WorldWideScience

Sample records for vavilov state optical

  1. XL Vavilov readings (30 March 2016)

    Science.gov (United States)

    2016-12-01

    The XL Vavilov readings celebrating 125th anniversary of the birth of Academician S I Vavilov were held in the conference hall of the Lebedev Physical Institute of the Russian Academy of Sciences (RAS) on 30 March 2016. The following reports were heard at the readings: (1) A G Vitukhnovsky (Lebedev Physical Institute, Russian Academy of Sciences, Moscow) "Vavilov and FIAN: a perspective from 2016"; (2) V F Razumov (Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region), "Fundamental and applied aspects of luminescence of colloidal quantum dots"; (3) Kazaryan M A (Lebedev Physical Institute, Russian Academy of Sciences, Moscow) "Luminescence and the efficiency of ion dispersion by lasers". Papers written on the basis of oral presentations 1 and 2 are published below. • Vavilov and FIAN: a perspective from 2016, A G Vitukhnovsky Physics-Uspekhi, 2016, Volume 59, Number 12, Pages 1250-1257 • Fundamental and applied aspects of luminescence of colloidal quantum dots, V F Razumov Physics-Uspekhi, 2016, Volume 59, Number 12, Pages 1258-1265

  2. The mechanism of Vavilov-Cherenkov radiation

    Science.gov (United States)

    Kobzev, A. P.

    2010-05-01

    The mechanism of generation of Vavilov-Cherenkov radiation is discussed in this article. The developers of the theory of the Vavilov-Cherenkov effect, I.E. Tamm and I.M. Frank, attributed this effect to their discovery of a new mechanism of radiation when a charged particle moves uniformly and rectilinearly in the medium. As such a mechanism presupposes the violation of the laws of conservation of energy and momentum, they proposed the abolition of these laws to account for the Vavilov-Cherenkov radiation mechanism. This idea has received a considerably wide acceptance in the creation of other theories, for example, transition radiation theory. In this paper, the radiation mechanism for the charge constant motion is demonstrated to be incorrect, because it contradicts not only the laws of conservation of energy and momentum, but also the very definitions of uniform and rectilinear motion (Newton's First Law). A consistent explanation of the Vavilov-Cherenkov radiation microscopic mechanism that does not contradict the basic laws is proposed. It is shown that the radiation arises from the interaction of the moving charge with bound charges that are spaced fairly far away from its trajectory. The Vavilov-Cherenkov radiation mechanism bears a slowing down character, but it differs fundamentally from bremsstrahlung, primarily because the Vavilov-Cherenkov radiation onset results from a two-stage process. First, the moving particle polarizes the medium; then, the already polarized atoms radiate coherently, provided that the particle velocity exceeds the phase speed of light in the medium. If the particle velocity is less than the phase speed of light in the medium, the polarized atoms return energy to the outgoing particle. In this case, radiation is not observed. Special attention is given to the relatively constant particle velocity as the condition of the coherent composition of waves. However, its motion cannot be designated as a uniform and rectilinear one in the

  3. Vavilov-Cherenkov and Synchrotron Radiation Foundations and Applications

    CERN Document Server

    Afanasiev, G. N

    2005-01-01

    The theory of the Vavilov-Cherenkov radiation observed by Cherenkov in 1934 was created by Tamm, Frank and Ginsburg who associated the observed blue light with the uniform charge motion of a charge at a velocity greater than the velocity of light in the medium. On the other hand, Vavilov, Cherenkov's teacher, attributed the observed blue light to the deceleration of electrons. This has given rise to the appearance of papers in which the radiation of a charge uniformly moving in a finite space interval was related to the Bremsstrahlung arising at the end points of the motion interval. This monograph is intended for students of the third year and higher, for postgraduates, for professional scientists (both experimentalists and theoreticians) dealing with Vavilov-Cherenkov and synchrotron radiation. An acquaintance with the three volumes of the Landau and Lifshitz course (Quantum Mechanics, Classical Field Theory and Macroscopic Electrodynamics) is sufficient for understanding the text.

  4. Solid state optical microscope

    Science.gov (United States)

    Young, Ian T.

    1983-01-01

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  5. Multiphoton quantum optics and quantum state engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dell' Anno, Fabio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (Saudi Arabia) (Italy)]. E-mail: dellanno@sa.infn.it; De Siena, Silvio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: desiena@sa.infn.it; Illuminati, Fabrizio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: illuminati@sa.infn.it

    2006-05-15

    We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms that are relevant for the conceptual investigations as well as for the practical applications of forefront aspects of modern quantum mechanics. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromagnetic field, either in discrete or in continuous variables, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information.

  6. Quantum State Generation and Entanglement Manipulation Using Linear Optics

    OpenAIRE

    ÖZDEMİR, Şahin Kaya; Yamamoto, Takashi; Koashi, Masato

    2014-01-01

    Quantum information processing (QIP) requires unitary operations, measurements and synthesis, manipulation and characterization of arbitrary quantum states. Linear optics provides efficient tools for these purposes. In this review paper, we introduce the elements of linear optics toolbox, and briefly discuss some experimental and theoretical investigations using this toolbox. Our main focus will be the qubit state generation and entanglement extraction using linear optics toolbox.

  7. Optical Tomography of Photon-Added Coherent States, Even/Odd Coherent States and Thermal States

    OpenAIRE

    Korennoy, Ya. A.; Man'ko, V I

    2011-01-01

    Explicit expressions for optical tomograms of the photon-added coherent states, even/odd photon-added coherent states and photon-added thermal states are given in terms of Hermite polynomials. Suggestions for experimental homodyne detection of the considered photon states are presented.

  8. Efficient quantum optical state engineering and applications

    Science.gov (United States)

    McCusker, Kevin T.

    Over a century after the modern prediction of the existence of individual particles of light by Albert Einstein, a reliable source of this simple quantum state of one photon does not exist. While common light sources such as a light bulb, LED, or laser can produce a pulse of light with an average of one photon, there is (currently) no way of knowing the number of photons in that pulse without first absorbing (and thereby destroying) them. Spontaneous parametric down-conversion, a process in which one high-energy photon splits into two lower-energy photons, allows us to prepare a single-photon state by detecting one of the photons, which then heralds the existence of its twin. This process has been the workhorse of quantum optics, allowing demonstrations of a myriad of quantum processes and protocols, such as entanglement, cryptography, superdense coding, teleportation, and simple quantum computing demonstrations. All of these processes would benefit from better engineering of the underlying down-conversion process, but despite significant effort (both theoretical and experimental), optimization of this process is ongoing. The focus of this work is to optimize certain aspects of a down-conversion source, and then use this tool in novel experiments not otherwise feasible. Specifically, the goal is to optimize the heralding efficiency of the down-conversion photons, i.e., the probability that if one photon is detected, the other photon is also detected. This source is then applied to two experiments (a single-photon source, and a quantum cryptography implementation), and the detailed theory of an additional application (a source of Fock states and path-entangled states, called N00N states) is discussed, along with some other possible applications.

  9. Search and Characterization of Optical Ceramics and Crystals for Diode-pumped Laser Oscillations

    Science.gov (United States)

    2013-04-01

    Higher microhardness ; - No cleavage planes; - Large size; Also for some experiments, the optical quality of the resultant ceramic material was...Professor Tasoltan Basiev Russian Academy of Sciences Laser Materials and Technologies Research Center of General Physics Institute 38...ADDRESS(ES) Russian Academy of Sciences Laser Materials and Technologies Research Center of General Physics Institute 38 Vavilov Street Moscow

  10. Compact flat band states in optically induced flatland photonic lattices

    Science.gov (United States)

    Travkin, Evgenij; Diebel, Falko; Denz, Cornelia

    2017-07-01

    We realize low-dimensional tight-binding lattices that host flat bands in their dispersion relation and demonstrate the existence of optical compact flat band states. The lattices are resembled by arrays of optical waveguides fabricated by the state-of-the-art spatio-temporal Bessel beam multiplexing optical induction in photorefractive media. We work out the decisive details of the transition from the discrete theory to the real optical system ensuring that the experimental lattices stand up to numerical scrutiny exhibiting well-approximated band structures. Our highly flexible system is a promising candidate for further experimental investigation of theoretically studied disorder effects in flat band lattices.

  11. State of the Art Review: Optical Processing.

    Science.gov (United States)

    1989-01-01

    lenses, optical fibers , or planar lightguides to illuminate a two-dimensional mask that represents the matrix A. Light from the mask that has been... polybenzobisoxazole 7. Polyester and polyesteramids 8. Polyetherketone 9. Polyquinoxalines 10. Porphyrins and metal-porphyrin complexes 11. Metal complexes of

  12. Quantum filtering of optical coherent states

    DEFF Research Database (Denmark)

    Wittmann, C.; Elser, D.; Andersen, Ulrik Lund

    2008-01-01

    We propose and experimentally demonstrate nondestructive and noiseless removal (filtering) of vacuum states from an arbitrary set of coherent states of continuous variable systems. Errors, i.e., vacuum states in the quantum information are diagnosed through a weak measurement, and on that basis...

  13. Assessments of macroscopicity for quantum optical states

    DEFF Research Database (Denmark)

    Laghaout, Amine; Neergaard-Nielsen, Jonas Schou; Andersen, Ulrik Lund

    2015-01-01

    With the slow but constant progress in the coherent control of quantum systems, it is now possible to create large quantum superpositions. There has therefore been an increased interest in quantifying any claims of macroscopicity. We attempt here to motivate three criteria which we believe should...... enter in the assessment of macroscopic quantumness: The number of quantum fluctuation photons, the purity of the states, and the ease with which the branches making up the state can be distinguished. © 2014....

  14. Optically Controlled Solid State Opening Switches

    Science.gov (United States)

    1992-01-01

    nearly constant on-state switch resistance 1041-113S/91/06000576S01.00 © 1991 IEU - 7- -7)" / PUNK et at.: &=DIDTVE PULSED POWER 5YSThI4 577 -1000 um’s(21...thick. The faces to ration that retains their intrinsic desirable characteristics be illuminated by the 1.06 jm were polished . By using a and avoids

  15. Feasible logic Bell-state analysis with linear optics.

    Science.gov (United States)

    Zhou, Lan; Sheng, Yu-Bo

    2016-02-15

    We describe a feasible logic Bell-state analysis protocol by employing the logic entanglement to be the robust concatenated Greenberger-Horne-Zeilinger (C-GHZ) state. This protocol only uses polarization beam splitters and half-wave plates, which are available in current experimental technology. We can conveniently identify two of the logic Bell states. This protocol can be easily generalized to the arbitrary C-GHZ state analysis. We can also distinguish two N-logic-qubit C-GHZ states. As the previous theory and experiment both showed that the C-GHZ state has the robustness feature, this logic Bell-state analysis and C-GHZ state analysis may be essential for linear-optical quantum computation protocols whose building blocks are logic-qubit entangled state.

  16. pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the AKADEMIK SERGEY VAVILOV in the South Atlantic Ocean from 2004-11-04 to 2004-12-08 (NODC Accession 0113753)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113753 includes chemical, discrete sample, physical and profile data collected from AKADEMIK SERGEY VAVILOV in the South Atlantic Ocean from...

  17. Photon-echo-based quantum memory for optical squeezed states

    Science.gov (United States)

    Wu, Miao-Xin; Wang, Ming-Feng; Zheng, Yi-Zhuang

    2015-08-01

    The ability to efficiently realize storage and readout of optical squeezed states plays a key roll in continuous-variables quantum information processing. Here we study the quantum memory for squeezed state of propagating light in atoms based on the hybrid photon echo re-phasing. The optical quantum state is recorded in two sublevels of the ground state of an atomic ensemble to realize long-lived quantum memory. Taking into account the noise effect due to atomic decay, our estimation indicates that high fidelities larger than the classical fidelity threshold 81.5% are obtainable even with currently available techniques. Moreover, our result shows that the decay rate of atoms restricts the maximal fidelity. Our work provides some practical guidance for the realization of efficient and faithful photon-echo-based memory for squeezed light.

  18. Study of Optical, Solid State and Structural Properties of Nickel ...

    African Journals Online (AJOL)

    Thin films of Nickel sulphide (NiS) were successfully grown by using the solution growth technique which is cost effective and efficient. Nickel chloride (NiCl2), Sodium sulphate (Na2S2O3) and Ammonia NH3 were used. The optical and solid state properties were obtained from the characterisation done at University of ...

  19. Generation of optical coherent state superpositions for quantum information processing

    DEFF Research Database (Denmark)

    Tipsmark, Anders

    2012-01-01

    I dette projektarbejde med titlen “Generation of optical coherent state superpositions for quantum information processing” har målet været at generere optiske kat-tilstande. Dette er en kvantemekanisk superpositions tilstand af to koherente tilstande med stor amplitude. Sådan en tilstand er...

  20. Atomic quantum superposition state generation via optical probing

    DEFF Research Database (Denmark)

    Nielsen, Anne Ersbak Bang; Poulsen, Uffe Vestergaard; Negretti, Antonio

    2009-01-01

    We analyze the performance of a protocol to prepare an atomic ensemble in a superposition of two macroscopically distinguishable states. The protocol relies on conditional measurements performed on a light field, which interacts with the atoms inside an optical cavity prior to detection, and we...

  1. Demonstration of Near-Optimal Discrimination of Optical Coherent States

    DEFF Research Database (Denmark)

    Wittmann, Christoffer; Takeoka, Masahiro; Cassemiro, Katiuscia N

    2008-01-01

    The optimal discrimination of nonorthogonal quantum states with minimum error probability is a fundamental task in quantum measurement theory as well as an important primitive in optical communication. In this work, we propose and experimentally realize a new and simple quantum measurement strate...

  2. Optics

    CERN Document Server

    Mathieu, Jean Paul

    1975-01-01

    Optics, Parts 1 and 2 covers electromagnetic optics and quantum optics. The first part of the book examines the various of the important properties common to all electromagnetic radiation. This part also studies electromagnetic waves; electromagnetic optics of transparent isotropic and anisotropic media; diffraction; and two-wave and multi-wave interference. The polarization states of light, the velocity of light, and the special theory of relativity are also examined in this part. The second part is devoted to quantum optics, specifically discussing the classical molecular theory of optical p

  3. Squeezed-state purification with linear optics and feedforward.

    Science.gov (United States)

    Glöckl, O; Andersen, U L; Filip, R; Bowen, W P; Leuchs, G

    2006-08-04

    A scheme for optimal and deterministic linear optical purification of mixed squeezed Gaussian states is proposed and experimentally demonstrated. The scheme requires only linear optical elements and homodyne detectors, and allows the balance between purification efficacy and squeezing degradation to be controlled. One particular choice of parameters gave a tenfold reduction of the thermal noise with a corresponding squeezing degradation of only 11%. We prove optimality of the protocol, and show that it can be used to enhance the performance of quantum informational protocols such as dense coding and entanglement generation.

  4. STATE STANDARDS OF THE REPUBLIC OF BELARUS IN OPTICAL RADIOMETRY

    Directory of Open Access Journals (Sweden)

    A. V. Galygo

    2010-01-01

    Full Text Available The results of joint activities of the BelGIM and the Institute of Physics of the NAS of Belarus on the construction and modernization of state standards of the physical units in optical radiometry, as well as the high accuracy measurement facilities for test the energy, temporal, spatial, spectral and polarization characteristics of laser equipments and calibration of devices for measuring the energy characteristics of laser radiation are presented.

  5. Yeast metabolic state identification using micro-fiber optics spectroscopy

    Science.gov (United States)

    Silva, J. S.; Castro, C. C.; Vicente, A. A.; Tafulo, P.; Jorge, P. A. S.; Martins, R. C.

    2011-05-01

    Saccharomyces cerevisiae morphology is known to be dependent on the cell physiological state and environmental conditions. On their environment, wild yeasts tend to form complex colonies architectures, such as stress response and pseudohyphal filaments morphologies, far away from the ones found inside bioreactors, where the regular cell cycle is observed under controlled conditions (e.g. budding and flocculating colonies). In this work we explore the feasibility of using micro-fiber optics spectroscopy to classify Saccharomyces cerevisiae S288C colony structures in YPD media, under different growth conditions, such as: i) no alcohol; ii) 1 % (v/v) Ethanol; iii) 1 % (v/v) 1-butanol; iv) 1 % (v/v) Isopropanol; v) 1 % (v/v) Tert-Amyl alcohol (2 Methyl-2-butanol); vi) 0,2 % (v/v) 2-Furaldehyde; vii) 5 % (w/v) 5 (Hydroxymethyl)-furfural; and viii) 1 % (w/v) (-)-Adenosine3', 5'cyclic monophosphate. The microscopy system includes a hyperspectral camera apparatus and a micro fiber (sustained by micro manipulator) optics system for spectroscopy. Results show that micro fiber optics system spectroscopy has the potential for yeasts metabolic state identification once the spectral signatures of colonies differs from each others. This technique associated with others physico-chemical information can benefit the creation of an information system capable of providing extremely detailed information about yeast metabolic state that will aid both scientists and engineers to study and develop new biotechnological products.

  6. Four modes of optical parametric operation for squeezed state generation

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund; Buchler, B.C.; Lam, P.K.

    2003-01-01

    We report a versatile instrument, based on a monolithic optical parametric amplifier, which reliably generates four different types of squeezed light. We obtained vacuum squeezing, low power amplitude squeezing, phase squeezing and bright amplitude squeezing. We show a complete analysis...... of this light, including a full quantum state tomography. In addition we demonstrate the direct detection of the squeezed state statistics without the aid of a spectrum analyser. This technique makes the nonclassical properties directly visible and allows complete measurement of the statistical moments...

  7. All fiber optics circular-state swept source polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Lin, Hermann; Kao, Meng-Chun; Lai, Chih-Ming; Huang, Jyun-Cin; Kuo, Wen-Chuan

    2014-02-01

    A swept source (SS)-based circular-state (CS) polarization-sensitive optical coherence tomography (PS-OCT) constructed entirely with polarization-maintaining fiber optics components is proposed with the experimental verification. By means of the proposed calibration scheme, bulk quarter-wave plates can be replaced by fiber optics polarization controllers to, therefore, realize an all-fiber optics CS SSPS-OCT. We also present a numerical dispersion compensation method, which can not only enhance the axial resolution, but also improve the signal-to-noise ratio of the images. We demonstrate that this compact and portable CS SSPS-OCT system with an accuracy comparable to bulk optics systems requires less stringent lens alignment and can possibly serve as a technology to realize PS-OCT instrument for clinical applications (e.g., endoscopy). The largest deviations in the phase retardation (PR) and fast-axis (FA) angle due to sample probe in the linear scanning and a rotation angle smaller than 65 deg were of the same order as those in stationary probe setups. The influence of fiber bending on the measured PR and FA is also investigated. The largest deviations of the PR were 3.5 deg and the measured FA change by ~12 to 21 deg. Finally, in vivo imaging of the human fingertip and nail was successfully demonstrated with a linear scanning probe.

  8. Optical metrology for LEDs and solid state lighting

    Science.gov (United States)

    Ohno, Yoshi

    2006-02-01

    The performance of Light Emitting Diodes (LEDs), including efficiency, flux level, lifetime, and the variation of color, is advancing at a remarkable pace. LEDs are increasingly used for many applications including automotive, aviation, display, transportation and special lighting applications. White LEDs are expected for general lighting applications (solid state lighting) in the near future. Thus, accurate measurements of LEDs and appropriate standards are increasingly important. This paper reviews photometric, radiometric, and colorimetric quantities used for LEDs, and discusses the current state of optical measurements of LEDs and standardization efforts in International Commission on Illumination (CIE). The paper also touches on the issue of color quality (e.g., Color Rendering Index) of light expected from solid state lighting, and the need for a new metric. The calibration facilities and services for LEDs established at NIST are also discussed.

  9. Optical Interface States Protected by Synthetic Weyl Points

    Science.gov (United States)

    Wang, Qiang; Xiao, Meng; Liu, Hui; Zhu, Shining; Chan, C. T.

    2017-07-01

    Weyl fermions have not been found in nature as elementary particles, but they emerge as nodal points in the band structure of electronic and classical wave crystals. Novel phenomena such as Fermi arcs and chiral anomaly have fueled the interest in these topological points which are frequently perceived as monopoles in momentum space. Here, we report the experimental observation of generalized optical Weyl points inside the parameter space of a photonic crystal with a specially designed four-layer unit cell. The reflection at the surface of a truncated photonic crystal exhibits phase vortexes due to the synthetic Weyl points, which in turn guarantees the existence of interface states between photonic crystals and any reflecting substrates. The reflection phase vortexes have been confirmed for the first time in our experiments, which serve as an experimental signature of the generalized Weyl points. The existence of these interface states is protected by the topological properties of the Weyl points, and the trajectories of these states in the parameter space resembles those of Weyl semimetal "Fermi arc surface states" in momentum space. Tracing the origin of interface states to the topological character of the parameter space paves the way for a rational design of strongly localized states with enhanced local field.

  10. Atom optics with Rydberg states in inhomogeneous electric fields

    Science.gov (United States)

    Kritsun, Oleg Anton

    Atom optics has become subject of intense investigation in recent years. Control of atomic motion is of great importance in atomic physics and applications like lithography or nanofabrication. Neutral atoms are not affected greatly by magnetic or electric field as they don't have a charge or large magnetic and electric moments. But by exciting a neutral atom to a high Rydberg state it is possible to increase its electric moment considerably. The purpose of this thesis is to demonstrate experimentally and theoretically the possibility of creating atom optical elements for the beam of neutral atoms based on the polarizability of highly excited states in an electric field. First this work will present a review of the basic concepts that are used for atom optics and also a discussion of the progress to date in realizations of the neutral atom manipulation techniques. In our earlier experiments deflection and beam-splitting was demonstrated for a beam of neutral Lithium atoms excited in a three-step scheme [3.5, 3.6]. In later experiments, metastable Helium was excited from 23S state to the 33P state using lambda = 389 nm light, and then to the 25--30 S or D states using lambda = 785--815 nm light. Because this was a two-step excitation and it had the higher laser power in the last step, this method increased the percentage of excited atoms by a factor close to 103 compared to the Lithium experiment. Furthermore coherent excitation technique, Stimulated Raman Adiabatic Population Transfer (STIRAP), is investigated in this system, which allows a complete transfer of the atoms from 23S to the Rydberg states. STIRAP is also very tolerant of experimental imperfections such as intensity and frequency fluctuations, Doppler shifts, etc. and can be done with modest laser power. Efficient excitation enables us to do the following atom manipulations in inhomogeneous electric field [3.6, 4.42]. (1) Deflection and reflection; (2) Beam-splitting; (3) Collimation and focusing. Since

  11. Optical nanoscopy of transient states in condensed matter.

    Science.gov (United States)

    Kuschewski, F; Kehr, S C; Green, B; Bauer, Ch; Gensch, M; Eng, L M

    2015-07-28

    Recently, the fundamental and nanoscale understanding of complex phenomena in materials research and the life sciences, witnessed considerable progress. However, elucidating the underlying mechanisms, governed by entangled degrees of freedom such as lattice, spin, orbit, and charge for solids or conformation, electric potentials, and ligands for proteins, has remained challenging. Techniques that allow for distinguishing between different contributions to these processes are hence urgently required. In this paper we demonstrate the application of scattering-type scanning near-field optical microscopy (s-SNOM) as a novel type of nano-probe for tracking transient states of matter. We introduce a sideband-demodulation technique that allows for probing exclusively the stimuli-induced change of near-field optical properties. We exemplify this development by inspecting the decay of an electron-hole plasma generated in SiGe thin films through near-infrared laser pulses. Our approach can universally be applied to optically track ultrafast/-slow processes over the whole spectral range from UV to THz frequencies.

  12. Optical properties of a vibrationally modulated solid state Mott insulator.

    Science.gov (United States)

    Kaiser, S; Clark, S R; Nicoletti, D; Cotugno, G; Tobey, R I; Dean, N; Lupi, S; Okamoto, H; Hasegawa, T; Jaksch, D; Cavalleri, A

    2014-01-22

    Optical pulses at THz and mid-infrared frequencies tuned to specific vibrational resonances modulate the lattice along chosen normal mode coordinates. In this way, solids can be switched between competing electronic phases and new states are created. Here, we use vibrational modulation to make electronic interactions (Hubbard-U) in Mott-insulator time dependent. Mid-infrared optical pulses excite localized molecular vibrations in ET-F2TCNQ, a prototypical one-dimensional Mott-insulator. A broadband ultrafast probe interrogates the resulting optical spectrum between THz and visible frequencies. A red-shifted charge-transfer resonance is observed, consistent with a time-averaged reduction of the electronic correlation strength U. Secondly, a sideband manifold inside of the Mott-gap appears, resulting from a periodically modulated U. The response is compared to computations based on a quantum-modulated dynamic Hubbard model. Heuristic fitting suggests asymmetric holon-doublon coupling to the molecules and that electron double-occupancies strongly squeeze the vibrational mode.

  13. Quantum phases in tunable state-dependent hexagonal optical lattices

    Science.gov (United States)

    Lühmann, Dirk-Sören; Jürgensen, Ole; Weinberg, Malte; Simonet, Juliette; Soltan-Panahi, Parvis; Sengstock, Klaus

    2014-07-01

    We study the ground-state properties of ultracold bosonic atoms in a state-dependent graphenelike honeycomb optical lattice, where the degeneracy between the two triangular sublattices A and B can be lifted. We discuss the various geometries accessible with this lattice setup and present a scheme to control the energy offset with external magnetic fields. The competition of the on-site interaction with the offset energy leads to Mott phases characterized by population imbalances between the sublattices. For the definition of an optimal Hubbard model, we demonstrate a scheme that allows for the efficient computation of Wannier functions. Using a cluster mean-field method, we compute the phase diagrams and provide a universal representation for arbitrary energy offsets. We find good agreement with the experimental data for the superfluid to Mott insulator transition.

  14. Optical Interface States Protected by Synthetic Weyl Points

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2017-08-01

    Full Text Available Weyl fermions have not been found in nature as elementary particles, but they emerge as nodal points in the band structure of electronic and classical wave crystals. Novel phenomena such as Fermi arcs and chiral anomaly have fueled the interest in these topological points which are frequently perceived as monopoles in momentum space. Here, we report the experimental observation of generalized optical Weyl points inside the parameter space of a photonic crystal with a specially designed four-layer unit cell. The reflection at the surface of a truncated photonic crystal exhibits phase vortexes due to the synthetic Weyl points, which in turn guarantees the existence of interface states between photonic crystals and any reflecting substrates. The reflection phase vortexes have been confirmed for the first time in our experiments, which serve as an experimental signature of the generalized Weyl points. The existence of these interface states is protected by the topological properties of the Weyl points, and the trajectories of these states in the parameter space resembles those of Weyl semimetal “Fermi arc surface states” in momentum space. Tracing the origin of interface states to the topological character of the parameter space paves the way for a rational design of strongly localized states with enhanced local field.

  15. Online technique for detecting state of onboard fiber optic gyroscope

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zhiyong; He, Kunpeng, E-mail: pengkhe@126.com; Pang, Shuwan [Department of Automation, Harbin Engineering University, Harbin, Heilongjiang 150000 (China); Xu, Dingjie [School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, Heilongjiang 150000 (China); Tian, Chunmiao [Department of Information and Communication Engineering, Harbin Engineering University, Harbin, Heilongjiang 150000 (China)

    2015-02-15

    Although angle random walk (ARW) of fiber optic gyroscope (FOG) has been well modeled and identified before being integrated into the high-accuracy attitude control system of satellite, aging and unexpected failures can affect the performance of FOG after launch, resulting in the variation of ARW coefficient. Therefore, the ARW coefficient can be regarded as an indicator of “state of health” for FOG diagnosis in some sense. The Allan variance method can be used to estimate ARW coefficient of FOG, however, it requires a large amount of data to be stored. Moreover, the procedure of drawing slope lines for estimation is painful. To overcome the barriers, a weighted state-space model that directly models the ARW to obtain a nonlinear state-space model was established for FOG. Then, a neural extended-Kalman filter algorithm was implemented to estimate and track the variation of ARW in real time. The results of experiment show that the proposed approach is valid to detect the state of FOG. Moreover, the proposed technique effectively avoids the storage of data.

  16. Variational characterization of resonant states in some integrated optical devices

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Joshi, M.C.; Pani, A.K.; Sanjeev, V.S.

    2006-01-01

    Two examples from integrated optics are described that motivate the use of explicit variational characterizations for physical parameters that are relevant for the functioning of optical devices. For 1D optical gratings the boundary of the bandgaps, and for 2D square micro-resonators the resonant

  17. Effect of substrate on optical bound states in the continuum in 1D photonic structures

    DEFF Research Database (Denmark)

    Sadrieva, Z. F.; Sinev, I. S.; Samusev, A. K.

    2017-01-01

    Optical bound states in the continuum (BIC) are localized states with energy lying above the light line and having infinite lifetime. Any losses taking place in real systems result in transformation of the bound states into resonant states with finite lifetime. In this work, we analyze properties...... into resonant states due to leakage into the diffraction channels opening in the substrate.......Optical bound states in the continuum (BIC) are localized states with energy lying above the light line and having infinite lifetime. Any losses taking place in real systems result in transformation of the bound states into resonant states with finite lifetime. In this work, we analyze properties...

  18. Optical state engineering, quantum communication, and robustness of entanglement promiscuity in three-mode Gaussian states

    Science.gov (United States)

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2007-03-01

    We present a novel, detailed study on the usefulness of three-mode Gaussian states for realistic processing of continuous variable (CV) quantum information, with a particular emphasis on the possibilities opened up by their genuine tripartite entanglement. We describe practical schemes to engineer several classes of pure and mixed three-mode states that stand out for their informational and/or entanglement properties. In particular, we introduce a simple procedure—based on passive optical elements—to produce pure three-mode Gaussian states with arbitrary entanglement structure (upon availability of an initial two-mode squeezed state). We analyse in depth the properties of distributed entanglement and the origin of its sharing structure, showing that the promiscuity of entanglement sharing is a feature peculiar to symmetric Gaussian states that survives even in the presence of significant degrees of mixedness and decoherence. Next, we discuss the suitability of the considered tripartite entangled states to the implementation of quantum information and communication protocols with CVs. This will lead to a feasible experimental proposal to test the promiscuous sharing of CV tripartite entanglement, in terms of the optimal fidelity of teleportation networks with Gaussian resources. We finally focus on the application of three-mode states to symmetric and asymmetric telecloning, and single out the structural properties of the optimal Gaussian resources for the latter protocol in different settings. Our analysis aims to lay the basis for a practical quantum communication with CVs beyond the bipartite scenario.

  19. NONLINEAR OPTICAL EFFECTS: Squeezed states of an optical field in a distributed-feedback system under Bragg resonance conditions

    Science.gov (United States)

    Alodzhants, A. P.; Arakelyan, S. M.; Chilingaryan, Yu S.

    1991-08-01

    An analysis is made of a new method of creating optical quantum states and of a system for controlling these states by dynamic diffraction in a spatially periodic structure. The process involves energy exchange between waves with fixed phase parameters under Bragg diffraction conditions.

  20. Optical Instabilities and Spontaneous Light Emission by Polarizable Moving Matter

    Directory of Open Access Journals (Sweden)

    Mário G. Silveirinha

    2014-07-01

    Full Text Available One of the most extraordinary manifestations of the coupling of the electromagnetic field and matter is the emission of light by charged particles passing through a dielectric medium: the Vavilov-Cherenkov effect. Here, we theoretically predict that a related phenomenon may be observed when neutral fast polarizable particles travel near a metal surface supporting surface plasmon polaritons. Based on a classical formalism, we find that at some critical velocity, even if the initial optical field is vanishingly small, the system may become unstable and may start spontaneously emitting light such that in some initial time window the electromagnetic field grows exponentially with time.

  1. Minimal-excitation states for electron quantum optics using levitons.

    Science.gov (United States)

    Dubois, J; Jullien, T; Portier, F; Roche, P; Cavanna, A; Jin, Y; Wegscheider, W; Roulleau, P; Glattli, D C

    2013-10-31

    The on-demand generation of pure quantum excitations is important for the operation of quantum systems, but it is particularly difficult for a system of fermions. This is because any perturbation affects all states below the Fermi energy, resulting in a complex superposition of particle and hole excitations. However, it was predicted nearly 20 years ago that a Lorentzian time-dependent potential with quantized flux generates a minimal excitation with only one particle and no hole. Here we report that such quasiparticles (hereafter termed levitons) can be generated on demand in a conductor by applying voltage pulses to a contact. Partitioning the excitations with an electronic beam splitter generates a current noise that we use to measure their number. Minimal-excitation states are observed for Lorentzian pulses, whereas for other pulse shapes there are significant contributions from holes. Further identification of levitons is provided in the energy domain with shot-noise spectroscopy, and in the time domain with electronic Hong-Ou-Mandel noise correlations. The latter, obtained by colliding synchronized levitons on a beam splitter, exemplifies the potential use of levitons for quantum information: using linear electron quantum optics in ballistic conductors, it is possible to imagine flying-qubit operation in which the Fermi statistics are exploited to entangle synchronized electrons emitted by distinct sources. Compared with electron sources based on quantum dots, the generation of levitons does not require delicate nanolithography, considerably simplifying the circuitry for scalability. Levitons are not limited to carrying a single charge, and so in a broader context n-particle levitons could find application in the study of full electron counting statistics. But they can also carry a fraction of charge if they are implemented in Luttinger liquids or in fractional quantum Hall edge channels; this allows the study of Abelian and non-Abelian quasiparticles in the

  2. Vision science and adaptive optics, the state of the field.

    Science.gov (United States)

    Marcos, Susana; Werner, John S; Burns, Stephen A; Merigan, William H; Artal, Pablo; Atchison, David A; Hampson, Karen M; Legras, Richard; Lundstrom, Linda; Yoon, Geungyoung; Carroll, Joseph; Choi, Stacey S; Doble, Nathan; Dubis, Adam M; Dubra, Alfredo; Elsner, Ann; Jonnal, Ravi; Miller, Donald T; Paques, Michel; Smithson, Hannah E; Young, Laura K; Zhang, Yuhua; Campbell, Melanie; Hunter, Jennifer; Metha, Andrew; Palczewska, Grazyna; Schallek, Jesse; Sincich, Lawrence C

    2017-03-01

    Adaptive optics is a relatively new field, yet it is spreading rapidly and allows new questions to be asked about how the visual system is organized. The editors of this feature issue have posed a series of question to scientists involved in using adaptive optics in vision science. The questions are focused on three main areas. In the first we investigate the use of adaptive optics for psychophysical measurements of visual system function and for improving the optics of the eye. In the second, we look at the applications and impact of adaptive optics on retinal imaging and its promise for basic and applied research. In the third, we explore how adaptive optics is being used to improve our understanding of the neurophysiology of the visual system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Quantum simulation of topologically protected states using directionally unbiased linear-optical multiports

    Science.gov (United States)

    Simon, David S.; Fitzpatrick, Casey A.; Osawa, Shuto; Sergienko, Alexander V.

    2017-07-01

    It is shown that quantum walks on one-dimensional arrays of special linear-optical units allow the simulation of discrete-time Hamiltonian systems with distinct topological phases. In particular, a slightly modified version of the Su-Schrieffer-Heeger (SSH) system can be simulated, which exhibits states of nonzero winding number and has topologically protected boundary states. In the large-system limit this approach uses quadratically fewer resources to carry out quantum simulations than previous linear-optical approaches and can be readily generalized to higher-dimensional systems. The basic optical units that implement this simulation consist of combinations of optical multiports that allow photons to reverse direction.

  4. Photo-induced changes in optical parameters of silicate glasses multiphoton laser radiation absorption

    Science.gov (United States)

    Efimov, Oleg M.; Glebov, Leonid B.; Matveev, Yurii A.; Mekryukov, Andrei M.

    1995-07-01

    In this paper are the results of investigations of the mechanisms of photo-induced changes of alkali-silicate (crown) and lead-silicate (flint) glasses optical parameters upon the exposure to intense laser radiation, and the basic regularities of these processes are reported. These investigations were performed in Research Center 'S.I. Vavilov State Optical Institute' during the last 15 years. The kinetics of stable and unstable CC formation and decay, the effect of widely spread impurity ions on these processes, the characteristics of fundamental and impure luminescence, the kinetics of refractive index change under conditions of multi-photon glass matrix excitation, and other properties are considered. On the basis of analysis of received regularities it was shown that the nonlinear coloration of alkali-silicate glasses (the fundamental absorption edge is nearly 6 eV) takes place only as a result of two-photon absorption. Important efforts were aimed at the detection of three or more photon matrix ionization of these glasses, but they failed. However it was established that in the lead silicate glasses, the long-wave carriers mobility boundary is placed considerably higher than the fundamental absorption edge of material matrix. This results in that the linear color centers formation in the lead silicate glasses is not observed. The coloration of these glasses arises only from the two- or three-photon matrix ionization, and the excitation occurs through virtual states that are placed in the fundamental absorption region. In the report the available mechanisms of photo-induced changes of glasses optical parameters, and some applied aspects of this problem are discussed.

  5. Compact All Solid State Oceanic Inherent Optical Property Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This work concerns the development of a prototype of a Volume Scattering Function (VSF) sensor for measurement of this inherent optical property(IOP) of seawater....

  6. Compact All Solid State Oceanic Inherent Optical Property Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Light propagation in the sea and the consequent remote sensing signals seen by aircraft and spacecraft is fundamentally governed by the inherent optical properties...

  7. Influence of Imperfections of Radiation and Technology on the Thermally Deformed State of Optical Elements

    Science.gov (United States)

    Shanin, Yu. I.; Shanin, O. I.; Chernykh, A. V.; Sharapov, I. S.

    2017-05-01

    The authors have performed calculation and an analysis of the thermally stressed state of optical elements (mirror, passage windows, and beam splitters). A study has been made of the temperature fields, stresses, bending thermal displacements, and expansions of the optical surface of these elements under inhomogeneous local conditions of their loading depending on the defects existing in them.

  8. Optical Field-Strength Polarization of Two-Mode Single-Photon States

    Science.gov (United States)

    Linares, J.; Nistal, M. C.; Barral, D.; Moreno, V.

    2010-01-01

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of…

  9. Optically erasable and rewritable solid-state holograms.

    Science.gov (United States)

    Gaylord, T. K.; Rabson, T. A.; Tittel, F. K.

    1972-01-01

    Optical holographic storage in single-crystal LiNbO3 is described which can be optically erased at room temperature and then rewritten with no degradation in efficiency or writing rate. The diffraction efficiencies associated with the process are about 0.0001. Some variations from previously obtained results include a lack of threshold power density for writing, very-long-term persistence of the stored hologram, and a lack of a dependence of the diffracted intensity on the polarization of the readout beam.

  10. Optical, electrical and solid state properties of nano crystalline zinc ...

    African Journals Online (AJOL)

    Semiconducting Zinc Sulphide (ZnS) thin films were deposited on glass substrate using relatively simple Chemical Bath Deposition (CBD) technique. Nano crystalline ZnS thin films were fabricated in the study. Optical characterization of the films showed that the materials are transparent to visible light, opaque to ultraviolet ...

  11. optical, electrical and solid state properties of nano crystalline zinc ...

    African Journals Online (AJOL)

    Vincent

    reflection coatings on window glass, video screen, camera lenses and other ... potentially important material for antireflection coating for heterojuction ..... REFERENCES. [1] Jyorti, P. B., Barman, J. and Sarma, K. C. (2008). Structural and optical properties of ZnS nanoparticles. Calcogenide Letters, 5 (9), 201-208. [2] Pavan ...

  12. Interpretation of anomalous normal state optical conductivity of ...

    Indian Academy of Sciences (India)

    density and m the mass of electrons, is exhausted entirely by the delta-function Drude contribution alone. When the mate- rial becomes dirtier, the Drude peak of optical conductivity acquires the Lorentzian shape with the width of 1/τ. The conductivity sum rule is still exhausted by the Drude part alone when only the impurity ...

  13. Interpretation of anomalous normal state optical conductivity of ...

    Indian Academy of Sciences (India)

    Click here to view fulltext PDF ... The calculations of the optical conductivity, (), have been made within the two-component schemes: one is the coherent Drude carriers (electrons) responsible for superconductivity and the other is incoherent motion of carriers ... The model has only one free parameter, the relaxation rate.

  14. Optical State-of-Change Monitor for Lead-Acid Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Jonathan D.

    1998-07-24

    A method and apparatus for determining the instantaneous state-of-charge of a battery in which change in composition with discharge manifests itself as a change in optical absorption. In a lead-acid battery, the sensor comprises a fiber optic system with an absorption cdl or, alternatively, an optical fiber woven into an absorbed-glass-mat battery. In a lithium-ion battery, the sensor comprises fiber optics for introducing light into the anode to monitor absorption when lithium ions are introduced.

  15. Entangling the optical frequency comb into multiple continuous-variable cluster states

    Science.gov (United States)

    Pfister, Olivier; Zaidi, Hussain; Menicucci, Nicolas; Flammia, Steven; Bloomer, Russell; Pysher, Matthew

    2008-03-01

    A single multimode optical parametric oscillator (OPO) can be designed so that its nonlinear gain medium (typically a two-photon parametric amplifier) generates a particular network of entangling interactions between the eigenmodes of its optical cavity. We show how this can be formulated using nonstandard graph states and how these are related to the usual graph states, an example of which is the cluster state for one-way quantum computing. We also report on the progress of our very compact experimental implementation, in a single OPO with a single pump field, of a parallel quantum register comprising several independent quadripartite cluster states.

  16. A nonlinear plasmonic resonator for three-state all-optical switching

    KAUST Repository

    Amin, Muhammad

    2014-01-01

    A nonlinear plasmonic resonator design is proposed for three-state all-optical switching at frequencies including near infrared and lower red parts of the spectrum. The tri-stable response required for three-state operation is obtained by enhancing nonlinearities of a Kerr medium through multiple (higher order) plasmons excited on resonator\\'s metallic surfaces. Indeed, simulations demonstrate that exploitation of multiple plasmons equips the proposed resonator with a multi-band tri-stable response, which cannot be obtained using existing nonlinear plasmonic devices that make use of single mode Lorentzian resonances. Multi-band three-state optical switching that can be realized using the proposed resonator has potential applications in optical communications and computing. © 2014 Optical Society of America.

  17. Optical frequency synthesizer for precision spectroscopy of Rydberg states of Rb atoms

    Science.gov (United States)

    Watanabe, Naoto; Tamura, Hikaru; Musha, Mitsuru; Nakagawa, Ken'ichi

    2017-11-01

    We have developed an optical frequency synthesizer for the precision spectroscopy of highly excited Rydberg states of Rb atoms. This synthesizer can generate a widely tunable 480 nm laser light with an optical power of 150 mW and an absolute frequency uncertainty of less than 100 kHz using a high-repetition-rate (325 MHz) Er fiber-based optical frequency comb and a tunable frequency-doubled diode laser at 960 nm. We demonstrate the precision two-photon spectroscopy of the Rydberg states of 87Rb atoms by observing the electromagnetically induced transparency in a vapor cell, and measure the absolute transition frequencies of 87Rb to nD (n = 53-92) and nS (n = 60-90) Rydberg states with an uncertainty of less than 250 kHz. It is the first direct frequency measurements of these transitions using an optical frequency comb.

  18. Quantum entanglement between an optical photon and a solid-state spin qubit.

    Science.gov (United States)

    Togan, E; Chu, Y; Trifonov, A S; Jiang, L; Maze, J; Childress, L; Dutt, M V G; Sørensen, A S; Hemmer, P R; Zibrov, A S; Lukin, M D

    2010-08-05

    Quantum entanglement is among the most fascinating aspects of quantum theory. Entangled optical photons are now widely used for fundamental tests of quantum mechanics and applications such as quantum cryptography. Several recent experiments demonstrated entanglement of optical photons with trapped ions, atoms and atomic ensembles, which are then used to connect remote long-term memory nodes in distributed quantum networks. Here we realize quantum entanglement between the polarization of a single optical photon and a solid-state qubit associated with the single electronic spin of a nitrogen vacancy centre in diamond. Our experimental entanglement verification uses the quantum eraser technique, and demonstrates that a high degree of control over interactions between a solid-state qubit and the quantum light field can be achieved. The reported entanglement source can be used in studies of fundamental quantum phenomena and provides a key building block for the solid-state realization of quantum optical networks.

  19. Formalism of optical coherence and polarization based on material media states

    Science.gov (United States)

    Kuntman, Ertan; Kuntman, M. Ali; Sancho-Parramon, Jordi; Arteaga, Oriol

    2017-06-01

    The fluctuations or disordered motion of the electromagnetic fields are described by statistical properties rather than instantaneous values. This statistical description of the optical fields is underlying in the Stokes-Mueller formalism that applies to measurable intensities. However, the fundamental concept of optical coherence, which is assessed by the ability of waves to interfere, is not treatable by this formalism because it omits the global phase. In this work we show that using an analogy between deterministic matrix states associated with optical media and quantum mechanical wave functions, it is possible to construct a general formalism that accounts for the additional terms resulting from the coherency effects that average out for incoherent treatments. This method generalizes further the concept of coherent superposition to describe how deterministic states of optical media can superpose to generate another deterministic media state. Our formalism is used to study the combined polarimetric response of interfering plasmonic nanoantennas.

  20. Integrated generation of complex optical quantum states and their coherent control

    Science.gov (United States)

    Roztocki, Piotr; Kues, Michael; Reimer, Christian; Romero Cortés, Luis; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T.; Little, Brent E.; Moss, David J.; Caspani, Lucia; Azaña, José; Morandotti, Roberto

    2018-01-01

    Complex optical quantum states based on entangled photons are essential for investigations of fundamental physics and are the heart of applications in quantum information science. Recently, integrated photonics has become a leading platform for the compact, cost-efficient, and stable generation and processing of optical quantum states. However, onchip sources are currently limited to basic two-dimensional (qubit) two-photon states, whereas scaling the state complexity requires access to states composed of several (system with at least one hundred dimensions. Moreover, using off-the-shelf telecommunications components, we introduce a platform for the coherent manipulation and control of frequencyentangled quDit states. Our results suggest that microcavity-based entangled photon state generation and the coherent control of states using accessible telecommunications infrastructure introduce a powerful and scalable platform for quantum information science.

  1. Quantum Theory of Conditional Phonon States in a Dual-Pumped Raman Optical Frequency Comb

    Science.gov (United States)

    Mondloch, Erin

    In this work, we theoretically and numerically investigate nonclassical phonon states created in the collective vibration of a Raman medium by the generation of a dual-pumped Raman optical frequency comb in an optical cavity. This frequency comb is generated by cascaded Raman scattering driven by two phase-locked pump lasers that are separated in frequency by three times the Raman phonon frequency. We characterize the variety of conditioned phonon states that are created when the number of photons in all optical frequency modes except the pump modes are measured. Almost all of these conditioned phonon states are extremely well approximated as three-phonon-squeezed states or Schrodinger-cat states, depending on the outcomes of the photon number measurements. We show how the combinations of first-, second-, and third-order Raman scattering that correspond to each set of measured photon numbers determine the fidelity of the conditioned phonon state with model three-phonon-squeezed states and Schrodinger-cat states. All of the conditioned phonon states demonstrate preferential growth of the phonon mode along three directions in phase space. That is, there are three preferred phase values that the phonon state takes on as a result of Raman scattering. We show that the combination of Raman processes that produces a given set of measured photon numbers always produces phonons in multiples of three. In the quantum number-state representation, these multiples of three are responsible for the threefold phase-space symmetry seen in the conditioned phonon states. With a semiclassical model, we show how this three-phase preference can also be understood in light of phase correlations that are known to spontaneously arise in single-pumped Raman frequency combs. Additionally, our semiclassical model predicts that the optical modes also grow preferentially along three phases, suggesting that the dual-pumped Raman optical frequency comb is partially phase-stabilized.

  2. ierarchies of non-classical states in quantum optics

    Indian Academy of Sciences (India)

    states of the quantised electromagnetic field, and drawing out the experimental implica- tions of such classification. In particular it is interesting to see how one can bring out as sharply as possible those features that show the nonclassical properties of radiation. Given a quantum mechanical state of radiation produced in ...

  3. Optical fingerprint of dark 2p-states in transition metal dichalcogenides

    Science.gov (United States)

    Berghäuser, Gunnar; Knorr, Andreas; Malic, Ermin

    2017-03-01

    Atomically thin transition metal dichalcogenides exhibit a remarkably strong Coulomb interaction. This results in a fascinating many-particle physics including a variety of bright and dark excitonic states that determine optical and electronic properties of these materials. So far, the impact of dark states has remained literally in the dark to a large extent, since a measurement of these optically forbidden states is very challenging. Here we demonstrate a strategy to measure a direct fingerprint of dark states even in standard linear absorption spectroscopy. We present a microscopic study on bright and dark higher excitonic states in the presence of disorder for the exemplary material of tungsten disulfide (WS2). We show that the geometric phase cancels the degeneration of 2s and 2p states and that a significant disorder-induced coupling of these bright and dark states offers a strategy to circumvent optical selection rules. As a proof, we show a clear fingerprint of dark 2p states in the absorption spectrum of WS2. The predicted softening of optical selection rules through exciton-disorder coupling is of general nature and therefore applicable to related two-dimensional semiconductors.

  4. Weaving quantum optical frequency combs into continuous-variable hypercubic cluster states

    Science.gov (United States)

    Wang, Pei; Chen, Moran; Menicucci, Nicolas C.; Pfister, Olivier

    2014-09-01

    Cluster states with higher-dimensional lattices that cannot be physically embedded in three-dimensional space have important theoretical interest in quantum computation and quantum simulation of topologically ordered condensed-matter systems. We present a simple, scalable, top-down method of entangling the quantum optical frequency comb into hypercubic-lattice continuous-variable cluster states of a size of about 104 quantum field modes, using existing technology. A hypercubic lattice of dimension D (linear, square, cubic, hypercubic, etc.) requires but D optical parametric oscillators with bichromatic pumps whose frequency splittings alone determine the lattice dimensionality and the number of copies of the state.

  5. Cooling a Single Atom in an Optical Tweezer to Its Quantum Ground State

    Directory of Open Access Journals (Sweden)

    A. M. Kaufman

    2012-11-01

    Full Text Available We report cooling of a single neutral atom to its three-dimensional vibrational ground state in an optical tweezer. After employing Raman sideband cooling for tens of milliseconds, we measure via sideband spectroscopy a three-dimensional ground-state occupation of about 90%. We further observe coherent control of the spin and motional state of the trapped atom. Our demonstration shows that an optical tweezer, formed simply by a tightly focused beam of light, creates sufficient confinement for efficient sideband cooling. This source of ground-state neutral atoms will be instrumental in numerous quantum simulation and logic applications that require a versatile platform for storing and manipulating ultracold single neutral atoms. For example, these results will improve current optical-tweezer experiments studying atom-photon coupling and Rydberg quantum logic gates, and could provide new opportunities such as rapid production of single dipolar molecules or quantum simulation in tweezer arrays.

  6. Possibility of triple magic trapping of clock and Rydberg states of divalent atoms in optical lattices

    CERN Document Server

    Topcu, T

    2016-01-01

    We predict the possibility of "triply-magic" optical lattice trapping of neutral divalent atoms. In such a lattice, the ${^1}\\!S_{0}$ and ${^3}\\!P_{0}$ clock states and an additional Rydberg state experience identical optical potentials, fully mitigating detrimental effects of the motional decoherence. In particular, we show that this triply magic trapping condition can be satisfied for Yb atom at optical wavelengths and for various other divalent systems (Ca, Mg, Hg and Sr) in the UV region. We assess the quality of triple magic trapping conditions by estimating the probability of excitation out of the motional ground state as a result of the excitations between the clock and the Rydberg states. We also calculate trapping laser-induced photoionization rates of divalent Rydberg atoms at magic frequencies. We find that such rates are below the radiative spontaneous-emission rates, due to the presence of Cooper minima in photoionization cross-sections.

  7. state hybrid hemoglobins as revealed by optical, EPR and ...

    Indian Academy of Sciences (India)

    Unknown

    EPR examinations of these hybrids show that both in R state-[Cu(II)-Fe(II)] and T state-[Cu(II)-Ni(II)] hybrids at neutral pH and in the absence of IHP, CuPPIX, ... ion environment: Species 1, a five-coordinated Cu2+ complex with strong proximal histidine bond and spe- .... with those of copper and nickel-reconstituted hemo-.

  8. Optical Characterization of Deep-Space Object Rotation States

    Science.gov (United States)

    2014-09-01

    curve data along with the rotation state parameters. The sizes of the facets can be modeled in terms of albedo -area products [24] or as projected...variations for non-specular rocket-bodies prompt an investigation of a shape-dependent spin-state estimation process. For this, brightnesses are...with Lambertian + specular reflectances. Each surface is parameterized using albedo -area (aA) products (see [24, 25]). The top and bottom surfaces

  9. Optical limiting and excited-state absorption in fullerene solutions and doped glasses

    Energy Technology Data Exchange (ETDEWEB)

    McBranch, D.; Smilowitz, L.; Klimov, V. [and others

    1995-09-01

    We report the ground state and excited state optical absorption spectra in the visible and near infrared for several substituted fullerenes and higher fullerenes in toluene solutions. Based on these measurements, broadband predictions of the optical limiting performance of these molecules can be deduced. These predictions are then tested at 532 to 700 nm in intensity-dependent transmission measurements. We observe optical limiting in all fullerenes measured; higher fullerenes show the greatest potential for limiting in the near infrared (650-1000 nm), while substituted C{sub 60} shows optimal limiting in the visible (450-700 nm). We observe dramatically reduced limiting for solid forms of C{sub 60} (thin films and C{sub 60}-doped porous glasses), indicating that efficient optical limiting in fullerenes requires true molecular solutions.

  10. Transition from Optical Bound States in the Continuum to Leaky Resonances: Role of Substrate and Roughness

    DEFF Research Database (Denmark)

    Sadrieva, Zarina F.; Sinev, Ivan S.; Koshelev, Kirill L.

    2017-01-01

    into resonant states due to leakage into the diffraction channels opening in the substrate. We show how two concurrent loss mechanisms, scattering due to surface roughness and leakage into substrate, contribute to the suppression of the resonance lifetime and specify the condition when one of the mechanisms......Optical bound states in the continuum (BIC) are localized states with energy lying above the light line and having infinite lifetime. Any losses taking place in real systems result in transformation of the bound states into resonant states with finite lifetime. In this Letter, we analyze properties...... becomes dominant. The obtained results provide useful guidelines for practical implementations of structures supporting optical bound states in the continuum....

  11. Analyzing Density Operator in Thermal State for Complicated Time-Dependent Optical Systems

    Directory of Open Access Journals (Sweden)

    Jeong Ryeol Choi

    2014-01-01

    Full Text Available Density operator of oscillatory optical systems with time-dependent parameters is analyzed. In this case, a system is described by a time-dependent Hamiltonian. Invariant operator theory is introduced in order to describe time-varying behavior of the system. Due to the time dependence of parameters, the frequency of oscillation, so-called a modified frequency of the system, is somewhat different from the natural frequency. In general, density operator of a time-dependent optical system is represented in terms of the modified frequency. We showed how to determine density operator of complicated time-dependent optical systems in thermal state. Usually, density operator description of quantum states is more general than the one described in terms of the state vector.

  12. Measurement-induced amplification of optical cat-like states

    DEFF Research Database (Denmark)

    Laghaout, Amine; Neergaard-Nielsen, Jonas Schou; Rigas, J.

    2013-01-01

    with pairs of small cats and then to interfere them on a balanced beam splitter. The projective measurement of one of the outputs is used to herald a larger cat resulting from the constructive interference of the initial states. The scheme proposed here uses the projection |x = 0〉〈x = 0| as the heralding...... attain amplitudes too small for practical use. This is for example the case for photon-subtracted squeezed vacuum (PSSV), which can be used to approximate cat states of amplitude no larger than y = 1.5 if the fidelity is to be maintained above 95%. One way to reach larger amplitudes is to start...... condition. Homodyning is proposed, as opposed to photon counting, because homodyne detection has high a quantum efficiency, and - as demonstrated in the paper - can be tuned to increase the success probability of the amplification without heavily compromising the output's fidelity....

  13. Optical analysis of trap states in amorphous organic semiconductor films

    Energy Technology Data Exchange (ETDEWEB)

    Graaf, Harald; Borczyskowski, Christian von [Center of Nanostructured Materials and Analytics, Chemnitz University of Technology (Germany); Friedriszk, Frank [Center of Nanostructured Materials and Analytics, Chemnitz University of Technology (Germany); Institut fuer Physik, Universitaet Rostock (Germany)

    2010-07-01

    Increasing interest is drawn on thin organic semiconductor films in opto-electronic devices. While for applications like field-effect transistors and photovoltaic cells highly ordered morphologies resulting in higher charge carrier mobilities are requested, for other purposes like organic light emitting diodes amorphous arrangement of the molecules is needed. Here lower mobilities increase the recombination rate leading to a higher photon yield. In such systems trap states can influence dramatically the luminescence in its intensity and spectral regime. We show recent results on amorphous films of a perylene dye with a rather high concentration of trap states. These trap states act as sinks for the excitons and leads therefore to a clear shift of the luminescence to the red compared to the monomer emission. Temperature depended and time resolved measurements give a clear hint for the population of the traps from the exciton band. Comparisons with previous electrical measurements lead us to the assumption, that these traps are also dominating the charge carrier mobility within the material.

