warranted purity and efficacy. This review summarizes recent developments and approaches of adenovirus production and purification as the application of these vectors, including successes and failures in clinical applications to date.

  19. Evaluation of vaccine competition using HVT vector vaccines

    Science.gov (United States)

    Turkey herpesvirus (HVT) has been widely used as a vaccine for Marek’s disease (MD) since the 1970s. Because HVT is a safe vaccine that is poorly sensitive to interference from maternally derived antibodies, it has seen rising use as a vector for vaccines developed for protection against other comm...

  20. Priming T-cell responses with recombinant measles vaccine vector in a heterologous prime-boost setting in non-human primates

    OpenAIRE

    Bolton, Diane L.; Santra, Sampa; Swett, Cindy; Custers, Jerome; Song, Kaimei; Balachandran, Harikrishnan; Kozlowski, Pamela A.; Letvin, Norman; Roederer, Mario; Radošević, Katarina

    2012-01-01

    Licensed live attenuated virus vaccines capable of expressing transgenes from other pathogens have the potential to reduce the number of childhood immunizations by eliciting robust immunity to multiple pathogens simultaneously. Recombinant attenuated measles virus (rMV) derived from the Edmonston Zagreb vaccine strain was engineered to express simian immunodeficiency virus (SIV) Gag protein for the purpose of evaluating the immunogenicity of rMV as a vaccine vector in rhesus macaques. rMV-Gag...

  1. Ag85A-specific CD4+ T cell lines derived after boosting BCG-vaccinated cattle with Ad5-85A possess both mycobacterial growth inhibition and anti-inflammatory properties.

    Science.gov (United States)

    Metcalfe, Hannah J; Biffar, Lucia; Steinbach, Sabine; Guzman, Efrain; Connelley, Tim; Morrison, Ivan; Vordermeier, H Martin; Villarreal-Ramos, Bernardo

    2018-05-11

    There is a need to improve the efficacy of the BCG vaccine against human and bovine tuberculosis. Previous data showed that boosting bacilli Calmette-Guerin (BCG)-vaccinated cattle with a recombinant attenuated human type 5 adenovirally vectored subunit vaccine (Ad5-85A) increased BCG protection and was associated with increased frequency of Ag85A-specific CD4 + T cells post-boosting. Here, the capacity of Ag85A-specific CD4 + T cell lines - derived before and after viral boosting - to interact with BCG-infected macrophages was evaluated. No difference before and after boosting was found in the capacity of these Ag85A-specific CD4 + T cell lines to restrict mycobacterial growth, but the secretion of IL-10 in vitro post-boost increased significantly. Furthermore, cell lines derived post-boost had no statistically significant difference in the secretion of pro-inflammatory cytokines (IL-1β, IL-12, IFNγ or TNFα) compared to pre-boost lines. In conclusion, the protection associated with the increased number of Ag85A-specific CD4 + T cells restricting mycobacterial growth may be associated with anti-inflammatory properties to limit immune-pathology. Copyright © 2018 Department for Environment Food and Rural Affairs. Published by Elsevier Ltd.. All rights reserved.

  2. Heterologous prime-boost vaccinations for poverty-related diseases: advantages and future prospects

    NARCIS (Netherlands)

    Radosević, Katarina; Rodriguez, Ariane; Lemckert, Angelique; Goudsmit, Jaap

    2009-01-01

    Classical vaccination approaches, based on a single vaccine administered in a homologous prime-boost schedule and optimized to induce primarily neutralizing antibodies, are unlikely to be sufficiently efficacious to prevent TB, malaria or HIV infections. Novel vaccines, capable of inducing a more

  3. Immunogenicity of NYVAC Prime-Protein Boost Human Immunodeficiency Virus Type 1 Envelope Vaccination and Simian-Human Immunodeficiency Virus Challenge of Nonhuman Primates.

    Science.gov (United States)

    Saunders, Kevin O; Santra, Sampa; Parks, Robert; Yates, Nicole L; Sutherland, Laura L; Scearce, Richard M; Balachandran, Harikrishnan; Bradley, Todd; Goodman, Derrick; Eaton, Amanda; Stanfield-Oakley, Sherry A; Tartaglia, James; Phogat, Sanjay; Pantaleo, Giuseppe; Esteban, Mariano; Gomez, Carmen E; Perdiguero, Beatriz; Jacobs, Bertram; Kibler, Karen; Korber, Bette; Montefiori, David C; Ferrari, Guido; Vandergrift, Nathan; Liao, Hua-Xin; Tomaras, Georgia D; Haynes, Barton F

    2018-04-15

    A preventive human immunodeficiency virus type 1 (HIV-1) vaccine is an essential part of the strategy to eradicate AIDS. A critical question is whether antibodies that do not neutralize primary isolate (tier 2) HIV-1 strains can protect from infection. In this study, we investigated the ability of an attenuated poxvirus vector (NYVAC) prime-envelope gp120 boost to elicit potentially protective antibody responses in a rhesus macaque model of mucosal simian-human immunodeficiency virus (SHIV) infection. NYVAC vector delivery of a group M consensus envelope, trivalent mosaic envelopes, or a natural clade B isolate B.1059 envelope elicited antibodies that mediated neutralization of tier 1 viruses, cellular cytotoxicity, and phagocytosis. None of the macaques made neutralizing antibodies against the tier 2 SHIV SF162P3 used for mucosal challenge. Significant protection from infection was not observed for the three groups of vaccinated macaques compared to unvaccinated macaques, although binding antibody to HIV-1 Env correlated with decreased viremia after challenge. Thus, NYVAC Env prime-gp120 boost vaccination elicited polyfunctional, nonneutralizing antibody responses with minimal protective activity against tier 2 SHIV mucosal challenge. IMPORTANCE The antibody responses that confer protection against HIV-1 infection remain unknown. Polyfunctional antibody responses correlated with time to infection in previous macaque studies. Determining the ability of vaccines to induce these types of responses is critical for understanding how to improve upon the one efficacious human HIV-1 vaccine trial completed thus far. We characterized the antibody responses induced by a NYVAC-protein vaccine and determined the protective capacity of polyfunctional antibody responses in an R5, tier 2 mucosal SHIV infection model. Copyright © 2018 American Society for Microbiology.

  4. Vaccination strategies for SIR vector-transmitted diseases.

    Science.gov (United States)

    Cruz-Pacheco, Gustavo; Esteva, Lourdes; Vargas, Cristobal

    2014-08-01

    Vector-borne diseases are one of the major public health problems in the world with the fastest spreading rate. Control measures have been focused on vector control, with poor results in most cases. Vaccines should help to reduce the diseases incidence, but vaccination strategies should also be defined. In this work, we propose a vector-transmitted SIR disease model with age-structured population subject to a vaccination program. We find an expression for the age-dependent basic reproductive number R(0), and we show that the disease-free equilibrium is locally stable for R(0) ≤ 1, and a unique endemic equilibrium exists for R(0) > 1. We apply the theoretical results to public data to evaluate vaccination strategies, immunization levels, and optimal age of vaccination for dengue disease.

  5. Chikungunya Virus Vaccines: Viral Vector-Based Approaches.

    Science.gov (United States)

    Ramsauer, Katrin; Tangy, Frédéric

    2016-12-15

    In 2013, a major chikungunya virus (CHIKV) epidemic reached the Americas. In the past 2 years, >1.7 million people have been infected. In light of the current epidemic, with millions of people in North and South America at risk, efforts to rapidly develop effective vaccines have increased. Here, we focus on CHIKV vaccines that use viral-vector technologies. This group of vaccine candidates shares an ability to potently induce humoral and cellular immune responses by use of highly attenuated and safe vaccine backbones. So far, well-described vectors such as modified vaccinia virus Ankara, complex adenovirus, vesicular stomatitis virus, alphavirus-based chimeras, and measles vaccine Schwarz strain (MV/Schw) have been described as potential vaccines. We summarize here the recent data on these experimental vaccines, with a focus on the preclinical and clinical activities on the MV/Schw-based candidate, which is the first CHIKV-vectored vaccine that has completed a clinical trial. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  6. Microneedle-mediated delivery of viral vectored vaccines.

    Science.gov (United States)

    Zaric, Marija; Ibarzo Yus, Bárbara; Kalcheva, Petya Petrova; Klavinskis, Linda Sylvia

    2017-10-01

    Microneedle array platforms are a promising technology for vaccine delivery, due to their ease of administration with no sharp waste generated, small size, possibility of targeted delivery to the specified skin depth and efficacious delivery of different vaccine formulations, including viral vectors. Areas covered: Attributes and challenges of the most promising viral vector candidates that have advanced to the clinic and that have been leveraged for skin delivery by microneedles; The importance of understanding the immunobiology of antigen-presenting cells in the skin, in particular dendritic cells, in order to generate further improved skin vaccination strategies; recent studies where viral vectors expressing various antigens have been coupled with microneedle technology to examine their potential for improved vaccination. Expert opinion: Simple, economic and efficacious vaccine delivery methods are needed to improve health outcomes and manage possible outbreaks of new emerging viruses. Understanding what innate/inflammatory signals are required to induce both immediate and long-term responses remains a major hurdle in the development of the effective vaccines. One approach to meet these needs is microneedle-mediated viral vector vaccination. In order for this technology to fulfil this potential the industry must invest significantly to further develop its design, production, biosafety, delivery and large-scale manufacturing.

  7. Progress on adenovirus-vectored universal influenza vaccines.

    Science.gov (United States)

    Xiang, Kui; Ying, Guan; Yan, Zhou; Shanshan, Yan; Lei, Zhang; Hongjun, Li; Maosheng, Sun

    2015-01-01

    Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8(+) T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides 'self-adjuvanting' activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches.

  8. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis

    Science.gov (United States)

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-01-01

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. PMID:26403370

  9. Non-Replicating Adenovirus-Vectored Anthrax Vaccine

    International Nuclear Information System (INIS)

    Van Kampen, K. R.; Zhang, J.; Jex, E.; Tang, D. C.

    2007-01-01

    As bioterrorism is emerging as a national threat, it is urgent to develop a new generation of anthrax vaccines that can be rapidly produced and mass administered in an emergency setting. We have demonstrated that protective immunity against anthrax spores could be elicited in mice by intranasal administration of a non-replicating human adenovirus serotype 5 (Ad5)-derived vector encoding Bacillus anthracis protective antigen (PA) in a single-dose regimen. The potency of an Ad5 vector encoding PA was remarkably enhanced by codon optimization of the PA gene to match the tRNA pool found in human cells. This nasal vaccine can be mass-administered by non-medical personnel during a bioterrorist attack. In addition, replication-competent adenovirus (RCA)-free Ad5-vectored anthrax vaccines can be mass produced in PER.C6 cells in serum-free wave bioreactors and purified by column chromatography to meet a surge in demand. The non-replicating nature of this new generation of anthrax vaccine ensures an excellent safety profile for vaccines and the environment.(author)

  10. Single multivalent vaccination boosted by trickle larval infection confers protection against experimental lymphatic filariasis.

    Science.gov (United States)

    Joseph, S K; Ramaswamy, K

    2013-07-18

    The multivalent vaccine BmHAT, consisting of the Brugia malayi infective larval (L3) antigens heat shock protein12.6 (HSP12.6), abundant larval transcript-2 (ALT-2) and tetraspanin large extra cellular loop (TSP-LEL), was shown to be protective in rodent models from our laboratory. We hypothesize that since these antigens were identified using protective antibodies from immune endemic normal individuals, the multivalent vaccine can be augmented by natural L3 infections providing protection to the vaccinated host. This hypothesis was tested using single dose of DNA and protein or protein alone of the BmHAT vaccination in gerbils followed by live trickle L3 infection as booster dose. Vaccine-induced protection in gerbils was determined by worm establishment, micropore chamber assay and by antibody dependant cell cytotoxicity (ADCC) assay. Results were compared with the traditional prime-boost vaccination regimen. Gerbils vaccinated with BmHAT and boosted with L3 trickle infection were protected 51% (BmHAT DNA-protein) and 48% (BmHAT protein) respectively. BmHAT vaccination plus L3 trickle booster generated significant titer of antigen-specific IgG antibodies comparable to the traditional prime boost vaccination approach. BmHAT vaccination plus L3 trickle booster also generated antigen-specific cells in the spleen of vaccinated animals and these cells secreted predominantly IFN-γ and IL-4 in response to the vaccine antigens. These studies thus show that single dose of BmHAT multivalent vaccination followed by L3 trickle booster infection can confer significant protection against lymphatic filariasis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Single multivalent vaccination boosted by trickle larval infection confers protection against experimental lymphatic filariasis

    Science.gov (United States)

    Joseph, SK; Ramaswamy, K

    2013-01-01

    The multivalent vaccine BmHAT, consisting of the Brugia malayi infective larval (L3) antigens heat shock protein12.6 (HSP12.6), abundant larval transcript-2 (ALT-2) and tetraspanin large extra cellular loop (TSP-LEL), was shown to be protective in rodent models from our laboratory. We hypothesize that since these antigens were identified using protective antibodies from immune endemic normal individuals, the multivalent vaccine can be augmented by natural L3 infections providing protection to the vaccinated host. This hypothesis was tested using single dose of DNA and Protein or Protein alone of the BmHAT vaccination in gerbils followed by live trickle L3 infection as booster dose. Vaccine-induced protection in gerbils was determined by worm establishment, micropore chamber assay and by antibody dependant cell cytotoxicity (ADCC) assay. Results were compared with the traditional prime-boost vaccination regimen. Gerbils vaccinated with BmHAT and boosted with L3 trickle infection were protected 51% (BmHAT DNA-Protein) and 48% (BmHAT Protein) respectively. BmHAT vaccination plus L3 trickle booster generated significant titer of antigen-specific IgG antibodies comparable to the traditional prime boost vaccination approach. BmHAT vaccination plus L3 trickle booster also generated antigen-specific cells in the spleen of vaccinated animals and these cells secreted predominantly IFN-γ and IL-4 in response to the vaccine antigens. These studies thus show that single dose of BmHAT multivalent vaccination followed by L3 trickle booster infection can confer significant protection against lymphatic filariasis. PMID:23735679

  12. A nonproliferating parvovirus vaccine vector elicits sustained, protective humoral immunity following a single intravenous or intranasal inoculation.

    Science.gov (United States)

    Palmer, Gene A; Brogdon, Jennifer L; Constant, Stephanie L; Tattersall, Peter

    2004-02-01

    An ideal vaccine delivery system would elicit persistent protection following a single administration, preferably by a noninvasive route, and be safe even in the face of immunosuppression, either inherited or acquired, of the recipient. We have exploited the unique life cycle of the autonomous parvoviruses to develop a nonproliferating vaccine platform that appears to both induce priming and continually boost a protective immune response following a single inoculation. A crippled parvovirus vector was constructed, based on a chimera between minute virus of mice (MVM) and LuIII, which expresses Borrelia burgdorferi outer surface protein A (OspA) instead of its coat protein. The vector was packaged into an MVM lymphotropic capsid and inoculated into naive C3H/HeNcr mice. Vaccination with a single vector dose, either intravenously or intranasally, elicited high-titer anti-OspA-specific antibody that provided protection from live spirochete challenge and was sustained over the lifetime of the animal. Both humoral and cell-mediated Th(1) immunity was induced, as shown by anti-OspA immunoglobulin G2a antibody and preferential gamma interferon production by OspA-specific CD4(+) T cells.

  13. Construction and evaluation of novel rhesus monkey adenovirus vaccine vectors.

    Science.gov (United States)

    Abbink, Peter; Maxfield, Lori F; Ng'ang'a, David; Borducchi, Erica N; Iampietro, M Justin; Bricault, Christine A; Teigler, Jeffrey E; Blackmore, Stephen; Parenteau, Lily; Wagh, Kshitij; Handley, Scott A; Zhao, Guoyan; Virgin, Herbert W; Korber, Bette; Barouch, Dan H

    2015-02-01

    Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. The phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. Here we describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved to have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors. Although there have been substantial efforts in the development of vaccine vectors from human and chimpanzee adenoviruses, far less is known about rhesus monkey adenoviruses. In this report, we describe the isolation and vectorization of three novel rhesus monkey adenoviruses. These vectors exhibit virologic and immunologic characteristics that make them attractive as potential candidate vaccine vectors for both HIV-1 and other pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Vesicular stomatitis virus-based vaccines protect nonhuman primates against Bundibugyo ebolavirus.

    Directory of Open Access Journals (Sweden)

    Chad E Mire

    Full Text Available Ebola virus (EBOV causes severe and often fatal hemorrhagic fever in humans and nonhuman primates (NHPs. Currently, there are no licensed vaccines or therapeutics for human use. Recombinant vesicular stomatitis virus (rVSV-based vaccine vectors, which encode an EBOV glycoprotein in place of the VSV glycoprotein, have shown 100% efficacy against homologous Sudan ebolavirus (SEBOV or Zaire ebolavirus (ZEBOV challenge in NHPs. In addition, a single injection of a blend of three rVSV vectors completely protected NHPs against challenge with SEBOV, ZEBOV, the former Côte d'Ivoire ebolavirus, and Marburg virus. However, recent studies suggest that complete protection against the newly discovered Bundibugyo ebolavirus (BEBOV using several different heterologous filovirus vaccines is more difficult and presents a new challenge. As BEBOV caused nearly 50% mortality in a recent outbreak any filovirus vaccine advanced for human use must be able to protect against this new species. Here, we evaluated several different strategies against BEBOV using rVSV-based vaccines. Groups of cynomolgus macaques were vaccinated with a single injection of a homologous BEBOV vaccine, a single injection of a blended heterologous vaccine (SEBOV/ZEBOV, or a prime-boost using heterologous SEBOV and ZEBOV vectors. Animals were challenged with BEBOV 29-36 days after initial vaccination. Macaques vaccinated with the homologous BEBOV vaccine or the prime-boost showed no overt signs of illness and survived challenge. In contrast, animals vaccinated with the heterologous blended vaccine and unvaccinated control animals developed severe clinical symptoms consistent with BEBOV infection with 2 of 3 animals in each group succumbing. These data show that complete protection against BEBOV will likely require incorporation of BEBOV glycoprotein into the vaccine or employment of a prime-boost regimen. Fortunately, our results demonstrate that heterologous rVSV-based filovirus vaccine

  15. Vaccination of mice using the West Nile virus E-protein in a DNA prime-protein boost strategy stimulates cell-mediated immunity and protects mice against a lethal challenge.

    Directory of Open Access Journals (Sweden)

    Marina De Filette

    Full Text Available West Nile virus (WNV is a mosquito-borne flavivirus that is endemic in Africa, the Middle East, Europe and the United States. There is currently no antiviral treatment or human vaccine available to treat or prevent WNV infection. DNA plasmid-based vaccines represent a new approach for controlling infectious diseases. In rodents, DNA vaccines have been shown to induce B cell and cytotoxic T cell responses and protect against a wide range of infections. In this study, we formulated a plasmid DNA vector expressing the ectodomain of the E-protein of WNV into nanoparticles by using linear polyethyleneimine (lPEI covalently bound to mannose and examined the potential of this vaccine to protect against lethal WNV infection in mice. Mice were immunized twice (prime--boost regime with the WNV DNA vaccine formulated with lPEI-mannose using different administration routes (intramuscular, intradermal and topical. In parallel a heterologous boost with purified recombinant WNV envelope (E protein was evaluated. While no significant E-protein specific humoral response was generated after DNA immunization, protein boosting of DNA-primed mice resulted in a marked increase in total neutralizing antibody titer. In addition, E-specific IL-4 T-cell immune responses were detected by ELISPOT after protein boost and CD8(+ specific IFN-γ expression was observed by flow cytometry. Challenge experiments using the heterologous immunization regime revealed protective immunity to homologous and virulent WNV infection.

  16. Ad35 and ad26 vaccine vectors induce potent and cross-reactive antibody and T-cell responses to multiple filovirus species.

    Directory of Open Access Journals (Sweden)

    Roland Zahn

    Full Text Available Filoviruses cause sporadic but highly lethal outbreaks of hemorrhagic fever in Africa in the human population. Currently, no drug or vaccine is available for treatment or prevention. A previous study with a vaccine candidate based on the low seroprevalent adenoviruses 26 and 35 (Ad26 and Ad35 was shown to provide protection against homologous Ebola Zaire challenge in non human primates (NHP if applied in a prime-boost regimen. Here we have aimed to expand this principle to construct and evaluate Ad26 and Ad35 vectors for development of a vaccine to provide universal filovirus protection against all highly lethal strains that have caused major outbreaks in the past. We have therefore performed a phylogenetic analysis of filovirus glycoproteins to select the glycoproteins from two Ebola species (Ebola Zaire and Ebola Sudan/Gulu,, two Marburg strains (Marburg Angola and Marburg Ravn and added the more distant non-lethal Ebola Ivory Coast species for broadest coverage. Ad26 and Ad35 vectors expressing these five filovirus glycoproteins were evaluated to induce a potent cellular and humoral immune response in mice. All adenoviral vectors induced a humoral immune response after single vaccination in a dose dependent manner that was cross-reactive within the Ebola and Marburg lineages. In addition, both strain-specific as well as cross-reactive T cell responses could be detected. A heterologous Ad26-Ad35 prime-boost regime enhanced mainly the humoral and to a lower extend the cellular immune response against the transgene. Combination of the five selected filovirus glycoproteins in one multivalent vaccine potentially elicits protective immunity in man against all major filovirus strains that have caused lethal outbreaks in the last 20 years.

  17. Approaches to Preventative and Therapeutic HIV vaccines

    Science.gov (United States)

    Gray, Glenda E.; Laher, Fatima; Lazarus, Erica; Ensoli, Barbara; Corey, Lawrence

    2016-01-01

    Novel strategies are being researched to discover vaccines to prevent and treat HIV-1. Nonefficacious preventative vaccine approaches include bivalent recombinant gp120 alone, HIV gene insertion into an Adenovirus 5 (Ad5) virus vector and the DNA prime/Ad5 boost vaccine regimen. However, the ALVAC-HIV prime/AIDSVAX® B/E gp120 boost regimen showed 31.2% efficacy at 3.5 years, and is being investigated as clade C constructs with an additional boost. Likewise, although multiple therapeutic vaccines have failed in the past, in a non-placebo controlled trial, a Tat vaccine demonstrated immune cell restoration, reduction of immune activation, and reduced HIV-1 DNA viral load. Monoclonal antibodies for passive immunization or treatment show promise, with VRC01 entering advanced clinical trials. PMID:26985884

  18. Pan-Influenza A Protection by Prime-Boost Vaccination with Cold-Adapted Live-Attenuated Influenza Vaccine in a Mouse Model.

    Science.gov (United States)

    Jang, Yo Han; Kim, Joo Young; Byun, Young Ho; Son, Ahyun; Lee, Jeong-Yoon; Lee, Yoon Jae; Chang, Jun; Seong, Baik Lin

    2018-01-01

    Influenza virus infections continually pose a major public health threat with seasonal epidemics and sporadic pandemics worldwide. While currently licensed influenza vaccines provide only strain-specific protection, antigenic drift and shift occasionally render the viruses resistant to the host immune responses, which highlight the need for a vaccine that provides broad protection against multiple subtypes. In this study, we suggest a vaccination strategy using cold-adapted, live attenuated influenza vaccines (CAIVs) to provide a broad, potent, and safe cross-protection covering antigenically distinct hemagglutinin (HA) groups 1 and 2 influenza viruses. Using a mouse model, we tested different prime-boost combinations of CAIVs for their ability to induce humoral and T-cell responses, and protective efficacy against H1 and H5 (HA group 1) as well as H3 and H7 (HA group 2) influenza viruses. Notably, even in the absence of antibody-mediated neutralizing activity or HA inhibitory activity in vitro , CAIVs provided a potent protection against heterologous and heterosubtypic lethal challenges in vivo . Heterologous combination of prime (H1)-boost (H5) vaccine strains showed the most potent cross-protection efficacy. In vivo depletion experiments demonstrated not only that T cells and natural killer cells contributed to the cross-protection, but also the involvement of antibody-dependent mechanisms for the cross-protection. Vaccination-induced antibodies did not enhance the infectivity of heterologous viruses, and prime vaccination did not interfere with neutralizing antibody generation by the boost vaccination, allaying vaccine safety concerns associated with heterogeneity between the vaccines and challenge strains. Our data show that CAIV-based strategy can serve as a simple but powerful option for developing a "truly" universal influenza vaccine providing pan-influenza A protection, which has not been achieved yet by other vaccine strategies. The promising results

  19. Pan-Influenza A Protection by Prime–Boost Vaccination with Cold-Adapted Live-Attenuated Influenza Vaccine in a Mouse Model

    Science.gov (United States)

    Jang, Yo Han; Kim, Joo Young; Byun, Young Ho; Son, Ahyun; Lee, Jeong-Yoon; Lee, Yoon Jae; Chang, Jun; Seong, Baik Lin

    2018-01-01

    Influenza virus infections continually pose a major public health threat with seasonal epidemics and sporadic pandemics worldwide. While currently licensed influenza vaccines provide only strain-specific protection, antigenic drift and shift occasionally render the viruses resistant to the host immune responses, which highlight the need for a vaccine that provides broad protection against multiple subtypes. In this study, we suggest a vaccination strategy using cold-adapted, live attenuated influenza vaccines (CAIVs) to provide a broad, potent, and safe cross-protection covering antigenically distinct hemagglutinin (HA) groups 1 and 2 influenza viruses. Using a mouse model, we tested different prime–boost combinations of CAIVs for their ability to induce humoral and T-cell responses, and protective efficacy against H1 and H5 (HA group 1) as well as H3 and H7 (HA group 2) influenza viruses. Notably, even in the absence of antibody-mediated neutralizing activity or HA inhibitory activity in vitro, CAIVs provided a potent protection against heterologous and heterosubtypic lethal challenges in vivo. Heterologous combination of prime (H1)–boost (H5) vaccine strains showed the most potent cross-protection efficacy. In vivo depletion experiments demonstrated not only that T cells and natural killer cells contributed to the cross-protection, but also the involvement of antibody-dependent mechanisms for the cross-protection. Vaccination-induced antibodies did not enhance the infectivity of heterologous viruses, and prime vaccination did not interfere with neutralizing antibody generation by the boost vaccination, allaying vaccine safety concerns associated with heterogeneity between the vaccines and challenge strains. Our data show that CAIV-based strategy can serve as a simple but powerful option for developing a “truly” universal influenza vaccine providing pan-influenza A protection, which has not been achieved yet by other vaccine strategies. The promising

  20. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route.

    Science.gov (United States)

    Carey, John B; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V S; Draper, Simon J; Moore, Anne C

    2014-08-21

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP1₄₂, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP1₄₂ also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP1₄₂ using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies.

  1. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    Science.gov (United States)

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies. PMID:25142082

  2. Poxvirus-vectored vaccines for rabies--a review.

    Science.gov (United States)

    Weyer, Jacqueline; Rupprecht, Charles E; Nel, Louis H

    2009-11-27

    Oral rabies vaccination of target reservoir species has proved to be one of the pillars of successful rabies elimination programs. The use of live attenuated rabies virus vaccines has been extensive but several limitations hamper its future use. A recombinant vaccinia-rabies vaccine has also been successfully used for the oral vaccination of several species. Nevertheless, its lack of efficacy in certain important rabies reservoirs and concerns on the use of this potent live virus as vaccine carrier (vector) impair the expansion of its use for new target species and new areas. Several attenuated and host-restricted poxvirus alternatives, which supposedly offer enhanced safety, have been investigated. Once again, efficacy in certain target species and innocuity through the oral route remain major limitations of these vaccines. Alternative recombinant vaccines using adenovirus as an antigen delivery vector have been extensively investigated and may provide an important addition to the currently available oral rabies vaccine repertoire, but are not the primary subject of this review.

  3. Single-cycle adenovirus vectors in the current vaccine landscape.

    Science.gov (United States)

    Barry, Michael

    2018-02-01

    Traditional inactivated and protein vaccines generate strong antibodies, but struggle to generate T cell responses. Attenuated pathogen vaccines generate both, but risk causing the disease they aim to prevent. Newer gene-based vaccines drive both responses and avoid the risk of infection. While these replication-defective (RD) vaccines work well in small animals, they can be weak in humans because they do not replicate antigen genes like more potent replication-competent (RC) vaccines. RC vaccines generate substantially stronger immune responses, but also risk causing their own infections. To circumvent these problems, we developed single-cycle adenovirus (SC-Ad) vectors that amplify vaccine genes, but that avoid the risk of infection. This review will discuss these vectors and their prospects for use as vaccines. Areas covered: This review provides a background of different types of vaccines. The benefits of gene-based vaccines and their ability to replicate antigen genes are described. Adenovirus vectors are discussed and compared to other vaccine types. Replication-defective, single-cycle, and replication-competent Ad vaccines are compared. Expert commentary: The potential utility of these vaccines are discussed when used against infectious diseases and as cancer vaccines. We propose a move away from replication-defective vaccines towards more robust replication-competent or single-cycle vaccines.

  4. Modified vaccinia virus ankara recombinants are as potent as vaccinia recombinants in diversified prime and boost vaccine regimens to elicit therapeutic antitumor responses.

    Science.gov (United States)

    Hodge, James W; Poole, Diane J; Aarts, Wilhelmina M; Gómez Yafal, Alicia; Gritz, Linda; Schlom, Jeffrey

    2003-11-15

    Cancer vaccine regimens use various strategies to enhance immune responses to specific tumor-associated antigens (TAAs), including the increasing use of recombinant poxviruses [vaccinia (rV) and fowlpox (rF)] for delivery of the TAA to the immune system. However, the use of replication competent vectors with the potential of adverse reactions have made attenuation a priority for next-generation vaccine strategies. Modified vaccinia Ankara (MVA) is a replication defective form of vaccinia virus. Here, we investigated the use of MVA encoding a tumor antigen gene, carcinoembryonic antigen (CEA), in addition to multiple costimulatory molecules (B7-1, intercellular adhesion molecule-1, and lymphocyte function-associated antigen-3 designated TRICOM). Vaccination of mice with MVA-CEA/TRICOM induced potent CD4+ and CD8+ T-cell responses specific for CEA. MVA-CEA/TRICOM could be administered twice in vaccinia naïve mice and only a single time in vaccinia-immune mice before being inhibited by antivector-immune responses. The use of MVA-CEA/TRICOM in a diversified prime and boost vaccine regimen with rF-CEA/TRICOM, however, induced significantly greater levels of both CD4+ and CD8+ T-cell responses specific for CEA than that seen with rV-CEA/TRICOM prime and rF-CEA/TRICOM boost. In a self-antigen tumor model, the diversified MVA-CEA/TRICOM/rF-CEA/ TRICOM vaccination regimen resulted in a significant therapeutic antitumor response as measured by increased survival, when compared with the diversified prime and boost regimen, rV-CEA/TRICOM/rF-CEA/TRICOM. The studies reported here demonstrate that MVA, when used as a prime in a diversified vaccination, is clearly comparable with the regimen using the recombinant vaccinia in both the induction of cellular immune responses specific for the "self"-TAA transgene and in antitumor activity.

  5. Vector-transmitted disease vaccines: targeting salivary proteins in transmission (SPIT).

    Science.gov (United States)

    McDowell, Mary Ann

    2015-08-01

    More than half the population of the world is at risk for morbidity and mortality from vector-transmitted diseases, and emerging vector-transmitted infections are threatening new populations. Rising insecticide resistance and lack of efficacious vaccines highlight the need for novel control measures. One such approach is targeting the vector-host interface by incorporating vector salivary proteins in anti-pathogen vaccines. Debate remains about whether vector saliva exposure exacerbates or protects against more severe clinical manifestations, induces immunity through natural exposure or extends to all vector species and associated pathogens. Nevertheless, exploiting this unique biology holds promise as a viable strategy for the development of vaccines against vector-transmitted diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Optimization of heterologous DNA-prime, protein boost regimens and site of vaccination to enhance therapeutic immunity against human papillomavirus-associated disease.

    Science.gov (United States)

    Peng, Shiwen; Qiu, Jin; Yang, Andrew; Yang, Benjamin; Jeang, Jessica; Wang, Joshua W; Chang, Yung-Nien; Brayton, Cory; Roden, Richard B S; Hung, Chien-Fu; Wu, T-C

    2016-01-01

    Human papillomavirus (HPV) has been identified as the primary etiologic factor of cervical cancer as well as subsets of anogenital and oropharyngeal cancers. The two HPV viral oncoproteins, E6 and E7, are uniquely and consistently expressed in all HPV infected cells and are therefore promising targets for therapeutic vaccination. Both recombinant naked DNA and protein-based HPV vaccines have been demonstrated to elicit HPV-specific CD8+ T cell responses that provide therapeutic effects against HPV-associated tumor models. Here we examine the immunogenicity in a preclinical model of priming with HPV DNA vaccine followed by boosting with filterable aggregates of HPV 16 L2E6E7 fusion protein (TA-CIN). We observed that priming twice with an HPV DNA vaccine followed by a single TA-CIN booster immunization generated the strongest antigen-specific CD8+ T cell response compared to other prime-boost combinations tested in C57BL/6 mice, whether naïve or bearing the HPV16 E6/E7 transformed syngeneic tumor model, TC-1. We showed that the magnitude of antigen-specific CD8+ T cell response generated by the DNA vaccine prime, TA-CIN protein vaccine boost combinatorial strategy is dependent on the dose of TA-CIN protein vaccine. In addition, we found that a single booster immunization comprising intradermal or intramuscular administration of TA-CIN after priming twice with an HPV DNA vaccine generated a comparable boost to E7-specific CD8+ T cell responses. We also demonstrated that the immune responses elicited by the DNA vaccine prime, TA-CIN protein vaccine boost strategy translate into potent prophylactic and therapeutic antitumor effects. Finally, as seen for repeat TA-CIN protein vaccination, we showed that the heterologous DNA prime and protein boost vaccination strategy is well tolerated by mice. Our results provide rationale for future clinical testing of HPV DNA vaccine prime, TA-CIN protein vaccine boost immunization regimen for the control of HPV-associated diseases.

  7. Development of novel prime-boost strategies based on a tri-gene fusion recombinant L. tarentolae vaccine against experimental murine visceral leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Noushin Saljoughian

    Full Text Available Visceral leishmaniasis (VL is a vector-borne disease affecting humans and domestic animals that constitutes a serious public health problem in many countries. Although many antigens have been examined so far as protein- or DNA-based vaccines, none of them conferred complete long-term protection. The use of the lizard non-pathogenic to humans Leishmania (L. tarentolae species as a live vaccine vector to deliver specific Leishmania antigens is a recent approach that needs to be explored further. In this study, we evaluated the effectiveness of live vaccination in protecting BALB/c mice against L. infantum infection using prime-boost regimens, namely Live/Live and DNA/Live. As a live vaccine, we used recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinases (CPA and CPB without its unusual C-terminal extension (CPB(-CTE as a tri-fusion gene. For DNA priming, the tri-fusion gene was encoded in pcDNA formulated with cationic solid lipid nanoparticles (cSLN acting as an adjuvant. At different time points post-challenge, parasite burden and histopathological changes as well as humoral and cellular immune responses were assessed. Our results showed that immunization with both prime-boost A2-CPA-CPB(-CTE-recombinant L. tarentolae protects BALB/c mice against L. infantum challenge. This protective immunity is associated with a Th1-type immune response due to high levels of IFN-γ production prior and after challenge and with lower levels of IL-10 production after challenge, leading to a significantly higher IFN-γ/IL-10 ratio compared to the control groups. Moreover, this immunization elicited high IgG1 and IgG2a humoral immune responses. Protection in mice was also correlated with a high nitric oxide production and low parasite burden. Altogether, these results indicate the promise of the A2-CPA-CPB(-CTE-recombinant L. tarentolae as a safe live vaccine candidate against VL.

  8. Heterologous prime-boost vaccination with DNA and MVA vaccines, expressing HIV-1 subtype C mosaic Gag virus-like particles, is highly immunogenic in mice.

    Directory of Open Access Journals (Sweden)

    Ros Chapman

    Full Text Available In an effort to make affordable vaccines suitable for the regions most affected by HIV-1, we have constructed stable vaccines that express an HIV-1 subtype C mosaic Gag immunogen (BCG-GagM, MVA-GagM and DNA-GagM. Mosaic immunogens have been designed to address the tremendous diversity of this virus. Here we have shown that GagM buds from cells infected and transfected with MVA-GagM and DNA-GagM respectively and forms virus-like particles. Previously we showed that a BCG-GagM prime MVA-GagM boost generated strong cellular immune responses in mice. In this study immune responses to the DNA-GagM and MVA-GagM vaccines were evaluated in homologous and heterologous prime-boost vaccinations. The DNA homologous prime boost vaccination elicited predominantly CD8+ T cells while the homologous MVA vaccination induced predominantly CD4+ T cells. A heterologous DNA-GagM prime MVA-GagM boost induced strong, more balanced Gag CD8+ and CD4+ T cell responses and that were predominantly of an effector memory phenotype. The immunogenicity of the mosaic Gag (GagM was compared to a naturally occurring subtype C Gag (GagN using a DNA homologous vaccination regimen. DNA-GagN expresses a natural Gag with a sequence that was closest to the consensus sequence of subtype C viruses sampled in South Africa. DNA-GagM homologous vaccination induced cumulative HIV-1 Gag-specific IFN-γ ELISPOT responses that were 6.5-fold higher than those induced by the DNA-GagN vaccination. Similarly, DNA-GagM vaccination generated 7-fold higher levels of cytokine-positive CD8+ T cells than DNA-GagN, indicating that this subtype C mosaic Gag elicits far more potent immune responses than a consensus-type Gag. Cells transfected and infected with DNA-GagM and MVA-GagM respectively, expressed high levels of GagM and produced budding virus-like particles. Our data indicates that a heterologous prime boost regimen using DNA and MVA vaccines expressing HIV-1 subtype C mosaic Gag is highly

  9. Sterile protection against Plasmodium knowlesi in rhesus monkeys from a malaria vaccine: comparison of heterologous prime boost strategies.

    Directory of Open Access Journals (Sweden)

    George Jiang

    Full Text Available Using newer vaccine platforms which have been effective against malaria in rodent models, we tested five immunization regimens against Plasmodium knowlesi in rhesus monkeys. All vaccines included the same four P. knowlesi antigens: the pre-erythrocytic antigens CSP, SSP2, and erythrocytic antigens AMA1, MSP1. We used four vaccine platforms for prime or boost vaccinations: plasmids (DNA, alphavirus replicons (VRP, attenuated adenovirus serotype 5 (Ad, or attenuated poxvirus (Pox. These four platforms combined to produce five different prime/boost vaccine regimens: Pox alone, VRP/Pox, VRP/Ad, Ad/Pox, and DNA/Pox. Five rhesus monkeys were immunized with each regimen, and five Control monkeys received a mock vaccination. The time to complete vaccinations was 420 days. All monkeys were challenged twice with 100 P. knowlesi sporozoites given IV. The first challenge was given 12 days after the last vaccination, and the monkeys receiving the DNA/Pox vaccine were the best protected, with 3/5 monkeys sterilely protected and 1/5 monkeys that self-cured its parasitemia. There was no protection in monkeys that received Pox malaria vaccine alone without previous priming. The second sporozoite challenge was given 4 months after the first. All 4 monkeys that were protected in the first challenge developed malaria in the second challenge. DNA, VRP and Ad5 vaccines all primed monkeys for strong immune responses after the Pox boost. We discuss the high level but short duration of protection in this experiment and the possible benefits of the long interval between prime and boost.

  10. HIV vaccines: new frontiers in vaccine development.

    Science.gov (United States)

    Duerr, Ann; Wasserheit, Judith N; Corey, Lawrence

    2006-08-15

    A human immunodeficiency virus (HIV) vaccine is the most promising and feasible strategy to prevent the events during acute infection that simultaneously set the course of the epidemic in the community and the course of the disease for the individual. Because safety concerns limit the use of live, attenuated HIV and inactivated HIV, a variety of alternate approaches is being investigated. Traditional antibody-mediated approaches using recombinant HIV envelope proteins have shown no efficacy in 2 phase III trials. Current HIV vaccine trials are focusing primarily on cytotoxic T lymphocyte-mediated products that use viral vectors, either alone or as boosts to DNA plasmids that contain viral genes. The most immunogenic of these products appear to be the recombinant adenovirus vector vaccines, 2 of which are now in advanced clinical development.

  11. Enhancing poxvirus vectors vaccine immunogenicity.

    Science.gov (United States)

    García-Arriaza, Juan; Esteban, Mariano

    2014-01-01

    Attenuated recombinant poxvirus vectors expressing heterologous antigens from pathogens are currently at various stages in clinical trials with the aim to establish their efficacy. This is because these vectors have shown excellent safety profiles, significant immunogenicity against foreign expressed antigens and are able to induce protective immune responses. In view of the limited efficacy triggered by some poxvirus strains used in clinical trials (i.e, ALVAC in the RV144 phase III clinical trial for HIV), and of the restrictive replication capacity of the highly attenuated vectors like MVA and NYVAC, there is a consensus that further improvements of these vectors should be pursuit. In this review we considered several strategies that are currently being implemented, as well as new approaches, to improve the immunogenicity of the poxvirus vectors. This includes heterologous prime/boost protocols, use of co-stimulatory molecules, deletion of viral immunomodulatory genes still present in the poxvirus genome, enhancing virus promoter strength, enhancing vector replication capacity, optimizing expression of foreign heterologous sequences, and the combined use of adjuvants. An optimized poxvirus vector triggering long-lasting immunity with a high protective efficacy against a selective disease should be sought.

  12. Tomorrow's vector vaccines for small ruminants.

    Science.gov (United States)

    Kyriakis, C S

    2015-12-14

    Inactivated and attenuated vaccines have contributed to the control or even the eradication of significant animal pathogens. However, these traditional vaccine technologies have limitations and disadvantages. Inactivated vaccines lack efficacy against certain pathogens, while attenuated vaccines are not always as safe. New technology vaccines, namely DNA and recombinant viral vector vaccines, are being developed and tested against pathogens of small ruminants. These vaccines induce both humoral and cellular immune responses, are safe to manufacture and use and can be utilized in strategies for differentiation of infected from vaccinated animals. Although there are more strict regulatory requirements for the safety standards of these vaccines, once a vaccine platform is evaluated and established, effective vaccines can be rapidly produced and deployed in the field to prevent spread of emerging pathogens. The present article offers an introduction to these next generation technologies and examples of vaccines that have been tested against important diseases of sheep and goats. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Prime-boost BCG vaccination with DNA vaccines based in β-defensin-2 and mycobacterial antigens ESAT6 or Ag85B improve protection in a tuberculosis experimental model.

    Science.gov (United States)

    Cervantes-Villagrana, Alberto R; Hernández-Pando, Rogelio; Biragyn, Arya; Castañeda-Delgado, Julio; Bodogai, Monica; Martínez-Fierro, Margarita; Sada, Eduardo; Trujillo, Valentin; Enciso-Moreno, Antonio; Rivas-Santiago, Bruno

    2013-01-11

    The World Health Organization (WHO) has estimated that there are about 8 million new cases annually of active Tuberculosis (TB). Despite its irregular effectiveness (0-89%), the Bacillus Calmette-Guérin) BCG is the only vaccine available worldwide for prevention of TB; thus, the design is important of novel and more efficient vaccination strategies. Considering that β-defensin-2 is an antimicrobial peptide that induces dendritic cell maturation through the TLR-4 receptor and that both ESAT-6 and Ag85B are immunodominant mycobacterial antigens and efficient activators of the protective immune response, we constructed two DNA vaccines by the fusion of the gene encoding β-defensin-2 and antigens ESAT6 (pDE) and 85B (pDA). After confirming efficient local antigen expression that induced high and stable Interferon gamma (IFN-γ) production in intramuscular (i.m.) vaccinated Balb/c mice, groups of mice were vaccinated with DNA vaccines in a prime-boost regimen with BCG and with BCG alone, and 2 months later were challenged with the mild virulence reference strain H37Rv and the highly virulent clinical isolate LAM 5186. The level of protection was evaluated by survival, lung bacilli burdens, and extension of tissue damage (pneumonia). Vaccination with both DNA vaccines showed similar protection to that of BCG. After the challenge with the highly virulent Mycobacterium tuberculosis strain, animals that were prime-boosted with BCG and then boosted with both DNA vaccines showed significant higher survival and less tissue damage than mice vaccinated only with BCG. These results suggest that improvement of BCG vaccination, such as the prime-boost DNA vaccine, represents a more efficient vaccination scheme against TB. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Vaccine efficacy against malaria by the combination of porcine parvovirus-like particles and vaccinia virus vectors expressing CS of Plasmodium.

    Science.gov (United States)

    Rodríguez, Dolores; González-Aseguinolaza, Gloria; Rodríguez, Juan R; Vijayan, Aneesh; Gherardi, Magdalena; Rueda, Paloma; Casal, J Ignacio; Esteban, Mariano

    2012-01-01

    With the aim to develop an efficient and cost-effective approach to control malaria, we have generated porcine parvovirus-like particles (PPV-VLPs) carrying the CD8(+) T cell epitope (SYVPSAEQI) of the circumsporozoite (CS) protein from Plasmodium yoelii fused to the PPV VP2 capsid protein (PPV-PYCS), and tested in prime/boost protocols with poxvirus vectors for efficacy in a rodent malaria model. As a proof-of concept, we have characterized the anti-CS CD8(+) T cell response elicited by these hybrid PPV-VLPs in BALB/c mice after immunizations with the protein PPV-PYCS administered alone or in combination with recombinant vaccinia virus (VACV) vectors from the Western Reserve (WR) and modified virus Ankara (MVA) strains expressing the entire P. yoelii CS protein. The results of different immunization protocols showed that the combination of PPV-PYCS prime/poxvirus boost was highly immunogenic, inducing specific CD8+ T cell responses to CS resulting in 95% reduction in liver stage parasites two days following sporozoite challenge. In contrast, neither the administration of PPV-PYCS alone nor the immunization with the vectors given in the order poxvirus/VLPs was as effective. The immune profile induced by VLPs/MVA boost was associated with polyfunctional and effector memory CD8+ T cell responses. These findings highlight the use of recombinant parvovirus PPV-PYCS particles as priming agents and poxvirus vectors, like MVA, as booster to enhance specific CD8+ T cell responses to Plasmodium antigens and to control infection. These observations are relevant in the design of T cell-inducing vaccines against malaria.

  15. Development of replication-deficient adenovirus malaria vaccines.

    Science.gov (United States)

    Hollingdale, Michael R; Sedegah, Martha; Limbach, Keith

    2017-03-01

    Malaria remains a major threat to endemic populations and travelers, including military personnel to these areas. A malaria vaccine is feasible, as radiation attenuated sporozoites induce nearly 100% efficacy. Areas covered: This review covers current malaria clinical trials using adenoviruses and pre-clinical research. Heterologous prime-boost regimens, including replication-deficient human adenovirus 5 (HuAd5) carrying malaria antigens, are efficacious. However, efficacy appears to be adversely affected by pre-existing anti-HuAd5 antibodies. Current strategies focus on replacing HuAd5 with rarer human adenoviruses or adenoviruses isolated from non-human primates (NHPs). The chimpanzee adenovirus ChAd63 is undergoing evaluation in clinical trials including infants in malaria-endemic areas. Key antigens have been identified and are being used alone, in combination, or with protein subunit vaccines. Gorilla adenoviruses carrying malaria antigens are also currently being evaluated in preclinical models. These replacement adenovirus vectors will be successfully used to develop vaccines against malaria, as well as other infectious diseases. Expert commentary: Simplified prime-boost single shot regimens, dry-coated live vector vaccines or silicon microneedle arrays could be developed for malaria or other vaccines. Replacement vectors with similar or superior immunogenicity have rapidly advanced, and several are now in extensive Phase 2 and beyond in malaria as well as other diseases, notably Ebola.

  16. Large-scale adenovirus and poxvirus-vectored vaccine manufacturing to enable clinical trials.

    Science.gov (United States)

    Kallel, Héla; Kamen, Amine A

    2015-05-01

    Efforts to make vaccines against infectious diseases and immunotherapies for cancer have evolved to utilize a variety of heterologous expression systems such as viral vectors. These vectors are often attenuated or engineered to safely deliver genes encoding antigens of different pathogens. Adenovirus and poxvirus vectors are among the viral vectors that are most frequently used to develop prophylactic vaccines against infectious diseases as well as therapeutic cancer vaccines. This mini-review describes the trends and processes in large-scale production of adenovirus and poxvirus vectors to meet the needs of clinical applications. We briefly describe the general principles for the production and purification of adenovirus and poxvirus viral vectors. Currently, adenovirus and poxvirus vector manufacturing methods rely on well-established cell culture technologies. Several improvements have been evaluated to increase the yield and to reduce the overall manufacturing cost, such as cultivation at high cell densities and continuous downstream processing. Additionally, advancements in vector characterization will greatly facilitate the development of novel vectored vaccine candidates. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The HyVac4 subunit vaccine efficiently boosts BCG-primed anti-mycobacterial protective immunity.

    Directory of Open Access Journals (Sweden)

    Rolf Billeskov

    Full Text Available BACKGROUND: The current vaccine against tuberculosis (TB, BCG, has failed to control TB worldwide and the protective efficacy is moreover limited to 10-15 years. A vaccine that could efficiently boost a BCG-induced immune response and thus prolong protective immunity would therefore have a significant impact on the global TB-burden. METHODS/FINDINGS: In the present study we show that the fusion protein HyVac4 (H4, consisting of the mycobacterial antigens Ag85B and TB10.4, given in the adjuvant IC31® or DDA/MPL effectively boosted and prolonged immunity induced by BCG, leading to improved protection against infection with virulent M. tuberculosis (M.tb. Increased protection correlated with an increased percentage of TB10.4 specific IFNγ/TNFα/IL-2 or TNFα/IL-2 producing CD4 T cells at the site of infection. Moreover, this vaccine strategy did not compromise the use of ESAT-6 as an accurate correlate of disease development/vaccine efficacy. Indeed both CD4 and CD8 ESAT-6 specific T cells showed significant correlation with bacterial levels. CONCLUSIONS/SIGNIFICANCE: H4-IC31® can efficiently boost BCG-primed immunity leading to an increased protective anti-M.tb immune response dominated by IFNγ/TNFα/IL-2 or TNFα/IL2 producing CD4 T cells. H4 in the CD4 T cell inducing adjuvant IC31® is presently in clinical trials.

  18. Attenuation of Replication-Competent Adenovirus Serotype 26 Vaccines by Vectorization.

    Science.gov (United States)

    Maxfield, Lori F; Abbink, Peter; Stephenson, Kathryn E; Borducchi, Erica N; Ng'ang'a, David; Kirilova, Marinela M; Paulino, Noelix; Boyd, Michael; Shabram, Paul; Ruan, Qian; Patel, Mayank; Barouch, Dan H

    2015-11-01

    Replication-competent adenovirus (rcAd)-based vaccine vectors may theoretically provide immunological advantages over replication-incompetent Ad vectors, but they also raise additional potential clinical and regulatory issues. We produced replication-competent Ad serotype 26 (rcAd26) vectors by adding the E1 region back into a replication-incompetent Ad26 vector backbone with the E3 or E3/E4 regions deleted. We assessed the effect of vectorization on the replicative capacity of the rcAd26 vaccines. Attenuation occurred in a stepwise fashion, with E3 deletion, E4 deletion, and human immunodeficiency virus type 1 (HIV-1) envelope (Env) gene insertion all contributing to reduced replicative capacity compared to that with the wild-type Ad26 vector. The rcAd26 vector with E3 and E4 deleted and containing the Env transgene exhibited 2.7- to 4.4-log-lower replicative capacity than that of the wild-type Ad26 in vitro. This rcAd26 vector is currently being evaluated in a phase 1 clinical trial. Attenuation as a result of vectorization and transgene insertion has implications for the clinical development of replication-competent vaccine vectors. Copyright © 2015, Maxfield et al.

  19. Non-clinical efficacy and safety of HyVac4:IC31 vaccine administered in a BCG prime-boost regimen.

    Science.gov (United States)

    Skeiky, Yasir A W; Dietrich, Jes; Lasco, Todd M; Stagliano, Katherine; Dheenadhayalan, Veerabadran; Goetz, Margaret Ann; Cantarero, Luis; Basaraba, Randall J; Bang, Peter; Kromann, Ingrid; McMclain, J Bruce; Sadoff, Jerald C; Andersen, Peter

    2010-01-22

    Despite the extensive success with the introduction of M. bovis Bacille Calmette-Guérin (BCG), tuberculosis (TB) remains a major global epidemic infecting between 8 and 9 million people annually with an estimated 1.7 million deaths each year. However, because of its demonstrated effectiveness against some of the most severe forms of childhood TB, it is now realized that BCG vaccination of newborns is unlikely to be replaced. Therefore, BCG or an improved BCG will continue to be used as a prime TB vaccine and there is a need to develop effective boost vaccines that would enhance and prolong the protective immunity induced by BCG prime immunization. We report on a heterologous booster approach using two highly immunogenic TB antigens comprising Ag85B and TB10.4 (HyVac4) delivered as a fusion molecule and formulated in the proprietary adjuvant IC31. This vaccine was found to be immunogenic and demonstrated greater protection in the more stringent guinea pig model of pulmonary tuberculosis than BCG alone when used in a prime/boost regimen. Significant difference in lung involvement was observed for all animals in the HyVac4 boosted group compared to BCG alone regardless of time to death or sacrifice. A vaccine toxicology study of the HyVac4:IC31 regimen was performed and it was judged safe to advance the vaccine into clinical trials. Therefore, all non-clinical data supports the suitability of HyVac4 as a safe, immunogenic, and effective vaccination in a prime-boost regimen with BCG.

  20. Boosting BCG-primed responses with a subunit Apa vaccine during the waning phase improves immunity and imparts protection against Mycobacterium tuberculosis.

    Science.gov (United States)

    Nandakumar, Subhadra; Kannanganat, Sunil; Dobos, Karen M; Lucas, Megan; Spencer, John S; Amara, Rama Rao; Plikaytis, Bonnie B; Posey, James E; Sable, Suraj B

    2016-05-13

    Heterologous prime-boosting has emerged as a powerful vaccination approach against tuberculosis. However, optimal timing to boost BCG-immunity using subunit vaccines remains unclear in clinical trials. Here, we followed the adhesin Apa-specific T-cell responses in BCG-primed mice and investigated its BCG-booster potential. The Apa-specific T-cell response peaked 32-52 weeks after parenteral or mucosal BCG-priming but waned significantly by 78 weeks. A subunit-Apa-boost during the contraction-phase of BCG-response had a greater effect on the magnitude and functional quality of specific cellular and humoral responses compared to a boost at the peak of BCG-response. The cellular response increased following mucosal BCG-prime-Apa-subunit-boost strategy compared to Apa-subunit-prime-BCG-boost approach. However, parenteral BCG-prime-Apa-subunit-boost by a homologous route was the most effective strategy in-terms of enhancing specific T-cell responses during waning in the lung and spleen. Two Apa-boosters markedly improved waning BCG-immunity and significantly reduced Mycobacterium tuberculosis burdens post-challenge. Our results highlight the challenges of optimization of prime-boost regimens in mice where BCG drives persistent immune-activation and suggest that boosting with a heterologous vaccine may be ideal once the specific persisting effector responses are contracted. Our results have important implications for design of prime-boost regimens against tuberculosis in humans.

  1. TLR1/2 activation during heterologous prime-boost vaccination (DNA-MVA enhances CD8+ T Cell responses providing protection against Leishmania (Viannia.

    Directory of Open Access Journals (Sweden)

    Asha Jayakumar

    2011-06-01

    Full Text Available Leishmania (Viannia parasites present particular challenges, as human and murine immune responses to infection are distinct from other Leishmania species, indicating a unique interaction with the host. Further, vaccination studies utilizing small animal models indicate that modalities and antigens that prevent infection by other Leishmania species are generally not protective.Using a newly developed mouse model of chronic L. (Viannia panamensis infection and the heterologous DNA prime - modified vaccinia virus Ankara (MVA boost vaccination modality, we examined whether the conserved vaccine candidate antigen tryparedoxin peroxidase (TRYP could provide protection against infection/disease.Heterologous prime - boost (DNA/MVA vaccination utilizing TRYP antigen can provide protection against disease caused by L. (V. panamensis. However, protection is dependent on modulating the innate immune response using the TLR1/2 agonist Pam3CSK4 during DNA priming. Prime-boost vaccination using DNA alone fails to protect. Prior to infection protectively vaccinated mice exhibit augmented CD4 and CD8 IFNγ and memory responses as well as decreased IL-10 and IL-13 responses. IL-13 and IL-10 have been shown to be independently critical for disease in this model. CD8 T cells have an essential role in mediating host defense, as CD8 depletion reversed protection in the vaccinated mice; vaccinated mice depleted of CD4 T cells remained protected. Hence, vaccine-induced protection is dependent upon TLR1/2 activation instructing the generation of antigen specific CD8 cells and restricting IL-13 and IL-10 responses.Given the general effectiveness of prime-boost vaccination, the recalcitrance of Leishmania (Viannia to vaccine approaches effective against other species of Leishmania is again evident. However, prime-boost vaccination modality can with modulation induce protective responses, indicating that the delivery system is critical. Moreover, these results suggest that

  2. Vaccine efficacy against malaria by the combination of porcine parvovirus-like particles and vaccinia virus vectors expressing CS of Plasmodium.

    Directory of Open Access Journals (Sweden)

    Dolores Rodríguez

    Full Text Available With the aim to develop an efficient and cost-effective approach to control malaria, we have generated porcine parvovirus-like particles (PPV-VLPs carrying the CD8(+ T cell epitope (SYVPSAEQI of the circumsporozoite (CS protein from Plasmodium yoelii fused to the PPV VP2 capsid protein (PPV-PYCS, and tested in prime/boost protocols with poxvirus vectors for efficacy in a rodent malaria model. As a proof-of concept, we have characterized the anti-CS CD8(+ T cell response elicited by these hybrid PPV-VLPs in BALB/c mice after immunizations with the protein PPV-PYCS administered alone or in combination with recombinant vaccinia virus (VACV vectors from the Western Reserve (WR and modified virus Ankara (MVA strains expressing the entire P. yoelii CS protein. The results of different immunization protocols showed that the combination of PPV-PYCS prime/poxvirus boost was highly immunogenic, inducing specific CD8+ T cell responses to CS resulting in 95% reduction in liver stage parasites two days following sporozoite challenge. In contrast, neither the administration of PPV-PYCS alone nor the immunization with the vectors given in the order poxvirus/VLPs was as effective. The immune profile induced by VLPs/MVA boost was associated with polyfunctional and effector memory CD8+ T cell responses. These findings highlight the use of recombinant parvovirus PPV-PYCS particles as priming agents and poxvirus vectors, like MVA, as booster to enhance specific CD8+ T cell responses to Plasmodium antigens and to control infection. These observations are relevant in the design of T cell-inducing vaccines against malaria.

  3. Subtype C gp140 Vaccine Boosts Immune Responses Primed by the South African AIDS Vaccine Initiative DNA-C2 and MVA-C HIV Vaccines after More than a 2-Year Gap.

    Science.gov (United States)

    Gray, Glenda E; Mayer, Kenneth H; Elizaga, Marnie L; Bekker, Linda-Gail; Allen, Mary; Morris, Lynn; Montefiori, David; De Rosa, Stephen C; Sato, Alicia; Gu, Niya; Tomaras, Georgia D; Tucker, Timothy; Barnett, Susan W; Mkhize, Nonhlanhla N; Shen, Xiaoying; Downing, Katrina; Williamson, Carolyn; Pensiero, Michael; Corey, Lawrence; Williamson, Anna-Lise

    2016-06-01

    A phase I safety and immunogenicity study investigated South African AIDS Vaccine Initiative (SAAVI) HIV-1 subtype C (HIV-1C) DNA vaccine encoding Gag-RT-Tat-Nef and gp150, boosted with modified vaccinia Ankara (MVA) expressing matched antigens. Following the finding of partial protective efficacy in the RV144 HIV vaccine efficacy trial, a protein boost with HIV-1 subtype C V2-deleted gp140 with MF59 was added to the regimen. A total of 48 participants (12 U.S. participants and 36 Republic of South Africa [RSA] participants) were randomized to receive 3 intramuscular (i.m.) doses of SAAVI DNA-C2 of 4 mg (months 0, 1, and 2) and 2 i.m. doses of SAAVI MVA-C of 1.45 × 10(9) PFU (months 4 and 5) (n = 40) or of a placebo (n = 8). Approximately 2 years after vaccination, 27 participants were rerandomized to receive gp140/MF59 at 100 μg or placebo, as 2 i.m. injections, 3 months apart. The vaccine regimen was safe and well tolerated. After the DNA-MVA regimen, CD4(+) T-cell and CD8(+) T-cell responses occurred in 74% and 32% of the participants, respectively. The protein boost increased CD4(+) T-cell responses to 87% of the subjects. All participants developed tier 1 HIV-1C neutralizing antibody responses as well as durable Env binding antibodies that recognized linear V3 and C5 peptides. The HIV-1 subtype C DNA-MVA vaccine regimen showed promising cellular immunogenicity. Boosting with gp140/MF59 enhanced levels of binding and neutralizing antibodies as well as CD4(+) T-cell responses to HIV-1 envelope. (This study has been registered at ClinicalTrials.gov under registration no. NCT00574600 and NCT01423825.). Copyright © 2016 Gray et al.

  4. Prime-booster vaccination of cattle with an influenza viral vector Brucella abortus vaccine induces a long-term protective immune response against Brucella abortus infection.

    Science.gov (United States)

    Tabynov, Kaissar; Yespembetov, Bolat; Ryskeldinova, Sholpan; Zinina, Nadezhda; Kydyrbayev, Zhailaubay; Kozhamkulov, Yerken; Inkarbekov, Dulat; Sansyzbay, Abylai

    2016-01-20

    This study analyzed the duration of the antigen-specific humoral and T-cell immune responses and protectiveness of a recently-developed influenza viral vector Brucella abortus (Flu-BA) vaccine expressing Brucella proteins Omp16 and L7/L12 and containing the adjuvant Montadine Gel01 in cattle. At 1 month post-booster vaccination (BV), both humoral (up to 3 months post-BV; GMT IgG ELISA titer 214±55 to 857±136, with a prevalence of IgG2a over IgG1 isotype antibodies) and T-cell immune responses were observed in vaccinated heifers (n=35) compared to control animals (n=35, injected with adjuvant/PBS only). A pronounced T-cell immune response was induced and maintained for 12 months post-BV, as indicated by the lymphocyte stimulation index (2.7±0.4 to 10.1±0.9 cpm) and production of IFN-γ (13.7±1.7 to 40.0±3.0 ng/ml) at 3, 6, 9, and 12 months post-BV. Prime-boost vaccination provided significant protection against B. abortus infection at 3, 6, 9 and 12 months (study duration) post-BV (7 heifers per time point; alpha=0.03-0.01 vs. control group). Between 57.1 and 71.4% of vaccinated animals showed no signs of B. abortus infection (or Brucella isolation) at 3, 6, 9 and 12 months post-BV; the severity of infection, as indicated by the index of infection (P=0.0003 to Brucella colonization (P=0.03 to abortus infection was also observed among pregnant vaccinated heifers (alpha=0.03), as well as their fetuses and calves (alpha=0.01), for 12 months post-BV. Additionally, 71.4% of vaccinated heifers calved successfully whereas all pregnant control animals aborted (alpha=0.01). Prime-boost vaccination of cattle with Flu-BA induces an antigen-specific humoral and pronounced T cell immune response and most importantly provides good protectiveness, even in pregnant heifers, for at least 12 months post-BV. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Influenza viral vectors expressing the Brucella OMP16 or L7/L12 proteins as vaccines against B. abortus infection.

    Science.gov (United States)

    Tabynov, Kaissar; Sansyzbay, Abylai; Kydyrbayev, Zhailaubay; Yespembetov, Bolat; Ryskeldinova, Sholpan; Zinina, Nadezhda; Assanzhanova, Nurika; Sultankulova, Kulaisan; Sandybayev, Nurlan; Khairullin, Berik; Kuznetsova, Irina; Ferko, Boris; Egorov, Andrej

    2014-04-10

    We generated novel, effective candidate vaccine against Brucella abortus based on recombinant influenza viruses expressing the Brucella ribosomal protein L7/L12 or outer membrane protein (Omp)-16 from the NS1 open reading frame. The main purpose of this work was to evaluate the safety, immunogenicity and protectiveness of vaccine candidate in laboratory animals. Four recombinant influenza A viral constructs of the subtypes Н5N1 or H1N1 expressing the Brucella proteins L7/L12 or Omp16 were obtained by a reverse genetics method: Flu-NS1-124-L7/L12-H5N1, Flu-NS1-124-Omp16-H5N1, Flu-NS1-124-L7/L12-H1N1 and Flu-NS1-124-Omp16-H1N1. Despite of substantial modification of NS1 gene, all constructs replicated well and were retain their Brucella inserts over five passages in embryonated chicken eggs (CE). Administration of the mono- or bivalent vaccine formulation via prime-boost intranasal (i.n.), conjunctival (c.) or subcutaneous (s.c.) immunization was safe in mice; no deaths, body weight loss or pathomorphological changes were observed over 56 days. Moreover, guinea pigs vaccinated i.n. with vaccine vectors did not shed the vaccine viruses through their upper respiratory tract after the prime and booster vaccination. These findings confirmed the replication-deficient phenotype of viral vectors. The highest antibody response to Brucella antigen was obtained with constructs expressing L7/L12 (ELISA, GMT 242.5-735.0); whereas the highest T-cell immune response- with construct expressing Omp16 (ELISPOT, 337 ± 52-651 ± 45 spots/4×105cells), which was comparable (P > 0.05) to the response induced by the commercial vaccine B. abortus 19. Interestingly, c. immunization appeared to be optimal for eliciting T-cell immune response. In guinea pigs, the highest protective efficacy after challenge with B. abortus 544 was achieved with Omp16 expressing constructs in both monovalent or bivalent vaccine formulations; protective efficacy was comparable to those induced by

  6. Recombinant viruses as vaccines against viral diseases

    Directory of Open Access Journals (Sweden)

    A.P.D. Souza

    2005-04-01

    Full Text Available Vaccine approaches to infectious diseases are widely applied and appreciated. Amongst them, vectors based on recombinant viruses have shown great promise and play an important role in the development of new vaccines. Many viruses have been investigated for their ability to express proteins from foreign pathogens and induce specific immunological responses against these antigens in vivo. Generally, gene-based vaccines can stimulate potent humoral and cellular immune responses and viral vectors might be an effective strategy for both the delivery of antigen-encoding genes and the facilitation and enhancement of antigen presentation. In order to be utilized as a vaccine carrier, the ideal viral vector should be safe and enable efficient presentation of required pathogen-specific antigens to the immune system. It should also exhibit low intrinsic immunogenicity to allow for its re-administration in order to boost relevant specific immune responses. Furthermore, the vector system must meet criteria that enable its production on a large-scale basis. Several viral vaccine vectors have thus emerged to date, all of them having relative advantages and limits depending on the proposed application, and thus far none of them have proven to be ideal vaccine carriers. In this review we describe the potential, as well as some of the foreseeable obstacles associated with viral vaccine vectors and their use in preventive medicine.

  7. Optimization of inactivated H5N9 highly pathogenic avian influenza vaccine and inactivated Salmonella enterica serovar Typhimurium vaccine with antigen dose and prime-boost regimen in domestic ducks.

    Science.gov (United States)

    Yuk, Seong-Su; To, Eredene-Ochir; Kwon, Jung-Hoon; Noh, Jin-Yong; Hong, Woo-Tack; Jeong, Jei-Hyun; Gwon, Gyeong-Bin; Song, Chang-Seon

    2017-09-01

    Owing to the increase in the number of diseases affecting ducks and the demand for food safety by consumers, vaccination has become one of the factors that influence duck meat productivity. The highly pathogenic avian influenza (HPAI) virus is one of the most prevalent and causes one of the most lethal diseases in domestic ducks, and Salmonella enterica serovar Typhimurium is a food-borne pathogen persistent in the domestic duck population. To better understand the optimal usage of HPAI and S. enterica serovar Typhimurium vaccines, we aimed to determine antigen dose, oil and gel adjuvant usage with prime-boost regimen, and vaccination age, inducing the best immune response in ducks, without an effect on body weight gain. In the case of the inactivated H5N9 vaccine, a single dose of vaccine was inadequate to induce proper antibody titer when administered to day-old ducks, which necessitates boost vaccination. Administration of the oil-adjuvanted H5N9 vaccine administration in day-old and 2-week-old ducks resulted in a lower body weight at the time of slaughtering, compared to that of gel-adjuvanted H5N9 vaccine. However, gel-adjuvanted H5N9 vaccine failed to induce proper immune response to an extent recommend by OIE-World Organization for Animal Health. In the case of the Salmonella enterica serovar Typhimurium vaccine, a moderate or low dose of vaccine was appropriate for day-old ducks receiving the gel prime-oil boost vaccination. Single vaccination with oil adjuvants affects the mean body weight of 7-week-old ducks, suggesting that the gel adjuvant is more suitable for meat production. We expect that the use of adjuvants in a prime-boost regimen and at antigen doses set in this study will be helpful to maximize body weight in the case of domestic duck production at the actual farm site. © 2017 Poultry Science Association Inc.

  8. Induction of CD8(+) T cell responses and protective efficacy following microneedle-mediated delivery of a live adenovirus-vectored malaria vaccine.

    Science.gov (United States)

    Pearson, Frances E; O'Mahony, Conor; Moore, Anne C; Hill, Adrian V S

    2015-06-22

    There is an urgent need for improvements in vaccine delivery technologies. This is particularly pertinent for vaccination programmes within regions of limited resources, such as those required for adequate provision for disposal of used needles. Microneedles are micron-sized structures that penetrate the stratum corneum of the skin, creating temporary conduits for the needle-free delivery of drugs or vaccines. Here, we aimed to investigate immunity induced by the recombinant simian adenovirus-vectored vaccine ChAd63.ME-TRAP; currently undergoing clinical assessment as a candidate malaria vaccine, when delivered percutaneously by silicon microneedle arrays. In mice, we demonstrate that microneedle-mediated delivery of ChAd63.ME-TRAP induced similar numbers of transgene-specific CD8(+) T cells compared to intradermal (ID) administration with needle-and-syringe, following a single immunisation and after a ChAd63/MVA heterologous prime-boost schedule. When mice immunised with ChAd63/MVA were challenged with live Plasmodium berghei sporozoites, microneedle-mediated ChAd63.ME-TRAP priming demonstrated equivalent protective efficacy as did ID immunisation. Furthermore, responses following ChAd63/MVA immunisation correlated with a specific design parameter of the array used ('total array volume'). The level of transgene expression at the immunisation site and skin-draining lymph node (dLN) was also linked to total array volume. These findings have implications for defining silicon microneedle array design for use with live, vectored vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. A goat poxvirus-vectored peste-des-petits-ruminants vaccine induces long-lasting neutralization antibody to high levels in goats and sheep.

    Science.gov (United States)

    Chen, Weiye; Hu, Sen; Qu, Linmao; Hu, Qianqian; Zhang, Qian; Zhi, Haibing; Huang, Kehe; Bu, Zhigao

    2010-07-05

    Recombinant capripoxvirus (CPV) is a promising candidate differentiating infected from vaccinated animals (DIVA) vaccine against peste-des-petits-ruminants (PPR). In order for recombinant CPV to be successfully used in the field, there should exist dependable indicators for quality control of vaccine products, surveillance and vaccination evaluation. Viral neutralization antibody (VNA) is correlated to protection against PPR and is a technically feasible indicator for this purpose. The immunogenicity of this vectored vaccine in goats and sheep, however, has not been fully evaluated. In this study, we generated two recombinant CPV viruses, rCPV-PPRVH and rCPV-PPRVF, that express PPR virus (PPRV) glycoproteins H and F, respectively. Vaccination studies with different dosages of recombinant viruses showed that rCPV-PPRVH was a more potent inducer of PPRV VNA than rCPV-PPRVF. One dose of rCPV-PPRVH was enough to seroconvert 80% of immunized sheep. A second dose induced significantly higher PPRV VNA titers. There was no significant difference in PPRV VNA responses between goats and sheep. Subcutaneous inoculation also induced a significant PPRV VNA response. PPRV VNA could be detected for over 6 months in more than 80% of vaccinated goats and sheep. Boost vaccination at 6-month intervals induced significant re-boost efficacy of PPRV VNA in goats and sheep. More over, two doses of rCPV-PPRVH could completely overcome the interference caused by pre-existing immunity to the CPV vaccine backbone in animals. Vaccination with rCPV-PPRVH also protected goats from virulent CPV challenge. Our results demonstrate that VNA can serve as a dependent indicator for effective vaccination and immune protection of animals in the field. The recombinant CPV vaccine used in our studies could be a practical and useful candidate DIVA vaccine in countries where PPR newly emerges or where stamp-out plans are yet to be implemented. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. HIV-1-Specific Antibody Response and Function after DNA Prime and Recombinant Adenovirus 5 Boost HIV Vaccine in HIV-Infected Subjects.

    Directory of Open Access Journals (Sweden)

    Johannes S Gach

    Full Text Available Little is known about the humoral immune response against DNA prime-recombinant adenovirus 5 (rAd5 boost HIV vaccine among HIV-infected patients on long-term suppressive antiretroviral therapy (ART. Previous studies emphasized cellular immune responses; however, current research suggests both cellular and humoral responses are likely required for a successful therapeutic vaccine. Thus, we aimed to understand antibody response and function induced by vaccination of ART-treated HIV-1-infected patients with immune recovery. All subjects participated in EraMune 02, an open-label randomized clinical trial of ART intensification followed by a six plasmid DNA prime (envA, envB, envC, gagB, polB, nefB and rAd5 boost HIV vaccine with matching inserts. Antibody binding levels were determined with a recently developed microarray approach. We also analyzed neutralization efficiency and antibody-dependent cellular cytotoxicity (ADCC. We found that the DNA prime-rAd5 boost vaccine induced a significant cross-clade HIV-specific antibody response, which correlated with antibody neutralization efficiency. However, despite the increase in antibody binding levels, the vaccine did not significantly stimulate neutralization or ADCC responses. This finding was also reflected by a lack of change in total CD4+ cell associated HIV DNA in those who received the vaccine. Our results have important implications for further therapeutic vaccine design and administration, especially in HIV-1 infected patients, as boosting of preexisting antibody responses are unlikely to lead to clearance of latent proviruses in the HIV reservoir.

  11. Adenovirus-Vectored Vaccine as a Rapid-Response Tool Against Avian Influenza Pandemic

    International Nuclear Information System (INIS)

    Van Kampen, K. R.; Tang, D. C.

    2007-01-01

    Influenza viruses in nature undergo genetic mutation and reassortment. Three pandemics of avian influenza in man were recorded in the twentieth century. Highly pathogenic avian influenza (HPAI) viruses currently in circulation pose a threat for another world-wide pandemic, if they become transmissible from man to man. Manufacturing protective vaccines using current egg-based technology is often difficult due to the virulence of the virus and its adverse effects on the embryonating egg substrate. New technologies allow the creation of safe and protective pandemic influenza vaccines without the need for egg based substrates. These technologies allow new vaccines to be created in less than one month. Manufacturing is in tissue culture, not eggs. Vaccine can be administered to man non-invasively, without adjuvants, eliciting a rapid and protective immune response. Protective immunity against avian influenza (AI) virus was elicited in chickens by single-dose in ovo vaccination with a replication-competent adenovirus (RCA)-free human adenovirus serotype 5 (Ad5)-derived vector encoding an H5N9 avian influenza virus hemagglutinin. Vaccinated chickens were protected against both H5N1 and H5N2 HPAI virus challenges. Mass-administration of this bird flu vaccine can be streamlined with available robotic in ovo injectors. Vaccination using this vaccine could protect the the largest host reservoir (chickens) and greatly reduce the exposure of man to avian influenza. In addition, Ad5-vectored vaccines can be produced rapidly and the safety margin of a non-replicating vector is superior to that of a replicating counterpart. Furthermore, this mode of vaccination is compatible with epidemiological surveys of natural AI virus infections. In addition to mass immunization of poultry, both animals and humans have been effectively immunized by intranasal administration of Ad5-vectored influenza vaccines without any appreciable side effects, even in mice and human volunteers with

  12. Avipoxviruses: infection biology and their use as vaccine vectors.

    Science.gov (United States)

    Weli, Simon C; Tryland, Morten

    2011-02-03

    Avipoxviruses (APVs) belong to the Chordopoxvirinae subfamily of the Poxviridae family. APVs are distributed worldwide and cause disease in domestic, pet and wild birds of many species. APVs are transmitted by aerosols and biting insects, particularly mosquitoes and arthropods and are usually named after the bird species from which they were originally isolated. The virus species Fowlpox virus (FWPV) causes disease in poultry and associated mortality is usually low, but in flocks under stress (other diseases, high production) mortality can reach up to 50%. APVs are also major players in viral vaccine vector development for diseases in human and veterinary medicine. Abortive infection in mammalian cells (no production of progeny viruses) and their ability to accommodate multiple gene inserts are some of the characteristics that make APVs promising vaccine vectors. Although abortive infection in mammalian cells conceivably represents a major vaccine bio-safety advantage, molecular mechanisms restricting APVs to certain hosts are not yet fully understood. This review summarizes the current knowledge relating to APVs, including classification, morphogenesis, host-virus interactions, diagnostics and disease, and also highlights the use of APVs as recombinant vaccine vectors.

  13. Avipoxviruses: infection biology and their use as vaccine vectors

    Directory of Open Access Journals (Sweden)

    Tryland Morten

    2011-02-01

    Full Text Available Abstract Avipoxviruses (APVs belong to the Chordopoxvirinae subfamily of the Poxviridae family. APVs are distributed worldwide and cause disease in domestic, pet and wild birds of many species. APVs are transmitted by aerosols and biting insects, particularly mosquitoes and arthropods and are usually named after the bird species from which they were originally isolated. The virus species Fowlpox virus (FWPV causes disease in poultry and associated mortality is usually low, but in flocks under stress (other diseases, high production mortality can reach up to 50%. APVs are also major players in viral vaccine vector development for diseases in human and veterinary medicine. Abortive infection in mammalian cells (no production of progeny viruses and their ability to accommodate multiple gene inserts are some of the characteristics that make APVs promising vaccine vectors. Although abortive infection in mammalian cells conceivably represents a major vaccine bio-safety advantage, molecular mechanisms restricting APVs to certain hosts are not yet fully understood. This review summarizes the current knowledge relating to APVs, including classification, morphogenesis, host-virus interactions, diagnostics and disease, and also highlights the use of APVs as recombinant vaccine vectors.

  14. Highly immunogenic prime–boost DNA vaccination protects chickens against challenge with homologous and heterologous H5N1 virus

    Directory of Open Access Journals (Sweden)

    Anna Stachyra

    2014-01-01

    Full Text Available Highly pathogenic avian influenza viruses (HPAIVs cause huge economic losses in the poultry industry because of high mortality rate in infected flocks and trade restrictions. Protective antibodies, directed mainly against hemagglutinin (HA, are the primary means of protection against influenza outbreaks. A recombinant DNA vaccine based on the sequence of H5 HA from the H5N1/A/swan/Poland/305-135V08/2006 strain of HPAIV was prepared. Sequence manipulation included deletion of the proteolytic cleavage site to improve protein stability, codon usage optimization to improve translation and stability of RNA in host cells, and cloning into a commercially available vector to enable expression in animal cells. Naked plasmid DNA was complexed with a liposomal carrier and the immunization followed the prime–boost strategy. The immunogenic potential of the DNA vaccine was first proved in broilers in near-to-field conditions resembling a commercial farm. Next, the protective activity of the vaccine was confirmed in SPF layer-type chickens. Experimental infections (challenge experiments indicated that 100% of vaccinated chickens were protected against H5N1 of the same clade and that 70% of them were protected against H5N1 influenza virus of a different clade. Moreover, the DNA vaccine significantly limited (or even eliminated transmission of the virus to contact control chickens. Two intramuscular doses of DNA vaccine encoding H5 HA induced a strong protective response in immunized chicken. The effective protection lasted for a minimum 8 weeks after the second dose of the vaccine and was not limited to the homologous H5N1 virus. In addition, the vaccine reduced shedding of the virus.

  15. Viral Vectors for Use in the Development of Biodefense Vaccines

    National Research Council Canada - National Science Library

    Lee, John S; Hadjipanayis, Angela G; Parker, Michael D

    2005-01-01

    .... DNA vectors, live-attenuated viruses and bacteria, recombinant proteins combined with adjuvant, and viral- or bacterial-vectored vaccines have been developed as countermeasures against many potential...

  16. Prime-boost vaccination with heterologous live vectors encoding SIV gag and multimeric HIV-1 gp160 protein: efficacy against repeated mucosal R5 clade C SHIV challenges.

    Science.gov (United States)

    Lakhashe, Samir K; Velu, Vijayakumar; Sciaranghella, Gaia; Siddappa, Nagadenahalli B; Dipasquale, Janet M; Hemashettar, Girish; Yoon, John K; Rasmussen, Robert A; Yang, Feng; Lee, Sandra J; Montefiori, David C; Novembre, Francis J; Villinger, François; Amara, Rama Rao; Kahn, Maria; Hu, Shiu-Lok; Li, Sufen; Li, Zhongxia; Frankel, Fred R; Robert-Guroff, Marjorie; Johnson, Welkin E; Lieberman, Judy; Ruprecht, Ruth M

    2011-08-05

    We sought to induce primate immunodeficiency virus-specific cellular and neutralizing antibody (nAb) responses in rhesus macaques (RM) through a bimodal vaccine approach. RM were immunized intragastrically (i.g.) with the live-attenuated Listeria monocytogenes (Lm) vector Lmdd-BdopSIVgag encoding SIVmac239 gag. SIV Gag-specific cellular responses were boosted by intranasal and intratracheal administration of replication-competent adenovirus (Ad5hr-SIVgag) encoding the same gag. To broaden antiviral immunity, the RM were immunized with multimeric HIV clade C (HIV-C) gp160 and HIV Tat. SIV Gag-specific cellular immune responses and HIV-1 nAb developed in some RM. The animals were challenged intrarectally with five low doses of R5 SHIV-1157ipEL-p, encoding a heterologous HIV-C Env (22.1% divergent to the Env immunogen). All five controls became viremic. One out of ten vaccinees was completely protected and another had low peak viremia. Sera from the completely and partially protected RM neutralized the challenge virus > 90%; these RM also had strong SIV Gag-specific proliferation of CD8⁺ T cells. Peak and area under the curve of plasma viremia (during acute phase) among vaccinees was lower than for controls, but did not attain significance. The completely protected RM showed persistently low numbers of the α4β7-expressing CD4⁺ T cells; the latter have been implicated as preferential virus targets in vivo. Thus, vaccine-induced immune responses and relatively lower numbers of potential target cells were associated with protection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Humoral Immunity to Primary Smallpox Vaccination: Impact of Childhood versus Adult Immunization on Vaccinia Vector Vaccine Development in Military Populations.

    Directory of Open Access Journals (Sweden)

    Bonnie M Slike

    Full Text Available Modified Vaccinia virus has been shown to be a safe and immunogenic vector platform for delivery of HIV vaccines. Use of this vector is of particular importance to the military, with the implementation of a large scale smallpox vaccination campaign in 2002 in active duty and key civilian personnel in response to potential bioterrorist activities. Humoral immunity to smallpox vaccination was previously shown to be long lasting (up to 75 years and protective. However, using vaccinia-vectored vaccine delivery for other diseases on a background of anti-vector antibodies (i.e. pre-existing immunity may limit their use as a vaccine platform, especially in the military. In this pilot study, we examined the durability of vaccinia antibody responses in adult primary vaccinees in a healthy military population using a standard ELISA assay and a novel dendritic cell neutralization assay. We found binding and neutralizing antibody (NAb responses to vaccinia waned after 5-10 years in a group of 475 active duty military, born after 1972, who were vaccinated as adults with Dryvax®. These responses decreased from a geometric mean titer (GMT of 250 to baseline (30 years with a GMT of 210 (range 112-3234. This data suggests limited durability of antibody responses in adult vaccinees compared to those vaccinated in childhood and further that adult vaccinia recipients may benefit similarly from receipt of a vaccinia based vaccine as those who are vaccinia naïve. Our findings may have implications for the smallpox vaccination schedule and support the ongoing development of this promising viral vector in a military vaccination program.

  18. An Adenoviral Vector Based Vaccine for Rhodococcus equi.

    Directory of Open Access Journals (Sweden)

    Carla Giles

    Full Text Available Rhodococcus equi is a respiratory pathogen which primarily infects foals and is endemic on farms around the world with 50% mortality and 80% morbidity in affected foals. Unless detected early and treated appropriately the disease can be fatal. Currently, there is no vaccine available to prevent this disease. For decades researchers have endeavoured to develop an effective vaccine to no avail. In this study a novel human adenoviral vector vaccine for R. equi was developed and tested in the mouse model. This vaccine generated a strong antibody and cytokine response and clearance of R. equi was demonstrated following challenge. These results show that this vaccine could potentially be developed further for use as a vaccine to prevent R. equi disease in foals.

  19. Antigenicity of Leishmania-Activated C-Kinase Antigen (LACK in Human Peripheral Blood Mononuclear Cells, and Protective Effect of Prime-Boost Vaccination With pCI-neo-LACK Plus Attenuated LACK-Expressing Vaccinia Viruses in Hamsters

    Directory of Open Access Journals (Sweden)

    Laura Fernández

    2018-04-01

    Full Text Available Leishmania-activated C-kinase antigen (LACK is a highly conserved protein among Leishmania species and is considered a viable vaccine candidate for human leishmaniasis. In animal models, prime-boost vaccination with LACK-expressing plasmids plus attenuated vaccinia viruses (modified vaccinia Ankara [MVA] and mutant M65 expressing LACK, has been shown to protect against cutaneous leishmaniasis (CL. Further, LACK demonstrated to induce the production of protective cytokines in patients with active CL or cured visceral leishmaniasis, as well as in asymptomatic individuals from endemic areas. However, whether LACK is capable to trigger cytokine release by peripheral blood mononuclear cells from patients cured of CL due to Leishmania infantum (L. infantum or induce protection in L. infantum-infected hamsters [visceral leishmaniasis (VL model], has not yet been analyzed. The present work examines the ex vivo immunogenicity of LACK in cured VL and CL patients, and asymptomatic subjects from an L. infantum area. It also evaluates the vaccine potential of LACK against L. infantum infection in hamsters, in a protocol of priming with plasmid pCI-neo-LACK (DNA-LACK followed by a booster with the poxvirus vectors MVA-LACK or M65-LACK. LACK-stimulated PBMC from both asymptomatic and cured subjects responded by producing IFN-γ, TNF-α, and granzyme B (Th1-type response. Further, 78% of PBMC samples that responded to soluble Leishmania antigen showed IFN-γ secretion following stimulation with LACK. In hamsters, the protocol of DNA-LACK prime/MVA-LACK or M65-LACK virus boost vaccination significantly reduced the amount of Leishmania DNA in the liver and bone marrow, with no differences recorded between the use of MVA or M65 virus vector options. In summary, the Th1-type and cytotoxic responses elicited by LACK in PBMC from human subjects infected with L. infantum, and the parasite protective effect of prime/boost vaccination in hamsters with DNA

  20. Enhanced vaccine-induced CD8+ T cell responses to malaria antigen ME-TRAP by fusion to MHC class ii invariant chain.

    Directory of Open Access Journals (Sweden)

    Alexandra J Spencer

    Full Text Available The orthodox role of the invariant chain (CD74; Ii is in antigen presentation to CD4+ T cells, but enhanced CD8+ T cells responses have been reported after vaccination with vectored viral vaccines encoding a fusion of Ii to the antigen of interest. In this study we assessed whether fusion of the malarial antigen, ME-TRAP, to Ii could increase the vaccine-induced CD8+ T cell response. Following single or heterologous prime-boost vaccination of mice with a recombinant chimpanzee adenovirus vector, ChAd63, or recombinant modified vaccinia virus Ankara (MVA, higher frequencies of antigen-specific CD4+ and CD8+ T cells were observed, with the largest increases observed following a ChAd63-MVA heterologous prime-boost regimen. Studies in non-human primates confirmed the ability of Ii-fusion to augment the T cell response, where a 4-fold increase was maintained up to 11 weeks after the MVA boost. Of the numerous different approaches explored to increase vectored vaccine induced immunogenicity over the years, fusion to the invariant chain showed a consistent enhancement in CD8+ T cell responses across different animal species and may therefore find application in the development of vaccines against human malaria and other diseases where high levels of cell-mediated immunity are required.

  1. A heterologous prime-boost Ebola virus vaccine regimen induces durable neutralizing antibody response and prevents Ebola virus-like particle entry in mice.

    Science.gov (United States)

    Chen, Tan; Li, Dapeng; Song, Yufeng; Yang, Xi; Liu, Qingwei; Jin, Xia; Zhou, Dongming; Huang, Zhong

    2017-09-01

    Ebola virus (EBOV) is one of the most virulent pathogens known to humans. Neutralizing antibodies play a major role in the protection against EBOV infections. Thus, an EBOV vaccine capable of inducing a long-lasting neutralizing antibody response is highly desirable. We report here that a heterologous prime-boost vaccine regimen can elicit durable EBOV-neutralizing antibody response in mice. A chimpanzee serotype 7 adenovirus expressing EBOV GP (denoted AdC7-GP) was generated and used for priming. A truncated version of EBOV GP1 protein (denoted GP1t) was produced at high levels in Drosophila S2 cells and used for boosting. Mouse immunization studies showed that the AdC7-GP prime/GP1t boost vaccine regimen was more potent in eliciting neutralizing antibodies than either the AdC7-GP or GP1t alone. Neutralizing antibodies induced by the heterologous prime-boost regimen sustained at high titers for at least 18 weeks after immunization. Significantly, in vivo challenge studies revealed that the entry of reporter EBOV-like particles was efficiently blocked in mice receiving the heterologous prime-boost regimen even at 18 weeks after the final dose of immunization. These results suggest that this novel AdC7-GP prime/GP1t boost regimen represents an EBOV vaccine approach capable of establishing long-term protection, and therefore warrants further development. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Highly-Immunogenic Virally-Vectored T-cell Vaccines Cannot Overcome Subversion of the T-cell Response by HCV during Chronic Infection

    Directory of Open Access Journals (Sweden)

    Leo Swadling

    2016-08-01

    Full Text Available An effective therapeutic vaccine for the treatment of chronic hepatitis C virus (HCV infection, as an adjunct to newly developed directly-acting antivirals (DAA, or for the prevention of reinfection, would significantly reduce the global burden of disease associated with chronic HCV infection. A recombinant chimpanzee adenoviral (ChAd3 vector and a modified vaccinia Ankara (MVA, encoding the non-structural proteins of HCV (NSmut, used in a heterologous prime/boost regimen induced multi-specific, high-magnitude, durable HCV-specific CD4+ and CD8+ T-cell responses in healthy volunteers, and was more immunogenic than a heterologous Ad regimen. We now assess the immunogenicity of this vaccine regimen in HCV infected patients (including patients with a low viral load suppressed with interferon/ribavirin therapy, determine T-cell cross-reactivity to endogenous virus, and compare immunogenicity with that observed previously in both healthy volunteers and in HCV infected patients vaccinated with the heterologous Ad regimen. Vaccination of HCV infected patients with ChAd3-NSmut/MVA-NSmut was well tolerated. Vaccine-induced HCV-specific T-cell responses were detected in 8/12 patients; however, CD4+ T-cell responses were rarely detected, and the overall magnitude of HCV-specific T-cell responses was markedly reduced when compared to vaccinated healthy volunteers. Furthermore, HCV-specific cells had a distinct partially-functional phenotype (lower expression of activation markers, granzyme B, and TNFα production, weaker in vitro proliferation, and higher Tim3 expression, with comparable Tbet and Eomes expression compared to healthy volunteers. Robust anti-vector T-cells and antibodies were induced, showing that there is no global defect in immunity. The level of viremia at the time of vaccination did not correlate with the magnitude of the vaccine-induced T-cell response. Full-length, next-generation sequencing of the circulating virus demonstrated that T

  3. Percutaneous Vaccination as an Effective Method of Delivery of MVA and MVA-Vectored Vaccines.

    Directory of Open Access Journals (Sweden)

    Clement A Meseda

    Full Text Available The robustness of immune responses to an antigen could be dictated by the route of vaccine inoculation. Traditional smallpox vaccines, essentially vaccinia virus strains, that were used in the eradication of smallpox were administered by percutaneous inoculation (skin scarification. The modified vaccinia virus Ankara is licensed as a smallpox vaccine in Europe and Canada and currently undergoing clinical development in the United States. MVA is also being investigated as a vector for the delivery of heterologous genes for prophylactic or therapeutic immunization. Since MVA is replication-deficient, MVA and MVA-vectored vaccines are often inoculated through the intramuscular, intradermal or subcutaneous routes. Vaccine inoculation via the intramuscular, intradermal or subcutaneous routes requires the use of injection needles, and an estimated 10 to 20% of the population of the United States has needle phobia. Following an observation in our laboratory that a replication-deficient recombinant vaccinia virus derived from the New York City Board of Health strain elicited protective immune responses in a mouse model upon inoculation by tail scarification, we investigated whether MVA and MVA recombinants can elicit protective responses following percutaneous administration in mouse models. Our data suggest that MVA administered by percutaneous inoculation, elicited vaccinia-specific antibody responses, and protected mice from lethal vaccinia virus challenge, at levels comparable to or better than subcutaneous or intramuscular inoculation. High titers of specific neutralizing antibodies were elicited in mice inoculated with a recombinant MVA expressing the herpes simplex type 2 glycoprotein D after scarification. Similarly, a recombinant MVA expressing the hemagglutinin of attenuated influenza virus rgA/Viet Nam/1203/2004 (H5N1 elicited protective immune responses when administered at low doses by scarification. Taken together, our data suggest that

  4. Percutaneous Vaccination as an Effective Method of Delivery of MVA and MVA-Vectored Vaccines.

    Science.gov (United States)

    Meseda, Clement A; Atukorale, Vajini; Kuhn, Jordan; Schmeisser, Falko; Weir, Jerry P

    2016-01-01

    The robustness of immune responses to an antigen could be dictated by the route of vaccine inoculation. Traditional smallpox vaccines, essentially vaccinia virus strains, that were used in the eradication of smallpox were administered by percutaneous inoculation (skin scarification). The modified vaccinia virus Ankara is licensed as a smallpox vaccine in Europe and Canada and currently undergoing clinical development in the United States. MVA is also being investigated as a vector for the delivery of heterologous genes for prophylactic or therapeutic immunization. Since MVA is replication-deficient, MVA and MVA-vectored vaccines are often inoculated through the intramuscular, intradermal or subcutaneous routes. Vaccine inoculation via the intramuscular, intradermal or subcutaneous routes requires the use of injection needles, and an estimated 10 to 20% of the population of the United States has needle phobia. Following an observation in our laboratory that a replication-deficient recombinant vaccinia virus derived from the New York City Board of Health strain elicited protective immune responses in a mouse model upon inoculation by tail scarification, we investigated whether MVA and MVA recombinants can elicit protective responses following percutaneous administration in mouse models. Our data suggest that MVA administered by percutaneous inoculation, elicited vaccinia-specific antibody responses, and protected mice from lethal vaccinia virus challenge, at levels comparable to or better than subcutaneous or intramuscular inoculation. High titers of specific neutralizing antibodies were elicited in mice inoculated with a recombinant MVA expressing the herpes simplex type 2 glycoprotein D after scarification. Similarly, a recombinant MVA expressing the hemagglutinin of attenuated influenza virus rgA/Viet Nam/1203/2004 (H5N1) elicited protective immune responses when administered at low doses by scarification. Taken together, our data suggest that MVA and MVA-vectored

  5. An antivector vaccine protects against a lethal vector-borne pathogen.

    Directory of Open Access Journals (Sweden)

    Milan Labuda

    2006-04-01

    Full Text Available Vaccines that target blood-feeding disease vectors, such as mosquitoes and ticks, have the potential to protect against the many diseases caused by vector-borne pathogens. We tested the ability of an anti-tick vaccine derived from a tick cement protein (64TRP of Rhipicephalus appendiculatus to protect mice against tick-borne encephalitis virus (TBEV transmitted by infected Ixodes ricinus ticks. The vaccine has a "dual action" in immunized animals: when infested with ticks, the inflammatory and immune responses first disrupt the skin feeding site, resulting in impaired blood feeding, and then specific anti-64TRP antibodies cross-react with midgut antigenic epitopes, causing rupture of the tick midgut and death of engorged ticks. Three parameters were measured: "transmission," number of uninfected nymphal ticks that became infected when cofeeding with an infected adult female tick; "support," number of mice supporting virus transmission from the infected tick to cofeeding uninfected nymphs; and "survival," number of mice that survived infection by tick bite and subsequent challenge by intraperitoneal inoculation of a lethal dose of TBEV. We show that one dose of the 64TRP vaccine protects mice against lethal challenge by infected ticks; control animals developed a fatal viral encephalitis. The protective effect of the 64TRP vaccine was comparable to that of a single dose of a commercial TBEV vaccine, while the transmission-blocking effect of 64TRP was better than that of the antiviral vaccine in reducing the number of animals supporting virus transmission. By contrast, the commercial antitick vaccine (TickGARD that targets only the tick's midgut showed transmission-blocking activity but was not protective. The 64TRP vaccine demonstrates the potential to control vector-borne disease by interfering with pathogen transmission, apparently by mediating a local cutaneous inflammatory immune response at the tick-feeding site.

  6. Recombinant Newcastle disease virus-vectored vaccines against human and animal infectious diseases.

    Science.gov (United States)

    Duan, Zhiqiang; Xu, Houqiang; Ji, Xinqin; Zhao, Jiafu

    2015-01-01

    Recent advances in recombinant genetic engineering techniques have brought forward a leap in designing new vaccines in modern medicine. One attractive strategy is the application of reverse genetics technology to make recombinant Newcastle disease virus (rNDV) deliver protective antigens of pathogens. In recent years, numerous studies have demonstrated that rNDV-vectored vaccines can induce quicker and better humoral and mucosal immune responses than conventional vaccines and are protective against pathogen challenges. With deeper understanding of NDV molecular biology, it is feasible to develop gene-modified rNDV vaccines accompanied by good safety, high efficacy, low toxicity and better immunogenicity. This review summarizes the development of reverse genetics technology in using NDV as a promising vaccine vector to design new vaccines for human and animal use.

  7. Distinct susceptibility of HIV vaccine vector-induced CD4 T cells to HIV infection

    Science.gov (United States)

    Niu, Qingli; Hou, Wei; Churchyard, Gavin; Nitayaphan, Sorachai; Pitisuthithum, Punnee; Rerks-Ngarm, Supachai; Franchini, Genoveffa

    2018-01-01

    The concerns raised from adenovirus 5 (Ad5)-based HIV vaccine clinical trials, where excess HIV infections were observed in some vaccine recipients, have highlighted the importance of understanding host responses to vaccine vectors and the HIV susceptibility of vector-specific CD4 T cells in HIV vaccination. Our recent study reported that human Ad5-specific CD4 T cells induced by Ad5 vaccination (RV156A trial) are susceptible to HIV. Here we further investigated the HIV susceptibility of vector-specific CD4 T cells induced by ALVAC, a canarypox viral vector tested in the Thai trial RV144, as compared to Ad5 vector-specific CD4 T cells in the HVTN204 trial. We showed that while Ad5 vector-specific CD4 T cells were readily susceptible to HIV, ALVAC-specific CD4 T cells in RV144 PBMC were substantially less susceptible to both R5 and X4 HIV in vitro. The lower HIV susceptibility of ALVAC-specific CD4 T cells was associated with the reduced surface expression of HIV entry co-receptors CCR5 and CXCR4 on these cells. Phenotypic analyses identified that ALVAC-specific CD4 T cells displayed a strong Th1 phenotype, producing higher levels of IFN-γ and CCL4 (MIP-1β) but little IL-17. Of interest, ALVAC and Ad5 vectors induced distinct profiles of vector-specific CD8 vs. CD4 T-cell proliferative responses in PBMC, with ALVAC preferentially inducing CD8 T-cell proliferation, while Ad5 vector induced CD4 T-cell proliferation. Depletion of ALVAC-, but not Ad5-, induced CD8 T cells in PBMC led to a modest increase in HIV infection of vector-specific CD4 T cells, suggesting a role of ALVAC-specific CD8 T cells in protecting ALVAC-specific CD4 T cells from HIV. Taken together, our data provide strong evidence for distinct HIV susceptibility of CD4 T cells induced by different vaccine vectors and highlight the importance of better evaluating anti-vector responses in HIV vaccination. PMID:29474461

  8. Mucosal delivery of a vectored RSV vaccine is safe and elicits protective immunity in rodents and nonhuman primates

    Directory of Open Access Journals (Sweden)

    Angiolo Pierantoni

    Full Text Available Respiratory Syncytial Virus (RSV is a leading cause of severe respiratory disease in infants and the elderly. No vaccine is presently available to address this major unmet medical need. We generated a new genetic vaccine based on chimpanzee Adenovirus (PanAd3-RSV and Modified Vaccinia Ankara RSV (MVA-RSV encoding the F, N, and M2-1 proteins of RSV, for the induction of neutralizing antibodies and broad cellular immunity. Because RSV infection is restricted to the respiratory tract, we compared intranasal (IN and intramuscular (M administration for safety, immunogenicity, and efficacy in different species. A single IN or IM vaccination completely protected BALB/c mice and cotton rats against RSV replication in the lungs. However, only IN administration could prevent infection in the upper respiratory tract. IM vaccination with MVA-RSV also protected cotton rats from lower respiratory tract infection in the absence of detectable neutralizing antibodies. Heterologous prime boost with PanAd3-RSV and MVA-RSV elicited high neutralizing antibody titers and broad T-cell responses in nonhuman primates. In addition, animals primed in the nose developed mucosal IgA against the F protein. In conclusion, we have shown that our vectored RSV vaccine induces potent cellular and humoral responses in a primate model, providing strong support for clinical testing.

  9. Recombinant vesicular stomatitis virus vaccine vectors expressing filovirus glycoproteins lack neurovirulence in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Chad E Mire

    Full Text Available The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with high mortality in humans and nonhuman primates. Among the most promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV that expresses an individual filovirus glycoprotein (GP in place of the VSV glycoprotein (G. The main concern with all replication-competent vaccines, including the rVSV filovirus GP vectors, is their safety. To address this concern, we performed a neurovirulence study using 21 cynomolgus macaques where the vaccines were administered intrathalamically. Seven animals received a rVSV vector expressing the Zaire ebolavirus (ZEBOV GP; seven animals received a rVSV vector expressing the Lake Victoria marburgvirus (MARV GP; three animals received rVSV-wild type (wt vector, and four animals received vehicle control. Two of three animals given rVSV-wt showed severe neurological symptoms whereas animals receiving vehicle control, rVSV-ZEBOV-GP, or rVSV-MARV-GP did not develop these symptoms. Histological analysis revealed major lesions in neural tissues of all three rVSV-wt animals; however, no significant lesions were observed in any animals from the filovirus vaccine or vehicle control groups. These data strongly suggest that rVSV filovirus GP vaccine vectors lack the neurovirulence properties associated with the rVSV-wt parent vector and support their further development as a vaccine platform for human use.

  10. Heterologous Prime-Boost Vaccination Using an AS03B-Adjuvanted Influenza A(H5N1) Vaccine in Infants and Children <3 Years of Age

    Science.gov (United States)

    Nolan, Terry; Izurieta, Patricia; Lee, Bee-Wah; Chan, Poh Chong; Marshall, Helen; Booy, Robert; Drame, Mamadou; Vaughn, David W.

    2014-01-01

    Background. Protecting young children from pandemic influenza should also reduce transmission to susceptible adults, including pregnant women. Methods. An open study assessed immunogenicity and reactogenicity of a heterologous booster dose of A/turkey/Turkey/1/2005(H5N1)-AS03B (AS03B is an Adjuvant System containing α-tocopherol and squalene in an oil-in-water emulsion [5.93 mg tocopherol]) in infants and children aged 6 to < 36 months that was given 6 months following 2-dose primary vaccination with A/Indonesia/05/2005(H5N1)-AS03B. Vaccines contained 1.9 µg of hemagglutinin antigen and AS03B. Hemagglutinin inhibition (HI) responses, microneutralization titers, and antineuraminidase antibody levels were assessed for 6 months following the booster vaccination. Results. For each age stratum (defined on the basis of the subject's age at first vaccination as 6 to < 12 months, 12 to < 24 months, and 24 to < 36 months) and overall (n = 113), European influenza vaccine licensure criteria were fulfilled for responses to A/turkey/Turkey/1/2005(H5N1) 10 days following the booster vaccination. Local pain and fever increased with consecutive doses. Anamnestic immune responses were demonstrated for HI, neutralizing, and antineuraminidase antibodies against vaccine-homologous/heterologous strains. Antibody responses to vaccine-homologous/heterologous strains persisted in all children 6 months following the booster vaccination. Conclusions. Prevaccination of young children with a clade 2 strain influenza A(H5N1) AS03-adjuvanted vaccine followed by heterologous booster vaccination boosted immune responses to the homologous strain and a related clade, with persistence for at least 6 months. The results support a prime-boost vaccination approach in young children for pandemic influenza preparedness. Clinical Trials Registration. NCT01323946. PMID:24973461

  11. A glycolipid adjuvant, 7DW8-5, enhances CD8+ T cell responses induced by an adenovirus-vectored malaria vaccine in non-human primates.

    Science.gov (United States)

    Padte, Neal N; Boente-Carrera, Mar; Andrews, Chasity D; McManus, Jenny; Grasperge, Brooke F; Gettie, Agegnehu; Coelho-dos-Reis, Jordana G; Li, Xiangming; Wu, Douglass; Bruder, Joseph T; Sedegah, Martha; Patterson, Noelle; Richie, Thomas L; Wong, Chi-Huey; Ho, David D; Vasan, Sandhya; Tsuji, Moriya

    2013-01-01

    A key strategy to a successful vaccine against malaria is to identify and develop new adjuvants that can enhance T-cell responses and improve protective immunity. Upon co-administration with a rodent malaria vaccine in mice, 7DW8-5, a recently identified novel analog of α-galactosylceramide (α-GalCer), enhances the level of malaria-specific protective immune responses more strongly than the parent compound. In this study, we sought to determine whether 7DW8-5 could provide a similar potent adjuvant effect on a candidate human malaria vaccine in the more relevant non-human primate (NHP) model, prior to committing to clinical development. The candidate human malaria vaccine, AdPfCA (NMRC-M3V-Ad-PfCA), consists of two non-replicating recombinant adenoviral (Ad) vectors, one expressing the circumsporozoite protein (CSP) and another expressing the apical membrane antigen-1 (AMA1) of Plasmodium falciparum. In several phase 1 clinical trials, AdPfCA was well tolerated and demonstrated immunogenicity for both humoral and cell-mediated responses. In the study described herein, 25 rhesus macaques received prime and boost intramuscular (IM) immunizations of AdPfCA alone or with an ascending dose of 7DW8-5. Our results indicate that 7DW8-5 is safe and well-tolerated and provides a significant enhancement (up to 9-fold) in malaria-specific CD8+ T-cell responses after both priming and boosting phases, supporting further clinical development.

  12. A glycolipid adjuvant, 7DW8-5, enhances CD8+ T cell responses induced by an adenovirus-vectored malaria vaccine in non-human primates.

    Directory of Open Access Journals (Sweden)

    Neal N Padte

    Full Text Available A key strategy to a successful vaccine against malaria is to identify and develop new adjuvants that can enhance T-cell responses and improve protective immunity. Upon co-administration with a rodent malaria vaccine in mice, 7DW8-5, a recently identified novel analog of α-galactosylceramide (α-GalCer, enhances the level of malaria-specific protective immune responses more strongly than the parent compound. In this study, we sought to determine whether 7DW8-5 could provide a similar potent adjuvant effect on a candidate human malaria vaccine in the more relevant non-human primate (NHP model, prior to committing to clinical development. The candidate human malaria vaccine, AdPfCA (NMRC-M3V-Ad-PfCA, consists of two non-replicating recombinant adenoviral (Ad vectors, one expressing the circumsporozoite protein (CSP and another expressing the apical membrane antigen-1 (AMA1 of Plasmodium falciparum. In several phase 1 clinical trials, AdPfCA was well tolerated and demonstrated immunogenicity for both humoral and cell-mediated responses. In the study described herein, 25 rhesus macaques received prime and boost intramuscular (IM immunizations of AdPfCA alone or with an ascending dose of 7DW8-5. Our results indicate that 7DW8-5 is safe and well-tolerated and provides a significant enhancement (up to 9-fold in malaria-specific CD8+ T-cell responses after both priming and boosting phases, supporting further clinical development.

  13. Safety of the novel influenza viral vector Brucella abortus vaccine in pregnant heifers

    Directory of Open Access Journals (Sweden)

    Kaissar Tabynov

    2016-01-01

    Full Text Available ABSTRACT: The present study provides the first information about the safety of a new influenza viral vector vaccine expressing the Brucella ribosomal protein L7/L12 or Omp16 containing the adjuvant Montanide Gel01 in pregnant heifers. Immunization of pregnant heifers was conducted via the conjunctival (n=10 or subcutaneous (n=10 route using cross prime and booster vaccination schedules at an interval of 28 days. The vector vaccine was evaluated in comparison with positive control groups vaccinated with B. abortus S19 (n=10 or B. abortus RB51 (n=10 and a negative (PBS+Montanide Gel01; n=10 control group. Clinical studies, thermometry, assessment of local reactogenicity and observation of abortion showed that the vector vaccine via the conjunctival or subcutaneous route was completely safe for pregnant heifers compared to the commercial vaccines B. abortus S19 or B. abortus RB51. The only single adverse event was the formation of infiltration at the site of subcutaneous injection; this reaction was not observed for the conjunctival route.

  14. Heterologous Two-Dose Vaccination with Simian Adenovirus and Poxvirus Vectors Elicits Long-Lasting Cellular Immunity to Influenza Virus A in Healthy Adults

    Directory of Open Access Journals (Sweden)

    L. Coughlan

    2018-03-01

    Full Text Available Background: T-cell responses against highly conserved influenza antigens have been previously associated with protection. However, these immune responses are poorly maintained following recovery from influenza infection and are not boosted by inactivated influenza vaccines. We have previously demonstrated the safety and immunogenicity of two viral vectored vaccines, modified vaccinia virus Ankara (MVA and the chimpanzee adenovirus ChAdOx1 expressing conserved influenza virus antigens, nucleoprotein (NP and matrix protein-1 (M1. We now report on the safety and long-term immunogenicity of multiple combination regimes of these vaccines in young and older adults. Methods: We conducted a Phase I open-label, randomized, multi-center study in 49 subjects aged 18–46 years and 24 subjects aged 50 years or over. Following vaccination, adverse events were recorded and the kinetics of the T cell response determined at multiple time points for up to 18 months. Findings: Both vaccines were well tolerated. A two dose heterologous vaccination regimen significantly increased the magnitude of pre-existing T-cell responses to NP and M1 after both doses in young and older adults. The fold-increase and peak immune responses after a single MVA-NP + M1 vaccination was significantly higher compared to ChAdOx1 NP + M1. In a mixed regression model, T-cell responses over 18 months were significantly higher following the two dose vaccination regimen of MVA/ChAdOx1 NP + M1. Interpretation: A two dose heterologous vaccination regimen of MVA/ChAdOx1 NP + M1 was safe and immunogenic in young and older adults, offering a promising vaccination strategy for inducing long-term broadly cross-reactive protection against influenza A. Funding Source: Medical Research Council UK, NIHR BMRC Oxford. Keywords: Influenza, T-cell responses, Influenza vaccines, Viral vectors, Adults, Older adults

  15. Development of oral CTL vaccine using a CTP-integrated Sabin 1 poliovirus-based vector system.

    Science.gov (United States)

    Han, Seung-Soo; Lee, Jinjoo; Jung, Yideul; Kang, Myeong-Ho; Hong, Jung-Hyub; Cha, Min-Suk; Park, Yu-Jin; Lee, Ezra; Yoon, Cheol-Hee; Bae, Yong-Soo

    2015-09-11

    We developed a CTL vaccine vector by modification of the RPS-Vax system, a mucosal vaccine vector derived from a poliovirus Sabin 1 strain, and generated an oral CTL vaccine against HIV-1. A DNA fragment encoding a cytoplasmic transduction peptide (CTP) was integrated into the RPS-Vax system to generate RPS-CTP, a CTL vaccine vector. An HIV-1 p24 cDNA fragment was introduced into the RPS-CTP vector system and a recombinant poliovirus (rec-PV) named vRPS-CTP/p24 was produced. vRPS-CTP/p24 was genetically stable and efficiently induced Th1 immunity and p24-specific CTLs in immunized poliovirus receptor-transgenic (PVR-Tg) mice. In challenge experiments, PVR-Tg mice that were pre-immunized orally with vRPS-CTP/p24 were resistant to challenge with a lethal dose of p24-expressing recombinant vaccinia virus (rMVA-p24). These results suggested that the RPS-CTP vector system had potential for developing oral CTL vaccines against infectious diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Prime-Boost Vaccination Using Chemokine-Fused gp120 DNA and HIV Envelope Peptides Activates Both Immediate and Long-Term Memory Cellular Responses in Rhesus Macaques

    Directory of Open Access Journals (Sweden)

    Hong Qin

    2010-01-01

    Full Text Available HIV vaccine candidates with improved immunogenicity and induction of mucosal T-cell immunity are needed. A prime-boost strategy using a novel HIV glycoprotein 120 DNA vaccine was employed to immunize rhesus macaques. The DNA vaccine encoded a chimeric gp120 protein in fusion with monocyte chemoattractant protein-3, which was hypothesized to improve the ability of antigen-presenting cells to capture viral antigen through chemokine receptor-mediated endocytosis. DNA vaccination induced virus-reactive T cells in peripheral blood, detectable by T cell proliferation, INFγ ELISPOT and sustained IL-6 production, without humoral responses. With a peptide-cocktail vaccine containing a set of conserved polypeptides of HIV-1 envelope protein, given by nasogastric administration, primed T-cell immunity was significantly boosted. Surprisingly, long-term and peptide-specific mucosal memory T-cell immunity was detected in both vaccinated macaques after one year. Therefore, data from this investigation offer proof-of-principle for potential effectiveness of the prime-boost strategy with a chemokine-fused gp120 DNA and warrant further testing in the nonhuman primate models for developing as a potential HIV vaccine candidate in humans.

  17. A novel alphavirus replicon-vectored vaccine delivered by adenovirus induces sterile immunity against classical swine fever.

    Science.gov (United States)

    Sun, Yuan; Li, Hong-Yu; Tian, Da-Yong; Han, Qiu-Ying; Zhang, Xin; Li, Na; Qiu, Hua-Ji

    2011-10-26

    Low efficacy of gene-based vaccines due to inefficient gene delivery and expression has been major bottleneck of their applications. Efforts have been made to improve the efficacy, such as gene gun and electroporation, but the strategies are difficult to put into practical use. In this study, we developed and evaluated an adenovirus-delivered, alphavirus replicon-vectored vaccine (chimeric vector-based vaccine) expressing the E2 gene of classical swine fever virus (CSFV) (rAdV-SFV-E2). Rabbits immunized with rAdV-SFV-E2 developed CSFV-specific antibodies as early as 9 days and as long as 189 days and completely protected from challenge with C-strain. Pigs immunized with rAdV-SFV-E2 (n=5) developed robust humoral and cell-mediated responses to CSFV and were completely protected from subsequent lethal CSFV infection clinically and virologically. The level of immunity and protection induced by rAdV-SFV-E2 was comparable to that provided by the currently used live attenuated vaccine, C-strain. In contrast, both the conventional alphavirus replicon-vectored vaccine pSFV1CS-E2 and conventional adenovirus-vectored vaccine rAdV-E2 provided incomplete protection. The chimeric vector-based vaccine represents the first gene-based vaccine that is able to confer sterile immunity and complete protection against CSFV. The new-concept vaccination strategy may also be valuable in vaccine development against other pathogens. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Mucosal vaccination with heterologous viral vectored vaccine targeting subdominant SIV accessory antigens strongly inhibits early viral replication

    DEFF Research Database (Denmark)

    Xu, Huanbin; Andersson, Anne-Marie Carola; Ragonnaud, Emeline

    2017-01-01

    Conventional HIV T cell vaccine strategies have not been successful in containing acute peak viremia, nor in providing long-term control. We immunized rhesus macaques intramuscularly and rectally using a heterologous adenovirus vectored SIV vaccine regimen encoding normally weakly immunogenic tat...

  19. Immunogenicity and efficacy of a chimpanzee adenovirus-vectored Rift Valley fever vaccine in mice.

    Science.gov (United States)

    Warimwe, George M; Lorenzo, Gema; Lopez-Gil, Elena; Reyes-Sandoval, Arturo; Cottingham, Matthew G; Spencer, Alexandra J; Collins, Katharine A; Dicks, Matthew D J; Milicic, Anita; Lall, Amar; Furze, Julie; Turner, Alison V; Hill, Adrian V S; Brun, Alejandro; Gilbert, Sarah C

    2013-12-05

    Rift Valley Fever (RVF) is a viral zoonosis that historically affects livestock production and human health in sub-Saharan Africa, though epizootics have also occurred in the Arabian Peninsula. Whilst an effective live-attenuated vaccine is available for livestock, there is currently no licensed human RVF vaccine. Replication-deficient chimpanzee adenovirus (ChAd) vectors are an ideal platform for development of a human RVF vaccine, given the low prevalence of neutralizing antibodies against them in the human population, and their excellent safety and immunogenicity profile in human clinical trials of vaccines against a wide range of pathogens. Here, in BALB/c mice, we evaluated the immunogenicity and efficacy of a replication-deficient chimpanzee adenovirus vector, ChAdOx1, encoding the RVF virus envelope glycoproteins, Gn and Gc, which are targets of virus neutralizing antibodies. The ChAdOx1-GnGc vaccine was assessed in comparison to a replication-deficient human adenovirus type 5 vector encoding Gn and Gc (HAdV5-GnGc), a strategy previously shown to confer protective immunity against RVF in mice. A single immunization with either of the vaccines conferred protection against RVF virus challenge eight weeks post-immunization. Both vaccines elicited RVF virus neutralizing antibody and a robust CD8+ T cell response. Together the results support further development of RVF vaccines based on replication-deficient adenovirus vectors, with ChAdOx1-GnGc being a potential candidate for use in future human clinical trials.

  20. Unique Safety Issues Associated with Virus Vectored Vaccines: Potential for and Theoretical Consequences of Recombination with Wild Type Virus Strains

    Science.gov (United States)

    Condit, Richard C.; Williamson, Anna-Lise; Sheets, Rebecca; Seligman, Stephen J.; Monath, Thomas P.; Excler, Jean-Louis; Gurwith, Marc; Bok, Karin; Robertson, James S.; Kim, Denny; Hendry, Michael; Singh, Vidisha; Mac, Lisa M.; Chen, Robert T.

    2016-01-01

    In 2003 and 2013, the World Health Organization convened informal consultations on characterization and quality aspects of vaccines based on live virus vectors. In the resulting reports, one of several issues raised for future study was the potential for recombination of virus-vectored vaccines with wild type pathogenic virus strains. This paper presents an assessment of this issue formulated by the Brighton Collaboration. To provide an appropriate context for understanding the potential for recombination of virus-vectored vaccines, we review briefly the current status of virus vectored vaccines, mechanisms of recombination between viruses, experience with recombination involving live attenuated vaccines in the field, and concerns raised previously in the literature regarding recombination of virus-vectored vaccines with wild type virus strains. We then present a discussion of the major variables that could influence recombination between a virus-vectored vaccine and circulating wild type virus and the consequences of such recombination, including intrinsic recombination properties of the parent virus used as a vector; sequence relatedness of vector and wild virus; virus host range, pathogenesis and transmission; replication competency of vector in target host; mechanism of vector attenuation; additional factors potentially affecting virulence; and circulation of multiple recombinant vectors in the same target population. Finally, we present some guiding principles for vector design and testing intended to anticipate and mitigate the potential for and consequences of recombination of virus-vectored vaccines with wild type pathogenic virus strains. PMID:27346303

  1. Advances and Future Challenges in Recombinant Adenoviral Vectored H5N1 Influenza Vaccines

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhang

    2012-11-01

    Full Text Available The emergence of a highly pathogenic avian influenza virus H5N1 has increased the potential for a new pandemic to occur. This event highlights the necessity for developing a new generation of influenza vaccines to counteract influenza disease. These vaccines must be manufactured for mass immunization of humans in a timely manner. Poultry should be included in this policy, since persistent infected flocks are the major source of avian influenza for human infections. Recombinant adenoviral vectored H5N1 vaccines are an attractive alternative to the currently licensed influenza vaccines. This class of vaccines induces a broadly protective immunity against antigenically distinct H5N1, can be manufactured rapidly, and may allow mass immunization of human and poultry. Recombinant adenoviral vectors derived from both human and non-human adenoviruses are currently being investigated and appear promising both in nonclinical and clinical studies. This review will highlight the current status of various adenoviral vectored H5N1 vaccines and will outline novel approaches for the future.

  2. Viral Vectors for Use in the Development of Biodefense Vaccines

    National Research Council Canada - National Science Library

    Lee, John S; Hadjipanayis, Angela G; Parker, Michael D

    2005-01-01

    ... agents of bioterrorism or biowarfare. The use of viruses, for example adenovirus, vaccinia virus, and Venezuelan equine encephalitis virus, as vaccine-vectors has enabled researchers to develop effective means for countering the threat of bioterrorism and biowarfare. An overview of the different viral vectors and the threats they counter will be discussed.

  3. A two-dose heterologous prime-boost vaccine regimen eliciting sustained immune responses to Ebola Zaire could support a preventive strategy for future outbreaks.

    Science.gov (United States)

    Shukarev, Georgi; Callendret, Benoit; Luhn, Kerstin; Douoguih, Macaya

    2017-02-01

    The consequences of the 2013-16 Ebola Zaire virus disease epidemic in West Africa were grave. The economies, healthcare systems and communities of Guinea, Sierra Leone and Liberia were devastated by over 18 months of active Ebola virus transmission, followed by sporadic resurgences potentially related to sexual transmission by survivors with viral persistence in body fluids following recovery. The need to develop and implement strategies to prevent and mitigate future outbreaks is now beyond dispute. The potential for unpredictable outbreaks of indeterminate duration, and control challenges posed by the possibility of sporadic re-emergence, mean that implementation of an effective vaccination program for outbreak containment necessitates a vaccine providing durable immunity. Heterologous prime-boost vaccine regimens deliver the same or similar antigens through different vaccine types, the first to prime and the second to boost the immune system. Ad26.ZEBOV/MVA-BN-Filo is an investigational Ebola Zaire vaccine regimen that uses this heterologous prime-boost approach. Preliminary Phase 1 data suggest that Ad26.ZEBOV/MVA-BN-Filo confers durable immunity for at least 240 d and is well-tolerated with a good safety profile. This regimen may therefore be suitable for prophylactic use in a regional or targeted population vaccination strategy, and could potentially aid prevention and control of future Ebola outbreaks.

  4. A viral vectored prime-boost immunization regime targeting the malaria Pfs25 antigen induces transmission-blocking activity.

    Directory of Open Access Journals (Sweden)

    Anna L Goodman

    Full Text Available The ookinete surface protein Pfs25 is a macrogamete-to-ookinete/ookinete stage antigen of Plasmodium falciparum, capable of exerting high-level anti-malarial transmission-blocking activity following immunization with recombinant protein-in-adjuvant formulations. Here, this antigen was expressed in recombinant chimpanzee adenovirus 63 (ChAd63, human adenovirus serotype 5 (AdHu5 and modified vaccinia virus Ankara (MVA viral vectored vaccines. Two immunizations were administered to mice in a heterologous prime-boost regime. Immunization of mice with AdHu5 Pfs25 at week 0 and MVA Pfs25 at week 10 (Ad-MVA Pfs25 resulted in high anti-Pfs25 IgG titers, consisting of predominantly isotypes IgG1 and IgG2a. A single priming immunization with ChAd63 Pfs25 was as effective as AdHu5 Pfs25 with respect to ELISA titers at 8 weeks post-immunization. Sera from Ad-MVA Pfs25 immunized mice inhibited the transmission of P. falciparum to the mosquito both ex vivo and in vivo. In a standard membrane-feeding assay using NF54 strain P. falciparum, oocyst intensity in Anopheles stephensi mosquitoes was significantly reduced in an IgG concentration-dependent manner when compared to control feeds (96% reduction of intensity, 78% reduction in prevalence at a 1 in 5 dilution of sera. In addition, an in vivo transmission-blocking effect was also demonstrated by direct feeding of immunized mice infected with Pfs25DR3, a chimeric P. berghei line expressing Pfs25 in place of endogenous Pbs25. In this assay the density of Pfs25DR3 oocysts was significantly reduced when mosquitoes were fed on vaccinated as compared to control mice (67% reduction of intensity, 28% reduction in prevalence and specific IgG titer correlated with efficacy. These data confirm the utility of the adenovirus-MVA vaccine platform for the induction of antibodies with transmission-blocking activity, and support the continued development of this alternative approach to transmission-blocking malaria subunit

  5. Immunology and evolvement of the adenovirus prime, MVA boost Ebola virus vaccine.

    Science.gov (United States)

    Zhou, Yan; Sullivan, Nancy J

    2015-08-01

    The 2014 Ebola virus outbreak caused an order of magnitude more deaths in a single outbreak than all previous known outbreaks combined, affecting both local and international public health, and threatening the security and economic stability of the countries in West Africa directly confronting the outbreak. The severity of the epidemic lead to a global response to assist with patient care, outbreak control, and deployment of vaccines. The latter was possible due to the long history of basic and clinical research aimed at identifying a safe and effective vaccine to protect against Ebola virus infection. This review highlights the immunology, development, and progress of vaccines based on replication-defective adenovirus vectors, culminating in the successful launch of the first Phase III trial of an Ebola virus vaccine. Published by Elsevier Ltd.

  6. Pre-existing vector immunity does not prevent replication deficient adenovirus from inducing efficient CD8 T-cell memory and recall responses

    DEFF Research Database (Denmark)

    Steffensen, Maria Abildgaard; Jensen, Benjamin Anderschou Holbech; Holst, Peter Johannes

    2012-01-01

    directed against epitopes in the adenoviral vector seemed to correlate with repression of the induced response in re-vaccinated B-cell deficient mice. More importantly, despite a repressed primary effector CD8 T-cell response in Ad5-immune animals subjected to vaccination, memory T cells were generated...... that provided the foundation for an efficient recall response and protection upon subsequent viral challenge. Furthermore, the transgene specific response could be efficiently boosted by homologous re-immunization. Taken together, these studies indicate that adenoviral vectors can be used to induce efficient CD......8 T-cell memory even in individuals with pre-existing vector immunity....

  7. Infectivity of attenuated poxvirus vaccine vectors and immunogenicity of a raccoonpox vectored rabies vaccine in the Brazilian Free-tailed bat (Tadarida brasiliensis)

    Science.gov (United States)

    Stading, Benjamin; Osorio, Jorge E.; Velasco-Villa, Andres; Smotherman, Michael; Kingstad-Bakke, Brock; Rocke, Tonie E.

    2016-01-01

    Bats (Order Chiroptera) are an abundant group of mammals with tremendous ecological value as insectivores and plant dispersers, but their role as reservoirs of zoonotic diseases has received more attention in the last decade. With the goal of managing disease in free-ranging bats, we tested modified vaccinia Ankara (MVA) and raccoon poxvirus (RCN) as potential vaccine vectors in the Brazilian Free-tailed bat (Tadarida brasiliensis), using biophotonic in vivo imaging and immunogenicity studies. Animals were administered recombinant poxviral vectors expressing the luciferase gene (MVA-luc, RCN-luc) through oronasal (ON) or intramuscular (IM) routes and subsequently monitored for bioluminescent signal indicative of viral infection. No clinical illness was noted after exposure to any of the vectors, and limited luciferase expression was observed. Higher and longer levels of expression were observed with the RCN-luc construct. When given IM, luciferase expression was limited to the site of injection, while ON exposure led to initial expression in the oral cavity, often followed by secondary replication at another location, likely the gastric mucosa or gastric associated lymphatic tissue. Viral DNA was detected in oral swabs up to 7 and 9 days post infection (dpi) for MVA and RCN, respectively. While no live virus was detected in oral swabs from MVA-infected bats, titers up to 3.88 x 104 PFU/ml were recovered from oral swabs of RCN-infected bats. Viral DNA was also detected in fecal samples from two bats inoculated IM with RCN, but no live virus was recovered. Finally, we examined the immunogenicity of a RCN based rabies vaccine (RCN-G) following ON administration. Significant rabies neutralizing antibody titers were detected in the serum of immunized bats using the rapid fluorescence focus inhibition test (RFFIT). These studies highlight the safety and immunogenicity of attenuated poxviruses and their potential use as vaccine vectors in bats.

  8. A genetically engineered prime-boost vaccination strategy for oculonasal delivery with poly(D,L-lactic-co-glycolic acid) microparticles against infection of turkeys with avian Metapneumovirus.

    Science.gov (United States)

    Liman, Martin; Peiser, Lieselotte; Zimmer, Gert; Pröpsting, Marcus; Naim, Hassan Y; Rautenschlein, Silke

    2007-11-14

    In this study we demonstrated the use of an oculonasally delivered poly(D,L-lactic-co-glycolic acid) microparticle (PLGA-MP)-based and genetically engineered vaccination strategy in the avian system. An avian Metapneumovirus (aMPV) fusion (F) protein-encoding plasmid vaccine and the corresponding recombinant protein vaccine were produced and bound to or encapsulated by PLGA-MP, respectively. The PLGA-MP as the controlled release system was shown in vitro to not induce any cytopathic effects and to efficiently deliver the F protein-based aMPV-vaccines to avian cells for further processing. Vaccination of turkeys was carried out by priming with an MP-bound F protein-encoding plasmid vaccine and a booster-vaccination with an MP-encapsulated recombinant F protein. Besides the prime-boost F-specific vaccinated birds, negative control birds inoculated with a mock-MP prime-boost regimen as well as non-vaccinated birds and live vaccinated positive control birds were included in the study. The MP-based immunization of turkeys via the oculonasal route induced systemic humoral immune reactions as well as local and systemic cellular immune reactions, and had no adverse effects on the upper respiratory tract. The F protein-specific prime-boost strategy induced partial protection. After challenge the F protein-specific MP-vaccinated birds showed less clinical signs and histopathological lesions than control birds of mock MP-vaccinated and non-vaccinated groups did. The vaccination improved viral clearance and induced accumulation of local and systemic CD4+ T cells when compared to the mock MP-vaccination. It also induced systemic aMPV-neutralizing antibodies. The comparison of mock- and F protein-specific MP-vaccinated birds to non-vaccinated control birds suggests that aMPV-specific effects as well as adjuvant effects mediated by MP may have contributed to the overall protective effect.

  9. Comparison of IPV to tOPV week 39 boost of primary OPV vaccination in Indian infants: an open labelled randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Suman Kanungo

    2017-01-01

    Conclusions: This study indicates that an IPV boost at week 39 is equivalent to tOPV in intestinal immunity, and provides higher seroconversion compared to tOPV. The major limitation of the study was the additional OPV doses receive by infants during pulse polio immunization resulted in additional mucosal boosting, diminishing the impact of IPV or tOPV boost at week 39. However, IPV for OPV boost should prove to be a step forward in the global polio eradication initiative to reduce the problem of circulating vaccine-derived poliovirus (cVDPV.

  10. Enhancement of Mucosal Immunogenicity of Viral Vectored Vaccines by the NKT Cell Agonist Alpha-Galactosylceramide as Adjuvant

    Directory of Open Access Journals (Sweden)

    Shailbala Singh

    2014-10-01

    Full Text Available Gene-based vaccination strategies, specifically viral vectors encoding vaccine immunogens are effective at priming strong immune responses. Mucosal routes offer practical advantages for vaccination by ease of needle-free administration, and immunogen delivery at readily accessible oral/nasal sites to efficiently induce immunity at distant gut and genital tissues. However, since mucosal tissues are inherently tolerant for induction of immune responses, incorporation of adjuvants for optimal mucosal vaccination strategies is important. We report here the effectiveness of alpha-galactosylceramide (α-GalCer, a synthetic glycolipid agonist of natural killer T (NKT cells, as an adjuvant for enhancing immunogenicity of vaccine antigens delivered using viral vectors by mucosal routes in murine and nonhuman primate models. Significant improvement in adaptive immune responses in systemic and mucosal tissues was observed by including α-GalCer adjuvant for intranasal immunization of mice with vesicular stomatitis virus vector encoding the model antigen ovalbumin and adenoviral vectors expressing HIV env and Gag antigens. Activation of NKT cells in systemic and mucosal tissues along with significant increases in adaptive immune responses were observed in rhesus macaques immunized by intranasal and sublingual routes with protein or adenovirus vectored antigens when combined with α-GalCer adjuvant. These results support the utility of α-GalCer adjuvant for enhancing immunogenicity of mucosal vaccines delivered using viral vectors.

  11. An adenovirus prime/plasmid boost strategy for induction of equipotent immune responses to two dengue virus serotypes.

    Science.gov (United States)

    Khanam, Saima; Rajendra, Pilankatta; Khanna, Navin; Swaminathan, Sathyamangalam

    2007-02-15

    Dengue is a public health problem of global significance for which there is neither an effective antiviral therapy nor a preventive vaccine. It is a mosquito-borne viral disease, caused by dengue (DEN) viruses, which are members of the Flaviviridae family. There are four closely related serotypes, DEN-1, DEN-2, DEN-3 and DEN-4, each of which is capable of causing disease. As immunity to any one serotype can potentially sensitize an individual to severe disease during exposure to a heterologous serotype, the general consensus is that an effective vaccine should be tetravalent, that is, it must be capable of affording protection against all four serotypes. The current strategy of creating tetravalent vaccine formulations by mixing together four monovalent live attenuated vaccine viruses has revealed the phenomenon of viral interference leading to the manifestation of immune responses biased towards a single serotype. This work stems from the emergence of (i) the DEN virus envelope (E) domain III (EDIII) as the most important region of the molecule from a vaccine perspective and (ii) the adenovirus (Ad) as a promising vaccine vector platform. We describe the construction of a recombinant, replication-defective Ad (rAd) vector encoding a chimeric antigen made of in-frame linked EDIIIs of DEN virus serotypes 2 and 4. Using this rAd vector, in conjunction with a plasmid vector encoding the same chimeric bivalent antigen, in a prime-boost strategy, we show that it is possible to elicit equipotent neutralizing and T cell responses specific to both DEN serotypes 2 and 4. Our data support the hypothesis that a DEN vaccine targeting more than one serotype may be based on a single DNA-based vector to circumvent viral interference. This work lays the foundation for developing a single Ad vector encoding EDIIIs of all four DEN serotypes to evoke a balanced immune response against each one of them. Thus, this work has implications for the development of safe and effective

  12. An adenovirus prime/plasmid boost strategy for induction of equipotent immune responses to two dengue virus serotypes

    Directory of Open Access Journals (Sweden)

    Swaminathan Sathyamangalam

    2007-02-01

    Full Text Available Abstract Background Dengue is a public health problem of global significance for which there is neither an effective antiviral therapy nor a preventive vaccine. It is a mosquito-borne viral disease, caused by dengue (DEN viruses, which are members of the Flaviviridae family. There are four closely related serotypes, DEN-1, DEN-2, DEN-3 and DEN-4, each of which is capable of causing disease. As immunity to any one serotype can potentially sensitize an individual to severe disease during exposure to a heterologous serotype, the general consensus is that an effective vaccine should be tetravalent, that is, it must be capable of affording protection against all four serotypes. The current strategy of creating tetravalent vaccine formulations by mixing together four monovalent live attenuated vaccine viruses has revealed the phenomenon of viral interference leading to the manifestation of immune responses biased towards a single serotype. Results This work stems from the emergence of (i the DEN virus envelope (E domain III (EDIII as the most important region of the molecule from a vaccine perspective and (ii the adenovirus (Ad as a promising vaccine vector platform. We describe the construction of a recombinant, replication-defective Ad (rAd vector encoding a chimeric antigen made of in-frame linked EDIIIs of DEN virus serotypes 2 and 4. Using this rAd vector, in conjunction with a plasmid vector encoding the same chimeric bivalent antigen, in a prime-boost strategy, we show that it is possible to elicit equipotent neutralizing and T cell responses specific to both DEN serotypes 2 and 4. Conclusion Our data support the hypothesis that a DEN vaccine targeting more than one serotype may be based on a single DNA-based vector to circumvent viral interference. This work lays the foundation for developing a single Ad vector encoding EDIIIs of all four DEN serotypes to evoke a balanced immune response against each one of them. Thus, this work has

  13. Chimpanzee Adenovirus Vector Ebola Vaccine.

    Science.gov (United States)

    Ledgerwood, Julie E; DeZure, Adam D; Stanley, Daphne A; Coates, Emily E; Novik, Laura; Enama, Mary E; Berkowitz, Nina M; Hu, Zonghui; Joshi, Gyan; Ploquin, Aurélie; Sitar, Sandra; Gordon, Ingelise J; Plummer, Sarah A; Holman, LaSonji A; Hendel, Cynthia S; Yamshchikov, Galina; Roman, Francois; Nicosia, Alfredo; Colloca, Stefano; Cortese, Riccardo; Bailer, Robert T; Schwartz, Richard M; Roederer, Mario; Mascola, John R; Koup, Richard A; Sullivan, Nancy J; Graham, Barney S

    2017-03-09

    The unprecedented 2014 epidemic of Ebola virus disease (EVD) prompted an international response to accelerate the availability of a preventive vaccine. A replication-defective recombinant chimpanzee adenovirus type 3-vectored ebolavirus vaccine (cAd3-EBO), encoding the glycoprotein from Zaire and Sudan species, that offers protection in the nonhuman primate model, was rapidly advanced into phase 1 clinical evaluation. We conducted a phase 1, dose-escalation, open-label trial of cAd3-EBO. Twenty healthy adults, in sequentially enrolled groups of 10 each, received vaccination intramuscularly in doses of 2×10 10 particle units or 2×10 11 particle units. Primary and secondary end points related to safety and immunogenicity were assessed throughout the first 8 weeks after vaccination; in addition, longer-term vaccine durability was assessed at 48 weeks after vaccination. In this small study, no safety concerns were identified; however, transient fever developed within 1 day after vaccination in two participants who had received the 2×10 11 particle-unit dose. Glycoprotein-specific antibodies were induced in all 20 participants; the titers were of greater magnitude in the group that received the 2×10 11 particle-unit dose than in the group that received the 2×10 10 particle-unit dose (geometric mean titer against the Zaire antigen at week 4, 2037 vs. 331; P=0.001). Glycoprotein-specific T-cell responses were more frequent among those who received the 2×10 11 particle-unit dose than among those who received the 2×10 10 particle-unit dose, with a CD4 response in 10 of 10 participants versus 3 of 10 participants (P=0.004) and a CD8 response in 7 of 10 participants versus 2 of 10 participants (P=0.07) at week 4. Assessment of the durability of the antibody response showed that titers remained high at week 48, with the highest titers in those who received the 2×10 11 particle-unit dose. Reactogenicity and immune responses to cAd3-EBO vaccine were dose-dependent. At

  14. An economic evaluation of vector control in the age of a dengue vaccine.

    Science.gov (United States)

    Fitzpatrick, Christopher; Haines, Alexander; Bangert, Mathieu; Farlow, Andrew; Hemingway, Janet; Velayudhan, Raman

    2017-08-01

    Dengue is a rapidly emerging vector-borne Neglected Tropical Disease, with a 30-fold increase in the number of cases reported since 1960. The economic cost of the illness is measured in the billions of dollars annually. Environmental change and unplanned urbanization are conspiring to raise the health and economic cost even further beyond the reach of health systems and households. The health-sector response has depended in large part on control of the Aedes aegypti and Ae. albopictus (mosquito) vectors. The cost-effectiveness of the first-ever dengue vaccine remains to be evaluated in the field. In this paper, we examine how it might affect the cost-effectiveness of sustained vector control. We employ a dynamic Markov model of the effects of vector control on dengue in both vectors and humans over a 15-year period, in six countries: Brazil, Columbia, Malaysia, Mexico, the Philippines, and Thailand. We evaluate the cost (direct medical costs and control programme costs) and cost-effectiveness of sustained vector control, outbreak response and/or medical case management, in the presence of a (hypothetical) highly targeted and low cost immunization strategy using a (non-hypothetical) medium-efficacy vaccine. Sustained vector control using existing technologies would cost little more than outbreak response, given the associated costs of medical case management. If sustained use of existing or upcoming technologies (of similar price) reduce vector populations by 70-90%, the cost per disability-adjusted life year averted is 2013 US$ 679-1331 (best estimates) relative to no intervention. Sustained vector control could be highly cost-effective even with less effective technologies (50-70% reduction in vector populations) and in the presence of a highly targeted and low cost immunization strategy using a medium-efficacy vaccine. Economic evaluation of the first-ever dengue vaccine is ongoing. However, even under very optimistic assumptions about a highly targeted and low

  15. An economic evaluation of vector control in the age of a dengue vaccine.

    Directory of Open Access Journals (Sweden)

    Christopher Fitzpatrick

    2017-08-01

    Full Text Available Dengue is a rapidly emerging vector-borne Neglected Tropical Disease, with a 30-fold increase in the number of cases reported since 1960. The economic cost of the illness is measured in the billions of dollars annually. Environmental change and unplanned urbanization are conspiring to raise the health and economic cost even further beyond the reach of health systems and households. The health-sector response has depended in large part on control of the Aedes aegypti and Ae. albopictus (mosquito vectors. The cost-effectiveness of the first-ever dengue vaccine remains to be evaluated in the field. In this paper, we examine how it might affect the cost-effectiveness of sustained vector control.We employ a dynamic Markov model of the effects of vector control on dengue in both vectors and humans over a 15-year period, in six countries: Brazil, Columbia, Malaysia, Mexico, the Philippines, and Thailand. We evaluate the cost (direct medical costs and control programme costs and cost-effectiveness of sustained vector control, outbreak response and/or medical case management, in the presence of a (hypothetical highly targeted and low cost immunization strategy using a (non-hypothetical medium-efficacy vaccine.Sustained vector control using existing technologies would cost little more than outbreak response, given the associated costs of medical case management. If sustained use of existing or upcoming technologies (of similar price reduce vector populations by 70-90%, the cost per disability-adjusted life year averted is 2013 US$ 679-1331 (best estimates relative to no intervention. Sustained vector control could be highly cost-effective even with less effective technologies (50-70% reduction in vector populations and in the presence of a highly targeted and low cost immunization strategy using a medium-efficacy vaccine.Economic evaluation of the first-ever dengue vaccine is ongoing. However, even under very optimistic assumptions about a highly targeted

  16. Enhancement of the priming efficacy of DNA vaccines encoding dendritic cell-targeted antigens by synergistic toll-like receptor ligands

    Directory of Open Access Journals (Sweden)

    Kornbluth Richard S

    2009-08-01

    Full Text Available Abstract Background Targeting of protein antigens to dendritic cells (DC via the DEC205 receptor enhances presentation of antigen-derived peptides on MHC-I and MHC-II molecules and, in the presence of costimulatory signals, antigen-specific immune responses. The immunogenicity and efficacy of DNA vaccination can also be enhanced by fusing the encoded antigen to single chain antibodies directed against DEC205. To further improve this strategy, we evaluated different toll-like receptor ligands (TLR and CD40 ligands (CD40L as adjuvants for DNA vaccines encoding a DEC205-single-chain antibody fused to the ovalbumin model antigen or HIV-1 Gag and assessed the priming efficacy of DNA in a DNA prime adenoviral vector boost immunization regimen. Results Mice were primed with the adjuvanted DEC-205 targeted DNA vaccines and boosted with adenoviral vectors encoding the same antigens. CD8+ T cell responses were determined after the adenoviral booster immunization, to determine how well the different DNA immunization regimens prime for the adenoviral boost. In the absence of adjuvants, targeting of DNA-encoded ovalbumin to DCs suppressed CD8+ T-cell responses after the adenoviral booster immunization. CD8+ T-cell responses to the DEC205 targeted DNA vaccines increased only slightly by adding either the TLR-9 ligand CpG, the TLR-3 ligand Poly I:C, or CD40 ligand expression plasmids. However, the combination of both TLR-ligands led to a strong enhancement of CD8+ T-cell responses compared to a non-targeted DNA vaccine. This finding was confirmed using HIV Gag as antigen. Conclusion Although DNA prime adenoviral vector boost immunizations belong to the strongest inducers of cytotoxic T cell responses in different animal models and humans, the CD8+ T cell responses can be further improved by targeting the DNA encoded antigen to DEC205 in the presence of synergistic TLR ligands CpG and Poly I:C.

  17. Adenovirus type 35-vectored tuberculosis vaccine has an acceptable safety and tolerability profile in healthy, BCG-vaccinated, QuantiFERON(®)-TB Gold (+) Kenyan adults without evidence of tuberculosis.

    Science.gov (United States)

    Walsh, Douglas S; Owira, Victorine; Polhemus, Mark; Otieno, Lucas; Andagalu, Ben; Ogutu, Bernhards; Waitumbi, John; Hawkridge, Anthony; Shepherd, Barbara; Pau, Maria Grazia; Sadoff, Jerald; Douoguih, Macaya; McClain, J Bruce

    2016-05-05

    In a Phase 1 trial, we evaluated the safety of AERAS-402, an adenovirus 35-vectored TB vaccine candidate expressing 3 Mycobacterium tuberculosis (Mtb) immunodominant antigens, in subjects with and without latent Mtb infection. HIV-negative, BCG-vaccinated Kenyan adults without evidence of tuberculosis, 10 QuantiFERON(®)-TB Gold In-Tube test (QFT-G)(-) and 10 QFT-G(+), were randomized 4:1 to receive AERAS-402 or placebo as two doses, on Days 0 and 56, with follow up to Day 182. There were no deaths, serious adverse events or withdrawals. For 1 AERAS-402 QFT-G(-) and 1 AERAS-402 QFT-G(+) subject, there were 3 self-limiting severe AEs of injection site pain: 1 after the first vaccination and 1 after each vaccination, respectively. Two additional severe AEs considered vaccine-related were reported after the first vaccination in AERAS-402 QFT-G(+) subjects: elevated blood creatine phosphokinase and neutropenia, the latter slowly improving but remaining abnormal until study end. AERAS-402 was not detected in urine or throat cultures for any subject. In intracellular cytokine staining studies, curtailed by technical issues, we saw modest CD4+ and CD8+ T cell responses to Mtb Ag85A/b peptide pools among both QFT-G(-) and (+) subjects, with trends in the CD4+ T cells suggestive of boosting after the second vaccine dose, slightly more so in QFT-G(+) subjects. CD4+ and CD8+ responses to Mtb antigen TB10.4 were minimal. Increases in Adenovirus 35 neutralizing antibodies from screening to end of study, seen in 50% of AERAS-402 recipients, were mostly minimal. This small study confirms acceptable safety and tolerability profiles for AERAS-402, in line with other Phase 1 studies of AERAS-402, now to include QFT-G(+) subjects. Published by Elsevier Ltd.

  18. Alphavirus replicon DNA expressing HIV antigens is an excellent prime for boosting with recombinant modified vaccinia Ankara (MVA or with HIV gp140 protein antigen.

    Directory of Open Access Journals (Sweden)

    Maria L Knudsen

    Full Text Available Vaccination with DNA is an attractive strategy for induction of pathogen-specific T cells and antibodies. Studies in humans have shown that DNA vaccines are safe, but their immunogenicity needs further improvement. As a step towards this goal, we have previously demonstrated that immunogenicity is increased with the use of an alphavirus DNA-launched replicon (DREP vector compared to conventional DNA vaccines. In this study, we investigated the effect of varying the dose and number of administrations of DREP when given as a prime prior to a heterologous boost with poxvirus vector (MVA and/or HIV gp140 protein formulated in glucopyranosyl lipid A (GLA-AF adjuvant. The DREP and MVA vaccine constructs encoded Env and a Gag-Pol-Nef fusion protein from HIV clade C. One to three administrations of 0.2 μg DREP induced lower HIV-specific T cell and IgG responses than the equivalent number of immunizations with 10 μg DREP. However, the two doses were equally efficient as a priming component in a heterologous prime-boost regimen. The magnitude of immune responses depended on the number of priming immunizations rather than the dose. A single low dose of DREP prior to a heterologous boost resulted in greatly increased immune responses compared to MVA or protein antigen alone, demonstrating that a mere 0.2 μg DREP was sufficient for priming immune responses. Following a DREP prime, T cell responses were expanded greatly by an MVA boost, and IgG responses were also expanded when boosted with protein antigen. When MVA and protein were administered simultaneously following multiple DREP primes, responses were slightly compromised compared to administering them sequentially. In conclusion, we have demonstrated efficient priming of HIV-specific T cell and IgG responses with a low dose of DREP, and shown that the priming effect depends on number of primes administered rather than dose.

  19. LDA boost classification: boosting by topics

    Science.gov (United States)

    Lei, La; Qiao, Guo; Qimin, Cao; Qitao, Li

    2012-12-01

    AdaBoost is an efficacious classification algorithm especially in text categorization (TC) tasks. The methodology of setting up a classifier committee and voting on the documents for classification can achieve high categorization precision. However, traditional Vector Space Model can easily lead to the curse of dimensionality and feature sparsity problems; so it affects classification performance seriously. This article proposed a novel classification algorithm called LDABoost based on boosting ideology which uses Latent Dirichlet Allocation (LDA) to modeling the feature space. Instead of using words or phrase, LDABoost use latent topics as the features. In this way, the feature dimension is significantly reduced. Improved Naïve Bayes (NB) is designed as the weaker classifier which keeps the efficiency advantage of classic NB algorithm and has higher precision. Moreover, a two-stage iterative weighted method called Cute Integration in this article is proposed for improving the accuracy by integrating weak classifiers into strong classifier in a more rational way. Mutual Information is used as metrics of weights allocation. The voting information and the categorization decision made by basis classifiers are fully utilized for generating the strong classifier. Experimental results reveals LDABoost making categorization in a low-dimensional space, it has higher accuracy than traditional AdaBoost algorithms and many other classic classification algorithms. Moreover, its runtime consumption is lower than different versions of AdaBoost, TC algorithms based on support vector machine and Neural Networks.

  20. Further development of raccoon poxvirus-vectored vaccines against plague (Yersinia pestis)

    Science.gov (United States)

    Rocke, Tonie E.; Iams, Keith P.; Dawe, S.; Smith, Susan; Williamson, Judy L.; Heisey, Dennis M.; Osorio, Jorge E.

    2009-01-01

    In previous studies, we demonstrated protection against plague in mice and prairie dogs using a raccoon pox (RCN) virus-vectored vaccine that expressed the F1 capsular antigen of Yersinia pestis. In order to improve vaccine efficacy, we have now constructed additional RCN-plague vaccines containing two different forms of the lcrV (V) gene, including full-length (Vfull) and a truncated form (V307). Mouse challenge studies with Y. pestis strain CO92 showed that vaccination with a combination of RCN-F1 and the truncated V construct (RCN-V307) provided the greatest improvement (P = 0.01) in protection against plague over vaccination with RCN-F1 alone. This effect was mediated primarily by anti-F1 and anti-V antibodies and both contributed independently to increased survival of vaccinated mice.

  1. An effective AIDS vaccine based on live attenuated vesicular stomatitis virus recombinants.

    Science.gov (United States)

    Rose, N F; Marx, P A; Luckay, A; Nixon, D F; Moretto, W J; Donahoe, S M; Montefiori, D; Roberts, A; Buonocore, L; Rose, J K

    2001-09-07

    We developed an AIDS vaccine based on attenuated VSV vectors expressing env and gag genes and tested it in rhesus monkeys. Boosting was accomplished using vectors with glycoproteins from different VSV serotypes. Animals were challenged with a pathogenic AIDS virus (SHIV89.6P). Control monkeys showed a severe loss of CD4+ T cells and high viral loads, and 7/8 progressed to AIDS with an average time of 148 days. All seven vaccinees were initially infected with SHIV89.6P but have remained healthy for up to 14 months after challenge with low or undetectable viral loads. Protection from AIDS was highly significant (p = 0.001). VSV vectors are promising candidates for human AIDS vaccine trials because they propagate to high titers and can be delivered without injection.

  2. Protection of Rhesus Monkeys by a DNA Prime/Poxvirus Boost Malaria Vaccine Depends on Optimal DNA Priming and Inclusion of Blood Stage Antigens

    Science.gov (United States)

    Weiss, Walter R.; Kumar, Anita; Jiang, George; Williams, Jackie; Bostick, Anthony; Conteh, Solomon; Fryauff, David; Aguiar, Joao; Singh, Manmohan; O'Hagan, Derek T.; Ulmer, Jeffery B.; Richie, Thomas L.

    2007-01-01

    Background We have previously described a four antigen malaria vaccine consisting of DNA plasmids boosted by recombinant poxviruses which protects a high percentage of rhesus monkeys against Plasmodium knowlesi (Pk) malaria. This is a multi-stage vaccine that includes two pre-erythrocytic antigens, PkCSP and PkSSP2(TRAP), and two erythrocytic antigens, PkAMA-1 and PkMSP-1(42kD). The present study reports three further experiments where we investigate the effects of DNA dose, timing, and formulation. We also compare vaccines utilizing only the pre-erythrocytic antigens with the four antigen vaccine. Methodology In three experiments, rhesus monkeys were immunized with malaria vaccines using DNA plasmid injections followed by boosting with poxvirus vaccine. A variety of parameters were tested, including formulation of DNA on poly-lactic co-glycolide (PLG) particles, varying the number of DNA injections and the amount of DNA, varying the interval between the last DNA injection to the poxvirus boost from 7 to 21 weeks, and using vaccines with from one to four malaria antigens. Monkeys were challenged with Pk sporozoites given iv 2 to 4 weeks after the poxvirus injection, and parasitemia was measured by daily Giemsa stained blood films. Immune responses in venous blood samples taken after each vaccine injection were measured by ELIspot production of interferon-γ, and by ELISA. Conclusions 1) the number of DNA injections, the formulation of the DNA plasmids, and the interval between the last DNA injection and the poxvirus injection are critical to vaccine efficacy. However, the total dose used for DNA priming is not as important; 2) the blood stage antigens PkAMA-1 and PkMSP-1 were able to protect against high parasitemias as part of a genetic vaccine where antigen folding is not well defined; 3) immunization with PkSSP2 DNA inhibited immune responses to PkCSP DNA even when vaccinations were given into separate legs; and 4) in a counter-intuitive result, higher

  3. Trial watch: Naked and vectored DNA-based anticancer vaccines.

    Science.gov (United States)

    Bloy, Norma; Buqué, Aitziber; Aranda, Fernando; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-05-01

    One type of anticancer vaccine relies on the administration of DNA constructs encoding one or multiple tumor-associated antigens (TAAs). The ultimate objective of these preparations, which can be naked or vectored by non-pathogenic viruses, bacteria or yeast cells, is to drive the synthesis of TAAs in the context of an immunostimulatory milieu, resulting in the (re-)elicitation of a tumor-targeting immune response. In spite of encouraging preclinical results, the clinical efficacy of DNA-based vaccines employed as standalone immunotherapeutic interventions in cancer patients appears to be limited. Thus, efforts are currently being devoted to the development of combinatorial regimens that allow DNA-based anticancer vaccines to elicit clinically relevant immune responses. Here, we discuss recent advances in the preclinical and clinical development of this therapeutic paradigm.

  4. HIV-1 Env DNA vaccine plus protein boost delivered by EP expands B- and T-cell responses and neutralizing phenotype in vivo.