  14. Mapping the Local Density of Optical States of a Photonic Crystal with Single Quantum Dots

    DEFF Research Database (Denmark)

    Wang, Qin; Stobbe, Søren; Lodahl, Peter

    2011-01-01

    We use single self-assembled InGaAs quantum dots as internal probes to map the local density of optical states of photonic crystal membranes. The employed technique separates contributions from nonradiative recombination and spin-flip processes by properly accounting for the role of the exciton...... fine structure. We observe inhibition factors as high as 70 and compare our results to local density of optical states calculations available from the literature, thereby establishing a quantitative understanding of photon emission in photonic crystal membranes. © 2011 American Physical Society....

  15. Microscopic modeling of the effect of phonons on the optical properties of solid-state emitters

    Science.gov (United States)

    Norambuena, Ariel; Reyes, Sebastián A.; Mejía-Lopéz, José; Gali, Adam; Maze, Jerónimo R.

    2016-10-01

    Understanding the effect of vibrations in optically active nanosystems is crucial for successfully implementing applications in molecular-based electro-optical devices, quantum information communications, single photon sources, and fluorescent markers for biological measurements. Here, we present a first-principles microscopic description of the role of phonons on the isotopic shift presented in the optical emission spectrum associated to the negatively charged silicon-vacancy color center in diamond. We use the spin-boson model and estimate the electron-phonon interactions using a symmetrized molecular description of the electronic states and a force-constant model to describe molecular vibrations. Group theoretical arguments and dynamical symmetry breaking are presented in order to explain the optical properties of the zero-phonon line and the isotopic shift of the phonon sideband.

  16. Investigations and Simulations of All optical Switches in linear state Based on Photonic Crystal Directional Coupler

    Directory of Open Access Journals (Sweden)

    S. Maktoobi

    2014-10-01

    Full Text Available Switching is a principle process in digital computers and signal processing systems. The growth of optical signal processing systems, draws particular attention to design of ultra-fast optical switches. In this paper, All Optical Switches in linear state Based On photonic crystal Directional coupler is analyzed and simulated. Among different methods, the finite difference time domain method (FDTD is a preferable method and is used. We have studied the application of photonic crystal lattices, the physics of optical switching and photonic crystal Directional coupler. In this paper, Electric field intensity and the power output that are two factors to improve the switching performance and the device efficiency are investigated and simulated. All simulations are performed by COMSOL software.

  17. Optical storage studies on the trapping states of BaFCl:Eu sup 2 sup +

    CERN Document Server

    Meng Xian Guo; Sun Li; Jin Hui; Zhang Li

    2003-01-01

    The optical absorption spectra of BaF sub 2 sub - sub x Cl sub x :Eu in different states of optical storage were measured to clarify the electron trapping mechanism for its optical storage and photo-stimulated luminescence (PSL). Based on the absorption spectra and difference absorption spectra, the electron transfer processes after ultraviolet (UV) light irradiation were investigated. This demonstrates that (1) Eu sup 3 sup + ions are formed upon UV light irradiation at room temperature; (2) the two absorption bands in the visible region (400-600 nm) should be assigned to two different F centres, both of which contribute to the optical storage and PSL, and (3) a third broad difference absorption band around approx 650 nm, which matches the common laser better, was observed.

  18. A STUDY OF SOLID STATE LASER PASSIVE OPTICAL Q-SWITCHING OPERATION REGIME (Part 1

    Directory of Open Access Journals (Sweden)

    Ion LĂNCRĂNJAN

    2009-09-01

    Full Text Available This paper is the first of a four series treating, theoretically with experimental comparison, the issue of solid state laser passive optical Q-switching regime. In this first paper the technique of solid state lasers passive optical Q-switching is numerically investigated considering the case of longitudinally and transversally uniform photon, population inversion and absorption centres densities. The coupled differential equations defining photon, population inversion and absorption centres densities are numerically solved being the basis of passively optical Q-switched laser functional simulation. The numerical simulations are performed using the several software packages, mostly SCILAB programs. The developed SCILAB programs can be used for a large range of saturable absorption centre and active media parameters, mainly the initial (low signal optical transmittance of the passive optical Q-switch. The developed FORTRAN and SCILAB programs can be applied for passively Q-switched solid state lasers of several types emitting at several NIR wavelengths, in domain 1 ÷ 2 μm. For validating the numerical simulation results are compared with The results of the numerical simulation are compared with experimentally obtained ones, in the case of a LiF:F2- passively Q-switched Nd:YAG. A good agreement between the two kinds of results is observed.

  19. Dynamical control of optical properties by using a terahertz dressed state

    Science.gov (United States)

    Hirori, Hideki

    2017-02-01

    Excitons are strongly correlated pairs of electrons and holes and dominate the absorption spectrum of semiconductors near the bandgap energy. The intraexcitonic transition energy lies in the terahertz (THz) frequency range with large dipole moments, making exictons useful systems not only for studying the fundamentals of nonlinear optics but also for exploiting THz excitonic interactions in optical communication devices. However, so far, the study of the effect of excitonic dressed states on the optical field has been limited because of the usage of a single optical frequency as a probe. The strong electric field with a stable phase that is associated with optical pulses may make it possible to investigate the role of the dressed state. Here, we probe the transient absorption changes of a near-infrared (NIR) pulse in a GaAs quantum well in the presence of a multi-cycle THz wave. By changing the delay between the NIR probe and the THz wave, the absorption strengths can be modulated on a sub-cycle THz timescale, and the frequency analysis shows the formation of THz-induced dressed states of excitons.

  20. Model study of intermediate state blocking in first-order optical potential theory

    Science.gov (United States)

    Maung, Khin Maung; Tandy, P. C.

    1983-03-01

    Restrictions on the intermediate states allowed for nucleon-nucleon scattering operators embedded in many-nucleon systems can arise in several circumstances. The most familiar is Pauli blocking of the occupied ground-state levels in the nucleon-nucleon G-matrix for nuclear matter. The corresponding projection operator is QNM=θ(p1-kF)θ(p2-kF). The first-order optical potential from Watson multiple scattering thory involves a nucleon-nucleon scattering operator in which intermediate states of the struck nucleo corresponding to the target ground state are projected out. The corresponding projection operator is Q=1-‖φ0≳<φ0‖ where ‖σ0≳ is the target ground state. These statess are introduced elsewhere in the theory, namely, when the optical potential is used in the wave equation for elastic scattering. These latter modifications of intermediate states are not related to the Pauli principle since they operate also for a system of bosons, yet when applied to the scattering problem the operator QNM is qualitatively similar to Q. A simple model of the free NN t-matrix is employed to study and compare the effects of intermediate-state modifications through both these operators. Particular attention is paid to the unitarity properties of the resulting modified NN scatterig operator for first-order optical potentials.

  1. Optical Feshbach resonances and ground-state-molecule production in the RbHg system

    Science.gov (United States)

    Borkowski, Mateusz; Muñoz Rodriguez, Rodolfo; Kosicki, Maciej B.; Ciuryło, Roman; Żuchowski, Piotr S.

    2017-12-01

    We present the prospects for photoassociation, optical control of interspecies scattering lengths, and, finally, the production of ultracold absolute ground-state molecules in the Rb+Hg system. We use the state-of-the-art ab initio methods for the calculations of ground- [CCSD(T)] and excited-state (EOM-CCSD) potential curves. The RbHg system, thanks to the wide range of stable Hg bosonic isotopes, offers possibilities for mass tuning of ground-state interactions. The optical lengths describing the strengths of optical Feshbach resonances near the Rb transitions are favorable even at large laser detunings. Ground-state RbHg molecules can be produced with efficiencies ranging from about 20% for deeply bound to at least 50% for weakly bound states close to the dissociation limit. Finally, electronic transitions with favorable Franck-Condon factors can be found for the purposes of a STIRAP transfer of the weakly bound RbHg molecules to the absolute ground state using commercially available lasers.

  2. Quantum state engineering, purification, and number-resolved photon detection with high-finesse optical cavities

    DEFF Research Database (Denmark)

    Nielsen, Anne E. B.; Muschik, Christine A.; Giedke, Geza

    2010-01-01

    We propose and analyze a multifunctional setup consisting of high-finesse optical cavities, beam splitters, and phase shifters. The basic scheme projects arbitrary photonic two-mode input states onto the subspace spanned by the product of Fock states |n>|n> with n=0,1,2,.... This protocol does...... not only provide the possibility to conditionally generate highly entangled photon number states as resource for quantum information protocols but also allows one to test and hence purify this type of quantum states in a communication scenario, which is of great practical importance. The scheme...

  3. Investigation of elliptically polarized injection locked states in VCSELs subject to orthogonal optical injection.

    Science.gov (United States)

    Lin, Hong; Pérez, Pablo; Valle, Angel; Pesquera, Luis

    2014-03-10

    We demonstrate experimentally the existence of the elliptically polarized injection-locked (EPIL) state. This state is observed when a single-transverse mode VCSEL is subject to orthogonal optical injection. The spectral feature of the EPIL state is verified and the power of each polarization is measured. The regime of the EPIL state is identified in the parameter plane of frequency detuning and injection power for different bias currents. As current decreases the frequency detuning range for the EPIL to exist is narrower and shifts toward the negative frequency detuning. Periodic dynamics of the VCSEL is found in the neighborhood of the EPIL regime.

  4. High precision optical spectroscopy and quantum state selected photodissociation of ultracold 88Sr2 molecules in an optical lattice

    Science.gov (United States)

    McDonald, Mickey

    2017-04-01

    Over the past several decades, rapid progress has been made toward the accurate characterization and control of atoms, epitomized by the ever-increasing accuracy and precision of optical atomic lattice clocks. Extending this progress to molecules will have exciting implications for chemistry, condensed matter physics, and precision tests of physics beyond the Standard Model. My thesis describes work performed over the past six years to establish the state of the art in manipulation and quantum control of ultracold molecules. We describe a thorough set of measurements characterizing the rovibrational structure of weakly bound 88Sr2 molecules from several different perspectives, including determinations of binding energies; linear, quadratic, and higher order Zeeman shifts; transition strengths between bound states; and lifetimes of narrow subradiant states. Finally, we discuss measurements of photofragment angular distributions produced by photodissociation of molecules in single quantum states, leading to an exploration of quantum-state-resolved ultracold chemistry. The images of exploding photofragments produced in these studies exhibit dramatic interference effects and strongly violate semiclassical predictions, instead requiring a fully quantum mechanical description.

  5. Scalable generation of graph-state entanglement through realistic linear optics.

    Science.gov (United States)

    Bodiya, T P; Duan, L-M

    2006-10-06

    We propose a scheme for efficient construction of graph states using realistic linear optics, imperfect photon source, and single-photon detectors. For any many-body entanglement represented by tree-graph states, we prove that the overall preparation and detection efficiency scales nearly polynomially with the size of the graph, no matter how small the efficiencies for the photon source and the detectors.

  6. Generation of symmetric Dicke states of remote qubits with linear optics.

    Science.gov (United States)

    Thiel, C; von Zanthier, J; Bastin, T; Solano, E; Agarwal, G S

    2007-11-09

    We propose a method for generating all symmetric Dicke states, either in the long-lived internal levels of N massive particles or in the polarization degrees of freedom of photonic qubits, using linear optical tools only. By means of a suitable multiphoton detection technique, erasing Welcher-Weg information, our proposed scheme allows the generation and measurement of an important class of entangled multiqubit states.

  7. Localization of cold atoms in state-dependent optical lattices via a Rabi Pulse.

    Science.gov (United States)

    Horstmann, Birger; Dürr, Stephan; Roscilde, Tommaso

    2010-10-15

    We propose a novel realization of Anderson localization in nonequilibrium states of ultracold atoms in an optical lattice. A Rabi pulse transfers part of the population to a different internal state with infinite effective mass. These frozen atoms create a quantum superposition of different disorder potentials, localizing the mobile atoms. For weakly interacting mobile atoms, Anderson localization is obtained. The localization length increases with increasing disorder and decreasing interaction strength, contrary to the expectation for equilibrium localization.

  8. Quantum teleportation of an arbitrary two-mode coherent state using only linear optics elements

    Energy Technology Data Exchange (ETDEWEB)

    Ho Ngoc Phien [Physics Department, University of Sciences, Hue (Viet Nam); Nguyen Ba An [Center for Theoretical Physics, Institute of Physics and Electronics, 10 Dao Tan, Thu Le, Ba Dinh, Hanoi (Viet Nam); School of Computational Sciences, Korea Institute for Advanced Study, 207-43 Cheongryangni 2-dong, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)], E-mail: nban@iop.vast.ac.vn

    2008-04-14

    We propose a linear optics scheme to teleport an arbitrary two-mode coherent state. The devices used are beam-splitters, phase-shifters and ideal photo-detectors capable of distinguishing between even and odd photon numbers. The scheme achieves faithful teleportation with a probability of 1/4. However, with additional use of an appropriate displacement operator, the teleported state can always be made near-faithful.

  9. All-optical formation of coherent dark states of silicon-vacancy spins in diamond.

    Science.gov (United States)

    Pingault, Benjamin; Becker, Jonas N; Schulte, Carsten H H; Arend, Carsten; Hepp, Christian; Godde, Tillmann; Tartakovskii, Alexander I; Markham, Matthew; Becher, Christoph; Atatüre, Mete

    2014-12-31

    Spin impurities in diamond can be versatile tools for a wide range of solid-state-based quantum technologies, but finding spin impurities that offer sufficient quality in both photonic and spin properties remains a challenge for this pursuit. The silicon-vacancy center has recently attracted much interest because of its spin-accessible optical transitions and the quality of its optical spectrum. Complementing these properties, spin coherence is essential for the suitability of this center as a spin-photon quantum interface. Here, we report all-optical generation of coherent superpositions of spin states in the ground state of a negatively charged silicon-vacancy center using coherent population trapping. Our measurements reveal a characteristic spin coherence time, T2*, exceeding 45 nanoseconds at 4 K. We further investigate the role of phonon-mediated coupling between orbital states as a source of irreversible decoherence. Our results indicate the feasibility of all-optical coherent control of silicon-vacancy spins using ultrafast laser pulses.

  10. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  11. Low-Entropy States of Neutral Atoms in Polarization-Synthesized Optical Lattices.

    Science.gov (United States)

    Robens, Carsten; Zopes, Jonathan; Alt, Wolfgang; Brakhane, Stefan; Meschede, Dieter; Alberti, Andrea

    2017-02-10

    We create low-entropy states of neutral atoms by utilizing a conceptually new optical-lattice technique that relies on a high-precision, high-bandwidth synthesis of light polarization. Polarization-synthesized optical lattices provide two fully controllable optical lattice potentials, each of them confining only atoms in either one of the two long-lived hyperfine states. By employing one lattice as the storage register and the other one as the shift register, we provide a proof of concept using four atoms that selected regions of the periodic potential can be filled with one particle per site. We expect that our results can be scaled up to thousands of atoms by employing an atom-sorting algorithm with logarithmic complexity, which is enabled by polarization-synthesized optical lattices. Vibrational entropy is subsequently removed by sideband cooling methods. Our results pave the way for a bottom-up approach to creating ultralow-entropy states of a many-body system.

  12. Nonlinear optics and solid-state lasers advanced concepts, tuning-fundamentals and applications

    CERN Document Server

    Yao, Jianquan

    2012-01-01

    This book covers the complete spectrum of nonlinear optics and all solid state lasers.The book integrates theory, calculations and practical design, technology, experimental schemes and applications. With the expansion and further development of Laser technology, the wavelength spectrum of Lasers had to be enlarged, even to be tunable which requires the use of nonlinear optical and Laser tunable technology. It systematically summarizes and integrates the analysis of international achievements within the last 20 years in this field. It will be helpful for university teachers, graduate students as well as engineers.

  13. Optical image encoding based on digital holographic recording on polarization state of vector wave.

    Science.gov (United States)

    Lin, Chao; Shen, Xueju; Xu, Qinzu

    2013-10-01

    We propose and analyze a compact optical image encoder based on the principle of digital holographic recording on the polarization state of a vector wave. The optical architecture is a Mach-Zehnder interferometer with in-line digital holographic recording mechanism. The original image is represented by distinct polarization states of elliptically polarized light. This state of polarization distribution is scrambled and then recorded by a two-step digital polarization holography method with random phase distributed reference wave. Introduction of a rotation key in the object arm and phase keys in the reference arm can achieve the randomization of plaintext. Statistical property of cyphertext is analyzed from confusion and diffusion point of view. Fault tolerance and key sensitivity of the proposed approach are also investigated. A chosen plaintext attack on the proposed algorithm exhibits its high security level. Simulation results that support the theoretical analysis are presented.

  14. Controlling the volatility of the written optical state in electrochromic DNA liquid crystals

    Science.gov (United States)

    Liu, Kai; Varghese, Justin; Gerasimov, Jennifer Y.; Polyakov, Alexey O.; Shuai, Min; Su, Juanjuan; Chen, Dong; Zajaczkowski, Wojciech; Marcozzi, Alessio; Pisula, Wojciech; Noheda, Beatriz; Palstra, Thomas T. M.; Clark, Noel A.; Herrmann, Andreas

    2016-05-01

    Liquid crystals are widely used in displays for portable electronic information display. To broaden their scope for other applications like smart windows and tags, new material properties such as polarizer-free operation and tunable memory of a written state become important. Here, we describe an anhydrous nanoDNA-surfactant thermotropic liquid crystal system, which exhibits distinctive electrically controlled optical absorption, and temperature-dependent memory. In the liquid crystal isotropic phase, electric field-induced colouration and bleaching have a switching time of seconds. Upon transition to the smectic liquid crystal phase, optical memory of the written state is observed for many hours without applied voltage. The reorientation of the DNA-surfactant lamellar layers plays an important role in preventing colour decay. Thereby, the volatility of optoelectronic state can be controlled simply by changing the phase of the material. This research may pave the way for developing a new generation of DNA-based, phase-modulated, photoelectronic devices.

  15. Locally Excited State-Charge Transfer State Coupled Dyes as Optically Responsive Neuron Firing Probes.

    Science.gov (United States)

    Sirbu, Dumitru; Butcher, John B; Waddell, Paul G; Andras, Peter; Benniston, Andrew C

    2017-10-17

    A selection of NIR-optically responsive neuron probes was produced comprising of a donor julolidyl group connected to a BODIPY core and several different styryl and vinylpyridinyl derived acceptor moieties. The strength of the donor-acceptor interaction was systematically modulated by altering the electron withdrawing nature of the aryl unit. The fluorescence quantum yield was observed to decrease as the electron withdrawing effect of the aryl subunit increased in line with changes of the Hammett parameter. The effectiveness of these fluorophores as optically responsive dyes for neuronal imaging was assessed by measuring the toxicity and signal-to-noise ratio (SNR) of each dye. A great improvement of SNR was obtained when compared to the first-generation BODIPY-based voltage sensitive dyes with concomitant toxicity decrease. The mechanism for the optical response is disparate from conventional cyanine-based dyes, opening up a new way to produce effective voltage sensitive dyes that respond well into the NIR region. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  17. Experimental linear-optics simulation of ground-state of an Ising spin chain.

    Science.gov (United States)

    Xue, Peng; Zhan, Xian; Bian, Zhihao

    2017-05-19

    We experimentally demonstrate a photonic quantum simulator: by using a two-spin Ising chain (an isolated dimer) as an example, we encode the wavefunction of the ground state with a pair of entangled photons. The effect of magnetic fields, leading to a critical modification of the correlation between two spins, can be simulated by just local operations. With the ratio of simulated magnetic fields and coupling strength increasing, the ground state of the system changes from a product state to an entangled state and back to another product state. The simulated ground states can be distinguished and the transformations between them can be observed by measuring correlations between photons. This simulation of the Ising model with linear quantum optics opens the door to the future studies which connect quantum information and condensed matter physics.

  18. Scheme for generating the singlet state of three atoms trapped in distant cavities coupled by optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong-Yang [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Wen, Jing-Ji [College of Foundation Science, Harbin University of Commerce, Harbin, Heilongjiang 150028 (China); Bai, Cheng-Hua; Hu, Shi; Cui, Wen-Xue [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Wang, Hong-Fu, E-mail: hfwang@ybu.edu.cn [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Zhu, Ai-Dong [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Zhang, Shou, E-mail: szhang@ybu.edu.cn [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China)

    2015-09-15

    An effective scheme is proposed to generate the singlet state with three four-level atoms trapped in three distant cavities connected with each other by three optical fibers, respectively. After a series of appropriate atom–cavity interactions, which can be arbitrarily controlled via the selective pairing of Raman transitions and corresponding optical switches, a three-atom singlet state can be successfully generated. The influence of atomic spontaneous decay, photon leakage of cavities and optical fibers on the fidelity of the state is numerically simulated showing that the three-atom singlet state can be generated with high fidelity by choosing the experimental parameters appropriately.

  19. Creation, Storage, and On-Demand Release of Optical Quantum States with a Negative Wigner Function

    Directory of Open Access Journals (Sweden)

    Jun-ichi Yoshikawa

    2013-12-01

    Full Text Available Highly nonclassical quantum states of light, characterized by Wigner functions with negative values, have been all-optically created so far only in a heralded fashion. In this case, the desired output emerges rarely and randomly from a quantum-state generator. An important example is the heralded production of high-purity single-photon states, typically based on some nonlinear optical interaction. In contrast, on-demand single-photon sources are also reported, exploiting the quantized level structure of matter systems. These sources, however, lead to highly impure output states, composed mostly of vacuum. While such impure states may still exhibit certain single-photon-like features such as antibunching, they are not nonclassical enough for advanced quantum-information processing. On the other hand, the intrinsic randomness of pure, heralded states can be circumvented by first storing and then releasing them on demand. Here, we propose such a controlled release, and we experimentally demonstrate it for heralded single photons. We employ two optical cavities, where the photons are both created and stored inside one cavity and finally released through a dynamical tuning of the other cavity. We demonstrate storage times of up to 300 ns while keeping the single-photon purity around 50% after storage. Our experiment is the first demonstration of a negative Wigner function at the output of an on-demand photon source or a quantum memory. In principle, our storage system is compatible with all kinds of nonclassical states, including those known to be essential for many advanced quantum-information protocols.

  20. Engineering steady-state entanglement via dissipation and quantum Zeno dynamics in an optical cavity.

    Science.gov (United States)

    Li, Dong-Xiao; Shao, Xiao-Qiang; Wu, Jin-Hui; Yi, X X

    2017-10-01

    A new mechanism is proposed for dissipatively preparing maximal Bell entangled state of two atoms in an optical cavity. This scheme integrates the spontaneous emission, the light shift of atoms in the presence of dispersive microwave field, and the quantum Zeno dynamics induced by continuous coupling, to obtain a unique steady state irrespective of initial state. Even for a large cavity decay, a high-fidelity entangled state is achievable at a short convergence time, since the occupation of the cavity mode is inhibited by the Zeno requirement. Therefore, a low single-atom cooperativity C=g2/(κγ) is good enough for realizing a high fidelity of entanglement in a wide range of decoherence parameters. As a straightforward extension, the feasibility for preparation of two-atom Knill-Laflamme-Milburn state with the same mechanism is also discussed.

  1. Effect of substrate on optical bound states in the continuum in 1D photonic structures

    Science.gov (United States)

    Sadrieva, Z. F.; Sinev, I. S.; Samusev, A. K.; Iorsh, I. V.; Koshelev, K. L.; Takayama, O.; Malureanu, R.; Lavrinenko, A. V.; Bogdanov, A. A.

    2017-09-01

    Optical bound states in the continuum (BIC) are localized states with energy lying above the light line and having infinite lifetime. Any losses taking place in real systems result in transformation of the bound states into resonant states with finite lifetime. In this work, we analyze properties of BIC in CMOS-compatible one-dimensional photonic structure based on silicon-on-insulator wafer at telecommunication wavelengths, where the absorption of silicon is negligible. We reveal that a high-index substrate could destroy both off-Γ BIC and in-plane symmetry protected at-Γ BIC turning them into resonant states due to leakage into the diffraction channels opening in the substrate.

  2. Modeling nonlinear optics of nanosystems with sum-over-states model.

    Science.gov (United States)

    Tian, Wei Quan

    2012-02-05

    Three-stage strategies (ladder rule, few state model (FSM), and parallelization) were proposed to improve the computational efficiency of the sum-over-states (SOS) model in nonlinear optics (NLO) modeling. Ladder rule decomposes NLO coefficients of the nth state into the (n-1)th term and the contribution from the (n-1)th to the nth state without loss of rigor in theory. FSM singles out the states with substantial contribution to NLO. Those strategies are universal to all (including revised and simplified) SOS models. The computing cost reduces roughly to C/(n(i-1)) (C is a constant and i is the rank (order) of the NLO coefficients). Copyright © 2011 Wiley Periodicals, Inc.

  3. Fast holonomic quantum computation based on solid-state spins with all-optical control

    Science.gov (United States)

    Zhou, Jian; Liu, BaoJie; Hong, ZhuoPing; Xue, ZhengYuan

    2018-01-01

    Holonomic quantum computation is a quantum computation strategy that promises some built-in noise-resilience features. Here, we propose a scheme for nonadiabatic holonomic quantum computation with nitrogen-vacancy center electron spins, which are characterized by fast quantum gates and long qubit coherence times. By varying the detuning, amplitudes, and phase difference of lasers applied to a nitrogen-vacancy center, one can directly realize an arbitrary single-qubit holonomic gate on the spin. Meanwhile, with the help of cavity-assisted interactions, a nontrivial two-qubit holonomic quantum gate can also be induced. The distinct merit of this scheme is that all the quantum gates are obtained via an all-optical geometric manipulation of the solid-state spins. Therefore, our scheme opens the possibility for robust quantum computation using solid-state spins in an all-optical way.

  4. Topological phases and edge states in a non-Hermitian trimerized optical lattice

    Science.gov (United States)

    Jin, L.

    2017-09-01

    Topologically engineered optical materials support robust light transport. Herein, the investigated non-Hermitian lattice is trimerized and inhomogeneously coupled using uniform intracell coupling. The topological properties of the coupled waveguide lattice are evaluated and we find that the PT -symmetric phase of a PT -symmetric lattice can have different topologies; the edge states depend on the lattice size, boundary configuration, and competition between the coupling and degree of non-Hermiticity. The topologically nontrivial region is extended in the presence of periodic gain and loss. The nonzero geometric phases accumulated by the Bloch bands indicate the existence of topologically protected edge states between the band gaps. The unidirectional amplification and attenuation zero modes appear above a threshold degree of non-Hermiticity, which facilitates the development of a robust optical diode.

  5. Steady-State Noise Analysis of Spontaneous and Stimulated Brillouin Scattering in Optical Fibers

    Science.gov (United States)

    Jenkins, R. Brian; Sova, Raymond M.; Joseph, Richard I.

    2007-03-01

    In this paper, we present a steady-state theoretical and experimental analysis of the noise resulting from spontaneous and stimulated Brillouin scattering in an optical fiber. Wave equations are derived and solved that describe the evolution of the pump and Stokes waves along the fiber. Experiments and numerical results demonstrate the validity of the theory, either when a Stokes wave is launched at the end of the fiber or when the noise in the Stokes wave is spontaneously generated.

  6. Preparation of spin squeezed atomic states by optical phase shift measurement

    OpenAIRE

    Bouchoule, Isabelle; Moelmer, Klaus

    2002-01-01

    In this paper we present a state vector analysis of the generation of atomic spin squeezing by measurement of an optical phase shift. The frequency resolution is improved when a spin squeezed sample is used for spectroscopy in place of an uncorrelated sample. When light is transmitted through an atomic sample some photons will be scattered out of the incident beam, and this has a destructive effect on the squeezing. We present quantitative studies for three limiting cases: the case of a sampl...

  7. Near-deterministic discrimination of all Bell states with linear optics.

    Science.gov (United States)

    Pavičić, Mladen

    2011-08-19

    For a reliable implementation of quantum teleportation, a near-deterministic (close to 100%) discrimination of all four Bell states of entangled qubits is required. One can carry it out with linear optical elements only if conditional dynamics are allowed. Here we present a setup in which we repeatedly disentangle and reentangle photons in three of four states, so as to separate photons in one of them, conditioned on keeping the other two at bay. The efficiency of a realistic implementation of our setup with current technology is over 90% for an ideal source of photons on demand. © 2011 American Physical Society

  8. Quantum Entanglement and Correlation of Two Qubit Atoms Interacting with the Coherent State Optical Field

    Science.gov (United States)

    Liu, Tang-Kun; Tao, Yu; Shan, Chuan-Jia; Liu, Ji-bing

    2017-10-01

    Using the three criterions of the concurrence, the negative eigenvalue and the geometric quantum discord, we investigate the quantum entanglement and quantum correlation dynamics of two two-level atoms interacting with the coherent state optical field. We discuss the influence of different photon number of the mean square fluctuations on the temporal evolution of the concurrence, the negative eigenvalue and the geometric quantum discord between two atoms when the two atoms are initially in specific three states. The results show that different photon number of the mean square fluctuations can lead to different effects of quantum entanglement and quantum correlation dynamics.

  9. Optical nonlinearities of excitonic states in atomically thin 2D transition metal dichalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Daniel Beom Soo [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Proliferation Signatures Discovery and Exploitation Department

    2017-08-01

    We calculated the optical nonlinearities of the atomically thin monolayer transition metal dichalcogenide material (particularly MoS2), particularly for those linear and nonlinear transition processes that utilize the bound exciton states. We adopted the bound and the unbound exciton states as the basis for the Hilbert space, and derived all the dynamical density matrices that provides the induced current density, from which the nonlinear susceptibilities can be drawn order-by-order via perturbative calculations. We provide the nonlinear susceptibilities for the linear, the second-harmonic, the third-harmonic, and the kerr-type two-photon processes.

  10. Efficient generation of many-body singlet states of spin-1 bosons in optical superlattices

    Science.gov (United States)

    Sun, Huanying; Xu, Peng; Pu, Han; Zhang, Wenxian

    2017-06-01

    We propose an efficient stepwise adiabatic merging (SAM) method to generate many-body singlet states in antiferromagnetic spin-1 bosons in concatenated optical superlattices with isolated double-well arrays, by adiabatically ramping up the double-well bias. With an appropriate choice of bias sweeping rate and magnetic field, the SAM protocol predicts a fidelity as high as 90% for a 16-body singlet state and even higher fidelities for smaller even-body singlet states. During their evolution, the spin-1 bosons exhibit interesting squeezing dynamics, manifested by an odd-even oscillation of the experimentally observable squeezing parameter. The generated many-body singlet states may find practical applications in precision measurement of magnetic field gradient and in quantum information processing.

  11. Motion states extraction with optical flow for rat-robot automatic navigation.

    Science.gov (United States)

    Zhang, Xinlu; Sun, Chao; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang

    2012-01-01

    The real-time acquisition of precise motion states is significant and difficult for bio-robot automatic navigation. In this paper, we propose a real-time video-tracking algorithm to extract motion states of rat-robots in complex environment using optical flow. The rat-robot's motion states, including location, speed and motion trend, are acquired accurately in real time. Compared with the traditional methods based on single frame image, our algorithm using consecutive frames provides more exact and rich motion information for the automatic navigation of bio-robots. The video of the manual navigation experiments on rat-robots in eight-arm maze is applied to test this algorithm. The average computation time is 25.76 ms which is less than the speed of image acquisition. The results show that our method could extract the motion states with good performance of accuracy and time consumption.

  12. State of the art in high-temperature fiber optic sensors

    Science.gov (United States)

    Fielder, Robert S.; Stinson-Bagby, Kelly L.; Palmer, Matthew E.

    2004-12-01

    The objective of the work presented was to develop a suite of sensors for use in high-temperature aerospace environments, including turbine engine monitoring, hypersonic vehicle skin friction measurements, and support ground and flight test operations. A fiber optic sensor platform was used to construct the sensor suite. Successful laboratory demonstrations include calibration of pressure sensors to 500psi at a gas temperature of 800°C. Additionally, pressure sensors were demonstrated at 800°C in combination with a high-speed (1.0MHz) fiber optic readout system enabling previously unobtainable dynamic measurements at high-temperatures. Temperature sensors have been field tested up to 1400°C and as low as -195°C. The key advancement that enabled the operation of these novel harsh environment sensors was a fiber optic packaging methodology that allowed the coupling of alumina and sapphire transducer components, optical fiber, and high-temperature alloy housing materials. The basic operation of the sensors and early experimental results are presented. Each of the sensors described here represent a quantifiable advancement in the state of the art in high-temperature physical sensors and will have a significant impact on the aerospace propulsion instrumentation industry.

  13. Passive Optical Access Networks: State of the Art and Future Evolution

    Directory of Open Access Journals (Sweden)

    Tommaso Muciaccia

    2014-10-01

    Full Text Available In the very last years, optical access networks are growing very rapidly, from both the network operators and the research interests points of view. Fiber To The Home (FTTH is already a reality in plenty of real contexts and there has been a further stimulus to the proposal of new solutions and the investigation of new possibilities, in order to optimize network performance and reduce capital and operational expenditure. A complete and systematic overview of passive optical access networks is presented in this paper, concerning both the hot research topics and the main operative issues about the design guidelines and the deployment of Passive Optical Networks (PON architectures, nowadays the most commonly implemented approach to realize optical fiber links in the access networks. A comparison of advantages and disadvantages of different multiplexing techniques is discussed, with specific reference to WDM-based networks, almost universally considered as the enabling technology for future proof bandwidth requirements. An exhaustive summary is also given about the-state-of-the-art of modulation and encoding techniques recently proposed by the scientific community, as well as the open challenges (such as colorless and coolerless ONUs for telecom companies and international standardization compliance.

  14. A Simple Method on Generating any Bi-Photon Superposition State with Linear Optics

    Science.gov (United States)

    Zhang, Ting-Ting; Wei, Jie; Wang, Qin

    2017-04-01

    We present a simple method on the generation of any bi-photon superposition state using only linear optics. In this scheme, the input states, a two-mode squeezed state and a bi-photon state, meet on a beam-splitter and the output states are post-selected with two threshold single-photon detectors. We carry out corresponding numerical simulations by accounting for practical experimental conditions, calculating both the Wigner function and the state fidelity of those generated bi-photon superposition states. Our simulation results demonstrate that not only distinct nonclassical characteristics but also very high state fidelities can be achieved even under imperfect experimental conditions. Supported by the National Natural Science Foundation of China under Grant Nos. 61475197, 61590932, 11274178, the Natural Science Foundation of the Jiangsu Higher Education Institutions under Grant No. 15KJA120002, the Outstanding Youth Project of Jiangsu Province under Grant No. BK20150039, and the Priority Academic Program Development of Jiangsu Higher Education Institutions under Grant No. YX002001

  15. Excited States and Optical Spectra Based on GW-BSE: Dimensionality and Screening

    Science.gov (United States)

    Louie, Steven G.

    In this talk, I discuss some recent developments and applications of first-principles GW plus Bethe Salpeter equation (GW-BSE) approach to the understanding and prediction of photo-excited states, optical responses, and related spectroscopic properties of materials, in particular atomically thin two-dimensional (2D) crystals. Owing to their reduced dimensionality, quasi-2D materials and their nanostructures can exhibit highly unusual behaviors. Symmetry, many-body interactions, doping, and substrate screening effects play a critical role in shaping qualitatively and quantitatively their excited-state properties. Accurate treatment of these effects, in particular many-electron interactions, poses new theoretical and computational challenges. I will present some new developments in addressing these challenges, and present studies on monolayer and few-layer transition metal dichalcogenides and metal monochalcogenides, as well as black phosphorus and other 2D crystals. Several highly interesting and unexpected phenomena are discovered: unusual excitonic level structures and optical selection rules; exchange-induced light-like (massless) exciton dispersion in 2D; tunable optical and plasmonic properties; and the dominant influence of substrate screening. I would like to acknowledge collaborations with members of the Louie group. This work was supported by U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences & Engineering Division, and by National Science Foundation.

  16. Optical and Solid State Properties of Manganese Sulphide (MnS Thin Film; Theoretical Analysis

    Directory of Open Access Journals (Sweden)

    E Ugwu

    2017-06-01

    Full Text Available Analysis of the optical and Solid State properties of MgS thin film using theoretical approach of beam propagation technique in which a scalar wave is propagated through the material thin film deposited on a substrate with the assumption that the dielectric medium has homogenous reference dielectric constant term, and a perturbed dielectric term, representing the deposited thin film medium is presented in this work. These two terms, constituted arbitrary complex dielectric function that describes dielectric perturbation imposed by the medium of for the system. This is substituted into a defined scalar wave equation in which the appropriate Green’s Function was defined on it and solved using series solution technique in conjunction with Born approximation method in order to obtain a model equation of wave propagating through the thin film. This was used in computing the propagated field for different input regions of field wavelength such as ultraviolet, visible and infrared region respectively during which the influence of the dielectric constants of the thin film on the propagating field were considered. The results obtained from the computed field were used in turn to compute the band gaps, solid state and optical properties of the thin film such as reflectance, Transmittance and reflectance. The electrical and optical conductance was also computed.

  17. An all-solid-state chirped source for coherent optical radar

    Science.gov (United States)

    Byer, Robert L.

    1992-03-01

    A low-noise, high-power, single-frequency, solid-state laser harmonically converted to the green is required to pump a single-frequency, singly-resonant, chirped, optical parametric oscillator. As work toward this new frequency agile source we have built and injection locked an 18 watt Nd:YAG slave laser with a 40 mW master laser to produce single frequency operation, generated 6.5 watts of 532 nm radiation at 36 percent efficiency by resonant second harmonic generation, and measured spectral and spatial mode characteristics of this laser. Toward an all-solid-state version of this laser we have designed a diode-laser-pumped Nd:YAG laser. All subsystems of this laser have been built and tested and the final construction of the laser is currently underway. In addition, we have built both a pulsed singly resonant optical parametric oscillator, and a low threshold cw doubly resonant optical parametric oscillator that operated at 80 percent conversion efficiency in a single axial mode.

  18. Optical Sensing of the Fatigue Damage State of CFRP under Realistic Aeronautical Load Sequences

    Directory of Open Access Journals (Sweden)

    Pablo Zuluaga-Ramírez

    2015-03-01

    Full Text Available We present an optical sensing methodology to estimate the fatigue damage state of structures made of carbon fiber reinforced polymer (CFRP, by measuring variations on the surface roughness. Variable amplitude loads (VAL, which represent realistic loads during aeronautical missions of fighter aircraft (FALSTAFF have been applied to coupons until failure. Stiffness degradation and surface roughness variations have been measured during the life of the coupons obtaining a Pearson correlation of 0.75 between both variables. The data were compared with a previous study for Constant Amplitude Load (CAL obtaining similar results. Conclusions suggest that the surface roughness measured in strategic zones is a useful technique for structural health monitoring of CFRP structures, and that it is independent of the type of load applied. Surface roughness can be measured in the field by optical techniques such as speckle, confocal perfilometers and interferometry, among others.

  19. An optical flow-based state-space model of the vocal folds.

    Science.gov (United States)

    Granados, Alba; Brunskog, Jonas

    2017-06-01

    High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation. A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters.

  20. All-Optical Preparation of Coherent Dark States of a Single Rare Earth Ion Spin in a Crystal.

    Science.gov (United States)

    Xia, Kangwei; Kolesov, Roman; Wang, Ya; Siyushev, Petr; Reuter, Rolf; Kornher, Thomas; Kukharchyk, Nadezhda; Wieck, Andreas D; Villa, Bruno; Yang, Sen; Wrachtrup, Jörg

    2015-08-28

    All-optical addressing and coherent control of single solid-state based quantum bits is a key tool for fast and precise control of ground-state spin qubits. So far, all-optical addressing of qubits was demonstrated only in a very few systems, such as color centers and quantum dots. Here, we perform high-resolution spectroscopic of native and implanted single rare earth ions in solid, namely, a cerium ion in yttrium aluminum garnet (YAG) crystal. We find narrow and spectrally stable optical transitions between the spin sublevels of the ground and excited optical states. Utilizing these transitions we demonstrate the generation of a coherent dark state in electron spin sublevels of a single Ce^{3+} ion in YAG by coherent population trapping.

  1. Superfluid state of repulsively interacting three-component fermionic atoms in optical lattices

    Science.gov (United States)

    Suga, Sei-Ichiro; Inaba, Kensuke

    2013-03-01

    We investigate the superfluid state of repulsively interacting three-component (color) fermionic atoms in optical lattices using Feynman diagrammatic approaches and the dynamical mean field theory. When the anisotropy of the three repulsive interactions is strong, atoms of two of the three colors form Cooper pairs and atoms of the third color remain a Fermi liquid. This superfluid emerges close to half filling at which the Mott insulating state characteristic of the three-component repulsive fermions appears. An effective attractive interaction is induced by density fluctuations of the third-color atoms. The superfluid state is stable against the phase separation that occurs in the strongly repulsive region. We determine the phase diagrams in terms of temperature, filling, and the anisotropy of the repulsive interactions. This work was supported by Grant-in-Aid for Scientific Research (C) (No. 23540467) from the Japan Society for the Promotion of Science.

  2. Quantum efficiency of self-assembled quantum dots determined by a modified optical local density of states

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Stobbe, Søren; Nikolaev, I.S.

    2007-01-01

    We have measured time-resolved spontaneous emission from quantum dots near a dielectric interface with known photonic local density of states. We thus experimentally determine the quantum efficiency and the dipole moment, important for quantum optics.......We have measured time-resolved spontaneous emission from quantum dots near a dielectric interface with known photonic local density of states. We thus experimentally determine the quantum efficiency and the dipole moment, important for quantum optics....

  3. Computational study of structural, optoelectronic and nonlinear optical properties of dynamic solid-state chalcone derivatives.

    Science.gov (United States)

    Chaudhry, Aijaz Rasool; Irfan, Ahmad; Muhammad, Shabbir; Al-Sehemi, Abdullah G; Ahmed, R; Jingping, Zhang

    2017-08-01

    In the present study, we use the state of art density functional theory (DFT) techniques to calculate the structural, optoelectronic and nonlinear optical (NLO) properties for two novel chalcone derivatives. The geometrical structures of chalcone derivatives compound 1 and 2 are optimized using periodic boundary conditions (PBC) in solid-state phase as well as isolated single molecular geometry in the gas phase. The reasonable agreement is found among experimental, solid-state and gas phase single molecular geometries, which provide us, further confidence to explore the potential of above-entitled derivatives as good functional materials for electro-optical applications. For instance, the frequency dependent real parts of dielectric functions are calculated for compound 1 and 2. The maximum value of real part of the dielectric function for compound 1 and 2 at 0eV are computed as 4.35 and 6.68 for the polarization vectors of (001) directions, respectively, which reveals the fact that the compound 1 and 2 might be good charge transport materials. The reflectivities of the compound 1 and 2 are 0.64 and 0.45 revealing that the compound 2 might be more efficient material for organic photovoltaic (OPV) applications. The results of the refractive index improved by doping the strong electron withdrawing groups (EWGs) shows that the compound 2 might be good refractor of the photon as compared to compound 1. The calculated values for static second-order polarizability are 3498 and 10464 a. u. and for frequency dependent second harmonic generations are 2557 and 6429 a. u. for compound 1 and 2, respectively, which indicates their significant potential for possible nonlinear optical applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization.

    Science.gov (United States)

    Balthasar Mueller, J P; Rubin, Noah A; Devlin, Robert C; Groever, Benedikt; Capasso, Federico

    2017-03-17

    We present a method allowing for the imposition of two independent and arbitrary phase profiles on any pair of orthogonal states of polarization-linear, circular, or elliptical-relying only on simple, linearly birefringent wave plate elements arranged into metasurfaces. This stands in contrast to previous designs which could only address orthogonal linear, and to a limited extent, circular polarizations. Using this approach, we demonstrate chiral holograms characterized by fully independent far fields for each circular polarization and elliptical polarization beam splitters, both in the visible. This approach significantly expands the scope of metasurface polarization optics.

  5. Local Optical Closure Using Single Particle Mixing State Observations during the 2010 DOE CARES Campaign

    Science.gov (United States)

    Zaveri, R. A.; Arnott, W. P.; Atkinson, D. B.; Barnard, J.; Beranek, J.; Cappa, C. D.; Chand, D.; Dubey, M. K.; Easter, R. C.; Flowers, B. A.; Gyawali, M. S.; Jobson, B. T.; Pekour, M. S.; Riemer, N. S.; Subramanian, R.; Song, C.; Zelenyuk, A.

    2011-12-01

    Atmospheric black carbon (BC) particles readily absorb both upwelling and downwelling broadband radiation and are thought to be second only to CO2 in contributing to global warming. However large uncertainties still exist in the global estimates of BC radiative forcing, which depend not only on our ability to accurately simulate the global loading and distribution of BC, but also on the precise knowledge of the mixing state and morphology of BC particles due to aging. To this end, one of the objectives of the Carbonaceous Aerosols and Radiative Effects Study (CARES) conducted in Sacramento, CA, during June 2010 was to investigate the evolution of urban BC particles and the associated optical properties, with the overarching goal of improving their process-level model representations. The daytime Sacramento urban plume was routinely transported to the northeast into the Sierra Nevada foothills area rich in biogenic emissions, and the aged aerosols were often recirculated back into the urban area the next morning. The CARES campaign observational strategy was designed to take advantage of this flow pattern by setting up two observation supersites - one located within the Sacramento urban area, referred to as the "T0 site," and another located about 24 km to the northeast in Cool, CA, a small town in the rural foothills area, referred to as the "T1 site." BC size distribution and mixing state were measured at both the sites with single particle soot photometry (SP2). The single particle mass spectrometer SPLAT II was also deployed at the T0 site to characterize the size, composition (mixing state), density, and morphology of BC and non-BC containing particles. Non-refractory aerosol species were measured by Aerodyne aerosol mass spectrometer (AMS). Aerosol light absorption and scattering (or extinction) at multiple wavelengths were measured using several techniques, including photoacoustic, cavity ring-down, nephelometer as well as the filter-based particle

  6. Coherence properties and quantum state transportation in an optical conveyor belt.

    Science.gov (United States)

    Kuhr, S; Alt, W; Schrader, D; Dotsenko, I; Miroshnychenko, Y; Rosenfeld, W; Khudaverdyan, M; Gomer, V; Rauschenbeutel, A; Meschede, D

    2003-11-21

    We have prepared and detected quantum coherences of trapped cesium atoms with long dephasing times. Controlled transport by an "optical conveyor belt" over macroscopic distances preserves the atomic coherence with slight reduction of coherence time. The limiting dephasing effects are experimentally identified, and we present an analytical model of the reversible and irreversible dephasing mechanisms. Our experimental methods are applicable at the single-atom level. Coherent quantum bit operations along with quantum state transport open the route towards a "quantum shift register" of individual neutral atoms.

  7. Rare-earth-doped photonic crystals for the development of solid-state optical cryocoolers

    Science.gov (United States)

    Garcia-Adeva, Angel J.; Balda, Rolindes; Fernández, Joaquín

    2009-02-01

    Optical cryocoolers made of luminescent solids are very promising for many applications in the fields of optical telecommunications, aerospace industry, bioimaging, and phototherapy. To the present day, researchers have employed a number of crystal and glass host materials doped with rare-earth ions (Yb3+, Tm3+, and Er3+) to yield anti-Stokes optical refrigeration. In these host materials, the attainable minimum temperature is limited by the average phonon energy of the lattice and the impurity concentration. However, recently Ruan and Kaviany have theoretically demonstrated that the cooling efficiency can be dramatically enhanced when the host material doped with rare-earth ions is ground into a powder made of sub-micron size grains. This is due to two facts: firstly, the phonon spectrum is modified due to finite size of the grains and, secondly, light localization effects increase the photon density, leading to an enhanced absorptivity. In the present work, we propose that using a photonic crystal doped with rare earth ions offers many advantages with regards to getting a larger cooling efficiency at room temperature when compared to standard bulk materials or nano-powders. Indeed, apart to analogous phenomena to the ones predicted in nano-crystalline powders, there is the possibility of directly controlling the spontaneous emission rate of the ions embedded in the structure and, also, the absorption rate in the Stokes side of the absorption band by adequately tuning the density of photonic states, thus obtaining a large improvement in the cooling efficiency.

  8. Orienting polar molecules without hexapoles: Optical state selection with adiabatic orientation

    Science.gov (United States)

    Schäfer, Tim; Bartels, Nils; Hocke, Nils; Yang, Xueming; Wodtke, Alec M.

    2012-05-01

    A pedagogic review of technology used to orient polar molecules is presented to place in context the report of a new approach to this problem. Laboratory frame orientation of polar molecules is achieved by state-specific optical pumping in a region free of electric fields followed by adiabatic transport into a static electric field. This approach overcomes some of the limitations of the more common hexapole focusing method. In particular the method is nearly insensitive to the kinetic energy of the sample. We demonstrate production of oriented samples of NO (μel = 0.15 D) with translational energies above 1 eV in both high- and low-field seeking states. The method can be extended to many other classes of molecules, including near symmetric tops and ions.

  9. Model analysis of influences of aerosol mixing state upon its optical properties in East Asia

    Science.gov (United States)

    Han, Xiao; Zhang, Meigen; Zhu, Lingyun; Xu, Liren

    2013-07-01

    The air quality model system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) coupled with an aerosol optical/radiative module was applied to investigate the impact of different aerosol mixing states (i.e., externally mixed, half externally and half internally mixed, and internally mixed) on radiative forcing in East Asia. The simulation results show that the aerosol optical depth (AOD) generally increased when the aerosol mixing state changed from externally mixed to internally mixed, while the single scattering albedo (SSA) decreased. Therefore, the scattering and absorption properties of aerosols can be significantly affected by the change of aerosol mixing states. Comparison of simulated and observed SSAs at five AERONET (Aerosol Robotic Network) sites suggests that SSA could be better estimated by considering aerosol particles to be internally mixed. Model analysis indicates that the impact of aerosol mixing state upon aerosol direct radiative forcing (DRF) is complex. Generally, the cooling effect of aerosols over East Asia are enhanced in the northern part of East Asia (Northern China, Korean peninsula, and the surrounding area of Japan) and are reduced in the southern part of East Asia (Sichuan Basin and Southeast China) by internal mixing process, and the variation range can reach ±5 W m-2. The analysis shows that the internal mixing between inorganic salt and dust is likely the main reason that the cooling effect strengthens. Conversely, the internal mixture of anthropogenic aerosols, including sulfate, nitrate, ammonium, black carbon, and organic carbon, could obviously weaken the cooling effect.

  10. Controlled generation of different orbital angular momentum states in a hybrid optical fiber

    Science.gov (United States)

    Heng, Xiaobo; Gan, Jiulin; Zhang, Zhishen; Qian, Qi; Xu, Shanhui; Yang, Zhongmin

    2017-11-01

    A new kind of hybrid optical fiber for different orbital angular momentum (OAM) states generation is proposed and investigated by simulation. The hybrid fiber is composed of three main regions: the core, the cladding and the bow-tie-shaped stress-applying zones (SAZs). The SAZs are symmetrically distributed on both sides of the core and filled with piezoelectric material PZT-5H which would generate radial mechanical movement when subjected to an electric field. The strain applied by the SAZs introduces anisotropic variation of the material permittivity which affect the propagation of the guided modes along the fiber core. The OAM modes of | l | = 1 , 2 , 3 can be generated by setting the appropriate electric potential applied in the SAZs. This fiber-based structure and electric control design enable the generation and adjustment of OAM states with the merits of accuracy, compactness and practicality, which would have potential application in OAM optical fiber communication systems and other systems utilizing OAM light.

  11. Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states

    Science.gov (United States)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n -mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherence and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [ F. Dell’Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004) ], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization.

  12. Optical cryo-imaging of kidney mitochondrial redox state in diabetic mice models

    Science.gov (United States)

    Maleki, S.; Sepehr, R.; Staniszewski, K.; Sheibani, N.; Sorenson, C. M.; Ranji, M.

    2012-03-01

    Oxidative stress (OS), which increases during diabetes, exacerbates the development and progression of diabetes complications including renal vascular and proximal tubule cell dysfunction. The objective of this study was to investigate the changes in the metabolic state of the tissue in diabetic mice kidneys using fluorescence imaging. Mitochondrial metabolic coenzymes NADH (Nicotinamide Adenine Dinucleotide), and FADH-2 (Flavin Adenine Dinucleotide) are autofluorescent and can be monitored without exogenous labels by optical techniques. The ratio of the fluorescence intensity of these fluorophores, (NADH/FAD), called the NADH redox ratio (RR), is a marker of metabolic state of a tissue. We examined mitochondrial redox states of kidneys from diabetic mice, Akita/+ and its control wild type (WT) for a group of 8- and 12-week-old mice. Average intensity and histogram of maximum projected images of FAD, NADH, and NADH RR were calculated for each kidney. Our results indicated a 17% decrease in the mean NADH RR of the kidney from 8-week-old mice compared with WT mice and, a 30% decrease in the mean NADH RR of kidney from12-week-old mice compared with WT mice. These results indicated an increase in OS in diabetic animals and its progression over time. Thus, NADH RR can be used as a hallmark of OS in diabetic kidney allowing temporal identification of oxidative state.

  13. Optical communication with two-photon coherent states. II - Photoemissive detection and structured receiver performance

    Science.gov (United States)

    Shapiro, J. H.; Yuen, H. P.; Machado Mata, J. A.

    1979-01-01

    In a previous paper (1978), the authors developed a method of analyzing the performance of two-photon coherent state (TCS) systems for free-space optical communications. General theorems permitting application of classical point process results to detection and estimation of signals in arbitrary quantum states were derived. The present paper examines the general problem of photoemissive detection statistics. On the basis of the photocounting theory of Kelley and Kleiner (1964) it is shown that for arbitrary pure state illumination, the resulting photocurrent is in general a self-exciting point process. The photocount statistics for first-order coherent fields reduce to those of a special class of Markov birth processes, which the authors term single-mode birth processes. These general results are applied to the structure of TCS radiation, and it is shown that the use of TCS radiation with direct or heterodyne detection results in minimal performance increments over comparable coherent-state systems. However, significant performance advantages are offered by use of TCS radiation with homodyne detection. The abstract quantum descriptions of homodyne and heterodyne detection are derived and a synthesis procedure for obtaining quantum measurements described by arbitrary TCS is given.

  14. Optical communication with two-photon coherent stages. I - Quantum-state propagation and quantum-noise reduction

    Science.gov (United States)

    Yuen, H. P.; Shapiro, J. H.

    1978-01-01

    To determine the ultimate performance limitations imposed by quantum effects, it is also essential to consider optimum quantum-state generation. Certain 'generalized' coherent states of the radiation field possess novel quantum noise characteristics that offer the potential for greatly improved optical communications. These states have been called two-photon coherent states because they can be generated, in principle, by stimulated two-photon processes. The use of two-photon coherent state (TCS) radiation in free-space optical communications is considered. A simple theory of quantum state propagation is developed. The theory provides the basis for representing the free-space channel in a quantum-mechanical form convenient for communication analysis. The new theory is applied to TCS radiation.

  15. Tunable ground-state solitons in spin-orbit coupling Bose-Einstein condensates in the presence of optical lattices

    Science.gov (United States)

    Zhang, Huafeng; Chen, Fang; Yu, Chunchao; Sun, Lihui; Xu, Dahai

    2017-08-01

    Not Available Properties of the ground-state solitons, which exist in the spin-orbit coupling (SOC) Bose-Einstein condensates (BEC) in the presence of optical lattices, are presented. Results show that several system parameters, such as SOC strength, lattice depth, and lattice frequency, have important influences on properties of ground state solitons in SOC BEC. By controlling these parameters, structure and spin polarization of the ground-state solitons can be effectively tuned, so manipulation of atoms may be realized.