    Directory of Open Access Journals (Sweden)

    Kar Muthumani

    Full Text Available An effective HIV vaccine will most likely require the induction of strong T-cell responses, broadly neutralizing antibodies (bNAbs, and the elicitation of antibody-dependent cellular cytotoxicity (ADCC. Previously, we demonstrated the induction of strong HIV/SIV cellular immune responses in macaques and humans using synthetic consensus DNA immunogens delivered via adaptive electroporation (EP. However, the ability of this improved DNA approach to prime for relevant antibody responses has not been previously studied. Here, we investigate the immunogenicity of consensus DNA constructs encoding gp140 sequences from HIV-1 subtypes A, B, C and D in a DNA prime-protein boost vaccine regimen. Mice and guinea pigs were primed with single- and multi-clade DNA via EP and boosted with recombinant gp120 protein. Sera were analyzed for gp120 binding and induction of neutralizing antibody activity. Immunization with recombinant Env protein alone induced low-titer binding antibodies with limited neutralization breath. In contrast, the synthetic DNA prime-protein boost protocol induced significantly higher antibody binding titers. Furthermore, sera from DNA prime-protein boost groups were able to neutralize a broader range of viruses in a panel of tier 1 clade B viruses as well as multiple tier 1 clade A and clade C viruses. Further investigation of synthetic DNA prime plus adaptive EP plus protein boost appears warranted.

  5. Use of a vectored vaccine against infectious bursal disease of chickens in the face of high-titred maternally derived antibody.

    Science.gov (United States)

    Bublot, M; Pritchard, N; Le Gros, F-X; Goutebroze, S

    2007-07-01

    Interference by maternally derived antibody (MDA) is a major problem for the vaccination of young chickens against infectious bursal disease (IBD). The choice of the timing of vaccination and of the type (degree of attenuation) of modified-live vaccine (MLV) to use is often difficult. An IBD vectored vaccine (vHVT13), in which turkey herpesvirus (HVT) is used as the vector, was recently developed. This vaccine is administered once at the hatchery, either in ovo or by the subcutaneous route, to 1-day-old chicks at a time when MDA is maximal. In terms of safety, the vHVT13 vaccine had negligible impact on the bursa of Fabricius when compared with classical IBD MLV. Vaccination and challenge studies demonstrated that this vaccine is able to protect chickens against various IBD virus (IBDV) challenge strains including very virulent, classical, and USA variant IBDV, despite the presence of high-titred IBD MDA at the time of vaccination. These data show that the vector vaccine combines a safety and efficacy profile that cannot be achieved with classical IBD vaccines.

  6. Recombinant vaccines and the development of new vaccine strategies

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, I.P.; Leite, L.C.C. [Centro de Biotecnologia, Instituto Butantan, São Paulo, SP (Brazil)

    2012-09-07

    Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.

  7. Recombinant vaccines and the development of new vaccine strategies

    Directory of Open Access Journals (Sweden)

    I.P. Nascimento

    2012-12-01

    Full Text Available Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.

  8. Recombinant vaccines and the development of new vaccine strategies

    International Nuclear Information System (INIS)

    Nascimento, I.P.; Leite, L.C.C.

    2012-01-01

    Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks

  9. Clinical and parasitological protection in a Leishmania infantum-macaque model vaccinated with adenovirus and the recombinant A2 antigen.

    Science.gov (United States)

    Grimaldi, Gabriel; Teva, Antonio; Porrozzi, Renato; Pinto, Marcelo A; Marchevsky, Renato S; Rocha, Maria Gabrielle L; Dutra, Miriam S; Bruña-Romero, Oscar; Fernandes, Ana-Paula; Gazzinelli, Ricardo T

    2014-06-01

    Visceral leishmaniasis (VL) is a severe vector-born disease of humans and dogs caused by Leishmania donovani complex parasites. Approximately 0.2 to 0.4 million new human VL cases occur annually worldwide. In the new world, these alarming numbers are primarily due to the impracticality of current control methods based on vector reduction and dog euthanasia. Thus, a prophylactic vaccine appears to be essential for VL control. The current efforts to develop an efficacious vaccine include the use of animal models that are as close to human VL. We have previously reported a L. infantum-macaque infection model that is reliable to determine which vaccine candidates are most worthy for further development. Among the few amastigote antigens tested so far, one of specific interest is the recombinant A2 (rA2) protein that protects against experimental L. infantum infections in mice and dogs. Primates were vaccinated using three rA2-based prime-boost immunization regimes: three doses of rA2 plus recombinant human interleukin-12 (rhIL-12) adsorbed in alum (rA2/rhIL-12/alum); two doses of non-replicative adenovirus recombinant vector encoding A2 (Ad5-A2) followed by two boosts with rA2/rhIL-12/alum (Ad5-A2+rA2/rhIL12/alum); and plasmid DNA encoding A2 gene (DNA-A2) boosted with two doses of Ad5-A2 (DNA-A2+Ad5-A2). Primates received a subsequent infectious challenge with L. infantum. Vaccines, apart from being safe, were immunogenic as animals responded with increased pre-challenge production of anti-A2-specific IgG antibodies, though with some variability in the response, depending on the vaccine formulation/protocol. The relative parasite load in the liver was significantly lower in immunized macaques as compared to controls. Protection correlated with hepatic granuloma resolution, and reduction of clinical symptoms, particularly when primates were vaccinated with the Ad5-A2+rA2/rhIL12/alum protocol. The remarkable clinical protection induced by A2 in an animal model that is

  10. Control of SIV infection and subsequent induction of pandemic H1N1 immunity in rhesus macaques using an Ad5 [E1-, E2b-] vector platform.

    Science.gov (United States)

    Gabitzsch, Elizabeth S; Balint-Junior, Joseph P; Xu, Younong; Balcaitis, Stephanie; Sanders-Beer, Brigitte; Karl, Julie; Weinhold, Kent J; Paessler, Slobodan; Jones, Frank R

    2012-11-26

    Anti-vector immunity mitigates immune responses induced by recombinant adenovirus vector vaccines, limiting their prime-boost capabilities. We have developed a novel gene delivery and expression platform (Ad5 [E1-, E2b-]) that induces immune responses despite pre-existing and/or developed concomitant Ad5 immunity. In the present study, we evaluated if this new Ad5 platform could overcome the adverse condition of pre-existing Ad5 immunity to induce effective immune responses in prime-boost immunization regimens against two different infectious diseases in the same animal. Ad5 immune rhesus macaques (RM) were immunized multiple times with the Ad5 [E1-, E2b-] platform expressing antigens from simian immunodeficiency virus (SIV). Immunized RM developed cell-mediated immunity against SIV antigens Gag, Pol, Nef and Env as well as antibody against Env. Vaccinated and vector control RMs were challenged intra-rectally with homologous SIVmac239. During a 7-week follow-up, there was perturbation of SIV load in some immunized RM. At 7 weeks post-challenge, eight immunized animals (53%) did not have detectable SIV, compared to two RM controls (13%) (Pnow hyper immune to Ad5, were then vaccinated with the same Ad5 [E1-, E2b-] platform expressing H1N1 influenza hemagglutinin (HA). Thirty days post Ad5 [E1-, E2b-]-HA vaccination, significant levels of influenza neutralizing antibody were induced in all animals that increased after an Ad5 [E1-, E2b-]-HA homologous boost. These data demonstrate the versatility of this new vector platform to immunize against two separate disease targets in the same animal despite the presence of immunity against the delivery platform, permitting homologous repeat immunizations with an Ad5 gene delivery platform. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Comparative evaluation of three capripoxvirus-vectored peste des petits ruminants vaccines.

    Science.gov (United States)

    Fakri, F; Bamouh, Z; Ghzal, F; Baha, W; Tadlaoui, K; Fihri, O Fassi; Chen, W; Bu, Z; Elharrak, M

    2018-01-15

    Sheep and goat pox (SGP) with peste des petits ruminants (PPR) are transboundary viral diseases of small ruminants that cause huge economic losses. Recombinant vaccines that can protect from both infections have been reported as a promising solution for the future. SGP was used as a vector to express two structural proteins hemagglutinin or the fusion protein of PPRV. We compared immunity conferred by recombinant capripoxvirus vaccines expressing H or F or both HF. Safety and efficacy were evaluated in goats and sheep. Two vaccine doses were tested in sheep, 10 4.5 TCDI50 in 1ml dose was retained for the further experiment. Results showed that the recombinant HF confers an earlier and stronger immunity against both SGP and PPR. This recombinant vaccine protect also against the disease in exposed and unexposed sheep. The potential Differentiating Infected from Vaccinated Animals of recombinant vaccines is of great advantage in any eradication program. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A nonintegrative lentiviral vector-based vaccine provides long-term sterile protection against malaria.

    Directory of Open Access Journals (Sweden)

    Frédéric Coutant

    Full Text Available Trials testing the RTS,S candidate malaria vaccine and radiation-attenuated sporozoites (RAS have shown that protective immunity against malaria can be induced and that an effective vaccine is not out of reach. However, longer-term protection and higher protection rates are required to eradicate malaria from the endemic regions. It implies that there is still a need to explore new vaccine strategies. Lentiviral vectors are very potent at inducing strong immunological memory. However their integrative status challenges their safety profile. Eliminating the integration step obviates the risk of insertional oncogenesis. Providing they confer sterile immunity, nonintegrative lentiviral vectors (NILV hold promise as mass pediatric vaccine by meeting high safety standards. In this study, we have assessed the protective efficacy of NILV against malaria in a robust pre-clinical model. Mice were immunized with NILV encoding Plasmodium yoelii Circumsporozoite Protein (Py CSP and challenged with sporozoites one month later. In two independent protective efficacy studies, 50% (37.5-62.5 of the animals were fully protected (p = 0.0072 and p = 0.0008 respectively when compared to naive mice. The remaining mice with detectable parasitized red blood cells exhibited a prolonged patency and reduced parasitemia. Moreover, protection was long-lasting with 42.8% sterile protection six months after the last immunization (p = 0.0042. Post-challenge CD8+ T cells to CSP, in contrast to anti-CSP antibodies, were associated with protection (r = -0.6615 and p = 0.0004 between the frequency of IFN-g secreting specific T cells in spleen and parasitemia. However, while NILV and RAS immunizations elicited comparable immunity to CSP, only RAS conferred 100% of sterile protection. Given that a better protection can be anticipated from a multi-antigen vaccine and an optimized vector design, NILV appear as a promising malaria vaccine.

  13. The recombinant EHV-1 vector producing CDV hemagglutinin as potential vaccine against canine distemper.

    Science.gov (United States)

    Pan, Zihao; Liu, Jin; Ma, Jiale; Jin, Qiuli; Yao, Huochun; Osterrieder, Nikolaus

    2017-10-01

    Canine distemper virus (CDV), is a pantropic agent of morbillivirus that causes fetal disease in dogs. Base on a broad host rang of CDV, the continued vaccines inoculation is unavoidable to pose gene recombination risk in vaccine virus and wild virus. The current study presents the construction of novel vectors, using equine herpesvirus type 1 (EHV-1) expressing the canine distemper virus (CDV). The recent field strain hemagglutinin protein and nucleoprotein were used for the construction of the viral vector vaccines. Based on the Bacterial artificial chromosome (BAC) genomes of EHV-1 RacH strain, the recombinant EHV-1 vaccine virus encoding CDV hemagglutinin protein (EHV-H) or CDV nucleoprotein (EHV-N) was constructed separately. The constructed BACs were rescued after 72 h post infection, and the expression of H or N in the recombinant viruses was confirmed by western-blotting. Furthermore, high levels of neutralizing antibodies were induced persistently following vaccination in the groups EHV-H&EHV-N and EHV-H, but the EHV-N group. The groups of vaccinated EHV-H and EHV-H&EHV-N pups were monitored for clinical signs, whereas the vaccinated EHV-N group developed moderate symptoms. The present study demonstrated that EHV-1 based recombinant virus carrying CDV H could be a promising vaccine candidate against canine distemper. Copyright © 2017. Published by Elsevier Ltd.

  14. Qualitative and quantitative analysis of adenovirus type 5 vector-induced memory CD8 T cells

    DEFF Research Database (Denmark)

    Steffensen, Maria Abildgaard; Holst, Peter Johannes; Steengaard, Sanne Skovvang

    2013-01-01

    infection with lymphocytic choriomeningitis virus. We found that localized immunization with intermediate doses of Ad vector induce a moderate number of functional CD8 T cells, which qualitatively match those found in LCMV-infected mice. Numbers of these cells may be efficiently increased by additional...... adenoviral boosting and, importantly, the generated secondary memory cells cannot be qualitatively differentiated from those induced by primary infection with replicating virus. Quantitatively, DNA priming prior to Ad-vaccination will lead to even higher numbers of memory cells. In this case, the vaccination...

  15. Cationic lipid-formulated DNA vaccine against hepatitis B virus: immunogenicity of MIDGE-Th1 vectors encoding small and large surface antigen in comparison to a licensed protein vaccine.

    Directory of Open Access Journals (Sweden)

    Anne Endmann

    Full Text Available Currently marketed vaccines against hepatitis B virus (HBV based on the small (S hepatitis B surface antigen (HBsAg fail to induce a protective immune response in about 10% of vaccinees. DNA vaccination and the inclusion of PreS1 and PreS2 domains of HBsAg have been reported to represent feasible strategies to improve the efficacy of HBV vaccines. Here, we evaluated the immunogenicity of SAINT-18-formulated MIDGE-Th1 vectors encoding the S or the large (L protein of HBsAg in mice and pigs. In both animal models, vectors encoding the secretion-competent S protein induced stronger humoral responses than vectors encoding the L protein, which was shown to be retained mainly intracellularly despite the presence of a heterologous secretion signal. In pigs, SAINT-18-formulated MIDGE-Th1 vectors encoding the S protein elicited an immune response of the same magnitude as the licensed protein vaccine Engerix-B, with S protein-specific antibody levels significantly higher than those considered protective in humans, and lasting for at least six months after the third immunization. Thus, our results provide not only the proof of concept for the SAINT-18-formulated MIDGE-Th1 vector approach but also confirm that with a cationic-lipid formulation, a DNA vaccine at a relatively low dose can elicit an immune response similar to a human dose of an aluminum hydroxide-adjuvanted protein vaccine in large animals.

  16. Severe acute respiratory syndrome vaccine efficacy in ferrets: whole killed virus and adenovirus-vectored vaccines.

    Science.gov (United States)

    See, Raymond H; Petric, Martin; Lawrence, David J; Mok, Catherine P Y; Rowe, Thomas; Zitzow, Lois A; Karunakaran, Karuna P; Voss, Thomas G; Brunham, Robert C; Gauldie, Jack; Finlay, B Brett; Roper, Rachel L

    2008-09-01

    Although the 2003 severe acute respiratory syndrome (SARS) outbreak was controlled, repeated transmission of SARS coronavirus (CoV) over several years makes the development of a SARS vaccine desirable. We performed a comparative evaluation of two SARS vaccines for their ability to protect against live SARS-CoV intranasal challenge in ferrets. Both the whole killed SARS-CoV vaccine (with and without alum) and adenovirus-based vectors encoding the nucleocapsid (N) and spike (S) protein induced neutralizing antibody responses and reduced viral replication and shedding in the upper respiratory tract and progression of virus to the lower respiratory tract. The vaccines also diminished haemorrhage in the thymus and reduced the severity and extent of pneumonia and damage to lung epithelium. However, despite high neutralizing antibody titres, protection was incomplete for all vaccine preparations and administration routes. Our data suggest that a combination of vaccine strategies may be required for effective protection from this pathogen. The ferret may be a good model for SARS-CoV infection because it is the only model that replicates the fever seen in human patients, as well as replicating other SARS disease features including infection by the respiratory route, clinical signs, viral replication in upper and lower respiratory tract and lung damage.

  17. Membrane-bound SIV envelope trimers are immunogenic in ferrets after intranasal vaccination with a replication-competent canine distemper virus vector.

    Science.gov (United States)

    Zhang, Xinsheng; Wallace, Olivia; Wright, Kevin J; Backer, Martin; Coleman, John W; Koehnke, Rebecca; Frenk, Esther; Domi, Arban; Chiuchiolo, Maria J; DeStefano, Joanne; Narpala, Sandeep; Powell, Rebecca; Morrow, Gavin; Boggiano, Cesar; Zamb, Timothy J; Richter King, C; Parks, Christopher L

    2013-11-01

    We are investigating canine distemper virus (CDV) as a vaccine vector for the delivery of HIV envelope (Env) that closely resembles the native trimeric spike. We selected CDV because it will promote vaccine delivery to lymphoid tissues, and because human exposure is infrequent, reducing potential effects of pre-existing immunity. Using SIV Env as a model, we tested a number of vector and gene insert designs. Vectors containing a gene inserted between the CDV H and L genes, which encoded Env lacking most of its cytoplasmic tail, propagated efficiently in Vero cells, expressed the immunogen on the cell surface, and incorporated the SIV glycoprotein into progeny virus particles. When ferrets were vaccinated intranasally, there were no signs of distress, vector replication was observed in the gut-associated lymphoid tissues, and the animals produced anti-SIV Env antibodies. These data show that live CDV-SIV Env vectors can safely induce anti-Env immune responses following intranasal vaccination. © 2013 Elsevier Inc. All rights reserved.

  18. Lactococcus lactis carrying a DNA vaccine coding for the ESAT-6 antigen increases IL-17 cytokine secretion and boosts the BCG vaccine immune response.

    Science.gov (United States)

    Pereira, V B; da Cunha, V P; Preisser, T M; Souza, B M; Turk, M Z; De Castro, C P; Azevedo, M S P; Miyoshi, A

    2017-06-01

    A regimen utilizing Bacille Calmette-Guerin (BCG) and another vaccine system as a booster may represent a promising strategy for the development of an efficient tuberculosis vaccine for adults. In a previous work, we confirmed the ability of Lactococcus lactis fibronectin-binding protein A (FnBPA+) (pValac:ESAT-6), a live mucosal DNA vaccine, to produce a specific immune response in mice after oral immunization. In this study, we examined the immunogenicity of this strain as a booster for the BCG vaccine in mice. After immunization, cytokine and immunoglobulin profiles were measured. The BCG prime L. lactis FnBPA+ (pValac:ESAT-6) boost group was the most responsive group, with a significant increase in splenic pro-inflammatory cytokines IL-17, IFN-γ, IL-6 and TNF-α compared with the negative control. Based on the results obtained here, we demonstrated that L. lactis FnBPA+ (pValac:ESAT-6) was able to increase the BCG vaccine general immune response. This work is of great scientific and social importance because it represents the first step towards the development of a booster to the BCG vaccine using L. lactis as a DNA delivery system. © 2017 The Society for Applied Microbiology.

  19. Characterization of HIV-1 gp120 antibody specificities induced in anogenital secretions of RV144 vaccine recipients after late boost immunizations.

    Directory of Open Access Journals (Sweden)

    Siriwat Akapirat

    Full Text Available Sexual transmission is the principal driver of the human immunodeficiency virus (HIV pandemic. Understanding HIV vaccine-induced immune responses at mucosal surfaces can generate hypotheses regarding mechanisms of protection, and may influence vaccine development. The RV144 (ClinicalTrials.gov NCT00223080 efficacy trial showed protection against HIV infections but mucosal samples were not collected, therefore, the contribution of mucosal antibodies to preventing HIV-1 acquisition is unknown. Here, we report the generation, magnitude and persistence of antibody responses to recombinant gp120 envelope and antigens including variable one and two loop scaffold antigens (gp70V1V2 previously shown to correlate with risk in RV144. We evaluated antibody responses to gp120 A244gD and gp70V1V2 92TH023 (both CRF01_AE and Case A2 (subtype B in cervico-vaginal mucus (CVM, seminal plasma (SP and rectal secretions (RS from HIV-uninfected RV144 vaccine recipients, who were randomized to receive two late boosts of ALVAC-HIV/AIDSVAX®B/E, AIDSVAX®B/E, or ALVAC-HIV alone at 0 and 6 months. Late vaccine boosting increased IgG geometric mean titers (GMT to gp120 A244gD in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM (28 and 17 fold, respectively, followed by SP and RS. IgG to gp70V1V2 92TH023 increased in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM (11-17 fold and SP (2 fold two weeks post first boost. IgG to Case A2 was only detected in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM. Mucosal IgG to gp120 A244gD (CVM, SP, RS, gp70V1V2 92TH023 (CVM, SP, and Case A2 (CVM correlated with plasma IgG levels (p<0.001. Although the magnitude of IgG responses declined after boosting, anti-gp120 A244gD IgG responses in CVM persisted for 12 months post final vaccination. Further studies in localization, persistence and magnitude of envelope specific antibodies (IgG and dimeric IgA in anogenital secretions will help determine their role in preventing mucosal HIV acquisition.

  20. A Plasmodium Promiscuous T Cell Epitope Delivered within the Ad5 Hexon Protein Enhances the Protective Efficacy of a Protein Based Malaria Vaccine.

    Directory of Open Access Journals (Sweden)

    Jairo Andres Fonseca

    Full Text Available A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity

  1. Pre-existing vector immunity does not prevent replication deficient adenovirus from inducing efficient CD8 T-cell memory and recall responses.

    Directory of Open Access Journals (Sweden)

    Maria Abildgaard Steffensen

    Full Text Available Adenoviral vectors have shown a great potential for vaccine development due to their inherent ability to induce potent and protective CD8 T-cell responses. However, a critical issue regarding the use of these vectors is the existence of inhibitory immunity against the most commonly used Ad5 vector in a large part of the human population. We have recently developed an improved adenoviral vaccine vector system in which the vector expresses the transgene tethered to the MHC class II associated invariant chain (Ii. To further evaluate the potential of this system, the concept of pre-existing inhibitory immunity to adenoviral vectors was revisited to investigate whether the inhibition previously seen with the Ad5 vector also applied to the optimized vector system. We found this to be the case, and antibodies dominated as the mechanism underlying inhibitory vector immunity. However, presence of CD8 T cells directed against epitopes in the adenoviral vector seemed to correlate with repression of the induced response in re-vaccinated B-cell deficient mice. More importantly, despite a repressed primary effector CD8 T-cell response in Ad5-immune animals subjected to vaccination, memory T cells were generated that provided the foundation for an efficient recall response and protection upon subsequent viral challenge. Furthermore, the transgene specific response could be efficiently boosted by homologous re-immunization. Taken together, these studies indicate that adenoviral vectors can be used to induce efficient CD8 T-cell memory even in individuals with pre-existing vector immunity.

  2. A Respiratory Syncytial Virus Vaccine Vectored by a Stable Chimeric and Replication-Deficient Sendai Virus Protects Mice without Inducing Enhanced Disease.

    Science.gov (United States)

    Wiegand, Marian Alexander; Gori-Savellini, Gianni; Gandolfo, Claudia; Papa, Guido; Kaufmann, Christine; Felder, Eva; Ginori, Alessandro; Disanto, Maria Giulia; Spina, Donatella; Cusi, Maria Grazia

    2017-05-15

    Respiratory syncytial virus (RSV) is a major cause of severe respiratory infections in children and elderly people, and no marketed vaccine exists. In this study, we generated and analyzed a subunit vaccine against RSV based on a novel genome replication-deficient Sendai virus (SeV) vector. We inserted the RSV F protein, known to be a genetically stable antigen, into our vector in a specific way to optimize the vaccine features. By exchanging the ectodomain of the SeV F protein for its counterpart from RSV, we created a chimeric vectored vaccine that contains the RSV F protein as an essential structural component. In this way, the antigen is actively expressed on the surfaces of vaccine particles in its prefusion conformation, and as recently reported for other vectored vaccines, the occurrence of silencing mutations of the transgene in the vaccine genome can be prevented. In addition, its active gene expression contributes to further stimulation of the immune response. In order to understand the best route of immunization, we compared vaccine efficacies after intranasal (i.n.) or intramuscular (i.m.) immunization of BALB/c mice. Via both routes, substantial RSV-specific immune responses were induced, consisting of serum IgG and neutralizing antibodies, as well as cytotoxic T cells. Moreover, i.n. immunization was also able to stimulate specific mucosal IgA in the upper and lower respiratory tract. In virus challenge experiments, animals were protected against RSV infection after both i.n. and i.m. immunization without inducing vaccine-enhanced disease. Above all, the replication-deficient SeV appeared to be safe and well tolerated. IMPORTANCE Respiratory syncytial virus (RSV) is a major cause of respiratory diseases in young children and elderly people worldwide. There is a great demand for a licensed vaccine. Promising existing vaccine approaches based on live-attenuated vaccines or viral vectors have suffered from unforeseen drawbacks related to immunogenicity

  3. Immunogenicity and efficacy of a chimpanzee adenovirus-vectored Rift Valley fever vaccine in mice.

    OpenAIRE

    Warimwe, GM; Lorenzo, G; Lopez-Gil, E; Reyes-Sandoval, A; Cottingham, MG; Spencer, AJ; Collins, KA; Dicks, MD; Milicic, A; Lall, A; Furze, J; Turner, AV; Hill, AV; Brun, A; Gilbert, SC

    2013-01-01

    BACKGROUND: Rift Valley Fever (RVF) is a viral zoonosis that historically affects livestock production and human health in sub-Saharan Africa, though epizootics have also occurred in the Arabian Peninsula. Whilst an effective live-attenuated vaccine is available for livestock, there is currently no licensed human RVF vaccine. Replication-deficient chimpanzee adenovirus (ChAd) vectors are an ideal platform for development of a human RVF vaccine, given the low prevalence of neutralizing antibod...

  4. New vaccine strategies against enterotoxigenic Escherichia coli: II: Enhanced systemic and secreted antibody responses against the CFA/I fimbriae by priming with DNA and boosting with a live recombinant Salmonella vaccine

    Directory of Open Access Journals (Sweden)

    M.O. Lásaro

    1999-02-01

    Full Text Available The induction of systemic (IgG and mucosal (IgA antibody responses against the colonization factor I antigen (CFA/I of enterotoxigenic Escherichia coli (ETEC was evaluated in mice primed with an intramuscularly delivered CFA/I-encoding DNA vaccine followed by two oral immunizations with a live recombinant Salmonella typhimurium vaccine strain expressing the ETEC antigen. The booster effect induced by the oral immunization was detected two weeks and one year after the administration of the DNA vaccine. The DNA-primed/Salmonella-boosted vaccination regime showed a synergistic effect on the induced CFA/I-specific systemic and secreted antibody levels which could not be attained by either immunization strategy alone. These results suggest that the combined use of DNA vaccines and recombinant Salmonella vaccine strains can be a useful immunization strategy against enteric pathogens.

  5. CRISPR/Cas9-Advancing Orthopoxvirus Genome Editing for Vaccine and Vector Development.

    Science.gov (United States)

    Okoli, Arinze; Okeke, Malachy I; Tryland, Morten; Moens, Ugo

    2018-01-22

    The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (Cas9) technology is revolutionizing genome editing approaches. Its high efficiency, specificity, versatility, flexibility, simplicity and low cost have made the CRISPR/Cas9 system preferable to other guided site-specific nuclease-based systems such as TALENs (Transcription Activator-like Effector Nucleases) and ZFNs (Zinc Finger Nucleases) in genome editing of viruses. CRISPR/Cas9 is presently being applied in constructing viral mutants, preventing virus infections, eradicating proviral DNA, and inhibiting viral replication in infected cells. The successful adaptation of CRISPR/Cas9 to editing the genome of Vaccinia virus paves the way for its application in editing other vaccine/vector-relevant orthopoxvirus (OPXV) strains. Thus, CRISPR/Cas9 can be used to resolve some of the major hindrances to the development of OPXV-based recombinant vaccines and vectors, including sub-optimal immunogenicity; transgene and genome instability; reversion of attenuation; potential of spread of transgenes to wildtype strains and close contacts, which are important biosafety and risk assessment considerations. In this article, we review the published literature on the application of CRISPR/Cas9 in virus genome editing and discuss the potentials of CRISPR/Cas9 in advancing OPXV-based recombinant vaccines and vectors. We also discuss the application of CRISPR/Cas9 in combating viruses of clinical relevance, the limitations of CRISPR/Cas9 and the current strategies to overcome them.

  6. Clinical and parasitological protection in a Leishmania infantum-macaque model vaccinated with adenovirus and the recombinant A2 antigen.

    Directory of Open Access Journals (Sweden)

    Gabriel Grimaldi

    2014-06-01

    Full Text Available BACKGROUND: Visceral leishmaniasis (VL is a severe vector-born disease of humans and dogs caused by Leishmania donovani complex parasites. Approximately 0.2 to 0.4 million new human VL cases occur annually worldwide. In the new world, these alarming numbers are primarily due to the impracticality of current control methods based on vector reduction and dog euthanasia. Thus, a prophylactic vaccine appears to be essential for VL control. The current efforts to develop an efficacious vaccine include the use of animal models that are as close to human VL. We have previously reported a L. infantum-macaque infection model that is reliable to determine which vaccine candidates are most worthy for further development. Among the few amastigote antigens tested so far, one of specific interest is the recombinant A2 (rA2 protein that protects against experimental L. infantum infections in mice and dogs. METHODOLOGY/PRINCIPAL FINDINGS: Primates were vaccinated using three rA2-based prime-boost immunization regimes: three doses of rA2 plus recombinant human interleukin-12 (rhIL-12 adsorbed in alum (rA2/rhIL-12/alum; two doses of non-replicative adenovirus recombinant vector encoding A2 (Ad5-A2 followed by two boosts with rA2/rhIL-12/alum (Ad5-A2+rA2/rhIL12/alum; and plasmid DNA encoding A2 gene (DNA-A2 boosted with two doses of Ad5-A2 (DNA-A2+Ad5-A2. Primates received a subsequent infectious challenge with L. infantum. Vaccines, apart from being safe, were immunogenic as animals responded with increased pre-challenge production of anti-A2-specific IgG antibodies, though with some variability in the response, depending on the vaccine formulation/protocol. The relative parasite load in the liver was significantly lower in immunized macaques as compared to controls. Protection correlated with hepatic granuloma resolution, and reduction of clinical symptoms, particularly when primates were vaccinated with the Ad5-A2+rA2/rhIL12/alum protocol. CONCLUSIONS

  7. Vaccine protection of chickens against antigenically diverse H5 highly pathogenic avian influenza isolates with a live HVT vector vaccine expressing the influenza hemagglutinin gene derived from a clade 2.2 avian influenza virus.

    Science.gov (United States)

    Kapczynski, Darrell R; Esaki, Motoyuki; Dorsey, Kristi M; Jiang, Haijun; Jackwood, Mark; Moraes, Mauro; Gardin, Yannick

    2015-02-25

    Vaccination is an important tool in the protection of poultry against avian influenza (AI). For field use, the overwhelming majority of AI vaccines produced are inactivated whole virus formulated into an oil emulsion. However, recombinant vectored vaccines are gaining use for their ability to induce protection against heterologous isolates and ability to overcome maternal antibody interference. In these studies, we compared protection of chickens provided by a turkey herpesvirus (HVT) vector vaccine expressing the hemagglutinin (HA) gene from a clade 2.2 H5N1 strain (A/swan/Hungary/4999/2006) against homologous H5N1 as well as heterologous H5N1 and H5N2 highly pathogenic (HP) AI challenge. The results demonstrated all vaccinated birds were protected from clinical signs of disease and mortality following homologous challenge. In addition, oral and cloacal swabs taken from challenged birds demonstrated that vaccinated birds had lower incidence and titers of viral shedding compared to sham-vaccinated birds. Following heterologous H5N1 or H5N2 HPAI challenge, 80-95% of birds receiving the HVT vector AI vaccine at day of age survived challenge with fewer birds shedding virus after challenge than sham vaccinated birds. In vitro cytotoxicity analysis demonstrated that splenic T lymphocytes from HVT-vector-AI vaccinated chickens recognized MHC-matched target cells infected with H5, as well as H6, H7, or H9 AI virus. Taken together, these studies provide support for the use of HVT vector vaccines expressing HA to protect poultry against multiple lineages of HPAI, and that both humoral and cellular immunity induced by live vaccines likely contributes to protection. Published by Elsevier Ltd.

  8. Improved vaccine protection against retrovirus infection after co-administration of adenoviral vectors encoding viral antigens and type I interferon subtypes

    Directory of Open Access Journals (Sweden)

    Groitl Peter

    2011-09-01

    Full Text Available Abstract Background Type I interferons (IFNs exhibit direct antiviral effects, but also distinct immunomodulatory properties. In this study, we analyzed type I IFN subtypes for their effect on prophylactic adenovirus-based anti-retroviral vaccination of mice against Friend retrovirus (FV or HIV. Results Mice were vaccinated with adenoviral vectors encoding FV Env and Gag proteins alone or in combination with vectors encoding IFNα1, IFNα2, IFNα4, IFNα5, IFNα6, IFNα9 or IFNβ. Only the co-administration of adenoviral vectors encoding IFNα2, IFNα4, IFNα6 and IFNα9 resulted in strongly improved immune protection of vaccinated mice from subsequent FV challenge infection with high control over FV-induced splenomegaly and reduced viral loads. The level of protection correlated with augmented virus-specific CD4+ T cell responses and enhanced antibody titers. Similar results were obtained when mice were vaccinated against HIV with adenoviral vectors encoding HIV Env and Gag-Pol in combination with various type I IFN encoding vectors. Here mainly CD4+ T cell responses were enhanced by IFNα subtypes. Conclusions Our results indicate that certain IFNα subtypes have the potential to improve the protective effect of adenovirus-based vaccines against retroviruses. This correlated with augmented virus-specific CD4+ T cell and antibody responses. Thus, co-expression of select type I IFNs may be a valuable tool for the development of anti-retroviral vaccines.

  9. Development and evaluation of a replicon particle vaccine expressing the E2 glycoprotein of bovine viral diarrhea virus (BVDV in cattle

    Directory of Open Access Journals (Sweden)

    Loy John Dustin

    2013-01-01

    Full Text Available Abstract Background Bovine viral diarrhea virus is one of the most significant and costly viral pathogens of cattle worldwide. Alphavirus-derived replicon particles have been shown to be safe and highly effective vaccine vectors against a variety of human and veterinary pathogens. Replicon particles are non-propagating, DIVA compatible, and can induce both humoral and cell mediated immune responses. This is the first experiment to demonstrate that Alphavirus-based replicon particles can be utilized in a standard prime/boost vaccination strategy in calves against a commercially significant bovine pathogen. Findings Replicon particles that express bovine viral diarrhea virus sub-genotype 1b E2 glycoprotein were generated and expression was confirmed in vitro using polyclonal and monoclonal antibodies specific to E2. Vaccine made from particles was generated in Vero cells and administered to BVDV free calves in a prime/boost regimen at two dosage levels. Vaccination resulted in neutralizing antibody titers that cross-neutralized both type 1 and type 2 BVD genotypes following booster vaccination. Additionally, high dose vaccine administration demonstrated some protection from clinical disease and significantly reduced the degree of leukopenia caused by viral infection. Conclusions Replicon particle vaccines administered in a prime/boost regimen expressing BVDV E2 glycoprotein can induce cross-neutralizing titers, reduce leukopenia post challenge, and mitigate clinical disease in calves. This strategy holds promise for a safe and effective vaccine to BVDV.

  10. Suitability of canine herpesvirus as a vector for oral bait vaccination of foxes.

    Science.gov (United States)

    Reubel, Gerhard H; Wright, John; Pekin, Jenny; French, Nigel; Strive, Tanja

    2006-05-31

    Studies were conducted to evaluate the feasibility of using canine herpesvirus (CHV) as a vaccine vector for bait-delivered oral vaccination of wild foxes. To test the viability of CHV in baits, CHV was freeze-dried, incorporated into different baits, stored, and the remaining viral infectivity tested in cell culture after varying periods of time at different storage temperatures. Experimental baits (mouse carcasses) and commercial baits (FOXOFF and PROBAIT) were prepared with either liquid or freeze-dried CHV and tested in two fox trials for their capacity to induce CHV-specific antibodies following oral baiting. Freeze-drying and storage temperatures below 0 degrees C had a stabilizing effect to virus infectivity. When stored at -20 degrees C, freeze-dried CHV retained its full infectivity for up to 3 months in PROBAIT baits, the remaining infectivity in FOXOFF baits was 100-fold less. Oral baiting with CHV induced antiviral serum antibodies in all vaccinated foxes (20/20). None of the vaccinated foxes became ill or shed infectious virus into the environment although viral DNA was detected in body secretions as evaluated by PCR. The results indicate that CHV can be freeze-dried and stored over extended periods of time without loosing much of its infectivity. This is the first report of CHV being used for oral bait vaccination of foxes. It appears that CHV is well suited for use as a recombinant vector for wild canids.

  11. DNA/MVA Vaccines for HIV/AIDS

    Directory of Open Access Journals (Sweden)

    Smita S. Iyer

    2014-02-01

    Full Text Available Since the initial proof-of-concept studies examining the ability of antigen-encoded plasmid DNA to serve as an immunogen, DNA vaccines have evolved as a clinically safe and effective platform for priming HIV-specific cellular and humoral responses in heterologous “prime-boost” vaccination regimens. Direct injection of plasmid DNA into the muscle induces T- and B-cell responses against foreign antigens. However, the insufficient magnitude of this response has led to the development of approaches for enhancing the immunogenicity of DNA vaccines. The last two decades have seen significant progress in the DNA-based vaccine platform with optimized plasmid constructs, improved delivery methods, such as electroporation, the use of molecular adjuvants and novel strategies combining DNA with viral vectors and subunit proteins. These innovations are paving the way for the clinical application of DNA-based HIV vaccines. Here, we review preclinical studies on the DNA-prime/modified vaccinia Ankara (MVA-boost vaccine modality for HIV. There is a great deal of interest in enhancing the immunogenicity of DNA by engineering DNA vaccines to co-express immune modulatory adjuvants. Some of these adjuvants have demonstrated encouraging results in preclinical and clinical studies, and these data will be examined, as well.

  12. Complex adenovirus-vectored vaccine protects guinea pigs from three strains of Marburg virus challenges

    International Nuclear Information System (INIS)

    Wang Danher; Hevey, Michael; Juompan, Laure Y.; Trubey, Charles M.; Raja, Nicholas U.; Deitz, Stephen B.; Woraratanadharm, Jan; Luo Min; Yu Hong; Swain, Benjamin M.; Moore, Kevin M.; Dong, John Y.

    2006-01-01

    The Marburg virus (MARV), an African filovirus closely related to the Ebola virus, causes a deadly hemorrhagic fever in humans, with up to 90% mortality. Currently, treatment of disease is only supportive, and no vaccines are available to prevent spread of MARV infections. In order to address this need, we have developed and characterized a novel recombinant vaccine that utilizes a single complex adenovirus-vectored vaccine (cAdVax) to overexpress a MARV glycoprotein (GP) fusion protein derived from the Musoke and Ci67 strains of MARV. Vaccination with the cAdVaxM(fus) vaccine led to efficient production of MARV-specific antibodies in both mice and guinea pigs. Significantly, guinea pigs vaccinated with at least 5 x 10 7 pfu of cAdVaxM(fus) vaccine were 100% protected against lethal challenges by the Musoke, Ci67 and Ravn strains of MARV, making it a vaccine with trivalent protective efficacy. Therefore, the cAdVaxM(fus) vaccine serves as a promising vaccine candidate to prevent and contain multi-strain infections by MARV

  13. Sequential priming with simian immunodeficiency virus (SIV) DNA vaccines, with or without encoded cytokines, and a replicating adenovirus-SIV recombinant followed by protein boosting does not control a pathogenic SIVmac251 mucosal challenge.

    Science.gov (United States)

    Demberg, Thorsten; Boyer, Jean D; Malkevich, Nina; Patterson, L Jean; Venzon, David; Summers, Ebonita L; Kalisz, Irene; Kalyanaraman, V S; Lee, Eun Mi; Weiner, David B; Robert-Guroff, Marjorie

    2008-11-01

    Previously, combination DNA/nonreplicating adenovirus (Ad)- or poxvirus-vectored vaccines have strongly protected against SHIV(89.6P), DNAs expressing cytokines have modulated immunity elicited by DNA vaccines, and replication-competent Ad-recombinant priming and protein boosting has strongly protected against simian immunodeficiency virus (SIV) challenge. Here we evaluated a vaccine strategy composed of these promising components. Seven rhesus macaques per group were primed twice with multigenic SIV plasmid DNA with or without interleukin-12 (IL-12) DNA or IL-15 DNA. After a multigenic replicating Ad-SIV immunization, all groups received two booster immunizations with SIV gp140 and SIV Nef protein. Four control macaques received control DNA plasmids, empty Ad vector, and adjuvant. All vaccine components were immunogenic, but the cytokine DNAs had little effect. Macaques that received IL-15-DNA exhibited higher peak anti-Nef titers, a more rapid anti-Nef anamnestic response postchallenge, and expanded CD8(CM) T cells 2 weeks postchallenge compared to the DNA-only group. Other immune responses were indistinguishable between groups. Overall, no protection against intrarectal challenge with SIV(mac251) was observed, although immunized non-Mamu-A*01 macaques as a group exhibited a statistically significant 1-log decline in acute viremia compared to non-Mamu-A*01 controls. Possible factors contributing to the poor outcome include administration of cytokine DNAs to sites different from the Ad recombinants (intramuscular and intratracheal, respectively), too few DNA priming immunizations, a suboptimal DNA delivery method, failure to ensure delivery of SIV and cytokine plasmids to the same cell, and instability and short half-life of the IL-15 component. Future experiments should address these issues to determine if this combination approach is able to control a virulent SIV challenge.

  14. CRISPR/Cas9—Advancing Orthopoxvirus Genome Editing for Vaccine and Vector Development

    Science.gov (United States)

    Okoli, Arinze; Okeke, Malachy I.; Tryland, Morten; Moens, Ugo

    2018-01-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (Cas9) technology is revolutionizing genome editing approaches. Its high efficiency, specificity, versatility, flexibility, simplicity and low cost have made the CRISPR/Cas9 system preferable to other guided site-specific nuclease-based systems such as TALENs (Transcription Activator-like Effector Nucleases) and ZFNs (Zinc Finger Nucleases) in genome editing of viruses. CRISPR/Cas9 is presently being applied in constructing viral mutants, preventing virus infections, eradicating proviral DNA, and inhibiting viral replication in infected cells. The successful adaptation of CRISPR/Cas9 to editing the genome of Vaccinia virus paves the way for its application in editing other vaccine/vector-relevant orthopoxvirus (OPXV) strains. Thus, CRISPR/Cas9 can be used to resolve some of the major hindrances to the development of OPXV-based recombinant vaccines and vectors, including sub-optimal immunogenicity; transgene and genome instability; reversion of attenuation; potential of spread of transgenes to wildtype strains and close contacts, which are important biosafety and risk assessment considerations. In this article, we review the published literature on the application of CRISPR/Cas9 in virus genome editing and discuss the potentials of CRISPR/Cas9 in advancing OPXV-based recombinant vaccines and vectors. We also discuss the application of CRISPR/Cas9 in combating viruses of clinical relevance, the limitations of CRISPR/Cas9 and the current strategies to overcome them. PMID:29361752

  15. Live-Attenuated Bacterial Vectors: Tools for Vaccine and Therapeutic Agent Delivery

    Directory of Open Access Journals (Sweden)

    Ivan Y. C. Lin

    2015-11-01

    Full Text Available Genetically attenuated microorganisms, including pathogenic and commensal bacteria, can be engineered to carry and deliver heterologous antigens to elicit host immunity against both the vector as well as the pathogen from which the donor gene is derived. These live attenuated bacterial vectors have been given much attention due to their capacity to induce a broad range of immune responses including localized mucosal, as well as systemic humoral and/or cell-mediated immunity. In addition, the unique tumor-homing characteristics of these bacterial vectors has also been exploited for alternative anti-tumor vaccines and therapies. In such approach, tumor-associated antigen, immunostimulatory molecules, anti-tumor drugs, or nucleotides (DNA or RNA are delivered. Different potential vectors are appropriate for specific applications, depending on their pathogenic routes. In this review, we survey and summarize the main features of the different types of live bacterial vectors and discussed the clinical applications in the field of vaccinology. In addition, different approaches for using live attenuated bacterial vectors for anti-cancer therapy is discussed, and some promising pre-clinical and clinical studies in this field are outlined.

  16. NYVAC vector modified by C7L viral gene insertion improves T cell immune responses and effectiveness against leishmaniasis.

    Science.gov (United States)

    Sánchez-Sampedro, L; Mejías-Pérez, E; S Sorzano, Carlos Óscar; Nájera, J L; Esteban, M

    2016-07-15

    The NYVAC poxvirus vector is used as vaccine candidate for HIV and other diseases, although there is only limited experimental information on its immunogenicity and effectiveness for use against human pathogens. Here we defined the selective advantage of NYVAC vectors in a mouse model by comparing the immune responses and protection induced by vectors that express the LACK (Leishmania-activated C-kinase antigen), alone or with insertion of the viral host range gene C7L that allows the virus to replicate in human cells. Using DNA prime/virus boost protocols, we show that replication-competent NYVAC-LACK that expresses C7L (NYVAC-LACK-C7L) induced higher-magnitude polyfunctional CD8(+) and CD4(+) primary adaptive and effector memory T cell responses (IFNγ, TNFα, IL-2, CD107a) to LACK antigen than non-replicating NYVAC-LACK. Compared to NYVAC-LACK, the NYVAC-LACK-C7L-induced CD8(+) T cell population also showed higher proliferation when stimulated with LACK antigen. After a challenge by subcutaneous Leishmania major metacyclic promastigotes, NYVAC-LACK-C7L-vaccinated mouse groups showed greater protection than the NYVAC-LACK-vaccinated group. Our results indicate that the type and potency of immune responses induced by LACK-expressing NYVAC vectors is improved by insertion of the C7L gene, and that a replication-competent vector as a vaccine renders greater protection against a human pathogen than a non-replicating vector. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Fowl adenovirus serotype 9 vectored vaccine for protection of avian influenza virus

    Science.gov (United States)

    A fowl adenovirus serotype 9, a non-pathogenic large double stranded DNA virus, was developed as a viral vector to express influenza genes as a potential vaccine. Two separate constructs were developed that expressed either the hemagglutinin gene of A/Chicken/Jalisco/2012 (H7) or A/ Chicken/Iowa/20...

  18. Novel Vaccine Against Mycoplasma Hyosynoviae: The Immunogenic Effect of Iscom-Based Vaccines in Swine

    DEFF Research Database (Denmark)

    Lauritsen, Klara Tølbøll; Vinther Heydenreich, Annette; Riber, Ulla

    Arthritis in swine is frequently caused by Mycoplasma hyosynoviae (Mhs). For the development of an effective vaccine we investigated the immunogenic effect of three vaccine preparations with the ISCOM adjuvant Posintro™ from Nordic Vaccine. A: formalin fixed whole-cells Mhs (300 µg/dose) mixed...... with Posintro, B: Deoxycholate extracted lipoproteins from Mhs organisms (DOC-antigen, 300 μg/dose) in Posintro and C: DOC-antigen (50 μg/dose) in Posintro. Each vaccine-group contained three pigs. Vaccinations (i.m.) were performed at 12 and 15 weeks of age. The development of specific IgG and secretion...... of IFNγ were measured. Three weeks after the second vaccination, pigs were euthanised and autopsied. Vaccine B induced a high level of specific serum IgG in all pigs a week after boost. Vaccine C gave a variable response after boost, with two pigs seroconverting, while no response was seen by vaccine A...

  19. A Phase I Double Blind, Placebo-Controlled, Randomized Study of the Safety and Immunogenicity of Electroporated HIV DNA with or without Interleukin 12 in Prime-Boost Combinations with an Ad35 HIV Vaccine in Healthy HIV-Seronegative African Adults.

    Directory of Open Access Journals (Sweden)

    Juliet Mpendo

    Full Text Available Strategies to enhance the immunogenicity of DNA vaccines in humans include i co-administration of molecular adjuvants, ii intramuscular administration followed by in vivo electroporation (IM/EP and/or iii boosting with a different vaccine. Combining these strategies provided protection of macaques challenged with SIV; this clinical trial was designed to mimic the vaccine regimen in the SIV study.Seventy five healthy, HIV-seronegative adults were enrolled into a phase 1, randomized, double-blind, placebo-controlled trial. Multi-antigenic HIV (HIVMAG plasmid DNA (pDNA vaccine alone or co-administered with pDNA encoding human Interleukin 12 (IL-12 (GENEVAX IL-12 given by IM/EP using the TriGrid Delivery System was tested in different prime-boost regimens with recombinant Ad35 HIV vaccine given IM.All local reactions but one were mild or moderate. Systemic reactions and unsolicited adverse events including laboratory abnormalities did not differ between vaccine and placebo recipients. No serious adverse events (SAEs were reported. T cell and antibody response rates after HIVMAG (x3 prime-Ad35 (x1 boost were independent of IL-12, while the magnitude of interferon gamma (IFN-γ ELISPOT responses was highest after HIVMAG (x3 without IL-12. The quality and phenotype of T cell responses shown by intracellular cytokine staining (ICS were similar between groups. Inhibition of HIV replication by autologous T cells was demonstrated after HIVMAG (x3 prime and was boosted after Ad35. HIV specific antibodies were detected only after Ad35 boost, although there was a priming effect with 3 doses of HIVMAG with or without IL-12. No anti-IL-12 antibodies were detected.The vaccines were safe, well tolerated and moderately immunogenic. Repeated administration IM/EP was well accepted. An adjuvant effect of co-administered plasmid IL-12 was not detected.ClinicalTrials.gov NCT01496989.

  20. Search for pair-produced vector-like quarks in boosted topologies in pp-collisions at 13 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Daniel; Haller, Johannes; Marchesini, Ivan; Nowatschin, Dominik; Schmidt, Alexander; Tholen, Heiner [Universitaet Hamburg (Germany). Institut fuer Experimentalphysik

    2016-07-01

    While a fourth generation of chiral quarks has been excluded by the discovery of the Higgs boson, vector-like quarks are still allowed by the present experimental data and are in fact a feature of many BSM models. We present a search for pair-produced vector-like top partners (T') with 13 TeV data at the CMS detector. The search is carried out in the lepton+jets channel and is most sensitive for final states where at least one T' decays to a top quark and a Higgs boson. If vector-like quarks exist, they are expected to have masses above ∝ 800 GeV since lighter particles have already been excluded by both ATLAS and CMS in LHC Run I. As a consequence, final states with large transverse momenta become more likely and the decay products of intermediate particles (like top quarks and Higgs bosons) tend to be very collimated. In order to resolve these boosted final states, jet-substructure techniques such as Higgs-tagging are employed in this analysis.

  1. Skin vaccination with live virus vectored microneedle arrays induce long lived CD8(+) T cell memory.

    Science.gov (United States)

    Becker, Pablo D; Hervouet, Catherine; Mason, Gavin M; Kwon, Sung-Yun; Klavinskis, Linda S

    2015-09-08

    A simple dissolvable microneedle array (MA) platform has emerged as a promising technology for vaccine delivery, due to needle-free injection with a formulation that preserves the immunogenicity of live viral vectored vaccines dried in the MA matrix. While recent studies have focused largely on design parameters optimized to induce primary CD8(+) T cell responses, the hallmark of a vaccine is synonymous with engendering long-lasting memory. Here, we address the capacity of dried MA vaccination to programme phenotypic markers indicative of effector/memory CD8(+) T cell subsets and also responsiveness to recall antigen benchmarked against conventional intradermal (ID) injection. We show that despite a slightly lower frequency of dividing T cell receptor transgenic CD8(+) T cells in secondary lymphoid tissue at an early time point, the absolute number of CD8(+) T cells expressing an effector memory (CD62L(-)CD127(+)) and central memory (CD62L(+)CD127(+)) phenotype during peak expansion were comparable after MA and ID vaccination with a recombinant human adenovirus type 5 vector (AdHu5) encoding HIV-1 gag. Similarly, both vaccination routes generated CD8(+) memory T cell subsets detected in draining LNs for at least two years post-vaccination capable of responding to secondary antigen. These data suggest that CD8(+) T cell effector/memory generation and long-term memory is largely unaffected by physical differences in vaccine delivery to the skin via dried MA or ID suspension. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Safety and immunogenicity of adenovirus-vectored near-consensus HIV type 1 clade B gag vaccines in healthy adults.

    Science.gov (United States)

    Harro, Clayton D; Robertson, Michael N; Lally, Michelle A; O'Neill, Lori D; Edupuganti, Srilatha; Goepfert, Paul A; Mulligan, Mark J; Priddy, Frances H; Dubey, Sheri A; Kierstead, Lisa S; Sun, Xiao; Casimiro, Danilo R; DiNubile, Mark J; Shiver, John W; Leavitt, Randi Y; Mehrotra, Devan V

    2009-01-01

    Vaccines inducing pathogen-specific cell-mediated immunity are being developed using attenuated adenoviral (Ad) vectors. We report the results of two independent Phase I trials of similar replication-deficient Ad5 vaccines containing a near-consensus HIV-1 clade B gag transgene. Healthy HIV-uninfected adults were enrolled in two separate, multicenter, dose-escalating, blinded, placebo-controlled studies to assess the safety and immunogenicity of a three-dose homologous regimen of Ad5 and MRKAd5 HIV-1 gag vaccines given on day 1, week 4, and week 26. Adverse events were collected for 29 days following each intradeltoid injection. The primary immunogenicity endpoint was the proportion of subjects with a positive unfractionated Gag-specific IFN-gamma ELISPOT response measured 4 weeks after the last dose (week 30). Analyses were performed after combining data for each dose group from both protocols, stratifying by baseline Ad5 titers. Overall, 252 subjects were randomized to receive either vaccine or placebo, including 229 subjects (91%) who completed the study through week 30. Tolerability and immunogenicity did not appear to differ between the Ad5 and MRKAd5 vaccines. The frequency of injection-site reactions was dose dependent. Systemic adverse events were also dose dependent and more frequent in subjects with baseline Ad5 titers or =200, especially after the first dose. The percent of ELISPOT responders and the ELISPOT geometric means overall were significantly higher for all four vaccine doses studied compared to placebo, and were generally higher in vaccine recipients with baseline Ad5 titers or = 200. Ad5 titers increased after vaccination in a dose-dependent fashion. Both Ad5-vectored HIV-1 vaccines were generally well tolerated and induced cell-mediated immune responses against HIV Gag-peptides in the majority of healthy adults with baseline Ad5 titers vaccine-induced immunity to the Ad5 vector may dampen the CMI response to HIV Gag.

  3. A safe and efficient BCG vectored vaccine to prevent the disease caused by the human Respiratory Syncytial Virus.

    Science.gov (United States)

    Rey-Jurado, Emma; Soto, Jorge; Gálvez, Nicolás; Kalergis, Alexis M

    2017-09-02

    The human Respiratory Syncytial Virus (hRSV) causes lower respiratory tract infections including pneumonia and bronchiolitis. Such infections also cause a large number of hospitalizations and affects mainly newborns, young children and the elderly worldwide. Symptoms associated with hRSV infection are due to an exacerbated immune response characterized by low levels of IFN-γ, recruitment of neutrophils and eosinophils to the site of infection and lung damage. Although hRSV is a major health problem, no vaccines are currently available. Different immunization approaches have been developed to achieve a vaccine that activates the immune system, without triggering an unbalanced inflammation. These approaches include live attenuated vaccine, DNA or proteins technologies, and the use of vectors to express proteins of the virus. In this review, we discuss the host immune response to hRSV and the immunological mechanisms underlying an effective and safe BCG vectored vaccine against hRSV.

  4. Immunization of Pigs by DNA Prime and Recombinant Vaccinia Virus Boost To Identify and Rank African Swine Fever Virus Immunogenic and Protective Proteins.

    Science.gov (United States)

    Jancovich, James K; Chapman, Dave; Hansen, Debra T; Robida, Mark D; Loskutov, Andrey; Craciunescu, Felicia; Borovkov, Alex; Kibler, Karen; Goatley, Lynnette; King, Katherine; Netherton, Christopher L; Taylor, Geraldine; Jacobs, Bertram; Sykes, Kathryn; Dixon, Linda K

    2018-04-15

    African swine fever virus (ASFV) causes an acute hemorrhagic fever in domestic pigs, with high socioeconomic impact. No vaccine is available, limiting options for control. Although live attenuated ASFV can induce up to 100% protection against lethal challenge, little is known of the antigens which induce this protective response. To identify additional ASFV immunogenic and potentially protective antigens, we cloned 47 viral genes in individual plasmids for gene vaccination and in recombinant vaccinia viruses. These antigens were selected to include proteins with different functions and timing of expression. Pools of up to 22 antigens were delivered by DNA prime and recombinant vaccinia virus boost to groups of pigs. Responses of immune lymphocytes from pigs to individual recombinant proteins and to ASFV were measured by interferon gamma enzyme-linked immunosorbent spot (ELISpot) assays to identify a subset of the antigens that consistently induced the highest responses. All 47 antigens were then delivered to pigs by DNA prime and recombinant vaccinia virus boost, and pigs were challenged with a lethal dose of ASFV isolate Georgia 2007/1. Although pigs developed clinical and pathological signs consistent with acute ASFV, viral genome levels were significantly reduced in blood and several lymph tissues in those pigs immunized with vectors expressing ASFV antigens compared with the levels in control pigs. IMPORTANCE The lack of a vaccine limits the options to control African swine fever. Advances have been made in the development of genetically modified live attenuated ASFV that can induce protection against challenge. However, there may be safety issues relating to the use of these in the field. There is little information about ASFV antigens that can induce a protective immune response against challenge. We carried out a large screen of 30% of ASFV antigens by delivering individual genes in different pools to pigs by DNA immunization prime and recombinant vaccinia

  5. A Phase 1 Human Immunodeficiency Virus Vaccine Trial for Cross-Profiling the Kinetics of Serum and Mucosal Antibody Responses to CN54gp140 Modulated by Two Homologous Prime-Boost Vaccine Regimens

    Directory of Open Access Journals (Sweden)

    Sven Kratochvil

    2017-05-01

    Full Text Available A key aspect to finding an efficacious human immunodeficiency virus (HIV vaccine is the optimization of vaccine schedules that can mediate the efficient maturation of protective immune responses. In the present study, we investigated the effect of alternate booster regimens on the immune responses to a candidate HIV-1 clade C CN54gp140 envelope protein, which was coadministered with the TLR4-agonist glucopyranosyl lipid A-aqueous formulation. Twelve study participants received a common three-dose intramuscular priming series followed by a final booster at either 6 or 12 months. The two homologous prime-boost regimens were well tolerated and induced CN54gp140-specific responses that were observed in both the systemic and mucosal compartments. Levels of vaccine-induced IgG-subclass antibodies correlated significantly with FcγR engagement, and both vaccine regimens were associated with strikingly similar patterns in antibody titer and FcγR-binding profiles. In both groups, identical changes in the antigen (Ag-specific IgG-subclass fingerprint, leading to a decrease in IgG1 and an increase in IgG4 levels, were modulated by booster injections. Here, the dissection of immune profiles further supports the notion that prime-boost strategies are essential for the induction of diverse Ag-specific HIV-1 responses. The results reported here clearly demonstrate that identical responses were effectively and safely induced by both vaccine regimens, indicating that an accelerated 6-month regimen could be employed for the rapid induction of immune responses against CN54gp140 with no apparent impact on the overall quality of the induced immune response. (This study has been registered at http://ClinicalTrials.gov under registration no. NCT01966900.

  6. Targeting the genital tract mucosa with a lipopeptide/recombinant adenovirus prime/boost vaccine induces potent and long-lasting CD8+ T cell immunity against herpes: importance of MyD88.

    Science.gov (United States)

    Zhang, Xiuli; Dervillez, Xavier; Chentoufi, Aziz Alami; Badakhshan, Tina; Bettahi, Ilham; Benmohamed, Lbachir

    2012-11-01

    Targeting of the mucosal immune system of the genital tract with subunit vaccines has failed to induce potent and durable local CD8(+) T cell immunity, which is crucial for protection against many sexually transmitted viral pathogens, including HSV type 2 (HSV-2), which causes genital herpes. In this study, we aimed to investigate the potential of a novel lipopeptide/adenovirus type 5 (Lipo/rAdv5) prime/boost mucosal vaccine for induction of CD8(+) T cell immunity to protect the female genital tract from herpes. The lipopeptide vaccine and the rAdv5 vaccine express the immunodominant HSV-2 CD8(+) T cell epitope (gB(498-505)), and both were delivered intravaginally in the progesterone-induced B6 mouse model of genital herpes. Compared with mice immunized with the homologous lipopeptide/lipopeptide (Lipo/Lipo) vaccine, the Lipo/rAdv5 prime/boost immunized mice 1) developed potent and sustained HSV-specific CD8(+) T cells, detected in both the genital tract draining nodes and in the vaginal mucosa; 2) had significantly lower virus titers; 3) had decreased overt signs of genital herpes disease; and 4) did not succumb to lethal infection (p herpes infection and disease.

  7. Adenovirus-vectored Ebola vaccines.

    Science.gov (United States)

    Gilbert, Sarah C

    2015-01-01

    The 2014 outbreak of Ebola virus disease in West Africa has highlighted the need for the availability of effective vaccines against outbreak pathogens that are suitable for use in frontline workers who risk their own health in the course of caring for those with the disease, and also for members of the community in the affected area. Along with effective contact tracing and quarantine, use of a vaccine as soon as an outbreak is identified could greatly facilitate rapid control and prevent the outbreak from spreading. This review describes the progress that has been made in producing and testing adenovirus-based Ebola vaccines in both pre-clinical and clinical studies, and considers the likely future use of these vaccines.

  8. Estimation of age-specific rates of reactivation and immune boosting of the varicella zoster virus

    Directory of Open Access Journals (Sweden)

    Isabella Marinelli

    2017-06-01

    Full Text Available Studies into the impact of vaccination against the varicella zoster virus (VZV have increasingly focused on herpes zoster (HZ, which is believed to be increasing in vaccinated populations with decreasing infection pressure. This idea can be traced back to Hope-Simpson's hypothesis, in which a person's immune status determines the likelihood that he/she will develop HZ. Immunity decreases over time, and can be boosted by contact with a person experiencing varicella (exogenous boosting or by a reactivation attempt of the virus (endogenous boosting. Here we use transmission models to estimate age-specific rates of reactivation and immune boosting, exogenous as well as endogenous, using zoster incidence data from the Netherlands (2002–2011, n = 7026. The boosting and reactivation rates are estimated with splines, enabling these quantities to be optimally informed by the data. The analyses show that models with high levels of exogenous boosting and estimated or zero endogenous boosting, constant rate of loss of immunity, and reactivation rate increasing with age (to more than 5% per year in the elderly give the best fit to the data. Estimates of the rates of immune boosting and reactivation are strongly correlated. This has important implications as these parameters determine the fraction of the population with waned immunity. We conclude that independent evidence on rates of immune boosting and reactivation in persons with waned immunity are needed to robustly predict the impact of varicella vaccination on the incidence of HZ.

  9. Phase 1 study of pandemic H1 DNA vaccine in healthy adults.

    Directory of Open Access Journals (Sweden)

    Michelle C Crank

    Full Text Available A novel, swine-origin influenza A (H1N1 virus was detected worldwide in April 2009, and the World Health Organization (WHO declared a global pandemic that June. DNA vaccine priming improves responses to inactivated influenza vaccines. We describe the rapid production and clinical evaluation of a DNA vaccine encoding the hemagglutinin protein of the 2009 pandemic A/California/04/2009(H1N1 influenza virus, accomplished nearly two months faster than production of A/California/07/2009(H1N1 licensed monovalent inactivated vaccine (MIV.20 subjects received three H1 DNA vaccinations (4 mg intramuscularly with Biojector at 4-week intervals. Eighteen subjects received an optional boost when the licensed H1N1 MIV became available. The interval between the third H1 DNA injection and MIV boost was 3-17 weeks. Vaccine safety was assessed by clinical observation, laboratory parameters, and 7-day solicited reactogenicity. Antibody responses were assessed by ELISA, HAI and neutralization assays, and T cell responses by ELISpot and flow cytometry.Vaccinations were safe and well-tolerated. As evaluated by HAI, 6/20 developed positive responses at 4 weeks after third DNA injection and 13/18 at 4 weeks after MIV boost. Similar results were detected in neutralization assays. T cell responses were detected after DNA and MIV. The antibody responses were significantly amplified by the MIV boost, however, the boost did not increased T cell responses induced by DNA vaccine.H1 DNA vaccine was produced quickly, was well-tolerated, and had modest immunogenicity as a single agent. Other HA DNA prime-MIV boost regimens utilizing one DNA prime vaccination and longer boost intervals have shown significant immunogenicity. Rapid and large-scale production of HA DNA vaccines has the potential to contribute to an efficient response against future influenza pandemics.Clinicaltrials.gov NCT00973895.

  10. Novel recombinant alphaviral and adenoviral vectors for cancer immunotherapy.

    Science.gov (United States)

    Osada, Takuya; Morse, Michael A; Hobeika, Amy; Lyerly, H Kim

    2012-06-01

    Although cellular immunotherapy based on autolgous dendritic cells (DCs) targeting antigens expressed by metastatic cancer has demonstrated clinical efficacy, the logistical challenges in generating an individualized cell product create an imperative to develop alternatives to DC-based cancer vaccines. Particularly attractive alternatives include in situ delivery of antigen and activation signals to resident antigen-presenting cells (APCs), which can be achieved by novel fusion molecules targeting the mannose receptor and by recombinant viral vectors expressing the antigen of interest and capable of infecting DCs. A particular challenge in the use of viral vectors is the well-appreciated clinical obstacles to their efficacy, specifically vector-specific neutralizing immune responses. Because heterologous prime and boost strategies have been demonstrated to be particularly potent, we developed two novel recombinant vectors based on alphaviral replicon particles and a next-generation adenovirus encoding an antigen commonly overexpressed in many human cancers, carcinoembryonic antigen (CEA). The rationale for developing these vectors, their unique characteristics, the preclinical studies and early clinical experience with each, and opportunities to enhance their effectiveness will be reviewed. The potential of each of these potent recombinant vectors to efficiently generate clinically active anti-tumor immune response alone, or in combination, will be discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. A virus vector based on Canine Herpesvirus for vaccine applications in canids.

    Science.gov (United States)

    Strive, T; Hardy, C M; Wright, J; Reubel, G H

    2007-01-31

    Canine Herpesvirus (CHV) is being developed as a virus vector for the vaccination of European red foxes. However, initial studies using recombinant CHV vaccines in foxes revealed viral attenuation and lack of antibody response to inserted foreign antigens. These findings were attributed both to inactivation of the thymidine kinase (TK) gene and excess foreign genetic material in the recombinant viral genome. In this study, we report an improved CHV-bacterial artificial chromosome (BAC) vector system designed to overcome attenuation in foxes. A non-essential region was identified in the CHV genome as an alternative insertion site for foreign genes. Replacement of a guanine/cytosine (GC)-rich intergenic region between UL21 and UL22 of CHV with a marker gene did not change growth behaviour in vitro, showing that this region is not essential for virus growth in cell culture. We subsequently produced a CHV-BAC vector with an intact TK gene in which the bacterial genes and the antigen expression cassette were inserted into this GC-rich locus. Unlike earlier constructs, the new CHV-BAC allowed self-excision of the bacterial genes via homologous recombination after transfection of BACs into cell culture. The BAC-CHV system was used to produce a recombinant virus that constitutively expressed porcine zona pellucida subunit C protein between the UL21 and UL22 genes of CHV. Complete self-excision of the bacterial genes from CHV was achieved within one round of replication whilst retaining antigen gene expression.

  12. Experiements with an inactivated hepatitis leptospirosis vaccine in vaccination programmes for dogs.

    Science.gov (United States)

    Wilson, J H; Hermann-Dekkers, W M; Leemans-Dessy, S; Meijer, J W

    1977-06-25

    A fluid adjuvanted vaccine consisting of inactivated hepatitis virus (iH) and leptospirae antigens (L) was developed. The vaccine (Kavak iHL; Duphar) was tested in several vaccination programmes both alone and in combination with freeze dried measles (M) or distemper (D) vaccines. The results demonstrate that this new vaccine is also effective in pups with maternally derived antibodies, although a second vaccination at 14 weeks of age is recommended to boost the first vaccination. For the booster vaccination either the iHL-vaccine or the liver attenuated hepatitis vaccine (H) can be used.

  13. Safety and tolerability of conserved region vaccines vectored by plasmid DNA, simian adenovirus and modified vaccinia virus ankara administered to human immunodeficiency virus type 1-uninfected adults in a randomized, single-blind phase I trial.

    Directory of Open Access Journals (Sweden)

    Emma-Jo Hayton

    Full Text Available HIV-1 vaccine development has advanced slowly due to viral antigenic diversity, poor immunogenicity and recently, safety concerns associated with human adenovirus serotype-5 vectors. To tackle HIV-1 variation, we designed a unique T-cell immunogen HIVconsv from functionally conserved regions of the HIV-1 proteome, which were presented to the immune system using a heterologous prime-boost combination of plasmid DNA, a non-replicating simian (chimpanzee adenovirus ChAdV-63 and a non-replicating poxvirus, modified vaccinia virus Ankara. A block-randomized, single-blind, placebo-controlled phase I trial HIV-CORE 002 administered for the first time candidate HIV-1- vaccines or placebo to 32 healthy HIV-1/2-uninfected adults in Oxford, UK and elicited high frequencies of HIV-1-specific T cells capable of inhibiting HIV-1 replication in vitro. Here, detail safety and tolerability of these vaccines are reported.Local and systemic reactogenicity data were collected using structured interviews and study-specific diary cards. Data on all other adverse events were collected using open questions. Serum neutralizing antibody titres to ChAdV-63 were determined before and after vaccination.Two volunteers withdrew for vaccine-unrelated reasons. No vaccine-related serious adverse events or reactions occurred during 190 person-months of follow-up. Local and systemic events after vaccination occurred in 27/32 individuals and most were mild (severity grade 1 and predominantly transient (<48 hours. Myalgia and flu-like symptoms were more strongly associated with MVA than ChAdV63 or DNA vectors and more common in vaccine recipients than in placebo. There were no intercurrent HIV-1 infections during follow-up. 2/24 volunteers had low ChAdV-63-neutralizing titres at baseline and 7 increased their titres to over 200 with a median (range of 633 (231-1533 post-vaccination, which is of no safety concern.These data demonstrate safety and good tolerability of the pSG2

  14. Protective immunity against tularemia provided by an adenovirus-vectored vaccine expressing Tul4 of Francisella tularensis.

    Science.gov (United States)

    Kaur, Ravinder; Chen, Shan; Arévalo, Maria T; Xu, Qingfu; Chen, Yanping; Zeng, Mingtao

    2012-03-01

    Francisella tularensis, a category A bioterrorism agent, is a highly infectious organism that is passed on via skin contact and inhalation routes. A live attenuated vaccine strain (LVS) has been developed, but it has not been licensed for public use by the FDA due to safety concerns. Thus, there exists a need for a safer and improved vaccine. In this study, we have constructed a replication-incompetent adenovirus, Ad/opt-Tul4, carrying a codon-optimized gene for expression of a membrane protein, Tul4, of F. tularensis LVS. Its ability to protect against lethal challenge and its immunogenicity were evaluated in a murine model. An intramuscular injection of a single dose (1 × 10(7) PFU) of Ad/opt-Tul4 elicited a robust Tul4-specific antibody response. Assays suggest a Th1-driven response. A single dose elicited 20% protection against challenge with 100 × 50% lethal dose (LD(50)) F. tularensis LVS; two additional booster shots resulted in 60% protection. In comparison, three doses of 5 μg recombinant Tul4 protein did not elicit significant protection against challenge. Therefore, the Ad/opt-Tul4 vaccine was more effective than the protein vaccine, and protection was dose dependent. Compared to LVS, the protection rate is lower, but an adenovirus-vectored vaccine may be more attractive due to its enhanced safety profile and mucosal route of delivery. Furthermore, simple genetic modification of the vaccine may potentially produce antibodies protective against a fully virulent strain of F. tularensis. Our data support the development and further research of an adenovirus-vectored vaccine against Tul4 of F. tularensis LVS.

  15. Robust boosting via convex optimization

    Science.gov (United States)

    Rätsch, Gunnar

    2001-12-01

    In this work we consider statistical learning problems. A learning machine aims to extract information from a set of training examples such that it is able to predict the associated label on unseen examples. We consider the case where the resulting classification or regression rule is a combination of simple rules - also called base hypotheses. The so-called boosting algorithms iteratively find a weighted linear combination of base hypotheses that predict well on unseen data. We address the following issues: o The statistical learning theory framework for analyzing boosting methods. We study learning theoretic guarantees on the prediction performance on unseen examples. Recently, large margin classification techniques emerged as a practical result of the theory of generalization, in particular Boosting and Support Vector Machines. A large margin implies a good generalization performance. Hence, we analyze how large the margins in boosting are and find an improved algorithm that is able to generate the maximum margin solution. o How can boosting methods be related to mathematical optimization techniques? To analyze the properties of the resulting classification or regression rule, it is of high importance to understand whether and under which conditions boosting converges. We show that boosting can be used to solve large scale constrained optimization problems, whose solutions are well characterizable. To show this, we relate boosting methods to methods known from mathematical optimization, and derive convergence guarantees for a quite general family of boosting algorithms. o How to make Boosting noise robust? One of the problems of current boosting techniques is that they are sensitive to noise in the training sample. In order to make boosting robust, we transfer the soft margin idea from support vector learning to boosting. We develop theoretically motivated regularized algorithms that exhibit a high noise robustness. o How to adapt boosting to regression problems

  16. Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model

    Science.gov (United States)

    Bartelt, Luther A.; Bolick, David T.; Kolling, Glynis L.; Zaenker, Edna I.; Lara, Ana M.; Noronha, Francisco Jose; Cowardin, Carrie A.; Moore, John H.; Turner, Jerrold R.; Warren, Cirle A.; Buck, Gregory A.; Guerrant, Richard L.

    2016-01-01

    Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNγ, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children. PMID:27467505

  17. Novel Cocaine Vaccine Linked to a Disrupted Adenovirus Gene Transfer Vector Blocks Cocaine Psychostimulant and Reinforcing Effects

    Science.gov (United States)

    Wee, Sunmee; Hicks, Martin J; De, Bishnu P; Rosenberg, Jonathan B; Moreno, Amira Y; Kaminsky, Stephen M; Janda, Kim D; Crystal, Ronald G; Koob, George F

    2012-01-01

    Immunotherapy is a promising treatment for drug addiction. However, insufficient immune responses to vaccines in most subjects pose a challenge. In this study, we tested the efficacy of a new cocaine vaccine (dAd5GNE) in antagonizing cocaine addiction-related behaviors in rats. This vaccine used a disrupted serotype 5 adenovirus (Ad) gene transfer vector coupled to a third-generation cocaine hapten, termed GNE (6-(2R,3S)-3-(benzoyloxy)-8-methyl-8-azabicyclo [3.2.1] octane-2-carboxamido-hexanoic acid). Three groups of rats were immunized with dAd5GNE. One group was injected with 3H-cocaine, and radioactivity in the blood and brain was determined. A second group was tested for cocaine-induced locomotor sensitization. A third group was examined for cocaine self-administration, extinction, and reinstatement of responding for cocaine. Antibody titers were determined at various time-points. In each experiment, we added a control group that was immunized with dAd5 without a hapten. The vaccination with dAd5GNE produced long-lasting high titers (>105) of anti-cocaine antibodies in all of the rats. The vaccination inhibited cocaine-induced hyperlocomotor activity and sensitization. Vaccinated rats acquired cocaine self-administration, but they showed less motivation to self-administer cocaine under a progressive-ratio schedule than control rats. When cocaine was not available in a session, control rats exhibited ‘extinction burst' responding, whereas vaccinated rats did not. Moreover, when primed with cocaine, vaccinated rats did not reinstate responding, suggesting a blockade of cocaine-seeking behavior. These data strongly suggest that our dAd5GNE vector-based vaccine may be effective in treating cocaine abuse and addiction. PMID:21918504

  18. A phase I randomized clinical trial of candidate human immunodeficiency virus type 1 vaccine MVA.HIVA administered to Gambian infants.

    Directory of Open Access Journals (Sweden)

    Muhammed O Afolabi

    Full Text Available A vaccine to decrease transmission of human immunodeficiency virus type 1 (HIV-1 during breast-feeding would complement efforts to eliminate infant HIV-1 infection by antiretroviral therapy. Relative to adults, infants have distinct immune development, potentially high-risk of transmission when exposed to HIV-1 and rapid progression to AIDS when infected. To date, there have been only three published HIV-1 vaccine trials in infants.We conducted a randomized phase I clinical trial PedVacc 001 assessing the feasibility, safety and immunogenicity of a single dose of candidate vaccine MVA.HIVA administered intramuscularly to 20-week-old infants born to HIV-1-negative mothers in The Gambia.Infants were followed to 9 months of age with assessment of safety, immunogenicity and interference with Expanded Program on Immunization (EPI vaccines. The trial is the first stage of developing more complex prime-boost vaccination strategies against breast milk transmission of HIV-1.From March to October 2010, 48 infants (24 vaccine and 24 no-treatment were enrolled with 100% retention. The MVA.HIVA vaccine was safe with no difference in adverse events between vaccinees and untreated infants. Two vaccine recipients (9% and no controls had positive ex vivo interferon-γ ELISPOT assay responses. Antibody levels elicited to the EPI vaccines, which included diphtheria, tetanus, whole-cell pertussis, hepatitis B virus, Haemophilus influenzae type b and oral poliovirus, reached protective levels for the vast majority and were similar between the two arms.A single low-dose of MVA.HIVA administered to 20-week-old infants in The Gambia was found to be safe and without interference with the induction of protective antibody levels by EPI vaccines, but did not alone induce sufficient HIV-1-specific responses. These data support the use of MVA carrying other transgenes as a boosting vector within more complex prime-boost vaccine strategies against transmission of HIV-1 and

  19. Inactivated H9N2 avian influenza virus vaccine with gel-primed and mineral oil-boosted regimen could produce improved immune response in broiler breeders.