  16. Optical propagation in linear media atmospheric gases and particles, solid-state components, and water

    CERN Document Server

    Thomas, Michael E

    2006-01-01

    PART I: Background Theory and Measurement. 1. Optical Electromagnetics I. 2. Optical Electromagnetics II. 3. Spectroscopy of Matter. 4. Electrodynamics I: Macroscopic Interaction of Light and Matter. 5. Electrodynamics II: Microscopic Interaction of Light and Matter. 6. Experimental Techniques. PART II: Practical Models for Various Media. 7. Optical Propagation in Gases and the Atmosphere of the Earth. 8. Optical Propagation in Solids. 9. Optical Propagation in Liquids. 10. Particle Absorption and Scatter. 11. Propagation Background and Noise

  17. Multiscale dispersion-state characterization of nanocomposites using optical coherence tomography.

    Science.gov (United States)

    Schneider, Simon; Eppler, Florian; Weber, Marco; Olowojoba, Ganiu; Weiss, Patrick; Hübner, Christof; Mikonsaari, Irma; Freude, Wolfgang; Koos, Christian

    2016-08-25

    Nanocomposite materials represent a success story of nanotechnology. However, development of nanomaterial fabrication still suffers from the lack of adequate analysis tools. In particular, achieving and maintaining well-dispersed particle distributions is a key challenge, both in material development and industrial production. Conventional methods like optical or electron microscopy need laborious, costly sample preparation and do not permit fast extraction of nanoscale structural information from statistically relevant sample volumes. Here we show that optical coherence tomography (OCT) represents a versatile tool for nanomaterial characterization, both in a laboratory and in a production environment. The technique does not require sample preparation and is applicable to a wide range of solid and liquid material systems. Large particle agglomerates can be directly found by OCT imaging, whereas dispersed nanoparticles are detected by model-based analysis of depth-dependent backscattering. Using a model system of polystyrene nanoparticles, we demonstrate nanoparticle sizing with high accuracy. We further prove the viability of the approach by characterizing highly relevant material systems based on nanoclays or carbon nanotubes. The technique is perfectly suited for in-line metrology in a production environment, which is demonstrated using a state-of-the-art compounding extruder. These experiments represent the first demonstration of multiscale nanomaterial characterization using OCT.

  18. Multiscale dispersion-state characterization of nanocomposites using optical coherence tomography

    Science.gov (United States)

    Schneider, Simon; Eppler, Florian; Weber, Marco; Olowojoba, Ganiu; Weiss, Patrick; Hübner, Christof; Mikonsaari, Irma; Freude, Wolfgang; Koos, Christian

    2016-08-01

    Nanocomposite materials represent a success story of nanotechnology. However, development of nanomaterial fabrication still suffers from the lack of adequate analysis tools. In particular, achieving and maintaining well-dispersed particle distributions is a key challenge, both in material development and industrial production. Conventional methods like optical or electron microscopy need laborious, costly sample preparation and do not permit fast extraction of nanoscale structural information from statistically relevant sample volumes. Here we show that optical coherence tomography (OCT) represents a versatile tool for nanomaterial characterization, both in a laboratory and in a production environment. The technique does not require sample preparation and is applicable to a wide range of solid and liquid material systems. Large particle agglomerates can be directly found by OCT imaging, whereas dispersed nanoparticles are detected by model-based analysis of depth-dependent backscattering. Using a model system of polystyrene nanoparticles, we demonstrate nanoparticle sizing with high accuracy. We further prove the viability of the approach by characterizing highly relevant material systems based on nanoclays or carbon nanotubes. The technique is perfectly suited for in-line metrology in a production environment, which is demonstrated using a state-of-the-art compounding extruder. These experiments represent the first demonstration of multiscale nanomaterial characterization using OCT.

  19. Optical imaging of mitochondrial redox state in rodent model of retinitis pigmentosa

    Science.gov (United States)

    Maleki, Sepideh; Gopalakrishnan, Sandeep; Ghanian, Zahra; Sepehr, Reyhaneh; Schmitt, Heather; Eells, Janis; Ranji, Mahsa

    2013-01-01

    Oxidative stress (OS) and mitochondrial dysfunction contribute to photoreceptor cell loss in retinal degenerative disorders. The metabolic state of the retina in a rodent model of retinitis pigmentosa (RP) was investigated using a cryo-fluorescence imaging technique. The mitochondrial metabolic coenzymes nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are autofluorescent and can be monitored without exogenous labels using optical techniques. The cryo-fluorescence redox imaging technique provides a quantitative assessment of the metabolism. More specifically, the ratio of the fluorescence intensity of these fluorophores (NADH/FAD), the NADH redox ratio (RR), is a marker of the metabolic state of the tissue. The NADH RR and retinal function were examined in an established rodent model of RP, the P23H rat compared to that of nondystrophic Sprague-Dawley (SD) rats. The NADH RR mean values were 1.11±0.03 in the SD normal and 0.841±0.01 in the P23H retina, indicating increased OS in the P23H retina. Electroretinographic data revealed a significant reduction in photoreceptor function in P23H animals compared to SD nozrmal rats. Thus, cryo-fluorescence redox imaging was used as a quantitative marker of OS in eyes from transgenic rats and demonstrated that alterations in the oxidative state of eyes occur during the early stages of RP.

  20. Akadeemilised üksused : puhkpilliosakond / Toomas Vavilov

    Index Scriptorium Estoniae

    Vavilov, Toomas, 1969-

    2011-01-01

    Toimusid XXI trompetipäevad ja selle raames konverents "Trompetimängu õpetamise põhimõtted". Aavo Ots esitles raamatut "Tuulefantaasia: trompetiõpetaja käsiraamat" ning pälvis Eesti Kultuurkapitali helikunsti sihtkapitali aastapreemia. Con Brio konkursil saavutasid häid tulemusi Heili Rosin, Heli Ernits ja Helena Tuuling.

  1. Akadeemilised üksused : puhkpilliosakond / Toomas Vavilov

    Index Scriptorium Estoniae

    Vavilov, Toomas, 1969-

    2013-01-01

    Korraldati koos Eesti Puhkpilliühinguga Eesti puhk- ja löökpillimängijate konkurss. Toimusid XXIII trompetipäevad ja selle raames konverents "Trompetimängu õpetamise põhitõed III". Yamaha konkursi võitis Heli Ernits. Professor Hannes Altrov pälvis Valgetähe IV klassi teenetemärgi

  2. States of one-dimensional fermion clusters with repulsive interactions in optical lattices

    Science.gov (United States)

    Gordillo, M. C.

    2017-09-01

    We study the different states (metal, Mott insulator, and band insulator) appearing in clusters of fermions confined in one-dimensional optical lattices. To describe these systems, instead of the standard Hubbard Hamiltonian, a continuous model with repulsive contact interactions between unlike-spin particles is used. The corresponding Schrödinger equations are solved using a diffusion Monte Carlo algorithm. We consider both balanced (same number of spin-up and spin-down fermions) and unbalanced arrangements with the same number of atoms in the minority component (N =5 ). We find that the structure of the clusters in both the weak- and the strong-coupling limits can be predicted to some extent from the solutions of the noninteracting Schrödinger equations describing the same systems, in line with findings in the previous literature.

  3. Analysis of excited-state Faraday anomalous dispersion optical filter at 1529 nm.

    Science.gov (United States)

    Xiong, Junyu; Yin, Longfei; Luo, Bin; Guo, Hong

    2016-06-27

    In this work, a detailed theoretical analysis of 1529 nm ES-FADOF (excited state Faraday anomalous dispersion optical filter) based on rubidium atoms pumped by 780 nm laser is introduced, where Zeeman splitting, Doppler broadening, and relaxation processes are considered. Experimental results are carefully compared with the derivation. The results prove that the optimal pumping frequency is affected by the working magnetic field. The population distribution among all hyperfine Zeeman sublevels under the optimal pumping frequency has also been obtained, which shows that 85Rb atoms are the main contribution to the population. The peak transmittance above 90% is obtained, which is in accordance with the experiment. The calculation also shows that the asymmetric spectra observed in the experiment are caused by the unbalanced population distribution among Zeeman sublevels. This theoretical model can be used for all kinds of calculations for FADOF.

  4. Chaotic quantum ratchets and filters with cold atoms in optical lattices: Properties of Floquet states

    Science.gov (United States)

    Hur, Gwang-Ok

    The -kicked rotor is a paradigm of quantum chaos. Its realisation with clouds of cold atoms in pulsed optical lattices demonstrated the well-known quantum chaos phenomenon of 'dynamical localisation'. In those experi ments by several groups world-wide, the £-kicks were applied at equal time intervals. However, recent theoretical and experimental work by the cold atom group at UCL Monteiro et al 2002, Jonckheere et al 2003, Jones et al 2004 showed that novel quantum and classical dynamics arises if the atomic cloud is pulsed with repeating sequences of unequally spaced kicks. In Mon teiro et al 2002 it was found that the energy absorption rates depend on the momentum of the atoms relative to the optical lattice hence a type of chaotic ratchet was proposed. In Jonckheere et al and Jones et al, a possible mechanism for selecting atoms according to their momenta (velocity filter) was investigated. The aim of this thesis was to study the properties of the underlying eigen values and eigenstates. Despite the unequally-spaced kicks, these systems are still time-periodic, so we in fact investigated the Floquet states, which are eigenstates of U(T), the one-period time evolution operator. The Floquet states and corresponding eigenvalues were obtained by diagonalising a ma trix representation of the operator U(T). It was found that the form of the eigenstates enables us to analyse qual itatively the atomic momentum probability distributions, N(p) measured experimentally. In particular, the momentum width of the individual eigen states varies strongly with as expected from the theoretical and ex- perimental results obtained previously. In addition, at specific close to values which in the experiment yield directed motion (ratchet transport), the probability distribution of the individual Floquet states is asymmetric, mirroring the asymmetric N(p) measured in clouds of cesium atoms. In the penultimate chapter, the spectral fluctuations (eigenvalue statis tics) are

  5. Optical-optical double resonance spectroscopy of the quasi-linear S2 state of CHF and CDF. II. Predissociation and mode-specific dynamics.

    Science.gov (United States)

    Richmond, Craig; Tao, Chong; Mukarakate, Calvin; Dawes, Richard; Brown, Eric C; Kable, Scott H; Reid, Scott A

    2011-09-14

    In this work, we report on our full results of the dynamics of the quasi-linear, predissociated S(2) state of the prototypical halocarbene, CHF, and its deuterated isotopomer CDF using optical-optical double resonance spectroscopy through the S(1) state. Homogeneous linewidths were determined for a total of 51 S(2) state vibrational levels with angular momenta in the range [script-l] = 0-3 for CHF, and 76 levels for CDF. Progressions involving all three fundamental vibrations were observed. The linewidth data reveal pronounced mode specificity for both CHF and CDF, where pure bending states have the largest linewidths. For CDF, the linewidths are uniformly narrower. Calculated (CCSD(T)/aug-cc-pVQZ//MP2/aug-cc-pVQZ) stationary points on the CHF potential energy surface show that two dissociative pathways are available at the energies accessed in this experiment: dissociation on the triplet surface, over a barrier, to form C((3)P) + HF, and dissociation to ground state CF + H products. The former is excluded as a primary channel based on the small spin-orbit coupling in this system. A 27-state dynamically weighted full-valence complete active space self-consistent field calculation was performed with maximal weight focused on the S(2) state, which was then used as a reference for Davidson-corrected multireference configuration interaction calculations MRCI(+Q) of the three lowest A(') and two lowest A(") states. These calculations reveal the presence of multiple conical intersections in the singlet manifold. Consistent with our experimental results, the most important of these involves the repulsive S(3) state, which conically intersects with S(2) at linearity. © 2011 American Institute of Physics

  6. Quantification of black carbon mixing state from traffic: implications for aerosol optical properties

    Directory of Open Access Journals (Sweden)

    M. D. Willis

    2016-04-01

    Full Text Available The climatic impacts of black carbon (BC aerosol, an important absorber of solar radiation in the atmosphere, remain poorly constrained and are intimately related to its particle-scale physical and chemical properties. Using particle-resolved modelling informed by quantitative measurements from a soot-particle aerosol mass spectrometer, we confirm that the mixing state (the distribution of co-emitted aerosol amongst fresh BC-containing particles at the time of emission significantly affects BC-aerosol optical properties even after a day of atmospheric processing. Both single particle and ensemble aerosol mass spectrometry observations indicate that BC near the point of emission co-exists with hydrocarbon-like organic aerosol (HOA in two distinct particle types: HOA-rich and BC-rich particles. The average mass fraction of black carbon in HOA-rich and BC-rich particle classes was  < 0.1 and 0.8, respectively. Notably, approximately 90 % of BC mass resides in BC-rich particles. This new measurement capability provides quantitative insight into the physical and chemical nature of BC-containing particles and is used to drive a particle-resolved aerosol box model. Significant differences in calculated single scattering albedo (an increase of 0.1 arise from accurate treatment of initial particle mixing state as compared to the assumption of uniform aerosol composition at the point of BC injection into the atmosphere.

  7. Topological semimetal: a probable new state of quantum optical lattice gases protected by D4 symmetry

    Science.gov (United States)

    Sun, Kai; Liu, W. Vincent; Das Sarma, S.

    2011-03-01

    We demonstrate that a novel topological semimetal emerges as a parity-protected critical theory for fermionic atoms loaded in the p and d orbital bands of a two-dimensional optical lattice. The new quantum state is characterized by a parabolic band-degeneracy point with Berry flux 2 π , in sharp contrast to the π flux of Dirac points as in graphene. We prove that this topological liquid is a universal property for all lattices of D4 point group symmetry and the band degeneracy is protected by odd parity. Turning on interparticle repulsive interaction, the system undergoes a phase transition to a topological insulator, whose experimental signature includes chiral gapless domain-wall modes, reminiscent of quantum Hall edge states. KS and SDS acknowledge the support of JQI-NSF-PFC, AFOSR-MURI, ARO-DARPA-OLE and ARO-MURI. W.V.L. is supported by ARO and ARO-DARPA-OLE. We thank the KITP at UCSB for its hospitality where this research is supported in part by NSF Grant No. PHY05-51164.

  8. All-optical quantum control operations for a solid-state spin using a lambda (Λ) system

    Science.gov (United States)

    Yale, C. G.; Buckley, B. B.; Christle, D. J.; Heremans, F. J.; Bassett, L. C.; Awschalom, D. D.; Burkard, G.

    2013-05-01

    The nitrogen-vacancy (NV) center in diamond is a promising solid-state spin qubit due to its spin-selective intersystem crossing (ISC) enabling initialization and readout of its spin state, while the use of microwave magnetic fields typically provides unitary control. Here, we demonstrate an alternate, fully optical technique to initialize, readout, and unitarily manipulate the NV center's spin below 10 K. To do so, we investigate optically-driven processes within an NV-center-based Λ system using time-resolved methods and quantum state tomography. We initialize our qubit into any selectable superposition, or dark state, through coherent population trapping (CPT). Complementary spin-state readout along any basis is realized by measuring the transient photoluminescence emitted during CPT. We achieve unitary rotations of the spin state about any axis by driving stimulated Raman transitions. With these three protocols, we perform all-optical measures of single-spin coherence. Since these techniques do not rely on the NV center's specialized ISC or require on-chip microwave control, they provide a method for probing other potential solid-state qubits, not only those with NV-like structures. This work is funded by AFOSR, ARO, and DARPA.

  9. Nanophotonic Optical Isolator Controlled by the Internal State of Cold Atoms

    NARCIS (Netherlands)

    Sayrin, Clement; Christian, Junge; Mitsch, Rudolf; Albrecht, Bernhard; O'Shea, Danny; Schneeweiss, Philipp; Volz, Jürgen; Rauschenbeutel, Arno

    2015-01-01

    The realization of nanophotonic optical isolators with high optical isolation even at ultralow light levels and low optical losses is an open problem. Here, we employ the link between the local polarization of strongly confined light and its direction of propagation to realize low-loss nonreciprocal

  10. Optical excitation of valley and spin currents of chiral edge states in graphene with Rashba spin-orbital coupling

    Science.gov (United States)

    Luo, Ma; Li, Zhibing

    2017-10-01

    Graphene on a substrate with a topological line defect possesses chiral edge states that exhibit linear dispersion and have opposite Fermi velocities for two valleys. The chiral edge states are localized at the line defect. With the presence of Rashba spin-orbital coupling, the dispersion of the chiral edge states splits into two. The optical excitation is modeled by the generalized semiconductor Bloch equation based on tight-binding theory. Charge, valley, and spin currents generated by normally incident plane waves through the photogalvanic effect as well as those generated by oblique light through the surface-plasmon drag effect are studied. Conditions for optical generation of purely localized valley or spin currents, which are solely originated from the chiral edge states, are discussed.

  11. Destruction of symmetry protected optical bound state in the continuum by high-index substrate and roughnesses

    DEFF Research Database (Denmark)

    Bogdanov, A. A.; Sadrieva, Z. F.; Sinev, I. S.

    2017-01-01

    We experimentally and theoretically analyze the role of substrate on the optical bound states in the continuum (BICs). We reveal that a high-index substrate could destroy even in-plane symmetry protected BIC due to leakage into the diffraction channels opening in the substrate. We show how two...

  12. Dark-bright exciton spin-flip rates of quantum dots determined by a modified local density of optical states

    DEFF Research Database (Denmark)

    Lodahl, Peter; Johansen, Jeppe; Julsgaard, Brian

    2009-01-01

    on time-resolved detection of spontaneous emission. Using the modified local density of optical states of a GaAs-air interface and its known dependence on distance (z), it was recently shown that the bright exciton radiative and non-radiative processes could be fully unravelled. Hence, the spin-flip rate...

  13. [INVITED] State of the art of Brillouin fiber-optic distributed sensing

    Science.gov (United States)

    Motil, Avi; Bergman, Arik; Tur, Moshe

    2016-04-01

    Fiber-optic distributed sensing, employing the Brillouin effect, is already a commercially available measurement technique for the accurate estimation of the static strain/temperature fields along tens of kilometers with a spatial resolution of the order of a meter. Furthermore, relentless research efforts are paving the way to even much wider usability of the technique through recently achieved enhanced performance in each of its critical dimensions: measurement range has been extended to hundreds of kilometers; spatial resolution is of the order of a centimeter or less, signal to noise ratio has been significantly improved; fast dynamic events can be captured at kHz's sampling rates; and a much better understanding of the underlying physics has been obtained, along with the formulation of figures of merit, and the preparation and early adoption of appropriate standards and guidelines. This paper describes the basics, as well as the state of the art, of the leading Brillouin interrogation methods, with emphasis on the significant progress made in the last 3 years. It also includes a short introduction to coding, which has proven instrumental in many of the recently obtained performance records.

  14. Determination of the pathological state of skin samples by optical polarimetry parameters

    Science.gov (United States)

    Fanjul-Vélez, F.; Ortega-Quijano, N.; Buelta, L.; Arce-Diego, J. L.

    2008-11-01

    Polarimetry is widely known to involve a series of powerful optical techniques that characterize the polarization behaviour of a sample. In this work, we propose a method for applying polarimetric procedures to the characterization of biological tissues, in order to differentiate between healthy and pathologic tissues on a polarimetric basis. Usually, medical morphology diseases are diagnosed based on histological alterations of the tissue. The fact that these alterations will be reflected in polarization information highlights the suitability of polarimetric procedures for diagnostic purposes. The analysis is mainly focused on the depolarization properties of the media, as long as the internal structure strongly affects the polarization state of the light that interacts with the sample. Therefore, a method is developed in order to determine the correlation between pathological ultraestructural characteristics and the subsequent variations in the polarimetric parameters of the backscattered light. This study is applied to three samples of porcine skin corresponding to a healthy region, a mole, and a cancerous region. The results show that the method proposed is indeed an adequate technique in order to achieve an early, accurate and effective cancer detection.

  15. Optical studies of current-induced magnetization switching and photonic quantum states

    Science.gov (United States)

    Lorenz, Virginia

    2017-04-01

    The ever-decreasing size of electronic components is leading to a fundamental change in the way computers operate, as at the few-nanometer scale, resistive heating and quantum mechanics prohibit efficient and stable operation. One of the most promising next-generation computing paradigms is Spintronics, which uses the spin of the electron to manipulate and store information in the form of magnetic thin films. I will present our optical studies of the fundamental mechanisms by which we can efficiently manipulate magnetization using electrical current. Although electron spin is a quantum-mechanical property, Spintronics relies on macroscopic magnetization and thus does not take advantage of quantum mechanics in the algorithms used to encode and transmit information. For the second part of my talk, I will present our work under the umbrella of new computing and communication technologies based on the quantum mechanical properties of photons. Quantum technologies often require the carriers of information, or qubits, to have specific properties. Photonic quantum states are good information carriers because they travel fast and are robust to environmental fluctuations, but characterizing and controlling photonic sources so the photons have just the right properties is still a challenge. I will describe our work towards enabling quantum-physics-based secure long-distance communication using photons.

  16. Optically Controlled Electron-Transfer Reaction Kinetics and Solvation Dynamics: Effect of Franck-Condon States.

    Science.gov (United States)

    Gupta, Kriti; Patra, Aniket; Dhole, Kajal; Samanta, Alok Kumar; Ghosh, Swapan K

    2017-09-21

    Experimental results for optically controlled electron-transfer reaction kinetics (ETRK) and nonequilibrium solvation dynamics (NESD) of Coumarin 480 in DMPC vesicle show their dependence on excitation wavelength λex. However, the celebrated Marcus theory and linear-response-theory-based approaches for ETRK and NESD, respectively, predict both of the processes to be independent of λex. The above said lacuna in these theories prompted us to develop a novel theory in 1D space, where the effect of innumerable Franck-Condon states is included through λex. The present theory not only sheds light on the origin of failure of the existing theories but also gives the correct trend for the effect of λex on ETRK and NESD. More importantly, the calculated results of NESD are in excellent agreement with the experimental results for different values of λex. The new theory will therefore advance the knowledge of scientific community on the dynamics of photoinduced nonequilibrium processes.

  17. Structural, Optical, and Magnetic Properties of Co Doped CdTe Alloy Powders Prepared by Solid-State Reaction Method

    Directory of Open Access Journals (Sweden)

    M. Rigana Begam

    2013-01-01

    Full Text Available Co doped CdTe powder samples were prepared by solid-state reaction method. In the present work effect of Co doping on structural, optical, and magnetic properties has been studied. X-ray diffraction studies confirm zinc blend structure for all the samples. The lattice parameter showed linear increase with the increase in Co content. The elemental constituents were characterized by EDAX. Optical studies showed the increase in band gap with increase in Co level. The samples were diluted magnetic semiconductors and exhibited clear hysteresis loop showing room temperature ferromagnetism as confirmed by vibrating sample magnetometer.

  18. Controlling steady-state and dynamical properties of atomic optical bistability

    CERN Document Server

    Joshi, Amitabh

    2012-01-01

    This book provides a comprehensive introduction to the theoretical and experimental studies of atomic optical bistability and multistability, and their dynamical properties in systems with two- and three-level inhomogeneously-broadened atoms inside an optical cavity. By making use of the modified linear absorption and dispersion, as well as the greatly enhanced nonlinearity in the three-level electromagnetically induced transparency system, the optical bistablity and efficient all-optical switching can be achieved at relatively low laser powers, which can be well controlled and manipulated. Un

  19. Studies of the Predissociated, Quasilinear B^{1}A^' State of CH^{35}Cl and CD^{35}Cl by Optical-Optical Double Resonance Spectroscopy

    Science.gov (United States)

    Tao, C.; Mukarakate, C.; Reid, S. A.

    2009-06-01

    Last year at this meeting, we reported studies of the predissociated, quasilinear B^{1}A^' state of fluorocarbene (CHF and CDF) using a fluorescence dip detected optical-optical double resonance technique via the A^{1}A^'' state. Recently, we have extended these observations to chlorocarbene, measuring OODR spectra of both CH^{35}Cl and CD^{35}Cl. By recording OODR spectra of both isotopomers, we are able to pinpoint the origin of the B^{1}A^' state, while lies near 22 400 cm^{-1}. In contrast to CHF, the B^{1}A^' origin in chlorocarbene lies below the energetic threshold of the lowest dissociation channel, C(^{3}P) + HCl. However, at higher energies several channels open up, including C-H and C-Cl bond fission, and the OODR spectra show significant lifetime broadening. Trends in the measured linewidths with energy will be discussed. C. Tao, S. A. Reid, T. W. Schmidt, and S. H. Kable, J. Chem. Phys. 125, 051105 (2007).

  20. Ultrafast Optical Excitation of a Persistent Surface-State Population in the Topological Insulator Bi2Se3

    Energy Technology Data Exchange (ETDEWEB)

    Sobota, Jonathan

    2012-03-14

    Using femtosecond time- and angle-resolved photoemission spectroscopy, we investigated the nonequilibrium dynamics of the topological insulator Bi{sub 2}Se{sub 3}. We studied p-type Bi{sub 2}Se{sub 3}, in which the metallic Dirac surface state and bulk conduction bands are unoccupied. Optical excitation leads to a meta-stable population at the bulk conduction band edge, which feeds a nonequilibrium population of the surface state persisting for >10 ps. This unusually long-lived population of a metallic Dirac surface state with spin texture may present a channel in which to drive transient spin-polarized currents.

  1. Optical observation of the 3s sigma F-g (3)Pi(u) Rydberg state of N-2

    OpenAIRE

    Sprengers, J.P.; Reinhold, E.M.; Ubachs, W.M.G.; Baldwin, K.G.H.; Lewis, B.R.

    2005-01-01

    - X (1)Sigma(g)(+)(0,0) transition of N-2 has been optically observed for the first time, and the 3s sigma(g)F (3)Pi(u)(upsilon=0) Rydberg level fully characterized with rotational resolution. The experimental spectroscopic parameters and predissociation level widths suggest strong interactions between the F state and the 3p pi(u)G (3)Pi(u) Rydberg and C-' (3)Pi(u) valence states, analogous to those well known in the case of the isoconfigurational (1)Pi(u) states. (c) 2005 American Institute ...

  2. Modulation of surface states by phosphorus to improve the optical properties of ultra-small Si nanocrystals

    Science.gov (United States)

    Li, Dongke; Jiang, Yicheng; Liu, Jingjing; Zhang, Pei; Xu, Jun; Li, Wei; Chen, Kunji

    2017-11-01

    Here, we report the enhanced luminescence and optical gain by appropriate P-doping in Si nanocrystals (NCs)/SiO2 multilayers with ultra-small size of ∼1.9 nm. The luminescence intensity is enhanced by 19.4% compared to that of an un-doped NC and the optical gain is as high as 171.8 cm‑1, which can be attributed to the reduction of surface defect states by the passivation of P impurities as revealed by electron spin resonance spectra. Further increasing the P-doping ratios results in the increase of conduction electrons due to the substitutional doping of phosphorus in the Si NCs, which favors the Auger recombination process. Consequently, both the luminescence intensity and the optical gain decrease rapidly. It is demonstrated that introduction of the suitable impurities can effectively modulate the surface chemical environment of Si NCs, which provides a new way to control the physical properties of Si NCs.

  3. State bistability between pure- and mixed-mode states in a 1550 nm vertical-cavity surface-emitting laser subject to parallel optical injection

    Science.gov (United States)

    Wang, Dan; Chen, Jianjun; Xia, Guangqiong; Wu, Zhengmao

    2017-07-01

    Polarization dynamics in a 1550 nm vertical-cavity surface-emitting laser (1550 nm VCSEL) under parallel optical injection (POI) is investigated experimentally, and we experimentally observe the state bistability (SB) between pure- and mixed-mode states by scanning the injection power along different routes. Such a SB occurs only when the frequency of injection light is lower than that of the excited mode of a free-running 1550 nm VCSEL. Moreover, the effect of frequency detuning on the hysteresis loop width is analyzed.

  4. Nonlinear optical polarization response and plasma generation in noble gases: Comparison of metastable-electronic-state-approach models to experiments

    Science.gov (United States)

    Bahl, Anand; Wahlstrand, Jared K.; Zahedpour, Sina; Milchberg, Howard M.; Kolesik, Miroslav

    2017-10-01

    The nonlinear polarization response and plasma generation produced by intense optical pulses, modeled by the metastable-electronic-state approach, are verified against space-and-time resolved measurements with single-shot supercontinuum spectral interferometry. This first of a kind theory-experiment comparison is done in the intensity regime typical for optical filamentation, where self-focusing and plasma generation play competing roles. Excellent agreement between the theory and experiment shows that the self-focusing nonlinearity can be approximated by a single resonant state. Moreover, we demonstrate that inclusion of the post-adiabatic corrections, previously tested only in theoretic models, provides a viable description of the ionization rate in real gases.

  5. Auxiliary-cavity-assisted ground-state cooling of an optically levitated nanosphere in the unresolved-sideband regime

    Science.gov (United States)

    Feng, Jin-Shan; Tan, Lei; Gu, Huai-Qiang; Liu, Wu-Ming

    2017-12-01

    We theoretically analyze the ground-state cooling of an optically levitated nanosphere in the unresolved-sideband regime by introducing a coupled high-quality-factor cavity. On account of the quantum interference stemming from the presence of the coupled cavity, the spectral density of the optical force exerting on the nanosphere gets changed and then the symmetry between the heating and the cooling processes is broken. Through adjusting the detuning of a strong-dissipative cavity mode, one obtains an enhanced net cooling rate for the nanosphere. It is illustrated that the ground-state cooling can be realized in the unresolved sideband regime even if the effective optomechanical coupling is weaker than the frequency of the nanosphere, which can be understood by the picture that the effective interplay of the nanosphere and the auxiliary cavity mode brings the system back to an effective resolved regime. Besides, the coupled cavity refines the dynamical stability of the system.

  6. Role of surface states and defects in the ultrafast nonlinear optical properties of CuS quantum dots

    OpenAIRE

    K. A. Ann Mary; N. V. Unnikrishnan; Reji Philip

    2014-01-01

    We report facile preparation of water dispersible CuS quantum dots (2–4 nm) and nanoparticles (5–11 nm) through a nontoxic, green, one-pot synthesis method. Optical and microstructural studies indicate the presence of surface states and defects (dislocations, stacking faults, and twins) in the quantum dots. The smaller crystallite size and quantum dot formation have significant effects on the high energy excitonic and low energy plasmonic absorption bands. Effective two-photon absorption coef...

  7. All-Optical Noninvasive Control of Unstable Steady States in a Semiconductor Laser

    Science.gov (United States)

    Schikora, S.; Hövel, P.; Wünsche, H.-J.; Schöll, E.; Henneberger, F.

    2006-11-01

    All-optical noninvasive control of a multisection semiconductor laser by means of time-delayed feedback from an external Fabry-Perot cavity is realized experimentally. A theoretical analysis, in both a generic model as well as a device-specific simulation, points out the role of the optical phase. Using phase-dependent feedback we demonstrate stabilization of the continuous-wave laser output and noninvasive suppression of intensity pulsations.

  8. Study of blood charring precursor states using backscattering at 663 nm from blood and optical window boundary.

    Science.gov (United States)

    Takahashi, Mei; Ito, Arisa; Miyoshi, Shunichiro; Kimura, Takehiro; Takatsuki, Seiji; Fukumoto, Kotaro; Fukuda, Keiichi; Arai, Tsunenori

    2012-08-01

    Contact laser irradiation is generally used in therapeutic laser procedures such as plastic surgery and laser catheter lead removal. However, it may induce blood charring on the surface of the optical window in blood circumstance so that the laser beam might be blocked. Various charring detection methods have been proposed, but they detect charring only after charring has occurred. This study investigates the transient behavior of red blood cells (RBCs) prior to the charring on the surface of an optical window during red laser irradiation in blood circumstance. The backscattering light power was continuously measured to investigate the transient behavior of a 1-mm-thick porcine blood model (hematocrit: 40%) during continuous laser irradiation (center wavelength: 663 nm; irradiance: 81 W/cm(2)). A rabbit blood model was microscopically observed after irradiation. The absorption coefficient (µ(a)) and the reduced scattering coefficient (μ'(s)) were measured using a double integrating sphere setup and the inverse adding-doubling method. The backscattering light power was continuously measured in vivo during contact laser irradiation via a laser catheter in a porcine heart cavity. The results reveal that it may be possible to detect a precursory state of charring from a time course of the backscattering light power. µ(a) increased monotonically by 15% until charring occurred. μ'(s) decreased by 10% followed a broad peak until charring occurred. These changes in the optical property correspond to changes in the morphology of RBCs. Changes in the backscattering light power measured in vivo were similar to those measured ex vivo. The transient optical changes in blood prior to charring may be caused by changes in the morphology of RBCs on the optical window surface. Backscattering light power measurements may be a practical method to detect the precursor state of charring. Copyright © 2012 Wiley Periodicals, Inc.

  9. Single-resonance optical pumping spectroscopy and application in dressed-state measurement with atomic vapor cell at room temperature.

    Science.gov (United States)

    Liang, Qiangbing; Yang, Baodong; Zhang, Tiancai; Wang, Junmin

    2010-06-21

    By monitoring the transmission of probe laser beam (also served as coupling laser beam) which is locked to a cycling hyperfine transition of cesium D(2) line, while pumping laser is scanned across cesium D(1) or D(2) lines, the single-resonance optical pumping (SROP) spectra are obtained with atomic vapor cell. The SROP spectra indicate the variation of the zero-velocity atoms population of one hyperfine fold of ground state, which is optically pumped into another hyperfine fold of ground state by pumping laser. With the virtue of Doppler-free linewidth, high signal-to-noise ratio (SNR), flat background and elimination of crossover resonance lines (CRLs), the SROP spectra with atomic vapor cell around room temperature can be employed to measure dressed-state splitting of ground state, which is normally detected with laser-cooled atomic sample only, even if the dressed-state splitting is much smaller than the Doppler-broaden linewidth at room temperature.

  10. Liquid crystal cell for space-borne laser rangefinder to space mission applications

    Science.gov (United States)

    Nowinowski-Kruszelnicki, E.; Jaroszewicz, L.; Raszewski, Z.; Soms, L.; Piecek, W.; Perkowski, P.; Kędzierski, J.; Dąbrowski, R.; Olifierczuk, M.; Garbat, K.; Miszczyk, E.

    2012-12-01

    Liquid crystal cell (LCC) for space-borne laser rangefinder to space mission applications was developed, manufactured and tested under cooperation between Military University of Technology (MUT) in Poland and Vavilov State Optical Institute (Vavilov SOI) in Russia. LCC operates in twisted nematic mode, commutating the polarization plane of a laser beam working at 1.064 μm and the energy density not smaller than 0,15 J/cm2 at the pulse duration about 8 ns. The transmission of LCC is not smaller than 95% at the aperture diameter not less than 15 mm. Switching on and switching off times in a 2.5-μm thick LCC driven by voltage of 10 V are not larger than 0.7 ms and 7 ms, respectively, in the operating temperature range from 20°C to 40°C. The LCCs developed in MUT were positively tested under space requirements in Vavilov SOI.

  11. Linear-Optics-Based Entanglement Concentration of Four-Photon χ-type States for Quantum Communication Network

    Science.gov (United States)

    Li, Tao; Deng, Fu-Guo

    2014-09-01

    We present an efficient entanglement concentration protocol (ECP) for partially entangled four-photon χ-type states in the first time with only linear optical elements and single-photon detectors. Without any ancillary particles, the parties in quantum communication network can obtain a subset of four-photon systems in the standard | χ 00> state from a set of four-photon systems in a partially entangled χ-type state with the parameter-splitting method developed by Ren et al. (Phys. Rev. A 88:012302, 2013). The present ECP has the optimal success probability which is determined by the component with the minimal probability amplitude in the initial state. Moreover, it is easy to implement this ECP in experiment.

  12. Electron-rich iron/ruthenium arylalkynyl complexes for third-order nonlinear optics: redox-switching between three states.

    Science.gov (United States)

    Gauthier, Nicolas; Argouarch, Gilles; Paul, Frédéric; Toupet, Loic; Ladjarafi, Abdelkader; Costuas, Karine; Halet, Jean-François; Samoc, Marek; Cifuentes, Marie P; Corkery, T Christopher; Humphrey, Mark G

    2011-05-09

    The new [(η(2)-dppe)(η(5)-C(5)Me(5))Fe(C≡C-1,4-C(6)H(4)C≡C)Ru(η(2) -dppe)(2) C≡C(C(6)H(5))] complex (3-H) and its hexanuclear relative [{(η(2)-dppe)(η(5)-C(5) Me(5))Fe(C≡C-1,4-C(6)H(4)-C≡C)Ru(η(2)-dppe)(2)(C≡C-1,4-C(6)H(4)C≡C)(3)(1,3,5-C(6)H(3))] (4) have been synthesized and characterized. The linear and cubic nonlinear optical properties of these compounds in their various redox states have been studied along with those of the analogous complexes [(η(2)-dppe)(η(5)-C(5)Me(5))Fe(C≡C-1,4-C(6)H(4)C≡C)Ru(η(2)-dppe)(2)R][PF(6)](n) (n=0-2; R=Cl, 2-Cl; R=C≡C(4-C(6)H(4)NO(2)),3-NO(2)). We show that molecules exhibiting large third-order nonlinearities can be obtained by assembling such dinuclear Fe/Ru units around a central 1,3,5-substituted C(6)H(3) core. These data are discussed with a particular emphasis on the large changes in their nonlinear (third-order) optical properties brought about by oxidation. Experimental and computational (DFT) evidence for the electronic structures of these compounds in their various redox states is presented using 3-H(n+) as a prototypical model. Single crystals of this complex in its mono-oxidized state (3-H[PF(6)]) provide the first structural data for such carbon-rich Fe(III) /Ru(II) heteronuclear mixed-valent (MV) systems. Although experimental evidence for the structure of the dioxidized states was more difficult to obtain, the theoretical study reveals that 3-H(2+) can be considered to have a biradical structure with two independent spins. The low-lying absorptions that appear in the near-infrared (NIR) range for all these compounds following oxidation correspond to intervalence charge-transfer (IVCT) bands for the mono-oxidized states and to ligand-to-metal charge-transfer (LMCT) transitions for the dioxidized states. These play a crucial role in the strong optical modulation achieved. The possibility of accessing additional states with distinct linear or nonlinear optical properties is also briefly

  13. Visualization of polarization state and its application in optics classroom teaching

    Science.gov (United States)

    Lei, Bing; Liu, Wei; Shi, Jianhua; Wang, Wei; Yao, Tianfu; Liu, Shugang

    2017-08-01

    Polarization of light and the related knowledge are key and difficult points in optical teaching, and they are difficult to be understood since they are very abstract concepts. To help students understand the polarization properties of light, some classroom demonstration experiments have been constructed by employing the optical source, polarizers, wave plates optical cage system and polarization axis finder (PAF). The PAF is a polarization indicating device with many linear polarizing components concentric circles, which can visualize the polarization axis's direction of linearly polarized light intuitively. With the help of these demonstration experiment systems, the conversion and difference between the linear polarized light and circularly polarized light have been observed directly by inserting or removing a quarter-wave plate. The rotation phenomenon of linearly polarized light's polarization axis when it propagates through an optical active medium has been observed and studied in experiment, and the strain distribution of some mounted and unmounted lenses have also been demonstrated and observed in experiment conveniently. Furthermore, some typical polarization targets, such as liquid crystal display (LCD), polarized dark glass and skylight, have been observed based on PAF, which is quite suitable to help students understand these targets' polarization properties and the related physical laws. Finally, these demonstration experimental systems have been employed in classroom teaching of our university in physical optics, optoelectronics and photoelectric detection courses, and they are very popular with teachers and students.

  14. Optical spectroscopy of excited exciton states in MoS2 monolayers in van der Waals heterostructures

    Science.gov (United States)

    Robert, C.; Semina, M. A.; Cadiz, F.; Manca, M.; Courtade, E.; Taniguchi, T.; Watanabe, K.; Cai, H.; Tongay, S.; Lassagne, B.; Renucci, P.; Amand, T.; Marie, X.; Glazov, M. M.; Urbaszek, B.

    2018-01-01

    The optical properties of MoS2 monolayers are dominated by excitons, but for spectrally broad optical transitions in monolayers exfoliated directly onto SiO2 substrates detailed information on excited exciton states is inaccessible. Encapsulation in hexagonal boron nitride (hBN) allows approaching the homogenous exciton linewidth, but interferences in the van der Waals heterostructures make direct comparison between transitions in optical spectra with different oscillator strength more challenging. Here we reveal in reflectivity and in photoluminescence excitation spectroscopy the presence of excited states of the A exciton in MoS2 monolayers encapsulated in hBN layers of calibrated thickness, allowing us to extrapolate an exciton binding energy of ≈220 meV. We theoretically reproduce the energy separations and oscillator strengths measured in reflectivity by combining the exciton resonances calculated for a screened two-dimensional Coulomb potential with transfer matrix calculations of the reflectivity for the van der Waals structure. Our analysis shows a very different evolution of the exciton oscillator strength with principal quantum number for the screened Coulomb potential as compared to the ideal two-dimensional hydrogen model.

  15. Nonlinear optical spectra having characteristics of Fano interferences in coherently coupled lowest exciton biexciton states in semiconductor quantum dots

    Directory of Open Access Journals (Sweden)

    Hideki Gotoh

    2014-10-01

    Full Text Available Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL method in a coherently coupled exciton-biexciton system in a single quantum dot (QD. PL and photoluminescence excitation spectroscopy (PLE are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicate that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.

  16. Concurrence Measurement for the Two-Qubit Optical and Atomic States

    Directory of Open Access Journals (Sweden)

    Lan Zhou

    2015-06-01

    Full Text Available Concurrence provides us an effective approach to quantify entanglement, which is quite important in quantum information processing applications. In the paper, we mainly review some direct concurrence measurement protocols of the two-qubit optical or atomic system. We first introduce the concept of concurrence for a two-qubit system. Second, we explain the approaches of the concurrence measurement in both a linear and a nonlinear optical system. Third, we introduce some protocols for measuring the concurrence of the atomic entanglement system.

  17. Giant Kerr nonlinearity and weak-light superluminal optical solitons in a four-state atomic system with gain doublet.

    Science.gov (United States)

    Hang, Chao; Huang, Guoxiang

    2010-02-01

    We consider an active-Raman-gain scheme for realizing giant Kerr nonlinearity and superluminal optical solitons in a four-state atomic system with a gain doublet. We show that this scheme, which is fundamentally different from those based on electromagnetically induced transparency (EIT), is capable of working at room temperature and eliminating nearly all attenuation and distortion.We demonstrate that, due to the appearance of a gain spectrum hole induced by the quantum interference effect induced by a signal field, a significant enhancement of Kerr nonlinearity of probe field can be realized effectively, which can be more than ten times larger than that arrived by the EIT-based scheme with the same energy-level configuration. Based on these important features, we obtain a giant cross-phase modulation effect and hence a stable long-distance propagation of optical solitons, which have superluminal propagating velocity and very low generating power.

  18. Role of surface states and defects in the ultrafast nonlinear optical properties of CuS quantum dots

    Directory of Open Access Journals (Sweden)

    K. A. Ann Mary

    2014-07-01

    Full Text Available We report facile preparation of water dispersible CuS quantum dots (2–4 nm and nanoparticles (5–11 nm through a nontoxic, green, one-pot synthesis method. Optical and microstructural studies indicate the presence of surface states and defects (dislocations, stacking faults, and twins in the quantum dots. The smaller crystallite size and quantum dot formation have significant effects on the high energy excitonic and low energy plasmonic absorption bands. Effective two-photon absorption coefficients measured using 100 fs laser pulses employing open-aperture Z-scan in the plasmonic region of 800 nm reveal that CuS quantum dots are better ultrafast optical limiters compared to CuS nanoparticles.

  19. Role of surface states and defects in the ultrafast nonlinear optical properties of CuS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Mary, K. A. Ann; Unnikrishnan, N. V., E-mail: nvu100@yahoo.com [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686560 (India); Philip, Reji [Light and Matter Physics Group, Raman Research Institute, C.V. Raman Avenue, Sadashivanagar, Bangalore 560080 (India)

    2014-07-01

    We report facile preparation of water dispersible CuS quantum dots (2–4 nm) and nanoparticles (5–11 nm) through a nontoxic, green, one-pot synthesis method. Optical and microstructural studies indicate the presence of surface states and defects (dislocations, stacking faults, and twins) in the quantum dots. The smaller crystallite size and quantum dot formation have significant effects on the high energy excitonic and low energy plasmonic absorption bands. Effective two-photon absorption coefficients measured using 100 fs laser pulses employing open-aperture Z-scan in the plasmonic region of 800 nm reveal that CuS quantum dots are better ultrafast optical limiters compared to CuS nanoparticles.

  20. Role of surface states and defects in the ultrafast nonlinear optical properties of CuS quantum dots

    Science.gov (United States)

    Mary, K. A. Ann; Unnikrishnan, N. V.; Philip, Reji

    2014-07-01

    We report facile preparation of water dispersible CuS quantum dots (2-4 nm) and nanoparticles (5-11 nm) through a nontoxic, green, one-pot synthesis method. Optical and microstructural studies indicate the presence of surface states and defects (dislocations, stacking faults, and twins) in the quantum dots. The smaller crystallite size and quantum dot formation have significant effects on the high energy excitonic and low energy plasmonic absorption bands. Effective two-photon absorption coefficients measured using 100 fs laser pulses employing open-aperture Z-scan in the plasmonic region of 800 nm reveal that CuS quantum dots are better ultrafast optical limiters compared to CuS nanoparticles.

  1. Solid state characterization and theoretical study of non-linear optical properties of a Fluoro-N-Acylhydrazide derivative.

    Science.gov (United States)

    Rodrigues, Rosemberg F N; Almeida, Leonardo R; Santos, Florisberto G Dos; Carvalho, Paulo S; Souza, Wanderson C de; Moreira, Kleber S; Aquino, Gilberto L B de; Valverde, Clodoaldo; Napolitano, Hamilton B; Baseia, Basílio

    2017-01-01

    In this work we determine the linear and non-linear optical properties of a Fluoro-N-Acylhydrazide derivative (FBHZ), using a combined supermolecule approach and an iterative scheme of electrostatic polarization, where the atoms of neighbouring molecules are represented by point charges. Our results for non-linear optics (NLO) are comparable to those found experimentally, suggesting that FBHZ constitutes an attractive object for future studies and for use as an interesting material for third-order NLO applications. The dynamic electrical properties of FBHZ in different solvent media are reported. Its molecular properties are closely related to supramolecular features; accordingly, we analysed all its crystal structure properties via intermolecular interactions in the solid state, using X-ray crystallography data and Hirshfeld surface (HS), including thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and hot-stage microscopy (HSM), where the results reveal crystal stability in respect to temperature variation.

  2. Electron-atom collision studies using optically state selected beams. Progress report, May 15, 1987--May 14, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Celotta, R.J.; Kelley, M.H.

    1988-11-15

    This report discusses progress made during the current contract period on the authors research program to study collisions between spin-polarized electrons and optically prepared atoms. The objective of this work is to stimulate a deeper theoretical understanding of the electron-atom interaction by providing more complete experimental measurements on colliding systems. By preparing the internal states of the collision partners before scattering, they are able to extract substantially more information about the scattering process than is available from more conventional measurements of differential cross sections. The authors are principally interested in observing the role played by spin in low energy electron-atom collisions. The additional information provided by these spin-dependent measurements can greatly enhance understanding of both exchange and the spin-orbit interaction in the scattering process. They have made substantial progress in the past three years in their measurements both of elastic and superelastic scattering of spin-polarized electrons from optically pumped sodium.

  3. Electrical And Optical Properties Of Colloidal Quantum Dots And Quantum Dot Networks: Role Of Surface States And Using Biomolecular Links In Network Assembly

    National Research Council Canada - National Science Library

    Stroscio, Michael A; Dutta, Mitra; Ramadurai, Dinakar; Shi, Peng; Li, Yang; Alexson, Dimitri; Kohanpour, Babak; Sethuraman, Akil; Saini, Vikas; Raichura, Amit; Yang, Jianyong

    2004-01-01

    .... Absorption spectra and photoluminescence (PL) spectra of colloidal cadmium sulfide (CdS) quantum dots are analyzed to investigate the role of surface states in determining the electrical and optical properties of these semiconductor quantum dots...

  4. Study of the optical properties and the carbonaceous clusters in DAM-ADC solid state nuclear track detectors

    Science.gov (United States)

    Rammah, Y. S.; Abdalla, A. M.

    2017-12-01

    The optical properties of DAM-ADC solid state nuclear track detectors (SSNTDs) were investigated. Samples of DAM-ADC detector were irradiated at room temperature with gamma doses in the range of 100-500 kGy using 1.25 MeV 60Co source of dose rate 4 kGy/h. The optical characterization of these detectors have been studied through the measurements of UV-visible absorption spectra of blank and γ- irradiated samples. The optical energy band gaps, Eg for the detectors were obtained from the direct and the indirect allowed transitions in K-space using two methods (Tauc's model and absorption spectrum fitting (ASF) method). The absorbance of DAM-ADC detector was found to increase with increasing of the gamma absorbed dose. The width of the tail of localized states in the band gap, Eu was evaluated with the Urbach's method. The number of carbon atoms per conjugated length (N), the number of carbon atoms per cluster (M), and refractive index (n) for the present samples were determined. Both of the direct and the indirect band gaps of DAM-ADC detector decrease with increasing of the gamma absorbed dose. Urbach's energy decreased significantly for the detector. An increase in N, M, and n with increasing of the gamma absorbed dose was noticed. Results shed light on the effect of gamma irradiations of DAM-ADC SSNTDs to suitable industrial applications and to modify the optical properties through gamma-induced modifications of the polymer structure.

  5. Steady state and time resolved optical characterization studies of Zn2SnO4 nanowires for solar cell applications

    Science.gov (United States)

    Yakami, Baichhabi R.; Poudyal, Uma; Nandyala, Shashank R.; Rimal, Gaurab; Cooper, Jason K.; Zhang, Xuejie; Wang, Jing; Wang, Wenyong; Pikal, Jon M.

    2016-10-01

    Nanowires are a promising option for sensitized solar cells, sensors, and display technology. Most of the work thus far has focused on binary oxides for these nanowires, but ternary oxides have advantages in additional control of optical and electronic properties. Here, we report on the diffuse reflectance, Low Temperature and Room Temperature Photoluminescence (PL), PL excitation spectrum, and Time Resolved PL (TRPL) of Zinc Tin Oxide (ZTO) nanowires grown by Chemical Vapor Deposition. The PL from the ZTO nanowires does not exhibit any band gap or near gap emission, and the diffuse reflectance measurement confirms that these ZTO nanowires have a direct forbidden transition. The broad PL spectrum reveals two Gaussian peaks centered at 1.86 eV (red) and 2.81 eV (blue), representing two distinct defect states or complexes. The PL spectra were further studied by the Time Resolved Emission Spectrum and intensity dependent PL and TRPL. The time resolved measurements show complex non-exponential decays at all wavelengths, indicative of defect to defect transitions, and the red emissive states decay much slower than the blue emissive states. The effects of annealing in air and vacuum are studied to investigate the origin of the defect states in the nanowires, showing that the blue states are related to oxygen vacancies. We propose an energy band model for the nanowires containing defect states within the band gap and the associated transitions between these states that are consistent with our measurements.

  6. Nonlinear optical switching behavior in the solid state: A theoretical investigation on anils

    KAUST Repository

    Ségerie, Audrey

    2011-09-13

    The linear (π(1)) and second-order nonlinear (π(2)) optical properties of two anil crystals, [N-(4-hydroxy)-salicylidene-amino-4-(methylbenzoate) and N-(3,5-di-tert- butylsalicylidene)-4-aminopyridine, denoted 4A and 4P, respectively], as well as the optical contrasts upon switching between their enol (E) and keto (K) forms, have been investigated by combining the molecular responses calculated using quantum chemistry methods and an electrostatic interaction scheme to account for the local field effects. It is found that intermolecular interactions impact differently the K/E optical contrasts in the two systems, which illustrates the importance of the supramolecular organization on the macroscopic responses. In 4A, the surrounding effects on the (hyper)polarizabilities are similar in the enol and keto forms, leading to optical contrasts very close to those of the isolated molecule. In contrast, an enhancement of the second-order susceptibility is observed in the keto form of 4P, leading to a large π(2)(K)/π(2)(E) contrast. Moreover, the π(2)(4A)/π(2)(4P) ratio for the most stable enol forms is obtained to be in good agreement with previous experimental investigations, which supports the reliability of the computational procedure. © 2011 American Chemical Society.

  7. Competing pairing states for ultracold fermions in optical lattices with an artificial staggered magnetic field

    NARCIS (Netherlands)

    Lim, L. -K; Lazarides, A.|info:eu-repo/dai/nl/315556668; Hemmerich, A.; de Morais Smith, C.|info:eu-repo/dai/nl/304836346

    2010-01-01

    We study fermionic superfluidity in an ultracold Bose-Fermi mixture loaded into a square optical lattice subjected to a staggered flux. While the bosons form a Bose-Einstein condensate at very low temperature and weak interaction, the interacting fermions experience an additional long-ranged

  8. Effect of midgap defect states on the optical properties of Ge20Se70Te10 nano colloids

    Science.gov (United States)

    Cheruvalath, Ajina; Sebastian, Indu; Sebastian, Mathew; Nampoori, V. P. N.; Thomas, Sheenu

    2017-10-01

    In this work, we report the linear and nonlinear optical studies on a pseudo binary chalcogenide glass of composition Ge20 Se70 Te10 in its nano colloidal form. The possibility of tuning the band gap, nonlinear refractive index and nonlinear absorption of the material by changing the glass loading in the colloid has been revealed. A red shift in the band edge along with an intermediate peak in the band tail due to defect states is observed with increasing concentration. Photoluminescence studies confirm the existence of intermediate defect states in the bandgap. Nonlinear properties analyzed with open and closed aperture z scan technique reveal that the nonlinear refraction enhances due to resonant effects as the band gap of the colloid gets near the one photon absorption edge. The nonlinear absorption is prominent in the concentrated sample due to the presence of defect states which acts as an intermediate level in two step photon absorption.

  9. Optic-flow selective cortical sensory regions associated with self-reported states of vection

    Directory of Open Access Journals (Sweden)

    Maiko eUesaki

    2015-06-01

    Full Text Available Optic flow is one of the most important visual cues to the estimation of self-motion. It has repeatedly been demonstrated that a cortical network including visual, multisensory and vestibular areas is implicated in processing optic flow; namely, visual areas middle temporal cortex (MT+, V6; multisensory areas ventral intra-parietal area (VIP, cingulate sulcus visual area (CSv, precuneus motion area (PcM; and vestibular areas parieto-insular vestibular cortex (PIVC and putative area 2v (p2v. However, few studies have investigated the roles of and interaction between the optic-flow selective sensory areas within the context of self-motion perception.When visual information (i.e. optic flow is the sole cue to computing self-motion parameters, the discrepancy amongst the sensory signals may induce an illusion of self-motion referred to as ‘vection’. This study aimed to identify optic-flow selective sensory areas that are involved in the processing of visual cues to self-motion, by introducing vection as an index and assessing activation in which of those areas reflect vection, using functional magnetic resonance imaging (fMRI. The results showed that activity in visual areas MT+ and V6, multisensory area VIP and vestibular area PIVC was significantly greater while participants were experiencing vection, as compared to when they were experiencing no vection, which may indicate that the activation in MT+, V6, VIP and PIVC reflects vection. The results also place VIP in a good position to integrate visual cues related to self-motion and vestibular information.

  10. Three-dimensional Doppler, polarization-gradient, and magneto-optical forces for atoms and molecules with dark states

    CERN Document Server

    Devlin, J A

    2016-01-01

    We theoretically investigate the damping and trapping forces in a three-dimensional magneto-optical trap (MOT), by numerically solving the optical Bloch equations. We focus on the case where there are dark states because the atom is driven on a "type-II" system where the angular momentum of the excited state, $F'$, is less than or equal to that of the ground state, $F$. For these systems we find that the force in a three-dimensional light field has very different behaviour to its one dimensional counterpart. This differs from the more commonly used "type-I" systems ($F'=F+1$) where the 1D and 3D behaviours are similar. Unlike type-I systems where, for red-detuned light, both Doppler and sub-Doppler forces damp the atomic motion towards zero velocity, in type-II systems in 3D, the Doppler force and polarization gradient force have opposite signs. As a result, the atom is driven towards a non-zero equilibrium velocity, $v_{0}$, where the two forces cancel. We find that $v_{0}^{2}$ scales linearly with the inten...

  11. Study of Transitions between Wetting States on Microcavity Arrays by Optical Transmission Microscopy

    DEFF Research Database (Denmark)

    Søgaard, Emil; Andersen, Nis Korsgaard; Smistrup, Kristian

    2014-01-01

    this threshold, the transitions between the Cassie and the Cassie-impregnating states are reversible, whereas above this threshold, irreversible transitions to the Wenzel state start to occur. The transitions between the different wetting states can be explained by taking into account both the Young...

  12. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: Internal cell signals and utility for state estimation

    Science.gov (United States)

    Ganguli, Anurag; Saha, Bhaskar; Raghavan, Ajay; Kiesel, Peter; Arakaki, Kyle; Schuh, Andreas; Schwartz, Julian; Hegyi, Alex; Sommer, Lars Wilko; Lochbaum, Alexander; Sahu, Saroj; Alamgir, Mohamed

    2017-02-01

    A key challenge hindering the mass adoption of Lithium-ion and other next-gen chemistries in advanced battery applications such as hybrid/electric vehicles (xEVs) has been management of their functional performance for more effective battery utilization and control over their life. Contemporary battery management systems (BMS) reliant on monitoring external parameters such as voltage and current to ensure safe battery operation with the required performance usually result in overdesign and inefficient use of capacity. More informative embedded sensors are desirable for internal cell state monitoring, which could provide accurate state-of-charge (SOC) and state-of-health (SOH) estimates and early failure indicators. Here we present a promising new embedded sensing option developed by our team for cell monitoring, fiber-optic (FO) sensors. High-performance large-format pouch cells with embedded FO sensors were fabricated. This second part of the paper focuses on the internal signals obtained from these FO sensors. The details of the method to isolate intercalation strain and temperature signals are discussed. Data collected under various xEV operational conditions are presented. An algorithm employing dynamic time warping and Kalman filtering was used to estimate state-of-charge with high accuracy from these internal FO signals. Their utility for high-accuracy, predictive state-of-health estimation is also explored.

  13. Kilohertz generation of high contrast polarization states for visible femtosecond pulses via phase-locked acousto-optic pulse shapers

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Hélène; Walsh, Brenna; Palato, Samuel; Kambhampati, Patanjali, E-mail: pat.kambhampati@mcgill.ca [Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8 (Canada); Thai, Alexandre; Forget, Nicolas [Fastlite, 1900 route des Crêtes, 06560 Valbonne (France); Crozatier, Vincent [Fastlite, Centre Scientifique d' Orsay, Bât.503, Plateau du Moulon, BP 45 Orsay (France)

    2015-09-14

    We present a detailed analysis of a setup capable of arbitrary amplitude, phase, and polarization shaping of broadband visible femtosecond pulses at 1 kHz via a pair of actively phase stabilized acousto-optic programmable dispersive filters arranged in a Mach-Zehnder interferometer geometry. The setup features phase stability values around λ/225 at 580 nm as well as degrees of polarization of at least 0.9 for any polarization state. Both numbers are important metrics to evaluate a setup's potential for applications based on polarization-shaped femtosecond pulses, such as fully coherent multi-dimensional electronic spectroscopy.

  14. Quantum-Dot Semiconductor Optical Amplifiers: State Space Model versus Rate Equation Model

    Directory of Open Access Journals (Sweden)

    Hussein Taleb

    2013-01-01

    Full Text Available A simple and accurate dynamic model for QD-SOAs is proposed. The proposed model is based on the state space theory, where by eliminating the distance dependence of the rate equation model of the QD-SOA; we derive a state space model for the device. A comparison is made between the rate equation model and the state space model under both steady state and transient regimes. Simulation results demonstrate that the derived state space model not only is much simpler and faster than the rate equation model, but also it is as accurate as the rate equation model.

  15. Multiscale dispersion-state characterization of nanocomposites using optical coherence tomography

    OpenAIRE

    Simon Schneider; Florian Eppler; Marco Weber; Ganiu Olowojoba; Patrick Weiss; Christof Hübner; Irma Mikonsaari; Wolfgang Freude; Christian Koos

    2016-01-01

    Nanocomposite materials represent a success story of nanotechnology. However, development of nanomaterial fabrication still suffers from the lack of adequate analysis tools. In particular, achieving and maintaining well-dispersed particle distributions is a key challenge, both in material development and industrial production. Conventional methods like optical or electron microscopy need laborious, costly sample preparation and do not permit fast extraction of nanoscale structural information...

  16. Swift confirms BL Lacertae in an historic high state in the Optical/UV

    Science.gov (United States)

    Grupe, Dirk; Wehrle, Ann; Jorstad, Svetlana

    2013-11-01

    We report on an unprecedented high flux in the Optical/UV in BL Lacertae (22h 02m 43a, +42d 16m 40s) seen by Swift on 2013 November 22, confirming findings by Larionov et al. (ATEL #5597) in the R band. We are currently monitoring BL Lac with Swift twice a week. Swift UVOT observed BL Lacertae in all 6 filters. Over the last half year BL Lac has become increasingly brighter in all 6 UVOT filters.

  17. Ionic two photon states and optical nonlinearity in. pi. -conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, S.N. (Lawrence Livermore National Lab., CA (USA)); Guo, D.; Mazumdar, S. (Arizona Univ., Tucson, AZ (USA). Dept. of Physics)

    1990-11-06

    A microscopic mechanism of optical nonlinearity in {pi}-conjugated polymers is presented. It is shown that the bulk of the nonlinearity is determined by only two well defined channels, even though an infinite number of channels are possible in principle. The above conclusion is true for both short and long range Coulomb interactions. The complete frequency dependence of the third harmonic generation in both trans-polyacetylene and polydiacetylene are explained within the same theoretical picture. 19 refs., 4 figs.

  18. Barium boron aluminum silicate glass system for solid state optical gas sensors

    Science.gov (United States)

    Da Silva, M. J.; Karczewski, J.; Jasinski, P.; Chrzan, A.; Kalinowski, P.; Szymczewska, D.; Jasinski, G.

    2016-11-01

    Recent increasing demand for new eco-friendly materials and for low cost fabrication process for use in optical sensors field, raise concern about alternative materials for this application. We have designed two glass-ceramics compositions from the quaternary ROAl2O3- SiO2-B2O3(R=Ba) alkali-earth aluminum silicate system, labeled B72 and B69, with high refractive index (>1.6), large values of Abbe number (94.0 and 53.0, respectively), and free of lead and arsenic. We present an analysis and discussion of experimental optical properties, thermal and thermo-chemical stability along with important properties such as transition temperature (Tg), onset of crystallization (Tx) as well transport properties as ionic conductivity behavior in the quaternary glass-ceramic system containing boron for use as optical sensors. Complex Impedance Spectra (Bode Plot) and Potentiodynamic Polarization curves (Tafel plots) measurements were carried out in the temperature range of 600 to 850°C. The most probable conductivity mechanism is a thermally activated process of mobile ions overcoming a potential barrier (EA), according to the Arrhenius regime. Here we report that charge transfer is caused by the flux of electrons, in the region of elevated temperatures (>700°C), and is affected by immiscibility of crystals, nucleation and growth type, that causes phase separation. We found conductivity (σ) values from 10-9 to 10-5 S/cm at temperatures between 700 and 850°C. Our results highlight a need for research on ion mobility in the glassy network above the transition range, and the effect cause by metastable immiscibility in the alkaline-earth glasses are exposed. The two glass compositions B72 and B69 can be tailored by proper use as glassy optical sensor.

  19. Realizing and adiabatically preparing bosonic integer and fractional quantum Hall states in optical lattices

    Science.gov (United States)

    He, Yin-Chen; Grusdt, Fabian; Kaufman, Adam; Greiner, Markus; Vishwanath, Ashvin

    2017-11-01

    We study the ground states of two-dimensional lattice bosons in an artificial gauge field. Using state-of-the-art density matrix renormalization group (DMRG) simulations we obtain the zero-temperature phase diagram for hard-core bosons at densities nb with flux nϕ per unit cell, which determines a filling ν =nb/nϕ . We find the bosonic Jain sequence [ν =p /(p +1 )] states, in particular, a bosonic integer quantum Hall phase at ν =2 , are fairly robust in the hard-core boson limit, In addition to identifying Hamiltonians whose ground states realize these phases, we discuss their preparation, beginning from independent chains, and ramping up interchain couplings. Using time-dependent DMRG simulations, these are shown to reliably produce states close to the ground state for experimentally relevant system sizes. Our proposal only utilizes existing experimental capabilities.

  20. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    Science.gov (United States)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [F. Dell’Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.

  1. Discrimination of optical coherent states using a photon number resolving detector

    DEFF Research Database (Denmark)

    Wittmann, C.; Andersen, Ulrik Lund; Leuchs, G.

    2010-01-01

    The discrimination of non-orthogonal quantum states with reduced or without errors is a fundamental task in quantum measurement theory. In this work, we investigate a quantum measurement strategy capable of discriminating two coherent states probabilistically with significantly smaller error...... probabilities than can be obtained using non-probabilistic state discrimination. We find that appropriate postselection of the measurement data of a photon number resolving detector can be used to discriminate two coherent states with small error probability. We compare our new receiver to an optimal...

  2. Frustrated Magnetism of Dipolar Molecules on a Square Optical Lattice: Prediction of a Quantum Paramagnetic Ground State

    Science.gov (United States)

    Zou, Haiyuan; Zhao, Erhai; Liu, W. Vincent

    2017-08-01

    Motivated by the experimental realization of quantum spin models of polar molecule KRb in optical lattices, we analyze the spin 1 /2 dipolar Heisenberg model with competing anisotropic, long-range exchange interactions. We show that, by tilting the orientation of dipoles using an external electric field, the dipolar spin system on square lattice comes close to a maximally frustrated region similar, but not identical, to that of the J1-J2 model. This provides a simple yet powerful route to potentially realize a quantum spin liquid without the need for a triangular or kagome lattice. The ground state phase diagrams obtained from Schwinger-boson and spin-wave theories consistently show a spin disordered region between the Néel, stripe, and spiral phase. The existence of a finite quantum paramagnetic region is further confirmed by an unbiased variational ansatz based on tensor network states and a tensor renormalization group.

  3. Optical, spin-resonance, and magnetoresistance studies of /tetrathiatetracene/2/iodide/3 - The nature of the ground state

    Science.gov (United States)

    Somoano, R. B.; Yen, S. P. S.; Hadek, V.; Khanna, S. K.; Novotny, M.; Datta, T.; Hermann, A. M.; Woollam, J. A.

    1978-01-01

    A recent investigation in which Isett and Perez-Albuerne (1977) found that (tetrathiatetracene)2(iodine)3 is a stable organic metal down to 3.3 K is of considerable interest. In view of the diversity of suggestions made regarding this compound, measurements, were made of its electrical, magnetic, and optical properties. The results obtained indicate a metallic state at high temperatures, but also support a nonmetallic state at temperatures below 30 K. At 20-30 K, a metal-to-insulator phase transition occurs. This is indicated by the onset of a large and positive magnetoresistance, the leveling off in the temperature dependence of the ESR linewidth, and by recent derivative analysis of the electrical conductivity in this region. The investigated compound represents an interesting one-dimensional electronic system in which it may be possible to study the combined effects of disorder and interchain coupling on charge transport processes.

  4. Frustrated Magnetism of Dipolar Molecules on a Square Optical Lattice: Prediction of a Quantum Paramagnetic Ground State.

    Science.gov (United States)

    Zou, Haiyuan; Zhao, Erhai; Liu, W Vincent

    2017-08-04

    Motivated by the experimental realization of quantum spin models of polar molecule KRb in optical lattices, we analyze the spin 1/2 dipolar Heisenberg model with competing anisotropic, long-range exchange interactions. We show that, by tilting the orientation of dipoles using an external electric field, the dipolar spin system on square lattice comes close to a maximally frustrated region similar, but not identical, to that of the J_{1}-J_{2} model. This provides a simple yet powerful route to potentially realize a quantum spin liquid without the need for a triangular or kagome lattice. The ground state phase diagrams obtained from Schwinger-boson and spin-wave theories consistently show a spin disordered region between the Néel, stripe, and spiral phase. The existence of a finite quantum paramagnetic region is further confirmed by an unbiased variational ansatz based on tensor network states and a tensor renormalization group.

  5. Quantum dot semiconductor optical amplifier: role of second excited state on ultrahigh bit-rate signal processing.

    Science.gov (United States)

    Izadyar, Seyed Mohsen; Razaghi, Mohammad; Hassanzadeh, Abdollah

    2017-04-20

    In this paper, a theoretical model for a quantum dot semiconductor optical amplifier (QDSOA) is proposed. The dynamics of carriers in ground, excited, and continuum states and wetting layer are considered in this model. The effects of the second excited state (ES2) inclusion are investigated for the first time, to the best of our knowledge, in the proposed QDSOA model. Moreover, the inhomogeneous broadening effect due to size distribution of dots, and the homogeneous broadening effect of a single dot in the gain spectrum by grouping of dots based on their optical resonant frequency, are included in the model. Furthermore, grouping of photon modes is considered in the model. It is shown that improvement of QDSOA performance is possible by considering ES2 in rate equations. Gain saturation in different injection currents is obtained for various square-shaped pulse train bit-rates. It is shown that carriers' relaxation time plays an important role in signal amplification and processing of QDSOA. The results illustrate that QDSOA can be used for high bit-rate signal processing devices (up to 450 Gbps) with negligible wave distortion and fast gain recovery.

  6. Progress on single trapped indium and barium ion optical frequency standards using all solid-state light sources

    Science.gov (United States)

    Sherman, Jeff; Trimble, William; Andalkar, Amar; Morcos, Pete; Nagourney, Warren; Fortson, Norval

    2006-05-01

    Single trapped ions cooled to the Lamb-Dicke regime are spectroscopic systems free of many external perturbations and are therefore attractive as optical frequency standards. We report continued development of single indium ion and barium ion rf Paul-Straubel traps and laser cooling systems. The forbidden ^1S0^3P0 transition in In^+ at 237 nm has a quality factor of 10^15 and is immune to ˜1 Hz quadratic Stark shifts that can limit other systems. In addition, the extraordinarily long 5D3/2 lifetime (τ˜80 s) in a single trapped barium ion yields an electric dipole forbidden 2051 nm 6S1/25D3/2 transition with a quality factor of 10^16. Further, the odd isotope ^137Ba^+ (I = 3/2) has an excited state with total angular momentum F' = 0 so an optical frequency standard based on this transition also avoids significant quadratic Stark shifts. We present our latest experimental probes of these transitions using new low linewidth diode pumped solid state laser systems (a frequency quadrupled non-planar ring oscillator Nd:YAG at 946 nm and a diode pumped Tm,Ho:YLF at 2 μm), new stable reference cavities, and propose a laboratory constraint on fundamental constant drift.

  7. Solid-state optical properties of the methyl-exopyridine-anthracene rotaxane

    NARCIS (Netherlands)

    Gadret, Gregory; Zamboni, Roberto; Schouwink, Peter; Mahrt, Rainer F.; Thies, Jens; Loontjens, Ton; Leigh, David A.

    2001-01-01

    Photophysical properties in the solid state of both, an anthracene grafted rotaxane and the corresponding thread are studied. The thread in liquid and solid states as well as the rotaxane in the liquid phase exhibit only the usual anthracene-like photoluminescence (PL) behaviour, while the rotaxane

  8. Nonlinear Sensing With Collective States of Ultracold Atoms in Optical Lattices

    Science.gov (United States)

    2015-04-02

    Letters (submitted) (09 2012) TOTAL: 6 Received Book TOTAL: Patents Submitted Patents Awarded Awards Graduate Students Names of Post Doctorates Names of...states. The atomic state is also indicated by small oriented arrows. The gray and red boxes correspond to unitary operations. Detectors (brown) measure

  9. A Quantum Electronics Approach to Optical Negative Index Metamaterials (NIMs): Homogeneous NIMs in the Solid State

    Science.gov (United States)

    2012-03-12

    Optics Approach," 2010 IEEE International Symposium on Antennas and Propagation and URSI Radio Science Meeting, Toronto, Ontario Canada, July 11-17...frequency of the spin precession, 2 /s Bs Hω µ= h ( Bµ is the Bohr magneton), compared to the frequency of the e.m. wave,ω . Note, that in non...Schrodinger equation provides the hydrogen-like wave functions, the Bohr radius, |1> |2> |0> Probe Beam Support Beam |3> Driving Beam Ω01 Ω02 Ω23 δ02 ∆ δ23

  10. Correlation methods in optical metrology with state-of-the-art x-ray mirrors

    Science.gov (United States)

    Yashchuk, Valeriy V.; Centers, Gary; Gevorkyan, Gevork S.; Lacey, Ian; Smith, Brian V.

    2018-01-01

    The development of fully coherent free electron lasers and diffraction limited storage ring x-ray sources has brought to focus the need for higher performing x-ray optics with unprecedented tolerances for surface slope and height errors and roughness. For example, the proposed beamlines for the future upgraded Advance Light Source, ALS-U, require optical elements characterized by a residual slope error of art x-ray mirror performed at the XROL, we demonstrate the efficiency of combining the developed experimental correlation methods to the advanced optimal scanning strategy (AOSS) technique. This allows a significant improvement in the accuracy and capacity of the measurements via suppression of the instrumental low frequency noise, temporal drift, and systematic error in a single measurement run. Practically speaking, implementation of the AOSS technique leads to an increase of the measurement accuracy, as well as the capacity of ex situ metrology by a factor of about four. The developed method is general and applicable to a broad spectrum of high accuracy measurements.

  11. Measurement of solid-state optical refrigeration by two-band differential luminescence thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Hehlen, Markus P [Los Alamos National Laboratory; Epstein, Richard I [Los Alamos National Laboratory; Patterson, Wendy M [UNM; Sheik - Bahae, Mansoor [UNM; Seletskiy, D V [UNM

    2009-01-01

    We present a non-contact spectroscopic teclmique for the measurement of laser-induced temperature changes in solids. Two-band differential luminescence thermometry (TBDLT) achieves a sensitivity of {approx}7 mK and enables precise measurement of the net quantum efficiency of optical refrigerator materials. TBDLT detects internal temperature changes by decoupling surface and bulk heating effects via time-resolved luminescence spectroscopy. Several Yb{sup 3+}-doped fluorozirconate (ZBLANI) glasses fabricated from precursors of varying purity and by different processes are analyzed in detail. A net quantum efficiency of 97.39% at 238 K (at a pump wavelength of 1020.5 nm) is found for a ZBLANI:1%Yb{sup 3+} laser-cooling sample produced from metal fluoride precursors that were purified by chelate-assisted solvent extraction and dried in hydrofluoric gas. In comparison, a ZBLANI:1%Yb{sup 3+} sample produced from commercial-grade metal fluoride precursors showed pronounced laser-induced heating that is indicative of a substantially higher impurity concentration. TBDLT enables rapid and sensitive benchmarking of laser-cooling materials and provides critical feedback to the development and optimization of high-performance optical cryocooler materials.

  12. Dissipative preparation of entanglement in quantum optical and solid state systems

    DEFF Research Database (Denmark)

    Reiter, Florentin

    the dynamics of a weakly driven system, we derive an effective master equation which reduces the evolution to the ground states. We obtain simple expressions for the effective operators which can be directly applied to reach effective equations of motion for the ground states, as is demonstrated considering...... superconducting qubits in a circuit QED setup. Combining resonator photon loss, a dissipative process already present in the setup, with an effective two-photon microwave drive, we engineer an effective decay mechanism which prepares a maximally entangled state of two qubits. We find that high fidelities...

  13. Quantum State Reduction by Matter-Phase-Related Measurements in Optical Lattices.

    Science.gov (United States)

    Kozlowski, Wojciech; Caballero-Benitez, Santiago F; Mekhov, Igor B

    2017-02-22

    A many-body atomic system coupled to quantized light is subject to weak measurement. Instead of coupling light to the on-site density, we consider the quantum backaction due to the measurement of matter-phase-related variables such as global phase coherence. We show how this unconventional approach opens up new opportunities to affect system evolution. We demonstrate how this can lead to a new class of final states different from those possible with dissipative state preparation or conventional projective measurements. These states are characterised by a combination of Hamiltonian and measurement properties thus extending the measurement postulate for the case of strong competition with the system's own evolution.

  14. Ultrasensitive optical absorption in graphene based on bound states in the continuum

    National Research Council Canada - National Science Library

    Zhang, Mingda; Zhang, Xiangdong

    2015-01-01

    We have designed a sphere-graphene-slab structure so that the electromagnetic wave can be well confined in the graphene due to the formation of a bound state in a continuum (BIC) of radiation modes...

  15. Tuning the Optically Bright and Dark States of Doped Graphene Quantum Dots

    Science.gov (United States)

    Mukhopadhyay, Madhuri; Pandey, Bradraj; Pati, Swapan K.

    2016-10-01

    Employing a combination of the many-body configuration-interaction method described by an extended Hubbard model and first-principles calculations, we predict the emergence of high oscillator strength at the near-IR region which originates from the Davydov type of splitting in doped graphene quantum dots (GQDs). Incorporation of the strain in GQDs promotes closely spaced bright states that are pertinent to coherent excitation. Controlling the destructive interference of the functionalized-nanographene quantum states, the dark states can be tuned towards the red end, ensuring that the system is a good candidate for a photocell. On the other hand, the coherent states can be tailored to concentrate the light at a very high intensity, resulting in an opportunity for a photonic device.

  16. Density of states, optical and thermoelectric properties of perovskite vanadium fluorides Na{sub 3}VF{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H. [New Technologies—Research Center, University of West Bohemia, Univerzitni 8, 30614 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Azam, Sikander, E-mail: sikander.physicst@gmail.com [New Technologies—Research Center, University of West Bohemia, Univerzitni 8, 30614 Pilsen (Czech Republic)

    2014-05-01

    The electronic structure, charge density and Fermi surface of Na{sub 3}VF{sub 6} compound have been examined with the support of density functional theory (DFT). Using the full potential linear augmented plane wave method, we employed the local density approximation (LDA), generalized gradient approximation (GGA) and Engel–Vosko GGA (EVGGA) to treat the exchange correlation potential to solve Kohn–Sham equations. The calculation show that Na{sub 3}VF{sub 6} compound has metallic nature and the Fermi energy (E{sub F}) is assessed by overlapping of V-d state. The calculated density of states at the E{sub F} are about 18.655, 51.932 and 13.235 states/eV, and the bare linear low-temperature electronic specific heat coefficient (γ) is found to be 3.236 mJ/mol-K{sup 2}, 9.008 mJ/mol-K{sup 2} and 2.295 mJ/mol-K{sup 2} for LDA, GGA and EVGGA, respectively. The Fermi surface is composed of two sheets. The chemical bonding of Na{sub 3}VF{sub 6} compound is analyzed through the electronic charge density in the (1 1 0) crystallographic plane. The optical constants and thermal properties were also calculated and discussed. - Highlights: • DFT-FPLAPW method used for calculating the properties of investigated compounds. • For predicting the chemical bonding the charge density behavior is studied in 2D. • The optical properties were also calculated and analyzed. • The Fermi surface is composed of two bands crossing along the EF level. • The thermoelectric properties have also calculated.

  17. Effect of bulky substituents on thiopyrylium polymethine aggregation in the solid state: A theoretical evaluation of the implications for all-optical switching applications

    KAUST Repository

    Gieseking, Rebecca L.

    2014-11-25

    Polymethine dyes in dilute solutions display many of the optical properties required for all-optical switching applications. However, in thin films, aggregation and polymethine-counterion interactions can substantially modify their properties and limit their utility. Here, we examine the impact of a series of bulky substituents on the solid-state molecular packing of thiopyrylium polymethines by using a theoretical approach combining molecular-dynamics simulations and quantum-chemical calculations. Importantly, it is found that the positions of the substituents near the center and/or ends of the dye determine the extent to which aggregation is reduced; in particular, substituents near the polymethine center primarily modify the type of aggregation that is observed, while substituents near the polymethine ends reduce aggregation and aid in maintaining solution-like properties in the solid state. Our theoretical study elucidates relationships between molecular structure and bulk optical properties and provides design guidelines for all-optical switching materials.

  18. Advances in nonlinear optics

    CERN Document Server

    Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong

    2015-01-01

    This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.

  19. IUE and optical data during the low state of H0538 + 608 (BY Camelopardalis)

    Science.gov (United States)

    Szkody, Paula; Downes, Ronald A.; Mateo, Mario

    1990-01-01

    IUE short- and long-wavelength spectra, CCD differential BR photometry, and a portion of a J light curve were obtained during January-March 1989 when H0538 + 608 (BY Cam) was in a low state about 3 magnitudes below its normal high-state V magnitude. The IUE short-wavelength spectrum showed that all the strong emission lines apparent at the high state had disappeared while the continuum flux had decreased by about a factor of 3. The B and R data show large (0.8 and 1.5 mag) spikelike increases in light near phase 0.75, while the B light curve shows a slow modulation with peak intensity near phase 0.3. The implications are that both poles are still producing some emission, although the accretion onto the main pole is much reduced from the high-state value. In comparison to the low state of AM Her, the UV and IR fluxes would be consistent with viewing a hot white dwarf and a late-main-sequence secondary at a distance of several hundred pc.

  20. Efficiency of an enhanced linear optical Bell-state measurement scheme with realistic imperfections

    Science.gov (United States)

    Wein, Stephen; Heshami, Khabat; Fuchs, Christopher A.; Krovi, Hari; Dutton, Zachary; Tittel, Wolfgang; Simon, Christoph

    2016-09-01

    We compare the standard 50%-efficient single beam splitter method for Bell-state measurement to a proposed 75%-efficient auxiliary-photon-enhanced scheme [W. P. Grice, Phys. Rev. A 84, 042331 (2011), 10.1103/PhysRevA.84.042331] in light of realistic conditions. The two schemes are compared with consideration for high input state photon loss, auxiliary state photon loss, detector inefficiency and coupling loss, detector dark counts, and non-number-resolving detectors. We also analyze the two schemes when multiplexed arrays of non-number-resolving detectors are used. Furthermore, we explore the possibility of utilizing spontaneous parametric down-conversion as the auxiliary photon pair source required by the enhanced scheme. In these different cases, we determine the bounds on the detector parameters at which the enhanced scheme becomes superior to the standard scheme and describe the impact of the different imperfections on measurement success rate and discrimination fidelity. This is done using a combination of numeric and analytic techniques. For many of the cases discussed, the size of the Hilbert space and the number of measurement outcomes can be very large, which makes direct numerical solutions computationally costly. To alleviate this problem, all of our numerical computations are performed using pure states. This requires tracking the loss modes until measurement and treating dark counts as variations on measurement outcomes rather than modifications to the state itself. In addition, we provide approximate analytic expressions that illustrate the effect of different imperfections on the Bell-state analyzer quality.

  1. Fault-tolerant linear optical quantum computing with small-amplitude coherent States.

    Science.gov (United States)

    Lund, A P; Ralph, T C; Haselgrove, H L

    2008-01-25

    Quantum computing using two coherent states as a qubit basis is a proposed alternative architecture with lower overheads but has been questioned as a practical way of performing quantum computing due to the fragility of diagonal states with large coherent amplitudes. We show that using error correction only small amplitudes (alpha>1.2) are required for fault-tolerant quantum computing. We study fault tolerance under the effects of small amplitudes and loss using a Monte Carlo simulation. The first encoding level resources are orders of magnitude lower than the best single photon scheme.

  2. Valence state control and third-order nonlinear optical properties of copper embedded in sodium borosilicate glass.

    Science.gov (United States)

    Xiang, Weidong; Gao, Haihong; Ma, Li; Ma, Xin; Huang, Yunyun; Pei, Lang; Liang, Xiaojuan

    2015-05-20

    The integrated and transparent sodium borosilicate glasses that contain copper exhibiting different colors, that is, red, green, and blue were synthesized by combining the sol-gel process and heat treatment in H2 gas. To reveal substantially the cause of different colors in the glass, X-ray diffraction (XRD), transmission electron microscopy (TEM) and high resolution TEM (HRTEM) were systematically applied to investigate and determine the microstructure of the doped matter. The results showed three different crystals had formed in the red, green and blue glass, and the sizes of these crystals were range from 9 to 34, 1 to 6, and 1 to 5 nm, respectively. The valence state of copper was further analyzed by X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS). The third-order nonlinear optical properties of the glasses were investigated by using Z-scan technique at the wavelength of 800 nm. Interestingly, the third-order nonlinear absorption of the red, green, and blue glass can be successfully controlled from reverse saturable absorption, no absorption to saturable absorption and the optical nonlinear susceptibility χ((3)) of the red, green and blue glass were estimated to be 6.4 × 10(-14), 1.6 × 10(-14), and 2.6 × 10(-14) esu in the single-pulse energy of 0.36 μJ, respectively.

  3. Latching micro optical switch

    Science.gov (United States)

    Garcia, Ernest J; Polosky, Marc A

    2013-05-21

    An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.

  4. a model study of surface state on optical bandgap of silicon nanowires

    African Journals Online (AJOL)

    Dr A.B.Ahmed

    ABSTRACT. A theoretical approach is carried out to study the role of surface state in silicon nanowires. The influences of size and surface passivation on the bandgap energy and photoluminescence spectra of silicon nanowires with diameter between 4 to 12nm are examined. It is observed that visible PL in silicon ...

  5. Controlling the volatility of the written optical state in electrochromic DNA liquid crystals

    NARCIS (Netherlands)

    Liu, Kai; Varghese, Justin; Gerasimov, Jennifer Y.; Polyakov, Alexey O.; Shuai, Min; Su, Juanjuan; Chen, Dong; Zajaczkowski, Wojciech; Marcozzi, Alessio; Pisula, Wojciech; Noheda, Beatriz; Palstra, Thomas T. M.; Clark, Noel A.; Herrmann, Andreas

    Liquid crystals are widely used in displays for portable electronic information display. To broaden their scope for other applications like smart windows and tags, new material properties such as polarizer-free operation and tunable memory of a written state become important. Here, we describe an

  6. Blood flowing state analysis in outflow tract of chick embryonic heart based on spectral domain optical coherence tomography

    Science.gov (United States)

    Zhao, Yuqian; Suo, Yanyan; Liang, Chengbo; Ma, Zhenhe

    2016-03-01

    The cardiac development is a complicated process affected by genetic and environmental factors. Wall shear stress (WSS) and periodic stress (WPS) are the components which have been proved to influence the morphogenesis during early stages of cardiac development. The vessel wall will be deformed by the blood pressure and produce natural elastic force acting on the blood. Because blood flowing in different flow state and show different characteristics of fluid, which influence the calculation of WSS and WPS directly, it is necessary to study the blood flow state. In this paper, we introduce a method to quantify the blood flowing state of early stage chick embryonic heart based on high speed spectral domain optical coherence tomography (SDOCT).4D (x,y,z,t) scan was performed on the outflow tract (OFT) of HH18 (~3 days of incubation) chick embryonic heart. By processing the structural image, the geometric parameters were obtained. Blood flow velocity distribution in the OFT were calculated by Doppler OCT method. Hemodynamic parameters were obtained at different times during the cardiac cycle used biofluid mechanics theory, such as Reynolds number and Womersley number.

  7. Single-Molecule DNA Methylation Quantification Using Electro-optical Sensing in Solid-State Nanopores.

    Science.gov (United States)

    Gilboa, Tal; Torfstein, Chen; Juhasz, Matyas; Grunwald, Assaf; Ebenstein, Yuval; Weinhold, Elmar; Meller, Amit

    2016-09-27

    Detection of epigenetic markers, including 5-methylcytosine, is crucial due to their role in gene expression regulation and due to the mounting evidence of aberrant DNA methylation patterns in cancer biogenesis. Single-molecule methods to date have primarily been focused on hypermethylation detection; however, many oncogenes are hypomethylated during cancer development, presenting an important unmet biosensing challenge. To this end, we have developed a labeling and single-molecule quantification method for multiple unmethylated cytosine-guanine dinucleotides (CpGs). Our method involves a single-step covalent coupling of DNA with synthetic cofactor analogues using DNA methyltransferases (MTases) followed by molecule-by-molecule electro-optical nanopore detection and quantification with single or multiple colors. This sensing method yields a calibrated scale to directly quantify the number of unmethylated CpGs in the target sequences of each DNA molecule. Importantly, our method can be used to analyze ∼10 kbp long double-stranded DNA while circumventing PCR amplification or bisulfite conversion. Expanding this technique to use two colors, as demonstrated here, would enable sensing of multiple DNA MTases through orthogonal labeling/sensing of unmethylated CpGs (or other epigenetic modifications) associated with specific recognition sites. Our proof-of-principle study may permit sequence-specific, direct targeting of clinically relevant hypomethylated sites in the genome.

  8. The Use of Optical Coherence Tomography in Dental Diagnostics: A State-of-the-Art Review.

    Science.gov (United States)

    Machoy, Monika; Seeliger, Julia; Szyszka-Sommerfeld, Liliana; Koprowski, Robert; Gedrange, Tomasz; Woźniak, Krzysztof

    2017-01-01

    Optical coherence tomography provides sections of tissues in a noncontact and noninvasive manner. The device measures the time delay and intensity of the light scattered or reflected from biological tissues, which results in tomographic imaging of their internal structure. This is achieved by scanning tissues at a resolution ranging from 1 to 15 μm. OCT enables real-time in situ imaging of tissues without the need for biopsy, histological procedures, or the use of X-rays, so it can be used in many fields of medicine. Its properties are not only particularly used in ophthalmology, in the diagnosis of all layers of the retina, but also increasingly in cardiology, gastroenterology, pulmonology, oncology, and dermatology. The basic properties of OCT, that is, noninvasiveness and low wattage of the used light, have also been appreciated in analytical technology by conservators, who use it to identify the quality and age of paintings, ceramics, or glass. Recently, the OCT technique of visualization is being tested in different fields of dentistry, which is depicted in the article.

  9. The Use of Optical Coherence Tomography in Dental Diagnostics: A State-of-the-Art Review

    Directory of Open Access Journals (Sweden)

    Monika Machoy

    2017-01-01

    Full Text Available Optical coherence tomography provides sections of tissues in a noncontact and noninvasive manner. The device measures the time delay and intensity of the light scattered or reflected from biological tissues, which results in tomographic imaging of their internal structure. This is achieved by scanning tissues at a resolution ranging from 1 to 15 μm. OCT enables real-time in situ imaging of tissues without the need for biopsy, histological procedures, or the use of X-rays, so it can be used in many fields of medicine. Its properties are not only particularly used in ophthalmology, in the diagnosis of all layers of the retina, but also increasingly in cardiology, gastroenterology, pulmonology, oncology, and dermatology. The basic properties of OCT, that is, noninvasiveness and low wattage of the used light, have also been appreciated in analytical technology by conservators, who use it to identify the quality and age of paintings, ceramics, or glass. Recently, the OCT technique of visualization is being tested in different fields of dentistry, which is depicted in the article.

  10. The Use of Optical Coherence Tomography in Dental Diagnostics: A State-of-the-Art Review

    Science.gov (United States)

    Woźniak, Krzysztof

    2017-01-01

    Optical coherence tomography provides sections of tissues in a noncontact and noninvasive manner. The device measures the time delay and intensity of the light scattered or reflected from biological tissues, which results in tomographic imaging of their internal structure. This is achieved by scanning tissues at a resolution ranging from 1 to 15 μm. OCT enables real-time in situ imaging of tissues without the need for biopsy, histological procedures, or the use of X-rays, so it can be used in many fields of medicine. Its properties are not only particularly used in ophthalmology, in the diagnosis of all layers of the retina, but also increasingly in cardiology, gastroenterology, pulmonology, oncology, and dermatology. The basic properties of OCT, that is, noninvasiveness and low wattage of the used light, have also been appreciated in analytical technology by conservators, who use it to identify the quality and age of paintings, ceramics, or glass. Recently, the OCT technique of visualization is being tested in different fields of dentistry, which is depicted in the article. PMID:29065642

  11. Solid state synthesis, crystal growth and optical properties of urea and p-chloronitrobenzene solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Rai, R.N., E-mail: rn_rai@yahoo.co.in [Department of Chemistry, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005 (India); Kant, Shiva; Reddi, R.S.B. [Department of Chemistry, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005 (India); Ganesamoorthy, S. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India); Gupta, P.K. [Laser Materials Development & Devices Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2016-01-15

    Urea is an attractive material for frequency conversion of high power lasers to UV (for wavelength down to 190 nm), but its usage is hindered due to its hygroscopic nature, though there is no alternative organic NLO crystal which could be transparent up to 190 nm. The hygroscopic character of urea has been modified by making the solid solution (UCNB) of urea (U) and p-chloronitrobenzene (CNB). The formation of the solid solution of CNB in U is explained on the basis of phase diagram, powder XRD, FTIR, elemental analysis and single crystal XRD studies. The solubility of U, CNB and UCNB in ethanol solution is evaluated at different temperatures. Transparent single crystals of UCNB are grown from its saturated solution in ethanol. Optical properties e.g., second harmonic generation (SHG), refractive index and the band gap for UCNB crystal were measured and their values were compared with the parent compounds. Besides modification in hygroscopic nature, UCNB has also shown the higher SHG signal and mechanical hardness in comparison to urea crystal. - Highlights: • The hygroscopic character of urea was modified by making the solid solution • Solid solution formation is support by elemental, powder- and single crystal XRD • Crystal of solid solution has higher SHG signal and mechanical stability. • Refractive index and band gap of solid solution crystal have determined.

  12. Vector and matrix states for Mueller matrices of nondepolarizing optical media.

    Science.gov (United States)

    Kuntman, Ertan; Ali Kuntman, M; Arteaga, Oriol

    2017-01-01

    Nondepolarizing Mueller matrices contain up to seven independent parameters. However, these seven parameters typically do not appear explicitly among the measured 16 parameters of a Mueller matrix, so that they are not directly accessible for physical interpretation. This work shows that all the information contained in a nondepolarizing Mueller matrix can be conveniently expressed in terms of a four component covariance vector state or a generating 4×4 matrix, which can be understood as a matrix state. The generating matrix, besides being directly related to the nondepolarizing Mueller matrix, mimics all properties of the Jones matrix and provides a powerful mathematical tool for formulating all properties of nondepolarizing systems, including the Mueller symmetries and the anisotropy coefficients.

  13. Fabrication and investigation of photonic crystal microcavities for solid state quantum optics

    Science.gov (United States)

    Kress, Andreas; Hofbauer, Felix; Reinelt, Norbert; Kaniber, M.; Bichler, Max; Schuh, Dieter; Boehm, Gerhard; Finley, Jonathan J.

    2005-04-01

    We review our recent progress in the fabrication and understanding of ultra-low mode volume, high Q-factor microcavities for quantum dot based cavity QED experiments. The cavities are realized by the controlled incorporation of defects into 2D photonic crystals that consist of a triangular lattice of air holes within an active Air-GaAs-Air slab waveguide containing InGaAs self-assembled quantum dots. Two specific cavity designs are studied: the L3-cavity consisting of three missing holes along a line and the Y1-cavity consisting of a single missing hole with strongly reduced symmetry. Very good quantitative agreement is obtained between the results of spatially resolved optical spectroscopy and 3D calculations of the photonic bandstructure and cavity mode structure. For both cavity designs, cavity Q-factors up to ~8000 are measured for specific designs with ultra-low mode volumes Vmode< (λ/n)3. The relative contribution of cavity losses due to out of plane coupling to the free space continuum, in-plane losses through the photonic crystal and via scattering due to disorder and fabrication imperfections are probed for both cavity designs. We demonstrate that in-plane loss can be almost completely inhibited by tuning the localized cavity modes deeper into the photonic bandgap and the potential to fine tune the out-of plane losses via subtle modifications of the cavity design parameters. This procedure is shown to result in up to ~3x improvements of the cavity Q-factor. The Y1-design is shown to be particularly suitable for QD based cavity QED experiments, due to its very low mode volume, high Q-factors achievable (~7000) and flexibility for enhancement through careful modification of the cavity design.

  14. Wide-area mapping of resting state hemodynamic correlations at microvascular resolution with multi-contrast optical imaging (Conference Presentation)

    Science.gov (United States)

    Senarathna, Janaka; Hadjiabadi, Darian; Gil, Stacy; Thakor, Nitish V.; Pathak, Arvind P.

    2017-02-01

    Different brain regions exhibit complex information processing even at rest. Therefore, assessing temporal correlations between regions permits task-free visualization of their `resting state connectivity'. Although functional MRI (fMRI) is widely used for mapping resting state connectivity in the human brain, it is not well suited for `microvascular scale' imaging in rodents because of its limited spatial resolution. Moreover, co-registered cerebral blood flow (CBF) and total hemoglobin (HbT) data are often unavailable in conventional fMRI experiments. Therefore, we built a customized system that combines laser speckle contrast imaging (LSCI), intrinsic optical signal (IOS) imaging and fluorescence imaging (FI) to generate multi-contrast functional connectivity maps at a spatial resolution of 10 μm. This system comprised of three illumination sources: a 632 nm HeNe laser (for LSCI), a 570 nm ± 5 nm filtered white light source (for IOS), and a 473 nm blue laser (for FI), as well as a sensitive CCD camera operating at 10 frames per second for image acquisition. The acquired data enabled visualization of changes in resting state neurophysiology at microvascular spatial scales. Moreover, concurrent mapping of CBF and HbT-based temporal correlations enabled in vivo mapping of how resting brain regions were linked in terms of their hemodynamics. Additionally, we complemented this approach by exploiting the transit times of a fluorescent tracer (Dextran-FITC) to distinguish arterial from venous perfusion. Overall, we demonstrated the feasibility of wide area mapping of resting state connectivity at microvascular resolution and created a new toolbox for interrogating neurovascular function.

  15. Electronic, structural and optical properties of hydrogenated silicon nanocrystals: the role of the excited states

    Energy Technology Data Exchange (ETDEWEB)

    Cantele, G.; Ninno, D.; Iadonisi, G. [Coherentia-INFM and Universita di Napoli ' ' Federico II' ' - Dipartimento di Scienze Fisiche, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli (Italy); Degoli, Elena; Bisi, O.; Ossicini, Stefano [INFM-S' ' 3 and Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia, via Fogliani, 42100 Reggio Emilia (Italy); Luppi, Eleonora; Magri, Rita [INFM-S' ' 3 and Dipartimento di Fisica, Universita di Modena e Reggio Emilia, via Campi 213/A, 41100 Modena (Italy)

    2005-06-01

    In this paper we report on a first-principle calculation of the electronic and structural properties of hydrogenated silicon nanocrystals both in the ground- and in an excited-state configuration. The presence of an electron-hole pair created under excitation is taken into account and its effects on both the electronic spectrum and the cluster geometry are pointed out. The interpretation of the results is done within a four-level model, which also allows the explanation of the experimentally observed Stokes shift. Size-related aspects are also analysed and discussed. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Optical communication with two-photon coherent states. III - Quantum measurements realizable with photoemissive detectors

    Science.gov (United States)

    Yuen, H. P.; Shapiro, J. H.

    1980-01-01

    Homodyne detection is shown to achieve the same signal-to-noise ratio as the quantum field quadrature measurement, thus providing a receiver which realizes linear modulation TCS performance gain. The full equivalence of homodyne detection and single-quadrature field measurement is established. A heterodyne configuration which uses a TCS image-band oscillator in addition to the usual coherent state local oscillator is studied. Results are obtained by means of a representation theorem which shows that photoemissive detection realizes the photon flux density measurement.

  17. Impact of Bulk Aggregation on the Electronic Structure of Streptocyanines: Implications for the Solid-State Nonlinear Optical Properties and All-Optical Switching Applications

    KAUST Repository

    Gieseking, Rebecca L.

    2014-10-16

    Polymethine dyes in dilute solutions show many of the electronic and optical properties required for all-optical switching applications. However, in the form of thin films, their aggregation and interactions with counterions do generally strongly limit their utility. Here, we present a theoretical approach combining molecular-dynamics simulations and quantum-chemical calculations to describe the bulk molecular packing of streptocyanines (taken as representative of simple polymethines) with counterions of different hardness (Cl and BPh4 ) and understand the impact on the optical properties. The accuracy of the force field we use is verified by reproducing experimental crystal parameters as well as the configurations of polymethine/counterion complexes obtained from electronic-structure calculations. The aggregation characteristics can be understood in terms of both polymethinecounterion and polymethinepolymethine interactions. The counterions are found to localize near one end of the streptocyanine backbones, and the streptocyanines form a broad range of aggregates with significant electronic couplings between neighboring molecules. As a consequence, the linear and nonlinear optical properties are substantially modified in the bulk. By providing an understanding of the relationship between the molecular interactions and the bulk optical properties, our results point to a clear strategy for designing polymethine and counterion molecular structures and optimizing the materials properties for all-optical switching applications.

  18. Ground state properties and non-equilibrium dynamics of hard-core bosons confined on optical lattices

    Science.gov (United States)

    Rigol, Marcos; Muramatsu, Alejandro

    2004-03-01

    We study by means of an exact approach, a gas of hard core bosons (HCB) confined on optical lattices. The ground state properties of such systems are analyzed. Local incompressible phases appear in the system, like in the case of interacting soft-core bosons [1] and fermions [2,3]. The changes in momentum distribution function and in the natural orbitals (effective single particle states) introduced by the formation of such phases are analyzed. We also study non-equilibrium properties for those systems, which within our numerical approach can be obtained exactly for systems with 200 particles on lattices with 3000 sites. In particular we analyze the free expansion of the gas when it is released from the trap turning off the confining potential. We show that the expansion is non-trivial (as opposed to the fermionic case) and new features to be observed in the experiments are analyzed. [1] G. G. Batrouni, V. Rousseau, R. T. Scalettar, M. Rigol, A. Muramatsu, P. J. H. Denteneer, and M. Troyer, Phys. Rev. Lett. 89, 117203 (2002). [2] M. Rigol, A. Muramatsu, G. G. Batrouni, and R. T. Scalettar, Phys. Rev. Lett. 91, 130403 (2003). [3] M. Rigol and A. Muramatsu, cond-mat/0309670 (2003).

  19. Ab-initio investigation of structural, electronic and optical properties BSb compound in bulk and surface (110 states

    Directory of Open Access Journals (Sweden)

    H A Badehian

    2015-07-01

    Full Text Available In recent work the structural, electronic and optical properties of BSb compound in bulk and surface (110 states have been studied. Calculations have been performed using Full-Potential Augmented Plane Wave (FP-LAPW method by WIEN2k code in Density Functional Theory (DFT framework. The structural properties of the bulk such as lattice constant, bulk module and elastic constants have been investigated using four different approximations. The band gap energy of the bulk and the (110 surface of BSb were obtained about 1.082 and 0.38 eV respectively. Moreover the surface energy, the work function, the surface relaxation, surface state and the band structure of BSb (110 were investigated using symmetric and stoichiometric 15 layers slabs with the vacuum of 20 Bohr. In addition, the real and imaginary parts of the dielectric function of the bulk and the BSb (110 slab were calculated and compared to each other. Our obtained results have a good agreement with the available results.

  20. Effects of surface states, defects and dopants on the optical and magnetic properties of low-dimensional materials

    Science.gov (United States)

    Podila, Ramakrishna

    Nanomaterials have attracted the attention of researchers from various fields due to their unique features (that are otherwise absent in the bulk) such as quantum confinement, high surface to volume ratio, ability for surface modification etc. Since the discovery of fullerenes and carbon nanotubes, several synthesis techniques have been developed for nanomaterial growth. However, different control parameters in different synthesis techniques often result in nanostructures with varying defects that may alter their fundamental behavior. Such defects or disorder in the crystal lattice can lead to the disruption of lattice symmetry. The defect-induced symmetry lowering (or breaking) effects play a vital role in the determination of fundamental material characteristics. Thus, it is very important to characterize the defects in order to understand their effects on the nanomaterial properties. This thesis describes the effects of defects in low dimesional systems such as ZnO nanowires, graphene and carbon nanotubes are studied. Firstly, it describes the synthesis and characterization of ZnO nanostructures and discusses the effects of surface states, defects and dopants on their optical and magnetic properties. An unexpected presence of ferromagnetic (FM) ordering in nanostructured nonmagnetic metal oxides has been reported previously. Though this property was attributed to the presence of defects, systematic experimental and theoretical studies to pinpoint its origin and mechanism were lacking. While it is widely believed that oxygen vacancies are responsible for FM ordering, surprisingly annealing as-prepared samples at low temperature (high temperature) in flowing oxygen actually enhances (diminishes) the FM ordering. For these reasons, we have prepared, annealed in different environments, and measured the ensuing magnetization in micrometer and nanoscale ZnO with varying crystallinity. We further find from our magnetization measurements and ab-initio calculations that

  1. All-optical Q-switching limiter for high-power gigahertz modelocked diode-pumped solid-state lasers.

    Science.gov (United States)

    Klenner, Alexander; Keller, Ursula

    2015-04-06

    Passively modelocked diode-pumped solid-state lasers (DPSSLs) with pulse repetition rates in the gigahertz regime suffer from an increased tendency for Q-switching instabilities. Low saturation fluence intracavity saturable absorbers - such as the semiconductor saturable absorber mirrors (SESAMs) - can solve this problem up to a certain average output power limited by the onset of SESAM damage. Here we present a passive stabilization mechanism, an all-optical Q-switching limiter, to reduce the impact of Q-switching instabilities and increase the potential output power of SESAM modelocked lasers in the gigahertz regime. With a proper cavity design a Kerr lens induced negative saturable absorber clamps the maximum fluence on the SESAM and therefore limits the onset of Q-switching instabilities. No critical cavity alignment is required because this Q-switching limiter acts well within the cavity stability regime. Using a proper cavity design, a high-power diode-pumped Yb:CALGO solid-state laser generated sub-100 fs pulses with an average output power of 4.1 W at a pulse repetition rate of 5 GHz. With a pulse duration of 96 fs we can achieve a peak power as high as 7.5 kW directly from the SESAM modelocked laser oscillator without any further external pulse amplification and/or pulse compression. We present a quantitative analysis of this Kerr lens induced Q-switching limiter and its impact on modelocked operation. Our work provides a route to compact high-power multi-gigahertz frequency combs based on SESAM modelocked diode-pumped solid-state lasers without any additional external amplification or pulse compression.

  2. Pressure-dependent optical investigations of Fabre salts in the charge-ordered state

    Science.gov (United States)

    Voloshenko, Ievgen; Herter, Melina; Beyer, Rebeca; Pustogow, Andrej; Dressel, Martin

    2017-03-01

    In a comprehensive infrared study, the molecular vibrational features of (TMTTF)2SbF6, (TMTTF)2AsF6 and (TMTTF)2PF6 single crystals have been measured down to temperatures as low as 7 K by applying hydrostatic pressure up to 11 kbar. We follow the charge disproportionation below the critical temperatures T CO as pressure increases, and determine the critical pressure values p CO at which the charge-ordered phase is suppressed. The coexistence of the spin-Peierls phase with charge order is explored at low temperatures, and the competition of these two phases is observed. Based on our measurements we construct a generic phase diagram of the Fabre salts with centrosymmetric anions. The pressure-dependent anion and methyl-group dynamics in these quasi-one-dimensional charge transfer compounds yields information about the interplay of the organic molecules in the stacks and the anions, and how this interaction varies upon the transition to the charge-ordered state.

  3. Three-State Locally Adaptive Texture Preserving Filter for Radar and Optical Image Processing

    Directory of Open Access Journals (Sweden)

    Jaakko T. Astola

    2005-05-01

    Full Text Available Textural features are one of the most important types of useful information contained in images. In practice, these features are commonly masked by noise. Relatively little attention has been paid to texture preserving properties of noise attenuation methods. This stimulates solving the following tasks: (1 to analyze the texture preservation properties of various filters; and (2 to design image processing methods capable to preserve texture features well and to effectively reduce noise. This paper deals with examining texture feature preserving properties of different filters. The study is performed for a set of texture samples and different noise variances. The locally adaptive three-state schemes are proposed for which texture is considered as a particular class. For “detection” of texture regions, several classifiers are proposed and analyzed. As shown, an appropriate trade-off of the designed filter properties is provided. This is demonstrated quantitatively for artificial test images and is confirmed visually for real-life images.

  4. SiC/GaN Based Optically Triggered MESFET for High Power Efficiency and High Radiation Resistance Solid State Switch Application for Actuator System

    Science.gov (United States)

    2016-06-23

    High Radiation Resistance Solid State Switch Application for Actuator System The views, opinions and/or findings contained in this report are those of...Final Report: SiC/GaN Based Optically Triggered MESFET for High Power Efficiency and High Radiation Resistance Solid State Switch Application for...performed by the reactive ion etching (RIE) of silicon carbide in fluorinated -gas (CHF3, CBrF3, CF4, SF6 and NF3) plasma and inductively coupled plasma

  5. Structural and optical properties of MgyNi1-yHx gradient thin films in relation to the as-deposited metallic state

    NARCIS (Netherlands)

    Gremaud, R.; van Mechelen, J.L.M.; Schreuders, H.; Slaman, M.; Dam, B.; Griessen, R.

    2009-01-01

    Thin MgyNi1-yHx, films with a gradient in chemical composition are investigated by optical spectrophotometry, dc resistivity and X-ray diffraction measurements before and after exposure to hydrogen. In the metallic state crystalline Mg2Ni is present for 0.6 <= y <= 0.8 and coexists with amorphous Mg

  6. Optics/Optical Diagnostics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optics/Optical Diagnostics Laboratory supports graduate instruction in optics, optical and laser diagnostics and electro-optics. The optics laboratory provides...

  7. Solid state synthesis, characterization and optical properties of Tb doped SrSnO{sub 3} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Kotan, Z. [Ege University, Institute of Nuclear Sciences, 35100 Bornova-İzmir (Turkey); Ayvacikli, M.; Karabulut, Y. [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, 45010 Muradiye-Manisa (Turkey); Garcia-Guinea, J.; Tormo, L. [Museo Nacional Ciencias Naturales, Jose Gutierrez Abascal 2, Madrid 28006 (Spain); Canimoglu, A. [Niğde University, Faculty of Arts and Sciences, Department of Physics, Niğde (Turkey); Karali, T. [Ege University, Institute of Nuclear Sciences, 35100 Bornova-İzmir (Turkey); Can, N., E-mail: cannurdogan@yahoo.com [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, 45010 Muradiye-Manisa (Turkey)

    2013-12-25

    Highlights: •A new stannate phosphor, SrSnO{sub 3}:Tb{sup 3+} was synthesized by solid state reaction method. •The role of Tb{sup 3+} doped into SrSnO{sub 3} was discussed. •A structural phase transition in SrSnO{sub 3}:Tb{sup 3+} at ∼270 K was suggested. -- Abstract: In the present study, the structural and optical properties of SrSnO{sub 3} doped with Tb ions are reported. Novel SrSnO{sub 3}:Tb{sup 3+} phosphors were conventionally synthesized using a solid state reaction process under a mildly reduced atmosphere (5%H{sub 2} and 95%N{sub 2}). The crystal structures, morphologies and optical properties of the resultant materials have been characterised by experimental techniques such as X-ray Diffraction (XRD), Raman spectroscopy (RS), Photoluminescence (PL), Radioluminescence (RL) and Cathodoluminescence coupled to an ESEM (ESEM-CL). The new phosphor material has good crystallization without any impurity phases, which matches with the standard JCPDS files (No. 22-1442) from XRD analysis. The PL, RL and CL measurements taken at room temperature showed that the transitions of {sup 5}D{sub 4} to {sup 7}F{sub J} (j = 6, 5, 4, 3) corresponding to the typical 4f → 4f dipole forbidden intra-configurational transitions of Tb{sup 3+} are largely independent of the host material. The green emissions of the {sup 5}D{sub 4} → {sup 7}F{sub 5} magnetic dipole transition at ∼540 nm are predominant for three types of luminescence. PL emission spectra recorded in the temperature range from 10 K to 300 K were influenced by temperature. We report anomalies in the PL spectra of SrSnO{sub 3}:Tb{sup 3+} compatible with a structural phase transition at 260 K while simultaneously exciting and cooling the sample. This work clearly confirms the existence of a phase transition discovered by Singh et al. in SrSnO{sub 3} at 270 K.

  8. Magneto-optical study of the intermediate state in type-I superconductors: Effects of sample shape and applied current

    Energy Technology Data Exchange (ETDEWEB)

    Hoberg, Jacob Ray [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    The magnetic flux structures in the intermediate state of bulk, pinning-free Type-I superconductors are studied using a high resolution magneto-optical imaging technique. Unlike most previous studies, this work focuses on the pattern formation of the coexisting normal and superconducting phases in the intermediate state. The influence of various parameters such as sample shape, structure defects (pinning) and applied current are discussed in relation to two distinct topologies: flux tubes (closed topology) and laminar (open topology). Imaging and magnetization measurements performed on samples of different shapes (cones, hemispheres and slabs), show that contrary to previous beliefs, the tubular structure is the equilibrium topology, but it is unstable toward defects and flux motion. Moreover, the application of current into a sample with the geometric barrier can replace an established laminar structure with flux tubes. At very high currents, however, there exists a laminar 'stripe pattern.' Quantitative analysis of the mean tube diameter is shown to be in good agreement with the prediction proposed by Goren and Tinkham. This is the first time that this model has been confirmed experimentally. Further research into the flux tube phase shows a direct correlation with the current loop model proposed in the 1990's by Goldstein, Jackson and Dorsey. There also appears a range of flux tube density that results in a suprafroth structure, a well-formed polygonal mesh, which behaves according to the physics of foams, following standard statistical laws such as von Neumann and Lewis. The reaction of flux structures to a fast-ramped magnetic field was also studied. This provided an alignment of the structure not normally observed at slow ramp rates.

  9. Pressure suppression of unconventional charge-density-wave state in PrRu4P12 studied by optical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Okamura H.; Carr G.; Ohta, N.; Takigawa, A.; Matsutori, I.; Shoji, K.; Miyata, K.; Matsunami, M.; Nanba, T.; Sugawara, H.; Sekine, C.; Shirotani, I.; Sato, H.; Moriwaki, T.; Ikemoto, Y.; Liu, Z.

    2012-05-09

    Optical conductivity [{delta}({omega})] of PrRu{sub 4}P{sub 12} has been studied under high pressure to 14 GPa, at low temperatures to 8 K, and at photon energies 12 meV-1.1 eV. The energy gap in {delta}({omega}) at ambient pressure, caused by a metal-insulator transition due to an unconventional charge-density-wave formation at 63 K, is gradually filled in with increasing pressure to 10 GPa. At 14 GPa and below 30 K, {delta}({omega}) exhibits a pronounced Drude-type component due to free carriers. This indicates that the initial insulating ground state at zero pressure has been turned into a metallic one at 14 GPa. This is consistent with a previous resistivity study under pressure, where the resistivity rapidly decreased with cooling below 30 K at 14 GPa. The evolution of electronic structure with pressure is discussed in terms of the hybridization between the 4f and conduction electrons.