    Science.gov (United States)

    Lee, D-H; Kwon, J-S; Lee, H-J; Lee, Y-N; Hur, W; Hong, Y-H; Lee, J-B; Park, S-Y; Choi, I-S; Song, C-S

    2011-05-01

    The frequent economic losses incurred with H9N2 low pathogenic avian influenza viruses (LPAI) infection have raised serious concerns for the poultry industry. A 1-dose regimen with inactivated H9N2 LPAI vaccine could not prevent vaccinated poultry from becoming infected and from shedding wild viruses. A study was conducted to determine whether a 2-dose regimen of inactivated H9N2 LPAI vaccine could enhance the immunologic response in chickens. Such gel-primed and mineral oil-boosted regimen has produced encouraging results associated with improved immune responses to an H9N2 LPAI. This strategy could be cost effective and helpful for preventing avian influenza virus in the poultry industry.

  20. Expression of the Surface Glycoproteins of Human Parainfluenza Virus Type 3 by Bovine Parainfluenza Virus Type 3, a Novel Attenuated Virus Vaccine Vector

    OpenAIRE

    Haller, Aurelia A.; Miller, Tessa; Mitiku, Misrach; Coelingh, Kathleen

    2000-01-01

    Bovine parainfluenza virus type 3 (bPIV3) is being evaluated as an intranasal vaccine for protection against human PIV3 (hPIV3). In young infants, the bPIV3 vaccine appears to be infectious, attenuated, immunogenic, and genetically stable, which are desirable characteristics for an RNA virus vector. To test the potential of the bPIV3 vaccine strain as a vector, an infectious DNA clone of bPIV3 was assembled and recombinant bPIV3 (r-bPIV3) was rescued. r-bPIV3 displayed a temperature-sensitive...

  1. Expansion and retention of pulmonary CD4+ T cells after prime boost vaccination correlates with improved longevity and strength of immunity against tularemia.

    Science.gov (United States)

    Roberts, Lydia M; Wehrly, Tara D; Crane, Deborah D; Bosio, Catharine M

    2017-05-02

    Francisella tularensis subsp. tularensis strain SchuS4 (Ftt) is a highly virulent intracellular bacterium. Inhalation of 10 or fewer organisms results in an acute and potentially lethal disease called pneumonic tularemia. Ftt infections occur naturally in the U.S. and Ftt was developed as a bioweapon. Thus, there is a need for vaccines that protect against this deadly pathogen. Although a live vaccine strain of Francisella tularensis (LVS) exists, LVS fails to generate long-lived protective immunity against modest challenge doses of Ftt. We recently identified an important role for high avidity CD4 + T cells in short-term protection and hypothesized that expanding this pool of cells would improve overall vaccine efficacy with regard to longevity and challenge dose. In support of our hypothesis, application of a prime/boost vaccination strategy increased the pool of high avidity CD4 + T cells which correlated with improved survival following challenge with either increased doses of virulent Ftt or at late time points after vaccination. In summary, we demonstrate that both epitope selection and vaccination strategies that expand antigen-specific T cells correlate with superior immunity to Ftt as measured by survival. Copyright © 2017. Published by Elsevier Ltd.

  2. Immune responses to rAAV6: The influence of canine parvovirus vaccination and neonatal administration of viral vector

    Directory of Open Access Journals (Sweden)

    Andrea L H Arnett

    2011-11-01

    Full Text Available Recombinant adeno-associated viral (rAAV vectors promote long-term gene transfer in many animal species. Significant effort has focused on the evaluation of rAAV delivery and the immune response in both murine and canine models of neuromuscular disease. However, canines provided for research purposes are routinely vaccinated against canine parvovirus (CPV. rAAV and CPV possess significant homology and are both parvoviruses. Thus, any immune response generated to CPV vaccination has the potential to cross-react with rAAV vectors. In this study, we investigated the immune response to rAAV6 delivery in a cohort of CPV-vaccinated canines and evaluated multiple vaccination regimens in a mouse model of CPV-vaccination. We show that CPV-vaccination stimulates production of neutralizing antibodies with minimal cross-reactivity to rAAV6. In addition, no significant differences were observed in the magnitude of the rAAV6-directed immune response between CPV-vaccinated animals and controls. Moreover, CPV-vaccination did not inhibit rAAV6-mediated transduction. We also evaluated the immune response to early rAAV6-vaccination in neonatal mice. The influence of maternal hormones and cytokines leads to a relatively permissive state in the neonate. We hypothesized that immaturity of the immune system would permit induction of tolerance to rAAV6 when delivered during the neonatal period. Mice were vaccinated with rAAV6 at 1 or 5 days of age, and subsequently challenged with rAAV6 exposure during adulthood via two sequential IM injections, one month apart. All vaccinated animals generated a significant neutralizing antibody response to rAAV6-vaccination that was enhanced following IM injection in adulthood. Taken together, these data demonstrate that the immune response raised against rAAV6 is distinct from that which is elicited by the standard parvoviral vaccines and is sufficient to prevent stable tolerization in neonatal mice.

  3. Recombinant human adenovirus-5 expressing capsid proteins of Indian vaccine strains of foot-and-mouth disease virus elicits effective antibody response in cattle.

    Science.gov (United States)

    Sreenivasa, B P; Mohapatra, J K; Pauszek, S J; Koster, M; Dhanya, V C; Tamil Selvan, R P; Hosamani, M; Saravanan, P; Basagoudanavar, Suresh H; de Los Santos, T; Venkataramanan, R; Rodriguez, L L; Grubman, M J

    2017-05-01

    Recombinant adenovirus-5 vectored foot-and-mouth disease constructs (Ad5- FMD) were made for three Indian vaccine virus serotypes O, A and Asia 1. Constructs co-expressing foot-and- mouth disease virus (FMDV) capsid and viral 3C protease sequences, were evaluated for their ability to induce a neutralizing antibody response in indigenous cattle (Bos indicus). Purified Ad5-FMD viruses were inoculated in cattle as monovalent (5×10 9 pfu/animal) or trivalent (5×10 9 pfu/animal per serotype) vaccines. Animals vaccinated with monovalent Ad5-FMD vaccines were boosted 63days later with the same dose. After primary immunization, virus neutralization tests (VNT) showed seroconversion in 83, 67 and 33% of animals vaccinated with Ad5-FMD O, A and Asia 1, respectively. Booster immunization elicited seroconversion in all of the animals (100%) in the monovalent groups. When used in a trivalent form, the Ad5-FMD vaccine induced neutralizing antibodies in only 33, 50 and 16% of animals against serotypes O, A and Asia 1, respectively on primo-vaccination, and titers were significantly lower than when the same vectors were used in monovalent form. Neutralizing antibody titers differed by serotype for both Ad5-FMD monovalent and trivalent vaccines, with Asia 1 serotype inducing the lowest titers. Antibody response to Ad5 vector in immunized cattle was also assessed by VNT. It appeared that the vector immunity did not impact the recall responses to expressed FMDV antigens on booster immunization. In summary, the study suggested that the recombinant Ad5-FMD vaccine has a potential use in monovalent form, while its application in multivalent form is not currently encouraging. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Influence of adenovirus and MVA vaccines on the breadth and hierarchy of T cell responses.

    Science.gov (United States)

    Rollier, Christine S; Hill, Adrian V S; Reyes-Sandoval, Arturo

    2016-08-31

    Viral-vectored vaccines are in clinical development for several infectious diseases where T-cell responses can mediate protection, and responses to sub-dominant epitopes is needed. Little is known about the influence of MVA or adenoviral vectors on the hierarchy of the dominant and sub-dominant T-cell epitopes. We investigated this aspect in mice using a malaria immunogen. Our results demonstrate that the T-cell hierarchy is influenced by the timing of analysis, rather than by the vector after a single immunization, with hierarchy changing over time. Repeated homologous immunization reduced the breadth of responses, while heterologous prime-boost induced the strongest response to the dominant epitope, albeit with only modest response to the sub-dominant epitopes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Generation and characterization of a novel candidate gene therapy and vaccination vector based on human species D adenovirus type 56.

    Science.gov (United States)

    Duffy, Margaret R; Alonso-Padilla, Julio; John, Lijo; Chandra, Naresh; Khan, Selina; Ballmann, Monika Z; Lipiec, Agnieszka; Heemskerk, Evert; Custers, Jerome; Arnberg, Niklas; Havenga, Menzo; Baker, Andrew H; Lemckert, Angelique

    2018-01-01

    The vectorization of rare human adenovirus (HAdV) types will widen our knowledge of this family and their interaction with cells, tissues and organs. In this study we focus on HAdV-56, a member of human Ad species D, and create ease-of-use cloning systems to generate recombinant HAdV-56 vectors carrying foreign genes. We present in vitro transduction profiles for HAdV-56 in direct comparison to the most commonly used HAdV-5-based vector. In vivo characterizations demonstrate that when it is delivered intravenously (i.v.) HAdV-56 mainly targets the spleen and, to a lesser extent, the lungs, whilst largely bypassing liver transduction in mice. HAdV-56 triggered robust inflammatory and cellular immune responses, with higher induction of IFNγ, TNFα, IL5, IL6, IP10, MCP1 and MIG1 compared to HAdV-5 following i.v. administration. We also investigated its potential as a vaccine vector candidate by performing prime immunizations in mice with HAdV-56 encoding luciferase (HAdV-56-Luc). Direct comparisons were made to HAdV-26, a highly potent human vaccine vector currently in phase II clinical trials. HAdV-56-Luc induced luciferase 'antigen'-specific IFNγ-producing cells and anti-HAdV-56 neutralizing antibodies in Balb/c mice, demonstrating a near identical profile to that of HAdV-26. Taken together, the data presented provides further insight into human Ad receptor/co-receptor usage, and the first report on HAdV-56 vectors and their potential for gene therapy and vaccine applications.

  6. DNA vaccine delivered by a needle-free injection device improves potency of priming for antibody and CD8+ T-cell responses after rAd5 boost in a randomized clinical trial.

    Directory of Open Access Journals (Sweden)

    Barney S Graham

    Full Text Available DNA vaccine immunogenicity has been limited by inefficient delivery. Needle-free delivery of DNA using a CO2-powered Biojector® device was compared to delivery by needle and syringe and evaluated for safety and immunogenicity.Forty adults, 18-50 years, were randomly assigned to intramuscular (IM vaccinations with DNA vaccine, VRC-HIVDNA016-00-VP, (weeks 0, 4, 8 by Biojector® 2000™ or needle and syringe (N/S and boosted IM at week 24 with VRC-HIVADV014-00-VP (rAd5 with N/S at 10(10 or 10(11 particle units (PU. Equal numbers per assigned schedule had low (≤500 or high (>500 reciprocal titers of preexisting Ad5 neutralizing antibody.120 DNA and 39 rAd5 injections were given; 36 subjects completed follow-up research sample collections. IFN-γ ELISpot response rates were 17/19 (89% for Biojector® and 13/17 (76% for N/S delivery at Week 28 (4 weeks post rAd5 boost. The magnitude of ELISpot response was about 3-fold higher in Biojector® compared to N/S groups. Similar effects on response rates and magnitude were observed for CD8+, but not CD4+ T-cell responses by ICS. Env-specific antibody responses were about 10-fold higher in Biojector-primed subjects.DNA vaccination by Biojector® was well-tolerated and compared to needle injection, primed for greater IFN-γ ELISpot, CD8+ T-cell, and antibody responses after rAd5 boosting.ClinicalTrials.gov NCT00109629.

  7. Military Infectious Diseases Update on Vaccine Development

    Science.gov (United States)

    2011-01-24

    Licensed live vaccines (polio, MMR) - Radiation- attenuated sporozoites - Genetically- attenuated sporozoites 2011 MHS Conference Whole Organism...Not sufficiently attenuated Seattle Biomedical , Gates Foundation, WEHI and USMMVP 2011 MHS Conference Subunit approach- RTS,S Vaccine RTS,S is...Ad Boost  DNA plasmids [Prime] – Encoding malaria proteins CSP and AMA1  Adenovirus 5 ( attenuated )[Boost] – Encoding malaria proteins CSP and AMA1

  8. Novel vector vaccine against Brucella abortus based on influenza A viruses expressing Brucella L7/L12 or Omp16 proteins: evaluation of protection in pregnant heifers.

    Science.gov (United States)

    Tabynov, Kaissar; Yespembetov, Bolat; Sansyzbay, Abylai

    2014-10-14

    The present study provides the first information about the protection of a novel influenza viral vector vaccine expressing the Brucella proteins ribosomal L7/L12 or Omp16 containing the adjuvant Montanide Gel01 in pregnant heifers. Immunization of pregnant heifers was conducted via the conjunctival (n=10) or subcutaneous (n=10) route using cross prime and booster vaccination schedules at an interval of 28 days. The vector vaccine was evaluated in comparison with positive control groups vaccinated with Brucella abortus S19 (n=10) or B. abortus RB51 (n=10) and a negative (PBS+Montanide Gel01; n=10) control group. Via both the conjunctival or subcutaneous route, evaluation of protectiveness against abortion, effectiveness of vaccination and index of infection (in heifers and their fetuses or calves) demonstrated the vector vaccine provided good protection against B. abortus 544 infection compared to the negative control group (PBS+Montanide Gel01) and comparable protection to commercial vaccines B. abortus S19 or B. abortus RB51. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis.

    Science.gov (United States)

    Vordermeier, H Martin; Villarreal-Ramos, Bernardo; Cockle, Paul J; McAulay, Martin; Rhodes, Shelley G; Thacker, Tyler; Gilbert, Sarah C; McShane, Helen; Hill, Adrian V S; Xing, Zhou; Hewinson, R Glyn

    2009-08-01

    Previous work with small-animal laboratory models of tuberculosis has shown that vaccination strategies based on heterologous prime-boost protocols using Mycobacterium bovis bacillus Calmette-Guérin (BCG) to prime and modified vaccinia virus Ankara strain (MVA85A) or recombinant attenuated adenoviruses (Ad85A) expressing the mycobacterial antigen Ag85A to boost may increase the protective efficacy of BCG. Here we report the first efficacy data on using these vaccines in cattle, a natural target species of tuberculous infection. Protection was determined by measuring development of disease as an end point after M. bovis challenge. Either Ad85A or MVA85A boosting resulted in protection superior to that given by BCG alone: boosting BCG with MVA85A or Ad85A induced significant reduction in pathology in four/eight parameters assessed, while BCG vaccination alone did so in only one parameter studied. Protection was particularly evident in the lungs of vaccinated animals (median lung scores for naïve and BCG-, BCG/MVA85A-, and BCG/Ad85A-vaccinated animals were 10.5, 5, 2.5, and 0, respectively). The bacterial loads in lymph node tissues were also reduced after viral boosting of BCG-vaccinated calves compared to those in BCG-only-vaccinated animals. Analysis of vaccine-induced immunity identified memory responses measured by cultured enzyme-linked immunospot assay as well as in vitro interleukin-17 production as predictors of vaccination success, as both responses, measured before challenge, correlated positively with the degree of protection. Therefore, this study provides evidence of improved protection against tuberculosis by viral booster vaccination in a natural target species and has prioritized potential correlates of vaccine efficacy for further evaluation. These findings also have implications for human tuberculosis vaccine development.

  10. A paramyxovirus-vectored intranasal vaccine against Ebola virus is immunogenic in vector-immune animals.

    Science.gov (United States)

    Yang, Lijuan; Sanchez, Anthony; Ward, Jerrold M; Murphy, Brian R; Collins, Peter L; Bukreyev, Alexander

    2008-08-01

    Ebola virus (EBOV) causes outbreaks of a highly lethal hemorrhagic fever in humans. The virus can be transmitted by direct contact as well as by aerosol and is considered a potential bioweapon. Because direct immunization of the respiratory tract should be particularly effective against infection of mucosal surfaces, we previously developed an intranasal vaccine based on replication-competent human parainfluenza virus type 3 (HPIV3) expressing EBOV glycoprotein GP (HPIV3/EboGP) and showed that it is immunogenic and protective against a high dose parenteral EBOV challenge. However, because the adult human population has considerable immunity to HPIV3, which is a common human pathogen, replication and immunogenicity of the vaccine in this population might be greatly restricted. Indeed, in the present study, replication of the vaccine in the respiratory tract of HPIV3-immune guinea pigs was found to be restricted to undetectable levels. This restriction appeared to be based on both neutralizing antibodies and cellular or other components of the immunity to HPIV3. Surprisingly, even though replication of HPIV3/EboGP was highly restricted in HPIV3-immune animals, it induced a high level of EBOV-specific antibodies that nearly equaled that obtained in HPIV3-naive animals. We also show that the previously demonstrated presence of functional GP in the vector particle was not associated with increased replication in the respiratory tract nor with spread beyond the respiratory tract of HPIV3-naive guinea pigs, indicating that expression and functional incorporation of the attachment/penetration glycoprotein of this systemic virus did not mediate a change in tissue tropism.

  11. Limited infection upon human exposure to a recombinant raccoon pox vaccine vector

    Science.gov (United States)

    Rocke, T.E.; Dein, F.J.; Fuchsberger, M.; Fox, B.C.; Stinchcomb, D.T.; Osorio, J.G.

    2004-01-01

    A laboratory accident resulted in human exposure to a recombinant raccoon poxvirus (RCN) developed as a vaccine vector for antigens of Yersinia pestis for protection of wild rodents (and other animals) against plague. Within 9 days, the patient developed a small blister that healed within 4 weeks. Raccoon poxvirus was cultured from the lesion, and the patient developed antibody to plague antigen (F1) and RCN. This is the first documented case of human exposure to RCN.

  12. Limited infection upon human exposure to a recombinant raccoon pox vaccine vector.

    Science.gov (United States)

    Rocke, Tonie E; Dein, F Joshua; Fuchsberger, Martina; Fox, Barry C; Stinchcomb, Dan T; Osorio, Jorge E

    2004-07-29

    A laboratory accident resulted in human exposure to a recombinant raccoon poxvirus (RCN) developed as a vaccine vector for antigens of Yersinia pestis for protection of wild rodents (and other animals) against plague. Within 9 days, the patient developed a small blister that healed within 4 weeks. Raccoon poxvirus was cultured from the lesion, and the patient developed antibody to plague antigen (F1) and RCN. This is the first documented case of human exposure to RCN.

  13. Incorporation of membrane-bound, mammalian-derived immunomodulatory proteins into influenza whole virus vaccines boosts immunogenicity and protection against lethal challenge

    Directory of Open Access Journals (Sweden)

    Roberts Paul C

    2009-04-01

    Full Text Available Abstract Background Influenza epidemics continue to cause morbidity and mortality within the human population despite widespread vaccination efforts. This, along with the ominous threat of an avian influenza pandemic (H5N1, demonstrates the need for a much improved, more sophisticated influenza vaccine. We have developed an in vitro model system for producing a membrane-bound Cytokine-bearing Influenza Vaccine (CYT-IVAC. Numerous cytokines are involved in directing both innate and adaptive immunity and it is our goal to utilize the properties of individual cytokines and other immunomodulatory proteins to create a more immunogenic vaccine. Results We have evaluated the immunogenicity of inactivated cytokine-bearing influenza vaccines using a mouse model of lethal influenza virus challenge. CYT-IVACs were produced by stably transfecting MDCK cell lines with mouse-derived cytokines (GM-CSF, IL-2 and IL-4 fused to the membrane-anchoring domain of the viral hemagglutinin. Influenza virus replication in these cell lines resulted in the uptake of the bioactive membrane-bound cytokines during virus budding and release. In vivo efficacy studies revealed that a single low dose of IL-2 or IL-4-bearing CYT-IVAC is superior at providing protection against lethal influenza challenge in a mouse model and provides a more balanced Th1/Th2 humoral immune response, similar to live virus infections. Conclusion We have validated the protective efficacy of CYT-IVACs in a mammalian model of influenza virus infection. This technology has broad applications in current influenza virus vaccine development and may prove particularly useful in boosting immune responses in the elderly, where current vaccines are minimally effective.

  14. DNA priming for seasonal influenza vaccine: a phase 1b double-blind randomized clinical trial.

    Directory of Open Access Journals (Sweden)

    Julie E Ledgerwood

    Full Text Available The efficacy of current influenza vaccines is limited in vulnerable populations. DNA vaccines can be produced rapidly, and may offer a potential strategy to improve vaccine immunogenicity, indicated by studies with H5 influenza DNA vaccine prime followed by inactivated vaccine boost.Four sites enrolled healthy adults, randomized to receive 2011/12 seasonal influenza DNA vaccine prime (n=65 or phosphate buffered saline (PBS (n=66 administered intramuscularly with Biojector. All subjects received the 2012/13 seasonal inactivated influenza vaccine, trivalent (IIV3 36 weeks after the priming injection. Vaccine safety and tolerability was the primary objective and measurement of antibody response by hemagglutination inhibition (HAI was the secondary objective.The DNA vaccine prime-IIV3 boost regimen was safe and well tolerated. Significant differences in HAI responses between the DNA vaccine prime and the PBS prime groups were not detected in this study.While DNA priming significantly improved the response to a conventional monovalent H5 vaccine in a previous study, it was not effective in adults using seasonal influenza strains, possibly due to pre-existing immunity to the prime, unmatched prime and boost antigens, or the lengthy 36 week boost interval. Careful optimization of the DNA prime-IIV3 boost regimen as related to antigen matching, interval between vaccinations, and pre-existing immune responses to influenza is likely to be needed in further evaluations of this vaccine strategy. In particular, testing this concept in younger age groups with less prior exposure to seasonal influenza strains may be informative.ClinicalTrials.gov NCT01498718.

  15. Future prospects for the development of cost-effective Adenovirus vaccines

    DEFF Research Database (Denmark)

    Fougeroux, Cyrielle; Holst, Peter J

    2017-01-01

    -vectored vaccine technology with a focus on adenoviral-based vaccines. Adenovirus (Ad) vaccines have proven to be efficient in military vaccinations against Ad4 and Ad7 and as highly efficient vectored vaccines against rabies. The question of how other adenovirus-based vaccines can become as efficient...... as the rabies vaccine is the underlying theme in this review. Here, we will first give an overview of the basic properties of vectored vaccines, followed by an introduction to the characteristics of adenoviral vectors and previously tested modifications of the vector backbone and expression cassettes...

  16. Immunization with a Novel Human type 5 Adenovirus-Vectored Vaccine Expressing the Premembrane and Envelope Proteins of Zika Virus Provides Consistent and Sterilizing Protection in Multiple Immunocompetent and Immunocompromised Animal Models.

    Science.gov (United States)

    Guo, Qiang; Chan, Jasper Fuk-Woo; Poon, Vincent Kwok-Man; Wu, Shipo; Chan, Chris Chung-Sing; Hou, Lihua; Yip, Cyril Chik-Yan; Ren, Changpeng; Cai, Jian-Piao; Zhao, Mengsu; Zhang, Anna Jinxia; Song, Xiaohong; Chan, Kwok-Hung; Wang, Busen; Kok, Kin-Hang; Wen, Yanbo; Yuen, Kwok-Yung; Chen, Wei

    2018-03-29

    Zika virus (ZIKV) infection may be associated with severe complications and disseminated via both vector-borne and non-vector-borne routes. Adenovirus-vectored vaccines represent a favorable controlling measure for the ZIKV epidemic as they have been shown to be safe, immunogenic, and rapidly generable for other emerging viral infections. Evaluations of two previously reported adenovirus-vectored ZIKV vaccines were performed using non-lethal animal models and/or non-epidemic ZIKV strain. We constructed and evaluated two human adenovirus-5-vectored vaccines containing the ZIKV premembrane-envelope(Ad5-Sig-prM-Env) and envelope(Ad5-Env) proteins, respectively, in multiple non-lethal and lethal animal models using epidemic ZIKV strains. Both vaccines elicited robust humoral and cellular immune responses in immunocompetent BALB/c mice. Dexamethasone-immunosuppressed mice vaccinated with either vaccine demonstrated robust and durable antibody responses and significantly lower blood/tissue viral loads than controls(Panimal models, Ad5-Sig-prM-Env-vaccinated mice had significantly(P<0.05) higher titers of anti-ZIKV-specific neutralizing antibody titers and lower(undetectable) viral loads than Ad5-Env-vaccinated mice. The close correlation between the neutralizing antibody titer and viral load helped to explain the better protective effect of Ad5-Sig-prM-Env than Ad5-Env. Anamnestic response was absent in Ad5-Sig-prM-Env-vaccinated A129 mice. Ad5-Sig-prM-Env provided sterilizing protection against ZIKV infection in mice.

  17. Prior DNA vaccination does not interfere with the live-attenuated measles vaccine.

    Science.gov (United States)

    Premenko-Lanier, Mary; Rota, Paul; Rhodes, Gary; Bellini, William; McChesney, Michael

    2004-01-26

    The currently used live-attenuated measles vaccine is very effective although maternal antibody prevents its administration prior to 6 months of age. We are investigating the ability of a DNA vaccine encoding the measles viral hemagglutinin, fusion and nucleoprotein to protect newborn infants from measles. Here, we show that a measles DNA vaccine protects juvenile macaques from pathogenic measles virus challenge and that macaques primed and boosted with this DNA vaccine have anemnestic antibody and cell-mediated responses after vaccination with a live-attenuated canine distemper-measles vaccine. Therefore, this DNA vaccine administered to newborn infants may not hinder the subsequent use of live-attenuated measles vaccine.

  18. Assessment of Lactobacillus gasseri as a candidate oral vaccine vector.

    Science.gov (United States)

    Stoeker, Laura; Nordone, Shila; Gunderson, Sara; Zhang, Lin; Kajikawa, Akinobu; LaVoy, Alora; Miller, Michael; Klaenhammer, Todd R; Dean, Gregg A

    2011-11-01

    Lactobacillus species are commensal bacteria that have long been recognized as probiotic microbes and are generally regarded as safe (GRAS) for human consumption. We have investigated the use of L. gasseri as a vaccine vector for oral immunization against mucosal pathogens. Recent research has shown that the immune response to different lactobacilli can vary widely depending on the species or subspecies of Lactobacillus being studied. While some lactobacilli seem to induce oral tolerance, others induce an adaptive immune response. This study characterized the systemic and mucosal immune response to wild-type and genetically modified L. gasseri. L. gasseri primarily activates TLR2/6, with additional activation through the TLR2 homodimer. To expand the Toll-like receptor (TLR) activation profile of L. gasseri and the immunogenicity of the vector, a plasmid containing fliC, the gene encoding bacterial flagellin, was introduced which resulted in the strong activation of TLR5. The treatment of human myeloid dendritic cells with recombinant lactobacilli expressing flagellin triggered phenotypic maturation and the release of proinflammatory cytokines. In contrast, bacterial treatment also resulted in a statistically significant increase in IL-10 production. In vivo studies established that treatment with L. gasseri led to a diversification of B-cell populations in the lamina propria of the murine colon. Furthermore, treatment with genetically modified L. gasseri led to a significant decrease in the percentage of FoxP3(+) colonic lymphocytes. Taken together, these data clarify the interaction of L. gasseri with the host immune system and support further investigation of the in vivo immunogenicity of L. gasseri expressing both flagellin and candidate vaccine antigens.

  19. A new adenovirus based vaccine vector expressing an Eimeria tenella derived TLR agonist improves cellular immune responses to an antigenic target.

    Directory of Open Access Journals (Sweden)

    Daniel M Appledorn

    2010-03-01

    Full Text Available Adenoviral based vectors remain promising vaccine platforms for use against numerous pathogens, including HIV. Recent vaccine trials utilizing Adenovirus based vaccines expressing HIV antigens confirmed induction of cellular immune responses, but these responses failed to prevent HIV infections in vaccinees. This illustrates the need to develop vaccine formulations capable of generating more potent T-cell responses to HIV antigens, such as HIV-Gag, since robust immune responses to this antigen correlate with improved outcomes in long-term non-progressor HIV infected individuals.In this study we designed a novel vaccine strategy utilizing an Ad-based vector expressing a potent TLR agonist derived from Eimeria tenella as an adjuvant to improve immune responses from a [E1-]Ad-based HIV-Gag vaccine. Our results confirm that expression of rEA elicits significantly increased TLR mediated innate immune responses as measured by the influx of plasma cytokines and chemokines, and activation of innate immune responding cells. Furthermore, our data show that the quantity and quality of HIV-Gag specific CD8(+ and CD8(- T-cell responses were significantly improved when coupled with rEA expression. These responses also correlated with a significantly increased number of HIV-Gag derived epitopes being recognized by host T cells. Finally, functional assays confirmed that rEA expression significantly improved antigen specific CTL responses, in vivo. Moreover, we show that these improved responses were dependent upon improved TLR pathway interactions.The data presented in this study illustrate the potential utility of Ad-based vectors expressing TLR agonists to improve clinical outcomes dependent upon induction of robust, antigen specific immune responses.

  20. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    OpenAIRE

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delive...

  1. Evaluation of a vectored equine herpesvirus type 1 (EHV-1) vaccine expressing H3 haemagglutinin in the protection of dogs against canine influenza.

    Science.gov (United States)

    Rosas, Cristina; Van de Walle, Gerlinde R; Metzger, Stephan M; Hoelzer, Karin; Dubovi, Edward J; Kim, Sung G; Parrish, Colin R; Osterrieder, Nikolaus

    2008-05-02

    In 2004, canine influenza virus (CIV) was identified as a respiratory pathogen of dogs for the first time and found to be closely related to H3N8 equine influenza virus (EIV). We generated a recombinant vectored vaccine that expresses H3 of a recent isolate of EIV using equine herpesvirus type 1 (EHV-1) as the delivery vehicle. This EHV-1 vectored vaccine exhibited robust and stable EIV H3 expression and induced a strong influenza virus-specific response in both mice and dogs upon intranasal or subcutaneous administration. Furthermore, upon challenge with the recent CIV isolate A/canine/PA/10915-07, protection of vaccinated dogs could be demonstrated by a significant reduction in clinical sings, and, more importantly, by a significant reduction in virus shedding. We concluded that the EHV-1/H3 recombinant vector can be a valuable alternative for protection of dogs against clinical disease induced by CIV and can significantly reduce virus spread.

  2. Use of the Microparticle Nanoscale Silicon Dioxide as an Adjuvant To Boost Vaccine Immune Responses against Influenza Virus in Neonatal Mice.

    Science.gov (United States)

    Russell, Ryan F; McDonald, Jacqueline U; Lambert, Laura; Tregoning, John S

    2016-05-01

    Neonates are at a high risk of infection, but vaccines are less effective in this age group; tailored adjuvants could potentially improve vaccine efficacy. Increased understanding about danger sensing by the innate immune system has led to the rational design of novel adjuvants. But differences in the neonatal innate immune response, for example, to Toll-like receptor (TLR) agonists, can reduce the efficacy of these adjuvants in early life. We therefore targeted alternative danger-sensing pathways, focusing on a range of compounds described as inflammasome agonists, including nanoscale silicon dioxide (NanoSiO2), calcium pyrophosphate dihydrate (CPPD) crystals, and muramyl tripeptide (M-Tri-DAP), for their ability to act as adjuvants.In vitro, these compounds induced an interleukin 1-beta (IL-1β) response in the macrophage-like cell line THP1.In vivo, adult CB6F1 female mice were immunized intramuscularly with H1N1 influenza vaccine antigens in combination with NanoSiO2, CPPD, or M-Tri-DAP and subsequently challenged with H1N1 influenza virus (A/England/195/2009). The adjuvants boosted anti-hemagglutinin IgG and IgA antibody levels. Both adult and neonatal animals that received NanoSiO2-adjuvanted vaccines lost significantly less weight and recovered earlier after infection than control animals treated with antigen alone. Administration of the adjuvants led to an influx of activated inflammatory cells into the muscle but to little systemic inflammation measured by serum cytokine levels. Blocking IL-1β or caspase 1 in vivo had little effect on NanoSiO2 adjuvant function, suggesting that it may work through pathways other than the inflammasome. Here we demonstrate that NanoSiO2 can act as an adjuvant and is effective in early life. Vaccines can fail to protect the most at-risk populations, including the very young, the elderly, and the immunocompromised. There is a gap in neonatal immunity between the waning of maternal protection and routine infant immunization

  3. Protection against California 2002 NDV strain afforded by adenovirus vectored vaccine expressing Fusion or Hemagglutination-neuraminidase genes

    Science.gov (United States)

    Vectored vaccines expressing the combination of the hemagglutinin-neuraminidase (HN) and fusion (F) genes generally have better clinical protection against Newcastle disease virus (NDV) than when either the F and HN genes are expressed alone. Interestingly, the protection induced by F is usually bet...

  4. Evaluation of a vectored equine herpesvirus type 1 (EHV-1) vaccine expressing H3 haemagglutinin in the protection of dogs against canine influenza

    OpenAIRE

    Rosas, Cristina; Van de Walle, Gerlinde R.; Metzger, Stephan M.; Hoelzer, Karin; Dubovi, Edward J.; Kim, Sung G.; Parrish, Colin R.; Osterrieder, Nikolaus

    2008-01-01

    In 2004, canine influenza virus (CIV) was identified as a respiratory pathogen of dogs for the first time and is closely related to H3N8 equine influenza virus (EIV). We generated a recombinant vectored vaccine that expresses H3 of a recent isolate of EIV using equine herpesvirus type 1 (EHV-1) as the delivery vehicle. This EHV-1 vectored vaccine exhibited robust and stable EIV H3 expression and induced a strong influenza virus-specific response in both mice and dogs upon intranasal or subcut...

  5. Vaccine profile of herpes zoster (HZ/su) subunit vaccine.

    Science.gov (United States)

    Cunningham, Anthony L; Heineman, Thomas

    2017-07-01

    Herpes zoster (HZ) causes an often severe and painful rash in older people and may be complicated by prolonged pain (postherpetic neuralgia; PHN) and by dissemination in immune-compromised patients. HZ results from reactivation of latent varicella-zoster virus (VZV) infection, often associated with age-related or other causes of decreased T cell immunity. A live attenuated vaccine boosts this immunity and provides partial protection against HZ, but this decreases with age and declines over 8 years. Areas covered: A new HZ subunit (HZ/su) vaccine combines a key surface VZV glycoprotein (E) with a T cell-boosting adjuvant system (AS01 B ) and is administered by two intramuscular injections two months apart. Expert commentary: HZ/su showed excellent efficacy of ~90% in immunocompetent adults ≥50 and ≥70 years of age, respectively, in the ZOE-50 and ZOE-70 phase III controlled trials. Efficacy was unaffected by advancing age and persisted for >3 years. Approximately 9.5% of subjects had severe, but transient (1-2 days) injection site pain, swelling or redness. Compliance with both vaccine doses was high (95%). The vaccine will have a major impact on HZ management. Phase I-II trials showed safety and immunogenicity in severely immunocompromised patients. Phase III trial results are expected soon.

  6. Persistence of the immune response induced by BCG vaccination

    Directory of Open Access Journals (Sweden)

    Blitz Rose

    2008-01-01

    Full Text Available Abstract Background Although BCG vaccination is recommended in most countries of the world, little is known of the persistence of BCG-induced immune responses. As novel TB vaccines may be given to boost the immunity induced by neonatal BCG vaccination, evidence concerning the persistence of the BCG vaccine-induced response would help inform decisions about when such boosting would be most effective. Methods A randomised control study of UK adolescents was carried out to investigate persistence of BCG immune responses. Adolescents were tested for interferon-gamma (IFN-γ response to Mycobacterium tuberculosis purified protein derivative (M.tb PPD in a whole blood assay before, 3 months, 12 months (n = 148 and 3 years (n = 19 after receiving teenage BCG vaccination or 14 years after receiving infant BCG vaccination (n = 16. Results A gradual reduction in magnitude of response was evident from 3 months to 1 year and from 1 year to 3 years following teenage vaccination, but responses 3 years after vaccination were still on average 6 times higher than before vaccination among vaccinees. Some individuals (11/86; 13% failed to make a detectable antigen-specific response three months after vaccination, or lost the response after 1 (11/86; 13% or 3 (3/19; 16% years. IFN-γ response to Ag85 was measured in a subgroup of adolescents and appeared to be better maintained with no decline from 3 to 12 months. A smaller group of adolescents were tested 14 years after receiving infant BCG vaccination and 13/16 (81% made a detectable IFN-γ response to M.tb PPD 14 years after infant vaccination as compared to 6/16 (38% matched unvaccinated controls (p = 0.012; teenagers vaccinated in infancy were 19 times more likely to make an IFN-γ response of > 500 pg/ml than unvaccinated teenagers. Conclusion BCG vaccination in infancy and adolescence induces immunological memory to mycobacterial antigens that is still present and measurable for at least 14 years in the

  7. Targeting the Genital Tract Mucosa with a Lipopeptide/Recombinant Adenovirus Prime/Boost Vaccine Induces Potent and Long-Lasting CD8+ T Cell Immunity Against Herpes: Importance of Myeloid Differentiation Factor 881

    Science.gov (United States)

    Zhang, Xiuli; Dervillez, Xavier; Chentoufi, Aziz Alami; Badakhshan, Tina; Bettahi, Ilham; BenMohamed, Lbachir

    2012-01-01

    Targeting the mucosal immune system of the genital tract (GT) with subunit vaccines failed to induce potent and durable local CD8+ T cell immunity, crucial for protection against many sexually transmitted viral (STV) pathogens, including herpes simplex virus type 2 (HSV-2) that causes genital herpes. In this study, we aimed to investigate the potential of a novel lipopeptide/adenovirus type 5 (Lipo/rAdv5) prime/boost mucosal vaccine for induction of CD8+ T cell immunity to protect the female genital tract from herpes. The lipopeptide and the rAdv5 vaccine express the immunodominant HSV-2 CD8+ T cell epitope (gB498-505) and both were delivered intravaginally (IVAG) in the progesterone-induced B6 mouse model of genital herpes. Compared to its homologous lipopeptide/lipopeptide (Lipo/Lipo); the Lipo/rAdv5 prime/boost immunized mice: (i) developed potent and sustained HSV-specific CD8+ T cells, detected in both the GT draining nodes (GT-DLN) and in the vaginal mucosa (VM); (ii) had significantly lower virus titers; (iii) had decreased overt signs of genital herpes disease; and (iv) did not succumb to lethal infection (p herpes infection and disease. PMID:23018456

  8. Establishment of human sperm-specific voltage-dependent anion channel 3 recombinant vector for the production of a male contraceptive vaccine

    Directory of Open Access Journals (Sweden)

    Asmarinah Asmarinah

    2012-05-01

    Full Text Available Background: The aim of this study was to construct a recombinant vector of human sperm specific VDAC3 gene for production of VDAC3 antibody, which is potential as male contraception vaccine.Methods: Target fragment sequence of VDAC3 gene was obtained through amplification of human sperm VDAC3 cDNA with primers covering exon 5 to exon 8. Its PCR product in size of 435 bp was cloned to the pET101/D-TOPO expression vector (5753 bp. E. coli bacteria were transformed with this vector. Cloning of VDAC3 fragment gene to the vector was confirmed by the using of XbaI restriction enzyme and PCR colony method with primers covering exons 5-8 of the human VDAC3 gene.Results: Alignment analysis of amplified fragment covering exon 5 to exon 8 of VDAC3 gene showed 94% homology to human VDAC3 gene from databank. After cloning to the expression vector and transformation to E. coli competent cells, twelve colonies could grow in culture media. Gel electrophoresis of sliced VDAC3 recombinant vector showed a single band in the size of 6181 bp in 8 colonies. After application of PCR colony and amplicon sequencing, the result showed a single band in the size of 435 bp and fragment sequence with 94% identity to human VDAC3 gene.Conclusion: The construction of human sperm specific VDAC3 gene recombinant vector was established in this study. In the future, this recombinant vector will be used to produce VDAC3 antibody for the development of a male contraception vaccine. (Med J Indones. 2012;21:61-5Keywords: Contraception, recombinant vector, sperm, VDAC3

  9. Integrating Transgenic Vector Manipulation with Clinical Interventions to Manage Vector-Borne Diseases.

    Directory of Open Access Journals (Sweden)

    Kenichi W Okamoto

    2016-03-01

    Full Text Available Many vector-borne diseases lack effective vaccines and medications, and the limitations of traditional vector control have inspired novel approaches based on using genetic engineering to manipulate vector populations and thereby reduce transmission. Yet both the short- and long-term epidemiological effects of these transgenic strategies are highly uncertain. If neither vaccines, medications, nor transgenic strategies can by themselves suffice for managing vector-borne diseases, integrating these approaches becomes key. Here we develop a framework to evaluate how clinical interventions (i.e., vaccination and medication can be integrated with transgenic vector manipulation strategies to prevent disease invasion and reduce disease incidence. We show that the ability of clinical interventions to accelerate disease suppression can depend on the nature of the transgenic manipulation deployed (e.g., whether vector population reduction or replacement is attempted. We find that making a specific, individual strategy highly effective may not be necessary for attaining public-health objectives, provided suitable combinations can be adopted. However, we show how combining only partially effective antimicrobial drugs or vaccination with transgenic vector manipulations that merely temporarily lower vector competence can amplify disease resurgence following transient suppression. Thus, transgenic vector manipulation that cannot be sustained can have adverse consequences-consequences which ineffective clinical interventions can at best only mitigate, and at worst temporarily exacerbate. This result, which arises from differences between the time scale on which the interventions affect disease dynamics and the time scale of host population dynamics, highlights the importance of accounting for the potential delay in the effects of deploying public health strategies on long-term disease incidence. We find that for systems at the disease-endemic equilibrium, even

  10. Assessment of Lactobacillus gasseri as a Candidate Oral Vaccine Vector

    Science.gov (United States)

    Stoeker, Laura; Nordone, Shila; Gunderson, Sara; Zhang, Lin; Kajikawa, Akinobu; LaVoy, Alora; Miller, Michael; Klaenhammer, Todd R.; Dean, Gregg A.

    2011-01-01

    Lactobacillus species are commensal bacteria that have long been recognized as probiotic microbes and are generally regarded as safe (GRAS) for human consumption. We have investigated the use of L. gasseri as a vaccine vector for oral immunization against mucosal pathogens. Recent research has shown that the immune response to different lactobacilli can vary widely depending on the species or subspecies of Lactobacillus being studied. While some lactobacilli seem to induce oral tolerance, others induce an adaptive immune response. This study characterized the systemic and mucosal immune response to wild-type and genetically modified L. gasseri. L. gasseri primarily activates TLR2/6, with additional activation through the TLR2 homodimer. To expand the Toll-like receptor (TLR) activation profile of L. gasseri and the immunogenicity of the vector, a plasmid containing fliC, the gene encoding bacterial flagellin, was introduced which resulted in the strong activation of TLR5. The treatment of human myeloid dendritic cells with recombinant lactobacilli expressing flagellin triggered phenotypic maturation and the release of proinflammatory cytokines. In contrast, bacterial treatment also resulted in a statistically significant increase in IL-10 production. In vivo studies established that treatment with L. gasseri led to a diversification of B-cell populations in the lamina propria of the murine colon. Furthermore, treatment with genetically modified L. gasseri led to a significant decrease in the percentage of FoxP3+ colonic lymphocytes. Taken together, these data clarify the interaction of L. gasseri with the host immune system and support further investigation of the in vivo immunogenicity of L. gasseri expressing both flagellin and candidate vaccine antigens. PMID:21900526

  11. Forebyggelse af herpes zoster med vaccination

    DEFF Research Database (Denmark)

    Kofoed, Kristian; Rønholt, Finn; Gerstoft, Jan

    2011-01-01

    Herpes zoster (HZ) and post-herpetic neuralgia (PHN) are frequently occurring diseases in elderly and in immuno-compromised persons. The live attenuated HZ vaccine boosts an existing immune response, so that the already established varicella-zoster virus infection is kept latent. Vaccination has...

  12. Attenuated Salmonella enterica serovar Typhi and Shigella flexneri 2a strains mucosally deliver DNA vaccines encoding measles virus hemagglutinin, inducing specific immune responses and protection in cotton rats.

    Science.gov (United States)

    Pasetti, Marcela F; Barry, Eileen M; Losonsky, Genevieve; Singh, Mahender; Medina-Moreno, Sandra M; Polo, John M; Ulmer, Jeffrey; Robinson, Harriet; Sztein, Marcelo B; Levine, Myron M

    2003-05-01

    Measles remains a leading cause of child mortality in developing countries. Residual maternal measles antibodies and immunologic immaturity dampen immunogenicity of the current vaccine in young infants. Because cotton rat respiratory tract is susceptible to measles virus (MV) replication after intranasal (i.n.) challenge, this model can be used to assess the efficacy of MV vaccines. Pursuing a new measles vaccine strategy that might be effective in young infants, we used attenuated Salmonella enterica serovar Typhi CVD 908-htrA and Shigella flexneri 2a CVD 1208 vaccines to deliver mucosally to cotton rats eukaryotic expression plasmid pGA3-mH and Sindbis virus-based DNA replicon pMSIN-H encoding MV hemagglutinin (H). The initial i.n. dose-response with bacterial vectors alone identified a well-tolerated dosage (1 x 10(9) to 7 x 10(9) CFU) and a volume (20 micro l) that elicited strong antivector immune responses. Animals immunized i.n. on days 0, 28, and 76 with bacterial vectors carrying DNA plasmids encoding MV H or immunized parenterally with these naked DNA vaccine plasmids developed MV plaque reduction neutralizing antibodies and proliferative responses against MV antigens. In a subsequent experiment of identical design, cotton rats were challenged with wild-type MV 1 month after the third dose of vaccine or placebo. MV titers were significantly reduced in lung tissue of animals immunized with MV DNA vaccines delivered either via bacterial live vectors or parenterally. Since attenuated serovar Typhi and S. flexneri can deliver measles DNA vaccines mucosally in cotton rats, inducing measles immune responses (including neutralizing antibodies) and protection, boosting strategies can now be evaluated in animals primed with MV DNA vaccines.

  13. Genetic manipulation of endosymbionts to control vector and vector borne diseases

    Directory of Open Access Journals (Sweden)

    Jay Prakash Gupta

    Full Text Available Vector borne diseases (VBD are on the rise because of failure of the existing methods of control of vector and vector borne diseases and the climate change. A steep rise of VBDs are due to several factors like selection of insecticide resistant vector population, drug resistant parasite population and lack of effective vaccines against the VBDs. Environmental pollution, public health hazard and insecticide resistant vector population indicate that the insecticides are no longer a sustainable control method of vector and vector-borne diseases. Amongst the various alternative control strategies, symbiont based approach utilizing endosymbionts of arthropod vectors could be explored to control the vector and vector borne diseases. The endosymbiont population of arthropod vectors could be exploited in different ways viz., as a chemotherapeutic target, vaccine target for the control of vectors. Expression of molecules with antiparasitic activity by genetically transformed symbiotic bacteria of disease-transmitting arthropods may serve as a powerful approach to control certain arthropod-borne diseases. Genetic transformation of symbiotic bacteria of the arthropod vector to alter the vector’s ability to transmit pathogen is an alternative means of blocking the transmission of VBDs. In Indian scenario, where dengue, chikungunya, malaria and filariosis are prevalent, paratransgenic based approach can be used effectively. [Vet World 2012; 5(9.000: 571-576

  14. Heterologous Prime-Boost Immunizations with a Virosomal and an Alphavirus Replicon Vaccine

    NARCIS (Netherlands)

    Walczak, Mateusz; de Mare, Arjan; Riezebos-Brilman, Annelies; Regts, Joke; Hoogeboom, Baukje-Nynke; Visser, Jeroen T.; Fiedler, Marc; Jansen-Duerr, Pidder; van der Zee, Ate G. J.; Nijman, Hans W.; Wilschut, Jan; Daemen, Toos

    2011-01-01

    Heterologous prime-boost immunization strategies in general establish higher frequencies of antigen-specific T lymphocytes than homologous prime-boost protocols or single immunizations. We developed virosomes and recombinant Semliki Forest virus (rSFV) as antigen delivery systems, each capable of

  15. Expression of chicken parvovirus VP2 in chicken embryo fibroblasts requires codon optimization for production of naked DNA and vectored meleagrid herpesvirus type 1 vaccines.

    Science.gov (United States)

    Spatz, Stephen J; Volkening, Jeremy D; Mullis, Robert; Li, Fenglan; Mercado, John; Zsak, Laszlo

    2013-10-01

    Meleagrid herpesvirus type 1 (MeHV-1) is an ideal vector for the expression of antigens from pathogenic avian organisms in order to generate vaccines. Chicken parvovirus (ChPV) is a widespread infectious virus that causes serious disease in chickens. It is one of the etiological agents largely suspected in causing Runting Stunting Syndrome (RSS) in chickens. Initial attempts to express the wild-type gene encoding the capsid protein VP2 of ChPV by insertion into the thymidine kinase gene of MeHV-1 were unsuccessful. However, transient expression of a codon-optimized synthetic VP2 gene cloned into the bicistronic vector pIRES2-Ds-Red2, could be demonstrated by immunocytochemical staining of transfected chicken embryo fibroblasts (CEFs). Red fluorescence could also be detected in these transfected cells since the red fluorescent protein gene is downstream from the internal ribosome entry site (IRES). Strikingly, fluorescence could not be demonstrated in cells transiently transfected with the bicistronic vector containing the wild-type or non-codon-optimized VP2 gene. Immunocytochemical staining of these cells also failed to demonstrate expression of wild-type VP2, indicating that the lack of expression was at the RNA level and the VP2 protein was not toxic to CEFs. Chickens vaccinated with a DNA vaccine consisting of the bicistronic vector containing the codon-optimized VP2 elicited a humoral immune response as measured by a VP2-specific ELISA. This VP2 codon-optimized bicistronic cassette was rescued into the MeHV-1 genome generating a vectored vaccine against ChPV disease.

  16. Vaccine Platforms to Control Arenaviral Hemorrhagic Fevers.

    Science.gov (United States)

    Carrion, Ricardo; Bredenbeek, Peter; Jiang, Xiaohong; Tretyakova, Irina; Pushko, Peter; Lukashevich, Igor S

    2012-11-20

    Arenaviruses are rodent-borne emerging human pathogens. Diseases caused by these viruses, e.g., Lassa fever (LF) in West Africa and South American hemorrhagic fevers (HFs), are serious public health problems in endemic areas. We have employed replication-competent and replication-deficient strategies to design vaccine candidates potentially targeting different groups "at risk". Our leader LF vaccine candidate, the live reassortant vaccine ML29, is safe and efficacious in all tested animal models including non-human primates. In this study we showed that treatment of fatally infected animals with ML29 two days after Lassa virus (LASV) challenge protected 80% of the treated animals. In endemic areas, where most of the target population is poor and many live far from health care facilities, a single-dose vaccination with ML29 would be ideal solution. Once there is an outbreak, a fast-acting vaccine or post-exposure prophylaxis would be best. The 2(nd) vaccine technology is based on Yellow Fever (YF) 17D vaccine. We designed YF17D-based recombinant viruses expressing LASV glycoproteins (GP) and showed protective efficacy of these recombinants. In the current study we developed a novel technology to clone LASV nucleocapsid within YF17D C gene. Low immunogenicity and stability of foreign inserts must be addressed to design successful LASV/YFV bivalent vaccines to control LF and YF in overlapping endemic areas of West Africa. The 3(rd) platform is based on the new generation of alphavirus replicon virus-like-particle vectors (VLPV). Using this technology we designed VLPV expressing LASV GP with enhanced immunogenicity and bivalent VLPV expressing cross-reactive GP of Junin virus (JUNV) and Machupo virus (MACV), causative agents of Argentinian and Bolivian HF, respectively. A prime-boost regimen required for VLPV immunization might be practical for medical providers, military, lab personnel, and visitors in endemic areas.

  17. Multivalent human papillomavirus l1 DNA vaccination utilizing electroporation.

    Directory of Open Access Journals (Sweden)

    Kihyuck Kwak

    Full Text Available Naked DNA vaccines can be manufactured simply and are stable at ambient temperature, but require improved delivery technologies to boost immunogenicity. Here we explore in vivo electroporation for multivalent codon-optimized human papillomavirus (HPV L1 and L2 DNA vaccination.Balb/c mice were vaccinated three times at two week intervals with a fusion protein comprising L2 residues ∼11-88 of 8 different HPV types (11-88×8 or its DNA expression vector, DNA constructs expressing L1 only or L1+L2 of a single HPV type, or as a mixture of several high-risk HPV types and administered utilizing electroporation, i.m. injection or gene gun. Serum was collected two weeks and 3 months after the last vaccination. Sera from immunized mice were tested for in-vitro neutralization titer, and protective efficacy upon passive transfer to naive mice and vaginal HPV challenge. Heterotypic interactions between L1 proteins of HPV6, HPV16 and HPV18 in 293TT cells were tested by co-precipitation using type-specific monoclonal antibodies.Electroporation with L2 multimer DNA did not elicit detectable antibody titer, whereas DNA expressing L1 or L1+L2 induced L1-specific, type-restricted neutralizing antibodies, with titers approaching those induced by Gardasil. Co-expression of L2 neither augmented L1-specific responses nor induced L2-specific antibodies. Delivery of HPV L1 DNA via in vivo electroporation produces a stronger antibody response compared to i.m. injection or i.d. ballistic delivery via gene gun. Reduced neutralizing antibody titers were observed for certain types when vaccinating with a mixture of L1 (or L1+L2 vectors of multiple HPV types, likely resulting from heterotypic L1 interactions observed in co-immunoprecipitation studies. High titers were restored by vaccinating with individual constructs at different sites, or partially recovered by co-expression of L2, such that durable protective antibody titers were achieved for each type

  18. Randomized Trial to Compare the Immunogenicity and Safety of a CRM or TT Conjugated Quadrivalent Meningococcal Vaccine in Teenagers who Received a CRM or TT Conjugated Serogroup C Vaccine at Preschool Age.

    Science.gov (United States)

    Ishola, David A; Andrews, Nick; Waight, Pauline; Yung, Chee-Fu; Southern, Jo; Bai, Xilian; Findlow, Helen; Matheson, Mary; England, Anna; Hallis, Bassam; Findlow, Jamie; Borrow, Ray; Miller, Elizabeth

    2015-08-01

    Protection after meningococcal C (MenC) conjugate (MCC) vaccination in early childhood is short-lived. Boosting with a quadrivalent vaccine in teenage years, a high-risk period for MenC disease, should protect against additional serogroups but might compromise MenC response. The carrier protein in the primary MCC vaccine determines the response to MCC booster in toddlers, but the relationship between primary vaccine and booster given later is unclear. This study compared responses to a CRM-conjugated or tetanus toxoid (TT)-conjugated MenACWY vaccine in teenagers primed with different MCC vaccines at preschool age. Ninety-three teenagers (16-19 years), who were previously randomized at age 3-6 years to receive single-dose MCC-CRM or MCC-TT, were randomized to receive either MenACWY-CRM or MenACWY-TT booster. Serum bactericidal antibodies (SBA, protective titer ≥ 8) were measured before, 1 month and 6 or 9 months after boosting. Preboosting, MCC-TT-primed teenagers had significantly higher MenC SBA titers than those MCC-CRM-primed (P = 0.02). Postboosting, both MenACWY vaccines induced protective SBA titers to all 4 serogroups in most participants (≥ 98% at 1 month and ≥ 90% by 9 months postboost). The highest MenC SBA titers were seen in those MCC-TT-primed and MenACWY-TT-boosted [geometric mean titer (GMT) ~ 22,000] followed by those boosted with MenACWY-CRM irrespective of priming (GMT ~ 12,000) and then those MCC-CRM-primed and MenACWY-TT-boosted (GMT ~ 5500). The estimated postbooster MenC SBA decline beyond 1 month was ~40% as time since booster doubles. Both vaccines were well tolerated with no attributable serious adverse events. Both MenACWY vaccines safely induced protective sustained antibody responses against all targeted serogroups in MCC-primed teenagers.

  19. Protective efficacy of a single immunization with capripoxvirus-vectored recombinant peste des petits ruminants vaccines in presence of pre-existing immunity.

    Science.gov (United States)

    Caufour, Philippe; Rufael, Tesfaye; Lamien, Charles Euloge; Lancelot, Renaud; Kidane, Menbere; Awel, Dino; Sertse, Tefera; Kwiatek, Olivier; Libeau, Geneviève; Sahle, Mesfin; Diallo, Adama; Albina, Emmanuel

    2014-06-24

    Sheeppox, goatpox and peste des petits ruminants (PPR) are highly contagious ruminant diseases widely distributed in Africa, the Middle East and Asia. Capripoxvirus (CPV)-vectored recombinant PPR vaccines (rCPV-PPR vaccines), which have been developed and shown to protect against both Capripox (CP) and PPR, would be critical tools in the control of these important diseases. In most parts of the world, these disease distributions overlap each other leaving concerns about the potential impact that pre-existing immunity against either disease may have on the protective efficacy of these bivalent rCPV-PPR vaccines. Currently, this question has not been indisputably addressed. Therefore, we undertook this study, under experimental conditions designed for the context of mass vaccination campaigns of small ruminants, using the two CPV recombinants (Kenya sheep-1 (KS-1) strain-based constructs) developed previously in our laboratory. Pre-existing immunity was first induced by immunization either with an attenuated CPV vaccine strain (KS-1) or the attenuated PPRV vaccine strain (Nigeria 75/1) and animals were thereafter inoculated once subcutaneously with a mixture of CPV recombinants expressing either the hemagglutinin (H) or the fusion (F) protein gene of PPRV (10(3) TCID50/animal of each). Finally, these animals were challenged with a virulent CPV strain followed by a virulent PPRV strain 3 weeks later. Our study demonstrated full protection against CP for vaccinated animals with prior exposure to PPRV and a partial protection against PPR for vaccinated animals with prior exposure to CPV. The latter animals exhibited a mild clinical form of PPR and did not show any post-challenge anamnestic neutralizing antibody response against PPRV. The implications of these results are discussed herein and suggestions made for future research regarding the development of CPV-vectored vaccines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. An influenza viral vector Brucella abortus vaccine induces good cross-protection against Brucella melitensis infection in pregnant heifers.

    Science.gov (United States)

    Tabynov, Kaissar; Ryskeldinova, Sholpan; Sansyzbay, Abylai

    2015-07-17

    Brucella melitensis can be transmitted and cause disease in cattle herds as a result of inadequate management of mixed livestock farms. Ideally, vaccines against Brucella abortus for cattle should also provide cross-protection against B. melitensis. Previously we created a novel influenza viral vector B. abortus (Flu-BA) vaccine expressing the Brucella ribosomal proteins L7/L12 or Omp16. This study demonstrated Flu-BA vaccine with adjuvant Montanide Gel01 provided 100% protection against abortion in vaccinated pregnant heifers and good cross-protection of the heifers and their calves or fetuses (90-100%) after challenge with B. melitensis 16M; the level of protection provided by Flu-BA was comparable to the commercial vaccine B. abortus S19. In terms of the index of infection and colonization of Brucella in tissues, both vaccines demonstrated significant (P=0.02 to P<0.0001) protection against B. melitensis 16M infection compared to the negative control group (PBS+Montanide Gel01). Thus, we conclude the Flu-BA vaccine provides cross-protection against B. melitensis infection in pregnant heifers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Priming T-cell responses with recombinant measles vaccine vector in a heterologous prime-boost setting in non-human primates

    NARCIS (Netherlands)

    Bolton, Diane L.; Santra, Sampa; Swett-Tapia, Cindy; Custers, Jerome; Song, Kaimei; Balachandran, Harikrishnan; Mach, Linh; Naim, Hussein; Kozlowski, Pamela A.; Lifton, Michelle; Goudsmit, Jaap; Letvin, Norman; Roederer, Mario; Radošević, Katarina

    2012-01-01

    Licensed live attenuated virus vaccines capable of expressing transgenes from other pathogens have the potential to reduce the number of childhood immunizations by eliciting robust immunity to multiple pathogens simultaneously. Recombinant attenuated measles virus (rMV) derived from the Edmonston

  2. The natural history of varicella zoster virus infection in Norway: Further insights on exogenous boosting and progressive immunity to herpes zoster.

    Directory of Open Access Journals (Sweden)

    Luigi Marangi

    Full Text Available We use age-structured models for VZV transmission and reactivation to reconstruct the natural history of VZV in Norway based on available pre-vaccination serological data, contact matrices, and herpes zoster incidence data. Depending on the hypotheses on contact and transmission patterns, the basic reproduction number of varicella in Norway ranges between 3.7 and 5.0, implying a vaccine coverage between 73 and 80% to effectively interrupt transmission with a 100% vaccine efficacy against infection. The varicella force of infection peaks during early childhood (3-5 yrs and shows a prolonged phase of higher risk during the childbearing period, though quantitative variations can occur depending on contact patterns. By expressing the magnitude of exogenous boosting as a proportion of the force of infection, it is shown that reactivation is well described by a progressive immunity mechanism sustained by a large, though possibly below 100%, degree of exogenous boosting, in agreement with findings from other Nordic countries, implying large reproduction numbers of boosting. Moreover, magnitudes of exogenous boosting below 40% are robustly disconfirmed by data. These results bring further insight on the magnitude of immunity boosting and its relationship with reactivation.

  3. A T cell-inducing influenza vaccine for the elderly: safety and immunogenicity of MVA-NP+M1 in adults aged over 50 years.

    Directory of Open Access Journals (Sweden)

    Richard D Antrobus

    Full Text Available Current influenza vaccines have reduced immunogenicity and are of uncertain efficacy in older adults. We assessed the safety and immunogenicity of MVA-NP+M1, a viral-vectored influenza vaccine designed to boost memory T cell responses, in a group of older adults.Thirty volunteers (aged 50-85 received a single intramuscular injection of MVA-NP+M1 at a dose of 1·5×10(8 plaque forming units (pfu. Safety and immunogenicity were assessed over a period of one year. The frequency of T cells specific for nucleoprotein (NP and matrix protein 1 (M1 was determined by interferon-gamma (IFN-γ ELISpot, and their phenotypic and functional properties were characterized by polychromatic flow cytometry. In a subset of M1-specific CD8(+ T cells, T cell receptor (TCR gene expression was evaluated using an unbiased molecular approach.Vaccination with MVA-NP+M1 was well tolerated. ELISpot responses were boosted significantly above baseline following vaccination. Increases were detected in both CD4(+ and CD8(+ T cell subsets. Clonality studies indicated that MVA-NP+M1 expanded pre-existing memory CD8(+ T cells, which displayed a predominant CD27(+CD45RO(+CD57(-CCR7(- phenotype both before and after vaccination.MVA-NP+M1 is safe and immunogenic in older adults. Unlike seasonal influenza vaccination, the immune responses generated by MVA-NP+M1 are similar between younger and older individuals. A T cell-inducing vaccine such as MVA-NP+M1 may therefore provide a way to circumvent the immunosenescence that impairs routine influenza vaccination.ClinicalTrials.gov NCT00942071.

  4. Serologic responses after vaccination of fennec foxes (Vulpes zerda) and meerkats (Suricata suricatta) with a live, canarypox-vectored canine distemper virus vaccine.

    Science.gov (United States)

    Coke, Rob L; Backues, Kay A; Hoover, John P; Saliki, Jeremiah T; Ritchey, Jerry W; West, Gary D

    2005-06-01

    Fennec foxes (Vulpes zerda) and meerkats (Suricata suricatta) are considered to be susceptible to canine distemper virus (CDV) infection. Although no definitive clinical cases of natural CDV infections have been reported, mortalities due to CDV have been suspected and are reported in other closely related species. A commercially available monovalent, live, canarypox-vectored CDV vaccine induced neutralizing antibody titers that were maintained for at least a year in both fennec foxes and meerkats.

  5. Vaccination with recombinant RNA replicon particles protects chickens from H5N1 highly pathogenic avian influenza virus.

    Directory of Open Access Journals (Sweden)

    Stefan J Halbherr

    Full Text Available Highly pathogenic avian influenza viruses (HPAIV of subtype H5N1 not only cause a devastating disease in domestic chickens and turkeys but also pose a continuous threat to public health. In some countries, H5N1 viruses continue to circulate and evolve into new clades and subclades. The rapid evolution of these viruses represents a problem for virus diagnosis and control. In this work, recombinant vesicular stomatitis virus (VSV vectors expressing HA of subtype H5 were generated. To comply with biosafety issues the G gene was deleted from the VSV genome. The resulting vaccine vector VSV*ΔG(HA was propagated on helper cells providing the VSV G protein in trans. Vaccination of chickens with a single intramuscular dose of 2×10⁸ infectious replicon particles without adjuvant conferred complete protection from lethal H5N1 infection. Subsequent application of the same vaccine strongly boosted the humoral immune response and completely prevented shedding of challenge virus and transmission to sentinel birds. The vaccine allowed serological differentiation of infected from vaccinated animals (DIVA by employing a commercially available ELISA. Immunized chickens produced antibodies with neutralizing activity against multiple H5 viruses representing clades 1, 2.2, 2.5, and low-pathogenic avian influenza viruses (classical clade. Studies using chimeric H1/H5 hemagglutinins showed that the neutralizing activity was predominantly directed against the globular head domain. In summary, these results suggest that VSV replicon particles are safe and potent DIVA vaccines that may help to control avian influenza viruses in domestic poultry.

  6. Optimal vaccination strategies against vector-borne diseases

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Enøe, Claes; Bødker, Rene

    2014-01-01

    Using a process oriented semi-agent based model, we simulated the spread of Bluetongue virus by Culicoides, biting midges, between cattle in Denmark. We evaluated the minimum vaccination cover and minimum cost for eight different preventive vaccination strategies in Denmark. The simulation model ...... results when index cases were in the vaccinated areas. However, given that the long-range spread of midge borne disease is still poorly quantified, more robust national vaccination schemes seem preferable....

  7. Protection of White Leghorn chickens by U.S. emergency H5 vaccination against clade 2.3.4.4 H5N2 high pathogenicity avian influenza virus.

    Science.gov (United States)

    Bertran, Kateri; Balzli, Charles; Lee, Dong-Hun; Suarez, David L; Kapczynski, Darrell R; Swayne, David E

    2017-11-01

    During December 2014-June 2015, the U.S. experienced a high pathogenicity avian influenza (HPAI) outbreak caused by clade 2.3.4.4 H5Nx Goose/Guangdong lineage viruses with devastating consequences for the poultry industry. Three vaccines, developed based on updating existing registered vaccines or currently licensed technologies, were evaluated for possible use: an inactivated reverse genetics H5N1 vaccine (rgH5N1) and an RNA particle vaccine (RP-H5), both containing the hemagglutinin gene of clade 2.3.4.4 strain, and a recombinant herpesvirus turkey vectored vaccine (rHVT-H5) containing the hemagglutinin gene of clade 2.2 strain. The efficacy of the three vaccines, alone or in combination, was assessed in White Leghorn chickens against clade 2.3.4.4 H5N2 HPAI virus challenge. In Study 1, single (rHVT-H5) and prime-boost (rHVT-H5+rgH5N1 or rHVT-H5+RP-H5) vaccination strategies protected chickens with high levels of protective immunity and significantly reduced virus shedding. In Study 2, single vaccination with either rgH5N1 or RP-H5 vaccines provided clinical protection in adult chickens and significantly reduced virus shedding. In Study 3, double rgH5N1 vaccination protected adult chickens from clinical signs and mortality when challenged 20weeks post-boost, with high levels of long-lasting protective immunity and significantly reduced virus shedding. These studies support the use of genetically related vaccines, possibly in combination with a broad protective priming vaccine, for emergency vaccination programs against clade 2.3.4.4 H5Nx HPAI virus in young and adult layer chickens. Published by Elsevier Ltd.

  8. Vector vaccines for control of avian influenza

    Science.gov (United States)

    Vaccines play a critical role in the poultry industries efforts at disease control and prevention. However, providing safe, efficacious, and cost-effective vaccines remains a constant issue to the industry. In addition, many viruses undergo mutation in the field requiring vaccine adjustments. Recent...

  9. Improved Stereo Matching With Boosting Method

    Directory of Open Access Journals (Sweden)

    Shiny B

    2015-06-01

    Full Text Available Abstract This paper presents an approach based on classification for improving the accuracy of stereo matching methods. We propose this method for occlusion handling. This work employs classification of pixels for finding the erroneous disparity values. Due to the wide applications of disparity map in 3D television medical imaging etc the accuracy of disparity map has high significance. An initial disparity map is obtained using local or global stereo matching methods from the input stereo image pair. The various features for classification are computed from the input stereo image pair and the obtained disparity map. Then the computed feature vector is used for classification of pixels by using GentleBoost as the classification method. The erroneous disparity values in the disparity map found by classification are corrected through a completion stage or filling stage. A performance evaluation of stereo matching using AdaBoostM1 RUSBoost Neural networks and GentleBoost is performed.

  10. Vector independent transmission of the vector-borne bluetongue virus.

    Science.gov (United States)

    van der Sluijs, Mirjam Tineke Willemijn; de Smit, Abraham J; Moormann, Rob J M

    2016-01-01

    Bluetongue is an economically important disease of ruminants. The causative agent, Bluetongue virus (BTV), is mainly transmitted by insect vectors. This review focuses on vector-free BTV transmission, and its epizootic and economic consequences. Vector-free transmission can either be vertical, from dam to fetus, or horizontal via direct contract. For several BTV-serotypes, vertical (transplacental) transmission has been described, resulting in severe congenital malformations. Transplacental transmission had been mainly associated with live vaccine strains. Yet, the European BTV-8 strain demonstrated a high incidence of transplacental transmission in natural circumstances. The relevance of transplacental transmission for the epizootiology is considered limited, especially in enzootic areas. However, transplacental transmission can have a substantial economic impact due to the loss of progeny. Inactivated vaccines have demonstrated to prevent transplacental transmission. Vector-free horizontal transmission has also been demonstrated. Since direct horizontal transmission requires close contact of animals, it is considered only relevant for within-farm spreading of BTV. The genetic determinants which enable vector-free transmission are present in virus strains circulating in the field. More research into the genetic changes which enable vector-free transmission is essential to better evaluate the risks associated with outbreaks of new BTV serotypes and to design more appropriate control measures.

  11. Safety mechanism assisted by the repressor of tetracycline (SMART) vaccinia virus vectors for vaccines and therapeutics.

    Science.gov (United States)

    Grigg, Patricia; Titong, Allison; Jones, Leslie A; Yilma, Tilahun D; Verardi, Paulo H

    2013-09-17

    Replication-competent viruses, such as Vaccinia virus (VACV), are powerful tools for the development of oncolytic viral therapies and elicit superior immune responses when used as vaccine and immunotherapeutic vectors. However, severe complications from uncontrolled viral replication can occur, particularly in immunocompromised individuals or in those with other predisposing conditions. VACVs constitutively expressing interferon-γ (IFN-γ) replicate in cell culture indistinguishably from control viruses; however, they replicate in vivo to low or undetectable levels, and are rapidly cleared even in immunodeficient animals. In an effort to develop safe and highly effective replication-competent VACV vectors, we established a system to inducibly express IFN-γ. Our SMART (safety mechanism assisted by the repressor of tetracycline) vectors are designed to express the tetracycline repressor under a constitutive VACV promoter and IFN-γ under engineered tetracycline-inducible promoters. Immunodeficient SCID mice inoculated with VACVs not expressing IFN-γ demonstrated severe weight loss, whereas those given VACVs expressing IFN-γ under constitutive VACV promoters showed no signs of infection. Most importantly, mice inoculated with a VACV expressing the IFN-γ gene under an inducible promoter remained healthy in the presence of doxycycline, but exhibited severe weight loss in the absence of doxycycline. In this study, we developed a safety mechanism for VACV based on the conditional expression of IFN-γ under a tightly controlled tetracycline-inducible VACV promoter for use in vaccines and oncolytic cancer therapies.

  12. A Single 17D Yellow Fever Vaccination Provides Lifelong Immunity; Characterization of Yellow-Fever-Specific Neutralizing Antibody and T-Cell Responses after Vaccination

    NARCIS (Netherlands)

    Wieten, Rosanne W.; Jonker, Emile F. F.; van Leeuwen, Ester M. M.; Remmerswaal, Ester B. M.; ten Berge, Ineke J. M.; de Visser, Adriëtte W.; van Genderen, Perry J. J.; Goorhuis, Abraham; Visser, Leo G.; Grobusch, Martin P.; de Bree, Godelieve J.

    2016-01-01

    Prompted by recent amendments of Yellow Fever (YF) vaccination guidelines from boost to single vaccination strategy and the paucity of clinical data to support this adjustment, we used the profile of the YF-specific CD8+ T-cell subset profiles after primary vaccination and neutralizing antibodies as

  13. Coxsackievirus B3 vaccines: use as an expression vector for prevention of myocarditis.

    Science.gov (United States)

    Henke, Andreas; Jarasch, Nadine; Wutzler, Peter

    2008-12-01

    Coxsackievirus B3 (CVB3), a member of the Picornaviridae family, is considered to be one of the most important infectious agents to cause virus-induced myocarditis. Despite improvements in studying virus pathology, structure and molecular biology, as well as the diagnosis of this disease, there is still no virus-specific drug or vaccine in clinical use. During the last 20 years many investigations have been performed to develop classic and modern immunization techniques against CVB3-induced heart disease. One promising approach among others includes the insertion of coding sequences of cytokines into the viral genome. The application of an IFN-gamma-expressing recombinant coxsackievirus vector is especially efficient against CVB3-induced myocarditis. Beside direct IFN-gamma-mediated antiviral effects, the local and simultaneous expression of IFN-gamma by the virus itself activates the immune system in a strong and long-lasting manner, which protects animals completely against subsequent lethal infections independently of the age of the immunized individual and the route of vaccine administration.

  14. A simple and rapid approach to develop recombinant avian herpesvirus vectored vaccines using CRISPR/Cas9 system.

    Science.gov (United States)

    Tang, Na; Zhang, Yaoyao; Pedrera, Miriam; Chang, Pengxiang; Baigent, Susan; Moffat, Katy; Shen, Zhiqiang; Nair, Venugopal; Yao, Yongxiu

    2018-01-29

    Herpesvirus of turkeys (HVT) has been successfully used as live vaccine against Marek's disease (MD) worldwide for more than 40 years either alone or in combination with other serotypes. HVT is also widely used as a vector platform for generation of recombinant vaccines against a number of avian diseases such as infectious bursal disease (IBD), Newcastle disease (ND) and avian influenza (AI) using conventional recombination methods or recombineering tools on cloned viral genomes. In the present study, we describe the application of CRISPR/Cas9-based genome editing as a rapid and efficient method of generating HVT recombinants expressing VP2 protein of IBDV. This approach offers an efficient method to introduce other viral antigens into the HVT genome for rapid development of recombinant vaccines. Copyright © 2018 The Pirbright Institute. Published by Elsevier Ltd.. All rights reserved.

  15. Characterization of the antigen-specific CD4+ T cell response induced by prime-boost strategies with CAF01 and CpG adjuvants administered by the intranasal and subcutaneous routes

    Directory of Open Access Journals (Sweden)

    Annalisa eCiabattini

    2015-08-01

    Full Text Available The design of heterologous prime-boost vaccine combinations that optimally shape the immune response is of critical importance for the development of next generation vaccines. Here we tested different prime-boost combinations using the tuberculosis vaccine antigen H56 with CAF01 or CpG ODN 1821 adjuvants, administered by the parenteral and nasal routes. By using peptide-MHC class II tetramers, antigen-specific CD4+ T cells were tracked following primary and booster immunizations. Both parenteral priming with H56 plus CAF01 and nasal priming with H56 plus CpG elicited significant expansion of CD4+ tetramer-positive T cells in the spleen, however only parenterally primed cells responded to booster immunization. Subcutaneous priming with H56 and CAF01 followed by nasal boosting with H56 and CpG showed the greater expansion of CD4+ tetramer-positive T cells in the spleen and lungs compared to all the other homologous and heterologous prime-boost combinations. Nasal boosting exerted a recruitment of primed CD4+ T cells into lungs that was stronger in subcutaneously than nasally primed mice, in accordance with different chemokine receptor expression induced by primary immunization. These data demonstrate that subcutaneous priming is fundamental for eliciting CD4+ T cells that can be efficiently boosted by the nasal route and results in the recruitment of antigen-experienced cells into the lungs. Combination of different vaccine formulations and routes of delivery for priming and boosting is a strategic approach for improving and directing vaccine-induced immune responses.

  16. Vector Development for the Expression of Foreign Proteins in the Vaccine Strain Brucella abortus S19

    Science.gov (United States)

    Comerci, Diego J.; Pollevick, Guido D.; Vigliocco, Ana M.; Frasch, Alberto C. C.; Ugalde, Rodolfo A.

    1998-01-01

    A vector for the expression of foreign antigens in the vaccine strain Brucella abortus S19 was developed by using a DNA fragment containing the regulatory sequences and the signal peptide of the Brucella bcsp31 gene. This fragment was cloned in broad-host-range plasmid pBBR4MCS, resulting in plasmid pBEV. As a reporter protein, a repetitive antigen of Trypanosoma cruzi was used. The recombinant fusion protein is stably expressed and secreted into the Brucella periplasmic space, inducing a good antibody response against the T. cruzi antigen. The expression of the repetitive antigen in Brucella neither altered its growth pattern nor generated a toxic or lethal effect during experimental infection. The application of this strategy for the generation of live recombinant vaccines and the tagging of B. abortus S19 vaccine is discussed. This is the first time that a recombinant protein has been expressed in the periplasm of brucellae. PMID:9673273

  17. Development of Recombinant Vaccine Using Herpesvirus of Turkey (Hvt as Vector for Several Viral Diseases in Poultry Industry

    Directory of Open Access Journals (Sweden)

    Risza Hartawan

    2011-03-01

    Full Text Available Herpesvirus of turkey (HVT has been utilised as live vaccine against Marek’s disease in poultry industry world-wide for many years. However, the potency of HVT is not limited on the Marek’s disease only. Along with rapid development of recombinant technique, the potency of HVT can be broaden for other diseases. As naturally apathogenic virus, HVT is a suitable candidate as vector vaccine to express important antigens of viral pathogens. Several researches have been dedicated to design HVT recombinant vaccine by inserting gene of important virus, such as Marek’s disease virus (MDV, immuno bursal disease virus (IBDV, Newcastle disease virus (NDV and Avian Influenza virus (AIV. Therefore, the future recombinant of HVT has been expected to be better in performance along with the improvement of recombinant technique.