  10. Directly modulated green-light diode-pumped solid-state laser for underwater wireless optical communication.

    Science.gov (United States)

    Xu, Jing; Kong, Meiwei; Lin, Aobo; Song, Yuhang; Han, Jun; Xu, Zhiwei; Wu, Bo; Gao, Shiming; Deng, Ning

    2017-05-01

    It is widely known that a diode-pumped solid-state laser (DPSSL) has very limited modulation bandwidth. Recently, we directed our attention toward the opportunities for directly modulating a DPSSL to generate high-speed green-light signals, with high power and superior beam quality, which are highly desirable in underwater wireless optical communication. The constraint imposed by the limited modulation bandwidth of a DPSSL is circumvented with the strategy of orthogonal frequency-division multiplexing and power loading. With a compact DPSSL dismantled from a low-cost laser pointer, we achieve net bit rates of 108.55 Mb/s for the 64 quadrature amplitude modulation (QAM) signal at a bit error rate (BER) of 6.42×10-4 and 89.55 Mb/s for the 32 QAM signal at a BER of 4.81×10-4, respectively, over a 2 m underwater channel. When the underwater transmission distance is increased to 6 m, the BERs are still below the forward error correction (FEC) limit of 3.8×10-3.

  11. Electro-optical switching at 1550 nm using a two-state GeSe phase-change layer.

    Science.gov (United States)

    Soref, Richard; Hendrickson, Joshua; Liang, Haibo; Majumdar, Arka; Mu, Jianwei; Li, Xun; Huang, Wei-Ping

    2015-01-26

    New designs for electro-optical free-space and waveguided 2 x 2 switches are presented and analyzed at the 1.55 μm telecoms wavelength. The proposed devices employ a ~10 nm film of GeSe that is electrically actuated to transition the layer forth-and-back from the amorphous to the crystal phase, yielding a switch with two self-sustaining states. This phase change material was selected for its very low absorption loss at the operation wavelength, along with its electro-refraction Δn ~0.6. All switches are cascadeable into N x M devices. The free-space prism-shaped structures use III-V prism material to match the GeSe crystal index. The Si/GeSe/Si "active waveguides" are quite suitable for directional-coupler switches as well as Mach-Zehnder devices-all of which have an active length 16x less than that in the free-carrier art.

  12. An optical assessment of the effects of glioma growth on resting state networks in mice (Conference Presentation)

    Science.gov (United States)

    Orukari, Inema E.; Bauer, Adam Q.; Baxter, Grant A.; Rubin, Joshua B.; Culver, Joseph P.

    2017-02-01

    Gliomas are known to cause significant changes in normal brain function that lead to cognitive deficits. Disruptions in resting state networks (RSNs) are thought to underlie these changes. However, investigating the effects of glioma growth on RSNs in humans is complicated by the heterogeneity in lesion size, type, and location across subjects. In this study, we evaluated the effects of tumor growth on RSNs over time in a controlled mouse model of glioma growth. Methods: Glioma cells (5x104-105 U87s) were stereotactically injected into the forepaw somatosensory cortex of adult nude mice (n=5). Disruptions in RSNs were evaluated weekly with functional connectivity optical intrinsic signal imaging (fcOIS). Tumor growth was monitored with MRI and weekly bioluminescence imaging (BLI). In order to characterize how tumor growth affected different RSNs over time, we calculated a number of functional connectivity (fc) metrics, including homotopic (bilateral) connectivity, spatial similarity, and node degree. Results: Deficits in fc initiate near the lesion, and over a period of several weeks, extend more globally. The reductions in spatial similarity were found to strongly correlate with the BLI signal indicating that increased tumor size is associated with increased RSN disruption. Conclusions: We have shown that fcOIS is capable of detecting alterations in mouse RSNs due to brain tumor growth. A better understanding of how RSN disruption contributes to the development of cognitive deficits in brain tumor patients may lead to better patient risk stratification and consequently improved cognitive outcomes.

  13. Introduction to biomedical optics

    CERN Document Server

    Splinter, Robert

    2006-01-01

    GENERAL BIOMEDICAL OPTICS THEORYIntroduction to the Use of Light for Diagnostic and Therapeutic ModalitiesWhat Is Biomedical Optics?Biomedical Optics TimelineElementary Optical DiscoveriesHistorical Events in Therapeutic and Diagnostic Use of LightLight SourcesCurrent State of the ArtSummaryAdditional ReadingProblemsReview of Optical Principles: Fundamental Electromagnetic Theory and Description of Light SourcesDefinitions in OpticsKirchhoff's Laws of RadiationElectromagnetic Wave TheoryLight SourcesApplications of Various LasersSummaryAdditional ReadingProblemsReview of Optical Principles: Classical OpticsGeometrical OpticsOther Optical PrinciplesQuantum PhysicsGaussian OpticsSummaryAdditional ReadingProblemsReview of Optical Interaction PropertiesAbsorption and ScatteringSummaryAdditional ReadingProblemsLight-Tissue Interaction VariablesLaser VariablesTissue VariablesLight Transportation TheoryLight Propagation under Dominant AbsorptionSummaryNomenclatureAdditional ReadingProblemsLight-Tissue Interaction Th...

  14. Altered intrinsic regional spontaneous brain activity in patients with optic neuritis: a resting-state functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Shao Y

    2015-12-01

    Full Text Available Yi Shao,1,* Feng-Qin Cai,2,* Yu-Lin Zhong,1 Xin Huang,1,3 Ying Zhang,1 Pei-Hong Hu,1 Chong-Gang Pei,1 Fu-Qing Zhou,2 Xian-Jun Zeng2 1Department of Ophthalmology, 2Department of Radiology, First Affiliated Hospital of Nanchang University, Nanchang, 3Department of Ophthalmology, First People’s Hospital of Jiujiang, Jiujiang, People’s Republic of China *These authors contributed equally to this work Objective: To investigate the underlying regional homogeneity (ReHo in brain-activity deficit in patients with optic neuritis (ON and its relationship with behavioral performance.Materials and methods: In total, twelve patients with ON (four males and eight females and twelve (four males and eight females age-, sex-, and education-matched healthy controls underwent resting-state functional magnetic resonance imaging scans. The ReHo method was used to assess the local features of spontaneous brain activity. Correlation analysis was used to explore the relationship between the observed mean ReHo values of the different brain areas and the visual evoked potential (VEP in patients with ON.Results: Compared with the healthy controls, patients with ON showed lower ReHo in the left cerebellum, posterior lobe, left middle temporal gyrus, right insula, right superior temporal gyrus, left middle frontal gyrus, bilateral anterior cingulate cortex, left superior frontal gyrus, right superior frontal gyrus, and right precentral gyrus, and higher ReHo in the cluster of the left fusiform gyrus and right inferior parietal lobule. Meanwhile, we found that the VEP amplitude of the right eye in patients with ON showed a positive correlation with the ReHo signal value of the left cerebellum posterior lobe (r=0.701, P=0.011, the right superior frontal gyrus (r=0.731, P=0.007, and the left fusiform gyrus (r=0.644, P=0.024. We also found that the VEP latency of the right eye in ON showed a positive correlation with the ReHo signal value of the right insula (r=0.595, P=0

  15. Studies on linear, nonlinear optical and excited state dynamics of silicon nanoparticles prepared by picosecond laser ablation

    Directory of Open Access Journals (Sweden)

    Syed Hamad

    2015-12-01

    Full Text Available We report results from our studies on the fabrication and characterization of silicon (Si nanoparticles (NPs and nanostructures (NSs achieved through the ablation of Si target in four different liquids using ∼2 picosecond (ps pulses. The consequence of using different liquid media on the ablation of Si target was investigated by studying the surface morphology along with material composition of Si based NPs. The recorded mean sizes of these NPs were ∼9.5 nm, ∼37 nm, ∼45 nm and ∼42 nm obtained in acetone, water, dichloromethane (DCM and chloroform, respectively. The generated NPs were characterized by selected area electron diffraction (SAED, high resolution transmission microscopy (HRTEM, Raman spectroscopic techniques and Photoluminescence (PL studies. SAED, HRTEM and Raman spectroscopy data confirmed that the material composition was Si NPs in acetone, Si/SiO2 NPs in water, Si-C NPs in DCM and Si-C NPs in chloroform and all of them were confirmed to be polycrystalline in nature. Surface morphological information of the fabricated Si substrates was obtained using the field emission scanning electron microscopic (FESEM technique. FESEM data revealed the formation of laser induced periodic surface structures (LIPSS for the case of ablation in acetone and water while random NSs were observed for the case of ablation in DCM and chloroform. Femtosecond (fs nonlinear optical properties and excited state dynamics of these colloidal Si NPs were investigated using the Z-scan and pump-probe techniques with ∼150 fs (100 MHz and ∼70 fs (1 kHz laser pulses, respectively. The fs pump-probe data obtained at 600 nm consisted of single and double exponential decays which were tentatively assigned to electron-electron collisional relaxation (1 ps. Large third order optical nonlinearities (∼10−14 e.s.u. for these colloids have been estimated from Z-scan data at an excitation wavelength of 680 nm suggesting that the colloidal Si NPs find

  16. Studies on linear, nonlinear optical and excited state dynamics of silicon nanoparticles prepared by picosecond laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, Syed; Nageswara Rao, S. V. S.; Pathak, A. P. [School of Physics, University of Hyderabad, Hyderabad 500046, Telangana (India); Krishna Podagatlapalli, G.; Mounika, R.; Venugopal Rao, S., E-mail: soma-venu@yahoo.com, E-mail: soma-venu@uohyd.ac.in [Advanced Center of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, Telangana (India)

    2015-12-15

    We report results from our studies on the fabrication and characterization of silicon (Si) nanoparticles (NPs) and nanostructures (NSs) achieved through the ablation of Si target in four different liquids using ∼2 picosecond (ps) pulses. The consequence of using different liquid media on the ablation of Si target was investigated by studying the surface morphology along with material composition of Si based NPs. The recorded mean sizes of these NPs were ∼9.5 nm, ∼37 nm, ∼45 nm and ∼42 nm obtained in acetone, water, dichloromethane (DCM) and chloroform, respectively. The generated NPs were characterized by selected area electron diffraction (SAED), high resolution transmission microscopy (HRTEM), Raman spectroscopic techniques and Photoluminescence (PL) studies. SAED, HRTEM and Raman spectroscopy data confirmed that the material composition was Si NPs in acetone, Si/SiO{sub 2} NPs in water, Si-C NPs in DCM and Si-C NPs in chloroform and all of them were confirmed to be polycrystalline in nature. Surface morphological information of the fabricated Si substrates was obtained using the field emission scanning electron microscopic (FESEM) technique. FESEM data revealed the formation of laser induced periodic surface structures (LIPSS) for the case of ablation in acetone and water while random NSs were observed for the case of ablation in DCM and chloroform. Femtosecond (fs) nonlinear optical properties and excited state dynamics of these colloidal Si NPs were investigated using the Z-scan and pump-probe techniques with ∼150 fs (100 MHz) and ∼70 fs (1 kHz) laser pulses, respectively. The fs pump-probe data obtained at 600 nm consisted of single and double exponential decays which were tentatively assigned to electron-electron collisional relaxation (<1 ps) and non-radiative transitions (>1 ps). Large third order optical nonlinearities (∼10{sup −14} e.s.u.) for these colloids have been estimated from Z-scan data at an excitation wavelength of 680 nm

  17. FROM THE HISTORY OF LASER CREATION

    Directory of Open Access Journals (Sweden)

    I.M. Belousova

    2014-03-01

    Full Text Available The paper briefly describes the history of formation of a new science direction - quantum electronics, associated with the discovery of masers and lasers by scientists from the USA (Ch. Townes and the USSR (N.G. Basov and A. M. Prokhorov. The world's first ruby laser designed by T. Maiman is described. Some historical events devoted to creation and research of lasers are given in which the author of the paper as well as research workers from Vavilov State Optical Institute, ITMO University and LOMO have taken direct part in the development of solid-state and gas lasers (helium-neon, photodissociation, CO2-lasers and laser optical systems. Contribution of researchers from Vavilov State Optical Institute, LOMO and ITMO University to large-scale programs on development of lasers for laser nuclear fusion, laser weapons and “Phobos” program is shown. The paper deals in brief with new issues of development and application of lasers, mainly, within the project of laser orbital space station of the future, for the conversion of solar energy into laser radiation. Description of idea of solar energy transformation by fullerene-oxygen laser is presented. The patent for it has been taken out by Vavilov State Optical Institute. Developed fullerene-oxygen-iodine laser and laser structure models for industrial applications and solar energy conversion into laser radiation are described. Parameters for hypothetical laser-optical system of the future space station are given.

  18. Electronic states and the resonant optical non-linearity of exciton in a narrow band InSb quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, M. [Department of Physics, Yadava College Govindarajan Campus, Thiruppalai, Madurai-625 014 (India); John Peter, A., E-mail: a.john.peter@gmail.com [Center for Environmental Studies/Green Energy Center, Department of Environmental Science and Engineering, College of Engineering, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do, 446-701 (Korea, Republic of); Yoo, Chang Kyoo [Center for Environmental Studies/Green Energy Center, Department of Environmental Science and Engineering, College of Engineering, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do, 446-701 (Korea, Republic of)

    2012-02-01

    Binding energy, interband emission energy and the non-linear optical properties of exciton in an InSb/InGa{sub x}Sb{sub 1-x} quantum dot are computed as functions of dot radius and the Ga content. Optical properties are obtained using the compact density matrix approach. The dependence of non-linear optical processes on the dot sizes is investigated for different Ga concentrations. The linear, third order non-linear optical absorption coefficients, susceptibility values and the refractive index changes of the exciton are calculated for different concentrations of gallium content. It is found that gallium concentration has great influence on the optical properties of InSb/InGa{sub x}Sb{sub 1-x} dots.

  19. Structural, optical and magnetic properties of Sn doped ZnS nano powders prepared by solid state reaction

    Science.gov (United States)

    Kumar, K. Chaitanya; Rao, N. Madhusudhana; Kaleemulla, S.; Rao, G. Venugopal

    2017-10-01

    Tin doped ZnS powders (Zn1-xSnxS, x = 0.00, 0.02, 0.05&0.08) were synthesized by a simple Solid state reaction and were characterized by Powder X-ray diffractometer (XRD), UV-Vis-NIR diffuse reflectance spectrophotometer, fluorescence spectrophotometer, scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). The XRD studies revealed that no change in crystal structure was observed by the substitution of Sn into ZnS lattice. The crystallite size was calculated by Scherrer's formula and found that the crystallize size of Sn doped ZnS powders were in the range of 35-45 nm. From the diffused reflectance spectra, the band gap values of Zn1-xSnxS powders were estimated, and they were found to be in the range of 3.53-3.58 eV. The pure ZnS particles showed higher optical absorption in visible region than that of Sn doped ZnS nano particles. The Photoluminescence (PL) spectra of Zn1-xSnxS powders were recorded in the range of 400-700 nm with an excitation wavelength of 360 nm. The Zn1-xSnxS powders exhibited ferromagnetism at low temperature (100 K) and super paramagnetism at room temperature (300 K). The strength of magnetization increased with increase of Sn doping concentration from 0.015 emu/g to 0.18 emu/g, when x increased from 0.00-0.05.

  20. Many-soliton bound states in dispersion-managed optical fiber: Possibility of fiber-optic transmission of three bits per clock period

    Science.gov (United States)

    Boudjemâa, Abdelâali

    2017-10-01

    We study the stability and the dynamics of many-soliton molecules in dispersion-managed (DM) optical fibers with focus on five-and seven-soliton molecules by analytical and numerical means. In particular we calculate the binding force, pulse durations and equilibrium separations using a variational approach. Predicted pulse shapes are in good agreement with those found by numerical simulations of the underlying nonlinear Schrödinger equation. Within limitations, soliton molecules with up to seven solitons possibly allow to encode three bits of data per clock period.

  1. In-situ characterization of the thermal state of resonant optical interferometers via tracking of their higher-order mode resonances

    CERN Document Server

    Mueller, Chris L; Adhikari, Rana X; Arai, Koji; Brooks, Aidan F; Chakraborty, Rijuparna; Frolov, Valery V; Fritschel, Peter; King, Eleanor J; Tanner, David B; Yamamoto, Hiroaki; Mueller, Guido

    2015-01-01

    Thermal lensing in resonant optical interferometers such as those used for gravitational wave detection is a concern due to the negative impact on control signals and instrument sensitivity. In this paper we describe a method for monitoring the thermal state of such interferometers by probing the higher-order spatial mode resonances of the cavities within them. We demonstrate the use of this technique to measure changes in the Advanced LIGO input mode cleaner cavity geometry as a function of input power, and subsequently infer the optical absorption at the mirror surfaces at the level of 1 ppm per mirror. We also demonstrate the generation of a useful error signal for thermal state of the Advanced LIGO power recycling cavity by continuously tracking the first order spatial mode resonance frequency. Such an error signal could be used as an input to thermal compensation systems to maintain the interferometer cavity geometries in the presence of transients in circulating light power levels, thereby maintaining o...

  2. Emerging Correlation Optics

    DEFF Research Database (Denmark)

    Angelsky, Oleg V.; Gbur, Gregory J.; Polyanskii, Peter

    2012-01-01

    This feature issue of Applied Optics contains a series of selected papers reflecting the state-of-the-art of correlation optics and showing synergetics between the theoretical background and experimental techniques.......This feature issue of Applied Optics contains a series of selected papers reflecting the state-of-the-art of correlation optics and showing synergetics between the theoretical background and experimental techniques....

  3. Electro-optic and Acousto-optic Laser Beam Scanners

    NARCIS (Netherlands)

    Römer, Gerardus Richardus, Bernardus, Engelina; Bechtold, P.

    2014-01-01

    Optical solid state deflectors rely on the electro-optical or acousto-optic effect. These Electro-Optical Deflectors (EODs) and Acousto-Optical Deflectors (AODs) do not contain moving parts and therefore exhibit high deflection velocities and are free of drawbacks associated with mechanical scanners. A

  4. Excited State and Non-linear Optical Properties of NIR Absorbing β-Thiophene-Fused BF2-Azadipyrromethene Dyes-Computational Investigation.

    Science.gov (United States)

    Gawale, Yogesh; Rhyman, Lydia; Elzagheid, Mohamed I; Ramasami, Ponnadurai; Sekar, Nagaiyan

    2017-11-21

    Density functional theory and time-dependent density functional theory computations were used to understand the electronic and photophysical parameters of NIR β-thiophene-fused BF2-azadipyrromethene dyes. The computed data are in good agreement with those obtained experimentally and they provide insights into the origin of red shifted optical spectra compared to the parent aza-BODIPY, low Stokes shift, non-linear optical responses and quantitative description of the singlet-triplet energy gap. The resultant decrease in the HOMO - LUMO energy gap is responsible for the red shift. The possible use as non-linear optical materials is supported by large enhancement in the non-linear optical properties. On the basis of vertical triplet energies, their possible potential therapeutic use as a photosensitizer in photodynamic therapy is proposed. The singlet-triplet energetic gaps suggest that the β-thiophene-fused BF2-azadipyrromethene dyes can act as a sensitizer to produce an efficient generation of singlet oxygen. Their optimal use as an efficient singlet fission materials has been proposed on the basis of excitation energies in the ground, lowest singlet and triplet excited states.

  5. Optic glioma

    Science.gov (United States)

    Glioma - optic; Optic nerve glioma; Juvenile pilocytic astrocytoma; Brain cancer - optic glioma ... Optic gliomas are rare. The cause of optic gliomas is unknown. Most optic gliomas are slow-growing ...

  6. Quantum Optics in Optical Nanofibers

    Science.gov (United States)

    Solano Palma, Pablo Andres

    The study of atom-light interaction is a key element of quantum optics and a central part of atomic physics. Systems composed of atoms interacting with each other through the electromagnetic field can be used for studies from fundamental research to practical applications. Experimental realizations of these systems benefit from three distinct attributes: large atom-light coupling, trapping and control of atomic ensembles, and engineering and manipulation of the electromagnetic field. Optical waveguides provide a platform that achieves these three goals. In particular, optical nanofibers are an excellent candidate. They produce a high confinement of the electromagnetic field that improves atom-light coupling, guiding the field that mediates the interactions between atoms, while allowing trapping of the atoms close to it. This thesis describes the uses of an optical nanofiber for quantum optics experiments, demonstrating its possibilities for enabling special atom-light interactions. We trap atoms near the optical nanofiber surface, and characterize the trap in a non-destructive manner. We show how the presence of the nanofiber modifies the fundamental atomic property of spontaneous emission, by altering the electromagnetic environment of the atom. Finally, we use the nanofiber to prepare collective states of atoms around it. These states can radiate faster or slower than a single atom (superradiance and subradiance). The observation of subradiance of a few atoms, a rather elusive effect, evidences nanofibers as a strong candidate for future quantum optics experiments. Moreover, we show how the guided field mediates interaction between atoms hundreds of wavelengths apart, creating macroscopically delocalized collective states.

  7. Lowest excited states and optical absorption spectra of donor–acceptor copolymers for organic photovoltaics: a new picture emerging from tuned long-range corrected density functionals

    KAUST Repository

    Pandey, Laxman

    2012-01-01

    Polymers with low optical gaps are of importance to the organic photovoltaics community due to their potential for harnessing a large portion of the solar energy spectrum. The combination along their backbones of electron-rich and electron-deficient fragments contributes to the presence of low-lying excited states that are expected to display significant charge-transfer character. While conventional hybrid functionals are known to provide unsatisfactory results for charge-transfer excitations at the time-dependent DFT level, long-range corrected (LRC) functionals have been reported to give improved descriptions in a number of systems. Here, we use such LRC functionals, considering both tuned and default range-separation parameters, to characterize the absorption spectra of low-optical-gap systems of interest. Our results indicate that tuned LRC functionals lead to simulated optical-absorption properties in good agreement with experimental data. Importantly, the lowest-lying excited states (excitons) are shown to present a much more localized nature than initially anticipated. © 2012 the Owner Societies.

  8. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: Cell embedding method and performance

    Science.gov (United States)

    Raghavan, Ajay; Kiesel, Peter; Sommer, Lars Wilko; Schwartz, Julian; Lochbaum, Alexander; Hegyi, Alex; Schuh, Andreas; Arakaki, Kyle; Saha, Bhaskar; Ganguli, Anurag; Kim, Kyung Ho; Kim, ChaeAh; Hah, Hoe Jin; Kim, SeokKoo; Hwang, Gyu-Ok; Chung, Geun-Chang; Choi, Bokkyu; Alamgir, Mohamed

    2017-02-01

    A key challenge hindering the mass adoption of Lithium-ion and other next-gen chemistries in advanced battery applications such as hybrid/electric vehicles (xEVs) has been management of their functional performance for more effective battery utilization and control over their life. Contemporary battery management systems (BMS) reliant on monitoring external parameters such as voltage and current to ensure safe battery operation with the required performance usually result in overdesign and inefficient use of capacity. More informative embedded sensors are desirable for internal cell state monitoring, which could provide accurate state-of-charge (SOC) and state-of-health (SOH) estimates and early failure indicators. Here we present a promising new embedded sensing option developed by our team for cell monitoring, fiber-optic sensors. High-performance large-format pouch cells with embedded fiber-optic sensors were fabricated. The first of this two-part paper focuses on the embedding method details and performance of these cells. The seal integrity, capacity retention, cycle life, compatibility with existing module designs, and mass-volume cost estimates indicate their suitability for xEV and other advanced battery applications. The second part of the paper focuses on the internal strain and temperature signals obtained from these sensors under various conditions and their utility for high-accuracy cell state estimation algorithms.

  9. Donor-acceptor type blends composed of black phosphorus and C60 for solid-state optical limiters.

    Science.gov (United States)

    Shi, Makai; Huang, Shutong; Dong, Ningning; Liu, Zhiwei; Gan, Fan; Wang, Jun; Chen, Yu

    2017-12-15

    Novel donor-acceptor blends composed of black phosphorus (BP) as an electron donor and C60 as an electron acceptor have been prepared and successfully embedded into a non-optically active poly(methylmethacrylate) (PMMA) matrix producing a BP:C60/PMMA film. In contrast to C60, BP and non-annealed BP:C60 blends, annealed BP:C60 blends show a significantly enhanced optical limiting response due to the thermal-induced intermolecular charge transfer effect between BP and C60.

  10. Super-large optical gyroscopes for applications in geodesy and seismology: state-of-the-art and development prospects

    Energy Technology Data Exchange (ETDEWEB)

    Velikoseltsev, A A; Luk' yanov, D P [St. Petersburg Electrotechnical University ' ' LETI' ' , St. Petersburg (Russian Federation); Vinogradov, V I [OJSC Tambov factory Elektropribor (Russian Federation); Shreiber, K U [Forschungseinrichtung Satellitengeodaesie, Technosche Universitaet Muenchen, Geodaetisches Observatorium Wettzell, Sackenrieder str. 25, 93444 Bad Koetzting (Germany)

    2014-12-31

    A brief survey of the history of the invention and development of super-large laser gyroscopes (SLLGs) is presented. The basic results achieved using SLLGs in geodesy, seismology, fundamental physics and other fields are summarised. The concept of SLLG design, specific features of construction and implementation are considered, as well as the prospects of applying the present-day optical technologies to laser gyroscope engineering. The possibilities of using fibre-optical gyroscopes in seismologic studies are analysed and the results of preliminary experimental studies are presented. (laser gyroscopes)

  11. Characterization and enhanced nonlinear optical limiting response in carbon nanodots dispersed in solid-state hybrid organically modified silica gel glasses

    Science.gov (United States)

    Huang, Li; Zheng, Chan; Guo, Qiaohang; Huang, Dongdong; Wu, Xiukai; Chen, Ling

    2018-02-01

    Freely dispersed carbon nanodots (CNDs) were introduced into a 3-glycidoxy-propyltrimethoxysilane modified silicate gel glass (i.e. an organically modified silica or ORMOSIL) by a highly efficient and simple sol-gel process, which could be easily extended to prepare functional molecules/nanoparticles solid state optoelectronic devices. Scanning electron microscope imaging, Fourier transform infrared spectroscopy, pore structure measurements, ultraviolet-visible spectroscopy, and fluorescence spectroscopy were used to investigate the surface characteristics, structure, texture, and linear optical properties of the CND/SiO2 ORMOSIL gel glasses. Images and UV/Vis spectra confirmed the successful dispersion of CNDs in the ORMOSIL gel glass. The surface characteristics and pore structure of the host SiO2 matrix were markedly changed through the introduction of the CNDs. The linear optical properties of the guest CNDs were also affected by the sol-gel procedure. The nonlinear optical (NLO) properties of the CNDs were investigated by a nanosecond open-aperture Z-scan technique at 532 nm both in liquid and solid matrices. We found that the NLO response of the CNDs was considerably improved after their incorporation into the ORMOSIL gel glasses. Possible enhancement mechanisms were also explored. The nonlinear extinction coefficient gradually increased while the optical limiting (OL) threshold decreased as the CND doping level was increased. This result suggests that the NLO and OL properties of the composite gel glasses can be optimized by tuning the concentration of CNDs in the gel glass matrix. Our findings show that CND/SiO2 ORMOSIL gel glasses are promising candidates for optical limiters to protect sensitive instruments and human eyes from damage caused by high power lasers.

  12. Optical Coherence and Quantum Optics

    Science.gov (United States)

    Mandel, Leonard; Wolf, Emil

    1995-09-01

    The advent of lasers in the 1960s led to the development of many new fields in optical physics. This book is a systematic treatment of one of these fields--the broad area that deals with the coherence and fluctuation of light. The authors begin with a review of probability theory and random processes, and follow this with a thorough discussion of optical coherence theory within the framework of classical optics. They next treat the theory of photoelectric detection of light and photoelectric correlation. They then discuss in some detail quantum systems and effects. The book closes with two chapters devoted to laser theory and one on the quantum theory of nonlinear optics. The sound introduction to coherence theory and the quantum nature of light and the chapter-end exercises will appeal to graduate students and newcomers to the field. Researchers will find much of interest in the new results on coherence-induced spectral line shifts, nonclassical states of light, higher-order squeezing, and quantum effects of down-conversion. Written by two of the world's most highly regarded optical physicists, this book is required reading of all physicists and engineers working in optics.

  13. Optical Coherence and Quantum Optics

    CERN Document Server

    Mandel, Leonard

    1995-01-01

    This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media. The book starts with a full mathematical introduction to the subject area and each chapter concludes with a set of exercises. The authors are renowned scientists and have made substantial contributions to many of the topi

  14. Observation of topological Faraday and Kerr rotations in quantum anomalous Hall state by terahertz magneto-optics

    OpenAIRE

    Okada, K. N.; Takahashi, Y.; Mogi, M.; Yoshimi, R.; Tsukazaki, A.; Takahashi, K. S.; Ogawa, N; Kawasaki, M.; Tokura, Y.

    2016-01-01

    Electrodynamic responses from three-dimensional (3D) topological insulators (TIs) are characterized by the universal magnetoelectric $E\\cdot B$ term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric (TME) effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental demonstration of the long-sought TME effect, which is...

  15. Fully stabilized optical frequency comb with sub-radian CEO phase noise from a SESAM-modelocked 1.5-µm solid-state laser.

    Science.gov (United States)

    Schilt, Stephane; Bucalovic, Nikola; Dolgovskiy, Vladimir; Schori, Christian; Stumpf, Max C; Di Domenico, Gianni; Pekarek, Selina; Oehler, Andreas E H; Südmeyer, Thomas; Keller, Ursula; Thomann, Pierre

    2011-11-21

    We report the first full stabilization of an optical frequency comb generated from a femtosecond diode-pumped solid-state laser (DPSSL) operating in the 1.5-μm spectral region. The stability of the comb is characterized in free-running and in phase-locked operation by measuring the noise properties of the carrier-envelope offset (CEO) beat, of the repetition rate, and of a comb line at 1558 nm. The high Q-factor of the semiconductor saturable absorber mirror (SESAM)-modelocked 1.5-µm DPSSL results in a low-noise CEO-beat, for which a tight phase lock can be much more easily realized than for a fiber comb. Using a moderate feedback bandwidth of only 5.5 kHz, we achieved a residual integrated phase noise of 0.72 rad rms for the locked CEO, which is one of the smallest values reported for a frequency comb system operating in this spectral region. The fractional frequency stability of the CEO-beat is 20‑fold better than measured in a standard self-referenced commercial fiber comb system and contributes only 10(-15) to the optical carrier frequency instability at 1 s averaging time. © 2011 Optical Society of America

  16. Optic neuritis

    Science.gov (United States)

    Retro-bulbar neuritis; Multiple sclerosis - optic neuritis; Optic nerve - optic neuritis ... The exact cause of optic neuritis is unknown. The optic nerve carries visual information from your eye to the brain. The nerve can swell when ...

  17. Time-delayed intensity-interferometry of the emission from ultracold atoms in a steady-state magneto-optical trap

    CERN Document Server

    K., Muhammed Shafi; Suryabrahmam, Buti; Girish, B S; Ramachandran, Hema

    2015-01-01

    An accurate measurement of the bunching of photons in the fluorescent emission from an ultracold ensemble of thermal 87Rb atoms in a steady-state magneto-optical trap is presented. Time-delayed-intensity-interferometry (TDII) performed with a 5-nanosecond time resolution yielded a second-order intensity correlation function that has the ideal value of 2 at zero delay, and that shows coherent Rabi oscillations of upto 5 full periods - much longer than the spontaneous emission lifetime of the excited state of Rb. The oscillations are damped out by ~150ns, and thereafter, as expected from a thermal source, an exponential decay is observed, enabling the determination of the temperature of the atomic ensemble. Values so obtained compare well with those determined by standard techniques. TDII thus enables a quantitative study of the coherent and incoherent dynamics, even of a large thermal ensemble of atomic emitters.

  18. Synthesis and crystallochromy of 1,4,7,10-tetraalkyltetracenes: tuning of solid-state optical properties of tetracenes by alkyl side-chain length.

    Science.gov (United States)

    Kitamura, Chitoshi; Abe, Yasushi; Ohara, Takuya; Yoneda, Akio; Kawase, Takeshi; Kobayashi, Takashi; Naito, Hiroyoshi; Komatsu, Toshiki

    2010-01-18

    We synthesized a series of 1,4,7,10-tetraalkyltetracenes using a new 2,6-naphthodiyne precursor and 2,5-dialkylfurans as starting materials (alkyl=methyl to hexyl). Surprisingly, the solid-state color of the tetracenes ranges through yellow, orange, and red. Both yellow and red solids are obtained for the butyl derivative. Optical properties in solution show no marked differences; however, those in the solid state show characteristics that vary with alkyl side-chain length: methyl, propyl, and pentyl derivatives are orange; ethyl and butyl derivatives are yellow; and another butyl and hexyl derivative are red. X-ray analyses reveal that the molecular structures are planar, semi-chair, or chair forms; the chair form takes a herringbone-like arrangement and the other forms take slipped parallel arrangements. The mechanism of crystallochromy is discussed in terms of molecular structure, crystal packing, and calculations that take account of exciton coupling.

  19. Application of optical non-invasive methods to diagnose the state of the lower limb tissues in patients with diabetes mellitus

    Science.gov (United States)

    Zharkikh, E. V.; Dremin, V. V.; Filina, M. A.; Makovik, I. N.; Potapova, E. V.; Zherebtsov, E. A.; Zherebtsova, A. I.; Dunaev, A. V.

    2017-11-01

    The paper shows the possibility of assessing the functional state of microcirculatory-tissue systems of patients with diabetes mellitus by laser Doppler flowmetry (LDF), diffuse reflectance spectroscopy (DRS) and fluorescence spectroscopy (FS) methods. A review of the existing non-invasive optical technologies used to assess the state of microcirculation and oxygen metabolism in tissues of patients with diabetes is conducted. A series of experimental studies involving 76 patients with diabetes and 46 healthy volunteers was carried out. A wavelet analysis of LDF-grams was used to evaluate the adaptive changes of microcirculation during the temperature tests. The obtained data revealed that the proposed methodology in the form of combined use of several diagnostic technologies (LDF, FS and DRS) allows us to detect the presence or absence of trophic disorders and to evaluate adaptation processes during thermal tests.

  20. Environmental, scanning electron and optical microscope image analysis software for determining volume and occupied area of solid-state fermentation fungal cultures.

    Science.gov (United States)

    Osma, Johann F; Toca-Herrera, José L; Rodríguez-Couto, Susana

    2011-01-01

    Here we propose a software for the estimation of the occupied area and volume of fungal cultures. This software was developed using a Matlab platform and allows analysis of high-definition images from optical, electronic or atomic force microscopes. In a first step, a single hypha grown on potato dextrose agar was monitored using optical microscopy to estimate the change in occupied area and volume. Weight measurements were carried out to compare them with the estimated volume, revealing a slight difference of less than 1.5%. Similarly, samples from two different solid-state fermentation cultures were analyzed using images from a scanning electron microscope (SEM) and an environmental SEM (ESEM). Occupied area and volume were calculated for both samples, and the results obtained were correlated with the dry weight of the cultures. The difference between the estimated volume ratio and the dry weight ratio of the two cultures showed a difference of 10%. Therefore, this software is a promising non-invasive technique to determine fungal biomass in solid-state cultures.

  1. Diversity of trion states and substrate effects in the optical properties of an MoS2 monolayer

    DEFF Research Database (Denmark)

    Drueppel, Matthias; Deilmann, Thorsten; Krueger, Peter

    2017-01-01

    Almost all experiments and future applications of transition metal dichalcogenide monolayers rely on a substrate for mechanical stability, which can significantly modify the optical spectra of the monolayer. Doping from the substrate might lead to the domination of the spectra by trions. Here we...... gap and exciton as well as the trion-binding energies. We verify that these two effects do not perfectly cancel each other, but lead to redshifts of the excitation energies for three different substrates ranging from a wide-bandgap semiconductor up to a metal. Our results explain recently found...

  2. Radiative charge transfer in He{sup +}+ H{sub 2} collisions in the milli- to nano-electron-volt range: A theoretical study within state-to-state and optical potential approaches

    Energy Technology Data Exchange (ETDEWEB)

    Mrugala, Felicja [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, PL 87-100 Torun (Poland); Kraemer, Wolfgang P. [Max-Planck-Institute of Astrophysics, Postfach 1317, D-85741 Garching (Germany)

    2013-03-14

    The paper presents a theoretical study of the low-energy dynamics of the radiative charge transfer (RCT) reaction He{sup +}({sup 2}S)+H{sub 2}(X{sup 1}{Sigma}{sub g}{sup +}){yields}He({sup 1}S)+H{sub 2}{sup +}(X{sup 2}{Sigma}{sub g}{sup +})+h{nu} extending our previous studies on radiative association of HeH{sub 2}{sup +} [F. Mrugala, V. Spirko, and W. P. Kraemer, J. Chem. Phys. 118, 10547 (2003); F. Mrugala and W. P. Kraemer, ibid. 122, 224321 (2005)]. The calculations account for the vibrational and rotational motions of the H{sub 2}/H{sub 2}{sup +} diatomics and for the atom-diatom complex formation in the reactant and the product channels of the RCT reaction. Continuum states of He{sup +}+ H{sub 2}(v= 0, j= 0) in the collision energy range {approx}10{sup -7}-18.6 meV and all quasi-bound states of the He{sup +}- H{sub 2}(para;v= 0) complex formed in this range are taken into account. Close-coupling calculations are performed to determine rates of radiative transitions from these states to the continuum and quasi-bound states of the He +H{sub 2}{sup +} system in the energy range extending up to {approx}0.16 eV above the opening of the HeH{sup +}+ H arrangement channel. From the detailed state-to-state calculated characteristics global functions of the RCT reaction, such as cross-section {sigma}(E), emission intensity I({nu}, T), and rate constant k(T) are derived, and are presented together with their counterparts for the radiative association (RA) reaction He{sup +}({sup 2}S) +H{sub 2}(X{sup 1}{Sigma}{sub g}{sup +}){yields} HeH{sub 2}{sup +}(X{sup 2}A{sup Prime })+h{nu}. The rate constant k{sup RCT} is approximately 20 times larger than k{sup RA} at the considered temperatures, 0.1 {mu}K-50 K. Formation of rotational Feshbach resonances in the reactant channel plays an important role in both reactions. Transitions mediated by these resonances contribute more than 70% to the respective rates. An extension of the one-dimensional optical potential model is

  3. Real-time aerosol optical properties, morphology and mixing states under clear, haze and fog episodes in the summer of urban Beijing

    Science.gov (United States)

    Li, Rui; Hu, Yunjie; Li, Ling; Fu, Hongbo; Chen, Jianmin

    2017-04-01

    Elucidating the relationship between characteristics of aerosol particles and optical absorption is important to deepen the understanding of atmospheric chemistry. Aerosol particles play significant roles in climate forcing via their optical absorption properties. However, the relationship between characteristics of aerosol particles and optical absorption remains poorly understood. Aerosol optical properties and morphologies were measured by a transmission electron microscope (TEM), cavity ring-down spectrometer (CRDS), a nephelometer and an Aethalometer in a urban site of Beijing from 24 May to 22 June. Five episodes were categorized according to the meteorological conditions and composition. The results showed that the clear episode (EP-2 and EP-4) featured as the low aerosol optical depth (AOD = 0.72) and fewer pollutants compared with haze (1.14) and fog (2.92) episodes and the particles are mostly externally mixed. The high Ångström exponent (> 2.0) suggests that coarse particles were scarcely observed in EP-2 due to the washout of a previous heavy rain, whereas they were widespread in EP-4 (Ångström exponent = 0.04), which had some mineral particles introduced from the north. In contrast, industry-induced haze (EP-1) and biomass-burning-induced haze (EP-5) were both affected by the south air mass. Compared with the EP-2 and EP-4, the AOD values and the size distribution of particles during EP-1 and EP-5 were much greater because of relatively high particle concentrations. All of the particles were classified into nine categories, i.e. S-rich, N-rich, mineral, K-rich, soot, tar ball, organic, metal and fly ash, on the basis of TEM analysis. In contrast to the EP-1, a large fraction of soot, which sticks to KCl, sulfate or nitrate particles, was detected during EP-5. Additionally, evident enhancement of light absorption was observed during the EP-5, which was mainly ascribed to both black carbon (BC) acceleration and other absorbing substances. However

  4. Aerosol optical depth (AOD retrieval using simultaneous GOES-East and GOES-West reflected radiances over the western United States

    Directory of Open Access Journals (Sweden)

    H. Zhang

    2013-02-01

    Full Text Available Aerosol optical depth (AOD in the western United States is observed independently by both the (Geostationary Operational Environmental Satellites GOES-East and GOES-West imagers. The GASP (GOES Aerosol/Smoke Product aerosol optical depth retrieval algorithm treats each satellite as a unique sensor and thus obtains two separate aerosol optical depth values at the same time for the same location. The TOA (the top of the atmosphere radiances and the associated derived optical depths can be quite different due to the different viewing geometries with large difference in solar-scattering angles. In order to fully exploit the simultaneous observations and generate consistent AOD retrievals from the two satellites, the authors develop a new "hybrid" aerosol optical depth retrieval algorithm that uses data from both satellites. The algorithm uses both GOES-East and GOES-West visible channel TOA reflectance and daily average AOD from GOES Multi-Angle Implementation of Atmospheric Correction (GOES-MAIAC on low AOD days (AOD less than 0.3, when diurnal variation of AOD is low, to retrieve surface BRDF (Bidirectional Reflectance Distribution Function. The known BRDF shape is applied on subsequent days to retrieve BRDF and AOD. The algorithm is validated at three AERONET sites over the western US. The AOD retrieval accuracy from the "hybrid" technique using the two satellites is similar to that from one satellite over UCSB (University of California Santa Barbara and Railroad Valley, Nevada. Improvement of the accuracy is observed at Boulder, Colorado. The correlation coefficients between the GOES AOD and AERONET AOD are in the range of 0.67 to 0.81. More than 74% of AOD retrievals are within the error of ±(0.05 + 0.15 τ compared to AERONET AOD. The hybrid algorithm has more data coverage compared to the single satellite retrievals over surfaces with high surface reflectance. For single observation areas the number of valid AOD data increases from the use

  5. Single input state, single–mode fiber–based polarization sensitive optical frequency domain imaging by eigenpolarization referencing

    Science.gov (United States)

    Lippok, Norman; Villiger, Martin; Jun, Chang–Su; Bouma, Brett E.

    2015-01-01

    Fiber–based polarization sensitive OFDI is more challenging than free–space implementations. Using multiple input states, fiber–based systems provide sample birefringence information with the benefit of a flexible sample arm but come at the cost of increased system and acquisition complexity, and either reduce acquisition speed or require increased acquisition bandwidth. Here we show that with the calibration of a single polarization state, fiber–based configurations can approach the conceptual simplicity of traditional free–space configurations. We remotely control the polarization state of the light incident at the sample using the eigenpolarization states of a wave plate as a reference, and determine the Jones matrix of the output fiber. We demonstrate this method for polarization sensitive imaging of biological samples. PMID:25927775

  6. A new method to determine the mixing state of light absorbing carbonaceous using the measured aerosol optical properties and number size distributions

    Directory of Open Access Journals (Sweden)

    N. Ma

    2012-03-01

    Full Text Available In this paper, the mixing state of light absorbing carbonaceous (LAC was investigated with a two-parameter aerosol optical model and in situ aerosol measurements at a regional site in the North China Plain (NCP. A closure study between the hemispheric backscattering fraction (HBF measured by an integrating nephelometer and that calculated with a modified Mie model was conducted. A new method was proposed to retrieve the ratio of the externally mixed LAC mass to the total mass of LAC (rext-LAC based on the assumption that the ambient aerosol particles were externally mixed and consisted of a pure LAC material and a core-shell morphology in which the core is LAC and the shell is a less absorbing material. A Monte Carlo simulation was applied to estimate the overall influences of input parameters of the algorithm to the retrieved rext-LAC. The diurnal variation of rext-LAC was analyzed and the PartMC-MOSAIC model was used to simulate the variation of the aerosol mixing state. Results show that, for internally mixed particles, the assumption of core-shell mixture is more appropriate than that of homogenous mixture which has been widely used in aerosol optical calculations. A significant diurnal pattern of the retrieved rext-LAC was found, with high values during the daytime and low values at night. The consistency between the retrieved rext-LAC and the model results indicates that the diurnal variation of LAC mixing state is mainly caused by the diurnal evolution of the mixing layer.

  7. Characterization of aerosol optical properties, chemical composition and mixing states in the winter season in Shanghai, China.

    Science.gov (United States)

    Tang, Yong; Huang, Yuanlong; Li, Ling; Chen, Hong; Chen, Jianmin; Yang, Xin; Gao, Song; Gross, Deborah S

    2014-12-01

    Physical and chemical properties of ambient aerosols at the single particle level were studied in Shanghai from December 22 to 28, 2009. A Cavity-Ring-Down Aerosol Extinction Spectrometer (CRD-AES) and a nephelometer were deployed to measure aerosol light extinction and scattering properties, respectively. An Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) was used to detect single particle sizes and chemical composition. Seven particle types were detected. Air parcels arrived at the sampling site from the vicinity of Shanghai until mid-day of December 25, when they started to originate from North China. The aerosol extinction, scattering, and absorption coefficients all dropped sharply when this cold, clean air arrived. Aerosol particles changed from a highly aged type before this meteorological shift to a relatively fresh type afterwards. The aerosol optical properties were dependent on the wind direction. Aerosols with high extinction coefficient and scattering Ångström exponent (SAE) were observed when the wind blew from the west and northwest, indicating that they were predominantly fine particles. Nitrate and ammonium correlated most strongly with the change in aerosol optical properties. In the elemental carbon/organic carbon (ECOC) particle type, the diurnal trends of single scattering albedo (SSA) and elemental carbon (EC) signal intensity had a negative correlation. We also found a negative correlation (r=-0.87) between high mass-OC particle number fraction and the SSA in a relatively clean period, suggesting that particulate aromatic components might play an important role in light absorption in urban areas. Copyright © 2014. Published by Elsevier B.V.

  8. Energy of charged states in the acetanilide crystal: trapping of charge-transfer states at vacancies as a possible mechanism for optical damage.

    Science.gov (United States)

    Tsiaousis, D; Munn, R W

    2004-04-15

    Calculations for the acetanilide crystal yield the effective polarizability (16.6 A(3)), local electric field tensor, effective dipole moment (5.41 D), and dipole-dipole energy (-12.8 kJ/mol). Fourier-transform techniques are used to calculate the polarization energy P for a single charge in the perfect crystal (-1.16 eV); the charge-dipole energy W(D) is zero if the crystal carries no bulk dipole moment. Polarization energies for charge-transfer (CT) pairs combine with the Coulomb energy E(C) to give the screened Coulomb energy E(scr); screening is nearly isotropic, with E(scr) approximately E(C)/2.7. For CT pairs W(D) reduces to a term deltaW(D) arising from the interaction of the charge on each ion with the change in dipole moment on the other ion relative to the neutral molecule. The dipole moments calculated by density-functional theory methods with the B3LYP functional at the 6-311++G(**) level are 3.62 D for the neutral molecule, changing to 7.13 D and 4.38 D for the anion and cation, relative to the center of mass. Because of the large change in the anion, deltaW(D) reaches -0.9 eV and modifies the sequence of CT energies markedly from that of E(scr), giving the lowest two CT pairs at -1.98 eV and -1.41 eV. The changes in P and W(D) near a vacancy are calculated; W(D) changes for the individual charges because the vacancy removes a dipole moment and modifies the crystal dielectric response, but deltaW(D) and E(C) do not change. A vacancy yields a positive change DeltaP that scatters a charge or CT pair, but the change DeltaW(D) can be negative and large enough to outweigh DeltaP, yielding traps with depths that can exceed 150 meV for single charges and for CT pairs. Divacancies yield traps with depths nearly equal to the sum of those produced by the separate vacancies and so they can exceed 300 meV. These results are consistent with a mechanism of optical damage in which vacancies trap optically generated CT pairs that recombine and release energy; this can

  9. Phonon Assisted Multimagnon Optical Absorption and Long Lived Two-Magnon States in Undoped Lamellar Copper Oxides

    CERN Document Server

    Lorenzana, J

    1995-01-01

    We calculate the effective charge for multimagnon infrared (IR) absorption assisted by phonons in the parent insulating compounds of cuprate superconductors and the spectra for two-magnon absorption using interacting spin-wave theory. Recent measured bands in the mid IR [Perkins et al. Phys. Rev. Lett. {\\bf 71} 1621 (1993)] are interpreted as involving one phonon plus a two-magnon virtual bound state, and one phonon plus higher multimagnon absorption processes. The virtual bound state consists of a narrow resonance occurring when the magnon pair has total momentum close to $(\\pi,0)$.

  10. A modular optical sensor

    Science.gov (United States)

    Conklin, John Albert

    This dissertation presents the design of a modular, fiber-optic sensor and the results obtained from testing the modular sensor. The modular fiber-optic sensor is constructed in such manner that the sensor diaphragm can be replaced with different configurations to detect numerous physical phenomena. Additionally, different fiber-optic detection systems can be attached to the sensor. Initially, the modular sensor was developed to be used by university of students to investigate realistic optical sensors and detection systems to prepare for advance studies of micro-optical mechanical systems (MOMS). The design accomplishes this by doing two things. First, the design significantly lowers the costs associated with studying optical sensors by modularizing the sensor design. Second, the sensor broadens the number of physical phenomena that students can apply optical sensing techniques to in a fiber optics sensor course. The dissertation is divided into seven chapters covering the historical development of fiber-optic sensors, a theoretical overview of fiber-optic sensors, the design, fabrication, and the testing of the modular sensor developed in the course of this work. Chapter 1 discusses, in detail, how this dissertation is organized and states the purpose of the dissertation. Chapter 2 presents an historical overview of the development of optical fibers, optical pressure sensors, and fibers, optical pressure sensors, and optical microphones. Chapter 3 reviews the theory of multi-fiber optic detection systems, optical microphones, and pressure sensors. Chapter 4 presents the design details of the modular, optical sensor. Chapter 5 delves into how the modular sensor is fabricated and how the detection systems are constructed. Chapter 6 presents the data collected from the microphone and pressure sensor configurations of the modular sensor. Finally, Chapter 7 discusses the data collected and draws conclusions about the design based on the data collected. Chapter 7 also

  11. Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp

    Science.gov (United States)

    Sun, Qinqing; Hong, Yelong; Zhuang, Wei; Liu, Zhiwen; Chen, Jingbiao

    2012-11-01

    An excited-state Faraday anomalous dispersion optical filter (ESFADOF) operating on the rubidium 5P3/2-4D5/2 transition (1529.4 nm in vacuum) is demonstrated, which utilizes an electrodeless discharge lamp rather than a laser-pumped Rb vapor cell as in a traditional ESFADOF system. When the lamp operates in the red mode with 3.5 W radio-frequency driving power, a twin-peak line-shaped transmission spectrum is obtained, which has a maximum transmittance of 21.9% (without taking into account the system loss and fluorescence background). ESFADOF by exploiting the 5P3/2-4D3/2 transition (1529.3 nm in vacuum) is also explored. A single-peak transmission spectrum with a maximum transmittance of about 3% is achieved. The electrodeless discharge lamp based ESFADOF holds promise for realizing a compact, low-cost, and good long-term frequency-stabilized laser system for optical communication applications.

  12. Optical properties of Sm3+ -doped TeO2sbnd WO3sbnd GeO2 glasses for solid state lasers

    Science.gov (United States)

    Subrahmanyam, T.; Gopal, K. Rama; Suvarna, R. Padma; Jamalaiah, B. Chinna; Rao, Ch Srinivasa

    2018-03-01

    Sm3+ -doped oxyfluoride tellurite-tungsten (TWGSm) glasses were prepared by conventional melt quenching method. The optical properties were investigated through photoluminescence excitation, emission and luminescence decay analysis. The optical band gap energy was determined as ∼3.425 eV for 1.0 mol% of Sm3+ -doped TWGSm glass. Upon 404 nm excitation, the TWGSm glasses emit luminescence through 4G5/2 → 6H5/2 (563 nm), 4G5/2 → 6H7/2 (600 nm), 4G5/2 → 6H9/2 (645 nm) and 4G5/2 → 6H11/2 (705 nm) transitions. The Judd-Ofelt analysis was performed using absorption spectrum and obtained radiative parameters were used to estimate the laser characteristics of present glasses. The concentration of Sm3+ has been optimized as 1.0 mol% for efficient luminescence. The luminescence decay of 4G5/2 emission level was studied by monitoring the emission and excitation wavelengths at 600 and 404 nm, respectively. The experimental lifetime of 4G5/2 level was decrease with increase of Sm3+ concentration. The 1.0 mol% of Sm3+ -doped TWGSm glass could be the best choice for solid state visible lasers to emit orange luminescence.

  13. Structural, optical and magnetic study of (1-x)ZnO-xMgO composites prepared through solid state reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Adhlakha, Nidhi [Smart Materials Research Laboratory, Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Yadav, K.L., E-mail: klyadav35@yahoo.com [Smart Materials Research Laboratory, Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Kumar, Amit; Patel, Piyush Kumar; Rani, Jyoti; Rawat, Meera [Smart Materials Research Laboratory, Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2012-09-01

    We report the study of structural, optical and magnetic properties of (1-x)ZnO-xMgO (x=0.35, 0.40, 0.45 and 0.50) composites prepared by solid state reaction method. X-ray diffraction pattern confirms the presence of both the phases associated with ZnO (hexagonal) and MgO (cubic), which is revealed through the existence of (1 1 1) and (2 0 0) peaks in addition to ZnO peaks. The lattice parameter c as calculated using X-ray analysis undergoes shrinkage with increasing content of MgO. Microstructural analysis suggests that there is no variation in spherical elongated shape of grains with increasing concentration of MgO, where the average grain size is found to be {approx}600 nm. The band gap as calculated from optical absorption spectra obtained by diffuse reflectance method recorded at room temperature is tuned from 3.16 to 3.55 eV. Photoluminescence spectra consist of near band edge UV emission (389 nm) and defect level emission (503 nm). The increase of MgO concentration leads to blue shift of UV emission peaks. The magnetic measurements conducted using SQUID at 5 K temperature reveals ferromagnetism along with paramagnetic and superparamagnetic components. Saturation magnetisation (M{sub s}) is observed to be enhanced with MgO doping.

  14. Fermionic Linear Optics and Matchgates

    OpenAIRE

    Knill, E.

    2001-01-01

    Fermionic linear optics is efficiently classically simulatable. Here it is shown that the set of states achievable with fermionic linear optics and particle measurements is the closure of a low dimensional Lie group. The weakness of fermionic linear optics and measurements can therefore be explained and contrasted with the strength of bosonic linear optics with particle measurements. An analysis of fermionic linear optics is used to show that the two-qubit matchgates and the simulatable match...

  15. Semiconductor/solid electrolyte junctions for optical information storage. Solid-state electrochromic cell using lutecium diphthalocyanine

    Science.gov (United States)

    Sammells, A. F.; Pujare, N. U.

    1986-01-01

    The overall program goal is to perform a basic investigation of photoelectrochemical and electrochemical effects by electrochromic materials in solid polymer electrolyte (SPE) containing solid-state cells. Initial investigations have been directed towards reversible electrochromic behavior at the interface between lutecium diphthalocyanine deposited onto electronically conducting glass, and the homopolymer poly-2-acrylamido -2-methylpropane sulfonic acid (poly(Amps)). We wish to report here some recent work on solid-state electrochromic cells in which ionic mediation to thin-film deposits of lutecium diphthalocyanine is via the homopolymer poly-2-acrylamido-2-methyl propane sulfonic acid (poly-Amps). Separation between the working (LuH(Pc)2 deposited onto SnO2 conducting glass) and counter (CeCl3 in poly (Amps)) electrodes in these solid-state cells was realized by the use of the insoluble copolymer perfluorosulfonic acid (Nafion). Solid-state electrochromic cells were prepared using the supporting electrolytes (SEs) 0.1M Na2SO4 and 0.1M KCl. Upon subjecting the cell to anodic and cathodic voltage scans, up to four distinct color changes were observed varying from red (at anodic potentials) to violet (at cathodic potentials). Formation of the violet lutecium diphthalocyanine reduction product was not found contingent upon the absence of alkali cations as reported by others.

  16. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States

    Science.gov (United States)

    The aerosol emissions from prescribed fires in the Southeastern United States were measured and compared to emissions from laboratory burns with fuels collected from the site. Fine particulate matter (PM2.5), black carbon, and aerosol light scattering and absorption were characte...

  17. Decay dynamics of quantum dots influenced by the local density of optical states of two-dimensional photonic crystal membranes

    DEFF Research Database (Denmark)

    Julsgaard, Brian; Johansen, Jeppe; Stobbe, Søren

    2008-01-01

    We have performed time-resolved spectroscopy on InAs quantum dot ensembles in photonic crystal membranes. The influence of the photonic crystal is investigated by varying the lattice constant systematically. We observe a strong slow down of the quantum dots’ spontaneous emission rates as the two-...... the bandgap in good agreement with local density of states calculations....

  18. Structural, thermal, magnetic and optical characterization of undoped nanocrystalline ZnS prepared by solid state reaction

    Energy Technology Data Exchange (ETDEWEB)

    Faita, F.L., E-mail: flffisica@yahoo.com.br [Departamento de Física, Universidade Federal de Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil); Ersching, K. [Instituto Federal de Educação, Ciência e Tecnologia Catarinense – Campus Camboriú, 88340-000 Camboriú, SC (Brazil); Poffo, C.M. [Departamento de Física, Universidade Federal do Amazonas, 3000 Japiim, 69077000 Manaus, AM (Brazil); Benetti, L.C. [Departamento de Física, Universidade Federal de Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil); Trichês, D.M.; Souza, S.M. [Departamento de Física, Universidade Federal do Amazonas, 3000 Japiim, 69077000 Manaus, AM (Brazil); Viegas, A.D.C.; Lima, J.C. de [Departamento de Física, Universidade Federal de Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil)

    2014-03-25

    Highlights: • Nanocrystalline zinc blende and wurtzite ZnS phases produced by mechanical alloying. • Sulfur and/or zinc vacancies in the ZnS as-milled. • Magnetic and semiconductor behavior for the as-milled ZnS-10h. • Irreversible demagnetization and Curie temperature above room temperature. • Structural stability after annealing and aged of the ZnS-10h sample. -- Abstract: Nanocrystalline zinc blende and wurtzite ZnS phases with sulfur and/or zinc vacancies were obtained from a mechanically alloyed Zn{sub 50}S{sub 50} powder mixture. Structural, thermal, magnetic, optical and photoacoustic studies were carried out using X-ray diffraction, transmission electron microscopy, differential scanning calorimetry, vibrating sample magnetometer, UV–Vis absorption, photoluminescence and photoacoustic spectroscopy techniques. The cubic zinc blende (ZnS{sup ZB}) and hexagonal wurtzite (ZnS{sup WZ}) phases were nucleated in 3 h of milling and remained until 10 h when the milling process was stopped. The coexistence of these two phases was confirmed by high resolution transmission electron microscopy. X-ray diffraction measurements attested the structural stability of the sample milled for 10 h and aged for eighteen months and of the sample milled 10 h and annealed at 300 °C and 600 °C. Differential scanning calorimetry measurements showed the unreacted sulfur in molecular form (rings and/or chains). Magnetic behavior was observed for as-milled sample and Curie temperature was estimated at 430 °C. Moreover, an irreversible behavior of magnetic properties was observed and correlated with changes on the structural vacancies densities. The UV–Vis absorption spectra and McLean analysis showed an optical band gap around 3.4 eV and 3.9 for ZnS{sup ZB} and ZnS{sup WZ} phases, respectively. The sample milled for 10 h showed low blue photoemission intensity centered at 470 nm and thermal diffusivity around 0.02 cm{sup 2}/s.

  19. Investigation of optical neuro-monitoring technique for detection of maintenance and emergence states during general anesthesia.

    Science.gov (United States)

    Hernandez-Meza, Gabriela; Izzetoglu, Meltem; Osbakken, Mary; Green, Michael; Abubakar, Hawa; Izzetoglu, Kurtulus

    2017-02-18

    The American Society of Anesthesiologist recommends peripheral physiological monitoring during general anesthesia, which offers no information regarding the effects of anesthetics on the brain. Since no "gold standard" method exists for this evaluation, such a technique is needed to ensure patient comfort, procedure quality and safety. In this study we investigated functional near infrared spectroscopy (fNIRS) as possible monitor of anesthetic effects on the prefrontal cortex. Anesthetic drugs, such as sevoflurane, suppress the cerebral metabolism and alter the cerebral blood flow. We hypothesize that fNIRS derived features carry information on the effects of anesthetics on the prefrontal cortex (PFC) that can be used for the classification of the anesthetized state. In this study, patients were continuously monitored using fNIRS, BIS and standard monitoring during surgical procedures under sevoflurane general anesthesia. Maintenance and emergence states were identified and fNIRS features were identified and compared between states. Linear and non-linear machine learning algorithms were investigated as methods for the classification of maintenance/emergence. The results show that changes in oxygenated (HbO2) and deoxygenated hemoglobin (HHb) concentration and blood volume measured by fNIRS were associated with the transition between maintenance and emergence that occurs as a result of sevoflurane washout. We observed that during maintenance the signal is relatively more stable than during emergence. Maintenance and emergence states were classified with 94.7% accuracy with a non-linear model using the locally derived mean total hemoglobin, standard deviation of HbO2, minimum and range of HbO2 and HHb as features. These features were found to be correlated with the effects of sevoflurane and to carry information that allows real time and automatic classification of the anesthetized state with high accuracy.

  20. Microwave detected, microwave-optical double resonance of NH3, NH2D, NHD2, and ND3. I. Structure and force field of the à state

    Science.gov (United States)

    Henck, Steven A.; Mason, Martin A.; Yan, Wen-Bin; Lehmann, Kevin K.; Coy, Stephen L.

    1995-03-01

    Microwave detected, microwave-optical double resonance was used to record the à state electronic spectrum of NH3, NH2D, and NHD2 with both vibrational and rotational resolution. To investigate ND3 with the same resolution as we had with our hydrogen containing isotopomers, a strip-line cell was constructed allowing the simultaneous passage of radio-frequency and ultraviolet radiation. Rotational constants were obtained as a function of ν2 excitation and an à state equilibrium bond length was estimated at 1.055(8) Å. In addition, the harmonic force field for the à state has been experimentally determined. fhh, fαα-fαα', and frr were found to be 1.06(4) aJ/Å2, 0.25(2) aJ, and 4.9 aJ/Å2, respectively. This calculated harmonic force field predicts that the asymmetry observed in the NH3 24 band is due to a strong anharmonic interaction with the 43 level and the broad feature observed in the dispersed fluorescence spectrum previously assigned to the 11 band is more likely attributable to the 42 level.

  1. Optical characterization and carriers transfer between localized and delocalized states in Si-doped GaAsN/GaAs epilayer

    Energy Technology Data Exchange (ETDEWEB)

    Hassen, F., E-mail: fohassen@kku.edu.sa [Laboratoire de Micro-optoélectronique et nanostructures (LMON), Faculté des Sciences de Monastir, Université de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia); Physics Department, College of Science, King Khalid University, Al-Greigar Abha (Saudi Arabia); Zaaboub, Z.; Bouhlel, M.; Naffouti, M.; Maaref, H. [Laboratoire de Micro-optoélectronique et nanostructures (LMON), Faculté des Sciences de Monastir, Université de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia); Garni, N.M. [Physics Department, College of Science, King Khalid University, Al-Greigar Abha (Saudi Arabia)

    2015-11-02

    The optical properties and recombination processes, in low nitrogen content GaAsN/GaAs structure, are studied by continuous wave photoluminescence (cw PL) and time resolved photoluminescence (TRPL) versus temperature. It is found that the decay process strongly depends on the sample temperature. We showed that there are three temperature domains. For temperature lower than 40 K, the decay time is about 2000 ps and the recombination process is purely radiative. Between 40 K and 80 K, there is a competition between radiative and non radiative processes and the decay time is very sensitive to the temperature variation. For temperatures higher than 80 K the decay time is found to be close to 1000 ps and the carriers' recombination is dominated by the non radiative process via the localized states. The photocarrier transfer between localized and delocalized states is observed on the associated delay spectra and it is found to be 800 ps. - Highlights: • Recombination process in diluted GaAsN studied by time resolved photoluminescence. • Three recombination processes versus temperature are shown and compared to FWHM. • The carriers transfer time between localized and delocalized states is measured.

  2. Efficient all-solid-state mid-infrared optical parametric oscillator based on resonantly pumped 1.645 μm Er:YAG laser.

    Science.gov (United States)

    Wang, Mingjian; Zhu, Liang; Chen, Weibiao; Fan, Dianyuan

    2012-07-01

    We first report an all-solid-state tunable mid-infrared singly resonant optical parametric oscillator based on a 1532 nm laser diode resonantly pumped, Q-switched 1.645 μm Er:YAG laser. An MgO-doped periodically poled lithium niobate was used as the nonlinear material. At the pulse repetition frequency of 2 KHz, a maximum overall average output power of 0.95 W with pump power of 2.8 W was achieved, corresponding to a conversion efficiency of 34% and a slope efficiency of 38%. The temperature tuning was performed giving signal and idler ranges of 2.67 to 2.71 μm and 4.18 to 4.31 μm, respectively.

  3. A novel chalcone-analogue as an optical sensor based on ground and excited states intramolecular charge transfer: A combined experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Fayed, Tarek A. [Chemistry Department, Faculty of Science, Tanta University, 31527-Tanta (Egypt)], E-mail: tfayed2003@yahoo.co.uk

    2006-05-31

    Steady-state absorption and emission spectroscopic techniques as well as semiempirical quantum calculations at the AM1 and ZINDO/S levels have been used to investigate the intramolecular charge transfer (ICT) behaviour of a novel chalcone namely; 1-(2-pyridyl)-5-(4-dimethylaminophenyl)-penta-2,4-diene-1-one, DMAC. The ground state DMAC has a significant ICT character and a great sensitivity to the hydrogen bond donating ability of the medium as reflected from the change of the absorption spectra in pure and mixed organic solvents. On the other hand, its excited singlet state exhibits high ICT characters as manifested by the drastic solvatochromic effects. These results are consistent with the data of charge density calculations in both the ground and excited state, which indicates enhancement of the charge transfer from the dimethyl-amino group to the carbonyl oxygen upon excitation. Also, the dipole moment calculations indicates a highly dipolar excited singlet state ({delta}{mu} {sub eg} = 15.5 D). The solvent dependence of the fluorescence quantum yield of DMAC was interpreted on the basis of positive and negative solvatokinetic as well as the hydrogen bonding effects. Incorporation of the 2-pyridyl group in the chemical structure of the present DMAC led to design of a potential optical sensor for probing acidity of the medium and metal cations such as Zn{sup 2+}, Cd{sup 2+} and Hg{sup 2+}. This was concluded from the high acidochromic and metallochromic behaviour of DMAC on adding such cations to its acetonitrile solutions.

  4. Coherent coupling between a molecular vibration and Fabry-Perot optical cavity to give hybridized states in the strong coupling limit (Presentation Recording)

    Science.gov (United States)

    Long, James P.; Owrutsky, Jeff C.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Compton, Ryan; Spann, Bryan; Simpkins, Blake S.

    2015-09-01

    Coherent coupling between an optical-transition and confined optical mode, when sufficiently strong, gives rise to new modes separated by the vacuum Rabi splitting. Such systems have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we bring strong polaritonic-coupling in cavities from the visible into the infrared where a new range of static and dynamic vibrational processes await investigation. First, we experimentally and numerically describe coupling between a Fabry-Perot cavity and carbonyl stretch (~1730 cm 1) in poly-methylmethacrylate. As is requisite for "strong coupling", the measured vacuum Rabi splitting of 132 cm 1 is much larger than the full width of the cavity (34 cm-1) and the inhomogeneously broadened carbonyl-stretch (24 cm-1). Agreement with classical theories providea evidence that the mixed-states are relatively immune to inhomogeneous broadening. Next, we investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of urethane. Rabi splittings increases from 0 to ~104 cm-1 with concentrations from 0-20 vol% and are in excellent agreement to an analytical description using no fitting parameters. Ultra-fast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band as well as modifications of energy relaxation times. Finally, we demonstrate coupling to liquids using the C-O stretching band (~1985 cm-1) of Mo(CO)6 in an aqueous solution. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied statically and dynamically.

  5. Experimental and Computational Method for Determining Parameters of Stress-Strain State from the Data Obtainable by Interference Optical Techniques

    Directory of Open Access Journals (Sweden)

    Razumovsky I.

    2010-06-01

    Full Text Available Experimental and computational method for determining parameters of stress-strain state is proposed which is based on estimation of compliance between the data sets obtained experimentally and the results of numerical calculations of the boundary problems in formulation of which all distinctive features of area geometry, character of the loads being considered and deformation characteristics of materials are taken into account. The procedure proposed was checked at a number of practically important problems.

  6. A multi-angle aerosol optical depth retrieval algorithm for geostationary satellite data over the United States

    Directory of Open Access Journals (Sweden)

    H. Zhang

    2011-12-01

    Full Text Available Aerosol optical depth (AOD retrievals from geostationary satellites have high temporal resolution compared to the polar orbiting satellites and thus enable us to monitor aerosol motion. However, current Geostationary Operational Environmental Satellites (GOES have only one visible channel for retrieving aerosols and hence the retrieval accuracy is lower than those from the multichannel polar-orbiting satellite instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS. The operational GOES AOD retrieval algorithm (GOES Aerosol/Smoke Product, GASP uses 28-day composite images from the visible channel to derive surface reflectance, which can produce large uncertainties. In this work, we develop a new AOD retrieval algorithm for the GOES imager by applying a modified Multi-Angle Implementation of Atmospheric Correction (MAIAC algorithm. The algorithm assumes the surface Bidirectional Reflectance Distribution Function (BRDF in the channel 1 of GOES is proportional to seasonal average MODIS BRDF in the 2.1 μm channel. The ratios between them are derived through time series analysis of the GOES visible channel images. The results of AOD and surface reflectance retrievals are evaluated through comparisons against those from Aerosol Robotic Network (AERONET, GASP, and MODIS. The AOD retrievals from the new algorithm demonstrate good agreement with AERONET retrievals at several sites across the US with correlation coefficients ranges from 0.71 to 0.85 at five out of six sites. At the two western sites Railroad Valley and UCSB, the MAIAC AOD retrievals have correlations of 0.8 and 0.85 with AERONET AOD, and are more accurate than GASP retrievals, which have correlations of 0.7 and 0.74 with AERONET AOD. At the three eastern sites, the correlations with AERONET AOD are from 0.71 to 0.81, comparable to the GASP retrievals. In the western US where surface reflectance is higher than 0.15, the new algorithm also produces larger AOD retrieval

  7. Excited states

    CERN Document Server

    Lim, Edward C

    1974-01-01

    Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab

  8. Quantum distillation: Dynamical generation of low-entropy states of strongly correlated fermions in an optical lattice

    Energy Technology Data Exchange (ETDEWEB)

    Heidrich-Meisner, F. [Institut fur Physikalische Chemie der RWTH; Manmana, S. R. [Ecole Polytechnique Federale de Lausanne, Switzerland; Rigol, M. [Georgetown University; Muramatsu, A. [Universitat Stuttgart, Institute fur Plasmaforschung, Germany; Feiguin, A. E. [University of Maryland; Dagotto, Elbio R [ORNL

    2009-01-01

    Correlations between particles can lead to subtle and sometimes counterintuitive phenomena. We analyze one such case, occurring during the sudden expansion of fermions in a lattice when the initial state has a strong admixture of double occupancies. We promote the notion of quantum distillation: during the expansion and in the case of strongly repulsive interactions, doublons group together, forming a nearly ideal band insulator, which is metastable with low entropy. We propose that this effect could be used for cooling purposes in experiments with two-component Fermi gases.

  9. Experimental linear-optics simulation of multipartite non-locality in the ground state of a quantum Ising ring.

    Science.gov (United States)

    Orieux, Adeline; Boutari, Joelle; Barbieri, Marco; Paternostro, Mauro; Mataloni, Paolo

    2014-11-24

    Critical phenomena involve structural changes in the correlations of its constituents. Such changes can be reproduced and characterized in quantum simulators able to tackle medium-to-large-size systems. We demonstrate these concepts by engineering the ground state of a three-spin Ising ring by using a pair of entangled photons. The effect of a simulated magnetic field, leading to a critical modification of the correlations within the ring, is analysed by studying two- and three-spin entanglement. In particular, we connect the violation of a multipartite Bell inequality with the amount of tripartite entanglement in our ring.

  10. Black carbon and particulate matter optical properties from agricultural residue burning in the Pacific Northwest United States

    Science.gov (United States)

    Holder, A. L.; Aurell, J.; Urbanski, S. P.; Hays, M. D.; Gullett, B.

    2014-12-01

    Burning of agricultural residues in field is a common management practice that is used to quickly clear fields of post-harvest vegetation and to stimulate seed production in some grass species. Although cropland burning contributes only a minor fraction to the United States particulate matter and black carbon emissions, it can have substantial impacts on local and regional air quality and visibility. During the 2013 burning season in the Pacific Northwest United States emissions were measured from a series of burns carried out on cropland. Kentucky bluegrass residues (Poa pratensis), winter wheat stubble (Triticum aestivum), and chemically fallowed winter wheat stubble were burned in field. Particulate matter, light absorption and scattering, and black carbon concentrations were measured at ground level downwind of the field. Although particulate emissions varied substantially by fuel type and even among fields of the same fuel with different treatments (i.e., light versus heavy residues) the black carbon fraction of particulate matter was consistently less than 5% and accordingly single scattering albedos were above 0.9. The emissions exhibited strong spectral variation, with absorption angstrom exponents in the range of 3 - 5 in the wavelength range of 405 to 532 nm. Laboratory burns with residues collected from the fields produced emissions that were considerably more absorbing with single scattering albedos near 0.65 and lower absorption angstrom exponents of 1 - 2.

  11. Optical Computing

    Indian Academy of Sciences (India)

    tal computers are still some years away, however a number of devices that can ultimately lead to real optical computers have already been manufactured, including optical logic gates, optical switches, optical interconnections, and opti- cal memory. The most likely near-term optical computer will really be a hybrid composed ...

  12. Gaussian optical Ising machines

    Science.gov (United States)

    Clements, William R.; Renema, Jelmer J.; Wen, Y. Henry; Chrzanowski, Helen M.; Kolthammer, W. Steven; Walmsley, Ian A.

    2017-10-01

    It has recently been shown that optical parametric oscillator (OPO) Ising machines, consisting of coupled optical pulses circulating in a cavity with parametric gain, can be used to probabilistically find low-energy states of Ising spin systems. In this work, we study optical Ising machines that operate under simplified Gaussian dynamics. We show that these dynamics are sufficient for reaching probabilities of success comparable to previous work. Based on this result, we propose modified optical Ising machines with simpler designs that do not use parametric gain yet achieve similar performance, thus suggesting a route to building much larger systems.

  13. Synthesis of Mesoporous Silica Monoliths — A Novel Approach Towards Fabrication of Solid-State Optical Sensors for Environmental Applications

    Science.gov (United States)

    Prabhakaran, D.; Subashini, C.; Akhila Maheswari, M.

    2016-10-01

    Mesoporous silica monoliths are an attractive area of research owing to their high specific surface area, uniform channels and mesoporous size (2-30nm). This paper deals with the direct templating synthesis of a mesoporous worm-like silica monolithic material using F127 — a triblock copolymer, by micro-emulsion technique using trimethyl benzene (TMB), as the solvent. The synthesized silica monolith is characterized using SEM-EDAX, XRD, BET, NMR and FT-IR. The monolith shows an ordered worm-like mesoporous structure with tuneable through pores, an excellent host for the anchoring of chromo-ionophores for the naked-eye metal ion-sensing. The mesoporous monoliths were loaded with 4-dodecyl-6-(2-pyridylazo)-phenol (DPAP) ligand through direct immobilization, thereby acting as solid-state naked-eye colorimetric ion-sensors for the sensing toxic Pb(II) ions at parts-per-billion (ppb) level in various industrial and environmental systems. The influence of various experimental parameters such as solution pH, limiting ligand loading concentration, amount of monolith material, matrix tolerance level, limit of detection and quantification has been studied and optimized.

  14. Tunable micro-optics

    CERN Document Server

    Duppé, Claudia

    2015-01-01

    Presenting state-of-the-art research into the dynamic field of tunable micro-optics, this is the first book to provide a comprehensive survey covering a varied range of topics including novel materials, actuation concepts and new imaging systems in optics. Internationally renowned researchers present a diverse range of chapters on cutting-edge materials, devices and subsystems, including soft matter, artificial muscles, tunable lenses and apertures, photonic crystals, and complete tunable imagers. Special contributions also provide in-depth treatment of micro-optical characterisation, scanners, and the use of natural eye models as inspiration for new concepts in advanced optics. With applications extending from medical diagnosis to fibre telecommunications, Tunable Micro-optics equips readers with a solid understanding of the broader technical context through its interdisciplinary approach to the realisation of new types of optical systems. This is an essential resource for engineers in industry and academia,...

  15. Optical Nano Antennas: State of the Art, Scope and Challenges as a Biosensor Along with Human Exposure to Nano-Toxicology

    Directory of Open Access Journals (Sweden)

    Abu Sulaiman Mohammad Zahid Kausar

    2015-04-01

    Full Text Available The concept of optical antennas in physical optics is still evolving. Like the antennas used in the radio frequency (RF regime, the aspiration of optical antennas is to localize the free propagating radiation energy, and vice versa. For this purpose, optical antennas utilize the distinctive properties of metal nanostructures, which are strong plasmonic coupling elements at the optical regime. The concept of optical antennas is being advanced technologically and they are projected to be substitute devices for detection in the millimeter, infrared, and visible regimes. At present, their potential benefits in light detection, which include polarization dependency, tunability, and quick response times have been successfully demonstrated. Optical antennas also can be seen as directionally responsive elements for point detectors. This review provides an overview of the historical background of the topic, along with the basic concepts and parameters of optical antennas. One of the major parts of this review covers the use of optical antennas in biosensing, presenting biosensing applications with a broad description using different types of data. We have also mentioned the basic challenges in the path of the universal use of optical biosensors, where we have also discussed some legal matters.

  16. Optical nano antennas: state of the art, scope and challenges as a biosensor along with human exposure to nano-toxicology.

    Science.gov (United States)

    Kausar, Abu Sulaiman Mohammad Zahid; Reza, Ahmed Wasif; Latef, Tarik Abdul; Ullah, Mohammad Habib; Karim, Mohammad Ershadul

    2015-04-15

    The concept of optical antennas in physical optics is still evolving. Like the antennas used in the radio frequency (RF) regime, the aspiration of optical antennas is to localize the free propagating radiation energy, and vice versa. For this purpose, optical antennas utilize the distinctive properties of metal nanostructures, which are strong plasmonic coupling elements at the optical regime. The concept of optical antennas is being advanced technologically and they are projected to be substitute devices for detection in the millimeter, infrared, and visible regimes. At present, their potential benefits in light detection, which include polarization dependency, tunability, and quick response times have been successfully demonstrated. Optical antennas also can be seen as directionally responsive elements for point detectors. This review provides an overview of the historical background of the topic, along with the basic concepts and parameters of optical antennas. One of the major parts of this review covers the use of optical antennas in biosensing, presenting biosensing applications with a broad description using different types of data. We have also mentioned the basic challenges in the path of the universal use of optical biosensors, where we have also discussed some legal matters.

  17. Optical Nano Antennas: State of the Art, Scope and Challenges as a Biosensor Along with Human Exposure to Nano-Toxicology

    Science.gov (United States)

    Kausar, Abu Sulaiman Mohammad Zahid; Reza, Ahmed Wasif; Latef, Tarik Abdul; Ullah, Mohammad Habib; Karim, Mohammad Ershadul

    2015-01-01

    The concept of optical antennas in physical optics is still evolving. Like the antennas used in the radio frequency (RF) regime, the aspiration of optical antennas is to localize the free propagating radiation energy, and vice versa. For this purpose, optical antennas utilize the distinctive properties of metal nanostructures, which are strong plasmonic coupling elements at the optical regime. The concept of optical antennas is being advanced technologically and they are projected to be substitute devices for detection in the millimeter, infrared, and visible regimes. At present, their potential benefits in light detection, which include polarization dependency, tunability, and quick response times have been successfully demonstrated. Optical antennas also can be seen as directionally responsive elements for point detectors. This review provides an overview of the historical background of the topic, along with the basic concepts and parameters of optical antennas. One of the major parts of this review covers the use of optical antennas in biosensing, presenting biosensing applications with a broad description using different types of data. We have also mentioned the basic challenges in the path of the universal use of optical biosensors, where we have also discussed some legal matters. PMID:25884787

  18. Models of optical quantum computing

    Directory of Open Access Journals (Sweden)

    Krovi Hari

    2017-03-01

    Full Text Available I review some work on models of quantum computing, optical implementations of these models, as well as the associated computational power. In particular, we discuss the circuit model and cluster state implementations using quantum optics with various encodings such as dual rail encoding, Gottesman-Kitaev-Preskill encoding, and coherent state encoding. Then we discuss intermediate models of optical computing such as boson sampling and its variants. Finally, we review some recent work in optical implementations of adiabatic quantum computing and analog optical computing. We also provide a brief description of the relevant aspects from complexity theory needed to understand the results surveyed.

  19. Perspectives of optical lattices with state-dependent tunneling in approaching quantum magnetism in the presence of the external harmonic trapping potential

    Energy Technology Data Exchange (ETDEWEB)

    Sotnikov, Andrii, E-mail: a_sotnikov@kipt.kharkov.ua [Akhiezer Institute for Theoretical Physics, NSC KIPT, Akademichna St. 1, 61108 Kharkiv (Ukraine); Karazin Kharkiv National University, Svobody Sq. 4, 61022 Kharkiv (Ukraine)

    2016-03-11

    We study theoretically potential advantages of two-component mixtures in optical lattices with state-dependent tunneling for approaching long-range-order phases and detecting easy-axis antiferromagnetic correlations. While we do not find additional advantages of mixtures with large hopping imbalance for approaching quantum magnetism in a harmonic trap, it is shown that a nonzero difference in hopping amplitudes remains highly important for a proper symmetry breaking in the pseudospin space for the single-site-resolution imaging and can be advantageously used for a significant increase of the signal-to-noise ratio and thus detecting long-range easy-axis antiferromagnetic correlations in the corresponding experiments. - Highlights: • The most optimal ways to observe magnetic correlations in a quantum-gas microscope are presented. • Importance of a controlled symmetry breaking for antiferromagnetism is studied. • A quantitative theoretical analysis for the entropy in ultracold fermionic mixtures is performed. • No advantages from realizations with the strong hopping asymmetry are found.

  20. Structural, optical, and magnetic properties of polycrystalline Co-doped TiO{sub 2} synthesized by solid-state method

    Energy Technology Data Exchange (ETDEWEB)

    Bouaine, Abdelhamid, E-mail: abdelhamidfethi@yahoo.fr [Laboratoire d' Etude des Materiaux (LEM), Departement de Physique, Faculte des Sciences Exactes et des Sciences de la Nature et de la vie, Universite de Jijel, cite Oued-Aissa, B.P 98, Jijel 18000 (Algeria); Institut de Physique et Chimie des Materiaux de Strasbourg (IPCMS), UMR 7504 CNRS - UdS, 23 rue du Loess, B.P. 43, 67034 Strasbourg Cedex 2 (France); Schmerber, G.; Ihiawakrim, D.; Derory, A. [Institut de Physique et Chimie des Materiaux de Strasbourg (IPCMS), UMR 7504 CNRS - UdS, 23 rue du Loess, B.P. 43, 67034 Strasbourg Cedex 2 (France)

    2012-11-01

    Highlights: Black-Right-Pointing-Pointer Influence of Co doping on the TiO{sub 2} tetragonal structure. Black-Right-Pointing-Pointer Decrease of the energy band gap after doping with Co atoms. Black-Right-Pointing-Pointer Appearance of ferromagnetism in Co-doped TiO{sub 2} diluted magnetic semiconductors. - Abstract: We have used a solid-state method to synthesize polycrystalline Co-doped TiO{sub 2} diluted magnetic semiconductors (DMSs) with Co concentrations of 0, and 0.5 at.%. X-ray diffraction patterns reveal that Co doped TiO{sub 2} crystallizes in the rutile tetragonal structure with no additional peaks. Transmission electron microscopy (TEM) did not indicate the presence of magnetic parasitic phases and confirmed that Co ions are uniformly distributed inside the samples. Optical absorbance measurements showed an energy band gap which decreases after doping with the Co atoms into the TiO{sub 2} matrix. Magnetization measurements revealed a paramagnetic behavior for the as-prepared Co-doped TiO{sub 2} and a ferromagnetic behavior for the same samples after annealed under a mixture of H{sub 2}/N{sub 2} atmosphere.

  1. Comparison of aerosol optical depth of UV-B monitoring and research program (UVMRP), AERONET and MODIS over continental united states

    Science.gov (United States)

    Tang, Hongzhao; Chen, Maosi; Davis, John; Gao, Wei

    2013-06-01

    The concern about the role of aerosols as to their effect in the Earth-Atmosphere system requires observation at multiple temporal and spatial scales. The Moderate Resolution Imaging Spectroradiameters (MODIS) is the main aerosol optical depth (AOD) monitoring satellite instrument, and its accuracy and uncertainty need to be validated against ground based measurements routinely. The comparison between two ground AOD measurement programs, the United States Department of Agriculture (USDA) Ultraviolet-B Monitoring and Research Program (UVMRP) and the Aerosol Robotic Network (AERONET) program, confirms the consistency between them. The intercomparison between the MODIS AOD, the AERONET AOD, and the UVMRP AOD suggests that the UVMRP AOD measurements are suited to be an alternative ground-based validation source for satellite AOD products. The experiments show that the spatial-temporal dependency between the MODIS AOD and the UVMRP AOD is positive in the sense that the MODIS AOD compare more favorably with the UVMRP AOD as the spatial and temporal intervals are increased. However, the analysis shows that the optimal spatial interval for all time windows is defined by an angular subtense of around 1° to 1.25°, while the optimal time window is around 423 to 483 minutes at most spatial intervals. The spatial-temporal approach around 1.25° & 423 minutes shows better agreement than the prevalent strategy of 0.25° & 60 minutes found in other similar investigations.

  2. Emulsified and Liquid-Liquid Phase-Separated States of α-Pinene Secondary Organic Aerosol Determined Using Aerosol Optical Tweezers.

    Science.gov (United States)

    Gorkowski, Kyle; Donahue, Neil M; Sullivan, Ryan C

    2017-11-07

    We demonstrate the first capture and analysis of secondary organic aerosol (SOA) on a droplet suspended in an aerosol optical tweezers (AOT). We examine three initial chemical systems of aqueous NaCl, aqueous glycerol, and squalane at ∼75% relative humidity. For each system we added α-pinene SOA-generated directly in the AOT chamber-to the trapped droplet. The resulting morphology was always observed to be a core of the original droplet phase surrounded by a shell of the added SOA. We also observed a stable emulsion of SOA particles when added to an aqueous NaCl core phase, in addition to the shell of SOA. The persistence of the emulsified SOA particles suspended in the aqueous core suggests that this metastable state may persist for a significant fraction of the aerosol lifecycle for mixed SOA/aqueous particle systems. We conclude that the α-pinene SOA shell creates no major diffusion limitations for water, glycerol, and squalane core phases under humid conditions. These experimental results support the current prompt-partitioning framework used to describe organic aerosol in most atmospheric chemical transport models and highlight the prominence of core-shell morphologies for SOA on a range of core chemical phases.

  3. EDITORIAL: Optical orientation Optical orientation

    Science.gov (United States)

    SAME ADDRESS *, Yuri; Landwehr, Gottfried

    2008-11-01

    priority of the discovery in the literature, which was partly caused by the existence of the Iron Curtain. I had already enjoyed contact with Boris in the 1980s when the two volumes of Landau Level Spectroscopy were being prepared [2]. He was one of the pioneers of magneto-optics in semiconductors. In the 1950s the band structure of germanium and silicon was investigated by magneto-optical methods, mainly in the United States. No excitonic effects were observed and the band structure parameters were determined without taking account of excitons. However, working with cuprous oxide, which is a direct semiconductor with a relative large energy gap, Zakharchenya and his co-worker Seysan showed that in order to obtain correct band structure parameters, it is necessary to take excitons into account [3]. About 1970 Boris started work on optical orientation. Early work by Hanle in Germany in the 1920s on the depolarization of luminescence in mercury vapour by a transverse magnetic field was not appreciated for a long time. Only in the late 1940s did Kastler and co-workers in Paris begin a systematic study of optical pumping, which led to the award of a Nobel prize. The ideas of optical pumping were first applied by Georges Lampel to solid state physics in 1968. He demonstrated optical orientation of free carriers in silicon. The detection method was nuclear magnetic resonance; optically oriented free electrons dynamically polarized the 29Si nuclei of the host lattice. The first optical detection of spin orientation was demonstrated by with the III-V semiconductor GaSb by Parsons. Due to the various interaction mechanisms of spins with their environment, the effects occurring in semiconductors are naturally more complex than those in atoms. Optical detection is now the preferred method to detect spin alignment in semiconductors. The orientation of spins in crystals pumped with circularly polarized light is deduced from the degree of circular polarization of the recombination

  4. Comparison of spontaneous brain activity revealed by regional homogeneity in AQP4-IgG neuromyelitis optica-optic neuritis versus MOG-IgG optic neuritis patients: a resting-state functional MRI study

    Directory of Open Access Journals (Sweden)

    Wang J

    2017-10-01

    Ho values in the posterior lobe of the right cerebellum.AQP4-Ig+NMO-ON subjects showed higher ReHo values in the left precentral/postcentral gyrus and right superior temporal gyrus. Conclusion: AQP4-IgG+NMO-ON and MOG-IgG+ON subjects showed abnormal synchronized neuronal activity in many brain regions, which is consistent with deficits in visual, motor, and cognitive function. Furthermore, different patterns of synchronized neuronal activity occurred in the AQP4-IgG+NMO-ON and MOG-IgG+ON. Keywords: neuromyelitis optica-optic neuritis, MOG-IgG, AQP4-IgG, regional homogeneity, resting state, functional magnetic resonance imaging

  5. Modern optics

    CERN Document Server

    Guenther, B D

    2015-01-01

    Modern Optics is a fundamental study of the principles of optics using a rigorous physical approach based on Maxwell's Equations. The treatment provides the mathematical foundations needed to understand a number of applications such as laser optics, fiber optics and medical imaging covered in an engineering curriculum as well as the traditional topics covered in a physics based course in optics. In addition to treating the fundamentals in optical science, the student is given an exposure to actual optics engineering problems such as paraxial matrix optics, aberrations with experimental examples, Fourier transform optics (Fresnel-Kirchhoff formulation), Gaussian waves, thin films, photonic crystals, surface plasmons, and fiber optics. Through its many pictures, figures, and diagrams, the text provides a good physical insight into the topics covered. The course content can be modified to reflect the interests of the instructor as well as the student, through the selection of optional material provided in append...

  6. Optical absorption, luminescence, and energy transfer processes studies for Dy3+/Tb3+-codoped borate glasses for solid-state lighting applications

    Science.gov (United States)

    Lakshminarayana, G.; Kaky, Kawa M.; Baki, S. O.; Lira, A.; Caldiño, U.; Kityk, I. V.; Mahdi, M. A.

    2017-10-01

    + concentrations under 350 and 395 nm excitations. Following the analyzed optical data, the singly Dy3+ or Tb3+-doped and Dy3+/Tb3+-codoped glasses could be suggested as promising materials for their applications in solid state light emitting diodes and luminescent display devices.

  7. Optical fiber rotation sensing

    CERN Document Server

    Burns, William K; Kelley, Paul

    1993-01-01

    Optical Fiber Rotation Sensing is the first book devoted to Interferometric Fiber Optic Gyros (IFOG). This book provides a complete overview of IFOGs, beginning with a historical review of IFOG development and including a fundamental exposition of basic principles, a discussion of devices and components, and concluding with industry reports on state-of-the-art activity. With several chapters contributed by principal developers of this solid-state device, the result is an authoritative work which will serve as the resource for researchers, students, and users of IFOGs.* * State-of-t

  8. Optically Anomalous Crystals

    CERN Document Server

    Shtukenberg, Alexander; Kahr, Bart

    2007-01-01

    Optical anomalies in crystals are puzzles that collectively constituted the greatest unsolved problems in crystallography in the 19th Century. The most common anomaly is a discrepancy between a crystal’s symmetry as determined by its shape or by X-ray analysis, and that determined by monitoring the polarization state of traversing light. These discrepancies were perceived as a great impediment to the development of the sciences of crystals on the basis of Curie’s Symmetry Principle, the grand organizing idea in the physical sciences to emerge in the latter half of the 19th Century. Optically Anomalous Crystals begins with an historical introduction covering the contributions of Brewster, Biot, Mallard, Brauns, Tamman, and many other distinguished crystallographers. From this follows a tutorial in crystal optics. Further chapters discuss the two main mechanisms of optical dissymmetry: 1. the piezo-optic effect, and 2. the kinetic ordering of atoms. The text then tackles complex, inhomogeneous crystals, and...

  9. Optical properties of CaSrSiO4:Eu2+ phosphors prepared by using a solid-state reaction method for white light-emitting diodes

    Science.gov (United States)

    Kwon, Bong-Joon; Gandhi, Sakthivel; Woo, Hyun-Joo; Cho, Kyungmi; Lee, Ho Sueb; Jang, Kiwan; Shin, Dong-Soo; Jeong, Jung Hyun

    2015-08-01

    We have studied the optical properties of CaSrSiO4:Eu2+ phosphors synthesized by using the conventional solid-state reaction method and the role of Eu3+ minority ions in those phosphors. The maximum photoluminescence integrated peak intensity was observed for the Ca1- x Sr1- x SiO4:2 xEu2+ (2 x = 0.0050) phosphor. A red shift of 3 nm from 510 to 513 nm in the emission wavelength of the CaSrSiO4:Eu2+ phosphors was observed with increasing Eu concentration. Under an excitation of 244 nm, the Ca1- x Sr1- x SiO4:2 xEu2+ (2 x = 0.0050) phosphor showed a broad emission band at about 515 nm due to the 4 f 65 d 1 → 4 f 7 transition of the Eu2+ and small sharp peaks at about 594, 612, and 701 nm corresponding to the 5 D 0-7 F J transitions of Eu3+. The existence of Eu3+ minority ions in the phosphor resulted in a broader full width at half maximum in the emission of the phosphor at the excitation wavelength of 390 ~ 400 nm, even at low Eu concentration. The white light-emitting diodes (LEDs) were fabricated by using the CaSrSiO4:Eu2+ phosphors and 400-nm GaN-based LED chips and exhibited a high color rendering index of ~ 95 and correlated color temperature of ~ 5370 K. The broad emissions of the CaSrSiO4:Eu2+ phosphors combined with the GaN-based LED chips are suitable for the realization of white LEDs.

  10. Effects of p67phox on the mitochondrial oxidative state in the kidney of Dahl salt-sensitive rats: optical fluorescence 3-D cryoimaging.

    Science.gov (United States)

    Salehpour, F; Ghanian, Z; Yang, C; Zheleznova, N N; Kurth, T; Dash, R K; Cowley, A W; Ranji, M

    2015-08-15

    The goal of the present study was to quantify and correlate the contribution of the cytosolic p67(phox) subunit of NADPH oxidase 2 to mitochondrial oxidative stress in the kidneys of the Dahl salt-sensitive (SS) hypertensive rat. Whole kidney redox states were uniquely assessed using a custom-designed optical fluorescence three-dimensional cryoimager to acquire multichannel signals of the intrinsic fluorophores NADH and FAD. SS rats were compared with SS rats in which the cytosolic subunit p67(phox) was rendered functionally inactive by zinc finger nuclease mutation of the gene (SS(p67phox)-null rats). Kidneys of SS rats fed a 0.4% NaCl diet exhibited significantly (P = 0.023) lower tissue redox ratio (NADH/FAD; 1.42 ± 0.06, n = 5) than SS(p67phox)-null rats (1.64 ± 0.07, n = 5), indicating reduced levels of mitochondrial electron transport chain metabolic activity and enhanced oxidative stress in SS rats. When fed a 4.0% salt diet for 21 days, both strains exhibited significantly lower tissue redox ratios (P < 0.001; SS rats: 1.03 ± 0.05, n = 9, vs. SS(p67phox)-null rats: 1.46 ± 0.04, n = 7) than when fed a 0.4% salt, but the ratio was still significantly higher in SS(p67phox) rats at the same salt level as SS rats. These results are consistent with results from previous studies that found elevated medullary interstitial fluid concentrations of superoxide and H2O2 in the medulla of SS rats. We conclude that the p67(phox) subunit of NADPH oxidase 2 plays an important role in the excess production of ROS from mitochondria in the renal medulla of the SS rat. Copyright © 2015 the American Physiological Society.

  11. Effects of p67phox on the mitochondrial oxidative state in the kidney of Dahl salt-sensitive rats: optical fluorescence 3-D cryoimaging

    Science.gov (United States)

    Salehpour, F.; Ghanian, Z.; Yang, C.; Zheleznova, N. N.; Kurth, T.; Dash, R. K.; Cowley, A. W.

    2015-01-01

    The goal of the present study was to quantify and correlate the contribution of the cytosolic p67phox subunit of NADPH oxidase 2 to mitochondrial oxidative stress in the kidneys of the Dahl salt-sensitive (SS) hypertensive rat. Whole kidney redox states were uniquely assessed using a custom-designed optical fluorescence three-dimensional cryoimager to acquire multichannel signals of the intrinsic fluorophores NADH and FAD. SS rats were compared with SS rats in which the cytosolic subunit p67phox was rendered functionally inactive by zinc finger nuclease mutation of the gene (SSp67phox-null rats). Kidneys of SS rats fed a 0.4% NaCl diet exhibited significantly (P = 0.023) lower tissue redox ratio (NADH/FAD; 1.42 ± 0.06, n = 5) than SSp67phox-null rats (1.64 ± 0.07, n = 5), indicating reduced levels of mitochondrial electron transport chain metabolic activity and enhanced oxidative stress in SS rats. When fed a 4.0% salt diet for 21 days, both strains exhibited significantly lower tissue redox ratios (P < 0.001; SS rats: 1.03 ± 0.05, n = 9, vs. SSp67phox-null rats: 1.46 ± 0.04, n = 7) than when fed a 0.4% salt, but the ratio was still significantly higher in SSp67phox rats at the same salt level as SS rats. These results are consistent with results from previous studies that found elevated medullary interstitial fluid concentrations of superoxide and H2O2 in the medulla of SS rats. We conclude that the p67phox subunit of NADPH oxidase 2 plays an important role in the excess production of ROS from mitochondria in the renal medulla of the SS rat. PMID:26062875

  12. Engineering Optics

    CERN Document Server

    Iizuka, Keigo

    2008-01-01

    Engineering Optics is a book for students who want to apply their knowledge of optics to engineering problems, as well as for engineering students who want to acquire the basic principles of optics. It covers such important topics as optical signal processing, holography, tomography, holographic radars, fiber optical communication, electro- and acousto-optic devices, and integrated optics (including optical bistability). As a basis for understanding these topics, the first few chapters give easy-to-follow explanations of diffraction theory, Fourier transforms, and geometrical optics. Practical examples, such as the video disk, the Fresnel zone plate, and many more, appear throughout the text, together with numerous solved exercises. There is an entirely new section in this updated edition on 3-D imaging.

  13. Electron optics

    CERN Document Server

    Grivet, Pierre; Bertein, F; Castaing, R; Gauzit, M; Septier, Albert L

    1972-01-01

    Electron Optics, Second English Edition, Part I: Optics is a 10-chapter book that begins by elucidating the fundamental features and basic techniques of electron optics, as well as the distribution of potential and field in electrostatic lenses. This book then explains the field distribution in magnetic lenses; the optical properties of electrostatic and magnetic lenses; and the similarities and differences between glass optics and electron optics. Subsequent chapters focus on lens defects; some electrostatic lenses and triode guns; and magnetic lens models. The strong focusing lenses and pris

  14. Impacts of the self-Raman effect and third-order dispersion on pulse-squeezed state generation using optical fibers

    Science.gov (United States)

    Yu, Shinn-Sheng; Lai, Yinchieh

    1995-12-01

    Based on a newly developed general quantum theory of nonlinear optical pulse propagation, the influences of the self-Raman effect and third-order dispersion on the achievable squeezing ratio in squeezing experiments with optical fibers at both the 1.3- and 1.55- mu m wavelengths are studied. In the presence of these effects, squeezing still survives, but the achievable squeezing will reach a limit as the propagation distance increases. Temperature dependence of the squeezing ratio is also examined. Copyright (c) 1995 Optical Society of America

  15. Optical remote sensing

    CERN Document Server

    Prasad, Saurabh; Chanussot, Jocelyn

    2011-01-01

    Optical remote sensing relies on exploiting multispectral and hyper spectral imagery possessing high spatial and spectral resolutions respectively. These modalities, although useful for most remote sensing tasks, often present challenges that must be addressed for their effective exploitation. This book presents current state-of-the-art algorithms that address the following key challenges encountered in representation and analysis of such optical remotely sensed data: challenges in pre-processing images, storing and representing high dimensional data, fusing different sensor modalities, patter

  16. Theoretical Optics An Introduction

    CERN Document Server

    Römer, Hartmann

    2004-01-01

    Starting from basic electrodynamics, this volume provides a solid, yet concise introduction to theoretical optics, containing topics such as nonlinear optics, light-matter interaction, and modern topics in quantum optics, including entanglement, cryptography, and quantum computation. The author, with many years of experience in teaching and research, goes way beyond the scope of traditional lectures, enabling readers to keep up with the current state of knowledge. Both content and presentation make it essential reading for graduate and phD students as well as a valuable reference for researche

  17. Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment

    Science.gov (United States)

    Bharti, Bandna; Kumar, Santosh; Lee, Heung-No; Kumar, Rajesh

    2016-01-01

    This is the first time we report that simply air plasma treatment can also enhances the optical absorbance and absorption region of titanium oxide (TiO2) films, while keeping them transparent. TiO2 thin films having moderate doping of Fe and Co exhibit significant enhancement in the aforementioned optical properties upon air plasma treatment. The moderate doping could facilitate the formation of charge trap centers or avoid the formation of charge recombination centers. Variation in surface species viz. Ti3+, Ti4+, O2−, oxygen vacancies, OH group and optical properties was studied using X-ray photon spectroscopy (XPS) and UV-Vis spectroscopy. The air plasma treatment caused enhanced optical absorbance and optical absorption region as revealed by the formation of Ti3+ and oxygen vacancies in the band gap of TiO2 films. The samples were treated in plasma with varying treatment time from 0 to 60 seconds. With the increasing treatment time, Ti3+ and oxygen vacancies increased in the Fe and Co doped TiO2 films leading to increased absorbance; however, the increase in optical absorption region/red shift (from 3.22 to 3.00 eV) was observed in Fe doped TiO2 films, on the contrary Co doped TiO2 films exhibited blue shift (from 3.36 to 3.62 eV) due to Burstein Moss shift. PMID:27572095

  18. Formation of oxygen vacancies and Ti(3+) state in TiO2 thin film and enhanced optical properties by air plasma treatment.

    Science.gov (United States)

    Bharti, Bandna; Kumar, Santosh; Lee, Heung-No; Kumar, Rajesh

    2016-08-30

    This is the first time we report that simply air plasma treatment can also enhances the optical absorbance and absorption region of titanium oxide (TiO2) films, while keeping them transparent. TiO2 thin films having moderate doping of Fe and Co exhibit significant enhancement in the aforementioned optical properties upon air plasma treatment. The moderate doping could facilitate the formation of charge trap centers or avoid the formation of charge recombination centers. Variation in surface species viz. Ti(3+), Ti(4+), O(2-), oxygen vacancies, OH group and optical properties was studied using X-ray photon spectroscopy (XPS) and UV-Vis spectroscopy. The air plasma treatment caused enhanced optical absorbance and optical absorption region as revealed by the formation of Ti(3+) and oxygen vacancies in the band gap of TiO2 films. The samples were treated in plasma with varying treatment time from 0 to 60 seconds. With the increasing treatment time, Ti(3+) and oxygen vacancies increased in the Fe and Co doped TiO2 films leading to increased absorbance; however, the increase in optical absorption region/red shift (from 3.22 to 3.00 eV) was observed in Fe doped TiO2 films, on the contrary Co doped TiO2 films exhibited blue shift (from 3.36 to 3.62 eV) due to Burstein Moss shift.

  19. Quantum enhanced optical sensing

    DEFF Research Database (Denmark)

    Schäfermeier, Clemens

    The work in this thesis is embedded in the framework of quantum metrology and explores quantum effects in solid state emitters and optical sensing. Specifically, the thesis comprises studies on silicon vacancy centres in nanodiamonds, phase measurements and cavity optomechanics utilising optical...... squeezed states, and a theoretical study on quantum amplifiers. Due to its similarity to single atoms, colour centres in diamond are ideal objects for exploring and exploiting quantum effects, because they are comparably easy to produce, probe and maintain. While nitrogen vacancy centres are the most...... identified spectral diffusion as the main hindrance in extending spin coherence times. Overcoming this issue will provide a promising candidate as an emitter for quantum information. Next, the question of how squeezed states of light can improve optical sensing was addressed. For this purpose, a squeezed...

  20. Nonlinear optics

    CERN Document Server

    Boyd, Robert W

    2013-01-01

    Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q

  1. Optical fibres

    CERN Document Server

    Geisler, J; Boutruche, J P

    1986-01-01

    Optical Fibers covers numerous research works on the significant advances in optical fibers, with particular emphasis on their application.This text is composed of three parts encompassing 15 chapters. The first part deals with the manufacture of optical fibers and the materials used in their production. The second part describes optical-fiber connectors, terminals and branches. The third part is concerned with the major optoelectronic components encountered in optical-communication systems.This book will be of value to research scientists, engineers, and patent workers.

  2. Optical interconnects

    CERN Document Server

    Chen, Ray T

    2006-01-01

    This book describes fully embedded board level optical interconnect in detail including the fabrication of the thin-film VCSEL array, its characterization, thermal management, the fabrication of optical interconnection layer, and the integration of devices on a flexible waveguide film. All the optical components are buried within electrical PCB layers in a fully embedded board level optical interconnect. Therefore, we can save foot prints on the top real estate of the PCB and relieve packaging difficulty reduced by separating fabrication processes. To realize fully embedded board level optical

  3. France’s State of the Art Distributed Optical Fibre Sensors Qualified for the Monitoring of the French Underground Repository for High Level and Intermediate Level Long Lived Radioactive Wastes

    Science.gov (United States)

    Delepine-Lesoille, Sylvie; Girard, Sylvain; Landolt, Marcel; Bertrand, Johan; Planes, Isabelle; Boukenter, Aziz; Marin, Emmanuel; Humbert, Georges; Leparmentier, Stéphanie; Auguste, Jean-Louis; Ouerdane, Youcef

    2017-01-01

    This paper presents the state of the art distributed sensing systems, based on optical fibres, developed and qualified for the French Cigéo project, the underground repository for high level and intermediate level long-lived radioactive wastes. Four main parameters, namely strain, temperature, radiation and hydrogen concentration are currently investigated by optical fibre sensors, as well as the tolerances of selected technologies to the unique constraints of the Cigéo’s severe environment. Using fluorine-doped silica optical fibre surrounded by a carbon layer and polyimide coating, it is possible to exploit its Raman, Brillouin and Rayleigh scattering signatures to achieve the distributed sensing of the temperature and the strain inside the repository cells of radioactive wastes. Regarding the dose measurement, promising solutions are proposed based on Radiation Induced Attenuation (RIA) responses of sensitive fibres such as the P-doped ones. While for hydrogen measurements, the potential of specialty optical fibres with Pd particles embedded in their silica matrix is currently studied for this gas monitoring through its impact on the fibre Brillouin signature evolution. PMID:28608831

  4. Optically enhanced production of metastable xenon

    CERN Document Server

    Hickman, G T; Pittman, T B

    2016-01-01

    Metastable states of noble gas atoms are typically produced by electrical discharge techniques or "all-optical" excitation methods. Here we combine electrical discharges with optical pumping to demonstrate "optically enhanced" production of metastable xenon (Xe*). We experimentally measure large increases in Xe* density with relatively small optical control field powers. This technique may have applications in systems where large metastable state densities are desirable.

  5. Optical tweezers principles and applications

    CERN Document Server

    Jones, Philip; Volpe, Giovanni

    2015-01-01

    Combining state-of-the-art research with a strong pedagogic approach, this text provides a detailed and complete guide to the theory, practice and applications of optical tweezers. In-depth derivation of the theory of optical trapping and numerical modelling of optical forces are supported by a complete step-by-step design and construction guide for building optical tweezers, with detailed tutorials on collecting and analysing data. Also included are comprehensive reviews of optical tweezers research in fields ranging from cell biology to quantum physics. Featuring numerous exercises and problems throughout, this is an ideal self-contained learning package for advanced lecture and laboratory courses, and an invaluable guide to practitioners wanting to enter the field of optical manipulation. The text is supplemented by www.opticaltweezers.org, a forum for discussion and a source of additional material including free-to-download, customisable research-grade software (OTS) for calculation of optical forces, dig...

  6. Optical network design and planning

    CERN Document Server

    Simmons, Jane M

    2014-01-01

    This book takes a pragmatic approach to designing state-of-the-art optical networks for backbone, regional, and metro-core networks.   Algorithms and methodologies related to routing, regeneration, wavelength assignment, subrate-traffic grooming, and protection are presented, with an emphasis on optical-bypass-enabled (or all-optical) networks. There are numerous case studies throughout the text to illustrate the concepts, using realistic networks and traffic sets. A full chapter of economic studies offers guidelines as to when and how optical-bypass technology should be deployed. There is also extensive coverage of recent research to provide insight into how optical networks are likely to evolve. The second edition includes new chapters on dynamic optical networking and flexible/elastic optical networks. There is expanded coverage of new physical-layer technology and its impact on network design, along with enhanced coverage of ROADM architectures, including the colorless, directionless, contentionless, a...

  7. Applied optics and optical design

    CERN Document Server

    Conrady, Alexander Eugen

    1957-01-01

    ""For the optical engineer it is an indispensable work."" - Journal, Optical Society of America""As a practical guide this book has no rival."" - Transactions, Optical Society""A noteworthy contribution,"" - Nature (London)Part I covers all ordinary ray-tracing methods, together with the complete theory of primary aberrations and as much of higher aberration as is needed for the design of telescopes, low-power microscopes and simple optical systems. Chapters: Fundamental Equations, Spherical Aberration, Physical Aspect of Optical Images, Chromatic Aberration, Design of Achromatic Object-Glass

  8. Applied optics and optical design

    CERN Document Server

    Conrady, A E

    2011-01-01

    ""For the optical engineer it is an indispensable work."" - Journal, Optical Society of America""As a practical guide this book has no rival."" - Transactions, Optical Society""A noteworthy contribution,"" - Nature (London)Part I covers all ordinary ray-tracing methods, together with the complete theory of primary aberrations and as much of higher aberration as is needed for the design of telescopes, low-power microscopes and simple optical systems. Chapters: Fundamental Equations, Spherical Aberration, Physical Aspect of Optical Images, Chromatic Aberration, Design of Achromatic Object-Glass

  9. Study of the optical properties of aerosols in the Sao Paulo State by LIDAR Raman technique; Estudo das propriedades opticas dos aerossois no Estado de Sao Paulo com a tecnica de LIDAR Raman

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Renata Facundes da

    2010-07-01

    The investigation reported in this dissertation has been divided in two parts. The first part was made to carry out an independent calibration of a Raman LIDAR system for water vapor in the CLA installed using a methodology that was developed at Howard University, based on a careful analysis of the efficiency of the optical system components aimed at determining the efficiency and displaying the spectral response of the system. After this study, which led to a better understanding of the eld of instrumental system, the second part, presents a preliminary study of the optical properties of aerosols in the troposphere by evaluating parameters such as, for example, the vertical profiles of aerosol extinction, SR and LR, using a mobile Raman LIDAR system developed by Raymetrics LIDAR Systems, during campaigns conducted in some research institutes in the State of Sao Paulo. (author)

  10. The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy

    NARCIS (Netherlands)

    Doornbos, R. M.; Lang, R.; Aalders, M. C.; Cross, F. W.; Sterenborg, H. J.

    1999-01-01

    A method is described for measuring optical properties and deriving chromophore concentrations from diffuse reflection measurements at the surface of a turbid medium. The method uses a diffusion approximation model for the diffuse reflectance, in combination with models for the absorption and

  11. Recent Advances in Photonic Devices for Optical Computing and the Role of Nonlinear Optics-Part II

    Science.gov (United States)

    Abdeldayem, Hossin; Frazier, Donald O.; Witherow, William K.; Banks, Curtis E.; Paley, Mark S.

    2007-01-01

    The twentieth century has been the era of semiconductor materials and electronic technology while this millennium is expected to be the age of photonic materials and all-optical technology. Optical technology has led to countless optical devices that have become indispensable in our daily lives in storage area networks, parallel processing, optical switches, all-optical data networks, holographic storage devices, and biometric devices at airports. This chapters intends to bring some awareness to the state-of-the-art of optical technologies, which have potential for optical computing and demonstrate the role of nonlinear optics in many of these components. Our intent, in this Chapter, is to present an overview of the current status of optical computing, and a brief evaluation of the recent advances and performance of the following key components necessary to build an optical computing system: all-optical logic gates, adders, optical processors, optical storage, holographic storage, optical interconnects, spatial light modulators and optical materials.