  18. Apparent field safety of a raccoon poxvirus-vectored plague vaccine in free-ranging prairie dogs (Cynomys spp.), Colorado, USA.

    Science.gov (United States)

    Tripp, Daniel W; Rocke, Tonie E; Streich, Sean P; Abbott, Rachel C; Osorio, Jorge E; Miller, Michael W

    2015-04-01

    Prairie dogs (Cynomys spp.) suffer high rates of mortality from plague. An oral sylvatic plague vaccine using the raccoon poxvirus vector (designated RCN-F1/V307) has been developed for prairie dogs. This vaccine is incorporated into palatable bait along with rhodamine B as a biomarker. We conducted trials in August and September 2012 to demonstrate uptake and apparent safety of the RCN-F1/V307 vaccine in two prairie dog species under field conditions. Free-ranging prairie dogs and other associated small rodents readily consumed vaccine-laden baits during field trials with no apparent adverse effects; most sampled prairie dogs (90%) and associated small rodents (78%) had consumed baits. Visual counts of prairie dogs and their burrows revealed no evidence of prairie dog decline after vaccine exposure. No vaccine-related morbidity, mortality, or gross or microscopic lesions were observed. Poxviruses were not isolated from any animal sampled prior to bait distribution or on sites that received placebo baits. We isolated RCN-F1/V307 from 17 prairie dogs and two deer mice (Peromyscus maniculatus) captured on sites where vaccine-laden baits were distributed. Based on these findings, studies examining the utility and effectiveness of oral vaccination to prevent plague-induced mortality in prairie dogs and associated species are underway.

  19. Apparent field safety of a raccoon poxvirus-vectored plague vaccine in free-ranging prairie dogs (Cynomys spp.), Colorado, USA

    Science.gov (United States)

    Tripp, Daniel W.; Rocke, Tonie E.; Streich, Sean P.; Abbott, Rachel C.; Osorio, Jorge E.; Miller, Michael W.

    2015-01-01

    Prairie dogs (Cynomys spp.) suffer high rates of mortality from plague. An oral sylvatic plague vaccine using the raccoon poxvirus vector (designated RCN-F1/V307) has been developed for prairie dogs. This vaccine is incorporated into palatable bait along with rhodamine B as a biomarker. We conducted trials in August and September 2012 to demonstrate uptake and apparent safety of the RCN-F1/V307 vaccine in two prairie dog species under field conditions. Free-ranging prairie dogs and other associated small rodents readily consumed vaccine-laden baits during field trials with no apparent adverse effects; most sampled prairie dogs (90%) and associated small rodents (78%) had consumed baits. Visual counts of prairie dogs and their burrows revealed no evidence of prairie dog decline after vaccine exposure. No vaccine-related morbidity, mortality, or gross or microscopic lesions were observed. Poxviruses were not isolated from any animal sampled prior to bait distribution or on sites that received placebo baits. We isolated RCN-F1/V307 from 17 prairie dogs and two deer mice (Peromyscus maniculatus) captured on sites where vaccine-laden baits were distributed. Based on these findings, studies examining the utility and effectiveness of oral vaccination to prevent plague-induced mortality in prairie dogs and associated species are underway.

  20. Clinical development of Ebola vaccines

    Science.gov (United States)

    Sridhar, Saranya

    2015-01-01

    The ongoing outbreak of Ebola virus disease in West Africa highlighted the lack of a licensed drug or vaccine to combat the disease and has renewed the urgency to develop a pipeline of Ebola vaccines. A number of different vaccine platforms are being developed by assessing preclinical efficacy in animal models and expediting clinical development. Over 15 different vaccines are in preclinical development and 8 vaccines are now in different stages of clinical evaluation. These vaccines include DNA vaccines, virus-like particles and viral vectors such as live replicating vesicular stomatitis virus (rVSV), human and chimpanzee adenovirus, and vaccinia virus. Recently, in preliminary results reported from the first phase III trial of an Ebola vaccine, the rVSV-vectored vaccine showed promising efficacy. This review charts this rapidly advancing area of research focusing on vaccines in clinical development and discusses the future opportunities and challenges faced in the licensure and deployment of Ebola vaccines. PMID:26668751

  1. Will Synergizing Vaccination with Therapeutics Boost Measles Virus Eradication?

    Science.gov (United States)

    Plemper, Richard K; Hammond, Anthea L

    2014-01-01

    Introduction Measles virus is a major human pathogen responsible for approximately 150,000 measles deaths annually. The disease is vaccine preventable and eradication of the virus is considered feasible in principle. However, a herd immunity exceeding 95% is required to prevent sporadic viral outbreaks in a population. Declining disease prevalence combined with public anxieties about vaccination safety has increased vaccine refusal especially in the European region, which has resulted in measles resurgence in some areas. Areas covered Here, we discuss whether synergizing effective measles therapeutics with vaccination could contribute to solving an endgame conundrum of measles elimination by accelerating the eradication effort. Based on an anticipated use for protection of high-risk contacts of confirmed measles cases through post-exposure prophylaxis, we identify key elements of the desirable drug profile, review current disease management strategies and the state of experimental inhibitor candidates, evaluate the risk associated with viral escape from inhibition, and consider the potential of measles therapeutics for the management of persistent viral infection of the CNS. Assuming a post-measles world with waning measles immunity, we contemplate the possible impact of therapeutics on controlling the threat imposed by closely related zoonotic pathogens of the same genus as measles virus. Expert opinion Efficacious therapeutics given for post-exposure prophylaxis of high-risk social contacts of confirmed index cases may aid measles eradication by closing herd immunity gaps due to vaccine refusal or failure in populations with overall good vaccination coverage. The envisioned primarily prophylactic application of measles therapeutics to a predominantly pediatric and/or adolescent patient population dictates the drug profile; the article must be safe and efficacious, orally available, shelf-stable at ambient temperature, and amenable to cost-effective manufacture

  2. Activation of cross-reactive mucosal T and B cell responses in human nasopharynx-associated lymphoid tissue in vitro by Modified Vaccinia Ankara-vectored influenza vaccines.

    Science.gov (United States)

    Mullin, Jennifer; Ahmed, Muhammed S; Sharma, Ravi; Upile, Navdeep; Beer, Helen; Achar, Priya; Puksuriwong, Suttida; Ferrara, Francesca; Temperton, Nigel; McNamara, Paul; Lambe, Teresa; Gilbert, Sarah C; Zhang, Qibo

    2016-03-29

    Recent efforts have been focused on the development of vaccines that could induce broad immunity against influenza virus, either through T cell responses to conserved internal antigens or B cell response to cross-reactive haemagglutinin (HA). We studied the capacity of Modified Vaccinia Ankara (MVA)-vectored influenza vaccines to induce cross-reactive immunity to influenza virus in human nasopharynx-associated lymphoid tissue (NALT) in vitro. Adenotonsillar cells were isolated and stimulated with MVA vaccines expressing either conserved nucleoprotein (NP) and matrix protein 1 (M1) (MVA-NP-M1) or pandemic H1N1 HA (MVA-pdmH1HA). The MVA vaccine uptake and expression, and T and B cell responses were analyzed. MVA-vectored vaccines were highly efficient infecting NALT and vaccine antigens were highly expressed by B cells. MVA-NP-M1 elicited T cell response with greater numbers of IFNγ-producing CD4+ T cells and tissue-resident memory T cells than controls. MVA-pdmH1HA induced cross-reactive anti-HA antibodies to a number of influenza subtypes, in an age-dependent manner. The cross-reactive antibodies include anti-avian H5N1 and mainly target HA2 domain. MVA vaccines are efficient in infecting NALT and the vaccine antigen is highly expressed by B cells. MVA vaccines expressing conserved influenza antigens induce cross-reactive T and B cell responses in human NALT in vitro, suggesting the potential as mucosal vaccines for broader immunity against influenza. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Vector Boson Scattering at High Mass

    CERN Document Server

    Sherwood, P

    2009-01-01

    In the absence of a light Higgs boson, the mechanism of electroweak symmetry breaking will be best studied in processes of vector boson scattering at high mass. Various models predict resonances in this channel. Here, we investigate W W scalar and vector resonances, W Z vector resonances and a Z Z scalar resonance over a range of diboson centre-of-mass energies. Particular attention is paid to the application reconstruction of dijet pairs with low opening angle resulting from the decay of highly boosted vector bosons.

  4. Live virus vaccines based on a yellow fever vaccine backbone: standardized template with key considerations for a risk/benefit assessment.

    Science.gov (United States)

    Monath, Thomas P; Seligman, Stephen J; Robertson, James S; Guy, Bruno; Hayes, Edward B; Condit, Richard C; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T

    2015-01-01

    The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called "chimeric virus vaccines"). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus, Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were exchanged for the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of

  5. OKVAR-Boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks.

    Science.gov (United States)

    Lim, Néhémy; Senbabaoglu, Yasin; Michailidis, George; d'Alché-Buc, Florence

    2013-06-01

    Reverse engineering of gene regulatory networks remains a central challenge in computational systems biology, despite recent advances facilitated by benchmark in silico challenges that have aided in calibrating their performance. A number of approaches using either perturbation (knock-out) or wild-type time-series data have appeared in the literature addressing this problem, with the latter using linear temporal models. Nonlinear dynamical models are particularly appropriate for this inference task, given the generation mechanism of the time-series data. In this study, we introduce a novel nonlinear autoregressive model based on operator-valued kernels that simultaneously learns the model parameters, as well as the network structure. A flexible boosting algorithm (OKVAR-Boost) that shares features from L2-boosting and randomization-based algorithms is developed to perform the tasks of parameter learning and network inference for the proposed model. Specifically, at each boosting iteration, a regularized Operator-valued Kernel-based Vector AutoRegressive model (OKVAR) is trained on a random subnetwork. The final model consists of an ensemble of such models. The empirical estimation of the ensemble model's Jacobian matrix provides an estimation of the network structure. The performance of the proposed algorithm is first evaluated on a number of benchmark datasets from the DREAM3 challenge and then on real datasets related to the In vivo Reverse-Engineering and Modeling Assessment (IRMA) and T-cell networks. The high-quality results obtained strongly indicate that it outperforms existing approaches. The OKVAR-Boost Matlab code is available as the archive: http://amis-group.fr/sourcecode-okvar-boost/OKVARBoost-v1.0.zip. Supplementary data are available at Bioinformatics online.

  6. Forebyggelse af herpes zoster med vaccination

    DEFF Research Database (Denmark)

    Kofoed, Kristian; Rønholt, Finn; Gerstoft, Jan

    2011-01-01

    been shown to halve the risk of HZ, and the risk of PHN is reduced by two thirds in people = 60 years. The vaccine is approved for persons aged = 50 years. However, the clinical efficacy of the vaccine is best studied in people aged = 60 years. The vaccine has so far not shown any serious side-effects.......Herpes zoster (HZ) and post-herpetic neuralgia (PHN) are frequently occurring diseases in elderly and in immuno-compromised persons. The live attenuated HZ vaccine boosts an existing immune response, so that the already established varicella-zoster virus infection is kept latent. Vaccination has...

  7. Efficacy of a vaccine formula against tuberculosis in cattle.

    Directory of Open Access Journals (Sweden)

    Germinal J Canto Alarcon

    Full Text Available "Test-and-slaughter" has been successful in industrialized countries to control and eradicate tuberculosis from cattle; however, this strategy is too expensive for developing nations, where the prevalence is especially high. Vaccination with the Calmette-Guérin (BCG strain has been shown to protect against the development of lesions in vaccinated animals: mouse, cattle and wildlife species. In this study, the immune response and the pathology of vaccinated (BCG-prime and BCG prime-CFP-boosted and unvaccinated (controls calves were evaluated under experimental settings. A 10(6 CFU dose of the BCG strain was inoculated subcutaneously on the neck to two groups of ten animas each. Thirty days after vaccination, one of the vaccinated groups was boosted with an M. bovis culture filtrate protein (CFP. Three months after vaccination, the three groups of animals were challenged with 5×10(5 CFU via intranasal by aerosol with a field strain of M. bovis. The immune response was monitored throughout the study. Protection was assessed based on immune response (IFN-g release prechallenge, presence of visible lesions in lymph nodes and lungs at slaughter, and presence of bacilli in lymph nodes and lung samples in histological analysis. Vaccinated cattle, either with the BCG alone or with BCG and boosted with CFP showed higher IFN-g response, fewer lesions, and fewer bacilli per lesion than unvaccinated controls after challenge. Animals with low levels of IFN-g postvaccine-prechallenge showed more lesions than animals with high levels. Results from this study support the argument that vaccination could be incorporated into control programs to reduce the incidence of TB in cattle in countries with high prevalence.

  8. Architectural Insight into Inovirus-Associated Vectors (IAVs and Development of IAV-Based Vaccines Inducing Humoral and Cellular Responses: Implications in HIV-1 Vaccines

    Directory of Open Access Journals (Sweden)

    Kyriakos A. Hassapis

    2014-12-01

    Full Text Available Inovirus-associated vectors (IAVs are engineered, non-lytic, filamentous bacteriophages that are assembled primarily from thousands of copies of the major coat protein gp8 and just five copies of each of the four minor coat proteins gp3, gp6, gp7 and gp9. Inovirus display studies have shown that the architecture of inoviruses makes all coat proteins of the inoviral particle accessible to the outside. This particular feature of IAVs allows foreign antigenic peptides to be displayed on the outer surface of the virion fused to its coat proteins and for more than two decades has been exploited in many applications including antibody or peptide display libraries, drug design, and vaccine development against infectious and non-infectious diseases. As vaccine carriers, IAVs have been shown to elicit both a cellular and humoral response against various pathogens through the display of antibody epitopes on their coat proteins. Despite their high immunogenicity, the goal of developing an effective vaccine against HIV-1 has not yet materialized. One possible limitation of previous efforts was the use of broadly neutralizing antibodies, which exhibited autoreactivity properties. In the past five years, however, new, more potent broadly neutralizing antibodies that do not exhibit autoreactivity properties have been isolated from HIV-1 infected individuals, suggesting that vaccination strategies aimed at producing such broadly neutralizing antibodies may confer protection against infection. The utilization of these new, broadly neutralizing antibodies in combination with the architectural traits of IAVs have driven the current developments in the design of an inovirus-based vaccine against HIV-1. This article reviews the applications of IAVs in vaccine development, with particular emphasis on the design of inoviral-based vaccines against HIV-1.

  9. Induction of Boosted Immune Response in Mice by Leptospiral Surface Proteins Expressed in Fusion with DnaK

    Directory of Open Access Journals (Sweden)

    Marina V. Atzingen

    2014-01-01

    Full Text Available Leptospirosis is an important global disease of human and veterinary concern. Caused by pathogenic Leptospira, the illness was recently classified as an emerging infectious disease. Currently available veterinarian vaccines do not induce long-term protection against infection and do not provide cross-protective immunity. Several studies have suggested the use of DnaK as an antigen in vaccine formulation, due to an exceptional degree of immunogenicity. We focused on four surface proteins: rLIC10368 (Lsa21, rLIC10494, rLIC12690 (Lp95, and rLIC12730, previously shown to be involved in host-pathogen interactions. Our goal was to evaluate the immunogenicity of the proteins genetically fused with DnaK in animal model. The chosen genes were amplified by PCR methodology and cloned into pAE, an E. coli vector. The recombinant proteins were expressed alone or in fusion with DnaK at the N-terminus. Our results demonstrate that leptospiral proteins fused with DnaK have elicited an enhanced immune response in mice when compared to the effect promoted by the individual proteins. The boosted immune effect was demonstrated by the production of total IgG, lymphocyte proliferation, and significant amounts of IL-10 in supernatant of splenocyte cell cultures. We believe that this approach could be employed in vaccines to enhance presentation of antigens of Leptospira to professional immune cells.

  10. A full-length Plasmodium falciparum recombinant circumsporozoite protein expressed by Pseudomonas fluorescens platform as a malaria vaccine candidate.

    Directory of Open Access Journals (Sweden)

    Amy R Noe

    Full Text Available The circumsporozoite protein (CSP of Plasmodium falciparum is a major surface protein, which forms a dense coat on the sporozoite's surface. Preclinical research on CSP and clinical evaluation of a CSP fragment-based RTS, S/AS01 vaccine have demonstrated a modest degree of protection against P. falciparum, mediated in part by humoral immunity and in part by cell-mediated immunity. Given the partial protective efficacy of the RTS, S/AS01 vaccine in a recent Phase 3 trial, further improvement of CSP-based vaccines is crucial. In this report, we describe the preclinical development of a full-length, recombinant CSP (rCSP-based vaccine candidate against P. falciparum malaria suitable for current Good Manufacturing Practice (cGMP production. Utilizing a novel high-throughput Pseudomonas fluorescens expression platform, we demonstrated greater efficacy of full-length rCSP as compared to N-terminally truncated versions, rapidly down-selected a promising lead vaccine candidate, and developed a high-yield purification process to express immunologically active, intact antigen for clinical trial material production. The rCSP, when formulated with various adjuvants, induced antigen-specific antibody responses as measured by enzyme-linked immunosorbent assay (ELISA and immunofluorescence assay (IFA, as well as CD4+ T-cell responses as determined by ELISpot. The adjuvanted rCSP vaccine conferred protection in mice when challenged with transgenic P. berghei sporozoites containing the P. falciparum repeat region of CSP. Furthermore, heterologous prime/boost regimens with adjuvanted rCSP and an adenovirus type 35-vectored CSP (Ad35CS showed modest improvements in eliciting CSP-specific T-cell responses and anti-malarial protection, depending on the order of vaccine delivery. Collectively, these data support the importance of further clinical development of adjuvanted rCSP, either as a stand-alone product or as one of the components in a heterologous prime/boost

  11. Live Virus Vaccines Based on a Yellow Fever Vaccine Backbone: Standardized Template with Key Considerations for a Risk/Benefit Assessment*

    Science.gov (United States)

    Monath, Thomas P.; Seligman, Stephen J.; Robertson, James S.; Guy, Bruno; Hayes, Edward B.; Condit, Richard C.; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T

    2015-01-01

    The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called “chimeric virus vaccines”). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were replaced by the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of

  12. Local HPV Recombinant Vaccinia Boost Following Priming with an HPV DNA Vaccine Enhances Local HPV-Specific CD8+ T-cell-Mediated Tumor Control in the Genital Tract.

    Science.gov (United States)

    Sun, Yun-Yan; Peng, Shiwen; Han, Liping; Qiu, Jin; Song, Liwen; Tsai, Yachea; Yang, Benjamin; Roden, Richard B S; Trimble, Cornelia L; Hung, Chien-Fu; Wu, T-C

    2016-02-01

    Two viral oncoproteins, E6 and E7, are expressed in all human papillomavirus (HPV)-infected cells, from initial infection in the genital tract to metastatic cervical cancer. Intramuscular vaccination of women with high-grade cervical intraepithelial neoplasia (CIN2/3) twice with a naked DNA vaccine, pNGVL4a-sig/E7(detox)/HSP70, and a single boost with HPVE6/E7 recombinant vaccinia vaccine (TA-HPV) elicited systemic HPV-specific CD8 T-cell responses that could traffic to the lesion and was associated with regression in some patients (NCT00788164). Here, we examine whether alteration of this vaccination regimen by administration of TA-HPV vaccination in the cervicovaginal tract, rather than intramuscular (IM) delivery, can more effectively recruit antigen-specific T cells in an orthotopic syngeneic mouse model of HPV16(+) cervical cancer (TC-1 luc). We found that pNGVL4a-sig/E7(detox)/HSP70 vaccination followed by cervicovaginal vaccination with TA-HPV increased accumulation of total and E7-specific CD8(+) T cells in the cervicovaginal tract and better controlled E7-expressing cervicovaginal TC-1 luc tumor than IM administration of TA-HPV. Furthermore, the E7-specific CD8(+) T cells in the cervicovaginal tract generated through the cervicovaginal route of vaccination expressed the α4β7 integrin and CCR9, which are necessary for the homing of the E7-specific CD8(+) T cells to the cervicovaginal tract. Finally, we show that cervicovaginal vaccination with TA-HPV can induce potent local HPV-16 E7 antigen-specific CD8(+) T-cell immune responses regardless of whether an HPV DNA vaccine priming vaccination was administered IM or within the cervicovaginal tract. Our results support future clinical translation using cervicovaginal TA-HPV vaccination. ©2015 American Association for Cancer Research.

  13. Local HPV Recombinant Vaccinia Boost Following Priming with an HPV DNA Vaccine Enhances Local HPV-Specific CD8+ T Cell Mediated Tumor Control in the Genital Tract

    Science.gov (United States)

    Sun, Yun-Yan; Peng, Shiwen; Han, Liping; Qiu, Jin; Song, Liwen; Tsai, Yachea; Yang, Benjamin; Roden, Richard B.S.; Trimble, Cornelia L.; Hung, Chien-Fu; Wu, T-C

    2015-01-01

    Purpose Two viral oncoproteins, E6 and E7, are expressed in all human papillomavirus (HPV)-infected cells, from initial infection in the genital tract to metastatic cervical cancer. Intramuscular vaccination of women with high grade cervical intraepithelial neoplasia (CIN2/3) twice with a naked DNA vaccine, pNGVL4a-sig/E7(detox)/HSP70, and a single boost with HPVE6/E7 recombinant vaccinia vaccine (TA-HPV) elicited systemic HPV-specific CD8 T cell responses that could traffic to the lesion and was associated with regression in some patients (NCT00788164). Experimental Design Here we examine whether alteration of this vaccination regimen by administration of TA-HPV vaccination in the cervicovaginal tract, rather than IM delivery, can more effectively recruit antigen-specific T cells in an orthotopic syngeneic mouse model of HPV16+ cervical cancer (TC-1 luc). Results We found that pNGVL4a-sig/E7(detox)/HSP70 vaccination followed by cervicovaginal vaccination with TA-HPV increased accumulation of total and E7-specific CD8+ T cells in the cervicovaginal tract and better controlled E7-expressing cervicovaginal TC-1 luc tumor than IM administration of TA-HPV. Furthermore, the E7-specific CD8+ T cells in the cervicovaginal tract generated through the cervicovaginal route of vaccination expressed the α4β7 integrin and CCR9, which are necessary for the homing of the E7-specific CD8+ T cells to the cervicovaginal tract. Finally, we show that cervicovaginal vaccination with TA-HPV can induce potent local HPV-16 E7 antigen-specific CD8+ T cell immune responses regardless of whether an HPV DNA vaccine priming vaccination was administered IM or within the cervicovaginal tract. Conclusions Our results support future clinical translation using cervicovaginal TA-HPV vaccination. PMID:26420854

  14. A Replication-Defective Human Type 5 Adenovirus-Based Trivalent Vaccine Confers Complete Protection against Plague in Mice and Nonhuman Primates.

    Science.gov (United States)

    Sha, Jian; Kirtley, Michelle L; Klages, Curtis; Erova, Tatiana E; Telepnev, Maxim; Ponnusamy, Duraisamy; Fitts, Eric C; Baze, Wallace B; Sivasubramani, Satheesh K; Lawrence, William S; Patrikeev, Igor; Peel, Jennifer E; Andersson, Jourdan A; Kozlova, Elena V; Tiner, Bethany L; Peterson, Johnny W; McWilliams, David; Patel, Snehal; Rothe, Eric; Motin, Vladimir L; Chopra, Ashok K

    2016-07-01

    Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Decay of Sabin inactivated poliovirus vaccine (IPV)-boosted poliovirus antibodies.

    Science.gov (United States)

    Resik, Sonia; Tejeda, Alina; Fonseca, Magile; Sein, Carolyn; Hung, Lai Heng; Martinez, Yenisleidys; Diaz, Manuel; Okayasu, Hiromasa; Sutter, Roland W

    We conducted a follow-on study to a phase I randomized, controlled trial conducted in Cuba, 2012, to assess the persistence of poliovirus antibodies at 21-22 months following booster dose of Sabin-IPV compared to Salk-IPV in adults who had received multiple doses of oral poliovirus vaccine (OPV) during childhood. In 2012, 60 healthy adult males aged 19-23 were randomized to receive one booster dose, of either Sabin-inactivated poliovirus vaccine (Sabin-IPV), adjuvanted Sabin-IPV (aSabin-IPV), or conventional Salk-IPV. In the original study, blood was collected at days 0 (before) and 28 (after vaccination), respectively. In this study, an additional blood sample was collected 21-22 months after vaccination, and tested for neutralizing antibodies to Sabin poliovirus types 1, 2 and 3. We collected sera from 59/60 (98.3%) subjects; 59/59 (100%) remained seropositive to all poliovirus types, 21-22 months after vaccination. The decay curves were very similar among the study groups. Between day 28 and 21-22 months, there was a reduction of ⩾87.4% in median antibody levels for all poliovirus types in all study groups, with no significant differences between the study groups. The decay of poliovirus antibodies over a 21-22-month period was similar regardless of the type of booster vaccine used, suggesting the scientific data of Salk IPV long-term persistence and decay may be broadly applicable to Sabin IPV.

  16. T Helper 17 Promotes Induction of Antigen-Specific Gut-Mucosal Cytotoxic T Lymphocytes following Adenovirus Vector Vaccination

    Directory of Open Access Journals (Sweden)

    Masahisa Hemmi

    2017-11-01

    Full Text Available Few current vaccines can establish antigen (Ag-specific immune responses in both mucosal and systemic compartments. Therefore, development of vaccines providing defense against diverse infectious agents in both compartments is of high priority in global health. Intramuscular vaccination of an adenovirus vector (Adv has been shown to induce Ag-specific cytotoxic T lymphocytes (CTLs in both systemic and gut-mucosal compartments. We previously found that type I interferon (IFN signaling is required for induction of gut-mucosal, but not systemic, CTLs following vaccination; however, the molecular mechanism involving type I IFN signaling remains unknown. Here, we found that T helper 17 (Th17-polarizing cytokine expression was down-regulated in the inguinal lymph nodes (iLNs of Ifnar2−/− mice, resulting in the reduction of Ag-specific Th17 cells in the iLNs and gut mucosa of the mice. We also found that prior transfer of Th17 cells reversed the decrease in the number of Ag-specific gut-mucosal CTLs in Ifnar2−/− mice following Adv vaccination. Additionally, prior transfer of Th17 cells into wild-type mice enhanced the induction of Ag-specific CTLs in the gut mucosa, but not in systemic compartments, suggesting a gut mucosa-specific mechanism where Th17 cells regulate the magnitude of vaccine-elicited Ag-specific CTL responses. These data suggest that Th17 cells translate systemic type I IFN signaling into a gut-mucosal CTL response following vaccination, which could promote the development of promising Adv vaccines capable of establishing both systemic and gut-mucosal protective immunity.

  17. An adenovirus vectored mucosal adjuvant augments protection of mice immunized intranasally with an adenovirus-vectored foot-and-mouth disease virus subunit vaccine.

    Science.gov (United States)

    Alejo, Diana M; Moraes, Mauro P; Liao, Xiaofen; Dias, Camila C; Tulman, Edan R; Diaz-San Segundo, Fayna; Rood, Debra; Grubman, Marvin J; Silbart, Lawrence K

    2013-04-26

    Foot-and-mouth disease virus (FMDV) is a highly contagious pathogen that causes severe morbidity and economic losses to the livestock industry in many countries. The oral and respiratory mucosae are the main ports of entry of FMDV, so the stimulation of local immunity in these tissues may help prevent initial infection and viral spread. E. coli heat-labile enterotoxin (LT) has been described as one of the few molecules that have adjuvant activity at mucosal surfaces. The objective of this study was to evaluate the efficacy of replication-defective adenovirus 5 (Ad5) vectors encoding either of two LT-based mucosal adjuvants, LTB or LTR72. These vectored adjuvants were delivered intranasally to mice concurrent with an Ad5-FMDV vaccine (Ad5-A24) to assess their ability to augment mucosal and systemic humoral immune responses to Ad5-A24 and protection against FMDV. Mice receiving Ad5-A24 plus Ad5-LTR72 had higher levels of mucosal and systemic neutralizing antibodies than those receiving Ad5-A24 alone or Ad5-A24 plus Ad5-LTB. The vaccine plus Ad5-LTR72 group also demonstrated 100% survival after intradermal challenge with a lethal dose of homologous FMDV serotype A24. These results suggest that Ad5-LTR72 could be used as an important tool to enhance mucosal and systemic immunity against FMDV and potentially other pathogens with a common route of entry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. To boost or not boost in radiotherapy

    International Nuclear Information System (INIS)

    Maciejewski, B.; Suwinski, R.; Withers, H.R.; Fowler, J.; Fijuth, J.

    2004-01-01

    The aim of this paper it to analyse and discuss standard definition of the 'boost' procedure in relation to clinical results and new forms of the boost designed on physical and radiobiological bases. Seventeen sets of clinical data including over 5000 cases cancer with different tumour stages and locations and treated with various forms of 'boost' method have been subtracted from literature. Effectiveness of boost is analyzed regarding its place in combined treatment, timing and subvolume involved. Radiobiological parameter of D10 and normalization method for biologically equivalent doses and dose intensity are used to simulated cold and not subvolumes (hills and dales) and its influence of effectiveness on the boost delivery. Sequential and concomitant boost using external irradiation, although commonly used, offers LTC benefit lower than expected. Brachytherapy, intraoperative irradiation and concurrent chemotherapy boost methods appear more effective. Conformal radiotherapy, with or without dose-intensity modulation, allows heterogeneous increase in dose intensity within the target volume and can be used to integrate the 'boost dose' into baseline treatment (Simultaneous Integrated Boost and SIB). Analysis of interrelationships between boost-dose; boost volume and its timing shows that a TCP benefit from boosting can be expected when a relatively large part of the target volume is involved. Increase in boost dose above 1.2-1.3 of baseline dose using 'standard' methods does not substantially further increase the achieved TCP benefit unless hypoxic cells are a problem. Any small uncertainties in treatment planning can ruin all potential beneficial effect of the boost. For example, a 50% dose deficit in a very small (e.g. 1%) volume of target can decrease TCP to zero. Therefore boost benefits should be carefully weighed against any risk of cold spots in the target volume. Pros and cons in discussion of the role of boost in radiotherapy lead to the important

  19. An alphavirus vector overcomes the presence of neutralizing antibodies and elevated numbers of Tregs to induce immune responses in humans with advanced cancer.

    Science.gov (United States)

    Morse, Michael A; Hobeika, Amy C; Osada, Takuya; Berglund, Peter; Hubby, Bolyn; Negri, Sarah; Niedzwiecki, Donna; Devi, Gayathri R; Burnett, Bruce K; Clay, Timothy M; Smith, Jonathan; Lyerly, H Kim

    2010-09-01

    Therapeutic anticancer vaccines are designed to boost patients' immune responses to tumors. One approach is to use a viral vector to deliver antigen to in situ DCs, which then activate tumor-specific T cell and antibody responses. However, vector-specific neutralizing antibodies and suppressive cell populations such as Tregs remain great challenges to the efficacy of this approach. We report here that an alphavirus vector, packaged in virus-like replicon particles (VRP) and capable of efficiently infecting DCs, could be repeatedly administered to patients with metastatic cancer expressing the tumor antigen carcinoembryonic antigen (CEA) and that it overcame high titers of neutralizing antibodies and elevated Treg levels to induce clinically relevant CEA-specific T cell and antibody responses. The CEA-specific antibodies mediated antibody-dependent cellular cytotoxicity against tumor cells from human colorectal cancer metastases. In addition, patients with CEA-specific T cell responses exhibited longer overall survival. These data suggest that VRP-based vectors can overcome the presence of neutralizing antibodies to break tolerance to self antigen and may be clinically useful for immunotherapy in the setting of tumor-induced immunosuppression.

  20. Comparative Efficacy of Feline Leukemia Virus (FeLV) Inactivated Whole-Virus Vaccine and Canarypox Virus-Vectored Vaccine during Virulent FeLV Challenge and Immunosuppression.

    Science.gov (United States)

    Patel, M; Carritt, K; Lane, J; Jayappa, H; Stahl, M; Bourgeois, M

    2015-07-01

    Four vaccines for feline leukemia virus (FeLV) are available in the United States. This study's purpose was to compare the efficacy of Nobivac feline 2-FeLV (an inactivated, adjuvanted whole-virus vaccine) and PureVax recombinant FeLV (a live, canarypox virus-vectored vaccine) following FeLV challenge. Cats were vaccinated at 9 and 12 weeks with Nobivac feline 2-FeLV (group A, n = 11) or PureVax recombinant FeLV (group B, n = 10). Group C (n = 11) comprised unvaccinated controls. At 3 months postvaccination, cats were immunosuppressed and challenged with FeLV-A/61E. The outcomes measured were persistent antigenemia at 12 weeks postchallenge (PC) and proviral DNA and viral RNA at 3 to 9 weeks PC. Persistent antigenemia was observed in 0 of 11 cats in group A, 5 of 10 cats in group B, and 10 of 11 cats in group C. Group A was significantly protected compared to those in groups B (P 0.063). The preventable fraction was 100% for group A and 45% for group B. At 9 weeks PC, proviral DNA and viral RNA were detected 1 of 11 cats in group A, 6 of 10 cats in group B, and 9 of 11 cats in group C. Nucleic acid loads were significantly lower in group A than in group C (P feline 2-FeLV-vaccinated cats were fully protected against persistent antigenemia and had significantly smaller amounts of proviral DNA and plasma viral RNA loads than PureVax recombinant FeLV-vaccinated cats and unvaccinated controls. Copyright © 2015, Patel et al.

  1. Simultaneous subcutaneous and conjunctival administration of the influenza viral vector based Brucella abortus vaccine to pregnant heifers provides better protection against B. abortus 544 infection than the commercial B. abortus S19 vaccine.

    Science.gov (United States)

    Tabynov, Kaissar; Orynbayev, Mukhit; Renukaradhya, Gourapura J; Sansyzbay, Abylai

    2016-09-30

    In this study, we explored possibility of increasing the protective efficacy of our novel influenza viral vector based B. abortus vaccine (Flu-BA) in pregnant heifers by adapting an innovative method of vaccine delivery. We administered the vaccine concurrently via the conjunctival and subcutaneous routes to pregnant heifers, and these routes were previously tested individually. The Flu-BA vaccination of pregnant heifers (n=9) against a challenge B. abortus 544 infection provided protection from abortion, infection of heifers and fetuses/calves by 88.8%, 100% and 100%, respectively (alpha=0.004-0.0007 vs. negative control; n=7). Our candidate vaccine using this delivery method provided slightly better protection than the commercial B. abortus S19 vaccine in pregnant heifers (n=8), which provided protection from abortion, infection of heifers and fetuses/calves by 87.5%, 75% and 87.5%, respectively. This improved method of the Flu-BA vaccine administration is highly recommended for the recovery of farms which has high prevalence of brucellosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A prophylactic multivalent vaccine against different filovirus species is immunogenic and provides protection from lethal infections with Ebolavirus and Marburgvirus species in non-human primates.

    Directory of Open Access Journals (Sweden)

    Benoit Callendret

    Full Text Available The search for a universal filovirus vaccine that provides protection against multiple filovirus species has been prompted by sporadic but highly lethal outbreaks of Ebolavirus and Marburgvirus infections. A good prophylactic vaccine should be able to provide protection to all known filovirus species and as an upside potentially protect from newly emerging virus strains. We investigated the immunogenicity and protection elicited by multivalent vaccines expressing glycoproteins (GP from Ebola virus (EBOV, Sudan virus (SUDV, Taï Forest virus (TAFV and Marburg virus (MARV. Immune responses against filovirus GP have been associated with protection from disease. The GP antigens were expressed by adenovirus serotypes 26 and 35 (Ad26 and Ad35 and modified Vaccinia virus Ankara (MVA vectors, all selected for their strong immunogenicity and good safety profile. Using fully lethal NHP intramuscular challenge models, we assessed different vaccination regimens for immunogenicity and protection from filovirus disease. Heterologous multivalent Ad26-Ad35 prime-boost vaccination regimens could give full protection against MARV (range 75%-100% protection and EBOV (range 50% to 100% challenge, and partial protection (75% against SUDV challenge. Heterologous multivalent Ad26-MVA prime-boost immunization gave full protection against EBOV challenge in a small cohort study. The use of such multivalent vaccines did not show overt immune interference in comparison with monovalent vaccines. Multivalent vaccines induced GP-specific antibody responses and cellular IFNγ responses to each GP expressed by the vaccine, and cross-reactivity to TAFV GP was detected in a trivalent vaccine expressing GP from EBOV, SUDV and MARV. In the EBOV challenge studies, higher humoral EBOV GP-specific immune responses (p = 0.0004 were associated with survival from EBOV challenge and less so for cellular immune responses (p = 0.0320. These results demonstrate that it is feasible to

  3. A prophylactic multivalent vaccine against different filovirus species is immunogenic and provides protection from lethal infections with Ebolavirus and Marburgvirus species in non-human primates.

    Science.gov (United States)

    Callendret, Benoit; Vellinga, Jort; Wunderlich, Kerstin; Rodriguez, Ariane; Steigerwald, Robin; Dirmeier, Ulrike; Cheminay, Cedric; Volkmann, Ariane; Brasel, Trevor; Carrion, Ricardo; Giavedoni, Luis D; Patterson, Jean L; Mire, Chad E; Geisbert, Thomas W; Hooper, Jay W; Weijtens, Mo; Hartkoorn-Pasma, Jutta; Custers, Jerome; Grazia Pau, Maria; Schuitemaker, Hanneke; Zahn, Roland

    2018-01-01

    The search for a universal filovirus vaccine that provides protection against multiple filovirus species has been prompted by sporadic but highly lethal outbreaks of Ebolavirus and Marburgvirus infections. A good prophylactic vaccine should be able to provide protection to all known filovirus species and as an upside potentially protect from newly emerging virus strains. We investigated the immunogenicity and protection elicited by multivalent vaccines expressing glycoproteins (GP) from Ebola virus (EBOV), Sudan virus (SUDV), Taï Forest virus (TAFV) and Marburg virus (MARV). Immune responses against filovirus GP have been associated with protection from disease. The GP antigens were expressed by adenovirus serotypes 26 and 35 (Ad26 and Ad35) and modified Vaccinia virus Ankara (MVA) vectors, all selected for their strong immunogenicity and good safety profile. Using fully lethal NHP intramuscular challenge models, we assessed different vaccination regimens for immunogenicity and protection from filovirus disease. Heterologous multivalent Ad26-Ad35 prime-boost vaccination regimens could give full protection against MARV (range 75%-100% protection) and EBOV (range 50% to 100%) challenge, and partial protection (75%) against SUDV challenge. Heterologous multivalent Ad26-MVA prime-boost immunization gave full protection against EBOV challenge in a small cohort study. The use of such multivalent vaccines did not show overt immune interference in comparison with monovalent vaccines. Multivalent vaccines induced GP-specific antibody responses and cellular IFNγ responses to each GP expressed by the vaccine, and cross-reactivity to TAFV GP was detected in a trivalent vaccine expressing GP from EBOV, SUDV and MARV. In the EBOV challenge studies, higher humoral EBOV GP-specific immune responses (p = 0.0004) were associated with survival from EBOV challenge and less so for cellular immune responses (p = 0.0320). These results demonstrate that it is feasible to generate a

  4. Global gene transcriptome analysis in vaccinated cattle revealed a dominant role of IL-22 for protection against bovine tuberculosis.

    Directory of Open Access Journals (Sweden)

    Sabin Bhuju

    2012-12-01

    Full Text Available Bovine tuberculosis (bTB is a chronic disease of cattle caused by Mycobacterium bovis, a member of the Mycobacterium tuberculosis complex group of bacteria. Vaccination of cattle might offer a long-term solution for controlling the disease and priority has been given to the development of a cattle vaccine against bTB. Identification of biomarkers in tuberculosis research remains elusive and the goal is to identify host correlates of protection. We hypothesized that by studying global gene expression we could identify in vitro predictors of protection that could help to facilitate vaccine development. Calves were vaccinated with BCG or with a heterologous BCG prime adenovirally vectored subunit boosting protocol. Protective efficacy was determined after M. bovis challenge. RNA was prepared from PPD-stimulated PBMC prepared from vaccinated-protected, vaccinated-unprotected and unvaccinated control cattle prior to M. bovis challenge and global gene expression determined by RNA-seq. 668 genes were differentially expressed in vaccinated-protected cattle compared with vaccinated-unprotected and unvaccinated control cattle. Cytokine-cytokine receptor interaction was the most significant pathway related to this dataset with IL-22 expression identified as the dominant surrogate of protection besides INF-γ. Finally, the expression of these candidate genes identified by RNA-seq was evaluated by RT-qPCR in an independent set of PBMC samples from BCG vaccinated and unvaccinated calves. This experiment confirmed the importance of IL-22 as predictor of vaccine efficacy.

  5. Revaccination of Guinea Pigs With the Live Attenuated Mycobacterium tuberculosis Vaccine MTBVAC Improves BCG's Protection Against Tuberculosis.

    Science.gov (United States)

    Clark, Simon; Lanni, Faye; Marinova, Dessislava; Rayner, Emma; Martin, Carlos; Williams, Ann

    2017-09-01

    The need for an effective vaccine against human tuberculosis has driven the development of different candidates and vaccination strategies. Novel live attenuated vaccines are being developed that promise greater safety and efficacy than BCG against tuberculosis. We combined BCG with the vaccine MTBVAC to evaluate whether the efficacy of either vaccine would be affected upon revaccination. In a well-established guinea pig model of aerosol infection with Mycobacterium tuberculosis, BCG and MTBVAC delivered via various prime-boost combinations or alone were compared. Efficacy was determined by a reduction in bacterial load 4 weeks after challenge. Efficacy data suggests MTBVAC-associated immunity is longer lasting than that of BCG when given as a single dose. Long and short intervals between BCG prime and MTBVAC boost resulted in improved efficacy in lungs, compared with BCG given alone. A shorter interval between MTBVAC prime and BCG boost resulted in improved efficacy in lungs, compared with BCG given alone. A longer interval resulted in protection equivalent to that of BCG given alone. These data indicate that, rather than boosting the waning efficacy of BCG, a vaccination schedule involving a combination of the 2 vaccines yielded stronger immunity to M. tuberculosis infection. This work supports development of MTBVAC use as a revaccination strategy to improve on the effects of BCG in vaccinated people living in tuberculosis-endemic countries. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  6. Boosting instance prototypes to detect local dermoscopic features.

    Science.gov (United States)

    Situ, Ning; Yuan, Xiaojing; Zouridakis, George

    2010-01-01

    Local dermoscopic features are useful in many dermoscopic criteria for skin cancer detection. We address the problem of detecting local dermoscopic features from epiluminescence (ELM) microscopy skin lesion images. We formulate the recognition of local dermoscopic features as a multi-instance learning (MIL) problem. We employ the method of diverse density (DD) and evidence confidence (EC) function to convert MIL to a single-instance learning (SIL) problem. We apply Adaboost to improve the classification performance with support vector machines (SVMs) as the base classifier. We also propose to boost the selection of instance prototypes through changing the data weights in the DD function. We validate the methods on detecting ten local dermoscopic features from a dataset with 360 images. We compare the performance of the MIL approach, its boosting version, and a baseline method without using MIL. Our results show that boosting can provide performance improvement compared to the other two methods.

  7. The human immunodeficiency virus preventive vaccine research at the French National Agency for acquired immunodeficiency syndrome research

    Directory of Open Access Journals (Sweden)

    Elizabeth Fischer

    2005-02-01

    Full Text Available The human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS epidemic is of unprecedented gravity and is spreading rapidly, notably in the most disadvantaged regions of the world. The search for a preventive vaccine is thus an absolute priority. For over 10 years the French National Agency for AIDS research (ANRS has been committed to an original program combining basic science and clinical research. The HIV preventive vaccine research program run by the ANRS covers upstream research for the definition of immunogens, animal models, and clinical research to evaluate candidate vaccines. Most researchers in 2004 believe that it should be possible to obtain partial vaccine protection through the induction of a strong and multiepitopic cellular response. Since 1992, the ANRS has set up 15 phases I and II clinical trials in order to evaluate the safety and the capacity of the candidate vaccines for inducing cellular immune responses. The tested candidate vaccines were increasingly complex recombinant canarypox viruses (Alvac containing sequences coding for certain viral proteins, utilized alone or combined with other immunogens (whole or truncated envelope proteins. ANRS has also been developing an original strategy based on the utilization of lipopeptides. These comprise synthetic fragments of viral proteins associated with lipids that facilitate the induction of a cellular immune response. These approaches promptly allowed the assessment of a prime-boost strategy combining a viral vector and lipopeptides.

  8. Virus-Like-Vaccines against HIV.

    Science.gov (United States)

    Andersson, Anne-Marie C; Schwerdtfeger, Melanie; Holst, Peter J

    2018-02-11

    Protection against chronic infections has necessitated the development of ever-more potent vaccination tools. HIV seems to be the most challenging foe, with a remarkable, poorly immunogenic and fragile surface glycoprotein and the ability to overpower the cell immune system. Virus-like-particle (VLP) vaccines have emerged as potent inducers of antibody and helper T cell responses, while replication-deficient viral vectors have yielded potent cytotoxic T cell responses. Here, we review the emerging concept of merging these two technologies into virus-like-vaccines (VLVs) for the targeting of HIV. Such vaccines are immunologically perceived as viruses, as they infect cells and produce VLPs in situ, but they only resemble viruses, as the replication defective vectors and VLPs cannot propagate an infection. The inherent safety of such a platform, despite robust particle production, is a distinct advantage over live-attenuated vaccines that must balance safety and immunogenicity. Previous studies have delivered VLVs encoded in modified Vaccinia Ankara vectors and we have developed the concept into a single-reading adenovirus-based technology capable of eliciting robust CD8⁺ and CD4⁺ T cells responses and trimer binding antibody responses. Such vaccines offer the potential to display the naturally produced immunogen directly and induce an integrated humoral and cellular immune response.

  9. Vector Boson Scattering at High Mass

    CERN Document Server

    The ATLAS collaboration

    2009-01-01

    In the absence of a light Higgs boson, the mechanism of electroweak symmetry breaking will be best studied in processes of vector boson scattering at high mass. Various models predict resonances in this channel. Here, we investigate $WW $scalar and vector resonances, $WZ$ vector resonances and a $ZZ$ scalar resonance over a range of diboson centre-of-mass energies. Particular attention is paid to the application of forward jet tagging and to the reconstruction of dijet pairs with low opening angle resulting from the decay of highly boosted vector bosons. The performances of different jet algorithms are compared. We find that resonances in vector boson scattering can be discovered with a few tens of inverse femtobarns of integrated luminosity.

  10. CpG-DNA enhancement the immune elicited as adjuvant of foot- and- mouth disease vaccine

    Directory of Open Access Journals (Sweden)

    Morshedi, A.

    2010-01-01

    Full Text Available In the present study the effect of the locally produced genetic adjuvant of ginea pig specific CpG-motif-containing oligodeoxynucleotide (CpG-ODN in an inactivated FMD virus vaccine was evaluated. Boosting the ginea pigs with FMD vaccine along with CpG-ODN adjuvant produced relatively higher ratio (5-fold of FMDV-specific IgG2a / IgG1 than those vaccinated in the absence of CpG-ODN. The neutralizing antibody (NA titer induced by FMD vaccine along with CpG-ODN adjuvant was significantly higher (8-fold than NA titer induced by the classical FMD vaccine in Alum adjuvant. The titer of NA and virus clearance from serum was consistently and significantly higher in animals primed with FMD vaccine and boosted by CpG-ODN than the classical FMD vaccine. The results of this study showed the potential of CpG-ODN as a genetic adjuvant to FMD vaccine in the development of Th1 responses.

  11. ChAd63-MVA-vectored blood-stage malaria vaccines targeting MSP1 and AMA1: assessment of efficacy against mosquito bite challenge in humans.

    Science.gov (United States)

    Sheehy, Susanne H; Duncan, Christopher J A; Elias, Sean C; Choudhary, Prateek; Biswas, Sumi; Halstead, Fenella D; Collins, Katharine A; Edwards, Nick J; Douglas, Alexander D; Anagnostou, Nicholas A; Ewer, Katie J; Havelock, Tom; Mahungu, Tabitha; Bliss, Carly M; Miura, Kazutoyo; Poulton, Ian D; Lillie, Patrick J; Antrobus, Richard D; Berrie, Eleanor; Moyle, Sarah; Gantlett, Katherine; Colloca, Stefano; Cortese, Riccardo; Long, Carole A; Sinden, Robert E; Gilbert, Sarah C; Lawrie, Alison M; Doherty, Tom; Faust, Saul N; Nicosia, Alfredo; Hill, Adrian V S; Draper, Simon J

    2012-12-01

    The induction of cellular immunity, in conjunction with antibodies, may be essential for vaccines to protect against blood-stage infection with the human malaria parasite Plasmodium falciparum. We have shown that prime-boost delivery of P. falciparum blood-stage antigens by chimpanzee adenovirus 63 (ChAd63) followed by the attenuated orthopoxvirus MVA is safe and immunogenic in healthy adults. Here, we report on vaccine efficacy against controlled human malaria infection delivered by mosquito bites. The blood-stage malaria vaccines were administered alone, or together (MSP1+AMA1), or with a pre-erythrocytic malaria vaccine candidate (MSP1+ME-TRAP). In this first human use of coadministered ChAd63-MVA regimes, we demonstrate immune interference whereby responses against merozoite surface protein 1 (MSP1) are dominant over apical membrane antigen 1 (AMA1) and ME-TRAP. We also show that induction of strong cellular immunity against MSP1 and AMA1 is safe, but does not impact on parasite growth rates in the blood. In a subset of vaccinated volunteers, a delay in time to diagnosis was observed and sterilizing protection was observed in one volunteer coimmunized with MSP1+AMA1-results consistent with vaccine-induced pre-erythrocytic, rather than blood-stage, immunity. These data call into question the utility of T cell-inducing blood-stage malaria vaccines and suggest that the focus should remain on high-titer antibody induction against susceptible antigen targets.

  12. Evaluation of yellow fever virus 17D strain as a new vector for HIV-1 vaccine development.

    Science.gov (United States)

    Franco, David; Li, Wenjing; Qing, Fang; Stoyanov, Cristina T; Moran, Thomas; Rice, Charles M; Ho, David D

    2010-08-09

    The failure to develop an effective vaccine against HIV-1 infection has led the research community to seek new ways of raising qualitatively different antibody and cellular immune responses. Towards this goal, we investigated the yellow fever 17D vaccine strain (YF17D), one of the most effective vaccines ever made, as a platform for HIV-1 vaccine development. A test antigen, HIV-1 p24 (clade B consensus), was inserted near the 5' end of YF17D, in frame and upstream of the polyprotein (YF-5'/p24), or between the envelope and the first non-structural protein (YF-E/p24/NS1). In vitro characterization of these recombinants indicated that the gene insert was more stable in the context of YF-E/p24/NS1. This was confirmed in immunogenicity studies in mice. CD8(+) IFN-gamma T-cell responses against p24 were elicited by the YF17D recombinants, as were specific CD4(+) T cells expressing IFN-gamma and IL-2. A balanced CD4(+) and CD8(+) T-cell response was notable, as was the polyfunctionality of the responding cells. Finally, the protective efficacy of the YF17D recombinants, particularly YF-E/p24/NS1, in mice challenged with a vaccinia expressing HIV-1 Gag was demonstrated. These results suggest that YF17D warrants serious consideration as a live-attenuated vector for HIV-1 vaccine development. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. The dog that did not bark: malaria vaccines without antibodies.

    NARCIS (Netherlands)

    Heppner, D.G.; Schwenk, R.J.; Arnot, D.; Sauerwein, R.W.; Luty, A.J.F.

    2007-01-01

    To date, the only pre-blood stage vaccine to confer protection against malaria in field trials elicits both antigen-specific antibody and T-cell responses. Recent clinical trials of new heterologous prime-boost malaria vaccine regimens using DNA, fowlpox or MVA, have chiefly elicited T-cell

  14. Intradermally Administered Yellow Fever Vaccine at Reduced Dose Induces a Protective Immune Response: A Randomized Controlled Non-Inferiority Trial

    NARCIS (Netherlands)

    M.G. Roukens (Guy); A.C.Th.M. Vossen (Ann); P.J. Bredenbeek (Peter); J.T. van Dissel (Jaap); L.G. Visser (Leo)

    2008-01-01

    textabstractBackground:Implementation of yellow fever vaccination is currently hampered by limited supply of vaccine. An alternative route of administration with reduced amounts of vaccine but without loss of vaccine efficacy would boost vaccination programmes.Methods and Findings:A randomized,

  15. [Immunization with Bifidobacterium bifidum-vectored OprI vaccine of Pseudomonas aeruginosa enhances inhibitory effect on P. aeruginosa in mice].

    Science.gov (United States)

    Liu, Xiao; Li, Wengui

    2017-08-01

    Objective To study the pulmonary bacterial loads, splenocyte proliferation, distributions of T cell subsets and cell apoptosis in mice immunized with Bifidobacterium bifidum-vectored OprI (Bb-OprI) vaccine of Pseudomonas aeruginosa and challenged with P. aeruginosa PA01 strain. Methods BALB/c mice were immunized with 5×10 9 CFUs of vaccine by intragastric administration, 3 times a week for 3 weeks, and challenged intranasally with 5×10 6 CFUs of PA01 strain at the fourth week after the first immunization. At the second week after the challenge, all mice were sacrificed to separate their lungs and spleens, and the pulmonary bacterial loads were counted. The proliferation of the splenocytes was determined by MTT assay. The splenic CD4 + , CD8 + T cell subsets and the apoptotic rate of splenocytes were detected by flow cytometry. Results The number of pulmonary bacterial colonies in the mice immunized with the vaccine and challenged with PA01 strain decreased, while the proliferation of splenocytes and the proportion of CD4 + T cells markedly increased, and the apoptosis of splenocytes was notably reduced. Conclusion The intragastric vaccination of recombinant Bb-OprI vaccine can increase the proportion of CD4 + T cells and enhance the inhibitory effect on P. aeruginosa.

  16. Simplifying influenza vaccination during pandemics : sublingual priming and intramuscular boosting of immune responses with heterologous whole inactivated influenza vaccine

    NARCIS (Netherlands)

    Murugappan, Senthil; Patil, Harshad P; Frijlink, Henderik W; Huckriede, Anke; Hinrichs, Wouter L J

    2014-01-01

    The best approach to control the spread of influenza virus during a pandemic is vaccination. Yet, an appropriate vaccine is not available early in the pandemic since vaccine production is time consuming. For influenza strains with a high pandemic potential like H5N1, stockpiling of vaccines has been

  17. Prime-boost therapeutic vaccination in mice with DNA/DNA or DNA/Fowlpox virus recombinants expressing the Human Papilloma Virus type 16 E6 and E7 mutated proteins fused to the coat protein of Potato virus X.

    Science.gov (United States)

    Illiano, Elena; Bissa, Massimiliano; Paolini, Francesca; Zanotto, Carlo; De Giuli Morghen, Carlo; Franconi, Rosella; Radaelli, Antonia; Venuti, Aldo

    2016-10-02

    The therapeutic antitumor potency of a prime-boost vaccination strategy was explored, based on the mutated, nontransforming forms of the E6 (E6 F47R ) and E7 (E7 GGG ) oncogenes of Human Papilloma Virus type 16 (HPV16), fused to the Potato virus X (PVX) coat protein (CP) sequence. Previous data showed that CP fusion improves the immunogenicity of tumor-associated antigens and may thus increase their efficacy. After verifying the correct expression of E6 F47R CP and E7 GGG CP inserted into DNA and Fowlpox virus recombinants by Western blotting and immunofluorescence, their combined use was evaluated for therapy in a pre-clinical mouse model of HPV16-related tumorigenicity. Immunization protocols were applied using homologous (DNA/DNA) or heterologous (DNA/Fowlpox) prime-boost vaccine regimens. The humoral immune responses were determined by ELISA, and the therapeutic efficacy evaluated by the delay in tumor appearance and reduced tumor volume after inoculation of syngeneic TC-1* tumor cells. Homologous DNA/DNA genetic vaccines were able to better delay tumor appearance and inhibit tumor growth when DNAE6 F47R CP and DNAE7 GGG CP were administered in combination. However, the heterologous DNA/Fowlpox vaccination strategy was able to delay tumor appearance in a higher number of animals when E6 F47R CP and in particular E7 GGG CP were administered alone. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The future of human DNA vaccines.

    Science.gov (United States)

    Li, Lei; Saade, Fadi; Petrovsky, Nikolai

    2012-12-31

    DNA vaccines have evolved greatly over the last 20 years since their invention, but have yet to become a competitive alternative to conventional protein or carbohydrate based human vaccines. Whilst safety concerns were an initial barrier, the Achilles heel of DNA vaccines remains their poor immunogenicity when compared to protein vaccines. A wide variety of strategies have been developed to optimize DNA vaccine immunogenicity, including codon optimization, genetic adjuvants, electroporation and sophisticated prime-boost regimens, with each of these methods having its advantages and limitations. Whilst each of these methods has contributed to incremental improvements in DNA vaccine efficacy, more is still needed if human DNA vaccines are to succeed commercially. This review foresees a final breakthrough in human DNA vaccines will come from application of the latest cutting-edge technologies, including "epigenetics" and "omics" approaches, alongside traditional techniques to improve immunogenicity such as adjuvants and electroporation, thereby overcoming the current limitations of DNA vaccines in humans. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Vaccination with an adenoviral vector encoding the tumor antigen directly linked to invariant chain induces potent CD4(+) T-cell-independent CD8(+) T-cell-mediated tumor control

    DEFF Research Database (Denmark)

    Sorensen, Maria R; Holst, Peter J; Pircher, Hanspeter

    2009-01-01

    of the vaccine antigen to invariant chain (Ii). To evaluate this strategy we used a mouse model, in which an immunodominant epitope (GP33) of the LCMV glycoprotein (GP) represents the tumor-associated neoantigen. Prophylactic vaccination of C57BL/6 mice with a replication-deficient human adenovirus 5 vector...... encoding GP linked to Ii (Ad-Ii-GP) resulted in complete protection against GP33-expressing B16.F10 tumors. Therapeutic vaccination with Ad-Ii-GP delayed tumor growth by more than 2 wk compared with sham vaccination. Notably, therapeutic vaccination with the linked vaccine was significantly better than...... the tumor degradation. Finally, Ad-Ii-GP but not Ad-GP vaccination can break the immunological non-reactivity in GP transgenic mice indicating that our vaccine strategy will prove efficient also against endogenous tumor antigens....

  20. Search for a singly produced vector-like quark B decaying to a b quark and a Higgs boson in a fully hadronic final state using boosted topologies

    CERN Document Server

    CMS Collaboration

    2017-01-01

    A search is presented for the single production of a heavy vector-like quark (B) decaying to a Higgs boson and a bottom quark, $\\mathrm{B}\\rightarrow\\mathrm{H}\\mathrm{b}$, with the Higgs boson decaying to a pair of bottom quarks. The decay products of the Higgs boson are highly boosted, hence typically collimated. They are reconstructed as a single, massive jet, with heavy flavour content. The single production of vector-like quarks is characterised by the presence of a light flavour quark emitted in the forward region of the detector. The analysis is performed using a data sample collected in 2016 by the CMS experiment at the LHC in proton-proton collisions at a centre-of-mass energy of $\\sqrt{s}=13~\\mathrm{TeV}$, corresponding to an integrated luminosity of $35.9~\\mathrm{fb}^{-1}$. The observation is consistent with background expectation and upper limits are placed on the production cross section times the branching ratio of a vector-like quark B decaying to a Higgs boson and a bottom quark. Values of cros...

  1. Rhabdoviruses as vaccine platforms for infectious disease and cancer.

    Science.gov (United States)

    Zemp, Franz; Rajwani, Jahanara; Mahoney, Douglas J

    2018-05-21

    The family Rhabdoviridae (RV) comprises a large, genetically diverse collection of single-stranded, negative sense RNA viruses from the order Mononegavirales. Several RV members are being developed as live-attenuated vaccine vectors for the prevention or treatment of infectious disease and cancer. These include the prototype recombinant Vesicular Stomatitis Virus (rVSV) and the more recently developed recombinant Maraba Virus, both species within the genus Vesiculoviridae. A relatively strong safety profile in humans, robust immunogenicity and genetic malleability are key features that make the RV family attractive vaccine platforms. Currently, the rVSV vector is in preclinical development for vaccination against numerous high-priority infectious diseases, with clinical evaluation underway for HIV/AIDS and Ebola virus disease. Indeed, the success of the rVSV-ZEBOV vaccine during the 2014-15 Ebola virus outbreak in West Africa highlights the therapeutic potential of rVSV as a vaccine vector for acute, life-threatening viral illnesses. The rVSV and rMaraba platforms are also being tested as 'oncolytic' cancer vaccines in a series of phase 1-2 clinical trials, after being proven effective at eliciting immune-mediated tumour regression in preclinical mouse models. In this review, we discuss the biological and genetic features that make RVs attractive vaccine platforms and the development and ongoing testing of rVSV and rMaraba strains as vaccine vectors for infectious disease and cancer.

  2. HIV-1 Subtype C Mosaic Gag Expressed by BCG and MVA Elicits Persistent Effector T Cell Responses in a Prime-Boost Regimen in Mice.

    Directory of Open Access Journals (Sweden)

    Tsungai Ivai Jongwe

    Full Text Available Over 90% of HIV/AIDS positive individuals in sub-Saharan Africa are infected with highly heterogeneous HIV-1 subtype C (HIV-1C viruses. One of the best ways to reduce the burden of this disease is the development of an affordable and effective prophylactic vaccine. Mosaic immunogens are computationally designed to overcome the hurdle of HIV diversity by maximizing the expression of potential T cell epitopes. Mycobacterium bovis BCG ΔpanCD auxotroph and modified vaccinia Ankara (MVA vaccines expressing HIV-1C mosaic Gag (GagM were tested in a prime-boost regimen to demonstrate immunogenicity in a mouse study. The BCG-GagM vaccine was stable and persisted 11.5 weeks post vaccination in BALB/c mice. Priming with BCG-GagM and boosting with MVA-GagM elicited higher Gag-specific IFN-γ ELISPOT responses than the BCG-GagM only and MVA-GagM only homologous vaccination regimens. The heterologous vaccination also generated a more balanced and persistent CD4+ and CD8+ T cell Gag-specific IFN-γ ELISPOT response with a predominant effector memory phenotype. A Th1 bias was induced by the vaccines as determined by the predominant secretion of IFN-γ, TNF-α, and IL-2. This study shows that a low dose of MVA (104 pfu can effectively boost a BCG prime expressing the same mosaic immunogen, generating strong, cellular immune responses against Gag in mice. Our data warrants further evaluation in non-human primates. A low dose vaccine would be an advantage in the resource limited countries of sub-Saharan Africa and India (where the predominating virus is HIV-1 subtype C.

  3. Progress on adenovirus-vectored universal influenza vaccines

    OpenAIRE

    Xiang, Kui; Ying, Guan; Yan, Zhou; Shanshan, Yan; Lei, Zhang; Hongjun, Li; Maosheng, Sun

    2015-01-01

    Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8+ T cell responses targeting viral internal proteins nucleoprotein ...

  4. Molecular Characterization of Heterologous HIV-1gp120 Gene Expression Disruption in Mycobacterium bovis BCG Host Strain: A Critical Issue for Engineering Mycobacterial Based-Vaccine Vectors

    Science.gov (United States)

    Joseph, Joan; Fernández-Lloris, Raquel; Pezzat, Elías; Saubi, Narcís; Cardona, Pere-Joan; Mothe, Beatriz; Gatell, Josep Maria

    2010-01-01

    Mycobacterium bovis Bacillus Calmette-Guérin (BCG) as a live vector of recombinant bacterial vaccine is a promising system to be used. In this study, we evaluate the disrupted expression of heterologous HIV-1gp120 gene in BCG Pasteur host strain using replicative vectors pMV261 and pJH222. pJH222 carries a lysine complementing gene in BCG lysine auxotrophs. The HIV-1 gp120 gene expression was regulated by BCG hsp60 promoter (in plasmid pMV261) and Mycobacteria spp. α-antigen promoter (in plasmid pJH222). Among 14 rBCG:HIV-1gp120 (pMV261) colonies screened, 12 showed a partial deletion and two showed a complete deletion. However, deletion was not observed in all 10 rBCG:HIV-1gp120 (pJH222) colonies screened. In this study, we demonstrated that E. coli/Mycobacterial expression vectors bearing a weak promoter and lysine complementing gene in a recombinant lysine auxotroph of BCG could prevent genetic rearrangements and disruption of HIV 1gp120 gene expression, a key issue for engineering Mycobacterial based vaccine vectors. PMID:20617151

  5. Molecular Characterization of Heterologous HIV-1gp120 Gene Expression Disruption in Mycobacterium bovis BCG Host Strain: A Critical Issue for Engineering Mycobacterial Based-Vaccine Vectors

    Directory of Open Access Journals (Sweden)

    Joan Joseph

    2010-01-01

    Full Text Available Mycobacterium bovis Bacillus Calmette-Guérin (BCG as a live vector of recombinant bacterial vaccine is a promising system to be used. In this study, we evaluate the disrupted expression of heterologous HIV-1gp120 gene in BCG Pasteur host strain using replicative vectors pMV261 and pJH222. pJH222 carries a lysine complementing gene in BCG lysine auxotrophs. The HIV-1 gp120 gene expression was regulated by BCG hsp60 promoter (in plasmid pMV261 and Mycobacteria spp. α-antigen promoter (in plasmid pJH222. Among 14 rBCG:HIV-1gp120 (pMV261 colonies screened, 12 showed a partial deletion and two showed a complete deletion. However, deletion was not observed in all 10 rBCG:HIV-1gp120 (pJH222 colonies screened. In this study, we demonstrated that E. coli/Mycobacterial expression vectors bearing a weak promoter and lysine complementing gene in a recombinant lysine auxotroph of BCG could prevent genetic rearrangements and disruption of HIV 1gp120 gene expression, a key issue for engineering Mycobacterial based vaccine vectors.

  6. Early life vaccination

    DEFF Research Database (Denmark)

    Nazerai, Loulieta; Bassi, Maria Rosaria; Uddbäck, Ida Elin Maria

    2016-01-01

    Intracellular pathogens represent a serious threat during early life. Importantly, even though the immune system of newborns may be characterized as developmentally immature, with a propensity to develop Th2 immunity, significant CD8+ T-cell responses may still be elicited in the context of optimal...... the first period of life and provide a pertinent alternative in infant vaccinology. To address this, infant mice were vaccinated with three different adenoviral vectors and the CD8+ T-cell response after early life vaccination was explored. We assessed the frequency, polyfunctionality and in vivo...... cytotoxicity of the elicited memory CD8+ T cells, as well as the potential of these cells to respond to secondary infections and confer protection. We further tested the impact of maternal immunity against our replication-deficient adenoviral vector during early life vaccination. Overall, our results indicate...

  7. Decay of Sabin inactivated poliovirus vaccine (IPV)-boosted poliovirus antibodies

    OpenAIRE

    Resik, Sonia; Tejeda, Alina; Fonseca, Magile; Sein, Carolyn; Hung, Lai Heng; Martinez, Yenisleidys; Diaz, Manuel; Okayasu, Hiromasa; Sutter, Roland W.

    2015-01-01

    Introduction: We conducted a follow-on study to a phase I randomized, controlled trial conducted in Cuba, 2012, to assess the persistence of poliovirus antibodies at 21–22 months following booster dose of Sabin-IPV compared to Salk-IPV in adults who had received multiple doses of oral poliovirus vaccine (OPV) during childhood. Methods: In 2012, 60 healthy adult males aged 19–23 were randomized to receive one booster dose, of either Sabin-inactivated poliovirus vaccine (Sabin-IPV), adjuvant...

  8. Improving Mycobacterium bovis bacillus Calmette-Guèrin as a vaccine delivery vector for viral antigens by incorporation of glycolipid activators of NKT cells.

    Science.gov (United States)

    Venkataswamy, Manjunatha M; Ng, Tony W; Kharkwal, Shalu S; Carreño, Leandro J; Johnson, Alison J; Kunnath-Velayudhan, Shajo; Liu, Zheng; Bittman, Robert; Jervis, Peter J; Cox, Liam R; Besra, Gurdyal S; Wen, Xiangshu; Yuan, Weiming; Tsuji, Moriya; Li, Xiangming; Ho, David D; Chan, John; Lee, Sunhee; Frothingham, Richard; Haynes, Barton F; Panas, Michael W; Gillard, Geoffrey O; Sixsmith, Jaimie D; Korioth-Schmitz, Birgit; Schmitz, Joern E; Larsen, Michelle H; Jacobs, William R; Porcelli, Steven A

    2014-01-01

    Recombinant Mycobacterium bovis bacillus Calmette-Guèrin (rBCG) has been explored as a vector for vaccines against HIV because of its ability to induce long lasting humoral and cell mediated immune responses. To maximize the potential for rBCG vaccines to induce effective immunity against HIV, various strategies are being employed to improve its ability to prime CD8+ T cells, which play an important role in the control of HIV infections. In this study we adopted a previously described approach of incorporating glycolipids that activate CD1d-restricted natural killer T (NKT) cells to enhance priming of CD8+ T cells by rBCG strains expressing an SIV Gag antigen (rBCG-SIV gag). We found that the incorporation of the synthetic NKT activating glycolipid α-galactosylceramide (α-GC) into rBCG-SIV gag significantly enhanced CD8+ T cell responses against an immunodominant Gag epitope, compared to responses primed by unmodified rBCG-SIV gag. The abilities of structural analogues of α-GC to enhance CD8+ T cell responses to rBCG were compared in both wild type and partially humanized mice that express human CD1d molecules in place of mouse CD1d. These studies identified an α-GC analogue known as 7DW8-5, which has previously been used successfully as an adjuvant in non-human primates, as a promising compound for enhancing immunogenicity of antigens delivered by rBCG.vectors. Our findings support the incorporation of synthetic glycolipid activators of NKT cells as a novel approach to enhance the immunogenicity of rBCG-vectored antigens for induction of CD8+ T cell responses. The glycolipid adjuvant 7DW8-5 may be a promising candidate for advancing to non-human primate and human clinical studies for the development of HIV vaccines based on rBCG vectors.

  9. Improving Mycobacterium bovis bacillus Calmette-Guèrin as a vaccine delivery vector for viral antigens by incorporation of glycolipid activators of NKT cells.

    Directory of Open Access Journals (Sweden)

    Manjunatha M Venkataswamy

    Full Text Available Recombinant Mycobacterium bovis bacillus Calmette-Guèrin (rBCG has been explored as a vector for vaccines against HIV because of its ability to induce long lasting humoral and cell mediated immune responses. To maximize the potential for rBCG vaccines to induce effective immunity against HIV, various strategies are being employed to improve its ability to prime CD8+ T cells, which play an important role in the control of HIV infections. In this study we adopted a previously described approach of incorporating glycolipids that activate CD1d-restricted natural killer T (NKT cells to enhance priming of CD8+ T cells by rBCG strains expressing an SIV Gag antigen (rBCG-SIV gag. We found that the incorporation of the synthetic NKT activating glycolipid α-galactosylceramide (α-GC into rBCG-SIV gag significantly enhanced CD8+ T cell responses against an immunodominant Gag epitope, compared to responses primed by unmodified rBCG-SIV gag. The abilities of structural analogues of α-GC to enhance CD8+ T cell responses to rBCG were compared in both wild type and partially humanized mice that express human CD1d molecules in place of mouse CD1d. These studies identified an α-GC analogue known as 7DW8-5, which has previously been used successfully as an adjuvant in non-human primates, as a promising compound for enhancing immunogenicity of antigens delivered by rBCG.vectors. Our findings support the incorporation of synthetic glycolipid activators of NKT cells as a novel approach to enhance the immunogenicity of rBCG-vectored antigens for induction of CD8+ T cell responses. The glycolipid adjuvant 7DW8-5 may be a promising candidate for advancing to non-human primate and human clinical studies for the development of HIV vaccines based on rBCG vectors.

  10. Improving Mycobacterium bovis Bacillus Calmette-Guèrin as a Vaccine Delivery Vector for Viral Antigens by Incorporation of Glycolipid Activators of NKT Cells

    OpenAIRE

    Venkataswamy, Manjunatha M.; Ng, Tony W.; Kharkwal, Shalu S.; Carreño, Leandro J.; Johnson, Alison J.; Kunnath-Velayudhan, Shajo; Liu, Zheng; Bittman, Robert; Jervis, Peter J.; Cox, Liam R.; Besra, Gurdyal S.; Wen, Xiangshu; Yuan, Weiming; Tsuji, Moriya; Li, Xiangming

    2014-01-01

    Recombinant Mycobacterium bovis bacillus Calmette-Guèrin (rBCG) has been explored as a vector for vaccines against HIV because of its ability to induce long lasting humoral and cell mediated immune responses. To maximize the potential for rBCG vaccines to induce effective immunity against HIV, various strategies are being employed to improve its ability to prime CD8+ T cells, which play an important role in the control of HIV infections. In this study we adopted a previously described approac...

  11. 9 CFR 113.213 - Pseudorabies Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Pseudorabies Vaccine, Killed Virus..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.213 Pseudorabies Vaccine, Killed Virus. Pseudorabies Vaccine, Killed...

  12. Dengue vaccines: Challenges, development, current status and prospects

    Directory of Open Access Journals (Sweden)

    A Ghosh

    2015-01-01

    Full Text Available Infection with dengue virus (DENV is the most rapidly spreading mosquito-borne viral disease in the world. The clinical spectrum of dengue, caused by any of the four serotypes of DENV, ranges from mild self-limiting dengue fever to severe dengue, in the form dengue hemorrhagic fever (DHF and dengue shock syndrome (DSS. Increased rates of hospitalization due to severe dengue, during outbreaks, result in massive economic losses and strained health services. In the absence of specific antiviral therapy, control of transmission of DENV by vector management is the sole method available for decreasing dengue-associated morbidity. Since vector control strategies alone have not been able to satisfactorily achieve reduction in viral transmission, the implementation of a safe, efficacious and cost-effective dengue vaccine as a supplementary measure is a high public health priority. However, the unique and complex immunopathology of dengue has complicated vaccine development. Dengue vaccines have also been challenged by critical issues like lack of animal models for the disease and absence of suitable markers of protective immunity. Although no licensed dengue vaccine is yet available, several vaccine candidates are under phases of development, including live attenuated virus vaccines, live chimeric virus vaccines, inactivated virus vaccines, subunit vaccines, DNA vaccines and viral-vectored vaccines. Although some vaccine candidates have progressed from animal trials to phase II and III in humans, a number of issues regarding implementation of dengue vaccine in countries like India still need to be addressed. Despite the current limitations, collaborative effects of regulatory bodies like World Health Organization with vaccine manufacturers and policy makers, to facilitate vaccine development and standardize field trials can make a safe and efficacious dengue vaccine a reality in near future.

  13. Properties of a herpes simplex virus multiple immediate-early gene-deleted recombinant as a vaccine vector

    International Nuclear Information System (INIS)

    Watanabe, Daisuke; Brockman, Mark A.; Ndung'u, Thumbi; Mathews, Lydia; Lucas, William T.; Murphy, Cynthia G.; Felber, Barbara K.; Pavlakis, George N.; Deluca, Neal A.; Knipe, David M.

    2007-01-01

    Herpes simplex virus (HSV) recombinants induce durable immune responses in rhesus macaques and mice and have induced partial protection in rhesus macaques against mucosal challenge with virulent simian immunodeficiency virus (SIV). In this study, we evaluated the properties of a new generation HSV vaccine vector, an HSV-1 multiple immediate-early (IE) gene deletion mutant virus, d106, which contains deletions in the ICP4, ICP27, ICP22, and ICP47 genes. Because several of the HSV IE genes have been implicated in immune evasion, inactivation of the genes encoding these proteins was expected to result in enhanced immunogenicity. The d106 virus expresses few HSV gene products and shows minimal cytopathic effect in cultured cells. When d106 was inoculated into mice, viral DNA accumulated at high levels in draining lymph nodes, consistent with an ability to transduce dendritic cells and activate their maturation and movement to lymph nodes. A d106 recombinant expressing Escherichia coli β-galactosidase induced durable β-gal-specific IgG and CD8 + T cell responses in naive and HSV-immune mice. Finally, d106-based recombinants have been constructed that express simian immunodeficiency virus (SIV) gag, env, or a rev-tat-nef fusion protein for several days in cultured cells. Thus, d106 shows many of the properties desirable in a vaccine vector: limited expression of HSV gene products and cytopathogenicity, high level expression of transgenes, ability to induce durable immune responses, and an ability to transduce dendritic cells and induce their maturation and migration to lymph nodes

  14. Covalent decoration of adenovirus vector capsids with the carbohydrate epitope αGal does not improve vector immunogenicity, but allows to study the in vivo fate of adenovirus immunocomplexes.

    Science.gov (United States)

    Kratzer, Ramona F; Espenlaub, Sigrid; Hoffmeister, Andrea; Kron, Matthias W; Kreppel, Florian

    2017-01-01

    Adenovirus-based vectors are promising tools for genetic vaccination. However, several obstacles have to be overcome prior to a routine clinical application of adenovirus-based vectors as efficacious vectored vaccines. The linear trisaccharide epitope αGal (alpha-Gal) with the carbohydrate sequence galactose-α-1,3-galactosyl-β-1,4-N-acetylglucosamine has been described as a potent adjuvant for recombinant or attenuated vaccines. Humans and α-1,3-galactosyltransferase knockout mice do not express this epitope. Upon exposure of α-1,3-galactosyltransferase-deficient organisms to αGal in the environment, large amounts of circulating anti-Gal antibodies are produced consistently. Immunocomplexes formed between recombinant αGal-decorated vaccines and anti-Gal antibodies exhibit superior immunogenicity. We studied the effects of the trisaccharide epitope on CD8 T cell responses that are directed specifically to vector-encoded transgenic antigens. For that, covalently αGal-decorated adenovirus vectors were delivered to anti-Gal α-1,3-galactosyltransferase knockout mice. We generated replication-defective, E1-deleted adenovirus type 5 vectors that were decorated with αGal at the hexon hypervariable regions 1 or 5, at fiber knob, or at penton base. Surprisingly, none of the adenovirus immunocomplexes being formed from αGal-decorated adenovirus vectors and anti-Gal immunoglobulins improved the frequencies of CD8 T cell responses against the transgenic antigen ovalbumin. Humoral immunity directed to the adenovirus vector was neither increased. However, our data indicated that decoration of Ad vectors with the αGal epitope is a powerful tool to analyze the fate of adenovirus immunocomplexes in vivo.