  12. A Miniaturized Adaptive Optic Device for Optical Telecommunications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To advance the state-of-the-art uplink laser communication technology, new adaptive optic beam compensation techniques are needed for removing various time-varying...

  13. Optical electronics

    CERN Document Server

    Yariv, Amnon

    1991-01-01

    This classic text introduces engineering students to the first principles of major phenomena and devices of optoelectronics and optical communication technology. Yariv's "first principles" approach employs real-life examples and extensive problems. The text includes separate chapters on quantum well and semiconductor lasers, as well as phase conjugation and its applications. Optical fiber amplification, signal and noise considerations in optical fiber systems, laser arrays and distributed feedback lasers all are covered extensively in major sections within chapters.

  14. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.

    Science.gov (United States)

    Paciorek, Christopher J; Liu, Yang

    2012-05-01

    Research in scientific, public health, and policy disciplines relating to the environment increasingly makes use of high-dimensional remote sensing and the output of numerical models in conjunction with traditional observations. Given the public health and resultant public policy implications of the potential health effects of particulate matter (PM*) air pollution, specifically fine PM with an aerodynamic diameter pm (PM2.5), there has been substantial recent interest in the use of remote-sensing information, in particular aerosol optical depth (AOD) retrieved from satellites, to help characterize variability in ground-level PM2.5 concentrations in space and time. While the United States and some other developed countries have extensive PM monitoring networks, gaps in data across space and time necessarily occur; the hope is that remote sensing can help fill these gaps. In this report, we are particularly interested in using remote-sensing data to inform estimates of spatial patterns in ambient PM2.5 concentrations at monthly and longer time scales for use in epidemiologic analyses. However, we also analyzed daily data to better disentangle spatial and temporal relationships. For AOD to be helpful, it needs to add information beyond that available from the monitoring network. For analyses of chronic health effects, it needs to add information about the concentrations of long-term average PM2.5; therefore, filling the spatial gaps is key. Much recent evidence has shown that AOD is correlated with PM2.5 in the eastern United States, but the use of AOD in exposure analysis for epidemiologic work has been rare, in part because discrepancies necessarily exist between satellite-retrieved estimates of AOD, which is an atmospheric-column average, and ground-level PM2.5. In this report, we summarize the results of a number of empirical analyses and of the development of statistical models for the use of proxy information, in particular satellite AOD, in predicting PM2

  15. Optical Imaging of the Breast

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Jung; Kim, Eun Kyung [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2011-03-15

    As the increased prevalence of breast cancer and the advances in breast evaluation awareness have resulted in an increased number of breast examinations and benign breast biopsies, several investigations have been performed to improve the diagnostic accuracy for breast lesions. Optical imaging of the breast that uses nearinfrared light to assess the optical properties of breast tissue is a novel non-invasive imaging technique to characterize breast lesions in clinical practice. This review provides a summary of the current state of optical breast imaging and it describes the basic concepts of optical imaging, the potential clinical applications for breast cancer imaging and its potential incorporation with other imaging modalities

  16. Nonlinear Optics: Principles and Applications

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Tidemand-Lichtenberg, Peter

    As nonlinear optics further develops as a field of research in electromagnetic wave propagation, its state-of-the-art technologies will continue to strongly impact real-world applications in a variety of fields useful to the practicing scientist and engineer. From basic principles to examples...... of applications, Nonlinear Optics: Principles and Applications effectively bridges physics and mathematics with relevant applied material for real-world use. The book progresses naturally from fundamental aspects to illustrative examples, and presents a strong theoretical foundation that equips the reader...... and matter, this text focuses on the physical understanding of nonlinear optics, and explores optical material response functions in the time and frequency domain....

  17. Optical Access Networks

    Science.gov (United States)

    Zheng, Jun; Ansari, Nirwan

    2005-06-01

    are now underway this hot area. The purpose of this feature issue is to expose the networking community to the latest research breakthroughs and progresses in the area of optical access networks. This feature issue aims to present a collection of papers that focus on the state-of-the-art research in various networking aspects of optical access networks. Original papers are solicited from all researchers involved in area of optical access networks. Topics of interest include but not limited to: Optical access network architectures and protocols Passive optical networks (BPON, EPON, GPON, etc.) Active optical networks Multiple access control Multiservices and QoS provisioning Network survivability Field trials and standards Performance modeling and analysis

  18. Optical Detectors

    Science.gov (United States)

    Tabbert, Bernd; Goushcha, Alexander

    Optical detectors are applied in all fields of human activities from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  19. Optical Computing

    Indian Academy of Sciences (India)

    Division Multiplexing (DWDM) and can be used to signifi- cantly improve the bandwidth efficiency. Typical DWDM is a fiber-optic transmission technique that employs light wavelengths to transmit data parallel-by-bit or serial-by-character. This technology puts data from different sources together on an optical fiber, with each ...

  20. Klassikatähed muusikagalaktikas : Toomas Vavilov: "Noor muusik peab maailmavallutamisega alustama kohe" / Mihkel Peäske, Toomas Vavilov ; üles kirjutanud Piret Väinmaa

    Index Scriptorium Estoniae

    Peäske, Mihkel, 1971-

    2014-01-01

    Esituskunsti õppimine eeldab esinemisi: kontserte, võistlusi ja festivale. Vestlus Tallinna Muusikakeskkooli puhkpilliosakonna juhataja Mihkel Peäske ja EMTA puhkpilliosakonna juhataja Toomas Vaviloviga

  1. On the usefulness of optical maturity for relative age classification of fresh craters

    Science.gov (United States)

    Ravi, S.; Meyer, H. M.; Mahanti, P.; Robinson, M. S.

    2016-12-01

    Copernican and Eratosthenian craters represent the two most recent geologic periods in the lunar timescale, and their characterization is essential for understanding impact crater flux over the last 3 Gy. Craters from both periods exhibit crisp morphologies, but Copernican craters are 'rayed craters' per Wilhelms (1) classification scheme. Distinguishing compositional from maturity rays is possible using compositional estimates and the optical maturity parameter (OMAT; 2). From OMAT estimates, Grier et al. (3) classified 50 fresh craters (diameter (D) > 20 km) into young (OMAT > 0.22), intermediate, and old (OMAT 10 km; 60 to investigate the applicability of OMAT for relative age classification among Copernican craters. Craters obtained from (4,5) were initially classified based on crispness of morphology (LROC WAC observations (6)) and then were then analyzed based on OMAT values averaged from rim out to one crater radius (n=2000). We found that typically craters larger than Copernicus (D = 95 km) were had lower OMAT values than Copernicus (OMAT = 0.17) except for Vavilov, Pythagorus, Fizeau and Moretus which had OMAT > 0.17. These large craters are clearly affected by rays from small, nearby craters. We estimate that at least 250 craters (D > 10 km; OMAT > 0.22) on the Moon are Copernican (> 2% of all craters analyzed) and of these at least 100 are as optically immature (or more so) than Tycho crater (OMAT >= 0.24). A calibration curve (OMAT vs Absolute Model Age) obtained for craters with known ages showed that OMAT <=0.15 displays little change with AMA and are thus unsuitable for estimating relative ages. Normalization by crater size was found to reduce the uncertainty associated with the relation between AMA and OMAT. 1) Wilhelms (1987), The Geologic History of the Moon, USGS, pp. 1348. 2) Lucey et al (2000), JGR, 105, 20377-20386. 3) Grier et al. (2001), JGR, 106, 847-862. 4) Povilaitis et al. (2013), NLSI, Session 5B. 5) Head et al. (2010), Science, 239

  2. Optical biosensors.

    Science.gov (United States)

    Damborský, Pavel; Švitel, Juraj; Katrlík, Jaroslav

    2016-06-30

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  3. Lagrangian optics

    CERN Document Server

    Lakshminarayanan, Vasudevan; Thyagarajan, K

    2002-01-01

    Ingeometrical optics, light propagation is analyzed in terms of light rays which define the path of propagation of light energy in the limitofthe optical wavelength tending to zero. Many features oflight propagation can be analyzed in terms ofrays,ofcourse, subtle effects near foci, caustics or turning points would need an analysis based on the wave natureoflight. Allofgeometric optics can be derived from Fermat's principle which is an extremum principle. The counterpart in classical mechanics is of course Hamilton's principle. There is a very close analogy between mechanics ofparticles and optics oflight rays. Much insight (and useful results) can be obtained by analyzing these analogies. Asnoted by H. Goldstein in his book Classical Mechanics (Addison Wesley, Cambridge, MA, 1956), classical mechanics is only a geometrical optics approximation to a wave theory! In this book we begin with Fermat's principle and obtain the Lagrangian and Hamiltonian pictures of ray propagation through various media. Given the ...

  4. GREAT optics

    Science.gov (United States)

    Wagner-Gentner, Armin; Graf, Urs U.; Philipp, Martin; Rabanus, David; Stutzki, Jürgen

    2004-10-01

    The German REceiver for Astronomy at Terahertz frequencies (GREAT) is a first generation PI instrument for the SOFIA telescope, developed by a collaboration between the MPIfR, KOSMA, DLR, and the MPAe. The first three institutes each contribute one heterodyne receiver channel to operate at 1.9, 2.7 and 4.7 THz, respectively. A later addition of a e.g. 1.4 THz channel is planned. The GREAT instrument is developed to carry two cryostats at once. That means that any two of the three frequencies can be observed simultaneously. Therefore, we need to be able to quickly exchange the optics benches, the local oscillator (LO) subsystems, and the cryostats containing the mixer devices. This demands a high modularity and flexibility of our receiver concept. Our aim is to avoid the need for realignment when swapping receiver channels. After an overview of the common GREAT optics, a detailed description of several parts (optics benches, calibration units, diplexer, focal plane imager) is given. Special emphasis is given to the LO optics of the KOSMA 1.9 THz channel, because its backward wave oscillator has an astigmatic output beam profile, which has to be corrected for. We developed astigmatic off-axis mirrors to compensate this astigmatism. The mirrors are manufactured in-house on a 5 axis CNC milling machine. We use this milling machine to obtain optical components with highest surface accuracy (about 5 microns) appropriate for these wavelengths. Based on the CNC machining capabilities we present our concept of integrated optics, which means to manufacture optical subsystems monolithically. The optics benches are located on three point mounts, which in conjunction with the integrated optics concept ensure the required adjustment free optics setup.

  5. Fibre optic communication key devices

    CERN Document Server

    Grote, Norbert

    2017-01-01

    The book gives an in-depth description of key devices of current and next generation fibre optic communication networks. Devices treated include semiconductor lasers, optical amplifiers, modulators, wavelength filters and other passives, detectors, all-optical switches, but relevant properties of optical fibres and network aspects are included as well. The presentations include the physical principles underlying the various devices, technologies used for their realization, typical performance characteristics and limitations, but development trends towards more advanced components are also illustrated. This new edition of a successful book was expanded and updated extensively. The new edition covers among others lasers for optical communication, optical switches, hybrid integration, monolithic integration and silicon photonics. The main focus is on Indium phosphide-based structures but silicon photonics is included as well. The book covers relevant principles, state-of-the-art implementations, status of curren...

  6. Handbook of biomedical optics

    CERN Document Server

    Boas, David A

    2011-01-01

    Biomedical optics holds tremendous promise to deliver effective, safe, non- or minimally invasive diagnostics and targeted, customizable therapeutics. Handbook of Biomedical Optics provides an in-depth treatment of the field, including coverage of applications for biomedical research, diagnosis, and therapy. It introduces the theory and fundamentals of each subject, ensuring accessibility to a wide multidisciplinary readership. It also offers a view of the state of the art and discusses advantages and disadvantages of various techniques.Organized into six sections, this handbook: Contains intr

  7. Fiber optic coupled optical sensor

    Science.gov (United States)

    Fleming, Kevin J.

    2001-01-01

    A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

  8. Optical bistability controlling light with light

    CERN Document Server

    Gibbs, Hyatt

    1985-01-01

    Optical Bistability: Controlling Light with Light focuses on optical bistability in nonlinear optical systems. Emphasis is on passive (non-laser) systems that exhibit reversible bistability with input intensity as the hysteresis variable, along with the physics and the potential applications of such systems for nonlinear optical signal processing. This book consists of seven chapters and begins with a historical overview of optical bistability in lasers and passive systems. The next chapter describes steady-state theories of optical bistability, including the Bonifacio-Lugiato model, as we

  9. Joint derivation method for determining optical properties based on steady-state spatially resolved diffuse reflectance measurement at small source-detector separations and large reduced albedo range: theory and simulation.

    Science.gov (United States)

    Shi, Zhenzhi; Fan, Ying; Zhao, Huijuan; Xu, Kexin

    2012-06-01

    Accurate determination of the optical properties (the absorption coefficient μ(a) and the reduced scattering coefficient μ(s) (')) of tissues is very important in a variety of diagnostic and therapeutic procedures. Optical diffusion theory is frequently used as the forward model for describing the photon transfer in media with large reduced albedos (a(')) and in large source-detector separations (SDS). Several other methods (PN approximation, hybrid diffusion-P3 approximation) have also been published that describe photon transfer in media with low a(') or small SDSs. We studied the theoretical models for the steady-state spatially resolved diffuse reflectance measurement to accurately determine μ(a) and μ(s) (') at large a(') range but small SDSs. Instead of using a single model, a joint derivation method is proposed. The developed method uses one of the best aforementioned theoretical methods separately in five ranges of a(') determined from several forward models. In the region of small SDSs (the range between 0.4 and 8 mm) and large a(') range (between 0.5 and 0.99), the best theoretical derivation model was determined. The results indicate that the joint derivation method can improve the derivation accuracy and that a(') range can be determined by the steady-state spatially resolved diffuse reflectance measurement.

  10. Nonlinear optics

    CERN Document Server

    Bloembergen, Nicolaas

    1996-01-01

    Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe

  11. Optical holography

    CERN Document Server

    Collier, Robert J; Lin, Lawrence H

    1971-01-01

    Optical Holography deals with the use of optical holography to solve technical problems, with emphasis on the properties of holograms formed with visible light. Topics covered include the Fourier transform, propagation and diffraction, pulsed-laser holography, and optical systems with spherical lenses. A geometric analysis of point-source holograms is also presented, and holograms and hologram spatial filters formed with spatially modulated reference waves are described. This book is comprised of 20 chapters and begins with an introduction to concepts that are basic to understanding hologr

  12. Quantum Optics

    CERN Document Server

    Vogel, Werner

    2006-01-01

    This is the third, revised and extended edition of the acknowledged "Lectures on Quantum Optics" by W. Vogel and D.-G. Welsch.It offers theoretical concepts of quantum optics, with special emphasis on current research trends. A unified concept of measurement-based nonclassicality and entanglement criteria and a unified approach to medium-assisted electromagnetic vacuum effects including Van der Waals and Casimir Forces are the main new topics that are included in the revised edition. The rigorous development of quantum optics in the context of quantum field theory and the attention to details makes the book valuable to graduate students as well as to researchers

  13. Methyl Group Tunneling Rotation in the Lowest nπ* Triplet State of Toluquinone. An Optically Detected ENDOR, LAC and CR Study

    NARCIS (Netherlands)

    Lichtenbelt, Jan H.; Wiersma, Douwe A.

    1979-01-01

    In this paper we report and discuss the effects of methyl group tunneling rotation on the methyl proton ENDOR, LAC and CR spectra in the lowest triplet state of toluquinone at 1.8 K. From a detailed analysis of the ENDOR spectra in the lowest rotational state (A) we obtain for the methyl protons the

  14. Mapping annual mean ground-level PM 2.5 concentrations using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States

    OpenAIRE

    Liu, Yang; Park, Rokjin; Jacob, Daniel James; Li, Qinbin; Kilaru, Vasu; Sarnat, Jeremy

    2004-01-01

    We present a simple approach to estimating ground-level fine particulate matter (PM2.5, particles smaller than 2.5 μm in diameter) concentrations by applying local scaling factors from a global atmospheric chemistry model (GEOS-CHEM with GOCART dust and sea salt data) to aerosol optical thickness (AOT) retrieved by the Multiangle Imaging Spectroradiometer (MISR). The resulting MISR PM2.5 concentrations are compared with measurements from the U.S. Environmental Protection Agency's (EPA) PM2.5 ...

  15. Detection of splices of optical fibers with low loss

    Science.gov (United States)

    Salikhov, Aydar I.; Kazbaeva, Dinara A.; Komissarov, Arkadiy M.; Kisselev, Anton E.; Zhdanov, Ruslan R.

    2017-04-01

    Optical Reflectometer (OTDR-Optical Time Domain Reflectometr) of various types are widely used in almost all stages of the fiber-optic communication systems, from production of fiber optic cable to the construction of fiber-optic communication lines and their operation. OTDR provides a quick and easy diagnosis of the state of fibers, cables and fiber-optic communication lines in general. A new method of analysis allowing visually detect traces of welding with low loss.

  16. Quantum optics

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund

    2013-01-01

    Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves.......Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves....

  17. Applied Optics

    OpenAIRE

    Poon, Ting-Chung; Qi, Y.

    2003-01-01

    To replace the film recording aspect of performing optical correlation, conventional real-time joint-transform correlation (JTC) optical systems make use of a spatial light modulator (SLM) located in the Fourier plane to record the joint-transform power spectrum (JPS) to achieve real-time processing. The use of an SLM in the Fourier plane, however, is a major drawback in these systems because SLMs are limited in resolution, phase uniformity, and contrast ratio, which are, therefore, not desir...

  18. Windshield optics.

    Science.gov (United States)

    Irland, M J

    1969-09-01

    Windshield design involves compromises among mechanical, aerodynamic, aesthetic, thermal, and safety requirements, yet the windshield must be considered as an optical element. Four types of optical errors to be controlled by proper design are discussed, viz., astigmatism, binocular differential deviation of the line of sight, relative angular acceleration of image elements, and ghost images. Empirical limiting values for the last three and procedures for their control are given.

  19. International Symposium on Optics and its Applications (OPTICS-2011)

    Science.gov (United States)

    Bhattacherjee, Aranya B.; Calvo, Maria L.; Kazaryan, Eduard M.; Papoyan, Aram V.; Sarkisyan, Hayk A.

    2012-03-01

    OPTICS Logo PREFACE The papers selected for this volume were reported at the International Symposium 'Optics and its applications' (OPTICS-2011, Yerevan & Ashtarak, Armenia, September 5-9, 2011), http://www.ipr.sci.am/optics2011/. The Symposium was organized by the SPIE Armenian Student Chapter and major Armenian R&D organizations, universities and industrial companies working in the field of basic and applied optics: Institute for Physical Research of the National Academy of Sciences of Armenia, Yerevan State University, Russian-Armenian (Slavonic) University, and LT-PYRKAL Closed Joint Stock Company. OPTICS-2011 was primarily intended to support and promote the involvement of students and young scientists in various fields of modern optics, giving them the possibility to attend invited talks by prominent scientists and to present and discuss their own results. Furthermore, the Symposium allowed foreign participants from 14 countries to become acquainted with the achievements of optical science and technology in Armenia, which became a full member of the International Commission for Optics (ICO) in 2011. To follow this concept, the Symposium sessions were held in various host institutions. The creative and friendly ambience established at OPTICS-2011 promoted further international collaboration in the field and motivated many students to take up research in optics and photonics as a career. This volume of Journal of Physics: Conference Series covers thematic sections of the Symposium (both oral and poster), which represent the main fields of interest in optics for Armenian scientists: quantum optics & information, laser spectroscopy, optical properties of nanostructures, photonics & fiber optics, and optics of liquid crystals. Such wide coverage is consistent with the general scope of the Symposium, allowing all the students involved in optics to present, discuss and publish their recent results, and for those who are making their first steps in science to choose

  20. Roadmap on optical sensors

    Science.gov (United States)

    Ferreira, Mário F. S.; Castro-Camus, Enrique; Ottaway, David J.; López-Higuera, José Miguel; Feng, Xian; Jin, Wei; Jeong, Yoonchan; Picqué, Nathalie; Tong, Limin; Reinhard, Björn M.; Pellegrino, Paul M.; Méndez, Alexis; Diem, Max; Vollmer, Frank; Quan, Qimin

    2017-08-01

    Sensors are devices or systems able to detect, measure and convert magnitudes from any domain to an electrical one. Using light as a probe for optical sensing is one of the most efficient approaches for this purpose. The history of optical sensing using some methods based on absorbance, emissive and florescence properties date back to the 16th century. The field of optical sensors evolved during the following centuries, but it did not achieve maturity until the demonstration of the first laser in 1960. The unique properties of laser light become particularly important in the case of laser-based sensors, whose operation is entirely based upon the direct detection of laser light itself, without relying on any additional mediating device. However, compared with freely propagating light beams, artificially engineered optical fields are in increasing demand for probing samples with very small sizes and/or weak light-matter interaction. Optical fiber sensors constitute a subarea of optical sensors in which fiber technologies are employed. Different types of specialty and photonic crystal fibers provide improved performance and novel sensing concepts. Actually, structurization with wavelength or subwavelength feature size appears as the most efficient way to enhance sensor sensitivity and its detection limit. This leads to the area of micro- and nano-engineered optical sensors. It is expected that the combination of better fabrication techniques and new physical effects may open new and fascinating opportunities in this area. This roadmap on optical sensors addresses different technologies and application areas of the field. Fourteen contributions authored by experts from both industry and academia provide insights into the current state-of-the-art and the challenges faced by researchers currently. Two sections of this paper provide an overview of laser-based and frequency comb-based sensors. Three sections address the area of optical fiber sensors, encompassing both

  1. Roadmap on optical sensors.

    Science.gov (United States)

    Ferreira, Mário F S; Castro-Camus, Enrique; Ottaway, David J; López-Higuera, José Miguel; Feng, Xian; Jin, Wei; Jeong, Yoonchan; Picqué, Nathalie; Tong, Limin; Reinhard, Björn M; Pellegrino, Paul M; Méndez, Alexis; Diem, Max; Vollmer, Frank; Quan, Qimin

    2017-08-01

    Sensors are devices or systems able to detect, measure and convert magnitudes from any domain to an electrical one. Using light as a probe for optical sensing is one of the most efficient approaches for this purpose. The history of optical sensing using some methods based on absorbance, emissive and florescence properties date back to the 16th century. The field of optical sensors evolved during the following centuries, but it did not achieve maturity until the demonstration of the first laser in 1960. The unique properties of laser light become particularly important in the case of laser-based sensors, whose operation is entirely based upon the direct detection of laser light itself, without relying on any additional mediating device. However, compared with freely propagating light beams, artificially engineered optical fields are in increasing demand for probing samples with very small sizes and/or weak light-matter interaction. Optical fiber sensors constitute a subarea of optical sensors in which fiber technologies are employed. Different types of specialty and photonic crystal fibers provide improved performance and novel sensing concepts. Actually, structurization with wavelength or subwavelength feature size appears as the most efficient way to enhance sensor sensitivity and its detection limit. This leads to the area of micro- and nano-engineered optical sensors. It is expected that the combination of better fabrication techniques and new physical effects may open new and fascinating opportunities in this area. This roadmap on optical sensors addresses different technologies and application areas of the field. Fourteen contributions authored by experts from both industry and academia provide insights into the current state-of-the-art and the challenges faced by researchers currently. Two sections of this paper provide an overview of laser-based and frequency comb-based sensors. Three sections address the area of optical fiber sensors, encompassing both

  2. Roadmap of optical communications

    Science.gov (United States)

    Agrell, Erik; Karlsson, Magnus; Chraplyvy, A. R.; Richardson, David J.; Krummrich, Peter M.; Winzer, Peter; Roberts, Kim; Fischer, Johannes Karl; Savory, Seb J.; Eggleton, Benjamin J.; Secondini, Marco; Kschischang, Frank R.; Lord, Andrew; Prat, Josep; Tomkos, Ioannis; Bowers, John E.; Srinivasan, Sudha; Brandt-Pearce, Maïté; Gisin, Nicolas

    2016-06-01

    Lightwave communications is a necessity for the information age. Optical links provide enormous bandwidth, and the optical fiber is the only medium that can meet the modern society's needs for transporting massive amounts of data over long distances. Applications range from global high-capacity networks, which constitute the backbone of the internet, to the massively parallel interconnects that provide data connectivity inside datacenters and supercomputers. Optical communications is a diverse and rapidly changing field, where experts in photonics, communications, electronics, and signal processing work side by side to meet the ever-increasing demands for higher capacity, lower cost, and lower energy consumption, while adapting the system design to novel services and technologies. Due to the interdisciplinary nature of this rich research field, Journal of Optics has invited 16 researchers, each a world-leading expert in their respective subfields, to contribute a section to this invited review article, summarizing their views on state-of-the-art and future developments in optical communications.

  3. Temperature-jump apparatus with Raman detection based on a solid-state tunable (1.80-2.05 microm) kHz optical parametric oscillator laser.

    Science.gov (United States)

    Balakrishnan, Gurusamy; Hu, Ying; Spiro, Thomas G

    2006-04-01

    The operating characteristics of a pulsed (10 ns) tunable near-infrared (NIR) laser source are described for temperature-jump (T-jump) applications. A Q-switched Nd:YLF laser (approximately 10 ns pulses) with a 1 kHz repetition rate is used to pump a potassium titanyl arsenate (KTA) crystal-based optical parametric oscillator (OPO), producing approximately 1 mJ NIR pulses that are tunable (1.80-2.05 microm) across the 1.9 microm vibrational overtone band of water. This T-jump source has been coupled to a deep ultraviolet (UV) probe laser for Raman studies of protein dynamics. T-jumps of up to 30 degrees C, as measured via the O-H stretching Raman band of water, are readily achieved. Application to cytochrome c unfolding is demonstrated.

  4. QUANTUM OPTICS. Universal linear optics.

    Science.gov (United States)

    Carolan, Jacques; Harrold, Christopher; Sparrow, Chris; Martín-López, Enrique; Russell, Nicholas J; Silverstone, Joshua W; Shadbolt, Peter J; Matsuda, Nobuyuki; Oguma, Manabu; Itoh, Mikitaka; Marshall, Graham D; Thompson, Mark G; Matthews, Jonathan C F; Hashimoto, Toshikazu; O'Brien, Jeremy L; Laing, Anthony

    2015-08-14

    Linear optics underpins fundamental tests of quantum mechanics and quantum technologies. We demonstrate a single reprogrammable optical circuit that is sufficient to implement all possible linear optical protocols up to the size of that circuit. Our six-mode universal system consists of a cascade of 15 Mach-Zehnder interferometers with 30 thermo-optic phase shifters integrated into a single photonic chip that is electrically and optically interfaced for arbitrary setting of all phase shifters, input of up to six photons, and their measurement with a 12-single-photon detector system. We programmed this system to implement heralded quantum logic and entangling gates, boson sampling with verification tests, and six-dimensional complex Hadamards. We implemented 100 Haar random unitaries with an average fidelity of 0.999 ± 0.001. Our system can be rapidly reprogrammed to implement these and any other linear optical protocol, pointing the way to applications across fundamental science and quantum technologies. Copyright © 2015, American Association for the Advancement of Science.

  5. EDITORIAL: Transformation optics Transformation optics

    Science.gov (United States)

    Shalaev, Vladimir M.; Pendry, John

    2011-02-01

    Metamaterials are artificial materials with versatile properties that can be tailored to fit almost any practical need and thus go well beyond what can be obtained with `natural' materials. Recent progress in developing optical metamaterials allows unprecedented extreme control over the flow of light at both the nano- and macroscopic scales. The innovative field of transformation optics, which is enabled by metamaterials, inspired researchers to take a fresh look at the very foundations of optics and helped to create a new paradigm for the science of light. Similar to general relativity, where time and space are curved, transformation optics shows that the space for light can also be bent in an almost arbitrary way. Most importantly, the optical space can be designed and engineered, opening up the fascinating possibility of controlling the flow of light with nanometer spatial precision. This new paradigm enables a number of novel optical devices guiding how, using metamaterials, the space for light can be curved in a pre-designed and well-controlled way. Metamaterials which incorporate the innovative theories of transformation optics are pertinent to the important areas of optical cloaking, optical black holes, super-resolution imaging, and other sci-fi-like devices. One such exciting device is an electromagnetic cloak that can bend light around itself, similar to the flow of water around a stone, making invisible both the cloak and the object hidden inside. Another important application is a flat hyperlens that can magnify the nanometer-scale features of an object that cannot be resolved with conventional optics. This could revolutionize the field of optical imaging, for instance, because such a meta-lens could become a standard add-on tool for microscopes. By enabling nanoscale resolution in optical microscopy, metamaterial-based transformation optics could allow one to literally see extremely small objects with the eye, including biological cells, viruses, and

  6. Perspective and potential of smart optical materials

    Science.gov (United States)

    Choi, Sang H.; Duzik, Adam J.; Kim, Hyun-Jung; Park, Yeonjoon; Kim, Jaehwan; Ko, Hyun-U.; Kim, Hyun-Chan; Yun, Sungryul; Kyung, Ki-Uk

    2017-09-01

    The increasing requirements of hyperspectral imaging optics, electro/photo-chromic materials, negative refractive index metamaterial optics, and miniaturized optical components from micro-scale to quantum-scale optics have all contributed to new features and advancements in optics technology. Development of multifunctional capable optics has pushed the boundaries of optics into new fields that require new disciplines and materials to maximize the potential benefits. The purpose of this study is to understand and show the fundamental materials and fabrication technology for field-controlled spectrally active optics (referred to as smart optics) that are essential for future industrial, scientific, military, and space applications, such as membrane optics, filters, windows for sensors and probes, telescopes, spectroscopes, cameras, light valves, light switches, and flat-panel displays. The proposed smart optics are based on the Stark and Zeeman effects in materials tailored with quantum dot arrays and thin films made from readily polarizable materials via ferroelectricity or ferromagnetism. Bound excitonic states of organic crystals are also capable of optical adaptability, tunability, and reconfigurability. To show the benefits of smart optics, this paper reviews spectral characteristics of smart optical materials and device technology. Experiments testing the quantum-confined Stark effect, arising from rare earth element doping effects in semiconductors, and applied electric field effects on spectral and refractive index are discussed. Other bulk and dopant materials were also discovered to have the same aspect of shifts in spectrum and refractive index. Other efforts focus on materials for creating field-controlled spectrally smart active optics on a selected spectral range. Surface plasmon polariton transmission of light through apertures is also discussed, along with potential applications. New breakthroughs in micro scale multiple zone plate optics as a micro

  7. The spectrum of optically allowed transitions from the 3p{sup 6}3d ground state of Ti IV

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, A E; Hibbert, A [Department of Applied Mathematics and Theoretical Physics, Queens University of Belfast, Belfast BT 9 6HH (United Kingdom)

    2006-05-14

    Recent experiments on the photoionization of Ti IV (Schippers S et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L209-16) and the photorecombination of Ti V (Schippers S et al 1998 J. Phys. B: At. Mol. Opt. Phys. 31 4873-86) have obtained the excitation energies and spontaneous transition probabilities (A-values) for a number of the 3p{sup 5}3d{sup 2} and 3p{sup 5}3d4s autoionization states of Ti IV. The direct measurements of the spectrum of Ti IV excited in a vacuum spark (Ryabtsev A N et al 2005 Opt. Spectrosc. 98 519-27) have provided a more complete list of these excitation energies and the A-values for J-J transitions of these excited states to the 3p{sup 6}3d ground state. This paper presents ab initio calculations for the transition energies and A-values between individual J levels of the ground state of Ti IV and the J levels for both the bound (3d){sup 6}nl states and the bound and resonance states 3p{sup 5}3d{sup 2} and 3p{sup 5}3d4s. The calculations were carried with configuration interaction wavefunctions and relativistic effects were included using the Breit-Pauli approximation. Generally there is good agreement between the calculated transition energies and all the experimental transition energies. There are considerable differences between the A-values obtained by the different experimental groups and the agreement between the theoretical and experimental A-values is variable.

  8. Optical Coherency Matrix Tomography

    Science.gov (United States)

    2015-10-19

    Esat Kondakci, Ayman F. Abouraddy & Bahaa E. A. Saleh The coherence of an optical beam having multiple degrees of freedom (DoFs) is described by a...measurement yields a real number Ilm (projection l for polarization and m for the spatial DoF) corresponding to the projection of a tomographic...hermiticity, and semi-positive-definiteness of G50. We portray the real and imaginary components of G using the standard visualization from quantum state

  9. Vectorial optical fields fundamentals and applications

    CERN Document Server

    2014-01-01

    Polarization is a vector nature of light that plays an important role in optical science and engineering. While existing textbook treatments of light assume beams with spatially homogeneous polarization, there is an increasing interest in vectorial optical fields with spatially engineered states of polarization. New effects and phenomena have been predicted and observed for light beams with these unconventional polarization states. This edited review volume aims to provide a comprehensive overview and summarize the latest developments in this important emerging field of optics. This book will cover the fundamentals including mathematical and physical descriptions, experimental generation, manipulation, focusing, propagation, and the applications of the engineered vectorial optical fields in focal field engineering, plasmonic focusing and optical antenna, single molecular imaging, optical tweezers/trapping, as well as optical measurements and instrumentations. Readership: Students, professionals, post-graduat...

  10. Optical Access Networks

    Science.gov (United States)

    Zheng, Jun; Ansari, Nirwan

    2005-01-01

    networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or are now underway this hot area. The purpose of this feature issue is to expose the networking community to the latest research breakthroughs and progresses in the area of optical access networks. h2>Scope of Contributionsh2> This feature issue aims to present a collection of papers that focus on the state-of-the-art research in various networking aspects of optical access networks. Original papers are solicited from all researchers involved in area of optical access networks. Topics of interest include but not limited to: Optical access network architectures and protocols Passive optical networks (BPON, EPON, GPON, etc.) Active optical networks Multiple access control Multiservices and QoS provisioning Network survivability Field trials and standards Performance modeling and analysis h2>Manuscript Submissionh2> To submit to this special issue, follow the normal procedure for submission to JON, indicating ``Optical Access Networks feature' in the ``Comments' field of the online submission form. For all other questions relating to this feature issue, please send an e-mail to jon@osa.org, subject line ``Optical Access Networks' Additional information can be found on the JON website: http://www.osa-jon.org/submission/. Submission Deadline: 1 June 2005

  11. Optical fiber networks for remote fiber optic sensors.

    Science.gov (United States)

    Fernandez-Vallejo, Montserrat; Lopez-Amo, Manuel

    2012-01-01

    This paper presents an overview of optical fiber sensor networks for remote sensing. Firstly, the state of the art of remote fiber sensor systems has been considered. We have summarized the great evolution of these systems in recent years; this progress confirms that fiber-optic remote sensing is a promising technology with a wide field of practical applications. Afterwards, the most representative remote fiber-optic sensor systems are briefly explained, discussing their schemes, challenges, pros and cons. Finally, a synopsis of the main factors to take into consideration in the design of a remote sensor system is gathered.

  12. Statistical optics

    CERN Document Server

    Goodman, Joseph W

    2015-01-01

    This book discusses statistical methods that are useful for treating problems in modern optics, and the application of these methods to solving a variety of such problems This book covers a variety of statistical problems in optics, including both theory and applications.  The text covers the necessary background in statistics, statistical properties of light waves of various types, the theory of partial coherence and its applications, imaging with partially coherent light, atmospheric degradations of images, and noise limitations in the detection of light. New topics have been introduced i

  13. Study of the Temperature Turbulences Effect upon Optical Beam in Atmospheric Optical Communication

    Directory of Open Access Journals (Sweden)

    F. Dvorak

    2011-09-01

    Full Text Available The paper deals with the study of the effect of temperature turbulences upon the optical beam. The polarization parameters of optical radiation sources and different optical beam states of polarization have been investigated. The obtained polarization parameters are projected on the Poincare sphere by means of Stokes vectors. The optical power distribution curves of optical beams are processed into diagrams. The horizontal and vertical components of linearly and circularly polarized optical beams have been studied. The turbulence flux has vertical direction and the optical beam is propagating through an atmosphere environment with three different states of turbulence. The evaluation of the obtained data was done by means of variance and correlation functions computing. Different rates of effect of temperature turbulences upon horizontal and vertical components were found. To reduce the rate of effect the advantage of an optical beam with circular polarization has been proposed.

  14. Optical Detectors for Astronomy II : State-of-the-art at the Turn of the Millennium : 4th ESO CCD Workshop

    CERN Document Server

    Beletic, James

    2000-01-01

    th The 4 ESO CCO Workshop, Optical Detectors for Astronomy, was held during September 13-16, 1999 at its usual location, the headquarters of the European Southern Observatory in Garching, Germany. We prefer to remember this workshop as a "meeting of friends", who came to Garching to visit ESO and to present their work, rather than a formal meeting. Based on our experience with the 1996 ESO CCO workshop, we deliberately put emphasis on creating an environment that encouraged the participants to stay together and informally exchange ideas. These informal events began with a tour of the BWM auto factory and continued with a reception at "SchloB Beletic", the conference dinner at a real SchloB of the Bavarian International School (where the participants enjoyed basket, baseball, table soccer, rock climbing and eventually dancing) and concluded with a tour of the Paulaner Brewery and dinner at the Seehaus in the Englisher Garten. The lunch "Biergarten", adjacent to the poster session area, was a daily meeting poin...

  15. Investigation on Structural and Optical Properties of Willemite Doped Mn2+ Based Glass-Ceramics Prepared by Conventional Solid-State Method

    Directory of Open Access Journals (Sweden)

    Nur Farhana Samsudin

    2015-01-01

    Full Text Available Mn-doped willemite (Zn2SiO4:Mn2+ glass-ceramics derived from ZnO-SLS glass system were prepared by a conventional melt-quenching technique followed by a controlled crystallization step employing the heat treatment process. Soda lime silica (SLS glass waste, ZnO, and MnO were used as sources of silicon, zinc, and manganese, respectively. The obtained glass-ceramic samples were characterized using the X-ray diffraction (XRD, Field Emission Scanning Electron Microscopy (FESEM, Fourier Transform Infrared (FTIR, UV-Visible (UV-Vis, and photoluminescence (PL spectroscopy. The results of XRD revealed that ZnO crystal and willemite (β-Zn2SiO4 were presented as major embedded crystalline phases. This observation was consistent with the result of FESEM which showed the presence of irregularity in shape and size of willemite crystallites. FTIR spectroscopy exhibits the structural evolution of willemite based glass-ceramics. The optical band gap shows a decreasing trend as the Mn-doping content increased. Photoluminescent technique was applied to characterize the role of Mn2+ ions when entering the willemite glass-ceramic structure. By measuring the excitation and emission spectra, the main emission peak of the glass-ceramic samples located at a wavelength of 585 nm after subjecting to 260 nm excitations. The following results indicate that the obtained glass-ceramics can be applied as phosphor materials.

  16. Fibre Optic Communication Key Devices

    CERN Document Server

    Grote, Norbert

    2012-01-01

    The book gives an in-depth description of the key devices of current and next generation fibre optic communication networks. In particular, the book covers devices such as semiconductor lasers, optical amplifiers, modulators, wavelength filters, and detectors but the relevant properties of optical fibres as well. The presentations include the physical principles underlying the various devices, the technologies used for the realization of the different devices, typical performance characteristics and limitations, and development trends towards more advanced components are also illustrated. Thus the scope of the book spans relevant principles, state-of-the-art implementations, the status of current research and expected future components.

  17. Quantum State Engineering Via Coherent-State Superpositions

    Science.gov (United States)

    Janszky, Jozsef; Adam, P.; Szabo, S.; Domokos, P.

    1996-01-01

    The quantum interference between the two parts of the optical Schrodinger-cat state makes possible to construct a wide class of quantum states via discrete superpositions of coherent states. Even a small number of coherent states can approximate the given quantum states at a high accuracy when the distance between the coherent states is optimized, e. g. nearly perfect Fock state can be constructed by discrete superpositions of n + 1 coherent states lying in the vicinity of the vacuum state.

  18. Surface and interface states of Bi{sub 2}Se{sub 3} thin films investigated by optical second-harmonic generation and terahertz emission

    Energy Technology Data Exchange (ETDEWEB)

    Hamh, S. Y.; Park, S.-H.; Lee, J. S., E-mail: jsl@gist.ac.kr [Department of Physics and Photon Science, School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Jerng, S.-K.; Jeon, J. H.; Chun, S. H. [Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747 (Korea, Republic of); Jeon, J. H.; Kahng, S. J. [Department of Physics, Korea University, Seoul 136-701 (Korea, Republic of); Yu, K.; Choi, E. J. [Department of Physics, University or Seoul, Seoul 130-743 (Korea, Republic of); Kim, S.; Choi, S.-H. [Department of Applied Physics, College of Applied Science, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Bansal, N. [Department of Electrical and Computer Engineering, Rutgers, The state University of New Jersey, Piscataway, New Jersey 08854 (United States); Oh, S. [Department of Physics and Astronomy, Rutgers, The state University of New Jersey, Piscataway, New Jersey 08854 (United States); Park, Joonbum; Kho, Byung-Woo; Kim, Jun Sung [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2016-02-01

    We investigate the surface and interface states of Bi{sub 2}Se{sub 3} thin films by using the second-harmonic generation technique. Distinct from the surface of bulk crystals, the film surface and interface show the isotropic azimuth dependence of second-harmonic intensity, which is attributed to the formation of randomly oriented domains on the in-plane. Based on the nonlinear susceptibility deduced from the model fitting, we determine that the surface band bending induced in a space charge region occurs more strongly at the film interface facing the Al{sub 2}O{sub 3} substrate or capping layer compared with the interface facing the air. We demonstrate that distinct behavior of the terahertz electric field emitted from the samples can provide further information about the surface electronic state of Bi{sub 2}Se{sub 3}.

  19. Quantum Optical Multiple Scattering

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær

    . In the first part we use a scattering-matrix formalism combined with results from random-matrix theory to investigate the interference of quantum optical states on a multiple scattering medium. We investigate a single realization of a scattering medium thereby showing that it is possible to create entangled...... states by interference of squeezed beams. Mixing photon states on the single realization also shows that quantum interference naturally arises by interfering quantum states. We further investigate the ensemble averaged transmission properties of the quantized light and see that the induced quantum...... interference survives even after disorder averaging. The quantum interference manifests itself through increased photon correlations. Furthermore, the theoretical description of a measurement procedure is presented. In this work we relate the noise power spectrum of the total transmitted or reflected light...

  20. Optical twisters

    DEFF Research Database (Denmark)

    Daria, Vincent R.; Palima, Darwin; Glückstad, Jesper

    2010-01-01

    in radius but with a scalable OAM. Furthermore, we characterize the OAM in terms of its capacity to introduce spiral motion on particles trapped along its orbit. We also show that our "optical twister" maintains a high concentration of photons at the focus even as the topological charge is increased...

  1. Optical correlation

    NARCIS (Netherlands)

    Boden, J.A.

    1974-01-01

    A survey is given of the most common types of coherent optical correlators, which are classified as spatial plane correlators, frequency plane correlators and special reference correlators. Only the spatial plane correlators are dealt with rather thoroughly. Basic principles, some special features,

  2. Optical Fibers

    Science.gov (United States)

    Ghatak, Ajoy; Thyagarajan, K.

    With the development of extremely low-loss optical fibers and their application to communication systems, a revolution has taken fiber glass place during the last 40 years. In 2001, using glass fibers as the transmission medium and lightwaves as carrier wave waves, information was transmitted at a rate more than 1 Tbit/s (which is roughly equivalent to transmission of about 15 million simultaneous telephone conversations) through one hair thin optical fiber. Experimental demonstration of transmission at the rate of 14 Tbit/s over a 160 km long single fiber was demonstrated in 2006, which is equivalent to sending 140 digital high definition movies in 1 s. Very recently record transmission of more than 100 Tbit/s over 165 km single mode fiber has been reported. These can be considered as extremely important technological achievements. In this chapter we will discuss the propagation characteristics of optical fibers with special applications to optical communication systems and also present some of the noncommunication applications such as sensing.

  3. Diophantine Optics

    Science.gov (United States)

    Rouan, D.

    2016-09-01

    What I call Diophantine optics is the exploitation in optics of some remarkable algebraic relations between powers of integers. The name comes from Diophantus of Alexandria, a greek mathematician, known as the father of algebra. He studied polynomial equations with integer coefficients and integer solutions, called diophantine equations. Since constructive or destructive interferences are playing with optical path differences which are multiple integer (odd or even) of λ/2 and that the complex amplitude is a highly non-linear function of the optical path difference (or equivalently of the phase), one can understand that any Taylor development of this amplitude implies powers of integers. This is the link with Diophantine equations. We show how, especially in the field of interferometry, remarkable relations between powers of integers can help to solve several problems, such as achromatization of a phase shifter or deep nulling efficiency. It appears that all the research that was conducted in this frame of thinking, relates to the field of detection of exoplanets, a very active domain of astrophysics today.

  4. Optical metrology

    CERN Document Server

    Gåsvik, Kjell J

    2003-01-01

    New material on computerized optical processes, computerized ray tracing, and the fast Fourier transform, Bibre-Bragg sensors, and temporal phase unwrapping.* New introductory sections to all chapters.* Detailed discussion on lasers and laser principles, including an introduction to radiometry and photometry.* Thorough coverage of the CCD camera.

  5. Optical fibres

    CERN Multimedia

    1992-01-01

    These optical fibres are used to detect particles passing through in bunches. Made from scintillating material, the fibres glow when a high energy particle passes through them. These detectors are known as spaghetti detectors and are used to measure the energy of particles.

  6. Synthesis and Optical Properties of Excited-State Intramolecular Proton Transfer Active π-Conjugated Benzimidazole Compounds: Influence of Structural Rigidification by Ring Fusion.

    Science.gov (United States)

    Takagi, Koji; Ito, Kaede; Yamada, Yoshihiro; Nakashima, Takuya; Fukuda, Ryoichi; Ehara, Masahiro; Masu, Hyuma

    2017-12-01

    Two excited-state intramolecular proton transfer (ESIPT) active benzimidazole derivatives (1 and 2) were synthesized by acid-catalyzed intramolecular cyclization. The steady-state fluorescence spectrum in THF revealed that ring-fused derivative 1 exhibits a dual emission, namely, the major emission was from the K* (keto) form (ESIPT emission) at 515 nm with a large Stokes shift of 11 100 cm-1 and the minor emission was from the E* (enol) form at below 400 nm. In contrast, the normal emission from the E* form was dominant and the fluorescence quantum yield was very low (Φ ∼ 0.002) for nonfused derivative 2. The time-resolved fluorescence spectroscopy of 1 suggested that ESIPT effectively occurs due to the restricted conformational transition to the S1-TICT state, and the averaged radiative and nonradiative decay rate constants were estimated as ⟨kf⟩ = 0.15 ns-1 and ⟨knr⟩ = 0.60 ns-1, respectively. The fluorescence emission of 1 was influenced by the measurement conditions, such as solvent polarity and basicity, as well as the presence of Lewis base. The ESIPT process and solvatochromic behavior were nicely reproduced by the DFT/TDDFT calculation using the PCM model. In the single-crystal fluorescent spectra, the ESIPT emissions were exclusively observed for both fused and nonfused compounds as a result of hydrogen-bonding interactions.

  7. Optical Magnetometry

    Science.gov (United States)

    Budker, Dmitry; Kimball, Derek F. Jackson

    2013-03-01

    Part I. Principles and Techniques: 1. General principles and characteristics of optical magnetometers D. F. Jackson Kimball, E. B. Alexandrov and D. Budker; 2. Quantum noise in atomic magnetometers M. V. Romalis; 3. Quantum noise, squeezing, and entanglement in radio-frequency optical magnetometers K. Jensen and E. S. Polzik; 4. Mx and Mz magnetometers E. B. Alexandrov and A. K. Vershovskiy; 5. Spin-exchange-relaxation-free (serf) magnetometers I. Savukov and S. J. Seltzer; 6. Optical magnetometry with modulated light D. F. Jackson Kimball, S. Pustelny, V. V. Yashchuk and D. Budker; 7. Microfabricated atomic magnetometers S. Knappe and J. Kitching; 8. Optical magnetometry with nitrogen-vacancy centers in diamond V. M. Acosta, D. Budker, P. R. Hemmer, J. R. Maze and R. L. Walsworth; 9. Magnetometry with cold atoms W. Gawlik and J. M. Higbie; 10. Helium magnetometers R. E. Slocum, D. D. McGregor and A. W. Brown; 11. Surface coatings for atomic magnetometry S. J. Seltzer, M.-A. Bouchiat and M. V. Balabas; 12. Magnetic shielding V. V. Yashchuk, S.-K. Lee and E. Paperno; Part II. Applications: 13. Remote detection magnetometry S. M. Rochester, J. M. Higbie, B. Patton, D. Budker, R. Holzlöhner and D. Bonaccini Calia; 14. Detection of nuclear magnetic resonance with atomic magnetometers M. P. Ledbetter, I. Savukov, S. J. Seltzer and D. Budker; 15. Space magnetometry B. Patton, A. W. Brown, R. E. Slocum and E. J. Smith; 16. Detection of biomagnetic fields A. Ben-Amar Baranga, T. G. Walker and R. T. Wakai; 17. Geophysical applications M. D. Prouty, R. Johnson, I. Hrvoic and A. K. Vershovskiy; Part III. Broader Impact: 18. Tests of fundamental physics with optical magnetometers D. F. Jackson Kimball, S. K. Lamoreaux and T. E. Chupp; 19. Nuclear magnetic resonance gyroscopes E. A. Donley and J. Kitching; 20. Commercial magnetometers and their application D. C. Hovde, M. D. Prouty, I. Hrvoic and R. E. Slocum; Index.

  8. Growth Rates and Stability of Tree Covered Islands on the Anabranching Vaal River, Free State South Africa, Established Using Quartz Optically Stimulated Luminescence

    Science.gov (United States)

    Keen-Zebert, A.; Tooth, S.

    2016-12-01

    Mixed bedrock-alluvial anabranching rivers form some of the world's most spectacular fluvial scenery but their dynamics remain poorly documented. Previous conceptual models have outlined how alluvial islands form on the underlying bedrock template but timescales of island development are largely unknown owing to limited geochronology. This study uses optically stimulated luminescence (OSL) dating to establish the growth rates and stability of alluvial islands on the Vaal River at Parys, South Africa. The Vaal traverses the World Heritage-listed Vredefort Dome, an eroded, ancient meteorite impact site. The river enters and exits the dome as a 150-170 m wide single channel flanked by sedimentary rocks, but changes to a distinctive 1.5 km wide anabranching river with 10-15 channels and numerous islands as it flows across granitoid rocks exposed in the dome's core. The numerous islands are formed of rock and/or alluvium, and support extensive native riparian tree communities, providing habitat diversity that contrasts with the surrounding semi-arid, grass- and shrub-covered terrain. We measured the age and aggradation rates of 9 islands in the anabranching reach using OSL. Single grain measurements of quartz were made using the single aliquot regenerative dose (SAR) approach. Equivalent dose populations have up to 60% overdispersion, common for fluvial samples, and the minimum age model was used to calculate final ages. Results demonstrate that the complex of alluvial islands is relatively young, with all having formed in the past 1000 years. The alluvial islands grow rapidly (mean vertical aggradation >0.28 cm/yr) during low to moderate floods (Q lateral erosion, vertical stripping, and dissection by newly-forming anabranches. The ages demonstrate that the alluvial islands are essentially dynamic, short-lived features that develop on a bedrock template that is underlying slower, long-term erosion.

  9. Annual and Seasonal Glacier-Wide Surface Mass Balance Quantified from Changes in Glacier Surface State: A Review on Existing Methods Using Optical Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Antoine Rabatel

    2017-05-01

    Full Text Available Glaciers are one of the terrestrial essential climate variables (ECVs as they respond very sensitively to climate change. A key driver of their response is the glacier surface mass balance that is typically derived from field measurements. It deserves to be quantified over long time scales to better understand the accumulation and ablation processes at the glacier surface and their relationships with inter-annual changes in meteorological conditions and long-term climate changes. Glaciers with in situ monitoring of surface mass balance are scarce at the global scale, and satellite remote sensing provides a powerful tool to increase the number of monitored glaciers. In this study, we present a review of three optical remote sensing methods developed to quantify seasonal and annual glacier surface mass balances. These methodologies rely on the multitemporal monitoring of the end-of-summer snow line for the equilibrium-line altitude (ELA method, the annual cycle of glacier surface albedo for the albedo method and the mapping of the regional snow cover at the seasonal scale for the snow-map method. Together with a presentation of each method, an application is illustrated. The ELA method shows promising results to quantify annual surface mass balance and to reconstruct multi-decadal time series. The other two methods currently need a calibration on the basis of existing in situ data; however, a generalization of these methods (without calibration could be achieved. The two latter methods show satisfying results at the annual and seasonal scales, particularly for the summer surface mass balance in the case of the albedo method and for the winter surface mass balance in the case of the snow-map method. The limits of each method (e.g., cloud coverage, debris-covered glaciers, monsoon-regime and cold glaciers, their complementarities and the future challenges (e.g., automating of the satellite images processing, generalization of the methods needing

  10. Materials Research Society Symposium on the Electrical, Optical and Magnetic Properties of Organic Solid State Materials Held in Boston Massachusetts on 27 November-2 December 1989

    Science.gov (United States)

    1989-12-01

    M.E. Gingerich, S.J. Hickey*, M.A. Putnam **, C.M. Shaw***, Naval Research Laboratory. Washi gton Fused silica which were formed in the hydrogen- DCM...CORONA POLED POLYMER FILMS, Neil Williams, Vijay K. Varadan, and Hilary L. Hampsch, Northwestern University, Vasundara V. Varadan, Pennsylvania State...GOODWIN, MICHAEL W., E7.9 GUARNIERI, C. RICHARD, AI.8, HAMPSCH, HILARY L., Q13.6 HAYASHI, NOBUYUKI, A2.4 GOORSKY, M., B2.7, G12.3 F5.4 HAN, C.C., J6.2

  11. Applied optics and optical engineering v.9

    CERN Document Server

    Shannon, Robert

    1983-01-01

    Applied Optics and Optical Engineering, Volume IX covers the theories and applications of optics and optical engineering. The book discusses the basic algorithms for optical engineering; diffraction gratings, ruled and holographic; and recording and reading of information on optical disks. The text also describes the perfect point spread function; the multiple aperture telescope diffraction images; and the displays and simulators. Ophthalmic optics, as well as the canonical and real-space coordinates used in the theory of image formation are also encompassed. Optical engineers and students tak

  12. Optic nerve atrophy

    Science.gov (United States)

    Optic atrophy; Optic neuropathy ... There are many causes of optic atrophy. The most common is poor blood flow. This is called ischemic optic neuropathy. The problem most often affects older adults. ...

  13. Optical Communication over Plastic Optical Fibers Integrated Optical Receiver Technology

    CERN Document Server

    Atef, Mohamed

    2013-01-01

    This book presents high-performance data transmission over plastic optical fibers (POF) using integrated optical receivers having good properties with multilevel modulation, i.e. a higher sensitivity and higher data rate transmission over a longer plastic optical fiber length. Integrated optical receivers and transmitters with high linearity are introduced for multilevel communication. For binary high-data rate transmission over plastic optical fibers, an innovative receiver containing an equalizer is described leading also to a high performance of a plastic optical fiber link. The cheap standard PMMA SI-POF (step-index plastic optical fiber) has the lowest bandwidth and the highest attenuation among multimode fibers. This small bandwidth limits the maximum data rate which can be transmitted through plastic optical fibers. To overcome the problem of the plastic optical fibers high transmission loss, very sensitive receivers must be used to increase the transmitted length over POF. The plastic optical fiber li...

  14. Optically-gated Non-latched High Gain Power Device

    Science.gov (United States)

    2008-11-21

    switching times of an optically-controlled power bipolar junction transistor ( BJT ) is reported in [20] using light-emitting diode (LED)-phototransistor pair...GaAs based optically-trigegred power transistor (OTPT) has been developed for fast, repetitive, non-latched switching and control of power...OF OPTICAL INTENSITY MODULATION 8 2.1. Optically-triggered power transistor structure 9 2.2 On-state resistance (Ron) of OTPT modulated by optical

  15. Scheme for secure swapping two unknown states of a photonic qubit and an electron-spin qubit using simultaneous quantum transmission and teleportation via quantum dots inside single-sided optical cavities

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Jino [College of Electrical and Computer Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju (Korea, Republic of); Kang, Min-Sung [Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul, 136-791 (Korea, Republic of); Hong, Chang-Ho [National Security Research Institute, P.O.Box 1, Yuseong, Daejeon, 34188 (Korea, Republic of); Choi, Seong-Gon [College of Electrical and Computer Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju (Korea, Republic of); Hong, Jong-Phil, E-mail: jongph@cbnu.ac.kr [College of Electrical and Computer Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju (Korea, Republic of)

    2017-06-15

    We propose a scheme for swapping two unknown states of a photon and electron spin confined to a charged quantum dot (QD) between two users by transferring a single photon. This scheme simultaneously transfers and teleports an unknown state (electron spin) between two users. For this bidirectional quantum communication, we utilize the interactions between a photonic and an electron-spin qubits of a QD located inside a single-sided optical cavity. Thus, our proposal using QD-cavity systems can obtain a certain success probability with high fidelity. Furthermore, compared to a previous scheme using cross-Kerr nonlinearities and homodyne detections, our scheme (using QD-cavity systems) can improve the feasibility under the decoherence effect in practice. - Highlights: • Design of Simultaneous quantum transmission and teleportation scheme via quantum dots and cavities. • We have developed the experimental feasibility of this scheme compared with the existing scheme. • Analysis of some benefits when our scheme is experimentally implemented using quantum dots and single-sided cavities.