  15. Multiclass Boosting with Adaptive Group-Based kNN and Its Application in Text Categorization

    Directory of Open Access Journals (Sweden)

    Lei La

    2012-01-01

    Full Text Available AdaBoost is an excellent committee-based tool for classification. However, its effectiveness and efficiency in multiclass categorization face the challenges from methods based on support vector machine (SVM, neural networks (NN, naïve Bayes, and k-nearest neighbor (kNN. This paper uses a novel multi-class AdaBoost algorithm to avoid reducing the multi-class classification problem to multiple two-class classification problems. This novel method is more effective. In addition, it keeps the accuracy advantage of existing AdaBoost. An adaptive group-based kNN method is proposed in this paper to build more accurate weak classifiers and in this way control the number of basis classifiers in an acceptable range. To further enhance the performance, weak classifiers are combined into a strong classifier through a double iterative weighted way and construct an adaptive group-based kNN boosting algorithm (AGkNN-AdaBoost. We implement AGkNN-AdaBoost in a Chinese text categorization system. Experimental results showed that the classification algorithm proposed in this paper has better performance both in precision and recall than many other text categorization methods including traditional AdaBoost. In addition, the processing speed is significantly enhanced than original AdaBoost and many other classic categorization algorithms.

  16. Closing the manufacturing process of dendritic cell vaccines transduced with adenovirus vectors.

    Science.gov (United States)

    Gulen, Dumrul; Abe, Fuminori; Maas, Sarah; Reed, Elizabeth; Cowan, Kenneth; Pirruccello, Samuel; Wisecarver, James; Warkentin, Phyllis; Northam, Matt; Turken, Orhan; Coskun, Ugur; Senesac, Joe; Talmadge, James E

    2008-12-20

    Anticancer immunotherapy using dendritic cell (DC) based vaccines provides an adjuvant therapeutic strategy that is not cross reactive with conventional therapeutics. However, manufacturing of DC vaccines requires stringent adherence to Good Manufacturing Practice (GMP) methods and rigorous standardization. Optimally this includes a closed system for monocyte isolation, in combination with closed culture and washing systems and an effective vector transduction strategy. In this study, we used the Gambro Elutra to enrich monocytes from non-mobilized leukapheresis products collected from healthy donors. This approach enriched monocytes from an average frequency of 13.6+3.2% (mean+SEM), to an average frequency of 79.5+4.3% following enrichment with a yield of 79 to 100%. The monocytes were then cultured in a closed system using gas permeable Vuelife fluoroethylene propylene (FEP) bags and X-vivo-15 media containing 10 ng/ml granulocyte-macrophage colony-stimulation factor (GM-CSF) and 5 ng/ml Interleukin (IL) 4. The cultures were re-fed on days two and four, with a 25% media volume and cytokines. Following culture for seven days, the cells were harvested using a Cobe-2991 and concentrated using a bench centrifuge retrofitted with blocks to allow centrifugation of 72 ml bags and supernatant removed using a plasma extractor. This approach reduced the media volume to an average of 17.4 ml and an average DC concentration of 6.3+1.0x10(7) cells/ml, a viability of 93.8+2.2%, a purity of 88.9+3.3% and a total yield of 8.5+1.4x10(8) DCs. Based on the identification of DR+ cells as DCs we had an average yield of 46+8% using a calculation based on the number of monocytes in the apheresis product and the resulting DCs differentiated from monocytes. The use of DCs as a vaccine, required transduction with an adenovirus (Adv) vector with the tumor suppressor, p53 transgene (Adv5CMV-p53) as the antigen at a DC concentration of 9x10(6) DCs/ml at an Ad5CMV-p53: DC ratio of 20

  17. Evaluation of mucosal and systemic immune responses elicited by GPI-0100- adjuvanted influenza vaccine delivered by different immunization strategies.

    Directory of Open Access Journals (Sweden)

    Heng Liu

    Full Text Available Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN or the intrapulmonary (IPL route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses.

  18. Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100- Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies

    Science.gov (United States)

    Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses. PMID:23936066

  19. malERA: An updated research agenda for diagnostics, drugs, vaccines, and vector control in malaria elimination and eradication.

    Science.gov (United States)

    2017-11-01

    Since the turn of the century, a remarkable expansion has been achieved in the range and effectiveness of products and strategies available to prevent, treat, and control malaria, including advances in diagnostics, drugs, vaccines, and vector control. These advances have once again put malaria elimination on the agenda. However, it is clear that even with the means available today, malaria control and elimination pose a formidable challenge in many settings. Thus, currently available resources must be used more effectively, and new products and approaches likely to achieve these goals must be developed. This paper considers tools (both those available and others that may be required) to achieve and maintain malaria elimination. New diagnostics are needed to direct treatment and detect transmission potential; new drugs and vaccines to overcome existing resistance and protect against clinical and severe disease, as well as block transmission and prevent relapses; and new vector control measures to overcome insecticide resistance and more powerfully interrupt transmission. It is also essential that strategies for combining new and existing approaches are developed for different settings to maximise their longevity and effectiveness in areas with continuing transmission and receptivity. For areas where local elimination has been recently achieved, understanding which measures are needed to maintain elimination is necessary to prevent rebound and the reestablishment of transmission. This becomes increasingly important as more countries move towards elimination.

  20. Seroprevalence of fowl pox antibody in indigenous chickens in jos north and South council areas of plateau state, Nigeria: implication for vector vaccine.

    Science.gov (United States)

    Adebajo, Meseko Clement; Ademola, Shittu Ismail; Oluwaseun, Akinyede

    2012-01-01

    Fowl pox is a viral disease of domestic and wild birds. The large size of the genome makes it a useful vector for recombinant DNA technology. Although the disease has been described in both commercial and indigenous chickens in Nigeria, data are limited on seroprevalence in free range chickens. Such data are, however, important in the design and implementation of fowl pox virus vector vaccine. We surveyed current antibody status to fowl pox virus in free range chickens by testing 229 sera collected from 10 villages in Jos North and Jos South LGA of Plateau State Nigeria. Sera were analyzed by AGID against standard fowl pox antigen. Fifty-two of the 229 (23%) tested sera were positive for fowl pox virus antibody, and the log titre in all positive specimen was >2. Thirty (21%) and twenty-two (27%) of the samples from Jos South and Jos North, respectively, tested positive. This was, however, not statistically significant (P = 0.30). Generally the study showed a significant level of antibody to fowl pox virus in the study area. This observation may hinder effective use of fowl pox vectored viral vaccine. Fowl pox control is recommended to reduce natural burden of the disease.

  1. Improvement of the Immunogenicity of Porcine Circovirus Type 2 DNA Vaccine by Recombinant ORF2 Gene and CpG Motifs.

    Science.gov (United States)

    Li, Jun; Shi, Jian-Li; Wu, Xiao-Yan; Fu, Fang; Yu, Jiang; Yuan, Xiao-Yuan; Peng, Zhe; Cong, Xiao-Yan; Xu, Shao-Jian; Sun, Wen-Bo; Cheng, Kai-Hui; Du, Yi-Jun; Wu, Jia-Qiang; Wang, Jin-Bao; Huang, Bao-Hua

    2015-06-01

    Nowadays, adjuvant is still important for boosting immunity and improving resistance in animals. In order to boost the immunity of porcine circovirus type 2 (PCV2) DNA vaccine, CpG motifs were inserted. In this study, the dose-effect was studied, and the immunity of PCV2 DNA vaccines by recombinant open reading frame 2 (ORF2) gene and CpG motifs was evaluated. Three-week-old Changbai piglets were inoculated intramuscularly with 200 μg, 400 μg, and 800 μg DNA vaccines containing 14 and 18 CpG motifs, respectively. Average gain and rectum temperature were recorded everyday during the experiments. Blood was collected from the piglets after vaccination to detect the changes of specific antibodies, interleukin-2, and immune cells every week. Tissues were collected for histopathology and polymerase chain reaction. The results indicated that compared to those of the control piglets, all concentrations of two DNA vaccines could induce PCV2-specific antibodies. A cellular immunity test showed that PCV2-specific lymphocytes proliferated the number of TH, TC, and CD3+ positive T-cells raised in the blood of DNA vaccine immune groups. There was no distinct pathological damage and viremia occurring in pigs that were inoculated with DNA vaccines, but there was some minor pathological damage in the control group. The results demonstrated that CpG motifs as an adjuvant could boost the humoral and cellular immunity of pigs to PCV2, especially in terms of cellular immunity. Comparing two DNA vaccines that were constructed, the one containing 18 CpG motifs was more effective. This is the first report that CpG motifs as an adjuvant insert to the PCV2 DNA vaccine could boost immunity.

  2. Immunogenicity of seven new recombinant yellow fever viruses 17D expressing fragments of SIVmac239 Gag, Nef, and Vif in Indian rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Mauricio A Martins

    Full Text Available An effective vaccine remains the best solution to stop the spread of human immunodeficiency virus (HIV. Cellular immune responses have been repeatedly associated with control of viral replication and thus may be an important element of the immune response that must be evoked by an efficacious vaccine. Recombinant viral vectors can induce potent T-cell responses. Although several viral vectors have been developed to deliver HIV genes, only a few have been advanced for clinical trials. The live-attenuated yellow fever vaccine virus 17D (YF17D has many properties that make it an attractive vector for AIDS vaccine regimens. YF17D is well tolerated in humans and vaccination induces robust T-cell responses that persist for years. Additionally, methods to manipulate the YF17D genome have been established, enabling the generation of recombinant (rYF17D vectors carrying genes from unrelated pathogens. Here, we report the generation of seven new rYF17D viruses expressing fragments of simian immunodeficiency virus (SIVmac239 Gag, Nef, and Vif. Studies in Indian rhesus macaques demonstrated that these live-attenuated vectors replicated in vivo, but only elicited low levels of SIV-specific cellular responses. Boosting with recombinant Adenovirus type-5 (rAd5 vectors resulted in robust expansion of SIV-specific CD8(+ T-cell responses, particularly those targeting Vif. Priming with rYF17D also increased the frequency of CD4(+ cellular responses in rYF17D/rAd5-immunized macaques compared to animals that received rAd5 only. The effect of the rYF17D prime on the breadth of SIV-specific T-cell responses was limited and we also found evidence that some rYF17D vectors were more effective than others at priming SIV-specific T-cell responses. Together, our data suggest that YF17D - a clinically relevant vaccine vector - can be used to prime AIDS virus-specific T-cell responses in heterologous prime boost regimens. However, it will be important to optimize rYF17D

  3. Applying Mathematical Tools to Accelerate Vaccine Development: Modeling Shigella Immune Dynamics

    Science.gov (United States)

    Davis, Courtney L.; Wahid, Rezwanul; Toapanta, Franklin R.; Simon, Jakub K.

    2013-01-01

    We establish a mathematical framework for studying immune interactions with Shigella, a bacteria that kills over one million people worldwide every year. The long-term goal of this novel approach is to inform Shigella vaccine design by elucidating which immune components and bacterial targets are crucial for establishing Shigella immunity. Our delay differential equation model focuses on antibody and B cell responses directed against antigens like lipopolysaccharide in Shigella’s outer membrane. We find that antibody-based vaccines targeting only surface antigens cannot elicit sufficient immunity for protection. Additional boosting prior to infection would require a four-orders-of-magnitude increase in antibodies to sufficiently prevent epithelial invasion. However, boosting anti-LPS B memory can confer protection, which suggests these cells may correlate with immunity. We see that IgA antibodies are slightly more effective per molecule than IgG, but more total IgA is required due to spatial functionality. An extension of the model reveals that targeting both LPS and epithelial entry proteins is a promising avenue to advance vaccine development. This paper underscores the importance of multifaceted immune targeting in creating an effective Shigella vaccine. It introduces mathematical models to the Shigella vaccine development effort and lays a foundation for joint theoretical/experimental/clinical approaches to Shigella vaccine design. PMID:23589755

  4. 9 CFR 113.206 - Wart Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Wart Vaccine, Killed Virus. 113.206... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.206 Wart Vaccine, Killed Virus. Wart Vaccine, Killed Virus, shall be prepared...

  5. Chagas Parasite Detection in Blood Images Using AdaBoost

    Directory of Open Access Journals (Sweden)

    Víctor Uc-Cetina

    2015-01-01

    Full Text Available The Chagas disease is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi. Visual detection of such parasite through microscopic inspection is a tedious and time-consuming task. In this paper, we provide an AdaBoost learning solution to the task of Chagas parasite detection in blood images. We give details of the algorithm and our experimental setup. With this method, we get 100% and 93.25% of sensitivity and specificity, respectively. A ROC comparison with the method most commonly used for the detection of malaria parasites based on support vector machines (SVM is also provided. Our experimental work shows mainly two things: (1 Chagas parasites can be detected automatically using machine learning methods with high accuracy and (2 AdaBoost + SVM provides better overall detection performance than AdaBoost or SVMs alone. Such results are the best ones known so far for the problem of automatic detection of Chagas parasites through the use of machine learning, computer vision, and image processing methods.

  6. Cytomegalovirus and immunotherapy: opportunistic pathogen, novel target for cancer and a promising vaccine vector.

    Science.gov (United States)

    Quinn, Michael; Erkes, Dan A; Snyder, Christopher M

    2016-02-01

    Cytomegalovirus (CMV) is a β-herpesvirus that infects most people in the world and is almost always asymptomatic in the healthy host. However, CMV persists for life, requiring continuous immune surveillance to prevent disease and thus, CMV is a frequent complication in immune compromised patients. Many groups have been exploring the potential for adoptive T-cell therapies to control CMV reactivation as well as the progression of solid tumors harboring CMV. In addition, CMV itself is being explored as a vaccine vector for eliciting potent T-cell responses. This review will discuss key features of the basic biology of CMV-specific T cells as well as highlighting unanswered questions and ongoing work in the development of T-cell-based immunotherapies to target CMV.

  7. Immunogenicity in African Green Monkeys of M Protein Mutant Vesicular Stomatitis Virus Vectors and Contribution of Vector-Encoded Flagellin

    Directory of Open Access Journals (Sweden)

    Marlena M. Westcott

    2018-03-01

    Full Text Available Recombinant vesicular stomatitis virus (VSV is a promising platform for vaccine development. M51R VSV, an attenuated, M protein mutant strain, is an effective inducer of Type I interferon and dendritic cell (DC maturation, which are desirable properties to exploit for vaccine design. We have previously evaluated M51R VSV (M51R and M51R VSV that produces flagellin (M51R-F as vaccine vectors using murine models, and found that flagellin enhanced DC activation and VSV-specific antibody production after low-dose vaccination. In this report, the immunogenicity of M51R vectors and the adjuvant effect of virus-produced flagellin were evaluated in nonhuman primates following high-dose (108 pfu and low-dose (105 pfu vaccination. A single intramuscular vaccination of African green monkeys with M51R or M51R-F induced VSV-specific, dose-dependent humoral immune responses. Flagellin induced a significant increase in antibody production (IgM, IgG and neutralizing antibody at the low vaccination dose. A VSV-specific cellular response was detected at 6 weeks post-vaccination, but was neither dose-dependent nor enhanced by flagellin; similar numbers of VSV-specific, IFNγ-producing cells were detected in lymph node and spleen of all animals. These results indicate that virus-directed, intracellular flagellin production may improve VSV-based vaccines encoding heterologous antigens by lowering the dose required to achieve humoral immunity.

  8. Have we found an optimal insertion site in a Newcastle disease virus vector to express a foreign gene for vaccine and gene therapy purposes?

    Science.gov (United States)

    Using reverse genetics technology, many strains of Newcastle disease virus (NDV) have been developed as vectors to express foreign genes for vaccine and gene therapy purposes. The foreign gene is usually inserted into a non-coding region of the NDV genome as an independent transcription unit. Eval...

  9. Vaccine platform recombinant measles virus.

    Science.gov (United States)

    Mühlebach, Michael D

    2017-10-01

    The classic development of vaccines is lengthy, tedious, and may not necessarily be successful as demonstrated by the case of HIV. This is especially a problem for emerging pathogens that are newly introduced into the human population and carry the inherent risk of pandemic spread in a naïve population. For such situations, a considerable number of different platform technologies are under development. These are also under development for pathogens, where directly derived vaccines are regarded as too complicated or even dangerous due to the induction of inefficient or unwanted immune responses causing considerable side-effects as for dengue virus. Among platform technologies are plasmid-based DNA vaccines, RNA replicons, single-round infectious vector particles, or replicating vaccine-based vectors encoding (a) critical antigen(s) of the target pathogens. Among the latter, recombinant measles viruses derived from vaccine strains have been tested. Measles vaccines are among the most effective and safest life-attenuated vaccines known. Therefore, the development of Schwarz-, Moraten-, or AIK-C-strain derived recombinant vaccines against a wide range of mostly viral, but also bacterial pathogens was quite straightforward. These vaccines generally induce powerful humoral and cellular immune responses in appropriate animal models, i.e., transgenic mice or non-human primates. Also in the recent first clinical phase I trial, the results have been quite encouraging. The trial indicated the expected safety and efficacy also in human patients, interestingly independent from the level of prevalent anti-measles immunity before the trial. Thereby, recombinant measles vaccines expressing additional antigens are a promising platform for future vaccines.

  10. Vaccines for viral and parasitic diseases produced with baculovirus vectors

    NARCIS (Netherlands)

    Oers, van M.M.

    2006-01-01

    The baculovirus¿insect cell expression system is an approved system for the production of viral antigens with vaccine potential for humans and animals and has been used for production of subunit vaccines against parasitic diseases as well. Many candidate subunit vaccines have been expressed in this

  11. The candidate TB vaccine, MVA85A, induces highly durable Th1 responses.

    Directory of Open Access Journals (Sweden)

    Michele Tameris

    Full Text Available Vaccination against tuberculosis (TB should provide long-term protective immunity against Mycobacterium tuberculosis (M.tb. The current TB vaccine, Bacille Calmette-Guerin (BCG, protects against disseminated childhood TB, but protection against lung TB in adolescents and adults is variable and mostly poor. One potential reason for the limited durability of protection may be waning of immunity through gradual attrition of BCG-induced T cells. We determined if a MVA85A viral-vector boost could enhance the durability of mycobacteria-specific T cell responses above those induced by BCG alone.We describe a long-term follow-up study of persons previously vaccinated with MVA85A. We performed a medical history and clinical examination, a tuberculin skin test and measured vaccine-specific T cell responses in persons previously enrolled as adults, adolescents, children or infants into three different Phase II trials, between 2005 and 2011.Of 252 potential participants, 183 (72.6% consented and completed the study visit. Vaccine-induced Ag85A-specific CD4+ T cell responses were remarkably persistent in healthy, HIV-uninfected adults, adolescents, children and infants, up to 6 years after MVA85A vaccination. Specific CD4+ T cells expressed surface markers consistent with either CD45RA-CCR7+ central memory or CD45RA-CCR7- effector memory T cells. Similarly durable Ag85A-specific CD4+ T cell responses were detected in HIV-infected persons who were on successful antiretroviral therapy when MVA85A was administered. By contrast, Ag85A-specific CD4+ T cell frequencies in untreated MVA85A-vaccinated HIV-infected persons were mostly undetectable 3-5 years after vaccination.MVA85A induces remarkably durable T cell responses in immunocompetent persons. However, results from a recent phase IIb trial of MVA85A, conducted in infants from the same geographic area and study population, showed no vaccine efficacy, suggesting that these durable T cell responses do not

  12. A critical assessment of vector control for dengue prevention.

    Directory of Open Access Journals (Sweden)

    Nicole L Achee

    2015-05-01

    Full Text Available Recently, the Vaccines to Vaccinate (v2V initiative was reconfigured into the Partnership for Dengue Control (PDC, a multi-sponsored and independent initiative. This redirection is consistent with the growing consensus among the dengue-prevention community that no single intervention will be sufficient to control dengue disease. The PDC's expectation is that when an effective dengue virus (DENV vaccine is commercially available, the public health community will continue to rely on vector control because the two strategies complement and enhance one another. Although the concept of integrated intervention for dengue prevention is gaining increasingly broader acceptance, to date, no consensus has been reached regarding the details of how and what combination of approaches can be most effectively implemented to manage disease. To fill that gap, the PDC proposed a three step process: (1 a critical assessment of current vector control tools and those under development, (2 outlining a research agenda for determining, in a definitive way, what existing tools work best, and (3 determining how to combine the best vector control options, which have systematically been defined in this process, with DENV vaccines. To address the first step, the PDC convened a meeting of international experts during November 2013 in Washington, DC, to critically assess existing vector control interventions and tools under development. This report summarizes those deliberations.

  13. 9 CFR 113.204 - Mink Enteritis Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Mink Enteritis Vaccine, Killed Virus..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.204 Mink Enteritis Vaccine, Killed Virus. Mink Enteritis Vaccine...

  14. 9 CFR 113.212 - Bursal Disease Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bursal Disease Vaccine, Killed Virus..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.212 Bursal Disease Vaccine, Killed Virus. Bursal Disease Vaccine...

  15. Chimeric avian paramyxovirus-based vector immunization against highly pathogenic avian influenza followed by conventional Newcastle disease vaccination eliminates lack of protection from virulent ND virus

    Directory of Open Access Journals (Sweden)

    C. Steglich

    2014-01-01

    Full Text Available Recently, we described a chimeric, hemagglutinin of highly pathogenic avian influenza virus (HPAIV H5 expressing Newcastle disease virus (NDV-based vector vaccine (chNDVFHNPMV8H5 in which NDV envelope glycoproteins were replaced by those of avian paramyxovirus-8 (APMV-8. This chimeric vaccine induced solid protection against lethal HPAIV H5N1 even in chickens with maternal antibodies against NDV (MDA+. However, due to the absence of the major NDV immunogens it failed to induce protection against Newcastle disease (ND. Here, we report on protection of MDA+ chickens against HPAI H5N1 and ND, by vaccination with chNDVFHNPMV8H5 either on day 1 or day seven after hatch, and subsequent immunization with live attenuated NDV seven days later. Vaccination was well tolerated and three weeks after immunization, challenge infections with highly pathogenic NDV as well as HPAIV H5N1 were carried out. All animals remained healthy without exhibiting any clinical signs, whereas non-vaccinated animals showed morbidity and mortality. Therefore, vaccination with chNDVFHNPMV8H5 can be followed by NDV vaccination to protect chickens from HPAIV as well as NDV, indicating that the antibody response against chNDVFHNPMV8H5 does not interfere with live ND vaccination.

  16. A single dose of a DNA vaccine encoding apa coencapsulated with 6,6'-trehalose dimycolate in microspheres confers long-term protection against tuberculosis in Mycobacterium bovis BCG-primed mice.

    Science.gov (United States)

    Carlétti, Dyego; Morais da Fonseca, Denise; Gembre, Ana Flávia; Masson, Ana Paula; Weijenborg Campos, Lívia; Leite, Luciana C C; Rodrigues Pires, Andréa; Lannes-Vieira, Joseli; Lopes Silva, Célio; Bonato, Vânia Luiza Deperon; Horn, Cynthia

    2013-08-01

    Mycobacterium bovis BCG prime DNA (Mycobacterium tuberculosis genes)-booster vaccinations have been shown to induce greater protection against tuberculosis (TB) than BCG alone. This heterologous prime-boost strategy is perhaps the most realistic vaccination for the future of TB infection control, especially in countries where TB is endemic. Moreover, a prime-boost regimen using biodegradable microspheres seems to be a promising immunization to stimulate a long-lasting immune response. The alanine proline antigen (Apa) is a highly immunogenic glycoprotein secreted by M. tuberculosis. This study investigated the immune protection of Apa DNA vaccine against intratracheal M. tuberculosis challenge in mice on the basis of a heterologous prime-boost regimen. BALB/c mice were subcutaneously primed with BCG and intramuscularly boosted with a single dose of plasmid carrying apa and 6,6'-trehalose dimycolate (TDM) adjuvant, coencapsulated in microspheres (BCG-APA), and were evaluated 30 and 70 days after challenge. This prime-boost strategy (BCG-APA) resulted in a significant reduction in the bacterial load in the lungs, thus leading to better preservation of the lung parenchyma, 70 days postinfection compared to BCG vaccinated mice. The profound effect of this heterologous prime-boost regimen in the experimental model supports its development as a feasible strategy for prevention of TB.

  17. 76 FR 3075 - Availability of an Environmental Assessment for Field Testing Feline Leukemia Vaccine, Live...

    Science.gov (United States)

    2011-01-19

    ...] Availability of an Environmental Assessment for Field Testing Feline Leukemia Vaccine, Live Canarypox Vector... Feline Leukemia Vaccine, Live Canarypox Vector. The environmental assessment, which is based on a risk... ADDRESSES above for a link to Regulations.gov ). Requester: Merial, Inc. Product: Feline Leukemia Vaccine...

  18. Effects of the deletion of early region 4 (E4 open reading frame 1 (orf1, orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    Directory of Open Access Journals (Sweden)

    Michael A Thomas

    Full Text Available The global health burden engendered by human immunodeficiency virus (HIV-induced acquired immunodeficiency syndrome (AIDS is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1 through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and

  19. Effects of the deletion of early region 4 (E4) open reading frame 1 (orf1), orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    Science.gov (United States)

    Thomas, Michael A; Song, Rui; Demberg, Thorsten; Vargas-Inchaustegui, Diego A; Venzon, David; Robert-Guroff, Marjorie

    2013-01-01

    The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a

  20. A Prime-Boost Vaccination Strategy in Cattle to Prevent Foot-and-Mouth Disease Using a "Single-Cycle" Alphavirus Vector and Empty Capsid Particles

    DEFF Research Database (Denmark)

    Gullberg, Maria; Lohse, Louise; Bøtner, Anette

    2016-01-01

    Foot-and-mouth disease (FMD) remains one of the most economically important infectious diseases of production animals globally. Vaccination can successfully control this disease, however, current vaccines are imperfect. They are made using chemically inactivated FMD virus (FMDV) that is produced...... in large-scale mammalian cell culture under high containment conditions. Here, we have expressed the FMDV capsid protein precursor (P1-2A) of strain O1 Manisa alone or with the FMDV 3C protease (3Cpro) using a "single cycle" packaged alphavirus self-replicating RNA based on Semliki Forest virus (SFV). When...... the FMDV P1-2A was expressed with 3Cpro then processing of the FMDV capsid precursor protein is observed within cells and the proteins assemble into empty capsid particles. The products interact with anti-FMDV antibodies in an ELISA and bind to the integrin αvβ6 (a cellular receptor for FMDV). In cattle...

  1. The Duration of Intestinal Immunity After an Inactivated Poliovirus Vaccine Booster Dose in Children Immunized With Oral Vaccine: A Randomized Controlled Trial.

    Science.gov (United States)

    John, Jacob; Giri, Sidhartha; Karthikeyan, Arun S; Lata, Dipti; Jeyapaul, Shalini; Rajan, Anand K; Kumar, Nirmal; Dhanapal, Pavithra; Venkatesan, Jayalakshmi; Mani, Mohanraj; Hanusha, Janardhanan; Raman, Uma; Moses, Prabhakar D; Abraham, Asha; Bahl, Sunil; Bandyopadhyay, Ananda S; Ahmad, Mohammad; Grassly, Nicholas C; Kang, Gagandeep

    2017-02-15

    In 2014, 2 studies showed that inactivated poliovirus vaccine (IPV) boosts intestinal immunity in children previously immunized with oral poliovirus vaccine (OPV). As a result, IPV was introduced in mass campaigns to help achieve polio eradication. We conducted an open-label, randomized, controlled trial to assess the duration of the boost in intestinal immunity following a dose of IPV given to OPV-immunized children. Nine hundred healthy children in Vellore, India, aged 1-4 years were randomized (1:1:1) to receive IPV at 5 months (arm A), at enrollment (arm B), or no vaccine (arm C). The primary outcome was poliovirus shedding in stool 7 days after bivalent OPV challenge at 11 months. For children in arms A, B, and C, 284 (94.7%), 297 (99.0%), and 296 (98.7%), respectively, were eligible for primary per-protocol analysis. Poliovirus shedding 7 days after challenge was less prevalent in arms A and B compared with C (24.6%, 25.6%, and 36.4%, respectively; risk ratio 0.68 [95% confidence interval: 0.53-0.87] for A versus C, and 0.70 [0.55-0.90] for B versus C). Protection against poliovirus remained elevated 6 and 11 months after an IPV boost, although at a lower level than reported at 1 month. CTRI/2014/09/004979. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  2. Intramuscular Priming and Intranasal Boosting Induce Strong Genital Immunity Through Secretory IgA in Minipigs Infected with Chlamydia trachomatis

    Science.gov (United States)

    Lorenzen, Emma; Follmann, Frank; Bøje, Sarah; Erneholm, Karin; Olsen, Anja Weinreich; Agerholm, Jørgen Steen; Jungersen, Gregers; Andersen, Peter

    2015-01-01

    International efforts in developing a vaccine against Chlamydia trachomatis have highlighted the need for novel immunization strategies for the induction of genital immunity. In this study, we evaluated an intramuscular (IM) prime/intranasal boost vaccination strategy in a Göttingen Minipig model with a reproductive system very similar to humans. The vaccine was composed of C. trachomatis subunit antigens formulated in the Th1/Th17 promoting CAF01 adjuvant. IM priming immunizations with CAF01 induced a significant cell-mediated interferon gamma and interleukin 17A response and a significant systemic high-titered neutralizing IgG response. Following genital challenge, intranasally boosted groups mounted an accelerated, highly significant genital IgA response that correlated with enhanced bacterial clearance on day 3 post infection. By detecting antigen-specific secretory component (SC), we showed that the genital IgA was locally produced in the genital mucosa. The highly significant inverse correlation between the vaginal IgA SC response and the chlamydial load suggests that IgA in the minipig model is involved in protection against C. trachomatis. This is important both for our understanding of protective immunity and future vaccination strategies against C. trachomatis and genital pathogens in general. PMID:26734002

  3. Broad and potent immune responses to a low dose intradermal HIV-1 DNA boosted with HIV-1 recombinant MVA among healthy adults in Tanzania☆,☆☆

    Science.gov (United States)

    Bakari, Muhammad; Aboud, Said; Nilsson, Charlotta; Francis, Joel; Buma, Deus; Moshiro, Candida; Aris, Eric A.; Lyamuya, Eligius F.; Janabi, Mohamed; Godoy-Ramirez, Karina; Joachim, Agricola; Polonis, Victoria R.; Bråve, Andreas; Earl, Patricia; Robb, Merlin; Marovich, Mary; Wahren, Britta; Pallangyo, Kisali; Biberfeld, Gunnel; Mhalu, Fred; Sandström, Eric

    2016-01-01

    Background We conducted a phase I/II randomized placebo-controlled trial with the aim of exploring whether priming with a low intradermal dose of a multiclade, multigene HIV-1 DNA vaccine could improve the immunogenicity of the same vaccine given intramuscularly prior to boosting with a heterologous HIV-1 MVA among healthy adults in Dar es Salaam, Tanzania. Methods Sixty HIV-uninfected volunteers were randomized to receive DNA plasmid vaccine 1 mg intradermally (id), n = 20, or 3.8 mg intramuscularly (im), n = 20, or placebo, n = 20, using a needle-free injection device. DNA plasmids encoding HIV-1 genes gp160 subtype A, B, C; rev B; p17/p24 gag A, B and Rtmut B were given at weeks 0, 4 and 12. Recombinant MVA (108 pfu) expressing HIV-1 Env, Gag, Pol of CRF01_AE or placebo was administered im at month 9 and 21. Results The vaccines were well tolerated. Two weeks after the third HIV-DNA injection, 22/38 (58%) vaccinees had IFN-γ ELISpot responses to Gag. Two weeks after the first HIV-MVA boost all 35 (100%) vaccinees responded to Gag and 31 (89%) to Env. Two to four weeks after the second HIV-MVA boost, 28/29 (97%) vaccinees had IFN-γ ELISpot responses, 27 (93%) to Gag and 23 (79%) to Env. The id-primed recipients had significantly higher responses to Env than im recipients. Intracellular cytokine staining for Gag-specific IFN-γ/IL-2 production showed both CD8+ and CD4+ T cell responses. All vaccinees had HIV-specific lymphoproliferative responses. All vaccinees reacted in diagnostic HIV serological tests and 26/29 (90%) had antibodies against gp160 after the second HIV-MVA boost. Furthermore, while all of 29 vaccinee sera were negative for neutralizing antibodies against clade B, C and CRF01 AE pseudoviruses in the TZM-bl neutralization assay, in a PBMC assay, the response rate ranged from 31% to 83% positives, depending upon the clade B or CRF01_AE virus tested. This vaccine approach is safe and highly immunogenic. Low dose, id HIV-DNA priming elicited higher

  4. Vaccine Adjuvants in Fish Vaccines Make a Difference: Comparing Three Adjuvants (Montanide ISA763A Oil, CpG/Poly I:C Combo and VHSV Glycoprotein Alone or in Combination Formulated with an Inactivated Whole Salmonid Alphavirus Antigen

    Directory of Open Access Journals (Sweden)

    Hanna L. Thim

    2014-03-01

    Full Text Available Most commercial vaccines offered to the aquaculture industry include inactivated antigens (Ag formulated in oil adjuvants. Safety concerns are related to the use of oil adjuvants in multivalent vaccines for fish, since adverse side effects (e.g., adhesions can appear. Therefore, there is a request for vaccine formulations for which protection will be maintained or improved, while the risk of side effects is reduced. Here, by using an inactivated salmonid alphavirus (SAV as the test Ag, the combined use of two Toll-like receptor (TLR ligand adjuvants, CpG oligonucleotides (ODNs and poly I:C, as well as a genetic adjuvant consisting of a DNA plasmid vector expressing the viral haemorrhagic septicaemia virus (VHSV glycoprotein (G was explored. VHSV-G DNA vaccine was intramuscularly injected in combination with intraperitoneal injection of either SAV Ag alone or combined with the oil adjuvant, Montanide ISA763, or the CpG/polyI:C combo. Adjuvant formulations were evaluated for their ability to boost immune responses and induce protection against SAV in Atlantic salmon, following cohabitation challenge. It was observed that CpG/polyI:C-based formulations generated the highest neutralizing antibody titres (nAbs before challenge, which endured post challenge. nAb responses for VHSV G-DNA- and oil-adjuvanted formulations were marginal compared to the CpG/poly I:C treatment. Interestingly, heat-inactivated sera showed reduced nAb titres compared to their non-heated counterparts, which suggests a role of complement-mediated neutralization against SAV. Consistently elevated levels of innate antiviral immune genes in the CpG/polyI:C injected groups suggested a role of IFN-mediated responses. Co-delivery of the VHSV-G DNA construct with either CpG/polyI:C or oil-adjuvanted SAV vaccine generated higher CD4 responses in head kidney at 48 h compared to injection of this vector or SAV Ag alone. The results demonstrate that a combination of pattern recognizing

  5. Clinical Trials of an Experimental Ebola Vaccine: A Canadian ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This initiative supports phases 2 and 3 clinical trials of an experimental Ebola vaccine. The experimental vaccine is based on an attenuated recombinant Vesicular Stomatitis Virus vector (VSV-EBOV). The Public Health Agency of Canada developed the vaccine and licensed it to NewLink Genetics and Merck. Early vaccine ...

  6. A recombinant anchorless respiratory syncytial virus (RSV) fusion (F) protein/monophosphoryl lipid A (MPL) vaccine protects against RSV-induced replication and lung pathology.

    Science.gov (United States)

    Blanco, Jorge C G; Boukhvalova, Marina S; Pletneva, Lioubov M; Shirey, Kari Ann; Vogel, Stefanie N

    2014-03-14

    We previously demonstrated that the severe cytokine storm and pathology associated with RSV infection following intramuscular vaccination of cotton rats with FI-RSV Lot 100 could be completely abolished by formulating the vaccine with the mild TLR4 agonist and adjuvant, monophosphoryl lipid A (MPL). Despite this significant improvement, the vaccine failed to blunt viral replication in the lungs. Since MPL is a weak TLR4 agonist, we hypothesized that its adjuvant activity was mediated by modulating the innate immune response of respiratory tract resident macrophages. Therefore, we developed a new vaccine preparation with purified, baculovirus expressed, partially purified, anchorless RSV F protein formulated with synthetic MPL that was administered to cotton rats intranasally, followed by an intradermal boost. This novel formulation and heterologous "prime/boost" route of administration resulted in decreased viral titers compared to that seen in animals vaccinated with F protein alone. Furthermore, animals vaccinated by this route showed no evidence of enhanced lung pathology upon RSV infection. This indicates that MPL acts as an immune modulator that protects the host from vaccine-enhanced pathology, and reduces RSV replication in the lower respiratory tract when administered by a heterologous prime/boost immunization regimen. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. A prime/boost strategy using DNA/fowlpox recombinants expressing the genetically attenuated E6 protein as a putative vaccine against HPV-16-associated cancers.

    Science.gov (United States)

    Bissa, Massimiliano; Illiano, Elena; Pacchioni, Sole; Paolini, Francesca; Zanotto, Carlo; De Giuli Morghen, Carlo; Massa, Silvia; Franconi, Rosella; Radaelli, Antonia; Venuti, Aldo

    2015-03-05

    Considering the high number of new cases of cervical cancer each year that are caused by human papilloma viruses (HPVs), the development of an effective vaccine for prevention and therapy of HPV-associated cancers, and in particular against the high-risk HPV-16 genotype, remains a priority. Vaccines expressing the E6 and E7 proteins that are detectable in all HPV-positive pre-cancerous and cancer cells might support the treatment of HPV-related lesions and clear already established tumors. In this study, DNA and fowlpox virus recombinants expressing the E6F47R mutant of the HPV-16 E6 oncoprotein were generated, and their correct expression verified by RT-PCR, Western blotting and immunofluorescence. Immunization protocols were tested in a preventive or therapeutic pre-clinical mouse model of HPV-16 tumorigenicity using heterologous (DNA/FP) or homologous (DNA/DNA and FP/FP) prime/boost regimens. The immune responses and therapeutic efficacy were evaluated by ELISA, ELISPOT assays, and challenge with TC-1* cells. In the preventive protocol, while an anti-E6-specific humoral response was just detectable, a specific CD8(+) cytotoxic T-cell response was elicited in immunized mice. After the challenge, there was a delay in cancer appearance and a significant reduction of tumor volume in the two groups of E6-immunized mice, thus confirming the pivotal role of the CD8(+) T-cell response in the control of tumor growth in the absence of E6-specific antibodies. In the therapeutic protocol, in-vivo experiments resulted in a higher number of tumor-free mice after the homologous DNA/DNA or heterologous DNA/FP immunization. These data establish a preliminary indication for the prevention and treatment of HPV-related tumors by the use of DNA and avipox constructs as safe and effective immunogens following a prime/boost strategy. The combined use of recombinants expressing both E6 and E7 proteins might improve the antitumor efficacy, and should represent an important approach to

  8. Protection of mice against the highly pathogenic VVIHD-J by DNA and fowlpox recombinant vaccines, administered by electroporation and intranasal routes, correlates with serum neutralizing activity.

    Science.gov (United States)

    Bissa, Massimiliano; Quaglino, Elena; Zanotto, Carlo; Illiano, Elena; Rolih, Valeria; Pacchioni, Sole; Cavallo, Federica; De Giuli Morghen, Carlo; Radaelli, Antonia

    2016-10-01

    The control of smallpox was achieved using live vaccinia virus (VV) vaccine, which successfully eradicated the disease worldwide. As the variola virus no longer exists as a natural infection agent, mass vaccination was discontinued after 1980. However, emergence of smallpox outbreaks caused by accidental or deliberate release of variola virus has stimulated new research for second-generation vaccine development based on attenuated VV strains. Considering the closely related animal poxviruses that also arise as zoonoses, and the increasing number of unvaccinated or immunocompromised people, a safer and more effective vaccine is still required. With this aim, new vectors based on avian poxviruses that cannot replicate in mammals should improve the safety of conventional vaccines, and protect from zoonotic orthopoxvirus diseases, such as cowpox and monkeypox. In this study, DNA and fowlpox (FP) recombinants that expressed the VV L1R, A27L, A33R, and B5R genes were generated (4DNAmix, 4FPmix, respectively) and tested in mice using novel administration routes. Mice were primed with 4DNAmix by electroporation, and boosted with 4FPmix applied intranasally. The lethal VV IHD-J strain was then administered by intranasal challenge. All of the mice receiving 4DNAmix followed by 4FPmix, and 20% of the mice immunized only with 4FPmix, were protected. The induction of specific humoral and cellular immune responses directly correlated with this protection. In particular, higher anti-A27 antibodies and IFNγ-producing T lymphocytes were measured in the blood and spleen of the protected mice, as compared to controls. VV IHD-J neutralizing antibodies in sera from the protected mice suggest that the prime/boost vaccination regimen with 4DNAmix plus 4FPmix may be an effective and safe mode to induce protection against smallpox and poxvirus zoonotic infections. The electroporation/intranasal administration routes contributed to effective immune responses and mouse survival. Copyright

  9. Expression of chicken parvovirus VP2 in chicken embryo fibroblasts requires codon optimization for production of naked DNA and vectored Meleagrid herpesvirus type 1 vaccines

    Science.gov (United States)

    Meleagrid herpesvirus type 1 (MeHV-1) is an ideal vector for the expression of antigens from pathogenic avian organisms in order to generate vaccines. Chicken parvovirus (ChPV) is a widespread infectious virus that causes serious disease in chickens. It is one of the etiological agents largely suspe...

  10. Cytotoxic T-Lymphocyte Escape Does Not Always Explain the Transient Control of Simian Immunodeficiency Virus SIVmac239 Viremia in Adenovirus-Boosted and DNA-Primed Mamu-A*01-Positive Rhesus Macaques

    Science.gov (United States)

    McDermott, Adrian B.; O'Connor, David H.; Fuenger, Sarah; Piaskowski, Shari; Martin, Sarah; Loffredo, John; Reynolds, Matthew; Reed, Jason; Furlott, Jessica; Jacoby, Timothy; Riek, Cara; Dodds, Elizabeth; Krebs, Kendall; Davies, Mary-Ellen; Schleif, William A.; Casimiro, Danilo R.; Shiver, John W.; Watkins, D. I.

    2005-01-01

    Adenovirus 5 (Ad5) vectors show promise as human immunodeficiency virus vaccine candidates. Indian rhesus macaques vaccinated with Ad5-gag controlled simian-human immunodeficiency virus SHIV89.6P viral replication in the absence of Env immunogens that might elicit humoral immunity. Here we immunized 15 macaques using either a homologous Ad5-gag/Ad5-gag (Ad5/Ad5) or a heterologous DNA-gag/Ad5-gag (DNA/Ad5) prime-boost regimen and challenged them with a high dose of simian immunodeficiency virus SIVmac239. Macaques vaccinated with the DNA/Ad5 regimen experienced a brief viral load nadir of less than 10,000 viral copies per ml blood plasma that was not seen in Mamu-A*01-negative DNA/Ad5 vaccinees, Mamu-A*01-positive Ad5/Ad5 vaccinees, or vaccine-naive controls. Interestingly, most of these animals were not durably protected from disease progression when challenged with SIVmac239. To investigate the reasons underlying this short-lived vaccine effect, we investigated breadth of the T-cell response, immunogenetic background, and viral escape from CD8+ lymphocytes that recognize immunodominant T-cell epitopes. We show that these animals do not mount unusually broad cellular immune response, nor do they express unusual major histocompatibility complex class I alleles. Viral recrudescence occurred in four of the five Mamu-A*01-positive vaccinated macaques. However, only a single animal in this group demonstrated viral escape in the immunodominant Gag181-189CM9 response. These results suggest that viral “breakthrough” in vaccinated animals and viral escape are not inextricably linked and underscore the need for additional research into the mechanisms of vaccine failure. PMID:16306626

  11. Quantitative PCR evaluation of cellular immune responses in Kenyan children vaccinated with a candidate malaria vaccine.

    Directory of Open Access Journals (Sweden)

    Jedidah Mwacharo

    2009-12-01

    Full Text Available The T-cell mediated immune response plays a central role in the control of malaria after natural infection or vaccination. There is increasing evidence that T-cell responses are heterogeneous and that both the quality of the immune response and the balance between pro-inflammatory and regulatory T-cells determines the outcome of an infection. As Malaria parasites have been shown to induce immunosuppressive responses to the parasite and non-related antigens this study examined T-cell mediated pro-inflammatory and regulatory immune responses induced by malaria vaccination in children in an endemic area to determine if these responses were associated with vaccine immunogenicity.Using real-time RT- PCR we profiled the expression of a panel of key markers of immunogenecity at different time points after vaccination with two viral vector vaccines expressing the malaria TRAP antigen (FP9-TRAP and MVA-TRAP or following rabies vaccination as a control.The vaccine induced modest levels of IFN-gamma mRNA one week after vaccination. There was also an increase in FoxP3 mRNA expression in both TRAP stimulated and media stimulated cells in the FFM ME-TRAP vaccine group; however, this may have been driven by natural exposure to parasite rather than by vaccination.Quantitative PCR is a useful method for evaluating vaccine induced cell mediated immune responses in frozen PBMC from children in a malaria endemic country. Future studies should seek to use vaccine vectors that increase the magnitude and quality of the IFN-gamma immune response in naturally exposed populations and should monitor the induction of a regulatory T cell response.

  12. Jet-substructure tools and boosted hadronic boson identification in CMS

    Energy Technology Data Exchange (ETDEWEB)

    Shvetsov, Ivan; Mozer, Matthias; Mueller, Thomas [Institut fuer Experimentelle Kernphysik (IEKP), KIT (Germany)

    2015-07-01

    At the double central-mass energy in Run II boosted hadronic vector boson decays will be of greater importance than in Run I. One of the main challenges for the reconstruction of such hadronic decays in the coming LHC run will be increase of instantaneous luminosity which will result in a large number of additional proton-proton interactions (pileup). In particular the high pileup environment degrades the reconstruction of jet properties. In this talk the performance of several pileup mitigation tools such as charge hadron subtraction, pileup per particle identification (PUPPI) and grooming techniques is presented. Improvements of techniques for the identification of hadronically decaying vector bosons under the challenging conditions of Run II are also discussed.

  13. Immunomodulators as adjuvants for vaccines and antimicrobial therapy.

    Science.gov (United States)

    Nicholls, Erin F; Madera, Laurence; Hancock, Robert E W

    2010-12-01

    A highly effective strategy for combating infectious diseases is to enhance host defenses using immunomodulators, either preventatively, through vaccination, or therapeutically. The effectiveness of many vaccines currently in use is due in part to adjuvants, molecules that have little immunogenicity by themselves but which help enhance and appropriately skew the immune response to an antigen. The development of new vaccines necessitates the development of new types of adjuvants to ensure an appropriate immune response. Herein, we review commonly used vaccine adjuvants and discuss promising adjuvant candidates. We also discuss various other immunomodulators (namely cytokines, Toll-like receptor agonists, and host defense peptides) that are, or have potential to be, useful for antimicrobial therapies that exert their effects by boosting host immune responses rather than targeting pathogens directly.

  14. Coated microneedle arrays for transcutaneous delivery of live virus vaccines.

    Science.gov (United States)

    Vrdoljak, Anto; McGrath, Marie G; Carey, John B; Draper, Simon J; Hill, Adrian V S; O'Mahony, Conor; Crean, Abina M; Moore, Anne C

    2012-04-10

    Vaccines are sensitive biologics that require continuous refrigerated storage to maintain their viability. The vast majority of vaccines are also administered using needles and syringes. The need for cold chain storage and the significant logistics surrounding needle-and-syringe vaccination is constraining the success of immunization programs. Recombinant live viral vectors are a promising platform for the development of vaccines against a number of infectious diseases, however these viruses must retain infectivity to be effective. Microneedles offer an effective and painless method for delivery of vaccines directly into skin that in the future could provide solutions to current vaccination issues. Here we investigated methods of coating live recombinant adenovirus and modified vaccinia virus Ankara (MVA) vectors onto solid microneedle arrays. An effective spray-coating method, using conventional pharmaceutical processes, was developed, in tandem with suitable sugar-based formulations, which produces arrays with a unique coating of viable virus in a dry form around the shaft of each microneedle on the array. Administration of live virus-coated microneedle arrays successfully resulted in virus delivery, transcutaneous infection and induced an antibody or CD8(+) T cell response in mice that was comparable to that obtained by needle-and-syringe intradermal immunization. To our knowledge, this is the first report of successful vaccination with recombinant live viral vectored vaccines coated on microneedle delivery devices. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Coated microneedle arrays for transcutaneous delivery of live virus vaccines

    Science.gov (United States)

    Vrdoljak, Anto; McGrath, Marie G.; Carey, John B.; Draper, Simon J.; Hill, Adrian V.S.; O’Mahony, Conor; Crean, Abina M.; Moore, Anne C.

    2016-01-01

    Vaccines are sensitive biologics that require continuous refrigerated storage to maintain their viability. The vast majority of vaccines are also administered using needles and syringes. The need for cold chain storage and the significant logistics surrounding needle-and-syringe vaccination is constraining the success of immunization programs. Recombinant live viral vectors are a promising platform for the development of vaccines against a number of infectious diseases, however these viruses must retain infectivity to be effective. Microneedles offer an effective and painless method for delivery of vaccines directly into skin that in the future could provide solutions to current vaccination issues. Here we investigated methods of coating live recombinant adenovirus and modified vaccinia virus Ankara (MVA) vectors onto solid microneedle arrays. An effective spray-coating method, using conventional pharmaceutical processes, was developed, in tandem with suitable sugar-based formulations, which produces arrays with a unique coating of viable virus in a dry form around the shaft of each microneedle on the array. Administration of live virus-coated microneedle arrays successfully resulted in virus delivery, transcutaneous infection and induced an antibody or CD8+ T cell response in mice that was comparable to that obtained by needle-and-syringe intradermal immunization. To our knowledge, this is the first report of successful vaccination with recombinant live viral vectored vaccines coated on microneedle delivery devices. PMID:22245683

  16. Five diseases, one vaccine - a boost for emerging livestock farmers

    International Development Research Centre (IDRC) Digital Library (Canada)

    12 of the 16 most devastating animal diseases ... good use of livestock vaccines, emerging ... T Chetty, S Goga & A Mather (graphic design by C Lombard) .... Emerging farmers discussing an information pamphlet developed within the project.

  17. Time-dependent biodistribution and transgene expression of a recombinant human adenovirus serotype 5-luciferase vector as a surrogate agent for rAd5-FMDV vaccines in cattle

    Science.gov (United States)

    Replication-defective recombinant adenovirus 5 (rAd5) vectors carrying foot-and-mouth disease virus (FMDV) transgenes elicit a robust immune response to FMDV challenge in cattle; however vaccine function mechanisms are incompletely understood. Recent efforts addressing critical interactions of rAd5 ...

  18. 9 CFR 113.205 - Newcastle Disease Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... Virus. 113.205 Section 113.205 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.205 Newcastle Disease Vaccine, Killed Virus. Newcastle Disease Vaccine...

  19. DNA fusion gene vaccines

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Bassi, Maria Rosaria; Thomsen, Allan Randrup

    2010-01-01

    DNA vaccines are versatile and safe, but limited immunogenicity has prevented their use in the clinical setting. Experimentally, immunogenicity may be enhanced by the use of new delivery technologies, by coadministration of cytokines and pathogen-associated molecular patterns, or by fusion...... of antigens into molecular domains that enhance antigen presentation. More specifically, the immunogenicity of DNA vaccines may benefit from increased protein synthesis, increased T-cell help and MHC class I presentation, and the addition of a range of specific cytokines and pathogen-associated molecular...... with viral-vectored vaccines, various synergistic components may need to be incorporated into DNA vaccines. From the perspective of the future clinical use of DNA vaccines, it has been suggested that antigen presentation should be improved and cytokine coadministration attempted. However, even...

  20. Progress toward a universal H5N1 vaccine: a recombinant modified vaccinia virus Ankara-expressing trivalent hemagglutinin vaccine.

    Directory of Open Access Journals (Sweden)

    Mookkan Prabakaran

    Full Text Available The rapid evolution of new sublineages of H5N1 influenza poses the greatest challenge in control of H5N1 infection by currently existing vaccines. To overcome this, an MVAtor vector expressing three H5HA antigens A/Vietnam/1203/04, A/Indonesia/669/06 and A/Anhui/01/05 (MVAtor-tri-HA vector was developed to elicit broad cross-protection against diverse clades by covering amino acid variations in the major neutralizing epitopes of HA among H5N1 subtypes.BALB/c mice and guinea pigs were immunized i.m. with 8×107 TCID50/animal of MVAtor-tri-HA vector. The immunogenicity and cross-protective immunity of the MVAtor-tri-HA vector was evaluated against diverse clades of H5N1 strains.The results showed that mice immunized with MVAtor-tri-HA vector induced robust cross-neutralizing immunity to diverse H5N1 clades. In addition, the MVAtor-tri-HA vector completely protected against 10 MLD50 of a divergent clade of H5N1 infection (clade 7. Importantly, the serological surveillance of post-vaccinated guinea pig sera demonstrated that MVAtor-tri-HA vector was able to elicit strong cross-clade neutralizing immunity against twenty different H5N1 strains from six clades that emerged between 1997 and 2012.The present findings revealed that incorporation of carefully selected HA genes from divergent H5N1 strains within a single vector could be an effective approach in developing a vaccine with broad coverage to prevent infection during a pandemic situation.

  1. Mucosal vaccination with recombinant poxvirus vaccines protects ferrets against symptomatic CDV infection.

    Science.gov (United States)

    Welter, J; Taylor, J; Tartaglia, J; Paoletti, E; Stephensen, C B

    1999-01-28

    Canine distemper virus (CDV) infection of ferrets causes a disease characterized by fever, erythema, conjunctivitis and leukocytopenia, similar clinically to measles except for the fatal neurologic sequelae of CDV. We vaccinated juvenile ferrets twice at 4-week intervals by the intranasal or intraduodenal route with attenuated vaccinia (NYVAC) or canarypox virus (ALVAC) constructs containing the CDV hemagglutinin and fusion genes. Controls were vaccinated with the same vectors expressing rabies glycoprotein. Animals were challenged intranasally 4 weeks after the second vaccination with virulent CDV. Body weights, white blood cell (WBC) counts and temperatures were monitored and ferrets were observed daily for clinical signs of infection. WBCs were assayed for the presence of viral RNA by RT-PCR. Intranasally vaccinated animals survived challenge with no virologic or clinical evidence of infection. Vaccination by the intraduodenal route did not provide complete protection. All control animals developed typical distemper. Ferrets can be effectively protected against distemper by mucosal vaccination with poxvirus vaccines.

  2. A Phase I Double Blind, Placebo-Controlled, Randomized Study of the Safety and Immunogenicity of an Adjuvanted HIV-1 Gag-Pol-Nef Fusion Protein and Adenovirus 35 Gag-RT-Int-Nef Vaccine in Healthy HIV-Uninfected African Adults.

    Directory of Open Access Journals (Sweden)

    Gloria Omosa-Manyonyi

    Full Text Available Sequential prime-boost or co-administration of HIV vaccine candidates based on an adjuvanted clade B p24, RT, Nef, p17 fusion protein (F4/AS01 plus a non-replicating adenovirus 35 expressing clade A Gag, RT, Int and Nef (Ad35-GRIN may lead to a unique immune profile, inducing both strong T-cell and antibody responses.In a phase 1, double-blind, placebo-controlled trial, 146 healthy adult volunteers were randomized to one of four regimens: heterologous prime-boost with two doses of F4/AS01E or F4/AS01B followed by Ad35-GRIN; Ad35-GRIN followed by two doses of F4/AS01B; or three co-administrations of Ad35-GRIN and F4/AS01B. T cell and antibody responses were measured.The vaccines were generally well-tolerated, and did not cause serious adverse events. The response rate, by IFN-γ ELISPOT, was greater when Ad35-GRIN was the priming vaccine and in the co-administration groups. F4/AS01 induced CD4+ T-cells expressing primarily CD40L and IL2 +/- TNF-α, while Ad35-GRIN induced predominantly CD8+ T-cells expressing IFN-γ +/- IL2 or TNF-α. Viral inhibition was induced after Ad35-GRIN vaccination, regardless of the regimen. Strong F4-specific antibody responses were induced. Immune responses persisted at least a year after the last vaccination. The complementary response profiles, characteristic of each vaccine, were both expressed after co-administration.Co-administration of an adjuvanted protein and an adenovirus vector showed an acceptable safety and reactogenicity profile and resulted in strong, multifunctional and complementary HIV-specific immune responses.ClinicalTrials.gov NCT01264445.

  3. Classical swine fever vaccines-State-of-the-art.

    Science.gov (United States)

    Blome, Sandra; Moß, Claudia; Reimann, Ilona; König, Patricia; Beer, Martin

    2017-07-01

    Due to its impact on animal health and pig industry, classical swine fever (CSF) is still one of the most important viral diseases of pigs. To control the disease, safe and highly efficacious live attenuated vaccines exist for decades. These vaccines have usually outstanding efficacy and safety but lack differentiability of infected from vaccinated animals (DIVA or marker strategy). In contrast, the first generation of E2 subunit marker vaccines shows constraints in efficacy, application, and production. To overcome these limitations, new generations of marker vaccines are developed. A wide range of approaches have been tried including recombinant vaccines, recombinant inactivated vaccines or subunit vaccines, vector vaccines, and DNA/RNA vaccines. During the last years, especially attenuated deletion vaccines or chimeric constructs have shown potential. At present, especially two new constructs have been intensively tested, the adenovirus-delivered, Semliki Forest virus replicon-vectored marker vaccine candidate "rAdV-SFV-E2" and the pestivirus chimera "CP7_E2alf". The later was recently licensed by the European Medicines Agency. Under field conditions, all marker vaccines have to be accompanied by a potent test system. Particularly this point shows still weaknesses and it is important to embed vaccination in a well-established vaccination strategy and a suitable diagnostic workflow. In summary, conventional vaccines are a standard in terms of efficacy. However, only vaccines with DIVA will allow improved eradication strategies e.g. also under emergency vaccination conditions in free regions. To answer this demand, new generations of marker vaccines have been developed and add now to the tool box of CSF control. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Progress towards a Leishmania vaccine.

    Science.gov (United States)

    Tabbara, Khaled S

    2006-07-01

    Leishmaniasis is a vector-born protozoan disease. Approximately 12 million individuals are affected worldwide with an estimated annual incidence of 1.5-2 million. Two clinical manifestations are recognized, cutaneous, and visceral, both of which are common in the Middle East. In both forms, infection is chronic, with potential deformities, persistence following cure, and lifelong risk of reactivation. Attempts to develop an effective human Leishmania vaccine have not yet succeeded. Leishmanization, a crude form of live vaccination historically originated in this part of the world. Experimental vaccination has been extensively studied in model animals in the past 2 decades. In this review, major human killed vaccine trials are surveyed, and modern trends in Leishmania vaccine development, including subunit vaccines, naked DNA vaccines, and transmission blocking vaccines are explored. Recent findings of a link between persistence of live parasites, and maintenance of long-term immunity suggest live vaccination with attenuated strains, as a future vaccination strategy.

  5. Apple Latent Spherical Virus Vector as Vaccine for the Prevention and Treatment of Mosaic Diseases in Pea, Broad Bean, and Eustoma Plants by Bean Yellow Mosaic Virus

    Directory of Open Access Journals (Sweden)

    Nozomi Satoh

    2014-11-01

    Full Text Available We investigated the protective effects of a viral vector based on an Apple latent spherical virus (ALSV harboring a segment of the Bean yellow mosaic virus (BYMV genome against mosaic diseases in pea, broad bean, and eustoma plants caused by BYMV infection. In pea plants pre-inoculated with the ALSV vaccine and challenge inoculated with BYMV expressing green fluorescence protein, BYMV multiplication occurred in inoculated leaves, but was markedly inhibited in the upper leaves. No mosaic symptoms due to BYMV infection were observed in the challenged plants pre-inoculated with the ALSV vaccine. Simultaneous inoculation with the ALSV vaccine and BYMV also prevented mosaic symptoms in broad bean and eustoma plants, and BYMV accumulation was strongly inhibited in the upper leaves of plants treated with the ALSV vaccine. Pea and eustoma plants were pre-inoculated with BYMV followed by inoculation with the ALSV vaccine to investigate the curative effects of the ALSV vaccine. In both plant species, recovery from mosaic symptoms was observed in upper leaves and BYMV accumulation was inhibited in leaves developing post-ALSV vaccination. These results show that ALSV vaccination not only prevents mosaic diseases in pea, broad bean, and eustoma, but that it is also effective in curing these diseases.

  6. Live Attenuated Tularemia Vaccines for Protection Against Respiratory Challenge With Virulent F. tularensis subsp. tularensis

    Science.gov (United States)

    Jia, Qingmei; Horwitz, Marcus A.

    2018-01-01

    Francisella tularensis is the causative agent of tularemia and a Tier I bioterrorism agent. In the 1900s, several vaccines were developed against tularemia including the killed “Foshay” vaccine, subunit vaccines comprising F. tularensis protein(s) or lipoproteins(s) in an adjuvant formulation, and the F. tularensis Live Vaccine Strain (LVS); none were licensed in the U.S.A. or European Union. The LVS vaccine retains toxicity in humans and animals—especially mice—but has demonstrated efficacy in humans, and thus serves as the current gold standard for vaccine efficacy studies. The U.S.A. 2001 anthrax bioterrorism attack spawned renewed interest in vaccines against potential biowarfare agents including F. tularensis. Since live attenuated—but not killed or subunit—vaccines have shown promising efficacy and since vaccine efficacy against respiratory challenge with less virulent subspecies holarctica or F. novicida, or against non-respiratory challenge with virulent subsp. tularensis (Type A) does not reliably predict vaccine efficacy against respiratory challenge with virulent subsp. tularensis, the route of transmission and species of greatest concern in a bioterrorist attack, in this review, we focus on live attenuated tularemia vaccine candidates tested against respiratory challenge with virulent Type A strains, including homologous vaccines derived from mutants of subsp. holarctica, F. novicida, and subsp. tularensis, and heterologous vaccines developed using viral or bacterial vectors to express F. tularensis immunoprotective antigens. We compare the virulence and efficacy of these vaccine candidates with that of LVS and discuss factors that can significantly impact the development and evaluation of live attenuated tularemia vaccines. Several vaccines meet what we would consider the minimum criteria for vaccines to go forward into clinical development—safety greater than LVS and efficacy at least as great as LVS, and of these, several meet the

  7. Decay of Sabin inactivated poliovirus vaccine (IPV-boosted poliovirus antibodies

    Directory of Open Access Journals (Sweden)

    Sonia Resik

    2015-01-01

    Conclusion: The decay of poliovirus antibodies over a 21–22-month period was similar regardless of the type of booster vaccine used, suggesting the scientific data of Salk IPV long-term persistence and decay may be broadly applicable to Sabin IPV.

  8. Evaluation of MAP-specific peptides following vaccination of goats

    DEFF Research Database (Denmark)

    Lybeck, Kari; Sjurseth, Siri K.; Melvang, Heidi Mikkelsen

    species or 2) selected based on “experience”. Peptides predicted to bind bovine MHC II by in silico analysis were included in further studies, resulting in two panels 1) genome-based and 2) selected. Initially, two groups of 15 healthy goats were vaccinated with one of the two panels (50 µg/peptide in CAF......01 adjuvant/CAF04 for boosting). Four MAP-infected goats were also vaccinated. In a second vaccination trail, groups of 8 healthy goat kids were vaccinated with genome-based peptides, selected peptides or selected peptides linked together in a recombinant protein (20 µg/peptide or 50 µg protein...... peptides. IFN-γ responses in healthy goats after the first vaccination were low, but testing of T cell lines from MAP-infected goats identified peptides inducing strong proliferative responses. Peptides for a second vaccination were selected by combining results from this study with a parallel cattle study...

  9. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses

    Science.gov (United States)

    Moon, James J.; Suh, Heikyung; Bershteyn, Anna; Stephan, Matthias T.; Liu, Haipeng; Huang, Bonnie; Sohail, Mashaal; Luo, Samantha; Ho Um, Soong; Khant, Htet; Goodwin, Jessica T.; Ramos, Jenelyn; Chiu, Wah; Irvine, Darrell J.

    2011-03-01

    Vaccines based on recombinant proteins avoid the toxicity and antivector immunity associated with live vaccine (for example, viral) vectors, but their immunogenicity is poor, particularly for CD8+ T-cell responses. Synthetic particles carrying antigens and adjuvant molecules have been developed to enhance subunit vaccines, but in general these materials have failed to elicit CD8+ T-cell responses comparable to those for live vectors in preclinical animal models. Here, we describe interbilayer-crosslinked multilamellar vesicles formed by crosslinking headgroups of adjacent lipid bilayers within multilamellar vesicles. Interbilayer-crosslinked vesicles stably entrapped protein antigens in the vesicle core and lipid-based immunostimulatory molecules in the vesicle walls under extracellular conditions, but exhibited rapid release in the presence of endolysosomal lipases. We found that these antigen/adjuvant-carrying vesicles form an extremely potent whole-protein vaccine, eliciting endogenous T-cell and antibody responses comparable to those for the strongest vaccine vectors. These materials should enable a range of subunit vaccines and provide new possibilities for therapeutic protein delivery.

  10. Elicitation of strong immune responses by a DNA vaccine expressing a secreted form of hepatitis C virus envelope protein E2 in murine and porcine animal models

    DEFF Research Database (Denmark)

    Li, Yiping; Kang, H.N.; Babiuk, L.A.

    2006-01-01

    boosting with a recombinant E2 protein vaccine formulated with CpG ODN and 10% Emulsigen. The immunogenicity of HCV E2 vaccines was analyzed by ELISA for antibody responses, MTT assay for lymphocyte proliferation, ELISPOT for the number of interferon-gamma secreting cells, and cytotoxic T lymphocyte assays...... and shifted the immune response towards Th2-like ones in piglets. CONCLUSION: A DNA vaccine expressing a secreted form of HCV E2 protein elicited E2-specific immune responses in mice and piglets. Recombinant E2 protein vaccination following DNA immunization significantly increased the antibody response......AIM: To characterize the immunogenicity of a hepatitis C virus (HCV) E2 DNA vaccine alone or with a protein vaccine boost in murine and porcine animal models. METHODS: A DNA vaccine expressing a secreted form of HCV E2 protein was constructed and used to vaccinate mice and piglets with or without...

  11. AIDS vaccine: Present status and future challenges

    Directory of Open Access Journals (Sweden)

    Nigam P

    2006-01-01

    Full Text Available Development of a preventive vaccine for HIV is the best hope of controlling the AIDS pandemic. HIV has, however, proved a difficult pathogen to vaccinate against because of its very high mutation rate and capability to escape immune responses. Neutralizing antibodies that can neutralize diverse field strains have so far proved difficult to induce. Adjuvanting these vaccines with cytokine plasmids and a "prime-boost," approach is being evaluated in an effort to induce both CTL and antibody responses and thereby have immune responses active against both infected cells and free viral particles, thereby necessitating fewer doses of recombinant protein to reach maximum antibodies titers. Although obstacles exist in evaluation of candidate HIV vaccines, evidence from natural history studies, new molecular tools in virology and immunology, new adjuvants, new gene expression systems, new antigen delivery systems, recent discoveries in HIV entry and pathogenesis, and promising studies of candidate vaccines in animal models have provided reasons to hope that developing a safe and effective AIDS vaccine is possible and within reach.

  12. [Conflicts and vector-borne diseases

    DEFF Research Database (Denmark)

    Bygbjerg, Ib Christian

    2010-01-01

    Based on literature and personal experiences, vector-borne diseases and conflicts are reviewed. Simple rapid diagnostic tests for three important parasitoses are available. Resort is often made to case definitions and to presumptive treatment. Resistance is an emerging problem. Vaccines are still...

  13. Progress towards development of an HIV vaccine: report of the AIDS Vaccine 2009 Conference.

    Science.gov (United States)

    Ross, Anna Laura; Bråve, Andreas; Scarlatti, Gabriella; Manrique, Amapola; Buonaguro, Luigi

    2010-05-01

    The search for an HIV/AIDS vaccine is steadily moving ahead, generating and validating new concepts in terms of novel vectors for antigen delivery and presentation, new vaccine and adjuvant strategies, alternative approaches to design HIV-1 antigens for eliciting protective cross-neutralising antibodies, and identification of key mechanisms in HIV infection and modulation of the immune system. All these different perspectives are contributing to the unprecedented challenge of developing a protective HIV-1 vaccine. The high scientific value of this massive effort is its great impact on vaccinology as a whole, providing invaluable scientific information for the current and future development of new preventive vaccine as well as therapeutic knowledge-based infectious-disease and cancer vaccines. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Rational design of gene-based vaccines.

    Science.gov (United States)

    Barouch, Dan H

    2006-01-01

    Vaccine development has traditionally been an empirical discipline. Classical vaccine strategies include the development of attenuated organisms, whole killed organisms, and protein subunits, followed by empirical optimization and iterative improvements. While these strategies have been remarkably successful for a wide variety of viruses and bacteria, these approaches have proven more limited for pathogens that require cellular immune responses for their control. In this review, current strategies to develop and optimize gene-based vaccines are described, with an emphasis on novel approaches to improve plasmid DNA vaccines and recombinant adenovirus vector-based vaccines. Copyright 2006 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  15. Use of ChAd3-EBO-Z Ebola virus vaccine in Malian and US adults, and boosting of Malian adults with MVA-BN-Filo: a phase 1, single-blind, randomised trial, a phase 1b, open-label and double-blind, dose-escalation trial, and a nested, randomised, double-blind, placebo-controlled trial.

    Science.gov (United States)

    Tapia, Milagritos D; Sow, Samba O; Lyke, Kirsten E; Haidara, Fadima Cheick; Diallo, Fatoumata; Doumbia, Moussa; Traore, Awa; Coulibaly, Flanon; Kodio, Mamoudou; Onwuchekwa, Uma; Sztein, Marcelo B; Wahid, Rezwanul; Campbell, James D; Kieny, Marie-Paule; Moorthy, Vasee; Imoukhuede, Egeruan B; Rampling, Tommy; Roman, Francois; De Ryck, Iris; Bellamy, Abbie R; Dally, Len; Mbaya, Olivier Tshiani; Ploquin, Aurélie; Zhou, Yan; Stanley, Daphne A; Bailer, Robert; Koup, Richard A; Roederer, Mario; Ledgerwood, Julie; Hill, Adrian V S; Ballou, W Ripley; Sullivan, Nancy; Graham, Barney; Levine, Myron M

    2016-01-01

    The 2014 west African Zaire Ebola virus epidemic prompted worldwide partners to accelerate clinical development of replication-defective chimpanzee adenovirus 3 vector vaccine expressing Zaire Ebola virus glycoprotein (ChAd3-EBO-Z). We aimed to investigate the safety, tolerability, and immunogenicity of ChAd3-EBO-Z in Malian and US adults, and assess the effect of boosting of Malians with modified vaccinia Ankara expressing Zaire Ebola virus glycoprotein and other filovirus antigens (MVA-BN-Filo). In the phase 1, single-blind, randomised trial of ChAd3-EBO-Z in the USA, we recruited adults aged 18-65 years from the University of Maryland medical community and the Baltimore community. In the phase 1b, open-label and double-blind, dose-escalation trial of ChAd3-EBO-Z in Mali, we recruited adults 18-50 years of age from six hospitals and health centres in Bamako (Mali), some of whom were also eligible for a nested, randomised, double-blind, placebo-controlled trial of MVA-BN-Filo. For randomised segments of the Malian trial and for the US trial, we randomly allocated participants (1:1; block size of six [Malian] or four [US]; ARB produced computer-generated randomisation lists; clinical staff did randomisation) to different single doses of intramuscular immunisation with ChAd3-EBO-Z: Malians received 1 × 10(10) viral particle units (pu), 2·5 × 10(10) pu, 5 × 10(10) pu, or 1 × 10(11) pu; US participants received 1 × 10(10) pu or 1 × 10(11) pu. We randomly allocated Malians in the nested trial (1:1) to receive a single dose of 2 × 10(8) plaque-forming units of MVA-BN-Filo or saline placebo. In the double-blind segments of the Malian trial, investigators, clinical staff, participants, and immunology laboratory staff were masked, but the study pharmacist (MK), vaccine administrator, and study statistician (ARB) were unmasked. In the US trial, investigators were not masked, but participants were. Analyses were per protocol. The primary outcome was safety, measured

  16. Hexon-modified recombinant E1-deleted adenoviral vectors as bivalent vaccine carriers for Coxsackievirus A16 and Enterovirus 71.

    Science.gov (United States)

    Zhang, Chao; Yang, Yong; Chi, Yudan; Yin, Jieyun; Yan, Lijun; Ku, Zhiqiang; Liu, Qingwei; Huang, Zhong; Zhou, Dongming

    2015-09-22

    Hand, foot and mouth disease (HFMD) is a major public health concern in Asia; more efficient vaccines against HFMD are urgently required. Adenoviral (Ad) capsids have been used widely for the presentation of foreign antigens to induce specific immune responses in the host. Here, we describe a novel bivalent vaccine for HFMD based on the hexon-modified, E1-deleted chimpanzee adenovirus serotype 68 (AdC68). The novel vaccine candidate was generated by incorporating the neutralising epitope of Coxsackievirus A16 (CA16), PEP71, into hypervariable region 1 (HVR1), and a shortened neutralising epitope of Enterovirus 71 (EV71), sSP70, into HVR2 of the AdC68 hexon. In order to enhance the immunogenicity of EV71, VP1 of EV71 was cloned into the E1-region of the AdC68 vectors. The results demonstrated that these two epitopes were well presented on the virion surface and had high affinity towards specific antibodies, and VP1 of EV71 was also significantly expressed. In pre-clinical mouse models, the hexon-modified AdC68 elicited neutralising antibodies against both CA16 and EV71, which conferred protection to suckling mice against a lethal challenge of CA16 and EV71. In summary, this study demonstrates that the hexon-modified AdC68 may represent a promising bivalent vaccine carrier against EV71 and CA16 and an epitope-display platform for other pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Vaccination with Plasmodium knowlesi AMA1 formulated in the novel adjuvant co-vaccine HT™ protects against blood-stage challenge in rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Muzamil Mahdi Abdel Hamid

    Full Text Available Plasmodium falciparum apical membrane antigen 1 (PfAMA1 is a leading blood stage vaccine candidate. Plasmodium knowlesi AMA1 (PkAMA1 was produced and purified using similar methodology as for clinical grade PfAMA1 yielding a pure, conformational intact protein. Combined with the adjuvant CoVaccine HT™, PkAMA1 was found to be highly immunogenic in rabbits and the efficacy of the PkAMA1 was subsequently tested in a rhesus macaque blood-stage challenge model. Six rhesus monkeys were vaccinated with PkAMA1 and a control group of 6 were vaccinated with PfAMA1. A total of 50 µg AMA1 was administered intramuscularly three times at 4 week intervals. One of six rhesus monkeys vaccinated with PkAMA1 was able to control parasitaemia, upon blood stage challenge with P. knowlesi H-strain. Four out of the remaining five showed a delay in parasite onset that correlated with functional antibody titres. In the PfAMA1 vaccinated control group, five out of six animals had to be treated with antimalarials 8 days after challenge; one animal did not become patent during the challenge period. Following a rest period, animals were boosted and challenged again. Four of the six rhesus monkeys vaccinated with PkAMA1 were able to control the parasitaemia, one had a delayed onset of parasitaemia and one animal was not protected, while all control animals required treatment. To confirm that the control of parasitaemia was AMA1-related, animals were allowed to recover, boosted and re-challenged with P. knowlesi Nuri strain. All control animals had to be treated with antimalarials by day 8, while five out of six PkAMA1 vaccinated animals were able to control parasitaemia. This study shows that: i Yeast-expressed PkAMA1 can protect against blood stage challenge; ii Functional antibody levels as measured by GIA correlated inversely with the day of onset and iii GIA IC(50 values correlated with estimated in vivo growth rates.

  18. Virus-like particle vaccine primes immune responses preventing inactivated-virus vaccine-enhanced disease against respiratory syncytial virus.

    Science.gov (United States)

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Ko, Eun-Ju; Lee, Youri; Kwon, Young-Man; Kang, Sang-Moo

    2017-11-01

    Formalin inactivated respiratory syncytial virus (FI-RSV) vaccination caused vaccine-enhanced respiratory disease (ERD) upon exposure to RSV in children. Virus-like particles presenting RSV F fusion protein (F VLP) are known to increase T helper type-1 (Th1) immune responses and avoid ERD in animal models. We hypothesized that F VLP would prime immune responses preventing ERD upon subsequent exposure to ERD-prone FI-RSV. Here, we demonstrated that heterologous F VLP priming and FI-RSV boosting of mice prevented FI-RSV vaccine-enhanced lung inflammation and eosinophilia upon RSV challenge. F VLP priming redirected pulmonary T cells toward effector CD8 T cells producing Th1 cytokines and significantly suppressed pulmonary Th2 cytokines. This study suggests that RSV F VLP priming would modulate and shift immune responses to subsequent exposure to ERD-prone FI-RSV vaccine and RSV infection, suppressing Th2 immune-mediated pulmonary histopathology and eosinophilia. Copyright © 2017. Published by Elsevier Inc.

  19. Applications of pox virus vectors to vaccination: an update.

    OpenAIRE

    Paoletti, E

    1996-01-01

    Recombinant pox viruses have been generated for vaccination against heterologous pathogens. Amongst these, the following are notable examples. (i) The engineering of the Copenhagen strain of vaccinia virus to express the rabies virus glycoprotein. When applied in baits, this recombinant has been shown to vaccinate the red fox in Europe and raccoons in the United States, stemming the spread of rabies virus infection in the wild. (ii) A fowlpox-based recombinant expressing the Newcastle disease...

  20. Potentiating Effects of MPL on DSPC Bearing Cationic Liposomes Promote Recombinant GP63 Vaccine Efficacy: High Immunogenicity and Protection

    Science.gov (United States)

    Mazumder, Saumyabrata; Maji, Mithun; Ali, Nahid

    2011-01-01

    Background Vaccines that activate strong specific Th1-predominant immune responses are critically needed for many intracellular pathogens, including Leishmania. The requirement for sustained and efficient vaccination against leishmaniasis is to formulate the best combination of immunopotentiating adjuvant with the stable antigen (Ag) delivery system. The aim of the present study is to evaluate the effectiveness of an immunomodulator on liposomal Ag through subcutaneous (s.c.) route of immunization, and its usefulness during prime/boost against visceral leishmaniasis (VL) in BALB/c mice. Methodology/Principal Findings Towards this goal, we formulated recombinant GP63 (rGP63)-based vaccines either with monophosphoryl lipid A-trehalose dicorynomycolate (MPL-TDM) or entrapped within cationic liposomes or both. Combinatorial administration of liposomes with MPL-TDM during prime confers activation of dendritic cells, and induces an early robust T cell response. To investigate whether the combined formulation is required for optimum immune response during boost as well, we chose to evaluate the vaccine efficacy in mice primed with combined adjuvant system followed by boosting with either rGP63 alone, in association with MPL-TDM, liposomes or both. We provide evidences that the presence of either liposomal rGP63 or combined formulations during boost is necessary for effective Th1 immune responses (IFN-γ, IL-12, NO) before challenge infection. However, boosting with MPL-TDM in conjugation with liposomal rGP63 resulted in a greater number of IFN-γ producing effector T cells, significantly higher levels of splenocyte proliferation, and Th1 responses compared to mice boosted with liposomal rGP63, after virulent Leishmania donovani (L. donovani) challenge. Moreover, combined formulations offered superior protection against intracellular amastigote replication in macrophages in vitro, and hepatic and splenic parasite load in vivo. Conclusion Our results define the

  1. Optimal vaccination scenarios against vector-borne diseases

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Enøe, Claes; Bødker, Rene

    that would increase distance between infectious and susceptible hosts. This can be done very efficiently on a regional scale if the incursion route is well specified. However as the long-range spread of midge borne disease is still poorly quantified, more robust national vaccination schemes seems preferable...

  2. Controlling dengue with vaccines in Thailand.

    Directory of Open Access Journals (Sweden)

    Dennis L Chao

    Full Text Available Dengue is a mosquito-borne infectious disease that constitutes a growing global threat with the habitat expansion of its vectors Aedes aegyti and A. albopictus and increasing urbanization. With no effective treatment and limited success of vector control, dengue vaccines constitute the best control measure for the foreseeable future. With four interacting dengue serotypes, the development of an effective vaccine has been a challenge. Several dengue vaccine candidates are currently being tested in clinical trials. Before the widespread introduction of a new dengue vaccine, one needs to consider how best to use limited supplies of vaccine given the complex dengue transmission dynamics and the immunological interaction among the four dengue serotypes.We developed an individual-level (including both humans and mosquitoes, stochastic simulation model for dengue transmission and control in a semi-rural area in Thailand. We calibrated the model to dengue serotype-specific infection, illness and hospitalization data from Thailand. Our simulations show that a realistic roll-out plan, starting with young children then covering progressively older individuals in following seasons, could reduce local transmission of dengue to low levels. Simulations indicate that this strategy could avert about 7,700 uncomplicated dengue fever cases and 220 dengue hospitalizations per 100,000 people at risk over a ten-year period.Vaccination will have an important role in controlling dengue. According to our modeling results, children should be prioritized to receive vaccine, but adults will also need to be vaccinated if one wants to reduce community-wide dengue transmission to low levels.

  3. Controlling Dengue with Vaccines in Thailand

    Science.gov (United States)

    Chao, Dennis L.; Halstead, Scott B.; Halloran, M. Elizabeth; Longini, Ira M.

    2012-01-01

    Background Dengue is a mosquito-borne infectious disease that constitutes a growing global threat with the habitat expansion of its vectors Aedes aegyti and A. albopictus and increasing urbanization. With no effective treatment and limited success of vector control, dengue vaccines constitute the best control measure for the foreseeable future. With four interacting dengue serotypes, the development of an effective vaccine has been a challenge. Several dengue vaccine candidates are currently being tested in clinical trials. Before the widespread introduction of a new dengue vaccine, one needs to consider how best to use limited supplies of vaccine given the complex dengue transmission dynamics and the immunological interaction among the four dengue serotypes. Methodology/Principal Findings We developed an individual-level (including both humans and mosquitoes), stochastic simulation model for dengue transmission and control in a semi-rural area in Thailand. We calibrated the model to dengue serotype-specific infection, illness and hospitalization data from Thailand. Our simulations show that a realistic roll-out plan, starting with young children then covering progressively older individuals in following seasons, could reduce local transmission of dengue to low levels. Simulations indicate that this strategy could avert about 7,700 uncomplicated dengue fever cases and 220 dengue hospitalizations per 100,000 people at risk over a ten-year period. Conclusions/Significance Vaccination will have an important role in controlling dengue. According to our modeling results, children should be prioritized to receive vaccine, but adults will also need to be vaccinated if one wants to reduce community-wide dengue transmission to low levels. PMID:23145197

  4. Safety and immunogenicity of GamEvac-Combi, a heterologous VSV- and Ad5-vectored Ebola vaccine: An open phase I/II trial in healthy adults in Russia.

    Science.gov (United States)

    Dolzhikova, I V; Zubkova, O V; Tukhvatulin, A I; Dzharullaeva, A S; Tukhvatulina, N M; Shcheblyakov, D V; Shmarov, M M; Tokarskaya, E A; Simakova, Y V; Egorova, D A; Scherbinin, D N; Tutykhina, I L; Lysenko, A A; Kostarnoy, A V; Gancheva, P G; Ozharovskaya, T A; Belugin, B V; Kolobukhina, L V; Pantyukhov, V B; Syromyatnikova, S I; Shatokhina, I V; Sizikova, T V; Rumyantseva, I G; Andrus, A F; Boyarskaya, N V; Voytyuk, A N; Babira, V F; Volchikhina, S V; Kutaev, D A; Bel'skih, A N; Zhdanov, K V; Zakharenko, S M; Borisevich, S V; Logunov, D Y; Naroditsky, B S; Gintsburg, A L

    2017-03-04

    Ebola hemorrhagic fever, also known as Ebola virus disease or EVD, is one of the most dangerous viral diseases in humans and animals. In this open-label, dose-escalation clinical trial, we assessed the safety, side effects, and immunogenicity of a novel, heterologous prime-boost vaccine against Ebola, which was administered in 2 doses to 84 healthy adults of both sexes between 18 and 55 years. The vaccine consists of live-attenuated recombinant vesicular stomatitis virus (VSV) and adenovirus serotype-5 (Ad5) expressing Ebola envelope glycoprotein. The most common adverse event was pain at the injection site, although no serious adverse events were reported. The vaccine did not significantly impact blood, urine, and immune indices. Seroconversion rate was 100 %. Antigen-specific IgG geometric mean titer at day 42 was 3,277 (95 % confidence interval 2,401-4,473) in volunteers immunized at full dose. Neutralizing antibodies were detected in 93.1 % of volunteers immunized at full dose, with geometric mean titer 20. Antigen-specific response in peripheral blood mononuclear cells was also detected in 100 % of participants, as well as in CD4+ and CD8+ T cells in 82.8 % and 58.6 % of participants vaccinated at full dose, respectively. The data indicate that the vaccine is safe and induces strong humoral and cellular immune response in up to 100 % of healthy adult volunteers, and provide a rationale for testing efficacy in Phase III trials. Indeed, the strong immune response to the vaccine may elicit long-term protection. This trial was registered with grls.rosminzdrav.ru (No. 495*), and with zakupki.gov.ru (No. 0373100043215000055).

  5. Evaluation of recombinant influenza virus-simian immunodeficiency virus vaccines in macaques.

    Science.gov (United States)

    Sexton, Amy; De Rose, Robert; Reece, Jeanette C; Alcantara, Sheilajen; Loh, Liyen; Moffat, Jessica M; Laurie, Karen; Hurt, Aeron; Doherty, Peter C; Turner, Stephen J; Kent, Stephen J; Stambas, John

    2009-08-01

    There is an urgent need for human immunodeficiency virus (HIV) vaccines that induce robust mucosal immunity. Influenza A viruses (both H1N1 and H3N2) were engineered to express simian immunodeficiency virus (SIV) CD8 T-cell epitopes and evaluated following administration to the respiratory tracts of 11 pigtail macaques. Influenza virus was readily detected from respiratory tract secretions, although the infections were asymptomatic. Animals seroconverted to influenza virus and generated CD8 and CD4 T-cell responses to influenza virus proteins. SIV-specific CD8 T-cell responses bearing the mucosal homing marker beta7 integrin were induced by vaccination of naïve animals. Further, SIV-specific CD8 T-cell responses could be boosted by recombinant influenza virus-SIV vaccination of animals with already-established SIV infection. Sequential vaccination with influenza virus-SIV recombinants of different subtypes (H1N1 followed by H3N2 or vice versa) produced only a limited boost in immunity, probably reflecting T-cell immunity to conserved internal proteins of influenza A virus. SIV challenge of macaques vaccinated with an influenza virus expressing a single SIV CD8 T cell resulted in a large anamnestic recall CD8 T-cell response, but immune escape rapidly ensued and there was no impact on chronic SIV viremia. Although our results suggest that influenza virus-HIV vaccines hold promise for the induction of mucosal immunity to HIV, broader antigen cover will be needed to limit cytotoxic T-lymphocyte escape.

  6. Alphavirus Replicon DNA Vectors Expressing Ebola GP and VP40 Antigens Induce Humoral and Cellular Immune Responses in Mice

    Directory of Open Access Journals (Sweden)

    Shoufeng Ren

    2018-01-01

    Full Text Available Ebola virus (EBOV causes severe hemorrhagic fevers in humans, and no approved therapeutics or vaccine is currently available. Glycoprotein (GP is the major protective antigen of EBOV, and can generate virus-like particles (VLPs by co-expression with matrix protein (VP40. In this study, we constructed a recombinant Alphavirus Semliki Forest virus (SFV replicon vector DREP to express EBOV GP and matrix viral protein (VP40. EBOV VLPs were successfully generated and achieved budding from 293 cells after co-transfection with DREP-based GP and VP40 vectors (DREP-GP+DREP-VP40. Vaccination of BALB/c mice with DREP-GP, DREP-VP40, or DREP-GP+DREP-VP40 vectors, followed by immediate electroporation resulted in a mixed IgG subclass production, which recognized EBOV GP and/or VP40 proteins. This vaccination regimen also led to the generation of both Th1 and Th2 cellular immune responses in mice. Notably, vaccination with DREP-GP and DREP-VP40, which produces both GP and VP40 antigens, induced a significantly higher level of anti-GP IgG2a antibody and increased IFN-γ secreting CD8+ T-cell responses relative to vaccination with DREP-GP or DREP-VP40 vector alone. Our study indicates that co-expression of GP and VP40 antigens based on the SFV replicon vector generates EBOV VLPs in vitro, and vaccination with recombinant DREP vectors containing GP and VP40 antigens induces Ebola antigen-specific humoral and cellular immune responses in mice. This novel approach provides a simple and efficient vaccine platform for Ebola disease prevention.

  7. [Conflicts and vector-borne diseases

    DEFF Research Database (Denmark)

    Bygbjerg, Ib Christian

    2010-01-01

    Based on literature and personal experiences, vector-borne diseases and conflicts are reviewed. Simple rapid diagnostic tests for three important parasitoses are available. Resort is often made to case definitions and to presumptive treatment. Resistance is an emerging problem. Vaccines are still...... not available for most diseases. Promising preventive methods, including long-lasting impregnated bed-nets and tents, are available. War has been an impetus for disclosing life-cycles of vector-borne diseases and for control methods; peace, reconciliation and poverty reduction are required to achieve lasting...

  8. Efficacy of a Recombinant Turkey Herpesvirus H5 Vaccine Against Challenge With H5N1 Clades 1.1.2 and 2.3.2.1 Highly Pathogenic Avian Influenza Viruses in Domestic Ducks (Anas platyrhynchos domesticus).

    Science.gov (United States)

    Pantin-Jackwood, Mary J; Kapczynski, Darrell R; DeJesus, Eric; Costa-Hurtado, Mar; Dauphin, Gwenaelle; Tripodi, Astrid; Dunn, John R; Swayne, David E

    2016-03-01

    Domestic ducks are the second most abundant poultry species in many Asian countries and have played a critical role in the epizootiology of H5N1 highly pathogenic avian influenza (HPAI).In this study, the protective efficacy of a live recombinant vector vaccine based on a turkey herpesvirus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAI strain (A/Swan/Hungary/4999/ 2006) (rHVT-H5/2.2), given at 3 days of age, was examined in Pekin ducks (Anas platyrhynchos domesticus). The vaccine was given alone or in combination with an inactivated H5N1 clade 2.3.2.1 reverse genetic (rgGD/2.3.2.1) vaccine given at 16 days of age, either as a single vaccination or in a prime-boost regime. At 30 days of age, ducks were challenged with one of two H5N1 HPAI viruses: A/duck/Vietnam/NCVD-2721/2013 (clade 1.1.2) or A/duck/Vietnam/NCVD-1584/2012 (clade 2.3.2.1.C). These viruses produced 100% mortality in less than 5 days in nonvaccinated control ducks. Ducks vaccinated with the rgGD/2.3.2.1 vaccine, with or without the rHVT-H5/2.2 vaccine, were 90%-100% protected against mortality after challenge with either of the two H5N1 HPAI viruses. The rHVT-H5/2.2 vaccine alone, however, conferred only 30% protection against mortality after challenge with either H5N1 HPAI virus; the surviving ducks from these groups shed higher amount of virus and for longer than the single-vaccinated rgGD/2.3.2.1 group. Despite low protection, ducks vaccinated with the rHVT-H5/2.2 vaccine and challenged with the clade 1.1.2 Vietnam virus had a longer mean death time than nonvaccinated controls (P = 0.02). A booster effect was found on reduction of virus shedding when using both vaccines, with lower oropharyngeal viral titers at 4 days after challenge with either HPAI virus (P study demonstrates the suboptimal protection with the rHVT-H5/2.2 vaccine given alone in Pekin ducks against H5N1 HPAI viruses and only a minor additive effect on virus shedding reduction when used with an inactivated vaccine in a

  9. A non-pathogenic live vector as an efficient delivery system in vaccine design for the prevention of HPV16 E7-overexpressing cancers.

    Science.gov (United States)

    Hosseinzadeh, Sahar; Bolhassani, Azam; Rafati, Sima; Taheri, Tahereh; Zahedifard, Farnaz; Daemi, Amin; Taslimi, Yasaman; Hashemi, Mehrdad; Memarnejadian, Arash

    2013-01-01

    The attenuated or non-pathogenic live vectors have been evolved specifically to deliver DNA into cells as efficient delivery tools in gene therapy. Recently, a non-pathogenic protozoan, Leishmania tarentolae (L.tar) has attracted a great attention. In current study, we used Leishmania expression system (LEXSY) for stable expression of HPV16 E7 linked to different mini-chaperones [N-/C-terminal of gp96] and compared their immunogenicity and protective effects in C57BL/6 mice against TC-1 challenge. TC-1 murine model is primary C57BL/6 mice lung epithelial cells co-transformed with HPV16 E6, HPV16 E7 and ras oncogenes. Our results showed that subcutaneous administration of mice with both the recombinant L.tar-E7-NT (gp96) and L.tar-E7-CT (gp96) led to enhance the levels of IFN-γ and also IgG2a before and after challenge with TC-1. Furthermore, L.tar-E7-CT (gp96) live vaccine indicated significant protective effects as compared to control groups as well as group vaccinated with L.tar-E7. Indeed, the recombinant live vector is capable of eliciting effective humoral and cellular immune responses in mice, but however, further studies are required to increase their efficacy.

  10. rBCG30-induced immunity and cross-protection against Mycobacterium leprae challenge are enhanced by boosting with the Mycobacterium tuberculosis 30-kilodalton antigen 85B.

    Science.gov (United States)

    Gillis, Thomas P; Tullius, Michael V; Horwitz, Marcus A

    2014-09-01

    Leprosy remains a major global health problem and typically occurs in regions in which tuberculosis is endemic. Vaccines are needed that protect against both infections and do so better than the suboptimal Mycobacterium bovis BCG vaccine. Here, we evaluated rBCG30, a vaccine previously demonstrated to induce protection superior to that of BCG against Mycobacterium tuberculosis and Mycobacterium bovis challenge in animal models, for efficacy against Mycobacterium leprae challenge in a murine model of leprosy. rBCG30 overexpresses the M. tuberculosis 30-kDa major secretory protein antigen 85B, which is 85% homologous with the M. leprae homolog (r30ML). Mice were sham immunized or immunized intradermally with BCG or rBCG30 and challenged 2.5 months later by injection of viable M. leprae into each hind footpad. After 7 months, vaccine efficacy was assessed by enumerating the M. leprae bacteria per footpad. Both BCG and rBCG30 induced significant protection against M. leprae challenge. In the one experiment in which a comparison between BCG and rBCG30 was feasible, rBCG30 induced significantly greater protection than did BCG. Immunization of mice with purified M. tuberculosis or M. leprae antigen 85B also induced protection against M. leprae challenge but less so than BCG or rBCG30. Notably, boosting rBCG30 with M. tuberculosis antigen 85B significantly enhanced r30ML-specific immune responses, substantially more so than boosting BCG, and significantly augmented protection against M. leprae challenge. Thus, rBCG30, a vaccine that induces improved protection against M. tuberculosis, induces cross-protection against M. leprae that is comparable or potentially superior to that induced by BCG, and boosting rBCG30 with antigen 85B further enhances immune responses and protective efficacy. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. Randomized phase I trial HIV-CORE 003: Depletion of serum amyloid P component and immunogenicity of DNA vaccination against HIV-1.

    Science.gov (United States)

    Borthwick, Nicola J; Lane, Thirusha; Moyo, Nathifa; Crook, Alison; Shim, Jung Min; Baines, Ian; Wee, Edmund G; Hawkins, Philip N; Gillmore, Julian D; Hanke, Tomáš; Pepys, Mark B

    2018-01-01

    The failure of DNA vaccination in humans, in contrast to its efficacy in some species, is unexplained. Observational and interventional experimental evidence suggests that DNA immunogenicity may be prevented by binding of human serum amyloid P component (SAP). SAP is the single normal DNA binding protein in human plasma. The drug (R)-1-[6-[(R)-2-carboxypyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC, miridesap), developed for treatment of systemic amyloidosis and Alzheimer's disease, depletes circulating SAP by 95-99%. The proof-of-concept HIV-CORE 003 clinical trial tested whether SAP depletion by CPHPC would enhance the immune response in human volunteers to DNA vaccination delivering the HIVconsv immunogen derived from conserved sub-protein regions of HIV-1. Human volunteers received 3 intramuscular immunizations with an experimental DNA vaccine (DDD) expressing HIV-1-derived immunogen HIVconsv, with or without prior depletion of SAP by CPHPC. All subjects were subsequently boosted by simian (chimpanzee) adenovirus (C)- and poxvirus MVA (M)-vectored vaccines delivering the same immunogen. After administration of each vaccine modality, the peak total magnitudes, kinetics, functionality and memory subsets of the T-cell responses to HIVconsv were thoroughly characterized. No differences were observed between the CPHPC treated and control groups in any of the multiple quantitative and qualitative parameters of the T-cell responses to HIVconsv, except that after SAP depletion, there was a statistically significantly greater breadth of T-cell specificities, that is the number of recognized epitopes, following the DDDC vaccination. The protocol used here for SAP depletion by CPHPC prior to DNA vaccination produced only a very modest suggestion of enhanced immunogenicity. Further studies will be required to determine whether SAP depletion might have a practical value in DNA vaccination for other plasmid backbones and/or immunogens. Clinicaltrials

  12. Cost-effectiveness of routine varicella vaccination using the measles, mumps, rubella and varicella vaccine in France: an economic analysis based on a dynamic transmission model for varicella and herpes zoster.

    Science.gov (United States)

    Littlewood, Kavi J; Ouwens, Mario J N M; Sauboin, Christophe; Tehard, Bertrand; Alain, Sophie; Denis, François

    2015-04-01

    Each year in France, varicella and zoster affect large numbers of children and adults, resulting in medical visits, hospitalizations for varicella- and zoster-related complications, and societal costs. Disease prevention by varicella vaccination is feasible, wherein a plausible option involves replacing the combined measles, mumps, and rubella (MMR) vaccine with the combined MMR and varicella (MMRV) vaccine. This study aimed to: (1) assess the cost-effectiveness of adding routine varicella vaccination through MMRV, using different vaccination strategies in France; and (2) address key uncertainties, such as the economic consequences of breakthrough varicella cases, the waning of vaccine-conferred protection, vaccination coverage, and indirect costs. Based on the outputs of a dynamic transmission model that used data on epidemiology and costs from France, a cost-effectiveness model was built. A conservative approach was taken regarding the impact of varicella vaccination on zoster incidence by assuming the validity of the hypothesis of an age-specific boosting of immunity against varicella. The model determined that routine MMRV vaccination is expected to be a cost-effective option, considering a cost-effectiveness threshold of €20,000 per quality-adjusted life-year saved; routine vaccination was cost-saving from the societal perspective. Results were driven by a large decrease in varicella incidence despite a temporary initial increase in the number of zoster cases due to the assumption of exogenous boosting. In the scenario analyses, despite moderate changes in assumptions about incidence and costs, varicella vaccination remained a cost-effective option for France. Routine vaccination with MMRV was associated with high gains in quality-adjusted life-years, substantial reduction in the occurrences of varicella- and zoster-related complications, and few deaths due to varicella. Routine MMRV vaccination is also expected to provide reductions in costs related to

  13. Automated Detection of Driver Fatigue Based on AdaBoost Classifier with EEG Signals

    Directory of Open Access Journals (Sweden)

    Jianfeng Hu

    2017-08-01

    Full Text Available Purpose: Driving fatigue has become one of the important causes of road accidents, there are many researches to analyze driver fatigue. EEG is becoming increasingly useful in the measuring fatigue state. Manual interpretation of EEG signals is impossible, so an effective method for automatic detection of EEG signals is crucial needed.Method: In order to evaluate the complex, unstable, and non-linear characteristics of EEG signals, four feature sets were computed from EEG signals, in which fuzzy entropy (FE, sample entropy (SE, approximate Entropy (AE, spectral entropy (PE, and combined entropies (FE + SE + AE + PE were included. All these feature sets were used as the input vectors of AdaBoost classifier, a boosting method which is fast and highly accurate. To assess our method, several experiments including parameter setting and classifier comparison were conducted on 28 subjects. For comparison, Decision Trees (DT, Support Vector Machine (SVM and Naive Bayes (NB classifiers are used.Results: The proposed method (combination of FE and AdaBoost yields superior performance than other schemes. Using FE feature extractor, AdaBoost achieves improved area (AUC under the receiver operating curve of 0.994, error rate (ERR of 0.024, Precision of 0.969, Recall of 0.984, F1 score of 0.976, and Matthews correlation coefficient (MCC of 0.952, compared to SVM (ERR at 0.035, Precision of 0.957, Recall of 0.974, F1 score of 0.966, and MCC of 0.930 with AUC of 0.990, DT (ERR at 0.142, Precision of 0.857, Recall of 0.859, F1 score of 0.966, and MCC of 0.716 with AUC of 0.916 and NB (ERR at 0.405, Precision of 0.646, Recall of 0.434, F1 score of 0.519, and MCC of 0.203 with AUC of 0.606. It shows that the FE feature set and combined feature set outperform other feature sets. AdaBoost seems to have better robustness against changes of ratio of test samples for all samples and number of subjects, which might therefore aid in the real-time detection of driver

  14. Chemoselective ligation and antigen vectorization.

    Science.gov (United States)

    Gras-Masse, H

    2001-01-01

    The interest in cocktail-lipopeptide vaccines has now been confirmed by phase I clinical trials: highly diversified B-, T-helper or cytotoxic T-cell epitopes can be combined with a lipophilic vector for the induction of B- and T-cell responses of predetermined specificity. With the goal of producing an improved vaccine that should ideally induce a multispecific response in non-selected populations, increasing the diversity of the immunizing mixture represents one of the most obvious strategies.The selective delivery of antigens to professional antigen-presenting cells represents another promising approach for the improvement of vaccine efficacy. In this context, the mannose-receptor represents an attractive entry point for the targeting to dendritic cells of antigens linked to clustered glycosides or glycomimetics. In all cases, highly complex but fully characterized molecules must be produced. To develop a modular and flexible strategy which could be generally applicable to a large set of peptide antigens, we elected to explore the potentialities of chemoselective ligation methods. The hydrazone bond was found particularly reliable and fully compatible with sulphide ligation. Hydrazone/thioether orthogonal ligation systems could be developed to account for the nature of the antigens and the solubility of the vector systems. Copyright 2001 The International Association for Biologicals.

  15. Weighted K-means support vector machine for cancer prediction.

    Science.gov (United States)

    Kim, SungHwan

    2016-01-01

    To date, the support vector machine (SVM) has been widely applied to diverse bio-medical fields to address disease subtype identification and pathogenicity of genetic variants. In this paper, I propose the weighted K-means support vector machine (wKM-SVM) and weighted support vector machine (wSVM), for which I allow the SVM to impose weights to the loss term. Besides, I demonstrate the numerical relations between the objective function of the SVM and weights. Motivated by general ensemble techniques, which are known to improve accuracy, I directly adopt the boosting algorithm to the newly proposed weighted KM-SVM (and wSVM). For predictive performance, a range of simulation studies demonstrate that the weighted KM-SVM (and wSVM) with boosting outperforms the standard KM-SVM (and SVM) including but not limited to many popular classification rules. I applied the proposed methods to simulated data and two large-scale real applications in the TCGA pan-cancer methylation data of breast and kidney cancer. In conclusion, the weighted KM-SVM (and wSVM) increases accuracy of the classification model, and will facilitate disease diagnosis and clinical treatment decisions to benefit patients. A software package (wSVM) is publicly available at the R-project webpage (https://www.r-project.org).

  16. Vaccination with Replication Deficient Adenovectors Encoding YF-17D Antigens Induces Long-Lasting Protection from Severe Yellow Fever Virus Infection in Mice.

    Science.gov (United States)

    Bassi, Maria R; Larsen, Mads A B; Kongsgaard, Michael; Rasmussen, Michael; Buus, Søren; Stryhn, Anette; Thomsen, Allan R; Christensen, Jan P

    2016-02-01

    The live attenuated yellow fever vaccine (YF-17D) has been successfully used for more than 70 years. It is generally considered a safe vaccine, however, recent reports of serious adverse events following vaccination have raised concerns and led to suggestions that even safer YF vaccines should be developed. Replication deficient adenoviruses (Ad) have been widely evaluated as recombinant vectors, particularly in the context of prophylactic vaccination against viral infections in which induction of CD8+ T-cell mediated immunity is crucial, but potent antibody responses may also be elicited using these vectors. In this study, we present two adenobased vectors targeting non-structural and structural YF antigens and characterize their immunological properties. We report that a single immunization with an Ad-vector encoding the non-structural protein 3 from YF-17D could elicit a strong CD8+ T-cell response, which afforded a high degree of protection from subsequent intracranial challenge of vaccinated mice. However, full protection was only observed using a vector encoding the structural proteins from YF-17D. This vector elicited virus-specific CD8+ T cells as well as neutralizing antibodies, and both components were shown to be important for protection thus mimicking the situation recently uncovered in YF-17D vaccinated mice. Considering that Ad-vectors are very safe, easy to produce and highly immunogenic in humans, our data indicate that a replication deficient adenovector-based YF vaccine may represent a safe and efficient alternative to the classical live attenuated YF vaccine and should be further tested.

  17. The influence of the boost in breast-conserving therapy on cosmetic outcome in the EORTC 'boost versus no boost' trial

    International Nuclear Information System (INIS)

    Vrieling, Conny; Collette, Laurence; Fourquet, Alain; Hoogenraad, Willem J.; Horiot, Jean-Claude; Jager, Jos J.; Pierart, Marianne; Poortmans, Philip M.; Struikmans, Henk; Hulst, Marleen van der; Schueren, Emmanuel van der; Bartelink, Harry

    1999-01-01

    Purpose: To evaluate the influence of a radiotherapy boost on the cosmetic outcome after 3 years of follow-up in patients treated with breast-conserving therapy (BCT). Methods and Materials: In EORTC trial 22881/10882, 5569 Stage I and II breast cancer patients were treated with tumorectomy and axillary dissection, followed by tangential irradiation of the breast to a dose of 50 Gy in 5 weeks, at 2 Gy per fraction. Patients having a microscopically complete tumor excision were randomized between no boost and a boost of 16 Gy. The cosmetic outcome was evaluated by a panel, scoring photographs of 731 patients taken soon after surgery and 3 years later, and by digitizer measurements, measuring the displacement of the nipple of 3000 patients postoperatively and of 1141 patients 3 years later. Results: There was no difference in the cosmetic outcome between the two treatment arms after surgery, before the start of radiotherapy. At 3-year follow-up, both the panel evaluation and the digitizer measurements showed that the boost had a significant adverse effect on the cosmetic result. The panel evaluation at 3 years showed that 86% of patients in the no-boost group had an excellent or good global result, compared to 71% of patients in the boost group (p = 0.0001). The digitizer measurements at 3 years showed a relative breast retraction assessment (pBRA) of 7.6 pBRA in the no-boost group, compared to 8.3 pBRA in the boost group, indicating a worse cosmetic result in the boost group at follow-up (p = 0.04). Conclusions: These results showed that a boost dose of 16 Gy had a negative, but limited, impact on the cosmetic outcome after 3 years

  18. "The Impact of Mycobacterium tuberculosis Immune Evasion on Protective Immunity: Implications for TB Vaccine Design" - Meeting report.

    Science.gov (United States)

    Boggiano, Cesar; Eichelberg, Katrin; Ramachandra, Lakshmi; Shea, Jaqueline; Ramakrishnan, Lalita; Behar, Samuel; Ernst, Joel D; Porcelli, Steven A; Maeurer, Markus; Kornfeld, Hardy

    2017-06-14

    Tuberculosis (TB) is the major cause of death from infectious diseases around the world, particularly in HIV infected individuals. TB vaccine design and development have been focused on improving Bacille Calmette-Guérin (BCG) and evaluating recombinant and viral vector expressed Mycobacterium tuberculosis (Mtb) proteins, for boosting BCG-primed immunity, but these approaches have not yet yielded significant improvements over the modest effects of BCG in protecting against infection or disease. On March 7-8, 2016, the National Institute of Allergy and Infectious Diseases (NIAID) convened a workshop on "The Impact of Mtb Immune Evasion on Protective Immunity: Implications for TB Vaccine Design" with the goal of defining immune mechanisms that could be targeted through novel research approaches, to inform vaccine design and immune therapeutic interventions for prevention of TB. The workshop addressed early infection events, the impact of Mtb evolution on the development and maintenance of an adaptive immune response, and the factors that influence protection against and progression to active disease. Scientific gaps and areas of study to revitalize and accelerate TB vaccine design were discussed and prioritized. These included a comprehensive evaluation of innate and Mtb-specific adaptive immune responses in the lung at different stages of disease; determining the role of B cells and antibodies (Abs) during Mtb infection; development of better assays to measure Mtb burden following exposure, infection, during latency and after treatment, and approaches to improving current animal models to study Mtb immunogenicity, TB disease and transmission. Copyright © 2017.

  19. The recent progress in RSV vaccine technology.

    Science.gov (United States)

    Fretzayas, Andrew; Papadopoulou, Anna; Kotzia, Doxa; Moustaki, Maria

    2012-12-01

    The most effective way to control RSV infection would be the development of an expedient and safe vaccine. Subunit vaccines, live attenuated RSV vaccines, plasmid DNA vaccines have been tested either in human or in mouse models without reaching the ultimate goal of efficacy and safety, at least in humans. Viruses such as adenovirus, sendai virus, measles virus were also used as vectors for the generation of RSV vaccines with promising results in animal models. Recent patents describe new techniques for the generation of candidate vaccines. These patents include virus like particles as vaccine platforms, recombinant RSVs or modified RSV F protein as component of the vaccine. Despite the number of the candidate vaccines, the new RSV vaccines should overcome many obstacles before being established as effective vaccines for the control of RSV infections especially for the young infants who are more susceptible to the virus.

  20. Oblique decision trees using embedded support vector machines in classifier ensembles

    NARCIS (Netherlands)

    Menkovski, V.; Christou, I.; Efremidis, S.

    2008-01-01

    Classifier ensembles have emerged in recent years as a promising research area for boosting pattern recognition systems' performance. We present a new base classifier that utilizes oblique decision tree technology based on support vector machines for the construction of oblique (non-axis parallel)

  1. A novel non-toxic combined CTA1-DD and ISCOMS adjuvant vector for effective mucosal immunization against influenza virus.

    Science.gov (United States)

    Eliasson, Dubravka Grdic; Helgeby, Anja; Schön, Karin; Nygren, Caroline; El-Bakkouri, Karim; Fiers, Walter; Saelens, Xavier; Lövgren, Karin Bengtsson; Nyström, Ida; Lycke, Nils Y

    2011-05-23

    Here we demonstrate that by using non-toxic fractions of saponin combined with CTA1-DD we can achieve a safe and above all highly efficacious mucosal adjuvant vector. We optimized the construction, tested the requirements for function and evaluated proof-of-concept in an influenza A virus challenge model. We demonstrated that the CTA1-3M2e-DD/ISCOMS vector provided 100% protection against mortality and greatly reduced morbidity in the mouse model. The immunogenicity of the vector was superior to other vaccine formulations using the ISCOM or CTA1-DD adjuvants alone. The versatility of the vector was best exemplified by the many options to insert, incorporate or admix vaccine antigens with the vector. Furthermore, the CTA1-3M2e-DD/ISCOMS could be kept 1 year at 4°C or as a freeze-dried powder without affecting immunogenicity or adjuvanticity of the vector. Strong serum IgG and mucosal IgA responses were elicited and CD4 T cell responses were greatly enhanced after intranasal administration of the combined vector. Together these findings hold promise for the combined vector as a mucosal vaccine against influenza virus infections including pandemic influenza. The CTA1-DD/ISCOMS technology represents a breakthrough in mucosal vaccine vector design which successfully combines immunomodulation and targeting in a safe and stable particulate formation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Boost.Unicode

    OpenAIRE

    Wien, Erik; Gigstad, Lars Erik

    2005-01-01

    The project has resulted in a Unicode string library for C++ that abstracts away the complexity of working with Unicode text. The idea behind the project originated from the Boost community's developer mailings lists, and is developed with inclusion into the Boost library collection in mind.

  3. Durable protection of rhesus macaques immunized with a replicating adenovirus-SIV multigene prime/protein boost vaccine regimen against a second SIVmac251 rectal challenge: role of SIV-specific CD8+ T cell responses.

    Science.gov (United States)

    Malkevitch, Nina V; Patterson, L Jean; Aldrich, M Kristine; Wu, Yichen; Venzon, David; Florese, Ruth H; Kalyanaraman, V S; Pal, Ranajit; Lee, Eun Mi; Zhao, Jun; Cristillo, Anthony; Robert-Guroff, Marjorie

    2006-09-15

    Previously, priming with replication-competent adenovirus-SIV multigenic vaccines and boosting with envelope subunits strongly protected 39% of rhesus macaques against rectal SIV(mac251) challenge. To evaluate protection durability, eleven of the protected and two SIV-infected unimmunized macaques that controlled viremia were re-challenged rectally with SIV(mac251). Strong protection was observed in 8/11 vaccinees, including two exhibiting protected macaques. Durable protection was associated with significantly increased SIV-specific ELISPOT responses and lymphoproliferative responses to p27 at re-challenge. After CD8 depletion, 2 of 8 re-challenged, protected vaccinees maintained protection against re-challenge.

  4. Novel bivalent vectored vaccine for control of myxomatosis and rabbit haemorrhagic disease.

    Science.gov (United States)

    Spibey, N; McCabe, V J; Greenwood, N M; Jack, S C; Sutton, D; van der Waart, L

    2012-03-24

    A novel, recombinant myxoma virus-rabbit haemorrhagic disease virus (RHDV) vaccine has been developed for the prevention of myxomatosis and rabbit haemorrhagic disease (RHD). A number of laboratory studies are described illustrating the safety and efficacy of the vaccine following subcutaneous administration in laboratory rabbits from four weeks of age onwards. In these studies, both vaccinated and unvaccinated control rabbits were challenged using pathogenic strains of RHD and myxoma viruses, and 100 per cent of the vaccinated rabbits were protected against both myxomatosis and RHD.

  5. 9 CFR 113.208 - Avian Encephalomyelitis Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ..., Killed Virus. 113.208 Section 113.208 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.208 Avian Encephalomyelitis Vaccine, Killed Virus. Avian...

  6. 9 CFR 113.210 - Feline Calicivirus Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... Virus. 113.210 Section 113.210 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.210 Feline Calicivirus Vaccine, Killed Virus. Feline Calicivirus...

  7. 9 CFR 113.211 - Feline Rhinotracheitis Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... Virus. 113.211 Section 113.211 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.211 Feline Rhinotracheitis Vaccine, Killed Virus. Feline...

  8. 9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... Virus. 113.216 Section 113.216 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine...

  9. 9 CFR 113.203 - Feline Panleukopenia Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... Virus. 113.203 Section 113.203 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.203 Feline Panleukopenia Vaccine, Killed Virus. Feline Panleukopenia...

  10. Development and trial of vaccines against Brucella.

    Science.gov (United States)

    Lalsiamthara, Jonathan; Lee, John Hwa

    2017-08-31

    The search for ideal brucellosis vaccines remains active today. Currently, no licensed human or canine anti-brucellosis vaccines are available. In bovines, the most successful vaccine (S19) is only used in calves, as adult vaccination results in orchitis in male, prolonged infection, and possible abortion complications in pregnant female cattle. Another widely deployed vaccine (RB51) has a low protective efficacy. An ideal vaccine should exhibit a safe profile as well as enhance protective efficacy. However, currently available vaccines exhibit one or more major drawbacks. Smooth live attenuated vaccines suffer shortcomings such as residual virulence and serodiagnostic interference. Inactivated vaccines, in general, confer relatively low levels of protection. Recent developments to improve brucellosis vaccines include generation of knockout mutants by targeting genes involved in metabolism, virulence, and the lipopolysaccharide synthesis pathway, as well as generation of DNA vaccines, mucosal vaccines, and live vectored vaccines, have all produced varying degrees of success. Herein, we briefly review the bacteriology, pathogenesis, immunological implications, candidate vaccines, vaccinations, and models related to Brucella .

  11. Multiagent vaccines vectored by Venezuelan equine encephalitis virus replicon elicits immune responses to Marburg virus and protection against anthrax and botulinum neurotoxin in mice.

    Science.gov (United States)

    Lee, John S; Groebner, Jennifer L; Hadjipanayis, Angela G; Negley, Diane L; Schmaljohn, Alan L; Welkos, Susan L; Smith, Leonard A; Smith, Jonathan F

    2006-11-17

    The development of multiagent vaccines offers the advantage of eliciting protection against multiple diseases with minimal inoculations over a shorter time span. We report here the results of using formulations of individual Venezuelan equine encephalitis (VEE) virus replicon-vectored vaccines against a bacterial disease, anthrax; a viral disease, Marburg fever; and against a toxin-mediated disease, botulism. The individual VEE replicon particles (VRP) expressed mature 83-kDa protective antigen (MAT-PA) from Bacillus anthracis, the glycoprotein (GP) from Marburg virus (MBGV), or the H(C) fragment from botulinum neurotoxin (BoNT H(C)). CBA/J mice inoculated with a mixture of VRP expressing BoNT H(C) serotype C (BoNT/C H(C)) and MAT-PA were 80% protected from a B. anthracis (Sterne strain) challenge and then 100% protected from a sequential BoNT/C challenge. Swiss mice inoculated with individual VRP or with mixtures of VRP vaccines expressing BoNT H(C) serotype A (BoNT/A H(C)), MAT-PA, and MBGV-GP produced antibody responses specific to the corresponding replicon-expressed protein. Combination of the different VRP vaccines did not diminish the antibody responses measured for Swiss mice inoculated with formulations of two or three VRP vaccines as compared to mice that received only one VRP vaccine. Swiss mice inoculated with VRP expressing BoNT/A H(C) alone or in combination with VRP expressing MAT-PA and MBGV GP, were completely protected from a BoNT/A challenge. These studies demonstrate the utility of combining individual VRP vaccines into multiagent formulations for eliciting protective immune responses to various types of diseases.

  12. The simultaneous boost technique

    International Nuclear Information System (INIS)

    Lebesque, J.V.; Keus, R.B.

    1991-01-01

    Simultaneous boost technique in radiotherapy consists of delivering the boost treatment (additional doses to reduced volumes) simultaneously with the basic (large-field) treatment for all treatment sessions. Both the dose per fraction delivered by basic-treatment fields and by boost-treatment fields have to be reduced to end up with the same total dose in boost volume as in the original schedule, where basic treatment preceded boost treatment. These dose reductions and corresponding weighting factors have been calculated using the linear-quadratic (LQ) model and the concept of Normalized Total Dose (NTD). Relative NTD distributions were computed to evaluate the dose distributions resulting for the simultaneous boost technique with respect to acute and late normal tissue damage and tumor control. For the example of treatment of prostate cancer the weighting factors were calculated on basis of NTD for late normal tissue damage. For treatment of oropharyngeal cancer NTD for acute and normal tissue damage was used to determine the weighting factors. In this last example a theoretical sparing of late normal tissue damage can be demonstrated. Another advantage of simultaneous boost technique is that megavoltage images of the large basic-treatment fields facilitates the determination of the position of the patient with respect to the small boost-treatment fields. (author). 42 refs., 8 figs

  13. Coated microneedle arrays for transcutaneous delivery of live virus vaccines

    OpenAIRE

    Vrdoljak, Anto; McGrath, Marie G.; Carey, John B.; Draper, Simon J.; Hill, Adrian V.S.; O’Mahony, Conor; Crean, Abina M.; Moore, Anne C.

    2011-01-01

    Vaccines are sensitive biologics that require continuous refrigerated storage to maintain their viability. The vast majority of vaccines are also administered using needles and syringes. The need for cold chain storage and the significant logistics surrounding needle-and-syringe vaccination is constraining the success of immunization programs. Recombinant live viral vectors are a promising platform for the development of vaccines against a number of infectious diseases, however these viruses ...

  14. Tipping the Proteome with Gene-Based Vaccines: Weighing in on the Role of Nano materials

    International Nuclear Information System (INIS)

    Flores, K.J.; Craig, M.; Smith, J.J.; DeLong, R.K.; Wanekaya, A.; Dong, L.

    2012-01-01

    Since the first generation of DNA vaccines was introduced in 1988, remarkable improvements have been made to improve their efficacy and immunogenicity. Although human clinical trials have shown that delivery of DNA vaccines is well tolerated and safe, the potency of these vaccines in humans is somewhat less than optimal. The development of a gene-based vaccine that was effective enough to be approved for clinical use in humans would be one of, if not the most important, advance in vaccines to date. This paper highlights the literature relating to gene-based vaccines, specifically DNA vaccines, and suggests possible approaches to boost their performance. In addition, we explore the idea that combining RNA and nano materials may hold the key to successful gene-based vaccines for prevention and treatment of disease

  15. Saccharomyces cerevisiae-derived virus-like particle parvovirus B19 vaccine elicits binding and neutralizing antibodies in a mouse model for sickle cell disease.

    Science.gov (United States)

    Penkert, Rhiannon R; Young, Neal S; Surman, Sherri L; Sealy, Robert E; Rosch, Jason; Dormitzer, Philip R; Settembre, Ethan C; Chandramouli, Sumana; Wong, Susan; Hankins, Jane S; Hurwitz, Julia L

    2017-06-22

    Parvovirus B19 infections are typically mild in healthy individuals, but can be life threatening in individuals with sickle cell disease (SCD). A Saccharomyces cerevisiae-derived B19 VLP vaccine, now in pre-clinical development, is immunogenic in wild type mice when administered with the adjuvant MF59. Because SCD alters the immune response, we evaluated the efficacy of this vaccine in a mouse model for SCD. Vaccinated mice with SCD demonstrated similar binding and neutralizing antibody responses to those of heterozygous littermate controls following a prime-boost-boost regimen. Due to the lack of a mouse parvovirus B19 challenge model, we employed a natural mouse pathogen, Sendai virus, to evaluate SCD respiratory tract responses to infection. Normal mucosal and systemic antibody responses were observed in these mice. Results demonstrate that mice with SCD can respond to a VLP vaccine and to a respiratory virus challenge, encouraging rapid development of the B19 vaccine for patients with SCD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Adenoviral vector immunity: its implications and circumvention strategies.

    Science.gov (United States)

    Ahi, Yadvinder S; Bangari, Dinesh S; Mittal, Suresh K

    2011-08-01

    Adenoviral (Ad) vectors have emerged as a promising gene delivery platform for a variety of therapeutic and vaccine purposes during last two decades. However, the presence of preexisting Ad immunity and the rapid development of Ad vector immunity still pose significant challenges to the clinical use of these vectors. Innate inflammatory response following Ad vector administration may lead to systemic toxicity, drastically limit vector transduction efficiency and significantly abbreviate the duration of transgene expression. Currently, a number of approaches are being extensively pursued to overcome these drawbacks by strategies that target either the host or the Ad vector. In addition, significant progress has been made in the development of novel Ad vectors based on less prevalent human Ad serotypes and nonhuman Ad. This review provides an update on our current understanding of immune responses to Ad vectors and delineates various approaches for eluding Ad vector immunity. Approaches targeting the host and those targeting the vector are discussed in light of their promises and limitations.

  17. HIV-1 vaccines

    Science.gov (United States)

    Excler, Jean-Louis; Robb, Merlin L; Kim, Jerome H

    2014-01-01

    The development of a safe and effective preventive HIV-1 vaccine remains a public health priority. Despite scientific difficulties and disappointing results, HIV-1 vaccine clinical development has, for the first time, established proof-of-concept efficacy against HIV-1 acquisition and identified vaccine-associated immune correlates of risk. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop correlated with decreased risk of HIV infection, while Env-specific IgA directly correlated with increased risk. The development of vaccine strategies such as improved envelope proteins formulated with potent adjuvants and DNA and vectors expressing mosaics, or conserved sequences, capable of eliciting greater breadth and depth of potentially relevant immune responses including neutralizing and non-neutralizing antibodies, CD4+ and CD8+ cell-mediated immune responses, mucosal immune responses, and immunological memory, is now proceeding quickly. Additional human efficacy trials combined with other prevention modalities along with sustained funding and international collaboration remain key to bring an HIV-1 vaccine to licensure. PMID:24637946

  18. A Protective Vaccine against Chlamydia Genital Infection Using Vault Nanoparticles without an Added Adjuvant.

    Science.gov (United States)

    Jiang, Janina; Liu, Guangchao; Kickhoefer, Valerie A; Rome, Leonard H; Li, Lin-Xi; McSorley, Stephen J; Kelly, Kathleen A

    2017-01-19

    Chlamydia trachomatis genital infection is the most common sexually transmitted bacterial disease, causing a significant burden to females due to reproductive dysfunction. Intensive screening and antibiotic treatment are unable to completely prevent female reproductive dysfunction, thus, efforts have become focused on developing a vaccine. A major impediment is identifying a safe and effective adjuvant which induces cluster of differentiation 4 (CD4) cells with attributes capable of halting genital infection and inflammation. Previously, we described a natural nanocapsule called the vault which was engineered to contain major outer membrane protein (MOMP) and was an effective vaccine which significantly reduced early infection and favored development of a cellular immune response in a mouse model. In the current study, we used another chlamydial antigen, a polymorphic membrane protein G-1 (PmpG) peptide, to track antigen-specific cells and evaluate, in depth, the vault vaccine for its protective capacity in the absence of an added adjuvant. We found PmpG-vault immunized mice significantly reduced the genital bacterial burden and histopathologic parameters of inflammation following a C. muridarum challenge. Immunization boosted antigen-specific CD4 cells with a multiple cytokine secretion pattern and reduced the number of inflammatory cells in the genital tract making the vault vaccine platform safe and effective for chlamydial genital infection. We conclude that vaccination with a Chlamydia -vault vaccine boosts antigen-specific immunities that are effective at eradicating infection and preventing reproductive tract inflammation.

  19. A Protective Vaccine against Chlamydia Genital Infection Using Vault Nanoparticles without an Added Adjuvant

    Directory of Open Access Journals (Sweden)

    Janina Jiang

    2017-01-01

    Full Text Available Chlamydia trachomatis genital infection is the most common sexually transmitted bacterial disease, causing a significant burden to females due to reproductive dysfunction. Intensive screening and antibiotic treatment are unable to completely prevent female reproductive dysfunction, thus, efforts have become focused on developing a vaccine. A major impediment is identifying a safe and effective adjuvant which induces cluster of differentiation 4 (CD4 cells with attributes capable of halting genital infection and inflammation. Previously, we described a natural nanocapsule called the vault which was engineered to contain major outer membrane protein (MOMP and was an effective vaccine which significantly reduced early infection and favored development of a cellular immune response in a mouse model. In the current study, we used another chlamydial antigen, a polymorphic membrane protein G-1 (PmpG peptide, to track antigen-specific cells and evaluate, in depth, the vault vaccine for its protective capacity in the absence of an added adjuvant. We found PmpG-vault immunized mice significantly reduced the genital bacterial burden and histopathologic parameters of inflammation following a C. muridarum challenge. Immunization boosted antigen-specific CD4 cells with a multiple cytokine secretion pattern and reduced the number of inflammatory cells in the genital tract making the vault vaccine platform safe and effective for chlamydial genital infection. We conclude that vaccination with a Chlamydia-vault vaccine boosts antigen-specific immunities that are effective at eradicating infection and preventing reproductive tract inflammation.

  20. Space Vector Pulse Width Modulation Strategy for Single-Phase Three-Level CIC T-source Inverter

    DEFF Research Database (Denmark)

    Shults, Tatiana E.; Husev, Oleksandr O.; Blaabjerg, Frede

    2016-01-01

    This paper presents a novel space vector pulse-width modulation strategy for a single-phase three-level buck-boost inverter based on an impedance-source network. The case study system is based on T-source inverter with continuous input current. To demonstrate the improved performance of the inver......This paper presents a novel space vector pulse-width modulation strategy for a single-phase three-level buck-boost inverter based on an impedance-source network. The case study system is based on T-source inverter with continuous input current. To demonstrate the improved performance...... of the inverter, the strategy was compared the traditional pulse-width modulation. It is shown that the approach proposed has fewer switching states and does not suffer from neutral point misbalance....

  1. Sequential Immunization with gp140 Boosts Immune Responses Primed by Modified Vaccinia Ankara or DNA in HIV-Uninfected South African Participants.

    Directory of Open Access Journals (Sweden)

    Gavin Churchyard

    Full Text Available The safety and immunogenicity of SAAVI DNA-C2 (4 mg IM, SAAVI MVA-C (2.9 x 109 pfu IM and Novartis V2-deleted subtype C gp140 (100 mcg with MF59 adjuvant in various vaccination regimens was evaluated in HIV-uninfected adults in South Africa.Participants at three South African sites were randomized (1:1:1:1 to one of four vaccine regimens: MVA prime, sequential gp140 protein boost (M/M/P/P; concurrent MVA/gp140 (MP/MP; DNA prime, sequential MVA boost (D/D/M/M; DNA prime, concurrent MVA/gp140 boost (D/D/MP/MP or placebo. Peak HIV specific humoral and cellular responses were measured.184 participants were enrolled: 52% were female, all were Black/African, median age was 23 years (range, 18-42 years and 79% completed all vaccinations. 159 participants reported at least one adverse event, 92.5% were mild or moderate. Five, unrelated, serious adverse events were reported. The M/M/P/P and D/D/MP/MP regimens induced the strongest peak neutralizing and binding antibody responses and the greatest CD4+ T-cell responses to Env. All peak neutralizing and binding antibody responses decayed with time. The MVA, but not DNA, prime contributed to the humoral and cellular immune responses. The D/D/M/M regimen was poorly immunogenic overall but did induce modest CD4+ T-cell responses to Gag and Pol. CD8+ T-cell responses to any antigen were low for all regimens.The SAAVI DNA-C2, SAAVI MVA-C and Novartis gp140 with MF59 adjuvant in various combinations were safe and induced neutralizing and binding antibodies and cellular immune responses. Sequential immunization with gp140 boosted immune responses primed by MVA or DNA. The best overall immune responses were seen with the M/M/P/P regimen.ClinicalTrials.gov NCT01418235.

  2. Modified Vaccinia Virus Ankara: History, Value in Basic Research, and Current Perspectives for Vaccine Development.

    Science.gov (United States)

    Volz, A; Sutter, G

    2017-01-01

    Safety tested Modified Vaccinia virus Ankara (MVA) is licensed as third-generation vaccine against smallpox and serves as a potent vector system for development of new candidate vaccines against infectious diseases and cancer. Historically, MVA was developed by serial tissue culture passage in primary chicken cells of vaccinia virus strain Ankara, and clinically used to avoid the undesirable side effects of conventional smallpox vaccination. Adapted to growth in avian cells MVA lost the ability to replicate in mammalian hosts and lacks many of the genes orthopoxviruses use to conquer their host (cell) environment. As a biologically well-characterized mutant virus, MVA facilitates fundamental research to elucidate the functions of poxvirus host-interaction factors. As extremely safe viral vectors MVA vaccines have been found immunogenic and protective in various preclinical infection models. Multiple recombinant MVA currently undergo clinical testing for vaccination against human immunodeficiency viruses, Mycobacterium tuberculosis or Plasmodium falciparum. The versatility of the MVA vector vaccine platform is readily demonstrated by the swift development of experimental vaccines for immunization against emerging infections such as the Middle East Respiratory Syndrome. Recent advances include promising results from the clinical testing of recombinant MVA-producing antigens of highly pathogenic avian influenza virus H5N1 or Ebola virus. This review summarizes our current knowledge about MVA as a unique strain of vaccinia virus, and discusses the prospects of exploiting this virus as research tool in poxvirus biology or as safe viral vector vaccine to challenge existing and future bottlenecks in vaccinology. © 2017 Elsevier Inc. All rights reserved.

  3. Enhancing the Immunogenicity of a Tetravalent Dengue DNA Vaccine

    Science.gov (United States)

    2016-08-01

    season’s influenza vaccine. There is no overlap with the proposed project. Title: Serological survey for Zika virus and other vector-borne pathogen...studying human immunology and pathogenesis of dengue virus infection Time Commitments: 5% 0.6 calendar months Supporting Agency: Military Infectious...attenuated dengue virus vaccine (LAV), and (3) inactivated dengue virus vaccine. Dengue fever ranks among the top infectious diseases that afflict

  4. Development of Cytomegalovirus-Based Vaccines Against Melanoma

    Science.gov (United States)

    2016-10-01

    Efficacy will be examined in mice by vaccination at 7, 14, and 21 days after tumor induction through monitoring tumor incidence, size, survival...intradermal B16 solid tumor model. Mice were inoculated with B16F10 and 3 days later were vaccinated with MCMVgp100KGP. For one experiment, mice were...We are now comparing the efficacy of this new vaccine to other single epitope virus vectors. Q6. can you please also clarify the AIMS of the SPARK

  5. The immunological potency and therapeutic potential of a prototype dual vaccine against influenza and Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Martinez-Sobrido Luis

    2011-08-01

    Full Text Available Abstract Background Numerous pre-clinical studies and clinical trials demonstrated that induction of antibodies to the β-amyloid peptide of 42 residues (Aβ42 elicits therapeutic effects in Alzheimer's disease (AD. However, an active vaccination strategy based on full length Aβ42 is currently hampered by elicitation of T cell pathological autoreactivity. We attempt to improve vaccine efficacy by creating a novel chimeric flu vaccine expressing the small immunodominant B cell epitope of Aβ42. We hypothesized that in elderly people with pre-existing memory Th cells specific to influenza this dual vaccine will simultaneously boost anti-influenza immunity and induce production of therapeutically active anti-Aβ antibodies. Methods Plasmid-based reverse genetics system was used for the rescue of recombinant influenza virus containing immunodominant B cell epitopes of Aβ42 (Aβ1-7/10. Results Two chimeric flu viruses expressing either 7 or 10 aa of Aβ42 (flu-Aβ1-7 or flu-Aβ1-10 were generated and tested in mice as conventional inactivated vaccines. We demonstrated that this dual vaccine induced therapeutically potent anti-Aβ antibodies and anti-influenza antibodies in mice. Conclusion We suggest that this strategy might be beneficial for treatment of AD patients as well as for prevention of development of AD pathology in pre-symptomatic individuals while concurrently boosting immunity against influenza.

  6. Replicating rather than nonreplicating adenovirus-human immunodeficiency virus recombinant vaccines are better at eliciting potent cellular immunity and priming high-titer antibodies.

    Science.gov (United States)

    Peng, Bo; Wang, Liqun Rejean; Gómez-Román, Victor Raúl; Davis-Warren, Alberta; Montefiori, David C; Kalyanaraman, V S; Venzon, David; Zhao, Jun; Kan, Elaine; Rowell, Thomas J; Murthy, Krishna K; Srivastava, Indresh; Barnett, Susan W; Robert-Guroff, Marjorie

    2005-08-01

    A major challenge in combating the human immunodeficiency virus (HIV) epidemic is the development of vaccines capable of inducing potent, persistent cellular immunity and broadly reactive neutralizing antibody responses to HIV type 1 (HIV-1). We report here the results of a preclinical trial using the chimpanzee model to investigate a combination vaccine strategy involving sequential priming immunizations with different serotypes of adenovirus (Ad)/HIV-1(MN)env/rev recombinants and boosting with an HIV envelope subunit protein, oligomeric HIV(SF162) gp140deltaV2. The immunogenicities of replicating and nonreplicating Ad/HIV-1(MN)env/rev recombinants were compared. Replicating Ad/HIV recombinants were better at eliciting HIV-specific cellular immune responses and better at priming humoral immunity against HIV than nonreplicating Ad-HIV recombinants carrying the same gene insert. Enhanced cellular immunity was manifested by a greater frequency of HIV envelope-specific gamma interferon-secreting peripheral blood lymphocytes and better priming of T-cell proliferative responses. Enhanced humoral immunity was seen in higher anti-envelope binding and neutralizing antibody titers and better induction of antibody-dependent cellular cytotoxicity. More animals primed with replicating Ad recombinants mounted neutralizing antibodies against heterologous R5 viruses after one or two booster immunizations with the mismatched oligomeric HIV-1(SF162) gp140deltaV2 protein. These results support continued development of the replicating Ad-HIV recombinant vaccine approach and suggest that the use of replicating vectors for other vaccines may prove fruitful.

  7. Immune activation alters cellular and humoral responses to yellow fever 17D vaccine.

    Science.gov (United States)

    Muyanja, Enoch; Ssemaganda, Aloysius; Ngauv, Pearline; Cubas, Rafael; Perrin, Helene; Srinivasan, Divya; Canderan, Glenda; Lawson, Benton; Kopycinski, Jakub; Graham, Amanda S; Rowe, Dawne K; Smith, Michaela J; Isern, Sharon; Michael, Scott; Silvestri, Guido; Vanderford, Thomas H; Castro, Erika; Pantaleo, Giuseppe; Singer, Joel; Gillmour, Jill; Kiwanuka, Noah; Nanvubya, Annet; Schmidt, Claudia; Birungi, Josephine; Cox, Josephine; Haddad, Elias K; Kaleebu, Pontiano; Fast, Patricia; Sekaly, Rafick-Pierre; Trautmann, Lydie; Gaucher, Denis

    2014-07-01

    Defining the parameters that modulate vaccine responses in African populations will be imperative to design effective vaccines for protection against HIV, malaria, tuberculosis, and dengue virus infections. This study aimed to evaluate the contribution of the patient-specific immune microenvironment to the response to the licensed yellow fever vaccine 17D (YF-17D) in an African cohort. We compared responses to YF-17D in 50 volunteers in Entebbe, Uganda, and 50 volunteers in Lausanne, Switzerland. We measured the CD8+ T cell and B cell responses induced by YF-17D and correlated them with immune parameters analyzed by flow cytometry prior to vaccination. We showed that YF-17D-induced CD8+ T cell and B cell responses were substantially lower in immunized individuals from Entebbe compared with immunized individuals from Lausanne. The impaired vaccine response in the Entebbe cohort associated with reduced YF-17D replication. Prior to vaccination, we observed higher frequencies of exhausted and activated NK cells, differentiated T and B cell subsets and proinflammatory monocytes, suggesting an activated immune microenvironment in the Entebbe volunteers. Interestingly, activation of CD8+ T cells and B cells as well as proinflammatory monocytes at baseline negatively correlated with YF-17D-neutralizing antibody titers after vaccination. Additionally, memory T and B cell responses in preimmunized volunteers exhibited reduced persistence in the Entebbe cohort but were boosted by a second vaccination. Together, these results demonstrate that an activated immune microenvironment prior to vaccination impedes efficacy of the YF-17D vaccine in an African cohort and suggest that vaccine regimens may need to be boosted in African populations to achieve efficient immunity. Registration is not required for observational studies. This study was funded by Canada's Global Health Research Initiative, Defense Threat Reduction Agency, National Institute of Allergy and Infectious Diseases

  8. Real-time detection with AdaBoost-svm combination in various face orientation

    Science.gov (United States)

    Fhonna, R. P.; Nasution, M. K. M.; Tulus

    2018-03-01

    Most of the research has used algorithm AdaBoost-SVM for face detection. However, to our knowledge so far there is no research has been facing detection on real-time data with various orientations using the combination of AdaBoost and Support Vector Machine (SVM). Characteristics of complex and diverse face variations and real-time data in various orientations, and with a very complex application will slow down the performance of the face detection system this becomes a challenge in this research. Face orientation performed on the detection system, that is 900, 450, 00, -450, and -900. This combination method is expected to be an effective and efficient solution in various face orientations. The results showed that the highest average detection rate is on the face detection oriented 00 and the lowest detection rate is in the face orientation 900.

  9. Boost.Asio C++ network programming

    CERN Document Server

    Torjo, John

    2013-01-01

    What you want is an easy level of abstraction, which is just what this book provides in conjunction with Boost.Asio. Switching to Boost.Asio is just a few extra #include directives away, with the help of this practical and engaging guide.This book is great for developers that need to do network programming, who don't want to delve into the complicated issues of a raw networking API. You should be familiar with core Boost concepts, such as smart pointers and shared_from_this, resource classes (noncopyable), functors and boost::bind, boost mutexes, and the boost date/time library. Readers should

  10. Boosting foundations and algorithms

    CERN Document Server

    Schapire, Robert E

    2012-01-01

    Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate "rules of thumb." A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical.

  11. Antibody Secreting Cell Responses following Vaccination with Bivalent Oral Cholera Vaccine among Haitian Adults.

    Directory of Open Access Journals (Sweden)

    Wilfredo R Matias

    2016-06-01

    Full Text Available The bivalent whole-cell (BivWC oral cholera vaccine (Shanchol is effective in preventing cholera. However, evaluations of immune responses following vaccination with BivWC have been limited. To determine whether BivWC induces significant mucosal immune responses, we measured V. cholerae O1 antigen-specific antibody secreting cell (ASC responses following vaccination.We enrolled 24 Haitian adults in this study, and administered doses of oral BivWC vaccine 14 days apart (day 0 and day 14. We drew blood at baseline, and 7 days following each vaccine dose (day 7 and 21. Peripheral blood mononuclear cells (PBMCs were isolated, and ASCs were enumerated using an ELISPOT assay. Significant increases in Ogawa (6.9 cells per million PBMCs and Inaba (9.5 cells per million PBMCs OSP-specific IgA ASCs were detected 7 days following the first dose (P < 0.001, but not the second dose. The magnitude of V. cholerae-specific ASC responses did not appear to be associated with recent exposure to cholera. ASC responses measured against the whole lipolysaccharide (LPS antigen and the OSP moiety of LPS were equivalent, suggesting that all or nearly all of the LPS response targets the OSP moiety.Immunization with the BivWC oral cholera vaccine induced ASC responses among a cohort of healthy adults in Haiti after a single dose. The second dose of vaccine resulted in minimal ASC responses over baseline, suggesting that the current dosing schedule may not be optimal for boosting mucosal immune responses to V. cholerae antigens for adults in a cholera-endemic area.

  12. Improved influenza viral vector based Brucella abortus vaccine induces robust B and T-cell responses and protection against Brucella melitensis infection in pregnant sheep and goats

    Science.gov (United States)

    Mailybayeva, Aigerim; Yespembetov, Bolat; Ryskeldinova, Sholpan; Zinina, Nadezhda; Sansyzbay, Abylai; Renukaradhya, Gourapura J.; Petrovsky, Nikolai

    2017-01-01

    We previously developed a potent candidate vaccine against bovine brucellosis caused by Brucella abortus using the influenza viral vector expressing Brucella Omp16 and L7/L12 proteins (Flu-BA). Our success in the Flu-BA vaccine trial in cattle and results of a pilot study in non-pregnant small ruminants prompted us in the current study to test its efficacy against B. melitensis infection in pregnant sheep and goats. In this study, we improved the Flu-BA vaccine formulation and immunization method to achieve maximum efficacy and safety. The Flu-BA vaccine formulation had two additional proteins Omp19 and SOD, and administered thrice with 20% Montanide Gel01 adjuvant, simultaneously by both subcutaneous and conjunctival routes at 21 days intervals in pregnant sheep and goats. At 42 days post-vaccination (DPV) we detected antigen-specific IgG antibodies predominantly of IgG2a isotype but also IgG1, and also detected a strong lymphocyte recall response with IFN-γ production. Importantly, our candidate vaccine prevented abortion in 66.7% and 77.8% of pregnant sheep and goats, respectively. Furthermore, complete protection (absence of live B. melitensis 16M) was observed in 55.6% and 66.7% of challenged sheep and goats, and 72.7% and 90.0% of their fetuses (lambs/yeanlings), respectively. The severity of B. melitensis 16M infection in vaccinated sheep and goats and their fetuses (index of infection and rates of Brucella colonization in tissues) was significantly lower than in control groups. None of the protection parameters after vaccination with Flu-BA vaccine were statistically inferior to protection seen with the commercial B. melitensis Rev.1 vaccine (protection against abortion and vaccination efficacy, alpha = 0.18–0.34, infection index, P = 0.37–0.77, Brucella colonization, P = 0.16 to P > 0.99). In conclusion, our improved Flu-BA vaccine formulation and delivery method were found safe and effective in protecting pregnant sheep and goats against adverse

  13. The Potential of Vaccines for the Control of AIDS

    Directory of Open Access Journals (Sweden)

    Margaret I Johnston

    1994-01-01

    of attenuated and whole-killed products have led to the pursuit of alternativc designs. including recombinant proteins, vectors and particles, synthetic peptides and naked DNA. Seven recombinant envelope. two recombinant vector and four other candidate vaccines that have entered into phase 1 trials in noninfected individuals have proven safe to date, and have differed In their ability lo induce functional antibody and Cytotoxic T lymphocytes. Two recombinant envelope products have recently progressed to phase 2 testing, Five envelope-based and six other products have entered trial in HIV-infected and individuals and have appeared to be safe, Evidence of new antibody, increased T cell proliferation and lncreased cytotoxic T lymphocyte activity have been reported. Additional placebo controlled trials will be required to evaluate the impact of therapeutic vaccination on CD4 cell count. viral burdrn and clinical end-points. The status of HIV/AIDS vaccine development is reviewed. with emphasis on the challenging task of finding an effieacious, safe, prophylactic vaccine.

  14. Comparison of Current Regulatory Status for Gene-Based Vaccines in the U.S., Europe and Japan

    Directory of Open Access Journals (Sweden)

    Yoshikazu Nakayama

    2015-03-01

    Full Text Available Gene-based vaccines as typified by plasmid DNA vaccines and recombinant viral-vectored vaccines are expected as promising solutions against infectious diseases for which no effective prophylactic vaccines exist such as HIV, dengue virus, Ebola virus and malaria, and for which more improved vaccines are needed such as tuberculosis and influenza virus. Although many preclinical and clinical trials have been conducted to date, no DNA vaccines or recombinant viral-vectored vaccines expressing heterologous antigens for human use have yet been licensed in the U.S., Europe or Japan. In this research, we describe the current regulatory context for gene-based prophylactic vaccines against infectious disease in the U.S., Europe, and Japan. We identify the important considerations, in particular, on the preclinical assessments that would allow these vaccines to proceed to clinical trials, and the differences on the regulatory pathway for the marketing authorization in each region.

  15. Diet-boosting foods

    Science.gov (United States)

    Obesity - diet-boosting foods; Overweight - diet-boosting foods ... Low-fat and nonfat milk, yogurt, and cottage cheese are healthy sources of calcium, vitamin D , and potassium. Unlike sweetened drinks with extra calories, milk ...

  16. Efficient Strategy to Generate a Vectored Duck Enteritis Virus Delivering Envelope of Duck Tembusu Virus

    Directory of Open Access Journals (Sweden)

    Zhong Zou

    2014-06-01

    Full Text Available Duck Tembusu virus (DTMUV is a recently emerging pathogenic flavivirus that has resulted in a huge economic loss in the duck industry. However, no vaccine is currently available to control this pathogen. Consequently, a practical strategy to construct a vaccine against this pathogen should be determined. In this study, duck enteritis virus (DEV was examined as a candidate vaccine vector to deliver the envelope (E of DTMUV. A modified mini-F vector was inserted into the SORF3 and US2 gene junctions of the attenuated DEV vaccine strain C-KCE genome to generate an infectious bacterial artificial chromosome (BAC of C-KCE (vBAC-C-KCE. The envelope (E gene of DTMUV was inserted into the C-KCE genome through the mating-assisted genetically integrated cloning (MAGIC strategy, resulting in the recombinant vector, pBAC-C-KCE-E. A bivalent vaccine C-KCE-E was generated by eliminating the BAC backbone. Immunofluorescence and western blot analysis results indicated that the E proteins were vigorously expressed in C-KCE-E-infected chicken embryo fibroblasts (CEFs. Duck experiments demonstrated that the insertion of the E gene did not alter the protective efficacy of C-KCE. Moreover, C-KCE-E-immunized ducks induced neutralization antibodies against DTMUV. These results demonstrated, for the first time, that recombinant C-KCE-E can serve as a potential bivalent vaccine against DEV and DTMUV.

  17. Vaccines for the 21st century

    Science.gov (United States)

    Delany, Isabel; Rappuoli, Rino; De Gregorio, Ennio

    2014-01-01

    In the last century, vaccination has been the most effective medical intervention to reduce death and morbidity caused by infectious diseases. It is believed that vaccines save at least 2–3 million lives per year worldwide. Smallpox has been eradicated and polio has almost disappeared worldwide through global vaccine campaigns. Most of the viral and bacterial infections that traditionally affected children have been drastically reduced thanks to national immunization programs in developed countries. However, many diseases are not yet preventable by vaccination, and vaccines have not been fully exploited for target populations such as elderly and pregnant women. This review focuses on the state of the art of recent clinical trials of vaccines for major unmet medical needs such as HIV, malaria, TB, and cancer. In addition, we describe the innovative technologies currently used in vaccine research and development including adjuvants, vectors, nucleic acid vaccines, and structure-based antigen design. The hope is that thanks to these technologies, more diseases will be addressed in the 21st century by novel preventative and therapeutic vaccines. PMID:24803000

  18. Cytomegalovirus vector expressing RAE-1γ induces enhanced anti-tumor capacity of murine CD8+ T cells.

    Science.gov (United States)

    Tršan, Tihana; Vuković, Kristina; Filipović, Petra; Brizić, Ana Lesac; Lemmermann, Niels A W; Schober, Kilian; Busch, Dirk H; Britt, William J; Messerle, Martin; Krmpotić, Astrid; Jonjić, Stipan

    2017-08-01

    Designing CD8 + T-cell vaccines, which would provide protection against tumors is still considered a great challenge in immunotherapy. Here we show the robust potential of cytomegalovirus (CMV) vector expressing the NKG2D ligand RAE-1γ as CD8 + T cell-based vaccine against malignant tumors. Immunization with the CMV vector expressing RAE-1γ, delayed tumor growth or even provided complete protection against tumor challenge in both prophylactic and therapeutic settings. Moreover, a potent tumor control in mice vaccinated with this vector can be further enhanced by blocking the immune checkpoints TIGIT and PD-1. CMV vector expressing RAE-1γ potentiated expansion of KLRG1 + CD8 + T cells with enhanced effector properties. This vaccination was even more efficient in neonatal mice, resulting in the expansion and long-term maintenance of epitope-specific CD8 + T cells conferring robust resistance against tumor challenge. Our data show that immunomodulation of CD8 + T-cell responses promoted by herpesvirus expressing a ligand for NKG2D receptor can provide a powerful platform for the prevention and treatment of CD8 + T-cell sensitive tumors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Oral Modeling of an Adenovirus-Based Quadrivalent Influenza Vaccine in Ferrets and Mice.

    Science.gov (United States)

    Scallan, Ciaran D; Lindbloom, Jonathan D; Tucker, Sean N

    2016-06-01

    Oral vaccines delivered as tablets offer a number of advantages over traditional parenteral-based vaccines including the ease of delivery, lack of needles, no need for trained medical personnel, and the ability to formulate into temperature-stable tablets. We have been evaluating an oral vaccine platform based on recombinant adenoviral vectors for the purpose of creating a prophylactic vaccine to prevent influenza, and have demonstrated vaccine efficacy in animal models and substantial immunogenicity in humans. These studies have evaluated monovalent vaccines to date. To protect against the major circulating A and B influenza strains, a multivalent influenza vaccine will be required. In this study, the immunogenicity of orally delivered monovalent, bivalent, trivalent, and quadrivalent vaccines was tested in ferrets and mice. The various vaccine combinations were tested by blending monovalent recombinant adenovirus vaccines, each expressing hemagglutinin from a single strain. Human tablet delivery was modeled in animals by oral gavage in mice and by endoscopic delivery in ferrets. We demonstrated minimal interference between the various vaccine vectors when used in combination and that the oral quadrivalent vaccine compared favorably to an approved trivalent inactivated vaccine. The quadrivalent vaccine presented here produced immune responses that we predict should be capable of providing protection against multiple influenza strains, and the platform should have applications to other multivalent vaccines. Vaxart, Inc.

  20. Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs.

    Science.gov (United States)

    Jiang, Xiaohong; Dalebout, Tim J; Bredenbeek, Peter J; Carrion, Ricardo; Brasky, Kathleen; Patterson, Jean; Goicochea, Marco; Bryant, Joseph; Salvato, Maria S; Lukashevich, Igor S

    2011-02-01

    Yellow Fever (YF) and Lassa Fever (LF) are two prevalent hemorrhagic fevers co-circulating in West Africa and responsible for thousands of deaths annually. The YF vaccine 17D has been used as a vector for the Lassa virus glycoprotein precursor (LASV-GPC) or their subunits, GP1 (attachment glycoprotein) and GP2 (fusion glycoprotein). Cloning shorter inserts, LASV-GP1 and -GP2, between YF17D E and NS1 genes enhanced genetic stability of recombinant viruses, YF17D/LASV-GP1 and -GP2, in comparison with YF17D/LASV-GPC recombinant. The recombinant viruses were replication competent and properly processed YF proteins and LASV GP antigens in infected cells. YF17D/LASV-GP1 and -GP2 induced specific CD8+ T cell responses in mice and protected strain 13 guinea pigs against fatal LF. Unlike immunization with live attenuated reassortant vaccine ML29, immunization with YF17D/LASV-GP1 and -GP2 did not provide sterilizing immunity. This study demonstrates the feasibility of YF17D-based vaccine to control LF in West Africa. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs

    Science.gov (United States)

    Jiang, Xiaohong; Dalebout, Tim J.; Bredenbeek, Peter J.; Carrion, Ricardo; Brasky, Kathleen; Patterson, Jean; Goicochea, Marco; Bryant, Joseph; Salvato, Maria S.; Lukashevich, Igor S.

    2010-01-01

    Yellow Fever (YF) and Lassa Fever (LF) are two prevalent hemorrhagic fevers co-circulating in West Africa and responsible for thousands of deaths annually. The YF vaccine 17D has been used as a vector for the Lassa virus glycoprotein precursor (LASV-GPC) or their subunits, GP1 (attachment glycoprotein) and GP2 (fusion glycoprotein). Cloning shorter inserts, LASV GP1 and GP2, between YF17D E and NS1 genes enhanced genetic stability of recombinant viruses, YF17D/LASV-GP1 and –GP2, in comparison with YF17D/LASV-GPC recombinant. The recombinant viruses were replication competent and properly processed YF and LASV GP proteins in infected cells. YF17D/LASV-GP1&GP2 induced specific CD8+ T cell responses in mice and protected strain 13 guinea pigs against fatal LF. Unlike immunization with live attenuated reassortant vaccine ML29, immunization with YF17D/LASV-GP1&GP2 did not provide sterilizing immunity. This study demonstrates the feasibility of YF17D-based vaccine to control LF in West Africa. PMID:21145373

  2. Transcutaneous delivery of T Cell-inducing viral vector Malaria vaccines by microneedle patches

    OpenAIRE

    2011-01-01

    There is an urgent need for improvements to existing vaccine delivery technologies to run parallel with the development of new-generation vaccines. The burdens of needle-based immunisation strategies are exacerbated by poor resource provision in such areas as sub-Saharan Africa, where annual malaria mortality stands at 860,000. Needle-free delivery of vaccine to the skin holds promise for improved immunogenicity with lower doses of vaccine, in addition to significant logistical advantages. Va...