  16. Optical Spectroscopy

    DEFF Research Database (Denmark)

    Thyrhaug, Erling

    containing systems using simple instrumentation and well-known and understood theoretical concepts. Overall it is attempted to achieve this goal by presenting five research projects that I have been involved in during my Ph.D. studies which collectively demonstrate some of the many possibilities of gaining......The work presented in this thesis is broadly concerned with how complexation reactions and molecular motion can be characterized with the standard techniques in optical spectroscopy. The thesis aims to show a relatively broad range of methods for probing physico-chemical properties in fluorophore...... information about chemical equilibria, kinetics and molecular motion by monitoring changes in optical properties of the system. The five presented research projects are largely unrelated to each other both in aim and in what property is probed, however they are all connected in that they are fluorophore...

  17. Optical Processing.

    Science.gov (United States)

    1986-06-01

    and evaluation of technologies suitable for discrete optical computing is described, where particular emphasis has applied to ZnSe non- linea :, and...met. The processes are similar to that used in proving an algebraic theorem. Among the daunting practical difficulties encount- ered are:- (a) Formal...implementation of algorithms. Usually, such algorithms exhibit a highly regular S- structure as typified by linear algebra problems, and are generally

  18. Analysis of thermally loaded transmissive optical elements

    Science.gov (United States)

    Michels, Gregory J.; Genberg, Victor L.

    2013-09-01

    The performance metrics of many optical systems are affected by temperature changes in the system through different physical phenomena. Temperature changes cause materials to expand and contract causing deformations of optical components. The resulting stress states in transmissive optics can cause refractive changes that can affect optical performance. In addition, the temperature changes themselves can cause changes in the refractive properties of transmissive optics. Complex distributions of refractive indices that relate to the thermal profile, the thermo-optic refractive index profile, within the optical media can be predicted by the finite element method. One current technique for representing such refractive index profiles is through the generation of optical path difference (OPD) maps by integration along integration paths. While computationally efficient, this method has limitations in its ability to represent the effect of the index changes for rays associated with multiple field points and multiple wavelengths. A more complete representation of the thermo-optic refractive index profile may be passed to the optical analysis software through the use of a user defined gradient index material. The interface consists of a dynamic link library (DLL) which supplies indices of refraction to a user defined gradient index lens as ray tracing calculations are being performed. The DLL obtains its refractive index description from a database derived from the thermal analysis of the optics. This process allows optical analysis software to perform accurate ray tracing for an arbitrary refractive index profile induced by changes in temperature.

  19. Roadmap on ultrafast optics

    Science.gov (United States)

    Reid, Derryck T.; Heyl, Christoph M.; Thomson, Robert R.; Trebino, Rick; Steinmeyer, Günter; Fielding, Helen H.; Holzwarth, Ronald; Zhang, Zhigang; Del'Haye, Pascal; Südmeyer, Thomas; Mourou, Gérard; Tajima, Toshiki; Faccio, Daniele; Harren, Frans J. M.; Cerullo, Giulio

    2016-09-01

    The year 2015 marked the 25th anniversary of modern ultrafast optics, since the demonstration of the first Kerr lens modelocked Ti:sapphire laser in 1990 (Spence et al 1990 Conf. on Lasers and Electro-Optics, CLEO, pp 619-20) heralded an explosion of scientific and engineering innovation. The impact of this disruptive technology extended well beyond the previous discipline boundaries of lasers, reaching into biology labs, manufacturing facilities, and even consumer healthcare and electronics. In recognition of such a milestone, this roadmap on Ultrafast Optics draws together articles from some of the key opinion leaders in the field to provide a freeze-frame of the state-of-the-art, while also attempting to forecast the technical and scientific paradigms which will define the field over the next 25 years. While no roadmap can be fully comprehensive, the thirteen articles here reflect the most exciting technical opportunities presented at the current time in Ultrafast Optics. Several articles examine the future landscape for ultrafast light sources, from practical solid-state/fiber lasers and Raman microresonators to exotic attosecond extreme ultraviolet and possibly even zeptosecond x-ray pulses. Others address the control and measurement challenges, requiring radical approaches to harness nonlinear effects such as filamentation and parametric generation, coupled with the question of how to most accurately characterise the field of ultrafast pulses simultaneously in space and time. Applications of ultrafast sources in materials processing, spectroscopy and time-resolved chemistry are also discussed, highlighting the improvements in performance possible by using lasers of higher peak power and repetition rate, or by exploiting the phase stability of emerging new frequency comb sources.

  20. The handbook of optical communication networks

    CERN Document Server

    Ilyas, Mohammad

    2003-01-01

    The Handbook of Optical Communication Networks presents comprehensive, up-to-date technical information on integrated, state-of-the-art optical networks. Beginning with an in-depth intoduction to the field, top international authorities explore every major aspect of optical networks, from basic concepts to research grade material. Their discussions cover all of the essential topics, including protocols, resource management, routing and wavelength assignment in WDM networks, connection management, survivability, enabling technologies, and future trends.

  1. Analysis of Free-Space Optics Development

    Directory of Open Access Journals (Sweden)

    Mikołajczyk Janusz

    2017-12-01

    Full Text Available The article presents state of work in technology of free-space optical communications (Free Space Optics − FSO. Both commercially available optical data links and their further development are described. The main elements and operation limiting factors of FSO systems have been identified. Additionally, analyses of FSO/RF hybrid systems application are included. The main aspects of LasBITer project related to such hybrid technology for security and defence applications are presented.

  2. CHIRALITY IN NONLINEAR OPTICS AND OPTICAL SWITCHING

    NARCIS (Netherlands)

    Meijer, E.W.; Feringa, B.L.

    1993-01-01

    Chirality in molecular opto-electronics is limited sofar to the use of optically active liquid crystals and a number of optical phenomena are related to the helical macroscopic structure obtained by using one enantiomer, only. In this paper, the use of chirality in nonlinear optics and optical

  3. Solid state synthesis, structural, physicochemical and optical properties of an inter-molecular compound: 2-hydroxy-1, 2-diphenylethanone-4-nitro-o-phenylenediamine system

    Science.gov (United States)

    Rai, U. S.; Singh, Manjeet; Rai, R. N.

    2017-09-01

    The phase diagram of 2-hydroxy-1, 2-diphenylethanone (HDPE)-4-nitro-o-phenylenediamine (NOPDA) system, determined by the thaw-melt method, gives two eutectics E1 (m p = 66.0 °C) and E2 (m p = 155.0 °C) with 0.30 and 0.55 mol fractions of NOPDA, respectively, and an 1:1 inter-molecular compound (IMC) (m p 162.0 °C). This IMC was synthesized by adopting the green synthetic method of solid state reaction. While its formation and structure were confirmed by the X-ray diffraction and spectroscopic methods, the ORTEP view gives mode of crystal packing, C‒H…O, C‒H…N, π-π stacking and the inter-molecular hydrogen bonding in the compound. The single crystal of the IMC shows 53% transmission and emits significantly higher dual fluorescence, and the band gap was computed to be 3.04 eV. The values of solubility of the IMC, measured in the temperature range 304-322 K, satisfy the mole fraction (X) and temperature equation: Xeq= 5.1324 × 10-7 e 0.01356T.

  4. Roadmap on optical energy conversion

    Science.gov (United States)

    Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; Yablonovitch, Eli; Beard, Matthew C.; Okada, Yoshitaka; Lany, Stephan; Gershon, Talia; Zakutayev, Andriy; Tahersima, Mohammad H.; Sorger, Volker J.; Naughton, Michael J.; Kempa, Krzysztof; Dagenais, Mario; Yao, Yuan; Xu, Lu; Sheng, Xing; Bronstein, Noah D.; Rogers, John A.; Alivisatos, A. Paul; Nuzzo, Ralph G.; Gordon, Jeffrey M.; Wu, Di M.; Wisser, Michael D.; Salleo, Alberto; Dionne, Jennifer; Bermel, Peter; Greffet, Jean-Jacques; Celanovic, Ivan; Soljacic, Marin; Manor, Assaf; Rotschild, Carmel; Raman, Aaswath; Zhu, Linxiao; Fan, Shanhui; Chen, Gang

    2016-07-01

    For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in the optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. It is our hope that the roadmap

  5. Optical Specifications And Tolerances For Large Optics

    Science.gov (United States)

    Parks, Robert E.

    1983-12-01

    The term "large" has specific implications about types of optics and their uses. In this paper large optics are defined and figure, beauty, and blank characteristics are specified with tolerances for each. Because it is useless to discuss specifications for properties that cannot be measured, tests for each specification are described. The specification of a large optic takes far more thought and insight than is the case for small optics because of the high cost and demanding applications of large optics.

  6. Cloud optics

    CERN Document Server

    Kokhanovsky, A

    2006-01-01

    Clouds affect the climate of the Earth, and they are an important factor in the weather. Therefore, their radiative properties must be understood in great detail. This book summarizes current knowledge on cloud optical properties, for example their ability to absorb, transmit, and reflect light, which depends on the clouds' geometrical and microphysical characteristics such as sizes of droplets and crystals, their shapes, and structures. In addition, problems related to the image transfer through clouds and cloud remote sensing are addressed in this book in great detail. This book can be an im

  7. Fabrication and optical characterization of improved electroless ...

    African Journals Online (AJOL)

    Fabrication and optical characterization of improved electroless chemically deposited strontium fluoride (SrF2) thin films at 320K. ... Journal of the Nigerian Association of Mathematical Physics ... Other optical and solid state properties were calculated from the data and compared with other deposited thin films. Average ...

  8. Optic nerve regeneration.

    Science.gov (United States)

    Benowitz, Larry I; Yin, Yuqin

    2010-08-01

    Retinal ganglion cells are usually not able to regenerate their axons after optic nerve injury or degenerative disorders, resulting in lifelong visual loss. This situation can be partially reversed by activating the intrinsic growth state of retinal ganglion cells, maintaining their viability, and counteracting inhibitory signals in the extracellular environment. Advances during the past few years continue to extend the amount of regeneration that can be achieved in animal models. These findings give hope that clinically meaningful regeneration may become a reality within a few years if regenerating axons can be guided to their appropriate destinations.

  9. Optical processes in semiconductors

    CERN Document Server

    Pankove, Jacques I

    1975-01-01

    Based on a series of lectures at Berkeley, 1968-1969, this is the first book to deal comprehensively with all of the phenomena involving light in semiconductors. The author has combined, for the graduate student and researcher, a great variety of source material, journal research, and many years of experimental research, adding new insights published for the first time in this book.Coverage includes energy states in semiconductors and their perturbation by external parameters, absorption, relationships between optical constants, spectroscopy, radiative transitions, nonradiative recombination

  10. Development of All-Solid-State Sensors for Measurement of Nitric Oxide and Ammonia Concentrations by Optical Absorption in Particle-Laden Combustion Exhaust Streams

    Energy Technology Data Exchange (ETDEWEB)

    Jerald A. Caton; Kalyan Annamalai; Robert P. Lucht

    2006-12-31

    An all-solid-state continuous-wave (cw) laser system for ultraviolet absorption measurements of the nitric oxide (NO) molecule has been developed and demonstrated. For the NO sensor, 250 nW of tunable cw ultraviolet radiation is produced by sum-frequency-mixing of 532-nm radiation from a diode-pumped Nd:YAG laser and tunable 395-nm radiation from an external cavity diode laser (ECDL). The sum-frequency-mixing process occurs in a beta-barium borate crystal. The nitric oxide absorption measurements are performed by tuning the ECDL and scanning the sum-frequency-mixed radiation over strong nitric oxide absorption lines near 226 nm. In Year 1 of the research, the nitric oxide sensor was used for measurements in the exhaust of a coal-fired laboratory combustion facility. The Texas A&M University boiler burner facility is a 30 kW (100,000 Btu/hr) downward-fired furnace with a steel shell encasing ceramic insulation. Measurements of nitric oxide concentration in the exhaust stream were performed after modification of the facility for laser based NOx diagnostics. The diode-laser-based ultraviolet absorption measurements were successful even when the beam was severely attenuated by particulate in the exhaust stream and window fouling. Single-laser-sweep measurements were demonstrated with an effective time resolution of 100 msec, limited at this time by the scan rate of our mechanically tuned ECDL system. In Year 2, the Toptica ECDL in the original system was replaced with a Sacher Lasers ECDL. The mode-hop-free tuning range and tuning rate of the Toptica ECDL were 25 GHz and a few Hz, respectively. The mode-hop-free tuning range and tuning rate of the Sacher Lasers ECDL were 90 GHz and a few hundred Hz, respectively. The Sacher Lasers ECDL thus allows us to scan over the entire NO absorption line and to determine the absorption baseline with increased accuracy and precision. The increased tuning rate is an advantage in that data can be acquired much more rapidly and the

  11. Use of a photonic crystal for optical amplifier gain control

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shawn-Yu [Albuquerque, NM; Fleming, James G [Albuquerque, NM; El-Kady, Ihab [Albuquerque, NM

    2006-07-18

    An optical amplifier having a uniform gain profile uses a photonic crystal to tune the density-of-states of a gain medium so as to modify the light emission rate between atomic states. The density-of-states of the gain medium is tuned by selecting the size, shape, dielectric constant, and spacing of a plurality of microcavity defects in the photonic crystal. The optical amplifier is particularly useful for the regeneration of DWDM signals in long optical fibers.

  12. Interferometric Fiber-Optic Gyroscope

    Science.gov (United States)

    Depaula, Ramon P.; Bogert, Gail A.; Minford, William J.

    1990-01-01

    Integrated three-waveguide directional coupler functions as polarizer and splitter. Designed with transverse electric (TE) polarization in bar state (two coupling lengths) and transverse magnetic (TM) polarization in cross state (one coupling length). Intended for eventual fabrication as in mass-producible integrated optical circuit that provides advantages including low drive voltage, large-bandwidth phase modulation, preservation of polarization in transmission between devices on same substrate, and low cost.

  13. Nonlinear Optics: Principles and Applications

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Tidemand-Lichtenberg, Peter

    As nonlinear optics further develops as a field of research in electromagnetic wave propagation, its state-of-the-art technologies will continue to strongly impact real-world applications in a variety of fields useful to the practicing scientist and engineer. From basic principles to examples...

  14. Dissipative preparation of entanglement in optical cavities

    DEFF Research Database (Denmark)

    Kastoryano, Michael James; Reiter, Florentin; Sørensen, Anders Søndberg

    2011-01-01

    We propose a novel scheme for the preparation of a maximally entangled state of two atoms in an optical cavity. Starting from an arbitrary initial state, a singlet state is prepared as the unique fixed point of a dissipative quantum dynamical process. In our scheme, cavity decay is no longer...

  15. Chiral quantum optics.

    Science.gov (United States)

    Lodahl, Peter; Mahmoodian, Sahand; Stobbe, Søren; Rauschenbeutel, Arno; Schneeweiss, Philipp; Volz, Jürgen; Pichler, Hannes; Zoller, Peter

    2017-01-25

    Advanced photonic nanostructures are currently revolutionizing the optics and photonics that underpin applications ranging from light technology to quantum-information processing. The strong light confinement in these structures can lock the local polarization of the light to its propagation direction, leading to propagation-direction-dependent emission, scattering and absorption of photons by quantum emitters. The possibility of such a propagation-direction-dependent, or chiral, light-matter interaction is not accounted for in standard quantum optics and its recent discovery brought about the research field of chiral quantum optics. The latter offers fundamentally new functionalities and applications: it enables the assembly of non-reciprocal single-photon devices that can be operated in a quantum superposition of two or more of their operational states and the realization of deterministic spin-photon interfaces. Moreover, engineered directional photonic reservoirs could lead to the development of complex quantum networks that, for example, could simulate novel classes of quantum many-body systems.

  16. RxGen General Optical Model Prescription Generator

    Science.gov (United States)

    Sigrist, Norbert

    2012-01-01

    RxGen is a prescription generator for JPL's in-house optical modeling software package called MACOS (Modeling and Analysis for Controlled Optical Systems), which is an expert optical analysis software package focusing on modeling optics on dynamic structures, deformable optics, and controlled optics. The objectives of RxGen are to simplify and automate MACOS prescription generations, reducing errors associated with creating such optical prescriptions, and improving user efficiency without requiring MACOS proficiency. RxGen uses MATLAB (a high-level language and interactive environment developed by MathWorks) as the development and deployment platform, but RxGen can easily be ported to another optical modeling/analysis platform. Running RxGen within the modeling environment has the huge benefit that variations in optical models can be made an integral part of the modeling state. For instance, optical prescription parameters determined as external functional dependencies, optical variations by controlling the in-/exclusion of optical components like sub-systems, and/or controlling the state of all components. Combining the mentioned capabilities and flexibilities with RxGen's optical abstraction layer completely eliminates the hindering aspects for requiring proficiency in writing/editing MACOS prescriptions, allowing users to focus on the modeling aspects of optical systems, i.e., increasing productivity and efficiency. RxGen provides significant enhancements to MACOS and delivers a framework for fast prototyping as well as for developing very complex controlled optical systems.

  17. Optical MEMS for chemical analysis and biomedicine

    CERN Document Server

    Jiang, Hongrui

    2016-01-01

    This book describes the current state of optical MEMS in chemical and biomedical analysis and brings together current trends and highlights topics representing the most exciting progress in recent years in the field.

  18. Restoration of optic neuropathy

    Directory of Open Access Journals (Sweden)

    You SW

    2017-03-01

    Full Text Available Si-Wei You,1 Ming-Mei Wu,2 Fang Kuang,2 Kin-Sang Cho,3 Kwok-Fai So4,5 1Department of Ophthalmology, Xijing Hospital, 2Institute of Neurosciences, The Fourth Military Medical University, Xi’an, China; 3Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; 4GHM Institute of CNS Regeneration, Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, 5Department of Ophthalmology, The State Key laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China Abstract: Optic neuropathy refers to disorders involving the optic nerve (ON. Any damage to ON or ON-deriving neurons, the retinal ganglion cells (RGCs, may lead to the breakdown of the optical signal transmission from the eye to the brain, thus resulting in a partial or complete vision loss. The causes of optic neuropathy include trauma, ischemia, inflammation, compression, infiltration, and mitochondrial damages. ON injuries include primary and secondary injuries. During these injury phases, various factors orchestrate injured axons to die back and become unable to regenerate, and these factors could be divided into two categories: extrinsic and intrinsic. Extrinsic inhibitory factors refer to the environmental conditions that influence the regeneration of injured axons. The presence of myelin inhibitors and glial scar, lack of neurotrophic factors, and inflammation mediated by injury are regarded as these extrinsic factors. Extrinsic factors need to trigger the intracellular signals to exert inhibitory effect. Proper regulation of these intracellular signals has been shown to be beneficial to ON regeneration. Intrinsic factors of RGCs are the pivotal reasons that inhibit ON regeneration and are closely linked with extrinsic factors. Intracellular cyclic adenosine monophosphate (cAMP and calcium levels affect axon guidance and growth cone response to guidance molecules

  19. Fiber Optic Temperature Sensors for Thermal Protection Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase 1, Intelligent Fiber Optic Systems Corporation (IFOS), in collaboration with North Carolina State University, successfully demonstrated a Fiber Bragg...

  20. Optical sensors based on plastic fibers.

    Science.gov (United States)

    Bilro, Lúcia; Alberto, Nélia; Pinto, João L; Nogueira, Rogério

    2012-01-01

    The recent advances of polymer technology allowed the introduction of plastic optical fiber in sensor design. The advantages of optical metrology with plastic optical fiber have attracted the attention of the scientific community, as they allow the development of low-cost or cost competitive systems compared with conventional technologies. In this paper, the current state of the art of plastic optical fiber technology will be reviewed, namely its main characteristics and sensing advantages. Several measurement techniques will be described, with a strong focus on interrogation approaches based on intensity variation in transmission and reflection. The potential applications involving structural health monitoring, medicine, environment and the biological and chemical area are also presented.

  1. Integrated optics for fiber optic sensors

    Science.gov (United States)

    Minford, W. J.; Depaula, R. P.

    1991-01-01

    Recent progress achieved in the field of fiber-optic sensor applications is discussed with emphasis placed on LiNbO3-based integrated optics (IO). Particular consideration is given to advanced electromagnetic-field sensors, an integrated laser vibrometer system, and a fiber-optic gyroscope system. It is shown that the multifunction IO chips have enabled high perforamance fiber-optic sensors (e.g., fiber-optic gyros), provided advanced and unique signal processing capabilities and advanced architectures, and have a potential of making fiber-optic sensors at low cost.

  2. Coding for optical channels

    CERN Document Server

    Djordjevic, Ivan; Vasic, Bane

    2010-01-01

    This unique book provides a coherent and comprehensive introduction to the fundamentals of optical communications, signal processing and coding for optical channels. It is the first to integrate the fundamentals of coding theory and optical communication.

  3. Systems and methods for free space optical communication

    Science.gov (United States)

    Harper, Warren W [Benton City, WA; Aker, Pamela M [Richland, WA; Pratt, Richard M [Richland, WA

    2011-05-10

    Free space optical communication methods and systems, according to various aspects are described. The methods and systems are characterized by transmission of data through free space with a digitized optical signal acquired using wavelength modulation, and by discrimination between bit states in the digitized optical signal using a spectroscopic absorption feature of a chemical substance.

  4. Automatic polarization control in optical sampling system

    Science.gov (United States)

    Zhao, Zhao; Yang, Aiying; Feng, Lihui

    2015-08-01

    In an optical sampling system for high-speed optical communications, polarization controlling is one of the most important parts of the system, regardless of nonlinear optical sampling or linear optical sampling. A simple method based on variance calculation of sampled data is proposed in this paper to tune the wave plates in a motor-driven polarization controller. In the experiment, an optical sampling system base on SFG in PPLN is carried for a 10Gbit/s or beyond optical data signal. The results demonstrate that, with the proposed method, the error of estimated Q factor from the sampled data is least, and the tuning time of optimized polarization state is less than 30 seconds with the accuracy of +/-1°.

  5. Integrated Optical Interconnect Architectures for Embedded Systems

    CERN Document Server

    Nicolescu, Gabriela

    2013-01-01

    This book provides a broad overview of current research in optical interconnect technologies and architectures. Introductory chapters on high-performance computing and the associated issues in conventional interconnect architectures, and on the fundamental building blocks for integrated optical interconnect, provide the foundations for the bulk of the book which brings together leading experts in the field of optical interconnect architectures for data communication. Particular emphasis is given to the ways in which the photonic components are assembled into architectures to address the needs of data-intensive on-chip communication, and to the performance evaluation of such architectures for specific applications.   Provides state-of-the-art research on the use of optical interconnects in Embedded Systems; Begins with coverage of the basics for high-performance computing and optical interconnect; Includes a variety of on-chip optical communication topologies; Features coverage of system integration and opti...

  6. Applied optics and optical design, part two

    CERN Document Server

    Conrady, A E

    2014-01-01

    Classic detailed treatment for practical designer. Fundamental concepts, systematic study and design of all types of optical systems. Reader can then design simpler optical systems without aid. Part Two of Two.

  7. Tunable laser optics

    CERN Document Server

    Duarte, FJ

    2015-01-01

    This Second Edition of a bestselling book describes the optics and optical principles needed to build lasers. It also highlights the optics instrumentation necessary to characterize laser emissions and focuses on laser-based optical instrumentation. The book emphasizes practical and utilitarian aspects of relevant optics including the essential theory. This revised, expanded, and improved edition contains new material on tunable lasers and discusses relevant topics in quantum optics.

  8. Optical Robotics in Mesoscopia

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    2012-01-01

    of optical forces and optical torques that, in turn, requires optimization of the underlying light-matter interactions. The requirement of having tightly focused beams in optical tweezer systems exemplifies the need for optimal light-shaping in optical trapping. On the other hand, the recently demonstrated...... deflections that are exploited in conventional optical trapping and manipulation. We also proposed designing micro-structures for so-called structure-mediated access to the nanoscale and a completely new concept: waveguided optical waveguides....

  9. Optical absorption measurement system

    Science.gov (United States)

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  10. CHIRALITY IN NONLINEAR OPTICS AND OPTICAL SWITCHING

    OpenAIRE

    Meijer, E. W.; Feringa, B. L.

    1993-01-01

    Chirality in molecular opto-electronics is limited sofar to the use of optically active liquid crystals and a number of optical phenomena are related to the helical macroscopic structure obtained by using one enantiomer, only. In this paper, the use of chirality in nonlinear optics and optical switching is demonstrated. The additional options offered by the combination of circularly polarized light and chiral molecules gives rise to the observation of Second Harmonic Generation from centrosym...

  11. Nonlinear Optics: Principles and Applications

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Tidemand-Lichtenberg, Peter

    As nonlinear optics further develops as a field of research in electromagnetic wave propagation, its state-of-the-art technologies will continue to strongly impact real-world applications in a variety of fields useful to the practicing scientist and engineer. From basic principles to examples...... of applications, Nonlinear Optics: Principles and Applications effectively bridges physics and mathematics with relevant applied material for real-world use. The book progresses naturally from fundamental aspects to illustrative examples, and presents a strong theoretical foundation that equips the reader...

  12. Optical implementation of neural networks

    Science.gov (United States)

    Yu, Francis T. S.; Guo, Ruyan

    2002-12-01

    An adaptive optical neuro-computing (ONC) using inexpensive pocket size liquid crystal televisions (LCTVs) had been developed by the graduate students in the Electro-Optics Laboratory at The Pennsylvania State University. Although this neuro-computing has only 8×8=64 neurons, it can be easily extended to 16×20=320 neurons. The major advantages of this LCTV architecture as compared with other reported ONCs, are low cost and the flexibility to operate. To test the performance, several neural net models are used. These models are Interpattern Association, Hetero-association and unsupervised learning algorithms. The system design considerations and experimental demonstrations are also included.

  13. Intelligent Optics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Intelligent Optics Laboratory supports sophisticated investigations on adaptive and nonlinear optics; advancedimaging and image processing; ground-to-ground and...

  14. Fibre-optic communications

    CERN Document Server

    Lecoy, Pierre

    2010-01-01

    This book describes in a comprehensive manner the components and systems of fiber optic communications and networks. The first section explains the theory of multimode and single-mode fibers, then the technological features, including manufacturing, cabling, and connecting. The second section describes the various components (passive and active optical components, integrated optics, opto-electronic transmitters and receivers, and optical amplifiers) used in fiber optic systems. Finally, the optical transmission system design is explained, and applications to optical networks and fiber optic se

  15. Optical Remote Sensing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  16. Ultrafast Nonlinear Optical Spectroscopy

    National Research Council Canada - National Science Library

    Wagner, Kelvin

    1999-01-01

    We have developed an Ultrafast optical nonlinear spectroscopy facility with the motivation of studying spatio-temporal soliton interactions for all-optical switching application and several associated...

  17. Optics and photonics: essential technologies for our nation (technology & engineering)

    CERN Document Server

    Research, Committee on Harnessing Light: Capitalizing on Optical Science Trends and Challenges for Future; Sciences, Division on Engineering and Physical; Council, National Research

    2013-01-01

    Optics and photonics technologies are ubiquitous: they are responsible for the displays on smart phones and computing devices, optical fiber that carries the information in the internet, advanced precision manufacturing, enhanced defense capabilities, and a plethora of medical diagnostics tools. The opportunities arising from optics and photonics offer the potential for even greater societal impact in the next few decades, including solar power generation and new efficient lighting that could transform the nation's energy landscape and new optical capabilities that will be essential to support the continued exponential growth of the Internet. As described in the National Research Council report Optics and Photonics: Essential Technologies for our Nation, it is critical for the United States to take advantage of these emerging optical technologies for creating new industries and generating job growth. The report assesses the current state of optical science and engineering in the United States and abroad--incl...

  18. Solid state synthesis of SrAl{sub 2}O{sub 4}:Mn{sup 2+} co-doped with Nd{sup 3+} phosphor and its optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ayvacıkli, M. [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, Muradiye Campus, 45140 Muradiye-Manisa (Turkey); Kotan, Z.; Ekdal, E. [Ege University, Institute of Nuclear Sciences, 35100 Bornova-Izmir (Turkey); Karabulut, Y. [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, Muradiye Campus, 45140 Muradiye-Manisa (Turkey); Canimoglu, A. [Niğde University, Faculty of Arts and Sciences, Department of Physics, Niğde-Merkez/niğde (Turkey); Garcia Guinea, J. [Museo Nacional Ciencias Naturales, Jose Gutierrez Abascal 2, Madrid 28006 (Spain); Khatab, A.; Henini, M. [School of Physics and Astronomy, Nottingham Nanotechnology and Nanoscience Center, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Can, N., E-mail: cannurdogan@yahoo.com [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, Muradiye Campus, 45140 Muradiye-Manisa (Turkey)

    2013-12-15

    The optical properties of alkaline earth aluminates doped with rare earth ions have received much attention in the last years and this is due to their chemical stability, long-afterglow (LAG) phosphorescence and high quantum efficiency. However, there is a lack of understanding about the nature of the rare earth ion trapping sites and the mechanisms which could activate and improve the emission centers in these materials. Therefore a new phosphor material composition, SrAl{sub 2}O{sub 4}:Mn{sup 2+}, co-doped with Nd{sup 3+} was synthesized by a traditional solid-state reaction method. The influence of transition metal and rare earth doping on crystal structure and its luminescence properties have been investigated by using X-ray diffraction (XRD), Raman scattering, Photoluminescence (PL) and Radioluminescence (RL). Analysis of the related diffraction patterns has revealed a major phase characteristic of the monoclinic SrAl{sub 2}O{sub 4} compound. Small amounts of the dopants MnCO{sub 3} and Nd{sub 2}O{sub 3} have almost no effect on the crsytalline phase composition. Characteristic absorption bands from Nd{sup 3+} 4f–4f transitions in the spectra can be assigned to the transitions from the ground state {sup 4}I{sub 9/2} to the excited states. The luminescence of Mn{sup 2+} activated SrAl{sub 2}O{sub 4} exhibits a broad green emission band from the synthesized phosphor particles under different excitation sources. This corresponds to the spin-forbidden transition of the d-orbital electron associated with the Mn{sup 2+} ion. In photo- and radio-luminescence spectra, Nd{sup 3+} 4f–4f transition peaks were observed. The emitted radiations for different luminescence techniques were dominated by 560, 870, 1057 and 1335 nm peaks in the visible and NIR regions as a result of {sup 4}I{sub 9/2}→{sup 4}G{sub 7/2} and {sup 4}F{sub 3/2}→{sup 4}I{sub J} (J=9/2, 11/2 and 13/2) transitions of Nd{sup 3+} ions, respectively. Multiple emission lines observed at each of these

  19. Impact of green technologies in optical networks case study: green wireless optical broadband access network

    Science.gov (United States)

    Puche, William S.; Sierra, Javier E.

    2014-09-01

    This article analyzes the current state of green technologies in optical telecommunications networks, analyzing in detail the basic structure of a hybrid network (Optical-Wireless), taking into account energy consumption by proposing a mathematical model is presented to establish the optimum number of ONUs in a network.

  20. Optical Processing.

    Science.gov (United States)

    1985-12-31

    network. Other examples are precise direction finding in bats through binaural hearing, and in cats, of registration in the visual cortex of neurons mapping...networks, in their most common form, consist of various elements as follows: an array of neurons , which are ele- ments that accept a sum of many analog...inputs but have allowable states of only 0 or 1; a complex interconnection network between those neurons , with . neuron i connected to neuron j with a

  1. Transformation optics and metamaterials.

    Science.gov (United States)

    Chen, Huanyang; Chan, C T; Sheng, Ping

    2010-05-01

    Underpinned by the advent of metamaterials, transformation optics offers great versatility for controlling electromagnetic waves to create materials with specially designed properties. Here we review the potential of transformation optics to create functionalities in which the optical properties can be designed almost at will. This approach can be used to engineer various optical illusion effects, such as the invisibility cloak.

  2. Optic Nerve Pit

    Science.gov (United States)

    ... Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Optic Nerve Pit What is optic nerve pit? An optic nerve pit is a ... may be seen in both eyes. How is optic pit diagnosed? If the pit is not affecting ...

  3. [Hereditary optic neuropathies].

    Science.gov (United States)

    Milea, D; Verny, C

    2012-10-01

    Hereditary optic neuropathies are a group of heterogeneous conditions affecting both optic nerves, with an autosomal dominant, autosomal recessive, X-related or mitochondrial transmission. The two most common non-syndromic hereditary optic neuropathies (Leber's hereditary optic neuropathy and autosomal dominant optic atrophy) are very different in their clinical presentation and their genetic transmission, leading however to a common, non-specific optic nerve atrophy. Beyond the optic atrophy-related visual loss, which is the clinical hallmark of this group of diseases, other associated neurological signs are increasingly recognized. Copyright © 2012. Published by Elsevier Masson SAS.

  4. Fiber optic temperature sensor

    Science.gov (United States)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor)

    2000-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  5. Optics for dummies

    CERN Document Server

    Duree, Galen C

    2011-01-01

    The easy way to shed light on Optics In general terms, optics is the science of light. More specifically, optics is a branch of physics that describes the behavior and properties of light?including visible, infrared, and ultraviolet?and the interaction of light with matter. Optics For Dummies gives you an approachable introduction to optical science, methods, and applications. You'll get plain-English explanations of the nature of light and optical effects; reflection, refraction, and diffraction; color dispersion; optical devices, industrial, medical, and military applicatio

  6. Heralded generation of a micro-macro entangled state

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund; Neergaard-Nielsen, Jonas Schou

    2013-01-01

    Using different optical setups based on squeezed state and photon subtraction we show how optical entanglement between a macroscopic and a microscopic state-the so-called Schro¨dinger cat state or micro-macro state-can be generated. The entangled state is heralded and is thus produced a priori in...

  7. Transformation quantum optics: designing spontaneous emission using coordinate transformations

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Wubs, Martijn; Ginzburg, Pavel

    2016-01-01

    Spontaneous decay is a fundamental quantum property of emitters that can be controlled in a material environment via modification of the local density of optical states (LDOS). Here we use transformation optics methods in order to design required density of states and thus spontaneous emission (S...

  8. Quantum Optics with Quantum Dots in Photonic Nanowires

    DEFF Research Database (Denmark)

    Gérard, J. M.; Claudon, J.; Bleuse, J.

    2012-01-01

    We review recent experimental and theoretical results, which highlight the strong interest of the photonic wire geometry for solid-state quantum optics and quantum optoelectronic devices.......We review recent experimental and theoretical results, which highlight the strong interest of the photonic wire geometry for solid-state quantum optics and quantum optoelectronic devices....

  9. Optical antenna enhanced spontaneous emission.

    Science.gov (United States)

    Eggleston, Michael S; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C

    2015-02-10

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼ 200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ∼ 115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼ 2,500 × spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d(2). Unfortunately, at d < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.

  10. Principles of adaptive optics

    CERN Document Server

    Tyson, Robert

    2010-01-01

    History and BackgroundIntroductionHistoryPhysical OpticsTerms in Adaptive OpticsSources of AberrationsAtmospheric TurbulenceThermal BloomingNonatmospheric SourcesAdaptive Optics CompensationPhase ConjugationLimitations of Phase ConjugationArtificial Guide StarsLasers for Guide StarsCombining the LimitationsLinear AnalysisPartial Phase ConjugationAdaptive Optics SystemsAdaptive Optics Imaging SystemsBeam Propagation Syst

  11. Optical imaging and spectroscopy

    CERN Document Server

    Brady, David J

    2009-01-01

    An essential reference for optical sensor system design This is the first text to present an integrated view of the optical and mathematical analysis tools necessary to understand computational optical system design. It presents the foundations of computational optical sensor design with a focus entirely on digital imaging and spectroscopy. It systematically covers: Coded aperture and tomographic imaging Sampling and transformations in optical systems, including wavelets and generalized sampling techniques essential to digital system analysis Geometric, wave, and statis

  12. Spatial resolution limits of an optical profiler

    Science.gov (United States)

    Creath, Katherine

    1990-07-01

    Interferometric optical profilers have a spatial resolution which is either limited by the detector array sample spacing and element size or by the optical resolution of the system. To test the working spatial resolution of an optical profiler a sinsusoidal grating with 300 lines/mm was measured using an optical profiler at lOx 2Ox 40x and 200x with detector arrays having element-to-element spacings of 6. 8 j. tm and 40 tm. The highest magnification gave the greatest and most accurate depth for the grating for all of the detectors. At 40x as long as there were more than about 8 sample points per cycle as there were with the two smaller detector spacings the grating depth can be measured quite accurately. With fewer points the peak-to-valley height measurement of the grating is too low even though the optical resolution of the system is sufficient enough to resolve the grating. The results of this work show that for accurate representation of surface heights containing high frequency structures oversampling is desirable. Summary The spatial resolution of an interferometric optical proffler depends upon both the optical resolution of the system and the characteristics of the detector array used to sample the image. The limiting resolution wifi be the larger of the optical and detector resolution. One means of defining optical resolution is the Sparrow criterion which states that the image of two points is just

  13. Optical Rewritable Electronic Paper

    Science.gov (United States)

    Muravsky, Alexander; Murauski, Anatoli; Chigrinov, Vladimir; Kwok, Hoi-Sing

    We developed new principle of electronic paper that is one side (for 2D image) or double side (for stereoscopic 3D image) light printable rewritable matter with polarization dependent gray scale. It consists of one or two liquid crystal displays based on Optical Rewritable (ORW) technology, which is the development of rotation azo-dye photoalignment. Each ORW display uses bare plastic or polarizers as substrates. The conductor is not required, as the image is formed by rewritable states of azimuthal direction, which results in 2D pattern of the liquid crystal twist angle. Continuous grey image maintains proper performance even when the device is bent. Simple construction provides durability and low cost, thin substrates minimize parallax for 3D image. Fluorescent dye dopant of liquid crystal partly absorbs light in blue and re-emit in green specter range improving photopic reflection and enhancing color of the ORW e-paper.

  14. Design of optical switches by illusion optics

    Science.gov (United States)

    Shoorian, H. R.; Abrishamian, M. S.

    2013-05-01

    In this paper, illusion optics theory is employed to form Bragg gratings in an optical waveguide in order to design an optical switch. By using an illusion device at a certain distance from the waveguide, the effective refractive index of the waveguide is remotely modulated, turning the waveguide into a distributed Bragg reflector (DBR) which blocks the waves at a stop band. By removing the illusion device, the waves propagate through the waveguide again. In addition, this method is used to remotely tune DBR optical properties such as resonant frequency and bandwidth in a wide range, which leads to a tunable filter for optical switching applications. Finally, using an illusion device at a distance, an optical cavity is created by inserting defects remotely in a DBR without any physical damage in the primary device.

  15. Anisotropic contrast optical microscope.

    Science.gov (United States)

    Peev, D; Hofmann, T; Kananizadeh, N; Beeram, S; Rodriguez, E; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M

    2016-11-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves

  16. Quantum states of light

    CERN Document Server

    Furusawa, Akira

    2015-01-01

    This book explains what quantum states of light look like. Of special interest, a single photon state is explained by using a wave picture, showing that it corresponds to the complementarity of a quantum. Also explained is how light waves are created by photons, again corresponding to the complementarity of a quantum. The author shows how an optical wave is created by superposition of a "vacuum" and a single photon as a typical example. Moreover, squeezed states of light are explained as "longitudinal" waves of light and Schrödinger's cat states as macroscopic superposition states.

  17. Optical Abelian lattice gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Tagliacozzo, L., E-mail: luca.tagliacozzo@icfo.es [ICFO The Institute of Photonic Sciences, Av. Carl Friedrich Gauss, num. 3, E-08860 Castelldefels (Barcelona) (Spain); Celi, A., E-mail: alessio.celi@gmail.com [ICFO The Institute of Photonic Sciences, Av. Carl Friedrich Gauss, num. 3, E-08860 Castelldefels (Barcelona) (Spain); Zamora, A. [ICFO The Institute of Photonic Sciences, Av. Carl Friedrich Gauss, num. 3, E-08860 Castelldefels (Barcelona) (Spain); Lewenstein, M. [ICFO The Institute of Photonic Sciences, Av. Carl Friedrich Gauss, num. 3, E-08860 Castelldefels (Barcelona) (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona (Spain)

    2013-03-15

    We discuss a general framework for the realization of a family of Abelian lattice gauge theories, i.e., link models or gauge magnets, in optical lattices. We analyze the properties of these models that make them suitable for quantum simulations. Within this class, we study in detail the phases of a U(1)-invariant lattice gauge theory in 2+1 dimensions, originally proposed by P. Orland. By using exact diagonalization, we extract the low-energy states for small lattices, up to 4 Multiplication-Sign 4. We confirm that the model has two phases, with the confined entangled one characterized by strings wrapping around the whole lattice. We explain how to study larger lattices by using either tensor network techniques or digital quantum simulations with Rydberg atoms loaded in optical lattices, where we discuss in detail a protocol for the preparation of the ground-state. We propose two key experimental tests that can be used as smoking gun of the proper implementation of a gauge theory in optical lattices. These tests consist in verifying the absence of spontaneous (gauge) symmetry breaking of the ground-state and the presence of charge confinement. We also comment on the relation between standard compact U(1) lattice gauge theory and the model considered in this paper. - Highlights: Black-Right-Pointing-Pointer We study the quantum simulation of dynamical gauge theories in optical lattices. Black-Right-Pointing-Pointer We focus on digital simulation of abelian lattice gauge theory. Black-Right-Pointing-Pointer We rediscover and discuss the puzzling phase diagram of gauge magnets. Black-Right-Pointing-Pointer We detail the protocol for time evolution and ground-state preparation in any phase. Black-Right-Pointing-Pointer We provide two experimental tests to validate gauge theory quantum simulators.

  18. Thin Hydrogel Films for Optical Biosensor Applications

    Science.gov (United States)

    Mateescu, Anca; Wang, Yi; Dostalek, Jakub; Jonas, Ulrich

    2012-01-01

    Hydrogel materials consisting of water-swollen polymer networks exhibit a large number of specific properties highly attractive for a variety of optical biosensor applications. This properties profile embraces the aqueous swelling medium as the basis of biocompatibility, non-fouling behavior, and being not cell toxic, while providing high optical quality and transparency. The present review focuses on some of the most interesting aspects of surface-attached hydrogel films as active binding matrices in optical biosensors based on surface plasmon resonance and optical waveguide mode spectroscopy. In particular, the chemical nature, specific properties, and applications of such hydrogel surface architectures for highly sensitive affinity biosensors based on evanescent wave optics are discussed. The specific class of responsive hydrogel systems, which can change their physical state in response to externally applied stimuli, have found large interest as sophisticated materials that provide a complex behavior to hydrogel-based sensing devices. PMID:24957962

  19. Support for the U.S. precision optics manufacturing base center for optics manufacturing

    Science.gov (United States)

    Leshne, Robert H.

    1989-12-01

    The importance of optics to the economic and military strength of the United States is well known. Advances in optical technology have substantial leverage and are closely related to advances in associated technologies (i.e., imaging, sensing, communications, guidance control, etc.). However, the lead in manufacturing and fabrication of optical components and systems has been lost to our world competitors, especially Japan and other Pacific Rim countries. The optics industrial base has been in a slow but constant decline since the 1970's. The shift in business strategy from manufacturing emphasis to purchasing from worldwide resources has resulted in many U.S. "manufacturers" becoming importers. Optics employment dropped 50% from 1981 to 1986. Imports currently dominate both the U.S. commercial and DOD optics markets.

  20. Fabrication of freeform optics

    Science.gov (United States)

    Blalock, Todd; Medicus, Kate; DeGroote Nelson, Jessica

    2015-08-01

    Freeform surfaces on optical components have become an important design tool for optical designers. Non-rotationally symmetric optical surfaces have made solving complex optical problems easier. The manufacturing and testing of these surfaces has been the technical hurdle in freeform optic's wide-spread use. Computer Numerically Controlled (CNC) optics manufacturing technology has made the fabrication of optical components more deterministic and streamlined for traditional optics and aspheres. Optimax has developed a robust freeform optical fabrication CNC process that includes generation, high speed VIBE polishing, sub-aperture figure correction, surface smoothing and testing of freeform surfaces. Metrology of freeform surface is currently achieved with coordinate measurement machines (CMM) for lower resolution and interferometry with computer generated holograms (CGH) for high resolution irregularity measurements.

  1. Nonlinear Optics and Applications

    Science.gov (United States)

    Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)

    2007-01-01

    Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.

  2. Optical spectroscopy of molecular positronium.

    Science.gov (United States)

    Cassidy, D B; Hisakado, T H; Tom, H W K; Mills, A P

    2012-03-30

    We report optical spectroscopic measurements of molecular positronium (Ps(2)), performed via a previously unobserved L=1 excited state. Ps(2) molecules created in a porous silica film, and also in vacuum from an Al(111) crystal, were resonantly excited and then photoionized by pulsed lasers, providing conclusive evidence for the production of this molecular matter-antimatter system and its excited state. Future experiments making use of the photoionized vacuum L=1 Ps(2) could provide a source of Ps(+) ions, as well as other multipositronic systems, such as Ps(2)H(-) or Ps(2)O.

  3. Nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind P

    2001-01-01

    The Optical Society of America (OSA) and SPIE - The International Society for Optical Engineering have awarded Govind Agrawal with an honorable mention for the Joseph W. Goodman Book Writing Award for his work on Nonlinear Fiber Optics, 3rd edition.Nonlinear Fiber Optics, 3rd Edition, provides a comprehensive and up-to-date account of the nonlinear phenomena occurring inside optical fibers. It retains most of the material that appeared in the first edition, with the exception of Chapter 6, which is now devoted to the polarization effects relevant for light propagation in optical

  4. Organic nonlinear optical materials

    Science.gov (United States)

    Umegaki, S.

    1987-01-01

    Recently, it became clear that organic compounds with delocalized pi electrons show a great nonlinear optical response. Especially, secondary nonlinear optical constants of more than 2 digits were often seen in the molecular level compared to the existing inorganic crystals such as LiNbO3. The crystallization was continuously tried. Organic nonlinear optical crystals have a new future as materials for use in the applied physics such as photomodulation, optical frequency transformation, opto-bistabilization, and phase conjugation optics. Organic nonlinear optical materials, e.g., urea, O2NC6H4NH2, I, II, are reviewed with 50 references.

  5. Introduction to nonimaging optics

    CERN Document Server

    Chaves, Julio

    2015-01-01

    Introduction to Nonimaging Optics covers the theoretical foundations and design methods of nonimaging optics, as well as key concepts from related fields. This fully updated, revised, and expanded Second Edition: Features a new and intuitive introduction with a basic description of the advantages of nonimaging opticsAdds new chapters on wavefronts for a prescribed output (irradiance or intensity), infinitesimal étendue optics (generalization of the aplanatic optics), and Köhler optics and color mixingIncorporates new material on the simultaneous multiple surface (SMS) design method in 3-D, int

  6. Coherent states in quantum mechanics

    CERN Document Server

    Rodrigues, R D L; Fernandes, D

    2001-01-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out.

  7. Optical Network Technologies for Future Digital Cinema

    Directory of Open Access Journals (Sweden)

    Sajid Nazir

    2016-01-01

    Full Text Available Digital technology has transformed the information flow and support infrastructure for numerous application domains, such as cellular communications. Cinematography, traditionally, a film based medium, has embraced digital technology leading to innovative transformations in its work flow. Digital cinema supports transmission of high resolution content enabled by the latest advancements in optical communications and video compression. In this paper we provide a survey of the optical network technologies for supporting this bandwidth intensive traffic class. We also highlight the significance and benefits of the state of the art in optical technologies that support the digital cinema work flow.

  8. Handbook of fiber optics theory and applications

    CERN Document Server

    Yeh, Chai

    2013-01-01

    Dr. Yeh supplies a firm theoretical foundation in such topics as propagation of light through fibers, fiber fabrication, loss mechanisms, and dispersion properties. He then expands from this into such practical areas as fiber splicing, measuring loss in fibers, fiber-based communications networks, remote fiber sensors, and integrated optics. Whether involved in fiber optics research, design, or practical implementation of systems, this handbook will be extremely useful.Key Features* Here is a comprehensive, ""one-stop"" reference with state-of-the-art information on fiber optics Included is da

  9. Work on optical fibres in Russia

    Science.gov (United States)

    Semjonov, S. L.

    2017-12-01

    The Sixth All-Russia Conference on Fibre Optics (ARCFO-2017) was held in Perm on 3–6 October 2017. The previous conferences were held in 2007, 2009, 2011, 2013 and 2015, also in Perm. Organised by the Fiber Optics Research Center (FORC), Russian Academy of Sciences, and the Perm Research and Production Instrument Company (PRPIC) and supported by the Perm National Research Polytechnic University (PNRPU) and Perm State University (PSU), ARCFO-2017 was a key scientific and technological event in the field of photonics, stimulating the development of fibre optics and adjacent areas of research in Russia.

  10. Peptide Optical waveguides.

    Science.gov (United States)

    Handelman, Amir; Apter, Boris; Shostak, Tamar; Rosenman, Gil

    2017-02-01

    Small-scale optical devices, designed and fabricated onto one dielectric substrate, create integrated optical chip like their microelectronic analogues. These photonic circuits, based on diverse physical phenomena such as light-matter interaction, propagation of electromagnetic waves in a thin dielectric material, nonlinear and electro-optical effects, allow transmission, distribution, modulation, and processing of optical signals in optical communication systems, chemical and biological sensors, and more. The key component of these optical circuits providing both optical processing and photonic interconnections is light waveguides. Optical confinement and transmitting of the optical waves inside the waveguide material are possible due to the higher refractive index of the waveguides in comparison with their surroundings. In this work, we propose a novel field of bionanophotonics based on a new concept of optical waveguiding in synthetic elongated peptide nanostructures composed of ordered peptide dipole biomolecules. New technology of controllable deposition of peptide optical waveguiding structures by nanofountain pen technique is developed. Experimental studies of refractive index, optical transparency, and linear and nonlinear waveguiding in out-of-plane and in-plane diphenylalanine peptide nanotubes have been conducted. Optical waveguiding phenomena in peptide structures are simulated by the finite difference time domain method. The advantages of this new class of bio-optical waveguides are high refractive index contrast, wide spectral range of optical transparency, large optical nonlinearity, and electro-optical effect, making them promising for new applications in integrated multifunctional photonic circuits. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  11. Achromatic optical diode in fiber optics

    CERN Document Server

    Berent, Michal; Vitanov, Nikolay V

    2013-01-01

    We propose a broadband optical diode, which is composed of one achromatic reciprocal quarter-wave plate and one non-reciprocal quarter-wave plate, both placed between two crossed polarizers. The presented design of achromatic wave plates relies on an adiabatic evolution of the Stokes vector, thus, the scheme is robust and efficient. The possible simple implementation using fiber optics is suggested.

  12. Coherent feedback control of multipartite quantum entanglement for optical fields

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhihui; Jia, Xiaojun; Xie, Changde; Peng, Kunchi [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006 (China)

    2011-12-15

    Coherent feedback control (CFC) of multipartite optical entangled states produced by a nondegenerate optical parametric amplifier is theoretically studied. The features of the quantum correlations of amplitude and phase quadratures among more than two entangled optical modes can be controlled by tuning the transmissivity of the optical beam splitter in the CFC loop. The physical conditions to enhance continuous variable multipartite entanglement of optical fields utilizing the CFC loop are obtained. The numeric calculations based on feasible physical parameters of realistic systems provide direct references for the design of experimental devices.

  13. Optical driven electromechanical transistor based on tunneling effect.

    Science.gov (United States)

    Jin, Leisheng; Li, Lijie

    2015-04-15

    A new electromechanical transistor based on an optical driven vibrational ring structure has been postulated. In the device, optical power excites the ring structure to vibrate, which acts as the shuttle transporting electrons from one electrode to the other forming the transistor. The electrical current of the transistor is adjusted by the optical power. Coupled opto-electro-mechanical simulation has been performed. It is shown from the dynamic analysis that the stable working range of the transistor is much wider than that of the optical wave inside the cavity, i.e., the optical resonance enters nonperiodic states while the mechanical vibration of the ring is still periodic.

  14. Wafer-scale micro-optics fabrication

    Science.gov (United States)

    Voelkel, Reinhard

    2012-07-01

    Micro-optics is an indispensable key enabling technology for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly-efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the past decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks, bringing high-speed internet to our homes. Even our modern smart phones contain a variety of micro-optical elements. For example, LED flash light shaping elements, the secondary camera, ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by the semiconductor industry. Thousands of components are fabricated in parallel on a wafer. This review paper recapitulates major steps and inventions in wafer-scale micro-optics technology. The state-of-the-art of fabrication, testing and packaging technology is summarized.

  15. Optical MEMS and MOEMS for telecommunications

    Science.gov (United States)

    Mounier, Eric

    2003-03-01

    This article will present the technologies and markets trends, as well as the latest R&D developments, in MEMS and MOEMS for optical telecom. Today, the MEMS technology has found the optical telecommunication market as a new "killer applications" (following the IT, automotive and medical markets). This overview will describe the current state-of-the-art in MEMS manufacturing for optical functions in optical networks. Switching is a crucial function in the future all-optical networks and MEMS and MOEMS are ideal candidates for this. After an over-estimation of the needs in optical switching in 2000, components manufacturers are today targeting market where low and medium size switches are needed. In this article, a specific focus on switching will be made with comparison between the MEMS technology and others switching technologies (thermo-optical, LC, holography...). The current industrial offer for MEMS (3D, 2D and 1D) will be described. The presentation will also give market figures and forecast for MEMS and MOEMS in optical telecom.

  16. Assessment of fiber optic pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, H.M.; Black, C.L.; Farmer, J.P. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

    1995-04-01

    This report presents the results of a six-month Phase 1 study to establish the state-of-the-art in fiber optic pressure sensing and describes the design and principle of operation of various fiber optic pressure sensors. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. In addition, current requirements for environmental and seismic qualification of sensors for nuclear power plants were reviewed to determine the extent of the qualification tests that fiber optic pressure sensors may have to meet before they can be used in nuclear power plants. This project has concluded that fiber optic pressure sensors are still in the research and development stage and only a few manufacturers exist in the US and abroad which supply suitable fiber optic pressure sensors for industrial applications. Presently, fiber optic pressure sensors are mostly used in special applications for which conventional sensors are not able to meet the requirements.

  17. PREFACE: 2nd International Symposium "Optics and its Applications"

    Science.gov (United States)

    Calvo, Maria L.; Dolganova, Irina N.; Gevorgyan, Narine; Guzman, Angela; Papoyan, Aram; Sarkisyan, Hayk; Yurchenko, Stanislav

    2016-01-01

    The ICTP smr2633: 2nd International Symposium "Optics and its Applications" (OPTICS-2014) http://indico.ictp.it/event/a13253/ was held in Yerevan and Ashtarak, Armenia, on 1-5 September 2014. The Symposium was organized by the Abdus Salam International Center for Theoretical Physics (ICTP) with the collaboration of the SPIE Armenian Student Chapter, the Armenian TC of ICO, the Russian-Armenian University (RAU), the Institute for Physical Research of the National Academy of Sciences of Armenia (IPR of NAS), the Greek-Armenian industrial company LT-Pyrkal, and the Yerevan State University (YSU). The Symposium was co-organized by the BMSTU SPIE & OSA student chapters. The International Symposium OPTICS-2014 was dedicated to the 50th anniversary of the Abdus Salam International Center for Theoretical Physics. This symposium "Optics and its Applications" was the First Official ICTP Scientific Event in Armenia. The presentations at OPTICS-2014 were centered on these topics: optical properties of nanostructures; quantum optics & information; singular optics and its applications; laser spectroscopy; strong field optics; nonlinear & ultrafast optics; photonics & fiber optics; optics of liquid crystals; and mathematical methods in optics.

  18. Optical Computing-Optical Components and Storage Systems

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 6. Optical Computing - Optical Components and Storage Systems ... Keywords. Advanced materials. optical switching. pulse shaping. optical storage device. high-performance computing. imaging; nanotechnology. photonics. telecommunications ...

  19. Optical Quantum Computing

    National Research Council Canada - National Science Library

    Jeremy L. O'Brien

    2007-01-01

    In 2001, all-optical quantum computing became feasible with the discovery that scalable quantum computing is possible using only single-photon sources, linear optical elements, and single-photon detectors...

  20. Optic Nerve Atrophy

    Science.gov (United States)

    ... cord (hydrocephalus) may prevent further optic nerve damage. Spectacles may be prescribed to correct refractive error. When optic atrophy is unilateral protection of the good eye is essential and wearing of protective lenses should ...