  3. Application of new vaccine technologies for the control of transboundary diseases.

    Science.gov (United States)

    Swayne, D E

    2004-01-01

    Vaccines have played an important role in the control of diseases of livestock and poultry, including Transboundary Diseases. In the future, vaccines will play a greater role in controlling these diseases. Historically, inactivated whole viruses in various adjuvant systems have been used and will continue to be used in the near future. For the future, emerging technologies will allow targeted use of only the protective antigens of the pathogen and will provide the opportunity for differentiating between vaccinated and field-exposed animals. Furthermore, the expression of cytokines by vaccines will afford earlier or greater enhancement of protection than can be achieved by the protective response elicited by the antigenic epitopes of the pathogen alone. Avian influenza (AI) is a good case for studying future trends in vaccine design and use. Inactivated AI virus (AIV) vaccines will continue as the primary vaccines used over the next 10 years. These vaccines will use homologous haemagglutinin sub-types, either from the use of field strains or the generation of new strains through the use of infectious clones produced in the laboratory. The latter will allow creation of high growth reassortants, which will provide consistent high yields of antigen and result in potent vaccines. New viral and bacterial vectors with inserts of AIV haemagglutinin gene will be developed and potentially used in the field. Such new vectors will include herpesvirus-turkey, infectious laryngotracheitis virus, adenoviruses, various types of paramyxoviruses and Salmonella sp. In addition, there is a theoretical possibility of gene-deleted mutants that would allow the use of live AIV vaccines, but the application of such vaccines has inherent dangers for gene reassortment with field viruses in the generation of disease-causing strains. Subunit haemagglutinin protein and DNA haemagglutinin gene vaccines are possible, but with current technologies, the cost is prohibitive. In the future, effective

  4. SemiBoost: boosting for semi-supervised learning.

    Science.gov (United States)

    Mallapragada, Pavan Kumar; Jin, Rong; Jain, Anil K; Liu, Yi

    2009-11-01

    Semi-supervised learning has attracted a significant amount of attention in pattern recognition and machine learning. Most previous studies have focused on designing special algorithms to effectively exploit the unlabeled data in conjunction with labeled data. Our goal is to improve the classification accuracy of any given supervised learning algorithm by using the available unlabeled examples. We call this as the Semi-supervised improvement problem, to distinguish the proposed approach from the existing approaches. We design a metasemi-supervised learning algorithm that wraps around the underlying supervised algorithm and improves its performance using unlabeled data. This problem is particularly important when we need to train a supervised learning algorithm with a limited number of labeled examples and a multitude of unlabeled examples. We present a boosting framework for semi-supervised learning, termed as SemiBoost. The key advantages of the proposed semi-supervised learning approach are: 1) performance improvement of any supervised learning algorithm with a multitude of unlabeled data, 2) efficient computation by the iterative boosting algorithm, and 3) exploiting both manifold and cluster assumption in training classification models. An empirical study on 16 different data sets and text categorization demonstrates that the proposed framework improves the performance of several commonly used supervised learning algorithms, given a large number of unlabeled examples. We also show that the performance of the proposed algorithm, SemiBoost, is comparable to the state-of-the-art semi-supervised learning algorithms.

  5. A phase I double blind, placebo-controlled, randomized study of a multigenic HIV-1 adenovirus subtype 35 vector vaccine in healthy uninfected adults.

    Directory of Open Access Journals (Sweden)

    Michael C Keefer

    Full Text Available We conducted a phase I, randomized, double-blind, placebo-controlled trial to assess the safety and immunogenicity of escalating doses of two recombinant replication defective adenovirus serotype 35 (Ad35 vectors containing gag, reverse transcriptase, integrase and nef (Ad35-GRIN and env (Ad35-ENV, both derived from HIV-1 subtype A isolates. The trial enrolled 56 healthy HIV-uninfected adults.Ad35-GRIN/ENV (Ad35-GRIN and Ad35-ENV mixed in the same vial in equal proportions or Ad35-GRIN was administered intramuscularly at 0 and 6 months. Participants were randomized to receive either vaccine or placebo (10/4 per group, respectively within one of four dosage groups: Ad35-GRIN/ENV 2×10(9 (A, 2×10(10 (B, 2×10(11 (C, or Ad35-GRIN 1×10(10 (D viral particles.No vaccine-related serious adverse event was reported. Reactogenicity events reported were dose-dependent, mostly mild or moderate, some severe in Group C volunteers, all transient and resolving spontaneously. IFN-γ ELISPOT responses to any vaccine antigen were detected in 50, 56, 70 and 90% after the first vaccination, and in 75, 100, 88 and 86% of Groups A-D vaccine recipients after the second vaccination, respectively. The median spot forming cells (SFC per 10(6 PBMC to any antigen was 78-139 across Groups A-C and 158-174 in Group D, after each of the vaccinations with a maximum of 2991 SFC. Four to five HIV proteins were commonly recognized across all the groups and over multiple timepoints. CD4+ and CD8+ T-cell responses were polyfunctional. Env antibodies were detected in all Group A-C vaccinees and Gag antibodies in most vaccinees after the second immunization. Ad35 neutralizing titers remained low after the second vaccination.Ad35-GRIN/ENV reactogenicity was dose-related. HIV-specific cellular and humoral responses were seen in the majority of volunteers immunized with Ad35-GRIN/ENV or Ad35-GRIN and increased after the second vaccination. T-cell responses were broad and polyfunctional

  6. Public acceptance and willingness-to-pay for a future dengue vaccine: a community-based survey in Bandung, Indonesia.

    Science.gov (United States)

    Hadisoemarto, Panji Fortuna; Castro, Marcia C

    2013-01-01

    All four serotypes of dengue virus are endemic in Indonesia, where the population at risk for infection exceeds 200 million people. Despite continuous control efforts that were initiated more than four decades ago, Indonesia still suffers from multi-annual cycles of dengue outbreak and dengue remains as a major public health problem. Dengue vaccines have been viewed as a promising solution for controlling dengue in Indonesia, but thus far its potential acceptability has not been assessed. We conducted a household survey in the city of Bandung, Indonesia by administering a questionnaire to examine (i) acceptance of a hypothetical pediatric dengue vaccine; (ii) participant's willingness-to-pay (WTP) for the vaccine, had it not been provided for free; and (iii) whether people think vector control would be unnecessary if the vaccine was available. A proportional odds model and an interval regression model were employed to identify determinants of acceptance and WTP, respectively. We demonstrated that out of 500 heads of household being interviewed, 94.2% would agree to vaccinate their children with the vaccine. Of all participants, 94.6% were willing to pay for the vaccine with a median WTP of US$1.94. In addition, 7.2% stated that vector control would not be necessary had there been a dengue vaccination program. Our results suggest that future dengue vaccines can have a very high uptake even when delivered through the private market. This, however, can be influenced by vaccine characteristics and price. In addition, reduction in community vector control efforts may be observed following vaccine introduction but its potential impact in the transmission of dengue and other vector-borne diseases requires further study.

  7. Public acceptance and willingness-to-pay for a future dengue vaccine: a community-based survey in Bandung, Indonesia.

    Directory of Open Access Journals (Sweden)

    Panji Fortuna Hadisoemarto

    Full Text Available All four serotypes of dengue virus are endemic in Indonesia, where the population at risk for infection exceeds 200 million people. Despite continuous control efforts that were initiated more than four decades ago, Indonesia still suffers from multi-annual cycles of dengue outbreak and dengue remains as a major public health problem. Dengue vaccines have been viewed as a promising solution for controlling dengue in Indonesia, but thus far its potential acceptability has not been assessed.We conducted a household survey in the city of Bandung, Indonesia by administering a questionnaire to examine (i acceptance of a hypothetical pediatric dengue vaccine; (ii participant's willingness-to-pay (WTP for the vaccine, had it not been provided for free; and (iii whether people think vector control would be unnecessary if the vaccine was available. A proportional odds model and an interval regression model were employed to identify determinants of acceptance and WTP, respectively. We demonstrated that out of 500 heads of household being interviewed, 94.2% would agree to vaccinate their children with the vaccine. Of all participants, 94.6% were willing to pay for the vaccine with a median WTP of US$1.94. In addition, 7.2% stated that vector control would not be necessary had there been a dengue vaccination program.Our results suggest that future dengue vaccines can have a very high uptake even when delivered through the private market. This, however, can be influenced by vaccine characteristics and price. In addition, reduction in community vector control efforts may be observed following vaccine introduction but its potential impact in the transmission of dengue and other vector-borne diseases requires further study.

  8. Mucosal vaccination by adenoviruses displaying reovirus sigma 1

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Eric A. [Department of Internal Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program, Mayo Clinic, Rochester, MN 55902 (United States); Camacho, Zenaido T. [Department of Cell Biology, Department of Natural Sciences, Western New Mexico University, Silver City, NM 88062 (United States); Hillestad, Matthew L. [Nephrology Training Program, Mayo Clinic, Rochester, MN 55902 (United States); Crosby, Catherine M.; Turner, Mallory A.; Guenzel, Adam J.; Fadel, Hind J. [Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN 55902 (United States); Mercier, George T. [Department of Physics, University of Houston, Houston, TX 77004 (United States); Barry, Michael A., E-mail: mab@mayo.edu [Department of Internal Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program, Mayo Clinic, Rochester, MN 55902 (United States); Department of Immunology and Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55902 (United States)

    2015-08-15

    We developed adenovirus serotype 5 (Ad5) vectors displaying the sigma 1 protein from reovirus as mucosal vaccines. Ad5-sigma retargets to JAM-1 and sialic acid, but has 40-fold reduced gene delivery when compared to Ad5. While weaker at transduction, Ad5-sigma generates stronger T cell responses than Ad5 when used for mucosal immunization. In this work, new Ad5-fiber-sigma vectors were generated by varying the number of fiber β-spiral shaft repeats (R) between the fiber tail and sigma. Increasing chimera length led to decreasing insertion of these proteinsAd5 virions. Ad-R3 and R14 vectors effectively targeted JAM-1 in vitro while R20 did not. When wereused to immunize mice by the intranasal route, Ad5-R3-sigma produced higher serum and vaginal antibody responses than Ad5. These data suggest optimized Ad-sigma vectors may be useful vectors for mucosal vaccination. - Highlights: • Constructed adenoviruses (Ads) displaying different reovirus sigma 1 fusion proteins. • Progressively longer chimeras were more poorly encapsidated onto Ad virions. • Ad5-R3-sigma mediated better systemic and mucosal immune responses than Ad5.

  9. Mucosal vaccination by adenoviruses displaying reovirus sigma 1

    International Nuclear Information System (INIS)

    Weaver, Eric A.; Camacho, Zenaido T.; Hillestad, Matthew L.; Crosby, Catherine M.; Turner, Mallory A.; Guenzel, Adam J.; Fadel, Hind J.; Mercier, George T.; Barry, Michael A.

    2015-01-01

    We developed adenovirus serotype 5 (Ad5) vectors displaying the sigma 1 protein from reovirus as mucosal vaccines. Ad5-sigma retargets to JAM-1 and sialic acid, but has 40-fold reduced gene delivery when compared to Ad5. While weaker at transduction, Ad5-sigma generates stronger T cell responses than Ad5 when used for mucosal immunization. In this work, new Ad5-fiber-sigma vectors were generated by varying the number of fiber β-spiral shaft repeats (R) between the fiber tail and sigma. Increasing chimera length led to decreasing insertion of these proteinsAd5 virions. Ad-R3 and R14 vectors effectively targeted JAM-1 in vitro while R20 did not. When wereused to immunize mice by the intranasal route, Ad5-R3-sigma produced higher serum and vaginal antibody responses than Ad5. These data suggest optimized Ad-sigma vectors may be useful vectors for mucosal vaccination. - Highlights: • Constructed adenoviruses (Ads) displaying different reovirus sigma 1 fusion proteins. • Progressively longer chimeras were more poorly encapsidated onto Ad virions. • Ad5-R3-sigma mediated better systemic and mucosal immune responses than Ad5

  10. b型流感嗜血杆菌结合疫苗接种后婴幼儿安全性和免疫原性研究%Safety and immunogenicity in 3-5 months-old infants after primary and boosting immunization with Hib PRP-TT conjugate vaccine

    Institute of Scientific and Technical Information of China (English)

    叶强; 谢贵林; 李亚南; 赵志强; 李荣成; 何莉; 谭晓梅; 李艳萍; 杜送田; 李凤祥

    2012-01-01

    目的 评价b型流感嗜血杆菌结合疫苗(Hib-TT)安全性和免疫原性.方法 分别采用Hib-TT试验疫苗和对照疫苗3针免疫接种3~5月龄婴幼儿,观察疫苗安全性,并采用定量ELISA法分别测定免疫前、免疫后和加强免疫后血清特异性IgG抗体浓度.结果 实验疫苗和对照疫苗两组间不良反应总发生率(实验疫苗组为23.85%,对照疫苗组为31.40%)差异无统计学意义(x2=0.5,P>0.05),发热性总不良反应率分别为22.3%和31.3%,中、强发热反应率分别为3.67%和4.48%,差异无统计学意义;实验疫苗受试者局部红、肿、硬结等不良反应率为1.22%.实验疫苗3剂免疫后受试者血清抗Hib PRP IgG抗体平均几何浓度(GMC)为6.6786 μg/ml,对照疫苗组血清抗体GMC为7.5346 μg/ml,两组间抗体GMC差异无统计学意义(x2=0.147,P=0.702);加强免疫1剂后,实验疫苗组受试者血清抗体GMC从加强免疫前的2.6396 μg/ml上升为6.2044μg/ml.结论 实验疫苗接种3~5月龄婴幼儿具有良好的安全性.用间隔1个月、3剂次接种的基础免疫程序能诱导该年龄组受试者产生长期保护水平的血清特异性抗体,加强免疫1剂后能诱导机体产生免疫记忆反应.%Objectives To evaluate the safety and immunogenicity of Haemophilus influenzae type b capsular-tetanus toxoid(Hib-TT) conjugate vaccine.Methods In an open-controlled,randomized trial,the eligible and consented infants of 3 to 5 months-old received 3 doses of Hib-TT or a licensed Hib-TT conjugate vaccine(Anerbao) as the control vaccine to evaluate safety; The serum anti-Hib PRP IgG antibody mean geometric concentration (GMC) in both groups after primary and boosting vaccination were measured by ELISA.Results No apparent difference in the frequency of total adverse reactions observed between two groups (study vaccine 23.85% vs.comparator 31.40%) (x2=0.5,P>0.05).The mild and severe fever reaction of both vaccines was 3.67% and 4

  11. [Immunoreactivity of chimeric proteins carrying poliovirus epitopes on the VP6 of rotavirus as a vector].

    Science.gov (United States)

    Pan, X-X; Zhao, B-X; Teng, Y-M; Xia, W-Y; Wang, J; Li, X-F; Liao, G-Y; Yang, С; Chen, Y-D

    2016-01-01

    Rotavirus and poliovirus continue to present significant risks and burden of disease to children in developing countries. Developing a combined vaccine may effectively prevent both illnesses and may be advantageous in terms of maximizing compliance and vaccine coverage at the same visit. Recently, we sought to generate a vaccine vector by incorporating multiple epitopes into the rotavirus group antigenic protein, VP6. In the present study, a foreign epitope presenting a system using VP6 as a vector was created with six sites on the outer surface of the vector that could be used for insertion of foreign epitopes, and three VP6-based PV1 epitope chimeric proteins were constructed. The chimeric proteins were confirmed by immunoblot, immunofluorescence assay, and injected into guinea pigs to analyze the epitope-specific humoral response. Results showed that these chimeric proteins reacted with anti-VP6F and -PV1 antibodies, and elicited antibodies against both proteins in guinea pigs. Antibodies against the chimeric proteins carrying PV1 epitopes neutralized rotavirus Wa and PV1 infection in vitro. Our study contributes to a better understanding of the use of VP6-based vectors as multiple-epitope delivery vehicles and the epitopes displayed in this form could be considered for development of epitope-based vaccines against rotavirus and poliovirus.

  12. Persuasive texts for prompting action: Agency assignment in HPV vaccination reminders.

    Science.gov (United States)

    McGlone, Matthew S; Stephens, Keri K; Rodriguez, Serena A; Fernandez, Maria E

    2017-08-03

    Vaccination reminders must both inform and persuade, and text messages designed for this purpose must do so in 160 characters or less. We tested a strategy for improving the impact of HPV vaccination text message reminders through strategic wording. In an experiment conducted in community settings, 167 Spanish-speaking Latina mothers reviewed text message reminders that assigned the cause or "agency" for HPV transmission to their daughters or the virus, and assigned protection agency to the mothers or the vaccine. Reminder messages framing transmission as an action of the virus prompted mothers to perceive the threat as more severe than messages describing their daughters as the cause. Assigning transmission agency to the virus also held a persuasive advantage in boosting mothers' intentions to seek vaccination, particularly when the message cast mothers as agents of protection rather than the vaccine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Design and Construction of a Cloning Vector Containing the hspX Gene of Mycobacterium tuberculosis.

    Science.gov (United States)

    Yaghoubi, Atieh; Aryan, Ehsan; Zare, Hosna; Alami, Shadi; Teimourpour, Roghayeh; Meshkat, Zahra

    2016-10-01

    Tuberculosis (TB) is a major cause of death worldwide. Finding an effective vaccine against TB is the best way to control it. Several vaccines against this disease have been developed but none are completely protective. The aim of this study was to design and construct a cloning vector containing the Mycobacterium tuberculosis (M. tuberculosis) heat shock protein X (hspX) . First, an hspX fragment was amplified by PCR and cloned into plasmid pcDNA3.1(+) and recombinant vector was confirmed. A 435 bp hspX fragment was isolated. The fragment was 100% homologous with hspX of M. tuberculosis strain H37Rv in GenBank. In this study, the cloning vector pcDNA3.1(+), containing a 435-bp hspX fragment of M. tuberculosis , was constructed. This could be used as a DNA vaccine to induce immune responses in animal models in future studies.

  14. Stationary Wavelet Transform and AdaBoost with SVM Based Pathological Brain Detection in MRI Scanning.

    Science.gov (United States)

    Nayak, Deepak Ranjan; Dash, Ratnakar; Majhi, Banshidhar

    2017-01-01

    This paper presents an automatic classification system for segregating pathological brain from normal brains in magnetic resonance imaging scanning. The proposed system employs contrast limited adaptive histogram equalization scheme to enhance the diseased region in brain MR images. Two-dimensional stationary wavelet transform is harnessed to extract features from the preprocessed images. The feature vector is constructed using the energy and entropy values, computed from the level- 2 SWT coefficients. Then, the relevant and uncorrelated features are selected using symmetric uncertainty ranking filter. Subsequently, the selected features are given input to the proposed AdaBoost with support vector machine classifier, where SVM is used as the base classifier of AdaBoost algorithm. To validate the proposed system, three standard MR image datasets, Dataset-66, Dataset-160, and Dataset- 255 have been utilized. The 5 runs of k-fold stratified cross validation results indicate the suggested scheme offers better performance than other existing schemes in terms of accuracy and number of features. The proposed system earns ideal classification over Dataset-66 and Dataset-160; whereas, for Dataset- 255, an accuracy of 99.45% is achieved. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Simultaneous approach using systemic, mucosal and transcutaneous routes of immunization for development of protective HIV-1 vaccines.

    Science.gov (United States)

    Belyakov, I M; Ahlers, J D

    2011-01-01

    Mucosal tissues are major sites of HIV entry and initial infection. Induction of a local mucosal cytotoxic T lymphocyte response is considered an important goal in developing an effective HIV vaccine. In addition, activation and recruitment of memory CD4(+) and CD8(+) T cells in systemic lymphoid circulation to mucosal effector sites might provide the firewall needed to prevent virus spread. Therefore a vaccine that generates CD4(+) and CD8(+) responses in both mucosal and systemic tissues might be required for protection against HIV. However, optimal routes and number of vaccinations required for the generation of long lasting CD4(+) and CD8(+) CTL effector and memory responses are not well understood especially for mucosal T cells. A number of studies looking at protective immune responses against diverse mucosal pathogens have shown that mucosal vaccination is necessary to induce a compartmentalized immune response including maximum levels of mucosal high-avidity CD8(+) CTL, antigen specific mucosal antibodies titers (especially sIgA), as well as induction of innate anti-viral factors in mucosa tissue. Immune responses are detectable at mucosal sites after systemic delivery of vaccine, and prime boost regimens can amplify the magnitude of immune responses in mucosal sites and in systemic lymphoid tissues. We believe that the most optimal mucosal and systemic HIV/SIV specific protective immune responses and innate factors might best be achieved by simultaneous mucosal and systemic prime and boost vaccinations. Similar principals of vaccination may be applied for vaccine development against cancer and highly invasive pathogens that lead to chronic infection.

  16. Novel adjuvants & delivery vehicles for vaccines development: a road ahead.

    Science.gov (United States)

    Mohan, Teena; Verma, Priyanka; Rao, D Nageswara

    2013-11-01

    The pure recombinant and synthetic antigens used in modern day vaccines are generally less immunogenic than older style live/attenuated and killed whole organism vaccines. One can improve the quality of vaccine production by incorporating immunomodulators or adjuvants with modified delivery vehicles viz. liposomes, immune stimulating complexes (ISCOMs), micro/nanospheres apart from alum, being used as gold standard. Adjuvants are used to augment the effect of a vaccine by stimulating the immune system to respond to the vaccine, more vigorously, and thus providing increased immunity to a particular disease. Adjuvants accomplish this task by mimicking specific sets of evolutionary conserved molecules which include lipopolysaccharides (LPS), components of bacterial cell wall, endocytosed nucleic acids such as dsRNA, ssDNA and unmethylated CpG dinucleotide containing DNA. This review provides information on various vaccine adjuvants and delivery vehicles being developed to date. From literature, it seems that the humoral immune responses have been observed for most adjuvants and delivery platforms while viral-vector, ISCOMs and Montanides have shown cytotoxic T-cell response in the clinical trials. MF59 and MPL® have elicited Th1 responses, and virus-like particles (VLPs), non-degradable nanoparticle and liposomes have also generated cellular immunity. Such vaccine components have also been evaluated for alternative routes of administration with clinical success reported for intranasal delivery of viral-vectors and proteosomes and oral delivery of VLP vaccines.

  17. Current status, challenges and perspectives in the development of vaccines against yellow fever, dengue, Zika and chikungunya viruses.

    Science.gov (United States)

    Silva, José V J; Lopes, Thaísa R R; Oliveira-Filho, Edmilson F de; Oliveira, Renato A S; Durães-Carvalho, Ricardo; Gil, Laura H V G

    2018-06-01

    Emerging and re-emerging viral infections transmitted by insect vectors (arthopode-borne viruses, arbovirus) are a serious threat to global public health. Among them, yellow fever (YFV), dengue (DENV), chikungunya (CHIKV) and Zika (ZIKV) viruses are particularly important in tropical and subtropical regions. Although vector control is one of the most used prophylactic measures against arboviruses, it often faces obstacles, such as vector diversity, uncontrolled urbanization and increasing resistance to insecticides. In this context, vaccines may be the best control strategy for arboviral diseases. Here, we provide a general overview about licensed vaccines and the most advanced vaccine candidates against YFV, DENV, CHIKV and ZIKV. In particular, we highlight vaccine difficulties, the current status of the most advanced strategies and discuss how the molecular characteristics of each virus can influence the choice of the different vaccine formulations. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Induction of CML28-specific cytotoxic T cell responses using co-transfected dendritic cells with CML28 DNA vaccine and SOCS1 small interfering RNA expression vector

    International Nuclear Information System (INIS)

    Zhou Hongsheng; Zhang Donghua; Wang Yaya; Dai Ming; Zhang Lu; Liu Wenli; Liu Dan; Tan Huo; Huang Zhenqian

    2006-01-01

    CML28 is an attractive target for antigen-specific immunotherapy. SOCS1 represents an inhibitory control mechanism for DC antigen presentation and the magnitude of adaptive immunity. In this study, we evaluated the potential for inducing CML28-specific cytotoxic T lymphocytes (CTL) responses by dendritic cells (DCs)-based vaccination. We constructed a CML28 DNA vaccine and a SOCS1 siRNA vector and then cotransfect monocyte-derived DCs. Flow cytometry analysis showed gene silencing of SOCS1 resulted in higher expressions of costimulative moleculars in DCs. Mixed lymphocyte reaction (MLR) indicated downregulation of SOCS1 stronger capability to stimulate proliferation of responder cell in DCs. The CTL assay revealed transfected DCs effectively induced autologous CML28-specific CTL responses and the lytic activities induced by SOCS1-silenced DCs were significantly higher compared with those induced by SOCS1-expressing DCs. These results in our study indicates gene silencing of SOCS1 remarkably enhanced the cytotoxicity efficiency of CML28 DNA vaccine in DCs

  19. Status of vaccine research and development of vaccines for leishmaniasis.

    Science.gov (United States)

    Gillespie, Portia M; Beaumier, Coreen M; Strych, Ulrich; Hayward, Tara; Hotez, Peter J; Bottazzi, Maria Elena

    2016-06-03

    A number of leishmaniasis vaccine candidates are at various stages of pre-clinical and clinical development. Leishmaniasis is a vector-borne neglected tropical disease (NTD) caused by a protozoan parasite of the genus Leishmania and transmitted to humans by the bite of a sand fly. Visceral leishmaniasis (VL, kala-azar) is a high mortality NTD found mostly in South Asia and East Africa, while cutaneous leishmaniasis (CL) is a disfiguring NTD highly endemic in the Middle East, Central Asia, North Africa, and the Americas. Estimates attribute 50,000 annual deaths and 3.3 million disability-adjusted life years to leishmaniasis. There are only a few approved drug treatments, no prophylactic drug and no vaccine. Ideally, an effective vaccine against leishmaniasis will elicit long-lasting immunity and protect broadly against VL and CL. Vaccines such as Leish-F1, F2 and F3, developed at IDRI and designed based on selected Leishmania antigen epitopes, have been in clinical trials. Other groups, including the Sabin Vaccine Institute in collaboration with the National Institutes of Health are investigating recombinant Leishmania antigens in combination with selected sand fly salivary gland antigens in order to augment host immunity. To date, both VL and CL vaccines have been shown to be cost-effective in economic modeling studies. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  20. Broad cross-reactive IgG responses elicited by adjuvanted vaccination with recombinant influenza hemagglutinin (rHA) in ferrets and mice

    Science.gov (United States)

    Wang, Jiong; Hilchey, Shannon P.; DeDiego, Marta; Perry, Sheldon; Hyrien, Ollivier; Nogales, Aitor; Garigen, Jessica; Amanat, Fatima; Huertas, Nelson; Krammer, Florian; Martinez-Sobrido, Luis; Topham, David J.; Treanor, John J.; Sangster, Mark Y.

    2018-01-01

    Annual immunization against influenza virus is a large international public health effort. Accumulating evidence suggests that antibody mediated cross-reactive immunity against influenza hemagglutinin (HA) strongly correlates with long-lasting cross-protection against influenza virus strains that differ from the primary infection or vaccination strain. However, the optimal strategies for achieving highly cross-reactive antibodies to the influenza virus HA have not yet to be defined. In the current study, using Luminex-based mPlex-Flu assay, developed by our laboratory, to quantitatively measure influenza specific IgG antibody mediated cross-reactivity, we found that prime-boost-boost vaccination of ferrets with rHA proteins admixed with adjuvant elicited higher magnitude and broader cross-reactive antibody responses than that induced by actual influenza viral infection, and this cross-reactive response likely correlated with increased anti-stalk reactive antibodies. We observed a similar phenomenon in mice receiving three sequential vaccinations with rHA proteins from either A/California/07/2009 (H1N1) or A/Hong Kong/1/1968 (H3N2) viruses admixed with Addavax, an MF59-like adjuvant. Using this same mouse vaccination model, we determined that Addavax plays a more significant role in the initial priming event than in subsequent boosts. We also characterized the generation of cross-reactive antibody secreting cells (ASCs) and memory B cells (MBCs) when comparing vaccination to viral infection. We have also found that adjuvant plays a critical role in the generation of long-lived ASCs and MBCs cross-reactive to influenza viruses as a result of vaccination with rHA of influenza virus, and the observed increase in stalk-reactive antibodies likely contributes to this IgG mediated broad cross-reactivity. PMID:29641537

  1. Impact of recombinant adenovirus serotype 35 priming versus boosting of a Plasmodium falciparum protein: Characterization of T- and B-Cell responses to liver-stage antigen 1

    NARCIS (Netherlands)

    Rodriguez, Ariane; Goudsmit, Jaap; Companjen, Arjen; Mintardjo, Ratna; Gillissen, Gert; Tax, Dennis; Sijtsma, Jeroen; Weverling, Gerrit Jan; Holterman, Lennart; Lanar, David E.; Havenga, Menzo J. E.; Radosevic, Katarina

    2008-01-01

    Prime-boost vaccination regimens with heterologous antigen delivery systems have indicated that redirection of the immune response is feasible. We showed earlier that T-cell responses to circumsporozoite (CS) protein improved significantly when the protein is primed with recombinant adenovirus

  2. Oral Vaccination with Heat-Inactivated Mycobacterium bovis Does Not Interfere with the Antemortem Diagnostic Techniques for Tuberculosis in Goats

    Directory of Open Access Journals (Sweden)

    Alvaro Roy

    2017-08-01

    Full Text Available Vaccination against tuberculosis (TB is prohibited in cattle or other species subjected to specific TB eradication campaigns, due to the interference that it may cause with the official diagnostic tests. However, immunization with a heat-inactivated (HI Mycobacterium bovis vaccine via the oral route has been suggested to overcome this issue. In this study, the main goal was to assess the interference of the HI vaccine by different routes of administration using a previous vaccination and re-vaccination (boosting protocol. TB-free kid goats were divided into three groups: oral (n = 16, intramuscular (IM; n = 16, and control (n = 16. Results showed that there was a significant difference in the percentage of animals positive to the single intradermal test (SIT and blood based interferon-gamma release assay (IGRA caused by vaccination when performed in the IM group compared to the oral group (p < 0.001. Nevertheless, no positivity to the SIT or IGRA test was observed in orally vaccinated goats regardless of the different interpretation criteria applied. None of the groups presented positive antibody titers using an in-house ELISA and samples collected 2 months after the boost. These results suggest the potential usefulness of the HI vaccine by the oral route in goats to minimize the interference on diagnostic tests (skin and IGRA tests and reducing the necessity of defined antigens to replace the traditional purified protein derivatives for diagnosis. Finally, the results pave the way to future efficacy studies in goats using different routes of HI vaccination.

  3. Prime immunization with rotavirus VLP 2/6 followed by boosting with an adenovirus expressing VP6 induces protective immunization against rotavirus in mice

    Directory of Open Access Journals (Sweden)

    Qu Jianguo

    2011-01-01

    Full Text Available Abstract Background Rotavirus (RV is the main cause of severe gastroenteritis in children. An effective vaccination regime against RV can substantially reduce morbidity and mortality. Previous studies have demonstrated the efficacy of virus-like particles formed by RV VP2 and VP6 (VLP2/6, as well as that of recombinant adenovirus expressing RV VP6 (rAd, in eliciting protective immunities against RV. However, the efficacy of such prime-boost strategy, which incorporates VLP and rAd in inducing protective immunities against RV, has not been addressed. We assessed the immune effects of different regimens in mice, including rAd prime-VLP2/6 boost (rAd+VLP, VLP2/6 prime-rAd boost (VLP+rAd, rAd alone, and VLP alone. Results Mice immunized with the VLP+rAd regimen elicit stronger humoral, mucosal, and cellular immune responses than those immunized with other regimens. RV challenging experiments showed that the highest reduction (92.9% in viral shedding was achieved in the VLP+rAd group when compared with rAd+VLP (25%, VLP alone (75%, or rAd alone (40% treatment groups. The reduction in RV shedding in mice correlated with fecal IgG (r = 0.95773, P = 0.04227 and IgA (r = 0.96137, P = 0.038663. Conclusions A VLP2/6 prime-rAd boost regimen is effective in conferring immunoprotection against RV challenge in mice. This finding may lay the groundwork for an alternative strategy in novel RV vaccine development.

  4. Vaccination with Replication Deficient Adenovectors Encoding YF-17D Antigens Induces Long-Lasting Protection from Severe Yellow Fever Virus Infection in Mice

    DEFF Research Database (Denmark)

    Bassi, Maria R; Larsen, Mads Andreas Bay; Kongsgaard, Michael

    2016-01-01

    The live attenuated yellow fever vaccine (YF-17D) has been successfully used for more than 70 years. It is generally considered a safe vaccine, however, recent reports of serious adverse events following vaccination have raised concerns and led to suggestions that even safer YF vaccines should...... be developed. Replication deficient adenoviruses (Ad) have been widely evaluated as recombinant vectors, particularly in the context of prophylactic vaccination against viral infections in which induction of CD8+ T-cell mediated immunity is crucial, but potent antibody responses may also be elicited using......, which afforded a high degree of protection from subsequent intracranial challenge of vaccinated mice. However, full protection was only observed using a vector encoding the structural proteins from YF-17D. This vector elicited virus-specific CD8+ T cells as well as neutralizing antibodies, and both...

  5. Design and Construction of a Cloning Vector Containing the hspX Gene of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Atieh Yaghoubi

    2016-10-01

    Full Text Available Background: Tuberculosis (TB is a major cause of death worldwide. Finding an effective vaccine against TB is the best way to control it. Several vaccines against this disease have been developed but none are completely protective. The aim of this study was to design and construct a cloning vector containing the Mycobacterium tuberculosis (M. tuberculosis heat shock protein X (hspX. Methods: First, an hspX fragment was amplified by PCR and cloned into plasmid pcDNA3.1(+ and recombinant vector was confirmed. Results: A 435 bp hspX fragment was isolated. The fragment was 100% homologous with hspX of M. tuberculosis strain H37Rv in GenBank. Conclusions: In this study, the cloning vector pcDNA3.1(+, containing a 435-bp hspX fragment of M. tuberculosis, was constructed. This could be used as a DNA vaccine to induce immune responses in animal models in future studies.

  6. Protection of non-human primates against rabies with an adenovirus recombinant vaccine

    International Nuclear Information System (INIS)

    Xiang, Z.Q.; Greenberg, L.; Ertl, H.C.; Rupprecht, C.E.

    2014-01-01

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. - Highlights: • Pre-exposure vaccination with vaccine based on a chimpanzee derived adenovirus protects against rabies. • Protection is sustained. • Protection is achieved with single low-dose of vaccine given intramuscularly. • Protection is not affected by pre-existing antibodies to common human serotypes of adenovirus

  7. Protection of non-human primates against rabies with an adenovirus recombinant vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Z.Q. [The Wistar Institute of Anatomy and Biology, Philadelphia, PA (United States); Greenberg, L. [Centers for Disease Control and Prevention, Atlanta, GA (United States); Ertl, H.C., E-mail: ertl@wistar.upenn.edu [The Wistar Institute of Anatomy and Biology, Philadelphia, PA (United States); Rupprecht, C.E. [The Global Alliance for Rabies Control, Manhattan, KS (United States); Ross University School of Veterinary Medicine, Basseterre (Saint Kitts and Nevis)

    2014-02-15

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. - Highlights: • Pre-exposure vaccination with vaccine based on a chimpanzee derived adenovirus protects against rabies. • Protection is sustained. • Protection is achieved with single low-dose of vaccine given intramuscularly. • Protection is not affected by pre-existing antibodies to common human serotypes of adenovirus.

  8. Experimental Vaccines against Chagas Disease: A Journey through History.

    Science.gov (United States)

    Rodríguez-Morales, Olivia; Monteón-Padilla, Víctor; Carrillo-Sánchez, Silvia C; Rios-Castro, Martha; Martínez-Cruz, Mariana; Carabarin-Lima, Alejandro; Arce-Fonseca, Minerva

    2015-01-01

    Chagas disease, or American trypanosomiasis, which is caused by the protozoan parasite Trypanosoma cruzi, is primarily a vector disease endemic in 21 Latin American countries, including Mexico. Although many vector control programs have been implemented, T. cruzi has not been eradicated. The development of an anti-T. cruzi vaccine for prophylactic and therapeutic purposes may significantly contribute to the transmission control of Chagas disease. Immune protection against experimental infection with T. cruzi has been studied since the second decade of the last century, and many types of immunogens have been used subsequently, such as killed or attenuated parasites and new DNA vaccines. This primary prevention strategy appears feasible, effective, safe, and inexpensive, although problems remain. The objective of this review is to summarize the research efforts about the development of vaccines against Chagas disease worldwide. A thorough literature review was conducted by searching PubMed with the terms "Chagas disease" and "American trypanosomiasis" together with "vaccines" or "immunization". In addition, reports and journals not cited in PubMed were identified. Publications in English, Spanish, and Portuguese were reviewed.

  9. Vaccination elicits a prominent acute phase response in horses.

    Science.gov (United States)

    Andersen, Susanne A; Petersen, Henrik H; Ersbøll, Annette K; Falk-Rønne, Jørgen; Jacobsen, Stine

    2012-02-01

    European and American guidelines for vaccination against tetanus and influenza in horses recommend annual and annual/semi-annual vaccinations, respectively, against the two pathogens. Too-frequent vaccination may, however, have adverse effects, among other things because an inflammatory response is elicited with subsequent alterations in homeostasis. The objective of the study was to compare the acute phase response (APR) in 10 horses following administration of two different types of vaccines, namely, an inactivated Immune Stimulating COMplex (ISCOM) vaccine and a live recombinant vector vaccine. Blood was sampled before and after vaccination to measure levels of serum amyloid A (SAA), fibrinogen, white blood cell counts (WBC) and iron. Vaccination induced a prominent APR with increased WBC, elevated blood levels of SAA and fibrinogen, and decreased serum iron concentrations. The ISCOM vaccine caused significantly (Phorse owners about convalescence after vaccination. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Newborn Mice Vaccination with BCG.HIVA222 + MVA.HIVA Enhances HIV-1-Specific Immune Responses: Influence of Age and Immunization Routes

    Directory of Open Access Journals (Sweden)

    Narcís Saubi

    2011-01-01

    Full Text Available We have evaluated the influence of age and immunization routes for induction of HIV-1- and M. tuberculosis-specific immune responses after neonatal (7 days old and adult (7 weeks old BALB/c mice immunization with BCG.HIVA222 prime and MVA.HIVA boost. The specific HIV-1 cellular immune responses were analyzed in spleen cells. The body weight of the newborn mice was weekly recorded. The frequencies of HIV-specific CD8+ T cells producing IFN-γ were higher in adult mice vaccinated intradermally and lower in adult and newborn mice vaccinated subcutaneously. In all cases the IFN-γ production was significantly higher when mice were primed with BCG.HIVA222 compared with BCGwt. When the HIV-specific CTL activity was assessed, the frequencies of specific killing were higher in newborn mice than in adults. The prime-boost vaccination regimen which includes BCG.HIVA222 and MVA.HIVA was safe when inoculated to newborn mice. The administration of BCG.HIVA222 to newborn mice is safe and immunogenic and increased the HIV-specific responses induced by MVA.HIVA vaccine. It might be a good model for infant HIV and Tuberculosis bivalent vaccine.

  11. Newborn Mice Vaccination with BCG.HIVA222 + MVA.HIVA Enhances HIV-1-Specific Immune Responses: Influence of Age and Immunization Routes

    Science.gov (United States)

    Saubi, Narcís; Im, Eung-Jun; Fernández-Lloris, Raquel; Gil, Olga; Cardona, Pere-Joan; Gatell, Josep Maria; Hanke, Tomáš; Joseph, Joan

    2011-01-01

    We have evaluated the influence of age and immunization routes for induction of HIV-1- and M. tuberculosis-specific immune responses after neonatal (7 days old) and adult (7 weeks old) BALB/c mice immunization with BCG.HIVA222 prime and MVA.HIVA boost. The specific HIV-1 cellular immune responses were analyzed in spleen cells. The body weight of the newborn mice was weekly recorded. The frequencies of HIV-specific CD8+ T cells producing IFN-γ were higher in adult mice vaccinated intradermally and lower in adult and newborn mice vaccinated subcutaneously. In all cases the IFN-γ production was significantly higher when mice were primed with BCG.HIVA222 compared with BCGwt. When the HIV-specific CTL activity was assessed, the frequencies of specific killing were higher in newborn mice than in adults. The prime-boost vaccination regimen which includes BCG.HIVA222 and MVA.HIVA was safe when inoculated to newborn mice. The administration of BCG.HIVA222 to newborn mice is safe and immunogenic and increased the HIV-specific responses induced by MVA.HIVA vaccine. It might be a good model for infant HIV and Tuberculosis bivalent vaccine. PMID:21603216

  12. MALARIA VACCINE: MYTH OR REALITY?

    African Journals Online (AJOL)

    Femi Olaleye

    Malaria currently remains the highest killer disease nationwide despite existing control measures. Malaria vaccine ... that malaria could be eliminated or at least controlled. However, because of changes in vector behaviour, drug resistance, manpower constraints for public ..... Although animal host models are different from ...

  13. DNA vaccination of pigs with open reading frame 1-7 of PRRS virus

    DEFF Research Database (Denmark)

    Barfoed, Annette Malene; Blixenkrone-Møller, Merete; Jensen, Merethe Holm

    2004-01-01

    We cloned all open reading frames of a Danish isolate of porcine reproductive and respiratory syndrome (PRRS) virus in DNA vaccination vectors. Pigs were vaccinated using a gene gun with each single construct (ORF1, ORF2, ORF3, ORF4, ORF5, ORF6, or ORF7) or combinations thereof. Vaccination...

  14. Low titers of measles antibody in mothers whose infants suffered from measles before eligible age for measles vaccination

    Directory of Open Access Journals (Sweden)

    Wu Qiaozhen

    2010-05-01

    Full Text Available Abstract Background Resurgence or outbreak of measles recently occurred in both developed and developing countries despite long-standing widespread use of measles vaccine. Measles incidence in China has increased since 2002, particularly in infants and in persons ≥ 15 years of age. It is speculated that infants may acquire fewer measles IgG from their mothers, resulting in the reduced duration of protection during their early months of life. This study aimed to clarify the reason of increased susceptibility to measles in young infants in China. Measles IgG in 24 measles infants ≤ 9 months of age and their vaccinated mothers was quantitatively measured. The mean measles neutralizing titer in the vaccinated mothers and in 13 age-match women with the histories of clinical measles were compared. Results All the mothers were confirmed to be vaccinated successfully by the presence of measles IgG. Six vaccinated mothers were positive for measles IgM and had high concentrations of measles IgG and the neutralizing antibody, indicating underwent natural boosting. The mean measles neutralizing titer in 18 vaccinated mothers without natural boosting were significantly lower than that in 13 age-match women with the histories of clinical measles (1:37 vs 1:182, P Conclusions Our results suggest that infants born to mothers who acquired immunity to measles by vaccination may get a relatively small amount of measles antibody, resulting in loss of the immunity to measles before the vaccination age. Measures to improve the immunity in young infants not eligible for measles vaccination would be critical to interrupt the measles transmission in China.

  15. Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy.

    Science.gov (United States)

    Hu, Qinglian; Wu, Min; Fang, Chun; Cheng, Changyong; Zhao, Mengmeng; Fang, Weihuan; Chu, Paul K; Ping, Yuan; Tang, Guping

    2015-04-08

    Live attenuated bacteria are of increasing importance in biotechnology and medicine in the emerging field of cancer immunotherapy. Oral DNA vaccination mediated by live attenuated bacteria often suffers from low infection efficiency due to various biological barriers during the infection process. To this end, we herein report, for the first time, a new strategy to engineer cationic nanoparticle-coated bacterial vectors that can efficiently deliver oral DNA vaccine for efficacious cancer immunotherapy. By coating live attenuated bacteria with synthetic nanoparticles self-assembled from cationic polymers and plasmid DNA, the protective nanoparticle coating layer is able to facilitate bacteria to effectively escape phagosomes, significantly enhance the acid tolerance of bacteria in stomach and intestines, and greatly promote dissemination of bacteria into blood circulation after oral administration. Most importantly, oral delivery of DNA vaccines encoding autologous vascular endothelial growth factor receptor 2 (VEGFR2) by this hybrid vector showed remarkable T cell activation and cytokine production. Successful inhibition of tumor growth was also achieved by efficient oral delivery of VEGFR2 with nanoparticle-coated bacterial vectors due to angiogenesis suppression in the tumor vasculature and tumor necrosis. This proof-of-concept work demonstrates that coating live bacterial cells with synthetic nanoparticles represents a promising strategy to engineer efficient and versatile DNA vaccines for the era of immunotherapy.

  16. Strategies to obtain multiple recombinant modified vaccinia Ankara vectors. Applications to influenza vaccines.

    Science.gov (United States)

    Barbieri, Andrea; Panigada, Maddalena; Soprana, Elisa; Di Mario, Giuseppina; Gubinelli, Francesco; Bernasconi, Valentina; Recagni, Marta; Donatelli, Isabella; Castrucci, Maria R; Siccardi, Antonio G

    2018-01-01

    As a vaccination vector, MVA has been widely investigated both in animal models and humans. The construction of recombinant MVA (rMVA) relies on homologous recombination between an acceptor virus and a donor plasmid in infected/transfected permissive cells. Our construction strategy "Red-to-Green gene swapping" - based on the exchange of two fluorescent markers within the flanking regions of MVA deletion ΔIII, coupled to fluorescence activated cell sorting - is here extended to a second insertion site, within the flanking regions of MVA deletion ΔVI. Exploiting this strategy, both double and triple rMVA were constructed, expressing as transgenes the influenza A proteins HA, NP, M1, and PB1. Upon validation of the harbored transgenes co-expression, double and triple recombinants rMVA(ΔIII)-NP-P2A-M1 and rMVA(ΔIII)-NP-P2A-M1-(ΔVI)-PB1 were assayed for in vivo immunogenicity and protection against lethal challenge. In vivo responses were identical to those obtained with the reported combinations of single recombinants, supporting the feasibility and reliability of the present improvement and the extension of Red-to-Green gene swapping to insertion sites other than ΔIII. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Multiclass AdaBoost ELM and Its Application in LBP Based Face Recognition

    Directory of Open Access Journals (Sweden)

    Yunliang Jiang

    2015-01-01

    Full Text Available Extreme learning machine (ELM is a competitive machine learning technique, which is simple in theory and fast in implementation; it can identify faults quickly and precisely as compared with traditional identification techniques such as support vector machines (SVM. As verified by the simulation results, ELM tends to have better scalability and can achieve much better generalization performance and much faster learning speed compared with traditional SVM. In this paper, we introduce a multiclass AdaBoost based ELM ensemble method. In our approach, the ELM algorithm is selected as the basic ensemble predictor due to its rapid speed and good performance. Compared with the existing boosting ELM algorithm, our algorithm can be directly used in multiclass classification problem. We also carried out comparable experiments with face recognition datasets. The experimental results show that the proposed algorithm can not only make the predicting result more stable, but also achieve better generalization performance.

  18. Design and Potential of Non-Integrating Lentiviral Vectors

    Directory of Open Access Journals (Sweden)

    Aaron Shaw

    2014-01-01

    Full Text Available Lentiviral vectors have demonstrated promising results in clinical trials that target cells of the hematopoietic system. For these applications, they are the vectors of choice since they provide stable integration into cells that will undergo extensive expansion in vivo. Unfortunately, integration can have unintended consequences including dysregulated cell growth. Therefore, lentiviral vectors that do not integrate are predicted to have a safer profile compared to integrating vectors and should be considered for applications where transient expression is required or for sustained episomal expression such as in quiescent cells. In this review, the system for generating lentiviral vectors will be described and used to illustrate how alterations in the viral integrase or vector Long Terminal Repeats have been used to generate vectors that lack the ability to integrate. In addition to their safety advantages, these non-integrating lentiviral vectors can be used when persistent expression would have adverse consequences. Vectors are currently in development for use in vaccinations, cancer therapy, site-directed gene insertions, gene disruption strategies, and cell reprogramming. Preclinical work will be described that illustrates the potential of this unique vector system in human gene therapy.

  19. Alzheimer's disease: is a vaccine possible?

    International Nuclear Information System (INIS)

    Alves, R.P.S.; Yang, M.J.; Batista, M.T.; Ferreira, L.C.S.

    2014-01-01

    The cause of Alzheimer's disease is still unknown, but the disease is distinctively characterized by the accumulation of β-amyloid plaques and neurofibrillary tangles in the brain. These features have become the primary focus of much of the research looking for new treatments for the disease, including immunotherapy and vaccines targeting β-amyloid in the brain. Adverse effects observed in a clinical trial based on the β-amyloid protein were attributed to the presence of the target antigen and emphasized the relevance of finding safer antigen candidates for active immunization. For this kind of approach, different vaccine formulations using DNA, peptide, and heterologous prime-boost immunization regimens have been proposed. Promising results are expected from different vaccine candidates encompassing B-cell epitopes of the β-amyloid protein. In addition, recent results indicate that targeting another protein involved in the etiology of the disease has opened new perspectives for the effective prevention of the illness. Collectively, the evidence indicates that the idea of finding an effective vaccine for the control of Alzheimer's disease, although not without challenges, is a possibility

  20. Alzheimer's disease: is a vaccine possible?

    Energy Technology Data Exchange (ETDEWEB)

    Alves, R.P.S. [Universidade de São Paulo, Instituto de Ciências Biomédicas II, Departamento de Microbiologia, Laboratório de Desenvolvimento de Vacinas, São Paulo, SP, Brasil, Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, SP (Brazil); Yang, M.J. [Instituto Butantan, Laboratório de Genética, São Paulo, SP, Brasil, Laboratório de Genética, Instituto Butantan, São Paulo, SP (Brazil); Batista, M.T.; Ferreira, L.C.S. [Universidade de São Paulo, Instituto de Ciências Biomédicas II, Departamento de Microbiologia, Laboratório de Desenvolvimento de Vacinas, São Paulo, SP, Brasil, Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-05-09

    The cause of Alzheimer's disease is still unknown, but the disease is distinctively characterized by the accumulation of β-amyloid plaques and neurofibrillary tangles in the brain. These features have become the primary focus of much of the research looking for new treatments for the disease, including immunotherapy and vaccines targeting β-amyloid in the brain. Adverse effects observed in a clinical trial based on the β-amyloid protein were attributed to the presence of the target antigen and emphasized the relevance of finding safer antigen candidates for active immunization. For this kind of approach, different vaccine formulations using DNA, peptide, and heterologous prime-boost immunization regimens have been proposed. Promising results are expected from different vaccine candidates encompassing B-cell epitopes of the β-amyloid protein. In addition, recent results indicate that targeting another protein involved in the etiology of the disease has opened new perspectives for the effective prevention of the illness. Collectively, the evidence indicates that the idea of finding an effective vaccine for the control of Alzheimer's disease, although not without challenges, is a possibility.

  1. [Vaccine does make sense, until used].

    Science.gov (United States)

    Kobayashi, Toshi-Hiko

    2011-01-01

    In the 1990s, drug companies focused their resources on chemistry-based proprietary blockbuster compounds (small molecules) for chronic diseases that could bring in several billion dollars in a short period of time. Since then, the focus has turned to biologics (proteins/high MW molecules) such as anticancer agents, antibodies, and so on. Vaccines, in contrast, are a rather slow-growing market, administered only a few times per patient, low priced, and often undifferentiated. Due to the influenza scares of recent years, the above view has changed remarkably. According to some analysts, the annual growth of the current $2.2 bn vaccine market will become almost 10 percent over the next 5 years. In 2009, Pfizer (US), in an effort to boost their small vaccine-related business, purchased Wyeth (US). In October 2010, Johnson & Johnson announced they were buying Crucell (Germany), the only vaccine maker who had remained independent. GSK (UK) holds the top spot in the vaccine market with a 25% share. Pfizer (US), Merck (US), Novartis (Switzerland), and Sanofi-Aventis (France) are next, while Johnson & Johnson has moved into the 6th position by purchasing Crucell. There is of course an essential therapeutic need for vaccines, however, why are major pharmaceutical companies now investing a significant amount of resources in the vaccine business? Vaccine development may take more time than that of small molecules, but they are less risky from an intellectual property standpoint, and complicated manufacturing processes create a high barrier to follow-on biologics/biosimilars. Also in Japan, since the recent influenza scares, there has been acceleration in movement and cooperation among industry and government, including lawmakers.

  2. Lentiviral Vectors for Cancer Immunotherapy and Clinical Applications

    Directory of Open Access Journals (Sweden)

    David Escors

    2013-07-01

    Full Text Available The success of immunotherapy against infectious diseases has shown us the powerful potential that such a treatment offers, and substantial work has been done to apply this strategy in the fight against cancer. Cancer is however a fiercer opponent than pathogen-caused diseases due to natural tolerance towards tumour associated antigens and tumour-induced immunosuppression. Recent gene therapy clinical trials with viral vectors have shown clinical efficacy in the correction of genetic diseases, HIV and cancer. The first successful gene therapy clinical trials were carried out with onco(g-retroviral vectors but oncogenesis by insertional mutagenesis appeared as a serious complication. Lentiviral vectors have emerged as a potentially safer strategy, and recently the first clinical trial of patients with advanced leukemia using lentiviral vectors has proven successful. Additionally, therapeutic lentivectors have shown clinical efficacy for the treatment of HIV, X-linked adrenoleukodystrophy, and b-thalassaemia. This review aims at describing lentivectors and how they can be utilized to boost anti-tumour immune responses by manipulating the effector immune cells.

  3. Lentiviral Vectors for Cancer Immunotherapy and Clinical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Liechtenstein, Therese, E-mail: t.liechtenstein.12@ucl.ac.uk [University College London, 5 University Street, London, WC1E 6JF (United Kingdom); Perez-Janices, Noemi; Escors, David [University College London, 5 University Street, London, WC1E 6JF (United Kingdom); Navarrabiomed Fundacion Miguel Servet, 3 Irunlarrea St., Hospital Complex of Navarra, 31008 Pamplona, Navarra (Spain)

    2013-07-02

    The success of immunotherapy against infectious diseases has shown us the powerful potential that such a treatment offers, and substantial work has been done to apply this strategy in the fight against cancer. Cancer is however a fiercer opponent than pathogen-caused diseases due to natural tolerance towards tumour associated antigens and tumour-induced immunosuppression. Recent gene therapy clinical trials with viral vectors have shown clinical efficacy in the correction of genetic diseases, HIV and cancer. The first successful gene therapy clinical trials were carried out with onco(γ-)retroviral vectors but oncogenesis by insertional mutagenesis appeared as a serious complication. Lentiviral vectors have emerged as a potentially safer strategy, and recently the first clinical trial of patients with advanced leukemia using lentiviral vectors has proven successful. Additionally, therapeutic lentivectors have shown clinical efficacy for the treatment of HIV, X-linked adrenoleukodystrophy, and β-thalassaemia. This review aims at describing lentivectors and how they can be utilized to boost anti-tumour immune responses by manipulating the effector immune cells.

  4. Lentiviral Vectors for Cancer Immunotherapy and Clinical Applications

    International Nuclear Information System (INIS)

    Liechtenstein, Therese; Perez-Janices, Noemi; Escors, David

    2013-01-01

    The success of immunotherapy against infectious diseases has shown us the powerful potential that such a treatment offers, and substantial work has been done to apply this strategy in the fight against cancer. Cancer is however a fiercer opponent than pathogen-caused diseases due to natural tolerance towards tumour associated antigens and tumour-induced immunosuppression. Recent gene therapy clinical trials with viral vectors have shown clinical efficacy in the correction of genetic diseases, HIV and cancer. The first successful gene therapy clinical trials were carried out with onco(γ-)retroviral vectors but oncogenesis by insertional mutagenesis appeared as a serious complication. Lentiviral vectors have emerged as a potentially safer strategy, and recently the first clinical trial of patients with advanced leukemia using lentiviral vectors has proven successful. Additionally, therapeutic lentivectors have shown clinical efficacy for the treatment of HIV, X-linked adrenoleukodystrophy, and β-thalassaemia. This review aims at describing lentivectors and how they can be utilized to boost anti-tumour immune responses by manipulating the effector immune cells

  5. Initial preclinical safety of non-replicating human endogenous retrovirus envelope protein-coated baculovirus vector-based vaccines against human papillomavirus.

    Science.gov (United States)

    Han, Su-Eun; Kim, Mi-Gyeong; Lee, Soondong; Cho, Hee-Jeong; Byun, Youngro; Kim, Sujeong; Kim, Young Bong; Choi, Yongseok; Oh, Yu-Kyoung

    2013-12-01

    Human endogenous retrovirus (HERV) envelope protein-coated, baculovirus vector-based HPV 16 L1 (AcHERV-HPV16L1) is a non-replicating recombinant baculoviral vaccine. Here, we report an initial evaluation of the preclinical safety of AcHERV-HPV16L1 vaccine. In an acute toxicity study, a single administration of AcHERV-HPV16L1 DNA vaccine given intramuscularly (i.m.) to mice at a dose of 1 × 10(8) plaque-forming units (PFU) did not cause significant changes in body weight compared with vehicle-treated controls. It did cause a brief increase in the weights of some organs on day 15 post-treatment, but by day 30, all organ weights were not significantly different from those in the vehicle-treated control group. No hematological changes were observed on day 30 post-treatment. In a range-finding toxicity study with three doses of 1 × 10(7) , 2 × 10(7) and 5 × 10(7) PFU once daily for 5 days, the group treated with 5 × 10(7) PFU showed a transient decrease in the body weights from day 5 to day 15 post-treatment, but recovery to the levels similar to those in the vehicle-treated control group by post-treatment day 20. Organ weights were slightly higher for lymph nodes, spleen, thymus and liver after repeated dosing with 5 × 10(7) PFU on day 15, but had normalized by day 30. Moreover, repeated administration of AcHERV-HPV16L1 did not induce myosin-specific autoantibody in serum, and did not cause immune complex deposition or tissue damage at injection sites. Taken together, these results provide preliminary evidence of the preclinical safety of AcHERV-based HPV16L1 DNA vaccines in mice. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Cell-mediated immune responses in the head-associated lymphoid tissues induced to a live attenuated avian coronavirus vaccine.

    Science.gov (United States)

    Gurjar, Rucha S; Gulley, Stephen L; van Ginkel, Frederik W

    2013-12-01

    Humoral immunity is important for controlling viral diseases of poultry, but recent studies have indicated that cytotoxic T cells also play an important role in the immune response to infectious bronchitis virus (IBV). To better understand the cell mediated immune responses to IBV in the mucosal and systemic immune compartments chickens were ocularly vaccinated with IBV. This induced a lymphocyte expansion in head-associated lymphoid tissues (HALT) and to a lesser extent in the spleen, followed by a rapid decline, probably due to homing of lymphocytes out of these organs and contraction of the lymphocyte population. This interpretation was supported by observations that changes in mononuclear cells were mirrored by that in CD3(+)CD44(+) T cell abundance, which presumably represent T effector cells. Increased interferon gamma (IFN-γ) expression was observed in the mucosal immune compartment, i.e., HALT, after primary vaccination, but shifted to the systemic immune compartment after boosting. In contrast, the expression of cytotoxicity-associated genes, i.e., granzyme A (GZMA) and perforin mRNA, remained associated with the HALT after boosting. Thus, an Ark-type IBV ocular vaccine induces a central memory IFN-γ response in the spleen while the cytotoxic effector memory response, as measured by GZMA and perforin mRNA expression, remains associated with CALT after boosting. Copyright © 2013. Published by Elsevier Ltd.

  7. Did vaccination slow the spread of bluetongue in France?

    Directory of Open Access Journals (Sweden)

    Maryline Pioz

    Full Text Available Vaccination is one of the most efficient ways to control the spread of infectious diseases. Simulations are now widely used to assess how vaccination can limit disease spread as well as mitigate morbidity or mortality in susceptible populations. However, field studies investigating how much vaccines decrease the velocity of epizootic wave-fronts during outbreaks are rare. This study aimed at investigating the effect of vaccination on the propagation of bluetongue, a vector-borne disease of ruminants. We used data from the 2008 bluetongue virus serotype 1 (BTV-1 epizootic of southwest France. As the virus was newly introduced in this area, natural immunity of livestock was absent. This allowed determination of the role of vaccination in changing the velocity of bluetongue spread while accounting for environmental factors that possibly influenced it. The average estimated velocity across the country despite restriction on animal movements was 5.4 km/day, which is very similar to the velocity of spread of the bluetongue virus serotype 8 epizootic in France also estimated in a context of restrictions on animal movements. Vaccination significantly reduced the propagation velocity of BTV-1. In comparison to municipalities with no vaccine coverage, the velocity of BTV-1 spread decreased by 1.7 km/day in municipalities with immunized animals. For the first time, the effect of vaccination has been quantified using data from a real epizootic whilst accounting for environmental factors known to modify the velocity of bluetongue spread. Our findings emphasize the importance of vaccination in limiting disease spread across natural landscape. Finally, environmental factors, specifically those related to vector abundance and activity, were found to be good predictors of the velocity of BTV-1 spread, indicating that these variables need to be adequately accounted for when evaluating the role of vaccination on bluetongue spread.

  8. Distribution-Specific Agnostic Boosting

    OpenAIRE

    Feldman, Vitaly

    2009-01-01

    We consider the problem of boosting the accuracy of weak learning algorithms in the agnostic learning framework of Haussler (1992) and Kearns et al. (1992). Known algorithms for this problem (Ben-David et al., 2001; Gavinsky, 2002; Kalai et al., 2008) follow the same strategy as boosting algorithms in the PAC model: the weak learner is executed on the same target function but over different distributions on the domain. We demonstrate boosting algorithms for the agnostic learning framework tha...

  9. Induction of protective immunity against H1N1 influenza A(H1N1)pdm09 with spray-dried and electron-beam sterilised vaccines in non-human primates.

    Science.gov (United States)

    Scherließ, Regina; Ajmera, Ankur; Dennis, Mike; Carroll, Miles W; Altrichter, Jens; Silman, Nigel J; Scholz, Martin; Kemter, Kristina; Marriott, Anthony C

    2014-04-17

    Currently, the need for cooled storage and the impossibility of terminal sterilisation are major drawbacks in vaccine manufacturing and distribution. To overcome current restrictions a preclinical safety and efficacy study was conducted to evaluate new influenza A vaccine formulations regarding thermal resistance, resistance against irradiation-mediated damage and storage stability. We evaluated the efficacy of novel antigen stabilizing and protecting solutions (SPS) to protect influenza A(H1N1)pdm09 split virus antigen under experimental conditions in vitro and in vivo. Original or SPS re-buffered vaccine (Pandemrix) was spray-dried and terminally sterilised by irradiation with 25 kGy (e-beam). Antigen integrity was monitored by SDS-PAGE, dynamic light scattering, size exclusion chromatography and functional haemagglutination assays. In vitro screening experiments revealed a number of highly stable compositions containing glycyrrhizinic acid (GA) and/or chitosan. The most stable composition was selected for storage tests and in vivo assessment of seroconversion in non-human primates (Macaca fascicularis) using a prime-boost strategy. Redispersed formulations with original adjuvant were administered intramuscularly. Storage data revealed high stability of protected vaccines at 4°C and 25°C, 60% relative humidity, for at least three months. Animals receiving original Pandemrix exhibited expected levels of seroconversion after 21 days (prime) and 48 days (boost) as assessed by haemagglutination inhibition and microneutralisation assays. Animals vaccinated with spray-dried and irradiated Pandemrix failed to exhibit seroconversion after 21 days whereas spray-dried and irradiated, SPS-protected vaccines elicited similar seroconversion levels to those vaccinated with original Pandemrix. Boost immunisation with SPS-protected vaccine resulted in a strong increase in seroconversion but had only minor effects in animals treated with non SPS-protected vaccine. In conclusion

  10. A targeted mutation within the feline leukemia virus (FeLV) envelope protein immunosuppressive domain to improve a canarypox virus-vectored FeLV vaccine.

    Science.gov (United States)

    Schlecht-Louf, Géraldine; Mangeney, Marianne; El-Garch, Hanane; Lacombe, Valérie; Poulet, Hervé; Heidmann, Thierry

    2014-01-01

    We previously delineated a highly conserved immunosuppressive (IS) domain within murine and primate retroviral envelope proteins that is critical for virus propagation in vivo. The envelope-mediated immunosuppression was assessed by the ability of the proteins, when expressed by allogeneic tumor cells normally rejected by engrafted mice, to allow these cells to escape, at least transiently, immune rejection. Using this approach, we identified key residues whose mutation (i) specifically abolishes immunosuppressive activity without affecting the "mechanical" function of the envelope protein and (ii) significantly enhances humoral and cellular immune responses elicited against the virus. The objective of this work was to study the immunosuppressive activity of the envelope protein (p15E) of feline leukemia virus (FeLV) and evaluate the effect of its abolition on the efficacy of a vaccine against FeLV. Here we demonstrate that the FeLV envelope protein is immunosuppressive in vivo and that this immunosuppressive activity can be "switched off" by targeted mutation of a specific amino acid. As a result of the introduction of the mutated envelope sequence into a previously well characterized canarypox virus-vectored vaccine (ALVAC-FeLV), the frequency of vaccine-induced FeLV-specific gamma interferon (IFN-γ)-producing cells was increased, whereas conversely, the frequency of vaccine-induced FeLV-specific interleukin-10 (IL-10)-producing cells was reduced. This shift in the IFN-γ/IL-10 response was associated with a higher efficacy of ALVAC-FeLV against FeLV infection. This study demonstrates that FeLV p15E is immunosuppressive in vivo, that the immunosuppressive domain of p15E can modulate the FeLV-specific immune response, and that the efficacy of FeLV vaccines can be enhanced by inhibiting the immunosuppressive activity of the IS domain through an appropriate mutation.

  11. Expected epidemiological impact of the introduction of a partially effective HIV vaccine among men who have sex with men in Australia.

    Science.gov (United States)

    Gray, Richard T; Ghaus, Mohammad H; Hoare, Alexander; Wilson, David P

    2011-08-18

    A trial of the ALVAC-AIDSVAX HIV vaccine was recently found to be partially effective in preventing HIV transmission among study participants in Thailand. The success of this trial means that vaccination may become a viable intervention for the prevention of HIV infection in the medium-term future. Assuming that the vaccine has similar relative protective effectiveness per exposure event for reducing transmission among men who have sex with men (MSM) in high-income settings we investigated the potential population-level impact of rolling out such a vaccine among MSM in New South Wales, Australia. Using a detailed individual-based transmission model that simulates a population of sexually active MSM it was found that one-off intervention of 60% or 30% coverage of a vaccine with characteristics like the ALVAX-AIDSVAX vaccine would likely reduce the cumulative incidence of HIV by 9.6% and 5.1%, respectively, over a 10-year period. Due to the waning of vaccine efficacy, a booster vaccination could be required to maintain this reduction in incidence over the long term. If the previously vaccinated population is given a booster vaccine, with the same protection conferred as with the initial vaccination, every 5 years or every 2 years then the cumulative incidence over 10 years for 60% coverage could be reduced by 14.4% and 22.8%, respectively. Such a weak vaccine, with boosting, may be a potential intervention strategy for the prevention of HIV infection in MSM in high-income countries if further trials show boosting to be safe, acceptable, and cost-effective. However, the moderately low population-level impact suggests that a public health strategy involving such a vaccine should be supplemented with other biomedical and educational strategies. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  12. NKT cell adjuvant-based tumor vaccine for treatment of myc oncogene-driven mouse B-cell lymphoma

    NARCIS (Netherlands)

    Mattarollo, Stephen R.; West, Alison C.; Steegh, Kim; Duret, Helene; Paget, Christophe; Martin, Ben; Matthews, Geoffrey M.; Shortt, Jake; Chesi, Marta; Bergsagel, P. Leif; Bots, Michael; Zuber, Johannes; Lowe, Scott W.; Johnstone, Ricky W.; Smyth, Mark J.

    2012-01-01

    Immunomodulators are effective in controlling hematologic malignancy by initiating or reactivating host antitumor immunity to otherwise poorly immunogenic and immune suppressive cancers. We aimed to boost antitumor immunity in B-cell lymphoma by developing a tumor cell vaccine incorporating

  13. Patent data mining: a tool for accelerating HIV vaccine innovation.

    Science.gov (United States)

    Clark, K; Cavicchi, J; Jensen, K; Fitzgerald, R; Bennett, A; Kowalski, S P

    2011-05-31

    Global access to advanced vaccine technologies is challenged by the interrelated components of intellectual property (IP) management strategies, technology transfer (legal and technical) capabilities and the capacity necessary for accelerating R&D, commercialization and delivery of vaccines. Due to a negative association with the management of IP, patents are often overlooked as a vast resource of freely available, information akin to scientific journals as well as business and technological information and trends fundamental for formulating policies and IP management strategies. Therefore, a fundamental step towards facilitating global vaccine access will be the assembly, organization and analysis of patent landscapes, to identify the amount of patenting, ownership (assignees) and fields of technology covered. This is critical for making informed decisions (e.g., identifying licensees, building research and product development collaborations, and ascertaining freedom to operate). Such information is of particular interest to the HIV vaccine community where the HIV Vaccine Enterprise, have voiced concern that IP rights (particularly patents and trade secrets) may prevent data and materials sharing, delaying progress in research and development of a HIV vaccine. We have compiled and analyzed a representative HIV vaccine patent landscape for a prime-boost, DNA/adenoviral vaccine platform, as an example for identifying obstacles, maximizing opportunities and making informed IP management strategy decisions towards the development and deployment of an efficacious HIV vaccine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Bioreactor production of recombinant herpes simplex virus vectors.

    Science.gov (United States)

    Knop, David R; Harrell, Heather

    2007-01-01

    Serotypical application of herpes simplex virus (HSV) vectors to gene therapy (type 1) and prophylactic vaccines (types 1 and 2) has garnered substantial clinical interest recently. HSV vectors and amplicons have also been employed as helper virus constructs for manufacture of the dependovirus adeno-associated virus (AAV). Large quantities of infectious HSV stocks are requisite for these therapeutic applications, requiring a scalable vector manufacturing and processing platform comprised of unit operations which accommodate the fragility of HSV. In this study, production of a replication deficient rHSV-1 vector bearing the rep and cap genes of AAV-2 (denoted rHSV-rep2/cap2) was investigated. Adaptation of rHSV production from T225 flasks to a packed bed, fed-batch bioreactor permitted an 1100-fold increment in total vector production without a decrease in specific vector yield (pfu/cell). The fed-batch bioreactor system afforded a rHSV-rep2/cap2 vector recovery of 2.8 x 10(12) pfu. The recovered vector was concentrated by tangential flow filtration (TFF), permitting vector stocks to be formulated at greater than 1.5 x 10(9) pfu/mL.

  15. Primary and booster vaccination with DTPw-HB/Hib pentavalent vaccine in Costa Rican children who had received a birth dose of hepatitis B vaccine

    Directory of Open Access Journals (Sweden)

    Idis Faingezicht

    2002-10-01

    protective/seropositive titers for Hib, HB, and tetanus and about 50% for diphtheria and Bordetella pertussis. At 15 months of age, virtually all the toddlers responded with a strong boost response to all the vaccine antigens, whether they received the DTPw-HB/Hib pentavalent vaccine or the DTPw/Hib vaccine as a booster. Both booster regimens were equally well tolerated, indicating that up to five doses of the HB vaccine can be given without impact on safety. Conclusions. Our study confirms that the DTPw-HB/Hib pentavalent vaccine is highly immunogenic as a primary vaccination in children who received an HB vaccine at birth, with the pentavalent combination inducing both persisting immunity and boostable memory. The pentavalent vaccine was safe both for primary and booster vaccinations. Thus, this study in Costa Rican infants supports the routine use of the pentavalent DTPw-HB/Hib vaccine as part of childhood vaccination programs in Latin America and the Caribbean.

  16. Adaptive track scheduling to optimize concurrency and vectorization in GeantV

    International Nuclear Information System (INIS)

    Apostolakis, J; Brun, R; Carminati, F; Gheata, A; Novak, M; Wenzel, S; Bandieramonte, M; Bitzes, G; Canal, P; Elvira, V D; Jun, S Y; Lima, G; Licht, J C De Fine; Duhem, L; Sehgal, R; Shadura, O

    2015-01-01

    The GeantV project is focused on the R and D of new particle transport techniques to maximize parallelism on multiple levels, profiting from the use of both SIMD instructions and co-processors for the CPU-intensive calculations specific to this type of applications. In our approach, vectors of tracks belonging to multiple events and matching different locality criteria must be gathered and dispatched to algorithms having vector signatures. While the transport propagates tracks and changes their individual states, data locality becomes harder to maintain. The scheduling policy has to be changed to maintain efficient vectors while keeping an optimal level of concurrency. The model has complex dynamics requiring tuning the thresholds to switch between the normal regime and special modes, i.e. prioritizing events to allow flushing memory, adding new events in the transport pipeline to boost locality, dynamically adjusting the particle vector size or switching between vector to single track mode when vectorization causes only overhead. This work requires a comprehensive study for optimizing these parameters to make the behaviour of the scheduler self-adapting, presenting here its initial results. (paper)

  17. [Role of vaccination in animal health].

    Science.gov (United States)

    Pastoret, Paul-Pierre

    2012-03-01

    According to the IFAH, veterinary vaccines currently account for 26% of the global market in veterinary medicines, reflecting the importance of vaccines in animal health, as well as the number of wild and domesticated target species, and the monospecific nature of most vaccines. Multispecies vaccines include tetanus and rabies. In 2010, the number of food-producing animals was estimated to be roughly 20 billion and is rising gradually. Fowl currently represent the main food species. Veterinary vaccination has allowed the eradication of rinderpest, as officially declared last year (2011), jointly by the World Organisation for Animal Health (OIE) and the Food and Agriculture Organisation of the United Nations (FAO). Rinderpest was a real scourge, and was only the second viral disease to be totally eradicated (after human smallpox). One characteristic of veterinary vaccination is the DIVA approach, "differentiating infected from vaccinated animals". The DIVA strategy is especially interesting for regulated control of diseases like foot-and-mouth disease, infectious bovine rhinotracheitis, pseudorabies, and classical swine fever. DIVA vaccination requires prior serological testing. Vaccination is also used for wild animals such as foxes (rabies) and wild boars (classical swine fever). "In ovo" vaccination of fowl on day 18 of the incubation period is used to prevent Marek's disease for instance, and double vaccination (vector and insert) to prevent both Marek's disease and Gumboro's disease in fowl. Animal vaccination can also help to protect human health, as illustrated by fowl vaccination against salmonellosis.

  18. Immunization strategies against Piscirickettsia salmonis infections. Review of vaccination approaches and modalities and their associated immune response profiles.

    Directory of Open Access Journals (Sweden)

    Oystein Evensen

    2016-11-01

    Full Text Available Salmonid rickettsial septicemia is a serious, infectious disease in Chilean salmon farming caused by Piscirickettsia salmonis, causing heavy losses to the salmonid industry. P. salmonis belongs to the Gammaproteobacteria, order Thiotrichales. SRS was first described in Chile in 1989, and infection with P. salmonis has since been described from a high number of fish species and in several geographic regions globally. P. salmonis infection of salmonids causes multifocal, necrotic areas of internal organs like liver, kidney and spleen. Histologically and immunologically the tissue response is formation of granulomas, often with central suppuration. The exact sequence of infection is not known but bacteria likely gain access to internal organs through mucosal surfaces and when infected, fish carry bacteria in macrophages. It has not been fully determined if the bacterium resides in the cytosol or hide within vesicular structures intracellularly, although there are indications that in vitro infection results in actin reorganization and formation of actin-coated vesicle within which the bacterium resides. Protection against lethal challenge is well documented in lab scale experiments but protection from vaccination has proven more difficult to attain long term under field conditions. Current vaccination protocols include whole cell, inactivated and adjuvanted vaccines for injection for primary immunization followed by oral boost where timing of boost delivery is followed by measuring circulating antibody levels against the pathogen. Documentation also exist that there is correlation between antibody titers and protection against mortality. Future vaccination regimes will likely also include live, attenuated vaccines or other technologies such as DNA vaccination. So far there is no documentation available for live vaccines and for DNA vaccines, studies have been unsuccessful under laboratory conditions.

  19. Improving medical diagnosis reliability using Boosted C5.0 decision tree empowered by Particle Swarm Optimization.

    Science.gov (United States)

    Pashaei, Elnaz; Ozen, Mustafa; Aydin, Nizamettin

    2015-08-01

    Improving accuracy of supervised classification algorithms in biomedical applications is one of active area of research. In this study, we improve the performance of Particle Swarm Optimization (PSO) combined with C4.5 decision tree (PSO+C4.5) classifier by applying Boosted C5.0 decision tree as the fitness function. To evaluate the effectiveness of our proposed method, it is implemented on 1 microarray dataset and 5 different medical data sets obtained from UCI machine learning databases. Moreover, the results of PSO + Boosted C5.0 implementation are compared to eight well-known benchmark classification methods (PSO+C4.5, support vector machine under the kernel of Radial Basis Function, Classification And Regression Tree (CART), C4.5 decision tree, C5.0 decision tree, Boosted C5.0 decision tree, Naive Bayes and Weighted K-Nearest neighbor). Repeated five-fold cross-validation method was used to justify the performance of classifiers. Experimental results show that our proposed method not only improve the performance of PSO+C4.5 but also obtains higher classification accuracy compared to the other classification methods.

  20. Trends in clinical trials of dengue vaccine

    Directory of Open Access Journals (Sweden)

    Priya Marimuthu

    2016-01-01

    Full Text Available Dengue is one of the most important vector-borne disease and an increasing problem worldwide because of current globalization trends. Roughly, half the world′s population lives in dengue endemic countries, and nearly 100 million people are infected annually with dengue. India has the highest burden of the disease with 34% of the global cases. In the context of an expanding and potentially fatal infectious disease without effective prevention or specific treatment, the public health value of a protective vaccine is clear. There is no licensed dengue vaccine is available still, but several vaccines are under development. Keeping in view the rise in dengue prevalence globally, there is a need to increase clinical drug and vaccine research on dengue. This paper briefly reviews on the development and current status of dengue vaccine to provide information to policymakers, researchers, and public health experts to design and implement appropriate vaccine for prophylactic intervention.